
An Algorithmic Framework for

Making Use of Negative Learning in

Ant Colony Optimization

A dissertation presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

by

Teddy Nurcahyadi

Supervisor:

Dr. Christian Blum

Tutor:

Dr. Felip Manyà

Institut d’Investigació en Intel.ligència Artificial, CSIC

Programa de Doctorat en Informàtica

Universitat Autònoma de Barcelona

October, 2022





ABSTRACT

Ant Colony Optimization (Aco) is a metaheuristic that took its inspiration from

nature, particularly from the foraging behavior of ant colonies. This algorithm

imitates the ants’ capability in finding short routes between their nest and food

sources by using two mechanisms: solution construction and pheromone update.

Similar to the real ants that choose their route based on its pheromone concentration,

theAco algorithmmakes use of pheromone values, in addition to greedy information,

to construct several solutions at each iteration. Subsequently, the algorithm

uses some of the good ones of the constructed solutions to update its pheromone

model as a way to emulate the dynamics of the pheromone trails during the ants’

foraging activities. This pheromone model will bias the search towards areas in

the proximity of the solutions used for updating. Hence, we can say that this

optimization algorithmuses a positive learningmechanism, asmostmetaheuristics

do.

Observations showed that negative learning, in addition to the positive learning

mechanism, also plays a vital role in animal swarm behavior, the species and

inter-species evolution, aswell as the humanhistory. Metaheuristicmethods such

as evolutionary algorithms, extremal optimization, particle swarm optimization,

and the opposition-based learning algorithm have already exploited this feature.

Several works also tried to improve existing Aco algorithms by integrating

negative learning mechanisms. However, most of these implementations did

not produce any consistent improvement over the standard Aco algorithm.

Our negative learning Aco proposal employs several features not considered

in previous implementations. Unlike the previous approaches that identify the

negative learning information by a function that searches for worse solutions

or simply by choosing the worst solution in an iteration for updating the

pheromone values, our negative learning Aco identifies bad solutions (or

bad solution components) by comparing the solutions produced in an Aco

iteration to the solution generated by an additional algorithmic component.

Any solution component found in an Aco iteration but not present in the

solution generated by the additional algorithmic component is considered a

bad solution component. As a consequence, its negative pheromone value is

increased. Consequently, this component will be less likely to be selected in

the next iterations. We developed another novel feature to support this negative

information identification mechanism. The baseline Aco algorithm generates a

sub-instance that consists of solution components found in each of its iterations.

Subsequently, the baseline algorithm feeds the sub-instance to the additional

i



algorithmic component. Hence, the algorithmic component works on a problem

instance that is smaller in size and consists of presumably high-quality solution

components.

We successfully used several optimization algorithms (Cplex,MAX -MIN
Ant System, and the MaxSAT solvers SATLike and SlsMcs) as options

for the additional algorithmic component in our negative learning Aco

applications to several optimization problems (Multi Dimensional Knapsack

Problem, Minimum Dominating Set problem, Maximum Satisfiability problem,

Capacitated Minimum Dominating Set problem, and Minimum Positive

Influence Dominating Set problem). The results show that our negative learning

Aco variants improve consistently over the baseline Aco algorithm and over

the other optimization algorithms used internally in our negative learning

Aco variants. Clearly, this is an achievement that no other negative learning

Aco proposal obtained in their implementations. We also compared them

to four representative negative learning Aco proposals from the literature in

our application to the Multi Dimensional Knapsack Problem and Minimum

Dominating Set problem. The comparison shows that, globally, our negative

learning Aco variants perform significantly better than these competitors.

Moreover, we found that Aco
+
neg—our overall-best negative learning Aco

variant—always performs competitively with the state-of-the-art algorithms

in each considered optimization problem. In fact, Aco
+
neg is currently the

state-of-the-art algorithm for the Minimum Positive Influence Dominating Set

problem. This way, we proved the general applicability and the effectiveness of

our negative learning Aco proposal.

Keywords: AntColonyOptimization,Negative Learning,MultiDimensionalKnapsack

Problem, Minimum Dominating Set, Maximum Satisfiability, Capacitated Minimum

Dominating Set, Minimum Positive Influence Dominating Set, Cplex, MMAS,

SATLike, SlsMcs.

ii



RESUMEN

LaOptimización con colonias de hormigas (Aco) es unametaheurística que se inspira

en la naturaleza; más concretamente, en el comportamiento que siguen las

hormigas cuando buscan alimentos. Este algoritmo hace uso de la capacidad

que tienen las hormigas para encontrar rutas cortas, entre el hormiguero y la

fuente de alimentos, utilizando dos mecanismos: la construcción de soluciones y

la actualización de feromonas. Al igual que las hormigas eligen la ruta en función

de la concentración de feromonas, el algoritmo Aco utiliza valores de feromonas,

además de información greedy, para construir varias soluciones en cada iteración.

Posteriormente, el algoritmo usa algunas de las mejores soluciones construidas

para actualizar su modelo de feromonas como una forma de emular la dinámica de

los rastros de feromonas de las hormigas durante la búsqueda de alimentos. Este

modelo de feromonas conduce la búsqueda hacia áreas cercanas a la solución

utilizada para la actualización. Por lo tanto, podemos decir que este algoritmo

de optimización utiliza un mecanismo de aprendizaje positivo, como lo hacen la

mayoría de metaheurísticas.

Se sabe por experiencia que el aprendizaje negativo, junto con el mecanismo de

aprendizaje positivo, juega un papel vital en el comportamiento de los enjambres

de animales y en la evolución dentro de las especies y entre especies, así como

en la historia humana. Los métodos metaheurísticos como los algoritmos

evolutivos, el método extremal optimization, la optimización con enjambres de

partículas y el algoritmo de aprendizaje basado en oposición han explotado

el aprendizaje negativo. Además, varios trabajos han intentado mejorar los

algoritmos Aco existentes integrando mecanismos de aprendizaje negativo. Sin

embargo, la mayoría de estas implementaciones no han producido ninguna

mejora significativa sobre el algoritmo Aco estándar.

Nuestra propuesta de aprendizaje negativo para Aco emplea varias

características no contempladas en implementaciones anteriores. A diferencia

de los enfoques anteriores que identifican la información de aprendizaje negativo

mediante una función que busca las peores soluciones o simplemente elige la

peor solución en una iteración para actualizar los valores de las feromonas,

nuestro aprendizaje negativo Aco identifica soluciones malas (o componentes de

una solución mala) comparando las soluciones generadas en una iteración Aco

con la solución generada por un componente algorítmico adicional. Cualquier

componente de una solución que se encuentre en una iteración de Aco pero

que no esté presente en la solución generada por el componente algorítmico

adicional se considera un componente de solución de baja calidad y su valor

iii



de feromona negativo se incrementa. Por tanto, es menos probable que este

componente se seleccione en las iteraciones sucesivas. También desarrollamos

otra característica novedosa para ayudar a este mecanismo de identificación

de información negativa. El algoritmo baseline Aco genera una subinstancia

que consta de los componentes comunes encontrados en todas las iteraciones.

Posteriormente, el algoritmo de base pasa esta subinstancia al componente

algorítmico adicional. Por lo tanto, el componente algorítmico considera una

instancia más pequeña formada por componentes que, presumiblemente, son de

alta calidad.

En esta tesis, utilizamos con éxito varios algoritmos de optimización (Cplex,

MAX -MIN Ant System, SATLike y SlsMcs) como opciones para el componente

algorítmico adicional en nuestras implementaciones Aco con aprendizaje

negativo y resolvemos varios problemas de optimización (el problema de la

mochila multidimensional, el problema del conjunto dominante mínimo, el

problema de la máxima satisfactibilidad, el problema del conjunto dominante

mínimo con capacidades y el problema del conjunto dominante mínimo con

influencia positiva). Los resultados experimentales muestran que nuestras

variantes Aco con aprendizaje negativo son mejores que el algoritmo Aco de

base y los otros algoritmos de optimización utilizados internamente en nuestras

variantesAco conaprendizaje negativo. Claramente, este esun logroqueninguna

otra implementación de aprendizaje negativo Aco ha obtenido anteriormente.

Por otro lado, comparamos nuestras variantes con cuatro propuestas Aco con

aprendizaje negativo, representativas de la literatura, para el problema de la

mochila multidimensional y el problema del conjunto dominante mínimo. La

comparación muestra que, globalmente, nuestras variantes Aco con aprendizaje

negativo funcionan significativamente mejor que estos competidores. Además,

encontramos que Aco
+
neg—nuestra mejor variante Aco con aprendizaje negativo

en general—siempre es competitiva con los mejores algoritmos para cada uno de

los problemas de optimización considerados. De hecho, Aco
+
neg es actualmente el

algoritmomás competitivo para el problema del conjunto dominantemínimo con

influencia positiva. De esta manera, hemos demostrado la aplicabilidad general

y la efectividad de nuestra propuesta Aco con aprendizaje negativo.

iv



RESUM

L’optimització amb colònies de formigues (Aco) és unametaheurística que s’inspira en

la naturalesa; més concretament, en el comportament que segueixen les formigues

quan busquen aliments. Aquest algorisme fa ús de la capacitat que tenen les

formigues per a trobar rutes curtes, entre el formiguer i la font d’aliments,

utilitzant dos mecanismes: la construcció de solucions i l’actualització de feromones.

Igual que les formigues trien la ruta en funció de la concentració de feromones,

l’algorisme Aco fa servir valors de feromones, a més d’informació greedy, per a

construir diverses solucions en cada iteració. Posteriorment, l’algorisme fa servir

algunes de les millors solucions construïdes per a actualitzar el seu model de

feromones com una manera d’emular la dinàmica dels rastres de feromones de

les formigues durant la cerca d’aliments. Aquest model de feromones condueix

la cerca cap a àrees pròximes a la solució utilitzada per a l’actualització. Per

tant, podem dir que aquest algorisme d’optimització utilitza un mecanisme

d’aprenentatge positiu, com ho fan la majoria de metaheurísticas.

Se sap per experiència que l’aprenentatge negatiu, juntament amb el mecanisme

d’aprenentatge positiu, juga un paper vital en el comportament dels eixams

d’animals i en l’evolució dins de les espècies i entre espècies, així com en la

història humana. Els mètodes metaheurístics com els algorismes evolutius, el

mètode extremal optimization, l’optimització amb eixams de partícules i l’algorisme

d’aprenentatge basat en oposició han explotat l’aprenentatge negatiu. A més,

diversos treballs han intentat millorar els algorismes Aco existents integrant

mecanismes d’aprenentatge negatiu. No obstant això, la majoria d’aquestes

implementacions no han produït cap millora significativa sobre l’algorisme Aco

estàndard.

La nostra proposta d’aprenentatge negatiu per a Aco empra diverses

característiques no contemplades en implementacions anteriors. A diferència

dels enfocaments anteriors que identifiquen la informació d’aprenentatge negatiu

mitjançant una funció que busca les pitjors solucions o simplement tria la

pitjor solució en una iteració per a actualitzar els valors de les feromones, el

nostre aprenentatge negatiu Aco identifica solucions dolentes (o components

d’una solució dolenta) comparant les solucions generades en una iteració Aco

amb la solució generada per un component algorítmic addicional. Qualsevol

component d’una solució que es trobi en una iteració de Aco però que no sigui

present en la solució generada pel component algorítmic addicional es considera

un component de solució de baixa qualitat i el seu valor de feromona negatiu

s’incrementa. Per tant, és menys probable que aquest component se seleccioni

v



en les iteracions successives. També desenvolupem una altra característica

nova per a ajudar a aquest mecanisme d’identificació d’informació negativa.

L’algorisme baseline Aco genera una subinstància que consta dels components

comuns trobats en totes les iteracions. Posteriorment, l’algorisme de base passa

aquesta subinstància al component algorítmic addicional. Per tant, el component

algorítmic considera una instància més petita formada per components que,

presumiblement, són d’alta qualitat.

En aquesta tesi, utilitzem amb èxit diversos algorismes d’optimització (Cplex,

MAX -∗MIN Ant System, SATLike i SlsMcs) com a opcions per al component

algorítmic addicional en les nostres implementacions Aco amb aprenentatge

negatiu i resolem diversos problemes d’optimització (el problema de la motxilla

multidimensional, el problema del conjunt dominant mínim, el problema de la

màxima satisfactibilitat, el problema del conjunt dominant mínim amb capacitats

i el problema del conjunt dominant mínim amb influència positiva). Els resultats

experimentals mostren que les nostres variants Aco amb aprenentatge negatiu

són millors que l’algorisme Aco de base i els altres algorismes d’optimització

utilitzats internament en les nostres variants Aco amb aprenentatge negatiu.

Clarament, aquesta és una fita que cap altra implementació d’aprenentatge

negatiu Aco ha assolit anteriorment. D’altra banda, comparem les nostres

variants amb quatre propostes Aco amb aprenentatge negatiu, representatives

de la literatura, per al problema de la motxilla multidimensional i el problema

del conjunt dominant mínim. La comparació mostra que, globalment, les nostres

variants Aco amb aprenentatge negatiu funcionen significativament millor que

aquests competidors. A més, trobem que Aco
+
neg—la nostra millor variant Aco

amb aprenentatge negatiu en general—sempre és competitiva amb els millors

algorismes per a cadascun dels problemes d’optimització considerats. De fet,

Aco
+
neg és actualment l’algorisme més competitiu per al problema del conjunt

dominant mínim amb influència positiva. D’aquesta manera, hem demostrat

l’aplicabilitat general i l’efectivitat de la nostra proposta Aco amb aprenentatge

negatiu.

vi



ACKNOWLEDGEMENT

I am glad that I finally got to this point in my Ph.D. study. It was an incredible

journey for me. I admit that it was not easy, particularly at the start. I am deeply

grateful to my Supervisor, Dr. Christian Blum, who guided me very well in this

challenging endeavor. He understood that I had a different background and

had a lot of things to learn in this new field. I am indebted to his precious time,

efforts, and encouragement in guidingme through that very steep learning curve.

He helped me to strategically plan my Ph.D. study, and he consistently paid a

great deal of attention to my progress. He gave an excellent thesis supervision

throughout my Ph.D. journey, and he was always concerned about its successful

completion. Out of his kindness, he also helped me solve many problems that

were not directly related to my academic work, but critical to me. All of this has

made my studies here much more manageable. I am lucky to be one of his Ph.D.

students. Thank you very, very much.

This endeavor would also not have been possible without the support of my

Tutor, Dr. FelipManya. He helpedme take care of many academic tasks and gave

me a lot of motivation. I always received words of optimism and encouragement

every time I meet him. I learned a lot from him during our collaboration on

MaxSAT, and he gave numerous feedback that significantly improved my work.

Thank you so much.

I would also like to express my deepest gratitude to my thesis committee

members.

Special thanks to Albert López Serrano and Dr. Salim Bouamama for the

collaboration in applying our negative learning Aco to the Minimum Positive

Influence Dominating Set problem.

I am deeply grateful to Beasiswa Pendidikan Pascasarjana Luar Negeri

(IndonesianPh.D. scholarship) from theDirectorateGeneral ofHigher Education,

Research, and Technology of the Ministry of Education, Culture, Research, and

Technology of the Republic of Indonesia. This Ph.D. study would not have been

possible without their support.

Universitas Muhammadiyah Yogyakarta (UMY), my home university in

Indonesia, providedmewithmany training and facilities for my doctoral studies.

This has made my travel and my stay Catalonia feel effortless, which I sincerely

appreciate; my deepest gratitude for the commitment and support of UMY to my

Ph.D. studies.

I am grateful to the SpanishMinistry of Science and Innovation, which funded

all research in this thesis through project MCIN/AEI/10.13039/501100011033

vii



(Grants PID2019-104156GB-I00 and PID2019-111544GB-C21).

The Artificial Intelligence Research Institute (IIIA-CSIC) provided an

outstanding working environment during my Ph.D. studies. I am genuinely

grateful for the access provided to the High-Performance Computer Cluster Ars

Magna, which I used intensively for experiments in this thesis. I witnessed

people’s dedication, passion, and humbleness reflected in their daily activities

and work in this Institute. Thanks to them for providing me with a friendly and

encouraging atmosphere.

I enjoyed working in the student rooms on the first and second floors of the

Institute. It was the best working environment that I ever had. Many thanks to

all fellow students in these rooms.

Finally, I would like to thank my wife, Elis, and our three children, Azizah,

Adly, and Adlynna. It was not always easy for us to go through this great

adventure, but I amglad thatwewere together to experience this fantastic journey.

Thanks for all your love and support.

viii



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ACKNOWLEDGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 INTRODUCTION 1

1.1 Methods for Combinatorial Optimization . . . . . . . . . . . . . . . . 2

1.2 Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Greedy Randomized Adaptive Search Procedure . . . . . . . . 4

1.2.2 Iterated Greedy Algorithms . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Iterated Local Search . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.5 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.6 Variable Neighborhood Search . . . . . . . . . . . . . . . . . . 6

1.2.7 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . 6

1.2.8 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . 7

1.2.9 Extremal Optimization . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.10 Opposition Based Learning . . . . . . . . . . . . . . . . . . . . 8

1.2.11 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . 8

1.3 Negative Learning in Metaheuristics . . . . . . . . . . . . . . . . . . . 12

1.4 Negative Learning in Ant Colony Optimization . . . . . . . . . . . . . 13

1.5 General Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.1 The Storage and Update of the Negative Learning Information 19

1.5.2 The Way of Deriving the Negative Learning Information . . . 20

1.6 Lessons Learned and Resulting Proposal . . . . . . . . . . . . . . . . . 21

ix



1.7 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8 The Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . 25

1.9 Publications Derived from this Thesis . . . . . . . . . . . . . . . . . . 28

2 GENERAL DESCRIPTION OF THE ALGORITHMIC

FRAMEWORK 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 MMAS: The Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Solution Construction . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Pheromone Update . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.3 Convergence Factor . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Adding Negative Learning toMMAS . . . . . . . . . . . . . . . . . . 35

2.3.1 Information Maintenance . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Information Generation and Update . . . . . . . . . . . . . . . 35

2.3.3 Information Use . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 APPLICATION TO THE MULTI DIMENSIONAL KNAPSACK

PROBLEM 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Multi Dimensional Knapsack Problems . . . . . . . . . . . . . . . 39

3.2.1 ILP Model for the MDKP . . . . . . . . . . . . . . . . . . . . . . 40

3.3 MMAS Implementation to the MDKP . . . . . . . . . . . . . . . . . . 40

3.3.1 Solution Construction . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Pheromone Update and Convergence Factor . . . . . . . . . . . 41

3.4 Adding Negative Learning toMMAS . . . . . . . . . . . . . . . . . . 42

3.5 Proposals from the Literature . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Subtractive Anti-Pheromone (SAP) . . . . . . . . . . . . . . . . 45

3.5.2 Explorer Ants (EA) . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.3 Preferential Anti-Pheromone . . . . . . . . . . . . . . . . . . . 46

3.5.4 Second-Order Swarm Intelligence . . . . . . . . . . . . . . . . . 47

3.6 Summary of the Tested Algorithms . . . . . . . . . . . . . . . . . . . . 47

3.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



3.7.1 Algorithm Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7.3 Search Trajectory Network Analysis . . . . . . . . . . . . . . . . 55

3.7.4 Comparison to the State-of-the-Art . . . . . . . . . . . . . . . . 59

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 APPLICATION TO THE MINIMUM DOMINATING SET

PROBLEM 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 The Minimum Dominating Set Problem . . . . . . . . . . . . . . . . . 75

4.2.1 ILP Model for the MDS Problem . . . . . . . . . . . . . . . . . 76

4.3 MMAS Implementation to the MDS . . . . . . . . . . . . . . . . . . . 76

4.3.1 Solution Construction . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Pheromone Update and Convergence Factor . . . . . . . . . . . 78

4.4 Adding Negative Learning toMMAS . . . . . . . . . . . . . . . . . . 79

4.5 Proposals from the Literature . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Summary of the Tested Algorithms . . . . . . . . . . . . . . . . . . . . 83

4.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7.1 Algorithm Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7.3 Search Trajectory Network Analysis . . . . . . . . . . . . . . . . 89

4.7.4 Comparison to the State of the Art . . . . . . . . . . . . . . . . 98

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 APPLICATION TO THEMAXIMUM SATISFIABILITY PROBLEM119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 The Maximum Satisfiability Problem . . . . . . . . . . . . . . . . . . . 120

5.2.1 ILP Model for the MaxSAT . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Existing Approaches to MaxSAT . . . . . . . . . . . . . . . . . 121

5.3 Negative Learning Aco for MaxSAT . . . . . . . . . . . . . . . . . . . 123

5.3.1 Solution Construction . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.2 Pheromone Update and Convergence Factor . . . . . . . . . . . 126

xi



5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.1 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.2 Algorithm tuning and test settings . . . . . . . . . . . . . . . . 129

5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.4 Search Trajectory Network Analysis . . . . . . . . . . . . . . . . 134

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 APPLICATION TO THE MINIMUM CAPACITATED

DOMINATING SET PROBLEM 151

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 The CapMDS Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 ILP Model for the CAPMDS Problem . . . . . . . . . . . . . . . 152

6.3 MMAS Implementation to the CapMDS . . . . . . . . . . . . . . . . 153

6.4 Adding Negative Learning toMMAS . . . . . . . . . . . . . . . . . . 155

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.1 Algorithm Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 APPLICATION TO THE MINIMUM POSITIVE INFLUENCE

DOMINATING SET PROBLEM 161

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 The Minimum Positive Influence Dominating Set Problem . . . . . . 162

7.2.1 ILP Model for the MPIDS . . . . . . . . . . . . . . . . . . . . . 162

7.3 Negative Learning Aco for MPIDS Problem . . . . . . . . . . . . . . . 162

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4.1 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.4.2 Algorithm tuning and test settings . . . . . . . . . . . . . . . . 164

7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 165

xii



8 ADDITIONALWORK:

MMAS APPLICATION TO THE MULTI-HEAD WEIGHER

MACHINES PROBLEM 169

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2 The Multi-head Weigher Machine Problem . . . . . . . . . . . . . . . 171

8.2.1 ILP Model for the MWM . . . . . . . . . . . . . . . . . . . . . . 171

8.2.2 Existing Approaches to the MWM problem . . . . . . . . . . . 172

8.3 MMAS for MWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.4.1 Problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.4.2 Algorithm tuning and test settings . . . . . . . . . . . . . . . . 174

8.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9 CONCLUSIONS AND OUTLOOK 181

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xiii



List of Figures

1.1 The basic concept of Aco . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The existing strategies for storing and updating the negative

learning information . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Passive method for deriving negative learning information . . . . . 20

1.4 Active method for deriving negative learning information . . . . . . 21

1.5 Our method for deriving negative learning information . . . . . . . 22

3.1 Illustrative example of negative learning Aco applied to the MDKP 43

3.2 Critical difference plot concerning all MDKP instances . . . . . . . . 50

3.3 Critical difference plots for MDKP instance groups based on their

densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Critical difference plots for MDKP instance groups based on their

number of resources . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Heatmaps concerning the results for the MDKP . . . . . . . . . . . . 54

3.6 Search trajectory network of Aco, Aconeg, and Aco
+
neg applied to

problem instance cb_5_500.0 . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Search trajectory network of Aco
+
, Aconeg, and Aco

+
neg applied to

problem instance cb_5_500.0 . . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Search trajectory network of Aco-Aconeg, Aco-Aco
+
neg, and Aco

+
neg

applied to problem instance cb_5_500.0 . . . . . . . . . . . . . . . . 57

3.9 Search trajectory network of Aco-Ea, Aco-Sap, and Aco
+
neg applied

to problem instance cb_5_500.0 . . . . . . . . . . . . . . . . . . . . . 58

3.10 Search trajectory network of Aco
2o
, Aco-Pap, and Aco

+
neg applied to

problem instance cb_5_500.0 . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Illustrative example of the negative learning mechanism for the

MDS problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiv



4.2 Critical difference plot for all MDS instances . . . . . . . . . . . . . . 86

4.3 Critical difference plots concerning different graph types . . . . . . 87

4.4 Heatmaps concerning the results for the MDS problem . . . . . . . 88

4.5 Search trajectory network with the trajectories of Aco, Aconeg, and

Aco
+
neg applied to problem instance 5000.rgg.0.1.0 . . . . . . . . . . . 90

4.6 Search trajectory networkwith the trajectories ofAco
+
, Aconeg, and

Aco
+
neg applied to problem instance 5000.rgg.0.1.0 . . . . . . . . . . . 90

4.7 Search trajectory network with the trajectories of Aco-Aconeg,

Aco-Aco
+
neg, and Aco

+
neg applied to problem instance 5000.rgg.0.1.0 . 91

4.8 Search trajectory network with the trajectories of Aco-Ea, Aco-Sap,

and Aco
+
neg applied to problem instance 5000.rgg.0.1.0 . . . . . . . . 92

4.9 Search trajectory network with the trajectories of Aco
2o
, Aco-Pap,

and Aco
+
neg applied to problem instance 5000.rgg.0.1.0 . . . . . . . . 93

4.10 Search trajectory network with the trajectories of Aco, Aco
+
neg, and

Aconeg applied to problem instance 5000.rgg.1.0.1 . . . . . . . . . . . 94

4.11 Search trajectory networkwith the trajectories ofAco
+
, Aco

+
neg, and

Aconeg applied to problem instance 5000.rgg.1.0.1 . . . . . . . . . . . 95

4.12 Search trajectory network with the trajectories of Aco-Aconeg,

Aco-Aco
+
neg, and Aconeg applied to problem instance 5000.rgg.1.0.1 . 96

4.13 Search trajectory network with the trajectories of Aco-Ea, Aco-Sap,

and Aconeg applied to problem instance 5000.rgg.1.0.1 . . . . . . . . 97

4.14 Search trajectory network with the trajectories of Aco
2o
, Aco-Pap,

and Aconeg applied to problem instance 5000.rgg.1.0.1 . . . . . . . . 97

5.1 Illustrative example of the negative learning Aco approach for the

MaxSAT problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Critical difference plot concerning the results of the test on Villagra

and Baran’s instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Critical difference plot concerning the results of the tests for the

MSE 2020 and 2016 instances . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Search trajectory networks concerning Aco, Aconeg, and Aco
+
neg

applied to problem instance HG-4SAT-V150-C1350-100 . . . . . . . 135

xv



5.5 Search trajectory networks concerning Aco
+
neg, Aco-Sls

+
neg, and

Aco-Sat
+
neg applied to problem instance HG-4SAT-V150-C1350-100 . 136

5.6 Search trajectory networks concerning Aco, Aconeg, and Aco
+
neg

applied to problem instance scpclr12_maxsat . . . . . . . . . . . . . 137

5.7 Search trajectory networks concerning Aco
+
neg, Aco-Sat

+
neg, and

Aco-Sls
+
neg applied to problem instance scpclr12_maxsat . . . . . . . 137

6.1 Negative learning Aco for CapMDS . . . . . . . . . . . . . . . . . . . 155

6.2 Critical difference plots . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.1 A schema of a single layer MWM . . . . . . . . . . . . . . . . . . . . 170

8.2 Illustrative example of problem instance and solution of

configuration number 1 in Table 8.5 . . . . . . . . . . . . . . . . . . . 177

8.3 Illustrative example of problem instance and solution of

configuration number 4 in Table 8.5 . . . . . . . . . . . . . . . . . . . 177

xvi



List of Tables

2.1 Values for weights κib, κrb, and κbsf which depend on cf and

bs_update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Summaryof theparameters that arise in the considered algorithms,

together with their description and the domains considered for

parameter tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Summary of the parameters that arise in each algorithm. . . . . . . 49

3.3 Parameter values for all algorithms for solving the MDKP . . . . . . 50

3.4 Summarized comparison between Aco
+
neg and the state-of-the-art

algorithms for the MDKP . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Best results of all algorithms tested on OR-LIB instances with 5

resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Best results of all algorithms tested on OR-LIB instances with 10

resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Best results of all algorithms tested on OR-LIB instances with 30

resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Average results of all algorithms tested on OR-LIB instances with

5 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Average results of all algorithms tested on OR-LIB instances with

10 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.10 Average results of all algorithms tested on OR-LIB instances with

30 resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.11 Average computation time of all algorithms tested on OR-LIB

instances with 5 resources . . . . . . . . . . . . . . . . . . . . . . . . 68

3.12 Average computation time of all algorithms tested on OR-LIB

instances with 10 resources . . . . . . . . . . . . . . . . . . . . . . . . 69

xvii



3.13 Average computation time of all algorithms tested on OR-LIB

instances with 30 resources . . . . . . . . . . . . . . . . . . . . . . . . 70

3.14 Comparison of Aco
+
neg, Aconeg, and Aco with the current state of

the art on OR-LIB instances with 5 resources. . . . . . . . . . . . . . 71

3.15 Comparison of Aco
+
neg, Aconeg, and Aco with the current state of

the art on OR-LIB instances with 10 resources. . . . . . . . . . . . . 72

3.16 Comparison of Aco
+
neg, Aconeg, and Aco with the current state of

the art on OR-LIB instances with 30 resources. . . . . . . . . . . . . 73

4.1 Features comparison between our negative learning Aco variants . 84

4.2 Parameter values for all algorithms for solving the MDS problem . 85

4.3 MDS problem: summarized comparison to the state of the art.

Competitor names are accompanied by publication year and the

reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Best results of all algorithms tested on MDS random graphs with

5000 vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Best results of all algorithms tested on MDS random geometric

graphs with 5000 vertices . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Best results of all algorithms tested on MDS random graphs with

10000 vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Best results of all algorithms tested on MDS random geometric

graphs with 10000 vertices . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8 Average results of all algorithms tested on MDS random graphs

with 5000 vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Average results of all algorithms tested onMDS random geometric

graphs with 5000 vertices . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.10 Average results of all algorithms tested on MDS random graphs

with 10000 vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.11 Average results of all algorithms tested onMDS random geometric

graphs with 10000 vertices . . . . . . . . . . . . . . . . . . . . . . . . 110

4.12 Average computation time of all algorithms tested onMDS random

graphs with 5000 vertices . . . . . . . . . . . . . . . . . . . . . . . . . 112

xviii



4.13 Average computation time of all algorithms tested onMDS random

geometric graphs with 5000 vertices . . . . . . . . . . . . . . . . . . 113

4.14 Average computation time of all algorithms tested onMDS random

graphs with 10000 vertices . . . . . . . . . . . . . . . . . . . . . . . . 115

4.15 Average computation time of all algorithms tested onMDS random

geometric graphs with 10000 vertices . . . . . . . . . . . . . . . . . . 116

5.1 Parameter values obtained for all Aco algorithms concerning the

Pinto et al. instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Parameter values obtained for all Aco algorithms concerning the

Villagra and Baran instances . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Parameter values obtained for Aco-Sat
+
neg, MSE 2016 and 2020

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 Parameter values obtained for Aco-Sls
+
neg, MSE 2016 and 2020

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Parameter values obtained for Aco
+
neg, MSE 2016 and 2020 instances 131

5.6 Parameter values obtained for Aconeg, MSE 2016 and 2020 instances 131

5.7 Parameter values obtained for Aco, MSE 2016 and 2020 instances . 132

5.8 Comparative performance of our negative learning Aco variants

with their individual algorithmic components . . . . . . . . . . . . 133

5.9 Average results for Pinto’s instances . . . . . . . . . . . . . . . . . . 140

5.10 Summary of results for Villagra and Baran’s instances . . . . . . . . 140

5.11 Average results of all algorithms tested on Villagra and Baran’s

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.12 Best results of all algorithms tested on MSE 2020 and 2016 instances 142

5.13 Average results of all algorithms tested on MSE 2020 and 2016

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1 Parameter values obtained for solving CapMDS instances . . . . . . 158

6.2 Results for CapMDS graphs with uniform capacity. . . . . . . . . . 159

6.3 Results for CapMDS graphs with variable capacity. . . . . . . . . . . 159

7.1 Tuning results obtained by irace for small/medium size networks 165

7.2 Tuning results obtained by irace for large size networks . . . . . . 165

xix



7.3 Numerical results of all algorithm tested on MPIDS instances . . . . 167

8.1 MWM test case configurations with target a weight of 500 grams . . 174

8.2 MWM operational configurations . . . . . . . . . . . . . . . . . . . . 175

8.3 ACO parameter values obtained by irace . . . . . . . . . . . . . . . 175

8.4 Cplex and Aco results and execution times for the MWM packing

problem with one product type . . . . . . . . . . . . . . . . . . . . . 176

8.5 Cplex and Aco results and execution times for the MWM packing

problem with two product types . . . . . . . . . . . . . . . . . . . . 176

8.6 Cplex and Aco results and execution times for the MWM packing

problem with three product types . . . . . . . . . . . . . . . . . . . . 179

xx



List of Algorithms

2.1 MMAS in the hypercube framework (the baseline algorithm) . . . . 32

4.1 MDS solution construction . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Negative Learning Aco for unweighted MaxSAT . . . . . . . . . . . 124

xxi



xxii



1

CHAPTER 1

INTRODUCTION

Ant Colony Optimization (Aco) [1] is a metaheuristics optimization technique [2]

that was inspired by the foraging behaviour of ant colonies in nature. This

algorithm has widely been used for solving numerous Combinatorial Optimization

(CO) problems such as scheduling [3], routing [4], transportation [5], and feature

selection [6]. Aco, as shown in Fig. 1.1, consists of two main algorithmic

components: probabilistic solution construction and pheromone value update. Based

on the considered CO problem, the Aco algorithm first defines a finite set of

solution components and a parameterized probabilistic model, which is called

pheromone model. At each of its iterations, Aco constructs several solutions in

a probabilistic way by making use of greedy information and pheromone values.

Good solutions found at each iteration will be used to update the pheromone

values. These two algorithmic components are executed so that new solutions

with similar components to the ones from the previous best solutions will have a

higher probability of being used in subsequent iterations. This way, Aco makes

use of its best results in the past as the base for improving its results in the future.

Therefore, it can also be said that the algorithm utilizes positive learning.

Since its first introduction by Dorigo et al. in 1991 [7, 8], Aco has evolved

into several major variants [9–14] that gave significant improvements to the

original variant by implementing a better utilization of the positive learning

mechanism. Nature, however, provides numerous examples which show that

negative learning mechanisms are also integral parts of the communication and

coordination systems in various social insects [15–19]. There are also several

examples of negative learning in species and inter-species evolution, animal

swarm behavior, as well as in human history. These examples had already been

adopted in severalmetaheuristic techniques such as evolutionary algorithm [20–22],

extremal optimization [23–27], particle swarm optimization [28–32], and the opposition

based learning algorithm [33, 34]. The Aco research community had also identified

this potential and produced several relevant works. Most of them, however, had

a limited success.



2 Chapter 1 Introduction

Fig. 1.1 The basic concept of Aco

This chapter reviews the classification of optimization methods and the

essential characteristics of several metaheuristic methods, including the Aco

algorithm. Subsequently, examples of the current implementations of negative

learning in several metaheuristic techniques, including Aco, are provided. Based

on this review, we describe our evaluation of the current negative learning

implementations and propose our ideas for their improvements. Thereafter, we

describe the application of our negative learning Aco to several CO problems.

1.1 Methods for Combinatorial Optimization

A Combinatorial Optimization (CO) problem is defined by means of a finite set

of objects and an objective function that assigns a non-negative cost value to

each of the objects [35]. The goal is then to find an object with minimum

(or maximum) cost value. Many important real-life problems–such as vehicle

routing, scheduling, network design, and bioinformatics–can be represented in

termsof aCOproblem. Evena slightly improved solution to anyof theseproblems

can have a substantial impact. CO problems can be solved by using exact or

approximate techniques. Exact techniques guarantee to find optimal solutions

for every finite-size instance of a CO problem in bounded time. However,

the time needed to obtain these optimal solutions is not guaranteed to stay

within a reasonable computation time, especially for certain CO problems with

complex structures and/or problem instances of large size. On the other hand,

approximate methods sacrifice the guarantee of finding optimal solutions for



Section 1.1 Methods for Combinatorial Optimization 3

the sake of being able to produce high-quality solutions in practically acceptable

computational time.

The group of exact optimization techniques consist of several methods.

Some of the most well known ones are Tree Search Methods [36, 37]. They

consider the search space of the tackled CO problem in form of a tree. The

most simple tree search technique consists in the exhaustive enumeration of all

valid solutions. This enumeration technique, however, is prone to excessive

running times when dealing with relatively large search spaces. More clever tree

search methods—such as, for example, branch and bound methods—divide the

search space iteratively into distinct sub-spaces. Moreover, they employ pruning

techniques for being able to discard complete sub-problems in which an optimal

solution cannot appear. Employing similar mechanisms as Tree Search Methods,

Dynamic Programming (DP) [38, 39] recursively partitions the search space of a

CO problem into simpler sub-problems. In addition to that, DP uses memoization

techniques [40, 41] for storing results of sub-problems in order to use them back

whenever necessary. With this mechanism, DP can be quite efficient, especially

when dealing with CO problems that have the so-called overlapping sub-problems

characteristic.

Mixed Integer Linear Programming (MIP) [42] requires a combinatorial

optimization problem to bemodelled bymeans of a linear objective function and a

set of linear constraints on continuous and/or integral variables. MIP techniques

are very popular because coming upwith such valid mathematical models of CO

problems is frequently possible. Generic MIP Solvers (IBM ILOG Cplex [43, 44],

GUROBI [45], SCIP [46], or XPRESS [47]) are available today and they can be used

to solve MIP models by using, for example, branch and bound methods combined

with other advanced linear programming techniques. Similar to MIP, Constraint

Programming (CP) is also employed to solvemathematicalmodels ofCOproblems.

CP techniques generally work in two phases. In the contraint propagation phase,

the intention is to reduce the variable domains, that is, to reduce the search space.

In the labelling phase, CP techniques search for valid solutions in the remaining

search space. These techniques are usually applied to problems forwhich finding

feasible solutions is already a difficult task on its own. The objective function in

such problems is either not given or has only a secondary role. Several generic

CP solvers (Geocode, Choco [48], and IBMCPOptimizer [49]) are available today.

The class of approximate optimization techniques consists of numerous

methods. The most basic ones are heuristics, either constructive heuristics or Local

Search (LS) methods. As the name suggests, constructive heuristics generate a

solution from scratch by adding solution components until a valid solution is



4 Chapter 1 Introduction

obtained. The most well–known example of a constructive heuristic is a greedy

heuristic which uses a greedy function—a measure for the goodness of solution

components—to select a solution component from the available options at each

step of the solution construction process. In contrast to constructive heuristics,

LS methods [50] work by generating, at each step, a group of neighboring

solutions of the incumbent solution based on a function called the neighborhood

function. Then, at each step, a solution better than the incumbent solution is

chosen for being the new incumbent solution. This is generally done until the

incumbent solution does not have any improving neighbor. Variable neighborhood

descent (VND) [51], an extended version of LS methods, makes a structured,

deterministic use of several neighborhood functions at the same time.

1.2 Metaheuristics

Metaheuristics are approximate algorithms that combine constructive heuristics

and/or LS methods with other ideas in a framework that aims at a better

exploration of the search space for finding an optimal or near-optimal solution.

As opposed to heuristics, the application of metaheuristics is not limited to

a particular CO problem. Moreover, all types of metaheuristics incorporate

mechanisms for escaping from local optima; thus, they can be considered the

extensions of constructive heuristics and LS methods that aim to explore the

search space in less limited ways. In the following sections, several examples of

metaheuristic methods are presented.

1.2.1 Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) [52] is a metaheuristic

method that integrates the use of greedy randomized constructive heuristics

with the subsequent application of LS methods. At each iteration, a solution

is constructed by using a greedy heuristic in a randomized way. In fact, instead

of always selecting the best solution component, a so-called candidate list is

determined and one of the solution components from the candidate list is chosen

at random. Longer candidate lists lead to amorediversified solution construction.

LS methods are used in the second phase of GRASP. Apart from using simple LS

methods or VND, other metaheuristics such as iterated local search or tabu search

can be used in this step.



Section 1.2 Metaheuristics 5

1.2.2 Iterated Greedy Algorithms

Iterated Greedy Algorithms (IG) [53] work by generating new solutions based

on partially destroyed solutions. Hence, the main feature of this algorithm is

the exploitation of good parts of the incumbent solution as the starting point

for obtaining better solutions. The selection of these good parts is made in

a probabilistic way, potentially guided by some measure of the usefulness of

solution components. There is an optional LS method that can be used after the

generation of a new solution, but it was rarely implemented in the published

literature due to the fact that the most desired characteristics of this algorithm lie

in its high computational efficiency as a result of its simplicity.

1.2.3 Iterated Local Search

Iterated Local Search (ILS) [54] shares with IG algorithms that the general principle

is quite simple. At each iteration, the algorithm constructs a solution by perturbing

the incumbent solution randomly. This strategy aims at moving the search to a

different basin of attraction while still remaining close to the location of the

incumbent solution. The perturbation is done in a non-deterministic way and

possibly depending on the search history. The strength of this perturbation is

important to ILS since it will determine whether this algorithm can escape the

basin of attraction of the incumbent solution.

1.2.4 Simulated Annealing

Simulated Annealing (SA) [55–57] borrowed its main idea from the physical

annealing process of metal and glass in which heating and cooling rates hold

a significant role in the final quality of the material’s internal structure. SA

is probably the oldest metaheuristic method and the first one that explicitly

implemented a strategy for escaping from local minima. Themechanism—which

is called uphill move—is carried out by allowing the selection of a solution that has

an objective function value worse than the current one. A temperature parameter

Tk is used to calculate the probability of accepting an uphill move during the

execution of the algorithm. The value of Tk decreases as the algorithm’s running

time increases. This way, the probability of accepting a worse solution will also

decrease during the run of the algorithm.

1.2.5 Tabu Search

Tabu Search (TS) [58–60] explicitly uses search history for escaping from local

optimaand for exploring the search space further. This algorithmstores attributes



6 Chapter 1 Introduction

of recently visited solutions in a short-term memory called tabu list (TL) in order

to exclude them from the neighborhood of the current solution. This is done at

each iteration until the tabu list reaches its maximum capacity. At this condition,

the oldest attribute will be removed from the TL, and it will be available again for

the search process. The maximum capacity of TL is called tabu tenure, and it has

an important role not only in controlling the memory of the search process but

also for the robustness of the TS algorithm. In fact, there is a variant of TS—which

is called Reactive TS [61]—which is based on controlling the tabu tenure value in

a dynamic way.

1.2.6 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [51] is an algorithm that adds a probabilistic

search component to the deterministic VND. This metaheuristic implements a

swapping strategy between neighborhood functions for diversifying the search

and escaping from local optima. By using an initial solution S and a set of

neighborhood functions {N1, ..., Nkmax}, VNS works in three phases at each

of its iterations: shaking, local search, and move. A solution S ′ from the k-th

neighborhood of the current solution S is chosen randomly in the shaking phase.

A local search phase is applied to S ′ resulting in an improved solution S ′′.

Subsequently, S ′′ is evaluated against the incumbent solutionS in themovephase.

If it is better than S, S ′′ is assigned as the incumbent solution, and the algorithm

proceeds with the first neighborhood function. Otherwise, the algorithm will

use the k + 1-th neighborhood function in the shaking phase of the subsequent

iteration. Here we can see that the special feature of the VNS algorithm rests

in the implementation of the shaking phase. Note also that there is a generalized

VNS version [62] that utilizes a VNDwith its own set of neighborhood functions

as its advanced local search mechanism.

1.2.7 Evolutionary Algorithms

Inspired by natural evolution, basic Evolutionary Algorithms make use of three

mechanisms: selection, recombination, and mutation [20]. The initial population

consists of diverse candidate solutions which may be generated in a random

way. At each iteration this metaheuristic selects a subset of solutions—called

parents—from the current population. The selection process is based on ameasure

called fitness [21] which is generally related to the objective function, results

of simulation or experiments, or some other quality measures. The parent

populationP is then subject to a randomized reproduction process that creates an



Section 1.2 Metaheuristics 7

offspring population P ′ through recombination of the parent solutions. Mutation

operators that cause small self-adaptive modifications are then applied to the

offspring population, whichwill transformP ′ intoP ′′. Eventually, the population

for the next iteration is selected from the old population P and the offspring

population P ′′. Evolutionary algorithms are commonly known to have good

exploration capabilities, but they are sometimes said to have their weakness in

fine-tuning solutions. Therefore EAs are often hybridized with LS to locally

improve some or all of the generated offspring in a variant called memetic

algorithms [63, 64].

1.2.8 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a metaheuristic that was inspired by internal

interactions in a moving flock of birds or a fish school. This metaheuristic

distributes and moves candidate solutions–called particles–around the search

space for obtaining the best possible solution [65]. It was originally proposed for

function optimization [66], but later itwas also employed in discrete optimization;

see, for example, in the works of Zhi et al. [67] and Shi et al. [68]. Particles in

PSO move with the guidance of a simple mechanism influenced by their own

best-known positions and the best-known position known by particles in their

neighborhood. The discovery of a better position, i.e., a better solution, by any

of the particles will be used as a guide for the next movement of the entire

neighborhood of that particle. Several parameters hold a significant role in PSO

performance. The optimum size of the population seems to be dependent on the

dimension and difficulty level of the problem instance; however, the expected

values are said to be in the range of twenty to fifty [69]. Early variants of

PSO regulated the particles’ response to the newly found best location by using

acceleration coefficients andmaximumvelocity. Later, Shi andEberhart [70] proposed

the use of an inertia weight as a better way of controlling the movements of the

particles. It is said that a higher inertiaweight value is suitable at the beginning of

the search since it simulates more dynamic particles movements in a less viscous

medium; thus, the search characteristics are more exploratory. The opposite is

true near the end of the search process; the lower inertia weight value makes the

search characteristics to be more exploitative.

1.2.9 Extremal Optimization

Inspired by natural occurrences of optimized configurations, Boettcher et al. [23]

proposed Extremal Optimization (EO) algorithms. The main idea of EO centers



8 Chapter 1 Introduction

around a concept called Self-Organized Criticality (SOC) [71, 72] and a simplified

representation of an ecosystem which is called Bak-Sneppen model [73]. This

algorithm treats a solution S to a CO problem as an ecosystem and each member

of the solution xi ∈ X as a species [74]. A local fitness value λi—that represents

the adaptation ability of the species—is associated with each xi. The total cost

of a solution C(S) is an accumulation of the λi values, which are regarded as

individual cost contributions. Typically, the value of λi depends on the state of xi

in relation with other variables that connect to it.

The standard EO algorithm [23, 24] starts by generating an initial solution S.

At each iteration, λi of each xi in S is evaluated. Next, a solution component

xj— with the worst λ value—is selected. A local search in the neighborhood of

the initial solution N(S) is implemented by selecting a random solution S ′ such

that xj in S ′ no longer has the worst λ value. If C(S ′) is better than C(S), the

algorithm stores S ′ as its best solution Sbest. Finally, S ′ is assigned as the current

solution S in the next iteration. A later version of EO—called τ -EO—modified

the procedure for selecting xj [26, 27, 75]. In this version, xj is not selected based

on the worst λ value; instead, it is selected stochastically based on a probability

distribution over the rank order.

1.2.10 Opposition Based Learning

Opposition Based Learning (OBL) was originally introduced by Tizhoosh [33]

as an alternative to optimization algorithms inspired by natural phenomena.

Tizhoosh regarded a social revolution as an effort towards establishing opposite

circumstances. Bringing this analogy to the context of optimization algorithms,

OBL proposes the counter-balance mechanism for confining the solutions search

space. By using this concept, for every estimate there is a counter-estimate, for

every weight there is a counter-weight, and for every action there is a counter-action.

Tizhoosh integrated the OBL concept for the first time in extended versions of

Genetic Algorithms (GA),Reinforcement Learning (RL), andArtificial Neural Networks

(ANN). The results show that the use of OBL in these algorithms may result in

advantages at the early stages of the search. However, maintaining the OBL

mechanism throughout the rest of the search will no longer benefit the search.

1.2.11 Ant Colony Optimization

At each iteration Aco algorithms construct solutions, step by step, in a

probabilistic way, making use of two types of information: (1) greedy information

and (2) pheromone values. Pheromone utilization and the pheromone update



Section 1.2 Metaheuristics 9

mechanism—twospecial features ofAco—haveundergone several improvements

since this algorithm’s first introduction. The original variant of Aco is called

Ant System (AS) [7, 8] and was introduced for the first time in the context of

the Travelling Salesman Problem (TSP). This variant has three sub-variants: (1)

ant-density, (2) ant-quantity, and (3) ant-cycle. The pheromone update in all

three sub-variants is performed by all ants employed in the execution of the

algorithm. The difference between the three sub-variants lies in the timing of

the update and in the calculation of the amount of pheromone to be deposited.

In ant-cycle, the update is implemented after constructing a complete solution,

while in ant-density and ant-quality, the update is applied at every step of the

solution construction process.

The original AS algorithm developed into several variants, the first of which is

called Elitist Ant System (EAS) [9]. The main idea proposed by this Aco variant is

about giving preference to the ants that found the best solutions–which are called

elite ants–to deposit more pheromone than any other ant. This idea was extended

by Bullnheimer et al. [10, 11] who proposed Rank-based Ant System (ASrank) which

allows not only the elite ants to deposit pheromone, but also to a range of a other

ants that found good solutions. Another important variant called Ant Colony

System (ACS) [12] works by combining the local update done by all ants in every

step of the solution construction with the global update done only by the best ant

after the completion of an iteration.

Stützle andHoos [13] proposedMAX -MIN AntSystem (MMAS) to improve

the performance of previous ACO algorithm versions which they considered

as not competitive when compared to the state-of-the-art algorithms developed

explicitly for specific COproblems. The source of thisweaknesswas said to be the

lack of exploitation of the search history for directing the search process.MMAS

algorithms are characterized by a stronger exploitation of the search history by

giving privilege strictly to the best ants to do the pheromone update. Stützle and

Hoos indicated that the two ACO versions ACS and ASrank are able to perform

better than the original AS because they carry outmore intense exploitation of the

best-found solutions. Furthermore, they conducted a search space analysis [76, 77]

on several sample instances of the TSP and the Quadratic Assignment Problem

(QAP) to show the characteristics of the search landscapes and their correlation

with search strategies. The results of the search space analysis suggested that

the TSP sample instances have a stronger relationship between the local optima

and the global optima; hence, in the context of this CO problem more benefit is

obtained from a stronger exploitation of the search history. In the case of theQAP,

however, the locations of local optima are more scattered; thus, a stronger search



10 Chapter 1 Introduction

space exploration would be more beneficial for the search process for this CO

problem. Based on those results, Stützle and Hoos asserted that a mechanism for

avoiding premature stagnation should be provided to counterbalance a stronger

exploitation of the search history.

In the quest for a well-working balance between a stronger exploitation and

search stagnation avoidance, Stützle andHoos proposed the following scheme for

selecting between the iteration-best solutionSib and the best-so-far solutionSgb for the

pheromoneupdate during the execution of the algorithm. As adefault, Sib is used

for the pheromone update, being substituted by the use of Sgb only at every fixed

number of iterations. Additionally, Stützle and Hoos also proposed a dynamic

strategy in which the frequency of using Sgb for updating the pheromone trails

increases as the number of iterations grows. This dynamic strategy, however, is

still depending on a static arrangement for determining the update frequencies.

As another source for search stagnation Stützle andHoos identified situations

in which the amount of pheromone on a solution component becomes too low

or too high. For this reason,MMAS uses an upper limit τmax and a lower limit

τmin > 0 for all pheromone values. However, Stützle and Hoos argued that

this measure is not enough. A further search diversification can be achieved

through a pheromone value re-initialization. Implementing this strategy, a new

variant calledMMAS+ri was invented. The pheromone re-initialization in this

variant is carried out whenever the search reaches a condition called convergence

i.e., when pheromone values on solution components other than those in the

best-so-far solution Sgb are very close to the value of τmin. The search history

exploitation is then counterbalancing the search diversification mechanism by

using Sgb to perform a dynamic pheromone update. Arguing that performing a

dynamic pheromone update by using the restart-best solution Srb followed later

by Sgb would provide a more intense search space exploration, Stützle and Hoos

devised another variant calledMMAS+rs. Their experimental results showed

that this last variant has a better performance than the standardMMAS and the

MMAS+ri variant.

Blum and Dorigo [14] improved the performance and robustness ofMMAS

by limiting the pheromone values to the interval [0,1] and by employing a more

sophisticated pheromone update mechanism. This development was motivated

by the fact that the standard ACO algorithms are unable to deliver consistent

performancewhendealingwith isomorphicproblems that differ only in the scale of

the objective function values. This drawback existed due to the ACO algorithms’

difficulty in scaling the influences of solutions used for pheromone update at

each stage of an algorithm run. The timing at which a certain solution is used



Section 1.3 Metaheuristics 11

to update the pheromone values holds an important role in determining the

correct implementation of exploration or exploitation during the search process.

Assigning Sgb too early for updating the pheromone values, for example, could

make the search being trapped in a local optimum. On the contrary, giving Sib

too much time for updating the pheromone values will cause the search to take

too long to reach convergence. The standardMMAS determines the pheromone

update schedule based on merely static ranges of iteration numbers; hence, this

mechanism will not be able to provide precise update assignments on accurate

timings since different sizes of instances will be less likely to cause the algorithm

to behave in the same way along the iterations.

Addressing this problem, BlumandDorigo proposed a variant calledMMAS

in the Hyper Cube Framework (MMASHCF ), which established an advanced

scheduling mechanism that assigns the corresponding type of solutions for

updating the pheromone values more accurately to the corresponding stages

of the search. They introduced a parameter called convergence factor cf , where

0 ≤ cf ≤ 1, as a way to categorize the different stages of the search process,

rather than just an iteration count as in the standardMMAS. In this algorithmic

framework, the pheromones are initialized to 0.5. As the search progresses,

the pheromones values will continue to change to either higher or lower values

until each of them has either the highest value τmax or the lowest value τmin, i.e.,

when the search is said to have reached convergence. As an example, a schedule

can be established inMMASHCF as follows. When the stage of the search is

in a condition in which the cf value is below 0.4, MMASHCF will assign the

iteration-best solution Sib to do the pheromone update. Unlike the standard

MMAS that allows only one type of solution to do the update at each search

stage, MMASHCF allows both Sib and Srb to do the update simultaneously.

For example, when 0.4 ≤ cf < 0.6 the influence of Sib on the pheromone

update might be at 2/3, while the influence of Srb is at 1/3. With an increasing

convergence factor value (0.6 ≤ cf < 0.8) this influencemay shift in the following

way. Now, Sib might only have 1/3 of the influence, while Srb now has 2/3 of the

influence. Finally, in the range of 0.8 ≤ cf < 0.999, Srb is given the total influence

to update the pheromone values. When the value of cf exceeds 0.999, its value is

re-initialized to 0, and the full weight of influence is given to Sgb for updating the

pheromone trails until the value of cf exceeds 0.999 again. This is done in order

to try to find an even better solution in the search space between Srb and Sgb.

Afterwards, the search is restarted again by re-initializing all the pheromones

values and solution Srb.



12 Chapter 1 Introduction

1.3 Negative Learning in Metaheuristics

Negative learning mechanisms have been employed to work together with

positive learning in several variants of metaheuristic algorithms. In evolutionary

algorithms [20–22], for example, positive learning is used by assigning a higher

probability to individualswith a higher fitness to be selected as parent individuals

allowed to do reproduction. The negative learning mechanism supports the

positive learning mechanism in the next phase of the evolutionary algorithms

selection process by not allowing individuals to do reproduction if they have a

fitness lower than a certain limit. This way, negative learning mechanisms in

evolutionary algorithms serve as instruments for avoiding certain regions of the

search space that lack promising candidate solutions. In contrast to evolutionary

algorithms that avoid search space in the proximity of bad solutions, simulated

annealing [55–57] intentionally searches for good solutions that may be present

in the proximity of a bad solution. Simulated annealing implements this by

using low-quality solutions as the base for generating new neighborhoods of

solutions. Thus, both algorithms use negative learning as a mechanism to escape

from local minima but with different assumptions. The evolutionary algorithm

considers that the search space in the proximity of a low-quality solution should

be avoided altogether. On the other hand, simulated annealing assumes the

search process has to pass through regions of low-quality solutions in order to

finally reach areas of the search space with high-quality solutions.

Cooperation between positive and negative learning mechanisms can also

be observed in several variants of particle swarm optimization algorithms.

This algorithm implements positive learning by using the particles’ local-best

or global-best positions to determine the search direction [69]. Negative learning

is added to the PSO variants from the works of Cooren et al. [30–32] by dividing

the swarm into several sub-populations called tribes. Individual particles in these

tribes are evaluated periodically to determine whether they are good or bad, based

on the improvement of their best positions. The tribes with a larger number

of good particles are considered the better tribes than those with fewer good

particles. The negative learning mechanism is then implemented by removing

the worst particle in the best tribe with the intention to reduce the number of

evaluations of the objective function. On the other hand, the worst tribe of the

swarm is then given the privilege to generate particles that will form a new tribe

which will establish a connection that is expected to improve the original tribe’s

position in the following search process. Hence, the negative learning in these

PSO variants serves the same purpose as the one in the SA algorithm, that is, for



Section 1.4 Negative Learning in Ant Colony Optimization 13

escaping local minima and diversifying new solutions.

As in SA algorithms, negative learning mechanisms are also used for

improving the exploration capability in extremal optimization algorithms. In

these algorithms, the species—i.e. the component of a solution—that has

the worst local fitness value in an ecosystem—i.e. the solution—is punished

by forcing it to be the base for generating a new ecosystem neighborhood

in which at least one better ecosystem must exist [74]. In another variant of

EO, which is called τ -EO [25, 26], the selection of this particular species is

done stochastically according to a probability distribution over the rank order.

Opposition-based learning algorithms take a similar approach in utilizing

negative learning mechanisms. OBL considers negative learning as a way to

perform a simultaneous search in two opposite directions. This idea is based

on the assumption that the chance of finding an optimal solution will be higher

when the algorithms does the search in directions opposite to each other [34].

1.4 Negative Learning in Ant Colony Optimization

The Aco research community has produced several works for incorporating

negative learning mechanisms in Aco. In this section, we will review several

examples of these efforts. Maniezzo [78] initiated the first of these efforts in an

application that was aimed at solving the Quadratic Assignment Problem (QAP).

This approach is characterized by utilizing lower bound values to estimate the

attractiveness of choices during the QAP solution construction process. At each

phase of the solution construction process, the attractiveness of each move is

evaluated by a lower bound value for the cost of the completion of a partial

solution. If the value is greater than the one of the current best solution, themove

is discarded because it can not lead to a better solution. The results show that

the proposal outperforms Robust Tabu Search (RTS) [79] and GRASP [80] as the

state-of-the-art algorithms for solving QAP at that time.

Observing the similarity between the Aco algorithm and Population-Based

Incremental Learning (PBIL) [81] from the field of evolutionary algorithms, Cordon

et al. [82] proposed a negative learning strategy called Best-Worst Ant System

(BWAS). This approach was applied originally to the TSP, but later, they also

implemented it for the QAP with the addition of a new variant which is called

Best-Worst Ant Colony System (BWACS) [83]. BWAS and BWACS work with

three special features, the first two of which are inspired by PBIL: (1) best-worst

pheromone update, (2) pheromone trail mutation, and (3) restart of the search



14 Chapter 1 Introduction

when it gets stuck. The pheromone update in these two algorithm variants is

implemented according to the procedure described by Bullnheimer et al. [10, 11]

in which only a certain number the of ants that found the best solutions at

the current iteration may add pheromone to the pheromone trails according to

their rank. A negative learning concept is adopted in this pheromone update

mechanism by making the worst ant—the ant that found the worst solution of

the iteration—to reduce the pheromone on the solution components included

in its solution. This way, the components that constitute the worst solution

are expected to have a lower probability of being chosen in the next iterations.

The authors compared all of their algorithm variants to the standard AS and

ACS algorithms and showed that both BWAS and BWACS can outperform the

standard algorithms. Note, however, that the authors acknowledged that the

utilization of negative learning turned out to be the least important component

of the improvement of BWAS and BWACS over the original algorithm.

Montgomery and Randall [84] proposed three negative learning strategies

that were partially inspired by the work of Iredi et al. [85] which made

use of several types of pheromones. In the first approach—which is called

Subtractive Anti Pheromone (SAP)—the pheromone values of solution components

that belong to the worst solution at each iteration are decreased. The second

approach—which is called Preferential Anti Pheromone (PAP)–makes explicit use

of negative pheromones in addition to the standard pheromone values. Each

ant in PAP has a specific bias towards each pheromone type. Finally, the third

approach–which is called Explorer Ants (EA)—uses a certain number of ants

to build solutions consisting of solution components with lower pheromone

values without introducing dedicated anti-pheromones. Unfortunately, their

experimental evaluation did not allow clear conclusions about a potential

advantage of any of the three strategies over standard Aco. Different extensions

of the approaches from Montgomery and Randall [84] were explored by Simons

and Smith [86]. The authors, however, admitted that nearly all of their approaches

proved to be counter-intuitive. The only idea that showed to be useful to some

extent was to make use of a rather high amount of anti-pheromone at the early

stages of the search process. Another application to the TSP was proposed by

Ramos et al. [87]. They proposed a method that uses a second-order co-evolved

compromise between positive and negative feedback. According to the authors,

their method achieves better results than the single positive feedback systems in

the context of the TSP.

Malisia and Tizhoosh [88] integrated opposition based learning to a standard

Ant Colony System approach for solving TSP problems. Following the



Section 1.4 Negative Learning in Ant Colony Optimization 15

philosophy of OBL, they made use of opposite-ants in addition to the standard

ones. Opposite-ants work in pair with the normal ants—which are called

leading-ants—of the original ACS by using several different schemes. The first

scheme is called synchronous oppositionwhere the leading-ant and the opposite-ant

begin the search at cities assigned to each of them randomly. The opposite-ant

mimics the decisions of the leading ant in choosing the next city. Specifically, when

the leading ant has chosen its next city, the opposite-ant will select its next city

that has a similar rank to the one chosen by the leading-ant. The decision-making

process will be totally different, however, when both ants are in the same current

city. In this situation, the opposite-ant will choose the next city that has an

opposite rank of the one chosen by the leading ant. The second scheme called

free opposition still retained the same selection mechanism when both ants are in

the same city. In case the opposite-ant is in a different city, it will choose the

next city randomly instead of following the choice of the leading ant. In the

last scheme called free quasi-opposition, the opposite-ant will choose the next city

randomly, whether it is currently in the same city or not as the leading-ant. The

opposite-ant, however, is forbidden from choosing the same next city when both

ants are currently in the same city.

Malisia and Tizhoosh proposed two additional schemes—called

opposite-pheromone strategies—which are named as follows: Opposite-Pheromone

per Edge (OPE) and Opposite-Pheromone per Node (OPN). In contrast to the

opposite-ant schemes, ants in these strategies choose the next city either by

using normal pheromone or opposite-pheromone. A parameter—which is called

opposite-rate—regulates the frequency at which each of these pheromone types

is used during the solution construction process. The difference between OPE

and OPN rests in the placement of pheromone; in OPE the pheromone is placed

on edges while in OPN it is placed on nodes. Testing all their negative learning

Aco variants on only four TSP instances, the authors reported that ACS with the

OPN scheme is the only variant that performs better than the original algorithm.

A more recent approach that also integrates OBL to Aco was implemented by

Zhang et al. [89] for solving TSP problems. Building their proposals upon an

Ant System algorithm, the authors developed three variants that differ in how

each generates opposite paths. In contrast to the state-of-the-art Aco algorithms,

these OBL Aco variants allow all ants to do the pheromone update instead of just

a few best ants. Furthermore, the pheromone update is implemented by using

solutions which are built by combining solutions from normal and opposite

ants. The authors suggest that even though the use of this opposite information

may reduce the convergence speed at the early stage of the search, the provided



16 Chapter 1 Introduction

additional information could increase the search accuracy in the later stage. The

results show that at least one of their OBL Aco variants performs better than AS

for each of the considered TSP instances.

Rojas-Morales et al. proposed a negative learning approach—which is called

Cooperative Opposition-Inspired Strategy for Ants (COISA) [90]—for solving the

Multi Dimensional Knapsack Problem (MDKP). Modifying an Aco variant with

Opposition-Inspired Learning (OIL) [91], the main idea proposed by the authors

is on providing negative feedback prior to the execution of the search. For

this purpose, the authors proposed three mechanisms for obtaining negative

feedback information. The first of them—which is called Soft Opposite Learning

(SOL)—works similar to SAP by Montgomery and Randall [84] in that penalties

are given to the components of the worst solution found in an iteration. The

second mechanism—which is calledWorst Opposite Learning (WOL)—follows the

sameworking principle of the EA variant used byMontgomery and Randall [84],

which intentionally searches in the opposite direction of the optimization

objective instead of just looking for the worst result in the normal search scheme.

The thirdmechanism that was proposed by Rojas-Morales et al. for providing the

negative feedback information is called Half Opposite Learning (HOL). Different

from the two previous mechanisms, HOL is problem-specific. It means that the

negative feedback mechanism tries to identify bad solution components by using

a greedy function of the particular CO problem. In the context of the MDKP,

the specific greedy function is calculated by dividing the item’s profit by the

sum of the remaining capacities instead of the item’s resource consumption in

each dimension. SOL, WOL, and HOL work simultaneously in the first phase

of the algorithm and combine their results to compose the negative feedback

information given to the main Aco algorithm in the second phase of COISA. In

their experiment, COISA is tested against Ant Knapsack (AK) [92]. Unfortunately,

no consistent improvement over Ant Knapsack could be observed in the results.

Furthermore, the authors admitted that running all three negative feedback

mechanisms prior to the main search mechanism is time-consuming.

Ye et al. [93] proposed Ant-Colony system with negative feedback mechanism

(ACON) for solvingConstraint Satisfaction Problems (CSPs). The authors suggested

that for improving the diversity of solutions, the area of low-quality solutions

must be identified in advance. Subsequently, this area must be avoided so that

the search process is directed to more promising regions. ACON identifies

these low-quality areas using the same mechanism as the one employed in

the SAP variant of Montgomery and Randall [84], i.e., it simply penalizes the

worst assignment found in an iteration. ACON, however, utilizes a dedicated



Section 1.4 Negative Learning in Ant Colony Optimization 17

negative pheromone model for storing the negative feedback information rather

than reducing the values of the standard pheromones on the components of the

worst solution as implemented in the SAPvariant fromMontgomery andRandall.

Furthermore, ACONcombines the use of the normal and the negative pheromone

values in its assignment generation function in a way such that it causes the

probability to visit unexplored paths to be higher than the probability to visit

worse paths as the iteration number increases. Ye et al. tested and compared the

ACON variant with the ACO with smallest-domain-first heuristics (ACOS) and ACO

with dynamic random heuristics (ACOD) variants based on Aco algorithms from

the work of Gonzalez and Camacho [94]. In addition to these Aco algorithm

variants, the authors also compare the performance of ACON to the Pure Random

Walk (PRW) algorithm [95] which is based on a pure stochastic mechanism. The

results show thatACONperforms better than the rest of the algorithmvariants on

several large-size problem instances. However, in small size problem instances,

the superiority over ACOS and ACOD is not noticeable. Moreover, for several

problem instances, the performance of ACON is inferior to the one of ACOS and

ACOD.

Masukane andMizuno proposed cunning Ant System with NEgative Pheromone

(cASNEP) [96] which is also implemented for solving CSPs. The authors

highlighted the need to speed up the search process by introducing bias on

the pheromone trail as early as possible. For achieving this goal, an additional

negative pheromone and the corresponding negative feedback mechanism are

employed. This scheme is deployed in the cunning Ant System (cAS) [97], an

MMAS based Aco variant that employs a mechanism in which a cunning ant

borrows several solution components produced by a donor ant—usually the

best ant—from the previous iteration. These borrowed solution components

are then extended into a complete solution by the cunning ant by making use

of pheromone and greedy information. The negative learning information in

cASNEP is derived in a similar manner as in the SAP variant of Montgomery and

Randall [84], in a sense that it does not employ a specific function other than the

normal solution construction mechanism to search bad assignments; instead, it

simply identifies the worst solution in an iteration, i.e., the assignment that has

the highest number of constraint violations. For taking profit from this negative

feedback, however, cASNEP uses a dedicated negative pheromone model, as in

the PAP variant by Montgomery and Randall [84].

In their follow-up work, Masukane and Mizuno [98] suggested that even in

the best-so-far solution, there are bad components that need to be identified and

thus should be less considered in the subsequent construction of assignments.



18 Chapter 1 Introduction

Following this assumption, the authors proposed a further mechanism for

introducing bias on the pheromone trails by allowing the negative pheromone to

reduce the value of the normal pheromone of the components of the best-so-far

solution during the update process. This is achieved by multiplying the normal

pheromone value with a weighted parameter wi,j whose value is in the interval

[0,1] and is influenced by ϑ, which is the ratio between the component’s negative

pheromone value τnegi,j and the maximum negative pheromone value τnegmax.

Masukane and Mizuno proposed four pattern functions for determining wi,j .

The first of these pattern functions defines a continuous change ofwi,j depending

on the change of ϑ, while the remaining pattern functions define discrete changes

of wi,j , in varying paces, again depending on the change of ϑ. In these so-called

Ant Colony with DUal Pheromone Trails (ADUPT) variants, they tested the impact

of the wi,j change patterns on the performance of the algorithms. The results

show that the variants whose wi,j change discretely can outperform the standard

cAS and the variant whose wi,j change continuously to the change of ϑ.

1.5 General Ideas

Section 1.2 shows that most metaheuristic techniques that make use of learning

are based on positive learning. Aco algorithms, in particular, heavily rely on

the utilization of positive learning. In fact, exhaustive works on balancing

search exploitation and exploration based on positive learning mechanisms were

the key to the Aco algorithm’s improvement over the last three decades. In

Section 1.3, we indicated that negative learning has already been employed

in several variants of other metaheuristics such as evolutionary algorithms,

simulated annealing, particle swarm optimization, extremal optimization, and

opposition based learning. Negative learning mechanisms in evolutionary

algorithm variants are basically used to prevent the algorithm from visiting

search regions that lack promising candidate solutions. In SA, PSO, EO, and

OBL algorithms, however, negative learning mechanisms are used to escape

from local minima and diversify the generation of new solutions. All in all,

negative learning mechanisms in these metaheuristics are used for improving

their exploration capabilities.

The original version of Aco [7], as well as all major variants that followed [9–

14], do notmake use of negative learningmechanisms. In Section 1.4, we outlined

all strategies for negative learning that we could find in several later versions of

Aco. In the following sub-sections, we compare the two main features of these



Section 1.5 General Ideas 19

Fig. 1.2 The existing strategies for storing and updating the negative learning

information

strategies and describe the ones we consider for comparison purposes in this

thesis.

1.5.1 The Storage and Update of the Negative Learning Information

Thefirst distinct feature that can be observed in the existing proposals for negative

learning in Aco is the strategy for storing and updating the negative learning

information. Figure 1.2 shows the current implementations of this feature. Most

of the variants described in Section 1.4 do not store their negative pheromone in

a dedicated pheromone model. Negative learning information in these variants

is simply used to increase pheromone evaporation on the standard pheromone

trails. Moreover, the pheromone trails are updated statically inmost of them. This

means that the pheromone evaporation rate due to negative learning information

does not change at any moment of the algorithm runs. Among this group of

negative learning Aco variants, however, the one fromMalisia and Tizhoosh [88]

already implemented a dynamic update strategy by changing the evaporation

rate randomly during the search. This strategy is in accordance with the finding

of Simon and Smith [86] and Zhang et al. [89] which suggested that the amount

of pheromone reduction seems to have a different impact at different states of the

search.

The examples of negative learning Aco variants that use a dedicated

pheromonemodel can be found in the PAP variant from thework ofMontgomery

and Randall [84], the ACON variant from the work of Ye et al. [93], as well as the



20 Chapter 1 Introduction

cASNEP and ADUPT variants from the work of Masukane and Mizuno [96, 98].

The PAP, ACON, and cASNEP variants, however, still perform their negative

pheromone update statically. Moreover, despite of having their own dedicated

negative pheromone models, each of them is still updated with the same

parameter setting as the one used in the standard pheromone update. The

ADUPT variant, on the contrary, has already a separate and dynamic update

mechanism for its negative pheromone values by using four mechanisms as

described in Section 1.4. Employing a dedicated pheromone model and its

update mechanism will most likely be more advantageous for negative learning

implementations. By doing so, the learning rates (resp. evaporation rates) of

standard pheromone and negative pheromone can be adjusted independently

to suit the characteristics of the tackled problem instances. Accordingly, in the

proposal of this thesis we employ a dedicated negative pheromone model with

its own update mechanism.

1.5.2 The Way of Deriving the Negative Learning Information

Based on how the negative learning information is derived, there are two

basic strategies: passive and active methods. The passive method, shown

conceptually in Fig. 1.3, is implemented by adding a function to the baseline

Aco algorithm. This function identifies the worst solution at each Aco iteration

and then reduces its components’ pheromone in the standard pheromone

model. Examples of passive strategies can be found in the SAP version of

Montgomery and Randall [84] as well as in the majority of negative learning

Aco variants [82, 83, 86, 87, 93, 96, 98] described in Section 1.4.

The active method, shown conceptually in Fig. 1.4, is implemented by

Fig. 1.3 Passive method for deriving negative learning information



Section 1.6 Lessons Learned and Resulting Proposal 21

Fig. 1.4 Active method for deriving negative learning information

employing a function that actively tries to generate low-quality solutions in

addition to the existing function that tries to generate good solutions in the

baseline Aco algorithm. The worst solution found by this additional function

is then used to update the negative pheromone model, as implemented in

the PAP variant of Montgomery and Randall [84]. Alternatively, the worst

solution is used to induce further pheromone evaporation at the corresponding

solution components in the standard pheromone model, as implemented in

the EA variant of Montgomery and Randall. More implementation examples

of this active strategy can be found in the works of Malisia and Tizhoosh [88],

Zhang et al. [89], and Rojas-Morales et al. [90]. Most of these active strategies

employ only one function at a time to search for low-quality solutions, except

for the variant in the work of Rojas-Morales et al. [90] that implements three

simultaneous mechanisms for identifying low-quality solutions. The authors,

however, admitted that simultaneous execution of these mechanisms could be

time-consuming and thus requires additional resources.

1.6 Lessons Learned and Resulting Proposal

The following conclusion can be drawn from the previous proposals found in

the literature. Active derivation of negative learning information by allocating a

dedicated function to search for low-quality solutions will not benefit the search

process if the goal is to avoid low-quality solutions. The baseline Aco algorithm

is already able to avoid these low-quality solutions. However, it is likely to

be more beneficial if the goal is to explore good solutions in the proximity of

these low-quality solutions, in the line of what has already been implemented



22 Chapter 1 Introduction

in the works of Malisia and Tizhoosh [88], Zhang et al. [89], and Rojas-Morales

et al. [90]. Passive derivation of negative learning information, on the contrary,

would be beneficial if the objective is to avoid low-quality solutions that may be

present around a good solution, as already implemented in the works of several

authors [82–84, 86, 87, 93, 96, 98].

Based on these lessons learned, in this thesis we propose a novel method,

shown in Fig. 1.5, to identify the negative learning information. This method

is almost similar to the active derivation of negative learning information from

Fig. 1.4 in that an active effort is allocated to identify the negative learning

information. However, our proposed mechanism does not directly search

for bad solution components as the active derivation of negative learning

information method do. Instead, it compares the solution components generated

during an iteration of the baseline Aco algorithm to those generated by an

additional algorithmic component. Any solution component generated in an

Aco iteration that is not chosen in the solution generated by the additional

algorithmic component is considered a bad solution component. Subsequently,

the negative pheromone value of this component is increased, because each

solution component has both a standard and a negative pheromone value.

Hence, it will lower the component’s probability of being selected as a part

of solutions in subsequent iterations. Considering the important role of the

additional algorithmic component in this proposal, we strongly believe that

it should consist of another optimization algorithm that is powerful enough

to generate high-quality solutions. Moreover, the additional algorithmic

component is designed to work only on a reduced problem instance, or the

sub-instance, which is generated by merging the components of solutions found

Fig. 1.5 Our method for deriving negative learning information



Section 1.7 Thesis Contributions 23

in an iteration of the baseline Aco algorithm. We believe this arrangement could

result in an excellent cooperation between the baseline Aco and the additional

algorithmic component. On the one hand, the baseline Aco could benefit from

the high-quality feedback from the additional algorithmic component. On

the other hand, the additional algorithmic component could benefit from the

sub-instance with a smaller size consisting of high-quality solution components

provided by the baseline Aco algorithm.

1.7 Thesis Contributions

After designing the proposal outline above in more detail, we tested our negative

learning Aco approach on several CO problems. Each of these problems requires

its specific pheromone model and update system as well as its sub-instance and

solutions generation mechanisms. In our negative learning Aco approach, the

result from the additional algorithmic component can be utilized in two ways.

It can be used to identify low-quality solution components and increase their

negative pheromone values, as described in Section 1.5.2. However, it can also

be used to reinforce the positive learning mechanism of the main Aco algorithm.

Accordingly, we developed and tested several algorithm variants to evaluate the

relationship between their configurations and their performances. In addition,

we also experimentedwith different types of algorithmic components that is used

for providing negative feedback information. Accordingly, the results of these

experiments can be used for evaluating the applicability and effectiveness of our

negative learning Aco approach not only to awide range of CO problems but also

to the use of different types of algorithmic components. The summary of these

results is as follows:

• Our first test case [99] for this negative learning Aco strategy was the

Capacitated Minimum Dominating Set (CapMDS) problem. For solving this

optimization problem, we developed two negative learning Aco variants:

(1)Aconeg that uses the results of the additional algorithmic component only

for updating the negative pheromone values and (2) Aco
+
neg that uses the

results for updating both the negative pheromone values and the best-so-far

solution. In this first application, we used IBM ILOG Cplex [43, 44] as the

additional algorithmic component that provides negative feedback to the

main Aco algorithm. The results of our experiments showed that our

negative learning Aco variants significantly improve over the standard Aco

algorithm. Compared to the state-of-the-art approach for the CapMDS



24 Chapter 1 Introduction

problem [100], one of the variants—Aco
+
neg—improves the best-known

results in 10 out of 36 problem instances. This work was presented and

received the Best Paper Award in the ANTS 2020 Twelfth International

Conference on Swarm IntelligenceOctober 26-28, 2020 in Barcelona (https:

//iridia.ulb.ac.be/ants2020/). Subsequently, the paper was published

in ANTS 2020 Swarm Intelligence, Lecture Notes in Computer Science, vol

12421 (https://doi.org/10.1007/978-3-030-60376-2_2).

• Our second implementation [101] of negative learning Aco was for the

Multi Dimensional Knapsack Problems (MDKP). In this application, again,

our negative learning Aco variants perform better than the standard Aco.

Moreover, one of these variants—Aco
+
neg—performs competitively with the

state-of-the-art approaches for MDKP [102, 103]. This work was published

in the proceedings of the 2021 5th International Conference on Intelligent

Systems, Metaheuristics and Swarm Intelligence (https://doi.org/10.1

145/3461598.3461602).

• In our third implementation [104], we developed two additional negative

learning Aco variants: (1) Aco-Aconeg and (2) Aco-Aco
+
neg. Each of these

variants uses an Aco algorithm as the additional algorithmic component

that provides negative feedback to the baseline Aco algorithm. This

implies that Aco is used twice in these algorithm variants: one Aco

algorithm is the baseline algorithm and the other one acts as the additional

algorithmic component that provides negative feedback to the baseline

algorithm. Note, however, that since the parameter values of the two Aco

are independent, they behave differently according to their own roles. In

this work, we also re-implemented three negative learning Aco variants

from the work of Montgomery and Randall [84] and one variant from the

work of Ramos et al. [87]. After the application of our negative learningAco

variants to the MDKP and Minimum Dominating Set (MDS) problems, the

results show that all our negative learning Aco variants improve over the

standard Aco as well as over the negative learning Aco variants from other

authors. Moreover, the Aco
+
neg variant can perform competitively with the

state-of-the-art approaches for theMDKP [102, 103] and theMDS [105–109].

This work was published in the Mathematics Journal Volume 9 Issue 4 2021

(https://doi.org/10.3390/math9040361).

• Our fourth test case [110] for the Aconeg and Aco
+
neg variants was the

Minimum Positive Influence Dominating Set (MPIDS) problem. The results

show that these negative learning variants significantly improve over

https://iridia.ulb.ac.be/ants2020/
https://iridia.ulb.ac.be/ants2020/
https://doi.org/10.1007/978-3-030-60376-2_2
https://doi.org/10.1145/3461598.3461602
https://doi.org/10.1145/3461598.3461602
https://doi.org/10.3390/math9040361


Section 1.8 The Organization of This Thesis 25

the standard Aco algorithm. Moreover, the results also show that

our negative learning Aco variants outperform all competitors from the

literature [111, 112]. This work was published in the Proceedings of the

Genetic and Evolutionary Computation Conference Companion, July 2021,

Pages 1974–1977, (https://doi.org/10.1145/3449726.3463130).

• Exploring further the general applicability of our negative learning

Aco strategy, we tested our approaches on the Maximum Satisfiability

(MaxSAT) problem [113, 114], which differs substantially from the

previously considered optimization problems. We developed two new

variants in this work, Aco-Sat
+
neg and Aco-Sls

+
neg, in addition to the

existing Aconeg and Aco
+
neg variants. Each of these new variants uses

MaxSAT solvers, SATLike-c(w) [115] and SlsMcs [115], as the additional

algorithmic component that provides negative feedback to the main Aco

algorithm. The results show that all negative learning Aco variants

improve over the standard Aco algorithm. Moreover, each of the new

variants, Aco-Sat
+
neg and Aco-Sls

+
neg, improves over the corresponding

MaxSAT solver, SATLike-c(w) and SlsMcs. This work was submitted to

the International Journal of Computational Intelligence Systems and is

currently in the state of minor revision.

Using an additional algorithmic component that works on a sub-instance

for providing negative feedback to the main Aco algorithm is a novel approach

for the implementation of negative learning in Aco. None of the previous

approaches had implemented this idea. Our experiments show that this

strategy works very well with Cplex, Aco, SATLike-c(w), and SlsMcs as the

additional algorithmic components. Moreover, this approach has shown to be

able to solve numerous optimization problems effectively. Several algorithm

variants—Aco
+
neg, Aco-Sat

+
neg, and Aco-Sls

+
neg—can even compete with the

state-of-the-art approaches for the corresponding optimization problems.

1.8 The Organization of This Thesis

This thesis report is organized as follows:

• Chapter 1 explains thegeneral characteristics ofmetaheuristicsmethods, the

existing implementation of negative learning in metaheuristics (including

Aco), and the main ideas of our own proposal for the implementation of

negative learning in Aco.

https://doi.org/10.1145/3449726.3463130


26 Chapter 1 Introduction

• Chapter 2 provides a general description of our negative learning Aco

proposal. This explanation is conducted in the context of sub-set selection

problems, which represent all COproblems towhichwe applied our negative

learning approach. In this context, we describe the baseline Aco algorithm

that we used and the mechanism with which the negative learning is

incorporated into this baseline algorithm. Despite having been described

in this chapter, several important aspects of the algorithmic framework are

re-introduced in subsequent chapters when describing its application to the

specific CO problem that were considered.

• Chapter 3 describes our negative learning Aco implementation to the

MDKP, a CO problem that is often used as a test case for new algorithmic

proposals. In this work, we tested eleven negative learning Aco variants.

Six of these variants are from our own proposal, and the rest of the

variants are our re-implementation of negative learning approaches from

the literature [84, 87]. In the six negative learning Aco variants of our own

proposal, we experimented with two additional algorithmic components

for providing negative feedback to the main Aco algorithm: (1) ILP

solver Cplex and (2)MAX -MIN Ant System (MMAS). Moreover, we

also experimented with the way in which the result of the additional

algorithmic component is used: (1) for reinforcing both the positive and

negative learning mechanism, (2) for reinforcing only the negative learning

mechanism, and (3) for reinforcing only the positive learning mechanism.

Regarding the re-implementations of the four negative learning approaches

from the literature, we describe their adaptation in the context of the

baseline algorithm (MMAS) and the adaptation of their specific negative

learning features to the baseline algorithm. In addition to these five

negative learning Aco variants from the literature, we also compare our

best-performing variant—Aco
+
neg—to the state-of-the-art approaches for the

MDKP [102, 103].

• Chapter 4 provides a detailed description of the implementation of our

negative learning Aco to the MDS problem. As in the case of the MDKP,

this CO problem is often used as a test case for new algorithmic proposals.

Similar to our work for the MDKP, we tested six negative learning Aco

variants from our own proposal against five variants from the literature.

Moreover, we also compare our best-performing variant—Aco
+
neg—to the

state-of-the-art approaches for the MDS problem [105–109].

• Chapter 5 describes the application of our negative learning Aco to the



Section 1.8 The Organization of This Thesis 27

MaxSAT problem. This CO problem is a perfect test case for evaluating the

general applicability of our negative learning approach due to its different

characteristics compared to the rest of the COproblems towhichwe applied

our negative learning approach in this work. Moreover, none of the existing

negative learningAcovariants has beenused so far to solve thisCOproblem.

Despite of being a popular metaheuristic, Aco itself has been applied just a

few times to MaxSAT. In this work, we also developed two new variants in

addition to our previous negative learning Aco variants, which use Cplex

as the algorithmic component that provides negative feedback to the main

Aco algorithm. Each of them makes use of a high-performance MaxSAT

solver—SATLike-c(w) [115] and SlsMcs [115]—for this purpose.

• Chapter 6 provides a detailed description of our negative learning Aco

proposal for the CapMDS problem, which is the first CO problem on

which we tested our negative learning Aco. In this work, we used the

ILP solver Cplex as the additional algorithmic component that provides

negative feedback to the baseline Aco algorithm. Moreover, the results of

our negative learningAco are compared to the ones from the state-of-the-art

approach for the CapMDS problem [100].

• Chapter 7 describes our negative learning Aco application to the MPIDS

problem, which is an NP-hard combinatorial optimization problem with

applications in social networks. Again, we tested our negative learning

Aco variants using Cplex as the additional algorithmic component that

provides negative feedback to themainAco algorithm. The obtained results

of this experiment were compared to the one of the competitors from the

literature [111, 112].

• Chapter 8 concerns the application of the MMAS algorithm to the

Multi-head Weigher Machine (MWM) problem, which is a CO problem that

has a wide application in food packaging industries. This work is an initial

study that serves as an entry point for a wider application of our negative

learning Aco approach to CO problems from mechanical engineering,

which is the scientific background of the author of this thesis.

• Chapter 9 summarizes and evaluates our negative learning Aco approach.

Subsequently, a plan for future works is provided.



28 Chapter 1 Introduction

1.9 Publications Derived from this Thesis

Most of the findings in this thesis have been published, as shown in the following

list.

1. Teddy Nurcahyadi and Christian Blum. A new approach for making use

of negative learning in ant colony optimization. In Proceedings of the ANTS

2020 Swarm Intelligence, Lecture Notes in Computer Science, vol 12421, pages

16–28, 2020. (https://doi.org/10.1007/978-3-030-60376-2_2).

2. Teddy Nurcahyadi and Christian Blum. Negative learning in ant colony

optimization: Application to the multi dimensional knapsack problem.

In Proceedings of the 2021 5th International Conference on Intelligent Systems,

Metaheuristics and Swarm Intelligence, pages 22–27, 2021. (https://doi.or

g/10.1145/3461598.3461602).

3. Teddy Nurcahyadi and Christian Blum. Adding negative learning to ant

colony optimization: A comprehensive study. Mathematics, 9(4):361, 2021.

(https://doi.org/10.3390/math9040361).

4. Albert López Serrano, Teddy Nurcahyadi, Salim Bouamama, and Christian

Blum. Negative learning ant colony optimization for the minimum

positive influence dominating set problem. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, pages 1974–1977, 2021.

(https://doi.org/10.1145/3449726.3463130).

5. (In the state ofminor revision) TeddyNurcahyadi, Christian Blum, andFelip

Manya. Negative learning ant colony optimization forMaxSAT. International

Journal of Computational Intelligence Systems.

6. (Accepted for publication) Teddy Nurcahyadi and Christian Blum. Ant

colony optimization for packing process optimization inmultiheadweigher

machines. In Proceedings of the International Symposium on Advances and

Innovation in Mechanical Engineering 2021.

Among these publications, the paper that reports our first application of

the negative learning Aco to the CapMDS problem [99] received the Best Paper

Award at the ANTS 2020 Twelfth International Conference on Swarm Intelligence

October 26-28, 2020 in Barcelona (https://iridia.ulb.ac.be/ants2020/).

Another paper that presents our negative learning Aco application to the MDKP

and MDS problems [104], was published in the Mathematics Journal which is a

https://doi.org/10.1007/978-3-030-60376-2_2
https://doi.org/10.1145/3461598.3461602
https://doi.org/10.1145/3461598.3461602
https://doi.org/10.3390/math9040361
https://doi.org/10.1145/3449726.3463130
https://iridia.ulb.ac.be/ants2020/


Section 1.9 Publications Derived from this Thesis 29

Q1 Journal with an impact factor of 2.258. Moreover, our paper on the negative

learning Aco application to MaxSAT is currently in the state of minor revision at

the International Journal of Computational Intelligence Systems which is a Q3

Journal with impact factor 1.736.

In addition to our publications in the scientific journals and conferences,

several news outlets have covered our works. The following list provides the

links to the media coverage.

1. https://www.lavanguardia.com/natural/fauna-flora/20201222/6141

796/diminuta-hormiga-faraon-inspira.html

2. https://www.lainformacion.com/management/aprendizaje-automatic

o-hormigas-feromonas-camino-negativo/2827153/

3. https://gacetamedica.com/investigacion/ia-un-algoritmo-en-busq

ueda-de-farmacos-es-inspirado-por-hormigas-faraon/

4. https://proceso.hn/investigadores-del-csic-estudian-las-hormig

as-faraon-para-mejorar-algoritmos/

5. https://elglobal.es/industria/las-hormigas-faraon-inspiran-la-

mejora-de-un-algoritmo-de-ia-desarrollado-por-el-csic/

6. https://www.diariosigloxxi.com/texto-ep/mostrar/20201222120814

/hormigas-faraon-inspiran-algoritmo-aplicable-busqueda-farmaco

s-optimizacion-logistica

7. https://www.dicyt.com/viewNews.php?newsId=43334

8. https://www.mundo-geo.es/conocimiento/hormigas-faraon-maestras

-inteligencia-artificial_224853_102.html

9. https://www.elplural.com/leequid/ciencia/algoritmo-aprende-hor

migas-faraon_256081102

10. https://www.pcdemano.com/sc/14796/

11. https://losenlacesdelavida.fundaciondescubre.es/noticias/un-al

goritmo-inspirado-en-los-caminos-descartados-por-las-hormiga

s/

https://www.lavanguardia.com/natural/fauna-flora/20201222/6141796/diminuta-hormiga-faraon-inspira.html
https://www.lavanguardia.com/natural/fauna-flora/20201222/6141796/diminuta-hormiga-faraon-inspira.html
https://www.lainformacion.com/management/aprendizaje-automatico-hormigas-feromonas-camino-negativo/2827153/
https://www.lainformacion.com/management/aprendizaje-automatico-hormigas-feromonas-camino-negativo/2827153/
https://gacetamedica.com/investigacion/ia-un-algoritmo-en-busqueda-de-farmacos-es-inspirado-por-hormigas-faraon/
https://gacetamedica.com/investigacion/ia-un-algoritmo-en-busqueda-de-farmacos-es-inspirado-por-hormigas-faraon/
https://proceso.hn/investigadores-del-csic-estudian-las-hormigas-faraon-para-mejorar-algoritmos/
https://proceso.hn/investigadores-del-csic-estudian-las-hormigas-faraon-para-mejorar-algoritmos/
https://elglobal.es/industria/las-hormigas-faraon-inspiran-la-mejora-de-un-algoritmo-de-ia-desarrollado-por-el-csic/
https://elglobal.es/industria/las-hormigas-faraon-inspiran-la-mejora-de-un-algoritmo-de-ia-desarrollado-por-el-csic/
https://www.diariosigloxxi.com/texto-ep/mostrar/20201222120814/hormigas-faraon-inspiran-algoritmo-aplicable-busqueda-farmacos-optimizacion-logistica
https://www.diariosigloxxi.com/texto-ep/mostrar/20201222120814/hormigas-faraon-inspiran-algoritmo-aplicable-busqueda-farmacos-optimizacion-logistica
https://www.diariosigloxxi.com/texto-ep/mostrar/20201222120814/hormigas-faraon-inspiran-algoritmo-aplicable-busqueda-farmacos-optimizacion-logistica
https://www.dicyt.com/viewNews.php?newsId=43334
https://www.mundo-geo.es/conocimiento/hormigas-faraon-maestras-inteligencia-artificial_224853_102.html
https://www.mundo-geo.es/conocimiento/hormigas-faraon-maestras-inteligencia-artificial_224853_102.html
https://www.elplural.com/leequid/ciencia/algoritmo-aprende-hormigas-faraon_256081102
https://www.elplural.com/leequid/ciencia/algoritmo-aprende-hormigas-faraon_256081102
https://www.pcdemano.com/sc/14796/
https://losenlacesdelavida.fundaciondescubre.es/noticias/un-algoritmo-inspirado-en-los-caminos-descartados-por-las-hormigas/
https://losenlacesdelavida.fundaciondescubre.es/noticias/un-algoritmo-inspirado-en-los-caminos-descartados-por-las-hormigas/
https://losenlacesdelavida.fundaciondescubre.es/noticias/un-algoritmo-inspirado-en-los-caminos-descartados-por-las-hormigas/


30 Chapter 1 Introduction



31

CHAPTER 2

GENERAL DESCRIPTION OF THE ALGORITHMIC

FRAMEWORK

2.1 Introduction

This chapter provides a general description of the framework of our negative

learning Aco. The description in this chapter is provided in the context of subset

selection problems, which represents all CO problems that we used for testing our

negative learning approaches. A subset selection problem is an optimization

problem that can be modeled as follows. Given is a complete set C of solution

components and an objective function F () (to be maximized or minimized).

Solutions S are subsets of C, that is, S ⊆ C. However, only those subsets S of

C that fulfill all the problem constraints are valid solutions. Note that a wide

range of well-known optimization problems can be phrased as subset selection

problems. An example is the travelling salesman problem (TSP). Moreover,

many of these problems can be modelled by Integer Linear Programs (ILPs).

2.2 MMAS: The Baseline Algorithm

Many of the negative learning approaches for Aco cited in Section 1.4 were

introduced for different Aco variants. We add our negative learning proposal to

a standard Aco algorithm:MAX -MIN Ant System (MMAS) in the hypercube

framework [14], which is one of the most-used Aco versions from the last decade.

This section first describes the standard MMAS algorithm in the hypercube

framework for subset selection problems. This will be our baseline algorithm.

Subsequently, we describe how the negative learning proposal is added to this

baseline algorithm in Section 2.3.

The pheromone model T in the context of subset selection problems consists

of a pheromone value τi ≥ 0 for each solution component ci ∈ C. TheMMAS

algorithm maintains three solutions throughout a run:



32 Chapter 2 General Description

1. Sib ⊆ C: the best solution generated at the current iteration, also called the

iteration-best solution.

2. Srb ⊆ C: the best solution generated since the last restart of the algorithm,

also called the restart-best solution.

3. Sbsf ⊆ C: the best-so-far solution, that is, the best solution found since the

start of the algorithm.

Moreover, the algorithm makes use of a Boolean control variable

bs_update ∈ {true, false} and the convergence factor cf ∈ [0, 1] for deciding

on the pheromone update mechanism and on the decision whether or not

to restart the algorithm. At the start of the algorithm, solutions Sbsf and

Srb are initialized to null, the convergence factor is set to zero, bs_update

is set to false and the pheromone values are all initialized to 0.5 in function

InitializePheromoneValues(T ); see lines 2 and 3 of Algorithm 2.1. Then,

at each iteration, na solutions are probabilistically generated in function

Construct_Solution(T ), based on pheromone information and on greedy

Algorithm 2.1MMAS in the hypercube framework (the baseline algorithm)

1: input: a problem instance

2: Sbsf := null, Srb := null, cf := 0, bs_update := false

3: InitializePheromoneValues(T )
4: while termination conditions not met do

5: S iter := ∅
6: for k = 1, . . . , na do
7: Sk := Construct_Solution(T )
8: S iter := S iter ∪ {Sk}
9: end for

10: Sib := best solution from S iter

11: if Sib better than Srb then Srb := Sib

12: if Sib better than Sbsf then Sbsf := Sib

13: ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbsf )
14: cf := ComputeConvergenceFactor(T )
15: if cf > 0.999 then

16: if bs_update = true then

17: Srb := null, and bs_update := false

18: InitializePheromoneValues(T )
19: else

20: bs_update := true

21: end if

22: end if

23: end while

24: output: Sbsf , the best solution found by the algorithm



Section 2.2 MMAS: The Baseline Algorithm 33

information. A general explanation of the solution construction in the context

of subset selection problems is presented in Section 2.2.1. The generated

solutions are stored in set S iter
, and the best one from S iter

is stored as Sib; see

lines 5–10 of Algorithm 2.1. Then, the restart-best and best-so-far solutions—Srb

and Sbsf—are updated with Sib, if appropriate; lines 11 and 12. Afterward,

the pheromone update is conducted in function ApplyPheromoneUpdate(T , cf ,
bs_update, Sib,Srb,Sbsf ) and the new value for the convergence factor cf is

computed in function ComputeConvergenceFactor(T ); lines 13 and 14. Detailed

descriptions of these two functions are provided in Section 2.2.2 and 2.2.3. Finally,

based on the values of cf and bs_update, the algorithm might be restarted. Such

a restart consists in re-initializing all pheromone values, in setting the restart-best

solution Srb to null, and bs_update to true.

2.2.1 Solution Construction

The construction of a solution in function Construct_Solution(T ) starts with

an empty solution S = ∅. Then, at each step, exactly one solution component is

selected from a set C(S) ⊆ C. Hereby, C(S) contains those solution components

that can be added to S in a way such that the possibility of generating a complete,

valid solution is maintained. The selection of the next solution component is

done as follows. First, a probability p(ci) is calculated for each ci ∈ C(S):

p(ci) :=
η(ci) · τ(ci)∑

ck∈C(S) η(ck) · τ(ck)
(2.1)

Hereby, η(ci) in Eqn. (2.1) is the greedy information. Then, a random number

r ∈ [0, 1] is drawn. If r ≤ drate, cj (to be added to S) is selected such that

p(cj) ≥ p(ci) for each ci ∈ {0, 1}. Otherwise, cj is chosen by roulette-wheel-selection

based on the calculated probabilities. Note that drate is an important parameter

of the algorithm. These solution construction steps are repeated until a valid

solution S that fulfils all of the problem constraints is obtained. For each specific

CO problem (MDKP, MDS, MaxSAT, CapMDS, andMPIDS) to which we applied

our negative learning Aco approaches, the detail description of the solution

construction is presented in Chapters 3, 4, 5, 6, and 7.

2.2.2 Pheromone Update

The pheromone update implemented by ApplyPheromoneUpdate(T , cf ,

bs_update, Sib,Srb,Sbsf ) of Algorithm 2.1 is the same as in any other MMAS

algorithm in the hypercube framework. First, the three solutions Sib, Srb, and



34 Chapter 2 General Description

Table 2.1Values for weights κib, κrb, and κbsf which depend on cf and bs_update.

bs_update = false bs_update = true

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2
3

1
3 0 0

κrb 0 1
3

2
3 1 0

κbsf 0 0 0 0 1

Sbsf receive weights κib, κrb and κbsf , respectively. A standard setting of these

weights, depending on cf and bs_update, is provided in Table 2.1. It always

holds that κib + κrb + κbsf = 1. After having determined the solution weights,

each pheromone value τi is updated by using Eqn. (2.2).

τi := τi + ρ · (ξ(ci)− τi) , (2.2)

where:

ξ(ci) := κib ·∆(Sib, ci) + κrb ·∆(Srb, ci) + κbsf ·∆(Sbsf , ci) (2.3)

Hereby, ρ ∈ [0, 1] is the so-called learning rate, and function ∆(S, ci) evaluates

to 1 if solution S contains solution component ci. Otherwise, the function

evaluates to 0. Finally, after conducting this update, those pheromone values that

exceed τmax = 0.999 are set to τmax, and those values that have dropped below

τmin = 0.001 are set to τmin. Note that, in this way, a complete convergence of the

algorithm is avoided. Finally, note that the learning mechanism represented by

this pheromone update can clearly be labeled positive learning, because it makes

use of the best solutions found for updating the pheromone values.

2.2.3 Convergence Factor

Just like the pheromone update mechanism, the computation of the convergence

factor by the ComputeConvergenceFactor(T ) function is a standard procedure

that works in the same way for all MMAS algorithms in the hypercube

framework, as presented in Eqn. (2.4)

cf := 2


∑
τi∈T

max{τmax − τi, τi − τmin}

|T | · (τmax − τmin)

− 0.5

 (2.4)

Hereby, T in Eqn. (2.4) stands for the set of all pheromone values, that is, the set

of values τi for all ci ∈ C. Accordingly, the value of cf is zero in the case when



Section 2.3 Adding Negative Learning toMMAS 35

all pheromone values are set to 0.5. The other extreme case is represented by all

pheromone values having either value τmin or τmax. In this case, cf evaluates to

one. Otherwise, cf has a value between 0 and 1. Herewith the description of all

components of the baseline algorithm is completed.

2.3 Adding Negative Learning toMMAS

In each negative learning mechanism there are two fundamental questions to

be answered: (1) how is the negative information generated, maintained and

updated, and (2) how is this information being used. This Section describes how

these aspects are implemented in our negative learning proposal.

2.3.1 Information Maintenance

The proposed algorithmic framework maintains the information derived from

negative learning by means of a second pheromone model T neg
, which consists

of a pheromone value τnegi for each solution component ci ∈ C. We henceforth

refer to these values as the negative pheromone values. Whenever the pheromone

values are (re-)initialized, the negative pheromone values are set to τmin, which is

in contrast to the standardpheromone values, which are set to 0.5 (see Section 2.2).

2.3.2 Information Generation and Update

The generation of the information for negative learning is done by two new

instructions (Eqn. (2.5) and Eqn. (2.6)), which are introduced between lines 9

and 10 of the baselineMMAS algorithm (Algorithm 2.1).

Ssub := SolveSubinstance(S iter, cf ) (2.5)

S iter := S iter ∪ {Ssub} (2.6)

The first instruction (Eqn. (2.5)) consists in executing function

SolveSubinstance(S iter, cf ). This function merges all solutions from S iter
,

resulting in a subset C ′ ⊆ C of solution components. The detailed mechanism

on how a sub-instance to the original problem instance is generated based

on C ′ for each specific CO problem (MDKP, MDS, MaxSAT, CapMDS, and

MPIDS) is provided in Chapters 3, 4, 5, 6, and 7. Solving a sub-instance is

done by the application of an additional algorithmic component (Cplex, Aco,

or MaxSAT solvers) to find the best-possible solution that only consists of

solution components from C ′. Trying to solve the sub-instance for an allotted



36 Chapter 2 General Description

computation time, the additional algorithmic component produces a solution

which is called Ssub
. The computation time (tsub CPU seconds) for the additional

algorithmic component is calculated on the basis of a pre-defined computation

time limit and the current value of the convergence factor, which is passed to

function SolveSubinstance(S iter, cf ) as a parameter. In particular, the allowed

computation time (in seconds) is (1− cf )tsub +0.1cf . This means that the available

computation time for solving the sub-instance that was created on the basis of

C ′ decreases with an increasing convergence factor value. The rationale behind

this setting is that, when the convergence factor is low, the variance between

solutions in S iter
is rather high and C ′ is therefore rather large, which means that

more time is necessary to explore the sub-instance created on the basis of C ′.

The last action in function SolveSubinstance(S iter, cf ) is the update of the

negative pheromone values based on solution Ssub
. This update only concerns

the negative pheromone values of those components that form part of C ′ and is

implemented by using Eqn. (2.7).

τnegi := τnegi + ρneg · (ξ(ci)neg − τnegi ) for all ci ∈ C ′ (2.7)

Hereby the parameter ρneg in Eqn. (2.7) is the negative learning rate. Moreover, the

parameter ξ(ci)
neg = 1 if ci ∈ Ssub

and respectively ξ(ci)
neg = 0 otherwise.

The second instruction added to the baselineMMAS (see Eqn. (2.6)) adds

solution Ssub
to the S iter

. Subsequently, an iteration-best solution Sib is selected

among the solutions from S iter
, as shown in line 10 of Algorithm 2.1. Note

that, if Ssub
is better than all other solutions in S iter

, it will be used for

both updating the negative pheromone values (see the description of function

SolveSubinstance(S iter, cf )) and the iteration-best solution Sib of the main

algorithm. Moreover, using Ssub
for updating Sib implies that Ssub

is also used

for updating the standard pheromone values of the main algorithm (see lines

11− 13 of Algorithm 2.1 and the description of the standard pheromone update

inMMAS in Section 2.2.2).

2.3.3 Information Use

The negative pheromone values are used in the context of the construction of

solutions. In particular, Eqn. (2.1) is replaced by Eqn. (2.8).

p(ci) :=
η(ci) · τi · (1− τnegi )∑

ck∈C(S) η(ck) · τk · (1− τnegk )
(2.8)

In this way, those solution components that have accumulated a rather high



Section 2.3 Adding Negative Learning toMMAS 37

negative pheromone value have a decreased probability to be chosen for solutions

in the current iteration. Herewith the description of our negative learning Aco

is completed. Further detail on how this mechanism is implemented for each

specific CO problem is provided in Chapters 3, 4, 5, 6, and 7.



38 Chapter 2 General Description



39

CHAPTER 3

APPLICATION TO THEMULTI DIMENSIONAL KNAPSACK

PROBLEM

3.1 Introduction

This chapter describes the application of our negative learning Aco for

the well-known Multi Dimensional Knapsack Problem (MDKP) [116]. Some

parts of this chapter were also presented in our papers [101, 104] that

were published in the proceedings of ISMSI 2021: 2021 5th International

Conference on Intelligent Systems, Metaheuristics and Swarm Intelligence

(https://doi.org/10.1145/3461598.3461602) and in the Mathematics Journal

(https://doi.org/10.3390/math9040361). The obtained results show (1) that

our negative learning mechanism significantly improves over standard Aco, and

(2) that our approach obtains results that are comparable to the current state

of the art for the MDKP. Moreover, for comparison purposes we implement

several negative learning approaches introduced for Aco in the related literature.

The obtained results show that our mechanism outperforms all of them with

statistical significance.

3.2 The Multi Dimensional Knapsack Problems

The MDKP is a popular NP -hard combinatorial optimisation problem which is

often used as a test case for new algorithmic proposals (see, for example, [117–

119]). The problem can technically be defined as follows. Given is (1) a set

C={c1, . . . , cn} of n items and (2) a number of m resources. The availability

of each resource k is limited by capk > 0, which is also called the capacity of

resource k. Moreover, each item ci ∈ C consumes a fixed amount ri,k ≥ 0 from

each resource k = 1, . . . ,m (resource consumption). Additionally, each item ci ∈ C
comes with a profit pi > 0.

Any subset S ⊆ C is a candidate solution to the MDKP. However, such a

https://doi.org/10.1145/3461598.3461602
https://doi.org/10.3390/math9040361


40 Chapter 3 Application to the MDKP

candidate solution S is only valid if and only if, concerning all resources, the total

amount consumed by the items in S does not exceed the resource capacities. In

other words, it is required that

∑
ci∈S ri,k ≤ capk for all k = 1, . . . ,m. Moreover,

a valid solution S is called non-extensible, if no ci ∈ C \ S can be added to S

without destroying its property of being a valid solution. The aim is to find a

valid solution S of maximum total profit (

∑
ci∈S pi).

3.2.1 ILP Model for the MDKP

The MDKP can in the following way be expressed by means of an integer linear

program (ILP).

maximize

∑
ci∈C

pi · xi (3.1)

subject to: ∑
ci∈C

ri,k · xi ≤ capk ∀k = 1, . . . ,m (3.2)

xi ∈ {0, 1} ∀ci ∈ C (3.3)

This model is based on a binary variable xi for each item from ci ∈ C.

Inequalities (3.2) are called the knapsack constraints. In general, the literature

offers very successful exact solution techniques; see, for example, [120–122].

However, devising heuristic solvers still remains to be a challenge. Among

numerous metaheuristic proposals for the MDKP problem, the currently best

performing ones are the DQPSO algorithm from [103] and the TPTEA algorithm

from [102].

3.3 MMAS Implementation to the MDKP

We are aware of the fact that a lot of text in Section 3.3 will be a repetition from

Section 2.2. We decided for this option in order to avoid that a reader has to

go back to that section. As in the general description of theMMAS algorithm

to subset selection problems in Section 2.2, we keep three different solutions

at any time: (1) the best solution generated at the current iteration, that is, the

iteration-best solution Sib, (2) the best solution generated since the last restart of the

algorithm, that is, the restart-best solution Srb, and (3) the best solution generated

overall, that is, the best-so-far solution Sbsf . At the start of the algorithm, both Sbsf

and Srb are initialized to empty sets (the worst solutions possible); see line 2 of



Section 3.3 MMAS Implementation to the MDKP 41

Algorithm 2.1. Moreover, a Boolean control variable (bs_update) that is used to

control the pheromone update is initialized to false.

For theMDKP, we used a pheromonemodel T which consists of a pheromone

value τi for each item ci ∈ C. All pheromone values from T are initialized

to 0.5 by function InitializePheromoneValues(T ) of Algorithm 2.1. Then, at

each iteration na solutions are generated based on greedy information and on

pheromone information by function Construct_Solution(T ) of Algorithm 2.1.

For the MDKP, this function is described in Sub-Section 3.3.1. Subsequently,

all solutions generated in the current iteration—that is, all solutions from

S iter
—are merged, resulting in a subset C ′ ⊆ C. After updating solutions

Sib, Srb and Sbsf in lines 10–12 of Algorithm 2.1, the pheromone update is

conducted in function ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbsf ),
which is explained in Sub-Section 3.3.2. Finally, the value of the convergence

factor is determined in function ComputeConvergenceFactor(T ), and—in case

cf > 0.999 and bs_update = true—the algorithm is restarted (see lines 15–22 of

Algorithm 2.1).

3.3.1 Solution Construction

Function Construct_Solution(T ) of Algorithm 2.1 is implemented in the case

of the MDKP as follows. It starts with an empty solution S := ∅, and at each

construction step exactly one item cj is selected from a set C ⊆ C. The definition

of C is as follows. An item ck ∈ C forms part of C if and only if (1) ck /∈ S, and (2)

S ∪ {ck} is a valid solution. The probability p(ci) for an item ci ∈ C to be chosen

at the current construction step is calculated by Eqn. (3.4).

p(ci) :=
ηi · τi∑

ck∈C ηk · τk
(3.4)

Hereby, ηi is the so-called utility ratio of item ci and its definition is provided in

Eqn. (3.5).

ηi :=
pi∑m

k=1 ri,k/capk
∀ ci ∈ C (3.5)

Subsequently, a randomnumber r ∈ [0, 1] is drawn. If r ≤ drate, cj (to be added

to S) is selected such that p(cj) ≥ p(ci) for all ci ∈ C. Otherwise, cj is chosen by

roulette-wheel-selection based on the calculated probabilities.

3.3.2 Pheromone Update and Convergence Factor

The pheromone update in the case of the MDKP is implemented by function

ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbsf ) of Algorithm 2.1. This



42 Chapter 3 Application to the MDKP

update is implemented in the sameway as in anyMMASalgorithms implemented

in the hypercube framework, making use of solutions Sib, Srb, and Sbsf in

the following way. The weight of each solution on the pheromone update is

calculated on the basis of the convergence factor (cf ) and the value of bs_update

(see Table 2.1). Each pheromone value τi is updated by using Eqn (3.6).

τi := τi + ρ · (ξi − τi) (3.6)

Hereby ρ ∈ [0, 1] in Eqn (3.6) is the learning rate and ξi in the same equation is

defined in Eqn (3.7).

ξi := κib ·∆(Sib, ci) + κrb ·∆(Srb, ci) + κbs ·∆(Sbsf , ci) (3.7)

Note that in Eqn (3.7), κib is the weight of solution Sib, κrb the one of solution

Srb, and κbs the one of solution S
bsf

. Moreover, ∆(S, ci) evaluates to 1 if and only

if ci ∈ S. Otherwise, the function evaluates to 0. Note also that (according to

Table 2.1) κib + κrb + κbs = 1. After this pheromone update, those values that

exceed τmax = 0.999 are set back to τmax, and those values that have dropped

below τmin = 0.001 are set back to τmin. This prevents the algorithm from reaching

the state of complete convergence.

The value of the convergence factor cf is computed in a standard way on the

basis of the pheromone values by function ComputeConvergenceFactor(T ) of
Algorithm 2.1. For the MDKP, cf is calculated by using Eqn (3.8).

cf := 2


∑
τi∈T

max{τmax − τi, τi − τmin}

|T | · (τmax − τmin)

− 0.5

 (3.8)

Hereby, T in Eqn. (3.8) stands for the set of all τi values. Accordingly, the value

of cf results in zero, when all pheromone values are set to 0.5. In contrast, when

all pheromone values have either value τmin or τmax, the value cf evaluates to one.

In all other cases, cf has a value between 0 and 1.

3.4 Adding Negative Learning toMMAS

As already explained in Chapter 2, a negative pheromone model T neg
is used

for storing the negative learning information. For the MDKP, this pheromone

model consists of a negative pheromone τnegi for each item ci ∈ C. Each of these

negative pheromone values is initialized or re-initialized to τmin = 0.001, which is



Section 3.4 Adding Negative Learning toMMAS 43

Fig. 3.1 Illustrative example of negative learning Aco applied to the MDKP

in contrast to the standardpheromone values, which are set to 0.5 (see Section 3.3).

As described in Section 2.3.2, the information for negative learning is generated

by two new instructions Ssub := SolveSubinstance(S iter, cf ) (Eqn. (2.5)) and

S iter := S iter ∪ {Ssub} (Eqn. (2.6)) which are introduced between lines 9 and 10 of

the baselineMMAS algorithm (Algorithm 2.1).

Figure 3.1 provides an illustrative example on how the negative learning is

added to the baseline Aco in the MDKP case. The set C in this example consists

of six items, and the baseline Aco algorithm—in this example—produces four

solutions in one iteration. Function SolveSubinstance(S iter, cf ) in Eqn. (2.5)

merges all four solutions from S iter
, resulting in a subset C ′ ⊆ C. Notice that

from six items available in the set C, the sub-instance C ′ in Fig 3.1 consists of only

five items found in S iter
. Then an optimization algorithm is applied to find the

best-possible solution that only consists of items from C ′.

In this work, we have experimented with two options as the optimization

algorithm employed for solving the sub-instance C ′:

1. Option 1: Application of the ILP solver Cplex 12.10. In theMDKP problem,

the ILP model from sub-Section 3.2.1 is used after adding an additional

constraint xi = 0 for all ci ∈ C \ C ′.

2. Option 2: Application of the baselineMMAS algorithm (Algorithm 2.1).

This application of the baselineMMAS only considers items from C ′ for

the construction of solutions. Moreover, thisMMAS application uses its

own pheromone values, parameter settings, etc. Finally, the best-so-far

solution of this (inner) Aco is initialized with Sib.

In any of these options, the optimization algorithm returns a solutionSsub
after

the allotted computation time of (1−cf )tsub+0.1cf CPUsecond is usedup. Hereby



44 Chapter 3 Application to the MDKP

tsub is themaximum computation time, which is subject to parameter tuning. This

setting implies that the available computation time for solving the sub-instance

C ′ decreases with an increasing convergence factor value. The rationale behind

this setting is that, when the convergence factor is high, the variance between

solutions in S iter
is rather low and C ′ is therefore rather small, which means that

less time is needed to explore sub-instance C ′.

In addition to solving the sub-instance C ′, the function

SolveSubinstance(S iter, cf ) also performs the update of the negative pheromone

values, as indicated in Fig 3.1. This update is done by comparing the components

in solution Ssub
to those in the sub-instance C ′. Any component of the

sub-instance C ′ that does not form part of Ssub
is considered a low-quality

solution component, at least in comparison to the others from C ′. Notice in

Fig 3.1 that there are five items in the sub-instance C ′ and only three of these

items appear in solution Ssub
. This way, the last two items that remain in the

sub-instance C ′ are marked as low-quality solution components. Subsequently,

their negative pheromone value is increased. For each item in set C ′, its negative

pheromone value is updated by using Eqn. (3.9).

τnegi := τnegi + ρneg · (ξnegi − τnegi ) , (3.9)

Hereby ρneg in Eqn. (3.9) is the negative learning rate and ξnegi = 1 if

ci /∈ Ssub
, resp. ξnegi = 0 otherwise. After the execution of function

SolveSubinstance(S iter, cf ) (Eqn. (2.5)), the algorithm then adds the Ssub
to S iter

(Eqn. (2.6)), which contains all solutions from the current iteration.

The negative pheromone values are used for the solutions construction in the

negative learning Aco algorithm by replacing the standardMMAS calculation

in Eqn. (3.4) with the one in Eqn. (3.10).

p(ci) :=
ηi · τi · (1− τnegi )∑

ck∈C ηk · τk · (1− τ
neg
k )

(3.10)

In this way, those items that have accumulated a rather high negative pheromone

value have a decreased probability to be chosen for solutions.

3.5 Proposals from the Literature

As mentioned in the introduction of this chapter, we compared our negative

learning strategies to some of the ones available in the existing literature. These



Section 3.5 Proposals from the Literature 45

negative learning proposals were introduced in the context of several different

Aco versions. In order to ensure a fair comparison, we re-implemented those

proposals that we chose for comparison in the context of the baselineMMAS

algorithm. In particular, we implemented four different approaches, which all

share the following common feature. In addition to the iteration-best solution

(Sib), the restart-best solution (Srb) and the best-so-far solution (Sbsf ), these

extensions of the baselineMMAS algorithmmaintain the iteration-worst solution

(Siw), the restart-worst solution (Srw) and the worst-so-far solution (Swsf ). As in

the case of Srb and Sbsf , solutions Srw and Swsf are initialized to null at the start

of the algorithm. Then, the following three lines are introduced between lines 12

and 13 of Algorithm 2.1:

Siw := worst solution from S iter

if Siw worse than Srw then Srw := Siw

if Siw worse than Swsf then Swsf := Siw

The way in which these three additional solutions are used differs among the

four implemented approaches.

3.5.1 Subtractive Anti-Pheromone (SAP)

This idea is adopted from the work of Montgomery and Randall [84], but has

already been used in similar form in the work of Maniezzo [78] and in the work

of Cordon et al. [82]. Our implementation of this idea is as follows. After the

standard pheromone update of the baselineMMAS algorithm (see line 13 of

Algorithm 2.1), the following is done. First, a set B is generated by joining the

items in solutions Siw, Srw and Swsf , that is,B := Siw∪Srw∪Swsf . Then, all those
items for which the corresponding pheromone value receives an update from at

least one of the solutions Sib, Srb, or Sbsf in the current iteration are removed from

B. That is:

if κib > 0 then B := B \ Sib

if κrb > 0 then B := B \ Srb

if κbsf > 0 then B := B \ Sbsf

Afterward, the following additional update is applied by using Eqn. (3.11).

τi := γ · τi ∀ ci ∈ B (3.11)

In other words, the pheromone values of all those components that appear in

“low-quality” solutions, butwhodo not formpart of “good” solutions, are subject

to a pheromone value decrease depending on the reduction rate γ. Finally, note



46 Chapter 3 Application to the MDKP

that the solution construction procedure in this variant—which is henceforth

labeled Aco-Sap—is exactly the same as in the baselineMMAS algorithm.

3.5.2 Explorer Ants (EA)

The explorer ants approach from Montgomery and Randall [84]—henceforth

labeled Aco-Ea—is very similar to the previously presented Aco-Sap approach.

The only difference is in the construction of solutions. This approach has an

additional parameter: pexpa ∈ [0, 1], the proportion of explorer ants. Given the

number of ants (na) and pexpa , the number of explorer ants nexp
a is calculated by

using Eqn. (3.12).

nexp
a := max{1, bpexpa · nac} (3.12)

At each iteration, na − nexp
a solution constructions are performed in the

same way as in the baseline MMAS algorithm. The remaining nexp
a solution

constructions make use of Eqn. (3.13) (instead of Eqn. (3.4)) for calculating the

probabilities:

p(ci) :=
ηi · (1− τi)∑

ck∈C ηk · (1− τk)
(3.13)

In other words, explorer ants make use of the opposite of the pheromone values

for constructing solutions.

3.5.3 Preferential Anti-Pheromone

Like our own negative learning proposal, the preferential anti-pheromone

approach from the work of Montgomery and Randall [84] makes use of an

additional set T neg
of pheromone values. Remember that T neg

contains a

pheromone value τnegi for each item ci ∈ C. These negative pheromone values are

initialized at the start of the algorithm, as well as when the algorithm is restarted,

to a value of 0.5. Moreover, after the update of the standard pheromone values in

line 13 of the baselineMMAS algorithm, exactly the same update is conducted

for the negative pheromone values by using Eqn. (3.14).

τnegi := τnegi + ρneg · (ξnegi − τnegi ) , (3.14)

where:

ξnegi := κib ·∆(Siw, ci) + κrb ·∆(Srw, ci) + κbsf ·∆(Swsf , ci) (3.15)

Hereby, ρneg ∈ [0, 1] in Eqn. (3.14) is the negative learning rate, and function

∆(S, ci) evaluates to 1 if and only if item ci forms part of solution S. Moreover,

values κib, κrb and κbsf are the same as the ones used for the update of the standard



Section 3.6 Summary of the Tested Algorithms 47

pheromone values. This means that the learning of the negative pheromone

values is dependent on the dynamics of the learning of the standard pheromone

values.

The standard pheromone values and the negative pheromone values are used

as follows for the construction of solution. The probabilities for the a-th solution

construction—where a = 1, . . . , na—are determined by using Eqn. (3.16).

p(ci) :=
ηi · (λτi + (1− λ)τnegi ))∑

ck∈C ηk · (λτk + (1− λ)τnegk ))
, (3.16)

where:

λ :=
a− 1

na − 1
(3.17)

Accordingly λ = 0 for the first solution construction, which means that only the

negative pheromones values are used. In the other extreme, it holds that λ = 1 for

the na-th solution construction, that is, only the standard pheromone values are

used. All other solution constructions combine both pheromone types at different

rates. Note that this preferential anti-pheromone approach is henceforth labeled

Aco-Pap.

3.5.4 Second-Order Swarm Intelligence

Our implementation of the second-order swarm intelligence approach from the

work of Ramos et al. [87] works exactly like the Aco-Pap approach from the

previous section for what concerns the definition and the update of the negative

pheromone values. However, the way in which they are used is different.

The item probabilities for the construction of solutions is calculated by using

Eqn. (3.18).

p(ci) :=
ηi · (τi)α · (τnegi )(α−1)∑

ck∈C ηk · (τk)
α · (τnegk )(α−1)

, (3.18)

Hereby α ∈ [0, 1] is a parameter of the algorithm. Note that this approach is

henceforth labeled Aco
2o
.

3.6 Summary of the Tested Algorithms

In addition to the baselineMMAS algorithm (henceforth simply labeled Aco),

and the four approaches from the literature (Aco-Sap, Aco-Ea, Aco-Pap and

Aco
2o
) we test the following six versions of the negative learning mechanism

proposed in this thesis:



48 Chapter 3 Application to the MDKP

1. Aco
+
neg: The mechanism described in Section 3.4 using option 1 (Cplex) for

solving sub-instances.

2. Aconeg: This algorithm is the same as Aco
+
neg, with the exception that the

instruction S iter := S iter ∪ {Ssub} (Eqn. (2.6)) is not performed. This means

that the algorithm does not make use of solution Ssub
for additional positive

learning. Studying this variant will show if, by solely adding negative

learning, the algorithm improves over the baseline Aco.

3. Aco
+
: This algorithm is the same as Aco

+
neg, apart from the fact that the

update of the negative pheromone values is not performed. In this way, the

algorithm only makes use of the additional positive learning mechanism

obtained by adding solution Ssub
to S iter

.

The remaining three algorithm variants are Aco-Aco
+
neg, Aco-Aconeg and

Aco-Aco
+
. These algorithm variants are the same ones as Aco

+
neg, Aconeg and

Aco
+
, except that they make use of option 2 (baseline Aco algorithm) for solving

the corresponding sub-instances at each iteration.

A summary of the parameters that arise in these 11 algorithms is provided

in Table 3.1, together with a description of their function and the parameter

value domains that were used for parameter tuning (which will be described

in Section 3.7.1). Moreover, an overview on the parameters that are involved in

each of the 11 algorithms is provided in Table 3.2.

Table 3.1 Summary of the parameters that arise in the considered algorithms,

togetherwith their description and the domains considered for parameter tuning.

Parameter Description Considered Domain

na Number of solution constructions per iteration {3, 5, 10, 20}
ρ Learning rate {0.1, 0.2, . . . , 0.4, 0.5}
drate Determinism rate for solution construction {0.0, 0.1, . . . , 0.8, 0.9}
ρneg Negative learning rate {0.1, 0.2, . . . , 0.4, 0.5}
γ Reduction rate for negative pheromone values {0.1, 0.2, . . . , 0.8, 0.9}
pexpa Proportion of explorer ants {0.1, 0.2, . . . , 0.4, 0.5}
α Exponent for the pheromone values {0.01, . . . , 0.99}
tsub Maximum computation time (seconds) for

sub-instance solving

{1, 2, . . . , 9, 10}

nsuba Number of solution constructions in the inner

application of the baseline ACO algorithm (option 2

for solving sub-instances)

{3, 5, 10, 20}

ρsub Learning rate in the inner application of the baseline

ACO algorithm (option 2 for solving sub-instances)

{0.1, 0.2, . . . , 0.4, 0.5}

dsubrate Determinism rate for solution construction in the

inner application of the baseline ACO algorithm

(option 2 for solving sub-instances)

{0.0, 0.1, . . . , 0.8, 0.9}



Section 3.7 Experimental Evaluation 49

Table 3.2 Summary of the parameters that arise in each algorithm.

Parameter Algorithms

A
c
o

A
c
o
+ n
e
g

A
c
o
n
e
g

A
c
o
+

A
c
o

-
A

c
o
+ n
e
g

A
c
o

-
A

c
o
n
e
g

A
c
o

-
A

c
o
+

A
c
o

-
S
a

p

A
c
o

-
E

a

A
c
o

-
P
a

p

A
c
o
2
o

na X X X X X X X X X X X
ρ X X X X X X X X X X X
drate X X X X X X X X X X X
ρneg X X X X X X
γ X X
pexpa

X
α X
tsub X X X X X X
nsuba X X X
ρsub X X X
dsubrate X X X

3.7 Experimental Evaluation

The experiments were conducted on a cluster ofmachineswith Intel
®
Xeon

®
CPU

5670 CPUs with 12 cores (2.933 GHz) and at least 32 GB RAM. For solving the

sub-instances in Aco
+
neg, Aconeg and Aco

+
we used CPLEX 12.10 in one-threaded

mode. For our experiments we used a benchmark set of 90 problem instances

with 500 items from the OR-Library (http://people.brunel.ac.uk/~mastjjb

/jeb/info.html, accessed on 20 January 2021). This set consists of 30 instances

with 5, 10, and 30 resources. Moreover, each of these three subsets contains 10

instanceswith resource tightness 0.25, 0.5, and 0.75. Roughly, the higher the value

of the resource tightness, the more items can be placed in the knapsack. These

90 problem instances are generally known to be the most difficult ones available

in the literature for heuristic solvers.

3.7.1 Algorithm Tuning

The scientific parameter tuning tool irace [123] was used for the purpose of

parameter tuning. In particular we produced for each of the 11 algorithms (resp.,

algorithm versions) exactly one parameter value set. In the context of tuning the

algorithms for the MDKP, we randomly selected one of the 10 problem instances

for each combination of “the number of resources” (5, 10, 30) and the instance

tightness (0.25, 0.5, 0.75). Consequently, nine problem instances were used for

tuning in the case of the MDKP. Remember that the parameter value domains

considered for tuning are provided in Table 3.1. The parameter values that were

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html


50 Chapter 3 Application to the MDKP

determined by irace for the 11 algorithms are provided in Table 3.3.

Table 3.3 Parameter values for all algorithms for solving the MDKP

Parameter Algorithms

A
c
o

A
c
o
+ n
e
g

A
c
o
n
e
g

A
c
o
+

A
c
o

-
A

c
o
+ n
e
g

A
c
o

-
A

c
o
n
e
g

A
c
o

-
A

c
o
+

A
c
o

-
S
a

p

A
c
o

-
E

a

A
c
o

-
P
a

p

A
c
o
2
o

na 20 10 20 20 10 10 20 20 20 3 10

ρ 0.3 0.4 0.1 0.4 0.1 0.1 0.3 0.1 0.2 0.1 0.3

drate 0.7 0.1 0.7 0.4 0.6 0.7 0.8 0.8 0.8 0.8 0.9

ρneg – – 0.2 0.5 – – 0.4 0.5 – – – – – – 0.1 0.2

γ – – – – – – – – – – – – – – 0.9 0.7 – – – –

pexpa
– – – – – – – – – – – – – – – – 0.3 – – – –

α – – – – – – – – – – – – – – – – – – – – 0.95

tsub – – 7 3 5 3 9 3 – – – – – – – –

nsuba – – – – – – – – 5 10 10 – – – – – – – –

ρsub – – – – – – – – 0.3 0.2 0.4 – – – – – – – –

dsubrate – – – – – – – – 0.7 0.7 0.7 – – – – – – – –

3.7.2 Results

Using the previously determined parameter values, each of the 11 considered

algorithms was applied 100 times to each of the 90 MDKP instances. This

was done with a time limit of 500 s per run. Note that, in this way, the same

computational resources were given to all 11 algorithms. The choice of 100 runs

per instance in the case of the MDKP was done in order to produce results that

are comparable to the best existing approaches from the literature, which were

also applied 100 times to each problem instance. The numerical results of these

experiments are presented in Tables 3.5, 3.6, and 3.7 concerning the values of the

best solutions found, Tables 3.8, 3.9, and 3.10 concerning the average of 100 runs,

and Tables 3.11, 3.12, and 3.13 concerning the average computation times.

1 2 3 4 5 6 7 8 9 10

Fig. 3.2 Critical difference plot concerning all MDKP instances



Section 3.7 Experimental Evaluation 51

In addition, we present a comparative analysis of the 11 algorithms in terms

of critical difference (CD) plots [124] and so-called heatmaps. In order to produce

the average ranks of all algorithms—both for the whole set of problem instances

as well as for instance subsets—the Friedman test was applied for the purpose of

comparing the 11 approaches simultaneously. In this way we also obtained the

rejection of the hypothesis that the 11 techniques perform equally. Subsequently,

all pairwise algorithm comparisons were performed using the Nemenyi post-hoc

test [125]. The obtained results are shown graphically (CD plots and heatmaps).

The CD plots show the average algorithm ranks (horizontal axis) with respect to

the considered (sub-)set of instances. In those cases in which the performances

of two algorithms are below the critical difference threshold—based on a

significance level of 0.05—the two algorithms are considered as statistically

equivalent. This is indicated by bold horizontal bars joining the markers of

the respective algorithm variants.

Figure 3.2 shows the CD plot for the whole set of 90 MDKP instances, while

Fig. 3.3 and Fig. 3.4 present more fine-grained results concerning instances with

different numbers of resources and with a varying instance tightness. The

heatmaps in Figure 3.5 complement this more fine-grained presentation of the

results. The 11 algorithms are distributed into three heatmap graphics. Each

heatmap (out of 11 heatmaps in total) has three rows: one for each number of

resources (5, 10, 30). Moreover, each heatmap has three columns: one for each

considered instance tightness (0.25, 0.5, 0.75). Interestingly, from a global point of

view (Fig. 3.2) the relative difference between the algorithm performances shows

that our negative learning variants using option 1 perform best. Aco
+
neg has a

slight advantage over Aco
+
, which is not statistically significant.

When studying the results in a more fine-grained way, the following

observations can be made. The negative learning component of our algorithm

proposal seems to gain importancewith a growing number of resources. This can

especially be observed for algorithmvariantsAco
+
neg,Aco-Aco

+
neg andAco-Aconeg.

However, there is an interesting difference between Aco
+
neg and Aco-Aco

+
neg:

while Aco
+
neg improves with an increasing instance tightness, the opposite is

the case for Aco-Aco
+
neg. The relative performance of Aco-Sap, the best one of the

negative learning variants chosen from the literature, is contrary to the relative

performance of Aco-Aco
+
neg. In other words, the relative performance of Aco-Sap

improves with a decreasing number of resources and with an increasing instance

tightness.



52 Chapter 3 Application to the MDKP

1 2 3 4 5 6 7 8 9 10

(a) Instances with density 0.25

1 2 3 4 5 6 7 8 9 10

(b) Instances with density 0.5

1 2 3 4 5 6 7 8 9 10

(c) Instances with density 0.75

Fig. 3.3Critical differenceplots forMDKP instancegroupsbasedon their densities



Section 3.7 Experimental Evaluation 53

1 2 3 4 5 6 7 8 9 10

(a) Instances with 5 resources

1 2 3 4 5 6 7 8 9 10

(b) Instances with 10 resources

1 2 3 4 5 6 7 8 9 10

(c) Instances with 30 resources

Fig. 3.4Critical difference plots forMDKP instance groups based on their number

of resources



54 Chapter 3 Application to the MDKP

2.51 2.62 2.23

2.78 2.59 2.59

2.62 2.74 2.78

1.86 1.63 1.88

1.73 1.63 1.63

1.8 1.57 1.49

1.65 1.76 1.91

1.49 1.78 1.78

1.58 1.69 1.73

anp anpp ap

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

5

10

30

tightness

re
so

u
rc

e
s

avg. rank

1.50

1.75

2.00

2.25

2.50

2.75

(a) Algorithms Aco
+
neg, Aconeg, and Aco

+

6.72 6.73 7.22

5.97 5.88 6.45

5.56 5.66 6.04

5.52 6.49 7.49

4.61 5.24 6.09

4.05 4.36 5.06

5.81 5.76 6.18

6.84 6.79 6.97

7.93 8.4 8.24

ainp ainpp aip

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

5

10

30

tightness

re
so

u
rc

e
s

avg. rank

5

6

7

8

(b) Algorithms Aco-Aco
+
neg, Aco-Aconeg, and Aco-Aco

+

8.91 8.96 8.6

8.5 8.76 8.77

8.19 8.7 8.56

9.16 8.09 7.1

9.38 8.15 7.63

8.96 8.12 8.16

8.67 8.5 8.3

9.15 9.38 8.66

9.96 9.61 8.96

5.69 5.62 5.56

6.32 6.08 5.92

7.21 6.44 5.8

9.51 9.85 9.53

9.23 9.72 9.51

8.15 8.71 9.17

astd EA PAP

SAP sndo

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.25 0.50 0.75

tightness

re
so

u
rc

e
s

avg. rank

6

7

8

9

tightness
0.25 0.50 0.75

30

10

 5

re
so

u
rc

e
s

30

10

 5

(c) Algorithms Aco, Aco-Ea, Aco-Pap, Aco-Pap, and Aco
2o

Fig. 3.5 Heatmaps concerning the results for the MDKP



Section 3.7 Experimental Evaluation 55

3.7.3 Search Trajectory Network Analysis

We provide five plots of Search Trajectory Networks (STNs) [126] to compare the

detail of algorithms’ behavior during their search process. We made these STN

plots by using a method proposed in the work of Ochoa et al. [127] and the

corresponding R scripts provided at https://github.com/gabro8a/STNs.git.

We obtained the data for these STN plots by running each of the 11 algorithms on

problem instance cb_5_500.0 ten times with the same parameter settings as used

for the final experimental evaluation. We applied 80% search space partitioning to

all the STN plots in this chapter.

An STN is a directed graph G(N,E) with node set N representing search

states (solutions and objective values) and edge set E representing the transitions

between a sequence of search states. Figure 3.6 provides an example of an STN

plot for three algorithms. The different color of the edges show the trajectories

of the algorithm runs in the search space. For example, blue edges belong to

the trajectories of Aconeg, while green ones belong to the trajectories of Aco
+
neg.

Each trajectory starts with a node which is a yellow rectangle node and ends

with either a red circle (if the nodes corresponds to the best solution found) or

a black triangle (otherwise). A grey-colored node represents a location in the

l

l

l

l

l
l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l
l
l

l
l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l l

l

l

l

l l l l

l
l

ll
l

l

l
l

ll

l

l l

l

l

l
l

l

l

ll

l

l
l

l
l

l

l

l

l

l
l l

l

l

l
l
l
l

l

l
l l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

l

l
l l

l
l

l

ll

l

l

ll
l

l

l

l

l
l l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l
l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 3.6 Search trajectory network of Aco, Aconeg, and Aco
+
neg applied to problem

instance cb_5_500.0

https://github.com/gabro8a/STNs.git


56 Chapter 3 Application to the MDKP

search space through which more than one algorithm has passed. Moreover, the

bigger a node the more algorithm trajectories have passed through this node.

STN visualization often helps to understand numerical results.

Figure 3.6 shows the STN plot for the baseline Aco algorithm and the negative

learning variants, Aconeg and Aco
+
neg. The STN plot clearly shows the different

characteristics between the two negative learning Aco variants and the baseline

Aco algorithm. Despite of starting their search indiverse locations, the trajectories

ofAconeg andAco
+
neg converge to a commonareawherewe can see several overlaps

in their search trajectories. This behavior is not present in the trajectories of the

baseline Aco algorithm. Its trajectories start at diverse locations and end also in

diverse locations. This could mean that Aco is not attracted by any specific area

of the search space. We can also observe in the STN plot that the trajectories of

Aconeg are longer than the ones of Aco
+
neg. Several trajectories of the two negative

learning variants find common final results, identified by several large black

triangles. However, the best result is found only in one trajectory of Aco
+
neg.

Figure 3.7 shows the STNplot for algorithmsAco
+
,Aconeg, andAco

+
neg. Unlike

the finding in Fig. 3.6, there is no significant characteristic difference between the

three variants in terms of the direction of their trajectories. All trajectories in the

plot converge to the same area of attraction. However, we can observe a notable

contrast in their trajectory lengths. The variant Aconeg has the longest average

trajectory length, followed by Aco
+
neg and Aco

+
.

Figure 3.8 presents the comparison of our best performing negative learning

Aco variant—Aco
+
neg—and the other two from our proposal—Aco-Aconeg and

Aco-Aco
+
neg.—that useMMAS as their additional algorithmic component. The

plot shows that trajectories of these twovariants donot converge to a commonarea

like the ones of Aco
+
neg. Interestingly, this trend is also present in Fig. 3.9, where

we plotted the STN composed of the trajectories of Aco
+
neg, Aco-Ea, and Aco-Sap,

and in Fig. 3.10, where we plotted the STN composed of the trajectories of Aco
+
neg,

Aco-Pap, and Aco
2o
. None of the trajectories from these competing negative

learning Aco variants show the same behavior displayed by the ones of Aco
+
neg.

Furthermore, Aco
+
neg finds the best result in this problem instance, not found

by any of the remaining variants. These findings suggest that Aco
+
neg has very

different characteristics when compared to the baseline Aco and other negative

learning Aco variants. Combined with the fact that our approach generated the

best result, we believe that our negative learning proposal significantly improves

over the baseline Aco, and it is superior to the existing negative learning Aco

approaches.



Section 3.7 Experimental Evaluation 57

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

ll

l

l

l l
l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l
l

l
l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l
l

l

ll
l

l

l

l

l

l

l

l
ll

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 3.7 Search trajectory network of Aco
+
, Aconeg, and Aco

+
neg applied to problem

instance cb_5_500.0

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

ll

l

l

l
l

l

l ll

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l
l

ll

ll

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 3.8 Search trajectory network of Aco-Aconeg, Aco-Aco
+
neg, and Aco

+
neg applied

to problem instance cb_5_500.0



58 Chapter 3 Application to the MDKP

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l l

l
l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l
l

l

l
lll

l

l
l

l

ll l

l

l

lll
ll

l

l

l

l
l

l

l
l
l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l ll

l

l

l

l

l
ll

l

l

l
l

l

l

l

l

l

l

ll

l

l

l
l ll

l

l
l

l

l

l

l
l

l

ll

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l l

l

l
l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll l

l

l

l

l
l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

ll

l
l

l

l

l

l

l
l

l
l ll

l

l l

ll

l

l

l

l

l

l

l

l

ll
l

l
l

l

l

l

l

ll

l
l
l

l

l

l

l

l

ll

l
l

l
l

l

l

l

l
l

l

ll

l

l

l
l

l

l

l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 3.9 Search trajectory network of Aco-Ea, Aco-Sap, and Aco
+
neg applied to

problem instance cb_5_500.0

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

ll l

l

l l

l

l
l
l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

ll
l

l
l

l

l

l

l l

l

l

l
l

l

l

l

lll

l

l

l

l

l

l

l
l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

ll l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

ll
l

lll

l

l

l

l

l

l

l

l

l
l

l
l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

ll

l

l
l
l

l

l

l
l

l
l

l

l l

l

l
l

l

l

l l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
ll

l

l

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

ll

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 3.10 Search trajectory network of Aco
2o
, Aco-Pap, and Aco

+
neg applied to

problem instance cb_5_500.0



Section 3.7 Experimental Evaluation 59

3.7.4 Comparison to the State-of-the-Art

Even though the objective of this study is not necessarily to outperform current

state-of-the-art algorithms for the chosen problems, we are certainly interested

to know how our globally best algorithm (Aco
+
neg) performs in comparison to

the state-of-the-art. In the context of the MDKP, we compare Aco
+
neg to the

current state-of-the-art algorithms: a sophisticated particle swarm optimization

algorithm (DQPSO) from [103], published in 2020, and a powerful evolutionary

algorithm (TPTEA) from [102], published in 2018. As these two algorithms—in

their original papers—were applied to the 90 benchmark problems used in this

work, it was not required to conduct additional experiments with Aco
+
neg.

The detailed comparisons between our negative learning Aco algorithms

to these state-of-the-art approaches are provided in Tables 3.14, 3.15,

and 3.16. Additionally, a summarized comparison of our globally best

algorithm—Aco
+
neg—with the state-of-the-art approaches is provided in Table 3.4.

Each row contains average results for the 10 problem instances for each

combination of the number of resources (5, 10, 30) and the instance tightness

(0.25, 0.5, 0.75). In particular, we show averages concerning the best solutions

found (table columns 3–5), the average solution quality obtained (table columns

6–8), and the average computation times required (table columns 9–11). We were

surprised to see that Aco
+
neg can actually compete with current state-of-the-art

algorithms. The state-of-the-art results were even improved by Aco
+
neg in some

cases, especially for what concerns medium instance tightness for 5 and 10

resources, and low instance tightness for 30 resources. Moreover, the computation

time of Aco
+
neg is much lower than that of TPTEA, and comparable to the one

required by DQPSO.



6
0

C
h
a
p
t
e
r
3

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
K
P

Table 3.4 Summarized comparison between Aco
+
neg and the state-of-the-art algorithms for the MDKP

# Resources Tightness Best Average Average Time

TPTEA DQPSO Aco
+
neg TPTEA DQPSO Aco

+
neg TPTEA DQPSO Aco

+
neg

0.25 120629.2 120627.7 120628.6 120612.70 120619.81 120611.94 3228.31 117.53 208.31

5 0.5 219511.6 219511.9 219512.7 219505.29 219505.79 219507.46 2673.01 79.51 161.87

0.75 302363.4 302362.8 302363.0 302359.76 302358.98 302356.40 2129.25 66.05 141.21

0.25 118602.3 118613.2 118613.5 118548.87 118574.88 118574.00 3639.40 125.70 232.00

10 0.5 217318.5 217318.5 217321.9 217281.33 217282.37 217283.24 3811.47 141.36 184.32

0.75 302601.4 302593.1 302590.6 302583.25 302574.51 302568.88 2950.25 93.70 174.51

0.25 115571.0 115518.0 115605.3 115494.70 115421.82 115505.89 3943.07 476.50 231.05

30 0.5 216266.2 216195.3 216236.2 216200.55 216130.38 216186.44 3542.84 407.97 220.29

0.75 302445.1 302413.8 302419.8 302414.08 302353.54 302374.68 3451.25 433.77 216.52



Section 3.8 Conclusions 61

3.8 Conclusions

Most learning-based metaheuristics, such as ant colony optimization, particle

swarm optimization, and evolutionary algorithms, are based on learning from

positive examples, or positive learning. On the other hand, nature demonstrates

that learning from negative examples, or negative learning, can be quite valuable.

In fact, during the last two decades, various attempts have been made to develop

a mechanism to include negative learning into Aco. However, only a few

of the works demonstrated that the proposed mechanism was indeed useful.

This research aimed to develop a new negative learning mechanism for Aco

and demonstrate its effectiveness. Our mechanism’s primary concept is that

negative feedback should not be extracted from the main Aco algorithm. A

separate algorithmic component should instead generate it. After developing

our new negative learning framework, we investigated two algorithmic options

for generating negative information: (1) using the mathematical programming

solver Cplex, and (2) using the baseline Aco algorithm, but with additional,

independent runs for solving sub-instances of the original problem instances.

The MDKP was used as a test case for all the algorithm versions. In order to

compare our algorithm proposal with current techniques, four negative learning

mechanisms from the literature were built on top of the chosen baseline Aco

algorithm. The findings have indicated, first and foremost, that the suggested

negative learningmechanism is superior to current techniques from the literature,

particularly when employing Cplex for providing negative feedback information.

Second, we have demonstrated that, while negative learning is not always useful

for all problem instances, it may be quite effective for subsets of problem instances

that share specific features. The proposed negative learning mechanism proved

notably effective for solving MDKP instances for problem cases with many

resources. From a broader perspective, it was also demonstrated that adding

negative learning is generally not harmful since the globally best-performing

algorithm version employs negative learning. Finally, we demonstrated that our

globally best-performing algorithm variation can compete with state-of-the-art

heuristic solvers for the MDKP.



6
2

C
h
a
p
t
e
r
3

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
K
P

Table 3.5 Best results of all algorithms tested on OR-LIB instances with 5 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5.500.0 0.25 120148 120148 120148 120074 120110 120081 120124 120033 120101 120064 120080

5.500.1 0.25 117879 117864 117879 117733 117823 117824 117771 117749 117834 117806 117735

5.500.2 0.25 121131 121125 121129 121026 121059 121060 121068 120992 121076 121047 121057

5.500.3 0.25 120804 120804 120804 120697 120752 120738 120755 120672 120747 120685 120645

5.500.4 0.25 122319 122319 122319 122217 122287 122275 122280 122219 122319 122245 122244

5.500.5 0.25 122024 122024 122024 121925 121991 121984 121984 121982 121984 121955 121929

5.500.6 0.25 119127 119117 119127 119056 119076 119080 119094 119020 119072 119052 119016

5.500.7 0.25 120568 120568 120568 120420 120508 120454 120492 120445 120489 120450 120438

5.500.8 0.25 121575 121575 121575 121422 121475 121445 121463 121352 121414 121368 121265

5.500.9 0.25 120711 120699 120717 120565 120623 120631 120627 120581 120634 120573 120517

5.500.10 0.50 218428 218428 218428 218282 218305 218282 218306 218306 218352 218263 218224

5.500.11 0.50 221202 221191 221202 220975 221043 221053 221065 220944 221018 220878 220854

5.500.12 0.50 217542 217534 217542 217441 217411 217444 217446 217430 217454 217425 217355

5.500.13 0.50 223560 223560 223560 223491 223511 223514 223530 223527 223508 223472 223476

5.500.14 0.50 218966 218966 218966 218897 218943 218913 218943 218906 218907 218875 218863

5.500.15 0.50 220530 220527 220530 220425 220418 220432 220476 220456 220484 220464 220451

5.500.16 0.50 219989 219989 219989 219884 219905 219917 219987 219943 219973 219939 219876

5.500.17 0.50 218215 218215 218215 218134 218121 218123 218165 218125 218118 218116 218065

5.500.18 0.50 216976 216976 216976 216878 216909 216909 216946 216900 216939 216938 216896

5.500.19 0.50 219719 219717 219717 219598 219647 219664 219656 219656 219687 219610 219616

5.500.20 0.75 295828 295828 295828 295702 295702 295749 295790 295735 295771 295752 295713

5.500.21 0.75 308086 308086 308086 308026 307998 308011 308027 307991 308039 307970 307979

5.500.22 0.75 299796 299796 299796 299748 299732 299743 299788 299751 299751 299750 299742

5.500.23 0.75 306480 306480 306480 306426 306436 306469 306469 306466 306469 306443 306413

5.500.24 0.75 300342 300342 300342 300280 300288 300265 300288 300247 300289 300284 300310

5.500.25 0.75 302571 302571 302571 302542 302529 302560 302535 302533 302560 302513 302495

5.500.26 0.75 301339 301329 301339 301286 301325 301285 301284 301284 301301 301275 301272

5.500.27 0.75 306454 306454 306454 306353 306367 306415 306415 306415 306417 306415 306333

5.500.28 0.75 302828 302818 302828 302747 302749 302759 302764 302814 302823 302777 302737

5.500.29 0.75 299906 299906 299906 299825 299831 299801 299842 299837 299886 299822 299813



S
e
c
t
i
o
n
3
.
8

C
o
n
c
l
u
s
i
o
n
s

6
3

Table 3.6 Best results of all algorithms tested on OR-LIB instances with 10 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10.500.0 0.25 117809 117779 117809 117507 117681 117502 117507 117403 117502 117525 117513

10.500.1 0.25 119188 119182 119229 119000 119058 119081 119075 118964 119066 118974 118924

10.500.2 0.25 119211 119194 119211 118942 118962 118948 118983 118859 118961 118860 118881

10.500.3 0.25 118813 118813 118813 118602 118692 118697 118697 118601 118737 118621 118550

10.500.4 0.25 116509 116471 116509 116209 116265 116224 116185 116057 116176 115995 115988

10.500.5 0.25 119504 119461 119466 119278 119338 119305 119338 119174 119308 119214 119157

10.500.6 0.25 119790 119777 119827 119508 119722 119660 119653 119534 119691 119691 119691

10.500.7 0.25 118320 118277 118312 117892 118117 118011 117918 117863 118006 117844 117873

10.500.8 0.25 117781 117776 117779 117620 117607 117578 117551 117496 117586 117472 117435

10.500.9 0.25 119210 119192 119210 118885 119064 118880 118915 118864 118908 118863 118773

10.500.10 0.50 217377 217318 217377 217108 217177 217201 217128 217155 217212 217059 217009

10.500.11 0.50 219077 219041 219063 218877 218858 218825 218649 218703 218759 218583 218554

10.500.12 0.50 217793 217792 217797 217540 217620 217597 217611 217523 217636 217462 217448

10.500.13 0.50 216868 216868 216868 216635 216663 216589 216719 216601 216685 216557 216556

10.500.14 0.50 213859 213831 213859 213448 213610 213628 213524 213608 213631 213469 213491

10.500.15 0.50 215073 215071 215062 214866 214932 214957 214896 214870 214936 214853 214810

10.500.16 0.50 217931 217899 217931 217644 217723 217727 217783 217683 217779 217674 217600

10.500.17 0.50 219984 219949 219984 219678 219789 219705 219662 219689 219760 219890 219588

10.500.18 0.50 214375 214346 214375 213897 214189 214115 214044 213924 214013 214032 213953

10.500.19 0.50 220882 220846 220886 220619 220706 220664 220734 220606 220739 220563 220552

10.500.20 0.75 304359 304344 304353 304156 304269 304256 304170 304187 304254 304161 304075

10.500.21 0.75 302371 302331 302379 302216 302293 302220 302303 302240 302296 302239 302148

10.500.22 0.75 302408 302408 302416 302227 302228 302226 302237 302247 302323 302177 302202

10.500.23 0.75 300747 300743 300743 300590 300637 300653 300667 300644 300668 300627 300569

10.500.24 0.75 304374 304340 304374 304266 304323 304266 304275 304264 304323 304340 304288

10.500.25 0.75 301796 301751 301781 301448 301575 301508 301361 301260 301448 301260 301127

10.500.26 0.75 304949 304949 304952 304779 304851 304866 304901 304897 304892 304882 304892

10.500.27 0.75 296456 296456 296456 296271 296278 296316 296330 296300 296334 296263 296162

10.500.28 0.75 301357 301313 301353 301149 301215 301236 301304 301179 301287 301167 301103

10.500.29 0.75 307089 307072 307072 306867 306951 306981 306897 306885 306931 306856 306836



6
4

C
h
a
p
t
e
r
3

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
K
P

Table 3.7 Best results of all algorithms tested on OR-LIB instances with 30 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

30.500.0 0.25 116014 115915 115947 115031 115478 115124 114840 114828 114919 114634 114998

30.500.1 0.25 114734 114718 114749 114084 114298 114253 114032 114004 114086 113952 114118

30.500.2 0.25 116685 116669 116705 115727 116009 115763 115682 115680 115643 115426 115839

30.500.3 0.25 115310 115228 115310 114506 114891 114554 114390 114422 114549 114310 114385

30.500.4 0.25 116516 116448 116525 115242 115811 115300 115154 115139 115154 114974 115344

30.500.5 0.25 115734 115643 115741 115102 115524 115338 114994 115085 115253 114908 115128

30.500.6 0.25 114181 114058 114181 113008 113655 113324 113137 113112 113189 113020 113068

30.500.7 0.25 114344 114344 114344 113096 113399 113274 113012 113062 113129 113083 113214

30.500.8 0.25 115419 115419 115419 114389 114837 114523 114138 114195 114369 114212 114448

30.500.9 0.25 117116 117020 117116 116195 116465 116151 116000 116196 116091 115862 116126

30.500.10 0.50 218081 218033 218068 217319 217688 217546 217191 217308 217426 217159 217330

30.500.11 0.50 214626 214626 214626 213579 214099 213698 213336 213517 213646 213413 213371

30.500.12 0.50 215914 215903 215918 215398 215598 215504 215567 215518 215520 215418 215575

30.500.13 0.50 217863 217827 217862 216839 217325 217123 216729 216797 216976 216795 216839

30.500.14 0.50 215640 215566 215635 214751 215081 214804 214560 214759 214803 214790 214590

30.500.15 0.50 215867 215853 215875 214777 215262 215110 214776 214863 214954 214729 214885

30.500.16 0.50 215883 215798 215883 215326 215610 215555 215245 215308 215414 215385 215232

30.500.17 0.50 216463 216419 216542 215692 216055 215821 215887 215931 215913 215546 215572

30.500.18 0.50 217333 217312 217333 216653 217041 216749 216688 216652 216738 216601 216658

30.500.19 0.50 214692 214657 214691 213796 214096 213934 213830 213909 213935 213719 213897

30.500.20 0.75 301667 301643 301667 301177 301326 301271 301291 301270 301279 301225 301192

30.500.21 0.75 300055 299996 300045 299578 299621 299639 299588 299523 299683 299575 299438

30.500.22 0.75 305080 305018 305069 304753 304754 304797 304665 304673 304810 304666 304631

30.500.23 0.75 302004 302001 302001 301441 301664 301575 301369 301458 301497 301432 301417

30.500.24 0.75 304427 304413 304416 304046 304055 304049 303907 303916 303956 303866 303944

30.500.25 0.75 296960 296909 296959 296394 296512 296442 296353 296462 296544 296427 296468

30.500.26 0.75 303335 303304 303322 302772 302958 302819 302819 302834 302924 302640 302934

30.500.27 0.75 306956 306941 306999 306511 306650 306481 306455 306363 306532 306337 306374

30.500.28 0.75 303178 303151 303178 302543 302676 302551 302250 302290 302521 302255 302341

30.500.29 0.75 300536 300512 300532 300077 300166 300220 300068 300072 300156 300196 300095



S
e
c
t
i
o
n
3
.
8

C
o
n
c
l
u
s
i
o
n
s

6
5

Table 3.8 Average results of all algorithms tested on OR-LIB instances with 5 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5.500.0 0.25 120120.0 120107.3 120122.5 119945.6 119998.3 119967.9 120003.1 119902.9 120015.5 119940.3 119933.7

5.500.1 0.25 117854.2 117833.3 117862.6 117614.5 117726.1 117688.4 117691.0 117562.5 117698.3 117591.5 117551.9

5.500.2 0.25 121113.0 121112.0 121114.0 120883.1 120982.2 120954.7 120970.7 120886.6 120987.1 120890.9 120864.1

5.500.3 0.25 120784.2 120782.7 120785.8 120534.8 120662.5 120627.1 120622.6 120490.4 120633.4 120557.2 120491.1

5.500.4 0.25 122319.0 122318.3 122319.0 122090.7 122191.6 122167.6 122185.9 122086.4 122196.1 122112.5 122099.8

5.500.5 0.25 122008.4 122000.8 122012.0 121798.6 121905.7 121876.5 121888.0 121828.7 121898.4 121819.8 121788.0

5.500.6 0.25 119103.3 119086.2 119106.5 118894.1 118980.0 118947.3 118986.3 118902.6 118998.9 118929.4 118902.4

5.500.7 0.25 120567.1 120560.3 120567.3 120278.4 120401.3 120375.6 120427.9 120317.2 120395.4 120309.8 120313.0

5.500.8 0.25 121563.2 121540.4 121566.0 121176.3 121350.8 121293.6 121315.3 121148.4 121309.2 121158.3 121030.0

5.500.9 0.25 120686.8 120673.7 120689.3 120417.8 120533.7 120513.3 120542.7 120373.7 120535.4 120398.2 120362.0

5.500.10 0.50 218425.8 218422.5 218426.4 218112.8 218198.2 218197.1 218209.9 218143.6 218226.8 218141.3 218080.8

5.500.11 0.50 221190.6 221188.3 221191.2 220763.0 220933.2 220901.7 220863.3 220722.7 220888.2 220710.3 220609.0

5.500.12 0.50 217533.3 217520.5 217532.8 217229.4 217331.9 217314.4 217336.7 217267.8 217348.4 217214.5 217167.6

5.500.13 0.50 223559.2 223558.3 223558.5 223354.2 223421.6 223420.6 223447.5 223415.6 223445.7 223384.3 223362.2

5.500.14 0.50 218966.0 218963.4 218966.0 218763.8 218808.4 218817.9 218833.9 218766.3 218828.3 218729.4 218695.8

5.500.15 0.50 220519.9 220501.9 220521.6 220287.0 220345.6 220339.1 220388.1 220322.8 220384.4 220336.7 220279.5

5.500.16 0.50 219988.0 219969.6 219987.3 219764.0 219815.4 219810.9 219847.5 219751.9 219841.4 219764.2 219681.7

5.500.17 0.50 218199.5 218173.6 218190.7 217934.1 218034.6 218020.2 218044.6 217974.9 218046.7 217968.2 217901.2

5.500.18 0.50 216976.0 216976.0 216976.0 216758.1 216817.4 216814.9 216854.7 216810.8 216864.4 216804.9 216780.6

5.500.19 0.50 219716.4 219701.3 219709.9 219429.1 219532.5 219534.9 219556.5 219476.6 219557.4 219446.6 219385.2

5.500.20 0.75 295828.0 295828.0 295828.0 295600.2 295645.2 295665.8 295693.1 295640.4 295685.0 295601.1 295577.6

5.500.21 0.75 308079.2 308076.8 308079.6 307879.9 307913.8 307912.2 307908.5 307890.9 307927.9 307860.3 307804.9

5.500.22 0.75 299795.0 299794.3 299795.8 299640.6 299645.0 299659.2 299704.0 299670.0 299691.4 299631.8 299629.0

5.500.23 0.75 306477.4 306475.0 306476.9 306317.1 306340.3 306351.7 306382.8 306362.8 306395.8 306333.3 306325.1

5.500.24 0.75 300342.0 300342.0 300342.0 300145.4 300189.0 300189.3 300202.9 300180.3 300220.8 300160.0 300146.0

5.500.25 0.75 302553.0 302549.5 302552.4 302395.4 302433.0 302436.0 302450.1 302437.5 302471.7 302410.5 302389.0

5.500.26 0.75 301330.0 301328.9 301329.1 301199.3 301212.3 301214.0 301221.2 301211.7 301232.5 301180.6 301164.0

5.500.27 0.75 306439.8 306435.0 306438.6 306255.0 306301.2 306302.8 306314.5 306303.9 306328.0 306290.0 306230.2

5.500.28 0.75 302814.8 302810.8 302814.7 302637.4 302664.0 302680.4 302705.2 302689.4 302724.0 302675.1 302644.4

5.500.29 0.75 299904.7 299904.6 299904.9 299735.3 299736.6 299733.7 299754.6 299749.0 299784.2 299742.6 299684.3



6
6

C
h
a
p
t
e
r
3

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
K
P

Table 3.9 Average results of all algorithms tested on OR-LIB instances with 10 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10.500.0 0.25 117750.7 117718.4 117769.3 117234.0 117471.6 117372.4 117281.8 117101.7 117308.8 117105.8 117159.5

10.500.1 0.25 119157.5 119136.4 119160.6 118713.1 118900.1 118864.1 118866.8 118758.9 118874.8 118767.0 118761.8

10.500.2 0.25 119167.7 119097.2 119180.8 118658.7 118873.4 118809.0 118766.5 118581.2 118785.1 118625.6 118596.4

10.500.3 0.25 118796.8 118769.1 118803.8 118368.5 118547.4 118510.8 118449.7 118293.5 118501.0 118345.0 118324.2

10.500.4 0.25 116459.0 116432.6 116461.4 115817.2 116109.3 116039.0 115979.5 115815.6 115998.4 115753.1 115799.3

10.500.5 0.25 119454.4 119438.9 119454.6 119057.8 119210.5 119150.2 119131.0 118946.8 119124.9 118980.0 118979.7

10.500.6 0.25 119762.8 119730.6 119772.1 119329.9 119544.6 119469.6 119451.9 119328.9 119488.9 119366.6 119364.8

10.500.7 0.25 118265.8 118237.0 118269.4 117650.9 117959.0 117834.8 117722.4 117586.5 117772.0 117583.8 117561.6

10.500.8 0.25 117750.9 117714.7 117742.6 117266.9 117478.7 117420.8 117346.0 117128.2 117370.1 117172.2 117189.2

10.500.9 0.25 119174.4 119140.6 119185.8 118623.8 118850.9 118698.1 118703.6 118578.2 118715.6 118522.0 118515.3

10.500.10 0.50 217320.4 217304.7 217321.1 216828.9 216994.8 216988.9 216993.4 216892.6 216975.9 216799.9 216770.6

10.500.11 0.50 219037.7 219018.9 219034.4 218465.8 218704.5 218625.4 218426.5 218335.6 218509.6 218224.4 218272.9

10.500.12 0.50 217766.7 217755.4 217765.9 217213.5 217445.1 217426.4 217418.8 217301.9 217398.9 217219.1 217179.3

10.500.13 0.50 216828.2 216801.2 216822.3 216391.8 216511.2 216429.0 216448.0 216388.9 216502.1 216346.7 216335.1

10.500.14 0.50 213829.0 213794.8 213829.6 213241.0 213454.1 213455.5 213373.5 213346.8 213454.3 213235.2 213210.7

10.500.15 0.50 215035.5 215001.5 215028.0 214592.7 214800.8 214786.1 214755.5 214705.8 214800.0 214631.9 214594.9

10.500.16 0.50 217888.8 217877.4 217886.5 217441.7 217608.4 217588.4 217569.2 217522.9 217597.0 217440.8 217441.1

10.500.17 0.50 219952.8 219931.2 219952.6 219389.0 219556.6 219526.7 219425.0 219361.6 219517.2 219241.0 219240.3

10.500.18 0.50 214326.8 214287.0 214310.9 213656.5 213981.2 213915.5 213843.6 213700.5 213833.2 213573.0 213571.7

10.500.19 0.50 220846.5 220823.4 220846.2 220335.6 220534.6 220521.7 220503.1 220425.4 220513.0 220382.4 220324.0

10.500.20 0.75 304344.2 304344.0 304343.2 303954.3 304089.0 304101.8 304013.2 304005.3 304094.0 303943.3 303853.9

10.500.21 0.75 302333.3 302317.7 302337.7 302012.3 302117.9 302114.5 302096.4 302094.1 302139.5 302054.1 302015.7

10.500.22 0.75 302399.9 302354.4 302391.3 302036.0 302110.2 302112.0 302132.1 302063.5 302122.8 301995.7 301988.0

10.500.23 0.75 300740.4 300705.8 300737.7 300400.1 300486.8 300498.3 300466.8 300458.9 300510.5 300438.1 300370.0

10.500.24 0.75 304345.9 304340.0 304344.6 304023.0 304132.3 304141.4 304120.4 304119.4 304163.2 304074.2 304060.6

10.500.25 0.75 301753.0 301712.9 301749.9 301180.9 301403.3 301290.8 301036.8 300997.3 301164.3 300951.6 300861.0

10.500.26 0.75 304949.0 304949.0 304949.0 304601.9 304722.6 304675.9 304722.3 304724.7 304764.1 304663.0 304679.3

10.500.27 0.75 296451.2 296428.0 296446.4 296021.6 296174.8 296102.2 296164.3 296079.0 296166.7 296067.7 295972.2

10.500.28 0.75 301315.1 301295.3 301307.8 300925.7 301064.0 301064.2 301018.3 301016.1 301081.4 300972.1 300912.4

10.500.29 0.75 307056.7 307005.0 307051.2 306674.8 306785.3 306789.5 306783.9 306724.2 306801.3 306656.2 306632.3



S
e
c
t
i
o
n
3
.
8

C
o
n
c
l
u
s
i
o
n
s

6
7

Table 3.10 Average results of all algorithms tested on OR-LIB instances with 30 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

30.500.0 0.25 115881.0 115860.7 115888.3 114568.5 115193.7 114849.3 114505.6 114379.1 114563.7 114247.9 114638.6

30.500.1 0.25 114693.2 114678.2 114696.1 113698.0 114109.9 113890.3 113773.1 113684.4 113799.5 113658.3 113737.1

30.500.2 0.25 116655.1 116624.9 116659.5 115185.4 115786.0 115512.1 115223.9 115132.3 115319.9 114948.3 115260.2

30.500.3 0.25 115201.3 115145.7 115213.2 113974.0 114553.6 114332.0 114027.1 113942.7 114145.4 113859.0 113914.0

30.500.4 0.25 116390.9 116368.2 116402.0 114781.4 115555.3 115053.9 114814.5 114740.5 114899.0 114542.3 114786.0

30.500.5 0.25 115643.2 115624.4 115653.9 114768.4 115168.8 114943.6 114737.8 114616.5 114805.3 114491.8 114709.2

30.500.6 0.25 114004.1 113956.6 114013.5 112646.6 113394.7 112982.1 112876.5 112699.5 112884.6 112555.7 112712.1

30.500.7 0.25 114220.4 114151.9 114214.7 112744.4 113178.9 112946.3 112770.7 112607.4 112815.3 112463.7 112683.5

30.500.8 0.25 115357.9 115328.4 115419.0 114024.2 114510.3 114192.1 113868.6 113834.4 113984.8 113701.5 113983.4

30.500.9 0.25 117011.9 116919.2 117018.7 115599.7 116210.1 115919.4 115687.3 115632.6 115774.4 115476.5 115626.2

30.500.10 0.50 218017.5 217956.2 218005.0 217005.4 217348.7 217156.2 216835.1 216909.6 217079.6 216795.0 216832.9

30.500.11 0.50 214605.0 214554.6 214593.6 213046.9 213675.0 213379.4 213047.5 213086.9 213275.4 212991.3 212997.7

30.500.12 0.50 215853.7 215814.0 215853.7 215042.5 215336.8 215294.4 215092.4 215137.4 215267.5 215031.0 215143.4

30.500.13 0.50 217827.0 217768.2 217809.9 216442.4 217034.8 216805.9 216297.7 216408.9 216650.3 216162.1 216399.6

30.500.14 0.50 215574.3 215535.4 215566.8 214334.8 214735.7 214549.4 214228.8 214333.9 214469.9 214132.4 214253.8

30.500.15 0.50 215804.4 215721.0 215810.9 214373.3 214971.1 214728.7 214385.3 214482.4 214608.0 214309.5 214462.8

30.500.16 0.50 215807.3 215764.3 215818.3 214893.1 215287.1 215175.8 214948.7 215023.9 215145.1 214902.1 214856.3

30.500.17 0.50 216428.6 216397.2 216427.1 215263.4 215770.9 215598.0 215420.3 215371.7 215526.5 215147.2 215275.0

30.500.18 0.50 217302.3 217214.4 217297.8 216168.5 216702.9 216459.9 216348.3 216259.9 216422.7 216073.0 216268.2

30.500.19 0.50 214644.4 214629.0 214637.7 213389.0 213824.2 213677.5 213605.2 213541.1 213634.7 213354.8 213448.1

30.500.20 0.75 301642.0 301609.1 301644.5 300870.9 301100.9 301062.8 300992.0 300968.9 301095.3 300942.0 300920.0

30.500.21 0.75 299990.7 299928.0 299976.2 299174.0 299438.5 299406.9 299324.9 299241.6 299414.9 299251.6 299126.3

30.500.22 0.75 305023.9 304985.9 305014.8 304337.0 304542.6 304520.9 304383.1 304454.0 304579.0 304359.1 304370.0

30.500.23 0.75 301927.4 301884.9 301920.4 301128.9 301418.5 301290.4 301131.5 301189.5 301324.4 301093.9 301112.4

30.500.24 0.75 304409.4 304369.9 304409.5 303657.2 303803.6 303766.9 303672.0 303583.0 303762.1 303548.5 303538.3

30.500.25 0.75 296922.9 296887.3 296912.0 296124.3 296319.0 296239.4 296095.3 296168.2 296287.7 296084.8 296097.0

30.500.26 0.75 303299.4 303252.0 303274.6 302442.7 302775.8 302642.8 302547.6 302542.9 302671.7 302393.3 302490.5

30.500.27 0.75 306916.4 306893.7 306917.9 306058.4 306384.3 306269.0 306142.5 306058.6 306255.4 306011.1 306009.9

30.500.28 0.75 303119.0 303085.4 303120.1 302141.0 302444.1 302253.3 301960.5 302009.7 302199.0 301965.5 301926.8

30.500.29 0.75 300495.8 300477.4 300496.2 299796.9 299992.2 299973.8 299814.9 299852.0 299969.8 299836.5 299752.5



6
8

C
h
a
p
t
e
r
3

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
K
P

Table 3.11 Average computation time of all algorithms tested on OR-LIB instances with 5 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5.500.0 0.25 241.5 213.8 227.3 286.1 272.1 340.2 289.8 240.3 256.4 267.5 274.1

5.500.1 0.25 233.2 195.9 202.8 261.8 316.3 329.7 278.4 261.7 271.8 231.9 309.7

5.500.2 0.25 182.3 194.6 180.8 252.2 265.2 335.3 292.9 258.4 223.7 274.0 283.6

5.500.3 0.25 244.0 210.0 171.5 305.0 276.7 354.1 272.0 256.0 262.6 260.2 287.3

5.500.4 0.25 99.9 108.5 69.0 279.6 303.1 335.7 250.7 277.7 236.6 279.2 285.0

5.500.5 0.25 240.1 185.7 178.2 277.7 265.5 346.1 280.7 244.7 256.1 235.2 270.5

5.500.6 0.25 222.5 257.4 224.9 292.6 276.8 336.2 281.0 260.0 259.0 242.5 256.8

5.500.7 0.25 159.3 202.2 126.4 296.0 306.3 362.3 278.0 276.6 238.7 264.9 293.0

5.500.8 0.25 237.3 243.7 202.1 302.0 302.7 348.5 293.4 282.9 248.7 275.8 326.0

5.500.9 0.25 223.0 176.4 236.7 303.0 299.7 362.7 287.9 281.4 261.6 268.3 331.5

5.500.10 0.50 212.1 163.3 207.4 306.9 320.9 327.3 300.9 288.3 257.0 267.1 323.8

5.500.11 0.50 147.2 148.3 191.2 306.9 344.9 333.3 306.2 258.7 275.9 276.4 334.4

5.500.12 0.50 244.6 246.1 224.5 311.9 323.3 333.2 324.6 303.5 274.5 283.0 308.1

5.500.13 0.50 128.9 84.0 89.3 278.1 287.3 335.3 294.3 267.6 259.0 254.9 304.1

5.500.14 0.50 40.2 158.9 6.9 259.3 317.9 306.6 265.9 277.5 244.5 281.7 315.1

5.500.15 0.50 241.1 164.2 228.6 308.0 309.5 341.8 299.1 244.8 243.7 243.7 286.3

5.500.16 0.50 183.4 184.7 181.3 297.5 331.1 342.9 289.2 273.9 246.3 307.2 313.5

5.500.17 0.50 237.3 230.3 186.7 332.6 328.9 352.4 290.0 265.1 275.1 271.6 297.8

5.500.18 0.50 26.6 34.9 24.0 323.0 301.6 337.0 279.3 276.9 270.8 255.1 306.0

5.500.19 0.50 157.3 187.4 208.5 314.7 327.3 333.5 294.1 295.5 275.5 318.2 318.1

5.500.20 0.75 7.1 19.3 5.1 310.2 309.2 307.9 271.3 281.8 262.2 270.6 302.3

5.500.21 0.75 155.2 178.0 128.6 288.2 323.4 333.5 277.4 240.3 256.7 253.0 302.3

5.500.22 0.75 147.3 175.2 142.4 278.8 294.0 340.0 280.4 252.6 262.2 261.6 285.1

5.500.23 0.75 159.4 196.0 176.0 283.6 296.0 294.0 273.6 234.6 266.3 292.4 295.9

5.500.24 0.75 77.1 57.5 59.7 318.0 330.9 326.9 313.2 269.3 257.3 292.1 310.5

5.500.25 0.75 172.3 155.0 210.4 293.9 264.6 309.3 301.6 230.8 251.7 253.8 289.7

5.500.26 0.75 151.2 127.3 186.8 278.2 294.2 305.4 286.8 231.4 261.9 254.1 284.7

5.500.27 0.75 248.5 203.1 221.7 297.7 319.9 324.0 293.1 260.0 270.5 266.7 300.7

5.500.28 0.75 203.2 112.4 179.9 298.7 303.7 336.4 294.8 255.3 262.7 264.6 269.2

5.500.29 0.75 90.8 94.4 118.3 279.2 317.1 333.2 294.2 275.0 285.6 263.7 310.0



S
e
c
t
i
o
n
3
.
8

C
o
n
c
l
u
s
i
o
n
s

6
9

Table 3.12 Average computation time of all algorithms tested on OR-LIB instances with 10 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10.500.0 0.25 240.3 251.8 217.5 265.6 320.5 328.2 306.2 246.2 228.8 278.9 289.0

10.500.1 0.25 235.3 191.9 232.5 308.8 301.9 326.2 270.0 254.3 253.5 242.5 279.1

10.500.2 0.25 220.1 242.8 181.8 278.0 282.6 348.9 301.0 235.7 248.9 264.6 255.0

10.500.3 0.25 222.4 241.3 220.5 252.8 289.4 321.3 292.5 268.5 254.5 262.2 267.5

10.500.4 0.25 234.4 64.3 216.2 296.1 294.7 325.0 263.8 219.4 242.2 276.1 304.7

10.500.5 0.25 208.5 178.1 182.9 249.8 295.3 349.7 247.6 218.7 228.6 229.6 271.6

10.500.6 0.25 248.8 213.2 215.4 266.5 294.5 336.9 273.1 223.8 230.9 250.8 277.6

10.500.7 0.25 239.4 162.4 233.2 292.1 317.1 335.4 283.2 238.3 235.5 289.2 298.0

10.500.8 0.25 228.4 225.1 236.6 258.5 287.3 360.3 293.3 254.9 249.3 272.5 304.8

10.500.9 0.25 242.4 251.1 231.9 243.2 302.9 311.1 303.3 263.6 236.4 256.5 308.7

10.500.10 0.50 147.6 184.8 146.6 281.3 327.4 325.0 300.9 251.5 267.8 281.6 285.0

10.500.11 0.50 140.0 218.5 70.5 271.0 327.0 328.0 311.4 267.6 268.0 282.1 333.1

10.500.12 0.50 146.9 30.0 128.4 309.5 305.7 334.7 263.4 277.5 265.7 285.1 300.2

10.500.13 0.50 234.5 242.1 206.2 306.0 326.3 342.7 293.2 271.3 261.9 283.7 305.8

10.500.14 0.50 144.2 215.8 57.4 322.5 325.9 312.2 322.1 265.3 264.7 270.9 330.8

10.500.15 0.50 216.5 257.2 235.3 333.7 337.8 323.2 309.4 251.0 239.9 272.3 324.4

10.500.16 0.50 234.9 216.0 211.7 301.0 312.7 315.0 276.0 259.7 268.0 249.0 310.1

10.500.17 0.50 148.2 208.5 155.4 299.9 348.0 334.6 309.4 272.7 267.8 297.7 331.6

10.500.18 0.50 236.0 180.1 238.8 320.4 337.0 328.6 302.7 277.1 258.6 274.5 357.8

10.500.19 0.50 194.2 235.8 181.6 310.4 327.9 342.8 287.4 266.8 238.9 273.0 314.4

10.500.20 0.75 123.0 89.5 103.6 327.4 340.9 291.4 293.3 225.9 249.0 273.2 311.8

10.500.21 0.75 233.4 157.1 201.9 287.7 340.4 294.6 281.5 234.5 256.4 248.6 306.5

10.500.22 0.75 224.1 190.7 244.8 295.4 315.8 319.1 240.7 252.0 235.6 276.8 286.2

10.500.23 0.75 177.9 226.9 218.6 325.3 338.0 321.2 288.4 261.6 256.0 254.6 305.3

10.500.24 0.75 134.3 19.9 112.4 320.5 298.4 348.4 289.2 256.7 247.8 264.3 298.3

10.500.25 0.75 228.1 160.0 244.1 317.3 359.3 341.4 318.4 269.1 274.4 280.2 322.7

10.500.26 0.75 7.1 53.6 9.8 322.0 341.4 317.0 299.0 263.4 278.4 262.7 274.5

10.500.27 0.75 221.0 233.4 216.2 291.5 333.3 313.4 288.2 270.0 283.8 251.5 297.3

10.500.28 0.75 211.1 172.3 210.4 300.7 313.1 331.1 297.8 251.5 262.3 251.9 312.6

10.500.29 0.75 185.1 212.9 181.7 296.7 347.8 326.1 278.2 217.0 251.1 253.3 316.4



7
0

C
h
a
p
t
e
r
3

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
K
P

Table 3.13 Average computation time of all algorithms tested on OR-LIB instances with 30 resources

Instance Tightness Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

30.500.0 0.25 224.5 218.1 250.4 309.3 323.0 339.7 301.2 287.6 254.4 272.9 339.3

30.500.1 0.25 197.2 181.4 146.2 301.0 331.6 320.3 264.7 245.0 236.2 254.3 271.8

30.500.2 0.25 185.3 204.8 129.2 307.5 323.5 332.2 301.2 259.7 272.1 258.5 304.1

30.500.3 0.25 242.2 237.3 249.7 320.9 299.6 306.0 304.4 286.1 283.9 269.1 340.7

30.500.4 0.25 243.0 173.8 229.7 328.8 356.2 313.5 295.5 254.0 246.4 287.2 328.4

30.500.5 0.25 234.0 244.6 185.5 261.3 308.3 306.4 282.7 226.3 261.6 267.2 327.5

30.500.6 0.25 238.7 234.6 248.6 321.9 321.9 348.2 294.3 260.2 278.0 275.1 322.8

30.500.7 0.25 265.8 224.3 249.6 306.7 318.2 319.4 268.6 286.6 275.9 282.5 291.7

30.500.8 0.25 232.3 204.2 78.9 310.5 341.6 304.7 322.8 272.2 290.3 264.0 315.2

30.500.9 0.25 247.5 227.1 225.8 309.6 343.4 317.7 307.3 268.2 251.0 292.6 310.6

30.500.10 0.50 246.8 235.7 238.1 328.0 347.3 307.3 332.7 294.9 296.4 265.2 352.7

30.500.11 0.50 215.5 188.1 216.5 331.5 360.8 317.8 335.9 306.8 303.6 257.0 361.1

30.500.12 0.50 194.1 221.3 229.4 314.9 359.6 286.6 327.6 290.8 287.4 339.4 320.5

30.500.13 0.50 211.5 210.3 185.8 356.1 371.5 320.6 347.4 285.7 309.3 302.3 366.0

30.500.14 0.50 232.9 190.8 224.5 331.1 362.7 316.3 323.4 273.6 279.7 272.3 327.5

30.500.15 0.50 246.2 229.3 248.9 339.4 346.9 321.0 316.8 287.7 281.4 288.7 351.5

30.500.16 0.50 226.6 210.3 236.3 329.8 349.5 322.1 339.7 300.0 291.3 278.8 338.6

30.500.17 0.50 184.6 171.3 142.1 350.4 365.6 306.1 312.2 296.4 282.8 296.9 348.0

30.500.18 0.50 202.4 200.0 197.7 354.9 338.9 318.1 298.4 292.2 256.9 311.8 342.4

30.500.19 0.50 242.3 186.7 236.4 332.6 353.9 291.4 282.5 281.1 288.7 330.2 332.3

30.500.20 0.75 193.8 171.0 170.7 341.7 342.9 307.7 296.2 279.6 257.6 291.9 330.0

30.500.21 0.75 231.9 237.2 236.3 348.0 316.9 288.5 331.9 279.5 292.0 291.0 337.9

30.500.22 0.75 217.7 126.8 241.5 325.2 325.9 313.3 327.8 285.1 273.1 276.0 333.7

30.500.23 0.75 249.0 233.0 217.6 372.6 350.4 314.3 335.6 290.1 269.4 332.2 353.3

30.500.24 0.75 218.9 215.5 221.2 311.7 355.8 323.1 325.0 311.4 272.2 298.4 342.9

30.500.25 0.75 218.6 182.8 236.1 320.2 365.3 287.0 321.8 297.8 295.8 287.1 342.7

30.500.26 0.75 209.2 221.7 221.1 350.0 354.8 312.8 330.0 302.7 283.4 315.6 344.1

30.500.27 0.75 187.5 158.2 183.7 335.4 358.7 306.7 313.3 289.6 262.9 279.6 344.6

30.500.28 0.75 223.8 195.3 228.6 297.0 352.9 292.7 343.1 256.9 272.7 269.4 342.1

30.500.29 0.75 214.8 215.2 216.7 346.9 339.5 263.1 334.6 265.2 269.9 246.7 325.1



S
e
c
t
i
o
n
3
.
8

C
o
n
c
l
u
s
i
o
n
s

7
1

Table 3.14 Comparison of Aco
+
neg, Aconeg, and Aco with the current state of the art on OR-LIB instances with 5 resources.

Instance best average average time

TPTEA DQPSO Aco Aconeg Aco
+
neg TPTEA DQPSO Aco Aconeg Aco

+
neg TPTEA DQPSO Aco Aconeg Aco

+
neg

5.500.0 120148 120148 120074 120148 120148 120126.90 120137.80 119945.60 120107.30 120119.97 3753.2 110.6 286.1 213.8 241.5

5.500.1 117879 117864 117733 117864 117879 117850.83 117852.40 117614.53 117833.32 117854.25 3876.2 102.3 261.8 195.9 233.2

5.500.2 121131 121131 121026 121125 121131 121112.23 121125.87 120883.06 121112.00 121112.98 3148.0 99.6 252.2 194.6 182.3

5.500.3 120804 120804 120697 120804 120804 120786.40 120795.59 120534.75 120782.67 120784.25 2917.9 156.6 305.0 210.0 244.0

5.500.4 122319 122319 122217 122319 122319 122319.00 122316.00 122090.68 122318.27 122319.00 1936.3 96.9 279.6 108.5 99.9

5.500.5 122024 122024 121925 122024 122024 122008.83 122014.48 121798.64 122000.75 122008.44 4421.1 108.9 277.7 185.7 240.1

5.500.6 119127 119127 119056 119117 119127 119120.50 119122.50 118894.12 119086.25 119103.31 3419.2 109.7 292.6 257.4 222.5

5.500.7 120568 120568 120420 120568 120568 120548.10 120564.88 120278.40 120560.33 120567.13 2738.8 119.5 296.0 202.3 159.3

5.500.8 121575 121575 121422 121575 121575 121559.17 121560.67 121176.27 121540.42 121563.21 2719.1 136.8 302.0 243.7 237.3

5.500.9 120717 120717 120565 120699 120711 120695.00 120707.86 120417.82 120673.69 120686.81 3353.3 134.4 303.0 176.9 223.0

5.500.10 218428 218426 218282 218428 218428 218411.27 218414.45 218112.77 218422.48 218425.78 4100.0 103.4 306.9 163.3 212.1

5.500.11 221191 221202 220975 221191 221202 221184.90 221177.44 220763.01 221188.29 221190.57 3560.1 99.7 306.9 148.3 147.2

5.500.12 217542 217536 217441 217534 217542 217525.90 217533.89 217229.35 217520.54 217533.29 3836.3 119.0 311.9 246.1 244.6

5.500.13 223560 223560 223491 223560 223560 223558.87 223559.98 223354.22 223558.32 223559.16 2139.3 39.8 278.1 84.0 128.9

5.500.14 218966 218966 218897 218966 218966 218966.00 218965.68 218763.77 218963.44 218966.00 171.5 73.3 259.3 158.9 40.2

5.500.15 220530 220530 220425 220527 220530 220528.07 220526.80 220287.05 220501.85 220519.92 3183.0 68.2 308.0 164.2 241.1

5.500.16 219989 219989 219884 219989 219989 219985.90 219988.26 219763.97 219969.64 219988.03 2798.7 115.0 297.5 184.7 183.4

5.500.17 218215 218215 218134 218215 218215 218200.37 218198.35 217934.09 218173.63 218199.48 3700.4 86.5 332.6 230.3 237.3

5.500.18 216976 216976 216878 216976 216976 216976.00 216976.00 216758.08 216976.00 216976.00 607.9 67.5 323.0 34.9 26.6

5.500.19 219719 219719 219598 219717 219719 219715.60 219717.02 219429.09 219701.27 219716.38 2632.9 22.7 314.7 187.4 157.3

5.500.20 295828 295828 295702 295828 295828 295828.00 295828.00 295600.23 295828.00 295828.00 552.3 33.0 310.2 19.3 7.1

5.500.21 308086 308086 308026 308086 308086 308081.87 308079.50 307879.87 308076.79 308079.20 3225.2 99.4 288.2 178.0 155.2

5.500.22 299796 299796 299748 299796 299796 299796.00 299796.00 299640.61 299794.32 299795.04 637.5 20.7 278.8 175.2 147.3

5.500.23 306480 306480 306426 306480 306480 306478.47 306478.56 306317.09 306474.95 306477.40 2626.0 62.3 283.6 196.0 159.4

5.500.24 300342 300342 300280 300342 300342 300340.67 300342.00 300145.43 300342.00 300342.00 3454.1 23.2 318.0 57.5 77.1

5.500.25 302571 302571 302542 302571 302571 302565.40 302562.25 302395.36 302549.53 302553.01 2156.6 65.9 293.9 155.0 172.3

5.500.26 301339 301339 301286 301329 301339 301330.67 301329.21 301199.31 301328.94 301330.01 589.5 71.2 278.2 127.3 151.2

5.500.27 306454 306454 306353 306454 306454 306454.00 306448.36 306255.01 306434.97 306439.75 1707.3 97.3 297.7 203.1 248.5

5.500.28 302828 302828 302747 302818 302828 302820.70 302823.70 302637.37 302810.85 302814.84 2852.2 58.8 298.7 112.4 203.2

5.500.29 299910 299904 299825 299906 299906 299901.80 299902.19 299735.32 299904.58 299904.74 3491.8 128.7 279.2 94.4 90.8

average 214168.07 214167.47 214069.20 214165.20 214168.10 214159.25 214161.52 213927.83 214151.18 214158.60 2676.9 87.7 294.0 163.6 170.5



7
2

C
h
a
p
t
e
r
3

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
K
P

Table 3.15 Comparison of Aco
+
neg, Aconeg, and Aco with the current state of the art on OR-LIB instances with 10 resources.

Instance best average average time

TPTEA DQPSO Aco Aconeg Aco
+
neg TPTEA DQPSO Aco Aconeg Aco

+
neg TPTEA DQPSO Aco Aconeg Aco

+
neg

10.500.0 117801 117779 117507 117779 117809 117736.17 117754.82 117233.97 117718.42 117750.73 3664.7 105.3 265.6 251.8 240.3

10.500.1 119200 119206 119000 119182 119188 119137.47 119179.74 118713.1 119136.45 119157.51 3354.9 152.7 308.8 191.9 235.3

10.500.2 119159 119215 118942 119194 119211 119108.27 119162.61 118658.7 119097.25 119167.66 4469.7 127.8 278.0 242.8 220.1

10.500.3 118829 118813 118602 118813 118813 118793.93 118777.36 118368.5 118769.11 118796.83 3150.1 39.8 252.8 241.4 222.4

10.500.4 116456 116509 116209 116471 116509 116405.17 116460.83 115817.22 116432.6 116458.96 3582.2 146.2 296.1 64.3 234.4

10.500.5 119483 119470 119278 119461 119504 119441.80 119435.57 119057.84 119438.87 119454.37 3646.9 157.4 249.8 178.2 208.5

10.500.6 119775 119827 119508 119777 119790 119739.70 119782.76 119329.87 119730.6 119762.77 3789.5 134.1 266.5 213.2 248.8

10.500.7 118323 118320 117892 118277 118320 118258.27 118265.30 117650.85 118236.99 118265.76 4228.5 146.7 292.1 162.4 239.4

10.500.8 117801 117781 117620 117776 117781 117705.97 117763.24 117266.94 117714.68 117750.95 3168.7 122.3 258.5 225.1 228.4

10.500.9 119196 119212 118885 119192 119210 119161.90 119166.54 118623.82 119140.6 119174.44 3338.8 124.7 243.2 251.1 242.4

10.500.10 217351 217365 217108 217318 217377 217313.67 217326.03 216828.93 217304.72 217320.43 3984.4 76.7 281.3 184.8 147.7

10.500.11 219059 219063 218877 219041 219077 219022.70 219027.54 218465.83 219018.89 219037.71 3598.2 136.0 271.0 218.5 140.0

10.500.12 217847 217847 217540 217792 217793 217786.73 217760.63 217213.53 217755.37 217766.66 4010.4 173.1 309.5 30.0 146.9

10.500.13 216868 216843 216635 216868 216868 216836.33 216824.05 216391.77 216801.19 216828.19 3403.7 125.3 306.0 242.1 234.5

10.500.14 213814 213843 213448 213831 213859 213780.27 213817.08 213241.02 213794.81 213829.04 4095.0 134.4 322.5 215.8 144.2

10.500.15 215086 215062 214866 215071 215073 215049.57 215034.68 214592.73 215001.51 215035.49 3622.3 166.4 333.7 257.2 216.5

10.500.16 217926 217931 217644 217899 217931 217884.80 217884.36 217441.7 217877.42 217888.83 4281.3 181.3 301.0 216.0 234.9

10.500.17 219984 219984 219678 219949 219984 219947.37 219965.07 219389.02 219931.22 219952.76 3908.2 102.0 299.9 208.5 148.2

10.500.18 214363 214382 213897 214346 214375 214327.43 214337.14 213656.45 214286.95 214326.8 3999.5 165.9 320.4 180.1 236.0

10.500.19 220887 220865 220619 220846 220882 220864.43 220847.10 220335.62 220823.42 220846.47 3211.7 152.5 310.4 235.8 194.3

10.500.20 304387 304387 304156 304344 304359 304364.47 304354.01 303954.3 304344 304344.23 3025.1 67.4 327.4 89.5 123.0

10.500.21 302379 302358 302216 302331 302371 302364.47 302346.04 302012.31 302317.73 302333.34 2883.6 98.6 287.7 157.1 233.4

10.500.22 302416 302408 302227 302408 302408 302398.13 302399.10 302035.97 302354.42 302399.89 3497.9 77.4 295.4 190.7 224.1

10.500.23 300784 300784 300590 300743 300747 300758.80 300745.46 300400.11 300705.8 300740.37 967.0 58.6 325.3 226.9 177.9

10.500.24 304374 304374 304266 304340 304374 304361.13 304353.75 304023.03 304340 304345.91 3509.5 112.6 320.5 19.9 134.3

10.500.25 301796 301766 301448 301751 301796 301740.43 301752.48 301180.92 301712.89 301753.02 3808.8 106.4 317.3 160.0 228.1

10.500.26 304952 304949 304779 304949 304949 304952.00 304949.00 304601.92 304949 304949 3132.6 16.2 322.0 53.6 7.1

10.500.27 296478 296459 296271 296456 296456 296455.53 296444.16 296021.63 296428.01 296451.24 3138.7 153.6 291.5 233.4 221.0

10.500.28 301359 301357 301149 301313 301357 301349.27 301332.24 300925.65 301295.35 301315.08 3187.4 163.1 300.7 172.3 211.1

10.500.29 307089 307089 306867 307072 307089 307088.23 307068.83 306674.76 307005.03 307056.72 2351.9 83.1 296.7 212.9 185.1

average 212840.70 212841.60 212590.80 212819.67 212842.00 212804.48 212810.58 212336.93 212782.11 212808.71 3467.04 120.26 295.1 184.2 196.9



S
e
c
t
i
o
n
3
.
8

C
o
n
c
l
u
s
i
o
n
s

7
3

Table 3.16 Comparison of Aco
+
neg, Aconeg, and Aco with the current state of the art on OR-LIB instances with 30 resources.

Instance best average average time

TPTEA DQPSO Aco Aconeg Aco
+
neg TPTEA DQPSO Aco Aconeg Aco

+
neg TPTEA DQPSO ACO Aconeg Aco

+
neg

30.500.0 115968 115952 115031 115915 116014 115897.20 115805.36 114568.47 115860.72 115880.99 3969.2 346.1 309.3 218.1 224.5

30.500.1 114769 114734 114084 114718 114734 114733.00 114633.84 113697.99 114678.19 114693.18 3548.9 525.6 301.0 181.4 197.2

30.500.2 116708 116741 115727 116669 116685 116619.10 116581.00 115185.45 116624.93 116655.06 4413.0 334.7 307.5 204.8 185.3

30.500.3 115313 115236 114506 115228 115310 115251.60 115206.66 113973.97 115145.66 115201.33 3499.0 460.4 320.9 237.3 242.2

30.500.4 116455 116372 115242 116448 116516 116364.80 116296.31 114781.43 116368.18 116390.87 3436.2 484.0 328.8 173.8 243.0

30.500.5 115734 115673 115102 115643 115734 115674.00 115631.11 114768.43 115624.42 115643.17 3847.9 347.6 261.3 244.6 234.0

30.500.6 114085 113961 113008 114058 114181 114037.10 113929.22 112646.63 113956.57 114004.06 4784.7 732.4 321.9 234.6 238.7

30.500.7 114278 114189 113096 114344 114344 114164.40 114043.17 112744.36 114151.89 114220.38 4109.9 445.9 306.7 224.3 265.8

30.500.8 115288 115319 114389 115419 115419 115221.43 115170.67 114024.21 115328.43 115357.94 4043.3 524.3 310.5 204.2 232.3

30.500.9 117112 117003 116195 117020 117116 116984.37 116920.85 115599.74 116919.21 117011.92 3778.6 564.0 309.6 227.1 247.5

30.500.10 218104 218043 217319 218033 218081 218069.60 218008.51 217005.44 217956.25 218017.45 3163.2 328.6 328.0 235.7 246.8

30.500.11 214645 214551 213579 214626 214626 214544.93 214473.44 213046.90 214554.61 214604.97 3796.3 321.6 331.5 188.1 215.5

30.500.12 215946 215883 215398 215903 215914 215898.80 215841.16 215042.45 215814.04 215853.66 4007.6 376.1 314.9 221.3 194.1

30.500.13 217910 217807 216839 217827 217863 217831.33 217774.97 216442.36 217768.17 217826.98 3259.2 423.1 356.1 210.3 211.5

30.500.14 215689 215601 214751 215566 215640 215602.07 215514.71 214334.81 215535.41 215574.33 3945.5 437.2 331.1 190.8 232.9

30.500.15 215840 215774 214777 215853 215867 215766.23 215698.08 214373.28 215721.05 215804.39 3558.5 520.9 339.4 229.3 246.2

30.500.16 215907 215871 215326 215798 215883 215857.23 215773.37 214893.07 215764.32 215807.29 3176.9 316.2 329.8 210.3 226.6

30.500.17 216542 216452 215692 216419 216463 216459.73 216348.59 215263.37 216397.22 216428.56 3642.6 459.7 350.4 171.3 184.6

30.500.18 217340 217290 216653 217312 217333 217304.30 217244.15 216168.53 217214.44 217302.34 3460.7 457.6 354.9 200.0 202.4

30.500.19 214739 214681 213796 214657 214692 214671.30 214626.78 213388.99 214629.05 214644.38 3417.9 438.7 332.6 186.7 242.3

30.500.20 301675 301643 301177 301643 301667 301641.63 301628.38 300870.90 301609.06 301641.95 2849.2 580.0 341.7 171.0 193.8

30.500.21 300055 300013 299578 299996 300055 300035.73 299944.24 299174.03 299927.98 299990.68 3862.8 401.2 348.0 237.2 231.9

30.500.22 305087 305055 304753 305018 305080 305080.47 304993.46 304337.02 304985.88 305023.90 3784.6 482.8 325.2 126.8 217.7

30.500.23 302015 302004 301441 302001 302004 301983.60 301928.64 301128.88 301884.88 301927.37 3200.1 310.3 372.6 233.0 249.0

30.500.24 304462 304404 304046 304413 304427 304427.53 304393.26 303657.20 304369.92 304409.38 3102.0 296.8 311.7 215.5 218.9

30.500.25 296999 296962 296394 296909 296960 296964.97 296864.15 296124.35 296887.26 296922.90 3743.2 459.0 320.2 182.8 218.6

30.500.26 303364 303360 302772 303304 303335 303335.60 303253.82 302442.69 303252.04 303299.44 2828.3 402.5 350.0 221.7 209.2

30.500.27 306999 306999 306511 306941 306956 306972.50 306930.64 306058.39 306893.70 306916.43 3922.4 535.4 335.4 158.2 187.5

30.500.28 303199 303162 302543 303151 303178 303168.53 303099.06 302140.97 303085.41 303118.96 3283.0 486.2 297.0 195.3 223.8

30.500.29 300596 300536 300077 300512 300536 300530.23 300499.76 299796.94 300477.36 300495.77 3936.9 383.5 346.9 215.2 214.8

average 211427.40 211375.70 210660.07 211378.13 211420.43 211369.80 211301.90 210256.04 211312.88 211355.67 3645.7 439.4 326.5 205.0 222.6



74 Chapter 3 Application to the MDKP



75

CHAPTER 4

APPLICATION TO THEMINIMUMDOMINATING SET

PROBLEM

4.1 Introduction

This Chapter describes our negative learning Aco application to the Minimum

Dominating Set (MDS) problem [128]. Some parts of this Chapter are also

presented in our paper [104] that was published in the Mathematics Journal

(https://doi.org/10.3390/math9040361). This work is scientifically done in

exactly the same way as our negative learning Aco application to the MDKP,

which is explained in Chapter 3. As in the context of the MDKP, our negative

learning Aco application to the MDS is also compared to existing negative

learning approaches from the related literature. The obtained results for the

MDS problem also show that our negative learning mechanism significantly

improves over standard Aco and over negative learning approaches from the

literature. Moreover, our approach obtains results that are comparable to the

current state-of-the-art approaches for theMDS, at least in the context of problem

instances that are not too large.

4.2 The Minimum Dominating Set Problem

The classical MDS problem—which isNP -hard—can be stated as follows. Given

is an undirected graph G = (V,E), with V being the set of vertices and E the set

of edges. Given a vertex vi ∈ V , N(vi) ⊂ V denotes the neighborhood of vi in G.

A subset S ⊆ V is called a dominating set if and only if for each vertex vi ∈ V the

following holds: (1) vi ∈ S or (2) there is at least one vj ∈ N(vi) with vj ∈ S. The
MDS requires finding a feasible solution of minimum cardinality.

https://doi.org/10.3390/math9040361


76 Chapter 4 Application to the MDS Problem

4.2.1 ILP Model for the MDS Problem

A standard integer linear programming (ILP) model for the MDS problem can be

stated as follows.

minimize

∑
vi∈V

xi (4.1)

subject to: ∑
vj∈N(vi)

xj ≥ 1− xi ∀vi ∈ V (4.2)

xi ∈ {0, 1} ∀vi ∈ V (4.3)

Themodel consists of a binary variable xi for each vertex vi ∈ V . The objective

function counts the selected vertices, and the constraints (4.2) ensure that each

vertex either belongs to the solution or has, at least, one neighbor that forms part

of the solution. In the literature, there are many variants of the MDS problem.

Examples include the minimum connected dominating set problem [129], the

minimum total dominating set problem [130] and the minimum vertex weight

dominating set problem [131]. The currently best metaheuristic approach

for solving the MDS problem is a two-goal local search with inference rules

from [109].

4.3 MMAS Implementation to the MDS

As in the case of the previous chapter, much of the text in this section and the

next section already appear in Chapter 2 in the context of the description of the

baselineMMAS algorithm. It is repeated here for the benefit of the reader. All

of our negative learning Aco variants are based again to the same baseline Aco

algorithm,which isMMAS. Remember that this algorithmkeeps three solutions

all the time: (1) the iteration-best solutionSibwhich is the best solution found in an

iteration, (2) the restart-best solutionSrbwhich is the best solution generated since

the last restart of the algorithm, and (3) the best-so-far solution Sbsf which is the

best-overall solution found during the execution of the algorithm. Solutions Sbsf

andSrb are initialized tonullwhen the algorithmstarts, see line 2ofAlgorithm2.1

in Chapter 2. Furthermore, the algorithmmakes use of a Boolean control variable

bs_update ∈ {true, false} and the convergence factor cf ∈ [0, 1] for deciding on

the pheromone update mechanism and on the question whether or not to restart

the algorithm. The convergence factor is set to zero and bs_update is set to false



Section 4.3 MMAS Implementation to the MDS 77

at the start of the algorithm. The pheromone model T in the context of the MDS

problem consists of a pheromone value τi ≥ 0 for each vertex vi ∈ V , where V is

the complete set of vertices of the input graph. These pheromone values are all

initialized to 0.5 by function InitializePheromoneValues(T ) of Algorithm 2.1.

Note that V corresponds to the complete set of solution components of the

description in Chapter 2.

At each iteration, na solutions are generated by function

Construct_Solution(T ) of Algorithm 2.1, based on pheromone information and

on greedy information. The detailed explanation of the solutions construction

mechanism is provided in Section 4.3.1. The generated solutions are stored in set

S iter
, and the best one from S iter

is stored as Sib; see lines 5–10 of Algorithm 2.1.

Then, the restart-best and best-so-far solutions—Srb and Sbsf—are updated

with Sib, if appropriate; see lines 11 and 12 of Algorithm 2.1. Afterward,

the pheromone update is conducted in function ApplyPheromoneUpdate(T ,
cf , bs_update, Sib,Srb,Sbsf ) and the new value for the convergence factor cf

is computed in function ComputeConvergenceFactor(T ); lines 13 and 14 of

Algorithm 2.1. The detailed explanation of the pheromone update mechanism

and of the calculation of cf is provided in Section 4.3.2. The algorithm might

be restarted depending on the values of cf and bs_update. This restart

is implemented by re-initializing all pheromone values and by setting the

restart-best solution Srb to null and bs_update to true.

4.3.1 Solution Construction

In the following we say that, if a vertex vi is added to a solution S under

construction, then vi covers itself and all its neighbors, that is, all vj ∈ N(vi).

Moreover, given a set S ⊂ V—that is, a solution under construction—we denote

by N(vi | S) ⊆ N(vi) the set of uncovered neighbors of vi ∈ V . The solution

construction mechanism is shown in Algorithm 4.1. It starts with an empty

solution S = ∅. Then, at each step, exactly one of the vertices of those that do

not yet form part of S or that—with respect to S—have uncovered neighbors (V )

is chosen in function ChooseFrom(V ) and added to S. The choice of a vertex in

ChooseFrom(V ) is done as follows. First, a probability p(vi) is calculated for each

vi ∈ V :

p(vi) :=
ηi · τi∑

vk∈V ηk · τk
(4.4)

Hereby, ηi := |N(vi|S)| + 1 is the greedy information that we used. Then,

a random number r ∈ [0, 1] is drawn. If r ≤ drate, vj (to be added to S) is

selected such that p(vj) ≥ p(vi) for all vi ∈ V . Otherwise, vj is chosen by



78 Chapter 4 Application to the MDS Problem

Algorithm 4.1MDS solution construction

1: input: a graph G = (V,E)
2: S := ∅
3: V := {vi ∈ V | vi /∈ S and N(vi | S) 6= ∅}
4: while V 6= ∅ do
5: vj := ChooseFrom(V )
6: S := S ∪ {vj}
7: V := {vi ∈ V | vi /∈ S or N(vi | S) 6= ∅}
8: end while

9: output: a valid solution S

roulette-wheel-selection based on the calculated probabilities.

4.3.2 Pheromone Update and Convergence Factor

Function ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbsf ) of Algorithm 2.1

is implemented inMMAS for MDS problems in the following way. Weights κib,

κrb and κbsf are given to the solution components of Sib, Srb, and Sbsf , respectively.

Thevalues of theseweights dependson thevalues of cf andbs_update. Moreover,

they are regulated by a schedule which is provided in Table 2.1. Note that the

sum of κib, κrb, and κbsf must always equal to 1. Subsequently, each pheromone

value τi of each vertex vi is updated by using Eqn. (4.5).

τi := τi + ρ · (ξi − τi) , (4.5)

Hereby, ρ ∈ [0, 1] in Eqn. (4.5) is the learning rate, which is an important variable

of the Aco algorithm. The parameter ξi in this equation stores the accumulative

update received by each vertex vi. The value of this parameter is calculated by

using Eqn. (4.6).

ξi := κib ·∆(Sib, vi) + κrb ·∆(Srb, vi) + κbsf ·∆(Sbsf , vi) (4.6)

Function ∆(S, vi) evaluates to 1 if and only if vertex vi forms part of solution

S. Otherwise, the function evaluates to 0. Accordingly, any vertex that does not

appear in either Sib, Srb, or Sbsf will have its ξi = 0. Thus, according to Eqn. (4.5)

its new pheromone value is lower than the previous one. After this update, each

pheromone that has a value outside of the range of τmax = 0.999 and τmin = 0.001

is set back to the appropriate upper or lower limit value. Hence, a complete

convergence of the algorithm is avoided.

After the pheromone update, the new value of convergence factor is updated



Section 4.4 Adding Negative Learning toMMAS 79

in function ComputeConvergenceFactor(T ) of Algorithm 2.1 by using Eqn. (4.7).

cf := 2


∑
τi∈T

max{τmax − τi, τi − τmin}

|T | · (τmax − τmin)

− 0.5

 (4.7)

Hereby, T in Eqn. (4.7) represents all pheromone values of all vi ∈ V . When all

pheromone values are initialized to 0.5, the value of cf is zero. The algorithm

is said to have reached convergence when pheromone values have either value

τmin or τmax. In this condition, the value of cf evaluates to one. The value of cf is

between 0 and 1 in all other conditions.

4.4 Adding Negative Learning toMMAS

The negative learning mechanism is added to the baseline MMAS according

to the same strategy as already explained in Section 2.3. As in the general case

of subset selection problems in Chapter 2, an additional pheromone model T neg

that stores the negative learning information is employed in this application.

This pheromone model consists of a pheromone value τnegi ∈ T neg
for each vertex

vi ∈ V . All the τnegi are initialized to τmin = 0.001, as described in Section 2.3 in

the context of subset selection problems.

Figure 4.1 provides an illustrative example on how the negative learning

mechanism is implemented in the context of the MDS problem. The

negative learning information is generated in an instruction Ssub :=

Fig. 4.1 Illustrative example of the negative learning mechanism for the MDS

problem



80 Chapter 4 Application to the MDS Problem

SolveSubinstance(S iter, cf ) (Eqn. (2.5)) which is added between lines 9 and 10 of

the baselineMMAS algorithm (Algorithm 2.1). In the example shown in Fig. 4.1,

there are four solutions generated in an iteration of the baseline Aco algorithm.

Function SolveSubinstance(S iter, cf ) creates a sub-instance V ′ ⊆ V by merging

all four solutions from S iter
. Subsequently, the sub-instance is delivered to an

optimization algorithm that finds the best-possible solution that only consists of

vertices from sub-instance V ′. Similar to our negative learning Aco application

to the MDKP (Section 3.4), we have experimented with two options for the inner

optimization algorithm that solves the sub-instance V ′: (1) ILP solver Cplex 12.10

and (2) the baselineMMAS algorithm. In the first option, the ILP model from

Section 4.2.1 is used by adding the following constraint.

xi = 0 ∀vi ∈ V \ V ′ (4.8)

These constraints imply that Cplex can not choose vertices that are not in the

sub-instance V ′. The same strategy is implemented in the use of the second

option. In particular, the mainMMAS algorithm supplies the innerMMAS

with a sub-instance V ′ that consists of vertices found only in solutions from

S iter
. Consequently, in its solution construction, the choice of the innerMMAS

algorithm is limited to vertices from V ′. In addition to this configuration, the

inner MMAS is set to operate with its own parameter settings (pheromone

model, learning rate, determinism rate, etc.) and its best-so-far solution Sbsf is

initialized with the iteration-best solution Sib of the mainMMAS.

Given a maximum computation time of tsub CPU seconds, the inner

optimization algorithm—Cplex orMMAS—has (1 − cf )tsub + 0.1cf seconds of

allotted computation time for solving the sub-instance V ′. This way, the inner

optimization algorithm receives less computation time allocation for solving the

sub-instance V ′ as the search is approaching convergence. Remember that the

reason behind this arrangement is that, as the search is approaching convergence,

solutions in S iter
becomemore andmore similar and the sub-instance V ′ is having

smaller size. Consequently, less time is needed to explore the sub-instance V ′.

At the end of its allotted execution time, function SolveSubinstance(S iter, cf )

generates a solution Ssub
whose components are represented by green circles in

Fig. 4.1. Afterward, the function uses the solution for updating the negative

pheromone values in the following way. First, it compares the vertices in the

sub-instance V ′ to the ones in the solution Ssub
. In the example of Fig. 4.1, we can

see that nine vertices out of thirteen vertices available in the sub-instance V ′ are

chosen to formpart ofSsub
. The remaining four vertices aremarked as low-quality



Section 4.5 Proposals from the Literature 81

solution components. Subsequently, they are penalized by having their negative

pheromone increased. For each vertex in set V ′, its negative pheromone value is

updated by using Eqn. (4.9).

τnegi := τnegi + ρneg · (ξnegi − τnegi ) (4.9)

Hereby, ρneg in Eqn. (4.9) is the negative learning rate. The value of parameter

ξnegi in Eqn. (4.9) is equal to one if vi /∈ Ssub
, otherwise ξnegi is equal to zero.

Afterwards, the solution Ssub
is returned to the mainMMAS algorithm. Then,

a second instruction, S iter := S iter ∪ {Ssub} (Eqn. (2.6)) which merges the Ssub
into

the S iter
, is added after Ssub := SolveSubinstance(S iter, cf ) (Eqn. (2.5)).

In the solution construction of the negative learningAco variants, the negative

pheromone values are used by replacing the standard MMAS calculation in

Eqn. (4.4) with with the one in Eqn. (4.10).

p(ci) :=
ηi · τi · (1− τnegi )∑

ck∈C ηk · τk · (1− τ
neg
k )

(4.10)

In this way, any vertex that has high negative pheromone value will have

lower probability to be chosen as component of solutions in the current and in

following iterations.

4.5 Proposals from the Literature

As in our negative learning Aco application to the MDKP (Chapter 3), we

re-implemented four negative learning strategies from the works ofMontgomery

and Randall [84] and Ramos et al. [87] to the MDS problems for the purpose of

comparison. The detail description of each strategy is provided in Section 3.5.

This Section is provided for reviewing several important aspects of our

re-implementations of these strategies.

First of all, remember that we re-introduced those strategies in the baseline

MMAS algorithm for ensuring a fair comparison. According to their common

feature, we implemented these extensions of the baselineMMAS tomaintain the

iteration-worst solution (Siw), the restart-worst solution (Srw) and the worst-so-far

solution (Swsf ) in addition to the iteration-best solution (Sib), the restart-best

solution (Srb) and the best-so-far solution (Sbsf ). Solutions Srw and Swsf are

initialized to null at the start of the algorithm, as in the case of Srb and Sbsf .

Subsequently, Srw and Swsf are compared with Siw. In particular, if Siw is worse



82 Chapter 4 Application to the MDS Problem

than Srw then Srw is updated with Siw. Similarly, if Siw is worse than Swsf then

Swsf is updated with Siw.

The negative learning strategies from the works of Montgomery and

Randall [84] consist of three variants: (1) Aco-Sap, (2) Aco-Ea, and (3) Aco-Pap.

The first variant, Aco-Sap, generates the negative learning information simply

by choosing the worst solution found in an iteration of standard-MMAS

solution-constructions. Furthermore, this variant does not employ a dedicated

pheromone model for storing the negative learning information. Hence, the

negative learning information is used only for reducing pheromone values of the

standard pheromonemodel bymeans of an additional update procedurewhich is

implemented after theMMAS standard pheromone update. Before this update

is implemented, a set B is generated by joining the vertices in solutions Siw,

Srw and Swsf , that is, B := Siw ∪ Srw ∪ Swsf . Then, all those vertices whose

pheromone value receives an update from at least one of the solutions Sib, Srb,

or Sbsf in the current iteration are removed from B. In other words, only the

pheromone values of those vertices that appear in low-quality solutions, without

forming part of good solutions, are subject to a pheromone value decrease as also

shown in Eqn. (3.11).

Similar to Aco-Sap, the second variant from Montgomery and

Randall—Aco-Ea—does not employ a dedicated pheromone model for storing

the negative learning information. This variant however, generates its negative

learning information in a different way. In contrast to Aco-Sap which simply

chooses theworst solution at each iteration,Aco-Ea allocates several of its solution

constructions for searching low-quality solutions by making use of the opposite

of the pheromone values (see Eqn. (3.13)). Subsequently, this negative learning

information is updated with the same mechanism as the one implemented in

Aco-Sap.

The third negative learning Aco variant from Montgomery and Randall is

labeled Aco-Pap. Different to the previous variants, this variant employs a

dedicated pheromone model T neg
—in addition to the standard model T—for

storing negative learning information. The update mechanism for this negative

pheromone model follows the update mechanism for the standard pheromone

model, as explained in sub-Section 3.5.3. Similar to the Aco-Ea variant, Aco-Pap

allocates several of its solution constructions for searching low-quality solutions.

In Aco-Pap however, the search for low-quality solutions is implemented

gradually. This feature is enabled by a parameter λ that regulates the influence

of both τi and τ
neg
i in Eqn. (3.16) for each of the solution constructions during an

iteration.



Section 4.7 Summary of the Tested Algorithms 83

The fourth negative learning Aco variant that we re-implemented in this

work is taken from the work of Ramos et al. [87]. This variant is labelled as Aco
2o
.

As in Aco-Pap from the work of Montgomery and Randall, Aco
2o

maintains a

negative pheromone model and a similar update mechanism. Furthermore,

Aco
2o

also regulates the influence of τi and τnegi in its solution constructions.

A parameter which is called α ∈ [0, 1] in Eqn. (3.18) is used for this purpose.

In contrast to λ that divides and changes the portions of τi and τnegi during

Aco-Pap’s iteration, α simply allocates the portions of both pheromone types.

This allocation remains consistent during the run of this algorithm variant. All in

all, these four strategies differ to each other in various aspects representing most

of the negative learning approaches from the existing literature, as explained in

Section 1.5. Therefore, it is interesting to see which of these strategies will deliver

the best performance and how they perform in comparison to our proposals.

4.6 Summary of the Tested Algorithms

As in our negative learning Aco application to the MDKP in Chapter 3, we

tested the same six negative learning variants. A detailed description of these

variants is provided in Section 3.6. A summary of these variants is presented in

Table 4.1. Each of these variants uses one of two optimization algorithms as inner

algorithm. The ILP solver Cplex is used by variants Aco
+
neg, Aconeg, and Aco

+

whileMMAS is used by variants Aco-Aco
+
neg, Aco-Aconeg, and Aco-Aco

+
. The

solution Ssub
, generated by the inner algorithm, is utilized differently. Variants

Aco
+
neg and Aco-Aco

+
neg take the most benefit from the solution Ssub

by using it

to update their negative pheromone and their best results. In contrast, variants

Aconeg and Aco-Aconeg use S
sub

exclusively to update their negative pheromone

values. Similarly, variants Aco
+
and Aco-Aco

+
use Ssub

to update only their best

result.

As in the case of the MDKP, we also compare our six algorithm variants

(Aco-Aco
+
neg, Aconeg, Aco

+
, Aco-Aco

+
neg, Aco-Aconeg, and Aco-Aco

+
) to the four

variants from the literature (Aco-Sap, Aco-Ea, Aco-Pap and Aco
2o
) and to the

baseline algorithmMMAS. Each of these 11 algorithms has its own parameters

that are not always present in other variants. A summary of these parameters

and their description is provided in Table 3.1. Moreover, an overview on the

parameters that are involved in each of the 11 algorithms is provided in Table 3.2.



84 Chapter 4 Application to the MDS Problem

Table 4.1 Features comparison between our negative learning Aco variants

Specifications Algorithms

A
c
o
+ n
e
g

A
c
o
n
e
g

A
c
o
+

A
c
o

-
A

c
o
+ n
e
g

A
c
o

-
A

c
o
n
e
g

A
c
o

-
A

c
o
+

Type of the inner algorithm:

• Cplex X X X
•MMAS X X X

The update where Ssub
of the inner

algorithm is used:

• negative pheromone update X X X X
• best result update X X X X

4.7 Experimental Evaluation

The experiments concerning the MDS problem were performed on a cluster of

machines with two Intel
®
Xeon

®
Silver 4210 CPUs with 10 cores of 2.20 GHz and

92 Gbytes of RAM. For solving the sub-instances in Aco
+
neg, Aconeg and Aco

+
we

used CPLEX 12.10 in one-threaded mode.

Concerning the MDS problem, we generated a benchmark instance set with

instances of different sizes (number of vertices n ∈ {5000, 10000}), different

densities (percentage of all possible edges d ∈ {0.1, 0.5, 1.0, 5.0}) and different

graph types (random graphs and random geometric graphs). For each

combination of n, d and graph type, 10 random instances were generated. This

makes a total of 160 problem instances.

4.7.1 Algorithm Tuning

The scientific parameter tuning tool irace [123] was used for the purpose of

parameter tuning. In particular we produced for each of the 11 algorithms

(resp., algorithm versions) exactly one parameter value set. For the purpose of

tuning the algorithms for the MDS problem, we additionally generated for each

combination of n, d (density), and graph type exactly one random instance. In

other words, 16 problem instances were used for tuning, and the tuner was given

a maximal budget of 2000 algorithm applications. The parameter values that

were determined by irace for the 11 algorithms are provided in Tables 4.2.



Section 4.7 Experimental Evaluation 85

Table 4.2 Parameter values for all algorithms for solving the MDS problem

Parameter Algorithms

A
c
o

A
c
o
+ n
eg

A
c
o
n
eg

A
c
o
+

A
c
o

-
A

c
o
+ n
eg

A
c
o

-
A

c
o
n
eg

A
c
o

-
A

c
o
+

A
c
o

-
S
a

p

A
c
o

-
E

a

A
c
o

-
P
a

p

A
c
o
2
o

na 3 20 20 20 3 10 10 20 10 3 3

ρ 0.4 0.1 0.1 0.5 0.1 0.2 0.5 0.4 0.5 0.1 0.2

drate 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

ρneg – – 0.4 0.4 – – 0.2 0.5 – – – – – – 0.2 0.2

γ – – – – – – – – – – – – – – 0.6 0.6 – – – –

pexpa – – – – – – – – – – – – – – – – 0.1 – – – –

α – – – – – – – – – – – – – – – – – – – – 0.96

tsub – – 8 7 6 6 7 8 – – – – – – – –

nsub
a – – – – – – – – 3 3 3 – – – – – – – –

ρsub – – – – – – – – 0.3 0.5 0.4 – – – – – – – –

dsubrate – – – – – – – – 0.7 0.7 0.5 – – – – – – – –

4.7.2 Results

Using the previously determined parameter values, each of the 11 considered

algorithms was applied 30 times—that is, with 30 different random seeds—to

each of the 160 MDS problem instances. Hereby, 500 CPU seconds were chosen

as a time limit for the graphs with 5000 nodes, whereas 1000 CPU seconds were

chosen as a time limit for each run concerning the graphs with 10000 nodes.

We present a comparative analysis of the 11 algorithms in terms of critical

difference (CD) plots [124] and so-called heatmaps. In order to produce the average

ranks of all algorithms—both for the whole set of problem instances as well as for

instance subsets—the Friedman test was applied for the purpose of comparing

the 11 approaches simultaneously. In this way we also obtained the rejection of

the hypothesis that the 11 techniques perform equally. Subsequently, all pairwise

algorithm comparisons were performed using the Nemenyi post-hoc test [125].

The obtained results are shown graphically (CD plots and heatmaps). The CD

plots show the average algorithm ranks (horizontal axis) with respect to the

considered (sub-)set of instances. In those cases inwhich the performances of two

algorithms are below the critical difference threshold—based on a significance

level of 0.05—the two algorithms are considered as statistically equivalent. This is

indicated by bold horizontal bars joining the markers of the respective algorithm

variants.

Figure 4.2 shows the CD plot for the whole set of 160 MDS instances, while



86 Chapter 4 Application to the MDS Problem

Fig. 4.3a and Fig. 4.3b present more fine-grained results concerning random

graphs (RGs) and random geometric graphs (RGGs), respectively. Furthermore,

the heatmaps in Fig. 4.4 show the average ranks of the 11 algorithms in an

even more fine-grained way. The graphic shows exactly one heatmap for each

algorithm. The ones of algorithmsAco
+
neg,Aconeg andAco

+
are shown in Fig. 4.4a,

the ones of algorithms Aco-Aco
+
neg, Aco-Aconeg and Aco-Aco

+
in Fig. 4.4b, and

the ones of the remaining five algorithms in Fig. 4.4c. The upper part of each

heatmap shows the results for RGs, while the lower part concerns the results for

RGGs. Each of these parts has two columns: the first one contains the results for

the graphs with 5000 nodes, and the second one for the ones with 10,000 nodes.

Moreover, each part has four rows, showing the results for the four considered

graph densities. In general, the more yellow the cell of a heatmap, the better

is the relative performance of the corresponding algorithm for the respective

combination of features (graph type, graph size, and density).

2 3 4 5 6 7 8 9

Fig. 4.2 Critical difference plot for all MDS instances

The global CD plot from Fig. 4.2 allows to make the following observations.

All the six algorithm variants proposed in this work significantly improve over

the remaining five algorithm variants, that is, over the baseline MMAS (Aco) and

over the four considered negative learning variants from the literature. The three

algorithm variants that make use of Cplex for generating the negative feedback

outperform the other three variants with statistical significance. This shows the

importance of the way in which the negative feedback is generated. In fact, the

more accurate the negative feedback, the better the global performance of the

algorithm.

Concerning the four negative learning mechanisms from the literature, it is

shown that onlyAco-Sap andAco-Ea are able to outperform the baselineMMAS

algorithm. In contrast, Aco-Pap and Aco
2o

perform significantly worse than the

baselineMMAS algorithm. When comparing variants Aco
+
neg and Aconeg with

Aco
+
, it can be observed thatAco

+
neg has only a slight advantage overAco

+
(which



Section 4.7 Experimental Evaluation 87

2 3 4 5 6 7 8 9

(a) RG instances

1 2 3 4 5 6 7 8 9 10

(b) RGG instances

Fig. 4.3 Critical difference plots concerning different graph types

is not statistically significant). This means that, even though negative learning is

useful, the additional positive feedback obtained by making use of solution Ssub

for updating solutions Sib and Srb is very powerful.

The comparison of the three algorithms making use of MMAS as inner

optimization algorithm (Aco-Aco
+
neg, Aco-Aconeg and Aco-Aco

+
) shows a

significant difference to the comparison concerning the three algorithms using

Cplex. The two versions that make use of negative learning (Aco-Aco
+
neg and

Aco-Aconeg) outperform the version without negative learning (Aco-Aco
+
) with

statistical significance. This can probably be explained by the lower quality of the

positive feedback information, as solutions Ssub
can be expected to be generally

worse than solutions Ssub
of the algorithm version using Cplex.

When looking at the results in a more fine-grained way, the following can

be observed. Interestingly, the graph type seems to have a big influence on the

relative performance of the algorithms. In the case of RGs, for example, Aco
+
is

the clear winner of the comparison with Aco
+
neg in second place. However, the

really interesting aspect is that Aconeg finishes last with statistical significance.



88 Chapter 4 Application to the MDS Problem

1

10.66

10.98

10.32

3.15

11

11

10.17

1.64

1.02

1.1

2.11

1.42

1.01

1.17

3.5

2.02

1.05

3.59

4.75

1

1.82

6.03

4.26

2.18

2.06

1.92

1.63

2.96

1.99

1.83

1.18

2.98

2.06

2.36

3.84

2

1.78

2.77

4.24

2.18

2.92

2.97

2.26

1.62

3

3

1.82

anp anpp ap

R
G

R
G

G

5000 10000 5000 10000 5000 10000

0.1

0.5

1

5

0.1

0.5

1

5

size

d
e
n
si

ty

avg. rank

2.5

5.0

7.5

10.0

(a) Algorithms Aco
+
neg, Aconeg, and Aco

+

4.69

7.8

7.05

5.98

6.72

6.22

5.42

5.71

4.43

4.98

6.24

7.01

4.66

6.66

6.82

7.53

4.34

3.7

6.42

7.76

3.86

8.18

7.81

7.76

4.58

4.28

4.5

6.74

4.34

4.1

4.82

6.76

6.52

3.72

5.69

6.9

5.11

7.31

7.38

6.39

6.26

6.31

6.48

7.45

6.13

5.89

6.32

7.51

ainp ainpp aip

R
G

R
G

G

5000 10000 5000 10000 5000 10000

0.1

0.5

1

5

0.1

0.5

1

5

size

d
e
n
si

ty

avg. rank

4

5

6

7

8

(b) Algorithms Aco-Aco
+
neg, Aco-Aconeg, and Aco-Aco

+

9.04

6.7

4.94

5.04

9.99

5.11

4.68

5.12

8.62

8.4

8.1

7.76

9.14

8.47

8.23

7.28

9.21

6.48

4.81

4.47

9.97

4.67

3.69

4.25

8.84

8.32

8.21

7.37

9.09

8.1

8.04

7.28

7.71

8.21

7.92

7

6.18

7.62

6.88

7.58

8.76

9.39

9.73

9.32

7.87

9.43

9.68

9.22

7.56

6.4

4.89

3.83

9.66

4.79

4

4.1

7.57

8.12

7.95

7.3

8.18

7.98

8.16

7.1

10.92

9.2

7.35

6.1

8.36

7.5

6.34

6.43

10.94

10.21

8.78

7.05

10.6

9.36

7.93

6.82

astd EA PAP

SAP sndo

R
G

R
G

G

5000 10000 5000 10000 5000 10000

5000 10000

0.1

0.5

1

5

size

d
e
n
si

ty

avg. rank

4

6

8

10

size
5000 10000

0.1

0.5

1

5

0.1

0.5

1

5

0.1

0.5

1

5

R
G

R
G

G

d
e
n
si

ty

(c) Algorithms Aco, Aco-Ea, Aco-Pap, Aco-Pap, and Aco
2o

Fig. 4.4 Heatmaps concerning the results for the MDS problem



Section 4.7 Experimental Evaluation 89

Thismeans that negative learning seems even to be harmful in the case of RGs. On

the contrary, Aconeg is the clear winner of the competition in the context of RGGs,

with Aco
+
neg finishing in second place (with statistical significance), and Aco

+

only in third place. This means that, in the case of RGGs, negative learning is

muchmore important than the additional positive feedback provided by solution

Ssub
, which even seems harmful. Another interesting aspect is that, in the context

of RGs, two negative learning versions from the literature (Aco-Sap and Aco-Ea)

clearly outperform our proposed negative learning variants usingMMAS.

The heatmaps from Fig. 4.4 also indicate some interesting tendencies.

Negative learning in the context of our algorithm variants Aco
+
neg, Aconeg,

Aco-Aco
+
neg andAco-Aconeg seems to gain importancewith an increasing sparsity

of the graphs. On the other side, in the context of RGs, it is clearly shown that

the relative quality of Aco-Sap and Aco-Ea grows with increasing graph size

(number of vertices) and with increasing density.

4.7.3 Search Trajectory Network Analysis

As in Section 3.7.3, we provide STNplots in order to see if additional details of the

algorithms’ behavior can be identified. There are ten STNplots in this sub-section.

Figure 4.5 to Fig. 4.9 present STN plots for problem instance 5000.rgg.0.1.0 and

Fig. 4.10 to Fig. 4.14 present the ones for problem instance 5000.rgg.1.0.1. Note

that the two problem instances differ in their edge densities.

These STN plots were made according to the procedure proposed in [127]

and the corresponding R scripts provided in https://github.com/gabro8a/S

TNs.git. All data for these STN plots was obtained by applying each of the 11

algorithms to problem instances 5000.rgg.0.1.0 and 5000.rgg.1.0.1 ten times with

the same parameter value settings used for the final experimental evaluation.

We applied 98% search space partitioning in order to obtain the STN plots in this

chapter. See Section 3.7.3 for the definition of a STN and the description of a STN

plot.

Figure 4.5 shows the STN plot with the trajectories of the baseline Aco

algorithm and the ones from our negative learning variants, Aconeg and Aco
+
neg.

The STN plot shows that there are many locations of best-found solutions of

the same quality (red dots). In fact, note that all trajectories of both negative

learning variants—Aconeg and Aco
+
neg—find best-found solutions. Comparing

the trajectories from these two variants, we can observe that the trajectories of

Aconeg are longer than the ones of Aco
+
neg. Interestingly, the trajectories of the

baseline Aco variant are concentrated in three areas, and none of them can find

any best-found solution.

https://github.com/gabro8a/STNs.git
https://github.com/gabro8a/STNs.git


90 Chapter 4 Application to the MDS Problem

l l

l

l

l l

l

ll
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l l
l

l

l

l l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l l

l

l

l

l

l

ll

l

l

l
l

l

l
l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.5 Search trajectory network with the trajectories of Aco, Aconeg, and Aco
+
neg

applied to problem instance 5000.rgg.0.1.0

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

ll

l

l
ll

l

l

l

ll

l

l

l

l

l

l

l

l
l

l

l

l

l
ll

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

ll

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.6 Search trajectory networkwith the trajectories ofAco
+
,Aconeg, andAco

+
neg

applied to problem instance 5000.rgg.0.1.0



Section 4.7 Experimental Evaluation 91

Figure 4.6 shows the STN plot concerning the three negative learning

variants—Aco
+
, Aconeg, and Aco

+
neg—that use Cplex as their additional

algorithmic component. This plot shows that while all trajectories of Aconeg and

Aco
+
neg can find best-found solutions, not all trajectories of Aco

+
can accomplish

the same achievement. Comparing the length of the trajectories in Fig. 4.6, we can

see that the ones from Aconeg are the longest, followed by the ones from Aco
+
neg

and Aco
+
.

Figure 4.7 presents an STN plot that compares the search characteristics of

Aco
+
neg—our best performing negative learning Aco variant for problem instance

5000.rgg.0.1.0—to the ones of two other variants from our proposal that use

MMAS as their additional algorithmic component. This plot shows that

no trajectories of Aco-Aconeg or Aco-Aco
+
neg can find any best-found solution

as achieved by the ones from Aco
+
neg. Furthermore, we can see that several

trajectories from these variants show overlaps in several locations within their

own paths. Note that most of these locations are quite far from the locations

of the final solutions that they found, which implies that these locations are

areas of local optima, respectively plateaus. This fact suggests that Aco-Aconeg and

Aco-Aco
+
neg can escape these areas and significantly improve their solutions over

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l
l

l

l
l

l
l

l
l

l

l

l

l

l

l
l

l
l

l

l
l

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l
l

l

l

l

l

ll

ll

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l l

l
lll

l

l

l

l

l l

l

l

l

l l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l
l

l

l l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l l

l

l

l

l
ll

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.7 Search trajectory networkwith the trajectories of Aco-Aconeg, Aco-Aco
+
neg,

and Aco
+
neg applied to problem instance 5000.rgg.0.1.0



92 Chapter 4 Application to the MDS Problem

time. We can see that trajectories of the baseline Aco in Fig. 4.5 also show the

same behaviour. However, we can notice that these trajectories do not improve

significantly (in terms of number of steps) after escaping from the areas of local

optima. Combined with the comparison of their numerical results in Table 4.5

and Table 4.9, this STN feature comparison clearly shows that both Aco-Aconeg

and Aco-Aco
+
neg perform significantly better than the baseline Aco.

We can also identify similar overlapping behaviour in the trajectories of the

competitor negative learningAco variants in Fig. 4.8 and Fig. 4.9. Notice that none

of them can find a best-found solution as accomplished by our best-performing

negative learning Aco variant Aco
+
neg. Moreover, we can observe that the

trajectories of these algorithms show relatively more overlaps than the ones

from Aco-Aconeg and Aco-Aco
+
neg in Fig. 4.7. The comparison of the numerical

results in Table 4.5 and Table 4.9 also confirms that they perform worse than our

negative learning Aco variants, Aco-Aconeg and Aco-Aco
+
neg. The trajectories of

our second-best negative learning Aco variant—Aconeg—in Fig. 4.5 or Fig. 4.6

also show a small degree of overlapping traits, yet all of them can find best-found

solutions. The issue of overlaps indicates the effectiveness of our negative

learning Aco approach, given the fact that no trajectory of Aco
+
neg exhibits any

l

l

l

l

l

l

l
l

l

l

l

l

l
ll

l
l

l
ll

l

l

l

l

l
l

l

l

l

l
l

l

l
ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l
l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

ll
l

l

l

l l

l

l

l l

l

l

l

l l
l

l

l

l

l

l

l

l l
l

l

l

l

l
l

l

l

ll

l

l

l

ll
l

l

ll
ll

l

ll l l

ll

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

ll

l
l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l l

l

l

l

l

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l
l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

ll

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.8 Search trajectory network with the trajectories of Aco-Ea, Aco-Sap, and

Aco
+
neg applied to problem instance 5000.rgg.0.1.0



Section 4.7 Experimental Evaluation 93

l
l

ll

l

l

ll

l

l
l

l

l
l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l l

l

l

l

l l
l

l

l

ll

l

l

l
l

l
l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l l

l

l

l

ll

l

l

l

l

l

l

l

l

ll

ll
l

l

ll

l

l

ll
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l l

l

l

l

l

ll
l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l
l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l

l

ll

l

l

l
ll

l l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.9 Search trajectory network with the trajectories of Aco
2o
, Aco-Pap, and

Aco
+
neg applied to problem instance 5000.rgg.0.1.0

overlaps, combined with the fact that all of them find a best-found solution,

is strong evidence for the effectiveness of our negative learning mechanism

in the context of escaping the areas of local optima. Overall, this problem

instance—5000.rgg.0.1.0—has provided a unique example where we can contrast

and evaluate the efficiency of the negative learning mechanism for escaping from

local minima.

Figure 4.10 to Fig. 4.14 show the STN plots for the algorithm variants applied

to problem instance 5000.rgg.1.0.1. We can see that these STN plots have different

characteristics than those concerning problem instance 5000.rgg.0.1.0. In this

problem instance, Aconeg—instead of Aco
+
neg—is the best performing negative

learningAco variant. Moreover, we can see that all algorithm variants need fewer

steps to obtain their final results for this problem instance than when applied to

problem instance 5000.rgg.0.1.0, as indicated by the reduced number of nodes

between the start and end of each trajectory. This seems to happen because this

problem instance has a higher edge density than problem instance 5000.rgg.1.0.1.

Hence, vertices in the input graph are more connected to each other. Due to this

condition, solutions are smaller (in terms of number of nodes) resulting in amore

narrow range of different objective values. Consequently, the algorithms have



94 Chapter 4 Application to the MDS Problem

less opportunities to improve their solutions further.

Figure 4.10 shows an STN plot of three algorithm variants: Aco, Aco
+
neg,

and Aconeg applied to problem instance 5000.rgg.1.0.1. In contrast to the plot

in Fig. 4.5—showing the STN of the same group of algorithm variants applied

to problem instance 5000.rgg.0.1.0—in which trajectory overlaps arise only in

individual trajectories ofAco andAconeg, this plot shows several overlaps between

trajectories of different algorithm variants in addition to the ones within their

individual trajectories. Curiously, the trajectories ofAconeg show fewer tendencies

of being attracted to the common areas that attract trajectories of the two other

algorithm variants. Figure 4.10 shows two trajectories of Aconeg that have no

overlap with any other trajectory. Two more trajectories of Aconeg show overlaps

but only with each other. Interestingly, the best-found solution in this problem

instance is obtained by one of two trajectories of Aconeg that have no overlap with

any other trajectory. The numerical results comparison in Table 4.5 and Table 4.9

combined with this STN feature comparison shows that Aconeg performs better

than Aco
+
neg in this problem instance. We believe that this is because Aconeg

only uses the negative learning information—and does not take advantage of the

additional positive learning—provided by the additional algorithmic component,

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l
l

ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.10 Search trajectory networkwith the trajectories ofAco, Aco
+
neg, andAconeg

applied to problem instance 5000.rgg.1.0.1



Section 4.7 Experimental Evaluation 95

Cplex, which seems to be misleading. Moreover, Aconeg does, therefore, not get

trapped too often in local minima as the Aco
+
neg does when following the strong

positive feedback provided by Cplex.

Figure 4.11 shows the STN plot concerning the algorithm variants—Aco
+
,

Aco
+
neg, and Aconeg—that use Cplex as their additional algorithmic component.

This plot contains an example of an even harmful effect of exclusively using the

strong positive feedbackmechanism from the additional algorithmic component.

The variant Aco
+
, which only uses the positive feedback information provided

by Cplex without making use of the negative feedback information, has most

of its trajectories connected and located in a common area. We know from

Table 4.5 and Table 4.9 that Aco
+
has the worst numerical results in this group of

algorithm variants. Combining this observation with its STN characteristics, we

believe that the strong positive feedback mechanism from Cplex has prevented

Aco
+
from exploring other areas of the search space of this problem instance. In

contrast, we can see that in Fig. 4.11 the trajectories of Aconeg are less connected

to other trajectories. Moreover, they are distributed in different places of the

plot, and one of them finds the best-found solution. Hence we believe that

in this comparison, Aconeg has excelled in performance because it has a better

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l ll

l
l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.11 Search trajectory network with the trajectories of Aco
+
, Aco

+
neg, and

Aconeg applied to problem instance 5000.rgg.1.0.1



96 Chapter 4 Application to the MDS Problem

exploration capability—due to giving more influence to the negative feedback

mechanism—than the other two algorithm variants.

Figure 4.12 shows an STN plot containing the trajectories of Aconeg—our

best-performing negative learning Aco variant for this problem instance—with

two other variants from our proposal—Aco-Aconeg and Aco-Aco
+
neg—that use

MMAS as their additional algorithmic component. This plot shows a similar

pattern to the one observed in Fig. 4.10. There are many overlaps of trajectories

of all three algorithm variants, which indicates the presence of local minima that

strongly attract them. In this comparison, we can see that the trajectories of

Aconeg also show a higher degree of overlap both among themselves and with

the ones of other algorithm variants. In particular, we can see one trajectory of

Aconeg finding the best-found solution right after a shared node. Interestingly,

we can also observe this behaviour in Fig. 4.13 and Fig. 4.14 where we compare

the trajectories of Aconeg to the ones from the competing negative learning Aco

variants. Accordingly, we believe that in the context of these comparisons, Aconeg

performs significantly better than the other variants due to its better exploitation

capability.

l

l

ll

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
ll l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l
l

l

ll

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.12 Search trajectory network with the trajectories of Aco-Aconeg,

Aco-Aco
+
neg, and Aconeg applied to problem instance 5000.rgg.1.0.1



Section 4.7 Experimental Evaluation 97

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.13 Search trajectory network with the trajectories of Aco-Ea, Aco-Sap, and

Aconeg applied to problem instance 5000.rgg.1.0.1

l l l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 4.14 Search trajectory network with the trajectories of Aco
2o
, Aco-Pap, and

Aconeg applied to problem instance 5000.rgg.1.0.1



98 Chapter 4 Application to the MDS Problem

4.7.4 Comparison to the State of the Art

In the case of the MDS problem we chose for the purpose of a comparison to

current state-of-the-art approaches one of the classical benchmark sets, which

was also used in one of the latest published works [109]. This benchmark set

is labeled UDG and consists of 120 graphs with numbers of vertices between 50

and 1000. For each of the six graph sizes, UDG contains graphs of two different

densities. The benchmark set consists of 10 graphs per combination of graph size

and graph density. Following the procedure from [109], we applied Aco
+
neg 10

times with a time limit of 1000 CPU seconds for each application to each of the

120 instances of set UDG. Note that we did not specifically tune the parameters of

Aco
+
neg. Instead, the same parameter values as in the previous section were used.

The results are shown in a summarized way—as in [109]—in Table 4.3.

Table 4.3 MDS problem: summarized comparison to the state of the art.

Competitor names are accompanied by publication year and the reference.

Instance Family CC
2
FS FastMWDS RLSo ScBppw FastDS Aco

+
neg

2017 [105] 2018 [106] 2018 [107] 2019 [108] 2020 [109]

V50U150 12.9 12.9 12.9 12.9 12.9 12.9

V50U200 9.4 9.4 9.4 9.4 9.4 9.4

V100U150 17.0 17.0 17.0 17.3 17.0 17.0

V100U200 10.4 10.4 10.4 10.6 10.4 10.4

V250U150 18.0 18.0 18.0 19.0 18.0 18.0

V250U200 10.8 10.8 10.8 11.5 10.8 10.8

V500U150 18.5 18.5 18.6 20.1 18.5 18.5

V500U200 11.2 11.2 11.2 12.4 11.2 11.2

V800U150 19.0 19.0 19.1 20.9 19.0 19.0

V800U200 11.7 11.7 11.9 12.6 11.8 11.7

V1000U150 19.1 19.1 19.2 21.3 19.1 19.1

V1000U200 12.0 12.0 12.0 13.0 12.0 12.0

In particular, each table row presents the results for the 10 instances of the

respective instance family. For each of the six compared algorithms, the provided

number is the average over the best solutions found for each of the 10 instances

within 10 runs per instance. The best result per table row is indicated in bold

face. Surprisingly, it can be observed that Aco
+
neg matches the performance of

the best two approaches. It is also worth mentioning that the five competitors

of Aco
+
neg in this table were all published since 2017 and are all based on local

search. In particular, algorithm RLSo [107] was shown to outperform all existing

ACO and hyper-heuristic algorithms, which were the state-of-the-art before this

recent start of focused research efforts on sophisticated local search algorithms.

Concerning computation time, in [109] it is stated that CC
2
FS requires on average

0.21 s, FastMWDS requires 0.83 s, and FastDS requires 22.19 s to obtain the best



Section 4.8 Conclusions 99

solutions of each run. Aco
+
neg is slower by requiring on average 36.14 s.

4.8 Conclusions

Learning-based metaheuristics, including Aco, are generally based on positive

learning. Nature, however, shows that learning from negative examples can be

beneficial. Several works have been made over the last two decades to find a way

to incorporate negative learning into Aco. Yet, only a few of them demonstrated

that the proposed mechanismwas truly useful. The goal of this work was thus to

create and demonstrate the performance of a new negative learning mechanism

for Aco. The main idea of our mechanism is that negative feedback should not be

extracted directly from the main Aco algorithm. Instead, it should be generated

by a separate algorithmic component. Indeed, after developing a new negative

learning framework, we tested two algorithmic options for producing negative

information: (1) using the mathematical programming solver Cplex, and (2)

using the baseline Aco algorithm, but with additional applications for solving

sub-instances of the original problem instances.

All algorithm variants considered were applied to the MDS, an NP-hard

combinatorial optimization problems from the class of subset selection problems.

In addition, four negative learning mechanisms from the literature were

implemented on top of the chosen baseline Aco algorithm in order to compare

our proposals to existing approaches. The obtained results demonstrated that

the proposed negative learning mechanism—-particularly when using Cplex to

generate negative feedback information—-outperforms the existing approaches

from the literature. Furthermore, we demonstrated that, while negative learning

is not useful for to all problem instances, it can be very useful for subsets of

problem instances with specific characteristics. This is relevant in the context

of the MDS problem, for example, for sparse graphs. Globally, it was also

demonstrated that adding negative learning is generally not harmful because the

globally best-performing algorithm variant employs negative learning. Finally,

we were able to demonstrate that our globally best-performing algorithm variant

can compete with current state-of-the-art algorithms for the MDS problem.



1
0
0

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Table 4.4 Best results of all algorithms tested on MDS random graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rg.0.1.0 0.1 1049 1040 1054 1160 1122 1127 1148 1156 1150 1150 1177

5000.rg.0.1.1 0.1 1042 1035 1051 1151 1119 1124 1143 1151 1139 1149 1168

5000.rg.0.1.2 0.1 1049 1042 1053 1133 1114 1115 1129 1143 1141 1136 1155

5000.rg.0.1.3 0.1 1060 1053 1068 1163 1132 1138 1150 1157 1154 1159 1177

5000.rg.0.1.4 0.1 1052 1044 1062 1156 1122 1123 1144 1153 1146 1144 1173

5000.rg.0.1.5 0.1 1041 1033 1046 1142 1112 1118 1131 1147 1136 1136 1162

5000.rg.0.1.6 0.1 1060 1054 1071 1165 1139 1141 1152 1168 1155 1157 1176

5000.rg.0.1.7 0.1 1051 1044 1058 1148 1120 1124 1133 1149 1141 1146 1164

5000.rg.0.1.8 0.1 1059 1051 1063 1158 1122 1129 1142 1157 1148 1150 1170

5000.rg.0.1.9 0.1 1055 1047 1063 1158 1125 1129 1137 1155 1138 1144 1179

5000.rg.0.5.0 0.5 340 358 346 354 347 354 348 354 352 353 358

5000.rg.0.5.1 0.5 341 359 345 355 349 357 351 355 356 355 356

5000.rg.0.5.2 0.5 339 359 345 355 349 353 350 354 354 355 356

5000.rg.0.5.3 0.5 340 356 344 353 350 356 347 353 352 355 356

5000.rg.0.5.4 0.5 340 360 347 355 351 356 349 355 355 356 356

5000.rg.0.5.5 0.5 338 357 344 353 348 352 350 352 351 354 354

5000.rg.0.5.6 0.5 340 359 347 353 351 355 350 352 353 355 355

5000.rg.0.5.7 0.5 338 357 342 352 349 354 349 354 353 354 355

5000.rg.0.5.8 0.5 338 358 345 349 349 355 350 354 352 355 357

5000.rg.0.5.9 0.5 343 357 349 357 353 357 350 357 356 358 358

5000.rg.1.0.0 1.0 209 216 209 211 210 210 212 209 210 212 209

5000.rg.1.0.1 1.0 208 217 209 211 210 207 210 208 211 211 211

5000.rg.1.0.2 1.0 210 218 208 210 211 211 210 210 210 210 210

5000.rg.1.0.3 1.0 207 218 208 210 210 212 210 210 211 211 210

5000.rg.1.0.4 1.0 209 216 208 209 210 209 208 209 211 211 211

5000.rg.1.0.5 1.0 208 216 209 210 208 212 211 211 210 211 211

5000.rg.1.0.6 1.0 208 213 209 211 210 211 210 210 210 211 212

5000.rg.1.0.7 1.0 208 216 209 209 210 212 210 210 210 211 212

5000.rg.1.0.8 1.0 209 217 210 210 210 210 209 210 210 211 212

5000.rg.1.0.9 1.0 207 216 208 209 210 211 210 210 210 211 210



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
0
1

Continuation of Table 4.4 Best results of all algorithms tested on MDS random graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rg.5.0.0 5.0 59 62 60 60 60 61 60 60 60 61 60

5000.rg.5.0.1 5.0 60 62 60 60 61 61 60 60 60 60 60

5000.rg.5.0.2 5.0 60 61 60 60 60 60 61 60 60 61 60

5000.rg.5.0.3 5.0 60 60 60 60 60 61 60 60 60 60 60

5000.rg.5.0.4 5.0 60 61 59 60 61 60 60 59 60 60 60

5000.rg.5.0.5 5.0 61 62 60 61 60 60 61 60 60 61 61

5000.rg.5.0.6 5.0 60 61 60 60 61 61 60 60 60 60 60

5000.rg.5.0.7 5.0 60 61 61 61 60 61 61 60 61 61 61

5000.rg.5.0.8 5.0 60 62 60 60 61 60 61 60 59 61 60

5000.rg.5.0.9 5.0 60 62 60 60 61 60 61 60 60 60 60

Table 4.5 Best results of all algorithms tested on MDS random geometric graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rgg.0.1.0 0.1 991 991 991 1042 1022 1020 1034 1041 1036 1042 1055

5000.rgg.0.1.1 0.1 1000 1000 1000 1054 1030 1028 1043 1061 1051 1057 1072

5000.rgg.0.1.2 0.1 990 989 990 1043 1023 1023 1036 1040 1042 1043 1059

5000.rgg.0.1.3 0.1 993 993 993 1039 1017 1017 1028 1040 1037 1039 1055

5000.rgg.0.1.4 0.1 996 996 996 1057 1033 1034 1047 1056 1053 1059 1070

5000.rgg.0.1.5 0.1 997 997 997 1054 1028 1029 1042 1053 1046 1051 1066

5000.rgg.0.1.6 0.1 999 999 999 1057 1030 1031 1047 1061 1054 1057 1068

5000.rgg.0.1.7 0.1 996 995 995 1055 1025 1029 1043 1052 1049 1056 1064

5000.rgg.0.1.8 0.1 995 995 995 1038 1020 1017 1028 1038 1035 1035 1051

5000.rgg.0.1.9 0.1 1004 1004 1004 1055 1031 1033 1044 1047 1051 1053 1061



1
0
2

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Continuation of Table 4.5 Best results of all algorithms tested on MDS random geometric graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rgg.0.5.0 0.5 229 226 232 268 257 258 265 267 266 268 269

5000.rgg.0.5.1 0.5 228 225 229 267 258 259 268 267 270 273 273

5000.rgg.0.5.2 0.5 228 226 231 267 260 259 266 265 264 269 271

5000.rgg.0.5.3 0.5 228 225 230 264 257 258 264 264 266 271 272

5000.rgg.0.5.4 0.5 228 224 229 268 257 260 262 264 266 270 271

5000.rgg.0.5.5 0.5 227 224 229 266 258 261 263 268 270 269 272

5000.rgg.0.5.6 0.5 227 225 229 267 258 261 264 265 267 270 271

5000.rgg.0.5.7 0.5 228 225 231 266 255 259 263 265 266 268 270

5000.rgg.0.5.8 0.5 230 227 231 269 259 261 263 265 266 271 270

5000.rgg.0.5.9 0.5 230 225 234 271 260 264 267 273 271 275 276

5000.rgg.1.0.0 1.0 121 120 124 142 139 143 141 144 141 144 142

5000.rgg.1.0.1 1.0 121 119 123 147 143 144 146 147 147 150 148

5000.rgg.1.0.2 1.0 123 121 127 146 143 147 145 147 147 151 151

5000.rgg.1.0.3 1.0 121 119 124 145 142 143 143 148 144 148 147

5000.rgg.1.0.4 1.0 120 120 121 143 140 142 142 145 144 145 145

5000.rgg.1.0.5 1.0 121 120 125 143 140 144 142 144 144 147 145

5000.rgg.1.0.6 1.0 121 120 124 146 140 143 143 146 143 147 144

5000.rgg.1.0.7 1.0 122 120 125 144 140 142 143 144 143 146 146

5000.rgg.1.0.8 1.0 122 121 124 146 143 143 146 146 146 148 146

5000.rgg.1.0.9 1.0 121 119 125 144 139 141 146 144 145 147 147

5000.rgg.5.0.0 5.0 25 25 26 30 32 31 32 32 32 33 32

5000.rgg.5.0.1 5.0 25 25 26 32 33 33 33 33 32 33 33

5000.rgg.5.0.2 5.0 25 25 26 32 31 32 31 32 32 31 32

5000.rgg.5.0.3 5.0 25 25 26 32 32 31 31 33 32 33 32

5000.rgg.5.0.4 5.0 25 25 26 31 32 31 30 32 32 32 31

5000.rgg.5.0.5 5.0 25 25 26 32 31 32 32 32 31 32 32

5000.rgg.5.0.6 5.0 26 25 26 32 31 32 32 32 31 33 31

5000.rgg.5.0.7 5.0 25 25 26 32 31 32 32 32 33 32 31

5000.rgg.5.0.8 5.0 26 26 26 32 32 33 33 33 33 34 32

5000.rgg.5.0.9 5.0 26 26 26 31 31 32 31 30 32 32 32



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
0
3

Table 4.6 Best results of all algorithms tested on MDS random graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rg.0.1.0 0.1 1297 1352 1321 1431 1365 1396 1379 1431 1432 1395 1416

10000.rg.0.1.1 0.1 1297 1352 1330 1429 1359 1399 1385 1428 1432 1389 1420

10000.rg.0.1.2 0.1 1300 1352 1337 1438 1369 1407 1393 1437 1438 1404 1429

10000.rg.0.1.3 0.1 1295 1345 1330 1425 1364 1394 1381 1428 1426 1387 1421

10000.rg.0.1.4 0.1 1299 1354 1334 1436 1368 1403 1394 1439 1438 1402 1425

10000.rg.0.1.5 0.1 1285 1335 1322 1411 1346 1384 1370 1419 1417 1377 1409

10000.rg.0.1.6 0.1 1288 1339 1325 1424 1357 1385 1379 1429 1427 1396 1407

10000.rg.0.1.7 0.1 1296 1351 1333 1430 1363 1402 1387 1429 1429 1401 1413

10000.rg.0.1.8 0.1 1290 1349 1325 1426 1359 1396 1380 1424 1425 1386 1416

10000.rg.0.1.9 0.1 1293 1342 1323 1423 1360 1389 1376 1423 1420 1389 1411

10000.rg.0.5.0 0.5 421 440 422 426 427 427 427 425 426 428 428

10000.rg.0.5.1 0.5 422 437 422 425 428 425 429 424 424 426 425

10000.rg.0.5.2 0.5 422 440 424 427 427 425 426 427 421 428 428

10000.rg.0.5.3 0.5 416 438 421 425 427 425 426 425 427 427 428

10000.rg.0.5.4 0.5 423 440 423 427 427 428 428 426 427 430 430

10000.rg.0.5.5 0.5 421 438 421 425 426 426 423 425 423 427 426

10000.rg.0.5.6 0.5 421 441 421 425 428 428 428 425 425 430 429

10000.rg.0.5.7 0.5 422 441 424 429 430 429 430 428 426 430 431

10000.rg.0.5.8 0.5 418 437 422 426 427 425 422 423 424 426 425

10000.rg.0.5.9 0.5 422 441 422 426 424 426 427 426 424 428 427

10000.rg.1.0.0 1.0 249 259 249 251 252 250 250 250 250 250 251

10000.rg.1.0.1 1.0 252 262 250 252 253 252 253 250 250 253 252

10000.rg.1.0.2 1.0 251 261 250 251 251 251 250 251 250 250 250

10000.rg.1.0.3 1.0 252 262 249 250 252 251 251 251 251 251 253

10000.rg.1.0.4 1.0 250 260 251 251 253 251 253 250 251 252 252

10000.rg.1.0.5 1.0 252 261 250 253 255 252 253 250 251 253 252

10000.rg.1.0.6 1.0 250 261 250 251 252 251 252 250 251 250 252

10000.rg.1.0.7 1.0 251 261 250 252 253 252 252 249 250 253 252

10000.rg.1.0.8 1.0 250 260 250 252 250 250 252 251 250 253 251

10000.rg.1.0.9 1.0 251 261 249 250 251 249 252 250 249 252 251



1
0
4

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Continuation of Table 4.6 Best results of all algorithms tested on MDS random graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rg.5.0.0 5.0 70 71 70 70 70 71 70 70 70 71 70

10000.rg.5.0.1 5.0 70 71 69 70 71 70 70 70 70 70 70

10000.rg.5.0.2 5.0 70 72 70 70 70 70 70 70 70 70 71

10000.rg.5.0.3 5.0 70 71 70 70 70 70 70 70 70 70 70

10000.rg.5.0.4 5.0 70 72 70 70 70 69 70 70 70 70 70

10000.rg.5.0.5 5.0 69 71 69 69 70 70 70 70 70 70 69

10000.rg.5.0.6 5.0 70 71 70 69 70 70 70 70 70 71 70

10000.rg.5.0.7 5.0 70 71 70 70 70 70 70 70 70 70 70

10000.rg.5.0.8 5.0 70 71 70 70 70 70 70 70 70 70 70

10000.rg.5.0.9 5.0 70 72 70 69 71 70 70 70 70 70 70

Table 4.7 Best results of all algorithms tested on MDS random geometric graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rgg.0.1.0 0.1 1055 1049 1052 1225 1170 1168 1211 1225 1219 1217 1234

10000.rgg.0.1.1 0.1 1055 1048 1048 1229 1166 1179 1210 1232 1225 1219 1233

10000.rgg.0.1.2 0.1 1051 1047 1049 1220 1167 1164 1197 1216 1215 1209 1230

10000.rgg.0.1.3 0.1 1054 1048 1050 1229 1170 1174 1206 1223 1217 1209 1242

10000.rgg.0.1.4 0.1 1052 1047 1047 1223 1166 1162 1202 1220 1212 1213 1224

10000.rgg.0.1.5 0.1 1051 1046 1045 1233 1166 1173 1204 1219 1218 1215 1238

10000.rgg.0.1.6 0.1 1047 1042 1041 1220 1161 1159 1191 1214 1206 1217 1227

10000.rgg.0.1.7 0.1 1056 1049 1052 1221 1161 1167 1195 1217 1215 1207 1234

10000.rgg.0.1.8 0.1 1058 1052 1053 1233 1170 1172 1205 1225 1227 1227 1241

10000.rgg.0.1.9 0.1 1058 1053 1051 1232 1171 1174 1212 1224 1226 1224 1228



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
0
5

Continuation of Table 4.7 Best results of all algorithms tested on MDS random geometric graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rgg.0.5.0 0.5 248 244 264 302 294 301 299 304 302 304 306

10000.rgg.0.5.1 0.5 247 242 261 302 290 295 297 302 303 303 303

10000.rgg.0.5.2 0.5 246 240 263 302 293 298 301 301 301 303 304

10000.rgg.0.5.3 0.5 247 241 260 297 290 295 293 298 301 297 301

10000.rgg.0.5.4 0.5 247 243 263 300 291 298 294 300 299 302 301

10000.rgg.0.5.5 0.5 247 242 260 300 291 295 294 297 296 299 301

10000.rgg.0.5.6 0.5 248 243 263 302 289 295 296 303 301 304 302

10000.rgg.0.5.7 0.5 246 240 260 303 289 298 297 299 298 303 306

10000.rgg.0.5.8 0.5 247 244 262 301 289 296 290 300 299 301 299

10000.rgg.0.5.9 0.5 246 241 259 301 288 296 295 299 299 301 302

10000.rgg.1.0.0 1.0 129 125 138 159 155 159 159 159 159 159 160

10000.rgg.1.0.1 1.0 127 125 138 159 154 158 159 159 158 159 157

10000.rgg.1.0.2 1.0 127 126 138 158 154 157 156 157 158 158 157

10000.rgg.1.0.3 1.0 128 127 138 157 155 155 155 157 156 160 158

10000.rgg.1.0.4 1.0 127 126 139 158 152 153 156 158 157 160 157

10000.rgg.1.0.5 1.0 128 126 139 159 154 157 155 157 160 162 159

10000.rgg.1.0.6 1.0 127 126 139 160 156 158 159 159 157 163 160

10000.rgg.1.0.7 1.0 128 125 139 159 154 156 157 158 159 160 158

10000.rgg.1.0.8 1.0 127 125 138 158 156 155 158 158 157 162 158

10000.rgg.1.0.9 1.0 127 127 139 159 153 156 155 157 158 156 156

10000.rgg.5.0.0 5.0 26 29 27 34 34 33 34 32 33 34 33

10000.rgg.5.0.1 5.0 26 29 27 34 33 34 34 35 34 35 34

10000.rgg.5.0.2 5.0 26 30 27 36 35 34 35 35 36 36 34

10000.rgg.5.0.3 5.0 26 30 27 34 33 34 34 34 34 36 33

10000.rgg.5.0.4 5.0 26 31 27 34 34 33 35 34 34 34 33

10000.rgg.5.0.5 5.0 26 29 27 35 34 34 35 35 34 35 34

10000.rgg.5.0.6 5.0 26 30 27 35 33 35 34 34 33 37 34

10000.rgg.5.0.7 5.0 26 30 27 35 32 35 34 35 35 35 35

10000.rgg.5.0.8 5.0 26 29 27 34 34 34 35 34 34 35 34

10000.rgg.5.0.9 5.0 26 29 27 34 34 33 34 35 35 34 33



1
0
6

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Table 4.8 Average results of all algorithms tested on MDS random graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rg.0.1.0 0.1 1052.3 1043.3 1058.6 1169.7 1132.8 1135.6 1155.9 1170.4 1160.8 1163.1 1186.9

5000.rg.0.1.1 0.1 1046.3 1036.5 1057.7 1161.1 1129.0 1131.3 1147.8 1161.5 1153.2 1156.4 1177.2

5000.rg.0.1.2 0.1 1051.7 1044.4 1056.7 1153.1 1122.8 1124.3 1139.8 1154.5 1147.3 1147.1 1172.4

5000.rg.0.1.3 0.1 1063.0 1055.4 1075.1 1174.3 1142.1 1145.5 1163.3 1174.1 1166.7 1167.7 1189.1

5000.rg.0.1.4 0.1 1056.2 1046.8 1069.7 1168.9 1134.6 1135.4 1154.1 1168.3 1161.9 1162.5 1184.2

5000.rg.0.1.5 0.1 1045.5 1036.5 1056.9 1158.8 1121.3 1125.3 1143.1 1159.0 1149.8 1149.0 1177.8

5000.rg.0.1.6 0.1 1065.6 1057.0 1076.6 1175.7 1145.2 1149.7 1162.7 1178.3 1168.7 1168.1 1190.3

5000.rg.0.1.7 0.1 1054.2 1046.1 1062.2 1159.7 1128.8 1130.6 1144.7 1160.9 1153.7 1154.5 1174.7

5000.rg.0.1.8 0.1 1062.1 1054.2 1067.7 1166.2 1133.0 1136.4 1153.8 1171.3 1159.6 1160.2 1182.9

5000.rg.0.1.9 0.1 1058.9 1050.4 1070.3 1168.3 1133.3 1137.1 1152.7 1170.5 1159.4 1160.6 1187.0

5000.rg.0.5.0 0.5 344.2 363.5 348.9 357.4 353.2 357.8 352.9 357.3 356.5 358.8 359.9

5000.rg.0.5.1 0.5 345.1 365.0 350.1 358.0 353.6 359.9 353.8 358.3 358.4 359.8 360.7

5000.rg.0.5.2 0.5 343.7 364.9 349.4 357.9 353.2 358.3 353.6 357.4 357.5 359.5 360.6

5000.rg.0.5.3 0.5 344.4 363.3 349.3 357.4 353.5 359.0 353.1 357.2 357.5 359.4 360.8

5000.rg.0.5.4 0.5 345.7 365.1 349.8 358.1 353.9 359.8 354.0 358.0 357.9 359.9 361.4

5000.rg.0.5.5 0.5 343.1 362.9 348.0 355.7 351.6 357.4 352.0 355.8 355.8 357.9 359.2

5000.rg.0.5.6 0.5 344.8 364.1 350.0 358.4 354.4 359.3 353.9 357.7 358.0 359.9 360.6

5000.rg.0.5.7 0.5 343.6 363.2 348.1 356.3 352.6 357.6 352.6 356.8 356.0 358.5 359.9

5000.rg.0.5.8 0.5 343.2 363.6 348.6 356.7 352.5 358.2 352.8 356.3 356.5 358.2 360.0

5000.rg.0.5.9 0.5 347.2 366.9 352.4 360.6 357.1 361.6 356.4 360.2 359.8 362.2 363.9

5000.rg.1.0.0 1.0 211.8 220.0 211.4 213.2 213.1 213.9 213.4 212.8 212.5 214.7 214.2

5000.rg.1.0.1 1.0 211.4 220.1 210.8 212.5 213.4 213.4 212.7 212.1 212.3 214.0 213.7

5000.rg.1.0.2 1.0 212.0 220.6 211.2 212.7 213.7 213.7 213.4 212.8 212.5 214.4 213.8

5000.rg.1.0.3 1.0 212.5 221.4 211.7 213.0 213.6 214.3 213.3 212.9 213.0 214.4 214.0

5000.rg.1.0.4 1.0 211.2 220.0 210.2 211.7 213.1 212.7 212.0 212.0 212.4 213.2 212.9

5000.rg.1.0.5 1.0 211.4 220.3 211.0 212.4 213.0 214.0 213.3 212.3 212.5 213.8 214.0

5000.rg.1.0.6 1.0 212.5 219.5 211.4 213.0 213.8 213.7 213.1 212.8 212.7 214.2 214.1

5000.rg.1.0.7 1.0 211.4 220.6 210.8 212.3 213.1 213.4 212.8 212.2 212.5 214.3 214.1

5000.rg.1.0.8 1.0 211.7 220.8 211.5 213.1 213.8 214.2 213.3 212.8 212.8 214.4 214.4

5000.rg.1.0.9 1.0 211.2 220.4 210.4 211.8 213.2 213.1 212.3 212.2 212.1 213.9 213.2



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
0
7

Continuation of Table 4.8 Average results of all algorithms tested on MDS random graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rg.5.0.0 5.0 61.0 63.0 60.7 61.2 61.9 61.5 61.6 61.1 60.9 62.0 61.5

5000.rg.5.0.1 5.0 61.1 63.2 61.1 61.2 62.2 61.6 61.8 61.1 61.0 61.7 61.5

5000.rg.5.0.2 5.0 61.3 63.0 61.0 61.3 61.8 61.3 61.8 61.0 61.0 61.8 61.6

5000.rg.5.0.3 5.0 60.9 62.9 60.7 61.2 61.9 61.5 61.7 61.1 60.8 61.3 61.2

5000.rg.5.0.4 5.0 61.2 63.1 60.8 61.2 62.3 61.5 61.8 61.0 61.0 61.7 61.6

5000.rg.5.0.5 5.0 61.3 63.1 61.0 61.3 62.1 61.5 61.8 61.3 61.0 61.9 61.7

5000.rg.5.0.6 5.0 61.4 63.4 61.3 61.3 62.3 61.6 61.8 61.3 60.9 61.9 61.6

5000.rg.5.0.7 5.0 61.2 63.0 61.2 61.6 61.9 61.6 61.9 61.0 61.1 61.8 61.5

5000.rg.5.0.8 5.0 61.0 62.8 60.8 61.1 62.0 61.3 61.5 61.2 60.9 61.7 61.4

5000.rg.5.0.9 5.0 61.2 63.1 61.0 61.2 62.0 61.5 61.8 61.1 61.1 61.9 61.5

Table 4.9 Average results of all algorithms tested on MDS random geometric graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rgg.0.1.0 0.1 991.1 991.0 991.2 1049.2 1026.0 1025.4 1041.5 1051.3 1045.1 1051.7 1063.4

5000.rgg.0.1.1 0.1 1001.2 1000.3 1001.3 1064.6 1038.2 1037.5 1055.5 1067.0 1060.5 1066.0 1082.0

5000.rgg.0.1.2 0.1 991.8 990.1 991.4 1052.3 1026.4 1028.5 1040.9 1051.9 1047.2 1052.2 1068.2

5000.rgg.0.1.3 0.1 993.0 993.0 993.1 1046.9 1023.6 1022.0 1037.0 1049.2 1044.9 1048.1 1063.5

5000.rgg.0.1.4 0.1 996.4 996.0 996.4 1063.4 1039.1 1038.4 1054.2 1064.2 1061.2 1066.2 1081.4

5000.rgg.0.1.5 0.1 997.7 997.0 998.3 1060.9 1034.3 1034.7 1049.7 1061.2 1054.7 1058.9 1075.7

5000.rgg.0.1.6 0.1 999.1 999.0 999.0 1067.8 1040.0 1038.3 1055.6 1068.9 1062.8 1067.9 1082.0

5000.rgg.0.1.7 0.1 996.1 995.7 996.0 1064.4 1033.5 1033.6 1051.4 1064.7 1061.3 1063.6 1080.0

5000.rgg.0.1.8 0.1 995.2 995.0 995.2 1049.6 1026.2 1022.9 1038.3 1049.3 1044.5 1048.4 1063.7

5000.rgg.0.1.9 0.1 1004.6 1004.1 1004.4 1061.5 1037.9 1037.0 1050.0 1062.1 1057.5 1062.8 1075.2



1
0
8

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Continuation of Table 4.9 Average results of all algorithms tested on MDS random geometric graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rgg.0.5.0 0.5 231.5 228.0 235.1 271.9 261.0 264.1 268.2 271.3 271.3 274.0 275.6

5000.rgg.0.5.1 0.5 230.3 227.4 231.8 275.8 263.8 264.3 271.1 275.1 274.7 277.2 278.8

5000.rgg.0.5.2 0.5 231.1 228.1 233.7 273.8 263.4 265.8 270.0 273.7 273.1 275.9 277.6

5000.rgg.0.5.3 0.5 230.4 227.4 233.4 272.4 261.9 264.0 268.1 271.5 271.8 274.6 276.7

5000.rgg.0.5.4 0.5 229.8 226.4 232.1 274.4 263.2 264.8 269.1 272.9 272.1 275.0 277.4

5000.rgg.0.5.5 0.5 229.1 225.9 231.9 272.5 262.4 264.5 269.3 273.8 273.2 275.7 277.7

5000.rgg.0.5.6 0.5 229.5 226.3 232.5 273.6 262.7 266.9 269.1 273.2 272.9 274.8 276.6

5000.rgg.0.5.7 0.5 230.6 227.7 233.6 271.7 261.3 263.7 267.1 272.3 271.4 272.9 275.8

5000.rgg.0.5.8 0.5 231.6 228.4 234.2 273.3 263.1 265.9 269.9 273.6 273.3 275.7 278.5

5000.rgg.0.5.9 0.5 231.9 227.9 237.7 277.6 265.8 268.9 273.0 277.3 277.5 279.6 280.9

5000.rgg.1.0.0 1.0 123.2 121.7 127.6 147.1 142.8 146.3 145.5 147.8 147.8 149.0 148.7

5000.rgg.1.0.1 1.0 122.9 120.7 126.6 151.2 145.9 147.4 149.1 150.7 150.6 152.9 151.2

5000.rgg.1.0.2 1.0 125.0 122.8 130.2 151.8 147.7 150.3 150.5 152.1 152.0 153.8 153.1

5000.rgg.1.0.3 1.0 123.1 121.0 127.7 149.6 144.9 147.7 147.8 150.3 149.3 152.2 150.8

5000.rgg.1.0.4 1.0 122.5 121.0 124.5 147.3 143.4 145.3 145.7 147.7 147.4 149.1 148.5

5000.rgg.1.0.5 1.0 123.4 121.5 127.7 148.9 144.8 147.3 146.8 149.0 147.7 150.7 149.1

5000.rgg.1.0.6 1.0 123.4 122.0 127.7 150.3 143.9 147.1 147.7 149.1 148.2 150.5 149.7

5000.rgg.1.0.7 1.0 123.5 121.2 127.9 148.1 144.3 146.0 147.0 148.2 148.5 150.0 149.4

5000.rgg.1.0.8 1.0 124.3 122.5 128.0 150.6 145.4 148.3 149.1 150.5 150.6 152.6 150.9

5000.rgg.1.0.9 1.0 123.0 121.3 128.1 149.6 145.0 147.7 148.7 149.5 150.0 151.3 150.3

5000.rgg.5.0.0 5.0 26.1 26.8 26.7 34.4 33.9 33.9 33.7 34.2 34.2 35.3 33.8

5000.rgg.5.0.1 5.0 26.1 26.6 26.9 34.9 34.5 34.7 34.8 34.7 34.4 36.1 34.4

5000.rgg.5.0.2 5.0 25.9 26.3 26.4 33.6 32.9 33.4 33.5 33.5 33.6 34.1 33.5

5000.rgg.5.0.3 5.0 26.1 26.8 26.6 33.9 33.7 33.6 34.2 34.2 34.1 35.1 33.7

5000.rgg.5.0.4 5.0 26.0 26.5 26.4 33.3 33.1 33.0 33.2 33.0 33.0 34.0 32.9

5000.rgg.5.0.5 5.0 26.3 26.7 26.9 33.6 33.5 33.7 33.6 33.4 33.4 34.6 33.4

5000.rgg.5.0.6 5.0 26.3 26.6 26.9 34.1 33.6 33.5 33.9 33.7 33.8 34.9 33.8

5000.rgg.5.0.7 5.0 26.3 26.9 26.6 34.0 33.1 33.4 33.6 33.8 34.0 34.4 33.6

5000.rgg.5.0.8 5.0 26.2 26.8 26.9 34.5 34.1 34.5 34.8 34.6 34.4 35.5 34.3

5000.rgg.5.0.9 5.0 26.4 26.5 26.4 33.7 32.7 33.2 33.2 33.1 33.1 33.9 33.5



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
0
9

Table 4.10 Average results of all algorithms tested on MDS random graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rg.0.1.0 0.1 1303.2 1364.8 1338.3 1440.7 1372.8 1409.3 1395.2 1440.2 1439.6 1403.9 1429.9

10000.rg.0.1.1 0.1 1304.3 1366.4 1339.2 1438.4 1372.9 1408.4 1394.2 1438.9 1437.5 1401.7 1430.7

10000.rg.0.1.2 0.1 1309.4 1371.0 1343.8 1448.4 1380.5 1417.9 1402.1 1446.6 1446.5 1410.3 1437.8

10000.rg.0.1.3 0.1 1302.3 1361.3 1337.5 1435.1 1372.2 1405.7 1391.7 1437.0 1435.7 1400.4 1428.2

10000.rg.0.1.4 0.1 1306.3 1368.9 1341.7 1446.4 1380.6 1414.3 1400.0 1446.6 1445.6 1411.6 1436.5

10000.rg.0.1.5 0.1 1293.7 1349.7 1328.5 1423.4 1360.6 1396.2 1380.8 1424.6 1424.2 1390.7 1419.4

10000.rg.0.1.6 0.1 1297.4 1359.0 1333.6 1434.7 1368.1 1402.3 1390.7 1435.9 1434.0 1401.2 1423.3

10000.rg.0.1.7 0.1 1303.0 1364.4 1338.1 1441.6 1376.7 1411.5 1396.7 1440.4 1437.9 1407.4 1430.6

10000.rg.0.1.8 0.1 1299.5 1360.1 1333.7 1434.7 1368.3 1405.9 1389.2 1433.2 1433.5 1396.5 1424.6

10000.rg.0.1.9 0.1 1298.6 1355.5 1332.0 1432.8 1368.9 1403.1 1389.2 1432.3 1430.3 1399.0 1422.3

10000.rg.0.5.0 0.5 424.7 444.3 425.6 429.5 432.9 431.0 431.5 429.4 429.3 431.3 431.8

10000.rg.0.5.1 0.5 425.0 443.9 425.5 428.5 431.9 429.9 431.5 428.4 429.0 431.6 430.5

10000.rg.0.5.2 0.5 425.7 444.8 426.8 430.3 433.4 431.2 432.4 430.1 429.7 432.6 433.1

10000.rg.0.5.3 0.5 424.7 444.7 425.0 429.3 431.9 429.6 431.3 428.5 428.7 431.2 431.1

10000.rg.0.5.4 0.5 425.8 445.3 426.7 430.3 433.8 431.8 432.5 429.8 429.9 432.5 432.4

10000.rg.0.5.5 0.5 424.5 443.1 424.8 428.6 430.9 429.3 430.0 428.3 427.7 430.7 430.2

10000.rg.0.5.6 0.5 426.0 446.2 425.9 430.1 432.7 430.9 432.2 430.0 430.3 432.8 432.7

10000.rg.0.5.7 0.5 427.7 446.6 427.9 432.0 434.8 432.5 433.5 431.9 431.4 433.8 434.1

10000.rg.0.5.8 0.5 425.1 443.6 424.8 428.6 431.3 429.4 430.3 428.1 428.4 431.0 430.7

10000.rg.0.5.9 0.5 426.7 445.1 425.9 429.8 432.5 430.7 432.0 429.6 429.9 431.9 432.0

10000.rg.1.0.0 1.0 253.2 264.2 252.0 253.3 255.0 253.6 254.0 252.5 252.7 254.2 253.6

10000.rg.1.0.1 1.0 255.2 265.3 252.8 253.8 256.4 254.4 255.5 253.5 253.4 255.6 255.2

10000.rg.1.0.2 1.0 253.9 265.1 252.3 253.1 254.6 253.6 254.9 253.1 253.0 254.0 253.9

10000.rg.1.0.3 1.0 254.6 264.2 252.7 253.3 255.5 254.0 254.5 253.2 253.2 254.7 254.5

10000.rg.1.0.4 1.0 254.1 264.5 252.8 253.9 255.7 254.1 255.6 253.0 253.3 254.8 254.8

10000.rg.1.0.5 1.0 255.1 264.9 253.0 254.3 256.4 254.2 255.6 253.1 253.5 255.7 255.5

10000.rg.1.0.6 1.0 254.0 264.4 252.0 253.1 255.0 253.8 255.1 253.1 253.2 254.3 253.8

10000.rg.1.0.7 1.0 254.3 265.0 252.7 253.8 255.4 254.3 255.1 253.2 253.5 255.2 254.9

10000.rg.1.0.8 1.0 253.6 263.4 251.6 253.2 254.8 253.1 254.5 252.6 252.5 254.4 253.7

10000.rg.1.0.9 1.0 253.5 263.8 251.8 252.6 254.2 252.9 254.5 251.9 252.4 254.0 253.5



1
1
0

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Continuation of Table 4.10 Average results of all algorithms tested on MDS random graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rg.5.0.0 5.0 70.9 72.7 71.1 71.1 71.9 71.3 71.2 70.8 71.0 71.9 71.4

10000.rg.5.0.1 5.0 71.0 72.9 70.8 71.3 72.2 71.3 71.5 70.9 70.7 71.9 71.5

10000.rg.5.0.2 5.0 70.9 73.0 70.8 71.2 71.8 71.3 71.3 71.0 70.9 71.7 71.7

10000.rg.5.0.3 5.0 70.9 72.6 70.8 71.1 71.8 71.0 71.6 70.9 70.7 71.8 71.5

10000.rg.5.0.4 5.0 70.8 73.0 71.0 71.2 71.9 71.2 71.4 70.8 70.9 71.9 71.4

10000.rg.5.0.5 5.0 70.8 72.8 70.6 70.9 71.7 71.1 71.5 70.9 70.8 72.1 71.2

10000.rg.5.0.6 5.0 70.9 72.5 70.9 71.0 71.5 71.2 71.4 70.9 70.8 71.8 71.4

10000.rg.5.0.7 5.0 70.9 73.0 71.0 71.1 72.0 71.2 71.2 70.9 70.9 71.7 71.4

10000.rg.5.0.8 5.0 70.9 73.0 70.9 71.0 71.9 71.4 71.7 71.0 70.9 71.7 71.4

10000.rg.5.0.9 5.0 70.8 72.9 70.8 71.1 72.0 71.4 71.6 70.8 70.7 71.7 71.3

Table 4.11 Average results of all algorithms tested on MDS random geometric graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rgg.0.1.0 0.1 1059.3 1052.8 1054.3 1243.7 1182.9 1187.5 1221.3 1244.5 1237.3 1237.3 1252.4

10000.rgg.0.1.1 0.1 1057.3 1051.7 1052.5 1242.0 1185.3 1189.6 1221.7 1244.9 1237.8 1237.3 1255.2

10000.rgg.0.1.2 0.1 1055.5 1051.0 1051.9 1236.3 1174.6 1175.4 1212.6 1233.7 1229.8 1225.4 1244.8

10000.rgg.0.1.3 0.1 1057.1 1050.7 1052.8 1242.4 1182.6 1186.8 1219.4 1239.8 1235.2 1232.4 1251.6

10000.rgg.0.1.4 0.1 1055.3 1049.5 1049.8 1235.1 1178.8 1183.3 1215.0 1238.6 1228.7 1227.0 1245.4

10000.rgg.0.1.5 0.1 1055.9 1049.7 1049.9 1244.1 1181.0 1184.1 1217.2 1244.5 1236.2 1236.2 1253.2

10000.rgg.0.1.6 0.1 1049.9 1045.6 1044.6 1230.7 1171.3 1173.7 1207.5 1232.3 1223.8 1226.2 1244.2

10000.rgg.0.1.7 0.1 1060.8 1053.0 1055.6 1232.9 1174.7 1178.4 1210.7 1231.6 1227.5 1224.5 1245.6

10000.rgg.0.1.8 0.1 1060.7 1055.1 1056.2 1247.6 1184.1 1189.6 1222.2 1246.1 1240.1 1238.4 1257.1

10000.rgg.0.1.9 0.1 1061.0 1056.4 1055.0 1243.8 1186.1 1190.3 1221.5 1243.1 1241.3 1236.8 1252.2



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
1
1

Continuation of Table 4.11 Average results of all algorithms tested on MDS random geometric graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rgg.0.5.0 0.5 251.1 246.3 267.8 309.5 297.3 306.4 303.8 308.1 307.9 310.5 310.5

10000.rgg.0.5.1 0.5 251.5 245.0 268.4 307.8 297.6 305.8 302.8 307.1 307.6 309.8 309.3

10000.rgg.0.5.2 0.5 249.5 244.4 267.0 306.5 296.7 304.5 303.8 306.9 306.3 310.2 308.6

10000.rgg.0.5.3 0.5 250.6 245.3 265.2 303.6 293.1 300.8 299.2 304.4 304.9 305.2 306.6

10000.rgg.0.5.4 0.5 249.9 245.1 266.2 307.4 295.2 302.4 302.1 305.1 304.8 307.7 307.2

10000.rgg.0.5.5 0.5 250.6 245.3 267.5 304.6 295.2 302.0 299.4 303.4 303.9 306.0 306.4

10000.rgg.0.5.6 0.5 251.4 245.5 268.6 309.3 296.9 304.4 304.0 308.3 306.6 310.3 309.5

10000.rgg.0.5.7 0.5 249.9 244.1 265.9 308.0 295.3 303.5 303.0 307.3 306.1 309.0 309.1

10000.rgg.0.5.8 0.5 251.0 245.8 268.1 304.9 295.0 302.2 300.9 305.3 305.0 306.5 307.0

10000.rgg.0.5.9 0.5 249.0 244.5 267.0 304.9 294.9 302.2 300.9 304.9 305.1 306.5 307.1

10000.rgg.1.0.0 1.0 130.3 128.0 142.0 163.2 159.3 162.5 161.4 162.8 162.9 165.1 162.8

10000.rgg.1.0.1 1.0 129.5 127.4 141.3 162.6 158.3 161.0 161.2 163.2 162.9 164.4 162.0

10000.rgg.1.0.2 1.0 129.7 128.6 141.6 162.9 159.1 161.8 160.8 162.1 162.6 164.2 163.1

10000.rgg.1.0.3 1.0 130.1 128.4 141.3 162.2 157.9 161.1 160.5 162.3 161.5 164.0 162.1

10000.rgg.1.0.4 1.0 129.0 127.7 141.2 162.5 157.3 159.8 160.5 161.6 162.1 164.0 162.0

10000.rgg.1.0.5 1.0 130.4 128.7 141.7 162.1 158.8 161.2 159.7 161.6 162.6 163.9 162.0

10000.rgg.1.0.6 1.0 130.7 128.2 142.0 164.2 160.6 162.3 161.6 164.0 163.7 166.4 163.8

10000.rgg.1.0.7 1.0 129.8 128.1 142.1 162.1 158.1 161.0 160.6 161.9 162.2 163.3 161.9

10000.rgg.1.0.8 1.0 129.8 127.6 141.7 163.5 159.1 161.2 161.4 163.4 163.4 165.1 162.9

10000.rgg.1.0.9 1.0 130.2 128.5 141.7 162.1 157.6 159.9 159.5 162.2 161.7 163.4 161.4

10000.rgg.5.0.0 5.0 27.1 32.7 27.6 35.7 35.3 35.6 35.7 35.4 35.2 36.5 35.5

10000.rgg.5.0.1 5.0 26.9 33.3 27.8 36.4 36.1 36.9 36.6 36.3 36.3 37.3 36.3

10000.rgg.5.0.2 5.0 27.0 33.2 27.6 37.6 36.3 37.0 37.5 37.5 37.3 38.2 37.0

10000.rgg.5.0.3 5.0 27.1 33.1 27.8 36.0 35.9 36.3 36.5 36.3 36.2 37.3 35.9

10000.rgg.5.0.4 5.0 27.0 32.9 27.9 35.9 35.7 36.2 36.0 35.8 36.0 36.6 35.6

10000.rgg.5.0.5 5.0 27.1 33.2 27.8 36.1 36.3 36.9 36.8 36.8 36.6 37.5 36.5

10000.rgg.5.0.6 5.0 26.9 32.8 28.1 37.0 36.6 37.1 36.6 36.9 36.9 38.1 36.2

10000.rgg.5.0.7 5.0 27.0 33.1 27.9 37.2 36.7 37.1 37.0 36.5 36.8 38.7 36.7

10000.rgg.5.0.8 5.0 26.9 32.8 27.5 36.6 36.1 36.4 36.5 36.1 36.2 37.1 36.3

10000.rgg.5.0.9 5.0 26.9 32.1 27.3 35.8 35.7 35.7 36.0 36.2 35.7 36.6 35.3



1
1
2

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Table 4.12 Average computation time of all algorithms tested on MDS random graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rg.0.1.0 0.1 225.9 171.0 418.0 454.2 443.5 420.9 428.2 450.4 472.7 417.7 414.4

5000.rg.0.1.1 0.1 193.0 273.3 434.6 455.6 432.6 441.4 412.3 454.8 454.0 421.3 398.3

5000.rg.0.1.2 0.1 226.6 261.2 409.6 454.9 423.8 404.8 417.9 450.0 465.0 425.4 432.8

5000.rg.0.1.3 0.1 205.1 182.9 394.2 447.2 435.3 408.4 441.0 455.4 468.9 421.9 402.4

5000.rg.0.1.4 0.1 200.5 196.4 448.4 459.6 426.7 428.1 437.9 463.5 456.5 400.6 393.9

5000.rg.0.1.5 0.1 182.6 234.9 434.3 444.4 416.7 423.1 416.3 459.5 457.5 440.3 390.4

5000.rg.0.1.6 0.1 175.3 188.7 439.1 454.5 435.9 407.8 429.7 441.5 439.3 409.1 409.5

5000.rg.0.1.7 0.1 240.7 187.3 426.1 450.7 436.1 414.2 416.6 460.5 452.1 433.6 409.1

5000.rg.0.1.8 0.1 145.3 161.3 437.4 448.8 442.2 416.2 404.3 449.5 444.8 419.3 407.2

5000.rg.0.1.9 0.1 226.9 252.4 446.9 453.0 434.0 421.6 435.8 456.8 447.1 412.5 404.2

5000.rg.0.5.0 0.5 232.7 328.1 306.2 250.0 280.3 267.6 251.8 278.5 327.7 284.5 209.1

5000.rg.0.5.1 0.5 246.2 327.0 284.6 312.9 246.0 242.0 277.9 297.8 292.2 288.4 324.3

5000.rg.0.5.2 0.5 231.7 280.9 289.2 318.1 263.2 256.1 292.5 272.5 306.6 307.8 275.1

5000.rg.0.5.3 0.5 285.0 325.3 255.9 346.3 227.6 219.5 314.6 274.9 261.9 240.2 276.1

5000.rg.0.5.4 0.5 261.7 333.9 307.4 266.9 248.7 231.3 247.5 315.0 328.2 293.6 262.7

5000.rg.0.5.5 0.5 262.2 295.9 276.4 305.1 285.0 216.0 283.7 319.0 313.7 249.0 262.5

5000.rg.0.5.6 0.5 223.6 291.9 297.3 283.2 291.5 270.7 309.4 314.2 312.0 230.4 258.4

5000.rg.0.5.7 0.5 240.0 364.9 267.8 367.8 254.7 236.8 276.2 316.8 271.5 243.2 316.0

5000.rg.0.5.8 0.5 265.8 338.4 273.5 282.0 268.7 255.6 307.3 316.2 299.3 277.7 217.5

5000.rg.0.5.9 0.5 271.3 347.3 292.9 322.8 210.1 241.4 321.6 364.6 346.4 278.2 293.1

5000.rg.1.0.0 1.0 226.1 338.2 222.0 200.7 295.7 180.2 261.9 215.9 229.9 208.3 181.8

5000.rg.1.0.1 1.0 246.8 348.7 238.0 215.5 234.9 189.4 241.9 220.0 172.8 217.7 223.5

5000.rg.1.0.2 1.0 256.2 334.8 216.9 211.8 250.4 254.2 193.7 203.3 191.5 209.4 188.6

5000.rg.1.0.3 1.0 261.7 322.4 217.4 188.7 225.5 185.2 294.7 235.7 190.8 181.8 183.0

5000.rg.1.0.4 1.0 244.8 336.2 264.5 254.3 243.2 228.5 266.1 234.5 213.3 195.1 220.0

5000.rg.1.0.5 1.0 249.6 333.6 280.5 234.7 220.7 181.1 201.5 201.3 149.1 233.8 209.7

5000.rg.1.0.6 1.0 251.7 329.3 242.2 227.0 232.5 209.6 236.9 252.7 196.1 242.6 169.6

5000.rg.1.0.7 1.0 257.8 317.8 249.5 273.6 259.5 216.8 201.5 235.1 218.1 195.7 185.6

5000.rg.1.0.8 1.0 242.5 339.2 222.2 203.6 229.6 243.0 290.3 222.2 254.6 173.5 220.2

5000.rg.1.0.9 1.0 243.2 321.9 251.7 231.1 228.4 217.7 281.0 170.2 207.0 170.2 189.0



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
1
3

Continuation of Table 4.12 Average computation time of all algorithms tested on MDS random graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rg.5.0.0 5.0 27.9 14.8 70.6 145.2 76.2 20.1 38.1 89.0 107.0 107.1 80.8

5000.rg.5.0.1 5.0 23.5 12.2 112.4 134.4 36.3 34.7 16.9 135.3 122.7 127.8 125.0

5000.rg.5.0.2 5.0 14.0 14.5 46.7 181.7 31.6 21.2 34.8 140.3 106.6 133.8 92.3

5000.rg.5.0.3 5.0 34.5 12.2 133.7 134.0 85.1 5.2 26.3 129.1 132.6 113.8 124.1

5000.rg.5.0.4 5.0 31.7 12.9 106.8 156.8 14.6 35.6 35.7 156.6 166.9 113.0 141.8

5000.rg.5.0.5 5.0 22.4 17.3 150.0 195.7 33.7 34.7 45.5 81.6 145.9 83.1 105.3

5000.rg.5.0.6 5.0 24.4 12.9 35.5 129.7 34.0 28.5 52.5 103.0 128.9 89.3 114.0

5000.rg.5.0.7 5.0 31.6 19.8 109.1 117.1 57.1 5.1 54.1 67.8 121.6 140.3 139.6

5000.rg.5.0.8 5.0 15.3 13.8 92.4 159.0 19.0 24.9 55.5 73.0 142.8 67.9 108.7

5000.rg.5.0.9 5.0 13.5 12.3 72.8 180.5 80.2 11.2 35.8 140.0 110.1 120.5 140.3

Table 4.13 Average computation time of all algorithms tested on MDS random geometric graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rgg.0.1.0 0.1 247.0 116.4 220.8 433.5 411.4 433.2 461.6 452.3 455.8 440.4 424.7

5000.rgg.0.1.1 0.1 152.6 239.0 218.7 451.2 426.4 429.9 435.3 452.8 452.2 452.4 405.1

5000.rgg.0.1.2 0.1 360.5 270.2 333.7 450.6 411.4 452.2 446.8 455.6 457.9 442.9 434.8

5000.rgg.0.1.3 0.1 103.8 41.6 142.5 443.9 430.8 442.4 452.5 444.4 439.0 452.2 416.2

5000.rgg.0.1.4 0.1 320.8 130.6 236.0 448.4 428.4 436.5 428.9 437.3 455.1 459.2 420.2

5000.rgg.0.1.5 0.1 258.9 140.1 225.7 450.3 412.1 441.7 441.9 428.7 456.3 426.3 431.3

5000.rgg.0.1.6 0.1 215.3 60.6 217.1 447.6 417.4 441.8 445.3 448.6 460.5 440.2 441.3

5000.rgg.0.1.7 0.1 190.6 127.7 181.0 457.4 440.6 447.8 433.4 451.2 452.6 454.9 430.2

5000.rgg.0.1.8 0.1 261.5 75.4 264.3 455.2 435.0 434.4 452.8 438.6 442.3 426.3 417.1

5000.rgg.0.1.9 0.1 243.1 106.0 238.3 462.2 441.7 436.9 434.8 435.1 458.1 450.7 444.0



1
1
4

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Continuation of Table 4.13 Average computation time of all algorithms tested onMDS random geometric graphs with 5000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

5000.rgg.0.5.0 0.5 287.3 215.9 396.8 398.4 346.0 353.0 370.6 379.4 432.3 419.6 401.8

5000.rgg.0.5.1 0.5 254.0 216.7 413.3 422.7 384.0 385.0 418.9 418.5 425.9 388.3 388.4

5000.rgg.0.5.2 0.5 266.9 214.0 362.5 428.2 385.5 358.6 406.1 404.8 415.7 358.4 394.4

5000.rgg.0.5.3 0.5 236.1 199.9 366.3 415.5 404.5 394.9 405.4 412.9 402.3 404.7 381.9

5000.rgg.0.5.4 0.5 281.4 241.9 375.0 400.6 343.6 373.7 397.5 397.8 422.2 380.8 384.5

5000.rgg.0.5.5 0.5 312.7 224.1 391.4 411.6 372.3 372.6 403.4 415.4 403.5 398.5 389.0

5000.rgg.0.5.6 0.5 246.1 172.6 361.2 413.4 401.8 367.6 403.6 415.7 415.8 402.8 399.8

5000.rgg.0.5.7 0.5 230.5 210.2 414.3 412.6 399.0 356.2 402.3 401.0 434.3 380.7 363.0

5000.rgg.0.5.8 0.5 259.5 152.6 378.2 422.1 401.7 369.9 393.0 418.3 424.6 392.8 404.3

5000.rgg.0.5.9 0.5 223.3 205.7 404.5 391.4 412.7 373.3 371.8 442.9 411.4 391.2 397.1

5000.rgg.1.0.0 1.0 184.6 170.4 368.9 411.3 362.9 300.0 375.7 353.9 356.0 377.2 337.2

5000.rgg.1.0.1 1.0 195.7 174.7 366.6 351.6 345.2 345.3 407.5 367.6 373.3 358.4 386.7

5000.rgg.1.0.2 1.0 204.4 187.1 368.1 388.4 284.1 300.9 389.8 355.9 376.7 361.8 340.9

5000.rgg.1.0.3 1.0 233.4 166.2 365.9 324.6 352.2 259.9 372.2 357.5 355.4 349.2 323.2

5000.rgg.1.0.4 1.0 178.9 190.7 358.8 381.4 336.2 310.8 392.9 347.0 370.1 377.0 338.4

5000.rgg.1.0.5 1.0 258.1 205.1 347.0 382.7 376.3 316.1 353.0 337.8 385.3 325.0 354.0

5000.rgg.1.0.6 1.0 198.1 182.6 347.8 386.0 343.3 297.3 356.5 367.1 364.4 348.9 361.4

5000.rgg.1.0.7 1.0 234.3 206.0 354.0 391.6 323.7 312.8 366.5 357.5 347.2 343.9 363.6

5000.rgg.1.0.8 1.0 192.5 195.4 382.7 391.8 333.0 268.2 341.2 348.3 362.5 304.0 356.8

5000.rgg.1.0.9 1.0 215.8 187.0 389.1 342.5 307.5 264.6 360.6 385.4 351.8 333.8 389.5

5000.rgg.5.0.0 5.0 109.3 359.6 82.1 230.8 214.4 225.6 281.5 281.3 268.2 283.3 253.1

5000.rgg.5.0.1 5.0 61.8 364.0 73.9 221.6 208.5 232.3 220.8 235.5 230.3 247.9 225.4

5000.rgg.5.0.2 5.0 70.1 378.7 138.1 261.5 218.8 252.3 220.5 205.7 207.9 239.2 250.9

5000.rgg.5.0.3 5.0 91.5 376.5 110.2 255.6 235.0 237.5 254.1 242.3 226.3 242.7 268.7

5000.rgg.5.0.4 5.0 110.2 377.8 68.7 230.2 249.6 265.3 272.5 235.4 226.9 251.3 228.3

5000.rgg.5.0.5 5.0 77.5 359.2 117.2 229.0 228.9 253.3 241.7 273.3 252.2 220.6 281.9

5000.rgg.5.0.6 5.0 79.3 347.1 89.5 206.2 245.9 294.5 278.2 245.4 240.0 257.3 226.3

5000.rgg.5.0.7 5.0 86.7 366.1 96.3 265.3 225.8 247.9 290.8 242.2 256.1 225.1 286.2

5000.rgg.5.0.8 5.0 104.2 362.5 102.4 263.7 192.0 230.4 226.8 226.0 234.5 236.5 226.8

5000.rgg.5.0.9 5.0 75.4 363.4 89.5 214.7 227.2 224.3 244.0 255.2 286.8 256.2 228.1



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
1
5

Table 4.14 Average computation time of all algorithms tested on MDS random graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rg.0.1.0 0.1 520.0 542.8 870.3 848.7 729.4 387.3 753.5 887.6 840.9 620.8 729.9

10000.rg.0.1.1 0.1 467.1 540.7 901.9 835.7 716.4 476.2 805.0 852.4 883.2 650.6 749.0

10000.rg.0.1.2 0.1 397.8 556.3 874.7 805.1 643.9 469.1 780.6 838.0 881.1 679.3 697.6

10000.rg.0.1.3 0.1 527.7 542.5 874.2 856.5 651.9 498.7 794.2 823.4 868.6 701.9 745.9

10000.rg.0.1.4 0.1 465.5 555.3 899.8 820.3 751.5 436.1 751.0 869.6 880.4 751.6 750.2

10000.rg.0.1.5 0.1 429.3 540.9 888.6 851.3 763.6 466.8 777.5 859.6 863.7 640.0 663.7

10000.rg.0.1.6 0.1 466.6 536.8 885.5 845.7 642.6 496.6 771.3 846.2 849.9 744.2 698.8

10000.rg.0.1.7 0.1 510.9 559.7 863.4 814.2 714.4 587.3 769.4 892.5 912.9 714.0 725.3

10000.rg.0.1.8 0.1 596.3 537.3 917.3 873.1 738.1 473.0 709.3 871.6 844.0 644.2 618.2

10000.rg.0.1.9 0.1 512.9 546.3 910.0 856.3 756.3 483.0 714.7 895.1 834.1 763.9 739.8

10000.rg.0.5.0 0.5 559.2 828.9 576.3 429.9 466.2 475.4 461.8 517.1 401.5 449.0 567.3

10000.rg.0.5.1 0.5 576.9 844.5 497.0 426.5 487.2 398.0 539.7 350.8 361.3 401.9 520.3

10000.rg.0.5.2 0.5 557.4 809.4 613.3 449.6 379.3 344.5 543.0 423.6 494.8 390.5 394.3

10000.rg.0.5.3 0.5 588.4 831.6 597.5 414.8 489.5 406.8 467.8 456.4 450.2 492.7 520.0

10000.rg.0.5.4 0.5 580.5 824.7 595.5 550.4 426.0 393.8 522.7 403.3 554.2 442.6 475.6

10000.rg.0.5.5 0.5 591.1 861.6 706.0 369.9 445.6 442.3 534.9 413.7 554.9 579.7 473.4

10000.rg.0.5.6 0.5 558.7 830.2 579.3 456.3 481.9 491.6 523.2 362.6 482.4 483.1 424.3

10000.rg.0.5.7 0.5 597.8 853.2 624.1 518.6 522.9 406.5 525.9 336.0 434.0 434.9 559.7

10000.rg.0.5.8 0.5 578.4 828.7 566.1 435.4 545.8 411.1 505.4 492.6 430.0 511.3 533.7

10000.rg.0.5.9 0.5 594.1 846.4 572.8 523.4 538.0 445.6 624.6 341.4 462.9 446.3 480.7

10000.rg.1.0.0 1.0 327.8 11.3 387.3 365.0 417.8 454.2 440.7 311.1 271.3 383.7 478.2

10000.rg.1.0.1 1.0 136.0 11.9 393.0 461.2 360.0 406.2 376.3 455.5 318.2 404.5 455.2

10000.rg.1.0.2 1.0 332.2 11.7 387.5 361.0 468.6 475.3 432.4 399.1 272.4 524.2 392.6

10000.rg.1.0.3 1.0 140.0 14.1 478.7 430.8 350.0 360.6 542.7 411.7 542.8 480.2 427.6

10000.rg.1.0.4 1.0 301.2 9.9 486.6 421.2 282.9 472.7 463.8 481.8 489.7 355.4 433.8

10000.rg.1.0.5 1.0 104.8 11.8 497.8 351.2 407.4 386.6 383.0 474.5 363.5 478.4 362.7

10000.rg.1.0.6 1.0 233.2 10.9 517.2 437.8 438.0 373.4 426.7 432.9 331.5 372.9 505.3

10000.rg.1.0.7 1.0 269.8 11.4 487.1 423.5 446.5 473.9 404.0 484.9 418.1 394.4 320.5

10000.rg.1.0.8 1.0 236.4 11.2 474.7 370.1 394.5 372.8 449.9 428.6 443.2 414.4 387.4

10000.rg.1.0.9 1.0 199.2 12.3 447.9 424.6 350.1 384.9 433.1 455.5 333.0 402.8 430.1



1
1
6

C
h
a
p
t
e
r
4

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
D
S
P
r
o
b
l
e
m

Continuation of Table 4.14 Average computation time of all algorithms tested on MDS random graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rg.5.0.0 5.0 62.6 71.3 52.1 292.1 14.4 30.0 86.7 371.2 50.4 15.6 267.8

10000.rg.5.0.1 5.0 60.3 64.3 61.8 264.7 21.0 35.8 54.1 298.5 69.6 13.7 307.4

10000.rg.5.0.2 5.0 57.6 75.4 101.8 211.8 17.2 30.5 95.3 136.2 50.6 36.0 236.4

10000.rg.5.0.3 5.0 67.5 77.7 68.5 327.5 12.2 40.7 47.6 227.9 53.7 35.1 220.6

10000.rg.5.0.4 5.0 57.5 63.4 46.0 260.5 17.7 28.6 57.9 287.6 61.8 33.6 192.5

10000.rg.5.0.5 5.0 44.9 62.8 82.4 252.6 17.4 26.8 73.0 305.1 64.0 79.5 335.8

10000.rg.5.0.6 5.0 46.5 76.5 58.3 314.7 19.9 38.2 19.8 233.5 58.1 14.1 217.5

10000.rg.5.0.7 5.0 41.9 63.5 53.7 275.4 12.5 26.8 81.0 414.4 54.7 13.8 157.2

10000.rg.5.0.8 5.0 68.7 56.8 58.1 233.8 14.3 31.9 96.5 147.0 66.3 14.2 146.9

10000.rg.5.0.9 5.0 79.6 48.2 66.5 391.5 15.0 29.7 70.1 416.4 92.6 46.5 284.3

Table 4.15 Average computation time of all algorithms tested on MDS random geometric graphs with 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rgg.0.1.0 0.1 743.5 647.1 809.1 906.1 882.6 805.8 890.8 907.4 902.6 858.8 869.8

10000.rgg.0.1.1 0.1 673.6 383.3 841.7 914.9 889.2 784.1 879.9 899.0 917.7 903.0 835.1

10000.rgg.0.1.2 0.1 632.5 448.5 779.5 903.7 866.7 846.8 858.5 922.1 921.5 856.0 836.7

10000.rgg.0.1.3 0.1 681.9 479.5 868.3 891.0 869.3 843.9 884.2 925.9 897.1 885.4 824.9

10000.rgg.0.1.4 0.1 655.6 492.4 812.8 918.4 876.0 832.1 867.3 919.3 892.2 862.7 847.6

10000.rgg.0.1.5 0.1 676.5 596.3 838.1 924.8 877.2 805.7 906.9 950.6 921.6 868.4 873.7

10000.rgg.0.1.6 0.1 649.7 526.0 802.2 923.4 815.0 855.1 885.9 903.5 925.2 847.2 812.6

10000.rgg.0.1.7 0.1 712.6 551.6 874.0 931.6 846.2 815.8 915.1 912.9 915.9 889.7 798.2

10000.rgg.0.1.8 0.1 537.2 479.9 786.6 942.4 892.7 811.6 893.4 923.1 930.8 873.1 813.4

10000.rgg.0.1.9 0.1 653.9 413.4 841.3 915.9 844.2 822.1 901.6 929.1 904.4 916.9 834.6



S
e
c
t
i
o
n
4
.
8

C
o
n
c
l
u
s
i
o
n
s

1
1
7

Continuation of Table 4.15 Average computation time of all algorithms tested onMDS random geometric graphswith 10000 vertices

Instance Density Aco
+
neg Aconeg Aco

+
Aco Aco-Aco

+
neg Aco-Aconeg Aco-Aco

+
Aco-Ea Aco-Sap Aco-Pap Aco

2o

10000.rgg.0.5.0 0.5 490.5 388.2 816.0 792.9 734.0 405.7 824.8 796.3 810.1 732.3 704.3

10000.rgg.0.5.1 0.5 461.1 483.2 835.2 820.0 830.1 396.6 860.6 818.5 770.2 790.5 715.7

10000.rgg.0.5.2 0.5 386.1 451.3 828.9 809.7 677.7 428.7 825.3 881.4 851.3 820.6 752.3

10000.rgg.0.5.3 0.5 398.7 449.3 869.2 830.8 735.1 551.9 800.5 760.4 777.8 779.3 726.4

10000.rgg.0.5.4 0.5 416.6 553.0 836.1 751.4 771.7 597.1 809.5 739.4 813.3 742.2 732.7

10000.rgg.0.5.5 0.5 505.5 425.2 803.4 691.8 790.5 521.8 812.6 839.5 793.9 669.5 663.0

10000.rgg.0.5.6 0.5 483.2 439.3 815.6 826.7 783.0 470.8 809.1 803.4 846.8 711.8 692.6

10000.rgg.0.5.7 0.5 352.1 456.6 835.9 734.5 745.6 530.3 814.8 788.4 786.3 695.0 736.0

10000.rgg.0.5.8 0.5 396.1 506.5 813.2 767.7 758.4 466.4 835.6 803.6 831.8 745.7 689.9

10000.rgg.0.5.9 0.5 444.4 472.7 798.7 804.8 747.9 613.0 819.7 834.4 785.0 772.7 764.1

10000.rgg.1.0.0 1.0 539.6 535.1 666.4 675.5 632.5 517.2 708.1 729.1 687.2 715.2 697.6

10000.rgg.1.0.1 1.0 409.6 529.5 654.2 704.3 673.3 497.5 661.8 677.8 683.0 688.1 692.1

10000.rgg.1.0.2 1.0 597.3 533.7 564.1 662.8 701.0 518.0 693.7 709.2 747.9 709.0 671.2

10000.rgg.1.0.3 1.0 470.1 533.3 614.5 678.0 685.3 597.9 767.0 665.7 638.6 630.8 650.6

10000.rgg.1.0.4 1.0 495.1 528.1 627.5 804.9 633.7 626.3 760.5 780.9 752.7 615.0 670.6

10000.rgg.1.0.5 1.0 450.0 542.1 601.5 715.5 653.3 500.8 680.6 725.9 621.0 707.8 617.6

10000.rgg.1.0.6 1.0 485.9 542.1 596.2 748.9 658.5 461.0 729.3 698.3 749.9 711.4 614.7

10000.rgg.1.0.7 1.0 540.7 532.1 659.9 745.6 653.1 491.2 703.9 754.0 736.9 624.6 669.9

10000.rgg.1.0.8 1.0 531.8 535.0 533.0 686.8 709.0 626.5 635.9 736.5 725.7 672.6 643.3

10000.rgg.1.0.9 1.0 524.3 532.2 544.5 732.5 710.2 486.3 661.1 730.4 705.6 667.1 676.3

10000.rgg.5.0.0 5.0 252.1 890.4 325.9 478.3 476.9 404.5 444.9 481.8 642.7 411.0 454.9

10000.rgg.5.0.1 5.0 411.0 840.6 200.8 535.7 589.3 435.3 567.7 505.1 560.9 537.3 585.6

10000.rgg.5.0.2 5.0 276.4 872.5 321.8 558.7 568.1 588.3 631.7 546.3 721.0 579.2 533.5

10000.rgg.5.0.3 5.0 385.6 845.2 191.0 611.0 509.8 482.4 643.0 550.4 547.0 484.7 391.6

10000.rgg.5.0.4 5.0 296.4 866.7 202.3 471.2 528.4 505.1 537.9 436.8 521.9 440.2 381.7

10000.rgg.5.0.5 5.0 308.1 834.5 228.5 514.6 521.1 490.6 595.9 656.4 563.6 405.8 499.2

10000.rgg.5.0.6 5.0 267.6 837.9 358.9 534.4 527.8 504.4 544.1 556.9 540.2 349.4 624.0

10000.rgg.5.0.7 5.0 304.2 873.8 237.1 455.9 607.2 517.7 710.7 518.6 703.6 517.6 498.8

10000.rgg.5.0.8 5.0 203.2 857.0 301.1 431.5 599.7 479.7 572.1 451.1 545.3 472.1 534.1

10000.rgg.5.0.9 5.0 255.4 869.4 299.1 507.9 548.8 491.6 542.7 509.1 615.0 519.6 593.7



118 Chapter 4 Application to the MDS Problem



119

CHAPTER 5

APPLICATION TO THEMAXIMUM SATISFIABILITY

PROBLEM

5.1 Introduction

This chapter describes the application of our negative learning Aco approach

to the Maximum Satisfiability problem (MaxSAT) [113, 114], which differs

substantially from the problems considered in Chapter 3 and Chapter 4. Given a

multiset of clauses, where each clause is a disjunction of Boolean literals, the goal

of MaxSAT is to find a truth assignment that maximizes the number of satisfied

clauses or, equivalently, that minimizes the number of unsatisfied clauses.

This work aims to prove the general applicability of our negative learning Aco

framework by (1) implementing the approach to an optimization problem that has

different characteristics than the problems considered to date, and (2) exploring

other options for the additional algorithmic component that provides negative

feedback to the main Aco algorithm. There are only a few Aco approaches

in the literature for MaxSAT. Therefore, this work not only makes significant

contributions to our negative learning Aco framework but also to the use of Aco

for MaxSAT solving.

In earlier works we proved that our negative learning Aco approach works

very well with Cplex and MMAS as additional algorithmic components that

provide negative feedback to Aco [101, 104]. In this work, we take a step

further and consider two state-of-the-art MaxSAT solvers, SATLike-c(w) [115]

and SlsMcs [115], as additional algorithmic components. The empirical results

show that our approach also performs very well with these new algorithmic

components. Moreover, the experimental investigation shows that all our

negative learning Aco variants significantly outperform the baseline Aco, Cplex,

andMaxSAT solvers. Therefore, the obtained results provide additional evidence

of the general applicability and the effectiveness of our negative learning Aco

approach. In particular, it might be very interesting to see for the MaxSAT

community that our approach can be seen as a general framework for the



120 Chapter 5 Application to the MaxSAT Problem

improvement of existing MaxSAT solvers. Moreover, considering our findings,

we believe that this algorithmic framework might be very useful also for other

combinatorial optimization approaches.

5.2 The Maximum Satisfiability Problem

MaxSAT is an NP-hard optimization problem which can be stated as follows.

Given is a set of n Boolean variablesX = {x1, x2, . . . , xn}. A clause is a disjunction

of literals and each literal is either a variable xi (that is a positive literal) or its

negation x̄i (that is a negative literal). The variable xi can take the truth value

0 for false or 1 for true. A Conjunctive Normal Form (CNF) formula φ is a

conjunction of a set of m clauses C = {c1, c2, . . . , cm}. A valid solution S to a

MaxSAT problem is in the form of a complete truth assignment to all variables

in X . The optimization objective of MaxSAT is to satisfy as many clauses in φ as

possible.

Weighted MaxSAT is a variant of MaxSAT in which each clause has an

associated positive weight and its optimization objective is to maximize the sum

of weights of the satisfied clauses.

5.2.1 ILP Model for the MaxSAT

A standard integer linear programming model for Weighted MaxSAT can be

stated as follows [114]:

max

∑
zj∈Z

wj.zj (5.1)

subject to the constraints:∑
i∈I+j

xi +
∑
i∈I−j

(1− xi) ≥ zj ∀zj ∈ Z (5.2)

zj ∈ {0, 1} ∀zj ∈ Z (5.3)

xi ∈ {0, 1} ∀xi ∈ X (5.4)

The model consists of a set Z of binary variables z1, z2, . . . , zm for each

corresponding clause in C. Variable zj takes value 1 if clause cj is satisfied;

otherwise it takes value 0. The sets I+j and I−j contain the positive and negative

literals indexes in clause cj , respectively. Parameter wj represents the weight

of clause cj . We implemented all the approaches in this work for unweighted

MaxSAT. Therefore, all the clauses have weight 1. The objective function (5.1)



Section 5.2 The Maximum Satisfiability Problem 121

counts the number of satisfied clauses and the restriction (5.2) ensures that each

satisfied clause has at least one satisfied literal.

5.2.2 Existing Approaches to MaxSAT

There exist only a few Aco approaches (e.g. [132–135]) for solving MaxSAT,

despite its practical relevance. The community working on satisfiability testing,

for example, has solved challenging optimization problems by first encoding

them as MaxSAT instances and then solving the resulting encodings with a

MaxSAT solver. Nowadays, MaxSAT offers a competitive generic problem

solving formalism for combinatorial optimization. For example, MaxSAT

has been applied to solve optimization problems in domains as diverse as

bioinformatics [136, 137], combinatorial testing [138], community detection in

complex networks [139], diagnosis [140], planning [141], scheduling [142] and

team formation [143]. Moreover, the MaxSAT community holds an annual

MaxSAT Evaluation (MSE) since 2006 [115, 144]. This event has promoted the

implementation of highly optimized MaxSAT solvers and the creation of a wide

collection of MaxSAT instances from different domains. Thus, MaxSAT is a

suitable test problem to validate the general applicability of the negative learning

Aco approach in an extremely competitive scenario.

Negative learning Aco has not been used so far to solve MaxSAT. Despite

being a state-of-the-art metaheuristic, Aco itself has been applied just a few times

to MaxSAT. The first Aco application was due to Drias and Ibri [133], who used a

variant ofAco, knownasAntColonySystem (ACS) [12], to solveweightedMaxSAT.

This algorithm works by generating an initial solution to which a number of

successive variable flips are applied. Drias and Ibri also added parallelization to

their sequential ACS technique by using synchronous and asynchronous methods,

but the empirical results showed that their algorithm did not outperform the

existing approaches.

Another Aco implementation for MaxSAT was due to Pinto et al. [134]. They

used an ACS variant to solve two unweighted and three weighted types of static

and dynamic MaxSAT instances. Their implementation works by constructing

solutions in two phases: (1) variable selection, which is done randomly, and (2)

value selection, which is based on a heuristic and on pheromone values. This Aco

variant outperforms the baseline local search algorithm [145, 146]. The authors,

however, admitted that WalkSAT [147, 148] and other native MaxSAT solvers

were yet a substantial challenge for their proposal.

Villagra andBaran [135] developedMax-Min-SAT, a versionofAco specifically

designed to solve MaxSAT. This algorithm borrowed the adaptive fitness function



122 Chapter 5 Application to the MaxSAT Problem

from genetic algorithms and is available in three variants: (1) Aco
Saw

, which uses

the step-wise adaptation of weights, (2) Aco
Rf
, which implements refining functions,

and (3) Aco
Rfsaw

, which employs both the step-wise adaptation of weights and

refining functions. An empirical comparison on the basis of 50 randomMax-3SAT

instances showed that Villagra and Baran’s approach did not outperform the

WalkSAT MaxSAT solver.

The satisfiability testing community has been very active in the development

of MaxSAT solvers. As a result, their performance has improved dramatically in

the last years, as witnessed by the results of the different editions of the MaxSAT

Evaluation. The efforts havemainly focused on developing local search and exact

MaxSAT solvers.

Local search MaxSAT solvers start from an initial complete assignment and,

at each step, they flip the Boolean value of a selected variable to find a better

solution using a heuristic. The most critical point of such solvers is that they can

be trapped in local optima, and so they must incorporate suitable strategies to

escape from local optima. Among the best performing solvers, we find Dist [149],

CCEHC [150], SATLike [151] and SATLike3.0 [152].

There are twomain groups of exactMaxSAT solvers: branch-and-bound (BnB)

and SAT-based solvers. BnB MaxSAT solvers implement the branch-and-bound

scheme and are competitive on random and some types of crafted instances. At

each node of the search tree, they apply some inference rules and compute a

lower bound by detecting disjoint inconsistent subsets of soft clauses with unit

propagation [153, 154]. Representative BnB solvers are MaxSatz [155, 156] and

Ahmaxsat [157]. BnB MaxSAT solvers can become competitive on industrial

instances by incorporating the recently defined clause learning mechanism

defined in [158].

SAT-based MaxSAT solvers proceed by reformulating the MaxSAT

optimization problem into a sequence of SAT decision problems [113] and

are particularly competitive on industrial instances. These solvers could still

be divided into three subgroups: model-guided, core-guided and Minimum

Hitting Sets (MHS-)guided solvers. Model-guided approaches reduce the

problem of deciding whether there exists an assignment for the MaxSAT

instance with a cost less than or equal to a given k to SAT, and successively

decrease k until an unsatisfiable SAT instance is found. Examples of such

solvers are SAT4J-Maxsat [159] and Pacose [160]. Core-guided and MHS-guided

approaches consider a MaxSAT instance as a SAT instance and call a CDCL

SAT solver to identify an unsatisfiable subset of soft clauses, called a core.

Then, they relax this core and solve the relaxed instance with a CDCL SAT



Section 5.3 Negative Learning Aco for MaxSAT 123

solver to identify another core, repeating this process until deriving a satisfiable

instance. The difference between them is that core-guided solvers relax a core

using cardinality constraints, while MHS-guided solvers remove one clause

from each detected core so that the number of different clauses removed from

the cores is minimized by solving a minimum hitting set instance with an

integer programming solver. The solvers Open-WBO [161], WPM3 [162] and

RC2 [163] are representative core-guided solvers, and the solvers MHS [164] and

MaxHS [165] are representative MHS-guided solvers.

5.3 Negative Learning Aco for MaxSAT

Our negative learning Aco for MaxSAT is—as in the previous chapters—based

on a MMAS variant implemented in the hypercube framework [14] as the

baseline algorithm. Depending on the type of additional algorithmic component

that is used for providing negative feedback to the main Aco algorithm,

we constructed four variants: (1) Aco-Sat
+
neg, which uses the MaxSAT solver

SATLike-c(w); (2) Aco-Sls
+
neg, which uses the MaxSAT solver SlsMcs; and (3)

Aco
+
neg, respectively Aconeg, which apply the integer linear programming (ILP)

solver Cplex. Aco-Sat
+
neg, Aco-Sls

+
neg and Aco

+
neg take benefit from both the

positive and negative feedback information obtained by the solvers, whereas

Aconeg only uses Cplex as negative feedback provider. Algorithm 5.1 displays the

pseudo-code of the general algorithmic framework of all these variants.

Again, for thebenefit of the readerwe repeatmuchof thegeneral descriptionof

the baseline algorithm here. Following the framework ofMMAS, we keep three

solutions at any time: (1) the best solution constructed at the current iteration

(Sib), (2) the best solution found since the last restart of the algorithm (Srb), and

(3) the best overall solution (Sbsf ). A convergence factor cf and a Boolean control

variable bs_update are used tomanage the pheromone update. Both Srb and Sbsf

are initialized as empty sets (line 3 inAlgorithm 5.1). Moreover, cf and bs_update

are initialized to 0 and false, respectively.

For the application to MaxSAT, the algorithm applies a standard pheromone

model T that consists of pheromone τ(〈xi,j〉) ≥ 0 for each Boolean value j ∈
{0, 1} to be assigned to each Boolean variable xi. In addition to the standard

pheromonemodel, the algorithm also employs a negative pheromonemodel T neg

that consists of negative pheromone τneg(〈xi,j〉) for each Boolean value j to be assigned

to each Boolean variable xi. The pheromones in T are initialized to 0.5 while the

pheromones in T neg
are initialized to τmin = 0.001 at the start of the algorithm by



124 Chapter 5 Application to the MaxSAT Problem

Algorithm 5.1 Negative Learning Aco for unweighted MaxSAT

1: input: a MaxSAT problem instance consisting of a set C and a set X
2: parameters: na, ρ, drate, ρ

neg
, tsub

3: Sbsf := null, Srb := null, cf := 0, bs_update := false

4: InitializePheromoneValues(T , T neg)
5: while termination condition is not met do

6: S iter := ∅
7: for k = 1, . . . , na do
8: Sk := Construct_Solution(T , T neg)
9: S iter := S iter ∪ {Sk}
10: end for

11: Ssub := SolveSubinstance(S iter)
12: Sib := argmax{f(S) | S ∈ S iter ∪ {Ssub}}
13: if Sib better than Srb then Srb := Sib

14: if Sib better than Sbsf then Sbsf := Sib

15: ApplyPheromoneUpdate(T , T neg
, cf , bs_update, Sib, Srb, Sbsf , Ssub

)

16: cf := ComputeConvergenceFactor(T )
17: if cf > 0.999 then

18: if bs_update = true then

19: Srb := null, and bs_update := false

20: InitializePheromoneValues(T , T neg)
21: else

22: bs_update := true

23: end if

24: end if

25: end while

26: output: Sbsf , the best solution found by the algorithm

function InitializePheromoneValues(T , T neg) (line 4 of Algorithm 5.1). Based

on greedy and pheromone information, then na solutions are generated at each

iteration according to function Construct_Solution(T , T neg) (lines 6 – 10 of

Algorithm 5.1). Further explanations on how this function works are given after

this general description.

Figure 5.1 shows an illustrative example on how the negative learning is

added to the baseline Aco in the context of the MaxSAT problem. The example

shows that five solutions generated in the current baseline Aco iteration are

added to set S iter
. Subsequently, function SolveSubinstance(S iter) (line 11 of

Algorithm 5.1) builds a sub-instance Isub in the form of aMaxSAT partial solution.

The pre-assigned variables in this partial solution are stored in set X ′ ⊆ X , which

contains the variables that have been assigned the same truth value in each

Sk ∈ S iter
. In the illustrative example in Fig. 5.1, variables x2, x5, and x6 in

the S iter
are assigned values 1, 0, and 1 values, respectively, in each of the five

solutions. Consequently, from seven variables in the sub-instance Isub, variables



Section 5.3 Negative Learning Aco for MaxSAT 125

Fig. 5.1 Illustrative exampleof thenegative learningAco approach for theMaxSAT

problem

x2, x5, and x6 are pre-assigned with values 1, 0, and 1, respectively. With this,

the additional algorithmic component can only work on the remaining variables

whose values are still unassigned.

Depending on the specific variant of the negative learning Aco to be applied,

the function then chooses either Cplex or one of the two MaxSAT solvers for

solving sub-instance Isub. After trying to solve the sub-instance for a maximum

time of tsub CPU seconds, the function returns a solution Ssub
. Next, Ssub

is

comparedwith the solutions in S iter
. The solutionwith the best objective function

value becomes the iteration-best solution Sib (line 12 of Algorithm 5.1). Note that,

in the case of algorithm variant Aconeg, S
sub

is excluded from the set of solutions

fromwhich Sib is selected. Hence, in this variant, Ssub
is not used for updating the

three solutions maintained by the algorithm. Afterwards, the restart-best solution

Srb and the best-so-far solution are updatedwith Sib (lines 13–14 of Algorithm 5.1).

Finally, the pheromone update and the calculation of the convergence factor are

implemented by functions ApplyPheromoneUpdate(T , T neg
, cf , bs_update, Sib,

Srb, Sbsf , Ssub
) and ComputeConvergenceFactor(T ) (lines 15–16 ofAlgorithm5.1),

respectively. If cf > 0.999 and bs_update = true, the algorithm is restarted

(lines 17–24 of Algorithm 5.1). In the following, the functions in the algorithm

are described in more detail.

5.3.1 Solution Construction

Function Construct_Solution(T , T neg) generates a new solution Sk in two

phases: (1) variable selection and (2) value selection. In the first phase, a variable

xi is taken from the set X̂ ⊆ X that contains the variables that have not been



126 Chapter 5 Application to the MaxSAT Problem

assigned a value in solution Sk. The probability p(xi) of selecting variable xi is

calculated according to Eqn. 5.5.

p(xi)
phase−1 :=

ηi∑
xj∈X̂ ηj

(5.5)

where ηi is the greedy information for variable selection. More specifically, ηi is

the number of occurrences of the variable in the current instance. Afterwards, a

random number r ∈ [0, 1] is generated. The variable that has the highest value

of p(xi) in Eqn. 5.5 is directly selected if r ≤ drate. Otherwise, the variable is

randomly selected using roulette wheel selection. Hereby, drate is the so-called

determinism rate.

In the second phase of the solution construction, a truth value is assigned

to the selected variable xi, in a way similar to the one of the first phase. The

probability of assigning truth value j to variable xi is calculatedwith the Eqn. 5.6.

p(j)phase−2 :=
η(〈xi,j〉) · τ(〈xi,j〉) · (1− τ

neg
(〈xi,j〉))∑

s∈{0,1} η(〈xi,k〉) · τ(〈xi,k〉) · (1− τ
neg
(〈xi,k〉))

, (5.6)

where

η(〈xi,j〉) :=
1

1 + cost(Sk, {〈xi, j〉})− cost(Sk)
. (5.7)

The greedy information η(〈xi,j〉) for the truth value selection in Eqn. 5.7 is

inversely proportional to the number of new constraint violations in the partial

solution Sk. Hereby cost(Sk) represents the number of constraint violations in the

partial solution Sk, while cost(Sk, {〈xi, j〉}) represents the number of constraint

violations in the partial solution Sk if truth value j is assigned to variable xi.

These two phases of the solution construction are repeated until all xi ∈ X are

assigned a truth value.

5.3.2 Pheromone Update and Convergence Factor

Function ApplyPheromoneUpdate(T , T neg
, cf , bs_update, Sib, Srb, Sbsf , Ssub

)

updates the standard pheromone model T and the negative pheromone model

T neg
at each iteration. The standard pheromone model T is updated in the same

way as in allMMAS algorithms implemented in the hypercube framework. The



Section 5.3 Negative Learning Aco for MaxSAT 127

value of each standard pheromone τ(〈xi,j〉) is updated with the Eqn. 5.8.

τ(〈xi,j〉) := τ(〈xi,j〉) + ρ · (ξ(〈xi,j〉) − τ(〈xi,j〉)) (5.8)

where:

ξ(〈xi,j〉) := κib ·∆(Sib, xi, j) + κrb ·∆(Srb, xi, j) + κbs ·∆(Sbsf , xi, j) (5.9)

Theweights κib, κrb, and κbs in Eqn. 5.9 represent the influence of solutionsSib, Srb,

and Sbsf , respectively, on the amount of pheromone deposit, and ρ is the learning

rate. The values of these weights are determined based on the states of cf and

bs_update as shown inTable 2.1. Note that in each state, the sumofκib, κrb, andκbs

is equal to 1. Furthermore, ∆(S, xi, j) evaluates to 1 if, and only if, the truth value

j is assigned to variable xi in the corresponding solution; otherwise, ∆(S, xi, j)

evaluates to 0. For preventing the algorithm to reach complete convergence, the

pheromone values are limited in the range of τmin = 0.001 to τmax = 0.999. Any

pheromone that falls below τmin is set back to τmin and anypheromone that exceeds

τmax is set back to τmax.

Function ApplyPheromoneUpdate(T , T neg
, cf , bs_update, Sib, Srb, Sbsf , Ssub

)

also updates negative pheromones with a similar mechanism as the one used

for the standard pheromone update. However, in the case of the negative

pheromone values, Eqn. 5.8 is only used to update the negative pheromone

values corresponding to the truth values of variables in X \X ′, that is, variables
that did not have already a pre-assigned value in the sub-instance Isub. In the

illustrative example in Fig. 5.1, negative pheromone update is only applied to the

truth values of variables x1, x3, x4, and x7 since their values are not pre-assigned

in the sub-instance Isub. In this example, the truth values 1, 0, 1, and 1 are assigned

to variables x1, x3, x4, and x7, respectively. As a consequence of this assignment,

negative pheromone increase are given to the truth values 0, 1, 0, and 0 which are

not assigned to variables x1, x3, x4, and x7, respectively. In general, the update

formula for the negative pheromone values is presented in Eqn. 5.10.

τneg(〈xi,j〉) := τneg(〈xi,j〉) + ρneg · (ξneg(〈xi,j〉) − τ
neg
(〈xi,j〉)) (5.10)

Hereby, ρneg is the negative learning rate. Furthermore, for all xi ∈ X \X ′, ξneg(〈xi,0〉)

is set to 1 if xi has value 1 in solution Ssub
, to 0 otherwise. Moreover, ξneg(〈xi,1〉) is set

to 1 if xi has value 0 in solution Ssub
, to 0 otherwise. Hence, our algorithm gives

penalty in the form of a negative pheromone increase to each Boolean value that

is not assigned in Ssub
to a variable xi ∈ X \X ′.



128 Chapter 5 Application to the MaxSAT Problem

Function ComputeConvergenceFactor(T ) calculates the value of cf needed to

regulate the update of the standard pheromone model T by using Eqn. 5.11.

cf := 2


∑
τ∈T

max{τmax − τ, τ − τmin}

|T | · (τmax − τmin)

− 0.5

 (5.11)

With this equation, the value of cf is equal to zero when all pheromone values

are initialized to 0.5. On the contrary, the value of cf is equal to one when all

pheromone values are either τmin or τmax. In the rest of the conditions, the value

of cf is between 0 and 1.

5.4 Experimental Evaluation

Weperformed the experimental evaluation of our negative learningAco variants,

the baseline Aco algorithm without negative learning, the ILP solver Cplex, and

the two chosen MaxSAT solvers on a cluster of machines with two Intel
®
Xeon

®

Silver 4210 CPUs with 10 cores of 2.20 GHz and 92 GB of RAM. The version of

Cplex used by Aco variants Aco
+
neg and Aconeg, as well as in standalone model,

was 12.10, in one-threadedmode. TheMaxSAT solvers SATLike-c(w) and SlsMcs

used by variants Aco-Sat
+
neg and Aco-Sls

+
neg are taken from https://maxsat-e

valuations.github.io/2020/descriptions.html (accessed on the 3rd of June

2021).

5.4.1 Problem instances

First, we decided to compare our negative learning Aco approaches with the

Aco approaches for MaxSAT by Pinto et al. [134] and Villagra and Baran [135].

Next, we also want to compare our approaches with the state-of-the-art MaxSAT

solvers SATLike-c(w) and SlsMcs from theMaxSAT Evaluation 2020 (MSE 2020).

For this purpose, we tested our negative learning Aco variants on the problem

instances from [134, 135] as well as on a wide range of problem instances from

MSE 2016 (http://maxsat.ia.udl.cat/benchmarks/, accessed on the 21st of

April 2021) and MSE 2020 (https://maxsat-evaluations.github.io/2020/be

nchmarks.html, accessed on the 3rd of June 2021).

The specifications of these MaxSAT instances are given in Table 5.9 (Pinto

et al.), Table 5.11 (Villagra and Baran), and Table 5.12 (MSE 2016 and MSE

2020), where nl, nx, and nc denote the number of literals, variables and clauses,

respectively. From theworkof Pinto et al., we took twounweighted instancesused

https://maxsat-evaluations.github.io/2020/descriptions.html
https://maxsat-evaluations.github.io/2020/descriptions.html
http://maxsat.ia.udl.cat/benchmarks/
https://maxsat-evaluations.github.io/2020/benchmarks.html
https://maxsat-evaluations.github.io/2020/benchmarks.html


Section 5.4 Experimental Evaluation 129

to test their Aco approach for the static MaxSAT problem. Each of these instances

has three literals per clause, 250 variables, and 1065 clauses. The MaxSAT

instances from Villagra and Baran consist of phase-transition instances (instances

1–25 in Table 5.11) and over-constrained instances (instances 26–50 in Table 5.11).

Each of these 50 instances has three literals per clause and 50 variables. Each

phase-transition instance has 215 clauses while each over-constraint instance has

323 clauses. The chosen instance set fromMSE 2020 andMSE 2016 consists of four

groups: (1)maxcut, (2) highgirth, (3) ramsey, and (4) set-covering. In Table 5.12,

we sort these 113 instances according to the number of literals, the number of

variables, and the number of clauses. Overall, these instances vary considerably

in terms of size and structure.

5.4.2 Algorithm tuning and test settings

The baseline Aco as well as the negative learning variants require well-working

configurations of their parameter values. We used the scientific tuning software

irace [123] for parameter tuning purposes. In particular, we carried out separate

tuning runs for each of the considered MaxSAT instance groups. Concerning the

instances by Pinto et al., we chose instance number 1 from Table 5.9 for parameter

tuning. The parameter values obtained for this instance group are presented in

Table 5.1. Pinto et al. employed an Aco approach using a single ant that was

evaluated for 100 runs and each run consisted of 100 iterations. Consequently,

we limited our algorithms to match the number of their Aco algorithm’s solution

constructions. In particular, we limited the execution of Aco
+
neg, Aconeg, and Aco

to 6, 14, and 50 iterations, respectively.

Table 5.1 Parameter values obtained for all Aco algorithms concerning the Pinto

et al. instances

Algorithm na ρ drate ρneg tsub

1 Aco
+
neg 16 0.1 0.6 0.5 11

2 Aconeg 7 0.1 0.4 0.5 3

3 Aco 2 0.4 0.2 n/a n/a

Concerning the instances of Villagra and Baran, we chose the first

five instances from each of the two instance types (phase-transition and

over-constrained) for tuning. The parameter values obtained for this instance

group are presented in Table 5.2. Villagra and Baran employed 10 ants in their

Aco variants and limited the executions to 10000 iterations for each of the 10 test

runs for every instance. Adjusting to their test setting, we limited the execution

of Aco
+
neg, Aconeg, and Aco to 20000, 16666, and 8333 iterations, respectively.



130 Chapter 5 Application to the MaxSAT Problem

Table 5.2 Parameter values obtained for all Aco algorithms concerning the

Villagra and Baran instances

Algorithm na ρ drate ρneg tsub

1 Aco
+
neg 5 0.1 0.7 0.4 18

2 Aconeg 6 0.1 0.7 0.2 17

3 Aco 12 0.1 0.2 n/a n/a

As shown in Table 5.12, the instance set selected from the MSE 2016 and

MSE 2020 Evaluations is very diverse in its specifications. For tuning purposes,

we divided these instances into 8 sub-groups based on their type and size: (1)

maxcut1, (2) maxcut2, (3) highgirth, (4) ramsey1, (5) ramsey2, (6) setcov1, (7)

setcov2, and (8) setcov3. We took the first two instances from each of these

sub-groups for the tuning process. As an exception, we took the first two

instances from each configuration of nl, nx, and nc for the sub-group highgirth.

Therefore, for this sub-group we used a total of eight instances for tuning. The

obtained parameter values are presented in Table 5.3 (Aco-Sat
+
neg), Table 5.4

(Aco-Sls
+
neg), Table 5.5 (Aco

+
neg), Table 5.6 (Aconeg), and Table 5.7 (Aco). We

limited the execution time of all the algorithms tested on this instance group

to 300 seconds, corresponding to one of the time limits used for the MSE 2020

(https://maxsat-evaluations.github.io/2020/rankings.html, accessed on

the 3rd of June 2021).

5.4.3 Results

The empirical results of all algorithms applied to the instances of Pinto et al. are

presented in Table 5.9. Note that the results are provided in terms of the average

number of satisfied clauses obtained within 100 runs, hence, a higher value

represents a better result. Moreover, the results under the header AcoPinto are

the results of the Aco version from Pinto et al. [134]. Additionally, results marked

in bold correspond to the best result of the comparison for each table row. In

summary, the results show that Aco
+
neg is the best algorithm for these instances.

Theyalso show that even thoughAconeg is outperformedbyCplex, it still performs

significantly better thanAcoPinto. Compared toAco, each of our negative learning

approaches produces a remarkable improvement over the baseline algorithm.

Table 5.10 shows the empirical results of all the algorithms applied to the

instances of Villagra and Baran in a summarized way. In particular, results

are averaged over the 25 instances of each of the two instance sub-groups. In

addition, the number of instances solved to optimality for each sub-group are

given in brackets after the corresponding average results. In the context of these

https://maxsat-evaluations.github.io/2020/rankings.html


Section 5.4 Experimental Evaluation 131

Table 5.3 Parameter values obtained for Aco-Sat
+
neg, MSE 2016 and 2020 instances

Instance Group na ρ drate ρneg tsub

1 maxcut1 16 0.5 0.7 0.3 14

2 maxcut2 17 0.3 0.7 0.3 71

3 highgirth 15 0.1 0.6 0.5 85

4 ramsey1 6 0.3 0.8 0.2 132

5 ramsey2 20 0.4 0.1 0.2 137

6 setcov1 20 0.2 0.8 0.4 64

7 setcov2 19 0.4 0.9 0.4 139

8 setcov3 13 0.4 0.7 0.4 119

Table 5.4 Parameter values obtained for Aco-Sls
+
neg, MSE 2016 and 2020 instances

Instance Group na ρ drate ρneg tsub

1 maxcut1 16 0.5 0.7 0.3 14

2 maxcut2 17 0.3 0.7 0.3 71

3 highgirth 11 0.3 0.3 0.2 2

4 ramsey1 6 0.3 0.8 0.2 132

5 ramsey2 20 0.4 0.1 0.2 137

6 setcov1 20 0.2 0.8 0.4 64

7 setcov2 19 0.4 0.9 0.4 139

8 setcov3 13 0.4 0.7 0.4 119

Table 5.5 Parameter values obtained for Aco
+
neg, MSE 2016 and 2020 instances

Instance Group na ρ drate ρneg tsub

1 maxcut1 15 0.4 0.0 0.3 20

2 maxcut2 10 0.4 0.0 0.3 25

3 highgirth 7 0.1 0.4 0.4 3

4 ramsey1 3 0.2 0.8 0.3 3

5 ramsey2 4 0.1 0.2 0.3 2

6 setcov1 20 0.1 0.9 0.3 10

7 setcov2 6 0.3 0.6 0.5 27

8 setcov3 19 0.2 0.9 0.1 29

Table 5.6 Parameter values obtained for Aconeg, MSE 2016 and 2020 instances

Instance Group na ρ drate ρneg tsub

1 maxcut1 2 0.4 0.9 0.5 10

2 maxcut2 2 0.1 0.9 0.3 91

3 highgirth 7 0.1 0.4 0.5 18

4 ramsey1 16 0.3 0.1 0.3 1

5 ramsey2 16 0.3 0.0 0.4 1

6 setcov1 3 0.2 0.9 0.4 67

7 setcov2 18 0.4 0.9 0.4 56

8 setcov3 3 0.2 0.9 0.1 71



132 Chapter 5 Application to the MaxSAT Problem

Table 5.7 Parameter values obtained for Aco, MSE 2016 and 2020 instances

Instance Group na ρ drate ρneg tsub

1 maxcut1 19 0.2 0.9 n/a n/a

2 maxcut2 5 0.1 0.9 n/a n/a

3 highgirth 13 0.1 0.3 n/a n/a

4 ramsey1 10 0.3 0.1 n/a n/a

5 ramsey2 12 0.5 0.0 n/a n/a

6 setcov1 15 0.2 0.9 n/a n/a

7 setcov2 19 0.4 0.9 n/a n/a

8 setcov3 20 0.4 0.9 n/a n/a

instances, our negative learning Aco variants are compared to theMaxSAT solver

WalkSAT as well as the Aco variants from Villagra and Baran: Aco
Saw

, Aco
Rf
,

and Aco
Rfsaw

. Each result in the table indicates the average number of satisfied

clauses obtained within 10 algorithm runs. Additionally, we made use of the R

package scmamp [124] to facilitate the interpretation of the results in Table 5.11.

This statistical tool works as follows. First, the results from all algorithms are

compared simultaneously using the Friedman test for obtaining the rejection to

the hypothesis that all the algorithms perform equally. Next, a set of pairwise

comparisons areperformedusing theNemenyipost-hoc test [125] and, eventually,

the output of this statistical analysis is presented as a critical difference (CD)

plot in Fig. 5.2. The horizontal axis of the CD plot represents the range of

algorithm ranks, while each of the vertical lines represents the average rank of the

corresponding algorithm. Bold horizontal lines connecting algorithm markers

means that the corresponding algorithms performed statistically equivalent i.e.

the critical difference is not greater than the significance level of 0.05. Fig. 5.2

2 3 4 5 6 7 8

Fig. 5.2 Critical difference plot concerning the results of the test on Villagra and

Baran’s instances



Section 5.4 Experimental Evaluation 133

shows that all of our negative learning approaches, as well as the baseline Aco,

perform statistically better than each of theAco versions fromVillagra and Baran.

Furthermore, all our Aco versions perform statistically equivalent to theMaxSAT

solverWalkSAT and the ILP solver Cplex for this instance group.

Table 5.12 presents the results of all the algorithms applied to the selected

MSE 2016 andMSE 2020 instances. Note that this table provides the best result of

each (stochastic) algorithm, while the average results are presented in Table 5.13.

Also note that the results in Table 5.12 are given in terms of the number of

violated clauses. Thus, a lower value represents a better result. For facilitating

the interpretation of the results obtained for this instance group, we additionally

present the data from Table 5.12 in a summarized way in Table 5.8. In addition,

we conducted the same statistical analysis with scmamp (as explained above) to

the data from Table 5.12 and present the result as a CD plot in Fig. 5.3.

In particular, Table 5.8 shows the number of instances for which each one

of the negative learning Aco variants performs better, worse, or equally with

its individual algorithmic components. These summarized results indicate that,

in general, each of our negative learning Aco variants improves both over the

baseline Aco and over each of the solvers that are used internally for solving

sub-instances. Among all the negative learningAcovariants,Aco-Sat
+
neg achieved

the highest number of improvements over the baseline Aco. It improves in 108

of 113 problem instances. Compared with the internally used MaxSAT solver

SATLike-c(w), however, it improves over the result of SATLike-c(w) only in

11.5% of all the problem instances. Nevertheless, Aco-Sat
+
neg can be called the

best algorithm for this instance group according to the CD plot in Fig. 5.3, even

though no statistical difference can be detected with respect to SATLike-c(w)

and Aco
+
neg. Furthermore, all remaining negative learning Aco variants also

significantly improve over both the baseline Aco approach and their internally

Table 5.8 Comparative performance of our negative learning Aco variants with

their individual algorithmic components

Aco variant - component Comparison

better worse equal

1 Aco-Sat
+
neg – SATLike-c(w) 13 9 91

2 Aco-Sat
+
neg – Aco 108 0 5

3 Aco-Sls
+
neg – SlsMcs 87 2 24

4 Aco-Sls
+
neg – Aco 105 1 7

5 Aco
+
neg – Cplex 103 1 9

6 Aco
+
neg – Aco 107 0 6

7 Aconeg – Cplex 87 20 6

8 Aconeg – Aco 88 14 11



134 Chapter 5 Application to the MaxSAT Problem

2 3 4 5 6 7 8

Fig. 5.3Critical difference plot concerning the results of the tests for theMSE 2020

and 2016 instances

used solvers. Even Aconeg, the variant that does not take advantage of the

internally derived Cplex result for updating its own best result, improves over

both the baseline Aco approach and its constituent solver Cplex in the context of

most of the problem instances. Furthermore, the statistical analysis graphically

presented in Fig. 5.3 also shows that Aconeg outperforms the MaxSAT solver

SlsMcs. Hence, this proves the effectiveness of our negative learning strategy.

Moreover, these results indicate an interesting aspect: our negative learning Aco

framework can potentially be used for improving the results of MaxSAT solvers

that are already very successful in standalone-mode.

5.4.4 Search Trajectory Network Analysis

As in the cases of theMDKPandMDSproblems, we used STNplots in this section

to learn something about the algorithms’ behavior. In particular, we provide four

plots that compare STNs composed of the trajectories of five algorithm variants:

the baseline Aco variant and four negative leaning Aco variants. Figures 5.4 and

Fig. 5.5 show STN plots for problem instance HG-4SAT-V150-C1350-100 from

the MSE 2016 while Fig. 5.6 and Fig. 5.7 show the ones for problem instance

scpclr12_maxsat from the MSE 2020.

These STN plots were created by using the technique described in [127] and

the R scripts available at https://github.com/gabro8a/STNs.git. All the data

for these STN plots was collected by applying each of the five algorithm variants

10 times to problem instances HG-4SAT-V150-C1350-100 and scpclr12_maxsat

using the the same parameter value settings used for their performance test. All

STN plots in this chapter were subjected to 90% search space partitioning. See

https://github.com/gabro8a/STNs.git


Section 5.4 Experimental Evaluation 135

l
l

l

l

l

l

l

l

l
l l

l l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll

l

l

ll

l

l
l

l
l

l

l
l

l

l

l

l

l

l

l

l l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 5.4 Search trajectory networks concerning Aco, Aconeg, and Aco
+
neg applied

to problem instance HG-4SAT-V150-C1350-100

Section 3.7.3 for the definition of a STN and the description of a STN plot.

Figure 5.4 shows a comparison between the baseline Aco algorithm and

the negative learning Aco variants Aconeg and Aco
+
neg that use Cplex as their

additional algorithmic component. This plot shows only a small number of

overlaps between trajectories of different algorithm variants. However, we can

see some overlaps (or loops) in the individual trajectories, especially those from

the baseline Aco and Aconeg. In contrast to them, the trajectories of Aco
+
neg have

almost no overlapwith those fromother algorithmvariants or among themselves.

Moreover, the ones fromAco
+
neg aremuch shorter than the trajectories of the other

two algorithm variants. Finally, we can see that two trajectories of Aco
+
neg find

two different optimal solutions.

Figure 5.5 shows an STN plot concerning our three negative learning

Aco variants—Aco
+
neg, Aco-Sls

+
neg, and Aco-Sat

+
neg—that use three different

optimization approaches—Cplex, SlsMcs, and SATLike—as their additional

algorithmic components. We can see that the trajectories of Aco-Sls
+
neg and

Aco-Sat
+
neg have different characteristics than the ones of Aco

+
neg. All trajectories

ofAco-Sat
+
neg obtain some optimal solutions. Most of the trajectories ofAco-Sls

+
neg

converge to a common location in the plot; one of these trajectories then finds an



136 Chapter 5 Application to the MaxSAT Problem

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 5.5 Search trajectory networks concerning Aco
+
neg, Aco-Sls

+
neg, and Aco-Sat

+
neg

applied to problem instance HG-4SAT-V150-C1350-100

optimal solution, different to the one foundbyAco-Sat
+
neg. This finding shows that

bothAco-Sat
+
neg andAco-Sls

+
neg are strongly attracted by two different locations in

the search space. In contrast, the trajectories of Aco
+
neg are distributed in different

locations. Nevertheless, two of its trajectories can find optimal solutions, which

causes that Aco
+
neg performs better than Aco-Sls

+
neg. This analysis is in accordance

with the numerical result comparison in Table 5.12 and Table 5.13, which shows

that Aco-Sat
+
neg exhibits the best performance for this problem instance, followed

by Aco
+
neg and then Aco-Sls

+
neg.

Figure 5.6 shows a comparison among the trajectories of Aco, Aconeg, and

Aco
+
neg applied to problem instance scpclr12_maxsat. The plot shows many

overlaps between trajectories of the three algorithm variants. Interestingly,

the best solution in this comparison is found by a trajectory of Aco
+
neg, located

relatively far from the point of attraction of other trajectories. A similar

observation can also be made in Fig. 5.7. The location of the best solution found

in this comparison is found by a trajectory of Aco-Sls
+
neg in an area which is

apparently not related to areas of local minima in the plot. Accordingly, we

believe that the exploration capability of the algorithm variant plays a more

important role in finding good solutions for this problem instance.



Section 5.5 Experimental Evaluation 137

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 5.6 Search trajectory networks concerning Aco, Aconeg, and Aco
+
neg applied

to problem instance scpclr12_maxsat

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

ll l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l
l
l

Start

End

Best

Shared

Fig. 5.7 Search trajectory networks concerning Aco
+
neg, Aco-Sat

+
neg, and Aco-Sls

+
neg

applied to problem instance scpclr12_maxsat



138 Chapter 5 Application to the MaxSAT Problem

5.5 Conclusions

Ant colony optimization (Aco) was subject to several major improvements and

extensions in its history. Most of these extensions, however, deal exclusively with

the improvement of the positive learning mechanisms. Observing that negative

learning works in synergy with positive learning in nature, several works were

presented in the literature to integrate negative learning into Aco in the past

decades. Most of these works, however, produced limited successes. In previous

work, we introduced a novel strategy for the implementation and use of negative

learning in Aco. In contrast with other negative learning proposals, we made

use of an additional algorithmic component to provide negative feedback to the

main Aco algorithm. Further, we also implemented an effective cooperation

mechanism between the main Aco approach and the additional algorithmic

component through the use of a sub-instance that is not only reduced in size

but that also contains high quality solutions. Our strategy was proven to be

useful for the improvement of the performance of the baseline Aco algorithm in

the context of a range of sub-set selection problems.

In this work, we applied the negative learning Aco strategy to the MaxSAT

problem, an optimization problem which is substantially different from the

problems considered to date. Moreover, this problem is an extremelywell studied

optimization problem for which a wide range of high performance solvers are

available for comparison. Also, Aco approacheswere rarely implemented for this

optimizationproblemandmost of the existing implementations are far frombeing

able to compete with state-of-the-art approaches. Hence, testing our negative

learning proposal on MaxSAT provides a good opportunity to demonstrate the

general applicability as well as the effectiveness of our approach. In addition

to the ILP solver Cplex that we already employed in previous work, we made

use of two high-performance MaxSAT solvers, SATLike-c(w) and SlsMcs, as

new options for the additional algorithmic component to be internally used

with negative learning Aco. In this study, we evaluated the resulting negative

learning Aco variants on three instance groups. In the context of the first two

instance groups, the results show that our negative learningAco variants perform

significantly better than the baseline Aco as well as existing Aco variants from

the literature. In the third instance group, consisting of instances used for recent

MaxSAT evaluations, the obtained results showed that all our negative learning

Aco variants were able to improve over the baseline Aco approach and over each



Section 5.5 Conclusions 139

of the internally used solvers. This is, in our opinion, a very interesting result, as

it shows that high-performance MaxSAT solvers can even be improved by using

them for solving sub-instances within our framework.



1
4
0

C
h
a
p
t
e
r
5

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
a
x
S
A
T
P
r
o
b
l
e
m

Table 5.9 Average results for Pinto’s instances

Instance nl nx nc AcoPinto Cplex Aco
+
neg Aconeg Aco

1 uuf250-01 3 250 1065 1047.20 1062.00 1063.28 1055.88 1040.64

2 uuf250-02 3 250 1065 1043.90 1060.00 1061.92 1053.02 1037.64

Table 5.10 Summary of results for Villagra and Baran’s instances

Instance Type nl nx nc Aco
Saw

Aco
Rf

Aco
Rfsaw

WalkSAT Cplex Aco
+
neg Aconeg Aco

1 Phase

transition

(25 instances)

3 50 215 210.656(0) 212.244(0) 211.184(0) 214.72(25) 214.72(25) 214.72(25) 214.72(25) 214.716(24)

2 Over

constrained

(25 instances)

3 50 323 306.436(0) 314.096(0) 306.964(0) 317.44(25) 317.44(25) 317.44(25) 317.38(22) 317.224(16)

Table 5.11 Average results of all algorithms tested on Villagra and Baran’s instances

Instance nl nx nc Aco
Saw

Aco
Rf

Aco
Rfsaw

WalkSAT Cplex Aco
+
neg Aconeg Aco

1 VB-3SAT-V50-C215-1 3 50 215 211.00 212.40 210.80 215.00 215.00 215.00 215.00 215.00

2 VB-3SAT-V50-C215-2 3 50 215 212.40 212.40 212.10 215.00 215.00 215.00 215.00 215.00

3 VB-3SAT-V50-C215-3 3 50 215 212.50 213.20 214.00 215.00 215.00 215.00 215.00 215.00

4 VB-3SAT-V50-C215-4 3 50 215 211.80 212.60 212.50 215.00 215.00 215.00 215.00 214.90

5 VB-3SAT-V50-C215-5 3 50 215 209.60 211.90 208.60 214.00 214.00 214.00 214.00 214.00

6 VB-3SAT-V50-C215-6 3 50 215 207.20 210.10 208.90 214.00 214.00 214.00 214.00 214.00

7 VB-3SAT-V50-C215-7 3 50 215 209.80 211.20 210.30 215.00 215.00 215.00 215.00 215.00

8 VB-3SAT-V50-C215-8 3 50 215 209.20 212.60 211.00 215.00 215.00 215.00 215.00 215.00

9 VB-3SAT-V50-C215-9 3 50 215 207.20 211.70 210.60 215.00 215.00 215.00 215.00 215.00

10 VB-3SAT-V50-C215-10 3 50 215 210.80 211.70 212.10 215.00 215.00 215.00 215.00 215.00



S
e
c
t
i
o
n
5
.
5

C
o
n
c
l
u
s
i
o
n
s

1
4
1

Continuation of Table 5.11 Average results of all algorithms tested on Villagra and Baran’s instances

Instance nl nx nc Aco
Saw

Aco
Rf

Aco
Rfsaw

WalkSAT Cplex Aco
+
neg Aconeg Aco

11 VB-3SAT-V50-C215-11 3 50 215 212.20 213.50 212.10 215.00 215.00 215.00 215.00 215.00

12 VB-3SAT-V50-C215-12 3 50 215 209.20 211.30 208.90 214.00 214.00 214.00 214.00 214.00

13 VB-3SAT-V50-C215-13 3 50 215 211.00 211.80 211.10 215.00 215.00 215.00 215.00 215.00

14 VB-3SAT-V50-C215-14 3 50 215 211.30 212.10 211.00 215.00 215.00 215.00 215.00 215.00

15 VB-3SAT-V50-C215-15 3 50 215 212.50 213.20 212.90 215.00 215.00 215.00 215.00 215.00

16 VB-3SAT-V50-C215-16 3 50 215 210.30 212.10 209.80 214.00 214.00 214.00 214.00 214.00

17 VB-3SAT-V50-C215-17 3 50 215 211.00 211.50 211.30 215.00 215.00 215.00 215.00 215.00

18 VB-3SAT-V50-C215-18 3 50 215 210.60 212.70 211.30 215.00 215.00 215.00 215.00 215.00

19 VB-3SAT-V50-C215-19 3 50 215 213.20 213.40 212.30 215.00 215.00 215.00 215.00 215.00

20 VB-3SAT-V50-C215-20 3 50 215 210.70 212.70 211.90 215.00 215.00 215.00 215.00 215.00

21 VB-3SAT-V50-C215-21 3 50 215 208.00 213.00 211.60 215.00 215.00 215.00 215.00 215.00

22 VB-3SAT-V50-C215-22 3 50 215 210.40 211.00 208.90 215.00 215.00 215.00 215.00 215.00

23 VB-3SAT-V50-C215-23 3 50 215 212.30 213.20 212.40 214.00 214.00 214.00 214.00 214.00

24 VB-3SAT-V50-C215-24 3 50 215 211.30 212.90 212.10 214.00 214.00 214.00 214.00 214.00

25 VB-3SAT-V50-C215-25 3 50 215 210.90 211.90 211.10 214.00 214.00 214.00 214.00 214.00

26 VB-3SAT-V50-C323-1 3 50 323 304.40 313.80 304.20 317.00 317.00 317.00 317.00 317.00

27 VB-3SAT-V50-C323-2 3 50 323 307.10 314.30 309.90 318.00 318.00 318.00 317.90 317.30

28 VB-3SAT-V50-C323-3 3 50 323 308.40 314.60 305.60 317.00 317.00 317.00 317.00 317.00

29 VB-3SAT-V50-C323-4 3 50 323 312.00 315.70 313.20 318.00 318.00 318.00 318.00 317.90

30 VB-3SAT-V50-C323-5 3 50 323 303.00 312.80 301.10 316.00 316.00 316.00 316.00 316.00

31 VB-3SAT-V50-C323-6 3 50 323 307.40 315.20 308.00 318.00 318.00 318.00 318.00 317.30

32 VB-3SAT-V50-C323-7 3 50 323 305.20 314.60 306.00 318.00 318.00 318.00 318.00 318.00

33 VB-3SAT-V50-C323-8 3 50 323 305.30 314.50 305.50 317.00 317.00 317.00 317.00 317.00

34 VB-3SAT-V50-C323-9 3 50 323 304.20 312.40 304.80 316.00 316.00 316.00 316.00 316.00

35 VB-3SAT-V50-C323-10 3 50 323 307.00 313.80 307.80 318.00 318.00 318.00 318.00 317.10

36 VB-3SAT-V50-C323-11 3 50 323 308.00 314.90 305.40 318.00 318.00 318.00 318.00 318.00

37 VB-3SAT-V50-C323-12 3 50 323 304.50 313.80 305.60 317.00 317.00 317.00 317.00 317.00

38 VB-3SAT-V50-C323-13 3 50 323 305.30 315.60 310.70 318.00 318.00 318.00 318.00 317.80

39 VB-3SAT-V50-C323-14 3 50 323 312.60 316.00 313.30 320.00 320.00 320.00 320.00 320.00

40 VB-3SAT-V50-C323-15 3 50 323 307.90 313.90 307.30 317.00 317.00 317.00 317.00 317.00



1
4
2

C
h
a
p
t
e
r
5

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
a
x
S
A
T
P
r
o
b
l
e
m

Continuation of Table 5.11 Average results of all algorithms tested on Villagra and Baran’s instances

Instance nl nx nc Aco
Saw

Aco
Rf

Aco
Rfsaw

WalkSAT Cplex Aco
+
neg Aconeg Aco

41 VB-3SAT-V50-C323-16 3 50 323 311.30 314.80 311.10 319.00 319.00 319.00 319.00 319.00

42 VB-3SAT-V50-C323-17 3 50 323 311.40 318.20 313.40 320.00 320.00 320.00 320.00 320.00

43 VB-3SAT-V50-C323-18 3 50 323 301.10 311.90 300.80 316.00 316.00 316.00 316.00 315.90

44 VB-3SAT-V50-C323-19 3 50 323 303.50 312.20 305.90 316.00 316.00 316.00 316.00 316.00

45 VB-3SAT-V50-C323-20 3 50 323 305.60 313.70 305.30 317.00 317.00 317.00 317.00 317.00

46 VB-3SAT-V50-C323-21 3 50 323 303.20 312.40 303.70 317.00 317.00 317.00 316.80 316.50

47 VB-3SAT-V50-C323-22 3 50 323 304.60 313.10 304.60 316.00 316.00 316.00 316.00 316.00

48 VB-3SAT-V50-C323-23 3 50 323 302.60 311.50 303.60 316.00 316.00 316.00 314.80 314.60

49 VB-3SAT-V50-C323-24 3 50 323 305.50 313.90 307.20 318.00 318.00 318.00 318.00 317.20

50 VB-3SAT-V50-C323-25 3 50 323 309.80 314.80 310.10 318.00 318.00 318.00 318.00 318.00

42 VB-3SAT-V50-C323-17 3 50 323 311.40 318.20 313.40 320.00 320.00 320.00 320.00 320.00

43 VB-3SAT-V50-C323-18 3 50 323 301.10 311.90 300.80 316.00 316.00 316.00 316.00 315.90

44 VB-3SAT-V50-C323-19 3 50 323 303.50 312.20 305.90 316.00 316.00 316.00 316.00 316.00

45 VB-3SAT-V50-C323-20 3 50 323 305.60 313.70 305.30 317.00 317.00 317.00 317.00 317.00

46 VB-3SAT-V50-C323-21 3 50 323 303.20 312.40 303.70 317.00 317.00 317.00 316.80 316.50

47 VB-3SAT-V50-C323-22 3 50 323 304.60 313.10 304.60 316.00 316.00 316.00 316.00 316.00

48 VB-3SAT-V50-C323-23 3 50 323 302.60 311.50 303.60 316.00 316.00 316.00 314.80 314.60

49 VB-3SAT-V50-C323-24 3 50 323 305.50 313.90 307.20 318.00 318.00 318.00 318.00 317.20

50 VB-3SAT-V50-C323-25 3 50 323 309.80 314.80 310.10 318.00 318.00 318.00 318.00 318.00

Table 5.12 Best results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

1 san400_0.7_3.clq maxcut1 2 40 1094 230 230 232 230 230 230 245 238

2 san200_0.9_1.clq maxcut1 2 40 1392 313 313 317 313 313 315 325 318

3 p_hat500-1.clq maxcut1 2 42 474 75 75 75 75 75 75 84 79

4 p_hat500-3.clq maxcut1 2 42 1310 284 284 289 284 284 284 297 293

5 maxcut-140-630-0.8-3 maxcut2 2 140 1258 165 165 168 165 165 165 234 236



S
e
c
t
i
o
n
5
.
5

C
o
n
c
l
u
s
i
o
n
s

1
4
3

Continuation of Table 5.12 Best results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

6 maxcut-140-630-0.8-4 maxcut2 2 140 1258 165 165 170 165 165 165 233 235

7 maxcut-140-630-0.8-20 maxcut2 2 140 1258 165 165 165 165 165 165 230 226

8 maxcut-140-630-0.8-44 maxcut2 2 140 1258 160 160 162 160 160 160 231 228

9 maxcut-140-630-0.7-3 maxcut2 2 140 1260 168 169 173 168 168 169 237 232

10 maxcut-140-630-0.7-33 maxcut2 2 140 1260 165 165 169 165 165 165 233 233

11 maxcut-140-630-0.7-49 maxcut2 2 140 1260 164 169 170 164 164 164 232 225

12 HG-3SAT-V250-C1000-1 highgirth 3 250 1000 5 13 12 5 7 6 6 10

13 HG-3SAT-V250-C1000-2 highgirth 3 250 1000 5 11 13 5 6 6 7 14

14 HG-3SAT-V250-C1000-3 highgirth 3 250 1000 5 12 13 5 7 6 8 15

15 HG-3SAT-V250-C1000-4 highgirth 3 250 1000 6 11 13 6 8 7 8 15

16 HG-3SAT-V250-C1000-5 highgirth 3 250 1000 6 13 13 6 9 7 6 17

17 HG-3SAT-V250-C1000-6 highgirth 3 250 1000 6 14 10 6 7 6 7 14

18 HG-3SAT-V250-C1000-7 highgirth 3 250 1000 6 8 11 6 8 6 6 16

19 HG-3SAT-V250-C1000-8 highgirth 3 250 1000 5 11 14 5 7 7 6 13

20 HG-3SAT-V250-C1000-9 highgirth 3 250 1000 6 13 14 6 7 7 8 12

21 HG-3SAT-V250-C1000-10 highgirth 3 250 1000 6 15 10 6 6 6 7 14

22 HG-3SAT-V250-C1000-11 highgirth 3 250 1000 6 9 13 6 8 6 8 12

23 HG-3SAT-V250-C1000-12 highgirth 3 250 1000 6 10 16 6 8 6 6 13

24 HG-3SAT-V250-C1000-13 highgirth 3 250 1000 5 9 12 6 8 5 6 14

25 HG-3SAT-V250-C1000-14 highgirth 3 250 1000 6 10 14 5 6 6 6 14

26 HG-3SAT-V250-C1000-15 highgirth 3 250 1000 5 10 12 5 5 5 7 14

27 HG-3SAT-V250-C1000-16 highgirth 3 250 1000 5 14 12 5 6 5 7 12

28 HG-3SAT-V250-C1000-17 highgirth 3 250 1000 6 13 14 6 8 7 8 14

29 HG-3SAT-V250-C1000-18 highgirth 3 250 1000 6 10 11 6 7 7 8 13

30 HG-3SAT-V250-C1000-19 highgirth 3 250 1000 5 10 10 6 8 7 7 14

31 HG-3SAT-V250-C1000-20 highgirth 3 250 1000 7 10 13 7 8 7 7 14

32 HG-3SAT-V250-C1000-21 highgirth 3 250 1000 4 10 10 5 7 6 6 11

33 HG-3SAT-V250-C1000-22 highgirth 3 250 1000 5 16 11 5 7 6 6 14

34 HG-3SAT-V250-C1000-23 highgirth 3 250 1000 6 13 12 6 7 7 7 15

35 HG-3SAT-V250-C1000-24 highgirth 3 250 1000 5 14 9 5 7 5 7 12



1
4
4

C
h
a
p
t
e
r
5

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
a
x
S
A
T
P
r
o
b
l
e
m

Continuation of Table 5.12 Best results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

36 HG-3SAT-V250-C1000-100 highgirth 3 250 1000 7 12 14 7 7 7 8 17

37 HG-3SAT-V300-C1200-1 highgirth 3 300 1200 7 16 17 7 9 8 9 20

38 HG-3SAT-V300-C1200-2 highgirth 3 300 1200 6 12 13 5 10 8 7 23

39 HG-3SAT-V300-C1200-3 highgirth 3 300 1200 6 14 9 8 10 8 7 22

40 HG-3SAT-V300-C1200-4 highgirth 3 300 1200 7 12 13 7 10 8 10 22

41 HG-3SAT-V300-C1200-5 highgirth 3 300 1200 6 13 16 6 11 8 8 24

42 HG-3SAT-V300-C1200-6 highgirth 3 300 1200 6 15 14 6 11 6 10 16

43 HG-3SAT-V300-C1200-7 highgirth 3 300 1200 5 16 15 5 9 6 10 21

44 HG-3SAT-V300-C1200-8 highgirth 3 300 1200 8 16 14 8 10 8 8 21

45 HG-3SAT-V300-C1200-9 highgirth 3 300 1200 7 13 19 8 10 7 13 22

46 HG-3SAT-V300-C1200-10 highgirth 3 300 1200 7 12 13 7 9 8 9 26

47 HG-3SAT-V300-C1200-11 highgirth 3 300 1200 6 17 14 6 9 8 10 22

48 HG-3SAT-V300-C1200-12 highgirth 3 300 1200 7 13 14 7 10 8 8 22

49 HG-3SAT-V300-C1200-13 highgirth 3 300 1200 7 10 15 7 10 8 9 22

50 HG-3SAT-V300-C1200-14 highgirth 3 300 1200 6 12 14 6 7 8 7 21

51 HG-3SAT-V300-C1200-15 highgirth 3 300 1200 7 16 12 7 9 8 10 25

52 HG-3SAT-V300-C1200-16 highgirth 3 300 1200 6 17 14 6 9 8 10 18

53 HG-3SAT-V300-C1200-17 highgirth 3 300 1200 7 15 17 7 7 7 10 22

54 HG-3SAT-V300-C1200-18 highgirth 3 300 1200 7 11 13 7 8 8 9 22

55 HG-3SAT-V300-C1200-19 highgirth 3 300 1200 6 16 15 7 11 8 11 22

56 HG-3SAT-V300-C1200-20 highgirth 3 300 1200 6 14 15 6 9 9 9 17

57 HG-3SAT-V300-C1200-21 highgirth 3 300 1200 6 9 16 5 8 8 9 21

58 HG-3SAT-V300-C1200-22 highgirth 3 300 1200 6 17 18 6 9 6 11 15

59 HG-3SAT-V300-C1200-23 highgirth 3 300 1200 7 12 15 7 8 7 8 18

60 HG-3SAT-V300-C1200-24 highgirth 3 300 1200 7 12 18 7 8 7 10 25

61 HG-3SAT-V300-C1200-100 highgirth 3 300 1200 7 14 14 7 10 8 8 25

62 HG-4SAT-V100-C900-2 highgirth 4 100 900 2 4 4 2 2 2 2 3

63 HG-4SAT-V100-C900-4 highgirth 4 100 900 2 4 3 2 2 2 2 4

64 HG-4SAT-V100-C900-7 highgirth 4 100 900 2 6 3 2 3 2 3 3

65 HG-4SAT-V100-C900-14 highgirth 4 100 900 2 6 4 2 2 2 2 3



S
e
c
t
i
o
n
5
.
5

C
o
n
c
l
u
s
i
o
n
s

1
4
5

Continuation of Table 5.12 Best results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

66 HG-4SAT-V100-C900-19 highgirth 4 100 900 2 4 4 2 3 2 3 3

67 HG-4SAT-V100-C900-20 highgirth 4 100 900 2 5 2 2 2 2 2 3

68 HG-4SAT-V100-C900-23 highgirth 4 100 900 2 3 4 2 2 2 2 3

69 HG-4SAT-V150-C1350-1 highgirth 4 150 1350 1 5 8 1 3 2 2 7

70 HG-4SAT-V150-C1350-2 highgirth 4 150 1350 2 7 8 2 3 2 1 6

71 HG-4SAT-V150-C1350-3 highgirth 4 150 1350 2 6 6 1 1 1 1 2

72 HG-4SAT-V150-C1350-4 highgirth 4 150 1350 2 5 7 1 3 1 1 5

73 HG-4SAT-V150-C1350-5 highgirth 4 150 1350 2 7 7 2 2 2 2 5

74 HG-4SAT-V150-C1350-6 highgirth 4 150 1350 1 9 6 2 2 1 3 6

75 HG-4SAT-V150-C1350-7 highgirth 4 150 1350 2 5 7 2 2 2 3 5

76 HG-4SAT-V150-C1350-8 highgirth 4 150 1350 2 8 10 2 3 2 4 8

77 HG-4SAT-V150-C1350-9 highgirth 4 150 1350 2 7 8 2 2 2 3 7

78 HG-4SAT-V150-C1350-10 highgirth 4 150 1350 2 8 7 1 2 2 2 7

79 HG-4SAT-V150-C1350-11 highgirth 4 150 1350 2 4 5 2 3 2 2 5

80 HG-4SAT-V150-C1350-12 highgirth 4 150 1350 2 6 10 2 3 3 3 5

81 HG-4SAT-V150-C1350-13 highgirth 4 150 1350 2 7 8 1 1 3 3 4

82 HG-4SAT-V150-C1350-14 highgirth 4 150 1350 2 6 7 2 1 2 1 4

83 HG-4SAT-V150-C1350-15 highgirth 4 150 1350 2 5 6 2 1 1 2 5

84 HG-4SAT-V150-C1350-16 highgirth 4 150 1350 2 6 2 2 4 2 2 6

85 HG-4SAT-V150-C1350-17 highgirth 4 150 1350 2 7 4 2 3 2 3 6

86 HG-4SAT-V150-C1350-18 highgirth 4 150 1350 2 6 7 1 3 2 2 5

87 HG-4SAT-V150-C1350-19 highgirth 4 150 1350 2 9 4 1 2 1 2 4

88 HG-4SAT-V150-C1350-20 highgirth 4 150 1350 2 8 10 2 3 2 3 4

89 HG-4SAT-V150-C1350-21 highgirth 4 150 1350 2 6 5 2 3 2 3 8

90 HG-4SAT-V150-C1350-22 highgirth 4 150 1350 2 8 7 2 3 2 2 6

91 HG-4SAT-V150-C1350-23 highgirth 4 150 1350 2 6 7 2 3 3 3 6

92 HG-4SAT-V150-C1350-24 highgirth 4 150 1350 2 6 5 2 3 2 3 4

93 HG-4SAT-V150-C1350-100 highgirth 4 150 1350 2 5 8 2 3 2 3 5

94 scpcyc06_maxsat setcov1 4 192 432 60 60 60 60 60 60 92 93

95 scpcyc07_maxsat setcov1 4 448 1120 158 148 152 158 144 148 268 267



1
4
6

C
h
a
p
t
e
r
5

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
a
x
S
A
T
P
r
o
b
l
e
m

Continuation of Table 5.12 Best results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

96 scpcyc08_maxsat setcov1 4 1024 2816 392 361 370 390 359 352 718 720

97 scpcyc09_maxsat setcov2 4 2304 6912 836 815 924 803 813 956 1868 1858

98 scpcyc10_maxsat setcov2 4 5120 16640 1922 1917 16640 1923 1908 2244 4516 4553

99 scpcyc11_maxsat setcov2 4 11264 39424 4339 4295 39424 10821 10944 5288 10867 10887

100 ram_k3_n9.ra0 ramsey1 6 36 210 1 1 1 1 1 1 1 1

101 ram_k3_n11.ra0 ramsey1 6 55 495 7 7 7 7 7 7 7 7

102 ram_k3_n12.ra0 ramsey1 6 66 715 10 10 11 10 10 10 10 10

103 ram_k3_n14.ra0 ramsey1 6 91 1365 21 21 21 21 21 21 22 22

104 ram_k3_n15.ra0 ramsey2 6 105 1820 30 30 31 30 30 30 30 30

105 ram_k3_n16.ra0 ramsey2 6 120 2380 39 39 42 39 39 39 40 40

106 ram_k3_n17.ra0 ramsey2 6 136 3060 50 50 54 50 50 50 50 50

107 ram_k3_n18.ra0 ramsey2 6 153 3876 60 60 70 60 60 62 64 63

108 ram_k4_n18.ra0 ramsey2 6 153 6120 9 9 14 9 9 10 12 16

109 ram_k3_n19.ra0 ramsey2 6 171 4845 75 75 87 75 75 76 87 76

110 ram_k4_n19.ra0 ramsey2 6 171 7752 15 15 29 15 15 15 30 30

111 scpclr10_maxsat setcov3 126 210 721 25 25 25 25 25 25 44 40

112 scpclr12_maxsat setcov3 330 495 2542 28 23 24 24 26 23 68 73

113 scpclr13_maxsat setcov3 495 715 4810 30 28 31 29 26 27 101 86

Table 5.13 Average results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

1 san400_0.7_3.clq maxcut1 2 40 1094 230.0 230.0 232.0 230.0 230.0 230.3 247.7 240.7

2 san200_0.9_1.clq maxcut1 2 40 1392 313.0 313.0 317.0 313.0 313.0 315.6 328.5 321.3

3 p_hat500-1.clq maxcut1 2 42 474 75.0 75.0 75.0 75.0 75.0 75.0 86.4 82.3

4 p_hat500-3.clq maxcut1 2 42 1310 284.0 284.0 289.0 284.0 284.0 285.4 301.5 295.2

5 maxcut-140-630-0.8-3 maxcut2 2 140 1258 165.0 165.0 168.0 165.0 165.0 165.6 240.4 240.1



S
e
c
t
i
o
n
5
.
5

C
o
n
c
l
u
s
i
o
n
s

1
4
7

Continuation of Table 5.13 Average results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

6 maxcut-140-630-0.8-4 maxcut2 2 140 1258 165.0 165.0 170.0 165.0 165.0 165.6 238.7 238.5

7 maxcut-140-630-0.8-20 maxcut2 2 140 1258 165.0 165.0 165.0 165.0 165.0 166.3 240.1 236.4

8 maxcut-140-630-0.8-44 maxcut2 2 140 1258 160.0 160.0 162.0 160.0 160.0 160.0 238.8 234.7

9 maxcut-140-630-0.7-3 maxcut2 2 140 1260 168.0 169.0 173.0 168.0 168.0 170.5 240.9 236.9

10 maxcut-140-630-0.7-33 maxcut2 2 140 1260 165.0 165.0 169.0 165.0 165.0 166.6 237.7 236.5

11 maxcut-140-630-0.7-49 maxcut2 2 140 1260 164.0 169.0 170.0 164.0 164.0 165.7 238.8 237.1

12 HG-3SAT-V250-C1000-1 highgirth 3 250 1000 5.0 13.0 12.0 5.0 8.0 6.7 7.9 16.1

13 HG-3SAT-V250-C1000-2 highgirth 3 250 1000 5.0 11.0 13.0 5.0 8.6 6.7 8.7 19.4

14 HG-3SAT-V250-C1000-3 highgirth 3 250 1000 5.0 12.0 13.0 5.0 8.6 7.8 10.0 18.9

15 HG-3SAT-V250-C1000-4 highgirth 3 250 1000 6.0 11.0 13.0 6.0 9.8 8.5 10.4 17.9

16 HG-3SAT-V250-C1000-5 highgirth 3 250 1000 6.0 13.0 13.0 6.0 9.4 7.7 9.0 20.1

17 HG-3SAT-V250-C1000-6 highgirth 3 250 1000 6.0 14.0 10.0 6.0 8.8 7.4 9.0 16.9

18 HG-3SAT-V250-C1000-7 highgirth 3 250 1000 6.0 8.0 11.0 6.0 9.3 7.3 8.9 18.1

19 HG-3SAT-V250-C1000-8 highgirth 3 250 1000 5.0 11.0 14.0 5.9 8.7 7.5 9.0 18.7

20 HG-3SAT-V250-C1000-9 highgirth 3 250 1000 6.0 13.0 14.0 6.0 8.9 8.0 9.5 16.7

21 HG-3SAT-V250-C1000-10 highgirth 3 250 1000 6.0 15.0 10.0 6.0 8.1 7.3 8.8 17.5

22 HG-3SAT-V250-C1000-11 highgirth 3 250 1000 6.0 9.0 13.0 6.0 9.4 7.7 9.1 18.6

23 HG-3SAT-V250-C1000-12 highgirth 3 250 1000 6.0 10.0 16.0 6.0 9.3 7.1 9.6 17.6

24 HG-3SAT-V250-C1000-13 highgirth 3 250 1000 5.0 9.0 12.0 6.0 9.4 6.5 8.9 18.4

25 HG-3SAT-V250-C1000-14 highgirth 3 250 1000 6.0 10.0 14.0 5.9 7.5 6.8 7.6 18.2

26 HG-3SAT-V250-C1000-15 highgirth 3 250 1000 5.0 10.0 12.0 5.0 7.9 6.6 8.7 19.7

27 HG-3SAT-V250-C1000-16 highgirth 3 250 1000 5.0 14.0 12.0 5.0 8.1 7.4 9.1 18.7

28 HG-3SAT-V250-C1000-17 highgirth 3 250 1000 6.0 13.0 14.0 6.9 9.7 7.9 9.7 18.8

29 HG-3SAT-V250-C1000-18 highgirth 3 250 1000 6.0 10.0 11.0 6.0 9.1 7.4 9.3 17.7

30 HG-3SAT-V250-C1000-19 highgirth 3 250 1000 5.0 10.0 10.0 6.9 9.7 8.0 8.7 21.5

31 HG-3SAT-V250-C1000-20 highgirth 3 250 1000 7.0 10.0 13.0 7.0 9.3 8.0 9.3 19.0

32 HG-3SAT-V250-C1000-21 highgirth 3 250 1000 4.0 10.0 10.0 5.0 8.6 7.8 8.7 19.0

33 HG-3SAT-V250-C1000-22 highgirth 3 250 1000 5.0 16.0 11.0 5.0 9.2 7.5 7.9 18.0

34 HG-3SAT-V250-C1000-23 highgirth 3 250 1000 6.0 13.0 12.0 6.0 9.7 7.3 9.7 18.3

35 HG-3SAT-V250-C1000-24 highgirth 3 250 1000 5.0 14.0 9.0 5.8 8.3 7.5 8.4 19.8



1
4
8

C
h
a
p
t
e
r
5

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
a
x
S
A
T
P
r
o
b
l
e
m

Continuation of Table 5.13 Average results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

36 HG-3SAT-V250-C1000-100 highgirth 3 250 1000 7.0 12.0 14.0 7.0 9.6 7.9 9.5 19.3

37 HG-3SAT-V300-C1200-1 highgirth 3 300 1200 7.0 16.0 17.0 7.0 11.0 9.2 11.5 26.2

38 HG-3SAT-V300-C1200-2 highgirth 3 300 1200 6.0 12.0 13.0 5.6 11.9 9.4 12.2 30.1

39 HG-3SAT-V300-C1200-3 highgirth 3 300 1200 6.0 14.0 9.0 8.0 11.4 9.5 12.7 30.4

40 HG-3SAT-V300-C1200-4 highgirth 3 300 1200 7.0 12.0 13.0 7.0 10.7 9.5 11.8 28.3

41 HG-3SAT-V300-C1200-5 highgirth 3 300 1200 6.0 13.0 16.0 6.8 11.9 9.6 12.3 28.1

42 HG-3SAT-V300-C1200-6 highgirth 3 300 1200 6.0 15.0 14.0 6.0 11.5 8.4 12.8 25.6

43 HG-3SAT-V300-C1200-7 highgirth 3 300 1200 5.0 16.0 15.0 5.0 10.7 8.0 11.0 24.3

44 HG-3SAT-V300-C1200-8 highgirth 3 300 1200 8.0 16.0 14.0 8.0 12.1 10.0 12.8 28.7

45 HG-3SAT-V300-C1200-9 highgirth 3 300 1200 7.0 13.0 19.0 8.0 11.5 9.1 14.5 28.8

46 HG-3SAT-V300-C1200-10 highgirth 3 300 1200 7.0 12.0 13.0 7.0 11.0 9.5 12.4 29.4

47 HG-3SAT-V300-C1200-11 highgirth 3 300 1200 6.0 17.0 14.0 6.0 10.6 9.0 13.0 29.1

48 HG-3SAT-V300-C1200-12 highgirth 3 300 1200 7.0 13.0 14.0 7.0 12.0 9.7 11.7 28.1

49 HG-3SAT-V300-C1200-13 highgirth 3 300 1200 7.0 10.0 15.0 7.0 11.0 9.7 11.2 26.8

50 HG-3SAT-V300-C1200-14 highgirth 3 300 1200 6.0 12.0 14.0 6.1 9.5 8.9 10.7 25.1

51 HG-3SAT-V300-C1200-15 highgirth 3 300 1200 7.0 16.0 12.0 7.4 11.3 10.0 11.9 32.2

52 HG-3SAT-V300-C1200-16 highgirth 3 300 1200 6.0 17.0 14.0 6.0 11.4 9.4 11.8 26.3

53 HG-3SAT-V300-C1200-17 highgirth 3 300 1200 7.0 15.0 17.0 7.1 11.5 9.4 14.1 29.2

54 HG-3SAT-V300-C1200-18 highgirth 3 300 1200 7.0 11.0 13.0 7.4 10.4 9.0 11.3 27.0

55 HG-3SAT-V300-C1200-19 highgirth 3 300 1200 6.0 16.0 15.0 7.0 12.5 9.5 14.0 30.6

56 HG-3SAT-V300-C1200-20 highgirth 3 300 1200 6.0 14.0 15.0 6.0 11.1 9.7 12.5 27.8

57 HG-3SAT-V300-C1200-21 highgirth 3 300 1200 6.0 9.0 16.0 5.0 9.7 9.3 11.2 27.3

58 HG-3SAT-V300-C1200-22 highgirth 3 300 1200 6.0 17.0 18.0 6.0 11.1 9.4 12.4 29.1

59 HG-3SAT-V300-C1200-23 highgirth 3 300 1200 7.0 12.0 15.0 7.0 10.7 8.7 11.1 27.0

60 HG-3SAT-V300-C1200-24 highgirth 3 300 1200 7.0 12.0 18.0 7.0 10.9 9.1 12.8 28.1

61 HG-3SAT-V300-C1200-100 highgirth 3 300 1200 7.0 14.0 14.0 7.0 11.3 9.1 11.4 29.8

62 HG-4SAT-V100-C900-2 highgirth 4 100 900 2.0 4.0 4.0 2.0 3.6 2.0 2.9 3.9

63 HG-4SAT-V100-C900-4 highgirth 4 100 900 2.0 4.0 3.0 2.0 3.2 2.7 3.6 5.1

64 HG-4SAT-V100-C900-7 highgirth 4 100 900 2.0 6.0 3.0 2.0 3.6 2.9 3.6 4.5

65 HG-4SAT-V100-C900-14 highgirth 4 100 900 2.0 6.0 4.0 2.0 3.0 2.3 3.9 4.3



S
e
c
t
i
o
n
5
.
5

C
o
n
c
l
u
s
i
o
n
s

1
4
9

Continuation of Table 5.13 Average results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

66 HG-4SAT-V100-C900-19 highgirth 4 100 900 2.0 4.0 4.0 2.6 3.1 2.6 3.2 4.5

67 HG-4SAT-V100-C900-20 highgirth 4 100 900 2.0 5.0 2.0 2.0 2.7 2.3 2.8 4.2

68 HG-4SAT-V100-C900-23 highgirth 4 100 900 2.0 3.0 4.0 2.0 2.8 2.0 2.6 4.1

69 HG-4SAT-V150-C1350-1 highgirth 4 150 1350 1.0 5.0 8.0 1.0 4.7 2.9 6.1 8.1

70 HG-4SAT-V150-C1350-2 highgirth 4 150 1350 2.0 7.0 8.0 2.0 4.9 3.3 6.8 9.9

71 HG-4SAT-V150-C1350-3 highgirth 4 150 1350 2.0 6.0 6.0 1.9 2.8 1.3 1.8 6.3

72 HG-4SAT-V150-C1350-4 highgirth 4 150 1350 2.0 5.0 7.0 2.0 3.6 3.0 3.6 8.4

73 HG-4SAT-V150-C1350-5 highgirth 4 150 1350 2.0 7.0 7.0 2.0 4.2 3.2 4.3 9.0

74 HG-4SAT-V150-C1350-6 highgirth 4 150 1350 1.0 9.0 6.0 2.0 4.3 2.4 5.8 9.0

75 HG-4SAT-V150-C1350-7 highgirth 4 150 1350 2.0 5.0 7.0 2.0 4.2 3.7 3.9 8.5

76 HG-4SAT-V150-C1350-8 highgirth 4 150 1350 2.0 8.0 10.0 2.0 4.5 3.7 5.2 10.4

77 HG-4SAT-V150-C1350-9 highgirth 4 150 1350 2.0 7.0 8.0 2.0 4.6 3.3 4.7 10.2

78 HG-4SAT-V150-C1350-10 highgirth 4 150 1350 2.0 8.0 7.0 2.4 4.6 3.5 7.0 8.9

79 HG-4SAT-V150-C1350-11 highgirth 4 150 1350 2.0 4.0 5.0 2.7 4.1 3.1 4.1 8.2

80 HG-4SAT-V150-C1350-12 highgirth 4 150 1350 2.0 6.0 10.0 2.0 3.7 3.1 4.3 7.6

81 HG-4SAT-V150-C1350-13 highgirth 4 150 1350 2.0 7.0 8.0 2.4 4.6 4.0 6.5 8.1

82 HG-4SAT-V150-C1350-14 highgirth 4 150 1350 2.0 6.0 7.0 2.0 4.4 2.8 3.9 8.4

83 HG-4SAT-V150-C1350-15 highgirth 4 150 1350 2.0 5.0 6.0 2.0 3.7 2.6 4.5 9.4

84 HG-4SAT-V150-C1350-16 highgirth 4 150 1350 2.0 6.0 2.0 2.4 5.0 3.4 7.5 9.8

85 HG-4SAT-V150-C1350-17 highgirth 4 150 1350 2.0 7.0 4.0 2.0 4.5 3.6 4.2 9.1

86 HG-4SAT-V150-C1350-18 highgirth 4 150 1350 2.0 6.0 7.0 2.7 4.6 3.0 3.7 8.9

87 HG-4SAT-V150-C1350-19 highgirth 4 150 1350 2.0 9.0 4.0 1.9 2.6 2.4 2.8 9.2

88 HG-4SAT-V150-C1350-20 highgirth 4 150 1350 2.0 8.0 10.0 2.5 4.9 2.8 8.0 8.0

89 HG-4SAT-V150-C1350-21 highgirth 4 150 1350 2.0 6.0 5.0 2.0 4.4 3.4 5.8 9.4

90 HG-4SAT-V150-C1350-22 highgirth 4 150 1350 2.0 8.0 7.0 2.6 4.5 2.7 3.6 8.4

91 HG-4SAT-V150-C1350-23 highgirth 4 150 1350 2.0 6.0 7.0 2.0 5.0 4.1 8.6 9.6

92 HG-4SAT-V150-C1350-24 highgirth 4 150 1350 2.0 6.0 5.0 2.0 4.9 3.2 7.1 8.8

93 HG-4SAT-V150-C1350-100 highgirth 4 150 1350 2.0 5.0 8.0 2.0 5.0 3.6 9.0 8.5

94 scpcyc06_maxsat setcov1 4 192 432 60.0 60.0 60.0 60.0 60.3 60.0 95.6 94.5

95 scpcyc07_maxsat setcov1 4 448 1120 158.0 148.0 152.0 158.3 149.7 151.0 274.9 274.0



1
5
0

C
h
a
p
t
e
r
5

A
p
p
l
i
c
a
t
i
o
n
t
o
t
h
e
M
a
x
S
A
T
P
r
o
b
l
e
m

Continuation of Table 5.13 Average results of all algorithms tested on MSE 2020 and 2016 instances

Instance Group nl nx nc SATLike SlsMcs Cplex Aco-Sat
+
neg Aco-Sls

+
neg Aco

+
neg Aconeg Aco

96 scpcyc08_maxsat setcov1 4 1024 2816 392.0 361.0 370.0 391.4 361.5 361.7 735.3 735.2

97 scpcyc09_maxsat setcov2 4 2304 6912 836.0 815.0 924.0 824.5 830.7 963.9 1895.9 1872.6

98 scpcyc10_maxsat setcov2 4 5120 16640 1922.0 1917.0 16640.0 1932.4 1916.3 2264.6 4630.2 4615.9

99 scpcyc11_maxsat setcov2 4 11264 39424 4339.0 4295.0 39424.0 11042.9 11003.6 5317.4 11015.8 11040.9

100 ram_k3_n9.ra0 ramsey1 6 36 210 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

101 ram_k3_n11.ra0 ramsey1 6 55 495 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

102 ram_k3_n12.ra0 ramsey1 6 66 715 10.0 10.0 11.0 10.0 10.0 10.0 10.3 10.0

103 ram_k3_n14.ra0 ramsey1 6 91 1365 21.0 21.0 21.0 21.0 21.0 21.7 22.6 22.7

104 ram_k3_n15.ra0 ramsey2 6 105 1820 30.0 30.0 31.0 30.0 30.0 30.6 30.0 30.0

105 ram_k3_n16.ra0 ramsey2 6 120 2380 39.0 39.0 42.0 39.0 39.0 40.0 40.9 40.1

106 ram_k3_n17.ra0 ramsey2 6 136 3060 50.0 50.0 54.0 50.0 50.0 51.5 51.4 51.7

107 ram_k3_n18.ra0 ramsey2 6 153 3876 60.0 60.0 70.0 60.0 60.0 64.3 69.3 66.6

108 ram_k4_n18.ra0 ramsey2 6 153 6120 9.0 9.0 14.0 9.0 9.0 10.9 17.3 19.0

109 ram_k3_n19.ra0 ramsey2 6 171 4845 75.0 75.0 87.0 75.0 75.0 79.8 89.9 84.3

110 ram_k4_n19.ra0 ramsey2 6 171 7752 15.0 15.0 29.0 15.0 15.0 18.6 33.5 33.3

111 scpclr10_maxsat setcov3 126 210 721 25.0 25.0 25.0 25.0 25.3 25.0 46.6 45.9

112 scpclr12_maxsat setcov3 330 495 2542 28.0 23.0 24.0 27.0 26.7 23.6 80.6 80.9

113 scpclr13_maxsat setcov3 495 715 4810 30.0 28.0 31.0 29.5 26.8 28.5 123.8 122.8



151

CHAPTER 6

APPLICATION TO THEMINIMUM CAPACITATED

DOMINATING SET PROBLEM

6.1 Introduction

This Chapter provides a detailed description of our negative learning Aco

approach for the Capacitated Minimum Dominating Set (CapMDS) problem.

Some of the material provided in this chapter was presented in ANTS 2020

Twelfth International Conference on Swarm Intelligence October 26-28, 2020

in Barcelona (https://iridia.ulb.ac.be/ants2020/) and published in

the ANTS 2020 proceedings, Lecture Notes in Computer Science, vol 12421

(https://doi.org/10.1007/978-3-030-60376-2_2). In fact, this was the first

problem to which we applied our approach. The performance of the standard

Aco algorithm is significantly improved by the negative learning mechanism

for most of the considered problem instance types. Moreover, the current

state-of-the-art algorithm [100] is improved in the context of 10 out of 36 cases.

6.2 The CapMDS Problem

Before introducing the CapMDS problem and the developed algorithms, let

us briefly recall some necessary definitions and notions from graph theory.

Henceforth, G = (V,E) denotes an undirected graph with a set V =

{v1, v2, · · · , vn} of n vertices, and a set E of edges. We assume that the given

graph neither contains self-loops nor multi-edges. Two vertices u, v ∈ V are

called neighbors—that is, they are adjacent—if and only if (u, v) = (v, u) ∈ E.

Furthermore, N(v) := {u ∈ V | (v, u) ∈ E} is called the (open) neighborhood of

v and denotes the set of neighbors of v ∈ V . In contrast, the closed neighborhood

N [v] of a vertex v ∈ V is N [v] := N(v) ∪ {v}. The degree deg(v) of v is defined as

the cardinality of the set of neighbors of v, that is, deg(v) = |N(v)|. Any subset

S ⊆ V is called a dominating set of G if each vertex v ∈ V \ S is adjacent to

https://iridia.ulb.ac.be/ants2020/
https://doi.org/10.1007/978-3-030-60376-2_2


152 Chapter 6 Application to the CapMDS Problem

at least one vertex from S. A vertex from S is called a dominator. As already

seen in Chapter 4, given an undirected graph G = (V,E), the classical minimum

dominating set (MDS) problem asks to find a smallest-size dominating set S ⊆ V .

A problem instance of the CAPMDSproblem [166] is given by a tuple (G,Cap)

that consists of an undirected (simple) graph G = (V,E) and a capacity function

Cap : V → N. This capacity function assigns a positive integerCap(v) > 0 to each

vertex v ∈ V , indicating the maximum number of adjacent vertices this vertex is

allowed to dominate in a valid solution.

A solution S to an instance (G,Cap) is a tuple (DS, {CS(v) | v ∈ DS}), where

DS ⊆ V is the set of selected dominators, and {CS(v) | v ∈ DS} is a set that

contains for each dominator v ∈ DS
the (sub-)set CS(v) ⊆ N(v) of those of its

neighbors that are (chosen to be) dominated by v. The following conditions have

to be fulfilled in order for S to be a valid solution:

1. DS ∪
(⋃

v∈DS CS(v)
)

= V , that is, all vertices from V are either chosen to be

a dominator, or are dominated by at least one dominator.

2. |CS(v)| ≤ Cap(v) for all v ∈ DS
, that is, all chosen dominators dominate at

most Cap(v) of their neighbors.

Finally, the objective function value to be minimized is defined as f(S) := |DS|.

6.2.1 ILP Model for the CAPMDS Problem

The following ILP is reproduced from [100]. The model is presented because

sub-instances in our negative learningmechanism are again solved byCplex. The

model works on the following sets of binary variables. First, a binary variable

xv is associated to each vertex v ∈ V indicating whether or not v is selected as

a dominator. Second, the model contains for each edge (v, v′) ∈ E two binary

variables yv,v′ and yv′,v. Variable yv,v′ takes value one if vertex v is chosen to

dominate vertex v′; similarly for yv′,v. The CapMDS problem can then be stated

as follows:

minimize

∑
v∈V

xv (6.1)

subject to:

∑
v′∈N(v)

yv′,v ≥ 1− xv ∀v ∈ V (6.2)∑
v′∈N(v)

yv,v′ ≤ Cap(v) ∀v ∈ V (6.3)

yv,v′ ≤ xv ∀v ∈ V, v′ ∈ N(v) (6.4)

xv, yv,v′ ∈ {0, 1} (6.5)



Section 6.3 MMAS Implementation to the CapMDS 153

Hereby, the constraint in Eqn. (6.2) ensures that all non-chosen vertices must

be dominated by at least one dominator, whereas the constraint in Eqn. (6.3)

limits the total number of vertices dominated by a particular vertex v to Cap(v).

Consequently, a dominator v can dominate at most Cap(v) vertices from its

(open) neighborhood.

6.3 MMAS Implementation to the CapMDS

In general terms, theMMAS in the hypercube framework works as described

in Section 2.2. This Section presents several specific configurations regarding its

application to the CapMDS problem. In the context ofMMAS, the construction

of a solution S is done in a step-by-step manner. At each construction step,

first, exactly one new dominator v ∈ V \DS
is chosen. In the second part of the

construction step, it is decidedwhich ones of the so-far non-dominated neighbors

of v will be dominated by v. Therefore, the pheromone model T used by our

algorithm consists of the following values:

1. A value τv for each v ∈ V . These values are used to choose dominators.

2. Values τv,v′ and τv′,v for each edge (v, v′) ∈ E. These values are used in

the second part of each construction step for deciding which ones of its

neighbors a newly chosen dominator will dominate.

The function Construct_Solution(T ) in Algorithm 2.1 is implemented for

the CapMDS problem with the following mechanism. It starts with an empty

solution S = (DS = ∅, ∅). Moreover, the set of non-dominated neighbors of each

vertex v ∈ V , denoted by NDv, is initialized to N(v). At each construction step,

first, one vertex v∗ is chosen from a set O (options) that includes all those vertices

v that still have non-dominated neighbors and that do not already form part of

DS
, as described in Eqn. (6.6). Note that the solution construction process stops

once O = ∅.
O := {v ∈ V | NDv 6= ∅, v /∈ DS} (6.6)

The greedy function value η(v) of a vertex v ∈ O is defined as η(v) :=

min{Cap(v), |NDv|} + 1. Based on this greedy function, the probability for a

vertex v ∈ O to be selected is determined by using Eqn. (6.7).

pstep1(v) :=
η(v) · τv∑

v′∈O η(v′) · τv′
(6.7)



154 Chapter 6 Application to the CapMDS Problem

Given the probabilities from Eqn. (6.7), a vertex v∗ ∈ O is chosen with the same

mechanism as described in Section 2.2.1. Note that after choosing v∗, the sets of

non-dominated neighbors of the neighbors of v∗ are updated by removing v∗.

In the second part of each construction step, a set of min{Cap(v∗), |NDv∗|}
non-dominated neighbors of v∗ is chosen and placed into CS(v∗) as follows.

In case |NDv∗ | ≤ Cap(v∗), we set CS(v∗) := NDv∗ . Otherwise, vertices are

sequentially selected from NDv∗ in the following way. First, the probability

for each vertex v ∈ NDv∗ to be selected is determined by using Eqn. (6.8)

pstep2(v) :=
(|NDv|+ 1) · τv∗,v∑

v′∈NDv∗
(|NDv′|+ 1) · τv∗,v′

(6.8)

Then, given the probabilities from Eqn. (6.8), a vertex v̂ ∈ NDv∗ is chosen in the

same way as outlined in the context of the first part of the construction step.

Vertex v̂ is then added to an initially empty set CS(v∗), the respective ND-sets are

updated, the probabilities from Eqn. (6.8) are recalculated, and the next vertex

from NDv∗ is chosen. This process stops once min{Cap(v∗), |NDv∗|} are selected.
Finally, CS(v∗) is added to solution S, and the solution construction process

proceeds with the next construction step.

Pheromone update in the context of the CapMDS application is implemented

by function ApplyPheromoneUpdate(T , cf , bs_update, Sib,Srb,Sbsf ) in

Algorithm 2.1 with the same mechanism as described in Section 2.2.2.

For CapMDS however, the variables τi and ξ(ci) in Eqn. (2.2) are replaced with τv

and ξv, respectively. Also, function ∆(S, ci) for each of the three solutions Sib, Srb,

and Sbsf in Eqn. (2.3) is replaced with ∆(S, v). Moreover, ∆(S, v) evaluates to 1 if

and only if v ∈ DS
(that is, v is chosen as a dominator). Otherwise, the function

evaluates to 0. In the case of pheromone values τv,v′ , the pheromone update is

the same, just that functions ∆(S, v) are replaced by functions ∆(S, v, v′). Hereby,

function ∆(S, v, v′) evaluates to 1 if and only if v ∈ DS
and v′ ∈ CS(v) (that is,

dominator v is chosen to dominate its neighbor v′ in solution S). The value of

the convergence factor cf is computed in a standard way on the basis of the

pheromone values by function ComputeConvergenceFactor(T ) in Algorithm 2.1,

as described in Sub-Section 2.2.3. Hereby, T in Eqn. (2.4) stands for the set of all

τv-values and all τv,v′-values.



Section 6.4 Adding Negative Learning toMMAS 155

6.4 Adding Negative Learning toMMAS

In principle, the incorporation of negative learning to the baseline MMAS is

as described in Section 2.3. This Section describes the specific arrangements

for its application to the CapMDS problem. For maintaining negative learning

information, a negative pheromone value τnegv is introduced for all pheromone

values τv (v ∈ V ). Moreover, the negative version τnegv,v′ is also introduced

for all pheromone values τv,v′ . As described in Section 2.3, these negative

pheromone values are initialized to τmin at the start of the algorithm, and

whenever the algorithm is restarted (which still depends exclusively on the

standard pheromone values).

In the context of the CapMDS problem we therefore propose the mechanism

shown in Fig. 6.1 for identifying the negative learning information. At each

iterationof ourMMAS algorithm, the set of solutions generated at the incumbent

iteration (S iter
) is used for generating a subinstance of the tackled problem

instance. Such a subinstance Isub is a tuple (Dsub, {Csub(v) | v ∈ Dsub}) where

Dsub
is defined by Eqn. (6.9) and Csub

is defined by Eqn. (6.10).

Dsub :=
⋃

S∈Siter
DS

(6.9)

Csub(v) :=
⋃

S ∈ Siter

s.t. v ∈ DS

CS(v) (6.10)

After generating the na solutions per iteration, the ILP solver Cplex is used

(with a time limit of tsub CPU seconds) to solve the corresponding subinstance

(if possible) to optimality. Otherwise, the best solution found within the allotted

Fig. 6.1 Negative learning Aco for CapMDS



156 Chapter 6 Application to the CapMDS Problem

computation time is returned. In any case, the returned solution is denoted by

Ssub
. In order to solve the subinstance, the ILP model from Section 6.2.1 is used

with the following additional restrictions. All variables xv such that v /∈ Dsub
are

set to zero. Moreover, all variables xv,v′ such that either v /∈ D or v′ /∈ Csub(v) are

set to zero too.

After obtaining solution Ssub
both the standard pheromone value update

and the update of the negative pheromone values is performed. The update

of the negative pheromone values is done with the same formula as in

the case of the standard pheromone update (see the description of function

ApplyPheromoneUpdate(cf , bs_update, Sib, Srb, Sbsf ) in Section 6.3). Only the

learning rate ρ is replaced by a negative learning rate ρneg, and the definition of the

ξv (respectively ξv,v′) values changes. In particular, ξv is set to 1 for all v ∈ Dsub

with v /∈ DSILP
. In all other cases ξv is set to 0. Moreover, ξv,v′ is set to 1, for all

v′ ∈ Csub(v) with v′ /∈ CSsub
(v). In all other cases ξv,v′ is set to 0. In other words,

those solution components that form part of the subinstance (and, therefore, form

part of at least one of the solutions generated byMMAS) but that do not form

part of the (possibly optimal) solution Ssub
to the subinstance, are penalized.

Note that—in contrast to the standard MMAS algorithm, which is again

denoted by Aco in the following section—the algorithm making use of negative

learning is henceforth denoted by Aconeg. Finally, not taking profit from solution

Ssub
in anadditional,moredirect,waymay result inwastingvaluable information.

Therefore, we also test an extended version of Aconeg, henceforth denoted by

Aco
+
neg, that updates solutions S

rb
and Sbsf at each iteration with solution Ssub

if

appropriate.

The negative pheromone values are used in the following way to change the

probabilities in both phases of each step for the construction of a solution S.

Remember that the first phase concerns the choice of the next dominator v∗, and

the secondphase concerns the choice of a setCS(v∗) of so-far uncoveredneighbors

of v∗ that v∗ will dominate. The updated formula for calculating the probabilities

in the first phase is as follows (compare to Eq. 6.7):

pstep1(v) :=
η(v) · τv · (1− τnegv )∑

v′∈O η(v′) · τv′ · (1− τnegv′ )
(6.11)

In the second phase of each construction step CS(v∗) is sequentially filled with

vertices taken from NDv∗ (the set of currently uncovered neighbors of v∗) in the

following way. First, the probability for each vertex v ∈ NDv∗ to be selected is



Section 6.5 Experimental Evaluation 157

determined as follows (compare to Eq. 6.8):

pstep2(v) :=
(|NDv|+ 1) · τv∗,v · (1− τnegv∗,v)∑

v′∈NDv∗
(|NDv′ |+ 1) · τv∗,v′ · (1− τnegv∗,v′)

(6.12)

Another change in comparison to the standard way of generating solutions is

that, during this second phase, only vertices whose probability pstep2(v) is greater

or equal to 0.001 can be selected. This makes it possible to generate solutions in

which a vertex selected as a dominator might not be chosen to dominate as many

of its uncovered neighbors as possible in that moment.

6.5 Experimental Evaluation

All experiments concerning Aco, Aconeg and Aco
+
neg were performed on a cluster

of machines with Intel
®
Xeon

®
CPU 5670 CPUs with 12 cores of 2.933 GHz and a

minimum of 32 GB RAM. Moreover, for solving the subinstances in Aconeg and

Aco
+
neg we used Cplex 12.8 in one-threaded mode.

The proposed algorithms were evaluated on the largest ones of the general

graphs benchmark set for the CapMDS problem from [166]. These graphs are

characterized by a number of vertices (n), a number of edges (m), a vertex capacity

type (uniform vs. variable), and a capacity. In the case of uniform capacities,

graphs with three different capacities (2, 5 and α) exist. Hereby, α refers to the

average degree of the corresponding graph. In the case of variable capacities,

the vertex capacities are—for each vertex—randomly chosen from the following

three intervals: (2, 5), (α/5, α/2) and [1, α]. For each combination of these graph

characteristics, the benchmark set consists of 10 randomly generated graphs.

6.5.1 Algorithm Tuning

All three algorithm variants require parameter values to be set to well-working

options. In particular, all three algorithm versions need parameter values for na

(the number of solutions per iteration), drate (the determinism rate for solution

construction), and ρ (the learning rate). Additionally, Aconeg and Aco
+
neg require

values for parameters ρneg (the negative learning rate) and tsub (the time limit, in

CPU seconds, for Cplex at each iteration). For the purpose of parameter tuning

we made use of irace [123], as in all our experimental work in this thesis. This

tool was used for generating one single parameter setting for each algorithm. As

tuning instances we chose the first (out of 10) instances for each combination of

the four input graph characteristics. Moreover, a budget of 2000 applications



158 Chapter 6 Application to the CapMDS Problem

was given to irace. The parameter value domains were fixed as follows:

na ∈ {3, 5, 10, 20}, drate ∈ {0.1, 0.2, . . . , 0.8, 0.9}, ρ, ρneg ∈ {0.1, 0.2, 0.3}, and

tsub ∈ {2.0, 3.0, 5.0, 10.0} (in seconds). The parameter value settings determined

by irace are shown in Table 6.1.

Table 6.1 Parameter values obtained for solving CapMDS instances

Algorithm na drate ρ ρneg tsub

1 Aco 5 0.9 0.1 n.a. n.a.

2 Aconeg 20 0.7 0.1 0.3 10.0

3 Aco
+
neg 20 0.6 0.1 0.2 5.0

6.5.2 Numerical Results

Each algorithmwas applied exactly once (with a time limit of 1000 CPU seconds)

to eachproblem instance. The results, averagedover 10 instancesper table row, are

shown in Table 6.2 (uniform capacity graphs) and in Table 6.3 (variable capacity

graphs). While the two tables separate the instances with respect to the vertex

capacity type (uniform vs. variable), the first three columns of each table provide

information about the remaining three input graph characteristics (n, m, and

vertex capacity). The fourth table column provides information about the best

result known from the literature, while the fifth and sixth table columns present

the results of CMSA, which is the current state-of-the-art algorithm from [100].

Both the results of CMSAand of the threeAco versions are shown bymeans of the

average solution quality and the average computation time needed for producing

these results.

In order to facilitate an interpretation of these results we provide the

corresponding critical difference (CD) plots which were made by using R package

scmamp [124]. As a reminder, this method works as follows. First, the

Friedman test was used to compare the three approaches simultaneously. As a

consequenceof the rejectionof thehypothesis that the techniquesperformequally,

the corresponding pairwise comparisons were performed using the Nemenyi

post-hoc test [125]. The obtained results are graphically shown by means of

the above-mentioned CD plots in Figure 6.2. In these plots, each considered

algorithm variant is placed on the horizontal axis according to its average ranking

for the considered subset of problem instances. The performances of those

algorithm variants that are below the critical difference threshold (computed

with a significance level of 0.05) are considered as statistically equivalent; see the

horizontal bars joining the markers of the respective algorithm variants.



Section 6.5 Experimental Evaluation 159

Table 6.2 Results for CapMDS graphs with uniform capacity.

n m Cap. Best CMSA Aco Aconeg Aco
+
neg

Known avg. time avg. time avg. time avg. time

800 1000 2 267.0 267.0 3.6 285.3 136.2 267.0 8.4 267.0 2.5

800 2000 2 267.0 267.0 3.9 269.4 80.3 269.3 129.3 267.0 67.8

800 5000 2 267.0 267.0 3.2 267.0 59.0 271.1 192.1 267.0 119.4

1000 1000 2 334.0 334.0 7.9 364.0 157.1 334.0 7.2 334.0 0.6

1000 5000 2 334.0 334.0 6.5 334.2 88.0 384.6 50.3 334.0 126.9

1000 10000 2 334.0 334.0 5.8 334.0 32.4 379.5 176.7 337.2 136.7

800 1000 5 242.5 243.1 205.6 262.8 113.7 245.5 89.2 244.4 76.1

800 2000 5 162.8 162.8 574.7 177.0 116.1 163.2 61.0 161.9
∗

79.1

800 5000 5 134.0 134.0 4.7 135.3 72.4 158.7 6.3 134.0 160.2

1000 1000 5 333.7 333.7 10.5 362.8 141.2 333.7 8.8 333.7 0.6

1000 5000 5 167.0 167.0 40.8 172.2 101.1 206.3 61.4 167.0 173.6

1000 10000 5 167.0 167.0 3.7 167.8 67.3 188.4 8.6 167.0 102.7

800 1000 α 267.0 267.0 4.6 284.0 153.8 267.0 10.1 267.0 2.8

800 2000 α 162.8 162.8 537.3 178.8 93.0 163.4 73.8 162.0
∗

69.7

800 5000 α 91.1 93.0 717.9 92.9 62.8 90.9 74.0 89.2
∗

104.3

1000 1000 α 334.0 334.0 13.7 365.1 175.2 334.0 6.9 334.0 0.6

1000 5000 α 132.5 135.0 782.9 137.3 82.0 131.6 65.4 127.3
∗

116.3

1000 10000 α 81.3 86.8 518.7 82.6 67.9 87.9 98.4 80.7
∗

133.1

Table 6.3 Results for CapMDS graphs with variable capacity.

n m Cap. Best CMSA Aco Aconeg Aco
+
neg

Known avg. time avg. time avg. time avg. time

800 1000 (2, 5) 248.1 248.2 79.2 269.2 131.7 251.8 47.4 249.9 68.6

800 2000 (2, 5) 181.2 181.5 341.7 195.0 98.7 180.8 73.1 179.8
∗

79.7

800 5000 (2, 5) 134.1 134.1 28.1 139.1 99.6 138.4 127.3 134.1 94.3

1000 1000 (2, 5) 333.8 333.8 3.9 365.6 146.9 333.8 8.8 333.8 1.9

1000 5000 (2, 5) 169.0 169.0 85.1 182.8 86.3 171.2 109.7 169.6 105.0

1000 10000 (2, 5) 167.0 167.0 27.5 168.4 92.3 198.3 7.7 167.0 170.1

800 1000 (α/5, α/2) 400.0 400.0 2.6 409.3 112.5 400.2 66.7 400.0 0.8

800 2000 (α/5, α/2) 273.4 273.4 6.5 283.2 87.5 274.6 101.6 273.4 7.6

800 5000 (α/5, α/2) 115.0 115.1 178.6 123.0 83.7 116.5 77.1 115.0 85.7

1000 1000 (α/5, α/2) 500.0 500.0 8.6 517.7 122.2 500.0 11.2 500.0 1.0

1000 5000 (α/5, α/2) 168.1 168.1 77.4 181.3 128.7 170.9 105.4 168.8 92.2

1000 10000 (α/5, α/2) 104.7 107.1 247.9 104.8 97.1 108.6 131.0 95.6
∗

121.3

800 1000 [1, α] 300.2 300.2 4.0 316.0 144.9 300.2 6.8 300.2 0.5

800 2000 [1, α] 186.2 186.2 442.6 204.9 105.3 187.3 61.5 185.8
∗

63.9

800 5000 [1, α] 98.1 98.1 683.7 101.7 63.3 96.8 84.4 95.6
∗

80.2

1000 1000 [1, α] 400.8 400.8 6.4 409.6 141.5 400.8 7.3 400.8 0.5

1000 5000 [1, α] 143.8 143.8 866.9 151.9 95.4 141.4 101.1 140.6
∗

98.9

1000 10000 [1, α] 90.1 90.1 541.8 88.2 66.8 87.8 132.1 85.6
∗

108.0

The graphic in Figure 6.2a shows the CD plot for the uniform capacity

instances, and the one in Figure 6.2 for the variable capacity instances. In both

graphics it can be seen that both algorithmvariantswith negative learning (Aconeg

and Aco
+
neg) significantly improve over the standard ACO approach. Moreover,

Aco
+
neg improves over Aconeg with statistical significance. This is also the general



160 Chapter 6 Application to the CapMDS Problem

1 2 3

(a) Uniform capacities

1 2 3

(b) Variable capacities

1 2 3

(c) Uniform capacities, sparse

1 2 3

(d) Uniform capacities, dense

Fig. 6.2 Critical difference plots

picture given by the numerical results in Tables 6.2 and 6.3.

Interestingly, when separating the instances according to different graph

densities, it can be noticed that negative learning is especially useful in the

context of sparse graphs. In contrast, when moving towards dense graphs the

efficacy of negative learning is reduced. In the context of graphs with uniform

capacities, it is even the case that standard Aco outperforms Aconeg for dense

graphs. This is shown in the context of uniform capacity graphs in Figures 6.2c

and 6.2d.

6.6 Conclusions

In this work we introduced a new approach for making use of negative learning

in ant colony optimization. This approach builds, at each iteration, a subinstance

of the original problem instance by merging the solution components found

in the solutions generated by the ant colony optimization algorithm in that

iteration. Then it uses a different optimization technique—Cplex was used

here—for finding the best solution in this subinstance. The solution components

from the subinstance that do not form part of this solution are penalized by

means of increasing their negative pheromone values. The proposed approach is

shown to be very beneficial for the capacitatedminimumdominating set problem.



161

CHAPTER 7

APPLICATION TO THEMINIMUM POSITIVE INFLUENCE

DOMINATING SET PROBLEM

7.1 Introduction

This chapter describes the application of our negative learning Aco for the

minimum positive influence dominating set (MPIDS) problem. Some parts

of this chapter were also presented in our paper [110] that was published

in the Proceedings of the Genetic and Evolutionary Computation Conference

Companion, July 2021, Pages 1974–1977, (https://doi.org/10.1145/3449726.

3463130).

The MPIDS problem [167, 168] is an NP-hard combinatorial optimization

problem with applications in social networks. Hereby, each vertex represents an

individual and edges indicate relationships, respectively interactions, between

those individuals. The problems’ background is that ideas and information

propagated in social networks can have a significant impact. Social norms theory

has shown that the behavior of individuals can be affected by perceptions of

others’ thoughts and behaviors [169]. Thus, exploiting the relationships among

people in social networks can provide great benefits to both economy and society.

The aim of the MPIDS problem is to identify a small subset of key influential

individuals to speed up the spread of positive influence [170, 171]. Other

applications of the MPIDS problem can be found in e-learning software [172],

online business [173], drinking, smoking, and drug related problems [167].

In this work we apply our negative learning Aco to the MPIDS problem. In

Chapter 3 and 4, this negative learning ACO approach was shown to outperform

earlier negative learning approaches such as, for example, [84]. Our results

show that our negative learning variant of Aco outperforms both the standard

Aco variant and the metaheuristic approaches from the literature for the MPIDS

problem.

The rest of this chapter is organized as follows. In Section 7.2 we provide

the standard integer linear programming (ILP) model for the MPIDS problem

https://doi.org/10.1145/3449726.3463130
https://doi.org/10.1145/3449726.3463130


162 Chapter 7 Application to the MPIDS Problem

and highlight several existing approaches to this CO problem. In Section 7.3, we

outline our algorithmic proposal. Finally, in Section 7.4 we present and discuss

the experimental results.

7.2 The Minimum Positive Influence Dominating Set Problem

In technical terms, the MPIDS problem can be described as follows. Given a

simple, connected undirected graph G = (V,E), the problem requires to find a

dominating set of minimum cardinality such that at least half of the neighbors of

each vertex form part of the dominating set.

7.2.1 ILP Model for the MPIDS

TheMPIDS problem can easily be stated in terms of an ILP as follows. Themodel

is based on a binary variable xi associated to each vertex vi ∈ V .

minimize

n∑
i=1

xi (7.1)

subject to:

∑
vj∈N(vi)

xj ≥
⌈
deg(vi)

2

⌉
∀vi ∈ V (7.2)

xi ∈ {0, 1} (7.3)

Hereby,N(vi) is the neighborhood of vi in the input graphG, and deg(vi) is the

degree of vertex vi, that is, the number of its neighbors. Equation (7.2) ensures

that a feasible solution contains at least half of the neighbors of each vertex vi ∈ V .

Most of the recent research efforts concerning the MPIDS problem

were focused on greedy heuristics [168, 174–177] and on two evolutionary

approaches [111, 112].

7.3 Negative Learning Aco for MPIDS Problem

As in the previous works in Chapters 3 to 6, we used MMAS in the

hypercube framework [14] as the baselineAco algorithm for our negative learning

application to the MPIDS Problem. This baseline algorithm works as described

in Chapter 2. The standard pheromone model T for this CO problem contains a

value τi for each vertex vi ∈ V . Similarly, the model of the negative pheromone



Section 7.3 Negative Learning Aco for MPIDS Problem 163

values (T neg
) contains a value τnegi for each vertex vi ∈ V . The initialization of

pheromone values and other parameters is exactly as described in Section 2.2,

except for Sbsf and Srb which are initialized to V , the worst solution possible.

Overall, the algorithm works as outlined in Algorithm 2.1 with the detailed

description of the pheromone update function and convergence factor calculation

as provided in Sections 2.2.2 and 2.2.3, respectively.

Function ConstructSolution(T ) of Algorithm 2.1 is applied to this CO

problem by adopting the solution construction mechanism from the newest

available greedy algorithm for the MPIDS problem [177]. First, a pre-processing

procedure adds those vertices to a set Sinit that must form part of an optimal

solution. Note that this pre-processing procedure is, of course, only executed

once by the algorithm. Each solution construction process starts by initializing

the partial solution under construction to Sinit, that is, S := Sinit. Given any partial

solution S ⊂ V , the number of neighbors of v that must be added to S in order

to cover v is computed as hS(v) := ddeg(v)
2
e − |NS(v)|, where NS(v) := N(v) ∩ S

denotes the set of neighbors of v ∈ V belonging to S. We say that v is covered

if hS(v) ≤ 0, and not covered otherwise. Moreover, let CS ⊂ V denote the set of

uncovered vertices with respect to S. At each step of the solution construction

procedure, first a vertex vi ∈ CS is chosen such that deg(vi) ≤ deg(vj) for all

vj ∈ CS . Then, hS(vi) vertices from N(vi) \ NS(vi) are chosen, based on greedy

information and on pheromone information. The probability to choose a vertex

vk ∈ N(vi) \NS(vi) is defined as follows:

p(vk | S) :=
ηk · τk · (1− τnegk )∑

vl∈N(vi)\NS(vi)
ηl · τl · (1− τnegl )

(7.4)

where ηk := |{v ∈ N(vk) : hS(v) > 0}| + 1. Based on these probabilities, the

selection of v∗—that is, the vertex to be added to S—is done as follows. First,

a random number r ∈ [0, 1] is chosen uniformly at random. In case r ≤ drate,

v∗ := argmax{p(v | S) | v ∈ N(vi) \ NS(vi)}. Otherwise, v∗ is chosen by roulette

wheel selection. Remember that drate ∈ [0, 1]—the so-called determinism rate—is

an important parameter of the algorithm.

The generation of the information for negative learning is done by adding

two new instructions—Eqn. (2.5) and Eqn. (2.6)—which are introduced between

lines 9 and 10 of Algorithm 2.1, as outlined in Section 2.3. Themodification of the

negative pheromone values from T neg
in this CO problem is applied by function

SolveSubinstance(S iter, cf ) (Eqn. (2.5)). In particular, this update only concerns

the negative pheromone values of those vertices that form part of at least one

solution of S iter
. The update formula is as follows: τnegi := τnegi +ρneg · (ξnegi −τ

neg
i ),



164 Chapter 7 Application to the MPIDS Problem

where ρneg is the negative learning rate and ξnegi = 1 if ci /∈ Ssub
, resp. ξnegi = 0

otherwise. In other words, the negative pheromone values of those components

that do not form part of Ssub
are increased.

7.4 Experimental Evaluation

Three versions of the proposed algorithm are evaluated. In addition to the

full version (Aco
+
neg), we also evaluated the following versions: (1) the standard

MMAS version (henceforth simply called Aco). This version is obtained by not

executing the update of the negative pheromone values and by setting Ssub = ∅ at
each iteration (that is, Eqn.( 2.5) in Section 2.3.2 is not executed); (2) Aconeg, which

is obtained by not using Ssub
for the standard pheromone update, only for the

update of the negative pheromone values. All experiments concerning the three

algorithm versions were performed on a cluster of machines with Intel
®
Xeon

®

CPU 5670 CPUs with 12 cores of 2.933 GHz and a minimum of 32 GB RAM.

Moreover, for solving the sub-instances in Aconeg and Aco
+
neg we used Cplex 12.10

in one-threaded mode.

7.4.1 Problem instances

The three algorithms were evaluated on 17 social networks that are usually used

in the literature on theMIPDS problem. These networks are of small andmedium

size. In addition, we evaluated the algorithms on 10 larger social networks from

the SNAP library (https://snap.stanford.edu/data/).

7.4.2 Algorithm tuning and test settings

Our algorithms require well-working values for na (number of solution

constructions per iteration), drate (determinism rate), and ρ (learning rate). Aconeg

and Aco
+
neg require additionally a value for ρneg (negative learning rate) and a

value for tsub (time limit for Cplex per iteration). We made use of the scientific

tuning software irace [123] for the purpose of parameter tuning. This tool

was used for generating two parameter settings for each variant: one of the 17

small/medium sized instances, and another one for the 10 large networks. The

obtained parameter value settings are shown in Tables 7.1 and 7.2.

Networks CA-AstroPh, Email-Enron amd socfb-Brandeis99 were used

for the tuning regarding the small/medium sized instances, and networks

Amazon0312 and com-youtube were used for the large ones. Finally, for each

https://snap.stanford.edu/data/


Section 7.5 Discussion and Conclusions 165

Table 7.1 Tuning results obtained by irace for small/medium size networks

Algorithm na drate ρ ρneg tsub

Aco 10 0.4 0.1 n.a. n.a.

Aconeg 20 0.1 0.1 0.5 30

Aco
+
neg 20 0.0 0.1 0.2 17

tuning experiment the budget was fixed to 2000 runs, each one with a time limit

of 600 CPU seconds. The considered parameter value domains were as follows:

na ∈ {2, . . . , 20}, drate ∈ {0.0, 0.1, 0.2, . . . , 0.8, 0.9}, ρ, ρneg ∈ {0.1, . . . , 0.5}, and
tsub ∈ {1, . . . , 30} (in seconds).

Table 7.2 Tuning results obtained by irace for large size networks

Algorithm na drate ρ ρneg tsub

Aco 2 0.6 0.1 n.a. n.a.

Aconeg 10 0.7 0.3 0.5 20

Aco
+
neg 14 0.6 0.2 0.5 13

The tuning results are used in the execution of the three Aco versions.

Furthermore, these Aco variants were applied 10 times, with a CPU time limit of

600 CPU seconds, to each of the 27 problem instances.

7.4.3 Results

The results, in comparison to those of HSIA [112], ILPMA [111], and Cplex

(with a time limit of 2 hours per instance) are shown in Table 7.3. The first 17

of these instances are generally used in the related literature and are of small,

resp. medium, size. Cplex was able to solve 11 of these instances to optimality,

as indicated by a value of 0.00 in the column labeled ’Gap (%)’. Note that both

HSIA and ILPMA were only applied to 9, resp. 12, of these first 17 problem

instances. The remaining 10 instances are larger and were taken from the SNAP

database. The results of our three ACO versions are marked by a light gray

column background. They are separated into the best result obtained in 10 runs,

the average results over 10 runs, and the average computation time.

7.5 Discussion and Conclusions

The following observations can be made. First, the standard Aco version obtains

results similar to those of HSIA and ILPMA. The two Aco versions with negative

learning (Aconeg and Aco
+
neg) clearly outperform the other three competitors.



166 Chapter 7 Application to the MPIDS Problem

Concerning the comparison between Aconeg and Aco
+
neg it can be stated that,

in the context of the 17 small/medium size instances, Aco
+
neg is only slightly

better than Aconeg. However, this difference in quality grows significantly in the

context of the 10 larger problem instances. Moreover,Cplex clearly fails to provide

solutions of reasonable quality in the case of five large problem instances, that is,

the deezer_HR instance, and the four Amazon instances. All three Aco versions

are clearly superior to Cplex in these cases.

Summarizingwe can state thatAco
+
neg is the new state-of-the-artmetaheuristic

for solving the MPIDS problem. Moreover, this shows again that making use of

negative learning in addition to positive learning can be very beneficial.



S
e
c
t
i
o
n
7
.
5

D
i
s
c
u
s
s
i
o
n
a
n
d
C
o
n
c
l
u
s
i
o
n
s

1
6
7

Table 7.3 Numerical results of all algorithm tested on MPIDS instances

Network CPLEX best average average time

Result Gap (%) HSIA ILPMA Aco Aconeg Aco
+
neg HSIA ILPMA Aco Aconeg Aco

+
neg ILPMA Aco Aconeg Aco

+
neg

Karate 15 0.00 n.a. 15 15 15 15 n.a. 15.0 15.0 15.0 15.0 0.03 0.00 0.002 0.002

Dolphins 30 0.00 n.a. 30 30 30 30 n.a. 30.0 30.0 30.0 30.0 0.13 0.004 0.008 0.004

Football 63 0.00 n.a. 65 64 63 63 n.a. 65.65 64.6 63.0 63.0 0.54 74.08 40.71 19.73

Jazz 79 0.00 n.a. n.a. 79 79 79 n.a. n.a. 79.9 79.0 79.0 n.a. 5.92 0.39 0.12

CA-AstroPh 6740 0.30 6905 6857 6886 6742 6742 6906.6 6865.45 6897.1 6744.1 6743.8 300.41 502.58 282.73 438.62

CA-GrQc 2587 0.00 2597 2594 2588 2587 2587 2598.4 2596.05 2589.1 2587.0 2587.0 45.07 144.90 2.96 0.65

CA-HepPh 4718 0.01 4791 4770 4769 4720 4720 4792.4 4773.85 4772.9 4721.4 4720.3 157.43 526.81 341.16 347.01

CA-HepTh 4471 0.00 4515 4502 4494 4471 4471 4516.2 4506.25 4496.7 4471.0 4471.0 107.93 468.96 13.44 14.62

CA-CondMat 9584 0.06 9729 9683 9692 9587 9588 9734.0 9689.6 9696.3 9588.8 9588.4 506.37 432.98 394.02 471.59

Email-Enron 11682 0.00 11865 11814 11826 11685 11684 11873.4 11818.95 11832.9 11685.2 11684.1 760.08 440.34 221.48 164.53

ncstrlwg2 2994 0.00 3004 3001 2998 2994 2994 3005.4 3002.85 2998.9 2994.9 2994.1 65.69 327.34 18.70 259.49

actors-data 3092 0.24 3143 3130 3145 3093 3093 3144.5 3134.5 3149.0 3093.7 3093.7 137.74 419.42 273.89 260.08

ego-facebook 1973 0.00 1726
a

1737
a

1974 1973 1973 1726.6
a

1741.55
a

1974.9 1973.6 1973.1 56.91 16.44 33.27 65.28

socfb-Brandeis-
-99

1400 1.41 n.a. n.a. 1456 1398 1397 n.a. n.a. 1462.7 1399.0 1397.7 n.a. 398.99 347.46 480.68

socfb-nips-ego 1398 0.00 n.a. n.a. 1398 1398 1398 n.a. n.a. 1398.0 1398.0 1398.0 n.a. 2.86 2.71 1.28

socfb-Mich67 1329 1.56 n.a. n.a. 1384 1329 1327 n.a. n.a. 1387.9 1329.9 1328.5 n.a. 420.84 335.62 366.89

soc-gplus 8244 0.00 n.a. n.a. 8294 8244 8244 n.a. n.a. 8298.3 8244.1 8244.0 n.a. 446.28 169.60 21.20

musae_git 9752 0.00 n.a. n.a. 10383 10006 9872 n.a. n.a. 10409.3 10031.3 9828.8 n.a. 589.06 414.45 357.81

loc-gowalla-
-_edges

67617 0.07 n.a. n.a. 68815 67946 67943 n.a. n.a. 68836.9 67972.0 67964.0 n.a. 547.53 550.78 503.48

gemsec_face-
-book_artist

15194 1.20 n.a. n.a. 16010 15537 15480 n.a. n.a. 16029.0 15593.9 15505.2 n.a. 554.54 488.09 511.42

deezer_HR 54573 95.68 n.a. n.a. 23413 22906 22840 n.a. n.a. 23434.7 23152.1 22904.9 n.a. 518.96 426.34 426.67

com-youtube 351281 0.00 n.a. n.a. 353715 352110 351556 n.a. n.a. 353975.2 352243.7 351567.1 n.a. 601.46 592.07 599.96

com-dblp 120492 0.08 n.a. n.a. 121854 120998 120853 n.a. n.a. 121874.6 121056.7 120932.0 n.a. 465.34 564.34 513.59

Amazon0302 262111 97.50 n.a. n.a. 134146 132797 131836 n.a. n.a. 134241.0 132832.6 131901.3 n.a. 370.61 395.71 576.98

Amazon0312 400727 95.41 n.a. n.a. 180443 180613 180049 n.a. n.a. 180546.3 180690.8 180284.1 n.a. 597.82 597.19 611.33

Amazon0505 410236 95.19 n.a. n.a. 182851 182839 182152 n.a. n.a. 182955.3 182928.9 182464.5 n.a. 596.00 601.65 617.66

Amazon0601 403394 96.94 n.a. n.a. 179768 179726 179112 n.a. n.a. 179847.5 179799.0 179662.2 n.a. 598.81 598.46 612.19

average 49351.48 4906.88 48966.59 49381.25 49137.72 49017.73 n.a. 372.92 285.45 305.29



168 Chapter 7 Application to the MPIDS Problem



169

CHAPTER 8

ADDITIONALWORK:

MMAS APPLICATION TO THEMULTI-HEADWEIGHER

MACHINES PROBLEM

8.1 Introduction

This chapter describes the application of MMAS to the Multi-head Weigher

Machines (MWMs) problem. Some parts of this chapter were also presented

in the International Symposium on Advances and Innovation in Mechanical

Engineering: Sustainable Innovation in Disruptive Era, October 12-14, 2021 in

Yogyakarta Indonesia (https://bkstm.umy.ac.id/isaime/). The paper is

currently processed by the Conference Committee to be published in the AIP

Conference Proceedings. We chose this CO problem as the starting point for the

application of hybrid metaheuristics, particularly the negative learning Aco, to

actual problems in mechanical engineering, which is the scientific background of

the author of this thesis.

MWMs [178] are automatic packingmachines used by industries for weighing

and packing their products accurately and rapidly. The first of these machines

was introduced in 1972 by Ishida [179] and currently more than 31,000 MWM

units are installed worldwide [180]. These machines typically consist of several

important parts, as shown in Fig. 8.1, and they work as follows. The products

are supplied on top of a dispersion feeder and then distributed by a radial feeder

to a layer of pool hoppers. A layer of weighing hoppers, located underneath the

layer of pool hoppers, will receive these products and will then measure their

weights. The measurement data is sent to a computer that will select a number

of kweighing hoppers among n available ones in a way such that the total weight

of the chosen hopper’s content will exceed the target weight of the products

package. Finally, the chosen weighing hoppers will then release their content

through a discharge chute after which they will be packed. In order to minimize

the loss during the production process, however, the total weight must surely be

https://bkstm.umy.ac.id/isaime/


170 Chapter 8 MMAS Application to the MWM Problem

Fig. 8.1 A schema of a single layer MWM

as close as possible to the target weight.

Current trends show that MWM hardware designs as well as packing

scenarios are evolving to be more complex and demanding. Today, a multihead

weigher machine may employ double layers of weighing hoppers [181] instead

of only one layer as in the original design. Handling perishable products that

cannot withstand long resident time during the packaging process could also

add an extra difficulty in MWM design and operation [182]. Moreover, it is

also possible that a packaging scenario may require the MWM to pack multiple

types of products instead of just one [183, 184]. Consequently, a well-designed

optimization algorithm is needed for anticipating all of these developments.

With the exception of the works of Karuno and Nakahama [185], most of the

works in MWM optimizations dealt with only one type of product and used a

complete enumeration strategy. Current trends in theMWMpackaging scenario,

however, may require them to pack additional types of products or to include

additional optimization objectives and/or constraints. In any of these cases, the

complete enumeration strategy may not always be able to provide the optimum

result in a reasonable time frame. Naturally, ant colony optimization is a potential

candidate for this purpose.

In this work, we developed and tested an Aco algorithm for MWM

optimization problems concerning packing scenarios with one, two, and

three types of products. Results from our numerical experiments provide a

comprehensive picture on the characteristics of MWM optimization problems as

well as the performance of our proposed optimization algorithm in comparison



Section 8.2 The Multi-head Weigher Machine Problem 171

with the one delivered by Cplex which served as benchmark. This work is an

initial study from which a more sophisticated Aco algorithm such as the one

presented in [104] could be designed for more sophisticated MWM packaging

scenarios.

8.2 The Multi-head Weigher Machine Problem

The MWM problem can be defined as follows. Given is (1) nt, the number of

product types to be packed, (2) ni, the number of weighing hoppers allocated

for each product type, (3) wij represents the weight of each product type i inside

the j-th weighing hopper allocated for product type i, (4) P represents the target

weight of the package, and (5) pi represents the target weight of each type of

product. A valid solution to this optimization problem is a set of hoppers such

that the sum of their weights (wij values) is not less than the target weight P of the

package. Moreover, in this solution, the sum of the wij-values for each product

type imust also not be less than the corresponding target weight pi.

8.2.1 ILP Model for the MWM

The MWM problem can in the following way be expressed by means of an ILP

model [184] presented in equations (8.1) to (8.4).

minimize

nt∑
i=1

ni∑
j=1

wij · xij (8.1)

subject to:

nt∑
i=1

ni∑
j=1

wij · xij ≥ P (8.2)

ni∑
j=1

wij · xij ≥ pi, i = 1, 2, . . . , nt (8.3)

xij ∈ {0, 1}, i = 1, 2, . . . , nt, j = 1, 2, . . . , ni (8.4)

Equation (8.1) of the ILP model represents the MWM optimization objective

while inequalities (8.2) and (8.3) each represent MWM optimization constraints.

This ILPmodel is based on binary variables xij for representing the selection state

of theweighinghoppers, that is, the value ofxij is one if the correspondinghopper

is selected, and zero otherwise. Note that this model was solved in standalone

mode by Cplex for comparison purposes.



172 Chapter 8 MMAS Application to the MWM Problem

8.2.2 Existing Approaches to the MWM problem

Apart from their extensive use and their vital role in industries, there are few

academicworks dedicated to study the characteristics of theMWMproblem [186].

Narkhede et al. developed a microcontroller based MWMmodel which operates

by choosing three of five available weighing hoppers for every instance of the

product weighing process [179]. The optimization algorithm in this MWM

model works by monitoring the sum of the weights of each possible combination

continuously until there is one that matches the target weight. In the Internet of

Things (IoT) framework, Ma’ayan and Dabran made use of MWM operation data

from a frozen vegetable factory to create an emulation model that is comprised

of 14 weighing hoppers from which four hoppers are chosen in every weighing

process [187]. The hopper selection is initiated by sorting the total weights

from each possible hopper combination and excluding the ones that have values

below the target weight. From the remaining combinations, the one with closest

value to the target weight will finally be selected. Garcia-Diaz et al. [188]

and Pulido-Rojano et al. [189] also implemented a similar strategy where the

optimization software calculates the weight of each possible hopper combination

and then selects the one that has the best value.

Karuno and Nakahama took a different approach than the explicit

enumerative strategy [185] which was used in all of the previously mentioned

works. They implemented a dynamic programming method for an MWM

packing scenario in which the optimization condition requires both the total

weight and the number of selected product to exceed certain values [183].

In other publications, Karuno and Nakahama also provided greedy heuristic

solutions for a mixture packaging of two types of products [184] and for a

bi-criteria mixture packaging problem [185]. In these last two works, however,

Karuno andNakahama did not provide numerical experiments that would allow

the heuristic performance to be compared to other existing approaches.

8.3 MMAS for MWM

The MMAS in the hypercube framework [14] that we applied to the MWM

problem works as described in Chapter 2. The pheromone model T for this

application consists of a pheromone value τij for each hopper j of each product

type i. The initialization of pheromone values and other parameters is exactly as

described in Section 2.2. Overall, the algorithmworks as outlined inAlgorithm2.1

with the detailed description of the pheromone update function and convergence



Section 8.4 Experimental Evaluation 173

factor calculation as provided in Sections 2.2.2 and 2.2.3, respectively.

Function Construct_Solution(T ) applied to the MWM problem works as

follows. Solution S for this optimization problem is defined as a binary structure

such that sij ∈ {0, 1} indicates the product in j-th hopper allocated for type

i-th products. The solution S to be constructed is initialized to sij = 0 for all

i = 1, . . . , nt and j = 1, . . . , ni. Then, at each iteration, a product type i from nt

available product types is selected randomly. Subsequently, a weighing hopper

j is selected from hopper set Hi := {1, . . . , ni} allocated to products of type i.

The probability for any hopper j to be chosen in the current construction step is

defined as follows:

p(j|S) :=
ηij · τij∑ni

j=1 ηij′ · τij′
∀j ∈ Hi (8.5)

Hereby, ηij is the so-called greedy function that evaluates the goodness of

selecting the j-th hopper allocated for product type i, defined as follows:

ηij :=
∣∣ 1

wij − wij
∣∣

(8.6)

Note that wij in Eqn. (8.6) is the average of product’s weights in all hoppers.

Based on the probabilities in Eqn. (8.5), the selection of j —that is, the hopper

to be added to S—is done as follows. First, a random number r ∈ [0, 1] is chosen

uniformly at random. In case r ≤ drate, j := argmax{p(j|S) | j ∈ Hi}. Otherwise,

j is chosen by roulette wheel selection. Note that drate ∈ [0, 1]—the so-called

determinism rate—is an important parameter of the algorithm. Once a hopper

j is selected, it is removed from hopper set Hi such that Hi := Hi \ {j}. This

selection process is repeated until the target weights pi of each product type as

well as the target weight P of the package is reached or exceeded.

8.4 Experimental Evaluation

In addition to the Aco algorithm we also evaluated the implementation of

Cplex 12.10 in one-threaded mode as the performance benchmark for the MWM

optimization problem. All experiments concerning the two algorithms were

performed on a cluster of machines with Intel
®
Xeon

®
CPU 5670 CPUs with 12

cores of 2.933 GHz and a minimum of 32 GB RAM.



174 Chapter 8 MMAS Application to the MWM Problem

8.4.1 Problem instances

In this work, we generated MWM test cases with configurations as shown in

Table 8.1. The target weight for these test cases is 500 grams. The number of

product types nt varies from 1 to 3. For the variation of the number of weighing

hoppers n; we chose 16 and 32. For each of these number of hoppers we decided

to set the number of chosen hoppers k to be at least twice the number of product

types. With this arrangement, the corresponding averageweight in each hopperµ

was calculated by dividing the target weight P by the number of chosen hoppers

k.

Variable σ in Table 8.1 represents the ratio between the maximum weight

deviations with respect to the average weight in each hopper. For simulating

the effect of product weight variability, we conduct three different values for σ:

0.1, 0.2, and 0.3 for each available type of product. The values of the weights in

each hopper were generated randomly by using the C++ normal_distribution

function that works by taking mean and standard deviation values as input data.

Table 8.1 MWM test case configurations with target a weight of 500 grams

No. nt n k µ (g) σ1 σ2 σ3
1 1 [16,32] [2, 3, 4] [250, 166.67, 125] [0.1, 0.2, 0.3] NA NA

2 2 [16,32] [4, 5, 6] [125, 100, 83,33] [0.1, 0.2, 0.3] [0.1, 0.2, 0.3] NA

3 3 [16,32] [6, 7, 8] [83.33, 71.43, 62.5] [0.1, 0.2, 0.3] [0.1, 0.2, 0.3] [0.1, 0.2, 0.3]

Table 8.2 shows the number of hoppers allocated to each product type (n1, n2,

and n3) in relation to the number of chosen hoppers k, number of all hoppers n,

and number of product types nt.

8.4.2 Algorithm tuning and test settings

The Aco algorithm requires well-working values for na (number of solution

constructions per iteration), drate (determinism rate), and ρ (learning rate). Again,

we made use of the scientific tuning software irace [123] for the purpose of

parameter tuning. This tool was used for generating a single parameter setting

for each number of product types.

As test cases for tuning we chose the first out of the 10 instances for each

combination of "number of product type", "number of hoppers", and "number of

chosen hoppers". Finally, the budget of irace was fixed to 2000 runs, each one

with a time limit of 1 CPU second, which is more than enough to represent the

required computational time in the actual MWM operation.

The considered parameter value domains were as follows: na ∈ {3, 5, 10, 20},



Section 8.4 Experimental Evaluation 175

Table 8.2 MWM operational configurations

No. nt n k n1 n2 n3
1 1 16 2 16 NA NA

2 1 16 3 16 NA NA

3 1 16 4 16 NA NA

4 1 32 2 32 NA NA

5 1 32 3 32 NA NA

6 1 32 4 32 NA NA

7 2 16 4 8 8 NA

8 2 16 5 8 8 NA

9 2 16 6 8 8 NA

10 2 32 4 16 16 NA

11 2 32 5 16 16 NA

12 2 32 6 16 16 NA

13 3 16 6 5 5 6

14 3 16 7 5 5 6

15 3 16 8 5 5 6

16 3 32 6 10 11 11

17 3 32 7 10 11 11

18 3 32 8 10 11 11

drate ∈ {0.0, 0.1, 0.2, ..., 0.8, 0.9}, and ρ ∈ {0.1, ..., 0.5}. The obtained parameter

value settings are shown in Table 8.3.

Table 8.3 ACO parameter values obtained by irace

No. MWM configuration ACO parameter

nt n na drate ρ
1 1 16 10 0.5 0.0

2 1 32 17 0.4 0.1

3 2 16 5 0.5 0.0

4 2 32 10 0.4 0.0

5 3 16 15 0.2 0.5

6 3 32 19 0.1 0.1

8.4.3 Results

We set a time limit of 1 second for every test in this research and in each of these

test cases Cplex found the optimum solution. In total, the results of Aco match

the ones of Cplex in 2276 out of 2340 test cases. In the group of test cases with

one or two product types, we can see in Tables 8.4 and 8.5 that the results of Aco

are found mostly in much shorter time than the ones of Cplex. In the group of

test cases with three product types we can see in Table 8.6 that there are several

test configurations in which Aco’s performance falls slightly below the one of

Cplex. Even though the average difference of total weights and execution times

are only 0.024 grams and 42.42 milliseconds, respectively, this fact shows us the



176 Chapter 8 MMAS Application to the MWM Problem

Table 8.4 Cplex and Aco results and execution times for the MWM packing

problem with one product type

No. n k σ1 Avg. opt. weights (g) Avg. time (ms)

Cplex Aco Cplex Aco

1 16 2 0.1 500.65 500.65 12.96 0.14

2 16 2 0.2 500.59 500.59 11.70 0.08

3 16 2 0.3 501.00 501.00 11.25 0.12

4 16 3 0.1 500.14 500.14 19.45 0.31

5 16 3 0.2 500.21 500.21 14.01 0.47

6 16 3 0.3 500.11 500.11 16.27 0.58

7 16 4 0.1 500.01 500.01 16.82 0.80

8 16 4 0.2 500.02 500.02 19.32 1.50

9 16 4 0.3 500.05 500.05 23.73 1.81

10 32 2 0.1 500.08 500.08 20.93 0.49

11 32 2 0.2 500.34 500.34 23.73 0.41

12 32 2 0.3 500.18 500.18 25.27 1.07

13 32 3 0.1 500.00 500.00 17.75 1.23

14 32 3 0.2 500.00 500.00 30.23 1.52

15 32 3 0.3 500.00 500.00 26.75 3.05

16 32 4 0.1 500.00 500.00 17.39 1.72

17 32 4 0.2 500.00 500.00 31.92 1.93

18 32 4 0.3 500.00 500.00 28.30 0.94

relevance of developing more powerful optimization algorithms in response to

the growing complexity of MWM optimization problems.

The results of our numerical experiments show the importance of MWM

initial setup optimization as already studied by Beretta et al. [186], Del Castillo

Table 8.5 Cplex and Aco results and execution times for the MWM packing

problem with two product types

No. n k σ1 σ2 Avg. opt. weights (g) Avg. time (ms)

Cplex Aco Cplex Aco

1 16 4 0.1 [0.1, 0.2, 0.3] 506.05 506.05 11.50 0.62

2 16 4 0.2 [0.1, 0.2, 0.3] 507.91 507.91 11.24 0.58

3 16 4 0.3 [0.1, 0.2, 0.3] 505.99 505.99 10.79 0.98

4 16 5 0.1 [0.1, 0.2, 0.3] 536.00 536.00 9.57 1.39

5 16 5 0.2 [0.1, 0.2, 0.3] 513.38 513.38 10.1 1.35

6 16 5 0.3 [0.1, 0.2, 0.3] 512.40 512.40 11.70 5.68

7 16 6 0.1 [0.1, 0.2, 0.3] 501.57 501.57 12.29 3.45

8 16 6 0.2 [0.1, 0.2, 0.3] 503.28 503.28 11.76 2.35

9 16 6 0.3 [0.1, 0.2, 0.3] 504.98 504.98 12.55 3.05

10 32 4 0.1 [0.1, 0.2, 0.3] 500.78 500.78 26.59 10.63

11 32 4 0.2 [0.1, 0.2, 0.3] 501.03 501.03 26.01 11.55

12 32 4 0.3 [0.1, 0.2, 0.3] 501.08 501.08 28.30 14.54

13 32 5 0.1 [0.1, 0.2, 0.3] 517.18 517.18 18.47 16.91

14 32 5 0.2 [0.1, 0.2, 0.3] 504.96 504.96 29.66 38.29

15 32 5 0.3 [0.1, 0.2, 0.3] 504.55 504.55 41.35 47.99

16 32 6 0.1 [0.1, 0.2, 0.3] 500.06 500.06 78.59 113.36

17 32 6 0.2 [0.1, 0.2, 0.3] 500.16 500.16 81.77 233.57

18 32 6 0.3 [0.1, 0.2, 0.3] 500.12 500.12 66.10 233.90



Section 8.4 Experimental Evaluation 177

Fig. 8.2 Illustrative example of problem instance and solution of configuration

number 1 in Table 8.5

et al. [180, 190, 191], as well as Garcia-Diaz et al. [188] and Pulido-Rojano et

al. [189]. The quality of the MWM optimization process is influenced not only

by the optimization software used during its operation but also by the initial

configuration of the MWM. A clear example of this can be seen by comparing

configuration number 1 and number 4 in Table 8.5 where the first configuration

shows a better average of the optimum weights than the latter.

Figures 8.2 and 8.3 show illustrative examples of product weight distributions

in problem instances of configuration number 1 and 4 in Table 8.5. The product

weight data used in these configurations is characterized by different average

weight values for the same σ1 and σ2 variations and combinations. In these

examples, both configurations—number 1 and 4—have σ1 = 0.1 and σ2 = 0.1.

Fig. 8.3 Illustrative example of problem instance and solution of configuration

number 4 in Table 8.5



178 Chapter 8 MMAS Application to the MWM Problem

However, the average weight for configuration number 1 was calculated based on

the assumption that four weighing hoppers are selected every time. As shown

in Fig. 8.2, the products are distributed in each hopper such that their average

weight is close to 125 grams, that is 500 grams of target weights divided by four

hoppers to be selected at each weighing process. On the other hand, the average

weight for configuration number 4 was calculated based on the assumption that

fiveweighing hoppers are selected every time. Figure 8.3 shows that the products

are distributed in each hopper such that their averageweight is close to 100 grams,

that is 500 grams of target weight divided by five hoppers to be selected at each

weighing process. With this arrangement, there is a high probability that one or

more product types in configuration number 4 will need to select an additional

hopper in order to pass the minimum weight requirement, as shown in Fig. 8.3.

This is not only the case in configuration number 4 but also in configuration

numbers 5, 6, 13, 14, and 15. For these configurations, however, we can see that

the average optimum weights are better than the ones for configuration number

4.

Average optimum weight improvements in configurations 5 and 6 over

configuration number 4 in Table 8.5 occur as the weights’ variability between

the hoppers is getting larger. In this way, there are more options for combining

pairs of hoppers that carry a larger and a smaller weight, respectively, combining

to a total weight that is closer to the target weight of the package. This finding

is in accordance to the one found in the numerical experiments of Del Castillo et

al. [191] where they suggested that there should be a certain number of hoppers

containing considerably less product in order to be able to construct better

optimum weight combinations. The average optimum weights in configurations

13, 14, and 15 in Table 8.5 improve over the ones in configurations 4, 5, 6 as

the total number of hoppers in the first group of configurations double over the

one in the latter. A similar pattern can also be observed in Table 8.6 between

configurations 37 to 45 and configurations 10 to 18. This finding indicates that

the adverse influence of an unfavourable weight distribution is becoming less

dominant as the number of hoppers is increased.

All in all, we can observe in Tables 8.4 to 8.6 that even though optimum

solutions for all test cases can be found, their quality is getting worse as the

number of product types to be packed is getting larger. This observation shows

that an optimization method is needed not only for selecting hoppers during

MWM operation but also for determining the initial setup prior to its operation.



Section 8.5 Experimental Evaluation 179

Table 8.6 Cplex and Aco results and execution times for the MWM packing

problem with three product types

No. n k σ1 σ2 σ3 Avg. opt. weights (g) Avg. time (ms)

Cplex Aco Cplex Aco

1 16 6 0.1 0.1 [0.1, 0.2, 0.3] 524.68 524.68 8.79 2.84

2 16 6 0.1 0.2 [0.1, 0.2, 0.3] 515.31 515.31 7.84 5.83

3 16 6 0.1 0.3 [0.1, 0.2, 0.3] 518.47 518.47 7.94 7.93

4 16 6 0.2 0.1 [0.1, 0.2, 0.3] 514.49 514.49 8.11 6.85

5 16 6 0.2 0.2 [0.1, 0.2, 0.3] 517.77 517.77 8.59 11.57

6 16 6 0.2 0.3 [0.1, 0.2, 0.3] 522.21 522.21 8.49 6.61

7 16 6 0.3 0.1 [0.1, 0.2, 0.3] 519.70 519.70 8.49 4.84

8 16 6 0.3 0.2 [0.1, 0.2, 0.3] 517.94 517.94 8.52 3.38

9 16 6 0.3 0.3 [0.1, 0.2, 0.3] 519.56 519.56 8.78 5.03

10 16 7 0.1 0.1 [0.1, 0.2, 0.3] 579.69 579.69 8.91 0.47

11 16 7 0.1 0.2 [0.1, 0.2, 0.3] 558.42 558.42 9.05 14.93

12 16 7 0.1 0.3 [0.1, 0.2, 0.3] 557.61 557.61 8.74 2.07

13 16 7 0.2 0.1 [0.1, 0.2, 0.3] 556.35 556.35 8.68 17.47

14 16 7 0.2 0.2 [0.1, 0.2, 0.3] 538.22 538.22 9.28 5.89

15 16 7 0.2 0.3 [0.1, 0.2, 0.3] 535.86 535.86 9.61 23.98

16 16 7 0.3 0.1 [0.1, 0.2, 0.3] 557.98 557.98 8.86 1.27

17 16 7 0.3 0.2 [0.1, 0.2, 0.3] 531.73 531.73 8.66 12.69

18 16 7 0.3 0.3 [0.1, 0.2, 0.3] 527.84 527.84 9.49 18.38

19 16 8 0.1 0.1 [0.1, 0.2, 0.3] 525.98 525.98 8.50 1.22

20 16 8 0.1 0.2 [0.1, 0.2, 0.3] 530.88 530.88 9.43 1.00

21 16 8 0.1 0.3 [0.1, 0.2, 0.3] 527.72 527.72 9.37 5.47

22 16 8 0.2 0.1 [0.1, 0.2, 0.3] 525.25 525.25 8.63 3.03

23 16 8 0.2 0.2 [0.1, 0.2, 0.3] 521.25 521.25 9.02 2.67

24 16 8 0.2 0.3 [0.1, 0.2, 0.3] 525.23 525.23 9.45 27.31

25 16 8 0.3 0.1 [0.1, 0.2, 0.3] 525.28 525.28 8.89 2.00

26 16 8 0.3 0.2 [0.1, 0.2, 0.3] 520.85 520.85 8.47 1.84

27 16 8 0.3 0.3 [0.1, 0.2, 0.3] 522.60 522.60 8.76 4.65

28 32 6 0.1 0.1 [0.1, 0.2, 0.3] 502.39 502.40 19.69 85.92

29 32 6 0.1 0.2 [0.1, 0.2, 0.3] 502.93 502.94 20.44 95.88

30 32 6 0.1 0.3 [0.1, 0.2, 0.3] 502.48 502.48 21.48 108.91

31 32 6 0.2 0.1 [0.1, 0.2, 0.3] 502.97 502.97 20.11 63.30

32 32 6 0.2 0.2 [0.1, 0.2, 0.3] 503.63 503.64 18.59 62.94

33 32 6 0.2 0.3 [0.1, 0.2, 0.3] 505.97 506.03 22.21 56.32

34 32 6 0.3 0.1 [0.1, 0.2, 0.3] 503.19 503.24 19.86 92.91

35 32 6 0.3 0.2 [0.1, 0.2, 0.3] 504.56 504.73 19.97 152.07

36 32 6 0.3 0.3 [0.1, 0.2, 0.3] 503.86 503.94 23.21 155.20

37 32 7 0.1 0.1 [0.1, 0.2, 0.3] 546.63 546.64 14.56 20.98

38 32 7 0.1 0.2 [0.1, 0.2, 0.3] 530.32 530.32 19.35 62.11

39 32 7 0.1 0.3 [0.1, 0.2, 0.3] 523.99 524.03 19.28 74.66

40 32 7 0.2 0.1 [0.1, 0.2, 0.3] 528.02 528.03 18.03 50.57

41 32 7 0.2 0.2 [0.1, 0.2, 0.3] 510.68 510.70 18.99 141.93

42 32 7 0.2 0.3 [0.1, 0.2, 0.3] 507.79 507.90 23.83 187.12

43 32 7 0.3 0.1 [0.1, 0.2, 0.3] 529.77 529.77 19.37 83.80

44 32 7 0.3 0.2 [0.1, 0.2, 0.3] 506.53 506.66 21.50 118.84

45 32 7 0.3 0.3 [0.1, 0.2, 0.3] 509.44 509.47 25.15 143.92

46 32 8 0.1 0.1 [0.1, 0.2, 0.3] 509.95 509.95 17.02 77.03

47 32 8 0.1 0.2 [0.1, 0.2, 0.3] 505.20 505.21 21.67 119.06

48 32 8 0.1 0.3 [0.1, 0.2, 0.3] 504.92 504.95 25.49 156.77

49 32 8 0.2 0.1 [0.1, 0.2, 0.3] 505.80 505.81 18.50 93.59

50 32 8 0.2 0.2 [0.1, 0.2, 0.3] 504.17 504.25 21.02 119.61

51 32 8 0.2 0.3 [0.1, 0.2, 0.3] 503.19 503.29 30.81 183.06

52 32 8 0.3 0.1 [0.1, 0.2, 0.3] 505.93 505.96 21.14 108.12

53 32 8 0.3 0.2 [0.1, 0.2, 0.3] 503.45 503.55 32.61 155.28

54 32 8 0.3 0.3 [0.1, 0.2, 0.3] 503.53 503.72 27.39 138.05



180 Chapter 8 MMAS Application to the MWM Problem

8.5 Conclusions

Thiswork shows that ACOperforms verywell in tackling theMWMoptimization

problem with one, two, and three product types. Furthermore, it produces

optimal solutions in 97.3% of total test cases, all within excellent execution times.

There are many studies on the initial setup optimization for MWM packing

problem with one product type. In this work we can see that average optimum

weights found in test cases with two and three product types are relatively large

when compared to the ones from test cases with only one product type. This

shows further the importance of MWM initial setup optimization that should be

considered in these types of problems.



181

CHAPTER 9

CONCLUSIONS AND OUTLOOK

9.1 Conclusions

Ant Colony Optimization (Aco) is a metaheuristic optimization technique

inspired by the foraging behavior of ant colonies in nature. This algorithm

consists of two main algorithmic components: solution construction and

pheromone update. At each iteration, Aco constructs several solutions, in a

probabilistic way, using greedy information as well as pheromone values. Good

solutions found in the current iteration and possibly in earlier iterations are

used to update the pheromone values. These two algorithmic components are

repeatedly executed so that new solutions with similar components to the ones

of the previous best solution have a higher probability of being considered in

subsequent iterations. In this way, Aco uses the best results in the past to improve

the solutions in forthcoming iterations. Hence, it can be said that Aco makes use

of positive learning, that is, learning from positive examples.

Since its first introduction in 1991, Aco has evolved into several improved

variants, for example, by improving the exploitation of the positive learning

mechanism. Nevertheless, nature provides numerous examples which show that

negative learningmechanisms are also an integral part of the communication and

coordination systems of a range of social insects. Moreover, examples of negative

learning in species and inter-species evolution, animal swarm behavior, and

human history have already been adopted in metaheuristic techniques such as

evolutionary algorithms, extremal optimization, particle swarmoptimization [28,

29, 31, 32], and opposition based learning algorithm [33, 34]. The Aco research

community has also identified this potential and developed some relevant works.

Most of them, however, with limited successes.

The existing variants of negative learning Aco offer numerous features to

identify, store, use, and update the negative learning information. Based on

how the negative learning information is stored and updated, these variants

can be divided into two groups. The first group uses a dedicated pheromone



182 Chapter 9 Conclusions and Outlook

model to deposit the negative learning information, in addition to the standard

pheromone model that keeps the positive learning information. The other group

of variants uses the negative learning information to enhance the reduction

of the corresponding pheromone values in the standard pheromone model.

Comparing these two approaches, we considered that a dedicated pheromone

model with its own update mechanism is advantageous for the negative learning

Aco implementation. This way, the update of each pheromone type can be

managed independently to adapt to the characteristics of different problem

instances. Hence, we implemented this feature in our negative learning Aco

proposal.

The existing variants of negative learning Aco identify the negative learning

information either by using passive or active methods. Passive methods [82–84,

86, 87, 93, 96, 98] are implemented simply by choosing the worst solution in an

Aco iteration, without using any dedicated function to search for it. An active

identificationmethod [84, 88–90], on the contrary, allocates one ormore functions

to search for low-quality solutions. Generally, negative learning information

is used to reduce the probability of selecting seemingly low-quality solution

components in subsequent iterations. Several variants [88–90], however, use the

information as a base for generating a neighborhood of solutions. Therefore,

instead of using the negative learning information to limit their search area as in

other variants, these variants use it to enhance their exploration scope.

Our negative learning Aco employs two novel mechanisms for identifying

the negative learning information. The first mechanism creates a sub-instance

by merging components of solutions found in an iteration of the baseline

MMAS algorithm. The second mechanism uses an optimization tool (Cplex,

MMAS, SATLike, or SlsMcs) as additional algorithmic component in order

to find the possibly best solution in the sub-instance. Unlike the existing

identification methods, our negative learning Aco identifies presumably bad

solution components by comparing solution components in the sub-instance to

the ones in the solution found by the additional algorithmic component. Any

solution component in the sub-instance that is not present in the additional

algorithmic component’s solution is considered as a bad solution component.

Subsequently, the negative pheromone value of this component is increased.

Hence, it has a lower probability of being selected in solutions of the next

iteration. This way, our negative learning Aco employs a dedicated mechanism

for identifying the negative learning information. However, thismechanism does

not directly search for low-quality solutions as in the existing active identification

method. Hence, our strategy does not waste computational resources for



Section 9.1 Conclusions 183

finding bad solutions that otherwise can be avoided by the baseline MMAS

algorithm itself. Moreover, by having this arrangement, the results of the

additional algorithmic component can also be used to enhance the positive

learning mechanism.

We tested our negative learning Aco proposal on a range of CO problems in

order to evaluate its applicability and effectiveness. The summary of these tests

is as follows:

• In Chapter 3 we described the application of our negative learning Aco to

theMDKP. In this work, we tested ten variants of negative learning Aco. Six

of them are from our proposal, and the rest are our re-implementation

of the negative learning approaches from the literature [84, 87]. We

experimented with ILP solver Cplex andMMAS as the options to provide

negative feedback to the baseline MMAS algorithm. According to this

arrangement, our algorithm variants are divided into two groups based on

the type of algorithm used as the additional algorithmic component. In the

group where theMMAS is used as the additional algorithmic component,

we have two instances of the Aco algorithm working independently

in the same algorithmic framework. The first MMAS serves as the

baseline algorithm, and the other one—or the inner-MMAS—serves as

the additional algorithmic component that provides negative feedback to

the baseline Aco algorithm. Each of the two algorithm groups consists of

three variants according to the way in which the result of Cplex or the

inner-MMAS is used in the baseline MMAS. The first variant uses

the result of the inner algorithm to enhance both the positive and the

negative learning mechanisms. The second and the third variants, on the

other hand, each uses the result for reinforcing only the negative or only

the positive learning mechanism. The four negative learning approaches

from the literature were re-introduced in the context of MMAS as the

baseline algorithm. Subsequently, each negative learning feature was

added to the baseline algorithm. The results show that the negative

learning Aco variants—particularly those that use Cplex for producing

the negative feedback information—perform significantly better than the

existing approaches from the literature. The results also show that,

even though negative learning is not always beneficial for all MDKP

problem instances considered in this work, it is remarkably advantageous

for several groups of problem instances with rather many resources. In

general, it was shown that it is not harmful to add negative learning

because the globally best-performing algorithm variant—Aco
+
neg—uses this



184 Chapter 9 Conclusions and Outlook

mechanism. Moreover, the results show that the globally best-performing

algorithm variant can compete with current state-of-the-art algorithms for

the MDKP [102, 103].

• InChapter 4wepresented the applicationof ournegative learningAco to the

MDS problem. In this chapter, we followed exactly the same procedure as

in the case of theMDKP. The results show the same tendency found already

in the results of theMDKP experiment. In general, all our negative learning

Aco variants outperform the proposals from the literature. Comparing

the group of algorithm variants that use Cplex to the other group that use

MMAS as the additional algorithmic component, we found that the former

ones perform significantly better than the latter ones. This finding shows

that the quality of the additional algorithmic component holds an essential

role in determining the overall performance of the algorithmic framework.

The more accurate the negative feedback, the better the global performance

of the algorithm. We have several important findings concerning the way

in which the result of the additional algorithmic component is utilized.

Generally, variants that use the result to enhance both the negative and

positive learning perform better than those that use it to enhance only the

negative or only the positive learning mechanism. Interestingly, Aconeg—a

variant that uses the result of the additional algorithmic component to

enhance only its negative learning mechanism—is the best algorithm

for MDS instances of the random geometric graph type. Moreover,

Aco
+
neg—our best-performing algorithm variant—performs competitively

to state-of-the-art algorithms for the MDS problems [105–109].

• InChapter 5wedescribed the application of our negative learningAco to the

MaxSAT problem, which has different characteristics to the CO problems

considered in the previous two chapters. Consequently, it is a perfect

test case for evaluating the general applicability of our negative learning

approach, especially in the context of how the sub-instance is created and

how the negative learning information is identified. So far, there are no

applications of negative learning Aco to this CO problem. Despite being a

well-known metaheuristic method, Aco has only been applied a few times

to solve MaxSAT problems. In contrast, numerous powerful solvers from

the field of satisfiability testing are already available for solving this CO

problem. Therefore, theMaxSATproblemprovides a perfect opportunity to

compare the effectiveness of our negative learning Aco approach to the one

of existing MaxSAT solvers. We tested our negative learning Aco variants



Section 9.1 Conclusions 185

that use Cplex against the results of the Aco approaches from the literature

on two instance groups. The results show that all of the negative learning

Aco variants deliver outstanding performance when compared to the Aco

approaches from the literature. In addition to the variants that use ILP

solver Cplex, we developed two new variants in this application, each of

which uses a MaxSAT solver—SATLike-c(w) or SlsMcs—as the additional

algorithmic component. Testing these new variants and the existing ones

on an instance group consisting of problem instances from recent MaxSAT

evaluation events, we show that all our negative learning Aco variants

improved over the baseline Aco approach and each one of the internally

used solvers. This result indicates the effectiveness of our negative learning

proposal. Moreover, it also shows that using high-performance MaxSAT

solvers to solve sub-instanceswithin our algorithmic framework can further

improve their performance.

• In Chapter 6 we provided a detailed description of the application of

our negative learning Aco to the CapMDS problem. This CO problem

was in fact the first one to which we applied our negative learning Aco

at the start of the Ph.D. We tested two negative learning Aco variants

in this work, each of which uses ILP solver Cplex as the additional

algorithmic component for providing negative feedback to the baseline

Aco algorithm. We used two groups of CapMDS instances—uniform

and variable capacity graphs—to test our algorithm variants against

the standard MMAS algorithm. In both instance groups, it can be

seen that both algorithm variants with negative learning significantly

improve over the baseline algorithm MMAS. Comparing these two

variants, we observed that Aco
+
neg improves over Aconeg with statistical

significance. Interestingly, when separating the instances based on graph

densities, we found that negative learning is instrumental in the case of

sparse graphs. Furthermore, our best-performing negative learning Aco

variant–Aco
+
neg–performs competitively to the state-of-the-art approach for

CapMDS problems [100].

• In Chapter 7 we described our negative learning Aco application to the

MPIDS problem, a CO problem that has actual application in social

networks. As in our application to theCapMDSproblem,wedeveloped and

tested two negative learning Aco variants in this work: (1) Aco
+
neg and (2)

Aconeg. These variants were tested on 17 MPIDS problems that are usually

used in the literature and on ten larger social networks from the SNAP



186 Chapter 9 Conclusions and Outlook

library (https://snap.stanford.edu/data/). We compared the obtained

results to the ones ofMMAS, Cplex, and the state-of-the-art approaches

for MPIDS [111, 112]. The comparison showed that the two negative

learning Aco variants outperform all the competitors. Even the baseline

Aco was already able to compete with the state of the art. Comparing the

performance of the two negative learning Aco variants, we found that they

performed competitively on the group of 17 small/medium size problem

instances. However, on the ten larger problem instances, Aco
+
neg performs

significantly better than Aconeg. With this finding, we can state that Aco
+
neg

is the new state-of-the-art metaheuristic for solving the MPIDS problem.

Moreover, this shows again that using negative learning in addition to

positive learning can be very advantageous.

In summary we can say that our negative learning Aco variants improve

consistently over the standard Aco algorithm on all considered CO problems.

The results also show that our negative learning Aco variants outperform

all negative learning approaches from the literature for most of the MDKP

and the MDS problem instances used in this work. Moreover, Aco
+
neg—the

best-performing negative learning Aco variant—always performs competitively

with the state-of-the-art approaches for each considered CO problem. In fact, for

solving the MPIDS problem, Aco
+
neg is currently the state-of-the-art approach.

All in all, it can be said that we have proven the general applicability and the

effectiveness of our negative learning Aco proposal in this work.

9.2 Outlook

As mentioned above, this thesis has served to demonstrate the effectiveness of

the proposed negative learning Aco proposal in solving several CO problems.

Moreover, we have demonstrated that our proposal works well with Cplex

and other algorithms as options for the additional algorithmic component that

provides negative feedback to the baseline Aco algorithm. An extension of this

thesis could be imagined along the following lines.

• Our negative learningAco variants consistently improved over the standard

Aco algorithm; however, we found that one of them—Aconeg—did not

perform as consistently as the other one—Aco
+
neg—, especially in our work

concerning the MDS problem. Aconeg outperformed Aco
+
neg significantly

when applied to instances from the random geometric graph type; yet,

https://snap.stanford.edu/data/


Section 9.2 Outlook 187

it obtained poor results when applied to those from the random graph

type. Although this finding might be explained by using the no free lunch

theorem [192, 193], investigating further into the correlation between the

performance of this negative learningAco variant and the problem instance

characteristics will be an essential development path of this thesis.

• A natural extension of our work on MaxSAT is to adapt our negative

learning ACO for weighted MaxSAT and partial MaxSAT, which is the

variant of MaxSAT that declares some clauses as hard and imposes

that hard clauses must be satisfied by any valid solution. Since

industrial instances are generally encoded using weighted and partial

MaxSAT, it might be interesting to use a SAT-based MaxSAT solver or a

branch-and-bound MaxSAT solver with clause learning as the additional

algorithmic component. These solvers are particularly competitive for

industrial instances and our negative learning Aco might help to improve

their performance. Finally, another extension of this work is to incorporate

a decimation approach [152] in the generation of solutions.

• In Chapter 8 we described the application of the MMAS algorithm to

the Multi-head Weigher Machine (MWM) optimization problem that has

many applications in food packaging industries. This CO problem is

concerned with applying the combinatorial weighing method in which

an optimization algorithm selects a subset of products—from a set of n

available products—that results in a total product weight closest to (but

not less than) a specific target weight. We generated MWM test cases with

several configurations in this work. The results show that the standard

MMAS already successfully solved these optimization problems. It

produces optimal solutions in 97.3% of all test cases, all within excellent

execution times. Furthermore, we used the results obtained by the

optimization software to analyze the relationship between the test case

configuration and the quality of an optimal solution. The finding shows

that the quality of an optimal solution generally declines as the size

and complexity of the test case increases. Note that even though the

optimization software may find the optimum total weights for the available

test cases, the results may not be sufficiently good in terms of the practical

requirement, which is determined by how close they are to a specified target

weight. Hence, optimizing the test case configurations is an inherent aspect

of solving this CO problem for its practical use. Accordingly, this work

will be an important area for the future development of this thesis. In fact,



188

it will be a good starting point for implementing hybrid metaheuristics,

particularly the negative learning Aco, to actual problems in engineering.



189

References

[1] Marco Dorigo and Thomas Stützle. Ant colony optimization: Overview

and recent advances. InHandbook ofMetaheuristics, pages 311–351. Springer,

2019.

[2] Christian Blum and Andrea Roli. Metaheuristics in combinatorial

optimization: Overview and conceptual comparison. ACM Computing

Surveys (CSUR), 35(3):268–308, 2003.

[3] Orhan Engin and Abdullah Güçlü. A new hybrid ant colony optimization

algorithm for solving the no-wait flow shop scheduling problems. Applied

Soft Computing, 72:166–176, 2018.

[4] Erfan Babaee Tirkolaee, Mehdi Alinaghian, Ali Asghar Rahmani

Hosseinabadi,Mani Bakhshi Sasi, andArunKumar Sangaiah. An improved

ant colony optimization for the multi-trip capacitated arc routing problem.

Computers and Electrical Engineering, 77:457–470, 2019.

[5] Raka Jovanovic, Milan Tuba, and Stefan Voß. An efficient ant colony

optimization algorithm for the blocks relocation problem. European Journal

of Operational Research, 274(1):78–90, 2019.

[6] Huĳun Peng, Chun Ying, Shuhua Tan, Bing Hu, and Zhixin Sun. An

improved feature selection algorithm based on ant colony optimization.

IEEE Access, 6:69203–69209, 2018.

[7] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Positive feedback

as a search strategy. http://citeseerx.ist.psu.edu/viewdoc/summar

y?doi=10.1.1.52.6342, 1991. Accessed: 2020-03-15.

[8] Alberto Colorni, Marco Dorigo, Vittorio Maniezzo, et al. Distributed

optimization by ant colonies. In Proceedings of The First European Conference

on Artificial Life, volume 142, pages 134–142. Paris, France, 1991.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6342
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6342


190

[9] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system:

optimization by a colony of cooperating agents. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41, 1996.

[10] Bernd Bullnheimer, Richard F Hartl, and Christine Strauß. A new rank

based version of the ant system. A computational study. https://epub.w

u.ac.at/id/eprint/616, 1997. Accessed : 2020-03-16.

[11] Bernd Bullnheimer, Richard F Hartl, and Christine Strauß. An improved

ant system algorithm for the vehicle routing problem. Annals of Operations

Research, 89:319–328, 1999.

[12] Marco Dorigo and Luca Maria Gambardella. Ant colony system: A

cooperative learning approach to the traveling salesman problem. IEEE

Transactions on Evolutionary Computation, 1(1):53–66, 1997.

[13] Thomas Stützle and Holger H Hoos. MAX–MIN ant system. Future

Generation Computer Systems, 16(8):889–914, 2000.

[14] Christian Blum and Marco Dorigo. The hyper-cube framework for ant

colony optimization. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 34(2):1161–1172, 2004.

[15] Y Schlein, R Galun, and MN Ben-Eliahu. Abstinons. Journal of Chemical

Ecology, 7(2):285–290, 1981.

[16] MGiurfa. The repellent scent-mark of the honeybeeApismellifera tigustica

and its role as communication cue during foraging. Insectes Sociaux, 40(1):

59–67, 1993.

[17] Elva JH Robinson, Duncan E Jackson, Mike Holcombe, and Francis LW

Ratnieks. ‘No entry’signal in ant foraging. Nature, 438(7067):442–442, 2005.

[18] Elva JH Robinson, Duncan E Jackson, Mike Holcombe, and Francis LW

Ratnieks. No entry signal in ant foraging (hymenoptera: Formicidae): new

insights from an agent-based model. Myrmecological News, 10, 2007.

[19] ChristophGrüter, Roger Schürch, Tomer J Czaczkes, Keeley Taylor, Thomas

Durance, Sam M Jones, and Francis LW Ratnieks. Negative feedback

enables fast and flexible collective decision-making in ants. PLoS One, 7

(9):e44501, 2012.

https://epub.wu.ac.at/id/eprint/616
https://epub.wu.ac.at/id/eprint/616


191

[20] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary

algorithms for parameter optimization. Evolutionary Computation, 1(1):1–23,

1993.

[21] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used

in evolutionary algorithms. Evolutionary Computation, 4(4):361–394, 1996.

[22] Darrell Whitley. An overview of evolutionary algorithms: Practical issues

and common pitfalls. Information and Software Technology, 43(14):817–831,

2001.

[23] Stefan Boettcher and Allon G Percus. Extremal optimization: Methods

derived from co-evolution. arXiv preprint math/9904056, 1999.

[24] Stefan Boettcher. Extremal optimization: Heuristics via coevolutionary

avalanches. Computing in Science and Engineering, 2(6):75–82, 2000.

[25] Stefan Boettcher and Allon Percus. Nature’s way of optimizing. Artificial

Intelligence, 119(1-2):275–286, 2000.

[26] Stefan Boettcher and Allon G Percus. Optimization with extremal

dynamics. Complexity, 8(2):57–62, 2002.

[27] Stefan Boettcher and Allon G Percus. Extremal optimization at the phase

transition of the three-coloring problem. Physical Review E, 69(6):066703,

2004.

[28] Peter J Angeline. Evolutionary optimization versus particle swarm

optimization: Philosophy and performance differences. In International

Conference on Evolutionary Programming, pages 601–610. Springer, 1998.

[29] Maurice Clerc. Particle Swarm Optimization, volume 93. John Wiley and

Sons, 2010.

[30] Yann Cooren, Maurice Clerc, and Patrick Siarry. Initialization and

displacement of the particles in TRIBES, a parameter-free particle swarm

optimization algorithm. In Adaptive and Multilevel Metaheuristics, pages

199–219. Springer, 2008.

[31] Yann Cooren, Maurice Clerc, and Patrick Siarry. Performance evaluation

of TRIBES, an adaptive particle swarm optimization algorithm. Swarm

Intelligence, 3(2):149–178, 2009.



192

[32] Yann Cooren, Maurice Clerc, and Patrick Siarry. MO-TRIBES, an adaptive

multiobjective particle swarm optimization algorithm. Computational

Optimization and Applications, 49(2):379–400, 2011.

[33] HamidRTizhoosh. Opposition-based learning: A new scheme formachine

intelligence. In International Conference on Computational Intelligence for

Modelling, Control and Automation and International Conference on Intelligent

Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06),

volume 1, pages 695–701. IEEE, 2005.

[34] Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb.

Opposition based learning: A literature review. Swarm and Evolutionary

Computation, 39:1–23, 2018.

[35] Christian Blum and Günther R Raidl. Hybrid Metaheuristics: Powerful Tools

for Optimization. Springer, 2016.

[36] Steven S Skiena. The Algorithm Design Manual, volume 2. Springer, 1998.

[37] Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson Education India,

2006.

[38] Richard Bellman. On the theory of dynamic programming. Proceedings of

the National Academy of Sciences of the United States of America, 38(8):716, 1952.

[39] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[40] Joxan Jaffar, Andrew E Santosa, and Razvan Voicu. Efficient memoization

for dynamic programming with ad-hoc constraints. In AAAI, volume 8,

pages 297–303, 2008.

[41] Guido Moerkotte and Thomas Neumann. Dynamic programming strikes

back. In Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, pages 539–552, 2008.

[42] Juan Pablo Vielma. Mixed integer linear programming formulation

techniques. Siam Review, 57(1):3–57, 2015.

[43] IBM. ILOGCPLEX optimization studio documentation. http://www-01.i

bm.com/software/commerce/optimization/cplex-optimizer, 2020.

Accessed : 2020-02-06.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer


193

[44] Rimmi Anand, Divya Aggarwal, and Vĳay Kumar. A comparative analysis

of optimization solvers. Journal of Statistics and Management Systems, 20(4):

623–635, 2017.

[45] LLC Gurobi Optimization. Gurobi optimizer reference manual. http:

//www.gurobi.com , 2020. Accessed : 2020-02-06.

[46] Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical

Programming Computation, 1(1):1–41, 2009.

[47] RobertAshford. Mixed integer programming: Ahistorical perspectivewith

Xpress-MP. Annals of Operations Research, 149(1):5, 2007.

[48] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. Choco: an open

source java constraint programming library. In CPAIOR’08 Workshop on

Open-Source Software for Integer and Contraint Programming (OSSICP’08),

pages 1–10, 2008.

[49] Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG

CP optimizer for scheduling. Constraints, 23(2):210–250, 2018.

[50] David S Johnson, Christos H Papadimitriou, andMihalis Yannakakis. How

easy is local search? Journal of Computer and System Sciences, 37(1):79–100,

1988.

[51] Nenad Mladenović and Pierre Hansen. Variable neighborhood search.

Computers and Operations Research, 24(11):1097–1100, 1997.

[52] Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive

search procedures. Journal of Global Optimization, 6(2):109–133, 1995.

[53] Rubén Ruiz and Thomas Stützle. A simple and effective iterated greedy

algorithm for the permutation flowshop scheduling problem. European

Journal of Operational Research, 177(3):2033–2049, 2007.

[54] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local

search. In Handbook of Metaheuristics, pages 320–353. Springer, 2003.

[55] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983.

[56] Rob A Rutenbar. Simulated annealing algorithms: An overview. IEEE

Circuits and Devices magazine, 5(1):19–26, 1989.

http://www.gurobi.com
http://www.gurobi.com


194

[57] Lester Ingber. Simulated annealing: Practice versus theory. Mathematical

and Computer Modelling, 18(11):29–57, 1993.

[58] FredGlover. Tabu search—part I. ORSA Journal on Computing, 1(3):190–206,

1989.

[59] Fred Glover. Tabu search—part II. ORSA Journal on Computing, 2(1):4–32,

1990.

[60] Fred Glover andManuel Laguna. Tabu search. InHandbook of Combinatorial

Optimization, pages 2093–2229. Springer, 1998.

[61] Roberto Battiti and Giampietro Tecchiolli. The reactive tabu search. ORSA

Journal on Computing, 6(2):126–140, 1994.

[62] Pierre Hansen and Nenad Mladenović. Variable neighborhood search:

Principles and applications. European Journal of Operational Research, 130(3):

449–467, 2001.

[63] Pablo Moscato. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Caltech Concurrent Computation

Program, C3P Report, 826:1989, 1989.

[64] Pablo Moscato and Carlos Cotta. A gentle introduction to memetic

algorithms. In Handbook of Metaheuristics, pages 105–144. Springer, 2003.

[65] Yuhui Shi and Russell Eberhart. Particle swarm optimization:

Developments, applications and resources. In Proceedings of the 2001

Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), volume 1,

pages 81–86. IEEE, 2001.

[66] James Kennedy and Russell Eberhart. Particle swarm optimization. In

Proceedings of ICNN’95-International Conference onNeuralNetworks, volume4,

pages 1942–1948. IEEE, 1995.

[67] Xiao-Hu Zhi, XL Xing, QX Wang, LH Zhang, XW Yang, CG Zhou,

and YC Liang. A discrete PSO method for generalized TSP problem.

In Proceedings of 2004 International Conference on Machine Learning and

Cybernetics (IEEE Cat. No. 04EX826), volume 4, pages 2378–2383. IEEE,

2004.

[68] Xiaohu H Shi, Yanchun Chun Liang, Heow Pueh Lee, C Lu, and QXWang.

Particle swarm optimization-based algorithms for TSP and generalized

TSP. Information Processing Letters, 103(5):169–176, 2007.



195

[69] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm

optimization. An overview. Swarm Intelligence, 1(1):33–57, 2007.

[70] Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In

1998 IEEE International Conference on Evolutionary Computation Proceedings.

IEEEWorld Congress on Computational Intelligence (Cat. No. 98TH8360), pages

69–73. IEEE, 1998.

[71] Per Bak, ChaoTang, andKurtWiesenfeld. Self-organized criticality. Physical

Review A, 38(1):364, 1988.

[72] Per Bak and Kan Chen. Self-organized criticality. Scientific American, 264

(1):46–53, 1991.

[73] Per Bak and Kim Sneppen. Punctuated equilibrium and criticality in a

simple model of evolution. Physical Review Letters, 71(24):4083, 1993.

[74] Yu-Wang Chen, Yao-Jia Zhu, Gen-Ke Yang, and Yong-Zai Lu. Improved

extremal optimization for the asymmetric traveling salesman problem.

Physica A: Statistical Mechanics and its Applications, 390(23-24):4459–4465,

2011.

[75] Stefan Boettcher. Extremal optimization for Sherrington-Kirkpatrick spin

glasses. The European Physical Journal B-Condensed Matter and Complex

Systems, 46(4):501–505, 2005.

[76] EdwardDWeinberger. Correlated and uncorrelated fitness landscapes and

how to tell the difference. Biological Cybernetics, 63(5):325–336, 1990.

[77] Peter F Stadler. Towards a theory of landscapes. In Complex Systems and

Binary Networks, pages 78–163. Springer, 1995.

[78] Vittorio Maniezzo. Exact and approximate nondeterministic tree-search

procedures for the quadratic assignment problem. INFORMS Journal on

Computing, 11(4):358–369, 1999.

[79] Éric Taillard. Robust taboo search for the quadratic assignment problem.

Parallel Computing, 17(4-5):443–455, 1991.

[80] Yong Li, Panos M Pardalos, and Mauricio GC Resende. A greedy

randomized adaptive search procedure for the quadratic assignment

problem. Quadratic Assignment and Related Problems, 16:237–261, 1993.



196

[81] Shumeet Baluja and Rich Caruana. Removing the genetics from the

standard genetic algorithm. In Machine Learning Proceedings 1995, pages

38–46. Elsevier, 1995.

[82] Oscar Cordón, Inaki Fernández de Viana, Francisco Herrera, and Llanos

Moreno. A new ACO model integrating evolutionary computation

concepts: The best-worst ant system. http://citeseerx.ist.psu.ed

u/viewdoc/summary?doi=10.1.1.30.6593, 2000. Accessed : 2020-03-16.

[83] Oscar Cordón, Inaki Fernández de Viana, and Francisco Herrera. Analysis

of the best-worst ant system and its variants on the QAP. In International

Workshop on Ant Algorithms, pages 228–234. Springer, 2002.

[84] James Montgomery and Marcus Randall. Anti-pheromone as a tool

for better exploration of search space. In International Workshop on Ant

Algorithms, pages 100–110. Springer, 2002.

[85] Steffen Iredi, Daniel Merkle, and Martin Middendorf. Bi-criterion

optimization with multi colony ant algorithms. In International Conference

on Evolutionary Multi-Criterion Optimization, pages 359–372. Springer, 2001.

[86] Chris Simons and Jim Smith. Exploiting antipheromone in ant colony

optimisation for interactive search-based software design and refactoring.

In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference

Companion, pages 143–144, 2016.

[87] Vitorino Ramos, David MS Rodrigues, and Jorge Louçã. Second order

swarm intelligence. In International Conference onHybrid Artificial Intelligence

Systems, pages 411–420. Springer, 2013.

[88] Alice R Malisia and Hamid R Tizhoosh. Applying opposition-based ideas

to the ant colony system. In 2007 IEEE Swarm Intelligence Symposium, pages

182–189. IEEE, 2007.

[89] Zhaojun Zhang, Zhaoxiong Xu, Shengyang Luan, Xuanyu Li, and Yifei

Sun. Opposition-based ant colony optimization algorithm for the traveling

salesman problem. Mathematics, 8(10):1650, 2020.

[90] Nicolás Rojas-Morales, María-Cristina Riff, Carlos A Coello Coello, and

Elizabeth Montero. A cooperative opposite-inspired learning strategy for

ant-based algorithms. In International Conference on Swarm Intelligence, pages

317–324. Springer, 2018.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.6593
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.6593


197

[91] Nicolás Rojas-Morales, María-Cristina Riff Rojas, and Elizabeth Montero

Ureta. A survey and classification of opposition-based metaheuristics.

Computers and Industrial Engineering, 110:424–435, 2017.

[92] Inès Alaya, Christine Solnon, and Khaled GHéDIRA. Ant algorithm for

the multidimensional knapsack problem. In International Conference on

Bioinspired Methods and their Applications (BIOMA 2004), pages 63–72, 2004.

[93] Ke Ye, Changsheng Zhang, Jiaxu Ning, and Xiaojie Liu. Ant-colony

algorithm with a strengthened negative-feedback mechanism for

constraint-satisfaction problems. Information Sciences, 406:29–41, 2017.

[94] Antonio Gonzalez-Pardo and David Camacho. A new CSP graph-based

representation for ant colony optimization. In 2013 IEEE Congress on

Evolutionary Computation, pages 689–696. IEEE, 2013.

[95] Wei Xu and Fuzhou Gong. Performances of pure random walk algorithms

on constraint satisfaction problems with growing domains. Journal of

Combinatorial Optimization, 32(1):51–66, 2016.

[96] Takuya Masukane and Kazunori Mizuno. Solving constraint satisfaction

problems by cunning ants with multi-pheromones. International Journal of

Machine Learning and Computing, 8(4), 2018.

[97] Shigeyoshi Tsutsui. cAS: Ant colony optimization with cunning ants. In

Parallel Problem Solving fromNature-PPSN IX, pages 162–171. Springer, 2006.

[98] Takuya Masukane and Kazunori Mizuno. Refining a pheromone trail

graph by negative feedback for constraint satisfaction problems. In 2019

InternationalConference onTechnologies andApplications ofArtificial Intelligence

(TAAI), pages 1–6. IEEE, 2019.

[99] Teddy Nurcahyadi and Christian Blum. A new approach for making use

of negative learning in ant colony optimization. In International Conference

on Swarm Intelligence, pages 16–28. Springer, 2020.

[100] Pedro Pinacho-Davidson, Salim Bouamama, and Christian Blum.

Application ofCMSA to theminimumcapacitated dominating set problem.

In Proceedings of the Genetic and Evolutionary Computation Conference, pages

321–328, 2019.

[101] Teddy Nurcahyadi and Christian Blum. Negative learning in ant colony

optimization: Application to the multi dimensional knapsack problem.



198

In 2021 5th International Conference on Intelligent Systems, Metaheuristics and

Swarm Intelligence, pages 22–27, 2021.

[102] Xiangjing Lai, Jin-Kao Hao, Fred Glover, and Zhipeng Lü. A two-phase

tabu-evolutionary algorithm for the 0–1 multidimensional knapsack

problem. Information Sciences, 436:282–301, 2018.

[103] Xiangjing Lai, Jin-Kao Hao, Zhang-Hua Fu, and Dong Yue.

Diversity-preserving quantum particle swarm optimization for the

multidimensional knapsack problem. Expert Systems with Applications, 149:

113310, 2020.

[104] Teddy Nurcahyadi and Christian Blum. Adding negative learning to ant

colony optimization: A comprehensive study. Mathematics, 9(4):361, 2021.

[105] Yiyuan Wang, Shaowei Cai, and Minghao Yin. Local search for

minimum weight dominating set with two-level configuration checking

and frequency based scoring function. Journal of Artificial Intelligence

Research, 58:267–295, 2017.

[106] Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Minghao Yin. A fast local

search algorithm for minimumweight dominating set problem onmassive

graphs. In ĲCAI, pages 1514–1522, 2018.

[107] David Chalupa. An order-based algorithm for minimum dominating set

with application in graph mining. Information Sciences, 426:101–116, 2018.

[108] Yi Fan, Yongxuan Lai, Chengqian Li, Nan Li, Zongjie Ma, Jun Zhou,

Longin Jan Latecki, and Kaile Su. Efficient local search for minimum

dominating sets in large graphs. In International Conference on Database

Systems for Advanced Applications, pages 211–228. Springer, 2019.

[109] Shaowei Cai, Wenying Hou, Yiyuan Wang, Chuan Luo, and Qingwei Lin.

Two-goal local search and inference rules for minimum dominating set.

In Proceedings of the Twenty-Ninth International Joint Conference on Artificial

Intelligence, ĲCAI, pages 1467–1473, 2020.

[110] Albert López Serrano, TeddyNurcahyadi, Salim Bouamama, and Christian

Blum. Negative learning ant colony optimization for the minimum

positive influence dominating set problem. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, pages 1974–1977, 2021.



199

[111] Geng Lin, Jian Guan, and Huibin Feng. An ILP based memetic algorithm

for findingminimumpositive influence dominating sets in social networks.

Physica A: Statistical Mechanics and its Applications, 500:199–209, 2018.

[112] Geng Lin, Jinyan Luo, Haiping Xu, and Meiqin Xu. A hybrid swarm

intelligence-based algorithm for finding minimum positive influence

dominating sets. In Yong Liu, Lipo Wang, Liang Zhao, and Zhengtao

Yu, editors, Proceedings of ICNC-FSKD 2019 – Advances in Natural

Computation, Fuzzy Systems and Knowledge Discovery, pages 506–511.

Springer International Publishing, 2020.

[113] Fahiem Bacchus, Matti Järvisalo, and Martins Ruben. Maximum

satisfiability. In Handbook of Satisfiability, second edition, pages 929–991. IOS

Press, 2021.

[114] Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In

Handbook of Satisfiability, second edition, pages 903–927. IOS Press, 2021.

[115] Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, and Rubens Martins.

MaxSAT evaluation 2020: Solver and benchmark descriptions. https:

//helda.helsinki.fi/bitstream/handle/10138/318451/mse20proc.pd

f?sequence=1, 2020. Accessed : 2021-06-03.

[116] Arnaud Fréville. The multidimensional 0–1 knapsack problem: An

overview. European Journal of Operational Research, 155(1):1–21, 2004.

[117] Paul C Chu and John E Beasley. A genetic algorithm for the

multidimensional knapsack problem. Journal of Heuristics, 4(1):63–86, 1998.

[118] Xiangyong Kong, Liqun Gao, Haibin Ouyang, and Steven Li. Solving

large-scale multidimensional knapsack problems with a new binary

harmony search algorithm. Computers and Operations Research, 63:7–22,

2015.

[119] Ling Wang, Sheng-yao Wang, and Ye Xu. An effective hybrid eda-based

algorithm for solving multidimensional knapsack problem. Expert Systems

with Applications, 39(5):5593–5599, 2012.

[120] Yannick Vimont, Sylvain Boussier, and Michel Vasquez. Reduced

costs propagation in an efficient implicit enumeration for the 01

multidimensional knapsack problem. Journal of Combinatorial Optimization,

15(2):165–178, 2008.

https://helda.helsinki.fi/bitstream/handle/10138/318451/mse20proc.pdf?sequence=1
https://helda.helsinki.fi/bitstream/handle/10138/318451/mse20proc.pdf?sequence=1
https://helda.helsinki.fi/bitstream/handle/10138/318451/mse20proc.pdf?sequence=1


200

[121] Sylvain Boussier, Michel Vasquez, Yannick Vimont, Saïd Hanafi,

and Philippe Michelon. A multi-level search strategy for the 0–1

multidimensional knapsack problem. Discrete Applied Mathematics, 158(2):

97–109, 2010.

[122] Renata Mansini and M Grazia Speranza. Coral: An exact algorithm for the

multidimensional knapsack problem. INFORMS Journal on Computing, 24

(3):399–415, 2012.

[123] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,

Mauro Birattari, and Thomas Stützle. The irace package: Iterated racing

for automatic algorithm configuration. Operations Research Perspectives, 3:

43–58, 2016.

[124] Borja Calvo and Guzmán Santafé Rodrigo. scmamp: Statistical comparison

of multiple algorithms in multiple problems. The R Journal, Vol. 8/1, Aug.

2016, 2016.

[125] Salvador Garciá and Francisco Herrera. An extension on“statistical

comparisons of classifiers over multiple data sets”for all pairwise

comparisons. Journal of Machine Learning Research, 9(Dec):2677–2694, 2008.

[126] Gabriela Ochoa, Katherine M Malan, and Christian Blum. Search

trajectory networks of population-based algorithms in continuous spaces.

In International Conference on the Applications of Evolutionary Computation

(Part of EvoStar), pages 70–85. Springer, 2020.

[127] Gabriela Ochoa, Katherine M Malan, and Christian Blum. Search

trajectory networks: A tool for analysing and visualising the behaviour

of metaheuristics. Applied Soft Computing, page 107492, 2021.

[128] Michael R.Garey andDavid S. Johnson. Computers and Intractability, volume

174. Freeman San Francisco, 1979.

[129] Ruizhi Li, Shuli Hu, Huan Liu, Ruiting Li, Dantong Ouyang, and Minghao

Yin. Multi-start local search algorithm for the minimum connected

dominating set problems. Mathematics, 7(12):1173, 2019.

[130] Fuyu Yuan, Chenxi Li, Xin Gao, Minghao Yin, and Yiyuan Wang. A novel

hybrid algorithm for minimum total dominating set problem. Mathematics,

7(3):222, 2019.



201

[131] Yupeng Zhou, Jinshu Li, Yang Liu, Shuai Lv, Yong Lai, and Jianan Wang.

Improved memetic algorithm for solving the minimum weight vertex

independent dominating set. Mathematics, 8(7):1155, 2020.

[132] Habiba Drias, Amine Taibi, and Sofiane Zekour. Cooperative ant colonies

for solving the maximum weighted satisfiability problem. In International

Work-Conference on Artificial Neural Networks, pages 446–453. Springer, 2003.

[133] Habiba Drias and Sarah Ibri. Parallel ACS for weighted Max-Sat. In

International Work-Conference on Artificial Neural Networks, pages 414–421.

Springer, 2003.

[134] PedroCPinto, ThomasARunkler, and JoaoMCSousa. An ant algorithm for

static anddynamicMAX-SATproblems. InProceedings of the 1st International

Conference on Bio Inspired Models of Network, Information and Computing

Systems, pages 10–es, 2006.

[135] Marcos Villagra and Benjamín Barán. Ant colony optimization with

adaptive fitness function for satisfiability testing. In International Workshop

on Logic, Language, Information, and Computation, pages 352–361. Springer,

2007.

[136] João Guerra and Inês Lynce. Reasoning over biological networks using

maximum satisfiability. In Proceedings of the 18th International Conference on

Principles and Practice of Constraint Programming, CP, pages 941–956, 2012.

[137] João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. Boolean

lexicographic optimization: algorithms and applications. Annals of

Matematics and Artificial Intelligence, 62(3-4):317–343, 2011.

[138] Carlos Ansótegui, Felip Manyà, Jesus Ojeda, Josep M. Salvia, and Eduard

Torres. Incomplete MaxSAT approaches for combinatorial testing. Journal

of Heuristics, 2022. In press.

[139] Saïd Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. A

SAT-based framework for overlapping community detection in networks.

In Proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge

Discovery and Data Mining, Part II, PAKDD, pages 786–798, 2017.

[140] Dominique D’Almeida and Éric Grégoire. Model-based diagnosis with

default information implemented through MAX-SAT technology. In

Proceedings of the IEEE 13th International Conference on Information Reuse and

Integration, IRI, pages 33–36, 2012.



202

[141] Lei Zhang and Fahiem Bacchus. MAXSAT heuristics for cost optimal

planning. In Proceedings of the 26th AAAI Conference on Artificial Intelligence,

pages 1846–1852, 2012.

[142] Miquel Bofill, Marc Garcia, Josep Suy, and Mateu Villaret. MaxSAT-based

scheduling of B2Bmeetings. InProceedings of the 12th International Conference

on Integration of AI and OR Techniques in Constraint Programming, CPAIOR,

pages 65–73, 2015.

[143] FelipManyà, SantiagoNegrete, CarmeRoig, and JoanRamonSoler. Solving

the team composition problem in a classroom. Fundamamenta Informaticae,

174(1):83–101, 2020.

[144] Josep Argelich, Chu-Min Li, Felip Manyà, and Jordi Planes. The first and

second Max-SAT evaluations. Journal on Satisfiability, Boolean Modeling and

Computation, 4(2-4):251–278, 2008.

[145] Holger H Hoos and Thomas Stützle. Local search algorithms for SAT: An

empirical evaluation. Journal of Automated Reasoning, 24(4):421–481, 2000.

[146] Holger H Hoos and Kevin O’Neill. Stochastic local search methods for

dynamic SAT—an initial investigation. InAAAI-2000Workshop onLeveraging

Probability and Uncertainty in Computation, pages 22–26, 2000.

[147] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for

improving local search. In Proceedings of the 12th National Conference on

Artificial Intelligence, AAAI’94, pages 337–343, 1994.

[148] David McAllester, Bart Selman, and Henry Kautz. Evidence for invariants

in local search. In Proceedings of the 14th National Conference on Artificial

Intelligence, AAAI’97, pages 321–326, 1997.

[149] Shaowei Cai, Chuan Luo, John Thornton, and Kaile Su. Tailoring local

search for partialMaxSAT. InTheTwenty-EighthAAAIConference onArtificial

Intelligence, AAAI 2014, pages 2623–2629, 2014.

[150] Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: An

efficient local search algorithm forweighted partial maximum satisfiability.

Artificial Intelligence, 243:26–44, 2017.

[151] Zhendong Lei and Shaowei Cai. Solving (weighted) partial MaxSAT by

dynamic local search for SAT. In The Twenty-Seventh International Joint

Conference on Artificial Intelligence, ĲCAI 2018, pages 1346–1352, 2018.



203

[152] Shaowei Cai and Zhendong Lei. Old techniques in new ways: Clause

weighting, unit propagation and hybridization for maximum satisfiability.

Artificial Intelligence, 287:103354, 2020.

[153] Chu Min Li, Felip Manyà, and Jordi Planes. Exploiting unit propagation

to compute lower bounds in branch and bound Max-SAT solvers. In

Proceedings of the 11th International Conference on Principles and Practice of

Constraint Programming, CP-2005, pages 403–414, 2005.

[154] Chu Min Li, Felip Manyà, and Jordi Planes. Detecting disjoint inconsistent

subformulas for computing lower bounds for Max-SAT. In Proceedings of

the 21st National Conference on Artificial Intelligence, AAAI-2006, pages 86–91,

2006.

[155] Chu Min Li, Felip Manyà, Nouredine Ould Mohamedou, and Jordi Planes.

Resolution-based lower bounds in MaxSAT. Constraints, 15(4):456–484,

2010.

[156] Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules for

Max-SAT. Journal of Artificial Intelligence Research, 30:321–359, 2007.

[157] André Abramé and Djamal Habet. Ahmaxsat: Description and evaluation

of a branch and bound Max-SAT solver. Journal on Satisfiability, Boolean

Modeling and Computation, 9(1):89–128, 2014.

[158] Chu-Min Li, Zhenxing Xu, Jordi Coll, FelipManyà, Djamal Habet, and Kun

He. Combining clause learning and branch and bound for MaxSAT. In

Proceedings of the 27th International Conference on Principles and Practice of

Constraint Programming, CP, volume 210 of LIPIcs, pages 38:1–38:18, 2021.

[159] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on

Satisfiability, Boolean Modeling and Computation, 7(2-3):59–6, 2010.

[160] Tobias Paxian and Bernd Becker. Pacose: An iterative SAT-based MaxSAT

solver. In MaxSAT Evaluation 2020: Solver and Benchmark Descriptions,

page 12, 2020.

[161] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A

modular MaxSAT solver. In Proceedings of the 17th International Conference

on Theory and Applications of Satisfiability Testing, SAT, pages 438–445, 2014.

[162] Carlos Ansótegui and Joel Gabàs. WPM3: An (in)complete algorithm for

Weighted Partial MaxSAT. Artificial Intelligence, 250:37–57, 2017.



204

[163] Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an

efficient MaxSAT solver. Journal on Satisfiability, Boolean Modeling and

Computation, 11(1):53–64, 2019.

[164] Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid

MaxSAT solver. In Proceedings of the 19th International Conference on Theory

and Applications of Satisfiability Testing, SAT, volume 9710 of LNCS, pages

539–546, 2016.

[165] Fahiem Bacchus. MaxHS in the 2020 MaxSAT Evaluation. In MaxSAT

Evaluation 2020: Solver and Benchmark Descriptions, pages 19–20, 2020.

[166] Anupama Potluri andAlok Singh. Metaheuristic algorithms for computing

capacitated dominating set with uniform and variable capacities. Swarm

and Evolutionary Computation, 13:22–33, 2013.

[167] Feng Wang, Erika Camacho, and Kuai Xu. Positive influence dominating

set in online social networks. In International Conference on Combinatorial

Optimization and Applications, pages 313–321. Springer, 2009.

[168] Feng Wang, Hongwei Du, Erika Camacho, Kuai Xu, Wonjun Lee, Yan Shi,

and Shan Shan. On positive influence dominating sets in social networks.

Theoretical Computer Science, 412(3):265–269, 2011.

[169] Angela K. Fournier, Erin Hall, Patricia Ricke, and Brittany Storey. Alcohol

and the social network: Online social networking sites and college students’

perceiveddrinking norms. Psychology of PopularMedia Culture, 2(2):86, 2013.

[170] Cheng Long and Raymond Chi-Wing Wong. Minimizing seed set for viral

marketing. In 2011 IEEE 11th International Conference on Data Mining, pages

427–436. IEEE press, 2011.

[171] Dilek Günneç, Subramanian Raghavan, and Rui Zhang. Least-cost

influence maximization on social networks. INFORMS Journal on

Computing, 32(2):289–302, 2020.

[172] Guangyuan Wang. Domination Problems in Social Networks. PhD thesis,

University of Southern Queensland, 2014.

[173] Amir Afrasiabi Rad and Morad Benyoucef. Towards detecting influential

users in social networks. In International Conference on E-Technologies, pages

227–240. Springer, 2011.



205

[174] Hassan Raei, Nasser Yazdani, and Masoud Asadpour. A new algorithm

for positive influence dominating set in social networks. In 2012 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining,

pages 253–257. IEEE, 2012.

[175] Mai Fei and ChenWeidong. An improved algorithm for finding minimum

positive influence dominating sets in social networks. Journal of South China

Normal University, 48(3):59–63, 2016.

[176] Jiehui Pan and Tian-Ming Bu. A fast greedy algorithm for finding

minimum positive influence dominating sets in social networks. In IEEE

INFOCOM 2019-IEEE Conference on Computer Communications Workshops,

pages 360–364. IEEE, 2019.

[177] Salim Bouamama and Christian Blum. An improved greedy heuristic for

theminimumpositive influencedominating set problem in social networks.

Algorithms, 14(3):79, 2021.

[178] Helge A Wurdemann, Vahid Aminzadeh, Jian S Dai, John Reed, and

Graham Purnell. Category-based food ordering processes. Trends in Food

Science and Technology, 22(1):14–20, 2011.

[179] Parag Narkhede, Ritesh Dhawale, and B Karthikeyan. Microcontroller

based multihead weigher. Indian Journal of Science and Technology, 9(30):

1–5, 2016.

[180] Enrique Del Castillo, Alessia Beretta, andQuirico Semeraro. Optimal setup

of a multihead weighing machine. European Journal of Operational Research,

259(1):384–393, 2017.

[181] Rafael García-Jiménez, J Carlos García-Díaz, and Alexander D

Pulido-Rojano. Packaging process optimization in multihead weighers

with double-layered upright and diagonal systems. Mathematics, 9(9):1039,

2021.

[182] Alexander Pulido-Rojano, J Carlos García-Díaz, and Vicent Giner-Bosch.

A multiobjective approach for optimization of the multihead weighing

process. In 2015 International Conference on Industrial Engineering and Systems

Management (IESM), pages 426–434. IEEE, 2015.

[183] Yoshiyuki Karuno and Oki Nakahama. Performance of a heuristic total

weight in combinatorial mixture packaging of two types of items. In



206

Proceedings of the Sixth International Conference on Industrial Application

Engineering,(ICIAE 2018, IIAE), pages 235–238, 2018.

[184] Yoshiyuki Karuno and Oki Nakahama. A requirement for the number

of items in a package produced by multi-headweighers. In 2018 18th

International Conference on Control, Automation and Systems (ICCAS), pages

1397–1402. IEEE, 2018.

[185] Yoshiyuki Karuno and Oki Nakahama. An improved performance of

greedy heuristic solutions for a bi-criteria mixture packaging problem of

two types of items with bounded weights. Journal of Advanced Mechanical

Design, Systems, and Manufacturing, 14(5):JAMDSM0066–JAMDSM0066,

2020.

[186] Alessia Beretta, Quirico Semeraro, and Enrique del Castillo. On the

multihead weigher machine setup problem. Packaging Technology and

Science, 29(3):175–188, 2016.

[187] Dor Ma’ayan and Itai Dabran. Case study: Implementing an industrial

iot solution for a multihead weighing machine (MWM). In 2019 IEEE

International Conference on Microwaves, Antennas, Communications and

Electronic Systems (COMCAS), pages 1–4. IEEE, 2019.

[188] J Carlos García-Díaz and Alexander Pulido-Rojano. Performance analysis

and optimisation of new strategies for the setup of a multihead weighing

process. European Journal of Industrial Engineering, 14(1):58–84, 2020.

[189] Alexander Pulido-Rojano and J Carlos García-Díaz. Optimisation

algorithms for improvement of a multiheadweighing process. International

Journal of Productivity and Quality Management, 29(1):109–125, 2020.

[190] Enrique del Castillo, Alessia Beretta, and Quirico Semeraro. Analysis and

optimal targets setup of a multihead weighing machine. arXiv preprint

arXiv:1511.07504, 2015.

[191] EnriquedelCastillo, Alessia Beretta, andQuirico Semeraro. Optimal targets

setup of a multihead weighing machine. https://sites.psu.edu/engine

eringstatistics/files/2016/09/WeigherPaperSeptember2016-1trrc2

d.pdf, 2016. Accessed : 2021-09-24.

[192] David H Wolpert and William G Macready. No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,

1997.

https://sites.psu.edu/engineeringstatistics/files/2016/09/WeigherPaperSeptember2016-1trrc2d.pdf
https://sites.psu.edu/engineeringstatistics/files/2016/09/WeigherPaperSeptember2016-1trrc2d.pdf
https://sites.psu.edu/engineeringstatistics/files/2016/09/WeigherPaperSeptember2016-1trrc2d.pdf


207

[193] Yu-Chi Ho and David L Pepyne. Simple explanation of the no-free-lunch

theorem and its implications. Journal of Optimization Theory andApplications,

115(3):549–570, 2002.


	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	INTRODUCTION
	Methods for Combinatorial Optimization
	Metaheuristics
	Greedy Randomized Adaptive Search Procedure
	Iterated Greedy Algorithms
	Iterated Local Search
	Simulated Annealing
	Tabu Search
	Variable Neighborhood Search
	Evolutionary Algorithms
	Particle Swarm Optimization
	Extremal Optimization
	Opposition Based Learning
	Ant Colony Optimization

	Negative Learning in Metaheuristics
	Negative Learning in Ant Colony Optimization
	General Ideas
	The Storage and Update of the Negative Learning Information
	The Way of Deriving the Negative Learning Information

	Lessons Learned and Resulting Proposal
	Thesis Contributions
	The Organization of This Thesis
	Publications Derived from this Thesis

	GENERAL DESCRIPTION OF THE ALGORITHMIC FRAMEWORK
	Introduction
	MMAS: The Baseline Algorithm
	Solution Construction
	Pheromone Update
	Convergence Factor

	Adding Negative Learning to MMAS
	Information Maintenance
	Information Generation and Update
	Information Use


	APPLICATION TO THE MULTI DIMENSIONAL KNAPSACK PROBLEM
	Introduction
	The Multi Dimensional Knapsack Problems
	ILP Model for the MDKP

	MMAS Implementation to the MDKP
	Solution Construction
	Pheromone Update and Convergence Factor

	Adding Negative Learning to MMAS
	Proposals from the Literature
	Subtractive Anti-Pheromone (SAP)
	Explorer Ants (EA)
	Preferential Anti-Pheromone
	Second-Order Swarm Intelligence

	Summary of the Tested Algorithms
	Experimental Evaluation
	Algorithm Tuning
	Results
	Search Trajectory Network Analysis
	Comparison to the State-of-the-Art

	Conclusions

	APPLICATION TO THE MINIMUM DOMINATING SET PROBLEM
	Introduction
	The Minimum Dominating Set Problem
	ILP Model for the MDS Problem

	MMAS Implementation to the MDS
	Solution Construction
	Pheromone Update and Convergence Factor

	Adding Negative Learning to MMAS
	Proposals from the Literature
	Summary of the Tested Algorithms
	Experimental Evaluation
	Algorithm Tuning
	Results
	Search Trajectory Network Analysis
	Comparison to the State of the Art

	Conclusions

	APPLICATION TO THE MAXIMUM SATISFIABILITY PROBLEM
	Introduction
	The Maximum Satisfiability Problem
	ILP Model for the MaxSAT
	Existing Approaches to MaxSAT

	Negative Learning Aco for MaxSAT
	Solution Construction
	Pheromone Update and Convergence Factor

	Experimental Evaluation
	Problem instances
	Algorithm tuning and test settings
	Results
	Search Trajectory Network Analysis

	Conclusions

	APPLICATION TO THE MINIMUM CAPACITATED DOMINATING SET PROBLEM
	Introduction
	The CapMDS Problem
	ILP Model for the CAPMDS Problem

	MMAS Implementation to the CapMDS
	Adding Negative Learning to MMAS
	Experimental Evaluation
	Algorithm Tuning
	Numerical Results

	Conclusions

	APPLICATION TO THE MINIMUM POSITIVE INFLUENCE DOMINATING SET PROBLEM
	Introduction
	The Minimum Positive Influence Dominating Set Problem
	ILP Model for the MPIDS

	Negative Learning Aco for MPIDS Problem
	Experimental Evaluation
	Problem instances
	Algorithm tuning and test settings
	Results

	Discussion and Conclusions

	ADDITIONAL WORK: MMAS APPLICATION TO THE MULTI-HEAD WEIGHER MACHINES PROBLEM
	Introduction
	The Multi-head Weigher Machine Problem
	ILP Model for the MWM
	Existing Approaches to the MWM problem

	MMAS for MWM
	Experimental Evaluation
	Problem instances
	Algorithm tuning and test settings
	Results

	Conclusions

	CONCLUSIONS AND OUTLOOK
	Conclusions
	Outlook
	           REFERENCES


