ProCount:
Weighted Projected Model Counting
with Graded Project-Join Trees

Jeffrey M. Dudek - Vu H. N. Phan - Moshe Y. Vardi

Rice University
July 8, 2021

N RICE SAT 2021

In This Talk

Problem: Weighted Projected Model Counting #xJy p(X,Y)

Applications in planning, formal verification, and infrastructure reliability

Our Solution: Two-phase algorithm based on graded project-join trees

1. Planning: Use tree decompositions to build a graded project-join tree
2. Execution: Process graded project-join tree with algebraic decision diagrams (ADDs) to get the count

Experiments: Our tool ProCount is fastest on 34% of solved benchmarks
https://github.com/vardigroup/DPMC

github.com/vardigroup/DPMC

The Problem: Projected Model Counting

Satisfiability (SAT) Projected Satisfiability (3SAT)

Does ¢ have a solution? Does 3Y. ¢ have a solution?

G
]
NP-Complete NP-Complete

Polynomial Hierarchy (PH)

I A [Toda, 91]
Model Counting (#SAT) Projected Model Counting (#3SAT)

[Zawadzki et al, 13]

How many solutions does ¢ have? < How many solutions does 3Y. ¢ have?

#P-Complete Unless PH #PNPI1_Complete
collapses

@ is a CNF formula, Y € Vars(¢) s

Background: Projected Model Counting

Problem: Projected Model Counting
Input: A CNF formula @ (X, Y) over disjoint variable sets X and Y
Output: #x3y @(X,Y)
The number of x € 2% s.t. there exists y € 2¥ where ¢p(x,y) = 1

Everything in this work
Example: generalizes to literal-weighted
projected model counting.
X = {xler}

Y = {y1,y2}
X, Y) = (x, Vxa VY) A(xg Vy) A(Ryr V —1y2)

Solutionsto3dY.p are: (x; =0, x, =0),(x; =1, x, =0),and (x; =1, x, =1)

Thus #XHY (p(X, Y) =3

Background: Projected Model Counting

Problem: Projected Model Counting
Input: A CNF formula @ (X, Y) over disjoint variable sets X and Y
Output: #x3y @(X,Y)
The number of x € 2% s.t. there exists y € 2 where p(x,y) = 1

Techniques for exact projected model counting: There is also approximate
. . projected model counting,
1. Search: Reason directly about ¢ using a SAT solver

but we focus on exact.
¢ projMC [Lagniez & Marquis, 19], reSSAT [Lee et al., 17]

2. Knowledge Compilation: Compile ¢ to a representation where counting is easy
¢ D4p [Lagniez & Marquis, 19]

3. Dynamic Programming: Reason about the clause structure of ¢
* nestHDB [Hecher et al., 20]
* This work

DPMC: Model Counting Algorithm oueea.

1. Planning: Build a project-join tree of @ (X).

2. Execution: Process project-join tree from leaves up to compute #y @ (X).

{x2}
{xll} (x5}
{v2y3}

1}

N

yiVx; ~y1Vy,Vx; Yo VY3 Y4 VX Y4 V X3

Definition: A project-join tree for ¢ is a tree where
1. Each clause of ¢ is assigned a (unique) leaf node.
2. Each variable of ¢ is assigned an internal node.

3. Forall clauses C and variables z that appearin C,
the z node is an ancestor of the C node.

Our Algorithm for Projected Model Counting

1. Planning: Build an (X,Y)-graded project-join tree of ¢ (X,Y).
2. Execution: Process graded project-join tree from leaves up to compute #x3y @(X,Y).

Definition: A project-join tree for ¢ is a tree where

{x2}
1. Each clause of ¢ is assigned a (unique) leaf node.
{x,} 2. Each variable of ¢ is assigned an internal node.
_______ F_____ 3. Forall clauses C and variables z that appearin C,
------------------- the z node is an ancestor of the C node.

{v2y3}

Definition: A project-join tree is (X,Y)-graded if:

{y 1}/

N

yiVx; ~y1Vy,Vx; Yo VY3 Y4 VX Y4 V X3

4. Forallvariablesx € Xandy €Y,
the y node is not an ancestor of the x node.

2. Execution

Idea:

T Pass ADDs through tree from leaves to root,
X2} projecting away variables according to the labels.
A
{x1}
{x3} An Algebraic Decision Diagram (ADD)

______ {1________________ ‘t represents a function 24 — R as

{ T LI a (sparse) directed acyclic graph.

YV2,Y3

{ya}

1} N ,\ Q%

Y1 VX Y1 VY2 VX Yy, VYs Ya VX V4 V X3 I 6
S
0 0 1 1
1
1 0 O
1 1 1

2. Execution: Running Time
T Idea:

{x2} Pass ADDs through tree from leaves to root,
A projecting away variables according to the labels.
{x1}
1’ X3} Key performance measure:
""" 1‘“““-----—-——-—----_l_fi______ e Width of the project-join tree
{2, y3} * |.e., the maximum number of variables
{Va} needed for a single ADD
j’l}\ \ \ e Width can be computed upfront
Y1VX1: Yy VY2 VX Y2 Vys Ve VX Ya VX3
Theorem: Given: Projected counting
(parameterized by width)
A CNF formula (p(X, Y) with ungraded project-join trees
* An (X,Y)-graded project-join tree of ¢(X,Y) of width w is (22") assuming ETH
This procedure computes #,3y @(X,Y) in time 0(2" - poly(l¢])). [Fishnizs & &, 15

1. Planning (Model Counting)

[McMahan et al., 04]

How to find a low-width project-join tree of ¢? [Kask et al., 05]
[Markov and Shi, 05]

Project-Join Tree of ¢ Tree Decomposition

of primal(¢g)
| poly. time |

width w treewidthw + 1

Decompositions show a “good” way to reason about a graph.
Black-box, heuristic tree-decomposition solvers:

* FlowCutter [Hamann and Strasser, 18]

* Tamaki [Tamaki, 17]

* htd [Abseher et al., 17]

10

1. Planning (Projected Model Counting)

How to find a low-width (X,Y)-graded project-join tree of ¢?

Possible Approach? Modify tree decomposition tools to take into account different variable types.

Better Idea: Use previous planners as a black box.

Add “virtual” clauses to ¢ to construct a new formula a so that:

(X,Y)-graded
Project-Join Tree of ¢

width w

| poly. time |

Theorem 6 &
Theorem 7 >

Project-Join Tree of

width w

Tree Decomposition
of primal(«)

treewidthw + 1

11

1. Planning: The Reduction

Constructing a:

1. Build the primal graph of @

A vertex for every variable, and an edge if two variables appear together in a clause.

Example:

g

—y1 V Xq
YiVy:VXx,
Y2 VY3
—1Y4 V Xy
Y4 V X3

i

12

1. Planning: The Reduction

Constructing a:

1. Build the primal graph of @

A vertex for every variable, and an edge if two variables appear together in a clause.

2. Examine the connected components of Y variables in the primal graph

Example:

g

—Y1 VXq
YiVy:VXx,
Y2 VY3
—1Y4 V Xy
Y4 V X3

i

13

1. Planning: The Reduction

Constructing a:

1. Build the primal graph of @

A vertex for every variable, and an edge if two variables appear together in a clause.

2. Examine the connected components of Y variables in the primal graph

3. For each connected component, add a “virtual clause” of the adjacent X variables to «.

Example:

P =

g

—Y1 VXq
YiVy:VXx,
Y2 VY3
—1Y4 V Xy
Y4 V X3

.

V1 VvV X1

Y4 V X3
x1Vx2

xZng

14

Algorithm Overview: ProCount

Boolean Formula ¢(X,Y)

Boolean Formula a(X,Y)

X1 sz
X2 VX3

%

Tree Decomposition
of primal(a)

irs

Project-Join Tree of

ProCount: Implemented in C++
https://github.com/vardigroup/DPMC

Planning: Black box tree-decomposition solvers

* FlowCutter, Tamaki, htd
Execution: ADDs with CUDD

(X,Y)-graded
Project-Join Tree of ¢

~

ExecutionT with ADDs

15

github.com/vardigroup/DPMC

Experimental Evaluation on Weighted #3SAT

—— Pro' Ollnt ‘...-.-.“-'
E ——— I'tlp '.‘...-".“‘---...-l‘lill....'
I proiM(: .-.“.’..'l.-."'l.

—— reSSAT
- VBSO #
....... VBS1 , VBSO is virtual best solver of _J_f_.-/_

all tools except ProCount.

Benchmarks solved
\)]
o
()
|
]
]
]

[

-

-
|

-~ VBSlis virtual best solver of
all tools, including ProCount.

10~° 10~2 10~ 1 109 10t 102 103
Longest solving time (seconds)

Our counter ProCount is the fastest tool on 131 benchmarks (34% of solved benchmarks).

* Run on a single 2.60 GHz core with 30 GB RAM. Used 849 #3SAT benchmarks from [Gupta et al., 19] and [Soos and Meel, 19]. 16

Summary and Conclusion

Problem: Weighted Projected Model Counting: #x3y @(X,Y)
Our Solution: Two-phase algorithm based on graded project-join trees

1. Planning: Use tree decompositions to build a graded project-join tree
Using previous planning as a black box lets us use unmodified tree-decomposition tools

2. Execution: Process graded project-join tree with ADDs to get the count
Using graded projected-join trees lets us avoid a double-exponential dependency on width

Experiments: ProCount improves the VBS on 34% of benchmarks solved by at least one tool
https://github.com/vardigroup/DPMC

Future Work:
 More quantifier alternation (#QBF, MAP inference, FAQ problems)
* Planning with other graph decompositions
e Parallelization

jeffreydudek@gmail.com
vhpl@rice.edu
vardi@rice.edu

17

https://github.com/vardigroup/DPMC
mailto:jeffreydudek@gmail.com
mailto:vhp1@rice.edu
mailto:vardi@rice.edu

