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Abstract

Does the vaccine against COVID-19 cause alterations in the menstrual cycle? Does it protect

against the infection-increased risk of diabetes? These are examples of causal questions about the

effects of clinical interventions. They are causal because they verse about causes - in this case

the COVID-19 vaccine - and effects or consequences - in these cases, alterations in the menstrual

cycle and protection against diabetes-. These questions are both important and difficult. Important

for the obvious reason that they concern aspects of human health. Difficult for the complexity

of the systems under study: the human body, human health, and their interaction with clinical

interventions. There are several approaches to answering this type of question. This thesis is

concerned with the data-driven, statistical approach, particularly with using observational data, i.e.,

the data collected in scenarios where the clinical intervention of interest is not under the researchers’

control.

Traditionally, statistical correlational methods have been used to answer these questions with this

type of data. In general, these methods only provide correlations without guaranteeing their causal

nature. Nevertheless, in recent years, developments in the field of causal inference have provided us

with methods that can offer some certainty of the causality of the measured relationships under the

appropriate assumptions. Until recently, researchers’ adoption of these methods has been hindered

by three main factors: unawareness about their existence, inertia of the traditional methods, and, to

a lesser extent, lack of trust in their performance. This tendency, though, has consistently changed

in recent years in the literature of clinical studies.

This thesis aims to test the hypothesis that causal inference methods should be the preferred

choice for generating evidence on the effects of clinical interventions, with a particular focus on

machine learning-based causal methods. For such purpose, we tackle three real-world use cases

with real-world data, both using correlational and causal approaches, and we qualitatively assess

and compare their performance (in a broad sense). In addition, we explore the field of machine

learning (and mainly neural network)-based causal inference algorithms. The tackled questions are

about the effect of the COVID-19 vaccine and vaccination timing on alterations of the menstrual

cycle, the effect of the COVID-19 vaccine on the infection-heightened risk of diabetes onset, and

the effect of antibiotic-loaded bone cement (a therapeutic option for patients undergoing total knee
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replacement surgery) on the survival of the prosthesis. Together with the aforementioned causal

and correlational methods, we employ real-world observational data from large registries.

As a result, we provide answers to the posed questions. In some cases, the provided answers and/or

the employed methods were novel in the literature at their time of publication. In addition, we

offer qualitative evidence of the benefits of causal methods compared to correlational methods. We

conclude that, in general, and when possible, causal inference methods should be the preferred

choice for answering these types of questions with observational data (i.e., when randomized

experiments cannot be conducted).
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Chapter 1

Introduction

1.1 Main goal, motivation, and context of this thesis

Determining the effect that an intervention has on the health of a person or a group of people is

a task that is both difficult and important. Difficult, because the human body and human health

are very complex systems in which many variables are involved. And important, for the obvious

reason that health is one of the most precious things for human beings. This thesis revolves around

methods for measuring the effects of interventions on human health, and in particular, it aims to

determine whether a certain methodology, called causal inference, should be the chosen one for

producing evidence about the effects of clinical interventions. The motivation for answering this

question is straightforward: better-suited methods will produce better evidence, and that, in turn,

will result in better health.

In the remainder of this section, we provide context for the aforementioned goal and motivation,

explaining what causality, causal inference, and clinical evidence are. We divide the content into

three subsections.

1.1.1 Causality

Causality, or causation, is the influence by which an event, state, or process (the cause) contributes

to the occurrence of another event, state or process (the consequence). Thus, the cause is partially

or totally responsible for the consequence, and the consequence is partially or totally dependent on

the cause. This concept is intrinsic to almost every field of human knowledge, from philosophy to

physics, and it is an abstraction about how things work in the universe (Mackie, 1980).

In some domains of physics, we have very precise tools to describe how things work: we have

physical laws that can be expressed as mathematical equations. For example, we know that the
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gravitational force two bodies exert on each other, or the amount of heat a body releases, are

phenomena that follow well-known physical laws and equations. In such cases, the concept of

causality is sort of trivial, as it can be derived directly from the equations: for instance, the action

of doubling the mass of the two bodies (the cause) of the first example will have as a result that the

gravitational force multiplies by four (the consequence); and the action of doubling the temperature

of the body (the cause) of the second example, will have as a result that the released thermal energy

doubles (the consequence).

Nevertheless, when the object of interest is the human body and human health, things are not that

simple. In that case, in general, we do not have laws that translate into equations that describe how

things work, at least not in the same precise way as in the previous examples. That does not mean

that we have no knowledge about the working mechanisms of the human body, on the contrary,

we do have it: we know about physiology, biochemistry, genetics and much more. But if we want

to know the effect of a particular intervention on the human body (for instance, exposing it to a

certain amount of heat or treating it with a new drug), it is usually not possible to combine all the

knowledge from the aforementioned fields to come up with a law and equation that will describe

the effect of such intervention. This is mostly due to the extraordinary complexity of the system

at hand, with many, many variables involved in the problem. Instead, we usually need to take

a so-called data-driven, statistical approach. And then, the concept of causality becomes much

trickier. Why? Because, as every statistician reminds us, variables can be statistically correlated

without being causally related (Gershman and Ullman, 2023).

A mandatory ingredient for the data-driven approach to describing how things work is, obviously,

data. When we want to know the effect of a given intervention or treatment on some outcome

variable of human health, collecting data about it can be done in two ways: experimentally or

observationally. The experimental way means that the researcher runs an experiment and collects

data about it, which implies that they can influence the way the data is generated via the experimental

design. The observational way means that the researcher observes the data that has been generated

by a process over which they had no influence capacity. The distinction of these two types of data

has major implications for the task of inferring and measuring causal relationships.

The most important feature of experimental data is that the intervention or treatment of interest

was randomly assigned to patients. This is the case of the data generated through randomized

controlled experiments or trials (RCTs), which have traditionally been considered the gold standard

method for inferring and measuring causality in the domain of human health (Gerstman, 2023;

Hariton and Locascio, 2018). The steps for conducting a randomized controlled experiment (in

its basic form) are simple: a group of patients is randomly divided into two groups; one group

gets the intervention of interest, and the other group does not; the outcome variable of interest is

measured in both groups; the difference observed in such variable between the groups, if any, is

the causal effect of the intervention. Remind that the causal effect is the influence that the cause
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(in this case, the treatment) has on the consequence (in this case, the outcome). The working

principle of this method is also straightforward: randomization ensures that all factors influencing

the outcome, except for the intervention, are equal in both groups (up to random variability), and

thus the observed difference in the outcome can only be caused by the intervention itself.

On the contrary, in the case of observational data, the intervention of interest is not assigned

randomly but based on some factors (mostly, although not exclusively, patient characteristics). If

those factors, besides influencing the chances of getting the intervention, also influence the outcome,

we have a problem. Because the distribution of factors will not be equal in the intervention and the

nonintervention groups, the observed differences in the outcome will not only be caused by the

intervention but also by the differences in the factors. That effect is usually known as confounding,

and the factors producing it are known as confounders or covariates. Fortunately, statistics provides

us with tools to remove the influence of confounders on the outcome, leaving only the effect of

interest, i.e., that of the intervention. But these tools are not free of limitations: in order to be able

to remove the effect of confounders, we need, obviously, data about them. What if we do not have

such data, or worse, if we are not aware of the existence of some confounder? Then, the obtained

causal effect will be biased.

If experimental data is the best for inferring and measuring causal effects, and observational data

has the limitations that we just explained, why not just conduct RCTs to answer every question

about the effects of interventions on human health? Well, because things are not that simple:

conducting RCTs can be unfeasible or unethical. Consider, for example, the effect of smoking

on the probability of developing cancer. It may sound trivial, and it is nowadays, after decades

of accumulated evidence, but for some years there was a big debate about whether such an effect

existed or not, and it was not possible to just randomly assign a group of people to smoke due to

obvious ethical reasons. That is when observational data and observational studies come in handy.

The potential presence of bias in observational studies due to confounding does not change the

fact that the goal of those studies is to infer and measure causal effects of interventions. Yet

historically, some scientists have refrained from explicitly talking about causality when working

with observational data and have exhorted other fellow scientists to do the same. Their justification

was that they were putting a safeguard in place to avoid mistaking correlation with causation. It

may have been a reasonable strategy until recently, but things have changed: advancements in the

field of causal inference have formally proven that causality can actually be inferred and measured

from observational data under certain conditions and assumptions (Judea Pearl, 2009a). But what

is causal inference? we provide a definition of this concept in the following subsection.
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1.1.2 Causal inference

Causal inference can be defined as a framework for doing exactly what we mentioned in the previous

paragraph: inferring and measuring causal relationships from observational data. This framework

provides us with three main things: a set of mathematically defined assumptions common to every

problem, statistical estimators for measuring the quantities of interest, and formal proof or guarantee

of the causal nature of the estimated quantities, given that the assumptions are met. These elements

differentiate causal inference from traditional correlational analysis of observational data, which

make no explicit assumptions (they still do it implicitly) and provide no guarantees about the

causal nature of the measured correlations. Of course, causal inference is not free of limitations:

assumptions still need to be made. However, the fact that they are explicit and thus easier to discuss

or challenge represents a big step forward with respect to associational-only methods.

Note that within the framework of causal inference, there is a plethora of elements. There are two

main sub-frameworks, named potential outcomes framework or Rubin causal model (D. Rubin,

1972; Imbens and D. B. Rubin, 2010), and structural causal models’ framework (Judea Pearl, 1995;

J. Pearl, 2000), different tools such as directed acyclic graphs, and a myriad of algorithms and

estimators for as many types of scenarios. We will introduce the most important ones in Chapter 2

of this thesis.

In the next section, we define the other key element of the main goal of this thesis: evidence about

the effects of clinical interventions. Recall that evidence is what determines if interventions work,

or which which interventions work better.

1.1.3 Evidence generation for clinical interventions

Evidence, in this context, is proof in favor or against some hypothesis or claim: for instance,

proof about a particular intervention being more effective than another for a certain purpose. Such

evidence is obtained by analyzing data, and its accumulation is what eventually makes a hypothesis

or claim a truth or a falsehood.

A particular domain of human health-related studies that requires evidence generation about

interventions is that of health technology assessment (HTA). HTA is a multidisciplinary process for

evaluating the properties and effects of a health technology (Lampe et al., 2009). Such a process

must use state-of-the-art methods to consider and/or generate the best possible evidence. In certain

situations, the process leads to the conclusion that the available evidence is insufficient or of low

quality, and it is recommended that new evidence is generated. In general, ideally, this would be

done through a randomized experiment study, but if that is not possible, an observational study

should be conducted, and that is when causal inference comes into play. HTA is crucial for several

reasons, but we highlight two of them here: from the perspective of patients, it aids in ensuring that
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they get the most effective interventions, and from the perspective of health providers, it aids in

ensuring the sustainability of health systems.

In the next section, we define the specific research questions and the structure of this thesis.

1.2 Research questions and structure of this thesis

1.2.1 Research questions

As stated at the beginning of this chapter, the general goal of this thesis is to determine whether

causal inference should be the method of choice for producing evidence about the effects of clinical

interventions, in particular in the context of HTA. For that purpose, different observational data

analysis methodologies will be assessed, ranging from traditional correlation analysis to causal

inference methods. The investigation is carried forward by applying the different methodologies

to several real-world use cases with real-world data. In particular, two health technologies are

studied, which gives rise to three different questions of interest. Those health technologies are

the COVID-19 vaccine on one hand and antibiotic-loaded bone cement on the other hand, which

is a treatment option used during knee replacement surgery. The COVID-19 pandemic had a big

influence on the fact that a big part of this thesis focuses on the health technology of COVID-19

vaccines. The questions addressed about these health technologies and the analysis methodologies

are presented in the following paragraphs.

• Q1: Do the vaccine against COVID-19 and the vaccination time have any effect on the

menstrual cycle? The interest in this question sparked when several hundreds of women

reported, mostly through social networks, changes in their menstrual cycles after getting

the COVID-19 vaccine. Menstrual cycle stability is an important indicator of menstruating

people’s reproductive and overall health (Mihm, Gangooly, and Muttukrishna, 2011), and

that motivates the interest in the question. This analysis was performed using a correlational

approach.

• Q2: Does the vaccine against COVID-19 have any effect on the risk of developing diabetes?

This question was motivated by the publication of several reports indicating that the COVID-

19 infection could increase the risk of diabetes. It was natural then to wonder whether the

vaccine against the infection would have any impact, either reducing that risk, leaving it

unaffected, or even increasing it. This analysis was performed using a causal approach.

• Q3: Does the use of antibiotic-loaded bone cement during total knee arthroplasty surgery

increase the life of knee prostheses, compared with the alternative of using plain cement?

There are already several studies and meta-analyses (evidence aggregators) about this topic
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in the literature, but the question is still considered open: more and better evidence is needed

(T. H. Leta et al., 2021). The extension of the life of the prosthesis has an important positive

impact on the quality of life of patients who undergo knee arthroplasty surgery, as well as

an important impact on healthcare systems in the form of savings from avoided prosthetic

revisions. This analysis was performed using both a correlational and a causal approach.

• Q4: What are the advantages and disadvantages, strengths and weaknesses, of correla-

tional and causal inference methods for generating evidence about clinical interventions?

By splitting this question, we define two sub-questions, Q4a: What are the advantages

and disadvantages, strengths and weaknesses, of correlational methods for generating evi-

dence about clinical interventions? and Q4b: What are the advantages and disadvantages,

strengths and weaknesses, of causal inference methods for generating evidence about clinical

interventions? We conducted qualitative critical assessments of the performance (in a wide

sense) of correlational and causal inference methods, as well as a qualitative comparison

between their results, using the use cases of questions Q1, Q2 and Q3 as a basis. In particular,

the assessment of the correlational method (Q4a) was performed with the use case of Q1
(COVID-19 vaccine and menstrual cycle changes); the assessment of the causal inference

method (Q4b), with the use case of Q2 (COVID-19 vaccine and risk of diabetes); and the

overall comparison between approaches, (Q4), with the use case of Q3 (antibiotic-loaded

bone cement and prosthetic survival).

• Q5: Can we generalize advanced causal inference algorithms from binary treatment settings

to multivalued treatment settings? During the development of this thesis, we identified a big

imbalance in the literature between causal inference algorithms for binary treatment settings

and for multivalued treatment settings (note that a multivalued treatment is one for which

the treatment can take more than two values). In particular, there is a trend in the field of

causal inference to develop advanced algorithms, many of them based on machine learning

techniques such as neural networks, with the goal of breaking state-of-the-art performance

metrics. In most cases, such developments are conducted in binary treatment scenarios, and

very little work is done in the realm of multivalued treatments. While studying the previously

explained health technologies, we realized the usefulness of a multivalued treatment approach.

For instance, consider how the question about the effects of the COVID-19 vaccine, which is

originally binary (vaccine administered or not administered), becomes multivalued if we are

interested in the effects of different vaccine brands. Similarly, the question about the effect of

the antibiotic-loaded bone cement becomes multi-valued if we look at the effects of different

antibiotics. For these reasons, we aimed to take a state-of-the-art, binary treatment causal

inference algorithm and generalize it to a multivalued treatment setting.

Having defined the research questions, the next section provides an overview of how we structure

this thesis to answer them.
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1.2.2 Structure of this thesis

Chapter 2 presents the methods and the state of the art of this thesis. Then, Chapter 3 tackles the

first research question, Q1, of whether the COVID-19 vaccine has any effect on the menstrual

cycle. It also provides a critical assessment of the employed correlational method, answering

research subquestion Q4a (advantages and disadvantages, strengths and weaknesses of correlational

methods). Continuing with the health technology of the COVID-19 vaccine, Chapter 4 presents

research question Q2 of whether the vaccine has any effect on the risk of diabetes onset. It

also provides a critical assessment of the employed causal inference method, answering research

subquestion Q4b. Finishing the questions about health technologies, Chapter 5 presents research

question Q3 of whether antibiotic-loaded bone cement lengthens prosthetic survival. As this

question is answered both with correlational and causal methods, this chapter provides a comparison

between them, providing the answer to Q4. Then, Chapter 6 introduces multivalued treatment

settings, showing how the previous clinical questions could have benefited from such an approach.

It provides an answer to research question Q5, of whether is it possible to generalize advanced

causal inference algorithms from binary to multivalued treatment settings. Finally, Chapter 7 verses

about general conclusions and future work of this thesis.

To finish this introductory chapter, we provide an overview of the institutions involved in this work

and the ethical aspects.

1.3 Institutions involved in this thesis

This thesis has been developed at two institutions: the Agency of Health Quality and Evaluation

of Catalonia (AQuAS), which is the health technology assessment agency of that region, and

the Artificial Intelligence Research Institute (IIIA) of the Spanish National Research Council

(CSIC). The interest of the former, as a health technology assessment agency, was to study causal

inference methods for health technology assessment. The interest of the latter focused mainly on

the intersection of causal inference methods with machine learning, which is a strong trend in the

field.

Within AQuAS, this work has been developed at the Data and Artificial Intelligence team, previously

known as the Data Analysis Program for Research and Innovation in Healthcare (PADRIS). This

team has access to and works with the data of the Catalan public healthcare system, combining a

myriad of different sources. Among other tasks, it manages access to such databases by internal and

external stakeholders, prepares data cohorts for research, and analyzes such data under the request

of health system managers. This implies extensive and detailed knowledge about data-related

infrastructures, data taxonomy, and data science.
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1.4 Ethical aspects of this thesis

When conducting clinical studies with human data, obtaining the approval of an ethical committee

is a legal requirement to safeguard participants’ rights, preserve scientific integrity, and adhere to

ethical research standards. Regulatory authorities in the European Union and Spain oversee the

required permissions for conducting clinical observational studies within their jurisdictions. All the

datasets used in this thesis are observational and have been analyzed with the approval of an ethical

committee.

In particular, for the work in Chapter 3, we obtained the approval of the Spanish National Research

Council’s ethical committee, with internal number 129/2022. For the work in Chapter 5, we

obtained the approval of Bellvitge Hospital’s ethical committee, with number PR186/19, and

approval of the Advisory Committee of RACat (Catalan Arthroplasty Register). The approval for

the work of Chapter 4 is in progress at the ethical committee of the Spanish National Research

Council (CSIC).

In the next chapter, we present the methods and the state of the art of this thesis.
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Chapter 2

State of the art

Causal inference is a relatively new, multidisciplinary field of knowledge, and, as such, many of the

developments and state-of-the-art methods have come and keep coming from authors working in

other fields. Some of the most relevant fields are health and epidemiology, econometrics, computer

science, and statistics. Because this thesis is about causal inference in healthcare settings, it is

natural that this chapter will focus more on methods from that domain, but it will not be uncommon

to look also at others, as methodological exchanges between domains are nowadays the rule more

than the exception.

The rest of this chapter is organized as follows. First, we provide an overview of a selection of

historical, critical methodological contributions to the field of causal inference. Then, we present

the methods and the state of the art of this thesis. That second part is, in turn, divided into three

subsections: a section about epidemiological study designs and statistical methods, another section

about causal inference methods, and finally, a section about the clinical state of the art.

2.1 Brief overview of a selection of historical, critical methodological
contributions to the field of causal inference

In the following paragraphs, we present a selection of works that were considered breakthroughs

in the field of causal inference, especially, but not only, in its application to health. It is not an

exhaustive or objective list, but it contains some of the works that have been most influential for the

field and for the current thesis, according to this author.

In 1855, John Snow, a British physician, published a work titled On the mode of communication of

cholera (Snow, 1855). A year earlier, in August 1854, a severe outbreak of cholera occurred in the

Soho district of London, killing over 500 people in a few days. Cholera was a major public health

threat in Europe back in those days, and there were two competing theories among physicians and

9



scientists about its causes: the miasma theory and the germ theory. The former stated that cholera

was caused by particles that would transmit through the air (airborne) and was the most accepted

theory. In contrast, germ theory stated that cholera was caused by an unknown germ, that would be

transmitted through contaminated water or food (waterborne). Following the outbreak, Snow set

out to try to find its cause. He talked to local residents in Broad Street, where the outbreak had

caused most casualties, and elaborated a map where he depicted the place of residence of the death.

Thanks to this and other evidence, he identified the water pump at Broad Street as the potential

source of the outbreak and (temporarily) convinced the local authorities to perform an intervention:

to remove the handle of that pump. After that, the number of new cholera cases declined rapidly

(nevertheless, for the sake of rigor, it must be mentioned that the decline was not only caused by

the intervention but also due to the natural dynamics of the outbreak). Snow’s investigations about

cholera are considered a major cornerstone in the field of epidemiology, which is defined as ”the

study of the determinants,” i.e., the causes, ”occurrence, and distribution of health and disease in a

defined population” (Brachman, 1996). It is one of the applied fields of knowledge that has most

consistently nurtured causal inference, both with concepts and methods.

In 1986, James Robins published a work titled A new approach to causal inference in mortality

studies with a sustained exposure period — application to control of the healthy worker survivor

effect (J. Robins, 1986), in the Mathematical Modeling journal. In that work, he presented the

G-computation algorithm, nowadays most popularly known as the G-formula. For understanding

its relevance, let us bring back the definition of confounding from Chapter 1, and extend it to

time-varying confounding. A confounder is a variable that influences both the treatment and the

outcome of a problem, and time-varying-confounding (also called confounder-treatment loop)

refers to the scenario in which confounders affect the treatment and vice-versa over time. The

G-formula was the first mathematical solution to the problem of time-varying confounding, which

cannot be solved with other adjusting methods (recall also that adjusting is the statistical procedure

to remove the influence of factors other than the treatment from the outcome). Besides the practical

implications of the development of the method, such as its application to real-world use cases, it

constituted a major step forward in the field of causal inference in general, as it laid the groundwork

for a more rigorous approach to causality in observational studies.

In 1995, Judea Pearl published Causal diagrams for empirical research (Judea Pearl, 1995) in the

Biometrika journal. This was the first work proposing the use of directed acyclic graphs for causal

inference problems as a way to graphically encode prior knowledge about the problem domain and

to combine domain and statistical knowledge. The work also showed how diagrams could be used

to determine if assumptions made about the problem were sufficient for identifying causal effects

from observational data and for querying those diagrams to produce mathematical expressions for

causal effects in terms of observed distributions. This tool enabled the description and analysis of

types of variables with causal relationships that could not be described before, such as mediators
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and colliders. Besides, it made the task of causal query identification substantially more simple

and intuitive, especially in problems with complex causal structures. This paper and its related

work (Judea Pearl, 2009b) changed the paradigm of inferring causality from observational data,

especially regarding causal query identification.

In 2016, Hernan and Robins introduced the concept of target trial emulation in a paper titled

Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available (Miguel A.

Hernán and James M. Robins, 2016), in the American Journal of Epidemiology. A target trial is

a hypothetical randomized controlled trial that researchers would ideally conduct. The authors

explained how to systematically emulate such a trial using observational data. This paper represents

another breakthrough of causal inference, especially in the field of health, because its methodology

can eliminate or at least reduce some of the worst sources of bias present in correlational-only

approaches for observational studies: time-related biases. Besides, empirical evidence suggests that

the method works, in the sense that emulated target trials have obtained results that are similar to

those from actual randomized trials, unlike some other observational data-based methodologies

(Kuehne et al., 2022; S. V. Wang, Schneeweiss, and Initiative, 2023).

In 2021, Joshua Angrist, Guido Imbens, and David Card won the Nobel prize in economic sciences

for their work on natural experiments, a method to identify and measure causal effects in social

sciences (Card and Alan B Krueger, 1994; Imbens and Angrist, 1994; Angrist and Alan B. Krueger,

1991). Although the method itself falls slightly out of the scope of this thesis, the fact that it

deserved a Nobel prize highlights the importance that causal inference has in other fields too and

the contributions that those fields make.

Finally, a note on the present and the future of causal inference and its connection to artificial

intelligence (AI). Many authors working in the field of AI have turned their attention to causal

inference (Schölkopf et al., 2021; Berrevoets et al., 2024), some of them stating that it may play

an important role in their field, potentially helping to overcome some of the current limitations of

AI methods: poor performance with data drawn from a distribution different than the training set,

sensitivity to spurious correlations, hallucinations and lack of factual base (particularly of large

language models), among others.

2.2 Methods of this thesis and state of the art

In this section, we present the main methods employed in this thesis and the related state of the art.

Any method included is relevant either because it has been directly used or because it provides the

necessary context for another important method. This section also contains the state of the art of

the clinical research questions addressed in this work, i.e., the latest knowledge about the topics

behind those questions.
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We divide this section into three subsections: Epidemiological study designs and statistical methods,

causal inference methods, and clinical state-of-the-art. In the section on epidemiological study

designs and statistical methods, we present the different types of clinical studies regarding their

design, as well as the concept of evidence quality. We also introduce survival analysis, which is key

for health studies. In the section on causal inference methods, we present the most relevant of them

for this thesis in their most current versions. We divide this section into five parts: sub-frameworks

and general methods of causal inference, causal inference methods with machine learning, causal

machine learning methods (as it will be explained, they are not exactly the same), multivalued

treatment settings, and algorithm evaluation. Finally, in the section on clinical state of the art, we

present the latest findings about the effect of the COVID-19 vaccine on the menstrual cycle, the

effects of the COVID-19 infection and vaccine on the risk of developing diabetes, and the effect of

the usage of antibiotic-loaded bone cement during total knee arthroplasty on prosthetic survival.

2.2.1 Epidemiological study designs and statistical methods

As stated in the introduction of this section, the fields of epidemiology, public health, and clinical

research have significantly contributed to the body of study designs and statistical methods for

observational and experimental data. The most common and important study designs with obser-

vational data include case-control and cohort studies, while their experimental data counterpart

includes randomized controlled trials. Furthermore, in a separate category that can combine both

types of data, we find systematic reviews and meta-analyses.

On the one hand, case-control study design (Schulz and Grimes, 2002) works by selecting a group of

patients based on the presence of an outcome of interest and other characteristics, forming the case

group. Then, it selects another group of patients with similar characteristics but without the given

outcome, forming the control group. Afterward, patients are re-grouped based on their treatment

or exposure status (i.e., the treated/exposed and the untreated/unexposed), and finally, a statistical

measure of the outcome is compared between groups. Additionally, usually, the researchers try to

statistically remove the contribution of patients’ characteristics and other variables to the outcome,

which is known as controlling or adjusting for confounders. On the other hand, cohort study

design (X. Wang and Kattan, 2020) selects patients based on treatment/exposure status (and other

characteristics), then follows each patient in time to observe the production of an outcome of interest

(or its absence) and then aims to statistically determine the contribution of the treatment/exposure

and the characteristics of each patient to the production of that outcome. The case of randomized

controlled trials (Stolberg, Norman, and Trop, 2004) is different, as those are always prospective

studies and work by randomly assigning each member of a group of patients to a certain treatment

strategy (in this case, we do not speak about exposures anymore, due to the experimental and

interventional nature of RCTs), and then a measure of an outcome of interest is compared between

groups. Because any factor other than the treatment is balanced across groups due to the random
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Table 2.1: Basic epidemiological study designs. C-C: case-control; SR: systematic review; M-A:
meta-analysis; Obs: observational; Exp: experimental.

Obs. data Exp. data Controlling Evidence
quality

C-C x x -
Cohort x x +
RCT x ++
SR with M-A x x N/A +++

assignment (up to random chance), the statistical differences in the outcome can only be caused

by the treatment itself, i.e., controlling happens by design. Finally, a systematic review with

meta-analysis (Tawfik et al., 2019) is a comprehensive summary of existing studies on a specific

topic, where the systematic review part identifies and evaluates all relevant studies in a replicable

way, and the meta-analysis part statistically combines their numerical results to provide a general,

overall result. Table 2.1 shows a summary of the explained epidemiological designs, as well as

some of their features. Note that this is a description of basic building blocks and that nuances arise

in the details.

Note that the study designs that we just introduced are not the only available options. They

are, in fact, the basic options, and their elements can be combined and/or modified into other

alternative designs. An example of this is the self-controlled case series study (Petersen, Douglas,

and Whitaker, 2016). In that design, the same patient or individual is both a case and a control,

depending on the time and the exposure/treatment status. Thus, only individuals with the outcome

of interest are selected; these individuals are cases when they are exposed or treated, and controls

when they are unexposed or untreated (in either case, for a time window that is defined by the

researchers depending on several factors such as the nature of the exposure/treatment). This design

automatically accounts for time-invariant confounding, as each case-control pair is formed by the

same individual with the same (time-invariant) characteristics.

Due to their nature, these different study designs have different likelihoods of providing biased

estimations, and the concept of likelihood of bias is closely related to the concept of quality of

evidence. Obviously, the higher the likelihood of bias, the lower the quality of the evidence. It is

well established that the ascending order of the quality of evidence of the presented study designs

is the following: case-control studies, cohort studies, randomized controlled trials, and systematic

reviews with meta-analysis (Guyatt et al., 2011). This is why, for example, the evidence of a

randomized controlled trial is considered, in general, of higher quality than the evidence of a cohort

study. Note that, despite this, the risk of bias of an individual study does not only depend on its

design but also on other characteristics of the study, such as the size of the analyzed sample.

To finish this section, we introduce a branch of statistics that is crucial for clinical studies: survival

analysis (Clark et al., 2003; Bradburn et al., 2003). Survival analysis focuses on the expected time
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passed until an event of interest occurs, for example, the death of a patient, the progression of a

disease, or the revision of a prosthesis. It also focuses on the factors contributing to that time. Some

of the basic concepts of survival analysis include the survival and hazard functions, and their basic

estimators are the Kaplan-Meier estimator and Cox’s proportional hazards model. More advanced

options include the weighted Kaplan-Meier estimator (Pepe and Fleming, 2018) and parametric

estimators of the hazard function (Harrell, 2001). Finally, another key element of survival analysis

is that of censoring, the phenomenon that occurs when only partial information is known about the

outcome of a particular individual or patient.

After this overview of epidemiological study designs and related concepts, we speak about causal

inference methods in the next section.

2.2.2 Causal inference methods

Subframeworks and general methods

For the purpose of reviewing the state of the art of this field, it is useful to think about causal

inference as a meta-framework or a parent framework that contains other sub-frameworks and

methods. The most common and relevant sub-frameworks are structural equation modeling,

structural causal models, and potential outcomes. Only the latter two fall within the scope of this

thesis, and we introduce them in the following paragraphs. After that, regarding specific methods,

we discuss G-methods, cloning-censoring-weighting (CCW), and causal survival analysis.

Structural causal models (SCM) (Judea Pearl, 1995; Judea Pearl, 2009b) are mathematical repre-

sentations of a system that describe the causal relationships among the variables of that system,

giving rise to a structure that can be represented by means of a directed acyclic graph. Directed

acyclic graphs are schemes formed by nodes and directed edges, with no closed loops between

nodes. Those nodes represent variables, and the directed edges represent causal relationships.

Figure 2.1 shows an example of a SCM. Together with SCMs, Judea Pearl and other authors also

introduced the do-calculus (Judea Pearl, 2012). It is a set of rules forming an axiomatic system

for replacing probability formulas that contain the do operator, which indicates intervention, with

ordinary conditional probabilities. The combination of these two elements (DAGs and do-calculus)

provides two crucial things: on one hand, it enables the identification of causal, interventional

queries, i.e., the definition of the required assumptions for those queries to be computable; and on

the other hand, it provides rules for their computation, i.e., their mathematical determination based

on ordinary conditional probabilities.

The potential outcomes framework (or the Rubin causal model (D. Rubin, 1972; P. W. Holland,

1986; Imbens and D. B. Rubin, 2010)) sets causal inference problems in terms of potential outcomes,

which are the outcomes that happen under specific interventions. For instance, in the case of a binary
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𝑍𝑍

𝑋𝑋 𝑌𝑌
𝑌𝑌 = 𝑓𝑓 𝑋𝑋,𝑍𝑍 + 𝑒𝑒

Figure 2.1: Example of a simple structural causal model, formed by a DAG and an equation, with
an intervention X , a covariate or confounder Z, and an outcome Y (e is an error term).

intervention, there are two potential outcomes, one for each possible value of the intervention. The

fundamental problem of causal inference is that, for each unit or patient, only one of the potential

outcomes is observed, as each unit or patient can only effectively receive one of the two possible

interventions. This framework gives rise to the concept of counterfactual, which is widely used in

causal inference problems. Suppose we study the effect of an intervention that can take two possible

values, A or B. A particular patient receives intervention A. The counterfactual outcome (or simply

counterfactual) is the outcome that we would have observed for that patient had they received

intervention B. Besides forming a framework, these notions help to understand the intuition behind

concepts such as the propensity score, which is the probability each patient has of receiving each

treatment option based on their characteristics (or covariates). Based on that, propensity score

matching is a method that works by forming treated and untreated patients’ pairs that have similar

propensity scores (Rosenbaum and D. B. Rubin, 1983).

The aforementioned frameworks have elements in common, and, in general, concepts can be trans-

lated from one to the other, but it is worth mentioning that SCMs make causal query identification

much easier than DAG-free Rubin causal models. In the following sections, we go one level down

the frameworks and focus on specific causal inference methods: G-methods, cloning-censoring-

weighting, and causal survival analysis.

G-methods

G-methods are a family of methods that come in handy when the problem at hand suffers from time-

varying confounding. Recall that confounding occurs when a variable (usually named covariate or

confounder) affects both the treatment and the outcome, and thus, time-varying confounding occurs

when both the confounder and the treatment can vary over time. In such scenarios, basic adjusting

strategies such as stratification fail. There are three main G-methods: the G-formula, already
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introduced in section 2.1, structural nested models with G-estimation (Vansteelandt and Joffe,

2014), and marginal structural models with inverse probability of treatment weighting (Stephen R.

Cole and Miguel A. Hernán, 2008). The most relevant of the three for this thesis is the first one, the

G-formula. Such a formula determines the conditional probability of an outcome given a particular

intervention in terms of other conditional and marginal probabilities of the problem. In very simple

cases, the probabilities required for computing the G-formula can be calculated nonparametrically,

but as soon as the problem grows from a few binary and/or categorical covariates, modeling is

required for estimating those probabilities, and clever implementation is required for computing the

G-formula. Several implementation options have been proposed, each with different assumptions,

pros, and cons. Wen et al. (2021) present an overview and comparison of the exiting alternatives:

the iterative conditional expectation implementation (ICE), the non-iterative conditional expectation

implementation (NICE), and the inverse probability weighting-based implementation. Finally,

regarding the modeling part of probabilities and conditional expectations, usually linear, logistic,

and/or generalized linear models are employed in the literature (McGrath, Lin, et al., 2020).

Cloning-censoring-weighting

Cloning-censoring-weighting (CCW) is a complementary method to target trial emulation (TTE),

already introduced in section 2.1. CCW was presented for the first time by Cain et al. (2010),

although not under that name, and further developed in other works such as the one by Gaber et al.

(2024). This method aims to eliminate immortal time bias. Immortal time bias arises when, during

the definition of the protocol of a target trial for its emulation, information from down the stream of

time is used upstream: for instance, a patient that initiates treatment sometime after the beginning

of the trial, which is a piece of information from down the stream of time, is assigned at time zero to

its treatment line, which is a piece of information up in the stream of time. Between the assignation

time and the treatment start time, such a patient will be, by definition, free of risk of the event

of interest. This will not happen for a patient assigned to the no-treatment line, and this artificial

distortion introduced by the design can bias the results. CCW aims to erase that distortion and its

associated bias. The method consists of three steps: cloning individuals in the database, censoring

those who deviate from the protocol of the target trial, and weighting the remaining ones with the

inverse of their probability of not being censored, modeled as a function of patient’s characteristics

and time.

Causal survival analysis

Several works have given survival analysis, introduced in section 2.2.1, a causal perspective. Some

examples are the work by J. Zhu and Gallego (2022), which uses the potential outcomes framework,

and the work by Murray, Caniglia, and Petito (2021), which employs structural causal models. The
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work by Cui et al. (2023) is also relevant. We will explain this last work in depth in the next section,

as it makes use of machine learning methods.

In fact, the connection between the fields of causal inference and machine learning has been

established since the beginning of the current golden era of machine learning, partially because

some of the breakthroughs in the field of causal inference came from authors working in computer

science. Judea Pearl is the most relevant example of those authors. Since then, that connection has

only continued to grow and expand. It is important to differentiate two aspects of this intersection

of fields. On the one hand, we have works that focus on employing machine learning techniques

for solving causal inference problems (we call that causal inference with machine learning). On

the other hand, we have works that aim to develop what is known as causal machine learning. The

differences between the two lie in their goals and approaches, and despite the fact that sometimes

those differences can be subtle or diffuse, in general, this categorization helps to map the existing

works and methods conceptually. For this thesis, the former category is more relevant than the

latter. We present both categories in the following two sections.

Causal inference with machine learning

When dealing with causal inference problems, as soon as the data at hand is not extremely simple,

nonparametric causal estimators suffer from the course of dimensionality and become useless:

modeling is required. Among the available options for modeling, machine learning methods stand

out for their power to approximate nonlinear functions and impose minimum assumptions on

the data distributions. Thus, a line of work that has been especially fruitful in recent years is

that of neural network-based causal inference methods. Several architectures of neural networks

have been proposed for causal inference problems. Yuan, Ding, and Bar-Joseph (2020) propose a

convolutional neural network for causal inference by devising a method to encode the observational

data of a causal problem in an image-like matrix. Louizos et al. (2017) introduce a variational auto-

encoder architecture for the estimation of treatment effects at the patient level, assimilating proxies

of unmeasured confounders to latent variables and exploiting the capabilities that autoencoders have

with that type of variables. Yoon, Jordon, and Van Der Schaar (2018) use the generative adversarial

network framework to learn counterfactuals of a causal inference problem. Shalit, Johansson, and

Sontag (2017) use a rather simple architecture of few fully connected layers named TARNET (and a

variation named CFR), but arranged in a clever way that optimizes the process for the task of causal

inference. In particular, they propose a neural network that learns a representation of the covariates,

and that has two different ”heads” or ends, one for each treatment option (given that the treatment

is binary). The weights of each end are updated separately with each training data unit, ensuring

that statistical power is shared in representation layers while the effect of treatment is preserved in

the separate heads. In addition, another module of the network takes in the treatment value of each

data unit, and the cost function adjusts for the bias introduced by treatment group imbalance during

17



training by means of an integral probability metric defined by the authors. Taking inspiration from

that work, Shi, Blei, and Veitch (2019) present another architecture named Dragonnet that further

improves the result. The architecture includes another ”head” for learning the propensity score, and

by defining the adequate loss function, it is ensured that the architecture exploits the sufficiency of

the propensity score (Rosenbaum and D. B. Rubin, 1983) for adjustment.

The work by Shi, Blei, and Veitch (2019) not only provides a novel architecture but also a

modification of the cost function that is inspired by the knowledge developed in two sub-fields

of crucial importance for machine learning-based causal inference: semiparametric theory and

the so-called double machine learning methodology. Semiparametric theory is, in this context,

the statistical formalization of the estimation tasks present in a causal inference problem and the

exploitation of theoretical and empirical knowledge about convergence, efficiency, bounds, etc., for

that task. Of particular importance are the concepts of efficient influence curves, score functions,

and estimating equations (Edward H. Kennedy, 2016). Double machine learning is a concept

introduced by Chernozhukov, Chetverikov, Demirer, Duflo, C. Hansen, and Newey (2017) and

Chernozhukov, Chetverikov, Demirer, Duflo, and Hansen (2018), and it also exploits knowledge

about nonparametric and semiparametric estimation. Its goal is to develop a general framework for

estimating causal effects using machine learning methods, providing confidence intervals for the

estimates, and producing estimators with desirable statistical properties in terms of data efficiency

and convergence. One of those desirable properties is double robustness. To explain this concept,

note first that these causal inference methods work by modeling (with machine learning algorithms)

two quantities of interest in the problem: the propensity score, which has been defined previously as

the probability of getting the treatment given the covariates, and the conditional outcome, which is

the expected value of the outcome given the covariates and the treatment. Double robustness ensures

that the estimator of the causal effect of interest will converge to the correct value even if one of the

two models of the aforementioned quantities is wrongly specified. This is achieved by means of

orthogonalization, sample splitting, and cross-fitting (for a detailed explanation, see Chernozhukov,

Chetverikov, Demirer, Duflo, C. Hansen, and Newey (2017). Finally, another method that is worth

mentioning and that constitutes an alternative strategy for achieving doubly-robust estimators with

nice asymptotic properties is that of targeted maximum likelihood estimation (TMLE) (Schuler

and Rose, 2017). TMLE is a maximum-likelihood–based approach with two minimization steps,

in which the second step optimizes the bias-variance trade-off for the target causal parameter of

interest.

Finally, a subfield of work that is especially relevant for this thesis is the one combining causal

survival analysis and random forests. The theoretical basis for this work was laid with Generalized

Random Forests (Athey, Tibshirani, and Wager, 2019) and further developed to its most advanced

version with Causal Survival Forests (Cui et al., 2023). Random forests are a flexible and data-

adaptive machine learning algorithm that minimizes assumptions on the distributions of the modeled
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variables and delivers very good performance with tabular data with nonlinear relationships. Cui

et al. (2023) employ random forests to model three key quantities present in a causal survival

problem: the conditional outcome, the treatment propensity, and the censoring propensity. The

former two have already been explained, and the latter is the probability of being censored, given

the covariates. After modeling, these three quantities are combined into a final causal estimator that

possesses desirable statistical properties.

In the next subsection, we look at the field of causal machine learning.

Causal machine learning

Causal machine learning is defined by Kaddour, Lynch, et al. (2022) as a collection of machine

learning methods that take into account the data generating process (i.e., the real, physical underlying

process that generated the observational data) and formalize it as a structural causal model. Thanks

to taking this perspective, it is possible to use the models to simulate the effects of interventions

by generating counterfactuals. More importantly, causal deep learning is defined by Mihaela Van

der Schaar and other authors in a series of works (some of the most relevant ones being those

by Balagopalan et al. (2024) and Feuerriegel et al. (2024)), as the intersection between causal

inference and deep learning. Instead of limiting the efforts to simply doing causal inference with

deep learning models, causal deep learning aims at achieving a true symbiosis between both fields,

such that the whole is greater than the sum of the parts. In particular, one of the main goals of this

line of work is to find practically applicable methods for healthcare problems that can relax some

of the assumptions associated to causal inference strategies, which are often strong. This type of

effort is crucial for the successful adoption and usage of causal inference methods in real-world

problems.

So far, most of the discussed algorithms and methods that have been presented belong to scenarios

with binary treatment. Nevertheless, often, real-world applications have multivalued treatments. In

the next section, we provide an introduction to multivalued treatment settings.

Multivalued treatment settings

Multivalued treatment settings are those in which the treatment or intervention of interest is not

binary but categorical, with more than two possible values. Because of the intrinsically more

complex nature of such settings in comparison with binary treatments, methods for multivalued

treatments have traditionally been somewhat neglected in the literature. Nevertheless, many real-

world problems have multivalued treatments or could benefit from a multivalued treatment-based

approach. One of the authors who has more thoroughly studied these settings is Mattias D. Cattaneo

(Cattaneo, 2010; Cattaneo, Drukker, and A. D. Holland, 2013). In his works, the author not only
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lays the formal mathematical definitions of causal quantities in multivalued settings and provides

efficient estimators for them but also demonstrates some key findings. For instance, the joint

estimation of multivalued causal effects is necessary for correct statistical inference, as opposed

to estimating each effect separately. Other relevant works proposing algorithms for multivalued

treatment settings are those by Kaddour, Y. Zhu, et al. (2021), who use neural networks and focus

on structured treatments such as graphs, images, texts, etc., or the work by Schwab, Linhardt, and

Karlen (2019), who use support vector machines, or the work by Künzel et al. (2019), who use

meta-learners, i.e., aggregators that combine the outputs of individual algorithms.

Finally, in the next part, we bring attention to a topic that is cross-sectional to all previously

presented methods and algorithms: the evaluation of algorithmic performance.

Algorithm evaluation

Any of the presented algorithms so far can and should be subject to the evaluation of its performance.

For that, a metric or a set of metrics is required. Such metric is usually a measure of the deviation

between the estimation of a given effect provided by the algorithm under evaluation and the ground

truth effect. The philosophy, thus, is very similar to the one used with machine learning algorithms.

As an example, in an image recognition task, the training and evaluation of a neural network is done

based on the ground truth information, which is the label for each image provided, usually by one or

(some consensus of) several humans. Causal inference, nevertheless, presents a specific challenge:

in general, when using real-world data, the ground truth of the effect of interest is not available

for the evaluator by any means. This is a direct consequence of the aforementioned fundamental

problem of causal inference, which refers to the fact that for each individual or patient, we do not

get to observe one or some of the potential outcomes, the counterfactual(s). Thus, usually, synthetic

or semi-synthetic data is required for the evaluation of causal inference algorithms, where the

data-generating process is fully or at least partially under researchers’ control, and they can simulate

the required information to calculate ground truth effects. The development of data-generating

processes for algorithm evaluation is carried out mostly ad hoc in the literature, although some

datasets have been established as de facto benchmarks for comparisons. Different works employ

data of different nature, and thus we have examples using real data (Brost, Mehrotra, and Jehan,

2020; Schnabel et al., 2016; Linden and Yarnold, 2016; Uysal, 2015; Hong, 2012; Esposti, 2017),

semi-synthetic data (Kuang et al., 2021; Bica, Jordon, and Schaar, 2020; Schwab, Linhardt, Bauer,

et al., 2020; Franklin et al., 2014; Kaddour, Y. Zhu, et al., 2021), or synthetic data (Lopez and

Gutman, 2017; Austin, 2018; Y.-Y. Lee, 2018; Garrido, Lum, and Pizer, 2021; Graham and Pinto,

2022; A. Li and Judea Pearl, 2022). Regarding these types of data, there are two properties at

trade-off: realism and control over the data-generating process (DGP). With real data, realism is

maximized, but we have no control over the DGP (and most times, we do not even have access

to the ground truth effects); with fully synthetic data, we have full control over the DGP, but at
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the cost of realism. Due to this, most of the works in the literature choose the semi-synthetic data

option. But this option is not free of limitations, as some authors have indicated (Curth, Svensson,

and Weatherall, 2021). A clever way to overcome or at least minimize these limitations has been

presented by Neal, Huang, and Raghupathi (2021). This work proposes a method to fit models to

existing, real data and then use those models to generate synthetic but a priori realistic data. The

authors also show that the distributions of the generated data are statistically indistinguishable from

those of the real data.

After having presented the methods and state of the art of this thesis, we introduce now the clinical

state of the art.

2.2.3 Clinical state of the art

In this section, we present the state of the art of the clinical aspects of this thesis. In particular, we

divide the section into three parts: the first about the side effects of the COVID-19 vaccine on the

menstrual cycle, the second about the effect of the COVID-19 infection and vaccine on the risk of

developing diabetes, and the last about the effect of the usage of antibiotic-loaded bone cement in

knee prosthesis survival.

Effect of the vaccine against COVID-19 on the menstrual cycle

The COVID-19 epidemic started with an outbreak in December 2019 in China and was declared a

pandemic by the World Health Organization (WHO) the 11th of March 2020. It constituted one

of the biggest health threats that humanity has faced in modern times. The first vaccines against

COVID-19 were developed in 2020 and were authorized for their administration to the general

population by the end of that year at an unprecedented speed. Nowadays, three and a half years after

vaccination campaigns started worldwide, and with more than 13.000 million doses administered,

there is solid evidence showing that the rate and type of side effects of the vaccine are lower risk

than the COVID-19 infection itself (Wise, 2024; Amer et al., 2024): COVID-19 vaccines are, in

general, safe and worth getting.

Most typical side effects are mild and do not require specialized medical care. Those include

soreness, redness or inflammation of the vaccination site, fatigue, headache, or myalgia. In addition,

potential effects on other health outcomes have also been studied, one of them being the menstrual

cycle. This is relevant, among other reasons, because the characteristics of the menstrual cycle

are important indicators of the reproductive and overall health of menstruating people. Edelman,

Boniface, Benhar, et al. (2022) found an association between receiving the COVID-19 vaccine and

experiencing a small and temporary increase in the length of the menstrual cycle, with the effect

being most noticeable in the cycle immediately following vaccination. In a later study, Edelman,
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Boniface, Male, et al. (2024) also found that the phase of the menstrual cycle at which the vaccine

was administered, i.e., the menstrual cycle timing, was associated with the presence or absence of

the previously described cycle changes. Ramaiyer et al. (2024) found similar results using data

collected from a period-tracking app. Finally, two systematic reviews about the topic (Nazir et al.,

2022; Smaardijk et al., 2024) found aggregated evidence of alterations of the menstrual cycle

associated with the COVID-19 vaccine, although those were mild and did not last over time.

Effects of the COVID-19 infection and vaccine on diabetes

In this subsection, we explore the evidence about a potential beneficial side effect of the COVID-19

vaccine: the protection it provides against the increased risk of diabetes due to COVID-19 infection.

Several studies in the literature have shown that the incidence of diabetes onset increased during

the COVID-19 pandemic. The work by Xie and Al-Aly (2022) found an increased risk of incident

diabetes in a group of patients who had COVID-19 in comparison with control groups. Another

study by Wander et al. (2022) also found an association between COVID-19 infection and a higher

risk of incident diabetes, although only in men. Another work by Salmi et al. (2022) reported that

more children with type 1 diabetes had severe diabetic ketoacidosis (DKA) at diagnosis during the

pandemic, but authors hypothesized that it was not a consequence of COVID-19 infection itself but

of delays in diagnosis.

Given these discoveries, it was then natural to wonder about the effect of the vaccine on the

relationship between COVID-19 and diabetes. Taylor et al. (2024) looked at the association between

COVID-19 and the incidence of any type of diabetes and the effect of COVID-19 vaccination

on that association. They found that elevated incidence of type 2 diabetes after COVID-19 was

less apparent in people who had been vaccinated. Similarly, another work by Kwan et al. (2023)

reported that diabetes risk after COVID-19 infection was higher in unvaccinated patients. Xiong

et al. (2023) evaluated the risk of diabetes following different COVID-19 vaccines and SARS-CoV-2

infections and found no increased risk of diabetes post-vaccination but a higher risk of type 2

diabetes following infection (especially with the Omicron variant). Finally, two systematic reviews

about the topic have been published: Alsudais et al. (2023) only considered type 1 diabetes and

had a very low number of patients, and He et al. (2023) concluded that the complex relationship

between vaccination and diabetes had a bidirectional effect: vaccination could contribute to the risk

of worsening blood glucose in diabetic patients, and diabetic patients could have a lower antibody

response after vaccination than the general population.

In the next subsection, the last of this chapter, we jump to the next health technology and speak

about the state-of-the-art knowledge about the relationship between antibiotic-loaded bone cement

and knee prosthesis survival.
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Effect of the usage of antibiotic-loaded bone cement during total knee arthroplasty on the
survival of the prosthesis

In these lines, we discuss the state-of-the-art knowledge of the effect of antibiotic-loaded bone

cement on knee prosthesis survival after total knee arthroplasty. To do so, we first provide some

context about the interest in this topic. Peri-prosthetic joint infection is a major complication of

total knee arthroplasty surgery (TKA) and happens in between 1% and 2% of the cases. It usually

requires revision surgery, and this has a big impact on patients’ life quality and satisfaction (Rachel

Frank, Michael Cross, and Craig Della Valle, 2014). For this reason, surgeons and researchers have

been looking for interventions that decrease the incidence of peri-prosthetic joint infection. In the

case of total hip arthroplasty surgery, an example of such intervention is the addition of antibiotics

to the bone cement employed to fix the prosthesis to the patient’s bone. But in the case of total

knee arthroplasty, the evidence about the benefits of this intervention is inconclusive. Some studies

show results in favor of it, others against it, and yet others show no effect at all. Thus, this topic

remains an open question in the specialized literature, and studies at all levels of evidence quality

(observational, randomized, and systematic reviews with meta-analysis) are still being conducted

and published.

Jameson et al. (2019) analyzed 731.214 prostheses and found a lower risk of prosthetic revision

surgery among prostheses with antibiotic-loaded bone cement (ALBC), in comparison with pros-

theses with plain cement, after adjusting for other variables. That work also found no evidence

of prosthetic mechanical problems induced by the antibiotic, a hypothesis that some authors have

proposed in other works. Similarly, Bendich et al. (2020) found lower rates of revision in the ALBC

group and a protective effect of ALBC against revision in a multivariate analysis. Another study

finding evidence in favor of ALBC was that by Randelli et al. (2010). On the contrary, among

individual studies that report no effect or a harmful effect of ALBC, we find those by Bohm et al.

(2014), Namba, Chen, et al. (2009), Namba, Inacio, and Paxton (2013) and Hinarejos et al. (2013).

Furthermore, we find several systematic reviews with meta-analyses about this topic in the literature.

In general, the works by King et al. (2018), T. Leta et al. (2024), and H.-Q. Li et al. (2022) showed

no statistically significant differences in infection rates between ALBC and plain cement groups.

Nevertheless, it is worth mentioning that T. Leta et al. (2024) reported that four out of the nine

included databases showed results in favor of ALBC, and H.-Q. Li et al. (2022) reported that the

two largest included studies reached the same conclusion.

Finally, note that patients’ preoperative characteristics can also be associated with the risk of

developing peri-prosthetic joint infection. In general, there is consensus in the literature about the

fact that gender (being male), age (being older), having previous comorbidities such as diabetes

or rheumatoid arthritis, and habits like smoking or alcohol abuse are all risk factors for prosthetic

infection (Kurtz et al., 2010; Jämsen et al., 2009; Namba, Inacio, and Paxton, 2013; Resende et al.,
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2021).

2.3 Conclusions

In this chapter, we have reviewed the methods that are more relevant to this thesis and their state of

the art. First, we have provided an overview of some historical, crucial methodological contributions

to the field of causal inference. Then, we have gone through epidemiological study designs and

correlational approaches to observational data analysis and statistical methods. Afterward, we

focused on causal inference methods. And finally, we have provided context and state-of-the-art

knowledge about the clinical aspects of this thesis.

In the next chapter, we delve into the application of these methods to the first analyzed real-world

use case of this thesis: the effect of the COVID-19 vaccine on the menstrual cycle.
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Chapter 3

Effects of the vaccine against COVID-19
and its administration time on the
menstrual cycle

In this chapter, we present an answer to research question Q1, Do the vaccine against COVID-19

and the vaccination time have any effect on the menstrual cycle?

The chapter is a longer version of the journal article ”Borja Velasco-Regulez, Jose L. Fernandez-

Marquez, Nerea Luqui, Jesus Cerquides, Josep Analia Fukelman, & Josep Perelló (2022). Is the

phase of the menstrual cycle relevant when getting the covid-19 vaccine? American Journal of

Obstetrics and Gynecology, 227, 913-915. DOI: 10.1016/j.ajog.2022.07.052.”

In addition, we also provide an answer to research subquestion Q4a What are the advantages and

disadvantages, strengths and weaknesses, of correlational methods for generating evidence about

clinical interventions? basing our analysis in the use case of Q1.

25

https://doi.org/10.1016/j.ajog.2022.07.052


3.1 Background

During the development of a new drug or vaccine, usually the first pieces of evidence about its

security are generated through experiments. Then, randomized controlled trials for assessing

effectiveness are performed (Spieth et al., 2016). The assessment of the effectiveness requires

monitoring one or several outcomes of interest. In the particular case of COVID-19 vaccines, those

outcomes could be the number of infected patients or the severity of the infections. Besides these

outcomes, which are directly related to the main goal of the vaccine (protecting from COVID-19),

it is also usual to look at other indicators, normally with the intention of discovering side effects

(i.e., effects other than the main or desired ones). Thus, usually any abnormal health symptom will

be detected and reported during the trials. Nevertheless, it is not possible to analyze every single

health variable (which is not even a defined or closed category) or to extend the trial indefinitely.

So, after trials end, vaccines are approved, administration starts among the general population, and

monitorization of side effects continues through pharmacovigilance protocols.

In the case of the COVID-19 vaccines, the most typically reported side effects were mild and did

not require specialized medical care. Those included soreness, redness or inflammation of the

vaccination site, fatigue, headache, or myalgia. Some specific formulations of the vaccine were

also associated with more serious side effects, in particular with blood clots (Zhao et al., 2024).

Nevertheless, three and a half years after vaccination campaigns started worldwide, and with more

than 13.000 million doses administered, the accumulated evidence shows that the rate and type of

side effects of the vaccine are lower risk than the infection itself (Wise, 2024; Amer et al., 2024):

COVID-19 vaccines are, in general, safe and worth to get.

During the first half of 2022, public attention was drawn to possible side effects of the COVID-19

vaccine on the menstrual cycle, mostly through anecdotal evidence in the form of patient reports

shared on social media. Characteristics such as the stability of the menstrual cycle are important

indicators of the reproductive and overall health of menstruating people, as alterations can affect

physical, emotional, sexual, and social aspects of their lives (Critchley et al., 2020). Thus, this topic

became relevant among clinicians and researchers, and formal studies were planned and conducted.

The way this topic emerged and gained attention is connected to the concept of citizen science,

which is relevant to the current chapter of this thesis and is explained in the next paragraph.

In the field of healthcare, the process of posing research questions and collecting data for analysis

is carried out most times by health researchers and/or clinicians. Nevertheless, occasionally, this

process can also be led by non-professional, volunteer citizens, giving rise to what is known as

citizen science. The concept of citizen science was first defined in the mid-1990s by Rick Bonney

and Alan Irwin (Riesch and Potter, 2014; Irwin, 2024) and can be summarized as the collaborative

process by which members of the general public engage in scientific research, usually in partnership

with professional scientists. In the field of healthcare in particular, this process can be oriented
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towards disease prevention, community engagement in public health, and health promotion in

general (Vohland et al., 2021; Laird et al., 2023). Citizen science can help put the scientific focus

on topics that have been otherwise neglected, collecting big amounts of data that would otherwise

be difficult or expensive to collect and increasing the variety in the data, reducing potential biases.

This process is further enhanced by means of technologies such as social networks and smartphone

applications. The work of this chapter is a successful example of citizen science. Firstly, as we

already mentioned, the attention towards the topic (COVID-19 vaccine and menstrual cycle) was

originally drawn by citizens instead of professional researchers. Secondly, for developing the work

of this chapter, we employed data from a menstrual cycle tracking smartphone application, Lunar

App (APP Lunar 2024), used by individuals for information purposes and without a primary focus

on research. The work was a successful collaboration between different institutions with different

domains of expertise: Members of the Lunar App team as the data providers, gynecologists from the

Hospital de la Santa Creu i Sant Pau as the health experts, a member of the University of Geneva

as a citizen science expert, and finally members from the IIIA (Artificial Intelligence Research

Institute) and AQuAS (Agency for Health Quality and Assessment of Catalonia) as the data analysis

experts. The author of this thesis acted as the coordinator of the project.

Some of the first published scientific studies about the relationship between the COVID-19 vaccine

and the menstrual cycle provided evidence of alterations in the first cycle after vaccination (Edelman,

Boniface, Benhar, et al., 2022; Nazir et al., 2022). It must be mentioned, though, that those

alterations were minor, mostly in the form of increased cycle length, and tended to disappear

at later cycles. Gynecologists and other experts wondered then about the effect of vaccination

timing on those alterations, i.e., whether the moment of getting the vaccine with respect to the

menstrual cycle (which has different phases, as we will explain soon) would have any effect on the

observed alterations. This is exactly the research question that we aim to answer in this chapter,

Q1, Do the vaccine against COVID-19 and the vaccination time have any effect on the menstrual

cycle? Note that the average menstrual cycle lasts 28 days and that any cycle between 21 and 35

days is considered clinically normal (Critchley et al., 2020; Mihm, Gangooly, and Muttukrishna,

2011). Also, note that the menstrual cycle consists of two phases: the follicular phase (between

days 1 and 14 in a 28-day cycle) and the luteal phase (between days 14 and 28 in a 28-day cycle).

Ovulation occurs between both phases. For answering research question Q1 we will employ

the epidemiological study design of self-controlled case series (SCCS) (Petersen, Douglas, and

Whitaker, 2016), and correlational statistical analysis methods that we will detail in the next section.

This use case will allow us to answer research subquestion Q4a, What are the advantages and

disadvantages, strengths and weaknesses, of correlational methods for generating evidence about

clinical interventions?

After this introduction, the remainder of this chapter is divided into the sections of data and methods,

results, and discussion and conclusions.
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Elegible: 28.876Identification

Inclusion

Analysis Included in dataset: 371

Not included: 
- No information about the vaccine: 27.928  (948) 
- No information about the first dose/monodose: 356 (592)
- Negative cycle or menses duration (wrong data): 110 (482)
- Post-vaccine cycle registered later than 90 days after vaccine: 25 (457)
- No 3 consecutive cycles before the vaccine: 86 (371)  

Figure 3.1: STROBE flow diagram of the database filtering process. (STROBE: Strengthening the
Reporting of Observational studies in Epidemiology).

3.2 Data and methods

We analyzed data collected by the menstrual cycle tracking smartphone application Lunar App.

This application allows users to track their menstrual cycle and menstruation (also called menses).

In particular, it allows the recording of beginning and end dates and storing the pain intensity and

the blood loss quantity during menstruation (both aspects recorded as less, equal, or more than

usual). Finally, it also allows for storing the COVID-19 vaccination status of the users.

The database we analyzed contained 28,876 users and 162,529 cycles. We filtered the data, keeping

only those users who had reported their vaccination status and at least five consecutive cycles.

We considered the first doses (or monodoses) of the vaccine for the analysis, and we removed

incomplete and/or wrong data. After this filtering process, we ended up with 371 users and 1855

cycles, registered between September 2020 and February 2022. Figure 3.1 shows the STROBE

Strengthening the reporting of observational studies in epidemiology) (Elm et al., 2008) diagram of

the filtering process, with the details. The relatively small size of the final sample was caused by the

restrictive inclusion and exclusion criteria, imposed to ensure the maximum attainable data quality.

The intervention of interest was binary: getting the COVID-19 vaccine during the follicular phase, or

getting it during the luteal phase. The luteal phase was defined as the period between the beginning

of menstruation and the 14 days prior to it, due to the relative robustness of that phase. The rest

of the cycle was considered to be the follicular phase. The primary outcome was menstrual cycle

length change in days. Secondary outcomes were menses length change in days, and variations in

the usual blood quantity and pain intensity during the menses. Users reported abnormalities when

28



they had more or less blood loss quantity or pain intensity than usual during menses.

The self-controlled case series design was employed for analysis. Recall that in this design, each

participant is a control before the intervention of interest, and a case after. This design automatically

controls for time-invariant confounders, as each case-control pair is formed by the same patient

with the same baseline covariates. No other covariates were included in the analysis, as they were

not available in the database or they did not contain information before and after the intervention.

For calculating the menstrual cycle length change, we computed, for each user, the difference

between the median length of the three cycles before the vaccine, and the length in which the

vaccine was given (4th cycle). Then, we computed the median over all the users, as well as

the 95% confidence intervals of the point estimate. We used medians because the data was not

normally distributed. We proceeded identically for the menses length, but employing data from

the 5th cycle. For the blood loss quantity and pain intensity, we computed the differences in the

percentages of cycles with abnormalities in each endpoint before and after the vaccine, and the 95%

confidence intervals of the point estimates. Finally, for effectively analyzing the intervention of

interest, we stratified the analysis of all outcomes by the phase of the menstrual cycle of the user at

vaccination time (note that we also provide results of the overall, unstratified data for reference). We

employed Wilcoxon signed-rank and Chi-squared tests for statistical hypothesis testing of medians

and proportions, respectively. Statistical significance was set for a p-value smaller than 0.005.

3.3 Results

First, we present some informative results that provide context of the morphology of the database.

The distribution of percentages of users’ age range (of the final dataset for analysis) was the

following: 11.85% between 18 and 24 years; 49.15% between 25 and 34; 28.56% between 35

and 44; 8.31% between 45 and 54; 2.13% others. The frequency of each vaccine brand identifier

was the following: Sinopharm BIBP, 85; Oxford–AstraZeneca (Covishield), 102; Sputnik V, 62;

Pfizer–BioNTech (Comirnaty), 84; Moderna (Spikevax), 17; Janssen (Johnson & Johnson), 7;

others, 14. The distribution of the medians of cycle lengths of each user before the vaccine had a

median value of 28 days, with a (5, 95) inter-percentile range of (22, 34) days, indicating that the

cycles of the sample were relatively stable.

In the overall, unstratified analysis, we observed a statistically significant increase in the median

cycle length of 0.5 days (confidence intervals: (0.0–1.0)) for all individuals, as it can be seen in

Figure 3.2 (left). We also observed that 8.08% of the individuals had an increase of 8 or more days

of the cycle length, which is considered clinically significant (Mihm, Gangooly, and Muttukrishna,

2011) (see Table 3.2). We observed no variation in menses length, which is in line with results

previously reported in the literature (Edelman, Boniface, Benhar, et al., 2022). In addition, we

29



15 10 5 0 5 10 15

Change in cycle length (days)
0

10

20

30

40

50

60

All individuals
Median

15 10 5 0 5 10 15
0

5

10

15

20

25

30

35

Individuals in follicular phase
Median

15 10 5 0 5 10 15
0

5

10

15

20

25

30

Individuals in luteal phase
Median

Figure 3.2: Histograms of the differences between the median length of the three cycles before the
vaccine and the length of the cycle of the vaccine, for each user. The median value is depicted in
each plot. Left: all individuals; Center: individuals vaccinated during the follicular phase; Right:
individuals vaccinated during the luteal phase.

observed no significant variations in the percentages of cycles with abnormal blood loss or pain

intensity. All the results can be seen in Table 3.1.

The stratified analysis showed an association between the phase of the menstrual cycle at vaccination

time and the cycle length change. Thus, individuals vaccinated during follicular phase showed a

statistically significant median increase cycle length of 1 (0.0, 1.0) day (see Figure 3.2, center), with

11.82% of the users having an increase of 8 or more days (Table 3.2), while individuals vaccinated

during luteal phase showed no change. These results can be seen in Table 3.1.

Table 3.1: Information about the COVID-19 vaccine association with menstrual cycle disorders. *
for a p-value<0.005.

All vaccinated individuals
Individuals vaccinated
during follicular phase

(186; 50.13%)

Individuals vaccinated
during luteal phase

(185; 49.87%)
Change P-val Change P-val Change P-val

Cycle length 0.5 (0, 1) * 1 (0, 1) * 0 (0, 1) 0.96
Menses length 0 (0, 0) 0.01 0 (0, 0) 0.1 0 (0, 0) 0.05
Percentage of cycles with
abnormal blood loss
during menses

-2.9 (-7.8, 2) 0.15 -3.8 (-10.9,
3.4)

0.2 -1.9 (-8.6,
4.6)

0.46

Percentage of cycles with
abnormal pain intensity
during menses

-0.5 (-5.7, 4.8) 0.83 -1.1 (-8.7,
6.6)

0.72 0.2 (-7, 7.4) 0.95

3.4 Discussion and conclusions

Our analysis showed an association between the vaccine and an increase in cycle length, similar to

what some other previous and also posterior studies have shown, including meta-analyses (Edelman,
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Table 3.2: Distribution of percentages of users with different cycle length increases after vaccination.

All users Users vaccinated during
follicular phase

Users vaccinated during
luteal phase

Increase <=0 days 49.86% 44.08% 55.67%
Increase in (0,2] days 23.71% 25.80% 21.62%
Increase in (2,8) days 18.32% 18.27% 18.37%
Increase >=8 days 8.08% 11.82% 4.32%

Boniface, Benhar, et al., 2022; Nazir et al., 2022; Smaardijk et al., 2024).

Besides that, our results also showed an association between the phase of the menstrual cycle

at vaccination time and the change in cycle length. Thus, vaccination during the luteal phase

had a protective effect over COVID-19 vaccine-related menstrual cycle disorders, compared to

vaccination during the follicular phase. This suggests considering the phase of the menstrual

cycle for the design of COVID-19 vaccination policies, recommending vaccination during the

luteal phase to menstruating individuals. These conclusions were novel in the literature when we

published them (Velasco-Regulez et al., 2022), and were replicated by a larger study later (Edelman,

Boniface, Male, et al., 2024). It is also worth mentioning that our study was included in a posterior

meta-analysis (Smaardijk et al., 2024), and that the work by Ramaiyer et al., 2024, which was

published later and reached conclusions similar to ours, also employed data from a menstrual cycle

tracking app.

3.4.1 Critical assessment of the employed methodology

The first research question of this chapter, Q1, (Do the vaccine against COVID-19 and the vaccina-

tion time have any effect on the menstrual cycle?) has been answered with observational data, with

the SCCS epidemiological study design, and with correlational-only statistical methods (hypothesis

testing). Causality has not been explicitly addressed and no causal inference method has been

employed. In the following paragraphs, we indicate the main advantages and strengths, as well as

disadvantages and weaknesses of this approach, with the goal of answering research subquestion

Q4a, (What are the advantages and disadvantages, strengths and weaknesses, of correlational

methods for generating evidence about clinical interventions?)

Among advantages and strengths we find the simplicity of this method. It allowed us to answer

an important question about a complex topic with a database that contained limited information.

In such a scenario, other more powerful but more complex approaches could have failed due to

insufficient data. The employed method is able to remove potential confounding from any variable

that is time-invariant in a straightforward manner.

Among disadvantages and weaknesses, on the one hand, we find that some of the assumptions
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of the employed epidemiological design may be unrealistic, in particular, the assumption that no

characteristic of the patient changes with time or between before and after vaccination. On the

other hand, the most crucial weakness is that the employed correlational-only approach provides

no guarantee of the causal nature of the measured association, i.e., it provides no guarantee that

our intervention of interest (vaccine administration timing) is actually the cause of the observed

changes in the outcome (menstrual cycle length variation). This means that, technically, it would

be correct for us to say that the observed correlation may be due to pure chance, or that it may be

caused by a common variable that we are not aware of. The problem is that no correlational-only,

observational study ever concludes that, because that would render the study partially useless:

causality is implicit, despite the disclaimer authors usually make about the correlational nature of

the conclusions. Gershman and Ullman (2023) provide evidence supporting the hypothesis that

people do infer causality from statements of association, under minimal conditions. Thus, this

methodology presents serious limitations that hinder the reached conclusions.

In the next chapter, we continue analyzing the same health technology, the COVID-19 vaccine, but

another outcome of interest, diabetes onset. We employ a causal approach for the analysis.
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Chapter 4

The effect of covid-19 vaccine on the risk
of diabetes onset

In this chapter, we present an answer to research question Q2, Does the vaccine against COVID-19

have any effect on the risk of developing diabetes?

The chapter presents a causal analysis of the question of interest, employing an integral causal

approach with some of the most complete and advanced methods at our disposal. This work is still

ongoing, and we intend to publish it when it is finished in a high impact journal.

In addition, we also provide an answer to research subquestion Q4b (What are the advantages

and disadvantages, strengths and weaknesses, of causal inference methods for generating evidence

about clinical interventions?) basing our analysis in the use case of Q2.
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4.1 Background

Approximately two years after the COVID-19 pandemic started, some studies in the literature began

to provide evidence that diabetes onset had increased during that period. Xie and Al-Aly (2022)

found increased risk and 12-month prevalence of incident diabetes in a group of patients who had

COVID-19, in comparison with two control groups without the infection. Wander et al. (2022)

also found an association between COVID-19 infection and a higher risk of incident diabetes,

although only in men. And Salmi et al. (2022) reported that more children with new-onset type

1 diabetes were diagnosed with severe diabetic ketoacidosis at admission to pediatric intensive

care units during the pandemic. Knowing that viral infections can trigger type 1 diabetes (Rajsfus,

Mohana-Borges, and Allonso, 2023), the authors of that work aimed to determine whether COVID-

19 infection had a direct role in such increase (i.e., whether the infection was the cause). They

concluded that the observed increase was probably due to ”delays in diagnosis following changes in

parental behavior and healthcare accessibility.” Another (non-peer-reviewed) report from the Health

Quality and Assessment Agency of Catalonia, co-authored by the author of this thesis (Troncoso

et al., 2022), described that in 2020, no increase in type 1 diabetes incidence was observed, but

2021 witnessed a 28% increment. Nevertheless, it concluded that it was not possible to establish a

causal relationship between the pandemic or the infection and the aforementioned increase, neither

through biological nor through social mechanisms (such as the disruption of normal healthcare

assistance), and that further research in the topic was warranted.

Given these discoveries, it was then natural to wonder about the effect of the COVID-19 vaccine on

the risk of diabetes. Studies researching this topic have been published only in the last two years,

2023 and 2024, given the novelty of the issue. Taylor et al. (2024) investigated the association

between COVID-19 and the incidence of any type of diabetes and the effect of COVID-19 vaccina-

tion in such association. The authors of that study found that elevated incidence of type 2 diabetes

after COVID-19 was less apparent in people who had been vaccinated. Kwan et al. (2023) reported

that diabetes risk after COVID-19 infection was higher in patients who were not vaccinated than

in those who were, also suggesting a beneficial protective effect of the vaccine. They proposed

a possible pathway for the explanation of the higher diabetes risk after infection (”inflammation

contributing to insulin resistance”) but mentioned that ”additional studies are needed to understand

cardio-metabolic sequels of COVID-19 and whether COVID-19 vaccination attenuates the risk of

cardio-metabolic diseases”. Finally, a systematic review by He et al. (2023) analyzed studies dis-

cussing the effect of diabetes on vaccination and the effect of vaccination on diabetes. The authors

concluded the existence of a complex relationship with a bidirectional association: vaccination

could contribute to the risk of worsening blood glucose in diabetic patients, and diabetes could

induce a lower antibody response after the vaccine. All in all, further evidence was required.

None of the aforementioned studies nor any other found in the literature, to the best of our
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knowledge, employed causal inference for the question of interest. Kwan et al. (2023) used a

self-controlled exposure-crossover design, Xiong et al. (2023) a case-control design, and Taylor

et al. (2024) a cohort design, and all of them employed causality-free, correlational-only methods.

On the contrary, we posed a precise causal question, Does the vaccine against COVID-19 have

any effect on the risk of developing diabetes? (research question Q2), and we aimed to answer

it using a causal approach and causal inference methods. In particular, we developed a Directed

Acyclic Graph (DAG) of the involved variables, we employed the target trial emulation framework,

together with Cloning-Censoring-Weighting (CCW), and we adapted a machine learning-based,

non-iterative conditional expectation (NICE) implementation of the G-formula, by modifying a

previously existing algorithm. The reason for employing the G-formula was that time-varying

confounding was present in our problem. Then, using this study as a base, we aimed at answering

research subquestion Q4b, What are the advantages and disadvantages, strengths and weaknesses,

of causal inference methods for generating evidence about clinical interventions?

After this introduction, the rest of this chapter is divided into the sections of methods and data,

results, and discussion and conclusions. The work presented in this chapter was conducted in

collaboration with UMIT TIROL University, in particular with the Public Health, Health Services

Research and Health Technology Assessment department.

4.2 Methods and data

4.2.1 Methods

In this section, we describe the methodology employed for the current study. First, we start by

introducing the PICO framework and question (Hosseini et al., 2024), which is a framework for

formally and systematically posing research questions employed by the evidence-based medicine

(EBM) approach. EBM has been defined as the systematic approach to clinical problem solving

that takes into account the best available research evidence (Akobeng, 2005). Afterward, we define

the protocol of the target trial, i.e., the trial that we would have ideally conducted. Recall that target

trial emulation (TTE) (Miguel A. Hernán and James M. Robins, 2016) was introduced in the state

of the art of Chapter 2. Then, we define the directed acyclic graph (DAG) of the problem, with the

involved variables and their causal relationships. And finally, we introduce the causal quantities

and effects of interest, providing the estimators and algorithms employed for computing them.

PICO question

PICO is a framework for formally posing research questions that is employed by the evidence-based

medicine (EBM) approach. PICO stands for population, interventions, comparisons, and outcomes,
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and requires researchers to clearly determine those four components in their study. In our case,

the population of the study were all the citizens of Catalonia covered by the public healthcare

system’s service, around 8 million individuals. The interventions of interest were defined by the

number of received doses of the COVID-19 vaccine, and in particular, four interventions were

possible: not receiving any dose (0 doses), receiving 1 dose, 2 doses, or 3 doses. The outcome

of interest was new-onset diabetes throughout the study period, identified by the presence of a

first diabetes diagnostic code during such time. We employed the International Classification of

Diseases (ICD) (Organization, 2004), revisions 9 and 10, for diagnostic codes. In particular, the

considered ICD-9 codes were those starting with ’250’ (’diabetes mellitus’), and the ICD-10 codes

were those starting with ’E10’ (’Type 1 diabetes mellitus’), ’E11’ (’Type 2 diabetes mellitus’) or

’E13’ (’Other specified diabetes mellitus’). We considered type 1, type 2, and unspecified diabetes

for remaining agnostic about the potential mechanisms of influence of the COVID-19 infection and

vaccine on the disease.

Target trial protocol, with CCW

We employed the target trial emulation method, introduced in Chapter 2, following the guidelines

of the work by Miguel A. Hernán, W. Wang, and Leaf (2022) and Kuehne et al. (2022). Those

guidelines require the definition of a target trial protocol, which we present in Table 4.1. In

particular, the table contains information about patients’ eligibility criteria, treatment strategies,

assignment procedures (of patients to treatment lines), outcome(s) of interest, follow-up period,

causal quantities and contrast of interest, statistical methods employed, and confounder variables

considered.

Besides emulating this target trial, we employed the CCW strategy (Gaber et al., 2024) to diminish

the risk of immortal-time bias. Immortal time bias appears when, in an observational study,

information from the future of a variable (typically the treatment) is used to assign individuals to a

treatment line at baseline time. As an example, in the present study, this occurs when an individual

is assigned to the treatment line of taking three vaccine doses: until the time that individual gets the

third vaccine, they are free of suffering the outcome by definition (because otherwise they would

not have been assigned to that treatment line in the first place). This would not happen in a real trial.

Besides, a patient assigned to the treatment line of getting zero vaccine doses does not have such

a ”risk-free” period, and that difference, artificially introduced by the fact that we are emulating

a trial with observational data, can induce bias in the results. CCW is a method for correcting

this. The cloning and censoring stages of this method were implemented directly as in Gaber et al.,

2024, i.e., each patient was cloned in the database as many times as different treatment strategies

were available (in this case four), then, each clone was assigned to each one of the available

treatment strategies, and then clones were censored whenever they would violate the treatment

strategy assigned to them in the protocol. In this context, censoring means that we stop tracking
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Table 4.1: Table of the protocol of the emulated target trial.

Eligibility criteria Individuals living in Catalonia, under the insurance of the Catalan public
healthcare system (CatSalut), who did not have any diabetes diagnostic
before the beginning of the study period (1/1/2021).

Treatment strategies Four possible treatments with the COVID-19 vaccine: no dose (0 doses),
1 dose, 2 doses, or 3 doses. Protocol vaccination dates are assigned based
on the vaccination strategy of the Spanish health authorities (Estrategia de
vacunación COVID-19 2024). Thus, people above 50 years old should get
the first vaccine dose after 1/2/2021, the second dose after 1/3/2021, and
the third dose after 1/4/2021. Similarly, people below 50 years old should
get the first vaccine dose after 1/6/2021, the second dose after 1/7/2021,
and the third dose after 1/8/2021. For each individual, a grace period of
180 days is granted for the fulfillment of the conditions of the assigned
treatment strategy. If, after this grace period, the individual does not follow
the assigned treatment, they are censored.

Assignment procedures Each patient is assigned to the treatment line they followed, looking retro-
spectively. Clarifying note: if a patient got three vaccine doses but had a
diabetes diagnostic after the second dose, it is effectively assigned to the
two-dose intervention group.

Outcome Diabetes diagnostic and its discrete time of occurrence. Type of outcome:
discrete time-to-event, survival-type. The diabetes diagnostic is identified by
ICD codes. ICD-9: starting with ’250’. ICD-10: starting with ’E10’, ’E11’,
or ’E13’

Follow-up Start of follow-up: 1/1/2021. End of follow-up: 31/12/2023.

Causal quantities and con-
trasts of interest

Per protocol effect. Cumulative risk of new-onset diabetes under the different
intervention strategies at the end of follow-up, and ratios of those risks with
respect to a reference. The reference is the cumulative risk of the ”natural
course,” i.e., the risk under no specified intervention (just the observed ones).

Statistical methods Parametric, non-iterative conditional expectation (NICE) implementation of
the G-formula; controlling for time-invariant and time-varying confounding.

Confounder variables Time invariant confounder variables: date of birth, sex assigned at birth,
country of birth, area of residence within Catalonia, and an indicator of the
socioeconomic level of that area of residence.

Time-varying confounder variables: body mass index, systolic and diastolic
blood pressure levels, cholesterol level, blood glucose level, abdominal
perimeter, smoking status, adjusted comorbidity index (Monterde, Vela, and
Clèries, 2016) (similar to Charlson index) and COVID-19 infection status.
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those patients/clones without knowing whether they developed the outcome (new-onset diabetes)

afterward or not. All we know is that they did not develop the outcome during the time they were

followed, i.e., we have partial information about them. This concept of censoring and partial

information was introduced in Chapter 2, section 2.2.1, in survival analysis. For the weighting

stage, we employed stabilized inverse probability of censoring weights (sIPCW), computed as

sIPCW =
K∏
k=0

P (Ck = 0|U0, Ck−1 = 0)

P (Ck = 0|U0, Vk, Ck−1 = 0)
(4.1)

where k is a discrete-time index of the follow-up period. In this case, three possible intervention

times existed, as it was possible to get a maximum of three vaccine doses, thus k ∈ [0, 2]); Ck is

the censoring indicator, i.e., a binary variable indicating whether the patient has been censored

at time k or not; U0 is the vector of baseline, time-invariant confounders; and Vk is the vector of

time-varying confounders at time k. A weight was computed for each uncensored patient/clone

in the cohort at the end of follow-up time. The probabilities present in the weights’ formula were

modeled with pooled logistic regressions.

Note that, due to censoring, not all patients were followed up for the same amount of time, hence

the need to employ a time-to-event, survival-type outcome variable.

DAG of the problem

We developed a directed acyclic graph of the problem, consulting experts in the field for coding

assumptions about causal relations among the variables and for identifying the adjustment set (i.e.,

the minimum set of variables to adjust for, in order to obtain an unbiased estimate of the effect of

interest). Because the graphical representation of the full DAG had many nodes and edges, Figure

4.1 shows a schematic version of it, where four types of nodes are depicted: treatment variable

nodes, the outcome variable node, time-varying covariate nodes and time-invariant covariate nodes.

Note that there are three possible treatment nodes and, thus, three time-varying confounder nodes.

Besides the schematic version, we include in Appendix A a version of the DAG in which time has

been collapsed into a single step, but which contains all the variables of the problem (except for

latent ones, i.e., variables that are known but uninformed and that do not introduce confounding).

The adjustment set was formed by the confounder variables mentioned in Table 4.1.

Note that the confounder selection was based on the main risk factors of type 2 diabetes. For the

case of type 1, these factors are mostly unknown, except for the genetic ones (ElSayed et al., 2023).

The genes that contribute to the development of type 1 diabetes provide instructions for making

proteins that play a role in the immune system (H. S. Lee and Hwang, 2019). We assumed that such

genes would have no influence on the probability that a patient would get the COVID-19 vaccine

and thus would not induce confounding.
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Figure 4.1: Simplified version of the DAG of the problem. Observed variables: time-invariant
confounders; two sets of time-varying confounders at three different time points. Intervention
variables: vaccine doses (VD) at three different time points. Outcome variables: diabetes (mellitus,
DM).

Causal quantities and effects of interest

In this section, we define the causal quantities and contrasts of interest. To do so, we first need

to provide some definitions. Thus, let our discrete-time outcome, new-onset diabetes at time

k, be Yk, a binary variable taking value 1 if the patient had a diabetes diagnostic at that time

and 0 otherwise. Similarly, Zk is the vector of covariates (time-varying and time-invariant) at

time k, and Ck is the censoring indicator at that time. In general, for a random variable A,

Āk denotes the history of A through k, (A0, ...Ak). Let us denote a treatment strategy by the

random variable X̄ and a realization of it by the lowercase x̄. Note that a treatment strategy X̄

is formed by the sequence of (binary) treatment realizations Xk = xk at each time step, thus

X̄K = (X0 = x0, ...Xk = xk, ...XK = xK), being K the total number of time steps. In our

particular case, the strategy of receiving 0 doses of the vaccine is X̄ = (X0 = 0, X1 = 0, X2 = 0),

and we refer to it as ¯0D, 1-dose strategy is ¯1D = (1, 0, 0), 2-doses strategy is ¯2D = (1, 1, 0), and

finally, 3-doses strategy is ¯3D = (1, 1, 1). Recall that our discrete-time outcome for time k is

Yk. Then, the discrete, hazard or risk of the outcome at time k is P (Yk = 1|Yk−1 = Ck−1 = 0),

and the cumulative risk is
∑

k P (Yk = 1|Yk−1 = Ck−1 = 0). This (the cumulative risk) is the

causal quantity of interest that we want to compute. In particular, we want to compute it using the

previously defined strategies. We can express that, with counterfactual notation, as P (Ȳ 0̄D
K = 1),
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P (Ȳ 1̄D
K = 1), P (Ȳ 2̄D

K = 1) and P (Ȳ 3̄D
K = 1). Finally, the causal effects or contrasts that we want

to compute are the ratios of those cumulative risks with respect to the risk of the so-called natural

course (expressed as P (Ȳ N̄C
K = 1)), i.e., P (Ȳ 0̄D

K = 1)/(Ȳ N̄C
K = 1), etc. The natural course risk

is the risk that would be observed if no treatment policy was applied, just the observed treatments

(Young et al., 2011).

Estimator and algorithm: Parametric NICE G-formula with random forests

For estimating the aforementioned causal quantities, we employed the parametric non-iterative

conditional expectation (NICE) implementation of the G-formula (Chiu et al., 2023). Other options

such as the iterative conditional expectation (ICE) or the inverse probability of treatment weighting

(IPTW) were also available. Evidence shows that their performance is, in general, similar (Wen

et al., 2021). The NICE implementation requires some extra assumptions compared to ICE or

IPTW-based implementations, as it requires researcher-defined regression models. We divide the

explanation of this estimator in two parts: first, we explain the G-formula itself, and then, its

parametric NICE implementation.

The G-formula was introduced by J. Robins, 1986 for measuring causal effects in settings with

time-varying confounding. In such settings, traditional adjustment methods fail, providing biased

effects estimates even with all confounders correctly identified. This formula takes different shapes

depending on the particular characteristics of the problem at hand. Our case is one of discrete-time

survival with static and deterministic treatment regimes. A static treatment is one that does not

depend on past covariate history, and deterministic means simply that it is not random. In such a

scenario, the cumulative risk under a given treatment strategy is given by the G-formula as

∫
z̄k−1

K∑
k=0

P (Yk = 1|Yk−1 = Ck = 0, z̄k−1, x̄k−1)

×
j−1∏
s=0

P (Ys = 0|Ys−1 = Cs = 0, z̄s−1, x̄s−1)f(zs|Ys = Cs = 0, z̄s−1, x̄s−1) (4.2)

given that the identifiability conditions (positivity, consistency and sequential exchangeability) hold,

and with f(zk|Yk = Ck = 0, z̄k−1, x̄k−1) being the joint density of confounders at time k under the

given treatment. For a detailed explanation, see the works Miguel A Hernán and James M Robins,

2020; Wen et al., 2021.

The parametric NICE implementation of the G-formula works in two stages: first, it is necessary

to fit models of the components present in the G-formula. Those components are, on the one

hand, the conditional distribution of each covariate given censoring, past covariate, and treatment

histories, and, on the other hand, the probability of an outcome given censoring, past covariate,

and treatment histories. In both cases, this is done using regression models provided by the user.
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The specific regression models employed in this case can be found in Appendix B. Then, the

second stage requires approximating the integral and sum of the G-formula by performing Monte-

Carlo simulations (n times) in four steps: 1) at time step k = −1, sampling from the observed

baseline confounders, and assigning the treatment of interest; 2) at time steps k ≥ 0, simulating

the confounders using the fitted models from the previous stage and the confounder values from

k − 1 as inputs for the models, as well as the treatment assigned per the strategy; 3) for each k + 1

time, simulate the outcome, using the fitted outcome model from the previous stage, and using the

confounders simulated in step 2 and the treatment as per strategy as inputs; 4) finally, compute the

cumulative risks approximating expression 4.2.1 with the Monte Carlo integration method.

We employed the pygformula python package (pygformula 2024) as the base for our algorithm.

Nevertheless, we introduced two modifications. Firstly, the base algorithm used generalized linear

models (GLM) for the modeling steps, and we changed those by random forests. Secondly, we

introduced the computation of the weights of the CCW method, explained in section 4.2.1. After

their computation, we used them as sample weights provided to the random forest during the

modeling of the conditional outcome, which is part of the first stage of the NICE G-formula. The

pseudo-code of this algorithm can be seen in 4.1.

Note that the substitution of GLMs for random forests in the NICE G-formula improved the effi-

ciency of the resulting algorithm. Our modified algorithm was faster and less memory-consuming

than the original. In fact, the original version would deplete our memory resources (∼300GB

of RAM) even for small subsets (as small as 1%) of the whole cohort of patients. Optimization

attempts such as paralleling or dividing in batches the minimization process of the fitting stage of

GLMs or storing the data in efficient formats were still slower and more memory-consuming than

our algorithm. In that sense, it is worth highlighting that our adapted algorithm was more suitable

for working with large amounts of data than the original.

For computational reasons we randomly divided our cohort into ten equal chunks, we estimated

the causal effects of interest in each of them and then we computed averages and standard errors.

The underlying assumptions of this strategy are that, across chunks, samples are independent and

identically distributed and that the causal effects of interest follow a normal distribution.

4.2.2 Data

In this subsection, we describe the employed data and the preprocessing steps. Catalonia has a

population of around 8 million inhabitants and a public healthcare system that provides coverage to

all of them. Despite the existence of private healthcare services, the public system is predominant

in domains such as the surveillance of infectious diseases, the implementation of vaccination

programs, and the attention to chronic diseases. In the particular case of the vaccination program

against the COVID-19 pandemic, given the extraordinary circumstances in which it unfolded, the
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Algorithm 4.1: RF-based, parametric NICE G-formula with CCW
input :Cohort of patients
output :P (Ȳ x̄

K = 1) ∀x̄ ∈ ( ¯0D, ¯1D, ¯2D, ¯3D)

1 for patient ∈ Patients do
2 Clone: clone patient T − 1 times, with T the number of possible interventions; we

refer to clones and patient simply as clones
3 Assign: Assign clones to treatment strategies
4 for i ∈ [0, T − 1] do
5 clonei → X̄ = ¯iD
6 Censor: Censor clones that violate the protocol
7 if violatesProtocol(clonei) then
8 Cclonei = 1
9 end

10 end
11 end

12 Fit P (Ck = 0|U0, Ck−1) ∀k ∈ [0,K] with logistic regression, data of all clones
13 Fit P (Ck = 0|U0, Vk, Ck−1) ∀k ∈ [0,K] w. logistic regression, data of all clones
14 Compute sIPCWi using the models of steps 12, 13, as

K∏
k=0

P (Ck,i = 0|U0,i, Ck−1,i = 0)

P (Ck,i = 0|U0,i, Vk,i, Ck−1,i = 0)
∀i ∈ [1, I],with I the number of clones

15 Fit model of f(zk|Yk, Ck, z̄k−1, x̄k−1) with user-provided covariate regression models,
random forests, data of all clones

16 Fit model of P (Yk = 1|Yk−1, Ck, z̄k−1, x̄k−1) with user-provided outcome regression
model, random forests, sIPCW, data of all clones

17 for x̄ ∈ ( ¯0D, ¯1D, ¯2D, ¯3D) do
18 for m ∈ [1, n] do // with n the number of MC simulations
19 for k ∈ [−1,K] do
20 if k=-1 then
21 Sample covariates
22 else
23 Compute components of expression 4.2.1 using models from steps 15, 16
24 Compute result of expression 4.2.1 using results of step 23
25 end
26 end
27 end
28 Compute average of results over the n simulations (Monte Carlo integration method)
29 end
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public health system was the only healthcare provider involved in its development (i.e., the only

provider administering vaccines).

Several electronic health records from the Catalan health service were employed. In particular, those

were the databases of hospital discharges, emergency rooms, primary care, results of laboratory

tests of primary care, vaccination status, the specific registry of COVID-19, and the central registry

of insured patients. In all databases, patients were identified by a unique and common pseudo-

anonymous identifier, which allows for the linkage of the data.

The starting point of the information was the central registry of insured patients, which contained

the all-time list of insured patients of the Catalan public health system. It contained more than 12

million registries. We filtered patients who died before the beginning of the study date, 1/1/2021,

and patients who were not active at the extraction time, January 2024. This resulted in 8,049,335

unique patients. The table contained information about the sex assigned at birth, birth date, country

of origin, and region of residence within Catalonia, besides the date of death. This list of patients

was the base employed for the lookup of the rest of the variables in the rest of the databases.

Three index dates were assigned to each patient. The values of those index dates were taken

from the national vaccination strategy of the Spanish health authorities Estrategia de vacunación

COVID-19 2024. Each of these three dates represents the ideal time in which a patient should have

received each dose of the COVID-19 vaccine.

The specific registries of COVID-19 contained information about infections and vaccination status.

Thus, from these databases, we obtained infections, infection dates, number of administered vaccine

doses (0, 1, 2, or 3 doses), and dose administration dates.

The databases of hospital discharges, emergency rooms, and primary care register the activity in

those domains as visits. Each visit was associated with one or more medical diagnoses coded with

the ICD9 and ICD10 standards. Thus, we obtained the diabetes diagnoses and their dates from these

databases. After the search, episodes were ordered by date, and the first one was kept. Patients with

a diabetes diagnosis before the study start date were excluded from the cohort.

The database of results of laboratory tests of primary care collects information on clinical tests

ordered by primary care specialists. From this database, we obtained results and dates of tests of

blood glucose, systolic and diastolic blood pressure, abdominal perimeter, body mass index, and

cholesterol level.

Finally, from other tables, we obtained an indicator of the socioeconomic status of the region where

each patient lived, their smoking status, and an adjusted comorbidity indicator (Monterde, Vela,

and Clèries, 2016) similar to the Charlson index.

All this information was combined through a merging algorithm into a single table. The pivotal

information was the vaccination status. Recall that, for each patient, we had the number of vaccine
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doses administered (0, 1, 2, or 3) and each dose’s administration date or its index date. Then, the

information on the time-varying confounders was added by selecting the closest available value

of each variable prior to the vaccine administration date or index date. This process was repeated

for each person and each vaccine dose. Finally, the information on the time-invariant confounders

was merged by the patient identifier. Patients who had information about the second and/or third

dose without information about the first dose were dropped, assuming that these errors occurred

randomly. This resulted in 7,499,081 patients included in the final cohort.

Data preprocessing

After the database was constructed, we took some preprocessing steps. Those included

• removing outlier values of BMI above 70 kg/m2 (set to missing) and dropping patients aged

above 110 years (assumed dead),

• imputing missing values of country of birth and area of residence (sampling from a distribu-

tion with probabilities equal to the frequencies of each category of those variables),

• causally imputing missing values of time-varying confounders, using the same confounder

models employed in the G-formula,

• imputing missing values of time-varying confounders’ value dates, using the beginning of

study date,

• and finally, carrying forward the information of time-varying confounders with missing values

at time steps 2 and/or 3 (recall that our database contains information on three different

moments in time).

4.3 Results

In this section, we present the results of the described study. Table 4.2 shows the cumulative risk of

new-onset diabetes in each intervention group after the whole study period and the ratio of those

risks with respect to the natural course of the disease. Point estimates, together with their 95%

confidence intervals, are provided. Recall that the different interventions were receiving 0, 1, 2, or 3

doses of the vaccine against COVID-19, and natural course refers to the result under no intervention

strategy, just the observed treatments. The results show that getting the vaccine against COVID-19

has a protective effect against diabetes onset, as the accumulated risk of developing the disease is

0.096 (0.072, 0.120) (risk ratio of 1.465 (1.354, 1.575)) in the group who got 0 doses of the vaccine,

versus probabilities of 0.058 for 1 and 2 doses, and 0.054 for 3 doses (risk ratios of 0.899, 0.887
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Table 4.2: Cumulative risk of diabetes onset for the different interventions (left column), and the
ratio of those risks with respect to ”Natural course” risk (right column), after a total study time of 3
years and setting the grace period for protocol violations to 180 days. Point estimates together with
95% confidence intervals (between brackets) are provided.

Cumulative risk of diabetes onset at the
end of study time [95% CI]

Risk ratio [95% CI]

Intervention

Natural course 0.065 [0.052, 0.078] 1.000 [1.000, 1.000]

0 doses 0.096 [0.072, 0.120] 1.465 [1.354, 1.575]

1 doses 0.058 [0.048, 0.069] 0.899 [0.870, 0.927]

2 doses 0.058 [0.048, 0.068] 0.887 [0.855, 0.919]

3 doses 0.054 [0.045, 0.062] 0.827 [0.770, 0.884]

and 0.827 respectively). This means around 45% more risk of diabetes for patients who got 0 doses

of the vaccine with respect to the natural course, and around 10, 11, and 18% less risk for patients

who got 1, 2, and 3 doses, respectively. Some dosage effect is observed, as the risk decreases when

the number of doses increases.

4.4 Discussion and conclusions

The epistemic starting point for this study was the evidence indicating that the infection of COVID-

19 increased the risk of diabetes onset and the evidence suggesting that the vaccines protected from

that increased risk. Based on that information, we aimed to estimate the effect of the vaccine on

the risk of diabetes. Because we have included the COVID-19 infection status as a variable in our

problem (i.e., its effect in the outcome is partialled out by the G-formula), and because our only

intervention variable was the vaccine, we have effectively estimated the direct effect of the vaccine

on the outcome, i.e., V accine→ Diabetes, as opposed to the effect mediated by the COVID-19

infection, V accine→ Infection→ Diabetes (note that, in the DAG, both of these causal paths

are present). Our initial hypothesis was that this direct effect should be very small or zero, but we

found otherwise. One possible explanation is that our results could be biased due to under-reporting

of the COVID-19 infection status variable or due to the lack of a finer indicator, such as infection

severity. In any case, the overall picture clearly shows that getting the COVID-19 vaccine is an

effective strategy for avoiding the diabetes onset risk increase caused by COVID-19 infection.

The main limitation of this study is that the employed data was not specifically recorded for research

but generated through routine provision of healthcare services and re-utilized for research instead.
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Despite being a limitation, this is also the main feature of the so-called real world data (RWD),

and the evidence generated with it, real-world evidence (RWE) (M. Li et al., 2021). RWD can be

less complete, but in turn, it is usually much larger, with sample sizes that would be difficult or

expensive to obtain solely for research. In addition, it provides evidence about real-world scenarios

and healthcare provision, in contrast with experimental designs, which can sometimes face problems

with the generalizability of their findings (Nieto-Gómez et al., 2024). Another potential limitation

is the existence of hidden confounder variables. Finally, on the methodological side, a potential

limitation derives from the so-called G-null paradox, related to model misspecification affecting

parametric implementations of the G-formula (for a detailed explanation, see for instance (McGrath,

Young, and Miguel A. Hernán, 2022)). Nevertheless, it has been shown that the risk of the G-

null paradox can be minimized by not using overly parsimonious models, and we consider that

we fulfill this condition. Furthermore, the employed software package provides nonparametric

estimates of the G-formula for the natural course line as an indicator of model misspecification:

divergence between the parametric and nonparametric estimates would constitute evidence of

model misspecification. We did not observe significant differences between those estimates in our

experiments.

An important line of future work will include obtaining further evidence in favor of the previously

mentioned hypothesis, i.e., that the COVID-19 vaccine protects from the increased risk of diabetes

through COVID-19 infection (mediated by it). For that purpose, we could perform another

intervention with the G-formula, thanks to the fact that this method allows us to intervene in

any confounder of the problem. Thus, we can impose different rates of COVID-19 infection in

the group with 0 doses and the groups with at least 1 dose. A bigger protective effect of the

vaccine against diabetes in any of the vaccinated groups would constitute evidence in favor of

the aforementioned hypothesis. Furthermore, trying other implementations of the G-formula or

considering other G-methods, such as G-estimation, would increase the robustness of the results.

Another line of future work is to assess the impact of the grace period. For this purpose, we will

conduct a sensitivity analysis of the results with respect to that parameter.

4.4.1 Critical assessment of the employed methodology

In this chapter, we have answered research question Q2 (Does the vaccine against COVID-19 have

any effect on the risk of developing diabetes?) with observational data, a causal approach, and

causal inference methods. In particular, we developed a DAG of the problem, employed the TTE

with CCW framework, and adapted and used an advanced implementation of the G-formula. In

the following paragraphs, we discuss the main advantages and strengths, as well as disadvantages

and weaknesses, of this approach to answer research subquestion Q4b, What are the advantages

and disadvantages, strengths and weaknesses, of causal inference methods for generating evidence

about clinical interventions?
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Among advantages and strengths, there is a critical remark to make: without the G-Methods

(family to which the G-formula belongs), effectively controlling for time-varying confounding is

not possible. Thus, in this scenario, causal inference methods are not just an option but a must.

Besides that, employing the target trial emulation framework with CCW mimics the dynamics of

a pragmatic randomized controlled trial (pragmatic meaning that the treatment is not blinded to

patients nor health workers), and that has important implications in two aspects. On the one hand,

speaking the clinical trial language facilitates the communication between researchers, accustomed

to working with observational data, and clinicians, accustomed to working with trial data. On the

other hand, as we already mentioned, some evidence suggests that this design can actually close the

gap between results from observational studies and clinical trials (Kuehne et al., 2022; S. V. Wang,

Schneeweiss, and Initiative, 2023). More comparisons between actual randomized trials and trial

emulations are currently being performed, so more evidence in one direction or the other is to be

expected. Finally, our explicitly causal approach allows us to speak about actual causal effects and

not just correlations, even when the observed results may deviate from our original hypothesis, and

we recommend further research. Out of the works analyzed in the literature about this topic, none

possesses this feature, as they are all correlational works.

Among disadvantages and weaknesses, it must be mentioned that G-methods have relatively low

penetration in observational studies due to their allegedly higher complexity compared to other

more straightforward approaches (in scenarios without time-varying confounding). Thus, it is

often the case that G-methods are only employed when disregarding the time-varying nature of

confounding in the problem at hand is unaffordable. Nevertheless, this tendency is changing and

will continue to do so, partially thanks to causal methods gaining popularity and being available in

open-source software packages (McGrath, Lin, et al., 2020; pygformula 2024).

In the next chapter, we analyze another health technology, antibiotic-loaded bone cement, and we

assess its impact on knee prosthesis survival. We will perform both a correlational and a causal

analysis, which will allow us to make a direct comparison.
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Chapter 5

The effect of antibiotic-loaded bone
cement on the survival of the prosthesis
after total knee arthroplasty

This chapter presents the answer to research question Q3, Does the use of antibiotic-loaded bone

cement during total knee arthroplasty surgery increase the life of knee prostheses, compared with

the alternative of using plain cement?

The chapter is divided into three main parts:

• An introduction about the motivation and relevance of question Q3, and a description of the

observational data we have used to answer it.

• A correlational analysis of the problem. This part contains the work of the journal article

”Gil-Gonzalez Sergi, Velasco-Regúlez Borja, Cerquides Jesus, et al. (2024). Antibiotic-

loaded bone cement (ALBC) is associated with a reduction of the risk of revision of total

knee arthroplasty: Analysis of the Catalan Arthroplasty Register. Knee Surgery, Sports

Traumatology, Arthroscopy. DOI: 10.1002/ksa.12361.” An earlier version of that work

(”Sergi Gil-Gonzalez, Borja Velasco-Regúlez, Jesus Cerquides, et al. (2023). ¿El cemento

con antibiótico reduce el riesgo de infección protésica en artroplastia primaria total de

rodilla? Análisis del registro catalán de artroplastias. 10º Congreso de la AEA-SEROD”) was

presented as an oral poster communication at the 10th congress of the Spanish Arthroplasty

Association (AEA) and the Spanish Knee Association (SEROD), receiving the award to the

best oral communication.

• A causal analysis of the problem. This work has been sent to the Journal of Healthcare

Informatics Research, under the title ”Causal analysis of the effect of antibiotic-loaded bone
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cement on knee prosthesis survival” and is currently under peer review.

In addition, we also present an answer to research question Q4, What are the advantages and

disadvantages, strengths and weaknesses, of correlational methods and causal inference methods

for generating evidence about clinical interventions?. We do so by carrying out a comparison

between both approaches using the use case of Q3 as a basis.

5.1 Background

Peri-prosthetic joint infection (PJI) is a major complication of total knee arthroplasty (TKA), which

happens in between 1% and 2% of the cases (R. Frank, M. Cross, and C. Della Valle, 2015).

This complication often necessitates revision surgery, which significantly reduces the patient’s

quality of life and satisfaction (Garvin and Konigsberg, 2011). The last decades have witnessed

many contributions and improvements aimed at reducing the rate of PJI. Some examples are

the use of prophylactic antibiotics, improvements in orthopedic theatres, and modifications in

preoperative patient preparation (Parvizi, Cavanaugh, and Diaz-Ledezma, 2013). In the case of

total hip arthroplasty, the use of antibiotic-loaded bone cement (ALBC) during primary arthroplasty

has also been shown to decrease the rate of PJI (Engesæter et al., 2006; Hinarejos et al., 2013).

However, in the case of TKA, the evidence of the benefit of that strategy is inconclusive (T. H. Leta

et al., 2021; H.-Q. Li et al., 2022). Downsides such as the possibility of altering the mechanical

properties of the cement, the generation of antibiotic microbial resistance or the increasing cost

(Dunne et al., 2007; Hoskins et al., 2020; King et al., 2018) cause a lack of consensus about

this intervention across countries, and there is substantial variability in the findings reported by

studies carried out in different countries or regions (T. H. Leta et al., 2021). Places like the United

Kingdom or the Scandinavian countries use ALBC in primary TKA in more than 90% of cases,

but this percentage is much lower in places like the United States, Spain, or Russia (Randelli et al.,

2010). Furthermore, patients’ preoperative characteristics can also be associated with the risk of

developing PJI. Gender, age, previous surgeries, and comorbidities, such as diabetes, obesity, or

inflammatory diseases, increase the probability of septic complications (Namba, Inacio, and Paxton,

2013).

The question of whether ALBC usage during total knee arthroplasty has an impact on prosthetic

survival, be it positive or negative, is a causal question, as it speaks about a cause-and-effect

relationship and can be subjected to confounding bias (Miguel A Hernán and James M Robins,

2020; Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell, 2016). As we have already discussed

in previous chapters, these types of questions have traditionally been tackled in the literature of

clinical observational studies with causality-free, associational-only approaches, despite sometimes

using causal vocabulary. Studies about prosthetic survival are no exception to that trend. Some
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examples: in Jameson et al., 2019, authors speak about ”associations” between ALBC and prosthetic

survival, although they also use causal concepts such as ”adjusting”; in Bohm et al., 2014, authors

speak about ”effects” of ALBC and ”confounding” of other factors, both of which are causal

concepts, but then refrain from drawing causal conclusions from their results. Some authors have

referred to this situation as the ”causal-word ban” (Miguel A. Hernán, 2018), a ”ban” on using

the word ”causal” when employing observational data. As we have already discussed before, this

constitutes an epistemic limitation, as avoiding explicitly using the word ”causal” does not change

the causal nature of the question, and that can create confusion (Gershman and Ullman, 2023).

The goals of this chapter are two-fold. On the one hand, we want to provide an answer for research

question Q3, Does the use of ALBC during total knee arthroplasty surgery increase the life of knee

prostheses, compared with the alternative of using plain cement? We do that using observational

data and employing both a correlational and a causal approach (separately). To the best of our

knowledge, this is the first time that causal inference methods have been employed to tackle

this question. Using both approaches will allow us to compare them and provide an answer to

research question Q4, What are the advantages and disadvantages, strengths and weaknesses,

of correlational methods and causal inference methods for generating evidence about clinical

interventions?. Recall that we have already provided partial answers for this question in the two

previous chapters through subquestions Q4a and Q4b, but in this case, we will be able to directly

compare the performance of both approaches with the same use case.

The rest of the chapter is distributed as follows. First, we describe the data sources and the data

that have been employed in this work, which were common for both the correlational and the

causal analyses. Then, we delve into the correlational analysis, explaining the methods, results,

and conclusions of that approach. After, we do the same with the causal analysis. Finally, we

present the overall conclusions of the chapter, with a critical assessment of both approaches and

their comparison. Note that due to the different idiosyncrasies of the correlational and the causal

approaches, their respective sections do not run exactly in parallel, and some particularities in the

framing of the problem, vocabulary, etc., should be expected. Also note that the conclusions section

of each approach is independent, and the comparison between approaches is only established in the

overall conclusions section.

5.2 Data

Our study primarily relied on data from the Catalan Arthroplasty Register (RACat), a population-

based registry collecting information on knee and hip replacements performed in Catalonia since

2005. Initially voluntary, RACat became mandatory in 2015 and currently covers the activity of 51

out of 56 public hospitals. From this database, we obtained information such as the primary surgery

date, the employed type of bone cement (plain or loaded with antibiotic), the revision surgery date,
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Eligible: 89,148 TKAsIdentification

Inclusion

Analysis Included in dataset: 22,781 TKAs

Not included:  66,367 TKAs
- Surgery type different from total knee arthroplasty
- Surgery performed at a hospital with average revision 

information rate below 80%
- Antibiotic status not informed
- Wrongly informed TKAs (duplicates, unidentified patient, 

revision surgery without primary surgery information, 
missing variables, etc.)

Fig. 1 STROBE diagram of the study. Starting point of 89,148 eligible TKAs, for 
finally including in dataset 22,781 TKAs.

Figure 5.1: STROBE (Strengthening the reporting of observational studies in epidemiology)
diagram of the study. Starting point of 89,148 eligible TKAs, for finally analyzing 22,781 TKAs.

if any, and the revision surgery reason, if any. Additionally, we employed data from the Catalan

Institute of Health (ICS) and the Catalan Health System (CatSalut) for information on hospital

activity and primary care assistance. In particular, we used the registries of the Basic Minimum Set

of Data (BMSD) of hospital discharges and primary care databases to obtain patients’ diagnostics

before knee surgery. BMSD and primary care databases are mandatory registries, and thus they

constitute the gold standard of our datasets.

Case inclusion criteria and data preprocessing

We began by selecting all knee arthroplasty procedures recorded in RACat between 2011 and 2020

(both included). Arthroplasties were followed up until 31/12/2023. We excluded non-standard

procedures like uni-compartment replacements and those using less common cementing techniques.

To minimize potential biases caused by missing revision data, we excluded hospitals with a revision

information rate below 80%. This rate was calculated by linking RACat with BMSD data by patient

identifier, surgery type, and date of surgery and comparing the number of revisions reported in each

registry (in particular, the rate was computed as the fraction of procedures registered by RACat

with respect to those registered by BMSD; recall that BMSD is a mandatory registry and thus

contains the information of all performed surgeries). Finally, entries with incomplete or inaccurate

information were removed. This selection process resulted in a final dataset of 22,781 total knee

arthroplasties for analysis. Figure 5.1 shows a flow diagram of this process, using the STROBE

framework (Elm et al., 2008).

Note that we conducted a sensitivity analysis of the revision information rate to assess the impact of

this parameter. We tried thresholds in the range between 75% and 95%, varying in 5% increments,

and analyzed how that affected the overall revision and infection rates. As expected, increasing

the threshold drove down the number of included hospitals and the overall size of the dataset but
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also led to a higher observed rate of both revisions and infections. Ultimately, we set the revision

reporting threshold at 80%. This decision balanced the trade-off between the goal of a larger dataset

(achieved by a lower threshold) and the goal of a smaller potential bias from missing revisions

(achieved by a higher threshold). The selected rate was also the one recommended by the RACat

database managers.

Treatment and outcome variables

The treatment was the type of cement employed during arthroplasty surgery, with two possible

categories, ALBC and plain cement. The outcome of interest was the revision event, that is, the

presence of a revision surgery after the primary surgery, where at least one component was revised

(excluding the patella component). The main outcome variable was the time elapsed between

surgery and a revision event or the end of follow-up for censored individuals, measured in months.

Note that three types of revision events were possible, depending on the nature of the revision:

septic revision (revision due to infection), aseptic revision (revision due to a cause other than

infection), and all-cause revision. In the remainder of this text, we may use the terms septic revision

or simply infection interchangeably.

Other variables

The preoperative characteristics, covariates, or risk factors considered were patient’s age, as a

continuous variable in years; sex assigned at birth, as a dichotomous variable (woman or man);

obesity, diabetes, rheumatoid arthritis, and alcohol abuse, as dichotomous variables (yes or no);

smoking status, as a categorical variable (smoker, nonsmoker, former smoker; missing values

treated as nonsmoker); body mass index (BMI) as a continuous variable in kg/m2 (missing values

imputed with the average stratified by age group); Charlson comorbidity index and Elixhauser index,

as continuous variables; hospital category, as a categorical ordinal variable with five categories

(between 1 and 5); primary surgery year, as a categorical ordinal variable (from 2011 to 2020);

surgery duration, as a continuous variable in minutes (missing values assigned with the average

stratified by the hospital. Note that the hospital category classifies hospitals regarding their size

and specialization level, and it is a categorization established by CatSalut. Category 1 is for

high-technology reference hospitals, while Category 5 is for regional, basic hospitals. Alcohol

abuse was defined as in the definition of the Elixhauser index (Lix et al., 2016).

5.2.1 Descriptive analysis of the data

We performed a descriptive analysis of the employed database with the aim of knowing its taxonomy.

In addition, we stratified this description by the treatment variable, cement type. Table 5.1 shows the
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centrality and dispersion measures of the most relevant preoperative characteristics (confounders

or risk factors) of the study population, stratified by treatment. Overall, plain cement was used

in 9656 (42.4%) cases and ALBC in 13,125 (57.6%) cases. In the ALBC group, gentamicin

was used in 12703 (96.78%) cases, tobramycin in 410 (3.12%) cases, and erythromycin in 12

(0.09%) cases. Small but statistically significant differences were found for sex and antibiotic

usage (among females, 42.97% received plain cement and 57.03% ALBC, while among males,

the percentages were 41.02% and 58.98%, respectively), and for age and antibiotic usage. No

significant differences were found regarding the analyzed comorbidities and antibiotic usage,

although the small differences observed in the Charlson and Elixhauser indexes were statistically

significant. Finally, larger differences were encountered in the variables of smoking status, surgery

year, and hospital category. The most significant one is the steady increase in ALBC usage over the

years, going from 46.74% in 2011 to 84.16% in 2020 (of all surgeries in each year, respectively).

5.3 Correlational analysis

Having outlined the observational data used in this study, we now proceed to the correlational

analysis of the relationship between ALBC and prosthetic survival. In this section, we explain the

methods, results, and conclusions of the correlational approach.

5.3.1 Methods of the correlational analysis

For the correlational analysis, we conducted a retrospective cohort study and employed correlational

methods. In particular, we employed common survival analysis methods, as other studies in the

literature of total knee arthroplasty (Jameson et al., 2019; Bohm et al., 2014). Recall that the

question of interest was whether the usage of ALBC had any effect on the survival of the prostheses,

and thus the main quantity of interest was prosthetic survival. Other quantities under study were the

infection rate and the hazard ratios of the different risk factors. In these lines, we define all these

quantities and other related concepts, as well as the statistical estimators employed to approximate

them. Let us start by defining the time passed in months between the surgery date and the revision

event (or the end of follow-up for censored cases) by the random variable T , and the treatment,

ALBC or plain cement, expressed as a binary variable that takes values 1 or 0, by the random

variable A. Then, the survival function S(t) is defined as the probability that T is greater than a

given time t, S(t) = P (T > t). A widely used nonparametric estimator of this function is the

Kaplan-Meier estimator, defined as Ŝ(t) =
∏

ti≤t(1 −
di
ni
), where ti is a time when at least one

event occurred, di is the number of occurred events at time ti, and ni is the number of patients at

risk, i.e., the number of patients who did not have an event and were not censored just before ti. By

computing this estimator stratified for patients using ALBC and plain cement, we are effectively
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Table 5.1: Preoperative characteristics (risk factors) of the study population, stratified by the cement
type.

Plain Cement ALBC

Characteristic Categories P-value

n (%)

Sex
Female 6843.0 (42.97%) 9081.0 (57.03%) <0.01

Male 2813.0 (41.02%) 4044.0 (58.98%)

mean (SD)

Age (years) 72.24 (7.61) 71.94 (8.01) <0.01

Surgery duration 89.82 (14.40) 89.98 (21.21) n.s.

Charlson Index 0.41 (0.76) 0.46 (0.79) <0.01

Elixhauser index 1.34 (1.18) 1.41 (1.20) <0.01

n (%)

Obesity
No 8509.0 (42.49%) 11518.0 (57.51%) n.s.

Yes 1147.0 (41.65%) 1607.0 (58.35%)

Diabetes
No 8112.0 (42.68%) 10893.0 (57.32%) 0.04

Yes 1544.0 (40.89%) 2232.0 (59.11%)

Rheumatoid arthritis
No 9460.0 (42.47%) 12817.0 (57.53%) n.s.

Yes 196.0 (38.89%) 308.0 (61.11%)

Alcohol abuse
No 9601.0 (42.43%) 13025.0 (57.57%) n.s.

Yes 55.0 (35.48%) 100.0 (64.52%)

Smoking status

Non smoker 7985.0 (43.37%) 10426.0 (56.63%) <0.01

Smoker 555.0 (39.67%) 844.0 (60.33%)

Former smoker 1116.0 (37.56%) 1855.0 (62.44%)

mean (SD)

Body mass index 31.82 (4.57) 31.76 (4.89) n.s.

estimating Ŝ(t|A), and we can observe differences in prosthetic survival between both groups.

Nevertheless, note that this estimator does not take into account other potential factors influencing

the survival of the prosthesis. For introducing a method that takes into account other factors, let us
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first define the hazard function, which is the instantaneous rate of events at a given time t, defined

as λ(t) = lim∆t→0
S(t)−S(t+∆t)

∆t S(t) . And then, we can define the conditional hazard function given

the covariates and the treatment, λ(t|X,A), and approximate it with a widely used model, the

Cox proportional hazards model (Abd ElHafeez et al., 2021), as λ̄(t|X,A) = β0(t) exp ([X,A]β).

X ∈ Rp is the vector of covariates, and [X,A] is the concatenation of such vector and the treatment,

β is a vector of parameters, and β0 is another parameter usually known as the baseline hazard. The

Cox proportional hazards model is very popular in survival analysis because it provides hazard

ratios of covariates and treatment, which can be interpreted as the influence of confounders and

treatment on the risk of the event relative to a reference value. It also makes the assumption that the

influence of factors on the risk of the event is time-invariant.

An element that has to be taken into account when performing survival analysis is that of competing

events. Competing events are those events that are different from the event of interest and may

prevent the event of interest from happening. The Aalen-Johanssen estimator (Aalen and Johansen,

1978) is a matrix version of the Kaplan-Meier estimator that can take into account competing events,

while Kaplan-Meier treats them as end-of-follow-up censoring. Given that we had two types of

outcome events, i.e., revision for infection and aseptic revision, it could be argued that our scenario

was one with competing events and that the Aalen-Johanssen estimator could be more suitable.

In order to test if that was the case, we performed a sensitivity analysis, comparing the results

of the Aalen-Johanssen and the Kaplan-Meyer estimators. The differences in survival between

the estimates of both methods were negligible, and thus, for the sake of simplicity, we decided

to treat competing events as censoring and to use the Kaplan-Meier estimator. Note that this is

common practice in most studies of the analyzed literature. Note also that this justifies choosing

the Cox proportional hazards model as a parametric estimator of the conditional hazard instead

of using Fine and Gray’s subdistribution method (Fine and Gray, 1999), which is sometimes used

in the presence of competing events. Finally, note that death has been considered administrative

censoring, which is also a common practice.

Finishing with the statistical aspects, we employed t-tests, χ2-tests, and Log-rank tests for statistical

hypothesis testing, i.e., for determining whether observed differences between measures in means,

proportions, and survival curves, respectively, were statistically significant. The confidence level

was set to α = 0.05.

Finally, we employed the Python programming language (version 3.10) for the analysis of the data

and the lifelines package for survival-related functions (version 0.27.5).

5.3.2 Results of the correlational analysis

In this section, we present the results of the correlational analysis. In particular, we divide it into

the subsection of prosthetic survival and infection rates and the subsection of risk factor analysis.
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Figure 5.2: Kaplan-Meier curves for revision for infection.

Prosthetic survival and revision rates

In this subsection, we present the results of the estimated prosthetic survival per treatment group,

as well as the infection rates for different follow-up times. Recall that the overall follow-up period

was 158 months (approximately 13 years). Figure 5.2 shows the Kaplan-Meier survival curves for

septic revision, 5.3 for aseptic revision, and 5.4 for all-cause revision, for the whole duration of

the follow-up period. The ALBC group showed higher survival values for all endpoints, with the

log-rank test showing that the differences were statistically significant in all cases. The survival

values (with 95% confidence intervals in brackets) at the end of the study time were 95.2% (93.4%,

96.5%) for ALBC and 95.2% (94.3%, 96%) for plain cement, in the case of septic revision; 90.2%

(86.7%, 92.9%) for ALBC and 85% (83.8%, 86.1%) for plain cement, in the case of aseptic revision;

and 85.9% (82.3%, 88.8%) for ALBC and 81% (79.6%, 82.2%) for plain cement, in the case of

all-cause revision.

Table 5.2 shows the results of infection rates, computed as the fractions of infected prostheses with

respect to all prostheses, stratified per treatment, and for shorter follow-up times (3, 6, 12, and 24

months, respectively). For this calculation, only uncensored arthroplasties were employed, i.e.,

arthroplasties for which no loss of follow-up happened. This reduces the risk of potential bias

introduced by censoring. The infection rate was lower for the antibiotic cement group in all cases,

with statistically significant differences.
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Figure 5.3: Kaplan-Meier curves for aseptic revision.
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Figure 5.4: Kaplan-Meier curves for all-cause revision.
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Table 5.2: Infection rates for short follow-up times, stratified by the cement type.

Cement type

Follow-up time Plain cement % ALBC % P-value

3 months 0.78 0.52 0.04

6 months 0.98 0.68 0.04

12 months 1.33 0.72 <0.01

24 months 1.79 0.84 <0.01
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Figure 5.5: Boxplot of the hazard ratios of the Cox proportional hazards model with the preoperative
covariates.

Risk factors for revision

Finally, we conducted an analysis of the influence of all risk factors and treatment in the risk of

revision, using the Cox proportional hazards model. Figure 5.5 shows a box plot of the hazard

ratios (HR) of the different covariates and the treatment for septic revision. Note that a hazard

ratio above (respectively, below) 1 indicates that the risk factor increases (respectively, decreases)

the risk of revision. Statistical significance is achieved if the confidence interval does not contain

1. The associated numerical information can be found in Table 5.3. ALBC was associated with

a protective effect over infection, having a hazard ratio (and confidence intervals) of 0.53 (0.44,

0.63) (i.e., knees with antibiotic cement had 47% less risk of revision, compared to those without

antibiotic). Other covariates, such as alcohol abuse, rheumatoid arthritis, obesity, diabetes, and

surgery year, were associated with a higher rate of infection (although diabetes was not statistically

significant by a small margin). Hospital category and being female showed protective effects, and

finally, smoking status, BMI, surgery duration, and age showed small or statistically non-significant

effects.

This same analysis was repeated for the endpoints of aseptic revision and all-cause revision. It is

worth mentioning that in both cases, ALBC showed a statistically significant protective effect. In

the case of the aseptic revision endpoint, the hazard ratio was 0.499 (0.452, 0.552), and in the case

of the all-cause revision endpoint, it was 0.549 (0.504, 0.597). The tables with the numerical results

can be found in Appendix C.
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5.3.3 Discussion and conclusions of the correlational analysis

The most important finding of this study was that ALBC was associated with lower septic and aseptic

revision rates after TKA and, thus, with higher prosthetic survival. The suggested mechanism for

the protective effect of ALBC against infection is that the initial concentration of antibiotic released

when performing the TKA would be enough to prevent bacterial biofilm formation (Belt et al.,

2000; Hinarejos et al., 2013; Jämsen et al., 2009).

Table 5.3: Cox proportional hazards model results for revision for infection.

Hazard Ratio Event Count No Event Count p-value

Totals 658 22123

Antibiotic
Plain Cement ref 344 9312 <0.01

ALBC 0.53 (0.44, 0.63) 314 12811

Sex
Male Ref 270 6587 <0.01

Female 0.61 (0.52, 0.73) 388 15536

Age 1.00 (0.99, 1.01) 71.54 (8.32) 72.08 (7.83) n.s.

Hospital category

1 1.11 (1.19,1.03) 129 4408 0.01

2 Ref 140 4029

3 1.22 (1.41,1.06) 208 6447

4 0.90 (0.84,0.97) 173 6921

5 0.82 (0.71,0.94) 8 318

Surgery duration 1.00 (1.00, 1.01) 92.71 (31.74) 89.83 (18.09) <0.01

Alcohol abuse
No ref 644 21982 <0.01

Yes 2.31 (1.35, 3.96) 14 141

Diabetes
No Ref 525 18480 <0.01

Yes 1.25 (1.03, 1.51) 133 3643

Obesity
No ref 541 19486 <0.01

Yes 1.61 (1.29, 2.00) 117 2637

Rheumatoid arthritis
No Ref 632 21645 <0.01

Yes 1.92 (1.29, 2.84) 26 478

Smoking status

Non smoker ref 499 17912 ref

Smoker 1.13 (0.83, 1.54) 51 1348 n.s.

Former smoker 1.10 (0.88, 1.38) 108 2863 n.s.

BMI 1.01 (0.97, 1.03) 32.26 (5.16) 31.77 (4.74) n.s.

The evidence of the benefits of using ALBC during TKA is inconclusive in the scientific literature,
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with some studies reaching conclusions in favor of it (Jameson et al., 2019; Jämsen et al., 2009),

others against (Namba, Chen, et al., 2009; Tayton et al., 2016) and others finding no differences

(Bohm et al., 2014; Hinarejos et al., 2013).

Our results align with those of the study with the largest sample size coming from a single database,

the National Joint Registry from England and Wales (Jameson et al., 2019). In that work, the

vast majority of analyzed TKAs (93%) belonged to the ALBC group, and that circumstance also

happened in other studies whose results are aligned with ours (Jämsen et al., 2009). In our analysis,

nevertheless, the distribution between groups was more balanced: 57.6% in the ALBC group and

42.4% in the plain cement group.

Among the studies that found negative or no effect of ALBC, some performed the analysis in a

sequential way (Tayton et al., 2016), first doing a univariate analysis and then doing a multivariate

analysis with factors that had achieved statistical significance in the first step. On the contrary,

our analysis was carried out in a multivariate manner with all the variables in a single step. Some

works may have suffered from confounding bias (Parvizi, Cavanaugh, and Diaz-Ledezma, 2013),

as patients in the ALBC group had significantly higher values of risk factors, such as diabetes

mellitus or ASA grade. This was not the case in our registry. Finally, some other studies used

antibiotics such as erythromycin and colistin (Hinarejos et al., 2013), which are less routinely used

than gentamicin, which is predominant in our database.

The meta-analyses that have been published on the topic to date have shown, in general, no

statistically significant differences in infection rates between groups (King et al., 2018; H.-Q. Li

et al., 2022; T. Leta et al., 2024). Nevertheless, in the largest and most recent multi-registry

meta-analysis found in the literature (T. Leta et al., 2024), almost half of the registries showed

results aligned with ours’ (i.e., in favor of ALBC), and two of them achieved statistical significance.

In another meta-analysis (H.-Q. Li et al., 2022), no statistically significant differences between

groups were found, although it can be highlighted that the two largest studies included did report

them, both in favor of ALBC. Most of the largest studies analyzed in that meta-analysis have

already been discussed in this section.

A secondary finding in our study was that the ALBC group also showed lower aseptic revision

rates and higher prosthetic survival than the plain cement group. These results were aligned with

the findings of several works in the literature (Bendich et al., 2020; Bohm et al., 2014; Jameson

et al., 2019), with the plausible explanation that ALBC could have acted as a protective factor

against subclinical infections misclassified as aseptic revisions. Other studies found no effect or

a negative one, suggesting that it could be caused by the worsening of the mechanical properties

of the prostheses due to the ALBC. The evidence for that mechanism was found mostly in vitro

(Lautenschlager et al., 1976; Moran, Greenwald, and Matejczyk, 1979), and we did not observe it

in our data. Some other works indicate that wrongly classified subclinical infections could bias the

results of aseptic revision rates (Bozzo et al., 2022; Maathuis et al., 2005).
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Previous works have also analyzed the associated risk of preoperative characteristics (risk factors)

with prosthetic survival (Jämsen et al., 2009; Rand et al., 2003; Randelli et al., 2010). In our data,

sex (being male) was found to be a risk factor for infection after TKA, in line with other works

(Hinarejos et al., 2013; Kurtz et al., 2010; Namba, Inacio, and Paxton, 2013). Alcohol abuse,

diabetes, obesity, and rheumatoid arthritis were also risk factors for infection. Being a smoker or a

former smoker was also associated with a higher risk of infection, although this variable did not

achieve statistical significance. The results on all these risk factors were in line with those of the

largest meta-analysis carried out to date (Resende et al., 2021), except for the fact that we did not

find age to be a protective factor.

Our correlational analysis had limitations. First, RACat data completeness varied for each hospital.

We tried to overcome this by analyzing TKAs performed in hospitals that had at least an 80%

of prosthetic revision reporting rate, but the limitation was still present. Second, septic revision

diagnostic categories of RACat were used to identify PJI. Infections that were not treated surgically,

whether superficial or deep, were not identified by this method. Nevertheless, this limitation is

shared with other studies, making results comparable in principle. Finally, inputting missing values

of some of the confounders or the effect of other unexplored confounders (such as surgical time,

individual surgeons, individual hospitals, or others) could have introduced biases in the results.

After this discussion of the results of the correlational analysis, we continue to the causal analysis

section.

5.4 Causal analysis

We divide this part again into methods, results, and conclusions.

5.4.1 Methods of the causal analysis

We start this section by providing some definitions. Some of them have already been introduced

in the correlational section, but some others are new. Thus, in an ideal population, let A be the

treatment, antibiotic-loaded bone cement use, or plain cement use, expressed as a binary variable

that takes values 1 or 0, respectively; let T be the time passed between surgery and event dates, a

continuous time variable measured in months; and let X be a vector of confounders. Then, given a

time horizon h and using the do-calculus notation, we define the average treatment effect (ATE)

of ALBC usage on prosthetic survival as ψh = P[T > h|do(A = 1)] − P[T > h|do(A = 0)].

Under the usual identifiability conditions of positivity, consistency, and exchangeability, ψh can

be expressed in terms of the observed variables, dropping the do-operator, as ψh = P[T > h|A =

1, X] − P[T > h|A = 0, X]. Nevertheless, a problem of survival analysis is that in our data
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sample, we do not always get to measure Ti for each unit, as some units might be censored.

Thus, for our sample we define the censoring time Ci as the time at which the i-th unit gets

censored, together with ∆i, a censoring indicator such that ∆i = 1{Ti > Ci}, and Ui = Ti ∧ Ci

(with ∧ the logical and operator). The goal, then, is to estimate ψh using Ui and ∆i instead

of Ti. Similarly, note that one of the secondary goals of this section is to analyze the effect of

ALBC on prosthetic survival in specific subgroups of the population, defined by the confounders.

Thus, we can define the conditional average treatment effect (CATE) for the j-th confounder as

πh(xj) = P[T > h|do(A = 1), Xj = xj ] − P[T > h|do(A = 0), Xj = xj ], and then follow

an analogous logic as with the ATE. We follow the notation and definitions of Cui et al., 2023,

and thus we refer to that work for a detailed explanation of the implementation of the CATE and

ATE estimators. The provided definitions of the ATE and the CATE imply that they represent

the difference in survival probability between the ALBC group and the plain cement group (in

the case of the ATE, in the whole population; in the case of the CATE, in a particular subgroup

defined by the values of a given confounder). The sign of those quantities will indicate whether the

treatment with ALBC increases (when positive sign) or decreases (when negative sign) the survival

probability of the prosthesis and the value will indicate the size of such effect. Note that in this

section, we focus by default on the outcome event of all-cause revision.

One of the identifiability conditions mentioned in the previous paragraph is exchangeability, which

states that the outcome must be independent of the treatment given the confounders, T ⊥ A|X .

This assumption is connected to the DAG of the problem, as the DAG allows us to identify the

set of variables that we need to control for. For this reason, we employ DAGs for representing

the causal structure of our scenario and the do-calculus rules for assessing the identifiability of

the query of interest. We used the software CausalFusion (CausalFusion 2024) for DAG-related

calculations. Note that this software also allows for the inclusion of selection bias nodes. Selection

bias happens when some individuals are more likely to be present in the dataset than others based

on their particular value or values of some variable or set of variables.

For estimation, we used causal survival forests (CSF) (Cui et al., 2023), a method that employs

random forests for heterogeneous treatment effect estimation in survival settings, where outcomes

can be right-censored. The method is based on orthogonal estimating equations for robustly

adjusting for censoring and confounding (for further reference, see the original work). Several

characteristics make it the optimal choice for our particular use case: it is specifically developed for

survival problems; it is one of the few methods that explicitly accounts for censoring (by modeling

the censoring process) and introduces a robust and data-efficient correction for it; it is based on

random forests, which are a powerful tool for modeling expectation functions and are well known

for their flexibility, achieved by imposing minimum assumptions on the underlying distributions of

the data; and finally, it shows top performance for heterogeneous treatment effect estimation, which

allows us to effectively estimate the CATE of each confounder.
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We employed the R statistical language (version 4.2.3) for the analysis of the data and the GRF

package GRF 2024 (version 2.3.0) for the implementation of the CSF. The default settings of the

package were used, except for the mtry parameter of the random survival forests that model the

censoring probabilities and the treatment probabilities, which were set to 3. The default value

was the number of features, i.e., in our case, 13. A typical heuristic recommendation is to use the

closest integer to the square root of the number of features, which in our case was 3. The use of

the default value resulted in some extreme numbers in the censoring and treatment probabilities

for medium and long horizon times (h > 20 months), and that, in turn, resulted in numerically

unstable estimates of the ATE caused by the functional form of the CSF ATE estimator that contains

probabilities in denominators. This problem most likely originated from the imbalance between

censored and observed cases in our dataset.

Regarding estimators, other alternatives were available, but all of them showed theoretical down-

sides. One of the simplest options was to use the weighted Kaplan-Meier non-parametric estimator

(Zare et al., 2014) to obtain the survival curves under ALBC and plain cement treatments and then

compute the ATE by subtracting both curves. Another option was to employ the G-computation

formula (Naimi, Stephen R Cole, and Edward H Kennedy, 2017), using a model of choice. None of

these methods is doubly robust, which increases the risk of model misspecification-induced bias,

nor is it optimized for estimating heterogeneous treatment effects, which increases the risk of bias

when computing the CATE. Other doubly-robust estimators for survival analysis exist (J. Wang,

2018), but they would still be biased in the presence of non-random censoring.

Once the methods have been defined, we continue to the section on experiments and results.

5.4.2 Experiments and results of the causal analysis

In this section, we present the experiments and results of our study, the first explicitly causal

analysis of the question of interest in the literature to the best of our knowledge. We start by

providing the DAG that was obtained in collaboration with experts in the field (knee surgeons).

Then, we present the results of the ATE for different time horizons and the results of the CATE for

a fixed time horizon. Finally, we describe the experiments and the results of the assessment of the

DAG structure and the estimator choice.

DAG of the problem

Figure 5.6 presents a directed acyclic graph (DAG) obtained in collaboration with knee surgeons,

representing the qualitative expert knowledge of the causal relationships of the variables of the

problem. The treatment is represented by A, and the outcome is represented by T . The rest of the

variables are confounders, i.e., they affect both the treatment and the outcome. Causal relationships

64



among confounders are represented too. Due to the case inclusion criteria (explained in section 5.2),

the hospital category and the surgery year could have induced selection bias, and this is represented

in the DAG by means of a selection bias node (explained in section 5.4.1), and represented by V , a

binary variable. Given that the identifiability conditions hold, the causal effect of using ALBC on

prosthetic survival, given the confounders, is recoverable from the observational data distribution.

We present the proof using the rules of do-calculus, computed with the CausalFusion tool.
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Hospital.category

Smoking

Sex

Diabetes

Rheumatoid.arthritisObesity
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Figure 5.6: Directed acyclic graph of the problem. A is the treatment variable, which is a binary
variable indicating the use of ALBC or plain cement. T is the outcome variable, indicating the
survival time of the prostheses. The rest of the variables are confounders. After controlling for
the confounders, no biasing paths are open, and the treatment effect is estimable based on the
observational data.

We show that the causal effect do(A = 1) on T , given X containing the variables {Age, Sex,

Hospital category, Surgery year, Cement viscosity, Surgery duration, Obesity, Diabetes, Rheumatoid

arthritis, BMI, Charlson index, Smoking, Alcohol abuse}, written as P (T |do(A = 1), X) is

recoverable from the distribution of observed variables with selection bias P (A, T,X|V = 1).

Proposition 1. The causal effect of A on T given {X} is recoverable from P (A, T,X|V = 1) and
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is given by the formula

P (T |do(A = 1), X) = P (T |A,X, V = 1)

Proof.

P (T |do(A = 1), X) (5.1)

= P (T |A,X) (5.2)

= P (T |A,X, V = 1) (5.3)

Eq. (5.2) follows from the second rule of do-calculus with the independence (A ⊥ T |X)GA
Eq.

(5.3) follows from the first rule of do-calculus with the independence (S ⊥ T |A,X)

Finally, we get

P (T |do(A = 1), X) = P (T |A,X, V = 1) (5.4)

Average treatment effect over horizon time

In this part we present the main result of the analysis, i.e., the effect of using ALBC during total

knee arthroplasty on prosthetic survival, compared to using plain bone cement. We selected the ATE

as the measure to answer this question, which is the difference in survival probability between the

group of arthroplasties with ALBC and the group of arthroplasties with plain cement at a particular

horizon time. At a horizon of 120 months (10 years), this difference is of 0.08 (0.0718, 0.0892),

or 8 percentage points, in favor of the ALBC. This value clearly shows a positive effect of the

treatment on prosthetic survival.

Figure 5.7 shows the ATE (green line, values in the left y axis) for different time horizons (x axis).

Point estimates are provided with confidence intervals. The effect is small for short time horizons

and gradually increases, reaching a 0.05 difference after 50 months, 0.075 around 100 months,

and a maximum value above 0.08 around 130 months. This means that using ALBC increases the

prosthetic survival probability by more than 8% after 120 months. We consider that the drop that

is observed after 130 months is not a real effect but a result of the numerical instabilities of the

employed method when the time horizon is too large for the characteristics of the dataset. To justify

this, we depict the number of unstable points (red line, values in the right y axis) for each time

horizon. An unstable point or estimate is defined as a data point in the dataset where the censoring

probability, the treatment propensity, or both are bigger than 0.95 or smaller than 0.05. As can be
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observed, after 130 months, the number of unstable points increases noticeably.
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Figure 5.7: In green (left y axis), the average treatment effect, as the difference in prosthetic
survival probability between antibiotic-loaded bone cemented arthroplasties and plain cemented
arthroplasties, along horizon time. In red, (right y axis) the number of unstable data points over
time. An unstable data point is an observation in the dataset that has been estimated to have extreme
values of treatment and/or censoring probabilities. Unstable data points produce errors in the ATE.

Conditional average treatment effect (CATE) over horizon time

We also performed a CATE analysis of each confounder. For doing so, we computed the CATE for

different values of each confounder and different time horizons up to 120 months. Recall that the

CATE is equivalent to the ATE but in a subpopulation defined by the value of a particular confounder.

For simplicity, we only report the values of the CATEs for the most relevant confounders at 120

months of horizon time in Table 5.4, but figures with CATE values along the whole horizon range

and confounder categories/ranges can be found in Appendix D.

The ALBC treatment had a bigger positive effect on prosthetic survival probability for male patients

(0.082) than for female patients (0.076). Similarly, the effect is, in general, bigger for younger

patients than for older ones. The treatment effect is also bigger for patients with comorbidities
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than for those without, in the cases of obesity (0.083 vs. 0.077) and rheumatoid arthritis (0.086

vs. 0.077). The same is observed for factors that are considered to increase the risk of prosthetic

revision (in particular for infection), such as smoking (0.076, 0.081, 0.088 for non-smokers, former

smokers, and smokers, respectively) and alcohol abuse (0.077 vs. 0.095 for non-abusers and abusers,

respectively). In the case of diabetes, no significant difference was observed (0.077 vs. 0.078).

Table 5.4: Table of CATEs of the most relevant confounders, at horizon time h = 120 months.
Highlighted with green (respectively, red) are CATEs whose confidence intervals are above (respec-
tively, below) and do not overlap with the confidence intervals of the ATE at h = 120.

CATE 95% CI

Sex
Male 0.082 (0.0811, 0.0835)

Female 0.076 (0.0747, 0.0764)

Obesity
No 0.077 (0.0759, 0.0778)

Yes 0.083 (0.0817, 0.0841)

Rheumatoid arthritis
No 0.077 (0.0764, 0.0784)

Yes 0.086 (0.0848, 0.0874)

Diabetis
No 0.077 (0.0765, 0.0784)

Yes 0.078 (0.0771, 0.0793)

Smoking status

Non-smoker 0.076 (0.0752, 0.0771)

Former smoker 0.081 (0.0868, 0.0895)

Smoker 0.088 (0.0804, 0.0825)

Alcohol abuse
No 0.077 (0.0765, 0.0784)

Yes 0.095 (0.0933, 0.0963)

Viscosity

None 0.055 (0.0547, 0.0562)

Low 0.055 (0.0546, 0.0563)

Medium 0.081 (0.0806, 0.0819)

High 0.130 (0.1284, 0.1317)

In Table 5.4, we have highlighted with colors the cases of the confounders where the CATE differs

most from that of the ATE at h = 120. In particular, we highlight with green (respectively, red)

those CATEs whose confidence intervals are above (respectively, below) and do not overlap with

the ones of the ATE. This way, we are effectively highlighting those segments of the population

where the treatment is more (respectively, less) effective. Note that we have not included the age in
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this table to avoid excessive information, but the plot of this confounder can be found in Appendix

D.

The relevance of the DAG

In this section, we report the results of an experiment designed to test the importance of the DAG.

Suppose that the usage of ALBC or plain cement depended solely on the category of the hospital

where the surgery was performed. This would be the case if, for instance, each hospital had a

policy for the usage of ALBC or plain cement depending only on its category and not on any other

confounder. Such a scenario would be reflected by the DAG in Figure 5.8. As can be seen, all

arrows to the treatment have been erased, leaving only the one coming from the hospital category.

Under this DAG, in order to obtain an unbiased estimate of the effect of ALBC on prosthetic

survival, it is necessary that we control not only for the hospital category, which is the only variable

directly affecting the treatment, but also for the surgery year, the surgery duration, and the cement

viscosity. This is due to the existing relationships among those variables, which create biasing paths

between them, the treatment, and the outcome. Note that without the usage of a DAG, it would be

much more difficult to identify the need to control for those variables.

Under this hypothetical DAG scenario, we computed the ATE, and the results can be seen in Figure

5.9. The figure shows that both ATEs differ. In particular, the ATE computed under the hypothetical

DAG 5.8 is smaller, i.e., the protective effect of the antibiotic is diminished with respect to the

scenario under the real DAG 5.6. This is likely due to the fact that antibiotic protects those patients

who have risk factors that increase the likelihood of revision, such as comorbidities, and, as we are

taking those variables out of the confounding path, the size of the protective effect of antibiotics

diminishes. This highlights even further the importance of using DAGs for coding assumptions of

causal problems, as their structure has a direct impact in the magnitude of the estimated effects.

The relevance of the estimating method

Finally, in this section, we report the results of an experiment to assess the importance of the

selected estimating method. As mentioned in Section 5.4.1, simpler methods for estimating ATEs

and CATEs were available, but all were theoretically inferior (regarding performance) to CSF.

We compared, in a specific example scenario, the results of CSF with the results of some of the

alternatives to assess if the theoretical superiority of CSF had any practical, observable impact on

the estimated values. Figure 5.10 shows the CATE for patients with obesity, computed with CSF

and with two other alternative methods: a weighted Kaplan-Meier-based estimator of the CATE

and a generalized linear model-based g-computation of the CATE.

The weighted Kaplan-Meier-based estimator of the CATE was obtained using the following steps:
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Figure 5.8: Alternative, hypothetical DAG of the problem, where the treatment is only influenced
by the hospital category, constructed for assessing the impact of the DAG on the estimated ATE
values.

first, confounder-based stabilized weights were computed. Then, weighted Kaplan-Meier estimates

of survival were computed for the ALBC and plain cement groups for the subset of patients with

obesity. Finally, those estimates were subtracted, obtaining the CATE. On the other hand, the

model-based g-computation of the CATE was obtained by fitting a generalized linear model of

the outcome, with the treatment and the confounders as predictor variables. Simulated values

of survival were obtained for patients with obesity and both ALBC and plain cement treatments.

Finally, the values were subtracted, obtaining the CATE.

The results of this experiment can be seen in Figure 5.10. The values obtained with the weighted

Kaplan-Meier-based method differ from those obtained with CSF, and the values obtained with the

G-computation method are similar to those obtained with CSF but seem to be artificially softened.

This shows that the theoretical differences between the methods do indeed have a practical impact

on the estimated values and justifies our choice of CSF.
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Figure 5.9: ATE estimates under different DAGs. The difference in the estimates shows the impact
the DAG has and, thus, the importance of its correct specification.

5.4.3 Discussion and conclusions of the causal analysis

In this subsection, we present the conclusions of our causal analysis of the problem at hand. Recall

that we have analyzed the effect of the use of ALBC versus plain cement on prosthetic survival

during total knee arthroplasty in the presence of relevant confounders and in specific subgroups

of the population. To do so, we have proposed a DAG that encodes expert knowledge about the

relationships between the variables of the problem, and we have employed a machine learning-

based, top-performing method for estimation. This method perfectly fitted the features of our

problem: a survival analysis problem with right censoring and potentially heterogeneous treatment

effects. To the best of our knowledge, this has been the first work with these characteristics in the

literature. We have also shown through experiments the importance of the chosen methodology,

both regarding the DAG and the estimation method. We believe these results contribute to the trend

of treating clinical causal problems with causally explicit and tailored methods. In addition, our

work constitutes one of the first successful usages of CSF in a real-world problem, together with

the work in Inoue, Athey, and Tsugawa, 2023. Finally, we believe that our piece of evidence could
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Figure 5.10: CATE for patients with obesity, computed with CSF and with two other alternative
methods: a weighted Kaplan-Meier-based estimator and a generalized linear model-based g-
computation estimator.

be integrated into future meta-analyses about the use of ALBC for prosthetic survival after total

knee arthroplasty, which is a topic that remains open for discussion among the experts in the field.

Regarding results, we found that the use of ALBC vs. plain cement had a positive effect on overall

prosthetic survival, which is in line with some previous works in the literature. In the long term,

this effect was of 8% difference in survival probability. Regarding the CATE, we observed that

patients with characteristics that were considered risk factors for prosthetic infection benefited more

from using ALBC. This is explained by the fact that the ALBC protects against those risk factors,

and thus, patients who have them get a bigger benefit. In particular, we observed bigger benefits

for patients with obesity, rheumatoid arthritis, and patients who abuse alcohol, smoke, or used to

smoke. This is aligned with works in the literature that identify all these factors as increasing the

risk of prosthetic revision. Nevertheless, we could not directly numerically compare our results to

those in other works in the literature due to the fundamental conceptual differences between risk

factor analysis (usually done through the Cox proportional hazards model as in the correlational

section) and CATE analysis.
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The main potential limitation of this study is the one inherent to causal inference studies with

observational data, i.e., the violation of some of the assumptions made, and in particular, the

violation of the exchangeability or no hidden confounder assumption.

After finishing the conclusions of the causal analysis, we continue to the section on overall

conclusions and comparison of approaches.

5.5 Overall conclusions and comparison of approaches

In this chapter, we conducted two separate studies to answer research question Q3 Does the use

of antibiotic-loaded bone cement during total knee arthroplasty surgery increase the life of knee

prostheses, compared with the alternative of using plain cement? Each study employed the same

observational data and two different approaches, a correlational one and a causal one. In this section,

we compare the obtained results, and we qualitatively address research question Q4 What are the

advantages and disadvantages, strengths and weaknesses, of correlational methods and causal

inference methods for generating evidence about clinical interventions? We do so in a dedicated

subsection using the conducted correlational and causal studies as a base.

The main result that is quantitatively comparable between approaches is the effect of antibiotic-

loaded bone cement on prosthetic survival for the outcome of all-cause revision. For the correlational

approach, we can visually observe an approximation of this effect as the distance between curves

of Figure 5.4, and for the causal approach, we can directly see it in Figure 5.7. For a time

horizon of 120 months, the correlational method shows a difference of around 0.075 percentage

points in survival in favor of antibiotic-loaded cement, very similar to the effect estimated by the

causal approach (0̃.08 percentage points). In addition, in both cases, the temporal evolution of the

estimation seems to follow a similar pattern, increasing steadily with the horizon time. Nevertheless,

note that the Kaplan-Meier estimator does not discount the effect (either positive or negative) of

other factors on prosthetic survival, and thus its estimation is of the overall survival, not of the

isolated effect of the antibiotic. Another set of results that are comparable, although indirectly, are

risk factors in the correlational approach and CATEs in the causal approach. These results can only

be compared indirectly because the quantities they measure (the hazard ratios in the correlational

analysis and the conditional ATEs in the causal analysis) are not exactly the same. Results can be

found in Figure 5.5 and Table C.2 for the correlational analysis, and in Table 5.4 for the causal

analysis. In general, the risk factor analysis shows that comorbidities, age (being older), and sex

(being male) increase the risk of revision. Those are exactly the values of the confounders that show

a bigger positive effect for antibiotic-loaded bone cement in the CATE analysis. Despite measuring

different things, both phenomena have a similar physical interpretation.

One of the main qualitative differences between the results of both approaches is the clear causal
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interpretation of the results of the causal approach versus the somewhat fuzzier interpretation

of the results of the correlational approach. As an example (already mentioned in the previous

paragraph), note that the Kaplan-Meier curves show a difference in prosthetic survival between

antibiotic and plain cement groups, but as the Kaplan-Meier estimator does not take into account

other factors, it is not possible to conclude that the observed differences are caused by the treatment.

Admittedly, this can be improved by using the weighted Kaplan-Meier estimator or constructing

survival curves from the conditional hazards of the Cox model, but those approaches still do not

make causal assumptions explicit. Furthermore, if we would be interested in obtaining estimates of

individual treatment effects (i.e., the effect of the treatment for a given particular individual with

their covariates), the employed causal estimator is a better option, as it has been optimized exactly

for that purpose. The alternative of the correlational approach, i.e., the Cox model, makes stronger

implicit assumptions about hazard functions, does not take into account censoring, is not doubly

robust, and would perform worse at the aforementioned task.

After this quantitative and qualitative comparison of the results, we assess and compare the

approaches in the next section, outlining their strengths and weaknesses.

5.5.1 Critical assessment of the employed methodologies

In this section, we aim to answer research question Q4 (What are the advantages and disadvantages,

strengths and weaknesses, of correlational methods and causal inference methods for generating

evidence about clinical interventions?) by presenting a direct comparison of both approaches.

One of the main strengths of the correlational approach and methods is that they are very widespread

in the related literature. That allows for direct comparison of results and integration of evidence

in meta-analyses and facilitates the understanding of conclusions by other peers. Somehow, it

establishes a common language for the topic. Furthermore, the employed methods (Kaplan-Meier

and Cox proportional hazards model) are statistically sound methodologies whose limitations (i.e.,

sources of bias, underlying assumptions, etc.) are well-identified and known. Note that this is not

necessarily the case with all correlational approaches, as, for example, there is some evidence about

statistical problems of the more modern but less used Fine and Gray’s Subdistribution method

(Austin et al., 2022; Bonneville, Wreede, and Putter, 2024). Finally, it must be mentioned that the

interpretation of the results of the employed methods regarding survival and hazard ratios is quite

straightforward.

Among the weaknesses of the correlational method, besides the already discussed lack of causal

interpretation of the results, we highlight the total blindness of the correlational approach to the

causal structure of the problem. With this approach, it is implied that all confounders (usually

called risk factors in the literature) have exactly the same relationship with the treatment and the

outcome: they affect both. If the reality has a different causal structure (for instance, with some of
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the confounders affecting other confounders but not directly the treatment), and if that structure

is (at least partially) known by the researchers, that knowledge remains unexploited, and that is a

source of bias in the estimates (recall the results of section 5.4.2, about the importance of the DAG).

Regarding the causal approach, a minor but still somewhat important weakness is that, unlike the

correlational approach, it is not a common language in the literature. This results in a need for

longer preambles and contexts, more detailed definitions, and difficulties for direct comparisons of

results. In addition, the existence of a relatively large amount of available options for estimators

implies more complex decisions, and their implementation and/or use is often more difficult than

that of simpler models typically employed in correlational approaches.

On the strengths’ side, first and foremost, we find the clear causal meaning of the provided results:

antibiotic-loaded bone cement causes an increase of 8 percentage points in prosthetic survival under

the assumptions made. The usage of the DAG explicitly displays the researchers’ beliefs about

the causal relations of the variables of the problem and allows for more transparent discussions.

Furthermore, the existence of advanced estimators such as the one employed in this work (a doubly

robust method that models the censoring process and uses random forests) implies a superior

estimation performance of causal methods in comparison with the performance of the typical

estimators of the correlational approach.

We already stated that treating causal problems with associational methods constitutes an epistemic

limitation, and the evidence gathered in this chapter shows that it is also a practical one, as we

have shown that the identification and estimation choices impact the obtained results. We believe

that this comparison constitutes empirical proof that, whenever possible, causal methods should be

employed to answer causal questions. Correlational-only, causality-free approaches and methods

have been the common language for this type of study, but we have better options nowadays.

Regarding the limitations of this approach-like and methodological comparison, there are two

main factors to mention: on the one hand, it is based on a single use case, which may limit the

representativeness of the conclusions, and on the other hand, it is qualitative, when a quantitative

approach could constitute stronger evidence.

In the next chapter, we delve into the realm of multivalued treatments, and we explore the general-

izability of algorithms from binary treatment to multivalued treatment settings.
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Chapter 6

Multivalued treatment settings and a
neural network-based causal inference
algorithm: Hydranet

In this chapter, we provide an answer to research question Q5, Can we generalize advanced causal

inference algorithms from binary treatment settings to multivalued treatment settings?

This work is the final version of previous works presented as oral communication in the NeurIPS

2022 Workshop on Causality for Real-world Impact (”Borja Velasco, Jesus Cerquides, & Josep

Lluis Arcos (2022). Multi-valued Treatment Effect Estimation for Health Technology Assessment

with a Neural Network.”) and the article ”Borja Velasco-Regulez, & Jesus Cerquides (2023).

Hydranet: A Neural Network for the Estimation of Multi-Valued Treatment Effects. Artificial

Intelligence Research and Development (pp 16–27). IOS Press. DOI: 10.3233/FAIA230655”,

published in the proceedings of the Catalan Conference of Artificial Intelligence of 2023, where it

won the best paper award of the conference.
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6.1 Background

In the previous chapters of this thesis, we have assessed two different health technologies in three

different scenarios. All the scenarios had in common one feature: the analyzed treatment of interest

was binary, i.e., it could take two values or categories. This is not a coincidence: a big share of the

literature on health technology assessment, clinical studies, statistical methods, and causal inference

follows a binary treatment logic. This is natural: when aiming at doing a task as complicated as

understanding how the world works, understanding the effect of an intervention that can take only

two values (or, often, the effect of the presence or absence of the intervention) is the first logical

approach to the problem, as it is the most elemental simplification of it. Nevertheless, as true as

this is, it is also true that reality is usually much more complex than the simplification we humans

make in order to understand it. In our particular case of interest, this means that treatments or

interventions in the field of health are more often than not multivalued, i.e., they can take more than

just two values. For example, consider how the question about the effects of the COVID-19 vaccine,

which is originally binary (vaccine administered or not administered), can become multi-valued

if we want to know the effects of the different vaccine brands. Similarly, the question about the

effects of antibiotic-loaded bone cement on prosthetic survival becomes multi-valued if we wonder

about the effects of different antibiotics.

When searching in the literature for causal inference algorithms for multivalued treatments, we

realized two facts: first, there is an important body of work that connects causal inference with

machine learning. This is partially due to the fact that a big share of important contributions to

the field of causal inference have come from authors working in the field of computer science,

and computer science is the base of the current golden era of machine learning and deep learning.

Second, that most works, in the form of machine learning-based or deep learning-based algorithms

for causal inference, are being developed and tested in binary treatment settings. This is natural,

but it is also a limitation that hinders researchers’ adoption of these types of algorithms. For these

reasons, in this chapter, we aim to answer research question Q5 Can we generalize advanced causal

inference algorithms from binary treatment settings to multivalued treatment settings? We start by

over-viewing the existing algorithms, and we select a top-performing, representative use case and

test its generalizability and performance in a multi-valued treatment setting.

The rest of this chapter is divided as follows. In the next subsection, we provide an overview of

neural network or machine learning-based causal inference algorithms. Then, we dedicate a section

to formally express our problem and provide definitions. After that, we present the selected binary

treatment algorithm, and we derive its multivalued treatment version. Finally, the next parts contain

the strategy for generating data for experiments, the results of those experiments, and the discussion

and conclusions.
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6.1.1 Neural network-based causal inference algorithms

Machine learning and neural networks are becoming a common choice for performing causal

analysis tasks (causal inference, causal discovery) due to their power and flexibility for modeling

complex functions, especially when the dimensionality of the data is high (Miguel A Hernán and

James M Robins, 2020). Several authors have investigated specific network architectures, loss

functions, regularization methods, etc., to tackle the task of inferring causal quantities using neural

networks. Here, we review them, some of which were already introduced in the state-of-the-art

chapter. Yuan, Ding, and Bar-Joseph (2020) propose a convolutional neural network for causal

inference through a method that encodes observational data of a causal problem in an image-like

matrix. Louizos et al. (2017) introduce a variational auto-encoder architecture for the estimation

of treatment effects at the patient level, mapping proxies of unmeasured confounders to latent

variables, exploiting the strengths of auto-encoders with latent variables. Yoon, Jordon, and Van

Der Schaar (2018) use generative adversarial networks to learn counterfactuals of a causal inference

problem. Shalit, Johansson, and Sontag (2017) propose a neural network that learns a representation

of the covariates, and that has two different ”heads” or ends, one for each treatment option. The

architecture and training strategy ensure a good trade-off between sharing statistical power in

the representation layers and learning the effects of each treatment value (binary) in the ”heads.”

Finally, Shi, Blei, and Veitch (2019) presents another architecture named Dragonnet, inspired in

the previously explained work (the one by Shalit, Johansson, and Sontag (2017)), which includes

another ”head” for learning the propensity score. By defining the adequate loss function, it is

ensured that the architecture exploits the sufficiency of the propensity score (Rosenbaum and

D. B. Rubin, 1983) for adjustment. All these algorithms have been developed for binary treatment

settings. Among the few that we found that could handle multivalued treatments, there were

significant differences. Kaddour, Y. Zhu, et al. (2021) present a neural net-based algorithm, but for

working with specific data morphologies and structured treatments, such as graphs, images, texts,

etc. Schwab, Linhardt, and Karlen (2019) use support vector machines, and present one of the

most complete works with multivalued treatments. Finally, Künzel et al. (2019) use meta-learners,

i.e., aggregators that combine the outputs of individual algorithms, and we consider that such an

approach is fundamentally different from the one presented in this chapter.

The first step to tackle the problem at hand, i.e., the generalization of a neural network-based causal

inference algorithm from binary to multivalued treatment settings, is to formally define it. Thus, in

the next section, we provide the required definitions of variables and quantities.
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6.2 Problem statement

Consider a treatment of interest represented as a discrete random variable T ∈ [0..k], capable of

taking k + 1 different values. The outcome, denoted by Y , is a continuous random variable in R.

Additionally, let the covariates—variables that influence both the treatment and the outcome—be

represented by a random vector X ∈ Rj . Thus, each data point in our observational dataset is

represented as a tuple (Yi, Ti, Xi), i ∈ [1..N ]. These data points are assumed to be generated

independently and identically. This set of data points constitutes the body of observational data.

Let the causal effect of the treatment t over the outcome Y be µt = E[Y |do(T = t)], using Pearl’s

do-calculus notation (Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell, 2016), which denotes

intervention. Given that the identifiability conditions hold (positivity, consistency, and ”no hidden

confounder”), µt = E[Y |X = x, T = t], which is a quantity that can be inferred from the body of

observational data. Along the rest of the section, it is assumed that the identifiability conditions are

fulfilled.

Let the conditional outcome be defined as the expectation of the outcome given the treatment and the

covariates, Q(t, x) = E[Y |t, x]. Based on Q, a simple estimator µ̂t of µt as µ̂t = 1
N

∑
iQ(t, xi)

can be constructed. In the following, the goal will be to approximate Q. Let Q̂ be an approximation

of Q, and let µQ̂t = 1
N

∑
i Q̂(t, xi) be the estimator of µt obtained replacing Q by its estimation Q̂.

Furthermore, the Generalized Propensity Score (GPS (Cattaneo, 2010)) is expressed as G(x) =

[g0(x), g1(x), . . . , gk(x)] ∈ Rk+1, with gt(x) = P (T = t|x).

In a binary treatment setting, under the identifiability conditions, the Average Treatment Effect

(ATE) is one of the most common causal quantities of interest, and it is defined as ψ = µ1 − µ0.

Given an approximation Q̂ of Q, ψ can be easily estimated as ψQ̂ = µQ̂1 − µQ̂0 . In a multi-valued

treatment setting, a wider class of causal quantities of interest can be defined, and all the conditional

outcomes must be computed together in order to obtain valid estimates of those quantities (Cattaneo,

2010). In this work, such quantities of interest are defined as the pair-wise average differences

between the several treatments and a treatment considered the control (note that, in practice, the

control treatment does not necessarily mean the absence of treatment). Thus, a vector of ATEs

ψ ∈ Rk,ψ = [ψ1, ψ2, . . . , ψk], with ψt = µt−µ0 is defined. These quantities can be approximated

in a similar fashion as shown before, the t-th element of the vector being ψQ̂
t = µQ̂t − µQ̂0 . Note

that if the causal quantity of interest was ψi,j = µi − µj , it could easily be computed based on the

previous definition, as ψi,j = ψi − ψj , due to the linearity of the expectation operator.

This vector of ATEs ψ will be our causal quantity of interest. In the next section, the estimation

method provided in Shi, Blei, and Veitch (2019), which has the objective of estimating the ATE in

the binary case, is generalized to the estimation of ψ in the multivalued treatment case.
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6.3 From Dragonnet to Hydranet

Dragonnet is a high-capacity, end-to-end neural network architecture for estimating binary treatment

effects (Shi, Blei, and Veitch, 2019). It was inspired by a previous work (Shalit, Johansson, and

Sontag, 2017) and performed better than its predecessor. The architecture and cost functions of

Dragonnet provide top-performing results in benchmarking datasets by connecting neural network-

based estimation with semiparametric theory and double machine learning, which have already been

introduced in the state-of-the-art chapter. In the present chapter, we will re-encounter the concepts

of efficient influence curves, score functions, and estimating equations (Edward H. Kennedy,

2016). Similarly, we will speak about double machine learning (Chernozhukov, Chetverikov,

Demirer, Duflo, C. Hansen, and Newey, 2017; Chernozhukov, Chetverikov, Demirer, Duflo, and

Hansen, 2018), by which estimators show desirable statistical properties in terms of data efficiency

and convergence. One of those desirable properties is double robustness, which ensures that the

estimator of the causal effect of interest converges to the correct value even when one of the

employed models is wrongly specified.

In this section, we present the variation of the architecture, mathematical formulations, and proofs

for adapting Dragonnet to a multivalued treatment setting. We call this adaptation Hydranet.

6.3.1 Architecture

The architecture of Hydranet can be seen in Figure 6.1. It consists of two parts: the representation

part, formed by the input layer and two hidden layers, and the heads, formed by k + 2 ends. Out of

those, k+1 correspond to the conditional outcomes and are formed by two more hidden layers plus

the output layer. The remaining head corresponds to the GPS, G(x) = [g0(x), g1(x), . . . , gk(x)] ∈
Rk+1, with gt(x) = P (T = t|x), consisting on just the output layer. All layers are fully connected.

Recall that the t-th element of the vector of ATEs is approximated as ψQ̂
t = 1

N

∑
i Q̂(t, xi) −

Q̂(0, xi).

The baseline objective function has the shape

R̂(θ) =
1

N

∑
i

[(Qnn(ti, xi; θ)− yi)
2 + αCrossEntropy(gnnt (xi; θ), ti)] (6.1)

where the quadratic term relates to the errors of the potential outcomes’ heads and the cross entropy

term relates to the errors of the propensity score’s head. The model parameters are

θ̂ = argmin
θ

[R̂(θ)] (6.2)
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Figure 6.1: Hydranet architecture, where Z is the representation layer, and the k + 2 heads
correspond to the k + 1 potential outcomes, Q̂(k, ·), and the Generalized Propensity Score, Ĝ(·).

6.3.2 Targeted Regularization

Now, following the reasoning in Shi, Blei, and Veitch (2019), targeted regularization is presented.

Targeted regularization is a modification of the objective function that introduces an extra parameter,

epsilon. In this setting, ϵ is a vector in Rk, ϵ = (ϵ1, ϵ2, ...ϵk), and the new objective function is

F̄ (θ, ϵ) = R̂(θ) + β
1

N

∑
i

γi(yi, ti, xi; θ, ϵ), where (6.3)

γi(yi, ti, xi; θ, ϵ) = (yi − Q̄i(θ, ϵ))
2, and (6.4)

Q̄i(θ, ϵ) = Qnn(ti, xi)+ϵ1

(
I(T = 1)

gnn1 (xi)
− I(T = 0)

gnn0 (xi)

)
+ . . .+ϵk

(
I(T = k)

gnnk (xi)
− I(T = 0)

gnn0 (xi)

)
, (6.5)

with I(T = t) the indicator function, and thus the sought model parameters are defined by

θ̂, ϵ̂ = argmin
θ,ϵ

[R̂(θ) + β
1

N

∑
i

γi(yi, ti, xi; θ, ϵ)]. (6.6)

The motivation for this modification lies in semiparametric estimation theory and targeted maximum

likelihood estimation (TMLE) (Edward H. Kennedy, 2016; Lendle, 2015), both presented in Chapter

2 and in Section 6.3 of the current chapter. Generally, semiparametric estimation theory provides

us with conditions that ensure desirable properties (Chernozhukov, Chetverikov, Demirer, Duflo,

C. Hansen, Newey, and J. Robins, 2017) of the estimator ψ when they are fulfilled, and TMLE is

an efficient method to achieve the fulfillment of those conditions. The conditions are the set of
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non-parametric estimating equations, defined as

0 =

[
1

N

∑
i

φi,1,
1

N

∑
i

φi,2, ...
1

N

∑
i

φi,k

]
, (6.7)

and they employ the elements of the vector of efficient influence curves, defined as φ ∈ Rk,φ =

[φ1, φ2, ...φk], with

φi,t = Qnn(t, xi)−Qnn(0, xi) +

(
I(T = t)

gnnt (xi)
− I(T = 0)

gnn0 (xi)

)
(yi −Qnn(t, xi))− ψt. (6.8)

Finally, recall that our goal is that the minimization of the modified objective function ensures the

fulfillment of the non-parametric estimation equations. This can be expressed mathematically as

0 = ∇F̄
∣∣
ϵ̂
=

[
∂F̄

∂ϵ1
,
∂F̄

∂ϵ2
, ...

∂F̄

∂ϵk

]∣∣∣∣
ϵ̂

=

[
β

N

∑
i

φi,1,
β

N

∑
i

φi,2, ...
β

N

∑
i

φi,k

]
. (6.9)

This warrants the aforementioned desirable properties of the estimator ψ, i.e., double robustness,

fast convergence, and efficiency. Next, we provide the proof of Equation 6.9. The goal is to prove

that
∂F̄

∂ϵt

∣∣∣∣
ϵ̂t

=
1

N

∑
i

φi,t, ∀ t in[0, k]. (6.10)

Proof. On one hand, using equations 6.3, 6.4 and 6.5, get

∂F̄

∂ϵt

∣∣∣∣
θ̂,ϵ̂t

=
∂

∂ϵt

(
R̂(θ) + β

1

N

∑
i

γi(yi, ti, xi; θ, ϵ)

)∣∣∣∣∣
θ̂,ϵ̂t

=
β

N

∑
i

∂

∂ϵt
γi(θ, ϵ)

∣∣∣∣∣
θ̂,ϵ̂t

=
2β

N

∑
i

(yi − Q̄i(θ, ϵ))
∂Q̄i(θ, ϵ)

∂ϵt

∣∣∣∣∣
θ̂,ϵ̂t

=
2β

N

∑
i

[
(yi − Q̄i(θ, ϵ))

(
I(T = t)

gnnt (θ)
− I(T = 0)

gnn0 (θ)

)]∣∣∣∣∣
θ̂,ϵ̂t

=
2β

N

∑
i

[
(yi − Q̂(t, xi)

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)]
(evaluate at θ̂, ϵ̂)

=
2β

N

∑
i

(
Q̂(t, xi)− Q̂(0, xi)

)
− β

N

∑
i

(
Q̂(t, xi)− Q̂(0, xi)

)
+

β

N

∑
i

[
(yi − Q̂(t, xi))

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)]
(add and subtract term)

=
2β

N

∑
i

[
Q̂(t, xi)− Q̂(0, xi) + (yi − Q̂(t, xi))

(
I(T = t)

ĝt
− I(T = 0)

ĝ0

)
− ψ̂t

]
.
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On the other hand, by substituting the definition of the efficient influence curves 6.8 in the set

of non-parametric estimation equations 6.7, multiplying by β and particularizing at Q̂, ĝ, ψ̂ (the

functions modeled by the neural network at the optimal point of the parameter space), an expression

equal to the one in the last line of the proof is obtained. Thus, the non-parametric estimation

equations 6.7 are satisfied, and the proof is complete.

6.4 Data, metrics and experiments

Evaluation of the performance of causal inference algorithms usually runs into what is known as

the fundamental problem of causal inference. This refers to the fact that for each individual or

patient, we do not get to observe one or some of the potential outcomes, the counterfactuals. Then,

because those are needed for computing ground truth effects, testing algorithms with real-world

data is usually not possible. Thus, synthetic or semi-synthetic data is usually required, where the

data-generating process is fully or at least partially under researchers’ control, and we can simulate

the required information to be able to calculate ground truth effects. Some datasets have been

established as de facto benchmarks for comparisons. In this chapter, we have tested Hydranet in

two datasets, a fully synthetic one and a semi-synthetic one, IHDP (Gross, 1993). We refer to

them as the synthetic dataset (or SynD for short) and the IHDP dataset, respectively. In order to

generate these datasets, algorithms mimicking different data-generating processes (DGP) have been

designed and implemented. For the synthetic dataset, the covariates, treatments, and outcomes

have been synthetically generated, taking inspiration from Kaddour, Y. Zhu, et al. (2021). For the

IHDP dataset, the covariates are taken from a study with real participants, while the treatments

and outcomes are synthetically generated. Those real covariates were collected for a Randomized

Controlled Trial (RCT) carried out in 1985 (Gross, 1993) and are routinely used for benchmarking

causal inference algorithms, usually following the configuration in Dorie et al. (2018). A similar

strategy has been followed in the current work, but adapting the DGP to the present needs (a multi-

valued treatment scenario). With both datasets, the number of treatments was set to 5. Additionally,

we have also defined the metrics for the performance. In the remainder of this section, we provide a

more detailed explanation of the data-generating process (DGP) and the metrics.

6.4.1 Synthetic data generating process

For generating fully synthetic data, DGPs with tunable parameters of bias sizeB, degree of positivity

ρ, dataset size D, and number of confounders NC were designed. The number of treatments was

set to 5. The potential covariates are vectors x ∈ R30 with each element sampled from a uniform

distribution U(−1, 1). The number of such vectors is equal to the data size parameter D, forming a

matrix X ∈ RDx30. The actual confounders, i.e., the variables that participate in the determination
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of both the treatment and the outcome, are the first NC (number of confounders) elements of

each covariate vector, thus forming a matrix C ∈ RDxNC . The treatment for each data point was

obtained in two steps. First, by squaring the confounder vector element-wise and summing the

elements, applying a min−max scaler to the range [0, 4] (for 5 treatments), and rounding to the

closest integer. Then, in order to fulfill the positivity condition, by drawing the final treatment value

from a categorical distribution such that

p(t|c) =

ρ, if t = m(c)

1−ρ
k−1 , otherwise

with m(·) the operation defined in the first step and ρ the degree of positivity. Note that with this

definition, a value of ρ = 0.5 would mean perfect overlap, treatment assigned at random, while

a value of ρ = 1 would mean the violation of the positivity condition. Finally, for computing the

potential outcomes, three outcome functions (la(t,x), lb(t,x), lc(t,x)) were defined, that map a

combination of the covariates and the treatment to the output space. The outcome functions have

the shape

la(t,x) = 30vT
0 x+ 10 t2 vT

t x+ ϵ

lb(t,x) = 20vT
0 x+ 5 B t vT

t x+ ϵ

lc(t,x) = 10vT
0 x+ 5log(|B t vT

t x|) + ϵ

with B the bias parameter, v0 the baseline effect parameter, defined as u0/||u0|| with || · || the

euclidean norm and u0 ∼ U(0, 1) a randomly sampled vector (u0 ∈ R30), and ϵ ∼ N (0, 1). Recall

that a potential outcome, denoted yt, is the outcome that a datapoint would have had, had it been

treated with a particular treatment t. The matrix of potential outcomes Y ∈ RDx5 is defined as

Y = [Y0,Y1,Y2,Y3,Y4] = [la(0,X)T , lb(1,X)T , lc(2,X)T , lb(3,X)T , la(4,X)T ]

with 0 = (0, 0, ...0) ∈ RD, 1 = (1, 1, ...1) ∈ RD, etc.

Several datasets were generated under varying values of the four parameters of interest, bias

size B = [2, 5, 10, 30], degree of positivity ρ = [0.6, 0.7, 0.8, 0.90, 0.95, 0.98], dataset size D =

[1000, 2000, 5000, 8000] and number of confounders NC = [2, 5, 10, 18], varying one parameter

at a time. When kept fixed, the values were set to B = 20, ρ = 0.8, D = 2000 and NC = 2.

6.4.2 IHDP data generating process

For generating the IHDP dataset, a similar strategy was followed, but fixing B = 10, ρ = 0.8,

NC = 2, with D = 985 being the size of the original IHDP covariate set. The treatment
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assignment function was based on two variables present in the set: mom ethnicity and weeks

preterm. Treatment 0 is assigned to individuals with mom ethnicity equalling ”black”, treatment 1

to individuals with mom ethnicity equalling ”white”, treatment 2 to individuals with mom ethnicity

equalling ”hispanic”, treatment 3 to individuals with mom ethnicity equalling ”hispanic” and weeks

preterm being bigger than 6, and treatment 4 to individuals with mom ethnicity equalling ”black”

and weeks preterm smaller than 6. Note that this setting is fictional and has no connection with

any real-life situation. Then, the final treatment was sampled from a probability distribution as

explained in section 6.4.1. The outcome functions were defined as

l1(t,x) = exp(xβ) +B ∗MB + t2 + ϵ

l2(t,x) = log(|xβ|) +B ∗MW ∗ t+ ϵ

l3(t,x) = xβ +B ∗MH + t2 + ϵ

l4(t,x) = exp(xβ) +B ∗WP + t+ ϵ

l5(t,x) = log(|xβ|) +B ∗WP ∗ t+ ϵ

where β is a vector of parameters, B is the bias parameter, MB, MW, and MH are the components

of the one-hot encoding of mom ethnicity, and WP is weeks preterm.

6.4.3 Metrics

For performance benchmarking purposes, the sum of errors of the vector of ATEs was employed.

This is computed as the sum of the absolute values of the differences of all estimated ATE

components with respect to their true values, E =
∑k

t=1 |ψt − ψ̂t|. This choice allows us to have

a single real number as a final result, making comparisons simpler. All values were computed as

averages across 20 dataset realizations to increase the robustness of the results, and 95% confidence

intervals were computed with Bootstrapping.

In the case of binary treatment settings, there are de facto benchmarking datasets and metrics, i.e.,

datasets and metrics that are widely used in the literature and thus serve for algorithmic performance

comparison purposes. The IHDP dataset and the metrics presented in Dorie et al. (2018) are an

example of this. This is not the case in multi-valued treatment settings, where comparators are

scarce. Nevertheless, algorithms that can be considered comparable to Hydranet were developed

and implemented to benchmark its performance. Thus, in every experiment, the results of the

following algorithms are included: 1) Naive, a naive estimator of the treatment effect that employs

only the observable data, without controlling, and serves to visualize the impact of confounding

2) B2BD, back to back Dragonnets, a strategy that uses 4 Dragonnets (with the same setup as

in Shi, Blei, and Veitch (2019)), each one estimating one element of the vector of ATEs ψ, 3)

Meta-learner, a Meta-learner estimator (Künzel et al., 2019) that employs a gradient boosting
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Figure 6.2: Errors of the different algorithms with respect to the bias size parameter.

machine (GBM) model, and finally 4) Hydranet, both in its baseline form and with targeted

regularization. Note that for the meta-learner, both T-learner and X-learner estimators were tested,

and the T-learner was finally selected due to its better performance. Hydranet performed well in all

the tested scenarios and outperformed the comparators, both with in-sample (train set) data and with

out-sample (test set) data, reaching low or very low error values for different bias sizes, positivity

degrees, dataset sizes, and number of confounders. The employed training scheme consisted of

a first stage with the ADAM optimizer and a second stage with the Stochastic Gradient Descent

(SGD) optimizer, with hyperparameters similar to those in Shi, Blei, and Veitch (2019).

6.4.4 Synthetic data experiments

Figure 6.2 and Table 6.1 show the error of the different algorithms for increasing values of the bias

size. As should be expected, the error of the naive algorithm increases with the bias size, and the

out-sample error is bigger than the in-sample error. The comparators also suffer from bigger error

sizes with the increase of the bias. Hydranet outperforms the comparators and is very robust in the

face of an increase in bias. It also shows a similar performance in-sample and out-sample, both for

the baseline algorithm as well as the targeted regularization-equipped algorithm.

Figure 6.3 and Table 6.2 show the error of the different algorithms for increasing values of the

degree of positivity ρ. Note that here ρ has been expressed in percentage. Again, as expected, due

to its definition, all algorithms suffer from increasing error size with the increase of ρ. Hydranet

outperforms the comparators both in-sample and out-sample and both in its baseline form as well

as with targeted regularization.

Figure 6.4 and Table 6.3 show the performance of the algorithms for varying dataset sizes. As

expected, all algorithms reduce their error with bigger data set sizes, but Hydranet with targeted
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Table 6.1: Errors of the different algorithms with respect to the bias size parameter.

Bias 5 10 30

In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample

Naive 28.61 ± 5.78 13.97 ± 2.77 35.37 ± 6.69 16.17 ± 3.55 52.31 ± 7.83 30.49 ± 7.17

B2BD base. 14.75 ± 3.78 9.73 ± 2.6 14.86 ± 2.64 11.14 ± 3.76 37.59 ± 8.6 18.58 ± 5.28

B2BD t-reg. 12.3 ± 4.12 12.3 ± 3.13 13.66 ± 4.05 13.66 ± 3.29 25.76 ± 10.11 25.76 ± 6.83

Meta-learner 15.91 ± 3.3 15.94 ± 3.43 15.3 ± 3.21 15.88 ± 3.15 29.98 ± 5.83 32.54 ± 6.44

Hydranet base. 1.37 ± 0.37 1.22 ± 0.31 1.87 ± 0.32 1.68 ± 0.26 2.65 ± 0.4 1.92 ± 0.31

Hydranet t-reg. 1.45 ± 0.37 1.45 ± 0.38 1.62 ± 0.26 1.62 ± 0.28 2.26 ± 0.65 2.26 ± 0.38

Table 6.2: Errors of the different algorithms with respect to the degree of positivity parameter.

Positivity degree 90 95 98

In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample

Naive 46.79 ± 10.97 29.92 ± 5.35 60.9 ± 14.71 26.39 ± 4.88 67.0 ± 13.77 33.91 ± 7.47

B2BD base. 22.02 ± 3.85 14.68 ± 2.66 32.62 ± 7.33 21.71 ± 4.14 31.87 ± 7.15 25.79 ± 5.02

B2BD t-reg. 23.49 ± 4.52 23.49 ± 5.87 23.7 ± 7.27 23.7 ± 4.9 25.08 ± 7.98 25.08 ± 4.06

Meta-learner 28.21 ± 5.17 30.48 ± 5.96 28.77 ± 6.67 31.26 ± 6.76 42.88 ± 7.3 44.43 ± 7.17

Hydranet base. 3.09 ± 0.53 2.54 ± 0.48 5.01 ± 1.35 4.69 ± 1.17 5.7 ± 1.57 4.88 ± 1.48

Hydranet t-reg. 2.91 ± 0.53 2.91 ± 0.53 4.93 ± 1.43 4.93 ± 1.13 6.88 ± 1.37 6.88 ± 1.46
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Figure 6.3: Errors of the different algorithms with respect to the degree of positivity parameter.
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Figure 6.4: Errors of the different algorithms with respect to the dataset size parameter.

regularization outperforms the rest and shows a smaller error even for small dataset sizes, proving

its (data) efficiency. It must be highlighted that in this experiment, the estimations of the baseline

Hydranet were plugged into a doubly robust estimator, the Augmented Inverse Probability of

Treatment Weighted (A-IPTW) estimator. The resulting estimations of that strategy are biased,

unlike those of Hydranet with targeted regularization, which proves the utility of the targeted

regularization loss function for achieving double robustness.

Figure 6.5 and Table 6.4 show the performance of the algorithms for varying numbers of con-

founders. Hydranet outperforms the comparators. There is no clear pattern in the impact of the

increase in the number of confounders, probably due to the design of the DGP.
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Table 6.3: Errors of the different algorithms with respect to the dataset size parameter.

Dataset size 2000 5000 8000

In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample

Naive 46.03 ± 8.36 19.59 ± 4.07 26.33 ± 4.61 12.75 ± 2.44 18.59 ± 3.83 9.86 ± 2.21

B2BD base. 21.23 ± 5.29 12.3 ± 2.92 16.59 ± 3.31 10.82 ± 2.44 12.32 ± 2.31 8.55 ± 1.86

Meta-learner 18.55 ± 3.82 16.95 ± 4.13 9.67 ± 2.06 12.97 ± 2.8 6.04 ± 1.43 7.35 ± 1.53

B2BD t-reg. 12.63 ± 5.19 12.63 ± 2.86 10.42 ± 3.33 10.42 ± 2.53 8.27 ± 2.33 8.27 ± 1.81

Hydranet base. (DR) 79.05 ± 13.41 29.15 ± 4.18 75.16 ± 17.76 28.6 ± 6.61 51.64 ± 9.8 32.43 ± 5.33

Hydranet t-reg. 1.94 ± 0.42 1.94 ± 0.32 0.99 ± 0.22 0.99 ± 0.2 0.97 ± 0.36 0.97 ± 0.34
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Figure 6.5: Errors of the different algorithms with respect to the number of confounders parameter.

Table 6.4: Errors of the different algorithms with respect to the number of confounders parameter.

N. confounders 5 10 18

In-Sample Out-Sample In-Sample Out-Sample In-Sample Out-Sample

Naive 47.65 ± 5.07 16.35 ± 2.76 44.66 ± 8.34 23.49 ± 4.65 44.48 ± 6.38 25.92 ± 4.28

B2BD base. 33.48 ± 6.45 17.87 ± 4.99 33.67 ± 6.38 20.97 ± 5.03 30.84 ± 5.81 19.86 ± 5.12

B2BD t-reg. 18.62 ± 6.86 18.62 ± 5.23 23.01 ± 6.1 23.01 ± 4.79 22.36 ± 6.43 22.36 ± 4.3

Meta-learner 18.45 ± 3.02 20.59 ± 3.4 22.84 ± 4.34 25.77 ± 5.19 21.68 ± 3.95 23.18 ± 4.91

Hydranet base. 2.49 ± 0.35 1.88 ± 0.33 2.25 ± 0.42 2.13 ± 0.35 2.46 ± 0.41 2.04 ± 0.39

Hydranet t-reg. 1.8 ± 0.44 1.8 ± 0.34 2.17 ± 0.4 2.17 ± 0.55 2.11 ± 0.52 2.11 ± 0.44

6.4.5 IHDP data experiments

Table 6.5 shows the error of the different algorithms with the IHDP dataset. Similarly to what

happens with synthetic data, Hydranet (both baseline and targeted regularization) outperforms the
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Table 6.5: Performance of the different algorithms with the IHDP dataset.

Out-Sample In-Sample

Naive 14.81 ± 0.95 17.51 ± 2.03

B2BD base. 26.35 ± 2.46 26.73 ± 3.1

B2BD t-reg. 27.57 ± 2.42 26.05 ± 2.84

Meta-learner 13.53 ± 1.22 13.7 ± 1.2

Hydranet base. 3.22 ± 0.73 3.33 ± 0.83

Hydranet t-reg. 2.87 ± 0.57 2.91 ± 0.68

comparators. The targeted regularization algorithm has a slightly smaller error than the baseline

algorithm. These results prove the efficacy of Hydranet with semi-synthetic data, showing its

suitability for real-world scenarios.

6.5 Discussion

In this chapter, we generalized a top-performing, neural network-based algorithm for ATE estima-

tion from a binary treatment setting to a 5-valued treatment setting. We developed and implemented

synthetic and semi-synthetic DGPs for algorithmic benchmarking purposes in multivalued settings,

and we designed comparator algorithms to evaluate the performance of Hydranet. We have shown

that Hydranet performs well under different bias sizes and degrees of positivity, and we provide both

theoretical and empirical evidence about the benefits of developing targeted regularization-equipped

Hydranet. In addition, the algorithm’s good performance with semi-synthetic data is demonstrated.

The main limitations of this work are twofold: on one hand, only a 5-valued treatment scenario has

been tested. It is a line of future work to adapt the algorithm and perform experiments for k-valued

scenarios. On the other hand, competitor algorithms of Hydranet have been constructed ad-hoc

due to the scarcity of benchmarking data in the literature. In one of the few potential comparison

candidates, Schwab, Linhardt, and Karlen (2019), some experiments are performed in multivalued

treatment settings, with TARNet being the best method. TARNet was shown to be outperformed by

Dragonnet in binary treatment settings in Shi, Blei, and Veitch (2019), and thus, we presumed that,

as an extension of Dragonnet, Hydranet would also outperform TARNet in multivalued treatment

scenarios. Nevertheless, this has not been tested empirically.

Regarding research question Q5 (Can we generalize advanced causal inference algorithms from

binary treatment settings to multivalued treatment settings?), we can state that despite the direct

generalizability of neural network-based algorithms for ATE estimation from binary to k-valued

treatment settings is a common claim in the literature, this work shows that it has its own challenges
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and that the behavior of the algorithms in each particular scenario requires its own interpretations.

As far as we know, the work in this chapter is opening ground on the proposal of benchmarking

results for neural network-based ATE estimation in multivalued treatment scenarios.

The next chapter is the last of this thesis and presents the overall conclusions and the lines of future

work.
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Chapter 7

Conclusions and future work

In this chapter, we review the key lessons learned from this thesis, highlight its main contributions

and related publications, and outline the primary directions for future research.

7.1 General conclusions

In this thesis, we have spoken about causality in the particular domain of generating evidence about

the effects of health technologies and interventions on health outcomes. The overall motivation

was to determine whether causal inference should be the framework of choice for producing that

evidence in such context. In that sense, this thesis, with its real-world use cases and analyses, aimed

to be a piece of evidence itself in favor of the positive hypothesis, i.e., the hypothesis stating that

causal inference should indeed be, in general, and when possible, the choice for generating evidence

on effects of interventions in the domain of human health and health technology assessment. We

consider the goal fulfilled.

We have tackled real-world use cases of evidence generation on several health outcomes using

real-world data, and we have done so both with correlational and causal methods. Thus, we have

shown an association between the timing of the COVID-19 vaccine administration and alterations

in the menstrual cycle. This discovery, obtained employing associational methods, has later been

confirmed by other works, i.e., evidence in favor of our conclusions has continued to accumulate.

We have also shown that the COVID-19 vaccine protects from the COVID-19-increased risk

of diabetes mellitus in a causal analysis that is first-of-its-kind in the literature about that topic.

Finally, we have shown a beneficial effect of antibiotic-loaded bone cement on the survival of knee

prostheses, adding our piece of evidence to the literature in a question that is still considered open.

We have done so using both a correlational and a causal approach and employing data from the

largest arthroplasty registry of southern Europe published to date.
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Throughout the execution of the aforementioned studies, we have employed correlational and causal

approaches and methods, and we have qualitatively and critically assessed and compared them. In

general, we have noted the limitations of correlational methods. One of the most important ones is

epistemic, i.e., it refers to the type of knowledge that the correlational approach provides. Strictly

speaking, that approach can only find correlations, not causation. Nevertheless, the true nature

of the questions of our studies was causal, and we claim that so is the case with most studies of

this type. In fact, more often than not, other correlational studies from the related literature used

causal vocabulary and implied, more or less explicitly, causality in their conclusions. Interestingly

enough, there is evidence showing that people do infer causality from statements of association

(Gershman and Ullman, 2023). This whole combination of facts can lead to confusion. On the

contrary, the causal approach and causal inference methods allowed us to make our assumptions

explicit and provided guarantees that if those held, the observed correlations would indeed be

causal relationships. Furthermore, as we saw in Chapter 5 during the direct comparison between

approaches, the implications of the mentioned epistemic differences were also practical, with

observable differences in the obtained results. The weakness of the causal approach is that it

requires us to make assumptions, and some of them are empirically untestable from the employed

observational data, but we believe that this is still better than making them implicitly, as the

correlational approach requires.

In addition, we have also shown that it is possible to extend neural network-based, top-performing

causal inference algorithms from binary treatment settings to multivalued treatment settings, further

paving the way for the adoption of these methods for real-world problems.

Overall, according to the experience acquired throughout this thesis, we claim that the causal

approach is an improvement with respect to the correlational approach for the generation of evidence

on the effects of health interventions. This improvement is big in the theoretical and epistemic

aspects and somewhere between big and marginal in the practical aspect, depending on the use

case and the overall study design. We forecast that the causal approach, as any improvement, will

continue growing, eventually becoming commonplace. This does not necessarily mean completely

substituting or making the correlational approach disappear, but it does mean that the quality of the

evidence generated with the former will be considered higher than that generated with the latter. As

an example to illustrate our point, note that something similar happens already with cohort studies

and case reports, as the former are considered to produce higher quality evidence than the latter,

without resulting in the disappearance of case report studies. Recall that, at the end of the day, this

whole endeavor is just about obtaining better evidence, and whatever works better will eventually

become apparent and prevail.

94



7.2 Contributions

In this section, we briefly review the main contributions of this thesis, connecting them with the

research questions.

• Chapter 3:

– Contribution 1: We provide the first piece of evidence in the literature correlating the

COVID-19 vaccine administration time and vaccine-induced menstrual cycle disorders,

and by so doing, we answered research question Q1 (Do the vaccine against COVID-19

and the vaccination time have any effect on the menstrual cycle?)

We used data from a menstrual cycle tracking smartphone application (Lunar App (APP

Lunar 2024)) to find a correlation between vaccination timing (in particular, the phase

of the menstrual cycle) and alterations in the cycle. We discovered that individuals

vaccinated during the luteal phase suffered fewer changes in their cycles than those

vaccinated during the follicular phase. Larger posterior studies have confirmed our

findings. This could translate into recommendations for menstruating individuals

about when to get vaccinated. This study is a successful example of multi-institution

collaboration and citizen science, as the data used was collected through a smartphone

application for purposes other than research.

• Chapter 4:

– Contribution 2: We provide one of the first pieces of evidence of the protective effect of

the COVID-19 vaccine against infection-induced increased risk of diabetes mellitus.

Furthermore, our work also constitutes the first explicit causal analysis of the topic

in the literature. This contribution answered research question Q2 (Does the vaccine

against COVID-19 have any effect on the risk of developing diabetes?)

We emulated a target trial for analyzing the effect of the COVID-19 vaccine on the risk

of diabetes mellitus. For that purpose, we employed vaccination, infection, diagnostics,

and other data from the whole population of Catalonia, with around 7.5 million indi-

viduals in our cohort. We developed a DAG of the problem, including time-varying

confounding, and we employed a parametric implementation of G-formula with random

forests for estimating the effects of getting 1, 2, or 3 doses of the COVID-19 vaccine on

the cumulative hazard of diabetes onset. We discovered that the vaccine has a protective

effect in front of the risk of diabetes onset.

– Contribution 3: We are the first to integrate random forests for modeling purposes in

the parametric NICE implementation of the G-formula.

We modified an existing software package (pygformula 2024) that implements the para-

metric noniterative conditional expectation (NICE) G-formula. The original package
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employed generalized linear models for the modeling steps, and we changed those

to random forests. The goal was to use more flexible models that would impose

fewer assumptions on the distributions of the modeled data. In addition, this change

substantially increased the efficiency (in time and memory) of the overall algorithm.

• Chapter 5:

– Contribution 4: We provide evidence of the positive effect of antibiotic-loaded bone

cement on the survival of knee prostheses, using data from the largest arthroplasty

registry in southern Europe with published results to date. By so doing, we provide

the first answer to research question Q3 (Does the use antibiotic-loaded bone cement

during total knee arthroplasty surgery increase the life of knee prostheses, compared

with the alternative of using plain cement?)

We performed a correlational study of the relationship between the type of bone cement

and knee prosthetic survival, employing classical methods for this task (Kaplan-Meier

estimator and Cox proportional hazards model). The used data came from RACat, a

population-based knee arthroplasty registry from Catalonia. We observed a positive

correlation between antibiotic-loaded bone cement and prosthetic survival. Our results

can be integrated into future meta-analyses of a topic that is considered open in the

literature.

– Contribution 5: We provide the first explicit causal analysis of the previous topic,

employing a tailored, random forest-based causal survival analysis algorithm for esti-

mation. In this manner, we provide our second answer to research question Q3 (Does

the use antibiotic-loaded bone cement during total knee arthroplasty surgery increase

the life of knee prostheses, compared with the alternative of using plain cement?)

We also performed a causal analysis of the effect of antibiotic-loaded bone cement

on prosthetic survival, the first of its kind to the best of our knowledge. To do so,

we developed a DAG with experts in the matter, and we selected the most advanced

estimator in the literature for the task of causal survival analysis. Such an estimator was

based on random forests, was doubly robust with a correction for the censoring process,

and showed top performance for the estimation of individual treatment effects. Our use

is one of the first examples of application to a real-world problem.

– Contribution 6: Assessment and comparison of the employed correlational and causal

methods. This contribution answered research question Q4 (What are the advantages

and disadvantages, strengths and weaknesses, of correlational methods and causal

inference methods for generating evidence about clinical interventions?)

We performed a comparison between the causal and the correlational approaches, using

the studies about antibiotic cement type and prosthetic survival as a base. We conclude

that the benefits of the causal approach, both theoretical and practical, outweigh the
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disadvantages, and that the limitations of the correlational approach are enough to avoid

its use when possible.

• Chapter 6:

– Contribution 7: We generalize a top-performing neural network-based causal inference

algorithm from a binary to a multivalued treatment setting. This contribution addresses

research question Q5 (Can we generalize advanced causal inference algorithms from

binary treatment settings to multivalued treatment settings?)

The literature on advanced causal inference algorithms, especially those based on

machine learning and neural networks, is overwhelmingly dominated by scenarios of

binary treatments. This is logical but also a limitation. We open ground on the empirical

generalization and assessment of these types of algorithms to multivalued treatment

settings by providing a use case with a top-performing algorithm (originally developed

by Shi, Blei, and Veitch, 2019).

In a more general and broad sense, a significant part of the industrial contribution of this thesis lies

in the knowledge gained. AQuAS, the Agency of Health Quality and Assessment of Catalonia,

now possesses a more profound know-how on causal inference, which is crucial for one of its core

missions, health technology assessment. In addition, the algorithms developed for this thesis remain

in AQuAS’ repositories and will be reused in the future.

7.3 Publication list

In this section, we list and briefly explain the publications of this thesis. This list includes work that

has already been published, that is under the peer review process, or that will be sent to a journal

soon. We also include two non-peer-reviewed AQuAS reports.

• Published work

1. Borja Velasco-Regulez, Jose L. Fernandez-Marquez, Nerea Luqui, Jesus Cerquides,

Josep Analia Fukelman, & Josep Perelló (2022). Is the phase of the menstrual cycle

relevant when getting the covid-19 vaccine? American Journal of Obstetrics and

Gynecology, 227, 913-915. DOI: 10.1016/j.ajog.2022.07.052

Journal research letter in the American Journal of Obstetrics and Gynecology about the

correlation between the administration time of the COVID-19 vaccine and the changes

in the menstrual cycle. This publication is connected to the work presented in Chapter

3 of this thesis.
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2. Borja Velasco, Jesus Cerquides, & Josep Lluis Arcos (2022). ”Multi-valued Treatment

Effect Estimation for Health Technology Assessment with a Neural Network.” NeurIPS

2022 Workshop on Causality for Real-world Impact.

Poster and virtual talk in the NeurIPS 2022 Workshop on Causality for Real-world

Impact. This work was the early stage, work in progress of the content of Chapter 6

of this thesis, about a neural network-based multivalued treatment causal inference

algorithm. Back then, no comparator algorithm was developed, and the data-generating

process was more basic. The algorithm’s performance was worse than that of its final

version.

3. Borja Velasco-Regulez, & Jesus Cerquides (2023). Hydranet: A Neural Network for

the Estimation of Multi-Valued Treatment Effects. Artificial Intelligence Research and

Development (pp 16–27). IOS Press. DOI: 10.3233/FAIA230655

Proceedings of the Catalan Conference of Artificial Intelligence of 2023. Best paper
award of the conference. At this conference, we presented a nearly final version of

the work about the Hydranet algorithm, which can be found in Chapter 6 of this thesis.

Back then, the employed data-generating process did not have a tunable knob for the

degree of positivity, and the performance of the algorithm was slightly worst than in its

final version due to the training strategy.

4. Sergi Gil-Gonzalez, Borja Velasco-Regúlez, Jesus Cerquides, et al. (2023). ¿El cemento

con antibiótico reduce el riesgo de infección protésica en artroplastia primaria total de

rodilla? Análisis del registro catalán de artroplastias. 10º Congreso de la AEA-SEROD.

Oral poster communication in the 10th congress of the Spanish Arthroplasty Association

(AEA) and the Spanish Knee Association (SEROD). Best oral poster communication
award of the conference. This work contained an early version of a correlational

analysis of antibiotic-loaded bone cement and prosthetic survival, present in Chapter 5

of this thesis.

5. Gil-Gonzalez Sergi, Velasco-Regúlez Borja, Cerquides Jesus, et al. (2024). Antibiotic-

loaded bone cement is associated with a reduction of the risk of revision of total knee

arthroplasty: Analysis of the Catalan Arthroplasty Register. Knee Surgery, Sports

Traumatology, Arthroscopy. DOI: 10.1002/ksa.12361

Journal article published in the Knee Surgery, Sports Traumatology, Arthroscopy

(KSSTA) journal. This article presents a correlational analysis of the relationship

between the use of antibiotic-loaded bone cement and prosthetic survival. This work

has been presented in Section 5.3 of Chapter 5 of this thesis.

• Work under review or in progress
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1. Borja Velasco-Regúlez, Sergi Gil-Gonzalez, Jesus Cerquides. Causal analysis of the

effect of antibiotic-loaded bone cement on knee prosthesis survival. Sent to the Journal

of Healthcare Informatics Research - Under review.

Article sent to the Journal of Healthcare Informatics Research. This article contains

a causal analysis of the effect of using antibiotic-loaded bone cement on prosthetic

survival. This work has been presented in Section 5.4 of Chapter 5 of this thesis.

2. Borja Velasco-Regulez, & Jesus Cerquides. Hydranet: A Neural Network for the

Estimation of Multi-Valued Treatment Effects. Sent to Artificial Intelligence Communi-

cations. - Under review.

The article was sent to the Artificial Intelligence Communications journal and contains

the final version of the work of Hydranet, as it appears in Chapter 6 of this thesis.

3. Article about the effect of the vaccine against COVID-19 on the risk of diabetes

onset. This work is currently in progress and will be sent to the European Journal of

Epidemiology. It can be found in Chapter 4 of this thesis.

• Non-peer-reviewed work

1. Pérez-Troncoso, Daniel, Borja Velasco-Regulez, Jessica Ruiz-Baena, Silvia Ballesta,

Gemma Llauradó Cabot, Rosa Maria Vivanco-Hidalgo, Juan J. Chillarón, and Elisenda

Climent. ”La incidència de diabetis mellitus de tipus 1 durant la pandèmia de COVID-

19 a Catalunya.” (2023).

Study about the incidence of Type 1 diabetes (T1D) during the COVID-19 pandemic in

Catalonia. Using historical data from 2010-2019, we employed a Poisson regression

model for estimating the expected incidence for 2020-2021, which was then compared

to the actual incidence computed with data from a population-based registry. Results

showed no significant increase in 2020 but a 28% rise in 2021, particularly among

women and patients under 18 years old. Further research was warranted to explore

potential biological or social causes of the rise and their health implications.

2. Ruiz, Jessica, Laura Llinàs Mallol, Roland Pastells-Peiró, Daniel Pérez-Troncoso, Borja

Velasco-Regulez, Agata Carreño, and Rosa Maria Vivanco-Hidalgo. ”Guia per a la

generació d’evidència amb dades del món real en l’avaluació de tecnologies sanitàries.”

(2023).

Methodological guide for the generation of evidence with real-world data in the domain

of health technology assessment. This guide describes how The Agency for Health

Quality and Assessment of Catalonia (AQuAS) manages access to health data for its
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reuse and conducts HTA, aiming to improve public health. Standardized processes for

producing high-quality research are provided.

7.4 Future work

In this section, we present the lines of future work for this thesis. We divide this part into four

subsections. In the first one, we introduce the ideas for a causal analysis of the effect of the COVID-

19 vaccine on the menstrual cycle. The second one is about an analysis of different COVID-19

scenarios in the assessment of the effect of the vaccine on the risk of diabetes. The third discusses a

target trial for determining the effect of antibiotic-loaded bone cement on prosthetic survival, and

finally, the last one proposes a more realistic data-generating process for multivalued treatments.

7.4.1 Analysis of the effect of the COVID-19 vaccine on the menstrual cycle with
causal methods

The research that we conducted analyzing the association between vaccination timing and effects

on the menstrual cycle could be expanded and improved by using causal methods. We would

analyze the effect of two different interventions: on the one hand, the vaccine as a binary treatment

(vaccinated or not vaccinated), and on the other hand, the vaccine as a treatment with three

categories: not vaccinated, vaccinated during the luteal phase, and vaccinated during the follicular

phase. We would need to develop a DAG of the problem, with the help of gynecologists and other

experts, to include all the potentially involved variables and their causal relationships.

To be able to conduct such a study, we would need to gather more data, as the database employed

originally contained limitations such as the lack of information about confounders. Thus, using

citizen science again, the research team would have to design the data requirements and implement

them in the Lunar App smartphone application. We could also devise and introduce reward

strategies to encourage the registration of the required information. The study would then become

prospective. This has benefits, such as having a bigger control over the collected data, but also

important inconveniences, such as the higher costs and the longer data collection times.

7.4.2 Analysis of different COVID-19 infection scenarios in the assessment of the
effect of the vaccine on the risk of diabetes mellitus

We plan two important interventions for this line of work, which discusses the effect of the COVID-

19 vaccine on the risk of diabetes mellitus. First, we plan to collect finer data on the COVID-19

infection status variable, going from a binary variable (infection yes or no) to a variable with at least
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three categories: no infection, mild infection, or severe infection. Then, we will repeat the analysis,

as explained in Chapter 4, to see whether this change has an impact on the obtained estimates. In

addition, we plan to intervene not only the treatment variable (the number of administered vaccine

doses), but also the COVID-19 infection status variable, using the simulation capabilities of the

G-formula. Thus, we will simulate several scenarios with different percentages of infection and

severity rates and observe potential variations of the effects of the vaccine on the risk of diabetes

onset.

Besides these changes in the data and the intervention scenarios, we also plan to use other alternative

G-methods for estimation. The options are structural nested models with G-estimation (Vansteelandt

and Joffe, 2014) and marginal structural models with inverse probability of treatment weighting

(James M. Robins, M. Á. Hernán, and Brumback, 2000). These alternatives make different

assumptions on different aspects of the estimation problem: distribution of the effects across the

population, distribution of the covariates, etc. Computing estimates with more than one approach

can increase the robustness of the results.

7.4.3 Target trial for determining the effect of antibiotic-loaded bone cement on
prosthetic survival

We plan to design the protocol of a target trial for measuring the effect of antibiotic-loaded bone

cement on prosthetic survival and emulate such a trial with the available observational data. Having

already developed a DAG for the problem and having employed a machine learning-based, doubly-

robust causal survival method for estimation, the only step left that could remove potential sources of

bias (in particular time biases) is to conduct a trial emulation. Thus, we plan to use this framework,

together with the cloning-censoring-weighting method, and tackle the challenges of using the

weights with the causal survival forests algorithm.

In addition, we also plan to estimate the same quantities as in the correlational approach, i.e.,

survival curves and conditional hazard functions and ratios, to be able to make a more direct

comparison between the results of the causal and the correlational approaches.

7.4.4 A more realistic data generating process for the evaluation of algorithmic per-
formance in scenarios with multivalued treatments: multivalued RealCause

As we explained in Chapters 2 and 6 of this thesis, an important challenge for testing the per-

formance of causal inference algorithms is to have access to the appropriate benchmarking data.

Because with real-world data, we do not usually have access to ground truth causal effects, we need

to synthetically or semi-synthetically generate it for performance testing. And then, in general, we

have no guarantee about the realism (i.e., the similarity to real-world data) of such generated data.
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In Chapter 6, we developed two well-designed, fully synthetic, and semi-synthetic data-generating

processes for testing Hydranet, our neural network-based, multivalued treatment causal inference

algorithm. Afterward, we found a work that proposed a method that we considered very interesting

for generating more realistic data for that purpose, and we extended it from binary to multival-

ued treatment settings. The method is called RealCause and is presented in Neal, Huang, and

Raghupathi, 2021. It consists of using real-world, observational data for fitting generative models

and then using those models for generating data, including counterfactuals (which gives us access

to ground truth causal effects). The method employs the TARNet neural network architecture

(explained in Chapters 2 and 6) to parameterize the generative models. In addition, the authors

of that work provide evidence that the data outputted by the generative models is statistically

indistinguishable from the real data under statistical tests of distribution distances. We already

adapted the algorithm for multivalued treatments, and we are gathering multivalued real-world data

for fitting the generative models. Our plan is to test Hydranet with this new, more realistic data.

Finally, we also plan to compare Hydranet to potentially stronger competitor algorithms than the

ones we employed so far. In particular, an algorithm named Perfect Match (Schwab, Linhardt, and

Karlen, 2019) is the best candidate, as it is one of the few ones in the literature that presented an

extension to multivalued treatment settings.

7.5 Final conclusions

The core objective of the work behind this thesis has been to explore the application of advanced

causal inference algorithms in the domain of healthcare and to compare them with traditional

correlational algorithms. This goal was partly motivated by the growing interest in causality

observed in the literature over recent years. Causal inference methods are not new, but some of the

foundational algorithms of the field were published at a time when the causal inference label did

not have the cohesive power that it has nowadays. Still, the distinction between what is a causal

approach and what is not is sometimes fuzzy in the literature, especially in the applied one. Thus,

one of the secondary but still important tasks of this thesis has been to demarcate those boundaries

very clearly. We say that an approach to a question is causal when it explicitly acknowledges the

causal nature of the question and the provided answer, when it states that it is based on common

assumptions (consistency, positivity, and no hidden confounder or exchangeability), and when it

shows that, under those and potentially other assumptions, the obtained estimation of the quantity of

interest has a causal interpretation, i.e., it is a causal effect. We believe this distinction will become

more and more clear in the near future. We also believe that causal methods will continue their

way toward becoming the standard methodology for analyzing the effects of interventions with

observational data. Statistics courses in universities have recently started including causal inference

as a matter of study, and some causal inference methods have proved their performance against the
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standard of randomized controlled trials (S. V. Wang, Schneeweiss, and Initiative, 2023).

To conclude, we hope that the ideas included in this thesis contribute to the aforementioned trends,

assist other researchers in their work, and open new grounds for research. All of this aims to further

advance causal inference methods that generate better evidence about interventions in the field of

human health, a topic crucial to all of us.
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Appendix A

Full, written DAG of the effect of the
COVID-19 vaccine on the risk of
diabetes mellitus onset

The list below shows all the existing relationships between all variables in the DAG of our problem.

Note that the time has been ”collapsed” into a single stage, and thus instead of three nodes for the

treatment or for a time-varying confounder, we have only one.

BMI − > Diastolic blood pressure

BMI − > Systolic blood pressure

BMI − > Adjusted comorbidity index

BMI − > COVID-19 infection

BMI − > Blood glucose

BMI − > Abdominal perimeter

Birth year − > BMI

Birth year − > Diastolic blood pressure

Birth year − > Systolic blood pressure

Birth year − > Adjusted comorbidity index

Birth year − > Cholesterol

Birth year − > Blood glucose

Birth year − > Smoking

Birth year − > Socioeconomic status indicator

Birth year − > Abdominal perimeter

Diastolic blood pressure − > Adjusted comorbidity index
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Systolic blood pressure − > Adjusted comorbidity index

Adjusted comorbidity index − > COVID-19 infection

Cholesterol − > Adjusted comorbidity index

Country of origin − > BMI

Country of origin − > Diastolic blood pressure

Country of origin − > Systolic blood pressure

Country of origin − > Adjusted comorbidity index

Country of origin − > Cholesterol

Country of origin − > Blood glucose

Country of origin − > Smoking

Country of origin − > Socioeconomic status indicator

Country of origin − > Abdominal perimeter

Blood glucose − > Adjusted comorbidity index

Blood glucose − > COVID-19 infection

Smoking − > BMI

Smoking − > Diastolic blood pressure

Smoking − > Systolic blood pressure

Smoking − > Adjusted comorbidity index

Smoking − > COVID-19 infection

Smoking − > Abdominal perimeter

Socioeconomic status indicator − > BMI

Socioeconomic status indicator − > Diastolic blood pressure

Socioeconomic status indicator − > Systolic blood pressure

Socioeconomic status indicator − > Cholesterol

Socioeconomic status indicator − > COVID-19 infection

Socioeconomic status indicator − > Blood glucose

Socioeconomic status indicator − > Smoking
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Appendix B

Models of covariates and outcome for
the G-formula for the problem of the
effect of the COVID-19 vaccine on the
risk of diabetes mellitus onset

Covariate models and outcome model employed in the parametric NICE G-formula. t−1 sub-index

indicates a lagged value of a variable.

Covariate models

Systolic blood pressure ∼ Systolic blood pressuret−1 + BMIt−1 + Birth year + Country of origin +

Smokingt−1 + Socioeconomic status indicator + Vaccinet−1 + time

Smoking ∼ Smokingt−1 + Birth year + Country of origin + Socioeconomic status indicator +

Vaccinet−1 + time

Cholesterol ∼ Cholesterolt−1 + Birth year + Country of origin + Socioeconomic status indicator +

Vaccinet−1 + time

Abdominal perimeter ∼ Abdominal perimetert−1 + BMIt−1 + Birth year + Country of origin +

Smokingt−1 + Vaccinet−1 + time
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Diastolic blood pressure ∼ Diastolic blood pressuret−1 + BMIt−1 + Birth year + Country of origin

+ Smokingt−1 + Socioeconomic status indicator + Vaccinet−1 + time

BMI ∼ BMIt−1 + Birth year + Country of origin + Smokingt−1 + Socioeconomic status indicator +

Vaccinet−1 + time

Blood glucose ∼ Blood glucoset−1 + BMIt−1 + Birth year + Country of origin + Socioeconomic

status indicator + Vaccinet−1 + time

COVID-19 infection ∼ COVID-19 infectiont−1 + BMIt−1 + Birth year + Country of origin + Blood

glucoset−1 + Smokingt−1 + Socioeconomic status indicator + Vaccinet−1 + time

Adjusted comorbidity index ∼ Adjusted comorbidity indext−1 + BMIt−1 + Birth year + Diastolic

blood pressuret−1 + Systolic blood pressuret−1 + Cholesterolt−1 + Country of origin + Blood

glucoset−1 + Smokingt−1 + Vaccinet−1 + time

Vaccine ∼ Vaccinet−1 + Systolic blood pressuret−1 + Smokingt−1 + Cholesterolt−1 + Abdominal

perimetert−1 + Diastolic blood pressuret−1 + BMIt−1 + Blood glucoset−1 + COVID-19 infectiont−1

+ Adjusted comorbidity indext−1 + time

Outcome model

DM ∼ Area of residence + Country of origin + Sex + Birth year + Socioeconomic status indicator +

Systolic blood pressure + Smoking + Cholesterol + Abdominal perimeter + Diastolic blood pressure

+ BMI + Blood glucose + COVID-19 infection + Adjusted comorbidity index + Vaccine + time
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Appendix C

Results of the Cox proportional hazards
model for the events of aseptic revision
and all-cause revision in the problem of
the effect of antibiotic-loaded bone
cement on knee prosthetic survival
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Table C.1: Cox proportional hazards model results for aseptic revision.

Hazard Ratio Event Count No Event Count p-value

Totals 1670 21111

Antibiotic
Plain Cement ref 1007 8649 <0.001

ALBC 0.499 (0.452, 0.552) 663 12462

Sex
Male ref 497 6360 n.s.

Female 1.063 (0.949, 1.190) 1173 14751

Age 0.949 (0.943, 0.955) 68.80 (7.88) 72.33 (7.78) <0.001

Cement viscosity

High ref 946 12007 n.s.

Low 1.028 (0.945,1.119) 209 4298

Medium 1.043 (0.918,1.184) 505 4695

Not informed 1.014 (0.972,1.058) 10 111

Hospital category

1 0.954 (0.996,0.915) 290 4247 0.032

2 ref 306 3863

3 0.910 (0.992,0.837) 472 6183

4 1.048 (1.004,1.093) 586 6508

5 1.098 (1.008,1.195) 16 310

Surgery duration 1.003 (1.001, 1.005) 91.36 (19.84) 89.80 (18.52) 0.008

Alcohol abuse
No ref 1651 20975 0.02

Yes 1.726 (1.091, 2.729) 19 136

Diabetes
No ref 1426 17579 n.s.

Yes 0.935 (0.815, 1.072) 244 3532

Obesity
No ref 1452 18575 n.s.

Yes 1.132 (0.971, 1.319) 218 2536

Rheumatoid arthritis
No ref 1640 20637 n.s.

Yes 0.755 (0.525, 1.084) 30 474

Smoking status

Non smoker ref 1334 17077 ref

Smoker 0.821 (0.671, 1.005) 114 1285 0.056

Former smoker 1.087 (0.935, 1.264) 222 2749 0.276

BMI 0.979 (0.968, 0.990) 31.85 (4.67) 31.78 (4.76) <0.001
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Table C.2: Cox proportional hazards model results for all-cause revision.

Hazard Ratio Event Count No Event Count p-value

Totals 2328 20453

Antibiotic
Plain Cement ref 1351 8305 <0.001

ALBC 0.549 (0.504, 0.597) 977 12148

Sex
Male ref 767 6090 0.027

Female 0.899 (0.819, 0.988) 1561 14363

Age 0.963 (0.958, 0.968) 69.58 (8.10) 72.35 (7.76) <0.001

Cement viscosity

High ref 1308 11645 0.052

Low 1.073 (1.000,1.153) 281 4226

Medium 1.112 (1.000,1.239) 715 4485

Not informed 1.036 (1.000,1.074) 24 97

Hospital category

1 0.994 (1.031,0.959) 419 4118 n.s.

2 ref 446 3723

3 0.988 (1.063,0.919) 680 5975

4 1.006 (0.970,1.043) 759 6335

5 1.012 (0.941,1.088) 24 302

Surgery duration 1.003 (1.002, 1.005) 91.74 (23.81) 89.70 (17.93) <0.001

Alcohol abuse
No ref 2295 20331 <0.001

Yes 1.973 (1.391, 2.797) 33 122

Diabetes
No ref 1951 17054 n.s.

Yes 1.008 (0.902, 1.127) 377 3399

Obesity
No ref 1993 18034 0.001

Yes 1.239 (1.093, 1.404) 335 2419

Rheumatoid arthritis
No ref 2272 20005 n.s.

Yes 1.071 (0.821, 1.397) 56 448

Smoking status

Non smoker ref 1833 16578 n.s.

Smoker 0.896 (0.757, 1.060) 165 1234

Former smoker 1.102 (0.973, 1.249) 330 2641

BMI 0.988 (0.979, 0.998) 31.97 (4.81) 31.76 (4.75) 0.013
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Appendix D

Plots of CATEs of all confounders in the
problem of the effect of antibiotic-loaded
bone cement on knee prosthetic survival

Figures D.1 to D.14 present the CATE plots for the different confounders. For continuous con-

founders, the CATE is represented as a contour map, with values coded by colors in a color bar.

The x axis contains the time horizon and the y axis the confounder values. For categorical con-

founders, we depict as many lines as categories, the x axis containing the time horizon and the y

axis the CATE value. Recall the notes about interpretation of the CATEs: 1) all CATEs represent

the increase (if positive) or decrease (if negative) of the survival probability of prostheses, as a

consequence of the usage of antibiotic-loaded bone cement, for given time horizons and for given

subpopulations based on confounders; and 2) all CATEs are expressed as fractions of 1.
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Figure D.1: CATE for age. The impact of age on the CATE can be seen for medium and long time
horizons, with younger patients getting a bigger benefit in prosthetic survival from using antibiotic-
loaded bone cement. Thus, above 60 months important differences in the CATE between patients
below 60 years and above 60 years can be observed, the former having a CATE of 7.5%-10% and
the latter of 5%-7.5%. Values above 90 years might not be reliable due to the small sample size.
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Figure D.2: CATE for age, at the specific value of horizon time of h = 120 months.
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Figure D.3: CATE for sex. Sex does not have an impact on short-term horizons. A small effect
becomes observable from 50 months on but remains smaller than 1 percentage point difference for
the rest of the study time.
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Figure D.4: CATE for BMI. Patients with bigger values of BMI (above 40) benefit more from
antibiotic-loaded bone cement, especially for longer horizon times. Differences range between
8%-12% for a BMI value above 40 and between 6%-8% below that value.

115



0 20 40 60 80 100 120
Horizon

0.00

0.02

0.04

0.06

0.08
CA

TE
Diabetes

No
Yes

Figure D.5: There are almost no differences for short time horizons. Then some small differences
appear, remaining always below 1 porcentual point. Patients with the disease benefit more from
antibiotic-loaded bone cement use.
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Figure D.6: CATE for obesity. Small differences for short time horizons that then amplify, but
always remaining slightly above 1 percentage point. Patients with the disease benefit more from
antibiotic-loaded bone cement use.
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Figure D.7: CATE for rheumatoid arthritis. Small differences for short time horizons that then
amplify, but always remaining around 1 percentage point. Patients with the disease benefit more
from antibiotic-loaded bone cement use.
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Figure D.8: CATE for smoking status. 0 for a non-smoker, 1 for a former smoker, and 2 for a
smoker at the time of surgery. Patients who smoke or used to smoke benefit more from the use of
antibiotic-loaded bone cement, with differences increasing with horizon time.
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Figure D.9: CATE for alcohol abuse. Patients who abuse alcohol benefit more from the use of
antibiotic-loaded bone cement, differences increase with horizon time and reach values above 2
porcentual points.
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Figure D.10: CATE of the Charlson index.
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Figure D.11: CATE of the hospital category.
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Figure D.12: CATE of the surgery year.
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Figure D.13: CATE of the surgery duration.
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Figure D.14: CATE of the cement viscosity.
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“Analysis of oncological drugs authorised in Spain in the last decade: association between

clinical benefit and reimbursement”. en. In: The European Journal of Health Economics 25.2,

pp. 257–267. DOI: 10.1007/s10198-023-01584-9 (cit. on p. 46).

Organization, World Health (2004). ICD-10 : international statistical classification of diseases and

related health problems : tenth revision (cit. on p. 36).

Parvizi, Javad, Priscilla Ku Cavanaugh, and Claudio Diaz-Ledezma (2013). “Periprosthetic Knee

Infection: Ten Strategies That Work”. en. In: Knee Surgery & Related Research 25.4, pp. 155–

164. DOI: 10.5792/ksrr.2013.25.4.155 (cit. on pp. 50, 61).

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Inglés. Cambridge, U.K. ; New York

(cit. on p. 4).

Pearl, Judea (1995). “Causal diagrams for empirical research”. In: Biometrika 82.4, pp. 669–688.

DOI: 10.1093/biomet/82.4.669 (cit. on pp. 4, 10, 14).

— (2009a). “Causal inference in statistics: An overview”. In: Statistics Surveys 3.none, pp. 96–146.

DOI: 10.1214/09-SS057 (cit. on p. 3).

— (2009b). Causality. Cambridge University Press (cit. on pp. 11, 14).

— (2012). “Do-Calculus Revisited”. In: Proceedings of the Twenty-Eighth Conference on Uncer-

tainty in Artificial Intelligence. Ed. by Nando de Freitas and Kevin Murphy. Corvallis, OR:

AUAI Press, pp. 4–11 (cit. on p. 14).

Pearl, Judea, Madelyn Glymour, and Nicholas P. Jewell (2016). Causal Inference in Statistics. A

Primer. John Wiley and Sons Ltd, United States (cit. on pp. 50, 80).

Pepe, Margaret Sullivan and Thomas R. Fleming (2018). “Weighted Kaplan-Meier Statistics: Large

Sample and Optimality Considerations”. In: Journal of the Royal Statistical Society: Series B

(Methodological) 53.2, pp. 341–352. DOI: 10.1111/j.2517-6161.1991.tb01827.x (cit. on p. 14).

Petersen, Irene, Ian Douglas, and Heather Whitaker (2016). “Self controlled case series methods: an

alternative to standard epidemiological study designs”. In: BMJ 354. DOI: 10.1136/bmj.i4515

(cit. on pp. 13, 27).

pygformula (2024). https://github.com/CausalInference/pygformula (cit. on pp. 41, 47, 95).

131

https://doi.org/10.2106/JBJS.L.00211
https://doi.org/10.1016/j.vacune.2022.10.019
https://doi.org/10.1007/s10198-023-01584-9
https://doi.org/10.5792/ksrr.2013.25.4.155
https://doi.org/10.1093/biomet/82.4.669
https://doi.org/10.1214/09-SS057
https://doi.org/10.1111/j.2517-6161.1991.tb01827.x
https://doi.org/10.1136/bmj.i4515


Rajsfus, Bia Francis, Ronaldo Mohana-Borges, and Diego Allonso (2023). “Diabetogenic viruses:

linking viruses to diabetes mellitus”. In: Heliyon 9.4, e15021. DOI: https://doi.org/10.1016/j.

heliyon.2023.e15021 (cit. on p. 34).

Ramaiyer, Malini, Malak El Sabeh, Jiafeng Zhu, Amanda Shea, Dorry Segev, Gayane Yenokyan,

and Mostafa A. Borahay (2024). “The association of COVID-19 vaccination and menstrual

health: A period-tracking app-based cohort study”. In: Vaccine: X 19, p. 100501. DOI: 10.1016/

j.jvacx.2024.100501 (cit. on pp. 22, 31).

Rand, J.A., R.T. Trousdale, D.M. Ilstrup, and W.S. Harmsen (2003). “Factors affecting the durability

of primary total knee prostheses”. In: The Journal of Bone and Joint Surgery-American Volume

85.2, pp. 259–265. DOI: 10.2106/00004623-200302000-00012 (cit. on p. 62).

Randelli, P., F.R. Evola, P. Cabitza, L. Polli, M. Denti, and L. Vaienti (2010). “Prophylactic use of

antibiotic-loaded bone cement in primary total knee replacement”. In: Knee Surgery, Sports

Traumatology, Arthroscopy 18.2, pp. 181–186. DOI: 10.1007/s00167-009-0921-y (cit. on

pp. 23, 50, 62).

Resende, V.A.C., A.C. Neto, C. Nunes, R. Andrade, J. Espregueira-Mendes, and S. Lopes (2021).

“Higher age, female gender, osteoarthritis and blood transfusion protect against periprosthetic

joint infection in total hip or knee arthroplasties: a systematic review and meta-analysis”. In:

Knee Surgery, Sports Traumatology, Arthroscopy 29.1, pp. 8–43. DOI: 10.1007/s00167-018-

5231-9 (cit. on pp. 23, 62).

Riesch, Hauke and Clive Potter (2014). “Citizen science as seen by scientists: Methodological,

epistemological and ethical dimensions”. en. In: Public Understanding of Science 23.1, pp. 107–

120. DOI: 10.1177/0963662513497324 (cit. on p. 26).

Robins, James (1986). “A new approach to causal inference in mortality studies with a sustained

exposure period—application to control of the healthy worker survivor effect”. In: Mathematical

Modelling 7.9, pp. 1393–1512. DOI: https://doi.org/10.1016/0270-0255(86)90088-6 (cit. on

pp. 10, 40).
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la pandèmia de COVID-19 a Catalunya”. ca. In: (cit. on p. 34).

Uysal, S. Derya (2015). “Doubly Robust Estimation of Causal Effects with Multivalued Treatments:

An Application to the Returns to Schooling: DOUBLY ROBUST ESTIMATION OF CAUSAL

EFFECTS”. en. In: Journal of Applied Econometrics 30.5, pp. 763–786. DOI: 10.1002/jae.2386

(cit. on p. 20).

Estrategia de vacunación COVID-19 (2024). https://www.vacunacovid.gob.es/ (cit. on pp. 37, 43).

Vansteelandt, Stijn and Marshall Joffe (2014). “Structural Nested Models and G-estimation: The

Partially Realized Promise”. In: Statistical Science 29.4, pp. 707–731. DOI: 10.1214/14-STS493

(cit. on pp. 16, 101).

Velasco-Regulez, Borja, Jose L Fernandez-Marquez, Nerea Luqui, Jesus Cerquides, Josep Lluis
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