
ProCount:
Weighted Projected Model Counting

with Graded Project-Join Trees

Jeffrey M. Dudek - Vu H. N. Phan - Moshe Y. Vardi

Rice University

July 8, 2021

SAT 2021

In This Talk

Problem: Weighted Projected Model Counting
Applications in planning, formal verification, and infrastructure reliability

Our Solution: Two-phase algorithm based on graded project-join trees
1. Planning: Use tree decompositions to build a graded project-join tree

2. Execution: Process graded project-join tree with algebraic decision diagrams (ADDs) to get the count

Experiments: Our tool ProCount is fastest on 34% of solved benchmarks
https://github.com/vardigroup/DPMC

2

#𝑋∃𝑌 𝜑(𝑋, 𝑌)

github.com/vardigroup/DPMC

Polynomial Hierarchy (PH)

The Problem: Projected Model Counting

3

Projected Model Counting (#ƎSAT)

How many solutions does ∃𝑌. 𝜑 have?

#PNP[1]-Complete

Model Counting (#SAT)

How many solutions does 𝜑 have?

#P-Complete

Satisfiability (SAT)

Does 𝜑 have a solution?

NP-Complete

Projected Satisfiability (ƎSAT)

Does ∃𝑌. 𝜑 have a solution?

NP-Complete

≤

[Toda, 91]

=

[Zawadzki et al, 13]

Unless PH
collapses

<
𝜑 is a CNF formula, 𝑌 ⊆ Vars(𝜑)

Background: Projected Model Counting

Example:

4

Problem: Projected Model Counting
Input: A CNF formula 𝜑(𝑋, 𝑌) over disjoint variable sets 𝑋 and 𝑌
Output: #𝑋∃𝑌 𝜑(𝑋, 𝑌)

The number of 𝒙 ∈ 2𝑋 s.t. there exists 𝒚 ∈ 2𝑌 where 𝜑 𝒙, 𝒚 = 1

𝑋 = {𝑥1, 𝑥2}
𝑌 = {𝑦1, 𝑦2}

𝜑 𝑋, 𝑌 = (𝑥1 ∨ ¬𝑥2 ∨ 𝑦1) ∧ (𝑥1 ∨ 𝑦2) ∧ (¬𝑦1 ∨ ¬𝑦2)

Solutions to ∃𝑌. 𝜑 are: (𝑥1 = 0, 𝑥2 = 0), (𝑥1 = 1, 𝑥2 = 0), and (𝑥1 = 1, 𝑥2 = 1)

Thus #𝑋∃𝑌 𝜑 𝑋, 𝑌 = 3

Everything in this work
generalizes to literal-weighted

projected model counting.

Background: Projected Model Counting

Techniques for exact projected model counting:

1. Search: Reason directly about 𝜑 using a SAT solver
• projMC [Lagniez & Marquis, 19], reSSAT [Lee et al., 17]

2. Knowledge Compilation: Compile 𝜑 to a representation where counting is easy
• D4P [Lagniez & Marquis, 19]

3. Dynamic Programming: Reason about the clause structure of 𝜑
• nestHDB [Hecher et al., 20]

• This work

5

Problem: Projected Model Counting
Input: A CNF formula 𝜑(𝑋, 𝑌) over disjoint variable sets 𝑋 and 𝑌
Output: #𝑋∃𝑌 𝜑(𝑋, 𝑌)

The number of 𝒙 ∈ 2𝑋 s.t. there exists 𝒚 ∈ 2𝑌 where 𝜑 𝒙, 𝒚 = 1

There is also approximate
projected model counting,

but we focus on exact.

DPMC: Model Counting Algorithm

6

𝑦1 ∨ 𝑥1 ¬𝑦1 ∨ 𝑦2 ∨ 𝑥2 ¬𝑦2 ∨ 𝑦3

Definition: A project-join tree for 𝜑 is a tree where

1. Each clause of 𝜑 is assigned a (unique) leaf node.

2. Each variable of 𝜑 is assigned an internal node.

3. For all clauses 𝐶 and variables 𝑧 that appear in 𝐶,
the 𝑧 node is an ancestor of the 𝐶 node.

{𝑦1}

{𝑦4}

{𝑥3}

{𝑥2}

{𝑦2, 𝑦3}

{𝑥1}

1. Planning: Build a project-join tree of 𝜑(𝑋).

2. Execution: Process project-join tree from leaves up to compute #𝑋 𝜑(𝑋).

[Dudek et. al, 20]

¬𝑦4 ∨ 𝑥2 𝑦4 ∨ 𝑥3

Our Algorithm for Projected Model Counting

7

𝑦1 ∨ 𝑥1 ¬𝑦1 ∨ 𝑦2 ∨ 𝑥2 ¬𝑦2 ∨ 𝑦3

Definition: A project-join tree for 𝜑 is a tree where

1. Each clause of 𝜑 is assigned a (unique) leaf node.

2. Each variable of 𝜑 is assigned an internal node.

3. For all clauses 𝐶 and variables 𝑧 that appear in 𝐶,
the 𝑧 node is an ancestor of the 𝐶 node.

Definition: A project-join tree is (𝑿,𝒀)-graded if:

4. For all variables 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌,
the 𝑦 node is not an ancestor of the 𝑥 node.

{𝑦1}

{𝑦4}

{𝑥3}

{𝑥2}

{𝑦2, 𝑦3}

{𝑥1}

1. Planning: Build an (𝑿,𝒀)-graded project-join tree of 𝜑(𝑋, 𝑌).

2. Execution: Process graded project-join tree from leaves up to compute #𝑋∃𝑌 𝜑(𝑋, 𝑌).

¬𝑦4 ∨ 𝑥2 𝑦4 ∨ 𝑥3

2. Execution

8

𝑦1 𝑥1

0 0 1

0 1 1

1 0 0

1 1 1

An Algebraic Decision Diagram (ADD)
represents a function 2𝐴 → ℝ as
a (sparse) directed acyclic graph.

𝑦1

𝑥1

1 0

𝑥2

𝑥3

12

𝑦1

1.5

𝑦1

Idea:
Pass ADDs through tree from leaves to root,
projecting away variables according to the labels.

¬𝑦1 ∨ 𝑥1 𝑦1 ∨ 𝑦2 ∨ 𝑥2 ¬𝑦2 ∨ 𝑦3 ¬𝑦4 ∨ 𝑥2 𝑦4 ∨ 𝑥3

{𝑦1}

{𝑦4}

{𝑥3}

{𝑥2}

{𝑦2, 𝑦3}

{𝑥1}

2. Execution: Running Time

9

Key performance measure:

• Width of the project-join tree

• I.e., the maximum number of variables
needed for a single ADD

• Width can be computed upfront

Theorem: Given:

• A CNF formula 𝜑 𝑋, 𝑌

• An (𝑋,𝑌)-graded project-join tree of 𝜑(𝑋, 𝑌) of width 𝑤

This procedure computes #𝑋∃𝑌 𝜑(𝑋, 𝑌) in time 𝑂(2𝑤 ⋅ poly 𝜑).

Projected counting
(parameterized by width)

with ungraded project-join trees

is Ω 22
𝑤

assuming ETH

[Fichte et al., 18]

Idea:
Pass ADDs through tree from leaves to root,
projecting away variables according to the labels.

¬𝑦1 ∨ 𝑥1 𝑦1 ∨ 𝑦2 ∨ 𝑥2 ¬𝑦2 ∨ 𝑦3 ¬𝑦4 ∨ 𝑥2 𝑦4 ∨ 𝑥3

{𝑦1}

{𝑦4}

{𝑥3}

{𝑥2}

{𝑦2, 𝑦3}

{𝑥1}

1. Planning (Model Counting)

10

How to find a low-width project-join tree of 𝜑?

Tree Decomposition
of 𝐩𝐫𝐢𝐦𝐚𝐥(𝝋)

Project-Join Tree of 𝝋

Decompositions show a “good” way to reason about a graph.
Black-box, heuristic tree-decomposition solvers:
• FlowCutter
• Tamaki
• htd

treewidth 𝑤 + 1width 𝑤

poly. time

[McMahan et al., 04]
[Kask et al., 05]
[Markov and Shi, 05]

[Hamann and Strasser, 18]
[Tamaki, 17]
[Abseher et al., 17]

1. Planning (Projected Model Counting)

11

How to find a low-width (𝑿,𝒀)-graded project-join tree of 𝜑?

Possible Approach? Modify tree decomposition tools to take into account different variable types.

Better Idea: Use previous planners as a black box.

Add “virtual” clauses to 𝜑 to construct a new formula 𝛼 so that:

Tree Decomposition
of 𝐩𝐫𝐢𝐦𝐚𝐥(𝜶)

Project-Join Tree of 𝜶(𝑿,𝒀)-graded
Project-Join Tree of 𝝋

Theorem 6 ←
Theorem 7 →

poly. time

width 𝑤width 𝑤 treewidth 𝑤 + 1

1. Planning: The Reduction

12

Constructing 𝛼:

1. Build the primal graph of 𝜑
A vertex for every variable, and an edge if two variables appear together in a clause.

2. Examine the connected components of 𝑌 variables in the primal graph

3. For each connected component, add a “virtual clause” of the adjacent 𝑋 variables to 𝛼.

Example:

𝜑 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

¬𝑦1 ∨ 𝑥1
𝑦1 ∨ 𝑦2 ∨ 𝑥2
¬𝑦2 ∨ 𝑦3
¬𝑦4 ∨ 𝑥2
𝑦4 ∨ 𝑥3

𝑥1

𝑥3

𝑥2

𝑦1

𝑦2 𝑦3

𝑦4

1. Planning: The Reduction

13

Constructing 𝛼:

1. Build the primal graph of 𝜑
A vertex for every variable, and an edge if two variables appear together in a clause.

2. Examine the connected components of 𝑌 variables in the primal graph

3. For each connected component, add a “virtual clause” of the adjacent 𝑋 variables to 𝛼.

Example:

𝜑 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

¬𝑦1 ∨ 𝑥1
𝑦1 ∨ 𝑦2 ∨ 𝑥2
¬𝑦2 ∨ 𝑦3
¬𝑦4 ∨ 𝑥2
𝑦4 ∨ 𝑥3

𝑥1

𝑥3

𝑥2

𝑦1

𝑦2 𝑦3

𝑦4

1. Planning: The Reduction

14

Constructing 𝛼:

1. Build the primal graph of 𝜑
A vertex for every variable, and an edge if two variables appear together in a clause.

2. Examine the connected components of 𝑌 variables in the primal graph

3. For each connected component, add a “virtual clause” of the adjacent 𝑋 variables to 𝛼.

Example:

𝜑 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

¬𝑦1 ∨ 𝑥1
𝑦1 ∨ 𝑦2 ∨ 𝑥2
¬𝑦2 ∨ 𝑦3
¬𝑦4 ∨ 𝑥2
𝑦4 ∨ 𝑥3

𝑥1

𝑥3

𝑥2

𝑦1

𝑦2 𝑦3

𝑦4

𝛼 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

¬𝑦1 ∨ 𝑥1
…

𝑦4 ∨ 𝑥3
𝒙𝟏 ∨ 𝒙𝟐
𝒙𝟐 ∨ 𝒙𝟑

Algorithm Overview: ProCount

15

Boolean Formula 𝜶(𝑿, 𝒀)

ProCount: Implemented in C++

https://github.com/vardigroup/DPMC

Planning: Black box tree-decomposition solvers
• FlowCutter, Tamaki, htd

Execution: ADDs with CUDD

Tree Decomposition
of 𝐩𝐫𝐢𝐦𝐚𝐥(𝜶)

Project-Join Tree of 𝜶 (𝑿,𝒀)-graded
Project-Join Tree of 𝝋

Execution with ADDs

#𝑋∃𝑌 𝜑(𝑋, 𝑌)

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

…

𝒙𝟏 ∨ 𝒙𝟐
𝒙𝟐 ∨ 𝒙𝟑

Boolean Formula 𝝋(𝑿, 𝒀)

github.com/vardigroup/DPMC

16* Run on a single 2.60 GHz core with 30 GB RAM. Used 849 #ƎSAT benchmarks from [Gupta et al., 19] and [Soos and Meel, 19].

Our counter ProCount is the fastest tool on 131 benchmarks (34% of solved benchmarks).

VBS0 is virtual best solver of
all tools except ProCount.

VBS1 is virtual best solver of
all tools, including ProCount.

Experimental Evaluation on Weighted #ƎSAT

Summary and Conclusion
Problem: Weighted Projected Model Counting: #𝑋∃𝑌 𝜑(𝑋, 𝑌)

Our Solution: Two-phase algorithm based on graded project-join trees

1. Planning: Use tree decompositions to build a graded project-join tree
Using previous planning as a black box lets us use unmodified tree-decomposition tools

2. Execution: Process graded project-join tree with ADDs to get the count
Using graded projected-join trees lets us avoid a double-exponential dependency on width

Experiments: ProCount improves the VBS on 34% of benchmarks solved by at least one tool
https://github.com/vardigroup/DPMC

Future Work:
• More quantifier alternation (#QBF, MAP inference, FAQ problems)
• Planning with other graph decompositions
• Parallelization

17

jeffreydudek@gmail.com
vhp1@rice.edu
vardi@rice.edu

https://github.com/vardigroup/DPMC
mailto:jeffreydudek@gmail.com
mailto:vhp1@rice.edu
mailto:vardi@rice.edu

