SAT 2021

Barcelona, July 5-9th 2021

Deep Cooperation of CDCL and Local Search for SAT

Shaowei Cai*, Xindi Zhang

Institute of Software, Chinese Academy of Sciences {caisw, zhangxd}@ios.ac.cn

- Introduction
- Main Ideas
 - A Novel Framework of hybrid solvers
 - Phase Resetting with Local Search Assignments
 - Branching with Conflict Frequency in Local Search
- Experiments

Introduction

- Main Ideas
 - A Novel Framework of hybrid solvers
 - Phase Resetting with Local Search Assignments
 - Branching with Conflict Frequency in Local Search
- Experiments

Introduction - SAT

SAT: Given a propositional formula φ , test whether there is an assignment to the variables that makes φ true.

e.g., a CNF formula

 $\varphi = (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (x_2 \vee \neg x_4) \land (\neg x_1 \vee \neg x_3 \vee x_4)$

Hard

- The first problem that is proved to be NP-Complete [S. Cook, 1971]
- ETH says 3-SAT cannot be solved in 2^{o(n)} time, and SETH says k-SAT needs roughly 2ⁿ time for large k.

Important Applications

• EDA

...

- Software verification
- Automatic Theorem Proving
- cryptography

Improve the efficiency of SAT Solving

Introduction - CDCL

• The most popular approach: CDCL, since 1996 (evolved from DPLL)

```
Algorithm 1: Typical CDCL algorithm: CDCL(F, \alpha)
1 dl \leftarrow 0:
                    //decision level
2 if UnitPropagation(F, \alpha)==CONFLICT then return UNSAT
3 while \exists unassigned variables do
      /* PickBranchVar picks a variable to assign and
          picks the respective value
                                                                              */
      (x, v) \leftarrow PickBranchVar(F, \alpha);
4

    clause learning

      dl \leftarrow dl + 1:
5
      \alpha \leftarrow \alpha \cup \{(x, v)\};
6
                                                             Lazy data structures
      if UnitPropagation(F, \alpha) = = CONFLICT then
7
                                                            Restarting
         bl \leftarrow ConflictAnalysis(F, \alpha);
8
         if bl < 0 then
9
                                                             branching heuristics
                                                         •
             return UNSAT;
10

    Pick a variable

         else
11
             BackTrack(F, \alpha, bl);
12

    Pick the respective phase

             dl \leftarrow bl:
13
14 return SAT:
```

Introduction - SLS

- The other important paradigm: stochastic local search (SLS), since 1992
 - a main incomplete method biased towards the satisfiable side.
 - Begin with a complete assignment and iteratively modify the assignment

Introduction – Challenge on hybrid solving

Ten Challenges in Propositional Reasoning and Search Bart Selman, Henry Kautz, and David McAllester AT&T Laboratories 600 Mountain Avenue Murray Hill, NJ 07974 {selman, kautz, dmac}@research.att.com http://www.research, att.com/~selman/challenge

Challenge 7: Demonstrate the successful combination of stochastic search and systematic search techniques, by the creation of a new algorithm that outperforms the best previous examples of both approaches.

---AAAI 1997, Bart Selman, Henry Kautz and David McAllester

Introduction – Related works

- Use a local search solver as the main body solver.
 - hybridGM, SATHYS
 - GapSAT: use CDCL as preprocessor before local search
- DPLL/CDCL as the main body solver
 - HINOTOS: local search finds subformulas for CDCL to solve
 - WalkSatz: calls WalkSAT at each node of a DPLL solver Satz.
 - CaDiCaL and Kissat: a local search solver is called when the solver resets the saved phases and is used only once immediately after the local search process
- Sequential call local search and CDCL
 - Sparrow2Riss, CCAnr+glucose, SGSeq

Introduction – Related works

- Use a local search solver as the main body solver.
 - hybridGM, SATHYS
 - GapSAT: use CDCL as preprocessor before local search
- DPLL/CDCL as the main body solver

HINOTOS: local search finds subformulas for CDCL to solve
 Previous works did not lead to hybrid solvers
 essentially better than CDCL solvers on application
 instances.

the local search process

- Sequential call local search and CDCL
 - Sparrow2Riss, CCAnr+glucose, SGSeq

Introduction

Main Ideas

- A Novel Framework of hybrid solvers
- Phase Resetting with Local Search Assignments
- Branching with Conflict Frequency in Local Search
- Experiments

Idea 1: Exploring Promising Branches by Local Search

Identify which branches deserve exploration

$$\frac{|\alpha|}{|V|} > p$$
 and there is no conflict under α . $p = 0.4$

 $\frac{|\alpha|}{|\alpha_max|} > q$ and there is no conflict under α . q = 0.6

The cutoff of each Local Search process: certain amount of memory accesses (5×10^7)

Idea 2: Phase Resetting with Local Search Assignments

- Phase selection is an important component of a CDCL solver.
- Most modern CDCL solvers utilize the phase saving heuristic (Pipatsrisawat & Darwiche, SAT 2007).
- Our idea:
 - After each time the CDCL is restarted, resets the saved phases of all variables with assignments produced by local search.

Table 1. Probability of different phases in our phase resetting mechanism

Phase Name	$\alpha_max_LS[x]$	$\alpha_latest_LS[x]$	$\alpha_best_LS[x]$	no change
Probability	20%	65%	5%	10%

- $\alpha_{max}LS$ and $\alpha_{best}LS$ serve for the aim to maximize the depth of the branch
- *α_latest_LS* adds diversification

Idea 3: Branching with Conflict Frequency in Local Search

- CDCL is a powerful framework owing largely to the utilization of the conflict information
- branching heuristics aim to promote conflicts.
- Can information from SLS be used to enhance branching heuristics to promote conflicts?

Our idea:

ls_confl_freq (x) = #(steps in which x appears in unsatisfied clauses) /
#total_local_search_steps

multiply *ls_confl_freq*(x) with 100 , resulting *ls_confl_num*(x).

LS Enhanced VSIDS: for each variable x, its activity is increased by $ls_confl_num(x)$

LS Enhanced LRB: for each variable x, the number of learnt clause during its period I is creased by $ls_confl_num(x)$.

- Introduction
- Main Ideas
 - A Novel Framework of hybrid solvers
 - Phase Resetting with Local Search Assignments
 - Branching with Conflict Frequency in Local Search
- Experiments

Experiments - Preliminaries

- Base solver:
 - glucose (v4.2.1)
 - MapleLCMDistChronoBT-DL (v2.1)
 - Kissat_sat (2414b6d)
 - CCAnr
- Benchmarks:
 - The latest four SAT Competitions/Race (2017-2020)
 - US Federal Communication Commission(FCC) 10000 instances

Experiments – Results on SC benchmarks

solver	#SAT	#UNSAT	#Solved	PAR2	#SAT	#UNSAT	#Solved	PAR2
	SC2017(351)				SC2018(400)			
glucose_4.2.1	83	101	184	5220.0	95	95	190	5745.9
glucose+rx	88	95	183	5237.	113	95	208	5283.1
glucose+rx+rp	112	94	206	4618.2	141	87	228	4698.3
glucose+rx+rp+cf	110	94	204	4668.5	150	91	241	4438.2
Maple-DL-v2.1	101	113	214	4531.0	133	102	235	4533.9
Maple-DL+rx	101	112	213	45 9).B	149	101	250	4148.
Maple-DL+rx+rp	111	103	214	4447.1	158	93	251	4 447.1
Maple-DL+rx+rp+cf	116	107	223	4139.4	162	97	259	3927.6
Kissat_sat	115	114	229	3943.5	167	98	265	3786.4
Kissat_sat+cf	113	113	226	4001.0	178	104	282	3409.4
CCAnr	13	N/A	13	9629.9	56	N/A	56	8622.0
	SC2019(400)			SC2020(400)				
glucose_4.2.1	118	86	204	5437.6	68	91	159	6494.6
glucose+rx	120	84	204	5443	93	88	181	6018.1
glucose+rx+rp	134	85	219	5096.3	130	85	215	5923.7
glucose+rx+rp+cf	140	85	225	4923.6	134	87	221	4977.9
Maple-DL-v2.1	143	97	240	4601.8	86	104	190	5835.7
Maple-DL+rx	146	93	239	4602.	121	105	226	4977.8
Maple-DL+rx+rp	155	94	249	4416.3	142	99	241	4589.2
Maple-DL+rx+rp+cf	154	95	249	4377.4	151	106	257	4171.1
Kissat_sat	159	88	247	4293.	146	114	260	4048-8
Kissat_sat+cf	162	90	252	4211.7	157	113	270	3896.8
CCAnr	13	N/A	13	9678.3	45	N/A	45	8978.7

		Analysis	s for SAT	Analysis for UNSAT			
solver	#byLS	#SAT_bonus	LS_call LS	Lime(%)#	LS_call LS	_time(%)	
			SC201	7(351)			
glucose+rx	20	11	24.28	21.66	16.36	5.52	
glucose+rx+rp	10	33	17.77	18.46	14.33	4.86	
glucose+rx+rp+cf	17	29	22.7	22.19	15.3	5.81	
Maple+rx	16	9	13.86	7.52	11.18	2.03	
Maple+rx+rp	11	15	9.63	10.43	6.54	2.36	
Maple+rx+rp+cf	6	16	12.59	7.49	8.59	2.12	
			SC2018(400)				
glucose+rx	50	4	11.27	20.66	29.62	4.94	
glucose+rx+rp	47	31	9.46	18.4	21.66	5.64	
glucose+rx+rp+cf	53	36	11.43	20.28	20.62	6.64	
Maple+rx	52	7	4.8	13.02	11.69	2.81	
Maple+rx+rp	56	13	4.84	15.21	8.7	3.04	
Maple+rx+rp+cf	51	18	6.52	12.53	15.62	2.94	
			SC2019(400)				
glucose+rx	14	8	26.46	10.79	17.42	6.39	
glucose+rx+rp	10	26	22.68	8.67	14.59	5.14	
glucose+rx+rp+cf	11	26	20.39	11.82	15.51	5.95	
Maple+rx	14	7	12.66	2.67	12.94	1.98	
Maple+rx+rp	9	14	8.6	3.17	16.59	2.53	
Maple+rx+rp+cf	12	15	11.21	3.05	17.23	2.22	
			SC2020(400)				
glucose+rx	30	9	14.94	11.75	14.67	10.27	
glucose+rx+rp	23	37	13.17	10.79	9.4	9.71	
glucose+rx+rp+cf	23	37	12.78	11.67	10.52	10.28	
Maple+rx	19	13	14.21	6.69	10.24	5.25	
Maple+rx+rp	30	29	8.53	6.62	11.7	6.18	
Maple+rx+rp+cf	23	36	10.95	6.05	14.17	5.42	

Experiments – Results on FCC benchmark

Table 3. Comparing with state-of-the-art solvers on FCC. glucose+ is short for glucose+rx+rp+cf, and malple+ is short for Maple-DL+rx+rp+cf.

	glucose	glucose+	Maple	Maple+	kissat_sat	kissat_sat+cf	CCAnr
Benchmark	#SAT	#SAT	#SAT	#SAT	#SAT	#SAT	#SAT
	#UNSAT	#UNSAT	#UNSAT	#UNSAT	#UNSAT	#UNSAT	#UNSAT
	#Solved	#Solved	#Solved	#Solved	#Solved	#Solved	#Solved
	PAR2	PAR2	PAR2	PAR2	PAR2	PAR2	PAR2
FCC (10000)	7330	8075	8084	8759	8192	8214	7853
	187	197	215	218	207	211	0
	7517	8272	8299	8977	8399	8425	7853
	2555.85	1850.58	1867.13	1243.66	1760.55	1734.61	2215.35

Conclusion

As far as we know, this is the first work that meets the standard of the challenge 7 "Demonstrate the successful combination of stochastic search and systematic search techniques, by the creation of a new algorithm that outperforms the best previous examples of both approaches." on standard application benchmarks.

Thank you! Any question?