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Abstract

Every day, a large amount of data is collected by statistical agencies. This fact com-

bined with the growth that the Internet has experimented during the recent years

makes one wonders whether its confidential data is stored and distributed in a se-

cure way.

In this framework, data protection methods have a great importance, becoming cru-

cial to anonymize confidential attributes before releasing them in a private and se-

cure manner. When a protection method is applied, a new and challenging problem

arises. This problem is the evaluation of the privacy provided by such method. Re-

identification techniques, as record linkage methods, are one of the most common

techniques for evaluating the security of a protection method.

This thesis applies record linkage techniques to the calculation of the disclosure risk

of a protection method. The aim of this application is to evaluate the security of a

protection method in a real and fair way. The main contributions are:

• The definition of three specific record linkage techniques for evaluating two of

the most common protection methods: rank swapping and microaggregation.

• The definition of an empirical disclosure risk measure for microaggregation.

• The development of new variants of rank swapping and microaggregation re-

sistant to record linkage methods and disclosure risk measures defined in this

thesis.

• The study of new disclosure risk scenarios. In particular, we have developed a

record linkage method which applies aggregation functions to re-identify in-

dividuals when the intruder has no access to any of the original attributes of

xv



the protected data. We have also developed a framework for the evaluation of

protection methods when they are applied to time series data.
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Chapter 1

Introduction

1.1 Motivations

Statistical Disclosure Control (SDC) is the discipline concerned with the anonymiza-

tion of the statistical data containing confidential information about individual en-

tities such as persons or enterprises. Normally, data anonymization is achieved by

modifying data values. The aim of SDC is to prevent third parties working from this

data to recognize individuals and disclosing confidential information about them.

Here, we understand third parties as the data users outside the statistical agencies

(e.g. policy makers, academic researchers and general public).

Typically, data published by statistical agencies can be classified as tabular data and

microdata files. Tabular data contains aggregated values and their utility is limited.

In contrast, microdata files (i.e. records which contain information about individu-

als) have much more utility due to their flexibility to allow the user to perform a wide

range of data analysis (i.e. regressions). For this reason, third parties have increased

their demand for statistical data according to this latter form. This issue motivates

statistical agencies to increase the release of microdata files.

In both scenarios, statistical agencies have to be careful when releasing statistical

data since they have an important responsibility towards the respondents. More-

over, international and local law seek to ensure that confidential data is managed in

1



2 Chapter 1. Introduction

a correct (and private) manner. They have to make (almost) impossible for third par-

ties to acquire sensitive information about respondents from the released microdata

file.

A closely related research line where privacy is involved is Privacy Preserving Data

Mining (PPDM). PPDM tackles the problem of developing data mining techniques

where the privacy of the individuals is preserved. In a very similar way to SDC, PPDM

modifies individual data records in such a way that the results of a mining process

are (almost) the same as those obtained when using the real data.

In both cases (SDC and PPDM) the privacy of the individuals through data protection

methods should be ensured. These methods modify the original microdata file or

data set1, adding some noise in the original data. Of course, the aim of such methods

is to preserve the statistical utility of the protected data as much as possible. This is

equivalent to modify the information as little as possible. However, protected data

have to be altered enough to obfuscate the identity of the respondents.

Protection methods solve in some way the problem of the privacy of the respondents.

Nevertheless, an important and challenging problem arises: the evaluation of such

methods. This evaluation has two clear components. On the one hand, the loss of

statistical utility of the protected data (information loss) and on the other hand, the

risk that third parties discover the identity of certain respondents (disclosure risk).

Information loss measures can be general or specific. General information loss mea-

sures roughly reflect the amount of information loss for a reasonable range of data

uses. On the other hand, specific information loss measures evaluate the loss of sta-

tistical utility for a particular data analysis. Normally, the first kind of measures are

used to compare protection methods and the second ones are used to evaluate in an

accurate way the real effect of a protection method for a concrete statistical analysis.

Disclosure risk, the main topic of this thesis, evaluates the privacy of the respondents

against possible malicious uses that third parties (sometimes called intruders) could

do with the information released. Disclosure risk measures evaluate the number of

respondents whose identity is revealed. Normally, these measures are computed in

several scenarios where the intruder has partial knowledge of the original data. In

order to compute the disclosure risk, general methods for re-identification are used.

1Microdata file is the term used in SDC to refer to the raw data, and data set is usually the term used in
PPDM to refer to the same concept. In this thesis we will use both terms.



1.2. Contributions 3

These methods find relationships (i.e. links) between the protected data and the

partial knowledge which the intruder is assumed to have.

In the real world, the disclosure risk is bounded by the best re-identification method

that an intruder is able to conceive. Finding this method is a challenging task as the

intruder can exploit any weakness of the protection method or any extra information

about the original data. Therefore, the computation of the real disclosure risk is a

very hard issue since lots of considerations must be taken into account. This thesis

is focused on this matter. The aim of this work is to provide a set of techniques for

statistical agencies and data providers in general to determine the disclosure risk in

the most accurate way.

1.2 Contributions

The research done in this thesis contributes in three different aspects.

Firstly, it contributes to the area of disclosure risk evaluation. We introduce several

re-identification methods to compute the disclosure risk of different data protection

methods. The new re-identification methods show that up to now the real disclosure

risk of such protection methods was underestimated. These methods demonstrate

that an intruder can increase the amount of correctly re-identified respondents by

considering the protection method applied in the anonymization process. There-

fore, the disclosure risk of these methods rises accordingly. We also define a different

disclosure risk scenario where the intruder has no access to the original data. How-

ever, under some assumptions, we prove that it is still possible for the intruder to

re-identify some of the respondents of such protected data set.

The second contribution is included in the area of data protection methods. We in-

troduce several protection methods which solve the drawbacks presented in the dis-

closure risk evaluation. These new methods improve the privacy of the respondents.

The methods showed in this thesis avoid that an intruder may exploit the knowl-

edge of the protection method used. We also define a new measure to evaluate, in

an empirical way, the anonymity level achieved using a specific configuration of a

protection method and assuming that the intruder has access to the original values

of a subset of the protected attributes.
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Finally, we present a suite of techniques for time series anonymization and re-

identification. The idea underlaying this approach is that data accumulation

through consecutive statistical surveys enables to perform temporal analysis over

such data (e.g. forecasting). However, this temporal information can be also used by

the intruder to increase the disclosure risk of this new accumulated survey. Under

this scenario, we also define new information loss measures which consider tempo-

ral analysis that third parties can perform in the accumulated data set.

1.3 Structure of the Document

This document is organized in three parts with five chapters: preliminaries and re-

lated work (Chapter 2), our contributions (Chapters 3 to 6) and, finally, conclusions

and future directions (Chapter 7).

• Chapter 2. We explain some preliminaries needed later on. These preliminar-

ies are divided in six sections:

– Aggregation functions. We begin the preliminaries explaining some ba-

sic concepts about aggregation functions. Such description includes the

definition of the OWA (Ordered Weighted Averaging) operator and some

fuzzy integrals, in particular, the Choquet, Sugeno and twofold integrals.

– Time series. We introduce some notions about time series as, for in-

stance several time series distances and forecasting models.

– Re-identification methods. We give a brief introduction of classical re-

identification methods and explain in more detail record linkage (RL)

methods. RL methods are specific cases of the re-identification methods.

– Microdata protection methods. We show the general problem of data

privacy, the re-identification scenario and we give two classifications of

protection methods. We also explain in detail two specific data protec-

tion methods: rank swapping and microaggregation.

– Information loss and disclosure risk. We present some information loss

and disclosure risk measures and a framework for evaluating a data pro-

tection method.
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– Data sets description. We give an exhaustive description of the data sets

used in the experiments performed in this thesis.

• Chapter 3. We explain some contributions about specific microaggregation

disclosure risk measures. We also present two new variants of the generic mi-

croaggregation algorithm.

• Chapter 4. Three ad-hoc record linkage methods are presented. These meth-

ods consider the protection method applied on the original data, and due to

this, they achieve a larger number of re-identifications than generic record

linkage methods.

• Chapter 5. We study an alternative scenario for record linkage methods where

attributes in the original and the protected data set are not the same.

• Chapter 6. We present some results about time series protection and re-

identification. We also present some information loss measures for the evalu-

ation of time series protection methods.

• Chapter 7. This thesis concludes with some conclusions and a description of

future work.





Chapter 2

Preliminaries

In this chapter, we begin explaining some basics about aggregation functions includ-

ing a description of OWA operators. Then, we introduce certain concepts about time

series as the notation used in this dissertation, some distances and several time se-

ries forecasting models. Afterwards, we review re-identification methods and the

two main existing approaches for standard record linkage: probabilistic and distance

based record linkage. Then, we give a brief general description about microdata pro-

tection methods, which reviews the two protection methods studied in this work,

rank swapping and microaggregation. Such methods are illustrated with a toy ex-

ample. Finally, we present the standard way of computing the score of a protection

method by combining its information loss and its disclosure risk.

2.1 Aggregation Functions

Aggregation functions [70] are numerical functions used for information fusion that

combine N numerical values into a single one. These operators formally described

below, typically satisfy unanimity (idempotency) and monotonicity.

Definition 1 Let X := {x1, . . . , xN } be a set of information sources, and let f (xi ) be a

function that models the value supplied by the i -th information source xi (for the sake

of simplicity we often denote f (xi ) by ai ), then a function C : RN → R is said to be an

7
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aggregation function if it satisfies:

1. C(a, . . . , a) = a (unanimity, also known as idempotency)

2. C(a1, . . . , aN ) ≤C(a′
1, . . . , a′

N ) if ai < a′
i

(monotonicity)

At present, several aggregation functions exist in the literature (see e.g. [12, 70] for

a review). Among them, the most well-known aggregation functions are the arith-

metic mean and the weighted mean. They correspond, respectively, to the following

functions:

1. C(a1, . . . , aN ) =
∑N

i
ai

N

2. C(a1, . . . , aN ) =
∑N

i
wi ai

In the second definition, w = (w1 . . . wN ) stands for a weighting vector. That is, wi are

weights for sources xi so that wi ≥ 0 and
∑

i wi = 1. These values correspond to prior

knowledge on the reliability of the sources. For example, when source xi is twice as

reliable as source x j then we have that wi = 2w j .

Yager defined in [77] the so-called Ordered Weighted Averaging (OWA) operator that

corresponds to a weighted linear combination of order statistics. At present there

are different definitions for this operator based on the way the weights are defined.

We recall a definition based on a non-decreasing function, as this is the most useful

definition in our context.

Definition 2 Let Q be a non-decreasing function in [0,1] so that Q(0) = 0 and Q(1) = 1,

then the mapping OW AQ : RN →R defined as follows is an OWA operator:

OW AQ (a1, . . . , aN ) =
N∑

i=1

(
Q(i /N )−Q((i −1)/N )

)
aσ(i)

where σ is a permutation of the values ai such that aσ(i) ≥ aσ(i+1).

This operator has several properties. We underline the following ones:
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i) For all Q , it holds that:

min
i

ai ≤OW AQ (a1, . . . , aN ) ≤ max
i

ai .

ii) The function Q permits to modulate the output. For example, when we consider

the family of functions Qα(x) = xα, we have that large positive values of α lead

to an OWA near to the minimum and, on the contrary, values of α near to zero

lead to an OWA near to the maximum. Also, when ai is fixed, OW AQα is non-

decreasing with respect to α. These conditions are formalized as:

• limα→∞OW AQα(a1, . . . , aN ) = aα(N) = min ai

• limα→0 OW AQα(a1, . . . , aN ) = aα(1) = max ai

• if α1 >α2 then OW Aα1 (a1, . . . , aN ) <OW Aα2 (a1, . . . , aN )

iii) The OWA operator is symmetric for all Q . That is, the order of the parameters

is not relevant for the computation of the output. This can be formalized as

follows:

OW AQ (a1, . . . , aN ) =OW AQ (aπ(1), . . . , aπ(N))

for any permutation π.

Another relevant property of OWA operators is that they are equivalent to the so-

called Choquet integrals [14] with respect to symmetric fuzzy measures. Choquet in-

tegrals are one family of the so-called fuzzy integrals [35], a set of functionals that can

be used for information fusion. In short, given the function f that represents the in-

formation supplied by the sources in X , the fuzzy integral of f with respect to a fuzzy

measure represents an aggregated value of those values in f . In such integrals, fuzzy

measures play the role of weights in the weighted mean (i.e., some prior knowledge

on the reliability of the sources). The main difference between a fuzzy integral and a

weighted mean is that in the weighted mean independence is assumed between the

information sources. On the other hand, such independence is not formally required

for fuzzy integrals, as fuzzy measures can accommodate dependencies between the

sources.

Formally speaking, a fuzzy measure µ is a set function over X (i.e., µ : 2X → [0,1]) that

satisfies the following constraints:
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• µ(;) = 0, µ(X ) = 1 (boundary conditions).

• if A ⊆ B then µ(A) ≤µ(B) (monotonicity conditions).

The OWA operator of f with respect to Q is equivalent to the Choquet integral of f

with respect to the fuzzy measure µ defined as: µ(A)=Q(|A|/N ) where | · | stands for

the cardinality of a set. This equivalence establishes that the fuzzy measure associ-

ated with the OWA for a set A does not depend on the particular elements in A but

only on its cardinality. That is, given two sets A 6= B (A,B ⊆ X ) such that |A| = |B | then

µ(A) =µ(B). For this reason, the measure is said to be symmetric and, consequently,

any Choquet integral with respect to a measure of this form is also symmetric as this

corresponds to the OWA operator.

Formally, the Choquet integral is defined as follows:

Definition 3 Let µ be a fuzzy measure on X; then, the Choquet integral of a function

f : X →R
+ with respect to the fuzzy measure µ is defined by

(C )
∫

f dµ=

N∑

i=1
[ f (xσ(i))− f (xσ(i−1))]µ(Aσ(i))

where f (xσ(i)) indicates that the indices have been permuted so that 0 ≤ f (xσ(1)) ≤

·· · ≤ f (xσ(N)) ≤ 1, and where f (xσ(0)) = 0 and Aσ(i) = {xσ(i) , . . . , xσ(N)}.

The property that a Choquet integral with respect to a symmetric fuzzy measure is

symmetric also holds for other fuzzy integrals. In particular, it also holds for the

Sugeno integral [59]. Formally, the Sugeno integral is defined as follows:

Definition 4 Let µ be a fuzzy measure on X; then, the Sugeno integral of a function

f : X → [0,1] with respect to the fuzzy measure µ is defined by

(S)
∫

f dµ=

N∨

i=1
( f (xσ(i))∧µ(Aσ(i)))

where ∨ stands for maximum, ∧ stands for minimum, f (xσ(i)) indicates that the

indices have been permuted so that 0 ≤ f (xσ(1)) ≤ ·· · ≤ f (xσ(N)) ≤ 1, and where

f (xσ(0))= 0 and Aσ(i) = {xσ(i) , . . . , xσ(N)}.
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We give below the definition of the Sugeno integral with respect to a symmetric fuzzy

measure representable, as above, in terms of a function Q . This expression is equiv-

alent to the OWMax defined by Yager in [78].

Definition 5 Let Q be a non-decreasing function in [0,1] such that Q(0) = 0 and

Q(1) = 1, then the mapping SIQ : RN → R defined as follows is a Sugeno integral with

respect to the fuzzy measure µ(A) =Q(|A|/N ):

SIQ (a1, . . . , aN ) =
N∨

i=1
(Q(i /N )∧aσ(i))

where σ is a permutation such that aσ(i) ≥ aσ(i+1).

As stated above, this function is symmetric for all Q . Besides that, the function is an

aggregation function (in the sense of Definition 1) and the output of the integral is

modulated through the function Q .

The twofold integral [48, 65] is a generalization for both Choquet and Sugeno inte-

grals. The twofold integral is a fuzzy integral that aggregates a function with respect

to two fuzzy measures. The rationale of this generalization is that the semantics of

both measures are different. In particular, the measure in the Choquet integral is

seen as a ’probabilistic flavor’ measure, and the measure used in the Sugeno integral

is seen as a ’fuzzy flavor’ measure. We useµC to denote the measure that corresponds

to the one in the Choquet integral, and µS for the one in the Sugeno integral.

Definition 6 Let µC and µS be two fuzzy measures on X, then the twofold integral of

a function f : X → [0,1] with respect to the fuzzy measures µS and µC is defined by:

T IµS ,µC ( f ) =
n∑

i=1

(( i∨

j=1
f (xs( j ))∧µS (As( j ))

)(
µC (As(i))−µC (As(i+1))

))

where s in f (xs(i)) indicates that the indices have been permuted so that 0 ≤ f (xs(1)) ≤

·· · ≤ f (xs(n)) ≤ 1, As(i) = {xs(i), · · · , xs(n)}, As(n+1) =;.
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2.2 Time Series

Numerical time series are defined by pairs {(xi , ti )} for i = 1, . . . ,n where ti corre-

sponds to the temporal variable and xi is the numerical variable that depends on

time (dependent variable). Consequently, ti+1 > ti . Income, stock prices and sport

statistics are examples of time series, as they depend on time.

We can define in the same way ordinal or categorical time series replacing xt by a

categorical or ordinal variable. Weather forecast (e.g. sunny, cloudy, raining) and

restaurant category (e.g. one Michelin star, two Michelin stars, three Michelin stars)

are examples of categorical and ordinal time series respectively. In this thesis we will

only consider numerical time series.

In this work, we will adopt the following assumptions: time series are discrete, the

observations are made at fixed time intervals and all time series have the same initial

time t0. Under these assumptions, it is possible to simplify the notation disregarding

the temporal variable. Therefore, from now on, our notation for a time series will be

(x1, . . . , xn ).

Certain time series statistics have been defined. In this work we will use the two

most common ones: the time series mean and the autocorrelation function. The rea-

son for this selection is that both statistics are involved in the ARMA and ARIMA

processes [9], two well-known processes for time series modeling. Both statistics are

defined as follows [11]:

• Time series mean. It is defined by

µ=
1

n

n∑

i=0
xi

where n corresponds to the number of elements of the time series.

• Autocorrelation function (ACF). It describes the correlation between the pro-

cess at different times. It is defined by

R( j ) =
(xi −µ)(xi+ j −µ)

n

where n corresponds to the number of elements of the time series and i and
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i + j are the initial elements for computing the correlation. It is usual to use

i = 0 with j being a given shift.

2.2.1 Time Series Distances

In the literature we can find a large number of distances for time series. See [15, 44,

41] for more details.

Here we only describe the distances used in this thesis for computing the disclosure

risk of univariate microaggregation in Chapter 4 and for the definition of time series

microaggregation in Chapter 6.

• Euclidean distance (EU). It is defined as

dEU (x, v) = 2

√
n∑

k=1
(xk − vk )2

• Short time series distance (STS). It was defined in [44] as the square root of

the sum of the slope squared differences. Formally, it is defined as follows:

dST S (x, v) = 2

√√√√
n∑

k=1

(
vk+1 − vk

tk+1 − tk
−

xk+1 − xk

tk+1 − tk

)2

• Dynamic Time Wrapping (DTW). Any two time series can be compared ele-

mentwise with the Euclidean distance. Nevertheless, this often leads to a large

distance between two time series which are very similar but with some stretch

along the dimension (e.g. shift on the time dimension). The key idea of the

DTW distance [13, 47] is that any point of a time series can be (forward and/or

backward) aligned with multiple points of the other time series that lie in a dif-

ferent dimensional position. This compensates possible stretches in both time

series and therefore the distance is in some way more appropriate when we are

interested in comparing the shapes of the time series.

In the rest of this section we will present the DTW distance with some de-

tail. We start with the notation. Let us consider two numerical time series

x = (x1, . . . , xn ) and v = (v1, . . . , vm), of length n and m respectively. Then, for

aligning these two time series using the DTW distance, we proceed as follows.
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Firstly, we construct a bi-dimensional n×m matrix where the element (i th , j th )

contains the distance between the two points xi and v j . To compute the dis-

tance between these two points, the squared Euclidean distance is often used

(i.e., d(xi ,v j )=((xi − v j )2)). In this way, each matrix element (i , j ) corresponds

to the distance of the possible alignment between the points xi and v j .

A warping path w = (w1, . . . , wL), that represents a relation between x and v , is

a route from element (1,1) to element (n,m) formed by contiguous cells with

some particular constraints. Formally, the following constraints are consid-

ered:

– Boundary conditions. w1=(1,1) and wL=(n,m). A warping path requires

starting and finishing in opposite diagonal corners of the matrix.

– Continuity. Given a wl such that wl =(i , j ) for i ′−i ≤ 1 and j ′− j ≤ 1; then,

wl+1=(i ′, j ′). This restricts the allowable steps to adjacent cells including

diagonally adjacent cells.

– Monotonicity. Given wl =(i , j ) then wl+1=(i ′, j ′), where i ′− i ≥ 0 and j ′−

j ≥ 0, with at least one strict inequality. This forces W to progress over

dimension and avoids cycles in the warping path.

There are many warping paths that satisfy the above restrictions and the num-

ber of warping paths grow exponentially with respect to their length. In our

case, we are interested only in the optimal path wopt , the one which minimizes

the following warping cost

wopt = mi n

(
∑

xi ,v j ∈W

d[xi , v j ]

)

where d is the distance between the two points xi and v j and W is the set of

all possible paths.

Dynamic programming can be used to solve this problem because efficient

algorithms exist. Its main drawback is its large computational cost. To de-

crease this cost, horizontal and/or vertical stretches are often restricted to have

a maximum length. However, [53] shows that this limitation has a limited in-

fluence in the outcome of the method.
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2.2.2 Time Series Forecasting

Forecasting is a process that uses a set of historical values to predict an outcome.

It is commonly used in time series to predict future values of a given time series.

Good surveys on forecasting are [5, 54]. We explain herein five well-known forecast-

ing models widely used in real applications.

All forecasting models estimate future values using the previous elements of time

series. For instance, given a time series (x1, . . . , xn ), we can estimate the value xn+1 . In

this case, (x1, . . . , xn ) are independent values of the forecasting model, whereas xn+1

is the dependent one. This process can be repeated using xn+2 as the dependent

value and adding the estimated xn+1 value to the independent ones.

Simple Exponential Smoothing Forecasting Model

This is a very popular model used to produce smoothed time series. Simple expo-

nential smoothing (SESF ) assigns exponentially decreasing weights as the observa-

tions get older. In other words, recent observations are given relatively more weight

in forecasting than the older ones.

Double Exponential Smoothing Forecasting Model

The double exponential smoothing (DESF ), also known as Holt exponential

smoothing, is a refinement of the previous one adding a component to include any

trend in the data. Simple exponential smoothing models work better with data with

no trend or seasonality components. For this reason, when the data exhibits either

an increasing or decreasing trend over time, simple exponential smoothing forecasts

tend to fall behind observations. Double exponential smoothing is designed to ad-

dress this type of time series by considering the trends existing in the data.

Linear Regression Forecasting Model

This is a regression model (RM) where a dependent variable y is expressed in terms

of an independent variable x and a random term ǫ as follow
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y =β0 +β1x +ε

where β0 is the intercept (’constant’ term) and β1 is the parameter of the indepen-

dent variable. This model can be used for forecasting, using x as previous values of

the variable and y the ones to be forecasted.

Multiple Linear Regression Forecasting Model

This is an extension of the linear regression model. In this case, there is a dependent

variable y and several independent variables xi , i = 1, ..., p, and a random term ǫ. The

model (MLRF ) is as follows:

y =β0 +β1x1 +β2x2 +·· ·+βp xp +ε

where β0 is the intercept (’constant’ term), the βi are the respective parameters of

independent variables, and p is the number of parameters to be estimated in the

linear regression.

Polynomial Regression Forecasting Model

The lineal regression forecasting model (a first-order polynomial) can be extended

to higher orders. The polynomial regression model (PRM) yi = α0 +α1xi +α2x2
i
+

·· · +αm xm
i
+ εi (i = 1,2, . . . ,n) is a system of polynomial equations of order m with

coefficients {α0, . . . ,αm }. This model can be expressed using a data matrix X , a target

vector ~y and a parameter vector ~α. The i -th rows of X and ~y contain the x and y

values for the i -th data sample. In this way, the model can be written as a system of

linear equations:
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which, when using pure matrix notation is, as aforementioned,

Y = X~α+ε

Given X and Y , the vector of polynomial coefficients is determined using the follow-

ing expression.

~̂α= (XT X)−1 XT Y

2.3 Re-identification Methods

Re-identification methods are a specific class of data base techniques. These meth-

ods are designed to establish relationships among different entities or attributes

stored in different data sources. Obtaining the relationships among entities or at-

tributes makes sense at least in the following scenarios:

• Schema matching [51]. It is a basic problem in many data applications. These

methods take two schemas as input and produce a mapping between elements

(attributes) of the two schemas that semantically correspond to each other.

• Data integration [16]. It refers to the creation of an integrated view of sev-

eral data sources apparently incompatible. The incompatibility arises due to

different perceptions and requirements which often lead us to express similar

information in dissimilar forms.

• Data cleaning [52]. It deals with detecting and removing errors and incon-

sistencies from data in order to improve their quality. Data quality problems
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Figure 2.1: Record Linkage Schema.

presented in a single data set could be due to misspellings during data entry,

missing information or other invalid data.

• Object integration. It refers to certain kind of applications whose aim is to

establish relationships among objects, having similar properties or behaviors.

A good example of this kind of application is ontology matching [6].

Record Linkage is one of the existing re-identification techniques. It is widely used

for data cleaning [75] and integration of distributed and non-homogeneous data

sets [69]. Typically, such data sets contain information about common individuals

described using the same variables, that, frequently, do not match due to errors on

the data. These errors can be accidently produced (e.g. typos or misspelling errors)

or intentionally provoked (e.g, data protection). All the research done in this work is

focused on this latter case.

We consider that the record linkage process is formed by different phases, as shown

in Figure 2.1. To start the record linkage process, data sources are pre-processed in

such a way that the attributes in the data sets are normalized [8, 74] separately to

allow a simpler comparison among them in the following steps.

Once the pre-processing is done, record linkage should compare, in principle, all

the records in the data sets under analysis in order to decide which records belong

to the same individual. In practice, since the size of the data sets is usually very

large, the comparison of all records becomes unfeasible. To avoid this comparison,
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record linkage resorts to blocking methods [37, 39] that try to gather all records that

present a potential resemblance. Typically, blocking methods are based on a com-

mon attribute without errors, but recently, more sophisticated methods have been

developed [40].

Then, we proceed with the record linkage matching phase. During this step, only

the records belonging to the same block are compared. There are several strategies

to compare records. The most common ones are based on computing some condi-

tional probabilities or distances. This is explained in Section 2.3.1 and 2.3.2.

Once the matching process delivers the result, it is necessary to analyze the list of

matching pairs. This last step usually requires human intervention by means of ex-

pert individuals. As in our experiments the correct linkages are known in advance,

we omit this last step.

2.3.1 Distance Based Record Linkage

Distance based record linkage consists of computing the distances between all the

original and protected records. Then, the pair of records at minimum distance are

considered as linked pairs (LP), whereas the remaining pairs are considered as not

linked pairs (NP). In the context of data privacy the first use was [50] where it was

applied to a microaggregation protection method based on the Euclidean distance.

Let d(a,b) be a distance between a record in the original data set X and a record in

the protected data set X ′. Then, the distance based record linkage algorithm can be

defined as in Algorithm 1.

Obviously, the application of this algorithm is only possible if such distance function

can be calculated. Normally, this distance is defined in terms of a distance dat tri
for

each attribute at tri as follows:

d(a,b) =
n∑

i=1
dat tri

(at tr A
i (a), at tr B

i (b))

The specific dat tri
allows us tuning the method to obtain as many correct links as

possible. A very common tuning approach is to weight different attributes in a dif-

ferent way depending on their importance. Nevertheless, in the original proposal
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Algorithm 1: DB-RL

Data: X: original data set, X’: protected data set
Result: LP: linked pairs
begin1

foreach a ∈ X do2

b′ = ar g _mi nb∈X ′d(a,b)3

LP = LP ∪ (a,b′)4

foreach a ∈ X do5

N P = N P ∪ (a,b)6

end7

presented in [50], all attributes have the same weight.

2.3.2 Probabilistic Record Linkage

The probabilistic record linkage method was originally described in [30]. Later

in [39], this method was tested over the 1985 census of Tampa, Florida. In that work,

the matching algorithm was defined using the linear sum assignment model in or-

der to define the linked pairs between the original and the protected data set. After-

wards, in [74] a new mathematical model based on the Expectation-Maximization

(EM) algorithm was presented to compute the linked pairs. Formally, probabilistic

record linkage is defined as follows.

For each pair of records (a,b) where a is an original record of the original data set X

and b is a protected record of the protected data set X ′, we define a coincidence vec-

tor γ(a,b) = (γ1(a,b) . . .γn(a,b)), where γi (a,b) is defined as 1 if at tri (a) = at tri (b)

and as 0 if at tri (a) 6= at tri (b). Note that, at tri values are the standardized values of

the original and the protected data sets. Then an index is computed over this coinci-

dence vector. Afterwards, by using such index, pairs are classified as either a linked

pair (LP) or a non-linked pair (NP).

In this framework, indices are computed using conditional probabilities. Such prob-

abilities are estimated using the EM algorithm. Then, the thresholds are computed

from: (i) the probability of linking a pair that is an unmatched pair (a false positive

or false linkage: P (LP |U)) and (ii) the probability of not linking a pair that is a match

pair (a false negative or false unlinkage: P (N P |M)).
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Although, from a computational point of view, probabilistic record linkage is a much

more complex method compared to the distance based record linkage method, this

approach is very interesting because the user has to provide only two probabilities

as input: an upper bound of the probability of a false match and an upper bound of

the probability of a false non-match. This is a clear advantage against the distance

based record linkage.

2.4 Microdata Protection Methods

A data set X can be seen as a matrix with n rows (records) and k columns (attributes).

Each row contains the values of the attributes for an individual. The attributes in a

data set can be classified in three non-disjoint categories:

• Identifiers. They are attributes which unambiguously identify the individual,

for example, the passport number.

• Quasi-identifiers. They are attributes which can identify the individual when

some of those attributes are combined. For example, age, postal code or job

cannot identify an individual, but the set of individuals working at the IIIA-

CSIC, living in Tiana and being born in 1979, contains a single individual.

• Confidential. They are attributes which contain sensitive information about

the individual. For example, salary.

When considering this classification, a data set X is defined as X = i d ||Xnc ||Xc ,

where i d are the identifiers, Xnc are the non-confidential quasi-identifier attributes,

and Xc are the confidential attributes. Normally, before releasing a data set X with

confidential attributes, a protection method ρ is applied, leading to a protected data

set X ′. Indeed, we will assume the following typical scenario: (i) identifier attributes

in X are either removed or encrypted, therefore we will write X = Xnc ||Xc ; (ii) con-

fidential attributes Xc are not modified, and so we have X ′
c = Xc ; (iii) the protec-

tion method itself is applied to non-confidential quasi-identifier attributes, in order

to preserve the privacy of the individuals whose confidential data is being released.

Therefore, we have X ′
nc = ρ(Xnc ). This scenario allows third parties to have precise

information on confidential data without revealing to whom the confidential data
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Figure 2.2: Data set protection and release process.

belongs to. Figure 2.2 depicts the process of protection and release of a microdata

file, as formerly explained.

In this scenario, as shown in Figure 2.3, an intruder might try to re-identify indi-

viduals by obtaining the non-confidential quasi-identifier data (Xnc ) together with

identifiers (Id) from other data sources. By applying record linkage between the pro-

tected attributes (X ′
nc ) and the same attributes obtained from other data sources

(Xnc ), the intruder might be able to re-identify a percentage of the protected indi-

viduals together with their confidential data (Xc ). This is what protection methods

try to prevent. This scenario is similar to the scenario used in [73, 68].

Protection methods can be classified depending on their effect on original data into

three different categories:

• Perturbative. The data set is distorted adding noise. In this way, in the original

data set, the combinations of values which unambiguously identify an individ-

ual (or respondent) disappear and then, new combinations appear in the pro-

tected data set. This obfuscation makes difficult for an intruder to obtain the

values of the original data set. A perturbative protection method has to ensure

that the statistical information in the original data set is preserved on the pro-

tected one. The protection methods used in this thesis, Rank Swapping [45]

and Microaggregation [19], are included in this category.
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Figure 2.3: Disclosure Risk Scenario.

• Non-perturbative. Non-perturbative methods do not distort the original data

set. They do partial suppressions or detail reductions on the original data

set. These protection methods convert the combinations of values which

unambiguously identify an individual into more general ones. Thus, the re-

identification process is more difficult.

• Synthetic Data Generators. Synthetic data generators build a data model from

the original data set and subsequently, a new (protected) data set is randomly

generated constrained by the model computed. This approach is very promis-

ing for the statistical disclosure, although recent works as [68] show that it is

possible to link synthetic data with the original data set.

Another dimension to classify protection methods is to consider the different type of

data that protection methods can be used:

• Numerical. An attribute is considered numerical if arithmetic operations can

be performed with it (e.g. age or income). Note that a numerical attribute

does not necessarily have an infinite range, as in the case of age. When we

are designing methods to protect numerical data, one has the advantage that

arithmetic operations are possible, and the drawback that every combination

of numerical values in the original data set is likely to be unique, which leads to
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disclosure if no action is taken. This thesis focuses on protection methods for

numerical data, even though rank swapping and microaggregation have been

also defined for categorical data [45, 66] and some of the results presented

herein can also be applied in that setting.

• Categorical. An attribute is considered categorical when it takes values over a

finite set and standard arithmetic operations do not make sense. Ordinal and

nominal scales can be distinguished among categorical attributes. In ordinal

scales the order between values is relevant (e.g. academic degree), whereas in

nominal scales it is not (e.g. hair color). In the former case, max and min op-

erations are meaningful while in the latter case only pairwise comparison is

possible. When we are designing methods to protect this kind of data, the in-

ability to perform arithmetic operations is an inconvenient, but the finiteness

of the value range is an interesting property that can be successfully exploited.

During the past few years, special efforts have been made to develop a wide range of

protection methods. Good surveys about data protection methods can be found in

the literature [1, 21]. Among all the proposed data protection methods, rank swap-

ping and microaggregation are ones of the most used by the statistical agencies [31].

This wide application is due to they are very simple and have a low computational

cost. This thesis is focused on the study of the disclosure risk of these methods. We

also use the performance results of rank swapping and microaggregation as a base-

line for the study of new protection methods developed herein. Now, we describe

rank swapping and microaggregation in detail.

2.4.1 Rank Swapping

Rank swapping is a widely used microdata protection method, which was originally

described only for ordinal attributes in [45]. However, in the comparisons made in

[21], rank swapping was ranked among the best microdata protection methods for

numerical attributes.

Rank swapping with parameter p and with respect to an attribute at tr j (i.e., the j -th

column of the original data set X ) can be defined as follows: firstly, the records of

X are sorted in increasing order of the values xi j of the considered attribute at tr j .

For simplicity, we assume that the records are already sorted, that is xi j ≤ xℓ j for all
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1 ≤ i < ℓ ≤ n. Then, each value xi j is swapped with another value xℓ j , randomly

and uniformly chosen from the limited range i < ℓ≤ i +p. Finally, the sorting step is

undone.

Generaly, rank swapping of a data set consists in running the algorithm explained

above for each attribute to be protected, in a sequential way.

The parameter p is used to control the swap range. Normally, p is defined as a per-

cent of the total number of records in X . Therefore, when p increases the differ-

ence between xi j and xℓ j may increase accordingly. This fact makes re-identification

more difficult, but of course the differences between the original and the protected

data set are higher, decreasing in this way its statistical utility.

Original Data Set X Protected Data Set X ′

at tr1 at tr2 at tr3 at tr4 at tr ′
1 at tr ′

2 at tr ′
3 at tr ′

4
8 9 1 3 10 10 3 5
6 7 10 2 5 5 8 1

10 3 4 1 8 4 2 2
7 1 2 6 9 2 4 4
9 4 6 4 7 3 5 6
2 2 8 8 4 1 10 10
1 10 3 9 3 9 1 7
4 8 7 10 2 6 9 8
5 5 5 5 6 7 6 3
3 6 9 7 1 8 7 9

Table 2.1: Rank swapping example.

Example 2.1 Let us consider the data set shown in the left side of Table 2.1. Then

we protect this data set using rank swapping with p = 2. The protected data set is

shown in the right side of the same table. For the sake of simplicity, in the example

original and protected files are identically sorted.

2.4.2 Microaggregation

Recently, microaggregation [17] has emerged as one of the most promising protec-

tion methods. For example, [31] shows that microaggregation is used by many sta-

tistical agencies for data anonymization.
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The basic implementation of microaggregation works as follows: given a data set of a

attributes, microaggregation builds small clusters of at least k elements and replaces

the original values by the centroid of the cluster to which the record belongs to. A cer-

tain level of privacy is ensured because k records have an identical protected value

(k-anonymity [57, 61, 60]). Note that there are other ways to achieve k-anonymity;

in some of them (just as it happens with basic microaggregation), the released data

set enjoys k-anonymity as a whole (see [3], for example). In other solutions, the data

holder chooses different subsets of attributes, and k-anonymity is ensured, indepen-

dently, for each of these subsets of attributes (see [34]).

When the number of attributes is large, the basic microaggregation technique suf-

fers from a low statistical utility (see for example [2]), especially if the attributes are

not much correlated. This is so because in this case the distances between original

records in the data set and the centroids are quite large. Therefore, much informa-

tion on the original data is lost and is not included in the released (protected) data

set.

To solve this drawback, the following natural strategy is applied by statistical agen-

cies: the data set is split into smaller blocks of attributes, and microaggregation is

applied separately to each block. In this way, the information loss is lower but at the

cost of a loss in the achieved level of privacy. Indeed, the property of k-anonymity is

not ensured now. For example, the k records which fall in the same cluster for the first

block of attributes, can fall in different clusters for all the other blocks of attributes.

So, the resulting protected records will not be equal and no k-anonymity is ensured.

The simplest approach for microaggregation is when the size of the attribute blocks

is equal to one, in other words, each attribute is protected independently. This cor-

responds to Univariate Microaggregation or Individual Ranking Microaggregation.

The goal of microaggregation methods is to minimize the total sum of distances be-

tween all the elements to be protected and the centroid of the cluster where an ele-

ment belongs to, i.e minimize the total Sum of Square Errors (SSE). The rational of

this process is to make the protected data as similar as possible to the original one.

In any case, the methods should provide clusters with at least k elements. The opti-

mal multivariate microaggregation has been proven as NP-Hard [49]. For this reason,

heuristic methods can be found in the literature. On the other hand, several polyno-

mial approaches for the optimal univariate microaggregation as [36] can be found in
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the literature.

In this section we will explain several different algorithms that have been proposed

(in more or less detail) for microaggregation. Firstly we will explain a deterministic

and optimal algorithm for univariate microaggregation; it will also be used later on

when we will explain two methods for projection based multivariate microaggrega-

tion: PCP microaggregation and Zscores microaggregation. Finally, we will describe

one of the most used methods for heuristic microaggregation (specially for the mul-

tivariate case, although it can be applied to the univariate case as well): the MDAV

(Maximum Distance to Average Vector) algorithm.

Optimal Univariate Microaggregation

In [36] optimal univariate microaggregation is defined as the univariate microaggre-

gation which minimizes the Sum of Square Errors (SSE):

SSE =

C∑

i=1

∑

xi j∈ci

(xi j − x̄i )T (xi j − x̄i ) (2.1)

where C is the total number of clusters, ci is the i -th cluster and x̄i is the centroid of

ci . The restriction is |ci | ≥ k, for all i = 1, . . . ,C .

In [19], the authors present two results for the optimal univariate microaggregation:

• Result 1. When elements are sorted according to an attribute, for any optimal

partition, elements in each cluster are contiguous (non overlapping clusters

exist)

• Result 2. All clusters of any optimal partition have between k and 2k −1 ele-

ments.

This method for optimal univariate microaggregation is as follows:

Let A = (a1 . . . an) be a vector of size n containing all the values for the attribute being

protected. The values are sorted in ascending order so that if i < j then ai ≤ a j .

Obviously, a1 is the smallest element in A and an is the largest element in A. Let k
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be an integer such that 1 ≤ k < n (k is directly obtained from the microaggregation

configuration).

Given A and k, a graph Gk ,n is defined as follows. Firstly, we define the nodes of G as

the elements ai in A plus one additional node g0 (this node is later needed to apply

the Dijkstra algorithm). Then, for each node gi , we add to the graph the directed

edges (gi , g j ) for all j such that i +k ≤ j < i +2k. The edge (gi , g j ) means that the

values (ai , . . . , a j ) might define one of the possible clusters. Then, the cost of the edge

(gi , g j ) is defined as the within-group sum of squared error for such cluster. That is,

SSE =Σ
j

l=i
(al − ā)2, where ā is the average record of the cluster.

Given this graph, the optimal univariate microaggregation is defined by the shortest

path algorithm between the nodes g0 and gn . This shortest path can be computed

using the Dijkstra algorithm.

Original Data Set X Protected Data Set X ′

at tr1 at tr2 at tr ′
1 at tr ′

2
1 4 2 5
2 15 2 15.5
3 5 2 5
6 17 6.5 17.5
7 6 6.5 5
8 18 8.5 17.5
9 16 8.5 15.5

Table 2.2: Optimal univariate microaggregation example.

Example 2.2 Let us consider the data set shown in the left side of Table 2.2. Then,

we protect this data set using the optimal microaggregation protection method

with k = 2. The protected data set is shown in the right side of the same table. In

this example the SSE value is equal to 0.14. Note that here k-anonymity is only

preserved in records 1 and 3.

Projection Based Microaggregation

The basic idea of two of the microaggregation methods that we analyze herein is

to project a > 1 attributes (corresponding to some attributes of the records) into a
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single one. In this way we reduce the multivariate microaggregation problem into

the univariate one. The employed projection should maintain as much as possible

the global statistical properties of the initial (non-projected) values. With this goal in

mind, two projection methods seem particularly appealing; we explain them now.

Principal Component Projection

Formally Principal Component Projection (PCP in short) works as follows: let us as-

sume that values of a attributes for n individuals are stored in a matrix X of dimen-

sion n × a, where columns contain attributes and rows contain individuals. For the

sake of simplicity, we will assume here that data is standardized (i.e., the data has

µ= 0 and σ= 1, and so the covariance matrix is S = 1/nX T X ).

The first principal component is defined as the linear combination of the attributes

which has the maximum variance. Therefore, this first principal component will be

represented using a vector z1 = X a1, for some vector a1 with a components, to be

found. Since the original values have µ = 0, we have that z1 also has µ = 0, and its

variance is
1

n
zT

1 z1 =
1

n
aT

1 X T X a1 = aT
1 Sa1 (2.2)

Since S is positive-definite, the variance increases when the module of the vector a1

does. For this reason, to find a concrete solution for the maximization of Expression

(2.2), some constraint on the module of a1 is needed; in this case, the search is lim-

ited to vectors a1 with module 1 (i.e. aT
1 a1 = 1). This is equivalent to maximize the

following expression, where a Lagrange multiplier has been added to the variance:

M = aT Sa1 −λ(aT
1 a1 −1) (2.3)

To maximize Expression (2.3), the derivative with respect to the a1 components must

be made equal to 0.

∂M

∂a1
= 2Sa1 −2λa1 = 0 (2.4)

The solution for such equation is Sa1 = λa1, which implies that a1 is an eigenvector
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of the matrix S, and λ is its corresponding eigenvalue. To determine which eigen-

value of S is the right solution, Equation (2.4) is left-multiplied with aT
1 , leading to

aT
1 Sa1 =λaT

1 a1 =λ.

Summing up, λ is the variance of z1. Since the goal is to maximize the variance, λ

is the largest eigenvalue of the matrix S, and its associate eigenvector a1 defines the

coefficients of the projection (PCP). Therefore, the final projected value is

PCP =

a∑

i=1
ai xi .

Zscores Projection

As in the previous section, we assume that values of the a attributes for the n individ-

uals are stored in a matrix X of dimension n×a. Given a record (a row) (x1, x2, . . . , xa )

in X , the sum of Zscores Projection is defined as the single element

Z =

a∑

i=1

xi −µi

σi

where µi is the average and σi is the variance of the i -th attribute, computed by

taking into consideration all the records in X .

Algorithm for Projected Microaggregation

The main problem when one tries to extend the optimal univariate solution to the

case of multivariate microaggregation is how to sort multivariate data. One pos-

sibility, as we will see later, is to order the points with respect to their distance to

the global centroid of the data. MDAV is an heuristic microaggregation method that

takes this information into account.

A different possibility is to reduce the dimensionality of the problem, from more than

one attribute to 1 attribute, by applying some projection method. In more detail,

projected multivariate microaggregation is described in Algorithm 2, when applied
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Algorithm 2: Projected Microaggregation

Data: X: original data set, k: integer
Result: X’: protected data set
begin1

Split the data set X into r sub-data sets {Xi }1≤i≤r , each one with ai2

attributes of the n records, such that
r∑

i=1
ai = A

foreach (Xi ∈ X ) do3

Apply a projection algorithm to the attributes in Xi , which results in4

an univariate vector zi with n components (one for each record)
Sort the components of zi in increasing order5

Apply to the sorted vector zi the following variant of the univariate6

optimal microaggregation method explained in Section 2.4.2: use
the algorithm defining the cost of the edges 〈zi ,s , zi ,t 〉, with s < t , as
the within-group sum of square error for the ai -dimensional
cluster in Xi which contains the original attributes of the records
whose projected values are in the set {zi ,s , zi ,s+1, . . . , zi ,t }
For each cluster resulting from the previous step, compute the7

vi -dimensional centroid and replace all the records in the cluster
by the centroid

end8

to a data set X with n records and A attributes.

Depending on the projection method which is applied to the attributes, we will ob-

tain different methods of multivariate microaggregation. Due to the fact that they

should preserve as much statistical properties of the data as possible (desirable in

the scenario of statistical data protection), the PCP and Zscores projection methods

seem to be the best choice. We call the resulting microaggregation algorithms PCP

microaggregation and Zscores microaggregation.

Example 2.3 Let us consider the same data set used in Example 2.2, the original

data set shown in the left side of Table 2.3. Then, we protect this data set using the

PCP and Zscores microaggregation with k = 2. The protected data sets are shown

in the middle and right side of the same table. In this example, SSE value is equal

to 1.02 and 0.65 for PCP and Zscores microaggregation respectively.



32 Chapter 2. Preliminaries

Original Data Set X PCP Prot. Data Set X ′ Zscores Prot. Data Set X ′

at tr1 at tr2 at tr ′
1 at tr ′

2 at tr ′
1 at tr ′

2
1 4 3.67 5.0 2.0 4.5
2 15 4.0 16.0 4.5 10.5
3 5 3.67 5.0 2.0 4.5
6 17 4.0 16.0 7.67 17.0
7 6 3.67 5.0 4.5 10.5
8 18 8.5 17.0 7.67 17.0
9 16 8.5 17.0 7.67 17.0

Table 2.3: Projection based microaggregation example.

Algorithm 3: MDAV

Data: X: original data set, k: integer
Result: X’: protected data set
begin1

while (|X | > k) do2

Compute the average record x̄ of all records in X3

Consider the most distant record xr to the average record x̄4

Form a cluster around xr . The cluster contains xr together with the5

k −1 closest records to xr

Remove these records from data set X6

if (|X | > k) then7

Find the most distant record xs from record xr8

Form a cluster around xs . The cluster contains xs together with9

the k −1 closest records to xs

Remove these records from data set X10

Form a cluster with the remaining records11

end12

MDAV Microaggregation

The MDAV (Maximum Distance to Average Vector) algorithm [19, 42] is an heuristic

algorithm for clustering records in a data set X so that each cluster is constrained to

have at least k records. This algorithm can be used for univariate microaggregation

and multivariate microaggregation. The MDAV algorithm is described in Algotihm 3.

MDAV generic algorithm can be instantiated for different data types, using appro-

priate definitions for distance and average. Normally, the most distant record and the

closest records are computed using the Euclidean distance, and the average record is
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defined as the arithmetic mean of the records. This same mean record is used to

replace the original records when building the protected data set.

Original Data Set X Protected Data Set X ′

at tr1 at tr2 at tr ′
1 at tr ′

2
1 4 1.5 4.5
2 15 1.5 12.33
3 5 5.33 4.5
6 17 5.33 17.5
7 6 5.33 12.33
8 18 8.5 17.5
9 16 8.5 12.33

Table 2.4: MDAV microaggregation example.

Example 2.4 Let us consider the same data set used in Example 2.2 and 2.3, the

original data set is shown in the left side of Table 2.4. Then, we protect this data set

using the MDAV microaggregation protection method with k = 2. The protected

data set is shown in the right side of the same table. In this example, SSE value is

equal to 0.49.

2.5 Information Loss and Disclosure Risk

The main objective of rank swapping and microaggregation, and in general of all pro-

tection methods, is to minimize both disclosure risk (DR) and information loss (IL) of

the protected released data set. Disclosure risk measures the capacity of an intruder

to obtain some information about the original data set from the protected one, and

information loss measures the reduction of the statistical utility of the protected data

set with respect to the original one.

However, when one of these parameters decreases the other one increases; finding

the optimal combination of these two measures becomes a difficult and challenging

task. Moreover, in some situations, an organization could be interested in releasing

the data by fixing a desirable level for one of the parameters. For these two reasons,

it becomes necessary to compute both measures in a very accurate manner before

releasing the protected data set, ensuring an enough protection level and statistical
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utility.

Some approaches are used to calculate the information loss. In [20] the authors cal-

culate the average difference between some statistics computed on both the original

and the protected microdata. A probabilistic variation of these measures was pre-

sented in [43] to ensure that the information loss value is always within the interval

[0,1]. A different approach was presented in [7], where some measures (accuracy,

completeness and consistency) are calculated over the protected data to evaluate the

information loss.

In order to compute the disclosure risk, many works as e.g. [20, 58, 79] use the record

linkage methods [20, 75, 76] explained before. Alternatively, other methods can be

considered for evaluating the disclosure risk. For example, in [73], the authors define

a framework for privacy protection where the intruder can only query the database

by using propositional sentences. If the database answers these queries with enough

level of generalization, it is difficult for the intruder to infer any confidential infor-

mation about a specific individual. The measure of disclosure risk in this scenario is

the percentage of individuals for which an intruder is able to discover the value of a

confidential attribute.

Normally, information loss and disclosure risk are combined to obtain an overall

value about a specific protection method, this value weighs the relationship between

the information loss and disclosure risk. The best protection method is the one that

optimizes the trade-off between both magnitudes. Consider the following extreme

cases as examples of this trade-off:

• If masking consists of encrypting the original data, no disclosure is possible,

but no information at all is released (maximum information loss, minimum

disclosure risk).

• If no masking is performed and the original data are released, users can per-

form fully accurate computations, but disclosure of individual respondent

data is complete (minimum information loss, maximum disclosure risk).

In order to compute this trade-off, one approach was presented in [20], where the

authors combine both IL and DR in a Score using an arithmetic mean. Another ap-

proach is the R-U (risk-utility) maps [26, 27, 28], that show in a graphical way the
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relationship between a numerical measure of statistical disclosure risk (R) and a nu-

merical measure of data utility (U). Both measures, R and U, can be general or spe-

cific for a certain protection method.

Among all of these possibilities, we have selected the measures presented in [20].

The selection is based on the following reasons:

• These measures use the record linkage methods to compute the disclosure

risk.

• A lot of protection methods have been evaluated using this score and therefore

we can compare our results with many other works easily.

• These measures allow modifications in the IL and DR computation.

In the remaining of this section, we describe the five information loss measures used

to calculate the overall information loss value and the three disclosure risk measures

used to compute the overall disclosure risk value of the final score.

2.5.1 Information Loss Measures

Let n be the number of records in the original data set and n′ the number of records

in the masked data set. Let a be the number of attributes (assumed to be the same in

both data sets). Then, we define X and X ′ as a n × a matrices representing the origi-

nal and the masked data set: columns correspond to attributes and rows correspond

to records.

• I L1 . We define the mean absolute error of a matrix X vs another matrix X ′ as

the average of the absolute values of differences of corresponding components

(records) in both matrices. We understand ’corresponding’ as the map of each

record (component) in X with the nearest record in X ′ using a a-dimensional

Euclidean distance. Then, we define the mean variation of X vs X ′ as

I L1 = X −X ′
=

∑a
j=1

∑n
i=1

|xi j −x′
i j
|

|xi j |

na
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• I L2 . Let X̄ and X̄ ′ be the vectors of averages of attributes (rows) in X and X ′,

we define the mean variation of these two vectors as

I L2 = X̄ − X̄ ′
=

∑a
j=1

|x̄ j −x̄′
j
|

|x̄ j |

a

• I L3 . Let V and V ′ be the covariance matrices of X and X ′, we compute the

mean variation of these two matrices as

I L3 =V −V ′
=

∑a
j=1

∑
1≤i≤ j

|vi j−v ′
i j
|

|vi j |

(a+1)a
2

• I L4 . Let S and S ′ be the vectors of variances of attributes (rows) in X and X ′,

these vectors are the diagonal of V and V ′ respectively; we compute the mean

variation of these two vectors as

I L4 = S −S ′
=

∑a
j=1

|v j j −v ′
j j
|

|v j j |

a

• I L5 . Let R and R′ be the correlation matrices of X and X ′, we compute the

mean variation of these two matrices as

I L5 = R −R′
=

∑a
j=1

∑
1≤i≤ j |ri j − r ′

i j
|

(a−1)a
2

The overall IL is computed using 100 times the average of the mean variations of all

the measures explained before. That is,

I L = 100
(
0.2 I L1 +0.2 I L2 +0.2 I L3 +0.2 I L4 +0.2 I L5

)

2.5.2 Disclosure Risk Measures.

Two types of disclosure risk measures are considered depending on the intention of

the intruder.
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Firstly, we suppose that an intruder has the protected information and knows some

original attributes obtained from an external data source, this scenario is defined in

Section 2.4. Here, the intruder is interested in linking the original and the protected

data set (i.e. discover the values of some other attributes). This risk can be measured

using record linkage. Two record linkage methods defined in Section 2.3 are used for

this purpose:

• Distance-based Linkage Disclosure (DLD). This measure is computed over

the number of attributes that the intruder is assumed to know that, for in-

stance, from one to half of the attributes. The final value is calculated as the

average percentage of linked records using distance based record linkage in

each case.

• Probabilistic Linkage Disclosure (PLD). This measure is identical to DLD, but

using the probabilistic record linkage instead of the distance based record link-

age.

Secondly, we suppose that the intruder is not interested in knowing the exact original

values or that he cannot obtain them. Alternatively, the intruder tries to get an ap-

proximation of the original values. Interval Disclosure (ID) is one of the approaches

to model this scenario. The ID risk is computed as 100 times the average percentage

of original values falling into an interval defined around the corresponding masked

value. The interval is defined as a percentage, between 1 per cent and 10 per cent, of

the values.

DR = 0.5
DLD +PLD

2
+0.5 I D

2.5.3 Score Computation

The score combining information loss measures with disclosure risk measures is

then defined as follows:

scor e = 0.5 I L+0.5DR
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2.6 Data Sets Description

In this section, we describe in detail the data sets used in the experiments performed

in this thesis. We have considered seven data sets from the UCI repository [46] and

the two reference data sets proposed in the European CASC project. Both groups

of data sets have been widely used in many other works. For example, the CASC

reference data sets have been used in the following works: [21, 68, 74], whereas some

of the UCI data sets have been used in these other works: [62, 67]

2.6.1 CASC Data Sets

Here, we describe the two reference data sets proposed in the European CASC (Com-

putational Aspects of Statistical Confidentiality) project [10].

The Census Data Set

The first data set, called Census, contains 1080 records consisting of 13 numerical

attributes. It was extracted using the Data Extraction System of the U.S. Census Bu-

reau [71]. A complete description about the details of the construction of this data

set can be found in [25].

The data used to create this data set was extracted from the file-group ’March Ques-

tionnaire Supplement - Person Data Files’ of the data source ’Current Population

Survey of the year 1995’. Not all the records of this survey were selected. Records

with zero or missing values for at least one of the 13 attributes were discarded to ob-

tain the final 1080 records. Note that, 1080 is the largest integer less than 1200 which

is a multiple of 2, 5, 8 and 9. Thus, the data set can be split or microaggregated into

several groups of small size.

The attributes selected to build the Census data set are described in Table 2.5.

The EIA Data Set

The second data set, called EIA, was obtained from the U.S. Energy Information Au-

thority [72]. It contains 4092 records consisting of 15 attributes, but only 10 attributes
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id Name Description
a1 AFNLWGT Final weight (2 implied decimal places)
a2 AGI Adjusted gross income
a3 EMCONTRB Employer contribution for health insurance
a4 ERNVAL Business or farm net earnings in 19
a5 FEDTAX Federal income tax liability
a6 FICA Social security retirement payroll deduction
a7 INTVAL Amount of interest income
a8 PEARNVAL Total person earnings
a9 POTHVAL Total other persons income
a10 PTOTVAL Total person income
a11 STATETAX State income tax liability
a12 TAXINC Taxable income amount
a13 WSALVAL Amount: Total wage & salary

Table 2.5: Attributes of the Census data set. In the first column, id stands for the
attribute identifier used in this thesis, in the second column, Name stands for the
identifier used in the source of the data set and in the third column a brief description
of the attribute is given.

are numerical. As we are only interested in numerical attributes, we have discarded

the 5 non numerical attributes. In Table 2.6 we present the description of the EIA

attributes.

id Name Description
a1 RESREVENUE Revenue from sales to residential consumers
a2 RESSALES Sales to residential consumers
a3 COMREVENUE Revenue from sales to commercial consumers
a4 COMSALES Sales to commercial consumers
a5 INDREVENUE Revenue from sales to industrial consumers
a6 INDSALES Sales to industrial consumers
a7 OTHREVENUE Revenue from sales to other consumers
a8 OTHRSALES Sales to other consumers
a9 TOTREVENUE Revenue from sales to all consumers
a10 TOTSALES Sales to all consumers

Table 2.6: Attributes of the EIA data set. In the first column, id stands for the attribute
identifier used in this thesis, in the second column, Name stands for the identifier
used in the source of the data set and in the third column a brief description of the
attribute is given.
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2.6.2 UCI Data Sets

Now, we describe the seven data sets extracted from the UCI (University of California

- Irvine) Machine Learning Repository [46]. As in this thesis we are only interested in

numerical data, we have selected data sets from UCI repository described in terms

of numerical attributes. Non-numerical attributes, if any, were discarded.

The Abalone Data Set

The Abalone data set was obtained from the Marine Research Laboratories of

Taroona. Firstly, it was used to predict the age of abalones (a kind of mollusks)

from physical measurements. It contains 4177 records consisting of 8 numerical at-

tributes. In Table 2.7 we present the description of the Abalone attributes.

id Name Description
a1 SEX Male (1.0), female (2.0) and infant (3.0)
a2 LENGHT Longest shell measurement
a3 DIAMETER Diameter perpendicular to length
a4 HEIGHT Height with meat in shell
a5 WHOLEWEIGHT Weight of the whole abalone
a6 SUCKEDWEIGHT Weight of meat
a7 VISCERAWEIGHT Gut weight (after bleeding)
a8 SHELLWEIGHT Weight after being dried
a9 RINGS Number of rings (+1.5 gives the age in years)

Table 2.7: Attributes of the Abalone data set. In the first column, id stands for the
attribute identifier used in this thesis, in the second column, Name stands for the
identifier used in the source of the data set and in the third column a brief description
of the attribute is given.

The Dermatology Data Set

The Dermatology data set was obtained from the School of Medicine of Gazi Uni-

versity (Turkey). The aim of this data set is to determine the type of Eryhemato-

Squamous Disease. It contains 366 records consisting of 34 numerical attributes.

In this thesis, we have only used 16 attributes. Attribute selection was done on the

basis of the correlation coefficients. In particular, attributes with a low correlation
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coefficient (less than 0.7) with all the other attributes were discarded. In Table 2.8 we

present the description of the Dermatology attributes.

id Name Description
a1 POLPAP Polygonal papules
a2 FOLPAP Follicular papules
a3 ORAL Oral mucosal involvement
a4 KNEEINVOL Knee and elbow involvement
a5 SCALP Scalp involvement
a6 MELANIN Melanin incontinence
a7 EXO Exocytosis
a8 FOCAL Focal hypergranulosis
a9 FOLHORN Follicular horn plug
a10 CLUBBING Clubbing of the rete ridges
a11 ELONGATION Elongation of the rete ridges
a12 THIN Thinning of the suprapapillary epidermis
a13 VACUOL Vacuolisation and damage of basal layer
a14 TOOTH Saw-tooth appearance of retes
a15 PERI Perifollicular parakeratosis
a16 INFILTRAT Band-like infiltrat

Table 2.8: Attributes of the Dermatology data set. In the first column, id stands for
the attribute identifier used in this thesis, in the second column, Name stands for the
identifier used in the source of the data set and in the third column a brief description
of the attribute is given.

The Housing Data Set

The Housing data set was taken from the StatLib library which is maintained at

Carnegie Mellon University. This data set concerns about housing values in sub-

urbs of Boston. It contains 506 records consisting of 7 numerical attributes. In this

thesis, we have only used 16 attributes. Attribute selection was done using the same

criteria than in the Dermatology data set. In Table 2.9 we present the description of

the Housing attributes.

The Ionosphere Data Set

The Ionosphere data set was taken from Johns Hopkins University. This data set was

used to obtain a classification of radar returns from the ionosphere using neural net-
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id Name Description
a1 INDUS Proportion of non-retail business acres per town
a2 RM Average number of rooms per dwelling
a3 AGE Proportion of owner-occupied units built prior to 1940
a4 RAD Index of accessibility to radial highways
a5 NOX Nitric oxides concentration (parts per 10 million)
a6 TAX Full-value property-tax rate per $10,000
a7 MEDV Median value of owner-occupied homes in $1000’s

Table 2.9: Attributes of the Housing data set. In the first column, id stands for the
attribute identifier used in this thesis, in the second column, Name stands for the
identifier used in the source of the data set and in the third column a brief description
of the attribute is given.

works. It contains 351 records consisting of 35 numerical attributes. In this thesis, we

have only used 12 attributes. In Table 2.10 we present the identifier of the Ionosphere

attributes, no description about the attributes was given in the UCI database.

id
a1, a2, a3, a4, a5, a6

a7, a8, a9, a10, a11, a12

name
V5, V7, V9, V11, V13, V20

V15, V17, V19, V21, V23, V30

Table 2.10: Attributes of the Ionosphere data set.

The Iris Data Set

The Iris plant data set was collected in 1935 by E. Anderson in [4]. This is perhaps

one of the best known data set to be found in the pattern recognition literature, it

has been used in more than 100 articles, it was first time used in [32]. It contains 150

records consisting of 4 numerical attributes. In Table 2.11 we present the description

of the Iris attributes.

The Water Treatment Data Set

The Water Treatment data set was extracted from the Unitat d’Enginyeria Química of

the Universitat Autònoma de Barcelona. This data set concerns about faults in a ur-

ban waste water treatment plant. It contains 527 records consisting of 38 numerical
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id Name Description
a1 SEPLEN Sepal length in cm
a2 PETLEN Petal length in cm
a3 SEPWID Sepal width in cm
a4 PETWID Petal width in cm

Table 2.11: Attributes of the Iris data set. In the first column, id stands for the at-
tribute identifier used in this thesis, in the second column, Name stands for the iden-
tifier used in the source of the data set and in the third column a brief description of
the attribute is given.

attributes. In this thesis, we have only used 12 attributes. In Table 2.12 we present

the description of the Water Treatment attributes.

id Name Description
a1 PH-E Input pH to plant
a2 DBO-E Input biological demand of oxygen to plant
a3 SS-E Input suspended solids to plant
a4 SSV-E Input volatile supended solids to plant
a5 SED-E Input sediments to plant
a6 COND-E Input conductivity to plant
a7 DBO-D Input biological demand of oxygen to secondary settler
a8 SSV-D Input volatile supended solids to secondary settler
a19 DBO-S Output biological demand of oxygen
a10 RD-DBO-S Performance input biological demand of oxygen to sec. settler
a11 RD-DQO-S Performance input chemical demand of oxygen to sec. settler
a12 PH-P Input pH to primary settler
a13 DBO-P Input biological demand of oxygen to primary settler
a14 SS-P Input suspended solids to primary settler
a15 SSV-P Input volatile supended solids to primary settler
a16 SED-P Input sediments to primary settler
a17 COND-P Input conductivity to primary settler
a18 PH-D Input pH to secondary settler
a19 DQO-D Input chemical demand of oxygen to secondary settler
a20 COND-D Input conductivity to secondary settler
a21 SS-S Output suspended solids
a22 SED-S Output sediments
a23 COND-S Input conductivity to secondary settler
a24 RD-DBO-G Global performance input biological demand of oxygen
a25 RD-DQO-G Global performance input chemical demand of oxygen

Table 2.12: Attributes of the Water Treatment data set.
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The WDBC Data Set

The WDBC (Wisconsin Diagnostic Breast Cancer) data set was extracted from the

General Surgery Department of the University of Wisconsin. This data set describes

a digitized image of a fine needle aspirate (FNA) of a breast mass. Data describes

characteristics of the cell nuclei present in the image. It contains 569 records con-

sisting of 32 numerical attributes. In this thesis, we have only used 22 attributes. In

Table 2.13 we present the identifier of the WDBC attributes, no description about the

attributes was given in the UCI database.

id
a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12

a13, a14, a15, a16, a17, a18, a19, a20, a21, a22

name
V2, V4, V6, V8, V10, V12, V13, V18, V20, V26, V29, V32

V5, V9, V15, V16, V19, V22, V25, V27, V28, V30

Table 2.13: Attributes of the WDBC data set.
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Microaggregation Analysis

This chapter is divided into three different parts. Firstly, we present some results

about attribute selection in multivariate microaggregation. Secondly, we describe

the application of aggregation functions to projected microaggregation. We show

that our new microaggregation technique achieves a lower disclosure risk than

classical projected microaggregation. Finally, we present a new microaggregation

method to reduce the disclosure risk of multivariate microaggregation.

3.1 Attribute Selection in Multivariate Microaggrega-

tion

As we have said in the preliminaries, microaggregation is one of the most popular

studied and used microdata protection methods. There are many factors studied

in detail which influence the final result of applying microaggregation to a data set:

the value of the parameter k, the specific microaggregation method, the number of

blocks into which the data set is split (and the number of attributes in each block).

In addition to these ones, there is another factor which should be considered and

that, up to our knowledge, has not been carefully studied before: how to select which

attributes will form each block.

In this section we study this issue in detail and show that the result (statistical utility

45
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and privacy/anonymity levels) of applying microaggregation to a data set can sig-

nificantly vary according to the grouping strategy. We concentrate on two group-

ing strategies. The first one, widely accepted by statistical agencies, is focused on

the maximization of the statistical utility. That is, (highly) correlated attributes are

grouped in the same block(s) so that the distance between the original elements and

the protected ones is small. The second strategy, which we propose here for the first

time, consists of scattering the groups of correlated attributes into different blocks.

This strategy is defined with the goal of obtaining correlated blocks so that a higher

level of anonymity can be maintained. For example, when two records are in the

same cluster for one block, and the blocks of attributes (as a whole) are correlated to

each other, then these two records are likely to fall in the same cluster for all the other

blocks. This would lead to two identical protected records. In other words, the idea

of this new strategy is to enjoy some anonymity (higher privacy) even in the case in

which attributes are microaggregated by blocks (higher data utility).

We have tested these two strategies with real data sets. In order to see the differences

between the two strategies more clearly, we have chosen data sets with strong corre-

lations between some of the attributes. The results of the experiments support our

intuitions: the first strategy leads to a lower information loss, but it is more vulner-

able to privacy attacks; the second strategy suffers from a higher information loss,

but it maintains a higher level of anonymity, and so the disclosure risk is lower. The

consequence is that one strategy or the other can be followed, depending on the sce-

nario and on the importance given to data utility and privacy.

3.1.1 Specific Measures for Microaggregation

Some microdata protection methods admit specific measures to evaluate their qual-

ity. This is the case of microaggregation, whose goal is to minimize the total Sum of

Square Error SSE (defined in Equation 2.1 in Section 2.4.2). Since there are no opti-

mal solutions in polynomial time to multivariate microaggregation and the methods

used are heuristic, the actual value of SSE for a given method is a measure of its

quality.

Regarding privacy, microaggregation provides, by definition, some level of

anonymity. If the method is applied to all the attributes (a single block), then the ini-
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tial parameter k indicates the achieved anonymity: for each protected record, there

are at least k possible original records which can correspond to it. However, if the

original data set is split into r blocks and the microaggregation method is applied

to each block separately, then the final level of anonymity obviously decreases: two

records which are in the same cluster for one block of attributes may be in different

clusters for other blocks, which results in two different protected records.

A possible way of computing the real level of anonymity achieved by a microaggre-

gation method is to consider the ratio between the total number n of records and

the number of protected records which are different. This gives the average size of

each ’global cluster’ in the protected data set. We denote as k ′ this real anonymity

measure

k ′
=

n

|{x′|x′ ∈ X ′}|

In the (unrealistic) case where all the entries of the data set X are random and inde-

pendent, counting the expected number of different protected records is equivalent

to counting the expected number s(m,n) of distinct elements in a sample of n ele-

ments extracted, with replacement, from a universe of m elements. In our case, the

universe of m elements contains the m =
⌈

n
k

⌉r different possible configurations for

a protected record, where k is the initial anonymity parameter, and r is the number

of blocks. The exact value of s(m,n) is

s(m,n) =
1

mn

n∑

ℓ=1

(
m

ℓ

)

ℓ! ℓ
∑

i1 + . . .+ iℓ = n−ℓ

i j ≥ 0

ℓ∏

j=1
j i j

This value is quite hard to compute when m and n are large. Anyway, there are some

tight bounds for s(m,n) (see page 10 of [55], for example):

m(1−e−m/n)+0.1839 ≤ s(m,n) ≤ m(1−e−m/n)+0.3678. (3.1)

The final value of k ′, in this unrealistic case of totally random entries, would be com-

puted as k ′ = n/s(m,n), taking m =
⌈

n
k

⌉r .
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3.1.2 Strategies to Group Attributes in Microaggregation

To apply microaggregation to a data set X , we need to settle the method itself (i.e.,

which variation we will apply), the parameter k, and the number of blocks the data

set X is split into. However, these are not the only parameters to be considered when

the number r of blocks is larger than 1. In this case, the way in which the attributes

are grouped into blocks affects in an important way the results and the quality of the

microaggregation.

It is standard practice to select the attributes on the basis of statistical utility. It is

clear that if highly correlated attributes are considered, records similar with respect

to one attribute will be similar with respect to another one. Due to this, if microag-

gregation is applied to correlated attributes, clusters will contain records that are

similar with respect to all the attributes included in the cluster. Therefore, this ap-

proach results in microaggregation with low information loss.

Nevertheless, as usual, statistical utility and privacy are inversely related terms. Ex-

periments in Section 3.1.4 show that, as expected, the disclosure risk of microaggre-

gation in this case is higher than when correlated attributes are put into different

blocks.

More specifically, we also study in Section 3.1.4 a different approach. Blocks are

formed in such a way that the first attributes of all blocks are (highly) correlated,

the second attributes of all blocks are (highly) correlated, and so on. In some way,

we construct ’correlated blocks’, instead of constructing blocks with correlated at-

tributes. The goal of this new approach is to try to increase the resulting real

anonymity k ′. If two records A and B are in the same cluster for some blocks, this

means that the first attribute values of these records are more or less close to each

other, and the same for the second attribute of the block, etc. Then, when we con-

sider another block, if the j -th attribute of this new block is (highly) correlated with

the j -th attribute of the firstly considered block, records A and B will likely be close

to each other as well, with respect to the attributes in the second block. Therefore,

with some non-negligible probability, A and B will fall in the same cluster, again.

Ideally, some records will fall inside the same clusters, for each block of attributes,

and so the number of protected records which will be exactly equal will be higher,

increasing in this way the real anonymity and the privacy level of the released data
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set. Of course, the probability of maintaining a good level of anonymity decreases

very quickly when the number r of blocks is high (remember the unrealistic but ori-

entating formula for the expected size of the global clusters, stated in the example

at the end of previous Section 3.1.1). But for small values of r , say r = 2,3, the dif-

ference between the two types of grouping strategies, in terms of the achieved real

anonymity k ′, is appreciable, as we will see in our experiments in Section 3.1.4.

Before moving to these experiments involving real data sets, we want to illustrate

the arguments explained above with two simple examples, where the two grouping

strategies are easy to distinguish and lead to different results. In general, this will not

be the case with real data sets, where it is not always easy to find enough (high) cor-

relations between attributes, and so the differences between applying one grouping

strategy or another may be slight.

3.1.3 Motivating Examples

We explain two unrealistic but illustrative ways to find examples of data sets for

which the two grouping strategies are very different. In particular, the most popular

strategy (first one) of grouping correlated attributes behaves worse than the second

strategy (correlated blocks).

In the first example, the data set contains two different attributes, which are repeated

(i.e., we have four attributes in total), and so that the correlation between the two

original attributes is zero. A simple way to artificially generate two completely un-

correlated attributes is to generate a random point (x, y) with two attributes, and

then to include the four points (x, y), (x,−y), (−x, y), (−x,−y) to the data set. There-

fore, the total number of points will be a multiple of four. In our example, we have

taken points (x, y) which are in the same circumference of radius 1; specifically, we

have taken (x, y) = (cosθ,sinθ), for θ = π/20,3π/20,5π/20,7π/20, 9π/20. The result-

ing 20 points, which are represented in Figure 3.1(a), form the two first attributes

of the data set, which are then repeated to have four attributes a1, a2, a3, a4, such

that a1 = a3, a2 = a4 and the correlation between a1 and a2 is zero. In this case, if

we want to independently microaggregate two blocks of two attributes each, the two

grouping strategies are clearly distinguishable.

In the first one (correlated attributes), we group a1, a3 on the one hand, and a2, a4
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Figure 3.1: Points which have been artificially generated to obtain databases with
non-correlated attributes, in 2 dimensions (a), and 3 dimensions (b).

on the other hand. We have applied the MDAV algorithm with k = 2. In this case,

we have obtained no information loss, i.e. IL=0. However, the protected data set

has real anonymity k ′ equal to 1. For this reason, the protected data set obtained

using this attribute selection has a very high disclosure risk; for example the interval

disclosure risk is maximum, ID=100, and the distance based linkage disclosure risk

is DLD=75.00. If we compute the score, the measure explained in Section 2.5, we

obtain Score=43.75.

Following the second strategy (correlated blocks), we group a1, a2 on the one hand,

and a3, a4 on the other hand. We have applied the same microaggregation algo-

rithm with the same parameterization than in the former case (MDAV with k = 2).

Now, the information loss is equal to 26.38, quite higher than in the previous case.

However, the disclosure risk is lower than in the case of correlated selection; for ex-

ample, DLD=35.00 and ID=39.23. Summing up, the final score is 32.37, lower than

in the correlated case. In other words, the trade-off between IL and DR is more in

favour of the non-correlated case than of the correlated one.

The second example is in some way a generalization of the first one. Now the data

set will contain three attributes which are repeated twice (nine attributes in total),

such that the correlation between any two of the three initial attributes is zero. The

way to generate three attributes with this property is the same as before: take a ran-

dom point (x, y, z) and add to the data set the eight points (x, y, z), (x, y,−z), (x,−y, z),

(x,−y,−z), (−x, y, z), (−x,−y, z), (−x, y,−z), (−x,−y,−z). Again, we have decided to
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take points which are in the same sphere of radius 1; we have generated them as

(x, y, z) = (cosϕcosθ,cosϕsinθ,sinϕ), for θ,ϕ = π/20,3π/20,5π/20,7π/20, 9π/20.

This gives us 25 initial points (x, y, z) and so 200 = 8·25 points in total, represented

in Figure 3.1(b), which form the three first attributes of the data set. By repeating

twice these three attributes, we obtain a data set with 200 records and nine attributes

a1, . . . , a9 such that a1 = a4 = a7, a2 = a5 = a8, a3 = a6 = a9, and such that the cor-

relations between a1 and a2, between a1 and a3, and between a2 and a3, are zero.

Suppose we want to microaggregate three blocks of three attributes each, with k = 4.

Again, the two strategies lead to different results, which are very similar to the results

obtained in the first example (two dimensions).

With the first strategy (correlated attributes), we group (a1, a4, a7), (a2, a5, a7) and

(a3, a6, a9). After applying the MDAV algorithm with k = 4, we obtain that the in-

formation loss is 0, but the disclosure risk is quite high; for example, the distance

based linkage disclosure risk is DLD=55, and the interval disclosure risk is maximum,

ID=100. The final value of the score in this case is 38.75.

The second strategy (correlated blocks) recommends to group (a1, a2, a3),

(a4, a5, a6) and (a7, a8, a9). We apply the same algorithm (MDAV) with k = 4, and

now we obtain a non-negligible information loss, IL=31.52. However, the disclosure

risk is lower, for example DLD=10 and ID=70.66, and the final score, 35.925, is better

than the one obtained with the first strategy.

3.1.4 Experiments with Real Data Sets

id Name Description
a1 PH-E Input pH to plant
a2 PH-P Input pH to primary settler
a3 PH-D Input pH to secondary settler
a4 DQO-E Input chemical demand of oxygen to plant
a5 COND-P Input conductivity to primary settler
a6 COND-D Input conductivity to secondary settler
a7 DBO-S Output biological demand of oxygen
a8 SS-S Output suspended solids
a9 SED-S Output sediments

Table 3.1: Attribute selection of the Water Treatment data set.
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id Name Description
a1 UTILITYID Unique utility identification number
a2 UTILNAME Utility name
a3 YEAR Reporting year for the data
a4 RESSALES Sales to residential consumers
a5 COMREVENUE Revenue from sales to commercial consumers
a6 COMSALES Sales to commercial consumers
a7 MONTH Reporting month for the data
a8 RESREVENUE Revenue from sales to residential consumers
a9 INDREVENUE Revenue from sales to industrial consumers

Table 3.2: Attribute selection of the EIA data set.

We have tested the two different strategies for attribute grouping with two real data

set. The first one, denoted as Water Treatment data set, was extracted from the UCI

repository [46], the second data set, called EIA, from the U.S. Energy Information

Authority [72]. Both data sets are described in Section 2.6.

We have reduced both data sets to have only 9 attributes in order to form 3 blocks of

3 attributes each. In this scenario, it is easier to apply and compare the two attribute

grouping strategies. Namely, if attributes a1, a2, a3 are highly correlated with each

other, and the same happens for a4, a5, a6 on the one hand, and a7, a8, a9 on the

other hand, the first strategy (correlated attributes) will lead to blocks (a1, a2, a3),

(a4, a5, a6) and (a7, a8, a9), whereas the second strategy (correlated blocks) will lead

to blocks (a1, a4, a7), (a2, a5, a8) and (a3, a6, a9).

In the case of the Water Treatment data set, there are many attributes (and possible

groups) of highly correlated attributes. We have chosen the attributes presented in

Table 3.1. In the case of the EIA data set we have chosen the attributes presented in

Table 3.2

Tables 3.3 to 3.6 summarize the results of the experiments. We have applied to each

data set the three microaggregation methods described in Section 2.4.2: MDAV, PCP

and Zscores microaggregation. For each data set and method, we have tested five

different parameterizations according to the initial value of k (k = 5,10,15,20,25 for

the Water Treatment data set, and k = 5,25,50,75,100 for the EIA data set). Finally, we

have run all these experiments for the two considered attribute grouping strategies:

correlated attributes, where blocks are (a1, a2, a3), (a4, a5, a6) and (a7, a8, a9), and

non-correlated attributes (which corresponds to ’correlated blocks’), where blocks
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k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 14.14 73.03 67.24 72.73 42.79
10 18.78 61.97 55.66 63.56 39.98
15 17.34 49.74 43.95 56.99 34.63
20 18.28 39.34 35.53 51.18 31.29
25 21.68 32.37 29.08 48.59 30.67

M
ic

.P
C

P-
k

0 18.36 40.39 30.39 60.82 33.23
10 18.11 30.00 21.58 53.66 28.92
15 21.67 23.82 20.39 50.54 29.00
20 25.17 21.45 16.05 47.21 29.08
25 23.25 19.08 13.68 49.34 28.05

M
ic

.Z
sc

o
re

s-
k 5 17.62 76.05 62.50 68.65 43.29

10 20.62 63.82 54.87 61.53 40.53
15 20.99 54.08 47.76 56.42 37.33
20 20.74 47.76 40.79 53.48 34.81
25 24.30 43.95 34.47 54.04 35.46

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 31.75 8.16 39.87 45.79 33.32
10 28.28 5.26 28.95 43.00 29.16
15 35.60 2.50 18.82 41.89 30.94
20 32.44 2.63 14.21 39.34 28.16
25 36.74 1.71 12.89 30.85 27.91

M
ic

.P
C

P-
k

5 50.41 8.95 2.11 36.63 35.74
10 53.51 5.00 0.79 30.96 35.22
15 56.28 4.21 1.32 30.37 36.42
20 61.02 4.74 1.05 26.30 37.81
25 62.48 3.82 0.26 25.61 38.15

M
ic

.Z
sc

o
re

s-
k 5 98.33 10.13 3.16 42.96 61.57

10 108.75 6.05 2.24 40.61 65.57
15 113.74 5.39 1.71 40.18 67.80
20 114.78 3.03 1.45 39.98 67.94
25 113.71 3.29 1.05 37.60 66.80

Non-correlated attributes

Table 3.3: Scores of different microaggregation methods and parameterizations us-
ing the Water Treatment data set. Mic.Method-k corresponds to microaggregation
using method Method (MDAV, PCP or Zscore) with initial anonymity value k.

are (a1, a4, a7), (a2, a5, a8) and (a3, a6, a9).

Firstly, we concentrate on the generic measures for the information loss and the dis-

closure risk (and so, the score). Table 3.3 shows the results obtained in the case

of the Water Treatment data set. The differences between the two strategies are

very evident, since the first one leads to much lower values of the information loss,

whereas the second one leads to much lower values of the disclosure risk. For in-

stance, by comparing the information loss of the Zscores microaggregation, corre-

lated attributes selection obtains IL values between 17.62 and 24.30, whereas the

non-correlated selection obtains values between 98.33 and 113.71. Regarding the

three employed methods, MDAV has the best scores in the non-correlated scenario

(27.91 is the best one, PCP and Zscores microaggregation always obtain scores over

35.00), whereas PCP microaggregation has the best scores in the correlated case

(28.05 is the best one). The behaviour of Zscores microaggregation is quite surpris-

ing: it has quite good scores in the correlated case, but very bad scores (in particular,

very high information loss) in the case of ’correlated blocks’.

Similar results are presented in Table 3.4, where the measures are computed for the
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k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 6.68 1.78 2.87 87.60 25.82
25 11.83 0.78 0.68 79.55 25.99
50 13.23 0.60 0.56 72.37 24.85
75 15.56 0.53 0.55 72.16 25.95

100 17.63 0.39 0.49 67.52 25.81

M
ic

.P
C

P-
k

5 16.61 1.78 2.87 65.29 25.21
25 18.33 0.78 0.68 61.62 24.76
50 19.77 0.60 0.56 59.71 24.96
75 21.16 0.53 0.55 59.67 25.63

100 22.26 0.39 0.49 57.87 25.71

M
ic

.Z
sc

o
re

s-
k 5 12.58 6.17 8.36 75.09 26.88

25 16.04 5.03 5.98 70.88 27.12
50 16.84 4.92 5.60 69.36 27.07
75 18.69 3.91 5.30 69.71 27.92

100 18.86 3.48 4.63 67.78 27.39

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 10.05 1.61 2.43 83.30 26.36
10 16.58 0.81 0.56 72.27 26.53
15 21.86 0.62 0.49 67.16 27.86
20 20.26 0.68 0.60 64.61 26.44
25 25.14 0.60 0.48 61.29 28.02

M
ic

.P
C

P-
k

5 19.37 0.62 0.54 57.35 24.17
10 22.07 0.63 0.48 53.45 24.54
15 22.25 0.64 0.48 52.41 24.37
20 22.70 0.64 0.49 52.11 24.52
25 23.07 0.66 0.50 50.93 24.42

M
ic

.Z
sc

o
re

s-
k 5 16.81 2.58 3.82 75.75 28.14

10 17.06 1.92 2.55 75.21 27.89
15 17.25 1.44 2.22 73.88 27.55
20 17.83 1.25 2.14 73.71 27.77
25 17.80 1.16 1.88 70.95 27.02

Non-correlated attributes

Table 3.4: Scores of different microaggregation methods and parameterizations us-
ing the EIA data set. Mic.Method-k corresponds to microaggregation using method
Method (MDAV, PCP or Zscore) with initial anonymity value k.

EIA data set. Here, the comparison between correlated and non-correlated results is

not as different as in the Water Treatment data set. In our opinion, this is so because

the correlations among attributes are not so high. However, if one observes the in-

formation loss values presented in this table, it is easy to see that IL values are lower

in the correlated case. See, for instance, the IL values in the MDAV microaggregation

for the correlated selection. They are between 6.68 and 17.63. In contrast, for the

non-correlated ones, IL values are between 10.05 and 25.14.

Regarding disclosure risk, we observe that non-correlated selection presents lower

disclosure risk than correlated one. For instance, if one observes the values for the

distance based and probabilistic record linkage (DLD and PLD) and interval disclo-

sure (ID) for the Mic.PCP-5 configuration in the Water Treatment data set, it is clear

that correlated selection has higher disclosure risk than non-correlated selection. In

particular, DLD, PLD and ID values for the correlated case are 40.39, 30.39 and 60.82

respectively, whereas in the non-correlated case DLD, PLD and ID values are 8.95,

2.11 and 36.63.

Now, we consider the performance measures for microaggregation: the values of SSE
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k SSE k ′

r 1G 2G 3G

M
ic

.M
D

A
V-

k 5 28.18 5.28 1.02 1.00
10 46.14 10.00 1.15 1.01
15 72.03 15.20 1.38 1.01
20 94.24 20.00 1.64 1.03
25 114.56 25.33 2.11 1.09

M
ic

.P
C

P-
k

5 28.59 5.35 1.04 1.00
10 49.61 10.00 1.11 1.00
15 71.99 15.20 1.30 1.01
20 91.96 20.00 1.66 1.03
25 110.91 25.33 2.09 1.04

M
ic

.Z
sc

o
re

s-
k 5 23.78 5.43 1.03 1.00

10 49.05 10.00 1.16 1.01
15 72.23 15.20 1.33 1.02
20 93.10 20.00 1.62 1.03
25 111.69 25.33 2.15 1.07

Correlated attributes

k SSE k ′

r 1G 2G 3G

M
ic

.M
D

A
V-

k 5 69.51 5.00 1.16 1.01
10 126.21 10.00 1.84 1.13
15 173.96 15.20 2.66 1.38
20 259.07 20.00 3.76 1.50
25 247.58 25.33 4.87 1.87

M
ic

.P
C

P-
k

5 93.67 5.07 1.04 1.00
10 133.83 10.00 1.18 1.01
15 170.12 15.20 1.41 1.02
20 206.74 20.00 1.78 1.06
25 229.50 25.33 2.16 1.12

M
ic

.Z
sc

o
re

s-
k 5 73.52 5.00 1.06 1.01

10 115.77 10.00 1.35 1.05
15 160.30 15.20 1.84 1.10
20 197.20 20.00 2.59 1.26
25 231.81 25.33 3.62 1.43

Non-correlated attributes

Table 3.5: SSE and real k ′ values of different microaggregation methods and param-
eterizations for different number of groups known by the intruder using the Water-
treatment data set. Mic.Methodk corresponds to microaggregation using method
Method (MDAV, PCP or Zscore) with initial anonymity value k.

and the real anonymity k ′. We consider different situations where an intruder can

have access to one (the first one), two (the first two ones) or the three blocks of pro-

tected data. 3.5 and 3.6 show the results for SSE and real anonymity k ′.

Of course, if the intruder has access only to one block, then the real anonymity k ′

roughly coincides with the initial value of k. In fact, it is larger because for microag-

gregation with initial parameter k the number of records in a cluster is in the interval

[k,2k). In the general case, the tables show that k ′ decreases rapidly with regards

to the number of blocks considered. Also, as expected, k ′ is always larger when we

consider correlated blocks. Note that the differences between the k ′ values of the

two strategies are noticeable, specially, when only two blocks of attributes are con-

sidered, and when the initial anonymity value k is quite large. Furthermore, both

strategies lead to higher values of k ′ than those which would be obtained in the

’unrealistic’ totally random case introduced in the example in Section 3.1.3, as one

should expect. For example, if we consider the Water Treatment data set (see Table

3.5) with two (r = 2) groups of attributes and k = 25, then the unrealistic case would
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k SSE k ′

r 1G 2G 3G

M
ic

.M
D

A
V-

k 5 28.74 5.12 1.10 1.03
25 145.36 25.42 1.83 1.26
50 219.45 50.52 3.20 1.57
75 313.31 75.78 4.95 1.92

100 397.48 102.30 7.54 2.57

M
ic

.P
C

P-
k

5 141.29 5.27 1.02 1.00
25 203.81 25.42 1.27 1.04
50 330.19 50.52 1.91 1.15
75 469.74 75.78 2.87 1.30

200 649.49 102.30 4.28 1.53

M
ic

.Z
sc

o
re

s-
k 5 50.65 5.18 1.02 1.01

25 140.70 25.26 1.44 1.06
50 184.19 50.52 2.59 1.28
75 287.95 75.78 4.45 1.58

100 378.51 102.30 6.90 2.02

Correlated attributes

k SSE k ′

r 1G 2G 3G

M
ic

.M
D

A
V-

k 5 45.18 5.01 1.15 1.06
25 212.44 25.10 2.06 1.28
50 361.38 50.52 4.43 1.81
75 468.30 75.78 7.08 2.30

100 569.66 102.30 10.94 3.17

M
ic

.P
C

P-
k

5 124.83 5.14 1.02 1.01
25 251.99 25.10 1.33 1.06
50 369.73 50.52 2.16 1.20
75 482.05 75.78 3.39 1.40

100 608.82 102.30 5.00 1.73

M
ic

.Z
sc

o
re

s-
k 5 111.97 5.08 1.03 1.01

25 212.47 25.10 1.65 1.12
50 336.68 50.52 3.45 1.52
75 439.99 75.78 6.13 2.18

100 553.89 102.30 9.79 3.16

Non-correlated attributes

Table 3.6: SSE and real k ′ values of different microaggregation methods and param-
eterizations for different number of groups known by the intruder using the EIA data
set. Mic.Methodk corresponds to microaggregation using method Method (MDAV,
PCP or Zscore) with initial anonymity value k.

lead to a real anonymity k ′ between 1.915 and 1.918 (using the bounds for s(m,n)

given in Equation (3.1)), but the two realistic strategies lead to values around k ′ = 2.1

(for the first strategy) and values between 2.16 and 4.87 (for the second strategy).

SSE behaves more or less as the information loss: it is lower when the initial value of

k is small, and it is lower in the correlated case than in the non-correlated case. The

three microaggregation methods obtain very similar results for the SSE in both the

correlated and non-correlated scenarios, so we cannot deduce from this experiment

that any of them provides a better solution to the original microaggregation problem.

3.1.5 Attribute Selection Consequences

From the results obtained in the experiments, we can extract some consequences

which are valid either for the microaggregation technique in general or for the spe-

cific strategies to group attributes in blocks.
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The first of them is that the real anonymity that microaggregation provides, when the

data set is split into blocks of attributes, decreases very quickly when the number of

blocks increases, independently of the strategies for grouping attributes. For exam-

ple, for standard values of the initial parameter k, less than 25, we observe that real

anonymity is almost non-existent if the number of blocks is r = 3 (or more). There-

fore, if k ′-anonymity was the main motivation to choose microaggregation as a data

protection method, one should either start with a large value for the initial k, or split

the data set into only one or two blocks of attributes.

With respect to this, note, however, that microaggregation ranks among the best

methods for data protection in [21] with respect to the trade-off between privacy and

data utility. This is so, because even in the case that k-anonymity is not achieved, the

perturbation added to the data might make re-identification difficult.

If we focus on the overall evaluation of the method taking into account all measures

for information loss, disclosure risk, SSE and real anonymity, obtained by the two

strategies, it is very difficult to conclude that one of them is better than the other. As

expected, when blocks are formed by correlated attributes, we obtain better results

in terms of the information loss and SSE. On the contrary, for ’correlated blocks’, we

obtain better results in real anonymity, and also in the disclosure risk. These aspects

are more or less compensated when computing the final score for each case: the

scores obtained by the two strategies are very similar.

The clear consequence of this analysis is that the strategy for grouping attributes

is another degree of freedom for microaggregation that has to be considered with

care. As shown in the simple (unrealistic) examples of Section 3.1.3, it might be even

possible to have much better results if we use blocks with uncorrelated attributes.

Then, with real data, when choosing the value for k, one can take a small k if data

utility is the main goal (at the cost of a lower level of privacy), and a larger k if privacy

is the main concern. Analogously, one can microaggregate the whole data set as a

single block, if privacy is considered to be more important than data utility; or one

can form a higher number of blocks, if data utility is the most desired property of

the protection. In the case of the grouping strategy selection, giving priority to data

utility corresponds to choosing the first strategy, correlated attributes in the same

block(s). This can be the case if the protected data is going to be released to a more

or less reliable (or restricted) network. However, if the protected data is going to be
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widely released, for example in the Internet, then maybe privacy is considered to

be the main concern; in this case, the second strategy, ’correlated blocks’, should be

chosen, because it enjoys a higher anonymity level and a lower disclosure risk.

3.2 Modeling Projections in Microaggregation

As we have explained in the preliminaries, the main problem for extending optimal

univariate microaggregation to the multivariate case is the sorting of multivariate

data. One approach is to reduce the dimensionality of the problem. That is, to move

from the case of several attributes into one attribute.

Projected microaggregation simplifies the multivariate microaggregation problem

translating it into the univariate case. To do this, A attributes are summa-

rized/represented into a single value in a projected axis. Normally, this summariza-

tion is done using the Principal Component Analysis or the sum of Zscores (both

methods are described in the preliminaries). The aim of both methods is to establish

an order among records to apply an optimal univariate microaggregation algorithm.

In order to summarize several attributes into a single value, aggregation functions

can be used. In this section, we propose replacing the use of projection methods in

microaggregation by the use of methods based on aggregation functions. We show

that the trade-off between privacy and statistical utility achieved by microaggrega-

tion using the Sugeno integral (defined in Section 2.1) to summarize the attributes is

equal, better in many cases, than the traditional projected microaggregation meth-

ods.

3.2.1 Algorithm Description

As we have explained before, projected microaggregation defines a sorting criterion

over the multivariate data. Traditional projected microaggregation methods build

a projected axis to establish an order among records. Here, we propose to do that

using aggregation functions instead of building a projected axis. We propose to use

aggregation functions over the records to be protected in order to compute a repre-

sentative summarized value, and then, using such value, to sort the records in the
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data set. Naturally, at that time, optimal univariate microaggregation methods can

be applied. That is, we propose to use aggregation functions over the records to be

protected in order to compute a representative summarized value and then using

such value, to sort the records in the data set. Obviously, at that time, optimal uni-

variate microaggregation methods can be applied.

This new approach has several advantages with regards to the traditional projected

approach. We underline the following ones.

• In projected methods, we need to compute some parameters. For instance, the

sum of Zscores calculates the average and the variance of all the attributes, PCP

needs to solve an optimization problem. This is unnecessary using aggregation

functions. Therefore, our new approach save execution time.

• Projected methods are not configurable. By using aggregation functions, one

can define how data is sorted and, in some sense, protected.

• It is often the case that the projected values returned by a projection method

are difficult to understand. Using aggregation functions one is able to under-

stand the final summarized value for a concrete record.

Formally, the projected microaggregation is defined in Algorithm 4. Depending on

the aggregation function used in this algorithm, we obtain different methods of mod-

eling projection microaggregation. In this thesis, we use the Sugeno microaggrega-

tion. Such microaggregation uses the Sugeno integral with regards to the measure

µ(A) =Q(|A|/N ) for A ⊆ X where Q(x)= x. A graphic representation of this measure

is presented in Figure 3.2.

3.2.2 Experiments

We have protected two different data sets (Census and EIA data sets) with different

instances of PCP, Zscores and Sugeno microaggregation methods. These data sets

were proposed in the CASC project [10] as the reference data sets for comparing pro-

tection methods. Both data sets are described in Section 2.6.

Each of the three microaggregation methods has been applied with the following

9 parameterizations of the pairs (k,a): k = 5,15,25 for the minimal number of el-
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Algorithm 4: Modeling Projection Microaggregation

Data: X: original data set, k: integer
Result: X’: protected data set
begin1

Split the data set X into r sub-data sets {Xi }1≤i≤r , each one with ai2

attributes of the n records and according to a partition {Ai }i of the
attributes A

foreach sub-data set Xi ∈ X do3

Compute an aggregation function with the attributes Ai in Xi ,4

which results in an univariate summarized vector pi with n

components (one for each record)
Sort the components of pi in increasing order5

Apply to the sorted vector pi the univariate optimal6

microaggregation
For each cluster resulting from the previous step, compute the7

vi -dimensional centroid and replace all the records in the cluster
by the centroid

end8

ements in the resulting clusters, and a = 2,3,4 for the number of attributes con-

tained in each block of attributes to which microaggregation is applied. For example,

Mic2.Zscores.15 refers to the Zscores microaggregation method applied to blocks

of a = 2 attributes, with the constraint that resulting clusters must contain at least

k = 15 records. When the total number of attributes is not a multiple of a (for exam-

ple, this always happens with Census data set, since 13 is prime), the last non used

attributes are non microaggregated and removed from the beginning.

For DLD, PLD and ID computation we have considered different cases, according to
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0.2 0,2 0,91

0.3 0,3 0,86

0.4 0,4 0,65

0.5 0,5 0,5

0.6 0,6 0,3

0.7 0,7 0,25

0.8 0,8 0,2

0.9 0,9 0,12

1 1 0,05

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

1 2 3 4 5 6 7 8 9 10 

Q(|A|/N) a 

Figure 3.2: Quantifier Q(A) = Q(|A|/N ) where Q(x) = x and a represents the values
of one record of the data set.
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a k IL DLD PLD ID Score

M
ic

.a
.P

C
P-

k

2 5 13.90 2.94 6.91 70.04 25.69
2 15 17.24 1.72 2.37 67.67 26.05
2 25 19.98 1.42 1.58 67.21 27.17
3 5 16.08 2.47 2.69 62.79 24.38
3 15 17.76 1.49 1.21 59.41 24.07
3 25 18.49 1.31 0.90 58.49 24.14
4 5 18.25 4.23 4.81 73.22 28.56
4 15 16.39 1.96 2.13 70.48 26.33
4 25 17.27 1.93 1.91 69.66 26.53

M
ic

.a
.Z

sc
o

re
s-

k

2 5 4.27 25.36 36.08 89.26 32.13
2 15 5.08 21.92 34.37 87.85 31.54
2 25 5.52 21.05 35.06 87.33 31.61
3 5 13.24 6.40 9.26 72.31 26.66
3 15 15.30 3.79 5.50 69.35 26.15
3 25 15.73 3.21 5.02 68.65 26.06
4 5 13.91 5.21 8.50 78.73 28.35
4 15 21.79 2.71 4.40 77.41 31.14
4 25 21.66 2.35 3.89 76.76 30.80

M
ic

.a
.S

u
ge

n
o

-k

2 5 5.25 17.79 23.90 86.65 29.50
2 15 6.24 14.14 19.11 85.08 28.55
2 25 6.49 12.81 18.29 84.51 28.26
3 5 17.22 3.78 6.89 65.52 26.32
3 15 21.31 1.74 3.21 61.22 26.58
3 25 20.08 1.47 2.65 60.83 25.76
4 5 28.78 2.20 3.30 73.48 33.45
4 15 35.97 0.71 1.03 70.86 35.92
4 25 45.27 0.42 0.71 70.31 40.35

EIA data set

a k IL DLD PLD ID Score

M
ic

.a
.P

C
P-

k

2 5 80.96 12.93 5.70 42.60 53.46
2 15 92.94 8.46 2.94 35.64 56.81
2 25 84.77 6.61 1.94 32.93 51.69
3 5 57.72 10.15 5.71 43.48 41.71
3 15 71.28 4.35 3.49 37.36 45.96
3 25 72.49 4.07 2.65 35.51 45.96
4 5 72.23 6.48 3.06 45.12 48.59
4 15 91.74 3.43 2.04 40.73 56.74
4 25 92.17 2.92 1.71 39.72 56.59

M
ic

.a
.Z

sc
o

re
s-

k

2 5 81.57 16.78 7.85 48.27 55.93
2 15 98.05 12.96 6.19 44.33 62.50
2 25 100.92 12.85 4.83 42.90 63.40
3 5 60.98 14.44 13.67 50.63 46.66
3 15 75.21 9.38 10.46 45.71 51.51
3 25 79.38 7.47 9.04 44.20 52.80
4 5 62.04 11.71 7.04 40.50 43.49
4 15 86.47 5.60 4.21 43.77 55.40
4 25 89.20 4.40 3.38 42.86 56.29

M
ic

.a
.S

u
ge

n
o

-k

2 5 73.44 9.63 6.00 40.75 48.86
2 15 79.39 4.85 4.63 34.02 49.39
2 25 73.43 3.72 4.76 32.96 46.02
3 5 83.93 7.47 7.25 44.50 54.93
3 15 122.52 3.55 5.52 39.47 72.26
3 25 129.37 3.30 4.57 39.08 75.44
4 5 82.43 3.15 0.51 36.51 50.80
4 15 86.64 0.83 0.28 32.19 51.51
4 25 83.08 0.60 0.37 30.90 49.39

Census data set

Table 3.7: Score of different microaggregation methods and parameterizations.
Mic.i .var. j corresponds to microaggregation using variation var (either PCP, Zscores
or Sugeno) with a = i and k = j .

the number of groups of attributes of the original record(s) to be linked, that the in-

truder knows. This number varies from 2 to the total number of attributes of each

data set. The values in the table are the average of the obtained correct links for

all these cases, for each parameterization of each microaggregation method. Fig-

ure 3.3.(a) and 3.3.(b) present in a graphical way disclosure risk (DR) and score for

the microaggregation of the Census data set with a = 4 (the most protected configu-

ration). We can observe that the Sugeno microaggregation algorithm obtains always

the lowest DR and the best scores for k = 15,25.
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Figure 3.3: Graphical representation of the DR (a) and Score (b) of (PCP, Zscores and
Sugeno) microaggregation using a = 4 and k = 5,15,25.

In Table 3.7 we present the scores as well as the unaggregated components. It can be

seen that for some cases, Sugeno microaggregation leads to the lowest score (and the

same for its components). For example, the score obtained by Sugeno microaggre-

gation method is 49.39 in the Census data set with a = 4 and k = 25, while using PCP

and Zscores microaggregation, the values are around 56. It is similar for the IL and

DR components (IL, DLD, PLD and ID values). The values for Sugeno microaggre-

gation are 83.08, 0.60, 0.37 and 30.90, respectively better than for PCP and Zscores

microaggregation (89.02, 4.40, 3.38 and 42.86 for Zscores microaggregation; 92.17,

2.92, 1.71, 39.72 and 39.72 for PCP microaggregation).

Another interesting result can be observed analyzing Table 3.7: our approach never

obtains the worst results (neither score values nor its components) in any case. This

fact indicates that the results of our new approach are more independent of the data

set than projected microaggregation methods.

3.3 Improving Microaggregation for Complex Record

Anonymization

As we have explained before, when records are complex, i.e., the number of attributes

of the data set is large, data sets are usually split into smaller blocks of attributes

and microaggregation is applied to each block, successively and separately. In this

way, information loss when collapsing several values to the centroid of their group is

reduced, at the cost of losing the k-anonymity property when at least two attributes
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of different blocks are known by the intruder.

In this section, we present a new microaggregation method called one dimension

microaggregation (Mic1D-κ, for short). This method gathers all the values of the data

set into a single sorted vector, independently of the attribute they belong to. Then,

it microaggregates all the mixed values together. The experiments presented here

show that, by using real data sets, our proposal obtains lower disclosure risk than

previous approaches whereas the information loss is preserved.

3.3.1 One Dimension Microaggregation

As shown in Figure 3.4, the pre-processing data block of Mic1D-κ can be decom-

posed in several steps. Namely, vectorization, sorting, partitioning and normaliza-

tion. Sorting, partitioning and normalization steps are repeated once. Then, we go

into further details about these steps. We also illustrate this process by means of an

illustrative example.

Mean value

computation

De-

normalization

{pm,n} {pm,n}
Vectorization Partitioning NormalizationSorting

D

V VS {Pm} {Pm}

Data 

Pre-processing

Data Set 

Protection

N = R · a

R

a

P

k

r

Figure 3.4: Mic1D-κ schema.

Vectorization

The vectorization step gathers all the values from the data set in a single vector, inde-

pendently on the attribute they belong to. Thereby, we ignore the attribute semantics

and therefore the possible correlation between two different attributes in the data

set. In other words, we desemantize the microdata file. This process plays a central

role in later discussion about the results achieved by Mic1D-κ.

Formally speaking, let D be the original data set to be protected. We denote by R the
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number of records in D. Each record consists of a numerical attributes. We assume

that none of the records contains missing values. We denote by N the total number

of values in D. As a consequence, N = R ·a.

Let V be a vector of size N containing all the values in the data set. Mic1D-κ treats

values in the data set as if they were completely independent. In other words, the

concept of record and attribute is ignored and the N values in the data set are placed

in V .

The effect of this step on a certain data set is depicted in the upper half of Figure 3.4.

Original data set D

Age Height (cm) Weight (kg) Income (¤)
23 159 52 12000
23 177 75 7000
55 173 79 50000
80 155 55 5000
30 180 70 30000

Table 3.8: Example of a microdata file used to illustrate the preprocessing block.

Example 3.1 Let us consider the data set D shown in Table 3.8. According to the

notation introduced we have a = 4, R = 5, and N = 20. The result of applying

vectorization would be:

V = [ 23 23 55 80 30 159 177 173 155 180 52 75 79 55 70 12000 7000 50000 5000 30000 ]

Sorting

Since the values in the vectorized data set belong to different source attributes, they

present a pseudo-random aspect and it becomes very difficult to find the optimal

partitions, i.e. partitions with SSE value as low as possible. In order to simplify this

search, the whole vector is sorted. This way, by the result 1 of univariate microaggre-

gation presented in Section 2.4.2, optimal partitions are contiguous and, therefore,

the partitioning process in this new vector can be done easily, as we will see later.

Formally, V is sorted increasingly. Let us call Vs the sorted vector of size N containing
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the sorted data and vi the i th element of Vs , where 0≤ i < N .

Example 3.2 Let us continue the process presented in Example 3.1, where we il-

lustrate the pre-processing block applied to the data set shown in Table 3.8. The

result of the sorting process applied to vector V would be:

Vs = [ 23 23 30 52 55 55 70 75 79 80 155 159 173 177 180 5000 7000 12000 30000 50000 ]
v0 v1 v2 . . . v17 v18 v19

Partitioning

Similarly to general microaggregation, in order to ensure a certain level of privacy

(k-anonymity), Mic1D-κ splits the vectorized data set in several κ-partitions and it

calculates the average value for each partition. By modifying the value of κ, Mic1D-κ

allows us to adjust the trade-off between information loss (SSE) and disclosure risk.

Note that if the vectorized data set was not sorted (previous step), κ would not have

this property.

Formally, Vs is divided into smaller sub-vectors or partitions. We define κ where

1 < κ ≤ N as the number of values per partition. Note that if κ is not a divisor of N ,

the last partition will contain a smaller number of values. Let P be the number of

partitions containing κ values. We call r the number of values in the last partition

where 0 ≤ r < κ. Therefore, N = κP + r . We will suppose that r > 0, so we have P +1

partitions (note that r > 0 if and only if κ does not divide N ). We denote by Pm the

mth partition.

Let vm,n be defined as the nth element of Pm :

{
vm,n := vmκ+n n = 0. . .κ−1 m = 0. . . P −1

vP,n := vPκ+n n = 0. . . r −1

The upper half of Figure 3.4 shows the effect of this step on a certain data set.
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Example 3.3 The result of the partitioning process applied to vector Vs of Exam-

ple 3.2 is presented below. We use κ = 8 (arbitrarily chosen) and thus, according

to the notation introduced, the number of partitions containing 8 values is P = 2.

Since κ= 8 does not divide N = 20, there are r = 4 values in the last partition.

P0 = [ 23 23 30 52 55 55 70 75 ]
v0,0 v0,1 . . . v0,6 v0,7

P1 = [ 79 80 155 159 173 177 180 5000 ]
v1,0 v1,1 . . . v1,6 v1,7

P2 = [ 7000 12000 30000 50000 ]
v2,0 v2,1 v2,2 v2,3

Normalization

Since the range of the values in the different attributes could differ significantly

among them, it is necessary to normalize the data to a certain predefined range of

values (see P1 in Example 3.3).

There are many ways to normalize a data set. A possible solution would be to nor-

malize each attribute independently before the application of the vectorization step.

However, this normalization method could present problems with skewed attributes

and therefore the attributes could not be merged in the sorting step. For this reason,

we propose to normalize the data stored in each partition separately. Thereby, simi-

lar values are assign to the same partition and therefore the chances of avoiding the

effect of skewness in the data are higher.

Formally, we denote the normalized values as v̄m,n and the normalized partitions

as P̄m . Let maxm and minm be the maximum and the minimum values in the mth

partition:

maxm := max
0≤i<k

{vm,i } minm := min
0≤i<k

{vm,i }

The normalized values are then defined as:

{
v̄m,n :=

vm,n−minm

maxm −minm
if maxm 6= minm

v̄m,n := 0.5 if maxm = minm

where 0 ≤ m < P (or 0 ≤ m ≤ P if κ does not divide N ,) and 0 ≤ n < κ. Note that
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maxm = minm means that all the values in the partition are the same. In this case,

the normalized value is centered in the normalization range.

Example 3.4 Below we present the result of normalizing the partitioned data set

of Example 3.3.

P̄0 = [ 0 0 0.13 0.56 0.62 0.62 0.90 1 ]
v̄0,0 v̄0,1 . . . v̄0,6 v̄0,7

P̄1 = [ 0 0.0002 0.015 0.016 0.019 0.020 0.020 1 ]
v̄1,0 v̄1,1 . . . v̄1,6 v̄1,7

P̄2 = [ 0 0.12 0.53 1 ]
v̄2,0 v̄2,1 v̄2,2 v̄2,3

Re-sorting and Re-normalization

One of the goals of the sorting process, apart from reducing the SSE value, is to dese-

mantize the data set, i.e., to merge values from different attributes in order to break

completely the semantic and therefore make the re-identification process more dif-

ficult. If the range of values of a certain attribute differs significantly from the others,

it is likely that it is not merged in previous steps. For instance, in Table 3.8, values

referring to the income are not likely to be merged with other attributes.

In order to illustrate this problem, let us recall the expression of the sorted vector of

data (Vs) of Example 3.2:

Vs = [ 23 23 30 52 55 55 70 75 79 80 155 159 173 177 180 5000 7000 12000 30000 50000 ]
v0 v1 v2 . . . v17 v18 v19

Values referring to the income are underlined, and we can therefore verify that they

are not merged with other attributes.

In order to appropriately mingle all attributes, once data has been sorted and nor-

malized, we repeat these two steps (sorting and normalization). Since the range of

values have been homogenized by normalization, attributes are conveniently mixed

in the second sorting step and thus the data set is correctly preprocessed.
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Mean Value Computation

Once data is preprocessed, for each partition P̄m , the mean value of its components

is computed:

µm =

κ−1∑

n=0

v̄m,n

κ
m = 0. . . P −1 µP =

r−1∑

n=0

v̄P,n

r

where the latter expression is applied to the last partition if r > 0, i.e., if κ does not

divide the total number of values in the data set.

The protected value p̄m,n for v̄m,n is then:

{
p̄m,n = µm n = 0. . . k −1 m = 0. . . P −1

p̄P,n = µP n = 0. . . r −1

Finally, Mic1D-κ denormalizes the data into the original range, according to the nor-

malization and re-normalization steps in the previous block. Then, the protected

values are placed in the protected data set in the same place occupied by the corre-

sponding vm,n in the original data set. In this way, we are undoing the sorting and

vectorization steps.

3.3.2 Experimental Results

We have tested Mic1D-κ and compared our results with those obtained by the pro-

jected microaggregation (PCP, Zscores and Sugeno) and MDAV microaggregation,

using the EIA and Water Treatment data sets (both described in Section 2.6). As

shown in Section 3.1, when protecting a data set using multivariate microaggrega-

tion, the way in which the data is split to form blocks is highly relevant with regard

to the degree of privacy achieved (k ′ value). As in Section 3.1, we have reduced both

data sets to have 9 attributes, which we detail in Tables 3.1 and 3.2.

As before, in both data sets, attributes a1, a2 and a3 are highly correlated as well as

attributes a4, a5 and a6 and attributes a7, a8 and a9. On the contrary, attributes of

different blocks are non-correlated. For our experiments, when protecting data, we

assume attributes to be split into three blocks of three attributes each. Also, we con-

sider two situations when protecting the data sets: blocking correlated attributes and
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C
o

rr
el

at
ed

1G (a1, a2, a3), (a4, a5, a6), (a7, a8, a9)

2G
(a1, a2, a5), (a1, a3, a7), (a2, a3, a6), (a1, a4, a5), (a2, a4, a6)

(a5, a6, a9), (a6, a7, a8), (a1, a8, a9), (a2, a7, a9)

3G
(a1, a4, a7), (a1, a5, a8), (a1, a6, a9), (a2, a4, a7), (a2, a5, a8)

(a2, a6, a9), (a3, a4, a7), (a3, a5, a8), (a3, a6, a9)

N
o

n
-c

o
rr

el
at

ed 1G (a1, a4, a7), (a2, a5, a8), (a3, a6, a9)

2G
(a1, a4, a5), (a1, a3, a7), (a4, a7, a8), (a1, a2, a5), (a2, a4, a8)

(a5, a8, a9), (a3, a6, a8), (a1, a6, a9), (a3, a4, a9)

3G
(a1, a2, a3), (a1, a5, a6), (a1, a8, a9), (a2, a3, a4), (a4, a5, a6)

(a4, a8, a9), (a2, a3, a7), (a5, a6, a7), (a7, a8, a9)

Table 3.9: Different groups of attributes known by the intruder.

thus non-correlated blocks, i.e., (a1, a2, a3), (a4, a5, a6) and (a7, a8, a9); or block-

ing non-correlated attributes but correlated blocks, i.e., (a1, a4, a7), (a2, a5, a8) and

(a3, a6, a9). Testing these two cases we study the impact of the choice of attributes

for the microaggregation groups, based on their correlations, as we have done before

in Section 3.1.

For each data set and attribute selection method, we apply all microaggregation

methods using different configurations (i.e. different values of k). The selection of

these values aims at covering a wide range of SSE values and, thus, studying sce-

narios with different information loss values. Namely, we protect the data sets with

parameter k = 5, 25, 50, 75, 100 for the EIA data set, and k = 5, 10, 15, 20, 25 for the

Water Treatment data set.

For Mic1D-κ, we use κ = 5000, 5500, 6000, 6500, 7000 for the EIA data set and κ

= 300, 500, 800, 850, 900 for the Water Treatment data set. Note that, since Mic1D-κ

desemantizes the data set, there is no point in considering different situations related

to the correlation of the attributes and, therefore, we protect the data set just once

for each parametrization. In order to make a fair comparison, we have chosen the

values of κ in Mic1D-κ to obtain similar SSE values to those obtained by MDAV after

protecting the data sets.

In order to compare the disclosure risk of microaggregation methods, we have per-

formed two different kinds of measures, the k ′ measure and the DLD PLD measures.

For the k ′ measure, we consider that a possible intruder knows the values of three
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k/κ SSE k ′

1G 2G 3G

M
ic

.M
D

A
V-

k 5 28.74 5.05 1.98 1.03
25 145.36 25.21 7.06 1.27
50 219.44 50.52 13.86 1.57
75 313.31 75.78 20.97 1.92

100 397.48 102.30 29.05 2.57

M
ic

.P
C

P-
k

5 141.28 5.18 1.95 1.00
25 203.81 25.21 6.57 1.04
50 330.19 50.52 12.74 1.15
75 469.74 75.78 19.15 1.30

100 649.49 102.30 26.14 1.53

M
ic

.Z
sc

o
re

s-
k 5 50.65 5.11 1.92 1.01

25 140.70 25.16 6.64 1.06
50 184.18 50.52 13.05 1.28
75 287.95 75.78 19.88 1.58

100 378.51 102.30 27.46 2.02

M
ic

.S
u

ge
n

o
-k 5 99.32 5.14 1.96 1.00

25 181.07 25.10 6.64 1.04
50 249.00 50.52 12.83 1.16
75 358.39 75.78 19.46 1.36

100 502.32 102.30 26.76 1.62

M
ic

1D
-κ

5000 36.49 3.04 4.57 2.68
5500 472.69 4.48 6.79 3.90
6000 135.21 5.37 8.18 4.52
6500 556.24 7.89 11.69 6.56
7000 56.84 8.96 13.51 7.08

Correlated attributes

k/κ SSE k ′

1G 2G 3G

M
ic

.M
D

A
V-

k 5 45.18 5.01 2.03 1.06
25 212.44 25.10 7.26 1.28
50 361.38 50.52 14.59 1.81
75 468.30 75.78 22.06 2.30

100 569.66 102.30 30.67 3.17
M

ic
.P

C
P-

k
5 124.83 5.15 1.94 1.01

25 251.99 25.10 6.63 1.06
50 369.73 50.52 12.96 1.20
75 482.05 75.78 19.56 1.40

100 608.82 102.30 26.74 1.73

M
ic

.Z
sc

o
re

s-
k 5 111.97 5.07 1.93 1.01

25 212.47 25.10 6.92 1.12
50 336.68 50.52 14.07 1.52
75 439.99 75.78 21.96 2.18

100 553.89 102.30 30.90 3.16

M
ic

.S
u

ge
n

o
-k 5 139.69 5.12 1.96 1.01

25 276.15 25.10 6.72 1.10
50 427.92 50.52 13.16 1.29
75 594.42 75.78 20.00 1.59

100 796.38 102.30 27.66 2.04

M
ic

1D
-κ

5000 36.49 3.04 4.57 2.68
5500 472.69 4.48 6.79 3.90
6000 135.21 5.37 8.18 4.52
6500 556.24 7.89 11.70 6.56
7000 56.84 8.96 13.51 7.08

Non-correlated attributes

Table 3.10: SSE and real k ′ of different microaggregation methods and parameteriza-
tions using the EIA data set. Mic.Method-k corresponds to microaggregation using
method Method (MDAV, PCP or Zscore) with initial anonymity value k.
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k/κ SSE k ′

1G 2G 3G

M
ic

.M
D

A
V-

k 5 28.18 5.09 1.94 1.00
10 46.14 10.00 3.14 1.01
15 72.03 15.20 4.42 1.01
20 94.24 20.00 5.75 1.04
25 114.56 25.33 7.28 1.10

M
ic

.P
C

P-
k

5 28.59 5.14 1.94 1.01
10 49.61 10.00 3.10 1.00
15 71.99 15.20 4.41 1.02
20 91.96 20.00 5.70 1.03
25 110.91 25.33 7.24 1.04

M
ic

.Z
sc

o
re

s-
k 5 23.78 5.14 1.94 1.01

10 49.05 10.00 3.13 1.01
15 72.23 15.20 4.43 1.03
20 93.10 20.00 5.69 1.03
25 111.69 25.33 7.23 1.07

M
ic

.S
u

ge
n

o
-k 5 26.59 5.07 2.03 1.01

10 53.88 10.00 3.30 1.01
15 84.86 15.20 4.65 1.03
20 95.35 20.00 5.98 1.08
25 121.94 25.33 7.51 1.11

M
ic

1D
-κ

300 32.67 1.62 1.51 1.10
500 65.89 3.25 3.39 1.76
800 80.95 7.87 7.55 4.67
850 132.13 9.65 10.03 6.65
900 255.64 12.95 13.61 9.14

Correlated attributes

k/κ SSE k ′

1G 2G 3G

M
ic

.M
D

A
V-

k 5 69.51 5.00 2.03 1.03
10 126.21 10.00 3.55 1.16
15 173.96 15.20 5.28 1.39
20 247.58 20.00 7.00 1.53
25 259.07 25.33 9.22 1.91

M
ic

.P
C

P-
k

5 93.67 5.02 1.94 1.01
10 133.83 10.00 3.14 1.02
15 170.12 15.20 4.47 1.03
20 206.74 20.00 5.75 1.06
25 229.50 25.33 7.33 1.13

M
ic

.Z
sc

o
re

s-
k 5 73.52 5.02 1.97 1.02

10 115.77 10.00 3.27 1.06
15 160.30 15.20 4.75 1.10
20 197.20 20.00 6.32 1.28
25 231.81 25.33 8.21 1.46

M
ic

.S
u

ge
n

o
-k 5 102.76 5.09 2.07 1.03

10 188.85 10.00 3.29 1.04
15 216.44 15.20 4.66 1.07
20 281.02 20.00 5.96 1.10
25 294.89 25.33 7.53 1.15

M
ic

1D
-κ

300 32.67 1.11 1.35 1.35
500 65.89 2.78 2.58 2.63
800 80.95 4.74 7.17 6.88
850 132.13 6.54 9.77 8.67
900 255.64 9.07 14.52 11.71

Non-correlated attributes

Table 3.11: SSE and real k ′ of different microaggregation methods and parameteri-
zations using the Water Treatment data set. Mic.Method-k corresponds to microag-
gregation using method Method (MDAV, PCP or Zscore) with initial anonymity value
k.
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random attributes of the original data set. Different tests are performed assuming

that the intruder knows different sets of three attributes. Depending on these at-

tributes, by using multivariate microaggregation, the intruder will have information

coming from one or more groups. Table 3.9 shows all the considered possibilities.

Firstly, we suppose that the three known attributes belong to the same microag-

gregated block (e.g. (a1, a2, a3) in the correlated scenario or (a1, a4, a7) in the

non-correlated). Since the size of the three microagreggation blocks is 3, there are

only three options to consider. We denote this case by 1G. Since the intruder only

has access to data from one group, multivariate microaggregation ensures the k-

anonymity property (this is the best possible scenario for multivariate microaggre-

gation). However, note that, usually, the intruder cannot choose the attributes ob-

tained from external sources and it might be difficult to obtain all the attributes for

the same group. Secondly, we assume that the known attributes belong to two dif-

ferent microaggregated groups. There are many possible combinations of three at-

tributes under this assumption, so nine of them were chosen randomly. We refer to

this case as 2G. Finally, case 3G is defined analogously to 2G, and also nine possi-

bilities of known attributes are considered. Note that, in both scenarios 2G and 3G,

k-anonymity is not ensured by multivariate microaggregation. Note also that, if the

intruder had more than three attributes, it would not be possible to consider 1G. We

are considering the case were the intruder only has three attributes to study a sce-

nario were multivariate microaggregation can still preserve k-anonymity.

The second column of Tables 3.10 and 3.11 presents the SSE values for all the pa-

rameterizations and situations described before. Note that the range of SSE covered

by the two methods is similar, so this allows us to compare the disclosure risk of

both methods fairly. For all these scenarios, we compute k ′ and the mean of all the

k ′ values in each situation is presented in the third, fourth and fifth columns. Note

that, whereas multivariate microaggregation is affected by the fact that the chosen

attributes are correlated or not, this effect is not noticeable using Mic1D-κ. Specif-

ically, when the attributes in a group are not correlated, the information loss (SSE)

using multivariate microaggregation tends to be increased since we are trying to col-

lapse the records in a single value, using three independent attributes or dimensions.

Nevertheless, this effect can be neglected with Mic1D-κ since, thanks to the data pre-

processing, the whole microaggregation process is performed on a single dimension

(vector of values), the semantics of attributes are ignored and the effect caused by
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attribute correlations is avoided.

These results show that, in this scenario, Mic1D-κ achieves lower disclosure risk lev-

els (larger values of k ′) than those achieved by multivariate microaggregation for

similar information loss (SSE ), especially when the attributes chosen come from dif-

ferent microaggregated groups (2G and 3G), which is the most common case. When

the intruder has access to the three attributes coming from a single microaggre-

gated group, multivariate microaggregation configurations present k ′ values which

are similar or, in some cases, even larger than those obtained by Mic1D-κ (com-

paring cases with similar SSE ). This is normal since such methods preserve the

k-anonymity in this case. However, in the remaining scenarios (2G and 3G), that

represent most of the cases, Mic1D-κ achieves larger k ′ values than those obtained

by multivariate microaggregation when similar SSE values are compared.

Table 3.12 and 3.13 show the score and its components. For DLD, PLD and ID com-

putation we have considered different cases, according to the number of attributes

of the original record(s), to be linked, that the intruder knows. This number varies

from 1 to the total number of attributes of each data set. The values in the table are

the average of the obtained correct links in all these cases, for each parameterization

of each protection method. The first column of these tables presents the IL values

for each configuration, the IL values are similar for all protection methods, except

for the case of Zscores microaggregation using non-correlated attributes in the Wa-

ter Treatment data set and Mic1D-κ in the EIA data set. These differences are due to

the parameter selection, the selection has been done to ensure similar SSE values,

and then in some configurations, it is possible to obtain very different IL values.

The second and the third columns of Table 3.12 and 3.13 show the DLD and PLD

risk measures. As in Section 3.2, the lowest disclosure risk is achieved by Sugeno

microaggregation, where the largest disclosure risk values have been obtained us-

ing P-RL and it is always lower than 15%. If we observe the disclosure risk obtained

by Mic1D-κ in this scenario, we will see that, in some cases, the disclosure risk of

Mic1D-κ is larger than multivariate microaggregation. This happens because we are

averaging nine possible scenarios, in three of them the intruder knows attributes of

only one group (the best situation for multivariate microaggregation), another three

the intruder knows attributes of two groups and, finally, only in three situations the

intruder knows attributes belonging to all groups. This averaging process favours
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to multivariate microaggregation and makes the comparison between Mic1D-κ and

multivariate microaggregation unfair. However, it is clear that in this kind of scenar-

ios the disclosure risk of Mic1D-κ increases.
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k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 6.68 1.78 2.87 87.60 25.82
25 11.83 0.78 0.68 79.55 25.99
50 13.23 0.60 0.56 72.37 24.85
75 15.56 0.53 0.55 72.16 25.96

100 17.63 0.39 0.49 67.52 25.81

M
ic

.P
C

P-
k

5 16.61 1.78 2.87 65.29 25.21
25 18.33 0.78 0.68 61.62 24.75
50 19.77 0.60 0.56 59.71 24.96
75 21.16 0.53 0.55 59.67 25.63

100 22.26 0.39 0.49 57.87 25.71

M
ic

.Z
sc

o
re

s-
k 5 12.58 6.17 8.36 75.09 26.88

25 16.04 5.03 5.98 70.88 27.12
50 16.84 4.92 5.60 69.36 27.08
75 18.69 3.91 5.30 69.71 27.92

100 18.86 3.48 4.63 67.78 27.39

M
ic

.S
u

ge
n

o
-k 5 14.83 2.56 5.22 67.86 25.35

25 18.10 1.22 1.78 63.17 25.22
50 18.28 1.01 1.23 62.17 24.96
75 18.55 0.88 1.13 62.15 25.06

100 18.88 0.63 0.75 60.49 24.74

M
ic

1D
-κ

5000 60.25 0.00 0.00 67.44 46.99
5500 88.10 0.00 0.00 70.38 61.65
6000 93.13 0.00 0.00 74.19 65.11
6500 104.57 0.00 0.00 61.47 67.65
7000 133.38 0.00 0.00 59.97 81.68

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 10.05 1.61 2.43 83.30 26.36
25 16.58 0.81 0.56 72.27 26.53
50 21.86 0.62 0.49 67.16 27.86
75 20.26 0.68 0.60 64.61 26.44

100 25.14 0.60 0.48 61.29 28.03

M
ic

.P
C

P-
k

5 19.37 0.62 0.54 57.35 24.17
25 22.07 0.63 0.48 53.45 24.54
50 22.25 0.64 0.48 52.41 24.37
75 22.70 0.64 0.49 52.11 24.52

100 23.07 0.66 0.50 50.93 24.41

M
ic

.Z
sc

o
re

s-
k 5 16.81 2.58 3.82 75.75 28.14

25 17.06 1.92 2.55 75.21 27.89
50 17.25 1.44 2.22 73.88 27.55
75 17.83 1.25 2.14 73.71 27.77

100 17.80 1.16 1.88 70.95 27.02

M
ic

.S
u

ge
n

o
-k 5 20.98 0.83 1.56 58.39 25.39

25 25.25 0.33 0.57 53.77 26.18
50 33.42 0.29 0.34 52.20 29.84
75 43.41 0.23 0.33 51.65 34.69

100 27.82 0.25 0.29 50.28 26.55

M
ic

1D
-κ

5000 60.25 0.00 0.00 67.44 46.99
5500 88.10 0.00 0.00 70.38 61.65
6000 93.13 0.00 0.00 74.19 65.11
6500 104.57 0.00 0.00 61.47 67.65
7000 133.38 0.00 0.00 59.97 81.68

Non-correlated attributes

Table 3.12: Scores of different microaggregation methods and parameterizations us-
ing the EIA data set. Mic.Method-k corresponds to microaggregation using method
Method (MDAV, PCP or Zscore) with initial anonymity value k.
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k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 14.14 73.03 67.24 72.73 42.79
10 18.78 61.97 55.66 63.56 39.98
15 17.34 49.74 43.95 56.99 34.63
20 18.28 39.34 35.53 51.18 31.29
25 21.68 32.37 29.08 48.59 30.67

M
ic

.P
C

P-
k

5 18.36 40.39 30.39 60.82 33.23
10 18.11 30.00 21.58 53.66 28.92
15 21.67 23.82 20.39 50.54 29.00
20 25.17 21.45 16.05 47.21 29.08
25 23.25 19.08 13.68 49.34 28.06

M
ic

.Z
sc

o
re

s-
k 5 17.62 76.05 62.50 68.65 43.29

10 20.62 63.82 54.87 61.53 40.53
15 20.99 54.08 47.76 56.42 37.33
20 20.74 47.76 40.79 53.48 34.81
25 24.30 43.95 34.47 54.04 35.46

M
ic

.S
u

ge
n

o
-k 5 15.18 1.67 12.89 64.17 25.45

10 24.56 1.23 10.35 56.49 27.85
15 25.69 0.70 8.98 52.53 27.19
20 32.30 0.88 8.71 48.14 29.38
25 28.18 0.96 6.84 47.44 26.93

M
ic

1D
-κ

300 29.63 62.63 67.13 81.54 51.42
500 46.68 42.87 49.36 56.39 48.97
800 82.99 24.44 12.46 39.36 55.95
850 85.50 14.85 2.28 50.61 57.54
900 87.70 9.80 1.93 43.72 56.25

Correlated attributes

k IL DLD PLD ID Score

M
ic

.M
D

A
V-

k 5 31.75 8.16 39.87 45.79 33.33
10 28.28 5.26 28.95 43.00 29.17
15 35.60 2.50 18.82 41.89 30.94
20 32.44 2.63 14.21 39.34 28.16
25 36.74 1.71 12.89 30.85 27.91

M
ic

.P
C

P-
k

5 50.41 8.95 2.11 36.63 35.75
10 53.51 5.00 0.79 30.96 35.22
15 56.28 4.21 1.32 30.37 36.42
20 61.02 4.74 1.05 26.30 37.81
25 62.48 3.82 0.26 25.61 38.15

M
ic

.Z
sc

o
re

s-
k 5 98.33 10.13 3.16 42.96 61.57

10 108.75 6.05 2.24 40.61 65.56
15 113.74 5.39 1.71 40.18 67.80
20 114.78 3.03 1.45 39.98 67.95
25 113.71 3.29 1.05 37.60 66.80

M
ic

.S
u

ge
n

o
-k 5 36.15 4.97 0.82 44.25 29.86

10 41.55 3.22 0.12 36.53 30.32
15 48.41 1.73 0.23 31.45 32.31
20 47.45 1.75 0.94 30.26 31.63
25 51.53 1.11 0.53 28.62 33.12

M
ic

1D
-κ

300 29.63 62.63 67.13 81.54 51.42
500 46.68 42.87 49.36 56.39 48.97
800 82.99 24.44 12.46 39.36 55.95
850 85.50 14.85 2.28 50.61 57.54
900 87.70 9.80 1.93 43.72 56.25

Non-correlated attributes

Table 3.13: Scores of different microaggregation methods and parameterizations us-
ing the Water Treatment data set. Mic.Method-k corresponds to microaggregation
using method Method (MDAV, PCP or Zscore) with initial anonymity value k.



Chapter 4

Specific Disclosure Risk

Measures

As we stated in Chapter 2, only generic measures, as distance based or probabilis-

tic record linkage, are considered when the disclosure risk of a protection method

is computed. The use of these generic measures causes an underestimation of the

resulting disclosure risk.

In this chapter we define specific record linkage methods which take into account

the protection method applied to the protected data set. The direct consequence of

these definitions is that we achieve a larger number of re-identifications than with

generic record linkage methods. Therefore, under this scenario, disclosure risk is

larger than believed up to now.

4.1 Rank Swapping Record Linkage

In this section, we describe a new record linkage method, specific for rank swapping.

We call this method rank swapping record linkage (RS-RL for short). This method

takes advantage of the fact that only a few values of the data set are eligible when

doing rank swapping. By using this information, we can limit the pairs of records

where record linkage method is applied and decrease in this way the probability of

77
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finding incorrect links. The result causes an increase on the number of correct links,

and therefore an increment in the disclosure risk of standard rank swapping.

Then, we propose two new protection methods, obtained as variants of rank swap-

ping, which are called rank swapping p-distribution and rank swapping p-buckets

and which are in some way immune to the effect of the new record linkage method.

The main idea of these methods is that each attribute value can be potentially

(maybe with very low probability, but never equal to 0) swapped with any other value.

In this way, an intruder linking records will not be able to limit the swap interval with

total confidence; this will lead to a higher number of incorrect linkages.

4.1.1 Algorithm Description

The idea is quite easy to understand: standard rank swapping swaps one original

value with one of the p following values in the sorted table (recall the rank swapping

description presented in Section 2.4.1). Therefore, if the protected values of the at-

tribute are known, as in the scenario described in Section 2.4, it is possible to restrict

the protected records into which a specific original record can have been mapped.

Formally, the intruder must compare the original record xi that he wants to link with

only 2p records in the protected microdata file (note that a protected value can be

either the source or the destination in the swap process). In other words, for every

original attribute value xi j , there is an efficiently computable set B(xi j ) of 2p pro-

tected records which may be the result of transforming the original record xi .

Obviously, if more than one attribute is known, it is possible to repeat the pro-

cess for each attribute. In particular, if the original record xi is represented by

xi = (xi1, . . . , xic ) for c attributes at tr1, . . . , at trc , then the matching protected record

x′
ℓ

will necessarily satisfy the condition

x′
ℓ ∈∩1≤ j≤cB(at tri = xi j )

That is, the search of the linkage is reduced to the intersection of the sets of possi-

ble protected records. Of course, the more attributes are considered, the less records

will be in this intersection, and therefore the probability of finding the correct record

linkage will increase. This effect is illustrated in Figure 4.1. In particular, if some

intersection (for some combination of the protected attributes) gives a unique pos-
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Figure 4.1: Graphic representation of disclosure risk.

sible record, we can be sure that this is the protected record which matches with the

considered original record, because this linkage method does not introduce error

probabilities. This is in contrast to the standard record linkage methods, where an

original record is compared to all the protected records, possibly leading to incorrect

linkages.

Example 4.1 Let us illustrate this fact throughout the example described in

Table 2.1 and reproduced here in Table 4.1 (this table is also used in Ex-

ample 2.1 in Section 2.4.1). Consider the standard distance based record

linkage method (with the Euclidean distance) applied to the original record

(6,7,10,2). When, the distances between this record and all the protected

records are computed, the closest protected record results to be (6,7,6,3), which

is not the matching one. Therefore, this method leads to the incorrect linkage

(6,7,10,2) ↔ (6,7,6,3). In contrast, consider the new specific technique applied

to the same record (6,7,10,2). The set of possible protected values consistent

with a 6 in the first original attribute is B(at tr1 = 6) = {(4,1,10,10),(5,5,8, 1),

(6,7,6,3),(7,3,5,6),(8,4,2,2)}. Analogously for the other three attributes, we ob-

tain B(at tr2 = 7) = {(5,5,8,1),(2,6,9,8),(6, 7, 6, 3),(1, 8, 7, 9),(3,9, 1, 7)}, B(at tr3 =

10) = {(5,5,8,1),(2,6,9,8),(4,1, 10,10)} and B(at tr4 = 2) = {(5,5,8,1),(8,4,2,2),

(6,7,6,3),(9,2,4,4)}. Therefore, as the intersection of the four sets is just the pro-

tected record (5,5,8,1), in this case we obtain the correct linkage. Note that if there

had been more than one record in the intersection, the closest one to the considered

original record would have been chosen.
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Note also that this new method has been defined assuming that the value of the pa-

rameter p is known. In situations where this value is kept secret by the owner of the

original data set, then the method can be applied by first fixing an upper bound for

the value of p (for example, the 20% of the number of entries of the database). Of

course, the results of the method are optimal when the exact value of p is used. This

assumption is quite realistic, for example, all available microdata files in the EURO-

STAT web page [29] include a full description of the anonymization criteria that have

been applied.

Original Data Set X Protected Data Set X ′

at tr1 at tr2 at tr3 at tr4 at tr ′
1 at tr ′

2 at tr ′
3 at tr ′

4
8 9 1 3 10 10 3 5
6 7 10 2 5 5 8 1

10 3 4 1 8 4 2 2
7 1 2 6 9 2 4 4
9 4 6 4 7 3 5 6
2 2 8 8 4 1 10 10
1 10 3 9 3 9 1 7
4 8 7 10 2 6 9 8
5 5 5 5 6 7 6 3
3 6 9 7 1 8 7 9

Table 4.1: Rank swapping example.

In Table 4.2, we show the number of correctly linked records for the data in the Exam-

ple 4.1 with the three considered record linkage methods, when different collections

of attributes are assumed to be known by the intruder. We also show the average dis-

closure risk. Note that the record linkage process uses only the known attributes to

at tr1 at tr1−2 at tr1−3 at tr1−4 average DR
RS-RL 0 2 7 8 42.5
DB-RL 0 2 4 1 17.5
P-RL 0 0 0 0 0.00

Table 4.2: Correct links and average disclosure risk for Example 2.1 on record linkage
of Section 2.4.1, computed with rank swapping (RS-RL), distance based (DB-RL) and
probabilistic (P-RL) record linkage.
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compute the nearest record. From the comparison between the average disclosure

risk using the new method and the DB-RL and P-RL showed in Table 4.2, it is clear

that the real disclosure risk is much larger than the standard estimated using DB-RL

or P-RL.

4.1.2 New Rank Swapping Methods

In this section, we present two variants of rank swapping which resist the record

linkage method introduced in Section 4.1.1. The main idea in both variants is the

same: to eliminate the fact that the swap interval is closed.

Rank Swapping p-Distribution

As we have explained in Section 2.4.1 the swap interval in the rank swapping is de-

fined by the parameter p, this fact is exploited by the record linkage technique de-

fined in Section 4.1.1 to increase the number of linked records. For this reason, rank

swapping p-distribution defines the swap interval using a normal probability distri-

bution defined by µ=σ= 0.5 ·p. This modification makes possible that any value in

the data set can be selected. Obviously very different values have lower probability

to be elected than similar values, but never equals to zero. Therefore some values xi j

are swapped with values out of the standard interval ℓ ∈ [i +1, i +p]; we can observe

this in Figure 4.2 where the swap interval is defined by a normal probability distri-

bution, in this case it is clear that the swap interval is an open interval. When this

effect is propagated to all protected attributes, the RS-RL method becomes unsuit-

able. In the experiments presented in the next section we will show that the number

of correct links obtained by an intruder decreases when more attributes are known.

Rank swapping p-distribution applied to an attribute at tr j of an original microdata

file X can be defined as follows: firstly, the table (microdata file) is sorted in increas-

ing order of the values xi j of the considered attribute at tr j . For simplicity, we as-

sume that the records are already sorted, that is xi j ≤ xℓ j for all 1 ≤ i < ℓ≤ n. Then,

for each value xi j , a random value r is computed by using the N(0.5 ·p, 0.5 ·p) nor-

mal distribution, and the values xi j and xℓ j are swapped, where ℓ= i +r . Finally, the

sorting step is undone.
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i i+(p/2) i+p

Figure 4.2: Graphic representation of the p-distribution swap interval.

The negative effect produced by swapping two different values is that the informa-

tion loss of the protected files increases. We will show in Section 4.1.3 that the incre-

ment of information loss is compensated by a reduction of the disclosure risk, and

therefore the scores obtained by this method are lower than the ones obtained by the

standard rank swapping.

In Section 4.1.4 we present a possible specific record linkage for this new rank swap-

ping p-distribution method. The experiments show that the performance of this

specific record linkage is similar to distance based record linkage.

In the rest of this thesis, we will use rs α-d to denote the application of rank swapping

p-distribution with p =α.

Rank Swapping p-Buckets

The rank swapping p-buckets method pursues the same goal as rank swapping p-

distribution. For this reason it also replaces the close swap interval of the rank swap-

ping with an unlimited interval, but using now a different technique.

The idea of this method is to split the sorted original values of an attribute into
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several buckets. Firstly, a probability function is used to choose a bucket for each

value. Once the bucket is selected, the method works identically to the standard

rank swapping, by using this bucket as the closed swap interval. Again, every orig-

inal record will have some non-zero probability of being the correct link of every

protected record. For this reason, the RS-RL method will be less effective here than

when it is applied to the standard rank swapping.

Rank swapping p-bucket applied to an attribute at tr j of an original microdata file X

can be defined as follows: firstly, the table is sorted in increasing order of the values

xi j of the considered attribute at tr j . For simplicity, we assume that the records are

already sorted, that is xi j ≤ xℓ j for all 1 ≤ i < ℓ≤ n. The sorted values {xi j |1 ≤ i ≤ n}

are split into p buckets B1, . . . ,Bp . For each value xi j , which belongs to some bucket

Br , a bucket Bs is chosen, according to the probability distribution

Pr[Bs is chosen] =
1

2s−r+1
.

Then, a value xℓ j is randomly and uniformly chosen in the selected bucket Bs , and

the values xi j and xℓ j are swapped. Note that, if the same bucket Bs = Br is chosen,

the condition ℓ> i must be imposed.

Note that, closer buckets to the original value are selected with higher probability

than the far-off buckets and, therefore, the information loss of the protected micro-

data file is under control. Note that many other probability distributions could be

used to define similar variants of rank swapping.

In the rest of the thesis, rs α-b will be used to denote a rank swapping p-bucket with

p =α.

4.1.3 Experimental RS-RL Results

As stated above, we have introduced the two variants of rank swapping to mitigate

the effect of the specific record linkage method RS-RL. Of course, this is at the cost

of increasing information loss, because some values may be swapped with values

which are quite far. Our feeling was that this increment of the information loss had

to be less significant than the saving in disclosure risk and, therefore, the new meth-

ods would obtain better general scores than standard rank swapping. The results
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Figure 4.3: Graphic representation of the results obtained by the rank swapping dis-
closure risk measure applied to the Census data set (a) and EIA data set (b), protected
with standard rank swapping.

described in this section confirm our feelings.

In short, this section describes the analysis of disclosure risk using our specific record

linkage method and the comparison of the new rank swapping methods against

standard ones. We start reviewing the data sets used in the experiments.

Disclosure Risk Analysis for Rank Swapping

In order to evaluate the specific record linkage method (RS-RL) introduced in Sec-

tion 4.1.1, we have protected the Census and EIA data sets (defined in Section 2.6)

by using different parameterizations of standard rank swapping (p = 2. . . 20), rank

swapping p-distribution (p = 2. . . 20) and rank swapping p-buckets (p = 75, 50, 35,

30, 25, 20, 15,10, 5). For each protected data set, we have computed its disclosure risk

using RS-RL. At this point, in order to study the worst case scenario, the parameter p

is assumed to be known.

It is clear that the rank swapping p-distribution and the rank swapping p-buckets

have an advantage with respect to standard rank swapping when RS-RL is used.

For this reason, disclosure risk measures have been computed using a larger pa-

rameter. In particular, we used 2 · p for the rank swapping p-distribution, and

p = 2 ·Bucket Si ze for the rank swapping p-buckets. For standard rank swapping,

the parameter p was used to protect the data set.

Figure 4.3 shows, in a graphic way, the number of correct links that RS-RL obtains,
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Figure 4.4: Graphic representation of the results obtained by the rank swapping dis-
closure risk measure applied to the Census data set (a) and EIA data set (b), protected
with rank swapping p-distribution.

when applied to standard rank swapping, for both data sets, when different num-

bers of attributes are assumed to be known by the intruder (from one to all). It is

easy to observe that the more attributes are known by the intruder, the more records

are linked. Figures also show that for the five less protected data sets from Census,

an intruder links more than 70% of the records when only half of the attributes are

known. Another interesting result with the Census data set is that the intruder is

always able to link more than 50% of the records if he knows all the attributes.

Similar results are obtained for the EIA data set. For the three less protected data

sets, the intruder is able to link more than 50% of records when all the attributes are

known. In EIA, the results of our specific record linkage are not so good because (i)

the EIA data set has four times more records than Census data set, (ii) the EIA data

set has less attributes than Census.

Figure 4.4 presents the results of RS-RL applied to the data sets protected using

rank swapping p-distribution. The chart lines show that an intruder can make no

use of knowing all the attributes when data is protected using rank swapping p-

distribution. Therefore, the rank swapping record linkage becomes unsuitable now.

This is so because when the intruder knows many attributes, he is forced to consider

all the records, and not a small subset, to take advantage of his knowledge. For the

Census data set, only in the less protected parameterization (p = 2) the intruder is

able to link more than 50% of the records, and this happens when he knows three or

four attributes: the knowledge of more attributes is not useful in this case. The rest of

the cases are protected enough to avoid a large number of correct linkages for both
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Figure 4.5: Graphic representation of the results obtained by the rank swapping dis-
closure risk measure applied to the Census data set (a) and EIA data set (b), protected
with rank swapping p-buckets.

the Census and EIA data sets.

The results obtained for rank swapping p-buckets, which are shown in Figure 4.5, are

similar to the results of rank swapping p-distribution. Only in the less protected case

of the Census data set the intruder is able to link more than 50% of the records, the

remainder configurations are protected enough to avoid a large number of correct

linkages. As it happens with the rank swapping p-distribution, the knowledge of all

attributes is not useful for an intruder when using rank swapping record linkage.

New Rank Swapping Methods vs Standard Rank Swapping

In this section, we compare the overall behavior of the new methods with the stan-

dard one. We study the effects of the introduced modifications in information loss

and standard disclosure risk measures.

The comparison is based on the score defined in Section 2.5. We have modified the

score so that the disclosure risk measure takes into account the new rank swap-

ping record linkage. Formally, we use the following disclosure risk measure DR =

0.166 ·RSLD +0.166 ·DLD +0.166 ·PLD +0.5 · I D instead of DR = 0.25 ·DLD +0.25 ·

PLD+0.5·I D. Here, RSLD stands for Rank Swapping Linkage Disclosure, the average

percentage of correctly linked records using rank swapping record linkage (RS-RL).

Information loss measures are not changed and thus they are computed using the

standard measures presented in Section 2.5.
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p IL RSLD DLD PLD ID Score

ra
n

k
sw

ap
p

in
g

p

2 3.89 77.73 73.52 71.28 93.98 42.63
4 6.54 66.65 58.40 42.92 83.09 36.67
6 10.57 54.65 43.76 22.49 72.12 31.93
8 16.54 41.28 32.13 11.74 62.11 29.16

10 20.18 29.21 23.64 6.03 53.28 26.31
12 23.46 19.87 18.96 3.46 47.17 24.77
14 28.93 16.14 15.63 2.06 43.39 25.86
16 35.16 13.81 13.59 1.29 40.78 27.97
18 32.52 12.21 11.50 0.83 38.90 25.81
20 35.12 10.88 10.87 0.59 37.33 26.55

Census data set

p IL RSLD DLD PLD ID Score

ra
n

k
sw

ap
p

in
g

p

2 4.24 43.27 21.71 16.85 93.10 28.06
4 9.67 12.54 10.61 4.79 82.09 21.89
6 14.63 7.69 7.40 2.03 72.21 21.42
8 18.71 6.12 5.98 1.12 63.90 21.61

10 22.87 5.60 5.19 0.69 57.09 22.37
12 26.60 5.39 4.87 0.51 51.64 23.25
14 29.42 5.28 4.55 0.32 47.49 23.91
16 32.38 5.19 4.54 0.23 44.19 24.82
18 34.22 5.20 4.54 0.22 41.42 25.28
20 36.27 5.15 4.36 0.18 38.97 25.87

EIA data set

Table 4.3: Score calculation for standard rank swapping(rs-p). IL stands for Infor-
mation Loss, RSLD stands for Rank Swapping Linkage Disclosure, DLD stands for
Distance Linkage Disclosure, PLD stands for Probability Linkage Disclosure and ID
stands for Interval Disclosure.

Table 4.3 presents the scores as well as the original values before their aggregation,

for both Census and EIA data sets protected using standard rank swapping. We can

observe that the largest disclosure risk measure in all cases is RSLD. Therefore, it is

clear that the new method increases the risk with respect to standard ones for the

standard rank swapping. Another interesting result is that PLD is always lower than

RSLD and DLD. This is because all the values in all the attributes are swapped,

and therefore the coincidence vectors for the correct links are always equal to zero,

unless the swapped positions have the same value (which is possible only if the at-

tributes have repeated values). It is possible to observe in Figures 4.6.(b) and 4.7.(b)

that the standard rank swapping has the largest disclosure risk when the different

parameterizations of the three methods are compared. This effect is much clearer

in Figure 4.6.(b) (corresponding to the Census data set) than in Figure 4.7.(b) (corre-

sponding to the EIA data set).

Tables 4.4 and 4.5 show the score values for rank swapping p-distribution and rank

swapping p-buckets respectively. In both cases the largest disclosure risk measure is

DLD. Therefore, when an intruder is interested in linking the original data set with

the one protected using any of the two methods, the best way is just to consider all

possible links.

In Section 4.1.4 we discuss a possible record linkage method specifically designed
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p IL RSLD DLD PLD ID Score

ra
n

k
sw

ap
p

in
g

p
-d

is
tr

.

2 3.80 40.90 71.63 1.38 89.81 29.70
4 7.42 28.34 53.10 0.68 71.48 24.83
6 14.44 20.51 37.57 0.62 55.58 23.08
8 17.31 15.74 25.98 0.54 44.44 20.90

10 22.49 11.69 19.42 0.46 38.60 21.28
12 31.04 9.10 16.17 0.41 35.05 24.26
14 31.80 6.12 13.16 0.38 32.19 23.41
16 33.53 4.63 11.77 0.32 30.42 23.61
18 37.89 3.10 11.12 0.35 28.98 25.25
20 43.92 2.15 9.59 0.31 27.05 27.65

Census data set

p IL RSLD DLD PLD ID Score

ra
n

k
sw

ap
p

in
g

p
-d
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.

2 5.24 10.74 18.78 13.94 90.76 22.26
4 11.33 3.13 9.12 3.90 78.07 20.28
6 16.83 1.27 6.41 1.61 67.20 20.50
8 18.71 6.12 5.98 1.12 63.90 21.61

10 26.11 0.39 4.81 0.55 52.05 22.24
12 29.89 0.39 4.62 0.42 47.11 23.28
14 32.01 0.30 4.51 0.29 43.30 23.67
16 35.59 0.20 4.60 0.22 39.95 24.89
18 37.69 0.10 4.69 0.18 37.52 25.52
20 40.12 0.10 4.57 0.11 35.25 26.34

EIA data set

Table 4.4: Score calculation for rank swapping p-distribution (rs p-d). IL stands for
Information Loss, RSLD stands for Rank Swapping Linkage Disclosure, DLD stands
for Distance Linkage Disclosure, PLD stands for Probability Linkage Disclosure and
ID stands for Interval Disclosure.

for rank swapping p-distribution and p-buckets. Since the obtained results are es-

sentially the same as with distance based record linkage we have not considered this

method to compute the disclosure risk and the score.

Interval disclosure for standard rank swapping is higher than the one for the two new

rank swapping methods. This is so because the rank swapping p-distribution and

the p-buckets may do swaps between two far values avoiding the interval disclosure.

This is not the case in standard rank swapping.

In general, when we compare the same parameterizations for the three different rank

swapping methods (e.g. rs 2, rs 2-d and rs 75-b), information loss is higher for the

rank swapping p-distribution and the rank swapping p-buckets. Nevertheless, dis-

closure risk is higher for standard rank swapping (in some cases more than 15%)

for these parameterizations. In Figures 4.6.(a) and 4.7.(a) we can observe that some

cases of standard rank swapping have lower information loss than the other rank

swapping versions. However, these differences are rather small in most of the cases.

See, for example, the IL in the EIA data set for the fourth parameterization of the

three rank swapping methods (rs 8, rs 8-d and rs 30-b). It is clear that the values for

IL are rather similar.

In relation to the overall scores, the best scores obtained for the standard rank swap-

ping (see Table 4.3) are 24.77 for Census and 21.42 for EIA. In contrast to that, the
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Figure 4.6: Graphic representation of the information loss (a), disclosure risk (b) and
score (c) values for the three rank swapping methods when Census data set is pro-
tected.
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Figure 4.7: Graphic representation of the information loss (a), disclosure risk (b) and
score (c) values for the three rank swapping methods when EIA data set is protected.
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p IL RSLD DLD PLD ID Score

ra
n

k
sw

ap
p

in
g

p
-b

u
ck

et
s 75 7.51 36.24 58.08 44.50 83.02 32.18

50 13.14 17.09 42.71 27.21 62.60 25.68
35 17.03 9.96 29.93 13.36 61.29 24.00
30 18.96 8.56 24.86 9.81 56.37 23.19
25 22.79 5.26 20.18 0.40 41.60 20.92
20 30.97 8.51 15.86 0.42 36.61 24.36
15 36.29 5.36 11.59 0.44 30.82 25.18
10 46.91 2.19 8.53 0.40 25.40 28.80

5 65.29 0.63 6.54 0.31 20.18 36.68

Census data set

p IL RSLD DLD PLD ID Score

ra
n

k
sw

ap
p

in
g

p
-b

u
ck

et
s 75 10.03 5.35 10.90 6.50 80.37 20.75

50 14.35 2.83 7.53 3.17 70.70 20.32
35 20.03 1.46 5.53 1.56 60.80 20.98
30 22.49 1.11 5.42 1.16 56.92 21.47
25 25.98 0.78 4.90 0.79 51.61 22.19
20 30.46 0.28 4.65 0.54 45.88 23.35
15 36.32 0.14 4.82 0.33 39.12 25.13
10 45.17 0.09 4.74 0.17 31.04 28.18

5 54.96 0.08 4.55 0.08 22.87 31.69

EIA data set

Table 4.5: Score calculation for rank swapping p-buckets (rs p-b).IL stands for In-
formation Loss, RSLD stands for Rank Swapping Linkage Disclosure, DLD stands for
Distance Linkage Disclosure, PLD stands for Probability Linkage Disclosure and ID
stands for Interval Disclosure.

best scores obtained for the rank swapping p-distribution (see Table 4.4) are between

20.90 and 21.30 for the Census data set and between 20.20 and 21.00 for the EIA data

set. The best score presented in Table 4.5 for the rank swapping p-buckets is 20.92

for the Census data set and 20.32 for the EIA data set. So, the new rank swapping

methods lead to better scores and, thus, the trade-off between information loss and

disclosure risk benefits the rank swapping methods introduced in this section. Even

though the new methods have a small increment in the information loss, they gain

an important reduction in disclosure risk. This effect is illustrated in Figures 4.6.(c)

and 4.7.(c) where in most of the cases the standard rank swapping has the largest

score.

4.1.4 Specific Record Linkage Methods for the New Variations of

Rank Swapping

In Section 4.1.1 we have shown that standard rank swapping can be attacked using

a specific record linkage method. These results have motivated the introduction of

two variants of rank swapping, variations that cannot be attacked using the specific

methods. Nevertheless, it is worth considering at this point whether other ad-hoc at-

tacks might be developed for these new methods. In this section we present another

specific record linkage method specially designed for rank swapping p-distribution
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and p-buckets. We show that this new method, when applied to the same data sets

used in Section 4.1.3 leads to similar results to the ones obtained with standard dis-

tance based record linkage method.

The difficulty of applying record linkage to data protected by rank swapping p-

distribution and p-bucket is that the intruder cannot limit the swap interval. In other

words, it is always possible that the correct linkage is not included in the intersection

set B(xi ) =∩1≤ j≤c B(xi j ). Therefore, the use of B(xi ) is sometimes useless.

To avoid this, but reducing at the same time the complexity of record linkage, we

can consider proper subsets B(xi j ), and then compute their union. Of course, with

a large probability, the correct link will be in B(xi j ) for at least one of the attributes

j . In fact, the record will belong to most of the B(xi j ). Because of this, the record will

be also in the union of the B(xi j ). That is, in B(xi ) =∪1≤ j≤cB(xi j ).

We will compute an annotated union that takes into account the number of sets

B(xi j ) where each record is stored. Then, we assume that the intruder only com-

pares the original record with the protected records which have the maximum car-

dinality in the annotated union set (i.e. records stored in the maximum number of

B(xi j ) sets). In this approach the intruder is minimizing the far swaps in the pro-

tected attributes. So, the intruder is exploiting his knowledge of the rank swapping

p-distribution and p-buckets because he knows that the probability of a far swap is

near to 0.

As we did in Section 4.1.3, we suppose here that the parameter p is known. We have

applied this variation of the rank swapping record linkage method to the rank swap-

ping p-distribution. In order to apply the method in the worse case scenario, we also

suppose that the intruder has the maximum number of attributes, i.e. the intruder

knows the half of the protected attributes (this assumption is the same as in Sec-

tion 2.5). At this point, the intruder needs to decide the size of the intervals B(xi j ).

From the cumulative normal distribution, the intruder can deduce the confidence of

the selected swap intervals. For example, if the swap intervals are [i −0.5p, i +0.5p]

the probability that the correct linkage is inside one of these intervals is equal to 68%.

Otherwise, if the swap intervals are [i −p, i +p]; then, the same probability increases

to 96%. Note that when the union is computed the probability to find the correct link

inside increases with respect to the number of attributes known.



92 Chapter 4. Specific Disclosure Risk Measures

p DB-RL RS-RL RS-RL
[i − p

2 , i +
p
2 ] [xi −p, xi +p]
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.

2 1048.2 752.8 1054.4
4 938.9 461 907.4
6 723.6 285.3 686.6
8 502.5 190 487.1

10 335.1 136.2 347.2
12 219.5 96.4 241.7
14 145.2 70.4 161.7
16 95.7 48.9 109.7
18 69.6 42.5 76.5
20 47.8 33.7 54.3

Census data set

p DB-RL RS-RL RS-RL
[i − p

2 , i +
p
2 ] [xi −p, xi +p]

ra
n

k
sw

ap
p

in
g

p
-d

is
tr

.

2 1267.2 771.5 1443.8
4 330.1 256 419.2
6 130.4 118.4 159.4
8 60.4 58.9 72.9

10 36 37.2 41.1
12 22.4 23.9 28.4
14 16.8 17 19.9
16 11.5 11.3 13.1
18 8.9 11.2 9.9
20 7 8.3 9.4

EIA data set

Table 4.6: Average linkage values for rank swapping p-distribution.DB-RL stands for
Distance Based Record Linkage, RS-RL stands for Rank Swapping Record Linkage.

Table 4.6 shows the results for the distance based record linkage and for the rank

swapping record linkage with two different swap intervals. The table also includes

the results obtained by the DB-RL for the same files and number of attributes.

The results show that, in general, when we use the interval [i − p, i + p] the new

method lead to results similar to the ones by DB-RL. There are only two cases were

we can find a significant improvement, they correspond to the application of the

method when p = 2 and p = 4 and using the EIA data set. RS-RL finds 1443 records

while DB-RL finds 1267, and RS-RL finds 419 where DB-RL finds 330. Nevertheless,

these cases are not a real threat to the protection method because they already cor-

respond to the cases with a lower protection and high risk (note that in the case of

the Census database, that is a smaller data set, almost all records are re-identified

by DB-RL). Taking this into account, we have that the influence of the results shown

here in the score would not be significant.

The table also shows the results for the interval [i −p/2, i +p/2]. This smaller interval

reduces more the search than the other one. However, the results obtained by the

new record linkage are much worse than the ones obtained by DB-RL.

Summing up, we have that the ad-hoc record linkage method has a similar behavior

as DB-RL, except for a few cases that can not be considered a great threat to the

protection mechanism.
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4.2 Alignment Record Linkage

In this section, we propose a new record linkage method for univariate microaggre-

gation based on finding the optimal alignment between the original and the pro-

tected sorted attributes. We show that this method, which uses a DTW distance to

compute the optimal alignment, provides in many cases enough information to the

intruder to decide if the link is correct or not. Note that, standard record linkage

methods never ensure the correctness of the linkage.

The alignment record linkage uses the Dynamic Time Warping distance [47] to find

the optimal alignment between the sorted original values and the sorted cluster cen-

troids (i.e., the protected values using microaggregation). In general, DTW is a dis-

tance to find an optimal match between two given sequences (e.g. time series or two

sorted attributes) with certain restrictions (e.g. minimum or maximum number of

elements of one sequence which can be aligned with one element of the other one).

The sequences are ’warped’ non-linearly in one dimension (e.g. time or a given or-

der) to determine a measure of their similarity independent of certain non-linear

variations in the dimension. In this scenario, optimality is understood as the short-

est alignment between the two sequences in a given distance (in our case shorter

with respect to the Euclidean distance). When the intruder computes an alignment

for one attribute, he is limiting the number of possible correct links to a small set of

records. When he knows more than one attribute, the intruder can combine (inter-

sect) all the sets (one for each known attribute) to obtain all the possible correct links

(this technique is very similar to the one applied to RS-RL). This intersection often

results in a single possible link. When such situation happens (i.e., the final set only

contains a single link) the intruder is completely sure that the link is correct because

it is the only possible one.

In the experiments described in Section 4.2.2, we show that this new record link-

age method improves the performance of standard ones when applied to compute

the disclosure risk of univariate microaggregation. Thus, the real risk of univariate

microaggregation is underestimated when computed using standard record linkage

methods.
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4.2.1 Algorithm Description

Standard record linkage methods need to compare all the original records X with all

the protected records X ′. This process has two clear drawbacks. The first one is the

high computational cost of the comparisons. The second one is that results obtained

may not be as good as the ones that would be obtained using a more specific record

linkage method.

If one takes into account the two results from [19] presented in Section 2.4.2 which

hold for all optimal univariate microaggregation algorithms, it is clear (from Result 1)

that it is unnecessary to compute all the comparisons because original values (once

sorted) are put in contiguous clusters. Therefore, if we sort the original values and

the protected cluster centroids, and we find the optimal alignment (using the DTW

algorithm), we can define for an attribute j of the protected record xi a set of orig-

inal records B(xi j ) and limit the comparisons done by the standard record linkage

process to the original records stored in this set B(xi j ). Note that the size of the set

B(xi j ) is always between k and 2k −1, and that the DTW can be constrained to have

between k and 2k−1 horizontal shifts, for each vertical shift (these values are directly

obtained from Result 2 presented in Section 2.4.2).

As in RS-RL, when more than one attribute is known, it is possible to repeat the same

process for each attribute. Let the protected record to be linked have c attributes

at tr ′
1, . . . , at tr ′

c and be represented by x′
i
= (x′

i1, . . . , x′
ic

). Then, the corresponding

original record xℓ will necessarily satisfy the condition

xℓ ∈∩1≤ j≤cB(at tr ′
i = x′

i j ).

That is, the alignment record linkage method can reduce the search to the intersec-

tion of the sets of possible original records. Of course, the more attributes are con-

sidered, the less records will be in this intersection, and therefore the probability of

finding the correct linkage will be larger.

When the intersected set has only one record the intruder is sure that this is the cor-

rect linkage. Note that, probabilistic or distance based record linkage methods never

satisfy this property and, therefore, the intruder never knows which links are the cor-

rect ones. So, he only has some heuristic information. In our method, in the rare

situations in which the final intersected set has more than one possible protected
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record, the closest one is chosen.

Non-optimal microaggregation methods (as MDAV) do not need to satisfy Results 1

and 2 (presented in Section 2.4.2). Nevertheless, MDAV microaggregation (univariate

version) satisfies Result 1, and from this result, it is clear that the clusters are non-

overlapping. As a consequence thereof, we are sure that each value is assigned to a

cluster with a centroid greater or lower than itself or equal. As all the values of these

clusters are contiguous, the value has to belong to one of these contiguous clusters.

Therefore, we have to compute the intersection using all the values assigned to such

clusters, instead of computing the optimal alignment using the DTW distance.

If one attribute j has more than k equal values, then it is possible that some of them

are put in a non contiguous cluster, but the centroid of the corresponding cluster is

never further than M ax(d(xi j , x′
lower

),d(xi j , x′
upper )) of the original value. Here, xi j

represents, as stated above, the value for the element for the given attribute, x′
lower

is

the first centroid of the attribute with a value smaller than xi j and x′
upper is the first

centroid of the attribute with a value larger than xi j .

4.2.2 Experimental A-RL Results

As in Section 4.1, we have considered the reference microdata files proposed in the

CASC project [10]. We have protected both data sets using (a) the optimal univariate

microaggregation and (b) the MDAV heuristic algorithm (univariate version). The

protection method has been applied using several different values for k ranging from

5 to 50.

To understand better the behavior of the two microaggregation approaches, we

present in Table 4.7 the SSE values obtained for each k configuration using both mi-

croaggregation algorithms over the two data sets. As it is expected, the larger the k,

the larger the SSE. Thus, the difference between the original and the protected data

set increases with larger k. In principle, when the SSE increases, the statistical util-

ity of the protected data set decreases but at the same time it is more difficult for an

intruder to link the protected values with the original ones. Comparing SSE values

using optimal and MDAV univariate microaggregation with the same k parameter,

we observe that optimal univariate microaggregation has lower SSE (better statistical

utility) than MDAV. However, as we will see later, MDAV behaves better with respect
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k Optimal MDAV
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n 5 7.44 11.10
10 25.34 29.20
15 44.77 49.43
20 65.45 69.92
25 85.48 89.87
30 104.57 108.73
35 123.16 127.30
40 141.36 145.34
45 158.89 163.00
50 176.82 180.68

Census data set

k Optimal MDAV

u
n

iv
ar

ia
te

m
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gr
eg

at
io

n 5 1.91 2.79
10 9.87 10.91
15 22.39 24.33
20 37.59 39.78
25 53.34 55.82
30 69.23 71.44
35 84.71 86.25
40 98.16 100.33
45 112.57 115.32
50 128.20 131.25

EIA data set

Table 4.7: SSE results for univariate microaggregation.
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Figure 4.8: Graphic representation of the number of links obtained with different
record linkage techniques, applied to the Census data set protected with optimal
microaggregation (a) and MDAV microaggregation (b) using k = 50.

to disclosure risk than optimal univariate microaggregation.

In these experiments, we are interested in the comparison between the new align-

ment record linkage method and standard ones. For this reason we compare four

distinct scenarios corresponding to different sets of attributes of different size. That

is, we assume intruders with different knowledges. In the worst (most dangerous)

scenario, the intruder knows five attributes and in the best one, only two of them.

Figure 4.8 illustrates the number of correct links obtained for the census data set by

the following three record linkage methods: alignment, distance based and proba-

bilistic for optimal and MDAV microaggregation with k = 50. We can observe that

the three methods obtain similar results, although our new method always presents
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Figure 4.9: Graphic representation of the number of links obtained with different
record linkage techniques, applied to the EIA data set protected with optimal mi-
croaggregation (a) and MDAV microaggregation (b) using k = 50.

the best performance (larger number of correct links) and somewhat slightly worse

results in P-RL. The best performance of our method is due to the fact that the new

method limits the number of records to be compared in the linkage process. As this

reduction never eliminates good records, the amount of false links is reduced. For ex-

ample, using optimal microaggregation with k = 50 alignment record linkage obtains

a number of correct links between 379 (the intruder only knows two attributes) and

1069 (the intruder knows five attributes), whereas probabilistic and distance based

record linkage obtain between 374 and 1057, and between 369 and 1047, respectively,

for the same scenarios.

Figure 4.8 illustrates the results for the EIA data set for optimal and MDAV microag-

gregation with k = 50. This figure shows clearly that the distance based record link-

age obtains the worst results. As in the case of the Census data set, the alignment

based record linkage method obtains the best results in all the scenarios considered.

In all cases, the larger the number of attributes, the better is to use our new method.

Similar results are obtained with respect to the k; the larger the k, the better is the

performance of our method with respect to the others. For example, when using

optimal microaggregation with k = 50, the alignment record linkage obtains a num-

ber of correct links beween 1012 (the intruder only knows two attributes) and 3703

(the intruder knows five attributes), whereas probabilistic and distance based record

linkage obtain between 1011 and 3694, and between 469 and 2353, respectively, for

the same scenarios.

From the comparison of these results we can conclude that alignment record linkage
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obtains the best (or at least the same) result than the best of the standard record link-

age method. However, such results are still more relevant since with such approach

the intruder is completely sure in most of the cases that the links found are the cor-

rect ones. This is not possible using the standard re-identification methods (as only a

probabilistic estimation of correctness can be given). So, in the light of these results,

our method is better than the existing ones and can be exploited by any intruder.

In addition to these results, it is also worth to recall that the application of both DB-

RL and P-RL need some parameters. P-RL needs probabilities of false match and

false non-match, and DB-RL needs to assess the weights of attributes (of special rel-

evance when data includes some bias). As such parameters are almost never needed

in the alignment record linkage method (they are only needed in the few cases when

the intersection of sets does not obtain singletons), the application of our approach

is simpler. In our approach the single parameter needed (the number of horizontal

shifts) can be directly extracted from the microaggregation parameter k.

In addition to that, if we compare the disclosure risk of both microaggregation meth-

ods, we find that the optimal microaggregation has a higher disclosure risk than

MDAV. This seems to be related with the fact that the SSE is larger for MDAV than for

optimal microaggregation. As the larger the SSE, the larger the difference between

the original and the protected data set; it is natural that record linkage finds more

difficulties in finding correct links with MDAV.

4.3 Projected Record Linkage

In this section we present a new record linkage technique, specific for multivariate

microaggregation, which obtains more correct links than standard techniques. We

have tested this new technique with MDAV microaggregation, PCP microaggregation

and Zscores microaggregation.
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4.3.1 Traditional Disclosure Risk Evaluation for Multivariate Mi-

croaggregation

In order to compare the microaggregation methods, we have protected the same mi-

crodata files as in the case of univariate microaggregation and rank swapping, with

different instances of the three microaggregation methods, and then we have com-

puted the resulting scores, after having applied the standard information loss and

disclosure risk measures (detailed in Section 2.5).

Table 4.8 and 4.9 show the results of these experiments. Each of the three microag-

gregation methods has been applied with the following 9 parameterizations of the

pairs (k,a): k = 5,15,25 for the minimal number of elements in the resulting clusters,

and a = 2,3,4 for the number of attributes contained in each block of attributes to

which microaggregation is applied. For example, Mic2.Zscores.15 refers to the Zs-

cores microaggregation method applied to blocks of a = 2 attributes, with the con-

straint that resulting clusters must contain at least k = 15 records. When the total

number of attributes is not a multiple of a (for example, this always happens with

Census data set, since 13 is prime), the last non used attributes are non microaggre-

gated and removed from the beginning.

For DLD, PLD and ID computation we have considered different cases, according to

the number of groups of attributes of the original record(s), to be linked, that the

intruder knows. This number varies from 2 to the total number of attributes of each

data set. The values in the table are the average of the obtained correct links in all

these cases, for each parameterization of each microaggregation method.

For the Census data set, the best scores are clearly obtained with MDAV; but for

the larger EIA data set, both PCP microaggregation and (specially) Zscores microag-

gregation lead to better scores than MDAV. The lowest score using Zscores mi-

croaggregation is 16.55 (Mic3.Zscore.5) while the lowest score using MDAV is 29.15

(Mic3.MDAV.15). Since MDAV produces in (almost) all the cases less information loss

(I L) than the other two methods, the difference has to come from the disclosure risk

part. In effect, the standard methods (distance-based, probabilistic) for record link-

age are less effective against the two projection based microaggregation than against

MDAV. This difference in the disclosure risk seems to grow up with respect to the

number of records of the data set, since it is much larger in the case of EIA than in
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v k IL DLD PLD ID DR Score
M

ic
.v

.P
C

P-
k

2 5 80.96 12.93 5.70 42.60 25.96 53.46
2 15 92.94 8.46 2.94 35.64 20.67 56.81
2 25 84.77 6.61 1.94 32.93 18.6 51.69
3 5 57.72 10.15 5.71 43.48 25.71 41.71
3 15 71.28 4.35 3.49 37.36 20.64 45.96
3 25 72.49 4.07 2.65 35.51 19.44 45.96
4 5 72.23 6.48 3.06 45.12 24.94 48.59
4 15 91.74 3.43 2.04 40.73 21.73 56.74
4 25 92.17 2.92 1.71 39.72 21.02 56.59

M
ic

.v
.Z

sc
o

re
s-

k

2 5 101.95 21.24 9.57 50.69 33.05 67.50
2 15 121.76 16.17 6.11 46.14 28.64 75.20
2 25 122.72 14.61 5.76 44.58 27.38 75.05
3 5 90.72 14.97 11.48 51.89 32.56 61.64
3 15 124.92 9.57 6.94 48.18 28.22 76.57
3 25 128.25 9.23 5.86 46.73 27.14 77.69
4 5 103.98 11.25 7.22 50.64 29.94 66.96
4 15 136.65 6.53 3.75 46.74 25.94 81.29
4 25 133.39 5.69 2.92 45.30 24.8 79.10

M
ic

.v
.M

D
A

V-
k

2 5 19.30 69.06 49.22 74.77 66.95 43.13
2 15 37.70 45.83 26.67 60.94 48.6 43.15
2 25 47.16 28.56 16.81 51.93 37.31 42.23
3 5 30.66 37.44 33.58 65.21 50.36 40.51
3 15 42.76 22.75 19.38 54.79 37.93 40.34
3 25 56.13 15.86 13.36 51.57 33.09 44.61
4 5 34.67 31.9 24.35 61.37 44.75 39.71
4 15 45.58 15.97 12.31 52.43 33.29 39.43
4 25 54.6 11.2 7.08 45.09 27.12 40.86

Table 4.8: Score of different microaggregation methods and parameterizations when
applied to Census data set. Mic.i .var. j corresponds to microaggregation using vari-
ation var (either PCP, Zscores of MDAV) with v = i and k = j .

the case of Census (although they are different data sets, so it is impossible to for-

mally conclude anything from this fact).

Summing up, the two projection based microaggregation methods can be a real al-

ternative to MDAV in some situations, offering a better privacy level against (stan-

dard) re-identification attacks. However, as we will see in the next section, these

conclusions are not completely right: we will show some new record linkage meth-

ods, specially designed for projection based microaggregation, which increase the

real risk of re-identification (and so, the disclosure risk) of these methods. Maybe
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v k IL DLD PLD ID DR Score
M

ic
.v

.P
C

P-
k

2 5 13.9 2.94 6.91 70.04 37.48 25.69
2 15 17.24 1.72 2.37 67.67 34.86 26.05
2 25 19.98 1.42 1.58 67.21 34.36 27.17
3 5 16.08 2.47 2.69 62.79 32.68 24.38
3 15 17.76 1.49 1.21 59.41 30.38 24.07
3 25 18.49 1.31 0.9 58.49 29.8 24.14
4 5 18.25 4.23 4.81 73.22 38.87 28.56
4 15 16.39 1.96 2.13 70.48 36.26 26.33
4 25 17.27 1.93 1.91 69.66 35.79 26.53

M
ic

.v
.Z

sc
o

re
s-

k

2 5 4.11 33.88 44.25 28.14 33.6 18.86
2 15 4.77 32.05 46.56 28.11 33.71 19.24
2 25 4.95 31.15 49.39 28.08 34.18 19.56
3 5 13.74 7.20 11.99 29.12 19.35 16.55
3 15 15.82 4.66 8.46 29.63 18.09 16.95
3 25 16.76 4.83 7.54 29.80 17.99 17.37
4 5 20.06 6.87 11.85 32.92 21.14 20.60
4 15 21.00 4.52 7.48 33.21 19.61 20.30
4 25 27.50 3.96 6.84 36.28 20.84 24.17

M
ic

.v
.M

D
A

V-
k

2 5 2.99 35.01 50.8 93.71 68.31 35.65
2 15 5.49 20.02 31.49 86.5 56.13 30.814
2 25 6.35 16.09 26.89 83.88 52.69 29.52
3 5 7.64 21.47 34.53 85.52 56.76 32.2
3 15 9.99 11.33 22.67 79.63 48.31 29.15
3 25 11.12 9.6 18.32 77.63 45.8 28.46
4 5 8.3 25.71 36.78 87.76 59.5 33.9
4 15 19.16 12.66 21.31 81.57 49.28 34.22
4 25 20.11 8.11 14.66 78.28 44.83 32.47

Table 4.9: Score of different microaggregation methods and parameterizations when
applied to EIA data set. Mic.i .var. j corresponds to microaggregation using variation
var (either PCP, Zscores of MDAV) with v = i and k = j .

surprisingly, the new methods are also very effective when applied to MDAV. This

will result in important changes to the real disclosure risk, and consequently the real

score, of all these multivariate microaggregation methods.

4.3.2 The Projected Record Linkage Technique

Let X ′ be the result of applying a data protection method to a data set X , with n

records and A attributes. Let y be an original record of X (obtained by an intruder,
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Algorithm 5: Projected record linkage

Data: Y: external data set, X’: protected data set
Result: LP: linked pairs
begin1

foreach X ′
i

of X ′ do2

Apply a projection to the ai attributes in X ′
i
, for all the protected3

records. For example, the projection can be PCP or the Zscores one
(intuitively, if X ′

i
has been obtained with PCP microaggregation,

then PCP should be chosen as the projection method for record
linkage)
Apply the same projection to the corresponding ai attributes of the4

original record y

The result of the previous step is a projected original record ỹ and n5

projected protected records x̃′, all of them with r values
Find the record x̃′

∗ which is closest to ỹ (for example, according to the6

Euclidean distance)
Let x′

∗ be the protected record whose projection was x̃′
∗. Then the7

output link is y ↔ x′
∗ is added to LP

end8

possibly from a different data set Y ). The goal of the record linkage method is to find

the record x′ ∈ X ′ which corresponds to the original y .

Projected record linkage technique (Pro-RL) is specifically designed for the case of

microaggregation. Therefore, we can assume that X ′ is implicitly split into r blocks

X ′
i

of ai attributes, according to the blocks which have been considered to perform

microaggregation. The algorithm of the projected record linkage method is defined

in Algorithm 5.

In some way, the reasoning behind this strategy is that the results of projecting the

original data, in X , and the protected data, in X ′, should be very similar, specially

if the projection method applied in the record linkage algorithm has a similar sta-

tistical behaviour to the data protection method which transformed X into X ′. The

experiments that we have performed and explained in the following section, show

that this intuition is right.

Although we have explained here a version of the projected record linkage technique

which is specific for microaggregation, the idea can be easily extended to works with

any data protection method. One can choose to project all the attributes of X into a

single projected attribute, or to first split X in disjoint blocks of attributes, and then
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Figure 4.10: Percentage of correct links obtained with different record linkage tech-
niques, applied to the Census data set (a) and EIA data set (b), protected with PCP
microaggregation with v = 4.
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Figure 4.11: Percentage of correct links obtained with different record linkage tech-
niques, applied to the Census data set (a) and EIA data set (b), protected with Zscores
microaggregation with v = 4.

to project the attributes in each block, separately. We have implemented and run this

generic record linkage technique against other protection methods (rank swapping,

noise addition) and, differently to what happens in the case of microaggregation, the

results do not improve those obtained by standard record linkage techniques.

4.3.3 Consequences of Pro-RL in Multivariate Microaggregation

We have executed the two projected record linkage methods (using PCP and Zscores

as the inherent projection mechanism) against all the protected data sets obtained in

the experiments of Section 4.3.1; that is, the result of applying PCP microaggregation,

Zscores microaggregation and MDAV, with different parameterizations, to the data
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Figure 4.12: Percentage of correct links obtained with different record linkage tech-
niques, applied to the Census data set (a) and EIA data set (b), protected with MDAV
with v = 4.

sets Census and EIA.

Figures 4.10, 4.11 and 4.12 show the percentage of correct links obtained with dif-

ferent record linkage methods, when applied to both the Census and EIA data sets,

protected with the three multivariate microaggregation schemes that we analyze in

this section using the most secure configuration (using blocks of four attributes).

The percentage is computed by taking into account different scenarios, where the

intruder knows different amounts of groups of attributes of the original record(s) to

be linked, from 2 to all the groups of attributes.

The results of these experiments can be summarized as follows:

• The new projected record linkage methods obtain, in almost all the cases, more

correct links than the other (standard) record linkage methods. The difference

is in some cases very significant. For instance, when the Census data set is

protected using the Zscores microaggregation with a = 4 and k = 25 (the most

protected configuration) DLD is equal to 5.69, a very small value, and ProjLD

is equal to 21.85. A similar situation happens with MDAV, if we observe the

configuration with a = 3 k = 15 (see Table 4.10), we observe an important in-

crease of the disclosure risk: DLD is equal to 22.75 while ProjLD is equal to

60.03, much more than 50% of correctly linked records.

• Not surprisingly, the most effective record linkage method against PCP mi-

croaggregation is the projected one when PCP is used as the inherent projec-

tion, and the same happens with Zscores microaggregation and Zscores pro-
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v k IL DLD PLD ProjLD ID ScoreOld ScoreNew ScoreMax
M

ic
.v

.P
C

P-
k

2 5 80.96 12.93 5.70 49.83 42.60 53.46 56.84 63.59
2 15 92.94 8.46 2.94 45.67 35.64 56.81 60.14 66.80
2 25 84.77 6.61 1.94 43.70 32.93 51.69 54.97 61.54
3 5 57.72 10.15 5.71 27.59 43.48 41.71 43.35 46.63
3 15 71.28 4.35 3.49 23.46 37.36 45.96 47.59 50.84
3 25 72.49 4.07 2.65 20.90 35.51 45.96 47.42 50.35
4 5 72.23 6.48 3.06 18.43 45.12 48.59 49.73 52.00
4 15 91.74 3.43 2.04 14.77 40.73 56.74 57.74 59.74
4 25 92.17 2.92 1.71 12.87 39.72 56.59 57.47 59.23

M
ic

.v
.Z

sc
o

re
s-

k

2 5 101.95 21.24 9.57 99.59 50.69 67.50 74.52 88.55
2 15 121.76 16.17 6.11 96.28 46.14 75.20 82.29 96.48
2 25 122.72 14.61 5.76 90.65 44.58 75.05 81.75 95.17
3 5 90.72 14.97 11.48 87.04 51.89 61.64 67.79 80.09
3 15 124.92 9.57 6.94 67.41 48.18 76.57 81.50 91.36
3 25 128.25 9.23 5.86 60.80 46.73 77.69 82.13 91.01
4 5 103.98 11.25 7.22 53.75 50.64 66.96 70.67 78.09
4 15 136.65 6.53 3.75 28.80 46.74 81.29 83.26 87.21
4 25 133.39 5.69 2.92 21.85 45.30 79.10 80.56 83.48

M
ic

.v
.M

D
A

V-
k

2 5 19.30 69.06 49.22 80.59 74.77 43.13 44.92 48.49
2 15 37.70 45.83 26.67 69.48 60.94 43.15 45.92 51.46
2 25 47.16 28.56 16.81 61.28 51.93 42.23 45.45 51.88
3 5 30.66 37.44 33.58 75.06 65.21 40.51 43.81 50.40
3 15 42.76 22.75 19.38 60.03 54.79 40.34 43.59 50.09
3 25 56.13 15.86 13.36 53.49 51.57 44.61 47.85 54.33
4 5 34.67 31.90 24.35 57.64 61.37 39.71 42.17 47.09
4 15 45.58 15.97 12.31 41.99 52.43 39.43 41.75 46.40
4 25 54.60 11.20 7.08 34.63 45.09 40.86 42.98 47.23

Table 4.10: New scores of the different microaggregation methods, applied to Census
data set. Mic.i .var. j corresponds to microaggregation using variation var (either PCP,
Zscores of MDAV) with v = i and k = j .

jection. For instance, if we compare the ProjLD-PCP and ProjLD-Zscores in

Figure 4.11 we observe that the best method is to apply Zscores projection in

the record linkage when the data set is protected using Zscores microaggrega-

tion.

• Using PCP projection in the record linkage method to obtain correct links

against Zscores microaagregation, or vice-versa, is not effective at all.

• When applied to MDAV, the projected record linkage method using PCP is very

effective (more than any other method in the case of Census, and only over-
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v k IL DLD PLD ProjLD ID ScoreOld ScoreNew ScoreMax
M

ic
.v

.P
C

P-
k

2 5 13.90 2.94 6.91 16.20 70.04 25.69 27.35 28.51
2 15 17.24 1.72 2.37 9.17 67.67 26.05 26.98 27.83
2 25 19.98 1.42 1.58 8.64 67.21 27.17 28.07 28.95
3 5 16.08 2.47 2.69 7.17 62.79 24.38 24.97 25.53
3 15 17.76 1.49 1.21 4.84 59.41 24.07 24.49 24.94
3 25 18.49 1.31 0.90 3.85 58.49 24.14 24.46 24.83
4 5 18.25 4.23 4.81 9.24 73.22 28.56 29.19 29.74
4 15 16.39 1.96 2.13 6.52 70.48 26.33 26.90 27.45
4 25 17.27 1.93 1.91 6.01 69.66 26.53 27.04 27.55

M
ic

.v
.Z

sc
o

re
s-

k

2 5 4.11 33.88 44.25 98.08 28.14 18.86 26.88 33.61
2 15 4.77 32.05 46.56 94.13 28.11 19.24 27.00 32.94
2 25 4.95 31.15 49.39 88.99 28.08 19.56 26.79 31.74
3 5 13.74 7.20 11.99 91.09 29.12 16.55 27.04 36.92
3 15 15.82 4.66 8.46 79.03 29.63 16.95 26.25 35.07
3 25 16.76 4.83 7.54 71.00 29.80 17.37 25.65 33.58
4 5 20.06 6.87 11.85 96.85 32.92 20.60 31.85 42.47
4 15 21.00 4.52 7.48 86.61 33.21 20.30 30.57 40.46
4 25 27.50 3.96 6.84 73.17 36.28 24.17 32.82 41.11

M
ic

.v
.M

D
A

V-
k

2 5 2.99 35.01 50.80 54.48 93.71 35.65 38.08 38.54
2 15 5.49 20.02 31.49 36.66 86.50 30.81 32.89 33.53
2 25 6.35 16.09 26.89 32.84 83.88 29.52 31.61 32.36
3 5 7.64 21.47 34.53 35.40 85.52 32.20 33.94 34.05
3 15 9.99 11.33 22.67 20.53 79.63 29.15 30.30 30.57
3 25 11.12 9.60 18.32 15.35 77.63 28.46 29.18 29.55
4 5 8.30 25.71 36.78 35.29 87.76 33.90 35.10 35.28
4 15 19.16 12.66 21.31 23.29 81.57 34.22 35.55 35.79
4 25 20.11 8.11 14.66 16.81 78.28 32.47 33.56 33.83

Table 4.11: New scores of the different microaggregation methods, applied to EIA
data set. Mic.i .var. j corresponds to microaggregation using variation var (either PCP,
Zscores of MDAV) with v = i and k = j .

come by Probabilistic Record Linkage in some instances of EIA). However, us-

ing Zscores as the inherent projection leads to quite bad results. For example,

if we observe the MDAV configuration with a = 3 and k = 25 in the Census

data set (Table 4.10), we observe that ProjLD is equal to 53.49 while DLD and

PLD are equal to 15.86 and 13.36. Here, the ProjLD is four times higher than

standard record linkage disclosure risks.

Obviously, the fact that the projected record linkage technique has a higher success

rate than the other record linkage techniques must have a direct impact in the real
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disclosure risk (and so, in the score) of the studied multivariate microaggregation

methods.

One possibility is to compute the disclosure risk, again, as the average of the Interval

Disclosure risk (ID) and the Record Linkage risk, but now this last value is computed

as the average of three values: Distance based Linkage Disclosure risk (DLD), Proba-

bilistic Linkage Disclosure risk (PLD) and Projected Linkage Disclosure risk (ProjLD),

which is the maximum percentage of correct links obtained by the projected record

linkage technique, using either PCP or Zscores as the inherent projection. When the

protection method is PCP microaggregation or MDAV, the maximum is obtained by

using PCP as the inherent projection for record linkage; when the protection method

is Zscores microaggregation, the maximum is obtained by using Zscores projection.

Another possibility, maybe more realistic, is to assume that the intruder who wants to

break the privacy of the protection method knows which is the most successful strat-

egy to find correct links. For example, after reading this section, he may know that

projected record linkage with PCP as the inherent projection is the best known tech-

nique to attack PCP microaggregation. In this case, it is clear that he will always use

this technique to find correct links between original and protected records. There-

fore, considering other values to compute the linkage disclosure risk would make no

sense in this situation; the real linkage disclosure risk would be defined as the maxi-

mum among all the linkage disclosure risk values: DLD, PLD, ProjLD.

Summing up, there would be two different alternatives to compute the new scores

of these methods. In the first one, that we call ScoreNew, the disclosure risk is com-

puted as DR_New = 0.5 · (0.333 ·DLD +0.333 ·PLD +0.333Pr o j LD)+0.5 · I D. In the

second one, that we call ScoreMax, the disclosure risk is computed as DR_M ax =

0.5 ·M AX {DLD,PLD,Pr o j LD}+0.5 · I D. As usual, the final score value is computed

as the average of the information loss (I L) and the corresponding disclosure risk

(DR).

Tables 4.10 and 4.11 show the new values of the scores, which strongly depend on the

success rate (ProjLD) of the new projected record linkage technique. This can be eas-

ily verified by comparing the new ScoreNew and ScoreMax with the standard Score,

computed by considering only standard (and generic) record linkage techniques. We

consider the same parameterizations than in Section 4.3.1.
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After looking at these tables, one can conclude that the real scores of multivariate

microaggregation methods are not as good as one could think (see the classification

of data protection methods in [21]). In particular, the percentage of correct links are

now over the threshold of 50% in many cases, so it is not clear if these methods offer

the desired level of privacy.



Chapter 5

Record Linkage using Fuzzy

Integrals

Standard record linkage algorithms assume that both data sets are described using

the same attributes, i.e. they assume that the two microdata files A and B are de-

scribed using the same attributes. In this chapter, we will study the non-standard

case when attributes are not the same. In this scenario, record linkage methods de-

scribed in Section 2.3 and in Chapter 4 cannot be applied.

5.1 An Alternative Disclosure Risk Scenario

At present, there are several works in the literature dealing with scenarios in which

data sets do not include common attributes. Most of the research corresponds to

attribute matching or schema matching [18, 51, 52]. This is possible due to attribute

matching is computationally simpler than record matching because the amount

of redundant information existing in the data for attributes is larger than that for

records.

[63] introduced a scenario in which data sets do not share the same attributes. Re-

identification is still possible in such scenario when the attributes still represent

similar information. This would be the case, for example, if we have the attribute

109
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Income-tax in data set B while the data set A contains Net-income.

In general, re-identification can still be achieved in this context under the following

assumptions:

Assumption 1 A set of common individuals is shared by both files.

Assumption 2 Data in both microdata files contain, implicitly, similar structural in-

formation.

According to [63], we can say that structural information of data is defined as any or-

ganization of the data that allows explicit representation of the relationship between

individuals. This structural information is obtained from the data files through ma-

nipulation of such data (e.g. using clustering techniques or any other data analysis

or data mining techniques). In other words, even though there are no common at-

tributes, there is substantial correlation between some attributes in both data sets;

or applying some clustering techniques we obtain the same clusters for both sets of

records, this latter approach was considered in [23];

Figure 5.1 represents a case that satisfies this latter assumption. In this case, two

data sets A and B are considered. Data set A describes a set of retailers in terms of

the attributes {Benefits, Start-up costs}, whereas B describes the same retailers with

the attribute Business type. In this case, some re-identifications are possible.

As different formalisms can be used for representing the structural information, dif-

ferent techniques are needed to extract such structural information. In this section,

we will focus on structural information represented by means of numerical repre-

sentatives (as in the example given above of Income-tax vs Net-income). Therefore,

the following assumption is considered:

Assumption 3 Structural information is expressed by means of numerical represen-

tatives for each individual.

Here, we describe an approach for record linkage for the case that data sets do not

share attributes and when the structural information is expressed using numerical

representatives. Then, we show that under a few conditions aggregation functions
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Benefit

Start−up costs

Business

Figure 5.1: Graphical representation of an artificial problem that satisfies Assump-
tion 2: Data set A with attributes {Benefits, Start-up costs} and data set B with at-
tribute {Business type}. In this figure, business types are represented using squares,
ellipses, triangles, and so on.

arise as the appropriate functions for building such representatives. Aggregation

functions (described in Section 2.1) are functions that combine (aggregate) N val-

ues into a single one.

To tackle this problem, we consider the transformation of data sets A and B into two

new data sets A′ and B ′ in order that standard re-identification algorithms can be

applied on this latter pair of microdata files (A′, B ′).

To do so, we consider the construction of several representatives for each record a

in A and each record b in B so that re-identification can be performed over such

representatives. This process is detailed below:

• Firstly, we consider a set of functions fi for building the representatives. In

general, we consider that fi is a function of both the record and of the whole

data set A. Therefore, being a a record in A, fi (a, A) stands for a representa-

tive of the record. We denote by F = { fi } for i = 1, . . . ,k the set of considered

functions.

• Then, we apply the functions in F to the records a in A to obtain a′. Formally

speaking a′ :=F (a, A) where:

a′ :=F (a, A) = ( f1(a, A), . . . , fk (a, A))

• Now, assuming that functions in F are also applicable to records b in B , we
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Algorithm 6: Transform File

Data: A: data set, F : set of functions
Result: A’: transformed data set
begin1

foreach a ∈ A do2

a′:=new record( f1(a, A), . . . , fk (a, A))3

write(a’,A’)4

end5

define records b′ in B in a similar way:

b′ :=F (b,B) = ( f1(b,B), . . . , fk (b,B))

• Finally, we define files A′ and B ′ in terms of the new records a′ and b′. That is:

A′ := {F (a, A)}a∈A

B ′ := {F (b,B)}b∈B

Therefore, given the set of functions F = { fi } for i = 1, . . . ,k, and applying each fi to

every record in A and B , we obtain data sets A′ and B ′. This process is defined in

Algorithm 6 in a procedural point of view.

Thus, data sets A′ and B ′ are obtained as:

A′:=transformFile(A, F); B ′:=transformFile(B, F);

With this construction, both data sets A′ and B ′ contain the same number of records

as A and B , and records in both microdata files are described using the same kind of

representatives. Therefore, both data sets can be considered as described using the

same attributes and, as such, standard re-identification algorithms can be applied to

the pair (A′,B ′).

At this point, it is clear that a crucial decision is the selection of functions in F . This

is reviewed in detail in next section.
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5.1.1 Aggregation Functions for Building Representatives

For building the representatives, we have to select the functions in F . Firstly, we

show that aggregation functions are suitable functions for this purpose, and then, on

the basis of the properties we require for fi , we will illustrate that OWA is an appro-

priate selection.

So, we come back to the requirements for functions f ∈F :

i) The outcome of f applied to a record a should not depend on the values of the

other records in A. This condition corresponds to the so-called condition of

independence of irrelevant alternatives, and its inclusion excludes functions

based e.g. on principal component analysis. Formally speaking, this condition

implies that functions f (a, A) do only depend on a and should not depend on

the other values in A.

ii) When all the values of a record are equal, the representative is this value. This

condition implies that all functions f satisfy unanimity (idempotency).

iii) The representatives should be monotonic with respect to their inputs. That is,

given two records a = (a1, . . . , aN ) and a∗ = (a∗
1 , . . . , a∗

N ) so that ai ≤ a∗
i

, the

representatives of a should always be smaller than (or equal to) the represen-

tatives of a∗.

iv) When there is no prior knowledge on the attributes (if this is not the case, other

methods might be used for linkage), no preference should be given to any

of the attributes involved in the process. In other words, the order of the at-

tributes is irrelevant. This is formally expressed saying that a permutation of

the attributes does not affect the output:

f (a1, . . . , aN ) = f (aπ(1), . . . , aπ(N))

where π is a permutation of the indices. That is, f is a symmetric function.

v) The function should be easily extensible to an arbitrary number of parameters,

so that the same procedure can be applied to files with an arbitrary number of

attributes. In this way, we can apply F to both data sets A and B although the

number of attributes in each one is different.
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vi) This function should be parameterizable so that different representatives can be

computed for the same record.

These requirements constrain functions in F . In particular, the first condition im-

plies that functions fi (a, A) can be defined in terms of another function f ′
i

that de-

pends only on a. That is, fi (a, A) = f ′
i

(a). Then, conditions (ii) and (iii) imply that

functions f ′
i

are aggregation functions as they should be idempotent and monotonic

(see Definition 1 in Section 2.1). Therefore, the following holds:

Proposition 1 Let the functions in F satisfy the condition of independence of irrele-

vant alternatives, idempotency and monotonicity. Then, the functions in F are aggre-

gation functions.

Additionally, when conditions (iv), (v) and (vi) are required for aggregation functions,

we have that some of such operators are discarded. This is the case of the weighted

mean (that is not symmetric and not easily extensible because it requires weights

for each attribute) or the arithmetic mean (that is not parameterizable). The OWA

operator and other fuzzy integrals with symmetric fuzzy measures are some of the

few ones that are appropriate. They are symmetric and parameterizable (in terms of

the function Q). In relation to the property of being extensible for an arbitrary num-

ber of parameters, we have that not all definitions for OWA operators are appropri-

ate. For example, definitions based on weighting vectors (as the original definition

in [77]) are not appropriate because additional arguments would require additional

weights. Nevertheless, the definition given in Definition 2 is appropriate because the

same function Q can be used for an arbitrary value of N .

Taking all this into account we state that we can use either OWA operators, Sugeno

integrals or twofold integrals (all based on non-decreasing functions Q). This selec-

tion is valid as the following proposition holds:

Proposition 2 The functions OW AQ , SIQ T IQ ,Q and satisfy conditions (i)-(vi) for all

non-decreasing functions Q.

Additionally, as functions satisfying condition (v) above are applicable to an arbitrary

number of parameters, they can also be applied to situations in which data contains

missing values. In this case, instead of defining record a′ as before, we would define:
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a′ :=F (a, A)= ( f1(â, A), . . . , fk (â, A))

where â is a projection of a over those attributes with non-missing values in a. For

all this, the following holds:

Proposition 3 The functions OW AQ , SIQ and T IQ ,Q are applicable to records with

missing data for all non-decreasing functions Q.

5.1.2 Example

Now, we illustrate with an illustrative example the method we have proposed. In

Section 5.2 we will describe several experiments with real data.

Let us consider the two data files A and B represented in Figure 5.1. Data set A con-

sists of 10 records described in terms of 4 attributes. All attributes are numerical and

numbers belong to the interval [0,1]. Data set B contains the same data included in

A but the attributes have been permuted.

Standard re-identification algorithms cannot be applied to establish links between

the records in A and B without knowing the correspondence between attributes in A

and B . Nevertheless, in this case, we can apply the method described in this section.

To do so, we need to define the set of functions F . We will use here the OWA oper-

ator with Qα(x) = xα with several values of α. In particular, we consider 10 different

functions corresponding to Qα with the following values of α:

α= (1/5,2/5,3/5,4/5,5/5, 6/5,7/5, 8/5,9/5, 10/5)

By applying these aggregation functions, we obtain exactly the same records for both

microdata files A and B presented in Figure 5.1. The records obtained are given in

Table 5.2. Now, as both files contain exactly the same records, the re-identification is

trivial.

Note that the first row in Table 5.2 is obtained by applying the OWA operator to

the first row of Tables (a) and (b) of Table 5.1 using the function Qα(x) = xα with
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at tr1 at tr2 at tr3 at tr4

r A
1 0.2 0.4 0.2 0.4

r A
2 0.1 0.2 0.1 0.2

r A
3 0.5 0.6 0.5 0.1

r A
4 0.8 0.4 0.4 0.7

r A
5 0.9 0.2 0.0 0.0

r A
6 0.2 0.2 0.3 0.9

r A
7 0.5 0.3 0.2 1.0

r A
8 0.0 0.1 0.5 1.0

r A
9 1.0 0.0 0.9 0.2

r A
10 0.5 1.0 1.0 0.8

(a)

at tr ′
1 at tr ′

2 at tr ′
3 at tr ′

4

r B
1 0.4 0.2 0.2 0.4

r B
2 0.2 0.1 0.1 0.2

r B
3 0.1 0.5 0.5 0.6

r B
4 0.7 0.4 0.8 0.4

r B
5 0.0 0.0 0.9 0.2

r B
6 0.9 0.3 0.2 0.2

r B
7 1.0 0.2 0.5 0.3

r B
8 1.0 0.5 0.0 0.1

r B
9 0.2 0.9 1.0 0.0

r B
10 0.8 1.0 0.5 1.0

(b)

Table 5.1: Data sets A and B for re-identification.

Q1/5 Q2/5 Q3/5 Q4/5 Q5/5 Q6/5 Q7/5 Q8/5 Q9/5 Q10/5

r ′A
1 = r ′B

1 0.37 0.35 0.33 0.32 0.30 0.29 0.28 0.27 0.26 0.25
r ′A

2 = r ′B
2 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.13

r ′A
3 = r ′B

3 0.55 0.51 0.48 0.45 0.43 0.40 0.38 0.36 0.35 0.33
r ′A

4 = r ′B
4 0.74 0.69 0.64 0.61 0.56 0.55 0.53 0.51 0.49 0.48

r ′A
5 = r ′B

5 0.71 0.55 0.44 0.35 0.28 0.22 0.18 0.14 0.12 0.094
r ′A

6 = r ′B
6 0.74 0.62 0.53 0.46 0.40 0.36 0.32 0.30 0.28 0.26

r ′A
7 = r ′B

7 0.85 0.73 0.63 0.56 0.50 0.45 0.41 0.38 0.36 0.34
r ′A

8 = r ′B
8 0.82 0.68 0.57 0.47 0.40 0.34 0.29 0.25 0.22 0.19

r ′A
9 = r ′B

9 0.87 0.77 0.67 0.59 0.53 0.47 0.41 0.37 0.33 0.29
r ′A

10 = r ′B
10 0.96 0.92 0.88 0.85 0.83 0.80 0.78 0.755 0.74 0.72

Table 5.2: Data set A (and B) for re-identification.

α = 1/5, . . . ,10/5. In particular, the first column in Table 5.2 corresponds to α = 1/5,

second column to α= 2/5 and so on since the tenth column where α= 10/5.

Therefore, the element in the i -th row, column Qα in Table 5.2 corresponds to

OW AQα(r A
i

). Of course, OW AQα(r A
i

) is equivalent to OW AQα(r B
i

) in this example

because r B
i

is a permutation of r A
i

and the OWA operator is symmetric.

This example can be considered as too simplistic. Nevertheless, this same situation

arises in database integration with unlabeled attributes or with inconsistent labeled

attributes. In a more general case, instead of having a permutation of exactly the

same attributes, we might have attributes in one data set that are combinations of

some attributes in the other database.
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5.2 Experiments

The approach presented herein has been extensively tested with several microdata

files, considering three types of aggregation functions (OWA, Sugeno integral and

twofold integral) and considering three different quantifiers. We have used the seven

data sets extracted from the UCI repository [46] and the Census data set extracted

from the CASC project. All these data sets are described in Section 2.6.

5.2.1 Preprocessing

To test the re-identification algorithms the microdata files have been partitioned.

Each data set was split into two new data sets in such a way that both data sets con-

tained the same records but only some of the attributes. Attribute selection was done

on the basis of the correlation coefficients. In particular, attributes with a low corre-

lation coefficient over all the other attributes were discarded and pairs of attributes

with a correlation coefficient of at least 0.7 were separated assigning one of each to a

different microdata file.

Below we list the microdata files used in the experiments, and for each one the two

sets of attributes considered (each set defines one microdata file). For example, in

the case of the Iris Plants Database, that contains 150 records, one microdata file

contains the 150 records but only the attributes Sepal-length and Petal-length and

the other one (that also contains 150 records) contains the attributes Sepal-width

and Petal-width.

• Iris data set. {a1, a2}, {a3, a4}

• Abalone data set. {a4, a5, a7}, {a2, a3, a6, a8}

• Ionosphere data set. {a1, a2, a3, a4, a5, a6}, {a7, a8, a9, a10, a11, a12}

• Dermatology data set. {a1, a2, a3, a4, a5, a6, a7, a8, a9}, {a10, a11, a12, a13,

a14, a15, a16}

• Housing data set. {a1, a2, a3, a4}, {a5, a6, a7}

• Water Treatment data set. {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11}, {a12, a13,

a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25}
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• WDBC data set. {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12}, {a12, a13, a14,

a15, a16, a17, a18, a19, a20, a21, a22}

• Census data set. {a1, a3, a8, a9, a10, a12, a13}, {a2, a4, a5, a6, a7, a11}

Before applying the re-identification algorithm, the data has been normalized. We

have considered both ranging (denoted below by N1) and standardization (N2).

Missing values have been replaced by zero (after normalization).

5.2.2 Tests

The procedure described in Section 5.1.1 has been applied to each pair of data set.

For each pair, we have selected at random sets of 100 records and applied the re-

identification algorithms. 10 executions have been applied and the average number

of re-identifications has been computed.

Experiments have been done using the OWA operator as well as for the Sugeno inte-

gral and twofold integral with respect to a fuzzy measure of the form µ(A) =Q(|A|/N )

(and also with respect to µ(B) = Q(|B |/N ) in the case of the twofold integral). For

the aggregation functions, three different families of non-decreasing functions were

considered. The functions and the parameters used are the following ones:

1. Qe
α(x) = xα for α= 1/5,2/5,3/5, . . . ,10/5

2. Q s
α(x) = 1/(1+e(α−x)∗10) for α= {0,0.1, . . . 0.9}

3. Q t
α(x) =

{
0 if x ≤α

1 if x >α
for α= {0,0.1, . . . 0.9}

Here, Qe stands for exponent, Q s for sigmoidal and Q t for threshold. Figures 5.3, 5.2,

and 5.4 give a graphical representation of these functions.

Once we have obtained microdata files with common attributes, we used both prob-

abilistic and distance-based record linkage.



5.2. Experiments 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x**0.2
x**0.4

x**0.6
x**0.8

x**1
x**1.2

x**1.4
x**1.6

x**1.8
x**2

Figure 5.2: Graphical representation of Qe
α for α= 1/5, . . . ,10/5.

5.2.3 Results

The results for the data sets with better performance are given in Tables 5.4, 5.5, 5.6,

and 5.7. They correspond to the microdata files Abalone, Ionosphere, Census, and

WDBC. Iris, Dermatology and Housing led to poor results. The bad performance

of Iris and Housing was probably due to the reduced number of attributes, that did

not permit to express structural information correctly. The file Water Treatment, not

included herein, led to results similar to Census with around 10 re-identifications

and a maximum of 16.

In the aforementioned tables, we give the average number of re-identifications ob-

tained over 10 executions, considering in each execution the parameters described

above: (i) either OW A, the Sugeno integral (denoted SI ) or twofold integral (T I ) with

respect to a symmetric fuzzy measure; (ii) either distance-based record linkage (DB-

RL) or probabilistic one (P-RL); (iii) either ranging (denoted N1) or standardization

(N2) as the normalization method and (iv) either Qe , Q s or Q t as the non-decreasing

functions Q that with OW A or SI define the set F ; to define the set F for T I we have

selected the three best possible combinations of Qe , Q s and Q t in each case.

The experiments show that, except for the data sets with poor performance, at least
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Figure 5.3: Graphical representation of Q s
α for α= 0,0.1, . . . ,0.9.

10% of the records were re-identified achieving averages of 18.2 or 22.6 for data sets

WDBC and Ionosphere. The maximum percentage of records re-identified in an ex-

periment was 26% in WDBC and 28% in Ionosphere. These values are not given in

the tables, since tables only include the averages of 10 executions.

The evaluation of our approach is not straightforward as there are no systematic al-

ternative approaches to deal with the same problem. Two simple methods were con-

sidered in [23] for the Census data set:

• The one-dimensional ranking based on first principal component: that per-

mitted to correctly re-identify 5 out of 90 records.

• The one-dimensional ranking based on the sum of z-scores: by using this ap-

proach, 5 out of 90 records were correctly re-identified.

For the same problem, by using the approach described herein, we were able to cor-

rectly re-identify 12 records out of 100 and the better average over 10 runs was 10.4

(see Table 5.6).

An alternative way to assess the successfulness of the method is to consider the prob-

ability of random linkage. The probability of randomly obtaining r or more linkage
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Figure 5.4: Graphical representation of Q t
α for α= 0,0.1, . . . ,0.9.

out of n is defined in the next proposition.

Proposition 4 [64, 67] If A and B both contain n records corresponding to the same

set of n individuals, the probability of correctly re-identifying exactly r individuals by

a random strategy is
∑n−r

v=0
(−1)v

v !

r !
(5.1)

Table 5.3 gives the probabilities for some values of r when the number of records is

100. It can be seen that the probability of obtaining between 15 and 30 records (as

obtained in some of the experiments reported here) is almost zero. For example, the

probability of re-identifying 26 records or more as in wdbc is 9.47 ·10−28 and for 28

records as in Ionosphere is 1.24 ·10−30 .

Finally, it is possible to compare the results of our approach with the success rate of

re-identification of standard record linkage when an original data set and a masked

data set are compared. In [22], around 300 experiments are described and an average

number of re-identifications of 26.12% was obtained for distance-based record link-

age and 19.72% for probabilistic one. Here, the rate is smaller but considering that

we use data sets not sharing attributes the performance is acceptable, specially since
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r prob. |l i nks| = r prob. |l i nks| ≥ r

0 0.36787944 1
1 0.36787944 0.63212056
2 0.18393972 0.26424112
3 0.06131324 0.08030140
5 0.00306566 0.00365985

10 1.0138E-7 1.1143E-7
15 2.8132E-13 3.0000E-13
20 1.5121E-19 1.5875E-19
25 2.3717E-26 2.4664E-26
26 9.1219E-28 9.4723E-28
28 1.2066E-30 1.2496E-30
30 1.3869E-33 1.4331E-33
50 1.2096E-65 1.2338E-65

100 1.071E-158 1.071E-158

Table 5.3: Probabilities of having r correct links and of having more or equal than r

links for 100 records.

OW A SI T I

Qe Q s Q t Qe Q s Q t Qe Q t Q s Q t Q t Q t

N
1 DB-RL 6.5 5.9 6.7 4.8 4.2 6.7 6.6 6.4 6.1

P-RL 3.9 5.2 1.8 5.5 5.2 1.8 5.3 4.1 4.2

N
2 DB-RL 9.9 7.9 8.8 5.6 6.5 7.0 11.2 8.6 7.3

P-RL 6.3 8.4 2.2 5.6 6.2 2.4 8.2 7.6 8.1

Table 5.4: Average number of re-identified records for the Abalone example.

the best performance for Ionosphere is 28 (larger than 26.12%) and the best average

for the same problem for probabilistic record linkage is 22.2%, still larger than the

result in [22] for probabilistic record linkage. Similar results were reported [24] with

respect to re-identification of synthetic data.

The results permit to compare the different approaches experimented. In general,

we can state that the use of the Choquet integral and twofold integral are more suc-

cessful than that of the Sugeno integral. Also, we may add that the use of the quan-

tifier Q t leads to better results than the use of Qe and Q s . The results also show that

distance-based record linkage is more suitable for numerical data. Finally, we have

that the use of standardization is, in general, preferable over ranging.
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OW A SI T I

Qe Q s Q t Qe Q s Q t Q s Q t Q s Q s Q t Q s

N
1 DB-RL 14.4 21.8 21.9 11.6 20.3 21.9 19.3 19.1 17.7

P-RL 12.9 22.2 3.9 10.8 20.7 3.9 22.4 22.6 17.7

N
2 DB-RL 5.7 7.9 8.6 6.4 6.9 8.0 8.2 7.3 7.1

P-RL 4.2 7.5 1.3 4.9 6.2 1.6 6.1 4.3 5.8

Table 5.5: Average number of re-identified records for the Ionosphere example.

OW A SI T I

Qe Q s Q t Qe Q s Q t Qe Q s Q s Qe Q s Q s

N
1 DB-RL 7.1 9.5 7.5 6.1 8.6 7.5 9.9 8.7 8.8

P-RL 4.7 9.6 10.4 6.0 7.9 10.4 9.6 9.1 7.3

N
2 DB-RL 8.4 8.8 9.9 4.3 3.6 5.0 9.8 9.6 9.3

P-RL 7.4 8.8 5.0 3.7 3.5 2.2 7.1 8.2 7.6

Table 5.6: Average number of re-identified records for the Census example.

OW A SI T I

Qe Q s Q t Qe Q s Q t Q s Q t Q t Q s Q t Q t

N
1 DB-RL 5.0 7.0 4.4 5.5 5.8 4.4 6.8 5.8 5.1

P-RL 4.4 7.1 8.0 6.3 5.8 8.0 7.8 6.2 4.3

N
2 DB-RL 10.8 15.8 18.2 3.3 4.6 5.1 17.7 18.2 16.4

P-RL 10.5 14.8 16.2 3.3 4.7 4.6 16.4 14.1 12.3

Table 5.7: Average number of re-identified records for the WDBC example.





Chapter 6

Time Series Protection

In this chapter we present some results about time series protection and re-

identification. We propose a complete framework to evaluate time series protection

methods. We also present some empirical results to show how our framework works.

To the best of our knowledge, neither information loss nor disclosure risk measures

are described for the case of time series protection. In this chapter we propose a

group of information loss measures designed for time series protection evaluation.

Such measures consider the main uses of time series, e.g. forecasting and autocor-

relation analysis. We also propose the use of the record linkage methods, specially

adapted to time series, as the most straightforward way to compute the disclosure

risk. Finally, we propose to combine both IL and DR measures in a final score using

the arithmetic mean.

6.1 Time Series Protection

A lot of effort has been made in the last few years to develop protection methods,

see [1, 21] for a survey. Nevertheless, the research on protection methods focuses on

the anonymization of numerical and categorical data.

However, in the real world, an increasing percentage of the released information has

an implicit or explicit time component. This is the case of e.g., income or stock prices.

125
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Similarly, data accumulation through consecutive years (e.g., economical data from

companies or census data from individuals) can also be considered from this point of

view. Standard protection methods have been designed for non-temporal attributes

and they disregard many key questions regarding time series as e.g. time series nor-

malization or preservation of time information. In general, methods ignore the stan-

dard uses specific for time series as e.g. forecasting or tendency analysis.

In this section, we present a method for time series protection. It is a method based

on MDAV microaggregation. Recall that MDAV (and microaggregation in general) re-

quires the definition of a distance on the data. For standard data, the usual distance

is the Euclidean one. In the case of time series, several distances on time series can

be considered. Here, we propose two different distances: short time series distance

and Euclidean distance (both described in Section 2.2.1).

6.1.1 Time Series Microaggregation

To specialize the MDAV algorithm for time series we need to establish which dis-

tance and which average function will be used. We propose to implement the general

MDAV algorithm described in Algorithm 3 (Section 2.4.2) with the following param-

eterizations:

• Distance functions. We propose the use of Euclidean and STS distances:

dEU (x, v) and dST S (x, v) as defined in Section 2.2.1.

• Average. We propose to use a kind of arithmetic mean. Such mean has been

defined component-wise. That is, given the set X = {x j } j=1,...,J with time series

x j for j = 1, . . . , J , each one with x
j

k
, we define the average series x̃k by x̃k =

(1/J )
∑

j=1,...,J x
j

k
.

With these definitions, the average record x̃ in the MDAV algorithm is the average of

all records (time series) in X .

The two distance functions considered (Euclidean and STS distances) lead to dif-

ferent results when combined with the microaggregation algorithm. While the Eu-

clidean distance makes clusters based on the distance between data components,
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Figure 6.1: Graphical representation of distance function selection.

the STS distance makes clusters based on the shape of the time series. This is illus-

trated in the following example.

Example 6.1 Figure 6.1 (left) represents 4 series to be microaggregated. The results

of microaggregating these 4 series into 2 clusters using either Euclidean or STS

distances are given, respectively, in middle and right chart of Figure 6.1. It can

be observed that the Euclidean distance gathers together the nearest series even

in the case that they have different shapes (and, thus, the outcomes are just lines

but that mainly keep the original values). In contrast, the STS distance gathers

series according to shapes (and, thus, the outcomes keep such shapes but not the

original position of the series).

In this example, we have used point-wise average for computing the representa-

tive of each cluster.

According to this, in the step of selecting the distance function, we have the oppor-

tunity to model how the microaggregation procedure makes the clusters and decide

which information is the most important to be kept in the final protected model.

In the following we will use eu-microaggregation to denote the microaggregation

based on the Euclidean distance and st s-microaggregation to denote the microag-

gregation based on the STS distance.

6.2 Time Series Information Loss Measures

Strictly speaking, information loss depends on the data uses to be supported by the

protected data. However, potential data uses are very diverse and it could be even

hard to identify them all at the moment of data release. It is thus desirable for the

data protector to be able to measure information loss in a generic way. Informa-
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tion loss measures should reflect how much perturbation is added by a given protec-

tion method. The amount of information loss measured in this generic way should

roughly correspond to the amount of information loss for a reasonable range of data

uses. When one defines the measure from a set of components, we need such com-

ponents to cover (almost) all the possible data uses of a generic user.

In our scenario for time series protection, information loss components have to

cover a broad variety of uses, ranging from the statistical analysis to forecasting. For

this reason, we divide the information loss components into three different cate-

gories:

• I L1 . Measures related to statistical analysis. Such measures, as the average or

the autocorrelation function, cover part of the typical statistical analysis like

ARMA or ARIMA processes [9].

• I L2 . Measures related to the differences among original and protected time

series. It is clear that information loss increases if protected elements are ’far’

(dissimilar) to the original ones.

• I L3 . Measures related to forecasting. As forecasting is one of the most com-

mon uses of time series, we can say that the statistical information is preserved

when the forecast from protected time series is similar to the forecast using the

original data.

6.2.1 Information Loss Computation

We have defined the general information loss in terms of the three different compo-

nents described above I L1 , I L2 and I L3 :

I L =
I L1 + I L2 + I L3

3

We formally define I L1, I L2 and I L3 below. These three measures are calculated

using the differences between values obtained from the original and the protected

data. It is possible to define such differences in different ways (e.g. by using the

mean square error or the mean absolute error). However, as we want to obtain a

value in the [0,1] interval, we define the I Li measures as mean variations dividing
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the differences by the largest value (original or protected) to ensure that the result is

always inside the rank [0,1]. We denote γ for the original statistic value and γ′ for the

same statistic computed in the protected data set.

• I L1 . It is defined as the average of the difference between the time series means

and the autocorrelation functions of both original and protected time series.

Formally, I L1 is computed using the formula

I L1 =
I L1.1 + I L1.2

2

where I L1.1 and I L1.2 correspond, respectively, to

I L1.1 =

∑s
i=1

(|µi |−|µ
′
i
|)

M ax(|µi |,|µ
′
i
|)

s

I L1.2 =
1

4

∑

i=0,n/4,n/2,3n/4
(

∑s
i=1

|(Ri |−|R
′
i
)|)

M ax(|Ri |,|R
′
i
|)

s
)

where s is the number of series in the data set and n is the number of elements

(length) of the time series.

• I L2 . It is defined in terms of the absolute differences between original and pro-

tected time series elements

I L2 =

∑s×n
i=1

|xi−x′
i
|

M ax(|xi |,|x
′
i
|)

s ×n

• I L3 . It is defined using the differences between different forecasting models for

the n+1, n+2 and n+3 values

I L3 =

∑
m∈F M

∑3
i=1

|xn+i −x′
n+i

|

Max(xn+i ,x′
n+i

)

3

5

where F M is the set containing all the forecasting models described in Sec-

tion 2.2.2. Then, F M is defined as F M = {SESF,DESF,RF, MLRF,PRF }.
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6.3 Time Series Disclosure Risk Measures

Section 6.2 discusses ways to measure the information loss caused by protection

methods for time series. However, as we have explained in the preliminaries, the

assessment of the quality of a protection method should not be restricted to its in-

formation loss but it should also include a measure of its disclosure risk.

Following the scenario described in Section 2.4, once the modified (protected) data

set X ′ is released, everybody can see its content. This scenario also assumes that the

intruder has access to some other data set Y = Yid ||Ync which includes an identifier

and some of the non-confidential quasi-identifier attributes of some of the individ-

uals whose data is in X ′. Then, according to this scenario, disclosure risk measures

have to be in accordance with the difficulty for an intruder of linking the protected

data X ′ with the original data Y . To do this, in this thesis we propose to modify the

distance based record linkage method presented in Section 2.3.1 for time series re-

identification.

We also measure the disclosure risk in the scenario where the intruder has no ac-

cess to an external data set. In this case, we assume that the intruder tries to infer

the original values from the protected ones. We model this situation using the in-

terval disclosure. In this approach an interval is considered around each protected

value. Then, when one original value falls within the interval defined around the cor-

responding protected value, we assume that the intruder obtains a value of enough

quality to break the privacy of the data respondent.

6.3.1 Time Series Normalization

It is usual to normalize data sets before applying record linkage methods. This is so,

to avoid the scale problems of raw data. The following two alternatives are usually

considered:

• Ranging. Raw data is translated into the [0,1] interval using this expression

x′ =
(x−min(a))

(max(a)−min(a)) , where x is the original value and max(a) and min(a) are

the maximum and minimum values for the corresponding attribute a.
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Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 106.5 110.3 114.9 117.9 119.3 121 122.2 124.1 129
Oil 102.7 119.8 147.8 178.7 130.8 116.2 133.6 123.5 114.4

Vegetables 95.6 101.9 110.8 116.4 114.2 119 124.6 126.4 133.9
Potatoes 101.1 133.6 162.8 123.8 121.3 140.4 149.8 148.6 177.6

Table 6.1: Data extracted from Spanish National Statistics Institute.

• Standardization. Raw data is normalized by translating the mean to be equal

zero and the standard deviation to be equal one. That is, x′ =
(x−µa )

Sa
, where

µa and Sa are, respectively, the mean and the standard deviation of the corre-

sponding attribute a.

This kind of pre-processing, when applied independently for each component of the

time series, causes the loss of the temporal information of the time series. For this

reason, we apply another type of normalization using all the elements included into

the time series. In this work we had used the following normalization

x′
i =

(xi −µx )

Sx

where µx and Sx are the mean and the standard deviation of the elements of the

corresponding time series.

Now, we illustrate with a clear example (that uses the index prices for some food

products) the impact of the normalization of the time series, comparing the normal-

ization by component (each component treated as an attribute) and the normaliza-

tion of the time series as a whole. The example illustrates that the normalization by

component distorts completely the shape of the time series.
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Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 1.00 0.26 0.08 0.02 0.31 0.20 0.00 0.02 0.23
Oil 0.65 0.56 0.71 1.00 1.00 0.00 0.41 0.00 0.00

Vegetables 0.00 0.00 0.00 0.00 0.00 0.12 0.09 0.12 0.31
Potatoes 0.50 1.00 1.00 0.12 0.43 1.00 1.00 1.00 1.00

Table 6.2: Data normalized with the standard component-wise procedure.

Index of prices
1993 1994 1995 1996 1997 1998 1999 2000 2001

Bread 106.5 110.3 114.9 117.9 119.3 121 122.2 124.1 129
Oil 102.7 119.8 147.8 178.7 130.8 116.2 133.6 123.5 114.4

Vegetables 95.6 101.9 110.8 116.4 114.2 119 124.6 126.4 133.9
Potatoes 101.1 133.6 162.8 123.8 121.3 140.4 149.8 148.6 177.6

Table 6.3: Data normalized with the time series procedure.

Index of prices
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Figure 6.2: Graphical representation of the effects of time series normalization, (a)
represents the original data without normalization, (b) represents normalized data
with independent normalization, (c) represents normalized data with time series
normalization.
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Example 6.2 Let us consider the price index of four different foods in nine years.

We can observe in Table 6.1 the original raw values and their tendency in the pe-

riod 1993 - 2001 and in Tables 6.2 and 6.3, respectively, the normalized data values

after standard (component-wise) and time series (data altogether) normalization.

Figure 6.2 shows that different normalizations produce different outcomes and

that the standard component-wise normalization causes important divergences

on the tendency of the time series between the original time series and the nor-

malized one. For example, in the case of bread, when comparing charts (a) and

(b), we observe that in the original data bread price tendency was to increase every

year but that after normalization bread price has a decreasing tendency. This is a

negative effect of the normalization over the data.

To avoid this effect of component-wise normalization, we propose the use of specific

normalization procedures for time series: normalization of all the series.

6.3.2 Time Series Re-identification

The time series record linkage presented in this section is based on the standard

distance based record linkage. Recall that DB-RL method can be applied when a

distance between pairs of records (one in the original data set and the other in the

protected data set) can be defined. Then, every protected record is linked to the

closest original one. When the data is numerical (DB-RL standard), it is usual to use

the Euclidean distance (after normalizing the whole data set). In our case with time

series, we use the normalization explained above and the distances presented in Sec-

tion 2.2.1. That is, the Euclidean distance and the STS distance. Formally, time series

record linkage is described in Algorithm 7, where dt s (a,b) is defined in terms of a

given distance dxi
for each time series xi .

6.3.3 Time Series Interval Disclosure

When the intruder has no access to any external data source, he can try to approxi-

mate original values assuming that they are in a finite interval around the protected

value. To measure the risk of this approach, we apply the Algorithm 8 where p is a

parameter defined by the user and |E | is the number of values in the entire data set.
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Algorithm 7: Time Series Record Linkage

Data: X: original data set, X’: protected data set
Result: LP: linked pairs
begin1

Apply time series normalization to X and X’2

foreach a ∈ X do3

b′ = ar g _mi nb∈X ′dt s (a,b)4

LP = LP ∪ (a,b′)5

foreach a ∈ X do6

N P = N P ∪ (a,b)7

end8

Algorithm 8: Time Series Interval Disclosure

Data: X: original data set, p: interval size
Result: c: percentage of elements revealed
begin1

foreach record r ∈ X do2

foreach time series t ∈ r do3

foreach element x ∈ t do4

r = p × x′
5

if (x ≥ x′− r ) and (x ≤ x′+ r )) then6

c = c +17

end8

Normally, the parameter p is defined using a percentage of difference of an element.

For example, with p = 10%, if the element is equal to 10, the corresponding interval

will be [9,11].

6.3.4 The Computation of the DR Measures

Considering the two scenarios presented above, it is possible to compute the final

disclosure risk as:

DR =
DR1 +DR2

2

where DR1 and DR2 summarize the re-identification risk and the interval disclosure
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risk respectively.

DR1 is computed averaging the percentage of records correctly linked by the intruder

using different time series distances. In our case we consider EU LD (Euclidean dis-

tance linkage disclosure) and ST SLD (Short time series linkage disclosure). For-

mally, we compute DR1 using the formula

DR1 =
EU LD +ST SLD

2

where EU LD and ST SLD are the average percentage of records correctly linked us-

ing time series record linkage with Euclidean and STS distance when the intruder

knows different numbers of time series (from 1 to all).

DR2 is computed as the interval disclosure using different values for the parameter

p, in our case p ranges from 1% to 10%

DR2 =

∑0.1
p=0.01 I Dp

10

6.4 Final Trade-off Evaluation

As we said in the preliminaries, information loss and disclosure risk have to be

combined to obtain a global value about the performance of a specific protection

method. This value weighs the relationship between information loss and disclosure

risk. To do this, we follow the definition of the score presented in Section 2.5. Then,

the final evaluation of a time series protection method is as follows:

scor e =
I L+DR

2

where I L is the overall information loss measure and DR is the overall disclosure risk

measure.
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6.5 Experiments

As stated above, we have introduced a new data protection method for time se-

ries, and we have also presented a framework to evaluate time series anonymization

methods. In this section, we describe some experiments done with real data using

the time series microaggregation protection method. These experiments show how

our framework works.

6.5.1 Data Protection

To analyse empirically our framework and to evaluate the time series microaggrega-

tion method we have protected some real data sets that can be obtained freely from

different data sources. Firstly, we have used a file from [38] (the so-called forecast-

ers) with 3003 time series of different lengths (between 14 and 64 elements). We have

re-sampled all time series to 10 elements to covert them into the same length. Sec-

ondly, we have used the Stock Exchange information of the thirty five most impor-

tant Spanish companies. These companies are ranked in the so-called Ibex35 stock

market. We have downloaded the information about prices from June, 21st 2005 to

April, 28 th 2006 from [56]. And finally, we have used data information about all foot-

ball teams of the nine most important European domestic leagues from [33]. As said

above, the information about these three testbeds is publicly available. Data details

are given in Table 6.4.

We have protected the original data with the time series microaggregation method

described in Section 6.1. We have applied this method with k ∈ {2,3,6,9,12}.

We have applied the time series microaggregation method splitting the original time

series into n masked ones to obtain a larger variety of tests. We detail now these

conversions for each file.

• Forecasters problem. We have split the original time series into n ∈ {1,2} time

series. So, in this case we have two different data sets, one with one time series

and the other with two time series.

• Ibex35 problem. We have split the original time series into n ∈ {2,4,20} time

series. So, in this case, we have three different data sets with 4,8 and 40 time
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Fo
re

ca
st

er
s Records 3003

Number of time series 1
Time series length 10
Number of records 10
Series description Financial information

Ib
ex

35

Records 35
Number of time series 2
Time series length 220
Number of records 440
Series description Financial information, Volume transactions

fo
o

tb
al

l

Records 176
Number of time series 8
Time series length 25
Number of records 200
Series description Years, FIFA points, Leage position, Goals for

Goals against, Matchs win, Matchs dice, Matchs loose

Table 6.4: Details of time series examples.

series.

• football problem. In this case, no conversion is done because the original data

set already consisted on eight time series.

6.5.2 Results

Tables 6.5, 6.6 and 6.7 present the score and its components for the forecaster, foot-

ball and ibex35 data set respectively. Columns one to three present the I Li compo-

nents and column four shows the overall IL value. From these columns we can infer

that IL increases when k increases. E.g. in the forecaster problem protected with

eu-microaggregation, I L values range from 6.78 to 15.89. This behavior is consistent

with the usual results for general microaggregation methods.

We can also infer from I L1 (column one) that time series microaggregation preserve

the time series mean and autocorrelation function. See, for example, the forecasters

data set in Table 6.5, where for all the microaggregation configurations, I L1 is always

0.00. It is known that general microaggregation preserves the average when applied

to numerical attributes. Therefore, it is not surprising that time series microaggrega-

tion also preserves time series mean, when applied to time series.



138 Chapter 6. Time Series Protection

i k I L1 I L2 I L3 I L EU LD ST SLD I D DR scor e
fo

re
ca

st
er

s.
i.

eu
-k

1 2 0.00 6.33 6.78 4.37 42.79 33.37 40.32 39.20 21.79
1 3 0.00 8.32 9.27 5.86 25.67 17.32 39.20 30.35 18.11
1 6 0.00 11.00 12.56 7.85 10.62 6.03 37.63 22.98 15.41
1 9 0.00 12.57 14.20 8.92 7.19 3.33 36.52 20.89 14.91
1 12 0.00 13.63 15.89 9.84 5.49 2.56 35.80 19.92 14.88
2 2 0.00 26.27 29.44 18.57 28.37 22.56 28.41 26.94 22.75
2 3 0.00 27.76 31.84 19.87 15.55 11.72 26.43 20.04 19.95
2 6 0.00 26.12 32.30 19.47 7.74 5.11 26.42 16.43 17.95
2 9 0.00 25.09 31.74 18.95 6.44 3.50 26.97 15.97 17.46
2 12 0.00 24.41 30.34 18.25 5.44 2.56 27.76 15.88 17.07

fo
re

ca
st

er
s.

i.
st

s-
k

1 2 0.00 10.16 7.88 6.01 30.67 42.12 38.14 37.27 21.64
1 3 0.00 12.72 10.10 7.61 17.65 25.61 36.60 29.11 18.36
1 6 0.00 16.53 13.39 9.97 7.16 10.92 34.05 21.55 15.76
1 9 0.00 18.51 15.46 11.32 4.83 7.49 32.70 19.43 15.38
1 12 0.00 20.41 17.10 12.50 3.26 5.19 31.39 17.81 15.16
2 2 0.00 23.69 27.63 17.11 20.63 30.82 29.63 27.68 22.39
2 3 0.00 26.01 29.40 18.47 11.39 17.62 27.80 21.15 19.81
2 6 0.00 28.68 31.31 19.99 5.81 8.04 26.05 16.49 18.24
2 9 0.00 30.30 32.78 21.03 3.70 5.61 24.93 14.79 17.91
2 12 0.00 31.69 34.17 21.95 2.86 4.56 24.19 13.95 17.95

Table 6.5: Score and its components in the forecasters data set. Forecaters.i .d-k cor-
responds to microaggregation using distance d (Euclidean or STS) with i series and
parameter k.

Comparing eu-microaggregation and st s-microaggregation with the same k and

number of series, it can be observed that (in general) I L is lower for the eu-

microaggregation. However, in a few cases, st s-microaggregation obtains a lower

I L. For instance, in the forecasters data set with two time series and k = 2, I L for eu-

microaggregation is equal to 18.57 while for st s-microaggregation is equal to 17.11.

Columns five and six present the EU LD and ST SLD. From these two columns it is

clear that re-identification risk decreases when k increases. The same happens with

I D and the overall DR (columns seven and eight). Then, we can say that parameter

k is inversely proportional to disclosure risk.

In general, the greatest re-identification risk for a given microaggregation (eu

and st s) occurs when the same distance is used in the time series record link-

age. For instance, in the football data set configurations with k = 6, EU LD

for eu-microaggregation is 65.54 while ST SLD is 54.26. In contrast, using st s-
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i k I L1 I L2 I L3 I L EU LD ST SLD I D DR scor e
fo

o
tb

al
l.i

.e
u

-k 8 2 0.11 44.55 44.25 29.63 84.16 84.37 19.94 52.11 40.87
8 3 0.15 45.38 45.51 30.35 78.91 75.14 19.73 48.38 39.36
8 6 0.17 45.39 45.75 30.44 65.27 54.26 19.49 39.63 35.03
8 9 0.40 45.44 46.37 30.74 54.97 34.38 19.61 32.14 31.44
8 12 0.22 45.43 45.20 30.28 50.28 27.91 19.44 29.27 29.77

fo
o

tb
al

l.i
.s

ts
-k 8 2 0.10 46.66 45.41 30.72 71.66 83.59 19.74 48.68 39.70

8 3 0.16 49.08 48.43 32.56 56.82 77.77 17.68 42.49 37.52
8 6 0.25 50.84 50.13 33.74 31.75 58.17 15.79 30.37 32.06
8 9 0.31 51.90 48.94 33.72 22.23 41.12 14.82 23.25 28.48
8 12 0.34 52.63 49.79 34.25 14.35 33.95 14.74 19.44 26.85

Table 6.6: Score and its components in the football data set. football.i .d .k corre-
sponds to microaggregation using distance d (Euclidean or STS) with i series and
parameter k.

microaggregation the largest re-identification risk is ST SLD (58.17).

If one compares the I D of both microaggregation methods, in general st s-

microaggregation achieves lower values. For instance, comparing in the football data

set both microaggregation methods with k = 12, eu-microaggregation obtains 19.44

while st s-microaggregation only 14.74.

The last column of each table shows the overall score. It can be observed that the

score is very data set dependent. However, (in general) with small values of k the best

scores are obtained by st s-microaggregation (e.g. ibex35.20.eu.2 is equal to 31.62 and

ibex35.20.sts.2 is equal to 27.67). On the other hand, with large values of k the best

scores are obtained by eu-microaggregation (e.g. ibex35.20.eu.12 is equal to 21.02

and ibex35.20.sts.12 is equal to 23.17).
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i k I L1 I L2 I L3 I L EU LD ST SLD I D DR scor e

ib
ex

35
.i

.e
u

-k

2 2 0.00 29.82 31.51 20.44 57.14 52.86 13.54 34.27 27.36
2 3 0.00 36.82 40.05 25.62 35.71 35.71 10.57 23.14 24.38
2 6 0.01 43.61 44.18 29.27 14.29 18.57 8.69 12.56 20.91
2 9 0.02 44.40 52.81 32.41 5.71 10.00 7.47 7.67 20.04
2 12 0.03 49.34 52.54 33.97 7.14 4.29 6.74 6.23 20.10
4 2 0.00 31.85 32.12 21.32 60.00 60.71 12.50 36.43 28.88
4 3 0.00 37.44 37.28 24.91 45.71 42.14 10.06 27.00 25.95
4 6 0.01 42.61 44.96 29.19 21.43 22.86 8.83 15.48 22.34
4 9 0.01 44.29 47.63 30.64 11.43 14.29 7.14 10.00 20.32
4 12 0.01 49.90 53.63 34.51 8.57 7.14 6.78 7.32 20.92

20 2 0.00 32.78 35.27 22.68 67.86 70.57 11.89 40.55 31.62
20 3 0.00 37.71 41.09 26.27 48.71 48.14 9.76 29.10 27.68
20 6 0.00 42.73 45.59 29.44 26.43 24.71 8.72 17.14 23.29
20 9 0.00 44.97 49.81 31.59 12.29 16.71 6.65 10.58 21.08
20 12 0.00 50.63 52.83 34.49 8.29 7.71 7.09 7.55 21.02

ib
ex

35
.i

.s
ts

-k

2 2 0.02 45.94 47.57 31.18 20.00 51.43 6.81 21.26 26.22
2 3 0.04 47.87 49.53 32.48 15.71 28.57 6.13 14.14 23.31
2 6 0.07 58.98 62.03 40.36 10.00 11.43 4.83 7.77 24.07
2 9 0.18 57.09 64.54 40.60 1.43 2.86 3.56 2.85 21.73
2 12 0.17 58.04 61.52 39.91 4.29 2.86 5.77 4.67 22.29
4 2 0.02 45.61 45.72 30.45 20.71 52.86 7.94 22.36 26.41
4 3 0.03 51.69 50.39 34.04 15.00 34.29 4.94 14.79 24.41
4 6 0.07 56.50 57.91 38.16 10.00 16.43 5.08 9.15 23.65
4 9 0.08 57.44 57.11 38.21 7.86 7.86 4.75 6.30 22.26
4 12 0.13 57.88 57.72 38.58 5.71 4.29 5.16 5.08 21.83

20 2 0.00 46.47 47.28 31.25 19.57 60.29 8.24 24.09 27.67
2 3 0.01 51.55 53.66 35.08 14.43 43.43 5.55 17.24 26.16
2 6 0.02 57.51 59.55 39.03 11.43 22.43 4.19 10.56 24.79
2 9 0.03 57.06 60.42 39.17 7.86 13.86 4.70 7.78 23.47
2 12 0.02 57.25 60.06 39.11 6.00 12.00 5.46 7.23 23.17

Table 6.7: Score and its components in the ibex35 data set. ibex35.i .d .k corresponds
to microaggregation using distance d (Euclidean or STS) with i series and parameter
k.



Chapter 7

Conclusions and Future

Directions

Along the preceding chapters we have presented several contributions to disclosure

risk assessment. Now, in the first section of this chapter we review these contribu-

tions. Afterwards, we will explain some conclusions obtained from the work pre-

sented in this thesis. Finally, in the last section, we sketch future research lines.

7.1 Summary of Contributions

In this thesis we have proposed different ways to calculate disclosure risk of a pro-

tection method. In what follows, we review each contribution shortly, summarizing

its relevance.

• Microaggregation contributions. Firstly, we have defined an empirical dis-

closure risk measure for multivariate microaggregation and provided a the-

oretical limit for such measure. Secondly, we have described different tech-

niques for attribute selection in microaggregation, studying in detail their con-

sequences for the disclosure risk using real data sets. Finally, we have ex-

plained two new variants of microaggregation, the first one uses aggregation

141
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functions to replace the traditional projected methods in projected microag-

gregation, whereas the second one solves the problem of attribute selection in

multivariate microaggregation.

• Ad-hoc methods for risk assessment. We have defined three specific record

linkage methods which take into account the protection method applied to the

protected data set. The direct consequence of these definitions is that such

methods achieve a larger number of re-identifications than generic record

linkage ones. Therefore, the disclosure risk increases when using the analyzed

methods. Another advantage of two of these new methods (namely, RS-RL

and A-RL) is that an intruder using them is sure (in certain cases) that the link-

ages obtained are correct. This fact never happens with generic record linkage

methods.

• Record linkage using fuzzy integrals. We studied a method for record linkage

when data sets do not share attributes. An exhaustive testing has been carried

out to evaluate its performance. Results show that the re-identification is still

possible in this scenario.

• Time Series. We have presented a new framework for evaluating time series

protection methods. We have introduced some information loss measures and

disclosure risk measures for time series which cover all their common uses. We

have also presented some results analysing an extension of microaggregation

for time series.

7.2 Conclusions

In this thesis we have covered different aspects in the field of statistical disclosure

control. Most of our attention has been devoted to the accuracy of disclosure risk

assessment for certain well-known anonymization methods. From the results pre-

sented in this thesis, we can state that, protection methods have to be designed to

ensure that an intruder cannot perform specific attacks to break the privacy of the

respondents.

The privacy of the respondents is sometimes not regarded as important as informa-

tion loss when evaluating protection methods. The main reason for this is that it
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is often difficult for an intruder to obtain a file with the same (anonymized) quasi-

identifiers from another data source. However, as we have shown in this thesis, in

many cases re-identification is still possible when the intruder has access to a differ-

ent set of quasi-identifiers. Therefore, in our opinion, a correct protection method

evaluation has to weigh disclosure risk and information loss with the same impor-

tance. We would like to point out that disclosure risk measures have to cover as many

as possible different disclosure risk scenarios.

A lot of research done in statistical disclosure control is related to protection meth-

ods that, in some way, ensure k-anonymity. However, as we have seen in Chapter 3,

many times when such methods are used to protect real data by statistical agencies,

the theoretical k-anonymity is not preserved. Particularly in microaggregation, the

k-anonymity property is not preserved so that higher values of data utility can be

obtained. If this is the case, privacy of the respondents is disregarded against the

interest of the data users. Then, statistical agencies have to ensure with a posteriori

measures that at least k ′-anonymity (where 0≤ k ′ ≤ k) is preserved.

Finally, we would like to highlight that intruders exploit whatever weakness they de-

tect to achieve their goal. For this reason, statistical agencies must study counter-

measures to avoid that intruders find and exploit such weaknesses. In Chapter 6, we

have described some modifications for distance based record linkage to increase the

number of links when the intruder fuses several data sets released at different times.

Then, if the statistical agency knows in advance that a data set will be released re-

peatedly, it has to anonymize such data with a protection method prepared to avoid

this attack.

7.3 Future Directions

Along the different topics explained in this dissertation, there are certain facets

which are still open. Now, we sketch some ideas to continue our research.

• Attribute disclosure risk evaluation. This thesis is devoted to individual re-

identification, however, in some occasions, the intruder is not able to infer

which protected record belongs to one individual, but he is able to infer that

a respondent belongs to a certain group of records. Then, if (almost) all the
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records of this group have the same value for a given confidential attribute, the

intruder is able to infer the confidential value for the respondent. In this case,

even though the intruder does not obtain the correct linkage, he obtains the

confidential value. We would like to develop protection methods which avoid

both problems, i.e., individual and attribute re-identification.

• Probabilistic record linkage with conditional probabilities. As we have ex-

plained in the preliminaries, probabilistic record linkage assumes that at-

tributes in the data set are independent, this assumption makes easier the

computation of indexes in the expectation-maximization algorithm. However,

in the real world, attributes are not independent. For this reason we plan to

develop a new record linkage method based on conditional probabilities. Our

intuition says that this new record linkage will achieve a larger amount of cor-

rect linkages than traditional probabilistic record linkage.

• Supervised re-identification. We are interested in the study of alternative

methods for record linkage based on supervised machine learning techniques

as neural networks. For simplicity we will assume that only two data sets A

and B are considered. Our idea will work as follows. Firstly, a model between

the attributes of A and B is built. In this way, it is later possible to translate the

values on the domain of A into values on the domain of B . Then, after such

translation, re-identification is possible using classical record linkage. This is

done using the new translated data set, say A′, and the original data set B . We

will consider that the construction of such model is done in a supervised way.

That is, we will consider that there is a set of records of both data sets A and B

for which we will know the correct re-identifications. Such records will be used

to build the model between the two data sets.
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