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EN INTEL·LIGÈNCIA ARTIFICIAL

Number 16

Institut d’Investigacío
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Foreword

Qualitative decision theory under uncertainty is receiving an increasing interest within
both Artificial Intelligence and Decision Analysis. Possibility theory offers a formal
framework to respresent uncertainty in those domains where uncertainty is basically of
ordinal, qualitative nature, and hence non-additive as opposed to probability theory.

In 1995 Dubois and Prade proposed a first axiomatic system à la Von Neumann and
Morgenstern for a possibility-based decision theory in a simple framework where only
finite linear scales of uncertainty and utility are assumed. In this approach, decisions are
represented by possibility distributions on consequences, also named possibilistic lot-
teries, and they axiomatically characterize preference relations induced by a pessimistic
and optimistic qualitative utilities. These qualitative utilities are particular kinds of ag-
gregations of the utilities of single consequences, weighted by their uncertainty levels,
and they are defined only from the ordering of the scales and an order reversing opera-
tion.

Following this seminal wortk, in this monograph the author systematically explores
two different kinds of extensions of the model. First, the author considers natural gen-
eralizations of the possibilistic utilities by means of the use of t-norm like operations
on the uncertainty scale. Second, the author considers more general settings than the
original one, moving from linear to partially ordered uncertainty and utility scales and
from totally consistent to partially inconsistent uncertainty representations. The author
provides axiomatic characterizations, always à la Von Neumann and Morgenstern, for
the preference relations induced in all of those situations. Moreover, she also provides
an axiomatic basis for a possibilistic Case-based Decision theory. In a whole, I believe
the book represents a remarkable step further in providing sound and well founded ax-
iomatic basis for the relatively new paradigm of possibility-based decision theory.

This monograph is based on the author’s Ph.D. dissertation, which I had the enjoy-
able opportunity to supervise.

Lluı́s Godo
IIIA - CSIC, Bellaterra, September 2003
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Abstract

Representational issues of preferences in the framework of a possibilistic (ordinal)
decision model under uncertainty are analysed. In this framework, uncertainty and
preference are measured on different (finite) lattice structures, ranging from lineal scales
to general distributive lattices. These structures are required to be commensurate. In
this context, decisions can be ranked according to their expected utility in terms of
generalised Sugeno integrals where t-norms and t-conorms play a role. For these
generalised utility functions we provide axiomatic characterisations. Moreover, we
propose how to extend the utility functions to cope with belief states that may
be partially inconsistent and we show their usefulness to provide elements for a
qualitative case-based decision methodology. Finally, we provide characterisations of
the refinement orderings involving the utility functions proposed and we also propose a
new framework with a weaker commensurability hypotheses.
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Chapter 1

Decision under Uncertainty

We begin this Chapter giving a short introduction to situate our work. Next, in Sections
1.2 and 1.3, we give an outline of the goals and main contributions of the thesis, and we
link them with already published papers that summarise our work. Finally, in Section
1.4 we describe the structure of this Ph.D. dissertation.

1.1 Introduction

Decision making is a daily activity which is involved in most of the acts we usually do.
Several areas, such as Artificial Intelligence, Operation Research, Game Theory, Social
Psychology and others are frequently interested in models forDecision Making.

Decision Theory (DT)may be understood in a broad sense and therefore related to
different issues like individual decision making or Game Theory. Bacharach and Hurley
(1991) observed that

“It ( Decision Theory) is about the ways in which decisions are related to
theDecisions Maker’s aims and to her beliefs about how her options serve
her aims.”

There are two aspects that the differentDT interpretations have in common:

• The subject ofDecision Theoryis the rational agent.

• The goal ofDecision Theoryis to have abstract theories of rational agency. That
is, to obtain systematic constructions deduced from an axiomatic setting that are
independent of the decision making domain.

Taking a decision amounts to choose, according to some criteria, the “best” of a set of
available alternatives taking into account the available knowledge.

There are many approaches to rational decision making, however, many of them
agree on the fact that the selection of decisions is determined by two factors: the
Decision Maker’s preference on consequencesand theinformation or belief about the
current state of affairs the Decision Maker (DM for short) has.

Usual assumptions in the different proposals for decision making theories are:

1



• rationality hypothesis: the Decision Maker is interested in maximising his
utilities.

• the feasibility of representing DM’s preference relation4 on consequences by a
preference function on them, i.e. the existence of a functionu : X → (U,≤U ), X
beingthe set of consequencesand(U,≤U ) thepreference valuation set, such that

x 4 y iff u(x) ≤U u(y),

is assumed. Usually, it is supposedU = R.

We are interested in those models that assume the existence of a mappingu
representing Decision Maker’s preference on consequences. Hence, a problem of
decision making may be represented by a4-tuple< S, X, D, u > with S being the
set of states or situations, X theset of consequences or outcomes, andD is theset of
available decisions or alternatives.

As it was mentioned, decision making depends on the available knowledge. For
example, if a precise description of situations is available and each decisiond on S is
represented as a functiond : S → X providing the consequence of the decision in each
situation, we may apply this simple decision making model (see Figure 1.1):

Given a situations0 and a set of available decisionsD, a best decision
will be a maximal element ofD with respect to the order4s0 induced by
preferences on the consequences,4s0 being defined as

d 4s0 d′ iff u(d(s0)) ≤U u(d′(s0)). (1.1)

But in the real world, we may be faced with incomplete or ill-specified decision
problems in which we cannot apply on (1.1) to define an order inD. For example, we
may be in one of the following cases:

• the decision is precisely defined, but the real situation is imprecisely known (i.e.
the actual state may be represented by a probability or a possibility distribution
π0 on the situations).

• s0 is precisely known butd is imprecise (i.e. the actual consequence ofd may be
represented by a possibility distribution on the consequences).

• s0 is precisely known butd is only partially known, i.e.d is partially defined.

In these cases, the simple model has to be extended to take decisions in an uncertain
context.

As it has been mentioned, if there is no uncertainty, we may rank decisions applying
(1.1). However, there are many problems in which the available information is poor.
That is, we are in an uncertain decision making context. In these cases, a representation
for uncertainty may be given or not. If no uncertainty representation is given, we
may consider different criteria like those that evaluate a decision in terms of its worst
possible consequence, its best one, or in terms of some weighted aggregation of them

2



 

Ranking decisions induced by consequences:

d’ ) s0 d   iff   d’(s0) ) d(s0) iff u(d’(s)) ≤U u(d(s))

d

    situations 
S

consequences

 (X, ²)

s0

preferences

  (U, ≤U )

u
u(d’(s0))

d’

d’’

d(s0)

d’(s0)

d’’(s0)

u(d(s0))

u(d’’(s0))

Figure 1.1: Decision without uncertainty: a simple model.

(for more details of some of these criteria you may see, for example, (Wald, 1950;
Hurwicz, 1951; Luce and Raiffa, 1957)).

Other alternatives emerge from considering that fuzzy measures can be applied
to model uncertainty (Grabisch, 97) (see Figure 1.2). In this case, another
component is added to the 4-tuple modelling the problem. Now, we are considering
< S, X, D, u, µ >, whereµ : S → V is a fuzzy measure,V being an uncertainty
scale.

Some particular kinds of fuzzy measures are Probability, Possibility and Necessity
measures (Wang and Klir, 1992).

The basic references in classicalDecision Theory under Uncertaintyare Von
Neumann and Morgenstern’sExpected Utility Theory(1944), and the version of
Savage (1972), characterising preference relations under uncertainty and the rationality
hypothesis. Both approaches assume thatuncertainty is represented by probability
distributions.

Von Neumann and Morgenstern assume a probability distributionP encoding
uncertainty on situations. Then, each decision induces a probability distribution on
X defined as

Pd(x) =
∑

s∈S|d(s)=x

P (s).

They considereach decision as identified with its associated probability distribution

3



uncertainty dist. on X   µ d: X → V DM’s preference on X    u: X → U

UUUU(d): ranking of d’s according to some aggregation of (µ d, u)

d) d’  iff  UUUU(d) ≤ UUUU(d’)

d

 

S X
U

d’’

µ

µd

µd’

µd’’d’

d

u

uncertainty dist.  on S    µ: S → V

Figure 1.2: Decision Model with Uncertainty Representation

onX. So, to rank decisions they consider:

d 4 d′ iff Pd 4 Pd′ . (1.2)

Hence, they focus on utility functions for probability distributions on consequences.
Distributions are ranked in terms of their expected value with respect to Decision

Maker’s preferences on consequences. That is, if numerical preferencesu : X → R
are assigned to consequences, then, distributions are ranked as follows:

Pd 4 Pd′ iff E(Pd, u) ≤ E(Pd′ , u), (1.3)

where
E(Pd, u) =

∑

x∈X

Pd(x)u(x)

is the expected value ofu with respect to the probability distributionPd.
They propose to extend the initial model considering (1.3) instead of (1.1). Namely,

Von Neumann and Morgenstern postulate that the “best” decisions, according to
Expected Utility Theory (EUT), are those whose corresponding probability distributions
maximise the expected utility ofu.

Savage (1972) proposes a somewhat different framework forEUT. He axiomatically
characterises the preference relationon actsof Decision Makersthat behave asEUT

4



agents, i.e. that satisfy

d 4 d′ iff E(P, u ◦ d) ≤ E(P, u ◦ d′) (1.4)

with u : X → R (representingDM’s preferences on consequences) andP : S → [0, 1]
being a probability distribution derived from the axiomatic setting. That is, Savage’s
version of (1.1) is (1.4), which is the same as considering (1.2 ) together with (1.3).

The classical axiomatic frameworks of Utility Theory have actually been questioned
rather early, challenging some of the postulates leading to the expected utility criterion.
Noticeably, Allais (1953) and later Ellsberg (1961) laid bare the existence of cases
where a systematic violation of the expected utility criterion could be observed. Some
of these violations were due to a cautious attitude ofDecision Makers.

Another problem withEUT is that it needs numerical probabilities for each state
and numerical utilities for all possible consequences. Sometimes, this assumption is
too strong if there is only incomplete or poor available information. In these cases, a
more qualitative approach is needed.

Another model is proposed by Gilboa and Schmeidler (1995). They claim that
Decision Making under uncertainty is, at least, partly case-based. They suggest that
people choose acts based on their performance in the past and they propose aCase-
Based Decision Theory (CBDT).

As Doyle and Thomason (1999) comment in a recent paper, there are many
experiences showing that usually people explain and make their decisions with partial,
generic and “uncertain” information. Hence, a qualitative approach may give tools for
representing this decision making behaviour. Doyle and Thomason summarise main
proposals onQualitative Decision Theory. Among them, we find those models that
usePossibility Theoryas uncertainty formalism, in which two alternatives emerge:à la
Von Neumann and Morgenstern, initiated by Dubois and Prade (1995), orà la Savage.
Dubois et al. (1997h) propose a Savage’s approach in a possibilistic framework and
Sabbadin (1998a) develops this approach in his Ph.D. thesis.

In this Ph.D. we will follow the former approach, an axiomatic framework that is a
qualitative counterpart to Von Neumann and Morgenstern’s Expected Utility Theory. It
makes use of qualitative/ordinal preference and uncertainty which are valued on finite
sets,that are commensurate, and equipped with the maximum, minimum and an order-
reversing operations. ThisQualitative Decision Theoryappears as the natural decision
theory related toPossibility Theory.

1.2 Goals

We focus our work on representational issues of preferences in a framework of a
possibilistic (ordinal) decision model under uncertainty, in the Von Neumann and
Morgenstern’s style.

Working Framework

We will assume the following working hypotheses
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• We will deal with individuals’ preferences.

• Rationality hypothesis, i.e.DM will try to maximise his benefit.

• The feasibility of representingDM’s preference relation on consequences by a
preference functionu on them is assumed. But, instead of choosingu as a real-
function, we consider that it is defined over afinite setU of qualitative/ordinal
values.

• Uncertainty is assumed of being of possibilistic nature, and it is measured on a
finiteset of qualitative/ordinal valuesV .

• One-shot decision problems.

We will be interested in different (finite) lattice structures where to measure
preferences and uncertainty, ranging from lineal scales to general distributive lattices
with involution.

First, following Dubois and Prade’s proposal, we shall assume (finite) linear
uncertainty and preference scales. We shall consider two qualitative criteria that
generalise the well-known maximin and maximax criteria, making them more realistic.
They are suited to one-shot decisions and they are not based on the notion of mean
value, but take the form of medians.

Thefirst goalwill be to improve the axiomatic characterisations of these pessimistic
and optimistic orderings. These functions are utility functions in the sense that they not
only preserve the preference ordering but the max-min mixture onΠ(X), the set of
normalised possibility distributions onX, as well.

Besides max-min mixtures of possibility distributions, we consider other mixtures
involving t-conorms and t-norms. For each t-norm> and conorm⊥ on V, we will be
interested in⊥-> mixtures that combine two possibility distributionsπ1 andπ2 into a
new one, denotedM>,⊥(π1, π2;λ, µ), with λ, µ ∈ V andλ⊥µ = 1, defined as

M>,⊥(π1, π2; λ, µ)(x) = (λ>π1(x))⊥(µ>π2(x)).

We shall require these mixtures to satisfy a form of reduction of lotteries, this will
lead to restrict ourselves tomax−> mixtures (Dubois et al., 1996b). So, for each
t-norm> onV, we may consider Possibilistic Mixture.

Thus, asecond goalwill be to characterise the behaviour of functions that preserve
these possibilistic mixtures. Moreover, we will look for preference relations on
(Π(X),M>) that are representable by these generalised utility functions.

The direct application of these models for case-based decision problems may have
unsatisfactory results because of the possibly non-normalised distributions involved.
So, athird goalwill be to extend the models to deal with these type of problems.

There are actual problems where the available information may be only partially
ordered, for example, preference on consequences may be given in terms of a vectorial
function over a product of linear scales if preference is expressed in terms of the
marginal preferences. To be able to deal with these types of problems, a further
extension of the model will be analysed. We will propose utility functions, representing
pessimistic and optimistic criteria, defined in terms of partially ordered preferences on
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consequences where uncertainty may also be measured on lattices. Therefore, alast
goal will be to characterise these orderings and the preference relations representable
by them as well.

1.3 Contributions

Our approach, as already mentioned first outlined by Dubois and Prade (1995), is
focused on an axiomatic framework toPossibilistic Decision Theorythat may be
regarded a qualitative counterpart to Von Neumann and Morgenstern’s Expected Utility
Theory.

First, we consider (finite) qualitative/ordinal preference and uncertainty linear
scales, equipped with themaximum, minimumand anorder-reversingoperations, that
are commensurate. Thiscommensurateness hypothesismeans that we are assuming the
existence of an onto order-preserving mappingh : V → U.

Under these hypotheses Dubois and Prade proposed a first axiomatic setting to
characterise the preference relation induced by a pessimistic qualitative utility which
is expressed in terms of the preference on consequences and the “possibilistic” lotteries
onS, S being the finite set of situations.

We provide an improvement of Dubois and Prade’s axiomatic setting together with
the representation theorem of preference relations induced by a pessimistic utility
function defined as

QU−(π|u) = min
x∈X

max(n(π(x)), u(x)),

with n = nU ◦ h, nU being the reversing involution inU.
Sometimes, this criterion may be too conservative and we may be interested in an

optimistic criterion, like requiringπ to make at least one of the good consequences
highly plausible, at least to some extent. This behaviour is reflected assessing a degree
of intersection between the fuzzy set of possible consequences and the preferred ones.
That is, we shall also consider the utility function

QU+(π|u) = max
x∈X

min(h(π(x)), u(x)).

We adequate the axiomatic setting given for pessimistic utilities, to represent this
optimistic behaviour, providing the respective representation theorem.

We show that both qualitative functions are utility functions, in the sense that they
not only represent the given preference relation, but they preserve the internal operation
as well.

To sum up, two qualitative criteria are axiomatised in this setting: a pessimistic
one and an optimistic one, respectively obeying an uncertainty aversion axiom and an
uncertainty-attraction axiom. As it is said, these criteria generalise the well-known
maximin and maximax criteria, making them more realistic.

As also mentioned, we have been also concerned withmax−>mixtures onΠ(X).
Thus, we have been also interested in the behaviour of functions that preserve these
possibilistic mixtures.
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We propose the following generalised qualitative utility functions, which are
extensions of the qualitative utilityQU− andQU+:

GQU−(π) = min
xi∈X

n(π(xi)>λi),

GQU+(π) = max
xi∈X

h(π(xi)>µi),

wheren(λi) = u(xi) = h(µi), with n = nU ◦ h, h : V → U being an onto order-
preserving mapping, verifying a furthercoherence condition w.r.t.> to guarantee the
correctness of the above definition, namely:

h(λ) = h(µ) ⇒ h(α>λ) = h(α>µ), ∀α, λ, µ ∈ V.

These generalised utility functions may result in different orderings from the ones
associated withQU.

We characterise the preference relations onΠ(X) that are representable by the
above generalised qualitative utilitiesGQU− andGQU+.

One of the possible applications of these decision models is for case-based decision
problems, where a memory of casesM , summarising the behaviour of decisions in
previous situations, is assumed to be available as well as a similarity function on
situationsSim : S × S → V.

We propose to estimate to what extent a consequencex can be considered plausible,
in a current situations0 after taking a decisiond, in terms of the extent to which the
current situations0 is similar to situations in whichx was experienced after taking the
decisiond.

This amounts to assume, for each case(s, d, x) in a memoryM, a principle stating
that

“The more similars0 is tos, the more plausiblex is a consequence ofd at
s0”.

This kind of guiding meta-rule has been recently considered in (Dubois et al., 1997a)
for case-based reasoning. According to this principle, given a memory of casesM,
if a similarity relation is available in the set of situations, the following possibility
distributionπd,s0 : X → V on the set of consequences can be derived

πd,s0(x) = max{Sim(s0, s)| (s, d, x) ∈ M},
where, by convention, we takemax ∅ = 0.

Then, given a preference function on the set of consequencesu : X → U , the utility
U−

s0
(d) of decisiond can be estimated, in terms of its associated distribution.
However, these distributions may result non-normalised, and the direct application

of the utility functions mentioned up to now may result in unsatisfactory results.
In order to cope with these problems, following the proposal of (Dubois et al.,

1997a),we obtain new criteria modifying the utility functions previously mentioned
with a level of uncertainty, which correspond to the degree of inconsistency of the
distributions. Hence, we extend the model to include non-normalised distributions
providing the axiomatic characterisations of these utilities.
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In some case-based decision problems, as it is noticed by Gilboa and Schmeidler
(1996), the evaluation of the utility of a decision may involve not only the behaviour of
this act in previous situations but other decisions as well. In order to deal with this type
of problems, we propose to apply the principle:

“The more similar are(s0, d) and (s, d′), the more plausiblex is a
consequence ofd ats0”.

There are certain kind of decision problems where we are not able to measure
uncertainty and/or preferences in such linearly ordered sets, but only in partially ordered
ones. For example , we may have partially ordered uncertainty in case-based decision
problems when the degrees of similarity on problems are only partially ordered. In
this case, if we are not provided with an aggregation criterion for similarity vectors
that summarises the criteria on an ordinal linear scale, we are not able to apply the
previously mentioned models.

Hence, we are also interested in a qualitative decision model that let us make
decisions in cases where theDM’s preferences on consequences are only partially
ordered or when the uncertainty on the consequences is measured on a lattice.

In order to cope with some of these situations, we propose an extension of the model
in two steps:

1. preferences and/or uncertainty are measured on finite products of (finite) linear
scales,

2. both preferences and uncertainty are graded on distributive lattices.

Most of the contributions contained in this thesis have been reported in the following
publications1:

• Lluı́s Godo and Adriana Zapico. On the Possibilistic-Based Decision Model:
Characterisation of Preferences Relations under Partial Inconsistency.2 In
Applied Intelligence, 14(3), pages 319-333,2001.

• Didier Dubois, Llúıs Godo, Henri Prade and Adriana Zapico.On the Possibilistic-
Based Decision Model: From Decision under Uncertainty to Case-Based
Decision.3 In International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 7(6), pages 631-670,1999.

• Lluı́s Godo and Adriana Zapico. Generalised Qualitative Utility Functions for
Representing Partial Preferences Relations.Joint Conf. EUSFLAT-ESTYLF99,
pages 343–346, Mallorca, 1999.

• Adriana Zapico. Axiomatic Foundations for Qualitative/Ordinal Decisions with
Partial Preferences. In16th. International Joint Conf. on Artificial Intelligence
(IJCAI’99), pages 132–137, Stockholm, 1999.

1Latter, two other other works were published in Dubois et al. (2000a) and Zapico (2001).
2This is a revised and extended version of the paper (Godo and Zapico, 2001).
3This is a revised and extended version of the papers (Dubois et al., 1998c) and (Dubois et al., 1998d).
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• Didier Dubois, Llúıs Godo, Henri Prade and Adriana Zapico.Making Decision in
a Qualitative Setting: From Decision under Uncertainty to Case-Based Decision.
In 6th International Conference on Principles of Knowledge Representation and
Reasoning(KR’98), pages 594 – 605, Trento, 1998.

• Lluı́s Godo and Adriana Zapico. Case-Based Decision: A Characterisation of
Preferences in a Qualitative Setting. InCongreso Espãnol de Tecnoloǵıa y Lógica
Difusa (ESTYLF’98),pages 405–412, Pamplona, 1998.

• Didier Dubois, Llúıs Godo, Henri Prade and Adriana Zapico. Possibilistic
Representation of Qualitative Utility: An Improved Characterisation. In7th
Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU’98), Paris, pages 180–187, 1998.

• Adriana Zapico and Llúıs Godo. Axiomatic Foundations for Qualitative/Ordinal
Decisions with Partially Ordered Preferences.Tech. Rep. IIIA 98/33.

• Adriana Zapico and Llúıs Godo. On the Possibilistic-Based Decision Model:
Preferences under Partially Inconsistent Belief States. InECAI’98 Workshop
on Decision theory meets artificial intelligence: qualitative and quantitative
approaches, Brighton, pages 99–109, 1998.

• Adriana Zapico and Llúıs Godo. On the Representation of Preferences in
Possibilistic Qualitative Decision Theory. InJornades d’ Intel.lig̀encia Artificial:
Noves Tendencies. Organised by the Catalan Society of Artificial Intelligence,
Lleida, pages 118–125, 1997.

There are some on going works that, although they are in the first steps, we understand
that may result in further contributions:

• As it has been said, we are mainly interested in the representational issues of
possibilistic decision model under uncertainty, however, the possible application
of our model of course is of our interest. Two projects in which theInstitut
d’Investigacío en Intel.lig̀encia Artificial (IIIA- CSIC)is now involved give us the
context for beginning the analysis of the support that the models could provide.
Up to now we are in the first steps of the analysis.

• We propose to weaken the commensurability hypothesis, non-requiringh to be
onto.We provide the characterisations of these orderings for finite linear scales.

• In some problems it may be not enough to rank distribution taking into account
one criterion, for example the pessimistic criterion, and we may be interested
in refining it by another one (e.g. the optimistic criterion). We analyse the
characterisation of some refinements involving the generalised qualitative criteria
we have proposed.

10



1.4 Structure of the Thesis

The Thesis is structured as it is detailed below.

Chapter 1 contains a small introduction, the organisation of the memory and our goals
and contributions.

In Chapter 2, we summarise some approaches to decision making under uncertainty,
mainly the classical approach of Von Neumann and Morgenstern together with
some alternative approaches, among which we are especially interested in
PossibilisticandCase-based Decision Theory.

Expected Utility Theoryhas two approaches. InChapter 3, we summarise the
possibilistic view of these versions: Savage’s possibilistic approach, developed
by Sabbadin and Dubois et al. and Von Neumann and Morgenstern’s approach,
initially proposed by Dubois and Prade and which we extend in this work.

In Chapter 4, following the Von Neumann and Morgenstern’s
possibilistic approach, we propose an improvement of Dubois and Prade’s
axiomatic setting for qualitative decision criteria under uncertainty where
only ordinal commensurate scales are required for assessing uncertainty and
preference. These criteria generalise the well-known maximin and maximax
criteria, making them more realistic.

Chapter 5: These criteria measure a degree of intersection/inclusion ofπ, the set of
possible consequences, andu, the set of preferred consequences. In this Chapter
we consider extended and alternative definitions of these operations, so that other
utility functions are obtained. In particular, two ordinal utility functions that
generalise previous ones are studied. We provide the characterisations of the
preference relations induced by these functions.

Chapter 6: Up to this Chapter, we have been applying finite linear order scales to
measure uncertainty and preferences. Now, we deal with decision problems
that do not satisfy this linearity hypothesis. This point is developed through
the memory in three steps. In this Chapter, we suppose that uncertainty and/or
preferences are measured in a finite product of (finite) linear scales.

Secondly, inChapter 7, uncertainty and/or preferences are measured on finite
distributive lattices and utility functions are defined assuming that the only
available operations areminimum, maximumand aninvolution.
Finally in a third step, we consider that other (t-norm-like) operations, different
from minimumand maximum, are available. In particular, we consider finite,
distributive, residuated lattices with involution as uncertainty and preference
valuation sets. Consequently, the axiomatic decision model is extended to
adequately cover these general algebraic structures as evaluation domains for the
utility functions.

Chapter 8: In order to apply the models when the belief states are partially
inconsistent, what may happen in case-based decision problems or when different
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sources of inconsistent information are available, the possibilistic decision
framework is extended to cope with non-normalised distributions. Moreover,
elements for a qualitative case-based decision methodology are proposed, with
pessimistic and optimistic evaluations formally similar to the expressions which
cope with uncertainty, up to modifying factors which handle the lack of
normalisation of similarity evaluations. Also, we analyse the application of
similarity functions involving acts forPossibilistic Case-Based Decision Theory
following the proposal of Gilboa and Schmeidler.

Chapter 9: We describe some results obtained in the on going research, one related
with the commensurability hypothesis between the uncertainty and preference
values sets and the other with refinements of orderings are summarised here.

In Chapter 10, we show that our model may be applied for some decision making
problems involved in two projects that are being developed in theInstitut
d’Investigacío en Intel.lig̀encia Artificial (IIIA- CSIC).

Chapter 11: In this last Chapter of the memory we summarise the main contributions,
we list the most interesting open problems left in this Ph.D., and describe research
topics to be addressed in the near future.
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Chapter 2

Decision Theory: Some
Approaches

A problem of decision making may be represented by a4-tuple < S, X, D, u >
beingS the set of states or situations, X the set of consequences or outcomes. As
it was said, we are interested in those models that assume the existence of a mapping
u representingDecision Maker’s preference on consequences. Finally,D is the set of
available decisions or alternatives, where decisions are functionsd:S → X.

As it was mentioned, if there is no uncertainty, we may rank decisions applying
(1.1) (see Figure 1.1), that is,

d 4s0 d′ iff u(d(s0)) ≤U u(d′(s0)).

However, there are many problems in which the available information is poor. That
is, we are in an uncertain decision making context. In these cases, a representation
for uncertainty may be given or not. If any uncertainty representation is given, we
may consider different criteria like those that evaluate a decision in terms of its worst
possible consequence, its best one, or as weighted aggregation of them. Some of these
models are introduced in the first Section.

Other alternatives emerge from considering that fuzzy measures can be applied to
model uncertainty (Grabisch, 97) (see Figure 1.2). In this case, another component is
added to the4-tuple modelling the problem.
Now, we are considering< S, X, D, u, µ > whereµ:S → V is a fuzzy measure, V
being an uncertainty scale. Let us recall the definition offuzzy measures.

Definition 1
A fuzzy measure(Grabisch, 97) on a finite setX is a set functionµ:P(X) → [0, 1]
satisfying

• µ(∅) = 0 andµ(X) = 1,

• A ⊂ B ⊆ X impliesµ(A) ≤ µ(B).

13



Some particular fuzzy measures areProbability, Possibility and Necessityones.
Possibility measures, Π, are fuzzy measures which also satisfy that

Π(A ∪B) = max(Π(A),Π(B)),

while Necessity measures Nsatisfy

N(A ∩B) = min(N(A), N(B)),

andProbability measures Psatisfy

P (A ∪B) = P (A) + P (B) if A ∩B = ∅.

The classical model for decision making under uncertainty is Von Neumann and
Morgenstern’s Expected Utility Theory (EUT) (1944), and Savage’s version (1972),
which uses probability measures to model uncertainty about the state of the world.

This probabilistic model has some drawbacks, in Section 2.4 we summarise some
alternatives that lead to some of these problems.

Another model is proposed by Gilboa and Schmeidler, from a case-based view,
which also is summarised in Section 2.3.

Possibility theory provides other alternatives (Dubois and Prade, 1995;
Dubois et al., 1997e). As we are mainly interested in them, since our work is developed
in a possibilistic framework, we introduce these models in the next Chapter with more
detail.

Next, we introduce some decision models where uncertainty representation is not
available, while in Section 2.2Expected Utility Theoryis summarised. In Section 2.3,
a Case-Based approach suggested by Gilboa and Schmeidler is introduced, while other
approaches are briefly commented in the last Section.

2.1 Decision Models without Uncertainty
Representation

Luce and Raiffa (1957) gather some criteria to choose decisions when the states are
uncertain and no uncertainty representation is given. These criteria1, as well as the
maximaxcriterion are detailed below.

Wald’s Criterion: Maximin

Wald (1950) suggests a conservative criterion that evaluates each act in terms of its
worst consequences. Next, he chooses the act with greatest payoff, i.e. the “best
decision” is

d′ = argmaxd∈D (min
s∈S

(u(d(s)))).

1Notice that in some of themS andD are assumed as being finite.
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Maximax Criterion

The dual optimistic criterion evaluates each act in terms of its best consequences
choosing the act with great payoff, i.e. the “best decision” is

d′ = argmaxd∈D (max
s∈S

(u(d(s)))).

Hurwicz’s Criterion

Hurwicz (1951) proposes an intermediate criterion that combines the best and worst
consequences. Indeed, for eachα ∈ [0, 1] (the so called pessimist-optimist index), each
actd is associated with anα-index, i.e.

α · (min
s∈S

(u(d(s)))) + (1− α) · (max
s∈S

(u(d(s)))).

The best decision would be the one with the higherα-index. Note, that ifα = 1, then
we recovermaximincriterion, while forα = 0, it results inmaximaxcriterion.

“Principle of Insufficient Reason” Criterion

This principle, formulated by Bernoulli (1738), asserts that in the case that one is
“completely ignorant” about the real state, one may consider that all states are equally
probable. Following this principle, each act is evaluated in terms of its expected utility,
that is, for eachd, ∑

s∈S u(d(s))
|S| ,

choosing the act with greatest payoff, where|S| denotes the cardinality of the setS.

2.2 Classical Approaches:Expected Utility Theory

The basic references in classical Decision Theory are Von Neumann and Morgenstern’s
Expected Utility Theory (1944), and the version of Savage (1972), characterising
preference relations under uncertainty and the rationality hypothesis. Both approaches
to decision making under uncertainty assume thatuncertainty is represented by
probability distributions. In this Section we recall them, especially Von Neumann and
Morgenstern’s version.

2.2.1 Von Neumann and Morgenstern’s Expected Utility Theory

Von Neumann and Morgenstern suppose that uncertainty on real situation is represented
by a single probability distributionP onS, P :S → [0, 1], S beingthe set of situations.
A decisionor act d on S is represented by a functiond: S → X which provides the
consequence of the decision in each situation.
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Then, each decision induces a probability distribution onX defined as

Pd(x) =
∑

s∈S|d(s)=x

P (s).

Von Neumann and Morgenstern consider each decisiond as identified with its
associated probabilityPd, so for ranking decisions they consider:

d 4 d′ iff Pd 4 Pd′ . (2.1)

Hence, they focus on utility functions on distributions on consequences.
Distributions are ranked in terms of their expected value with respect toDecision

Maker’s preferences on consequences. That is, if numerical preferences,u:X → R, are
assigned to consequences, they define

Pd 4 Pd′ iff E(Pd, u) ≤ E(Pd′ , u). (2.2)

With
E(Pd, u) =

∑

x∈X

Pd(x)u(x) (2.3)

the expected value ofu with respect to the probability distributionPd.
They propose to extend the initial model considering (2.2) instead of (1.1).
Let ℘ denotethe set of probability distributions onX. Let us introduce the notion

of binary probabilistic lottery. LetA,B be two events andα ∈ [0, 1], thebinary lottery
which is the combination of these two events withα, denoted by

α¯A⊕ (1− α)¯B,

is the prospect of considering that the first occurs with a probabilityα, andB occurs
with the remaining probability1− α. In general, ifl andl′ are lotteries, then

α¯ l ⊕ (1− α)¯ l′

is a compound lottery. Thus, any (compound) probabilistic lottery decomposes as a
finite sequence of compositions of binary lotteries, in a tree-like form. The set of
probabilistic lotteries onX will be denoted byL(X).

If we have a probability distributionP on a set{x1, x2, x3}, observe that we may
see it as a compound lottery. Indeed, ifpj = P (xj), we have that

P ←→ p1 ¯ x1 ⊕ (p2 + p3)¯
(

p2

p2 + p3
¯ x2 ⊕ p3

p2 + p3
¯ x3

)
.

Thus, in general, any probability distribution on afiniteset, may be seen as a compound
lottery, that is, as a sequence of binary lotteries.

On the other hand, the so-calledprobabilistic mixtureoperation is defined on℘ as
the convex linear combination of probability distributions onX. Namely, if P andQ
are probability distributions onX andα ∈ [0, 1], the probabilistic mixture ofP andQ
with respect toα is the probability distribution(P, Q, α) defined as

(P, Q, α)(x) = α · P (x) + (1− α) ·Q(x).
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Figure 2.1: The binary probabilistic lottery ofA andB with α andβ
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Figure 2.2: The lotteryp1 ¯ x1 ⊕ (p2 + p3)¯
(

p2
p2+p3

¯ x2 ⊕ p3
p2+p3

¯ x3

)
.

Since each probabilistic distribution onX can be identified with a probabilistic lottery,
the probabilistic mixture operation can be seen as an operation between lotteries as well.
Indeed, if we formally define a combination operation on lotteries

C : L(X)× L(X)× [0, 1] → L(X)

as
C(l, l′, α) = α¯ l ⊕ (1− α)¯ l′,
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it turns out that ifP andQ are probability distributions identifiable with lotterieslP and
lQ respectively, then the lottery corresponding to the probability mixture(P, Q, α), i.e.
l(P,Q,α), is nothing butC(lP , lQ, α). Therefore, from now on, we shall identify the set℘
of probability distributions onX equipped with the probabilistic mixture operation with
the setL(X) of lotteries onX equipped with the operationC for combining lotteries
(for more details about mixtures, including hybrid ones, you may see (Dubois et al.,
2000b)).

Definition 2
• Givenv a preference relation on℘, let f be a function from℘ toR. We say that

(f representsv) iff ( ∀P,Q ∈ ℘)( P v Q ⇔ f(P ) ≤ f(Q)).

• Given a setA, with an internal operation and a preference relation on it, autility
functionoverR, ut:A → R, is a function that represents the preference relation
and also preserves the internal operation.

Considering the probabilistic mixture as the internal operation on℘, vonNeumann and
Morgenstern (1944) characterise the preference relations onprobability distributions
on consequencesof Decision Makersthat behave asEUT agents. Indeed, they propose
the following axiomatic setting on (℘, 4):

• AxA: 4 is a total pre-order (i.e.4 is reflexive, transitive and complete).

• AxB.1: P ≺ Q ⇒ P ≺ (P,Q, α), with 0 < α < 1.

• AxB.2: P Â Q ⇒ P Â (P,Q, α), with 0 < α < 1.

• AxB.3: P ≺ T ≺ Q ⇒ ∃α ∈ (0, 1) s.t. (P, Q, α) ≺ T.

• AxB.4: P Â T Â Q ⇒ ∃α ∈ (0, 1) s.t. (P, Q, α) Â T.

• AxC.1 (commutativity): (P, Q, α) = (Q,P, α).

• AxC.2(“lottery” reduction )(see Figure 2.3):

((P, Q, β), Q, α) = (P, Q, α.β).

P Q

Q

P Q
β

α

1−β

1−α

αβ 1−αβ

Figure 2.3: Probabilistic mixture reduction

AxA establishes that theDecision Makeris able to order all lotteries from worst to
best.AxB.1 andAxB.2 is likeness convexity, that is, they establish that ifQ is at least
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as preferred asP, then even a chance ofQ is least as preferred asP, andQ is least as
preferred as each combination ofP andQ. An assumption of continuity is expressed
by AxB.3 andAxB.4, while AxC.1 says that it is irrelevant the order in which the
constituents involved are named. Finally, the reduction axiom expresses how second
order lottery may coincide with a first order one. They proved the following theorem,
which provides foundations for theExpected Utility Theory:

Theorem 2.1 (Von Neumann - Morgenstern)
A relation on (℘, 4) satisfies the previous axiomatic setting if and only if there exists a
functionut : ℘ → R such that

P 4 Q ⇔ ut(P ) ≤ ut(Q)

and

ut(P, Q, α) = α · ut(P ) + (1− α) · ut(Q).

Moreover,ut is unique up to a linear transformation.

2.2.2 Savage’s Version

Savage (1972) proposes a somewhat different framework forEUT, he axiomatically
characterises the preference relationon actsof Decision Makersthat behave asEUT
agents, i.e. that satisfy

d 4 d′ iff E(P, u ◦ d) ≤ E(P, u ◦ d′) (2.4)

with u:X → R (representingDM’s preferences on consequences) andP :S → [0, 1]
being a probability distribution. That is, his version of (1.1) is (2.4).

For a detailed explanation you may see (Savage, 1972), however, let us briefly
summarise his proposal. Generally speaking, the axiomatic setting establishes that the
preference is a complete pre-order (Sav1).

His characteristic axiom, the“sure principle thing” (Sav2), establishes that
the choice between two alternatives must be unaffected by the value of outcomes
corresponding to states for which both alternatives have the same payoff.

Given the preference relation on acts4 and an eventB, he defines aconditioned
preference on acts4B :

“d 4B d′ iff f 4 g for all f andg that agree withd andd′, respectively,
on B and with each other in the complement ofB andg 4 f for all such
pairs or for none”.

He defines an eventB asnull iff d 4B d′ ∀d, d′.
From the preference on acts, Savage induces a preference relation≤ on

consequences, i.e.

∀x, y ∈ X, if d(s) = x,∀s ∈ S, d′(s) = y, ∀s ∈ S, thenx ≤ y ⇐⇒ d 4 d′.

Sav3: If d(s) = x1 andd′(s) = x2 ∀s ∈ B, B being not null, thend′ 4B d iff
x2 ≤ x1.
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He requires the preference relation induced on events2 E to be complete (Sav4).
While the preference induced on consequences is required to be non-trivial, i.e. there
exists at least one pairx, x′ such thatx is less preferred thanx′ (Sav5).

These axioms let Savage prove that the preference relation onS is a “qualitative
probability” , that is

• QP1: E is a total preorder onP(S). 3

• QP2: ∀B ⊆ S, ∅ E B, ∅ / S.

• QP3: ∀B,C, D s.t.D ∩ (B ∪ C) = ∅, B E C ⇐⇒ (B ∪D) E (C ∪D).

He also considers the following technical axioms:

• Sav6: if d ≺ d′ andx is a consequence, then there exists a partition ofS such
that, if d or d′ is so modified on any one element of the partition as to take the
value x at everys there, other values being undisturbed, then the modifiedd
remains less preferred thand′, or d remains less preferred than the modifiedd′,
as the case may require.

• Sav7: if d 4B d′(s) ∀s ∈ B, thend 4B d′.

This axiomatic setting lets him characterise the preference relationson actsthat are
representable in terms of the expected value of a preference function on consequences
with respect to the probability distribution onS. That is, Savage’s theorem says: If
(D, 4) satisfies Savage’s axioms, there exists one and only one probability measure on
S, P :P(S) → [0, 1], whereP(S) denotes the power set ofS, and a preference function
on consequencesu:X → R such that

d 4 d′ ⇐⇒ E(P, u ◦ d) ≤ E(P, u ◦ d′).

Of course Savage’s axioms are sound, i.e. given a probability distribution onS and a
preference function on consequencesu, the order induced inD by the expected utility
(that is, the order defined in (2.4)) satisfies Savage’s axioms.

2.3 Case-Based Decision Theory

Gilboa and Schmeidler (1995) claim that Decision Making under uncertainty is, at least,
partly case-based. They suggest that people choose acts based on their performance in
the past and they propose a case-based Decision Theory (CBDT).

People frequently reason establishing analogies between past cases and the one at
hand. Applying Hume’s principle (1748):

2A E B iff when x′ < x, xAx′ 4 xBx′, with thecompound act ofx andx′ w.r.t. A ⊆ S defined as

xAx′(s) =

8<: x, if s ∈ A

x′(s), if s 6∈ A.

3P(S) is the power set ofS.
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“From causes which appear similar we expect similar effects”,

Gilboa and Schmeidler (1995) proposed aCase-Based Decision Theory (CBDT).
This theory assumes available partial information about the possible consequences

of decisions by having stored the performance of decisions taken in different past
situations as a set (memory)M of decision problem instances of triples (cases)
(situation, decision, consequence), and a givensimilaritySim on situations as primitive.
The Decision Maker, in face of a new situations0, is proposed to choose a decision
d which maximises a counterpart of classical expected utility, instead of (2.3) they
consider,

Us0,M (d) =
∑

(s,d,x)∈M

Sim(s0, s) · u(x). (2.5)

Sim is a non-negative function which estimates the similarity of situations andu
provides a numerical preference for each consequencex. Gilboa and Schmeidler
axiomatically characterise the relations induced by this U-maximisation.

Observe that a difference withEUT is that, while inEUT the decision is evaluated
on all possible states, inCBDT each decision is evaluated ona different set of states.
Another one is that, for the utility functionUs0,M the similarity may not add to one, i.e.
it may be that for anys0 ∑

(s,d,x)∈M

Sim(s0, s) 6= 1.

Gilboa and Schmeidler (1996) have also proposed another utility functionVs0,M , which
is a modification of the previous one, replacingSim with the similarity functionSim ′

defined as

Sim ′(s, s0) =





Sim(s,s0)P
(s′,d,x)∈M Sim(s′,s0)

, if
∑

(s′,d,x)∈M Sim(s′, s0) 6= 0

0, otherwise,
so,

Vs0,M (d) =
∑

(s,d,x)∈M

Sim ′(s0, s).u(x).

Observe that now, for eachd either
∑

(s,d,x)∈M

Sim ′(s0, s) = 1 or
∑

(s,d,x)∈M

Sim ′(s0, s) = 0.

Obviously, this model is still requiring numerical values for preferences and
similarity degrees. Another property that sometimes may be a drawback is that their
utility functions, as inEUT, compensate between good and bad results.

2.4 Other Approaches

The number of works on Decision under uncertainty is too big to try to summarise them
here, and it is not the goal of this work. Nevertheless, we briefly mentioned some of
them, those that are more related with different aspects of our work.
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One of the problems ofEUT is that it needs numerical probabilities for each state
and numerical utilities for all possible consequences. Sometimes this assumption is
too strong if there is only incomplete or poor available information. In these cases, a
more qualitative approach is needed. Moreover,EUT is specially tailored for repeated
decisions whose results accumulate additively. This is the underlying meaning of the
averaging nature of expected utility. However, in the case of one-shot decisions or
decisions whose individual results do not compensate each other,EUT does not yield
a convincing criterion for rank-ordering decisions. This situation of non-additivity
naturally occurs with qualitative information about the worth of consequences.

The classical axiomatic frameworks of utility theory have actually been questioned
rather early, challenging some of the postulates leading to the expected utility criterion.
Noticeably, Allais (1953) and later Ellsberg (1961) laid bare the existence of cases
where a systematic violation of the expected utility criterion could be observed. Some
of these violations were due to a cautious attitude of Decision-Makers.

More recently Gilboa (1987) and Schmeidler (1989) have advocated and
axiomatised lower and upper expectations expressed by Choquet’s integrals attached
to non-additive numerical set-functions (corresponding to a family of probability
measures) as a formal approach to utility that accounts for Ellsberg’s paradox (see
also (Sarin and Wakker, 1992)). One of these generalised expected utility criteria (the
lower expectation) is also a numerical generalisation of the cautious Wald’s criterion
for decision under ignorance. Choquet integrals, especially the lower expectations, are
mild versions of Wald criterion. The pessimistic (resp. optimistic) criterion, that we
will characterise, can again be viewed as a refinement of Wald’s criterion (resp. the
maximax criterion), but the utility functions are qualitative, hence they reject the notion
of averaging put forward by the classical theory, and also sanctioned by Choquet’s
integrals.

Hendon et al. (1994) assume that uncertainty on consequences is measured by
belief functions. They assume as primitive a set of beliefs functions on consequences
and a preference relation on it. In order to take decisions, they assume a probability
distribution on the set of statesS. Their hypothesis is that each decision assigns to each
state not a consequence but a set of consequences. Hence, each decision is identified
with a belief function on consequences. Then, they develop a modelà la Von Neumann
and Morgenstern.

Other alternatives have been proposed in the literature and steps to qualitative
decision theory have been investigated in various directions by AI researchers in the
last years. Some approaches are based on an all-or-nothing notions of utility and/or
plausibility, e.g., Bonet and Geffner (1996), Brafman and Tennenholtz (1997). The
latter clearly advocates Wald cautious criterion. Others, like Pearl (1993,1994), use
integer-valued functions.

Bonet and Geffner (1996) propose a qualitative model based on rules, providing a
semantics based on high probabilities and lexicographic preferences. They argue that
the decision chosen is easy to justify on the basis of reasons for and against the decision.
Input situations are modelled by a set of propositions and observations, while output
situations are modelled as a set of goals, each one with its priority. A set of actions
and action rules are assumed to be given, as well as a plausibility measure on situations
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whose values are: unlikely, plausible and likely. They classify goals in positive or
negative taking into account if they are desired or not. A relative importance is defined
on goals using its priorities and polarities (+ or -).

Boutilier (1994) proposes a modal conditional logic, whose semantics enables him
to represent and reason with qualitative probabilities and preferences. He can represent
conditional preferences, these being defeasible. He suggests to focus on the states with
maximum plausibility only, a policy which Dubois et al. (1998a) argue that it leads to
debatable decisions.

Brafman and Tennenholtz (1996,1997) propose four decision criteria: maximin,
minimax, minimax regret and competitive ratio. These criteria use two parameters:
a qualitative utility function defined on states and decisions, and local states. The
Decision Maker’s behaviours modelled by these criteria are characterised by an
approach similar to Savage’s.

For more details on Qualitative Decision Theory, a recent paper by Doyle and
Thomason (1999) summarises main works on it. Among them we find those models
that use Possibility Theory as uncertainty formalism, and two alternatives emerge:
à la Von Neumann and Morgenstern, initiated by Dubois and Prade (1995), orà la
Savage (Dubois et al. (1997h)) . Sabbadin (Sabbadin, 1998a) develops Savage’s
approach in a possibilistic framework in his Ph.D. thesis. As we are specially interested
in the possibilistic framework, we devote next Chapter to a detailed review of these
possibilistic approaches.

Another aspect of Decision under Uncertainty is Dynamic Decision Problems. In
a qualitative setting, for example, there is an approach by Sabbadin et al. (1998b)
proposing a generalisation of the possibilistic model of Dubois and Prade.

We may be interested not only in individuals preference as in the mentioned
approaches but in working with the preference of a group. Models involving this
second option are usually called Multiperson Decision Making models. There are
many researchers working with qualitative information in the different topics that this
type of problems involves. For example, Herrera et al. (1998) assume linguistic
preference relations for expressing the opinions of individuals and linguistic values for
expressing their respective power or importance degrees. In order to deal with non-
weighted linguistic information, they propose the linguistic ordered weighted averaging
(LOWA) operator, while to deal with weighted linguistic information, three operators
of linguistic weighted information aggregation are used: the linguistic weighted
disjunction (LWD) operator, the linguistic weighted conjunction (LWC) operator and
the linguistic weighted averaging (LWA) operator. Godo and Torra (1998a) propose a
method for aggregating qualitative information weighted with natural numbers, that is,
they propose qualitative weighted means involving T-norms on the set of values. As
it is mentioned, several issues are involved in Multiperson Decision Making models,
for example, summaries of some models involving fuzzy aggregation of numerical
preferences is provided by (Grabisch et al., 1998), for fuzzy preference in multiple
criteria by Fodor et al. (1998), and applying fuzzy quantifiers by Kacprzyk and Nurmi
(1998).

There are also some works applying fuzzy sets and possibility theory gathered in
(Kacprzyk and Fedrizzi, 1990).
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Chapter 3

Possibilistic Approaches:
Antecedents

The following approaches are based on the hypothesis that uncertainty on states of
the world is possibilistic in nature. They are possibilistic views of theExpected Utility
Theory. The first one assumes a possibility distribution on situations is known and deals
with preference relations onpossibilistic lotteries, while in the second one, preference
relations are defined ondecisions. In both cases, the preference relations satisfying their
axiomatic settings are representable by criteria with are expressible in terms of Sugeno
integrals (Sugeno, 1977).

3.1 Possibilistic Qualitative Decision Theoryà la Von
Neumann and Morgenstern: Antecedents

Dubois and Prade (1995) have suggested a qualitative counterpart to Von Neumann
and Morgenstern’sExpected Utility Theory. As it was mentioned, they assume that
uncertainty is of possibilistic nature, and they make use offinite qualitative preference
and uncertainty scales equipped with the maximum, minimum and an order-reversing
operations.

It is also assumed that the scales of uncertainty and preferences are commensurate.
Dubois and Prade propose a characterisation of the preference relations that are
representable by qualitative utility functions which are a generalisation of the maximin
Wald’s criterion (see Section 2.1 or (Wald, 1950)).

In order to introduce their proposal, let us first present some useful notation and
definitions. S will denote afinite set of situationsandX will denote afinite set of
consequences of acts. A decision or actd onS is represented by a functiond:S → X,
which provides the consequence of the decision in each possible situation.

V will denote afinite linear scale of uncertainty, with inf(V ) = 0V , sup(V ) = 1V .
The belief state about which is the actual situation is supposed to be represented by a
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possibility distributionπ:S → V, with the following conventions:

π(s) = 0V means that states is rejected as impossible;
π(s) = 1V means thats is totally possible (=plausible).

Distinct states may simultaneously have a degree of possibility equal to1V . Flexibility
in this description is modelled by lettingπ(s) between0V and1V for some statess.
Thus, the valueπ(s) representsthe degree of possibility of the states, some states being
more possible than others. Clearly, ifS is the complete range of states, at least one of
the elements ofS should be fully possible, so that∃ s, π(s) = 1V (normalisation). In
this Chapter, we only consider normalised possibility distributions.

A possibility distributionπ is said to beat least as specific asπ′ if and only if for
each state of affairs s:π(s) ≤ π′(s) (Yager, 1983). Then,π is at least as restrictive and
informative asπ′.

In the possibilistic framework extreme forms of partial knowledge can be captured,
namely:

• complete knowledge: for somes0, π(s0) = 1V andπ(s) = 0V ∀s 6= s0 (only
states0 is possible).

• complete ignorance: π(s) = 1V , ∀s ∈ S (all states inS are possible).

Π(S, V ) will denote theset ofnormalisedpossibility distributions onS overV , i.e.

Π(S, V ) = {π : S → V | ∃s ∈ S π(s) = 1V }.

Notation 3.1
For the sake of simplicity, we shall generally omit the reference to the uncertainty scale,
that is, we shall use the notationΠ(S). Also for the same reason, we shall uses for
denoting both an element belonging toS and the possibility distribution onS such that

π(z) =
{

1V , if z = s
0V , otherwise.

Similarly, we shall also denote byA both a subsetA ⊆ S and the possibility distribution
onS such thatπ(s) = 1V if s ∈ A andπ(s) = 0V otherwise. With this convention, we
can considerS as included inΠ(S).

Now, analogously with the previous Chapter, let us introduce the notion of
possibilistic lotteries, the qualitative counterpart of the probabilistic lotteries. Given two
eventsA andB, and two valuesλ, µ ∈ V such thatmax(λ, µ) = 1, the (possibilistic)
binary lottery

(λ/A, µ/B),

is the prospect of considering thatA occurs with plausibilityλ, andB occurs with
plausibility µ. On the other hand the so-calledPossibilistic mixture,the qualitative
counterpart of the probabilistic mixture, is an operation defined onΠ(S) that combines
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two possibility distributionsπ1, π2 with two valuesλ, µ ∈ V s.t.max(λ, µ) = 1V into
a new distributionM(π1, π2, λ, µ), defined as

M(π1, π2; λ, µ)(s) = max(min(λ, π1(s)),min(µ, π2(s))). (3.1)

In particular, the possibilistic mixtureM(s, y, λ, µ) is defined as the possibility
distribution onS such that

M(s, y; λ, µ)(z) =





λ if z = s
µ if z = y
0V otherwise.

Notation 3.2
Analogously to the probabilistic case, any possibility distribution on a finite set may be
seen as a compound possibilistic lottery, that is, as a sequence of binary possibilistic
lotteries. Hence, from now on, we identify the setΠ(S) equipped with the possibilistic
mixture, with the set of possibilistic lotteries onS with the lottery combination
operation. That is, we will identifyM(π1, π2; λ, µ) and (λ/π1, µ/π2). Moreover,
applying this identification, from now on, we shall sometimes combine the notation
of possibilistic mixtures and possibilistic lotteries.

Finally, U will denote a finite linearly ordered scale of preference, with sup(U) =
1U andinf(U) = 0U , while nU :U → U will denote itsorder-reversing involution.

Notation 3.3
For simplicity reasons we shall omit the reference to the scales in their bottom and top
elements, hence 1 and 0 denote both assuming that they are identifiable by the context.

In order to define the qualitative/ordinal utility functions, an assumption of
commensuratenessbetween the plausibility scaleV and the preference scaleU has
to be made. For the moment, what is basically needed is anorder-reversing mapping
n:V → U such thatn(1) = 0 andn(0) = 1.

Let F be thefuzzy set of preferred situations, with U -valued membership function
µF :S → U.

Notation 3.4
From now on, we identify the membership of a fuzzy set with the fuzzy set.

Dubois and Prade consider the following qualitative utility:

utF (π) = min
s∈S

max(n(π(s)), F (s)). (3.2)

This criterion was first proposed by Whalen (1984). Observe that (3.2) may also be
written as

utF (π) = min
s∈S

max(nU (π∗(s)), F (s))

whereπ∗(s) = nU ◦n(π(s)) andnU is the order reversing involution onU. Hence, this
utility value utF (π) coincides with the necessity degree of the fuzzy set of preferred
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situationsF with respect to the possibility distributionπ∗. It accounts for a degree
of inclusionship ofπ* into F (more details will be given in Section 5.1). Taking into
account that Inuiguchi et al. (1989) show that the necessity of a fuzzy event is a Sugeno
integral, we have thatutF is a Sugeno integral.

Recalling that the well-known Wald maximin criterion suggests thata decision
is evaluated by the value of its worst possible consequence, we may observe that
maximisingutF generalises Wald’s criterion. Indeed, whenπ is an all or nothing
distribution, i.e. whenπ(S) = {0, 1}, π may be seen as the membership function
of a crisp setA, and then we have

utF (π) = mins∈A F (s).

That is,the worst situation compatible withπ is used to assess the utility of the decision
underlyingπ. Hence, we refer toutF as apessimisticor conservativecriterion.

The following axioms were proposed in (Dubois and Prade, 1995) for a “rational”
preference relationv on Π(S) to be represented by a pessimistic qualitative utility
(caution:π ∼ π′ meansπ′ v π andπ v π′):

• DP1: v is a total pre-order (i.e.v is reflexive, transitive and complete).

• DP2: If A is a crisp subset ofS, then there iss ∈ A s.t. s ∼ A.

• DP3 (uncertainty aversion): if π ≤ π′ ⇒ π′ v π.

• DP4 (independence): π1 ∼ π2 ⇒ M(π1, π; λ, µ) ∼ M(π2, π;λ, µ).

• DP5 (reduction of lotteries)(see Figure 3.1):

M(s, M(s, y;α, β); λ, µ) ∼ M(s, y; max(λ,min(µ, α)), min(µ, β)).

• DP6 (continuity): π′ v π ⇒ ∃ λ ∈ V such thatπ′ ∼ M(π, S; 1, λ).

Axiom DP1 allows us to represent utility on a totally ordered scale.
DP2, violated by expected utility, suggests that, contrary to it, the pessimistic utility
is not based on the idea of average and repeated decisions, but makes sense for one-
shot decisions.DP2 expresses that when the agent believes that the state lies inA and
decision is put to work, then the state will be somes in A, and the benefit from the
decision will indeed be the one in states. It comes down to rejecting the notion of mean
value.

Theuncertainty aversion axiomstates that the less informativeπ′ is, i.e. the more
uncertain the situation is, the less preferredπ′ is: so, the worst state is total ignorance.
Because of this axiom, such a preference relation represents a pessimistic vision for
decision making, expressing aversion to lack of information. With this perspective,
DP2 now says that in fact, lotteryA is equivalent to the worst situation inA.

Theindependence axiommeans that if two distributions are indifferent with respect
to decision maker preferences, then we may exchange them in compound lotteries.

Axiom DP5 allows us to reduce lotteries to standard ones in the style of
possibilistic mixtures.
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Figure 3.1: Possibilistic Reduction

Finally, thecontinuity axiomestablishes that ifπ is at least as preferred asπ′, π′ is
preferentially equivalent to having some uncertainty aboutπ.

The following theorem, to represent such relations by pessimistic qualitative utility
functions, is proposed by Dubois and Prade (1995).

Theorem 3.1
Given a preference relationv onΠ(S) verifying axioms DP1 - DP6, there exists a fuzzy
setF onS and a utility functionutF from Π(S) to a totally ordered setU representing
v such that for eachπ ∈ Π(S), we have that

utF (π) = mins∈S max(n(π(s)), F (s))

wheren is an order-reversing function from the possibility scaleV to the preference
scaleU such thatn(0) = 1 andn(1) = 0, where 1 denotes the top elements ofU and
V and 0 their bottom elements.

Note that

utF (π) = 1 if {s ∈ S| π(s) > 0} ⊆ {s ∈ S| F (s) = 1}

i.e. π has maximum utility if all the more or less possible situations are among the most
preferred ones. Also,

utF (π) = 0 if {s ∈ S| π(s) = 1} ∩ {s ∈ S| F (s) = 0} 6= ∅

i.e. π is the worst if there exists a most plausible situation whose payoff is minimum.
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3.2 Possibilistic Qualitative Decision Theorỳa la Savage

As it was previously mentioned,EUT has two axiomatic frameworks:̀a la Von
Neumann-Morgenstern, which works with probabilistic lotteries, linked with acts, andà
la Savage, which is expressed directly in terms of acts. Dubois et al. (1997h) propose
a possibilistic axiomatics̀a la Savage. This approach is developed in more detail by
Sabbadin (1998a) in his Ph.D. dissertation.

In this approach, they assume a primitive preference relation¹ on acts. As usual,
S represents a finite set of states, whileX is the consequences set. The set of decisions
will be denoted byD. Before introducing their axiomatic setting, let us introduce some
definitions.

Definition 3
Given two decisionsd, d′ the compound act ofd andd′ w.r.t. A ⊆ S is defined as

dAd′(s) =





d(s), if s ∈ A

d′(s), if s 6∈ A.

Let π:S → V a possibility distribution, the plausibility scaleV being totally ordered.
Decision Maker’s preference on consequences are represented byµ:X → U, U being
a finite set linearly ordered. Then, the following qualitative utilities can be defined:

v∗(d) = inf
s∈S

max(n(π(s)), µ(d(s))),

v∗(d) = sup
s∈S

min(h(π(s)), µ(d(s))),

with h:V → U an order-preserving mapping, andn = nU ◦ h. Dubois (1986) defines a
qualitative possibility (necessity resp.)as a set relation that verifies axiomsQP1, QP2
(see Section 2.2.2) and axiomΠ (N respectively) which is a relaxation of the axiom
QP3,

• Π: B E C ⇒ (B ∪D) E (C ∪D),

• N : B E C ⇒ (B ∩D) E (C ∩D).

Moreover, Dubois (1986) proposes a relaxation ofQP3 that includes both
definitions of qualitative probability and possibility.

• M : ∀B, C, D s.t.D ∩ (B ∪ C) = ∅, B E C ⇒ (B ∪D) E (C ∪D),

includesΠ, while its dual

• M ′: ∀B, C, D s.t.D ∪ (B ∩ C) = S, B E C ⇒ (B ∩D) E (C ∩D).

includesN .
Savage proves that a relation on acts satisfyingSav1− Sav5 induces a relation on

events that is a qualitative probability.
The “utility” functions v∗ andv∗ do not satisfy Savage’s“sure thing principle”

(Sav2) axiom. Dubois et al. (1997f) observe that this fact results in thatSav3 and
Sav4 are not verified byv∗ orv∗, but these functions verify the weaker Savage’s axioms
they propose.
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• WS2 (weak sure thing principle): Let A ⊆ S, if d1Ad ≺ d2Ad then
d1Ad′ 4 d2Ad′.

• WS3 (weak coherence with constant acts): If x andy are constant acts, then if
y is at least as preferred asx thenxAh 4 yAh.

• WS4 (weak order on events):If x is preferred tox′ andy is preferred toy′ then
xAx′ ≺ yAy′.

They also propose the following axioms:

• Pes : ∀d, d′ ∈ D, ∀A ⊆ S d ≺ dAd′ ⇒ d′Ad 4 d.

• Opt : ∀d, d′ ∈ D, ∀A ⊆ S dAd′ ≺ d ⇒ d 4 d′Ad.

• RDD (Restricted Disjunctive Dominance):

if g ≺ f andx ≺ f theng ∨ x ≺ f,

with g ∨ x the maximum (point-wise) betweeng andx.

v∗ satisfiesPes axiom whilev∗ verifiesOpt.
The following representation theorem for characterising preference relation induced

by v∗ is proposed by Dubois et al. (1997e).

Theorem 3.2
Let 4 be a preference relation over the set of all actsd from S to X, satisfying
Sav1,WS3, Sav5, PES, RDD. There exists a finite qualitative scaleL, a utility
function

v∗ of the formv∗(d) = infs∈S max(n(π(s)), µ(d(s)))

on X, and a possibility distributionπ on S, taking their values onL, such that
f 4 f ′ ⇐⇒ v∗(f) ≤ v∗(f ′), with µ:X → L.

In Dubois et al. (1998e), they consider that uncertainty is modelled by a general
monotonic set-functionσ : 2S → L, with L a finite linear scale which is applied for
measuring both uncertainty and preferences. In this hypothesis, and remaining inà la
Savage framework, they characterise the ordering induced in the decisions set by the
utility defined in terms of the Sugeno integral with respect toσ.
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Chapter 4

Representation of Purely
Ordinal Utility Functions

In the previous Chapter we have introduced Dubois and Prade’s axiomatic setting to
characterise the preference relation induced by a pessimistic qualitative utility which is
expressed in terms of the preference on consequences and the “possibilistic” lotteries
onS, S being the finite set of situations (Section 3.1).

In this Chapter, we first analyse some shortcomings detected in that proposal.
Then, we suggest in Section 4.4 an improvement of the axiomatic characterisation
of preference relation induced by a possibilistic pessimistic utility function. We also
provide the representation theorem for preference relations satisfying the improved
axiomatics. Moreover, in Section 4.5 we introduce the characterisation for optimistic
utility functions.

But, before analysing our proposal, first we show in Section 4.2 that some decision
problems in which uncertainty is involved may be seen as a problem of ranking
possibility distributions on consequences, and we provide some preliminary results in
Section 4.3 as well. We end the Chapter showing the behaviour of these criteria in a
little toy example.

4.1 Some Remarks on Dubois and Prade’s Proposal

Let us briefly recall the proposal given in Section 3.1. The axioms proposed by Dubois
and Prade for a preference relationv on Π(S) to be represented by a (pessimistic)
qualitative utility are:

• DP1: v is a total pre-order.

• DP2: If A is a crisp subset ofS then there iss ∈ A s.t. s ∼ A.

• DP3 (uncertainty aversion): if π ≤ π′ ⇒ π′ v π.

• DP4(independence): π1 ∼ π2 ⇒ M(π1, π; λ, µ) ∼ M(π2, π;λ, µ).
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• DP5(reduction of lotteries):

M(s, M(s, y;α, β); λ, µ) ∼ M(s, y; max(λ,min(µ, α)), min(µ, β)).

• DP6(continuity): π′ v π ⇒ ∃λ ∈ V such thatπ′ ∼ M(π, S; 1, λ).

and their theorem says:

“Given a preference relationv on Π(S) verifying axiomsDP1 − DP6,
there exists a fuzzy setF on S and a utility functionutF from Π(S) to a
totally ordered setU representingv such that for eachπ ∈ Π(S), we have
that

utF (π) = mins∈S max(n(π(s)), F (s))

wheren is an order-reversing function from the possibility scaleV to the
preference scaleU such thatn(0) = 1 andn(1) = 0, where 1 denotes the
top elements ofU andV and 0 their bottom elements.”

In this setting we have identified two possible shortcomings:

• The theorem does not really specify the characterisation of the preference
relations induced by

utF (π) = min
s∈S

max(n(π(s)), F (s)).

• The proof has some problems.

Also, the axiomatic setting turns out to be redundant (see Lemmas 4.2 and 4.3 for
more details).

With respect to the proof of the theorem, it starts claiming that the relation induced
by utF satisfies the axioms. But, there are some hypotheses which are implicitly
assumed in the proof that must be explicitly required if we want the preference relation
induced byutF to satisfy the axiomatic setting, as it is shown in the following example.

Example:
Consider the following sets

S = {s, s, s}, V = {0 < λ1 < λ2 < 1}
and

U = {0 < u1 < u2 < 1}.
Let the set of preferred situationsF be defined as

F (s) = 0, F (s) = 1, F (s) = u1,

that is, we haves @ s @ s. However, for each reversing functionn such that
u1 /∈ n(V ), we have that there is noλ ∈ V s.t. s ∼ (1/s, λ/S) w.r.t. utF , i.e.
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@ λ s.t.utF (s) = utF (1/s, λ/S).

Indeed,utF (s) = F (s) = u1, while utF (1/s, λ/S) = n(λ). Hence,DP6 is not
satisfied by the preference relation induced byutF . ♦

Let us remark that in the proof they claim the existence of a reversing functionn
which is also required to bebijective. But, this requirement may be too strong as this
other example shows:

Example:
Suppose thatS = {s, s} while V is defined as in the previous example. Consider the
preference relationv defined by

s @ (1/s, λ1/S) ∼ (1/s, λ2/S) @ s,

and

s ∼ S ∼ (1/s, λ1/s) ∼ (1/s, λ2/s),

and satisfying reflexivity.
This relationv satisfies the axioms. Ifn:V → U is a bijective reversing mapping,

we have that

utF (1/s, λ1/S) = n(λ1) > n(λ2) = utF (1/s, λ2/S)

i.e.

(1/s, λ2/S) @utF (1/s, λ1/S),

while they are indifferent w.r.t.v . Contradiction. That is, there is no bijective function
n such thatutF may represent the relation. ♦

Nevertheless, Dubois and Prade’s intuition with respect to the representation
theorem is still valid provided some technical corrections.

4.2 The Possibilistic Decision Framework Specified

A Decision Makermay be faced with different cases of incompletely or ill specified
decision problems.

Different cases that result in possibility distributions onX are the following:

• the situation is uncertain: s0 is represented by a normalised possibility
distribution onS, πs0 :S → V, representing the belief state about which is the
real situation. Then, each decisiond:S → X induces a corresponding possibility
distributionπd,s0 , on the set of consequences, defined as

πd,s0(x) = max{πs0(s)|d(s) = x}, (4.1)

with max ∅ = 0. πd,s0(x) represents the plausibility ofx being the consequence
of d.

As πs0 is normalised,πd,s0 is normalised as well.
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• the situation is precisely known but the decision is not precisely defined:in each
situation, we do not have a precise consequence but a possibility distribution on
the consequences. So,d is modelled by a possibility distributionπd on the set of
consequences.

• the decision is partially unknown: we know how the decision resulted in some
other situations but not in the actual situation. Thus, we have partial information
about decisions by having stored the performance of decisions taken in different
past situations. This leads to a case-based decision problem. This point will be
developed in Chapter 8, however we advance here that each decision may also be
identified with a possibility distribution on consequences.

Therefore, we include these cases in our framework assuming as working
hypothesis thatuncertainty may be modelled by possibility distributions on
consequences, that is,

For an actual situations0, we may identify each decision with a normalised
possibility distribution onX, therefore, choosing the “best” decision is
equivalent to choosing its associated possibility distribution.

Hence, in order to select the best decision, we are looking for possibility distributions
on consequences that maximise a utility functionU onΠ(X), i.e. we consider

d 4s0 d′ iff πd v πd′ iff U(πd) ≤ U(πd′).

From now on, we focus on preference relations in the set of possibility distributions on
consequences.

4.3 Some Preliminary Results

Let us recall the context of our work.V will denote afinite linear plausibility scale,
where inf(V ) = 0 and sup(V ) = 1, and Π(X) will denote the set of consistent
possibility distributions onX overV , i.e.

Π(X) = {π : X → V |maxx∈X π(x) = 1}.
We have already introduced qualitative binary lotteries(λ/x, µ/y).1 More generally
using the notation(λ1/x1, ..., λp/xp), with λi ∈ V andmaxi(λi) = 1, any consistent
possibility distributionπ onX can be seen as a multiple consequence qualitative lottery
takingλi = π(xi).

U will denote a finite linearly ordered scale of preference (or utility), with
sup(U) = 1 and inf(U) = 0 and a preference functionu:X → U that assigns to
each consequence ofX a preference level ofU.

An interesting property of a preference relationv on Π(X) satisfyingDP1, DP2
andDP3 is that the extremal elements of(X,v) are maximal and minimal elements
of (Π(X),v) as well:

1Recall, we will identify possibilistic lotteries and mixtures.
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Lemma 4.1
If v verifies axioms DP1, DP2 and DP3, andx andx are a minimal and a maximal
element ofX, respectively, then:

• x ∼ (1/x, 1/x) ∼ X.

• x andx are also the minimal and maximal elements of(Π(X),v).

Proof:
Let us first prove the equivalencesx ∼ X ∼ (1/x, 1/x). DP1 guarantees thatx andx
exist. By the uncertainty aversion axiom(DP3), it is clear thatX is a minimal element
of Π(X), so it isX v x. But, byDP2 there existsx0 ∈ X such thatx0 ∼ X. Sincex
is minimal,x v x0, thus it must bex ∼ X.

Furthermore, onΠ(X) we havex ≤ (1/x, 1/x) ≤ X (specificity point-wise
ordering), and again byDP3, X v (1/x, 1/x) v x, and thus

x ∼ X ∼ (1/x, 1/x).

On the other hand, for anyπ ∈ Π(X), sinceπ is normalised, there existsx such
thatπ(x) = 1. So, we havex ≤ π and thereforeπ v x, but sincex is maximal inX, it
is x v x, and thusπ v x. So,x is maximal on(Π(X),v) as well. Moreover, asX is a
minimal element ofΠ(X) andx ∼ X, obviouslyx is a minimal element ofΠ(X)too.
¤

Remark 1
Observe that as a consequence of the possibilistic mixture definition we have that

M(x, x; λ, µ) = x for all λ, µ such thatmax(λ, µ) = 1

and

M(x,X; λ, µ) = M(x,X − {x}; 1, µ) for all λ, µ such thatmax(λ, µ) = 1.

Moreover, we have that:

Lemma 4.2

M(π1,M(π1, π2; α, β); λ, µ) ∼ M(π1, π2;max(λ,min(µ, α)), min(µ, β)).

always holds.

lema

Proof:
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By definition of lotteries, we have that

M(π1,M(π1, π2; α, β); λ, µ)(x) = max{min(π1(x), λ),
min(µ, max{min(π1(x), α), min(π2(x), β)})}

= max[min(λ, π1(x)), min(µ, α, π1(x)),
min(µ, β, π2(x))]

= max[min(π1(x), max(λ,min(µ, α))),
min(µ, β, π2(x))]

= M(π1, π2; max(λ,min(µ, α)),min(µ, β))(x)

¤

Hence, the axiom on reduction of lotteries(DP5):

M(x, M(x, y; α, β); λ, µ) ∼ M(x, y;max(λ,min(µ, α)),min(µ, β)).,

is unnecessary if we take the definition of possibilistic lotteries for granted. The same
remark applies to the Von Neumann and Morgenstern’s axiomatic setting if the notion
of probabilistic mixture is acknowledged (see Herstein and Milnor (1953)).

On the other hand, AxiomDP2 is also redundant since it follows from the rest of
the axioms. Indeed,

Lemma 4.3
Axioms DP1, DP4 and DP6 imply axiom DP2.

Proof:
SupposeA = {x1, x2} with x1 v x2. By DP6 there existsλ ∈ V such that

x1 ∼ (1/x2, λ/X), and applyingDP1, reduction of lotteriesandDP4, we obtain

A = (1/x1, 1/x2) ∼ (1/(1/x2, λ/X), 1/x2) = (1/x2, λ/X) ∼ x1.

The case whenA has p elements is an easy generalisation. Indeed, suppose the
Lemma is valid if the cardinality of A isp, p being greater than 2. Now, letA be
such that|A| = p + 1, and letx1 be one of its minimal elements w.r.t.v . Since
A = (1/x1, 1/A − {x1}), by induction hypothesis we have that ifx2 is one of the
minimal elements ofA− {x1} w.r.t.v, then

A ∼ (1/x1, 1/x2) ∼ x1.

¤

Another interesting formulation of the continuity of the preference ordering, which
will be useful later, is the following one:

• A4: For all π ∈ Π(X) there existsλ ∈ V such thatπ ∼ (1/x, λ/x), wherex
andx are any maximal and any minimal element of(X,v) respectively.
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Observe thatA4 will be considered withDP1, sinceDP1 guarantees that the
maximal elements of(Π(X),v) are equivalent, and the minimal ones are also
equivalent to each other.

It can be proved that,

Lemma 4.4
In the context of DP1–DP5 axioms, axiom DP6 is equivalent to A4.

Proof:
←) SupposeA4 holds, and letπ, π′ be such thatπ′ v π. We have two cases:

1. π′ ∼ π. Hence,π′ ∼ (1/π, 0/X).

2. π′ @ π. By hypothesis, there existsλ, λ′ ∈ V such that

π ∼ (1/x, λ/x) and π′ ∼ (1/x, λ′/x).

Sinceπ′ @ π, by DP1 we have that

(1/x, λ′/x) @ (1/x, λ/x),

and byDP3, it is λ′ > λ. Now, taking into account thatX ∼ x, the independence
axiom(DP4) and reducing lotteries, we obtain that

(1/π, λ′/X) ∼ (1/(1/x, λ/x), λ′/x) = (1/x,max(λ′, λ)/x).

Sinceλ′ > λ,

(1/x, max(λ′, λ)/x) = (1/x, λ′/x) ∼ π′,

i.e. (1/π, λ′/X) ∼ π′. Therefore,DP6 also holds.

→) Suppose now thatDP6 holds. For anyπ, we have thatπ v x. Then, by
hypothesis, there existsλ such thatπ ∼ (1/x, λ/X), and thusπ ∼ (1/x, λ/x). This
proves thatA4 also holds. ¤

Taking into account these results, we propose next an improved set of axioms that
characterises pessimistic qualitative utilities providing new proof for the representation
theorem, and the corresponding axiomatic setting for an optimistic criterion is given in
Section 4.5.

4.4 Representation of Pessimistic Qualitative/Ordinal
Utilities

The above discussion has led us to propose this new set of axioms for preference
relations onΠ(X) with the max-min mixture as the internal operation onΠ(X).
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• A1(structure): v is a total pre-order2.

• A2(uncertainty aversion): if π ≤ π′ ⇒ π′ v π.

• A3 (independence): π1 ∼ π2 ⇒ M(π1, π; λ, µ) ∼ M(π2, π;λ, µ).

• A4(continuity): ∀π ∈ Π(X)∃ λ ∈ V such thatπ ∼ M(x, x; 1, λ), wherex and
x are a maximal and a minimal element of(X,v) respectively.

Let u:X → U be a preference function such thatu−1(1) 6= ∅ 6= u−1(0), and let
h:V → U be an onto order-preserving function relating both scalesV andU.

For anyπ ∈ Π(X), consider the qualitative utility

QU−(π|u) = min
x∈X

max(nU (π∗(x)), u(x)),

whereπ∗(x) = h(π(x)) andnU is the reversing involution inU. Notice thatQU−(.|u)
restricted toX coincides with the preference functionu, i.e. QU−(x|u) = u(x),
for all x ∈ X. Let us introduce the order-reversing mappingn:V → U defined as

X V

U U

π

u

n

hn

U

Figure 4.1: Diagram of the different mappings

n(λ) = nU (h(λ)). It verifiesn(0) = 1, n(1) = 0. Actually, sincen2
U is the identity

in U, the mappingh can also be defined fromn, namelyh(λ) = nU (n(λ)) (see
Figure.4.1). Usingn instead ofh, the qualitative utility may be equivalently expressed
as:

QU−(π|u) = min
x∈X

max(n(π(x)), u(x)). (4.2)

Notation 4.1
For the sake of a simpler notation, we shall writeQU−(π) instead ofQU−(π|u) when
the mappingu is not relevant for the context.

2The reflexivity property involved in this axiom is redundant taking into accountA2, the reason for
remaining here is for the clarity of the presentation.
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We will show that the preference ordering onΠ(X) induced by the qualitative
pessimistic utilityQU− satisfies the above set of axioms. First, it is interesting to
notice that:

Lemma 4.5
QU− preserves the possibilistic mixture in the sense that

QU−(M(π1, π2; λ, µ)) = min{max(n(λ), QU−(π1)), max(n(µ), QU−(π2))}. (4.3)

Proof:
By definitions ofQU− and of possibilistic mixtures we have that

QU−(M(π1, π2; λ, µ)) = min
x∈X

(max(n(M(π1, π2; λ, µ)(x)), u(x)))

= min
x∈X

(max(n((max(min(π1, λ),

min(π2, µ)))(x)), u(x)))
= min

x∈X
(max(min(max(n(π1(x)), n(λ)),

max(n(π2(x)), n(µ))), u(x)))
= min

x∈X
(min(max(n(π1(x)), n(λ), u(x)),

max(n(π2(x)), n(µ), u(x))))
= min(min

x∈X
max(n(π1(x)), n(λ), u(x)),

min
x∈X

max(n(π2(x)), n(µ), u(x)))

= min(min
x∈X

max(n(λ),max(n(π1(x)), u(x))),

min
x∈X

max(n(µ), max(n(π2(x)), u(x))))

= min(max(n(λ), min
x∈X

max(n(π1(x)), u(x))),

max(n(µ), min
x∈X

max(n(π2(x)), u(x))))

= min(max(n(λ), QU−(π1)), max(n(µ), QU−(π2)))

¤

Corollary 4.6
QU−(max(π1, π2)) = min{QU−(π1), QU−(π2)}.

Lemma 4.7
Let 4QU− be the preference ordering onΠ(X) induced byQU−, i.e.

π 4QU− π′ iff QU−(π) ≤U QU−(π′).

Then,4QU− verifies axioms A1, A2, A3 and A4.
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Proof:
Axiom A1 is easily verified, alsoA2 is a consequence ofmaximumandminimumbeing
non-decreasing functions, whileA3 results from the fact thatQU− preserves max-min
possibilistic mixtures. Thus, we only check axiomA4. We have to prove that

∀π ∈ Π(X), ∃λ such thatQU−(π) = QU−(1/x, λ/x),

wherex, x are a maximal and a minimal element ofX w.r.t. 4QU− .
Since we are assumingu−1(1) 6= ∅ 6= u−1(0), it must be the case thatu(x) = 0

andu(x) = 1. Thus, by the possibilistic mixture preservation ofQU− we have that

QU−(1/x, λ/x) = min{max(n(1), QU−(x)),max(n(λ), QU−(x))}
= n(λ).

Sinceh is onto,n is onto as well, and it isu(X) ⊆ U = n(V ); therefore, for any
λ ∈ n−1(QU−(π)) we have that

QU−(π) = n(λ) = QU−(1/x, λ/x).

¤

Notation 4.2
For a simpler notation, when it is obvious by the context, we may omit the reference to
U in the relation≤U .

Now, we can show that the preference orderings on epistemic states satisfying the
axioms proposed can always be represented by a pessimistic qualitative utility of the
type ofQU−.

Theorem 4.8 (Representation Theorem of Pessimistic Utility)
A preference relationv on Π(X) satisfies axioms A1,A2, A3 and A4 if, and only if,
there exist

(i) a finite linearly ordered utility scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0),

(iii) an onto order-preserving functionh:V → U,

in such a way that

π′ v π iff π′ 4QU− π,

where4QU− is the ordering induced onΠ(X) by the qualitative utilityQU−(π) =
minx∈X max(n(π(x)), u(x)), being as usualn = nU ◦ h.

Proof:
The “if” part corresponds to the preceding Lemma. As for the “only if” part, we

structure the proof in the following three steps.
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• In step (1) we define the utility scaleU and an order-preserving (and onto)
functionh from V to U.

• In step (2) we define a functionQU−:Π(X) → U representingv, i.e. such that

QU−(π) ≤ QU−(π′) iff π v π′.

• Finally, in step (3) we prove that

QU−(π) = minx∈X max(n(π(x)), u(x)),

whereu:X → U is the restriction ofQU− to X.

Now, we develop these steps.

1. First of all, notice thatv stratifiesΠ(X) in a linearly ordered set of classes of
equivalently preferred distributions (π′ ∈ [π] iff π ∼ π′). The number of classes
is just the number of levels needed to rank the set of distributions. Therefore, we
take as utility scaleU the quotient setΠ(X)/ ∼ together with the natural (linear)
order

[π] ≤ [π′] iff π v π′.

Denote by 1 and 0 the maximum and minimum elements ofΠ(X)/ ∼, i.e. of
U. By Lemma 4.1, ifx andx are a maximal and minimal elements of(X,v)
respectively, then clearly[x] = 1 and[x] = 0.

Let π−λ be the possibility distribution corresponding to the qualitative lottery
(1/x, λ/x), and define the order-reversing functionn:V → U as

n(λ) = [π−λ ].

Observe that, since(1/x, 1/x) ∼ x,

n(1) = [(1/x, 1/x)] = [x] = 0,

also is

n(0) = [(1/x, 0/x)] = [x] = 1.

We verify now thatn actually reverses the order. Letλ < λ′, thenπ−λ ≤ π−λ′ ,
so usingA2 we haveπ−λ′ v π−λ . Then by definition, [π−λ′ ] ≤ [π−λ ], i.e.
n(λ′) ≤ n(λ).

Observe that, by construction,n is onto. Indeed, for anyπ ∈ Π(X), A4
guarantees that there existsλ s.t.π−λ ∼ π, son(λ) = [π].

Let h = nU ◦ n, nU being the reversing involution inU. It is obvious thath
satisfies the conditions required.
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2. So far we have determinedU and h. Now, we define the qualitative function
QU− onΠ(X) in two steps.

(a) First, let us defineQU−(π−λ ) = n(λ).
It is easy to check that

π−λ v π−λ′ ⇐⇒ QU−(π−λ ) ≤ QU−(π−λ′).

Indeed,

π−λ v π−λ′ ⇐⇒ [π−λ ] ≤ [π−λ′ ] ⇐⇒ n(λ) ≤ n(λ′)
⇐⇒ QU−(π−λ ) ≤ QU−(π−λ′).

So, restricted to lotteries of typeπ−λ , QU− representsv .

(b) We extendQU− to any lottery as follows.

Since for anyπ, A4 guarantees that∃λ s.t.π ∼ (1/x, λ/x), we define

QU−(π) = n(λ).

Notice thatQU− is well defined: suppose there existsµ 6= λ such that
π ∼ (1/x, µ/x). But, since(1/x, µ/x) ∼ (1/x, λ/x) then[π−λ ] = [π−µ ], so
n(λ) = n(µ).
Finally, it is easy to check thatQU− representsv . This is due to the fact
that anyπ is equivalent to someπ−λ , and by (a)QU− representsv over the
π−λ ’s.

3. Now, we defineu:X → U as

u(x) = 3 QU−(x).

Notice thatu(x) = 1 andu(x) = 0, and thus,u−1(1) 6= ∅ 6= u−1(0). It remains
to prove that

QU−(π) = minx∈X max(n(π(x)), u(x)).

To verify this, we will prove the following equalities:

• QU−(1/x, λ/y) = min(u(x), max(n(λ), u(y))).
Indeed,A4 guarantees that∃ µ, γ such thatx ∼ (1/x, µ/x) and such
that y ∼ (1/x, γ/x) remember thatQU−(x) = u(x) = n(µ) and
QU−(y) = u(y) = n(γ) –, so usingA3, we have

(1/x, λ/y) ∼ (1/(1/x, µ/x), λ/(1/x, γ/x)),

and reducing lotteries we obtain

(1/x, λ/y) ∼ (max(1, λ)/x, max(µ,min(λ, γ))/x).

3Understanding in the righside of the equationx as the singleton distribution.
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Therefore,

QU−(1/x, λ/y) = n(max(µ, min(λ, γ)))
= min(n(µ),max(n(λ), n(γ)))
= min(u(x), max(n(λ), u(y))).

• QU−(max(π1, π2)) = min(QU−(π1), QU−(π2)).
By A4, ∃µ, γ such thatπ1 ∼ (1/x, µ/x) andπ2 ∼ (1/x, γ/x).
Then, usingA3, we have:

max(π1, π2) = (1/π1, 1/π2) ∼ (1/(1/x, µ/x), 1/(1/x, γ/x)),

i.e. max(π1, π2) ∼ (1/x, max(µ, γ)/x).
Therefore, asQU− representsv,

QU−(max(π1, π2)) = n(max(µ, γ))
= min(n(µ), n(γ))
= min(QU−(π1), QU−(π2)).

More generally, we have

QU−(maxi=1,...,p πi) = mini=1,...,p QU−(πi).

• QU−(π) = mini=1,...,p max(n(π(xi)), u((xi))).
As π is normalised there existsxj ∈ X such thatπ(xj) = 1. Without loss
of generality, we assumej = 1.

Then, let

πi = (1/x1, π(xi)/xi).

Sinceπ = maxi=1,...,p πi, we have:

QU−(π) = QU−( max
i=1,...,p

πi)

= min
i=1,...,p

QU−(πi)

= min
i=1,...,p

{min(u(x1), max(n(π(xi)), u(xi)))}
= 4 min

i=1,...,p
max(n(π(xi)), u(xi)).

This ends the proof of the theorem. ¤

4Note thatπ(x1) = 1, sou(x1) = max(u(x1), n(π(x1))).

45



4.5 Representation of Optimistic Qualitative/Ordinal
Utilities

An ordinal preference functionu:X → U can be regarded as describing a preference
profile: the greateru(x) is, the more preferredx is, analogously a possibility
distributionπ on consequences specifies the degree of plausibility of each consequence,
i.e. the greaterπ(x) is, the more plausiblex is. So, a pessimistic or conservative
criterion is to look for distributions which make, at least to some extent, all the bad
consequences hardly plausible.

Sometimes this criterion may be too conservative, we may be interested in an
optimistic behaviour, like requiringπ to make at least one of the good consequences
highly plausible, at least to some extent. This behaviour is reflected assessing a degree
of intersection between the fuzzy sets of possible consequences and the preferred ones
(this point will be developed in more detail in Section 5.1). This leads to consider the
utility function which is “dual” toQU−

QU+(π|u) = max
x∈X

min(h(π(x)), u(x)), (4.4)

h being as usual an onto order-preserving mapping betweenV andU.
Note thatQU+(π|u) is the degree of possibility ofu with respect to

h ◦ π, and whenπ is an all or nothing distribution, this criterion coincides with the
already known maximax criterion proposed by Yager (1979).

Regarding the axiomatic setting, in this new context, we have to change the
uncertainty aversion axiomA2 by auncertainty-pronepostulate

• A2+: if π ≤ π′ thenπ v π′,

and to adequately modify the continuity axiomA4 into

• A4+: for all π ∈ Π(X), there existsλ ∈ V such thatπ ∼ (λ/x, 1/x), wherex
andx are a maximal and a minimal element of(X,v).

As in the pessimistic case, we have the following results, whose proofs are
analogous to the previous given ones, so they are omitted here.

Lemma 4.9
In the context of the axioms A1, A2+ and A3, the axiom

• OA4+ (continuity):π′ v π ⇒ ∃ λ ∈ V such thatπ ∼ (1/π′, λ/X)

is equivalent to A4+.

Lemma 4.10
If v verifies axioms A1, A2+, A3, and A4+, thenv also verifies DP2 axiom5, that is:

If A is a crisp subset ofX then there isx ∈ A such thatx ∼ A.

5But, now this axiom expresses thatA is equivalent to its best consequence.
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Lemma 4.11
If v verifies axioms A1, A2+, A3, and A4+, andx andx are a minimal and a maximal
element ofX, respectively, then:

• the following equivalences holds:x ∼ (1/x, 1/x) ∼ X.

• x andx are the minimal and maximal elements of(Π(X),v) respectively.

Observe thatX is now a maximal element of(Π(X),v), this is a consequence of the
optimistic behaviour underlying inA2+. It is also easy to verify thatQU+ preserves
mixtures, that is

QU+(λ/π1, µ/π2) = max{min(h(λ), QU+(π1)), min(h(µ), QU+(π2))}.

Now, we verify that the set of axiomsA1, A2+, A3 andA4+ faithfully characterise the
preference orderings induced by an optimistic qualitative utility.

Theorem 4.12 (Representation for Optimistic Utility)
A preference relation(Π(X),v) satisfies axioms A1, A2+, A3 and A4+, if and only if
there exist

(i) a finite linearly ordered utility scaleU, with inf(U) = 0, sup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0), and

(iii) an onto order-preserving functionh:V → U,

in such a way that it holds:

π′ v π iff π′ 4QU+ π,

where4QU+ is the ordering onΠ(X) induced by the qualitative utilityQU+(π) =
maxx∈X min(h(π(x)), u(x)).

Proof:
The proof is analogous to the one for pessimistic utility, so we only sketch the proof

for the “only if” part.

• For the same reasons as before we chooseU = Π(X)/ ∼ . Again, if x andx
denote a minimal and a maximal element of(X,v) respectively,[x] and[x] will
be the 1 and 0 ofU.

• We define h:V → U as h(λ) = [(λ/x, 1/x)]. Observe thath(1) =
[(1/x, 1/x)] = [x] = 1, andh(0) = [(0/x, 1/x)] = [x] = 0. Moreover, due
to the uncertainty-prone axiom it is easy to check thath is order-preserving. By
A4+, h is onto.

From that, we only sketch the main steps of the proof:

• DefineQU+(λ/x, 1/x) = h(λ).

• Let π+
λ = (λ/x, 1/x). Verify that if π+

λ v π+
λ′ thenQU+(π+

λ ) ≤ QU+(π+
λ′).
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• ExtendQU+ for anyπ, due to axiom A4+.

• Defineu(x) = QU+(x).

• Verify thatQU+(1/x, λ/y) = max(u(x),min(h(λ), u(y))).

• Verify thatQU+(max(π1, π2)) = max(QU+(π1), QU+(π2)).

• Verify thatQU+(π) = maxx∈X min(h(π(x)), u(x)).

• Verify that4QU+ agrees withv .

¤

In practice,QU+ is a very optimistic index which can be used for refining the
ordering given byQU−. We will analyse the characterisation of this refinement in
Chapter 9.

Finally, we would like to stress that the qualitative utility functionsQU− andQU+

are indeed “utility” functions inΠ(X) in the sense that they preserve the preference
ordering and the “natural operation” of possibilistic mixtureM used to combine
possibilistic lotteries or distributions. Indeed, let

φmax = {(α, β) ∈ V × V | max(α, β) = 1}.
If we consider the possibilistic mixture operationM as the mappingM :Π(X)×Π(X)×
φmax → Π(X) defined as in (3.1), i.e.

M(π, π′; α, β)(x) = max(min(λ, π1(x)), min(µ, π2(x))),

then by (4.3), we have that

QU−(M(π, π′;α, β)) = UM−(QU−(π), QU−(π′); α, β),

whereUM− is the corresponding mixture in the preference scaleU, UM−:U × U ×
φmax → U, defined by

UM−(µ, µ′; γ, δ) = min(max(n(γ), µ), max(n(δ), µ′)).

That is to say,QU− is a morphism between the structure of possibilistic lotteries and
the structure of the qualitative preference scale.

For the optimistic qualitative utility we have analogous results:QU+ preserves the
order and the mixture operation with respect to the operationUM+:U×U×φmax → U,
defined as

UM+(µ, µ′; γ, δ) = max(min(h(γ), µ), min(h(δ), µ′)),

in the sense that it holds

QU+(M(π, π′;α, β)) = UM+(QU+(π), QU+(π′); α, β).
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Remark 2
Note that (4.3) is the median of three terms includingQU−(π1), QU−(π2). Indeed,

• if QU−(π1) ≤U QU−(π2), then

QU−(λ/π1, µ/π2) = median{QU−(π1), QU−(π2), n(λ)}

It behaves like the classicalEUT, changing median by weighted mean. Analogously
we have that

• if QU+(π1) >U QU+(π2), we have that

QU+(λ/π1, µ/π2) = median{QU+(π1), QU+(π2), h(λ)}

4.6 An Example: A Possibilistic View of Savage’s
Omelette

Finally, let us show the behaviour ofQU− andQU+ in a little toy example. We take
the well-known Savage’s omelette example (Savage, 1972) pp. 13–14, already used in
(Dubois et al., 1998c) to exemplify theQU− utility criterion. Here, we develop it
further, but first we recall the problem.
The goal of theDM is to make a six-egg omelette, already having five eggs in a bowl,
so DM has to decide what to do with a new egg, that can be eitherfresh (F)or rotten
(R). TheDM can decide on three possible alternatives:

• to break the egg in the omelette (BIO),

• to break it apart in a cup (BAC),

• to throw it away (TA).

The consequences of the alternatives, depending on the state of the egg, are given
in Table 4.1. The grades between catch indicate an (reasonable) encoding of the

ACTS /STATES fresh egg (F) rotten egg (R)

break egg in the omelette
(BIO)

a 6 egg omelette (6eO for short)[1] nothing to eat (NE)[0]

break it apart in a cup
(BAC)

a 6 egg omelette , a cup to wash
(6eO-C)[d]

a 5 egg omelette, a cup to wash
(5eO-C)[b]

throw it away (TA) a 5 egg omelette,one wasted egg
(5eO-1se)[a]

a 5 egg omelette (5eO)[c]

Table 4.1: States, acts and consequences in Savage’s omelette example.

preferences of consequences, belonging to a totally ordered scaleU = {0 < a <
b < c < d < 1}.
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Notice that since only two states are present (Fresh and Rotten), we deal with
binary acts. We also assume that plausibility degrees of each state will be measured
on the same scale, i.e. we takeV = U , and thus we also take the commensurateness
mapping ash = identity, hencen = nU . Assume a possibility distribution on states
π:{F,R} → V is given.

Then, every decisiond ∈ {BIO, BAC, TA} induces the corresponding possibility
distributionπd:X → U, on the set of consequences

X = {6eO, 6eO − C, 5eO, 5eO − C, 5eO − 1se,NE},

defined asπd(x) = max{π(s)|d(s) = x}, assumingmax ∅ = 0.

In a vectorial notation, the distributions are as follows:

πBIO(6eO, 6eO − C, 5eO, 5eO − C, 5eO − 1se, NE) = (π(F ), 0, 0, 0, 0, π(R)),

πBAC(6eO, 6eO − C, 5eO, 5eO − C, 5eO − 1se, NE) = (0, π(F ), 0, π(R), 0, 0),

πTA(6eO, 6eO − C, 5eO, 5eO − C, 5eO − 1se, NE) = (0, 0, π(R), 0, π(F ), 0),

In the following we successively consider the different criteria. It is easy to check
that under the above hypotheses, and assuming that the distribution is normalised (i.e.
max(π(F ), π(R)) = 1), we get the following values for the pessimistic utilityQU−:

QU−(πBIO) = N(F ),
QU−(πBAC) = min(max(N(R), d), max(N(F ), b)),
QU−(πTA) = min(max(N(F ), c),max(N(R), a)),

whereN(F ) = 1−π(R), N(R) = 1−π(F ) are the necessity values of each state, with
min(N(F ), N(R)) = 0. Table 4.2 exhibits the best acts according to the pessimistic
criterion and depending on theDM’s belief about the state of the egg.

N(F ) N(R) QU−(πBIO) QU−(πBAC) QU−(πTA) Best Acts

1 0 1 d a BIO

d, c, b 0 N(F ) N(F ) a BIO or BAC

a 0 a b a BAC

0 0, a 0 b a BAC

0 b 0 b b BAC or TA

0 c, d, 1 0 b c TA

Table 4.2: Pessimistic Qualitative utilities.

One can see that the model recommends decisionBAC in case of relative ignorance
on the egg state, that is whenmax(N(F ), N(R)) is not high enough (less thanb), and it
advices to act cautiously, breaking the egg in a spare cup, in case of serious doubt. Now,
let us consider the optimistic criterion modelled byQU+. The values are as follows:
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QU+(πBIO) = π(F ),
QU+(πBAC) = max(min(π(F ), d),min(π(R), b)),
QU+(πTA) = max(min(π(R), c), min(π(F ), a)),

and the best decisions can be found in Table 4.3. As we could expect, this criterion

N(F ) N(R) QU+(πBIO) QU+(πBAC) QU+(πTA) Best Acts

1 0 π(F ) d a BIO

d, c, b 0 π(F ) d π(R) BIO

a, 0 0 π(F ) d c BIO

0 1, d π(F ) b c TA

0 c π(F ) π(F ) c TA

0 b π(F ) π(F ) c TA, BAC, BIO

0 a π(F ) π(F ) c BAC or BIO

Table 4.3: Optimistic Qualitative utilities.

suggests breaking the egg into the omelette as soon as there is no positive evidence about
the egg being rotten, even this is very small. Notice thatQU+ scores each alternative
higher thanQU−.
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Chapter 5

Generalised Ordinal Utility
Functions Based on T-Norms

As it has been mentioned initially in Section 3.1 and in Section 4.5 as well, for
modelling a pessimistic behaviour we have been looking for decisions that always gave
good results inall possible consequences, while for an optimistic one our goal was to
find decisions thatat least in onepossible consequences gave good results. Indeed, for
example when the distribution is crisp, i.e. for allx, πd(x) ∈ {0, 1}, we have that

QU−(πd) = min
x∈πd

u(x),

that is,πd is evaluated in terms of theworstconsequence compatible withπd, while

QU+(πd) = max
x∈πd

u(x),

i.e. πd is evaluated in terms of thebest possible consequence.
With this objective, the estimation of the pessimistic (optimistic) utility of a decisiond
was measured in terms of the degree of inclusion (or intersection resp.) of thefuzzy set
of possible consequences for a decisiond, that is, the fuzzy setπd, into thefuzzy set of
good resultsu. In particular, we have that

(i) supp πd ⊆ core u1 ⇒ QU−(πd) = 1,

(ii) core πd

⋂
(supp u)c 6= ∅2 ⇒ QU−(πd) = 0,

(iii) core πd

⋂
core u 6= ∅ ⇒ QU+(πd) = 1,

(iv) supp πd ⊆ (supp u)c ⇒ QU+(πd) = 0.

(i) says that ifall possible consequences ofd is a good one, the pessimistic criterion
considerd as a “best” decision. (ii) ifthere existsa totally possible consequence ofd

1If A is fuzzy set onX, supp A = {x ∈ X|A(x) > 0},core A = {x ∈ X|A(x) = 1}.
2RecallAc means the complementary ofA.
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that is considered bad, the pessimistic criterion considerd as a bad decision. While (iii)
says that ifthere existsa totally possible consequence ofd which is a good one, the
optimistic criterion considersd as a good decision. (iv) ifall possible consequence ofd
is considered a bad consequence, the optimistic criterion considerd as a bad decision.
Observe that if we have that

if λ > 0 then n(λ) < 1,

e.g. if n is injective, then the reciprocals of the first and fourth affirmations are valid.
Moreover, if we have that

if λ < 1 thenn(λ) > 0,

then the reciprocals of the others are true as well.
From alternative definitions of degrees of inclusion and intersection, other utilities

are introduced in Section 5.1. These utility functions are based on (finite) conjunctive
and implication connectives. In particular, considering aS-implication-like defined in
terms of t-norms on the uncertainty scale and the reversing mapping linkingV andU,
we obtain generalised pessimistic qualitative utility functionsGQU. While regarding
that conjunction is defined in terms of a t-norm onV, generalised optimistic functions
are obtained. In the particular case of considering thet-norm minimum, QU− and
QU+ are recovered. But, this is not always the case. Indeed, if other t-norms are
chosen, the rankings induced byQU andGQU may be different, as it is shown in the
example of Section 5.2. The orderings induced by these generalised qualitative utility
are axiomatically characterised in Section 5.3.

5.1 Qualitative Utilities Expressed in Terms of
Inclusion and Intersection Degrees

In this Section, we analyse some utility functions that may be defined taking into
account that they measure a degree of intersection or inclusion of fuzzy sets. First,
we consider the intersection case. We recall usual definitions on[0, 1], and then we
extend them to the case of involving two different finite scalesV andU. Secondly,
we consider two alternative definitions for inclusion degree: acardinality-basedor a
“logical”-based one. Namely, for evaluating the inclusion degree of “A ⊆ B”:

• one can evaluate the proportion between the fuzzy cardinalities ofA ∩ B and of
A, or

• one can evaluate the truth of the sentence“all elements ofA are elements ofB” ,
that is, the truth value of

(∀x)(x ∈ A ⇒ x ∈ B).

The problem with the first one is that it may not be applied in problems in which the
available information is mainly ordinal. Therefore, we consider different alternatives
for applying the “logical” definition involving (mainly) ordinal scales, with this goal
we shall analyse different implications operations.
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5.1.1 Optimistic Behaviour

Let us first recall two definitions.

Definition 4
• A fuzzy conjunction3 ∧ is a binary operation∧:[0, 1] × [0, 1] → [0, 1], ∧ being

commutative, associative, non-decreasing in both variables, also satisfying

(1 ∧ x) = x ∀x ∈ [0, 1].

∧ is also said atriangular norm( t-normfor short), and we shall also denote it by
>.

• GivenA andB, two fuzzy sets inX, the degree of intersection ofA andB may
be defined as

[A ∩B] = max
x∈X

(A(x) ∧B(x)) (5.1)

with ∧ a conjunction on [0,1].

From this definition we may see that ifV = U is a subset of[0, 1], and choosing
∧ = minimum, we have

U+(d|u) = [πd ∩ u] = max
x∈X

min(πd(x), u(x)) = QU+(πd|u).

That is, QU+(πd) measures thedegree of intersectionbetween theset of possibles
consequencesand theset of preferred ones, as it has been mentioned.

However, the problems in which we are interested in involve two any commensurate
finite scales, thus, we are interested in intersection of fuzzy sets whose membership
functions may be valued over different scales. Indeed,πd is V -valuated whileu is
U -valuated, usuallyV andU being different.

As a first step, taking into account that in the conjunction definition we may consider
that we are only applying ordinal aspects of values on[0, 1], we may regard their natural
extension to a fuzzy operation fromV × V into V, with V a finite linearly ordered
scale. From now on, assuming that we have fuzzy sets defined overV andU, with
V andU two finite linearly ordered scales that are commensurate, i.e. there exists an
onto order-preserving functionh:V → U, we may think of both values of preference
and uncertainty as being in the “same” scale (the uncertainty one), although this is
not strictly true. So, we may define the conjunction onV × U, in terms of a fuzzy
conjunction on V, i.e.

(v ∧ u) = h(v ∧V λu) (5.2)

with ∧V a conjunction onV andh(λu) = u.
For the sake of a sound definitionh is also required to satisfy acoherence condition
w.r.t.>V , i.e. h verifies

h(λ) = h(µ) ⇒ h(α>V λ) = h(α>V µ) ∀α, λ, µ ∈ V.

3We restrict ourselves to commutative and associative conjunctions.
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Notice that, for instance, whenh is injective or when>V = min, this condition of
coherence is satisfied. In particular, when only ordinal information is available and we
take∧V = min, we again have

U+(d|u) = [πd ∩ u] = QU+(πd|u).

In the general case, given a conjunction∧V on V, we consider the conjunction
induced inV × U by>V , so the optimistic generalised utility function take this form,

GU+(d|u) = max
x∈X

h(πd(x)>V λx) (5.3)

with h(λx) = u(x). Obviously,h is involved inGU+(d), but we omith in its notation
for simplicity reason. Note that when>V = min, thenGU+ = U+.

The preference orderings induced by these optimistic generalised utility functions
are axiomatised in Section 5.3.

5.1.2 Pessimistic Behaviour

Now, we focus in modelling the degree of inclusion to be applied to evaluate the
pessimistic criterion. As it was mentioned we may consider two alternatives, if we
are speaking about of two fuzzy sets defined onX over [0, 1], cardinality-based and
logical-based definitions. Let us first recall some definitions.

Definition 5
• Given a fuzzy setA:X → [0, 1], its cardinalityis defined as

|A| =
∑

x∈X

A(x).

• A fuzzy implication4 is a functionI:[0, 1] × [0, 1] → [0, 1] such thatI is non-
increasing with respect to the first argument, while it is non-decreasing with
respect to the second one. It also satisfies the following boundary conditions:

I(1, 0) = 0, I(0, x) = 1 andI(x, 1) = 1 ∀ x ∈ [0, 1].

• A negation(Trillas, 1979) is a non-increasing functionn:[0, 1] → [0, 1] satisfying
n(0) = 1, n(1) = 0, andn(n(a)) ≥ a ∀ a ∈ [0, 1]. A negationis strong if it
satisfies thatn(n(a)) = a.

Hence, the alternatives definitions for an inclusion degree we are led to are:

1. From the “cardinality” point of view:

|A ⊆ B|card =
|A ∩B|
|A| =

∑
z(A ∩B)(z)∑

z A(z)
=

∑
z A(z)>B(z)∑

z A(z)
(5.4)

4In (Bouchon-Meunier et al., 1999; Chapter 1), a fuzzy implication is also required to satisfy an exchange
condition:I(x, I(y, z)) = I(y, I(x, z)).
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> being a t-norm5.

2. Within the tradition of many valued logic, the evaluation of the degree of truth of
the expression(∀x)(x ∈ A ⇒ x ∈ B) is defined as

|A ⊆ B| = [(∀x)(x ∈ A ⇒ x ∈ B)] = inf
x∈[0,1]

I(A(x), B(x)),

with I a fuzzy implication on [0,1].

In our case if we assumeV = U, we have that

U−(d|u) = [πd ⊆ u]
= [(∀x)(x ∈ πd ⇒ x ∈ u)]
= min

x∈X
I(πd(x), u(x)).

Obviously, the cardinality-based definition require to deal with numerical values, and
sometimes we may require more ordinal expressions for the cases of having (mainly)
ordinal information available, hence we will focus in the second alternative. But, we
have to take into account that we are interested in the degree of inclusion of two fuzzy
sets with different valuated sets. So, the first step is to extend this definition. As before,
the extension toU × U of the definition of fuzzy implication is the obvious one, while
for speaking about implications onV × U we propose to consider the “implication”
I:V × U → U,

I(v, u) = IU (h(v), u), (5.5)

IU being an implication onU × U in the sense of Definition 5.

5We would like to remark that if we consider> = Product, then Gilboa and Schmeidler’s utility
(defined in (2.5)) may be seen as a degree of inclusion too. Indeed, for each decisiond, and given the
similarity function on situations,Sim, let

Simd:{s| (s, d, x) ∈ M} → [0, 1]

be the fuzzy set of situations which are similar tos0 and where decisiond was experienced, with

Simd(s) = Sim(s, s0).

In a similar way, we consider the fuzzy set of preferred situations, that is,

Gd:{s| (s, d, x) ∈ M} → [0, 1],

with

Gd(s) = u(x).

Then, Gilboa and Schmeidler’s utility is

Us0,M (d) =

P
(s,d,x)∈M Sim(s0, s) · u(x)P

(s,d,x)∈M Sim(s0, s)
= |Simd ⊆ Gd|card.
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Hence, when we are consideringA, B fuzzy sets onX overV andU respectively,
we have that

[A ⊆ B] = min
x∈X

I(A(x), B(x)) = min
x∈X

IU (h(A(x)), B(x)).

If we chooseI(v, u) = max(nU (h(v)), u), nU being the involution inU, we again
obtain that

U−(d|u) = [πd ⊆ u] = QU−(πd|u).

Below, we propose another model for the fuzzy implication involved in the “logical”
definition of degree inclusion taking into account that we may consider available inV
andU not only maximum and minimum but also other operators, obtaining therefore
their respective utility functions.

By analogy to the usual fuzzy implication on [0,1], some particular fuzzy
implications onV ×U may be introduced using t-norms and t-conorms, the three more
important groups are:

• S-Implication: Given a conormS on U and the strong negationnU on U, theS-
implicationassociated to them is defined as

IS,nU
(v, u) = S(nU (h(v)), u).

• theresiduated implicationwith respect to a t-norm>U onU is defined as

IR(>U )(v, u) = sup{z ∈ U | h(v)>U z ≤ u}.

That is,

IR(>U )(v, u) = IU
R(>U )(h(v), u),

with IU
R(>U ) the residuated implication onU defined as

IU
R(>U )(w, u) = sup{z ∈ U | w>U z ≤ u}.

• thereciprocal implicationwith respect to a negationnegU onU, defined as

IRR(>U )(v, u) = IU
R(>U )(negU (u), negU (h(v))).

We may also consider the following alternative definition:

• theS-implication-likedefined as

In
S (v, u) = n(v>V z) (5.6)

with n(z) = u, >V a t-norm onV and n:V → U an onto order reversing
function.
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To guarantee the correctness of the above definition of implication we requiren
to satisfy the coherence condition with respect to>V , i.e.

n(λ) = n(µ) ⇒ n(α>V λ) = n(α>V µ) ∀α, λ, µ ∈ V.

Observe that this implication may be seen as a generalisation of anS-implication,
since whenn is injective, then

In
S (v, u) = n(v>V z) = n(v)⊥n,>V

u,

with ⊥n,>V being the conorm inU defined as

(x⊥n,>V
y) = n(n−1(x) >V n−1(y)).

That is,In
S (v, u) is anS-implicationw.r.t. the conorm⊥n,>V

.

Next, we analyse the utility functions that emerge from these implications. As the
last implication defined includeS-implication, we restrict the analysis to the residuated,
the reciprocal ones and theS-implication-like.

1. ConsiderIn
S (v, u). As we are interested in a utility function that selects acts such

thatall the possible consequences of the decision are good results, we are looking
for

GU−(d|u) = [πd ⊆ u]
= min

x∈X
(πd(x) ⇒ u(x))

= min
x∈X

In
S (πd(x), u(x))

= min
x∈X

n(πd(x)>V λx)

with n(λx) = u(x).

Comparing these utility functions with the pure ordinal ones, we have that, for
any decisiond,

U+(d|u) ≥ GU+(d|u) ≥ GU−(d|u) ≥ U−(d|u).

Moreover, ifGU+ andGU− are considered in terms of the t-norm>V involved,
GU− is non-increasing with respect to>V , while GU+ is non-decreasing. That
is, if > ≤ >1 are t-norms inV, thenGU−> ≥ GU−>1

andGU+
> ≤ GU+

>1
.

Obviously GU− coincides withU− if the involved t-norm is the minimum.
However, theGU andU orderings may be different when>V 6= min, as it may
be verified in the example of the following section (Table 5.3).

2. Consider now the residuated implication

IR(>U )(v, u) = sup{z ∈ U | h(v)>Uz ≤ u},
and its respective utility

UIR(>U )(d|u) = min
x∈X

IR(>U )(πd(x), u(x))

= min
x∈X

sup{z ∈ U | h(πd(x))>U z ≤ u(x)}
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• If >U does not have non-trivial zero divisors6 and (supp (h ◦
πd) ∩ (supp u)c) 6= ∅, then UIR(>U )(d) = 0.

• U− andUIR(>U ) may induce different rankings. Indeed, for instance:

– Let x, x ∈ X s.t. u(x) = 1 andu(x) = 0, let λ, µ ∈ V, λ 6= 0 6= µ
andh(λ) 6= h(µ), and considerd andd′ s.t.

πd = (1/x, λ/x) andπd′ = (1/x, µ/x).
Consider that>U does not have non-trivial zero divisors, then
UIR(>U )(d) = 0 = UIR(>U )(d

′). So, UIR(>U ) may not distinguish
between them, whileU−, may distinguish both because ofU−(d) =
n(λ), U−(d) = n(µ).

– Moreover, although it may be that for all decisionsd satisfying

∃λ ∈ V s.t.πd = (1/x, λ/x),
both utilities coincide on their evaluations of these decisions, i.e.
UIR(>U )(d) = U−(d) (for example, it happens when>U is
Lukasiewicz t-norm) however,U− is not a refinement ofUIR(>U ) .
Indeed, giveny such thatx @ y @ x, and µ ∈ V s.t. 0 <
h(µ) < u(y), let d be s.t. πd = (1/x, µ/y). So, we have that
U−(d) = max(n(µ), u(y)) < 1, that is,

πd @QU− x.

However,UIR(>U )(d) = IR(>U )(h(µ), u(y)) = 1, that is,πd andx are
equivalents for the ordering induced byUIR(>U ) .

3. Given a t-norm>U and a negation onU negU we consider

IRR(>U )(v, u) = IU
R(>U )(negU (u), negU (h(v))).

Then, the respective utility function is

UIRR(>U )(d|u) = min
x∈X

IRR(>U )(πd(x), u(x))

= min
x∈X

IU
R(>U )(negU (u(x)), negU (πd(x))).

We notice thatUIRR(>U ) may give results that are considered unsatisfactory
in many contexts. For instance, here, the utility value of a decision which is
identified with a consequence may be different from the preference value that
DM assigns to this consequence. Indeed, letd be s.t.πd = {x0}, then

UIRR(>U )(d|u) = n>U (negU (u(x0))),

6A t-norm> in [0,1] has non-trivial zero divisors iff∃x, y ∈ (0, 1] s.t.x>y = 0.
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where n>U
is the negation associated to the residuated implicationIU

R(>U ),

i.e. n>U
(w) = IU

R(>U )(w, 0). Therefore, if>U does not have non-trivial zero
divisors, then

UIRR(>U )(d|u) = UIRR(>U )(x0) =





1, if negU (u(x0)) = 0

0, otherwise.

That is,UIRR(>U )(d|u) will be different fromu(x0) for almost all possibleu(x0).

• If negU is bijective (i.e.negU = nU ), thenUIRR(>L) = UIR(>L) .
Indeed, if> is Lukasiewicz t-norm, negU is bijective, asIRR(>U ) =
IR(>U ), thenUIRR(>U ) = UIR(>U ) .

• If negU is not bijective, it may be possible thatUIRR(>L) 6= UIR(>L) .
Indeed, we considerU = {0 < u1 < u2 < 1}, negU (u1) =
1, negU (u2) = u1. Let us assumeV = U, so h is the identity. Lety
be such thatu(y) = u1, let d be s.t.πd = (1/x, u2/y). Then,

UIR(>L)(d) = IR(>L)(u2, u1) = u2,

while

UIRR(>L)(d) = Min{IR(>L)(0, 0), IR(>L)(negU (u1), negU (u2))}
= u1.

Remark 3
As it is mentioned, ifnegU is bijective thenIRR(>U ) = IR(>U ). Moreover, if we
consider now(v ⇒ u) = InegU

SL
(v, u) = SL(negU (h(v)), u) andUSL its respective

utility, as we have thatInegU

SL
(v, u) = IR(>L)(v, u), that is, theS-implicationbased on

Lukasiewicz is equal to the respective residuated and reciprocal one, hence the utility
functions defined from them are the same.

Moreover, if we assume thatV = U, therefore n is bijective, n satisfies
coherence and we may consider the generalised utility functionGUL associated to
the Lukasiewicz’s t-norm. In this case, we have thatGUL coincides with the utility
functions induced by theSL − implication, IR(>L) or theIRR(>L).

5.2 An Example: A Safety Decision Problem in a
Chemical Plant

To exemplify some of the notions introduced in this Chapter, and that will be continued
in other Chapters, we consider the following example.
Chemical plants are potentially dangerous industrial complexes, so they have to foresee
emergency plans in case of problems. Assume the chemical plant has three emergency
plans:
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EP1 : emergency plan 1,
EP2 : emergency plan 2,
EV : total evacuation,

that only may be activated by the head of the Safety Department, depending on his
subjective evaluation of the seriousness of possible problems occurring in the plant.
Naturally, total evacuationmeans that people would be safe, but the activity in the
plant will be interrupted and this means that the plant has loss. Theemergency plan
2 consists of a group of safety measures (like to evacuate a zone of the plant without
stopping totally the production) that tries to guarantee the safety of the employees. It
has a high cost, but does not stop the production. Whileemergency plan 1means that
only local safety measures are taken. Depending on the type of problems occurring in
the plant, the situations of the plant may be classified in four modes:

s0 : normal functioning,

s1 : minor problem,

s2 : major problem,

s3 : very serious problem.

To survey the functioning of the plant smoke detectors and pressure indicators are
distributed throughout different sectors of the plant and connected to alarms to warn
about either the existence of fire or broken pipelines. When the alarm system turns
on in some sector, plant engineers evaluate the readings of the alarm systems and they
forward a report to the head of the Safety Department. He has to undertake one of the
following actions:

d0 : do nothing (DN),

d1 : activate emergency plan 1(AEP1),
d2 : activate emergency plan 2(AEP2),
d3 : activate evacuation(AEV A).

Undertaking any of these actions has different consequences depending on which is the
actual state of the plant. We describe the consequences from two points of view:how
risky the situation for employees will be after having taken the action(we will call this
situationpost-situation) andwhich is the (economical) cost of the action. Both issues
are measured in a qualitative scale0 < 1 < 2 < 3. Their meanings are:

0 : None,

1 : Small,

2 : Medium,

3 : High.

For instance, if decisiond2 is chosen, and it turns out that the actual state was nots2

buts1, then there will be no risk after(Risk = 0) but to a higher cost than the required
one(Cost = 2). On the other hand, if the actual state weres3 (a very serious problem)
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decisiond2 is not enough to completely avoid any risk(Risk = 1) a posteriori. In
general, consequences of these actions (the situation after the action has been taken) are
given in Table 5.1 whereRisk = i stands for risk leveli (i = 0, 1, 2, 3) andCost = i

DN AEP1 AEP2 AEV A

s0 Risk = 0, Cost = 0 Risk = 0, Cost = 1 Risk = 0, Cost = 2 Risk = 0, Cost = 3

s1 Risk = 1, Cost = 0 Risk = 0, Cost = 1 Risk = 0, Cost = 2 Risk = 0, Cost = 3

s2 Risk = 2, Cost = 0 Risk = 1, Cost = 1 Risk = 0, Cost = 2 Risk = 0, Cost = 3

s3 Risk = 3, Cost = 0 Risk = 2, Cost = 1 Risk = 1, Cost = 2 Risk = 0, Cost = 3

Table 5.1: States, decision and consequences after taking decisions.

for cost leveli(i = 0, 1, 2, 3). Thepost-situationis evaluated in terms of two criteria:
personal safetyand economical expenses. The final preference evaluation is made
assuming that personal safety reasons are considered more important than economical
reasons. That is, we rank order the post-situation considering first the level of risk it has
and then its cost. Obviously, the smaller the risk is, the most preferred the situation is.
For situations with the same level of risk, the smaller the cost, the most preferred the
situation is. That is, we consider the following ordering on consequences detailed on
Table 5.2, where we take as preference scaleU = {0 = w0 < w1 < ... < w8 < w9 =
1}.

u Cost = 0 Cost = 1 Cost = 2 Cost = 3
Risk = 0 w9 w8 w7 w6

Risk = 1 w5 w4 w3

Risk = 2 w2 w1

Risk = 3 w0

Table 5.2: Assignment of preference values for each possible consequence.

Qualitative Utility Evaluations: QU− and QU+

At a given moment, alarms lights turn on and immediately after the following report
arrive to the head of the Department:

“A problem has been identified in Sector G, most plausibly it is a major
problem, but there is still some chance it can actually be a minor problem,
or even it might become a very serious problem”.

We model the information about the actual state of the chemical plant, provided by
the report, with a possibility distributionsπS :S → V, whereV is a finite uncertainty
(plausibility) scale, defined as follows:

πS(s0) = 0, πS(s1) = z2, πS(s2) = 1, πS(s3) = z1,
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with {0 < z1 < z2 < 1} ⊆ V. Thus,πS is representing thats2 is a totally plausible
state,s1 ands3 are somehow plausible ands0 is not considered plausible at all.

For simplicity reasons we consider that the preference and uncertainty scales are
the same, so that{z1, z2} ⊆ U. Then, given the previously mentioned possibility
distribution π on the possible states, every decisiondi (i = 0, 3) induces a
corresponding possibility lottery (distribution)πdi:X → U on the set of consequences.
Here, they are:

πd0 = (0/(Risk = 0, Cost = 0), z2/(Risk = 1, Cost = 0),
1/(Risk = 2, Cost = 0), z1/(Risk = 3, Cost = 0));

πd1 = (z2/(Risk = 0, Cost = 1), 1/(Risk = 1, Cost = 1),
z1/(Risk = 2, Cost = 1));

πd2 = (1/(Risk = 0, Cost = 2), z1/(Risk = 1, Cost = 2));

πd3 = (1/(Risk = 0, Cost = 3)).

Now, we evaluate the pessimistic and optimistic criteria under the above hypotheses.

QU−(πd0) = min[max(nV (0), 1),max(nV (z2), w5),
max(nV (1), w2), max(nV (z1), 0)]

= min[max(nV (z2), w5), w2, nV (z1)]
= min[w2, nV (z1)];

QU−(πd1) = min[w4,max(nV (z1), w1)];

QU−(πd2) = min[w7,max(nV (z1), w3)];

QU−(πd3) = w6.

Independently of the value ofz1, we may see that

πd3 AQU− πd1 and πd3 AQU− πd0.

That is,d0 andd1 are discarded. However, to choose betweend2 andd3 we have to
take into account the value ofz1. Indeed, ifz1 ≤ w2, thenπd2 AQU− πd3, while for z1

= w3 we have thatπd2 ∼QU− πd3, and forz1 > w3, the ordering isπd3 AQU− πd2.
Analogously, the evaluations for the optimistic criterion are:

QU+(πd0) = max[min(z2, w5), w2];

QU+(πd1) = max[min(z2, w8), w4, min(z1, w1)]
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= max[min(z2, w8), w4];

QU+(πd2) = max[w7, min(z1, w3)] = w7;

QU+(πd3) = w6.

That is, we immediately have that

πd2 AQU+ πd3 AQU+ πd0.

Thus,d2 (activate plan 2) is preferred tod3 andd0. But, to compared2 to d1 we have to
take into account the value ofz2. For instance, forz2 ≥ w8, we have thatπd1 AQU+ πd2

and thusd1 would be preferred tod2 in that case, while ifz2 = w7, d2 andd1 become
equally preferable or ifz2 ≤ w6, d2 is preferred tod1.

Generalised Pessimistic Qualitative Evaluations:GQU−

Now, let us see howGQU− evaluates decisions. If we consider an arbitrary t-norm
>onV, the values we get are:

GQU−(πd0) = min[w2, nV (z1)],
GQU−(πd1) = min[w4, nV (z1)⊥w1],
GQU−(πd2) = min[w7, nV (z1)⊥w3],
GQU−(πd3) = w6,

where⊥ is the dual conorm of> with respect to the involutionnV . When we choose
> = minimum, GQU− obviously recoversQU−. Let us consider the case of> being
the so-calledLukasiewicz t-normdefined aswi>wj = wk, with k = max(0, i+ j−9).
The corresponding t-conorm⊥ turns out to be defined as

wi⊥wj =
{

wi+j , if 9 ≥ i + j
w9, otherwise.

The choice ofLukasiewicz t-normsomehow carries out the implicit assumption that the
values inV are equally distributed in the scale, which allows some form of additivity.
Hence, it could be argued that this assumption is beyond the pure qualitative approach
in which the ordering is what exclusively matters. But this hypothesis on the scale is
rather usual and we think it is worth to give room in the model for these, let us say, non
pure ordinal or qualitative assumptions.

In Table 5.3 we provide the preference orderings according to bothQU− and
GQU− we get for two particular values ofz1. One can see that forz1 = w3, the ranking
provided byGQU− seems a refinement of the one byQU−. However, whenz1 = w5,
GQU− reverses the ordering ofQU− for the decisionsd2 andd3. In this case,QU−

turns out to be more conservative thanGQU− since it prefersd3 (evacuation) tod2

(activate plan 2), while the preference forGQU− is the opposite.
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z1 Dist. QU− GQU− Pref. w.r.t.QU− Pref. w.r.t.GQU−

w3

πd0
πd1
πd2
πd3

w2

w4

w6

w6

w2

w4

w7

w6

πd2 ∼ πd3 A πd1 A πd0 πd2 A πd3 A πd1 A πd0

w5

πd0
πd1
πd2
πd3

w2

w4

w4

w6

w2

w4

w7

w6

πd3 A πd2 ∼ πd1 A πd0 πd2 A πd3 A πd1 A πd0

Table 5.3: Differences in the rankings byGQU− andQU−.

5.3 Representation of Preference Orderings: Extension
to Generalised Ordinal Utilities

Now, given a t-norm operation inV ,> : V ×V → V , we are interested in characterising
the preference relations onΠ(X) that are representable by the generalised qualitative
utility functions introduced in Section 5.1, which are extensions of the qualitative
utilities QU− andQU+, that is,

GQU−(π) = min
xi∈X

n(π(xi)>λi),

GQU+(π) = max
xi∈X

h(π(xi)>µi),

wheren(λi) = u(xi) = h(µi), u representing theDM ’s preferences on consequences,
n = nU ◦ h, with the onto order-preserving mappingh:V → U being as usual, but
further verifying acoherence condition w.r.t.> to guarantee the correctness of the
above definition, that is:

h(λ) = h(µ) ⇒ h(α>λ) = h(α>µ), ∀α, λ, µ ∈ V.

We are especially interested in characterising these utility functions since they may
result in different orderings from the associated withQU orderings as it has been shown
in the previous example.

The possibilistic mixture operation considered so far to combine possibilistic
lotteries has been a max-min combination:

(α/π1, β/π2) = max(min(α, π1),min(β, π2)).

Possibilistic mixtures, definable as⊥-decomposable7 consensus functions on,⊥ being
a t-conorm operation have been studied in (Dubois et al., 1996b). It is shown there
that for possibility measures, i.e.max-decomposable measures, an admissible class of
mixture operations is obtained by defining

M>(π, π′;α, β) = max(α>π, β>π′) α, β ∈ V

where> is any t-norm operation onV andmax(α, β) = 1. Thus, a particular case is to
take> = minimum, which results in the max-min mixture considered up to now.

7A measureg:2X → V is⊥-decomposable ifg(A ∪B) = g(A)⊥g(B) whenA ∩B = ∅.
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Lemma 5.1
GQU− andGQU+ preserve the possibilistic mixture in the sense that it holds

GQU−(M>(π1, π2;λ, µ)) = min(n(λ>δ1), n(µ>δ2)),
GQU+(M>(π1, π2;λ, µ)) = max(h(λ>γ1), h(µ>γ2)),

with n(δj) = GQU−(πj), h(γj) = GQU+(πj).

Proof:
As both proofs are analogous, we only include the proof forGQU−. By definition

GQU−(M>(π1, π2;λ, µ)) = minxi∈X n(M>(π1, π2;λ, µ)(xi)>γi),

wheren(γi) = u(xi). Since

M>(π1, π2; λ, µ)(xi)>γi = [max(λ>π1(xi), µ>π2(xi))]>γi

= 8 max(λ>π1(xi)>γi, µ>π2(xi)>γi),

then

n((M>(π1, π2; λ, µ)(xi))>γi) = n(max(λ>π1(xi)>γi, µ>π2(xi)>γi))
= 9 min(n(λ>π1(xi)>γi), n(µ>π2(xi)>γi)),

so

min
xi∈X

n(M>(π1, π2; λ, µ)(xi)>γi) = min
xi∈X

min(n(λ>π1(xi)>γi),

n(µ>π2(xi)>γi))
= min{min

xi∈X
n(λ>π1(xi)>γi),

min
xi∈X

n(µ>π2(xi)>γi)}.

Since

min
xi∈X

n(λ>π1(xi)>γi) = n(max
xi∈X

(λ>π1(xi)>γi))

= n(λ>(max
xi∈X

(π1(xi)>γi))),

then

GQU−(M>(π1, π2; λ, µ)) = min{n(λ>(max
xi∈X

π1(xi)>γi)),

n(µ>(max
xi∈X

π2(xi)>γi))}.

Since
8Because ofmax(α, β)>γ = max(α>γ, β>γ).
9Because we haven(max(a, b)) = min(n(a), n(b)),since being a reversing ordering mappingbetween

linear scalesimplies to be a reversing morphism.
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n(maxxi∈X πj(xi)>γi) = minxi∈X n(πj(xi)>γi) = GQU−(πj) = n(δj),

under the coherence hypothesis, we obtain that

n(λ>(maxxi∈X π1(xi)>γi)) = n(λ>δ1),

and analogously, we have that

n(µ>(maxxi∈X π2(xi)>γi)) = n(µ>δ2).

Hence,

GQU−(M>(π1, π2;λ, µ)) = min(n(λ>δ1), n(µ>δ2)),

with n(δj) = GQU−(πj). ¤

Now, we have that

Lemma 5.2
The reduction of lotteries follows the next rule:

M>(M>(π1, π2; λ1, λ2),M>(π1, π2; µ1, µ2), α, β) =

= M>(π1, π2;max(α>λ1, β>µ1), max(α>λ2, β>µ2)).

Proof:

M>(M>(π1, π2; λ1, λ2),M>(π1, π2; µ1, µ2), α, β) =

= max[α>M>(π1, π2; λ1, λ2), β>M>(π1, π2; µ1, µ2)]

= max[α>max(λ1>π1, λ2>π2), β>max(µ1>π1, µ2>π2)],

and since

α>max(λ, γ) = max(α>λ, α>γ) ∀α, λ, γ;

we obtain that

max[α>max(λ1>π1, λ2>π2), β>max(µ1>π1, µ2>π2)] =

= max[max(α>λ1>π1, α>λ2>π2), max(β>µ1>π1, β>µ2>π2)]

= max[α>λ1>π1, α>λ2>π2, β>µ1>π1, β>µ2>π2]

= max[max(α>λ1>π1, β>µ1>π1), max(α>λ2>π2, β>µ2>π2)]

= max[max(α>λ1, β>µ1)>π1, max(α>λ2, β>µ2)>π2]

= M>(π1, π2;max(α>λ1, β>µ1),max(α>λ2, β>µ2)).
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¤

In order to encompass this extended kind of possibilistic mixture operations in
the qualitative decision model, we have considered the modified axiom setAX> =
{A1, A2, A3>, A4>}, where

• A3>(independence): π1 ∼ π2 ⇒ M>(π1, π; α, β) ∼ M>(π2, π; α, β).

• A4> (continuity) : ∀π ∈ Π(X) ∃λ ∈ V such thatπ ∼ M>(x, x; 1, λ), where
x andx are a maximal and a minimal element of (X,v) respectively.

Now, we introduce some results for this axiomatic setting that are analogous to the
results obtained in the previous Chapter.

Lemma 5.3
If v verifies axiomsA1, A2, A3> andA4>, v also verifies axiomDP2, i.e. if A is a
crisp subset ofX then there isx ∈ A such thatx ∼ A.

Proof:
Suppose thatA = {x1, x2}, with x1 v x2. Let us first suppose thatx1 ∼ x2, so

A = M>(x1, x2; 1, 1) ∼ M>(x1, x1; 1, 1) = x1.

If x1 @ x2, by A4> there existλ1 andλ2 such that

x1 ∼ M>(x, x; 1, λ1) andx2 ∼ M>(x, x; 1, λ2),

asx1 @ x2, then byA2, λ1 > λ2.
Hence, applyingA3> we obtain:

A = M>(x1, x2, 1, 1) ∼ M>(M>(x, x; 1, λ1),M>(x, x; 1, λ2), 1, 1)
= M>(x, x; 1, max(λ1, λ2)) = M>(x, x; 1, λ1) ∼ x1.

Suppose the Lemma is valid if|A| = p. Now, letA be such that|A| = p + 1, and
let x1 be one of its minimal w.r.t.v .

SinceA = M>(x1, A − {x1}; 1, 1), by induction hypothesis we have that ifx2 is
one of the minimal elements ofA− {x1} w.r.t.v, then

A ∼ M>(x1, x2; 1, 1) ∼ x1.

¤

Lemma 5.4
If v verifies axiomsA1, A2, A3>, and A4>, then, the maximal and minimal elements
of X w.r.t. tov are indeed maximal and minimal elements ofΠ(X) as well.

Moreover, if x is a maximal andx is a minimal on(X,v), the following
equivalencies holds:
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x ∼ X ∼ M>(x, x; 1, 1).

Proof:
We may observe that the proof is “independent” of the definition of the mixture, since
we only use thatx ≤ M>(x, x; 1, 1) ≤ X.

Indeed, let us prove first the equivalencies

x ∼ X ∼ M>(x, x; 1, 1).

A1 guarantees thatx andx exist. By theuncertainty aversionaxiomA2, it is clear that
X is a minimal element ofΠ(X), so it isX v x.

But byDP2 there existsx0 ∈ X such thatx0 ∼ X, but sincex is minimal,x v x0,
thus it must bex ∼ X.

Furthermore, onΠ(X) we havex ≤ M>(x, x; 1, 1) ≤ X, and byA2, X v
M>(x, x; 1, 1) v x, and thusx ∼ X ∼ M>(x, x; 1, 1).

On the other hand, for anyπ ∈ Π(X), sinceπ is normalised, there existsx such
thatπ(x) = 1. So, we havex ≤ π and thereforeπ v x, but sincex is maximal ofX, it
is x v x, and thusπ v x. ¤

For the preference orderings induced by these generalised qualitative utilities we
have a representation theorem like in the previous Chapter.

Theorem 5.5
A preference relationv on Π(X), equipped with the mixture operationM>, satisfies
the axiom setAX> if and only if there exist

(i) a finite linearly ordered preference scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0),

(iii) an onto order-preserving functionh:V → U10, satisfying also

h(λ) = h(µ) ⇒ h(α>λ) = h(α>µ), ∀α, λ, µ ∈ V,

in such a way that it holds:

π′ v π iff π′ 4GQU− π,

where4GQU− is the ordering onΠ(X) induced by the qualitative utilityGQU−(π) =
minxi∈X n(π(xi)>λi), with n(λi) = u(xi) andn = nU ◦ h, as usualnU being the
reversing involution inU.

Proof:
← ) Axiom A1 is easily verified.

10Observe thath also satisfies that such thath(0) = 0, h(1) = 1, as was observed by a reviewer of one
of our papers.
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• A2(uncertainty aversion): if π ≤ π′ ⇒ π′ 4GQU− π.
By definition,

π ≤ π′ ⇒ π(x) ≤ π′(x) ∀x.

Since> is non-decreasing,

(π(xi)>λi) ≤ (π′(xi)>λi) ∀xi.

Hence,

GQU−(π) = min
xi∈X

n(π(xi)>λi)

≥ min
xi∈X

n(π′(xi)>λi)

= GQU−(π′).

Therefore,

π′ 4GQU− π.

• A3>(independence):

GQU−(π1) = GQU−(π2) ⇒ GQU−(M>(π1, π
′; α, β)) =

= GQU−(M>(π2, π
′; α, β))

Indeed,

GQU−(M>(π1, π
′; α, β)) = min(n(α>λ1), n(β>λ)),

GQU−(M>(π2, π
′; α, β)) = min(n(α>λ2), n(β>λ)),

with GQU−(πj) = n(λj), andGQU−(π′) = n(λ).

By hypothesis, we have that

n(λ1) = GQU−(π1) = GQU−(π2) = n(λ2).

As n satisfies the coherence condition w.r.t.>, we obtain that

n(α>λ1) = n(α>λ2),

therefore

GQU−(M>(π1, π
′; α, β)) = GQU−(M>(π2, π

′;α, β)).

• A4>: We have to prove that∀π ∈ Π(X), there existsλ such thatGQU−(π) =
GQU−(M>(x, x; 1, λ)), wherex, x are a maximal and a minimal elements of
(X, 4GQU−).

Since we are assuming u−1(1) 6= ∅ 6= u−1(0), it must be the case thatu(x) = 0
andu(x) = 1, hence
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GQU−(M>(x, x; 1, λ)) = n(λ>λ) with GQU−(x) = n(λ) = 0.

As n(1) = 0, by the coherence condition we have that

n(λ>λ) = n(λ>1),

hence,

GQU−(M>(x, x; 1, λ)) = n(λ>λ) = n(λ).

Therefore, sinceu(X) ⊆ n(V ), for anyλ ∈ n−1(GQU−(π)) we have that

GQU−(π) = n(λ) = GQU−(M>(x, x; 1, λ)).

→) We structure the proof in the following steps:

1. We define the preference scaleU and an order-preserving (and onto) functionh
from V to U.

2. We define the functionGQU−:Π(X) → U, for theπ−λ ’s, and then we extend it
due to axiomA4>. GQU− representsv .

3. Then, we prove that

GQU−(π) = mini=1,...,p n(π(xi)>λi)

with n(λi) = u(xi) whereu:X → U is the restriction ofGQU− on X, and
n = nU ◦ h.

Now, we develop these steps.

1. As usual,v stratifiesΠ(X) in a linearly ordered set of classes of equivalently
preferred distributions (π′ ∈ [π] iff π ∼ π′). The number of classes is just the
number of levels needed to rank order the set of distributions.

Therefore, we take as preference scaleU the quotient setΠ(X)/ ∼ together with
the natural (linear) order

[π] ≤ [π′] iff π v π′.

By Lemma 5.4, again ifx andx denote a maximal and a minimal element of
X respectively, [x] and [x] will be the maximum and minimum elements of
Π(X)/ ∼, i.e. ofU, and will be denoted by 1 and 0 respectively.

Now, we denote byπ−λ the possibility distribution defined as the qualitative
lotteryM>(x, x; 1, λ).
We define the order-reversing functionn:V → U asn(λ) = [π−λ ].
Observe thatn(1) = [M>(x, x; 1, 1)] = [x] = 0 andn(0) = [M>(x, x; 1, 0)] =
[x] = 1.

By A2, n results reversing and it is onto by construction.n results coherent w.r.t.
> because of the reduction property ofM> andA3>. As previously, we define
nowh = nU ◦ n. From the properties ofn, it is easy to verify thath satisfies the
required conditions.
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2. So far we have determinedU andh. Now, let us define the qualitative function
GQU− onΠ(X).

(a) First, defineGQU−(M>(x, x; 1, λ)) = n(λ).

(b) It is easy to check thatπ−λ v π−λ′ iff GQU−(π−λ ) ≤ GQU−(π−λ′).
So, restricted to lotteries of typeπ−λ , GQU− representsv .

(c) We extendGQU− to any lottery as follows. For anyπ, A4> guarantees
that∃λ such thatπ ∼ M>(x, x; 1, λ), so we defineGQU−(π) = n(λ).

As a consequence of (c) and (b),GQU− representsv, i.e.

π v π′ iff GQU−(π) ≤ GQU−(π′).

3. Now, we defineu:X → U asu(x) = GQU−(x), Notice thatu(x) = 1 and
u(x) = 0, and thus,u−1(1) 6= ∅ 6= u−1(0).

It remains to prove that

GQU−(π) = mini=1,...,p n(π(xi)>γi)

with n(γi) = u(xi), |X| = p.

To verify this, we will prove the following equalities:

• ∀π1, π2,

GQU−(M>(π1, π2; α, β)) = n(max((α>λ1), (β>λ2))), (5.7)

with λj such thatGQU−(πj) = n(λj).
Indeed,A4> guarantees that

∃λ1 s.t.π1 ∼ M>(x, x; 1, λ1) and∃λ2 s.t.π2 ∼ M>(x, x; 1, λ2),

remember thatGQU−(π1) = n(λ1) andGQU−(π2) = n(λ2). So, using
the independence axiomA4>,

M>(π1, π2; α, β) ∼ M>(M>(x, x, 1, λ1),M>(x, x, 1, λ2); α, β),

and by reduction of “lotteries” it reduces to

M>(x, x;max((α>1), (β>1)), max((α>λ1), (β>λ2))) ∼

∼ M>(x, x;max(α, β),max((α>λ1), (β>λ2)))

∼ M>(x, x; 1,max((α>λ1), (β>λ2))).

Therefore,

GQU−(M>(π1, π2;α, β)) = n(max((α>λ1), (β>λ2)))
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with λj such thatGQU−(πj) = n(λj), i.e.

GQU−(M>(π1, π2; α, β)) = min(n(α>λ1), n(β>λ2)).

Finally, we verify that (5.7) does not depend on theλ chosen, i.e. ifµ is
such thatGQU−(π1) = n(µ), then

n(max((α>λ1), (β>λ2))) = n(max((α>µ), (β>λ2))).

Indeed, asπ−λ1
∼ π−µ then

M>(x, x; 1, max((α>λ1), (β>λ2))) ∼ M>(π−λ1
, π−λ2

; α, β)
∼ M>(π−µ , π−λ2

; α, β) ∼ M>(x, x; 1, max((α>µ), (β>λ2))),

therefore

n(max((α>λ1), (β>λ2))) = n(max((α>µ), (β>λ2))).

In particular, we have that

GQU−(M>(x, y; 1, β)) = min(n(1>λ1), n(β>λ2))

with u(x) = n(λ1), u(y) = n(λ2). So,

GQU−(M>(x, y; 1, β)) = min(u(x), n(β>λ2)),

with u(y) = n(λ2), and

GQU−(max(π1, π2)) = min(GQU−(π1), GQU−(π2)).

Indeed, asmax(π1, π2) = M>(π1, π2; 1, 1), therefore,

GQU−(max(π1, π2)) = min(n(µ1), n(µ2))

with n(µ1) = GQU−(π1), n(µ2) = GQU−(π2), so

GQU−(max(π1, π2)) = min(GQU−(π1), GQU−(π2)).

Moreover, we have

GQU−( max
i=1,...,p

πi) = min
i=1,...,p

GQU−(πi) ∀ πi.

• GQU−(π) = mini=1,...,p n(π(xi)>γi).
As π is normalised, there existsxj ∈ X such thatπ(xj) = 1. Without loss
of generality, let us assume thatj = 1. As for eachπ, M> satisfies that

M>(x1, xi; 1, π(xi))(xk) =





1, if xk = x1,
π(xi), if x1 6= xk = xi,
0, otherwise.

Then, choosing

πi = M>(x1, xi; 1, π(xi)),
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we obtainπ = maxi=1,...,p πi, therefore

GQU−(π) = GQU−( max
i=1,...,p

M>(x1, xi; 1, π(xi)))

= min
i=1,...,p

GQU−(M>(x1, xi, 1, π(xi)))

= min
i=1,...,p

[min(u(x1), n(π(xi)>λi))]

with u(xi) = GQU−(xi) = n(λi), so

GQU−(π) = mini=1,...,p n(π(xi)>λi).

¤

As in the case of purely ordinal information, sometimes theseGQU− functions may
result too conservative and we may be interested in more optimistic behaviours. We
may model them by

GQU+(π) = max
xi∈X

h(π(xi)>λi) (5.8)

with h(λi) = u(xi), > a t-norm inV, and as usualh being an onto order-preserving
mapping that also satisfy coherence w.r.t.>.
For characterising these behaviours, we consider the axiomatic settingAX+

> where we
replaceA2 by A2+ andA4> by:

• A4+
> : ∀π ∈ Π(X) ∃λ ∈ V such thatπ ∼ M>(x, x; λ, 1), wherex andx are a

maximal and a minimal element of (X,v) respectively.

For this axiomatic setting we have the analogous results of Lemmas 5.3 and 5.4, and of
course, the representation theorem:

Theorem 5.6
A preference relationv on Π(X), equipped with the mixture operationM>, satisfies
the axiom setAX+

> if and only if there exist

(i) a finite linearly ordered preference scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0),

(iii) an onto order-preserving functionh:V → U, satisfying also

h(λ) = h(µ) ⇒ h(α>λ) = h(α>µ), ∀α, λ, µ ∈ V,

in such a way that it holds:

π′ v π iff π′ 4GQU+ π,

where4GQU+ is the ordering onΠ(X) induced by the qualitative utilityGQU+(π) =
maxxi∈X h(π(xi)>λi), with h(λi) = u(xi).
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The proofs are omitted because they are analogues with the “pessimistic” case.
Now, let us show that the axiomatic setting proposed also guarantees the “unicity”

of the preference set of values, of the linking mappingh and of the preference function
u on consequences. Indeed, we have

Theorem 5.7
Given

(i) two finite linearly ordered preference scalesU1, U2 with inf(U1) = 01, inf(U2) =
02 andsup(U1) = 11 sup(U2) = 12,

(ii) two preference functions on them, i.e.uj :X → Uj such thatu−1
j (1j) 6= ∅ 6=

u−1(0j), j = 1, 2,

(iii) two onto order-preserving functionshj :V → Uj , satisfying also

hj(λ) = hj(µ) ⇒ hj(α>λ) = hj(α>µ), ∀α, λ, µ ∈ V, j = 1, 2.

in such a way that it holds:

π′ 4GQU−(·|U1,h1,u1) π iff π′ 4GQU−(·|U2,h2,u2) π,

or

π′ 4GQU+(·|U1,h1,u1) π iff π′ 4GQU+(·|U2,h2,u2) π,

then

1. U1 andU2 are isomorphic.

2. If U1 = U2, thenh1 = h2 andu1 = u2.

Proof:
We assume

π′ 4GQU−(·|U1,h1,u1) π iff π′ 4GQU−(·|U2,h2,u2) π,

the other case being analogous.

1. Suppose |U1| = m, vj denotes the relation4GQU(·|Uj ,hj ,uj).
Hence,∃λ1, . . . , λm ∈ V s.t.

πλ1 @1 . . . @1 πλm ⇐⇒ πλ1 @2 . . . @2 πλm .

So,|U2| ≥ m. However, if|U2| > m, we have that

∃λ1, . . . , λm+1 ∈ V s.t.πλ1 @2 . . . @2 πλm+1 ⇐⇒ πλ1 @1 . . . @1 πλm+1 .

Hence,|U1| ≥ m + 1. Contradiction, so|U1| = |U2|.
2. Now, assuming both scales are the same, sayU , we first verify that the linking

mapping is unique.
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• Supposeh1 6= h2, then there existsλ0 = inf{λ|h1(λ) 6= h2(λ)}. Without
loss of generality we may assumeh1(λ0) > h2(λ0), i.e. n1(λ0) < n2(λ0),
with ni = nU ◦ hi. As n1 is onto, there existsµ ∈ V s.t. n2(λ0) = n1(µ),
so

n1(µ) = n2(λ0) > n1(λ0).

Hence,πµ AGQU−(·|U,h1,u1) πλ0 , therefore as by hypothesis both induced
orderings are the same, we have thatπµ AGQU−(·|U,h2,u2) πλ0 , so

n2(µ) > n2(λ0) = n1(µ).

That is,h2(µ) 6= h1(µ), with µ < λ0. Contradiction with the definition of
λ0. Hence,h1 = h2.

• Now, denoting byh the linking mapping, we verify that both preference
functions are the same. Indeed, givenx ∈ X, u1(x) ∈ U, asn = nU ◦ h
is onto,∃λ ∈ V s.t. n(λ) = u1(x), so x ∼1 πλ, with vj denoting the
relation4GQU−(·|U,h,uj). Hence by hypothesis, we have thatx ∼2 πλ, i.e.
u2(x) = n(λ) = u1(x), thereforeu1 = u2.

¤
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Chapter 6

Preference and Uncertainty
Measured on Cartesian Product
of Linear Scales

So far we have considered that both uncertainty and preferences on consequences are
measured on finite linear scales. However, these hypotheses may not be valid in many
decision problems. There are certain kinds of decision problems where we are not
able to measure uncertainty and/or preferences in such linearly ordered sets, but only
in partially ordered ones. For instance, let us comment about some of such possible
scenarios:

• When there are several sources of uncertainty, each one being measured in a
linear scale, the set of values for uncertainty, (V ,≤V ), is a product of scales, that
is, V = Πj=1,...,k Vj , eachVj being a finite linearly ordered set.

• In a similar way, we may have thatDM’s preferences on consequences are only
partially ordered. Indeed, a preference relation among consequences is usually
modelled by a preference functionu:X → U, whereU is a finite preference scale,
frequently a (numerical or a qualitative) linear scale. However, in many cases,
this preference function may be vectorial. Indeed, suppose that consequences are
evaluated with respect tok different criteria or attributes, each one represented by
a preference functionuj :X → U . Then, the global preference on consequences
can be evaluated in terms of the vectorial functionu:X → U ×k) . . . × U, with
u(x) = (u1(x), . . . , uk(x)). Considering inU×k) . . .×U = U the usual product
ordering (Pareto ordering), we are outside of the linear models.

• As it has been mentioned in Section 1.3, once we link the similarity between
situations with a possibility distribution on consequences (you may see Section
8.1 for more details), Case-Based Decision may be approached with the
qualitative utility functions we have been working. In this case, the distribution
is defined over the same set that the similarity function is applied in. Hence,
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we may have partially ordered uncertainty in case-based decision problems when
the degrees of similarity on problems are only partially ordered. For example,
consider that each situation is described as ak-tuples = (s1, ..., sk). Suppose
we are provided withk feature similarity functions,Simj :Sj × Sj → E, that
measures the degree of similarity between twoj-features, whereE is a finite
linear scale. The global similarity function on situationsSim:S × S → V , can
be defined in terms of thek-feature similarity functions as

Sim(s, s′) = (Sim1(s1, s′1), ...,Simk(sk, s′k)),

with V = E × . . .×E, ≤V being the ordering onV . Again, if for instance≤V

is the Pareto ordering, (V , ≤V ) is not a linear lattice.

Hence, we are interested in extending the qualitative decision model to let us make
decisions in cases where theDM’s preferences on consequences may be only partially
ordered or when the uncertainty on the consequences is valued on a non-linear lattice.
In order to cope with some of these situations, we propose to extend the model in three
steps:

• First, we will consider preferences and/or uncertainty are measured on finite
Cartesian product of (finite) linear scales.

• Second, we shall consider both preferences and uncertainty are graded on
distributive lattices, in particular when both are non-linear distributive lattices.

• Finally, we consider a particular case of allowing different type of measurement
lattices, indeed we measure preferences on a linear one, while uncertainty is
measured on a residuated distributive lattice.

In this Chapter, we develop the first extension, the other ones being developed in the
next Chapter.

In next Section, we introduce some possible orderings in a finite Cartesian product
of linearly ordered sets taking into account the orderings in each scale. Next, we
will propose vectorial pessimistic and optimistic qualitative utilities with respect to a
vectorial preference function defined overU, a Cartesian product of preference scales.
For these utility functions, we will consider the relations induced by them and by a
general “boolean” functiong, providing their characterisations. These theorems include
the cases of considering the ordering induced by the vectorial functions when we
are consideringlexicographicor Paretoorderings in the preference set. Afterwards,
assuming that all linear preference scales are the same, we observe some properties
of theweighted-minandweighted-maxorderings on the product of scales. In Section
6.3, we analyse the behaviour of these vectorial functions in the example introduced
in Section 5.2, but now, we consider a vectorial preference functionu, in terms of the
marginal preferences: safety and cost. In Section 6.5, we consider the same example but
assuming that two evaluations of the possibility of being in the actual state are provided.
Finally in Section 6.4, we analyse the case in which uncertainty is measured on a
product of scales taking into account linear or cartesian representation for preferences.
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6.1 Some Orderings in Cartesian Products Induced by
the Marginal Orderings

Let us recall some possible orderings on a Cartesian product of finite linear scales.
Given{(Ej ,≤Ej

)}j=1,...,k a set of finite linear scales, we considerE = Πj=1,...,k Ej

the Cartesian product of theEj ’s. In E, different interesting orderings may be
considered in terms of the marginal orderings≤Ej . In the following we introduce
some of them.

• Possibly the most natural ordering inE is theproduct ordering, known as the
Pareto orderingas well:

∀ e = (e1, ..., ek), e′ = (e′1, ..., e
′
k) ∈ E,

e ≤Π e′ ⇐⇒ (ej ≤Ej e′j ∀j = 1, . . . , k).

≤Π is only a partial order. Indeed, if there existi, j such thatej <Ej e′j and
ei >Ei e′i, thene ande′ are incomparable with respect to≤Π .

• Another alternative option is to use an aggregation operator. That is, ifAGG is
an aggregation operator fromE to E (E being a finite linear scale), we define

e ≤AGG e′ ⇐⇒ AGG(e1, . . . ,ek) ≤E AGG(e′1, . . . ,e
′
k).

≤AGG is a total preorder. Indeed, as≤E is complete, this fact allows us to
compare all vectors inE.
In the case of all the scales being the same, sayE, some particular cases of
aggregation orderings are:

– min-ordering:

e ≤min e′ ⇐⇒ min{e1, . . . ,ek} ≤E min{e′1, . . .e′k},
– max-ordering:

e ≤max e′ ⇐⇒ max{e1, . . . ,ek} ≤E max{e′1, . . . ,e′k}.
– Moreover, we may consider weighted versions of them, i.e. given a vector

of weightsw = (w1, . . . ,wk) ∈ Ek, theweighted-minimumis defined as

e ≤w−m e′ ⇐⇒
min{max(w1, e1), . . . , max(wk, ek)} ≤E min{max(w1, e′1), . . . , max(wk, e′k)},

while theweighted-maximumis defined as

e ≤w−M e′ ⇐⇒
max{min(w1, e1), . . . , min(wk, ek)} ≤E max{min(w1, e′1), . . . , min(wk, e′k)}.

Note that≤min is a weighted minimum with a null vector of weights, while
≤max is a weighted maximum for the vector whose components are 1’s.
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Besides, we may rank the vectors in terms of the ordering of one of the
components, that is, if1 ≤ r ≤ k and we consider the vector of weights
wr = 0, andwj = 1 otherwise, then

e ≤w−m e′ ⇐⇒ er ≤Er e′r,

or in terms of≤w−M , if wr = 1, andwj = 0 otherwise,

e ≤w−M e′ ⇐⇒ er ≤Er
e′r.

• Also, we may consider thelexicographic ordering, which acts like a “prioritised”
one, in the sense that the smaller the index of the attribute/criterion, the greater is
its relevance to determinate the ordering, because a criterionj is only applied if
the previous criteria consider the elements equivalent. Indeed, thelexicographic
ordering is defined as

e ≤LEX e′ ⇐⇒ ∃ j ≤ k s.t.∀ i < j, ei = e′i andej ≤Ej e′j .

≤LEX is a total order.

We may consider a generalisation of these orderings. Given a setR = {vi}i=1,...,k

of binary relations, for each “boolean” mappingg:{0, 1}k × {0, 1}k → {0, 1}, let us
introduce the following relations:

• if vi ⊆ Ei × Ei, then the induced relation byR andg is defined as

e 4g
R e′ ⇐⇒ g((µv1(e1, e

′
1), . . . ,µvk

(ek, e′k)) ,
(µv1(e

′
1, e1), . . . ,µvk

(e′k, ek))) = 1,

µvi being the membership of the preference orderingvi .

• Analogously, ifvi ⊆ E×E, then the induced relation byR and gis defined as

e 4g
R e′ ⇐⇒ g(

(
µv1(e, e′), . . . ,µvk

(e, e′)
)
,(

µv1(e′, e), . . . ,µvk
(e′, e)

)
) = 1.

Remark 4
Note that Pareto and Lexicographic orderings are of the type4g

R . Indeed, ifg(x, y) =
mini=1,...,k xi andR = {≤Ei}i=1,...,k as usual≤Ei being the linear order in the scale
Ei, then

e ≤Π e′ ⇐⇒ e ≤g
R e′.

Analogously, ifg(x, y) = maxi=1,...,k zi, with

zi =





min(x1, 1− y1), if i = 1
min(minj=1,...,i−1{min(xj , yj)}, min(xi, 1− yi)), if 1 < i < k
min(minj=1,...,k−1{min(xj , yj)}, xk), if i = k,

then
e ≤LEX e′ ⇐⇒ e ≤g

R e′.
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6.2 Preferences on Product Scales

The first case we want to analyse is the following one. Assume thatDM is provided
with k criteria of preference on consequences, each one evaluated on a finite linearly
ordered set of preference values. That is, theDM has a set{(Uj ,≤j)}j=1,...,k of finite
linear scales such thatinf(Uj) = 0j , sup(Uj) = 1j and eachUj is commensurate with
V, as usualV being a finite linear scale. A set of preference functionsuj :X → Uj such
thatu−1

j (1j) 6= ∅ 6= u−1
j (0j) is also assumed as given.

We consider the global vectorial preference function on consequencesu:X → U ,
whereU = Πj=1,...,z Uj is the Cartesian product of theUj ’s.

Now, in these conditions, we define the following vectorial qualitative utility
functions.

Definition 6
Let> be a t-norm onV and let the pessimistic generalised qualitative utility functions
be defined as usual as

GQU−(π|uj) = minx∈X nj(π(x)>λj
x), j = 1, . . . , k

with nj(λj
x) = uj(x), nj = nUj ◦ hj , andnUj being the reversing involution onUj .

The linking mappinghj : V → Uj is also required to satisfy coherence with respect to
> for having a good definition ofGQU−(·|uj). The vectorial pessimistic generalised
qualitative utility functionw.r.t. u = (u1, ..., uk) is defined as

GQU
−

(·|u) = (GQU−(·|u1), ..., GQU−(·|uk)).

Analogously, let the optimistic ones be defined as

GQU+(π|uj) = maxx∈X hj(π(x)>λj
x), j = 1, . . . , k

with hj(λj
x) = uj(x). The vectorial optimistic generalised qualitative utility function

w.r.t. u is defined as

GQU
+
(·|u) = (GQU+(·|u1), ..., GQU+(·|uk)).

As usual, from these functions we may induce onΠ(X) the orderings associated with
them, that is,

π 4
GQU

−
(·|u)

π′ ⇐⇒ GQU
−

(π|u) ≤U GQU
−

(π′|u),

where≤U is the ordering considered onU, e.g. Pareto, minimum, lexicographic, or
one induced by a boolean function.
The dual ordering induced byGQU

+
is

π 4
GQU

+
(·|u)

π′ ⇐⇒ GQU
+
(π|u) ≤U GQU

+
(π′|u).

In particular, we may consider the relation induced byGQU
−

and a boolean
functiong. Indeed, for each “boolean” mappingg, we consider theinduced relation by
GQU− (or byGQU+) andg defined as

π 4g

GQU
−

(·|u)
π′ ⇐⇒ GQU

−
(π|u) 4g

{≤Ui
}i=1,...,k

GQU
−

(π′|u),
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that is,

π 4g

GQU
−

(·|u)
π′ ⇐⇒ g(

(
µGQU−(·|u1)(π, π′), . . . , µGQU−(·|uk)(π, π′)

)
,

(
µGQU−(·|u1)(π

′, π), . . . , µGQU−(·|uk)(π′, π)
)
) = 1

µGQU−(·|ui) being the membership of the preference ordering induced byGQU−(·|ui).
Analogously, we may consider the relations induced by the optimistic criterion, i.e.

π 4g

GQU
+

(·|u)
π′ ⇐⇒ GQU

+
(π|u) 4g

{≤Ui
}i=1,...,k

GQU
+
(π′|u).

Now, we propose a characterisation for these relations.

Axiomatic Setting

Given a boolean functiong, let GAXg
> be the following set of axioms for a preference

relationv on (Π(X),M>):

• A0: There exists a familyR = {vi}i=1,...,k of orderings such thatv = 4g
R, i.e.

π v π′ ⇐⇒ g((µv1(π, π′), . . . , µvk
(π, π′)),

(µv1(π
′, π), . . . , µvk

(π′, π))) = 1

• AxR : Eachvi satisfiesAX> i = 1, . . . , k

Now, we may also consider the problem from an optimistic view, that is, we consider
the axiomatic settingGAX+ g

> , with A0 as previous, but now:

• AxR+ : vi satisfyingAX+
> i = 1, . . . , k.

Then, the following theorem is an easy consequence of the representation theorems
in the framework of a unique linear preference scale.

Theorem 6.1 (Representation Theorem)
Given a boolean mappingg, a preference relationv on (Π(X),M>) satisfies the axiom
setGAXg

> (GAX+ g
> ) if and only if there exist:

(i) a set of finite linearly ordered preference scales{Uj}j=1,...,k, with inf(Uj) = 0j

andsup(Uj) = 1j ,

(ii) a set{uj : X → Uj | u−1
j (1j) 6= ∅ 6= u−1

j (0j)}j=1,...,k of preference functions,

(iii) a set of onto order-preserving functionshj :V → Uj , j = 1, . . . , k, eachhj also
satisfying coherence w.r.t>,

in such a way that it holds:

π v π′ iff π 4g

GQU
−

(·|u)
π′.
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(π v π′ iff π 4g

GQU
+

(·|u)
π′ resp.) withnj = nUj ◦ hj and considering the vectorial

preference functionu = (u1, . . . , uk).

Proof:
Here, we only verify the pessimistic behaviour, the optimistic case being analogous.
→) As each relationvj satisfiesAX>, then the existence of{Uj}j=1,...,k, {uj}j=1,...,k

and{hj}j=1,...,k is guaranteed by the theorem for the linear case (Theorem 5.5). It only

remains to verify that the relation induced byGQU
−

andg coincides withv .

By definition, we have that

π v π′ iff µv(π, π′) = 1.

Moreover, asvi is represented byGQU−(·|ui), we have that

π vi π′ ⇐⇒ GQU−(π|ui) ≤Ui GQU−(π′|ui).

That is,

µvi(π, π′) = µ≤Ui
(GQU−(π), GQU−(π′)) = µGQU−(·|ui)(π, π′).

Hence, applyingA0, we have that
π v π′ ⇐⇒ g((µv1(π, π′), . . . , µvk

(π, π′)) ,
(µv1(π

′, π), . . . , µvk
(π′, π))) = 1

⇐⇒ g(
(
µGQU−(·|u1)(π, π′), . . . , µGQU−(·|uk)(π, π′)

)
,(

µGQU−(·|u1)(π
′, π), . . . , µGQU−(·|uk)(π′, π)

)
) = 1

⇐⇒ π 4g

GQU
−

(·|u)
π′.

←) Now, we verify A0. Given {Uj}, {uj} and {hj}, we considervj as the
preference relation induced byGQU−(·|uj). By Theorem 5.5 we have that eachvj

satisfiesAX>. Hence,

π 4g

GQU
−

(·|u)
π′ ⇐⇒ g(

(
µGQU−(·|u1)(π, π′), . . . , µGQU−(·|uk)(π, π′)

)
,(

µGQU−(·|u1)(π
′, π), . . . , µGQU−(·|uk)(π′, π)

)
) = 1

⇐⇒ g((µv1(π, π′), . . . , µvk
(π, π′)) ,

(µv1(π
′, π), . . . , µvk

(π′, π))) = 1

¤

Remark 5
As it has been mentioned, this theorem includes, as particular cases, the
characterisations of the Pareto and the lexicographic orderings.
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Preference Functions on the Same Scale

We consider now the particular case in whichall the preference functions on
consequences are evaluated in thesamescale of preference.

Proposition 6.2
Let U1 = ... = Uk = U, all of them with the same ordering on it, soU = Uk. Then,

1. (a) if umin(x) = min{u1(x), ..., uk(x)}, then

GQU
−

(π|u) ≤min GQU
−

(π′|u) ⇐⇒ GQU−(π|umin) ≤ GQU−(π′|umin).

(b) Given a vector of weightsw = (w1, . . . , wk) ∈ Uk, if uw−m(x) =
min{max(w1, u1(x)), ..., max(wk, uk(x))}, then

GQU
−

(π|u) ≤w−m GQU
−

(π′|u) ⇐⇒ GQU−(π|uw−m) ≤ GQU−(π′|uw−m).

2. GQU
−

(π|u) ≤Π GQU
−

(π′|u) ⇒ GQU
−

(π|u) ≤min GQU
−

(π′|u).

3. (a) If umax(x) = max{u1(x), ..., uk(x)}, then

GQU
+

(π|u) ≤max GQU
+

(π′|u) ⇐⇒ GQU+(π|umax) ≤ GQU+(π′|umax).

(b) If uw−M (x) = max{min(w1, u1(x)), ..., min(wk, uk(x))}, then

GQU
+

(π|u) ≤w−M GQU
+

(π′|u) ⇐⇒ GQU+(π|uw−M ) ≤ GQU−(π′|uw−M ).

4. GQU
+
(π|u) ≤Π GQU

+
(π′|u) ⇒ GQU

−
(π|u) ≤max GQU

−
(π′|u)

Proof:
We only sketch the proofs of 1) and 2), the others being analogue.

1. It is a direct consequence of having

GQU−(π′|umin) = GQU−(π| min
j=1,...,k

uj)

= min
j=1,...,k

(GQU−(π|uj),

and by the definition of≤min .
For the case of theweighted-minimum, we also know that

∀j, wj ∈ Uj , GQU−(π|max(wj , uj)) = max(wj , GQU−(π|uj)).
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2. By definition of Pareto ordering,

GQU
−

(π|u) ≤Π GQU
−

(π′|u) ⇐⇒ ∀i, GQU−(π|ui) ≤Ui
GQU−(π′|ui)

and thus we have that

GQU
−

(π|u) ≤Π GQU
−

(π′|u) implies GQU
−

(π|u) ≤min GQU
−

(π′|u).

¤

Remark 6
Let us remark some points with respect to the preceding proposition:

• In item 1 (a), the proposition guarantees that the order induced inΠ(X) by the

pessimistic vectorial utility functionGQU
−

(·|u) together with the≤min ordering
in U, is the same than the order induced by the utility function defined with
respect to the function minimum of preferences, i.e. byGQU−(·|umin) with
umin(x) = min{u1(x), ..., uk(x)}, taking in U its linear ordering. That is,
it is the same to “aggregate” first the preferences with the minimum, and then
evaluating with a unidimensional utility function, than evaluating the vectorial
utility before aggregating.
Moreover, this property makes clear that the≤min ordering satisfies the axiom
setAX> if the set of preference functionsuj :X → U not only verifies∀j =
1, . . . , k, u−1

j (0) 6= ∅ but
⋂

j=1,...,k u−1
j (1) 6= ∅ as well.

• Obviously, the reciprocal of the item 2 is not true, because both orderings may be
different since≤min is a linear order while≤Π may be an only partial one. Also,
both orderings distinguish different in the sense that there are distributions which
≤min consider them equivalent while≤Π distinguish them. An easy example of
this is the following one.

Example:
Supposek = 2, let x, x′ ∈ X, s.t.u1(x) = u1(x′) < u2(x) < u2(x′). Since

GQU
−

(x|u) = (u1(x), u2(x))

GQU
−

(x′|u) = (u1(x′), u2(x′)),

then

GQU
−

(x|u) <Π GQU
−

(x′|u),

while

GQU
−

(x|u) ∼min GQU
−

(x′|u).

♦
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• With respect to item3, analogously with the case ofminimum, it results the
same ordering if we max-aggregate first or at the end. Also,≤max-ordering
satisfies the axiom setAX+

> if the set of preference functionsuj :X → U not
only verifies∀ j = 1, . . . , k, u−1

j (1) 6= ∅, but
⋂

j=1,...,k u−1
j (0) 6= ∅ as well.

6.3 An Example: A Safety Decision Problem in a
Chemical Plant (Continuation)

To exemplify some of the notions introduced in this Chapter, we consider again the
example introduced in Section 5.2. Let us recall the framework. The chemical plant has
three emergency plans:

EP1 : emergency plan 1,
EP2 : emergency plan 2,
EV : total evacuation,

that may be only activated by the head of the Safety Department. Depending on the
type of problems, the situations of the plant may be classified in four modes:

s0 : normal functioning,

s1 : minor problem,

s2 : major problem,

s3 : very serious problem.

The head of the Dept. has to undertake one of the following actions:

d0 : do nothing (DN),

d1 : activate emergency plan 1(AEP1),
d2 : activate emergency plan 2(AEP2),
d3 : activate evacuation(AEV A),

whose behaviours are given in Table 5.1.
As it was said, thepost-situationof the plant is evaluated in terms of two criteria:

• personal safety(u1),

• economical costs(u2).

We take as preference scale for each criterion a linear scale of four values

W = {w0 = 0 < w1 < w2 < w3 = 1},
the criteria being defined as:

u1(Risk = i, Cost = j) = w3−i and u2(Risk = i, Cost = j) = w3−j .

We take as scale of uncertainty the same linear scale, i.e.V = U.
Assume that the received report says:
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“A problem has been identified in Building G, likely it is a minor problem,
but it is not discarded that either it can finally turn out to be a false alarm
or even, in the worst case, it might become a major problem.”

This information can be modelled by the possibility distribution on statesπS :S →
V defined as

πS(s0) = w1, πS(s1) = 1, πS(s2) = w2, πS(s3) = 0.

Now, for choosing the “best” decision, we have to rank the associated distributions.
These distributions are defined as in (4.1), for instance, for declarating that the situation
is controlled, that is, to choose do nothing (d0), its distribution is

πd0(x) = sup{πS(s)| d0(s) = x}.

So, in order to rank decisions we apply the generalised qualitative utility functions
to these distributions. We consider the global preference on consequences is given by
u = (u1, u2).
If > = minimum, then we have that:

GQU
−

(πd0|u) = (w1, 1),

GQU
−

(πd1|u) = (w2, w2),

GQU
−

(πd2|u) = (1, w1),

GQU
−

(πd3|u) = (1, 0).

Hence, onlyd3 is discarded ifPareto orderingis chosen inU = W × W, while d1

is the most preferred if theminimum ordering is considered. However, taking into
account that the safety of the persons is involved and it must be prioritised to economical
reasons, it is interesting to consider thelexicographic orderingconsideringu1 first. For
this ordering, we have thatd2, activate emergency plan 2, is chosen, which responds to
giving priority to safety.

6.4 Uncertainty Measured on Product Scales

In this case, we assume the set of values for uncertainty (V ,≤V ) is a product of scales,
that is,V = Πj=1,...,k Vj , eachVj being a finite linearly ordered set. For instance, this
may occurs when there are several sources of uncertainty each one being measured in
a linear scale. Although sometimes we might aggregate this information into a linear
scale, sometimes it may be interesting not to loose any information and go as far as
possible without aggregating.

Hence, we are interested in the special class ofpossibility vectorial distributions,
Π:X → V , such thatall their projections are normalised possibility distributions. That
is, if

πj :X → Vj j = 1, . . . , k
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are normalised distributions, then

Π(x) = (π1(x), . . . , πk(x))

is the product of the normalised distributions. Observe that althoughΠ is consistent, in
the sense thatsup{Π(x)|x ∈ X} = (1,...,1),Π may result non-normalised.

Let us denote by

V ecΠ(X, V ) = {(π1, . . . , πk)| πj ∈ Π(X, Vj), j = 1, ..., k},
the set of vectorial distributions onV whose projections are normalised.

As usual, we consider in this set a mixture operation defined in terms of a t-norm>
in V .

In order to obtain a mixture operation that satisfies reduction of lotteries, we are
interested in t-norms> in V whose projections are join morphisms. By (Baets and
Mesiar, 1999; theorem 7.1),> satisfies this condition if and only there exists a finite
family of t-norms>j onVj s.t.> = Πj=1,...,k>j . From now on, we restrict ourselves
to work with t-norms inV which are Cartesian products of t-norms inVj ’s.

Given a set of t-norms{>j}j=1,...,k, consider the t-norm product of the>j ’s, i.e.

> = Πj=1,...,k>j .

Then, we define the mixtureM> onV ecΠ(X, V ) as:

M>(Π,Π′;α, β) = (max(α1>1π1, β1>1π
′
1), . . . , max(αk>kπk, βk>kπ′k)),

with α = (α1, . . . , αk), β = (β1, . . . , βk) ∈ V s.t.max(αj , βj) = 1 ∀j.
Also, for each t-norm onVj , we considerM>j the mixture induced onΠ(X, Vj).

Observe thatM> satisfies that:

M>(Π, Π′;α, β) = (M>1(π1, π
′
1;α1, β1), ...,M>k

(πk, π′k; αk, βk)).

In (V ecΠ(X, V ), M>) we may consider different orderings taking into account that
preference on consequences are represented by a linear preference functionu or by a
vectorial oneu. For each case, we may define a generalised pessimistic or optimistic
criterion. Indeed, we may have the following cases:

U linear. Given a preference functionu:X → U and a set of onto order-preserving
functionshj :Vj → U, eachhj being coherent w.r.t>j , we propose to use the
following expression1 for a pessimistic evaluation

V GQU−(Π|u) = (GQU−(π1|u), . . . , GQU−(πk|u)),

where as usualGQU−(πj |u) = minx∈X nj(π(x)>j λj
x), with nj(λj

x) = u(x).
For an optimistic behaviour we propose

V GQU+(Π|u) = (GQU+(π1|u), . . . , GQU+(πk|u)),

with GQU+(πj |u) = maxx∈X hj(π(x)>j λj
x), wherehj(λj

x) = u(x).

1Actually, we should writeGQU−(πj |hj , u), however, for the sake of simplicity we omit thehj ’s.
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U cartesian product. Let U = Πj=1,k Uj , eachUj being a finite linear scale and let
u = (u1, . . . , uk) be a (vectorial) preference function onU with components
uj :X → Uj such thatu−1

j (1U
j ) 6= ∅ 6= u−1

j (0U
j ). Further we assume eachUj

is commensurate withVj through onto order-preserving functionshj :Vj → Uj

which are coherent w.r.t>j . Then, we define the following utility functions

V GQU
−

(Π|u) = (GQU−(π1|u1), . . . , GQU−(πk|uk))
V GQU

+
(Π|u) = (GQU+(π1|u1), . . . , GQU+(πk|uk)),

where GQU−(π|uj) = minx∈X nj(π(x) >j λj
x) and GQU+(π|uj) =

maxx∈X hj(π(x)>j δj
x), with nj(λj

x) = hj(δj
x) = uj(x).

In the following sections we analyse them in some detail.

6.4.1 Linear Preference

Let us consider a particular situation for the first case. We assume thatV1 = . . . =
Vk = W, W being a linear scale, and also>1 = . . . = >k. For this case, for each fixed
boolean functiong, we have the following representation result.

Theorem 6.3
Letv a preference relation on(V ecΠ(X, W k), M>). Then, it satisfies

• there exists a preference relationvW onΠ(X, W ) such that

µv(Π, Π′) = g(
�
µvW

(π1, π′1), . . . , µvW
(πk, π′k)

�
,
�
µvW

(π′1, π1), . . . , µvW
(π′k, πk)

�
)

with Π = (π1, . . . , πk), Π′ = (π′1, . . . , π′k).

• vW satisfiesAX>(AX+
> resp.)

if and only if there exist:

(i) a finite linearly ordered preference scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0),

(iii) an onto order-preserving functionh:W → U, h being coherent w.r.t>,

in such a way that it holds:

Π v Π′ ⇐⇒ V GQU−(Π|u) 4g
{≤U} V GQU−(Π′|u)2.

(Π v Π′ ⇐⇒ V GQU+(Π|u) 4g
{≤U} V GQU+(Π′|u) resp. )

Still assuming that all the linear scales in the cartesian product of uncertainty are the
same, i.e.V = W k, with W linear, we may consider the preference orderings related
with min-orderingin Uk.

2Here,4g
{≤U} means thatR = {≤U}i=1,...,k.

91



Lemma 6.4
∀ Π, Π′ ∈ V ecΠ(X, W k),

V GQU−(Π|u) ≤min V GQU−(Π′|u) ⇐⇒ GQU−(max{π1, . . . , πk}|u) ≤U

GQU−(max{π′1, . . . , π′k}|u)

with the distributionmax{π1, . . . , πk}(x) = max{π1(x), . . . , πk(x)}.
Proof:
It is a direct consequence of the definition of the≤min ordering

and of being

GQU−(max{π1, . . . , πk}|u) = min{GQU−(π1|u), . . . , GQU−(πk|u)}.
¤

Notice that we have only considered the special case of having a linear scale of
preference and the same scale in the cartesian product where we measure uncertainty.
The case of having different scales remains as an open question.

6.4.2 Preferences Measured on Cartesian Products

Now, we consider the case of having a vectorial preference function on consequences
overU.

Axiomatic Setting

Given a boolean functiong, let V GAXg
> be the following set of axioms for preference

relationsv on (V ecΠ(X, V ),M>), with > s.t. > = Πj=1,...,k >j , each>j being a
t-norm onVj :

• VA0: There exists a family{(Π(X, Vi),vi)}i=1,...,k of orderings such that

µv(Π, Π′) = g(
�
µv1 (π1, π′1), . . . , µvk

(πk, π′k)
�
,
�
µv1 (π′1, π1), . . . , µvk

(π′k, πk)
�
)

• AxR1: vi satisfiesAX>i for eachi = 1, ..., k

For representing the preference relations onV ecΠ(X, V ) we propose the following
theorem.

Theorem 6.5
A preference relationv on(V ecΠ(X,V ), M>), satisfies the axiom setV GAX> if and
only if there exist:

(i) a set of finite linearly ordered preference scales{Uj}j=1,...,k with inf(Uj) = 0U
j

andsup(Uj) = 1U
j ,

(ii) a set of preference functionsuj :X → Uj such thatu−1
j (1U

j ) 6= ∅ 6= u−1
j (0U

j ),
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(iii) a set of onto order-preserving functionshj :Vj → Uj , eachhj being coherent w.r.t
>j ,

in such a way that it holds:

Π v Π′ ⇐⇒ V GQU
−

(Π|u) 4g
{≤Uj

}j=1,...,k
V GQU

−
(Π′|u),

with
V GQU

−
(Π|u) = (GQU−(π1|u1), ..., GQU−(πk|uk)),

andGQU−(π|uj) = minx∈X nj(π(x)>jλ
j
x), wherenj(λj

x) = uj(x).

The proof of the theorem is straightforward.
As usual for an optimistic behaviour, we considerV GAX+

> , which is obtained from
V GAX> replacingAxR1 by

• AxR1+ : vi satisfiesAX+
>i

for eachi = 1, ..., k

for characterising the preference ordering induced by
V GQU

+
(Π|u) = (GQU+(π1|u1), ..., GQU+(πk|uk)), GQU+(·|uj) being defined

as usual.

6.5 Another Framework for the Chemical Plant
Example

Now, assume that instead of receiving the report of the plant engineer the head of the
Safety Department receives the evaluations of the responsible of control of each system.
For each state, two evaluations of the possibility of being in this state are provided.
Assume he has the following evaluations:

ΠS(s0) = (w1, w1), ΠS(s1) = (1, 1), ΠS(s2) = (w2, w1), ΠS(s3) = (0, 0).

Now, bothU andV are supposed to be equal toW ×W, with W = {0 = w0 <
w1 < w2 < w3 = 1}. We choose the Pareto ordering both inU and V . We are
interested in comparing the results of the ranking of distributions withV GQU(·|u) for
different t-norms,̄u being defined like as in Section 6.3 andh̄ is the identity while the
same t-norm is considered inV .

For each decision we have their associated distributions:

Πd0 = ((w1, w1)/(Risk = 0, Cost = 0), (1, 1)/(Risk = 1, Cost = 0),
(w2, w1)/(Risk = 2, Cost = 0)),

Πd1 = ((1, 1)/(Risk = 0, Cost = 1), (w2, w1)/(Risk = 1, Cost = 1)),
Πd2 = ((1, 1)/(Risk = 0, Cost = 2)),
Πd3 = ((1, 1)/(Risk = 0, Cost = 3)),
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and their evaluations are:

V GQU
−

(Πd0|u) = (min{w2, w1⊥w1}, 1),

V GQU
−

(Πd1|u) = (min{w3, w1⊥w2}, min{w2, w2⊥w2}),
V GQU

−
(Πd2|u) = (1, w1),

V GQU
−

(Πd3|u) = (1, 0),

⊥ being the dual conorm of> with respect to the involution inW. Note thatd2 is
preferred tod3 for any t-norm. In order to obtain the utility values ford0 andd1, we
take two particular t-norms. If we choose> = minimum, we have

V GQU
−

(Πd0|u) = (w1, 1),

V GQU
−

(Πd1|u) = (w2, w2).

So, we have that choosingminimumd0, d1 andd2 are incomparable, onlyd3 may be
discharged. While if we chooseLukasiewicks t-norm, we have

V GQU
−

(Πd0|u) = (w2, 1),

V GQU
−

(Πd1|u) = (1, w2).

That is, d1 is preferred tod2 (d2 being preferred tod3), while d1 and d0 remains
incomparable.

94



Chapter 7

Utility Functions for
Representing Partial Preference
Relations

In this Chapter, we consider the remaining extensions mentioned in the introduction of
Chapter 6. That is, we consider now the cases in which uncertainty and preferences
values belong, in principle, to distributive lattices. Of course, the products of linear
scales considered in Chapter 6 are particular types of distributive lattices.

As usual, we are interested in having commensurate valuation sets for uncertainty
and preference, this means we require the existence of an onto order-preserving
mappingh:V → U . But now, we may have incomparable values of uncertainty, and
h may be required to treat them in different ways (see Figure 7.1). Indeed, given two
incomparable valuesλ andλ′ onV , their respective images may be required to be:

1. incomparable: it means that the associated distributionsπλ’s are considered
incomparable as well. In this case, the requirement will be,

if λ <> λ′ then h(λ) <> h(λ′).

2. equal: it means that their associated distributions are considered equivalent with
respect to the preference relation. In this case, we have two further alternatives
depending on the value thath assigns toλ ∨ λ′. Indeed, we have:

(a) The distribution associated with the supremum of the values is
indistinguishable from the associated withλ andλ′, i.e.

if λ <> λ′ then h(λ ∨ λ′) = h(λ′) = h(λ).

In this case,h results a join-morphism.

(b) The associated distributionsπλ’s are again indistinguishable, but they are
not indistinguishable with the distribution associated withλ ∨ λ′.
That is,
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λ∨λ’
π+

λ∨λ’

λ λ’
π+

λ
π+

λ’

h

λ∨λ’

λ λ’
π+

λ 0  π+
λ’ 0 π+

λ∨λ’

h

λ∨λ’
π+

λ∨λ’

λ λ’ π+
λ  0 π+

λ’

h

λ <> λ’ ⇒ h(λ) <> h(λ’) 

λ <> λ’ ⇒ h(λ) = h(λ’) = h(λ) ∨ h(λ’) 

λ  <> λ’ ⇒ h(λ) = h(λ’) < h(λ) ∨ h(λ’)

Figure 7.1: Different possible properties for the linking mappingh w.r.t. incomparable
values.

if λ <> λ′ then h(λ ∨ λ′) > h(λ′) = h(λ).

Now, h is not a join-morphism. Observe that in this case the distribution
associated withλ∨λ′ will be less (more) preferred than the associated with
λ andλ′ if the behaviour is pessimistic (optimistic resp.).

In case 1) incomparability is “preserved”, hence ifV is a non-linear lattice, so isU .
We will analyse this case in detail, taking into account the different operators available
in V . In case 2a) incomparability is lost, moreover, it forcesU to be linear. We shall
deal with the option that considers the three associated distributions as equivalent, the
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remaining case being left as a future work1.
In the next Section, we introduce some necessary background on lattices and some
preliminary results that are required through the Chapter. Next, we consider the
case of h preserving incomparability. In the first part, we shall only assume
available in the lattices themeet and join operations. As usual, we are interested
in considering “possibilistic mixtures” (like “max-min” mixtures) on the set of
“possibilistic” distributions onV, requiring this operation to satisfy reduction. Because
of this, we require the lattices to be distributive. In the second part, we assume available
other operations on the lattices, which allows us to consider other alternative mixtures.
Again, the requirement of satisfying reduction of lotteries leads us to work with
residuated distributive measurement lattices. For both cases, we introduce pessimistic
and optimistic criteria for these frameworks and their axiomatic characterisations as
well. Finally, in the last Section we consider the case of considering the distribution
associated to the supremum of incomparable values,λ, λ′, indistinguishable ofπλ ∼
πλ′ .

7.1 Some Background on Lattices

Let us recall some definitions and results related with lattices (see, for example, (Davey
and Priestley, 1990; Grätzer, 1978) for more details) that we will use in the following.

• A setL with a binary relation on it≤, is anordered set, also called apartially
ordered set, if for all x, y, z ∈ L, ≤ satisfies:

a) reflexivity:x ≤ x,

b) antisymmetry:x ≤ y, y ≤ x imply x = y,

c) transitivity:x ≤ y, y ≤ z imply x ≤ z.

• Let (L,≤) be apartially ordered set, let beS ⊆ L,

– x ∈ S, x is an upper bound ofS if s ≤ x ∀s ∈ S.

– The set of all upper bounds ofS, is denoted bySu. If Su has a least element,
it is calledleast upper bound of Sor supremum, also denoted bysup S.

– Analogously,x ∈ S, x is an lower bound ofS if s ≥ x ∀s ∈ S, and the set
of all lower bounds ofS, is denoted bySl. If Sl has a great element, it is
calledgreatest lower bound of Sor infimumalso denoted byinf S.

• A non-empty ordered setS is a join-semilatticeif sup{x, y} ∈ S ∀x, y ∈ S.
Analogously,S is ameet-semilatticeif inf{x, y} ∈ S ∀x, y ∈ S.

• An ordered set(L,≤) is a lattice iff it is ajoin-semilatticeand ameet-semilattice.

• A lattice (L,≤) is boundedif it has supremum(1) andinfimum(0), in this case
we denote it by(L,≤, 0, 1).

1Notice that sinceh is not join morphism the generalised “utility” functionsGQU(·|h) will not preserve
mixtures.
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• Given a lattice(L,≤), two binary operations may be defined:meet(∧) and
join(∨).

x ∧ y = inf{x, y} and x ∨ y = sup{x, y}.

• Let (L1,∧1,∨1) and(L2,∧2,∨2) be two lattices. A mappingf :L1 → L2 is a
lattice homomorphism, a homomorphismfor short, if f is join-preserving and
meet-preserving, i.e.

f(a ∨1 b) = f(a) ∨2 f(b) and f(a ∧1 b) = f(a) ∧2 f(b).

If f is also onto, it is calledepimorphism.

• If (L1,∧1,∨1, 01, 11) and(L2,∧2,∨2, 02, 12) are bounded lattices,f is a{0,1}-
homomorphismif it is a homomorphism also satisfyingf(01) = 02, f(11) = 12.

Observe the well known connection between∨,∧ and≤: Let L be a lattice and let
a, b ∈ L. Then, the following are equivalent:

1. a ≤ b,

2. a ∨ b = b,

3. a ∧ b = a,

• (L,∧,∨, nL, 0, 1) will denote a bounded lattice with a reversing involution, i.e.
L satisfies that0, 1 ∈ L and0 ≤ x ≤ 1 ∀x ∈ L, andnL:L → L is a strict
decreasing function2 s.t.nL(nL(x)) = x.

Proposition 7.1
• Let (L,∧,∨) be a lattice, then,∧ and∨ are associative, commutative, satisfy

idempotency and the absorption laws3.

• If (L,∧,∨) is a finite lattice, then,L is a bounded lattice.

• If (L,∧,∨, nL, 0, 1) is a lattice with reversing-involution, then,nL satisfies that:

– nL(0) = 1 andnL(1) = 0,

– nL(x ∧ y) = nL(x) ∨ nL(y),

– nL(x ∨ y) = nL(x) ∧ nL(y).

Definition 7
Given a partially pre-ordered set(L,≤), i.e.≤ is reflexive and transitive, the associated
indifference relation∼ and theincomparability relation<> are defined as:

• a ∼ b ⇐⇒ (a ≤ b and b ≤ a).

• a <> b ⇐⇒ (a � b and b � a).

2nL is bijective.
3Idempotency means:a ∨ a = a, a ∧ a = a, absorption is:a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a
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Now, we introduce a new definition and related results that will be applied in our
proposal.

Definition 8
Let (L,≤) be a partially pre-ordered set, denote byL/ ∼ the quotient set w.r.t.∼ and
let [a] = {y ∈ L|a ∼ y}.

(L,≤) is a pre-latticeiff (L/ ∼,v) is a lattice, definingv as:

[a] v [b] iff a ≤ b.

As a consequence of the∼ definition, we have that

Proposition 7.2
Let (L,≤) be a partially pre-ordered set, then:

• ∼ is an equivalence relation.

• if (L,≤) is totally pre-ordered,(L/ ∼,v) is a linearly ordered set.

Theorem 7.3
(A,≤) is a pre-lattice iff it is a partially pre-ordered set, such that satisfies:

1. For alla, b ∈ A there exists an unique non-empty subsetSUP (a, b) ⊆ A s.t.

• SUP (a, b) is an equivalence class of the quotient setA/ ∼, i.e.
SUP (a, b) ∈ A/ ∼ .

• ∀c ∈ SUP (a, b), a ≤ c andb ≤ c.

• if a ≤ e and b ≤ e, then, either(e ∈ SUP (a, b)) or (e > 4c, c ∈
SUP (a, b)).

2. For alla, b ∈ A there exists an unique non-empty subsetINF (a, b) ⊆ A s.t.

• INF (a, b) is an equivalence class of the quotient setA/ ∼, i.e.
INF (a, b) ∈ A/ ∼ .

• if e ≤ a ande ≤ b, then either(e ∈ INF (a, b)) or (c > e c ∈ INF (a, b)).

• ∀c ∈ INF (a, b), c ≤ a andc ≤ b.

Proof:
← ) We will verify that (A/ ∼,∨) is a joint-semilattice and(A/ ∼,∧) is a meet-

semilattice.

1. First, we verify that(A/ ∼,∨) is a joint-semilattice, with∨ defined as

[a] ∨ [b] = SUP (a, b). (7.1)

4e > c iff c ≤ e ande � c.
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Observe that∨ is well defined, i.e.

if a ∼ a′ then[a] ∨ [b] = [a′] ∨ [b].

Indeed, if Sa,b and Sa′,b denote an element ofSUP (a, b) and SUP (a′, b)
respectively, we verify now thatSa,b ∼ Sa′,b, i.e. SUP (a, b) = SUP (a′, b).

As
Sa,b ≥ a ∼ a′ and Sa,b ≥ b,

by definition ofSUP (a′, b), we have thatSa,b ≥ Sa′,b.

Conversely, since

Sa′,b ≥ a′ ∼ a and Sa′,b ≥ b,

by definition ofSUP (a, b) we have thatSa′,b ≥ Sa,b, therefore

Sa,b ∼ Sa′,b.

In order to see that(A/ ∼,∨) is a joint-semilattice, we will verify that

• ∨ is associative.
Indeed, by definition ofSUP (c, Sa,b) we have that

Sc,Sa,b
≥ c, Sc,Sa,b

≥ Sa,b, Sa,b ≥ a and Sa,b ≥ b.

So,Sc,Sa,b
≥ Sb,c andSc,Sa,b

≥ a, hence,

Sc,Sa,b
≥ Sa,Sb,c

.

Conversely,

Sa,Sb,c
≥ a, Sa,Sb,c

≥ Sb,c, Sb,c ≥ b and Sb,c ≥ c,

then,
Sa,Sb,c

≥ Sa,b and Sa,Sb,c
≥ c,

soSa,Sb,c
≥ Sc,Sa,b

, thereforeSa,Sb,c
∼ Sc,Sa,b

, i.e.
SUP (a, Sb,c) = SUP (c, Sa,b).
Hence,

([a] ∨ [b]) ∨ [c] = SUP (Sa,b, c) = SUP (a, Sb,c) = [a] ∨ ([b] ∨ [c]).

• ∨ is commutative. It is obvious by definition of SUP.

• ∨ satisfies idempotency.
Indeed, asa ≥ a, then,a ≥ Sa,a, but by definition ofSUP (a, a), Sa,a ≥
a, soa ∼ Sa,a. Therefore,

[a] = [Sa,a] = SUP (a, a) = [a] ∨ [a].
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So,(A/ ∼,∨) is a joint-semilattice.

2. We verify that(A/ ∼,∧) is a meet-semilattice, with∧ defined as

[a] ∧ [b] = INF (a, b).

∧ is well defined, i.e.

if a ∼ a′ then[a] ∧ [b] = [a′] ∧ [b].

Indeed, if Ia,b and Ia′,b denotes an element ofINF (a, b) and INF (a′, b)
respectively, we verify now thatIa,b ∼ Ia′,b, i.e. INF (a, b) = INF (a′, b).

As
Ia,b ≤ a ∼ a′ and Ia,b ≤ b,

by definition ofINF (a′, b), we have thatIa,b ≤ Ia′,b.

Conversely, since

Ia′,b ≤ a′ ∼ a and Ia′,b ≤ b,

by definition ofINF (a, b), we have thatIa′,b ≤ Ia,b.

Therefore,
Ia,b ∼ Ia′,b.

In order to see that(A/ ∼,∧) is a meet-semilattice, we will verify that

• ∧ is associative.

Indeed, by definition ofINF (c, Ia,b) we have thatIc,Ia,b
≤ c andIc,Ia,b

≤
Ia,b, and asIa,b ≤ a andIa,b ≤ b, thenIc,Ia,b

≤ Ib,c andIc,Ia,b
≤ a, so

Ic,Ia,b
≤ Ia,Ib,c

.

Conversely,Ia,Ib,c
≤ a and Ia,Ib,c

≤ Ib,c and Ib,c ≤ b, Ib,c ≤ c, then
Ia,Ib,c

≤ Ia,b and Ia,Ib,c
≤ c, soIa,Ib,c

≤ Ic,Ia,b
.

Therefore,
Ia,Ib,c

∼ Ic,Ia,b
.

So,

([a] ∧ [b]) ∧ [c] = INF (Ia,b, c) = INF (a, Ib,c) = [a] ∧ ([b] ∧ [c]).

• ∧ is commutative. It is obvious by definition ofINF.

• ∧ satisfies idempotency.

As a ≤ a, thena ≤ Ia,a, but by definition ofINF (a, a), Ia,a ≤ a, so
a ∼ Ia,a. Therefore,

[a] = [Ia,a] = INF (a, a) = [a] ∧ [a].

101



Hence,(A/ ∼,∧) is a meet-semilattice.

Therefore,(A/ ∼,∧,∨) is a lattice.

Note that the order induced from(A/ ∼,∧), i.e.

[a] ≤∧ [b] iff [a] ∧ [b] = [a],

and the one defined as
[a] v [b] iff a ≤ b,

are the same. Indeed,

[a] v [b] iff a ≤ b iff INF (a, b) = [a] iff [a] ∧ [b] = [a] iff [a] ≤∧ [b].

→) We verify the existence ofSUP (a, b) andINF (a, b). Let ∧ and∨ be induced
in A/ ∼ by the partial orderv, and define

SUP (a, b) = [a] ∨ [b] and INF (a, b) = [a] ∧ [b].

Both sets satisfy the required conditions as it is shown following.

• As [a] ∨ [b] ([a] ∧ [b] resp.) is an equivalence class,
the elements ofSUP (a, b) (INF (a, b) resp.) are indifferent, and obviously if
f ∈ SUP (a, b), then∀ g ∼ f, g ∈ SUP (a, b).

• Let c ∈ SUP (a, b) = [d], we verify thatc ≥ a andc ≥ b.

Indeed, asc ∼ d, and by definition of∨, [a] v [d] and[b] v [d], we have that
a ≤ d andb ≤ d, so

c ≥ a andc ≥ b.

• It remains to verify that: Ife ≥ a ande ≥ b, then,

(e ∼ c, c ∈ SUP (a, b)) or (e > c, c ∈ SUP (a, b)).

Indeed, ase ≥ a ande ≥ b, we have that[a] v [e] and[b] v [e], so

[d] = [a] ∨ [b] v [e],

i.e. d ≤ e, therefore ifc ∈ SUP (a, b), then,c ∼ d ≤ e.

These sets are unique. Indeed, letp, p′ ∈ A. Suppose thatSUP (p, p′) satisfying
the conditions exists, denoting bySp,p′ an element ofSUP (p, p′), we will verify that
Sp,p′ ∼ Sp,p′ .

As Sp,p′ ≥ p andSp,p′ ≥ p′, by definition ofSUP (p, p′), we have that

Sp,p′ ≥ Sp,p′ .

Conversely, as
Sp,p′ ≥ p and Sp,p′ ≥ p′,
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then, by definition ofSUP (p, p′), Sp,p′ ≥ Sp,p′ , therefore

Sp,p′ ∼ Sp,p′ ,

hence,
SUP (p, p′) = SUP (p, p′).

Analogously, we may verify thatINF (p, p′) is unique. ¤

7.2 Ordinal/Qualitative Utility Functions on Lattices

Now, let us introduce the lattice-based context of an extension of the possibilistic model.

7.2.1 A Possibilistic Context on Lattices

Let X = {x1, ..., xp} be a finite set of consequences. We will denote by
(V,∨V ,∧V , 0V , 1V , nV ) afinitedistributivelattice of uncertainty valueswith minimum
0V , maximum1V and areversing involutionnV , ≤V being the lattice order induced
in V.

(U,∨U ,∧U , 0U , 1U , nU ) will be afinite distributive lattice of preference valueswith
involutionnU .

Remark 7
In order to simplify notation, we use∧,∨ for denoting both operations onV andU, as
well as 1 and 0 are used for denoting their minimum and maximum, although they may
be different, hoping they may be understood by the context.

We consider theset of consistent possibility distributions onX overV ,

Π(X, V ) = {π : X → V |
∨

x∈X

π(x) = 1}.

As usual, we define the point-wise order in(Π(X), V )5 induced by≤V

π ≤ π′ ⇐⇒ ∀x ∈ X π(x) ≤V π′(x).

For our purposes, we will consider a subset ofΠ(X), theset ofnormalisedpossibility
distributions6, i.e.

Π∗(X,V ) = {π ∈ Π(X) | ∃x s.t. π(x) = 1}. (7.2)

As usual, we identify possibilistic lotteries and distributions. Givenx, y ∈ X, x 6=
y, andλ, µ ∈ V s.t. λ ∨ µ = 1, the qualitative lottery (λ/x, µ/y) is the consistent
possibility distribution onX defined, as usual, as

(λ/x, µ/y)(z) =





λ, if z = x
µ, if z = y
0, otherwise.

5For the sake of simplicity, we shall generally omit the reference to the uncertainty set.
6WhenV is a finite linear scale, bothΠ(X) andΠ∗(X) are the same set.
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The Possibilistic Mixture is now an operation defined onΠ(X) that combines two
consistent possibility distributionsπ1 andπ2 into a new one, denoted(λ/π1, µ/π2),
with λ, µ ∈ V andλ ∨ µ = 1, defined as

(λ/π1, µ/π2)(x) = (λ ∧ π1(x)) ∨ (µ ∧ π2(x)).

In order to have a closed operation onΠ∗(X), the mixture operation is restricted to
Π∗(X) requiring the scalars to satisfy an additional condition, i.e. ifπ, π′ ∈ Π∗(X),
we consider(λ/π, µ/π′) with λ, µ ∈ V beingλ = 1 or µ = 1.

Now, asV is distributive, we may verify that reduction of lotteries always holds.

Proposition 7.4
∀λ1, λ2, µ1, µ2 ∈ V s.t.λ1 ∨ λ2 = 1, ∀π ∈ Π(X),

(λ1/(1/π, µ1/X), λ2/(1/π, µ2/X)) = (1/π, (λ1 ∧ µ1) ∨ (λ2 ∧ µ2)/X).

Proof:
By definition of lotteries, we have that

(λ1/(1/π, µ1/X), λ2/(1/π, µ2/X))(z) = (λ1 ∧ (π(z) ∨ µ1)) ∨
(λ2 ∧ (π(z) ∨ µ2))

= 7 ((λ1 ∧ π(z)) ∨ (λ2 ∧ π(z))) ∨
((λ1 ∧ µ1) ∨ (λ2 ∧ µ2))

= 8 π(z) ∨ ((λ1 ∧ µ1) ∨ (λ2 ∧ µ2)).

Therefore, we have that

(λ1/(1/π, µ1/X), λ2/(1/π, µ2/X)) = (1/π, [(λ1 ∧ µ1) ∨ (λ2 ∧ µ2)] /X).

¤

Consideru:X → U a preference function that assigns to each consequence of
X a preference level ofU, requiringV andU to be commensurate, i.e. there exists
h:V → U a{0,1}-homomorphismrelating both latticesV andU. Letn be the reversing
homomorphismn:V → U defined asn(λ) = nU (h(λ)). It also verifiesn(0) = 1, and
n(1) = 0. For anyπ ∈ Π∗(X), consider the qualitative utility functions:

QU−(π) =
∧

x∈X

(n(π(x)) ∨ u(x)),

QU+(π) =
∨

x∈X

(h(π(x)) ∧ u(x)).9

Now, we will introduce the axioms that characterise the preference relations induced
by these functions and some results that we need for the representation theorems.

7By distributivity and associativity inV.
8Sinceλ1 ∨ λ2 = 1, (λ1 ∧ π) ∨ (λ2 ∧ π) = π.
9Obviously whenV anU are linear scales these functions recover the ones introduced in Chapter 4.
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Proposition 7.5
If U is a distributive lattice with involution,QU− andQU+ preserve the possibilistic
mixture in the sense that the following expressions hold:

QU−(λ/π1, µ/π2) = (n(λ) ∨QU−(π1)) ∧ (n(µ) ∨QU−(π2)),
QU+(λ/π1, µ/π2) = (h(λ) ∧QU+(π1)) ∨ (h(µ) ∧QU+(π2)).

Proof:

QU−(λ/π1, µ/π2) =
∧

x∈X

(n((λ/π1, µ/π2)(x)) ∨ u(x))

=
∧

x∈X

(n(((π1 ∧ λ) ∨ (π2 ∧ µ)))(x) ∨ u(x))10

=
∧

x∈X

(((n(π1(x)) ∨ n(λ)) ∧

(n(π2(x)) ∨ n(µ))) ∨ u(x))11

=
∧

x∈X

((
∨

(n(π1(x)), n(λ), u(x))) ∧

(
∨

(n(π2(x)), n(µ), u(x))))12

= (
∧

x∈X

(
∨

(n(π1(x)), n(λ), u(x)))) ∧

(
∧

x∈X

(
∨

(n(π2(x)), n(µ), u(x))))13

= (
∧

x∈X

(n(λ) ∨ (n(π1(x)) ∨ u(x)))) ∧

(
∧

x∈X

(n(µ) ∨ (n(π2(x)) ∨ u(x))))14

= ((n(λ) ∨ (
∧

x∈X

(n(π1(x)) ∨ u(x))))) ∧

(n(µ) ∨ (
∧

x∈X

(n(π2(x)) ∨ u(x))))

= (n(λ) ∨QU−(π1)) ∧ (n(µ) ∨QU−(π2)).

Therefore,QU− preserves the “possibilistic” mixture.
The proof forQU+ is omitted because of it is analogous to the pessimistic one.¤

Now, we have utility functions for making decisions on lattices, in the usual hypotheses
that ranking decisions is a problem of ranking normalised possibility distributions.

10Since n = nU ◦ h, and h is homomorphism, we have thatn(λ ∨ λ′) = n(λ) ∧ n(λ′) and
n(λ ∧ λ′) = n(λ) ∨ n(λ′).

11SinceU is a distributive lattice,a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).
12Associativity of∧.
13Associativity of∨.
14Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).
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7.2.2 Characterisations for Ordinal/Qualitative Utility Functions

In this Section, we characterise the orderings induced by these functions as well as the
preference relations that are representable by these functions.

Proposition 7.6
Let (Π∗(X),v), satisfying

• AP1(structure) : (Π∗(X),v) is a pre-lattice.

• A2 (uncertainty aversion): if π ≤ π′ ⇒ π′ v π.

Then,

1. The maximal15 elements of(Π∗(X),v) are equivalent.

2. The maximal elements of(X,v) are equivalent, and they are equivalent to the
maximal elements of(Π∗(X),v).

Proof:

1. By AP1, (Π∗(X),v) is a finite partial pre-order, then exists at least one maximal
element w.r.t.v . Let π1 andπ2 be maximal elements.
By AP1, existsSUP (π1, π2). Let π ∈ SUP (π1, π2), then

π w π1 and π w π2,

but asπ1 andπ2 are maximal elements, it must be

π1 ∼ π ∼ π2.

2. Let xM be a maximal element of(X,v). Suppose it is not a maximal element
of (Π∗(X),v). Hence, existπ ∈ (Π∗(X),v) s.t. xM @ π. As π is normalised,
existsx ∈ X s.t.π(x) = 1, so byA2, we have that asx ≤ π, then x w π A xM .
Contradiction sincexM is maximal in(X,v).
So, xM is also a maximal element of(Π∗(X),v), and by 1) all maximal
elements of(Π∗(X),v) are equivalent, so all maximal elements of(X,v) are
also equivalent.

¤

Axiomatic setting

Let AXP be the following set of axioms on(Π∗(X),v) (as usual,π ∼ π′ ⇐⇒ π v
π′ andπ w π′):

• AP1: (Π∗(X),v) is a pre-lattice.

15π is amaximal elementiff ∀π′ ∈ Π∗(X), π v π′ ⇒ π′ ∼ π.
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• A2 (uncertainty aversion): if π ≤ π′ ⇒ π′ v π.

• A3 (independence): π1 ∼ π2 ⇒ (λ/π1, µ/π) ∼ (λ/π2, µ/π).

Let π be a maximal element of(Π∗(X), v) so, for eachλ ∈ V, we consider
π−λ = (1/π, λ/X)16.

• AP4 : ∀π ∈ Π∗(X), ∃λ ∈ V s.t.π ∼ π−λ .

• AP5: if π−λ v π−λ′ ⇒ π−nV (λ) w π−nV (λ′).

• AP6(incomparability preservation): if λ <> λ′ ⇒ π−λ @A π−λ′ .

AP1 says that the quotient set(Π∗(X)/ ∼,v) results a lattice. A2, A3 and
AP4 have the analogous meanings to the linear case, whileAP6 establishes that
two incomparable values of uncertainty,λ andλ′, lead to two incomparable lotteries.
Finally, AP5 says that the preference between lotteries with degrees of uncertaintyλ
andλ′ with respect to a maximalπ results reversed when the lotteries are considered
with the respective “opposite” values of uncertainty.

Remark 8
If AP5 holds then,

πλ ∼ πλ′ ⇒ πnV (λ) ∼ πnV (λ′).

Lemma 7.7
Let (U,≤U , 0, 1, nU ) and(V,≤V , 0, 1, nV ) be two distributive lattices with involution,
h:V → U a epimorphism17 andu:X → U.
If (QU−)−1(1) 6= ∅ and(QU−)−1(0) 6= ∅, then

• there existsx ∈ X s.t.u(x) = 1 and
∧

x∈X u(x) = 0.

• QU− is onto.

lema

Proof:

• Since(QU−)−1(1) 6= ∅, there existsπ s.t.

QU−(π) =
∧

x∈X

(n(π(x)) ∨ u(x)) = 1,

thenn(π(x)) ∨ u(x) = 1 ∀x ∈ X. As π is normalised there existsx1 ∈ X s.t.
π(x1) = 1, hence1 = n(1) ∨ u(x1), sou(x1) = 1. On the other hand,

QU−(X) =
∧

x∈X

(n(X(x)) ∨ u(x)) =
∧

x∈X

(0 ∨ u(x)) =
∧

x∈X

u(x).

16In fact, to beπ−λ well defined we are assuming thatAP1 andA3 are also required
17In fact, in the proof we only requireh to be onto and to satisfyh(0) = 0 andh(1) = 1.
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Since(QU−)−1(0) 6= ∅, there existsπ s.t. QU−(π) = 0, and asQU−(π) ≥∧
x∈X u(x), we have that ∧

x∈X

u(x) = 0.

• Givenw ∈ U, sincen is onto there existsλ ∈ V s.t.n(λ) = w. As we have seen,
there existsx1 ∈ X s.t. u(x1) = 1, thus

∧
x∈X−{x1} u(x) = 0. Let πw be the

distribution defined as

πw(x) =





1, if x = x1

λ, otherwise.
(7.3)

Then,

QU−(πw) =
∧

x∈X

(n(πw(x)) ∨ u(x))

= n(λ) ∨

 ∧

x∈X−{x1}
u(x)




= n(λ)
= w.

¤

Lemma 7.8
Let h:V → U be an onto non-decreasing function satisfying that

if λ <> λ′ thenh(λ) <> h(λ′).

Then,h is a lattice epimorphism.

Proof:
First, we verify thath also satisfies that

h(λ) > h(λ′) thenλ > λ′. (7.4)

Indeed, suppose thatλ′ ≮ λ, i.e. λ′ ≥ λ or λ <> λ′. But,

• if λ <> λ′, then, by hypothesis,h(λ) <>U h(λ′). Contradiction.

• if λ′ ≥ λ, ash is non-decreasing, thenh(λ′) ≥ h(λ). Contradiction.

So, it must beλ > λ′.
Now, we verify thath is distributive w.r.t.∧ and∨.
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• h(λ) ∨ h(λ′) = h(λ ∨ λ′).

Indeed, ash is order-preserving we have thath(λ) ∨ h(λ′) ≤ h(λ ∨ λ′).
As h is onto, we have that there existsµ ∈ V s.t.h(λ) ∨ h(λ′) = h(µ), and thus
h(µ) ≥ h(λ) andh(µ) ≥ h(λ′).

– If h(λ) <> h(λ′) thenh(µ) > h(λ) andh(µ) > h(λ′).
As h satisfies (7.4), we have thatµ > λ andµ > λ′, soµ ≥ λ ∨ λ′.
Therefore,h(µ) ≥ h(λ ∨ λ′), i.e. h(λ) ∨ h(λ′) ≥ h(λ ∨ λ′).

– Otherwise,h(λ′) ≥ h(λ) or h(λ) ≥ h(λ′).
Suppose thath(λ) ≥ h(λ′), thenh(λ) ∨ h(λ′) = h(λ).
Observe that sinceh(λ) ≥ h(λ′), by hypothesis we have thatλ <> λ′ is
impossible, so it must be

λ ≤ λ′ or λ > λ′. (7.5)

Therefore, since

h(λ ∨ λ′) =
{

h(λ) if λ > λ′

h(λ′) if λ ≤ λ′, (7.6)

we have that

h(λ) ∨ h(λ′) ≥ h(λ ∨ λ′).

Analogously, ifh(λ′) ≥ h(λ) we obtain thath(λ) ∨ h(λ′) ≥ h(λ ∨ λ′).
Therefore,h(λ) ∨ h(λ′) = h(λ ∨ λ′).

• In a similar way, we may verify that

h(λ ∧ λ′) = h(λ) ∧ h(λ′).

Therefore,h is a lattice epimorphism. ¤

Finally, let4QU− be the preference ordering onΠ∗(X) induced byQU−, i.e.

π 4QU− π′ iff QU−(π) ≤U QU−(π′).

In the following, we state that the set of axiomsAXPcharacterise these preference
orderings.

Theorem 7.9 (Representation Theorem for Pessimistic Utility)
A preference relation(Π∗(X),v) satisfies axiomsAXP iff there exist

(i) a finite distributive utility lattice(U,∧,∨, nU , 0, 1),

(ii) a preference functionu:X → U, s.t.u−1(1) 6= ∅ and
∧

x∈X u(x) = 0,
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(iii) an onto order-preserving functionh:V → U also satisfying

if λ <> λ′ then h(λ) <> h(λ′), (7.7)

and
nU ◦ h ◦ nV = h18, (7.8)

in such a way that it holds:

π′ v π iff π′ 4QU− π

with n = nU ◦ h.

Proof:
← ) We have to verify that the preference ordering onΠ∗(X) induced byQU− satisfies
the above set of axioms. As≤U is a partial order,4QU− is reflexive and transitive.
By Lemma 7.7,QU− is onto, so we may define

SUP (π, π′) = (QU−)−1(QU−(π) ∨QU−(π′)),

and
INF (π, π′) = (QU−)−1(QU−(π) ∧QU−(π′)).

Then, by Theorem 7.3,(Π∗(X), 4QU−) is a pre-lattice.
A2 results from the fact that∨ and∧ are non-decreasing inU andn is a reversing

function. While,A3 is a consequence of the fact thatQU− preserves mixtures.
Let us prove nowAP5: if π−λ 4QU− π−λ′ ⇒ π−nV (λ) <QU− π−nV (λ′).

Let π be a maximal element ofΠ∗(X), so QU−(π) = 1. As QU− preserves
mixtures andQU−(X) = 0, we have thatQU−(π−λ ) = n(λ).

As nU ◦ n ◦ nV = n andnV andnU are involutive, then

n(λ) ≤ n(λ′) ⇒ n(nV (λ)) = nU (n(λ)) ≥ nU (n(λ′)) = n(nV (λ′)).

That is,AP5 is verified.
AP6 is a consequence of the4QU− definition and thath satisfies (7.7).

Now, we checkAP4. Let π be maximal element ofΠ∗(X) w.r.t. 4QU− . As
QU−(1/π, λ/X) = n(λ), then

QU−(π) = n(λ) = QU−(1/π, λ/X) ∀λ ∈ n−1(QU−(π)).

→) The proof is very analogous with the one given for the linear case. We again
structure the proof in the following three steps.

1. We define the distributive utility latticeU with involution nU , and a reversing
mappingn from V to U, satisfying if λ <> λ′ then n(λ) <>U n(λ′), and
nU ◦ n ◦ nV = n. So, we consider the preserving mappingh = nU ◦ n. Hence,
h will satisfy (7.8) and (7.7).

By Lemma 7.8,h is actually a lattice epimorphism.

18This means thath is a mophism w.r.t. negations inV andU .
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2. A function QU−:Π∗(X) → U representingv, i.e. such thatQU−(π) ≤
QU−(π′) iff π v π′, is defined.

3. Finally, we prove thatQU−(π) =
∧

x∈X(n(π(x)) ∨ u(x)), where
u:X → U is the restriction ofQU− on X. u also satisfies thatu−1(1) 6= ∅ and∧

x∈X u(x) = 0.

Now, let us develop these steps.

1. We consider onΠ∗(X) the equivalence relation∼ defined as

π ∼ π′ ⇐⇒ π v π′ andπ′ v π.

By AP1, Π∗(X)/ ∼ is a lattice. As in the linear case, we take as utility lattice
U = Π∗(X)/ ∼ . As Theorem 7.3 guarantees the existence ofSUP andINF,
we define inU the operations∧ and∨ induced by them, i.e.

[π] ∨ [π′] = SUP (π, π′),

and
[π] ∧ [π′] = INF (π, π′).

The≤U induced from∨ coincides withv . It is not difficult to verify that[X]
is minimum of (U,≤U ), and if π is a maximal element ofΠ∗(X), [π] is the
maximum onU.

Let π a maximal element ofΠ∗(X), and for eachλ ∈ V, let

π−λ = (1/π, λ/X),

and letn:V → U be defined as

n(λ) = [π−λ ].

It is not difficult to see, analogously to the linear case, thatn is onto, and thatA2
guaranteesn actually reverses the order. Now, we definenU from n andnV . For
eachw ∈ U, we define

nU (w) = n(nV (λ)),

with λ ∈ V s.t. n(λ) = w. By AP5, see Remark 8,nU is well defined. By
AP6, n satisfies

if λ <> λ′ thenn(λ) <> n(λ′),

and by definition ofnU , we havenU ◦ n ◦ nV = n andnU ◦ nU = identity. Let
h = nU ◦ n. Then,h satisfies the conditions required.

Hence, asn is a reversing epimorphism, andV is a distributive lattice, so isU.
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2. As usual,QU− can be defined onΠ∗(X) in two steps. First, we define it on
lotteries of typeπ−λ , asQU−(π−λ ) = n(λ).
AP4 lets us to extend this definition. Since∀π ∃λ s.t.π ∼ (1/π, λ/X), we
defineQU−(π) = n(λ). It is not difficult to verify thatQU− representsv .

3. Consideru:X → U defined asu(x) = QU−(x).
It remains to prove thatQU−(π) =

∧
x∈X(n(π(x)) ∨ u(x)). To verify this, we

will prove the following equalities:

• QU−(λ1/π1, λ2/π2) = (n(λ1) ∨ QU−(π1)) ∧ (n(λ2) ∨ QU−(π2)) with
eitherλ1 = 1 or λ2 = 1.

By AP4, ∃µ, γ s.t.

π1 ∼ (1/π, µ/X) and π2 ∼ (1/π, γ/X).

By A3,

(λ1/π1, λ2/π2) ∼ (λ1/(1/π, µ/X), λ2/(1/π, γ/X)),

and reducing lotteries we obtain

(λ1/π1, λ2/π2) ∼ (1/π, ((λ1 ∧ µ) ∨ (λ2 ∧ γ))/X).

Therefore, asn is a reversing morphism, we have

QU−(λ1/π1, λ2/π2) = n((λ1 ∧ µ) ∨ (λ2 ∧ γ))
= (n(λ1) ∨ n(µ)) ∧ (n(λ2) ∨ n(γ))
= (n(λ1) ∨QU−(π1)) ∧ (n(λ2) ∨QU−(π2)).

Therefore, we have that

QU−(π1 ∨ π2) = QU−(π1) ∧QU−(π2).

More generally,QU−(
∨

i=1...,p πi) =
∧

i=1...,p QU−(πi).

• QU−(π) =
∧

i=1...,p (n(π(xi)) ∨ u(xi)).
As π ∈ Π∗(X), then∃ xj ∈ X s.t. π(xj) = 1. Without loss of generality
assumej = 1. Let

πi = (1/x1, π(xi)/xi).

Since
π =

∨

i=1...,p

πi,

we have that

QU−(π) = QU−


 ∨

i=1...,p

πi




=
∧

i=1...,p

(u(x1) ∧ (n(π(xi)) ∨ u(xi)))

= 19
∧

i=1...,p

(n(π(xi)) ∨ u(xi)).
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Finally, asπ is normalised, there existsx0 ∈ X s.t.π(x0) = 1, sox0 ≤ π. Then,
by A2, x0 w π. As QU− representsv,

QU−(x0) ≥ QU−(π) = 1,

henceu(x0) = 1, so u−1(1) 6= ∅. As QU−(X) = 0, and QU−(X) =∧
x∈X u(x), then

∧
x∈X u(x) = 0.

This ends the proof. ¤

As usual, in many situations we may be interested in an optimistic behaviour. With
this goal, we consider4QU+ the preference ordering onΠ∗(X) induced byQU+, i.e.

π 4QU+ π′ ⇐⇒ QU+(π) ≤ QU+(π′).

In order to represent this optimistic preference relation, we have to change the
uncertainty aversion axiomA2 by the usual uncertainty-prone postulate:

• A2+: if π ≤ π′ thenπ v π′,

and to modify the axioms involvingπ−λ . Indeed, consider nowπ+
λ = (λ/X, 1/π),

whereπ is a minimal on(Π∗(X),v), we have that

• AP4+ : ∀π ∈ Π∗(X), ∃λ ∈ V such thatπ ∼ π+
λ .

• AP5+: if π+
λ v π+

λ′ ⇒ π+
nV (λ) w π+

nV (λ′).

• AP6+: if λ <> λ′ ⇒ π+
λ @A π+

λ′ .

Now, the Representation Theorem says:

Theorem 7.10 (Representation Theorem for Optimistic Utility)
A preference relation v
on Π∗(X) satisfies axioms setAXP+ = {AP1, A2+, A3, AP4+, AP5+, AP6+}
iff there exist

(i) a finite distributive utility lattice with involution(U,∨,∧, 0, 1, nU ),

(ii) a preference functionu:X → U, s.t.u−1(0) 6= ∅ and
∨

x∈X u(x) = 1,

(iii) an onto order-preserving functionh:V → U, s.t. nU ◦ h ◦ nV = h, and also
satisfying

λ <> λ′ thenh(λ) <> h(λ′),

in such a way that it holds:

π′ v π ⇐⇒ π′ 4QU+ π.

The proof is very analogous to the one for pessimistic utility, and it will be omitted.

19As π(x1) = 1, thenu(x1) = u(x1) ∨ n(π(x1)).
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7.2.3 Generalised Qualitative Utility Functions

Now, we assume available other operators (t-norms) inV. This assumption lets us to
consider also other operations onΠ∗(X). Before analysing this point, let us introduce
some notation and some previous facts about residuated lattices that we will use in the
following.

Definition 9
Given(L,∧,∨, 0, 1) a finite lattice, at-norm (t-conorm) operation>(⊥) onL is a non-
decreasing, associative and commutative binary operation onL verifying λ>0 = 0
and λ>1 = λ (λ⊥0 = λandλ⊥1 = 1, resp.) for all λ ∈ L. The residuum of
>, I:L× L → L, is defined as

I(a, c) =
∨{b|>(a, b) ≤ c}.

(>, I) is anadjoin pairif the following conditions hold:

1) (L,>, 1) is a commutative semigroup with unit element 1.

2) ∀a, b, c ∈ L, (a>b) ≤ c iff a ≤ I(b, c).

(L,∧,∨,>, I, 0, 1) is a residuated latticeif (L,∧,∨, 0, 1) is a lattice and(>, I) is an
adjoin pair.

We will denote by(V,∧V ,∨V , 0, 1, nV ,>) a finite distributive lattice of uncertainty
values with involutionnV and> a t-norm onV . (U,∧U ,∨U , 0, 1, nU ) will be a finite
distributive lattice of preference values with involution. As before, in themeet and
join operators notations we will usually omit the reference to the lattice, assuming that
they may be identified by the context.

Theorem 7.11
Let (L,∧,∨, 0, 1) be a finite lattice, and> a t-norm onL. Then,> distributes over
the lattice joint operation (that is,(a ∨ b)>c = (a>c) ∨ (b>c), ∀a, b, c ∈ L) iff
(L,∧,∨,>, I, 0, 1) is a residuated lattice.

Proof:
→) Suppose(a ∨ b)>c = (a>c) ∨ (b>c), ∀a, b, c ∈ L. Hence,

• (a>b) ≤ c ⇒ a ≤ I(b, c) by the definition ofI

• Let D = {d ∈ L|(b>d) ≤ c}, D is closed under supremum. Indeed by
distributivity of> w.r.t. ∨, we have that

( ∨

d∈D

d

)
>b =

∨

d∈D

(d>b) ≤
∨

d∈D

c = c,

so
(∨

d∈D d
) ∈ D. Therefore, if

a ≤ I(b, c) =
∨

d∈D

d
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then

(a>b) ≤
( ∨

d∈D

d

)
>b =

∨
{(d>b)|d ∈ D} ≤ c.

←) Cf. Lemma 2.3.4 of (H́ajek, 1998).
¤

Generalised∨-Mixtures and Utilities

We have seen in previous chapters thatQU− and QU+ are “utility” functions on
Π∗(X), in the sense that they preserve the preference ordering and the max-min
combination of possibilistic mixtures. Now, we analyse the conditions required
to guarantee that the generalised utility functions functions preserve a generalised
possibilistic mixture. Instead of applying max-min combination of possibility
distributions, we consider other mixtures involving t-conorms and t-norms. For each
t-norm> and conorm⊥ on V, we will be interested in⊥ − > mixtures that combine
two possibility distributionsπ1 andπ2 into a new one, denotedM>,⊥(π1, π2; λµ), with
λ, µ ∈ V andλ⊥µ = 1, defined as:

M>,⊥(π1, π2; λ, µ)(x) = (λ>π1(x))⊥(µ>π2(x)).

Remark 9
We require these mixtures to satisfy reduction of lotteries, that is:

M>,⊥(M>,⊥(π1, π2; λ1, λ2),M>,⊥(π1, π2; µ1, µ2); α, β) =

M>,⊥(π1, π2; (α>λ1)⊥(β>µ1), (α>λ2)⊥(β>µ2)).

Hence, we need that(a>c)⊥(b>c) = c>(a⊥b) be satisfied. Therefore, we have to
restrict ourselves to∨−>mixtures. Indeed, De Cooman and Kerre prove that if(L,≤)
is a bounded partially ordered set, then if a t-norm> on (L,≤) is distributive w.r.t. a
conorm⊥ in L it implies that

(a>b)⊥a = a, ∀a, b ∈ L. (7.9)

Moreover, (7.9) implies that⊥ satisfies idempotency, and they prove that the only
conorm idempotent isjoin (see (De-Cooman and Kerre, 1993; Propositions 3.5, 3.6 and
3.7) for more details). Besides, by Theorem 7.11 we have to require(V,∧,∨,>, I, 0, 1)
to be a residuated lattice. Henceforth,V will be assumed to be a finite, residuated, and
distributive lattice with involution. From now on,M> denotesM>,∨.

So, for each t-norm> on V, we may consider a generalised∨->-Possibilistic
Mixture. In order to have a closed operation onΠ∗(X), the scalarsλ, µ involved
in the mixture operation are also required to satisfyλ = 1 or µ = 1.

Since now we have inV other operators besidesinfimum, we can consider here
another alternative for modelling implication instead of(v ⇒ u) = n(v) ∨ u, namely
theS-implication-likedefined in (5.6), but now with lattices,
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(v ⇒ u) = n(v>z)

with n(z) = u,> a t-norm onV, n = nU ◦ h, andh:V → U an onto order-preserving
function.u:X → U that assigns to each consequence ofX a preference level ofU, for
a pessimistic behaviour we propose

GQU−(π|u) = [π ⊆ u] =
∧

x∈X

n(π(x)>λx),

with λx s.t. n(λx) = u(x). As usual, to guarantee the correctness of the above
definition of implication we requireh to satisfy the coherence condition w.r.t.>,

h(λ) = h(µ) ⇒ h(α>λ) = h(α>µ) ∀α, λ, µ ∈ V.

Like in Chapter 5, notice that, for example, either when> = ∧ or whenh is
injective this condition is satisfied. Ifh is coherent w.r.t.>, so isn.

Instead, for an optimistic behaviour we consider the t-norm as the conjunction, that
is we consider

GQU+(π|u) = [π ∩ u] =
∨

x∈X h(π(x)>µx)

with µx s.t. u(x) = h(µx). Observe that asV is a residuated distributive lattice with
involution, if h is join-preserving, thenGQU− andGQU+ preserves the possibilistic
mixture in the sense that:

Lemma 7.12
GQU− andGQU+ preserve the possibilistic mixture in the sense that it holds

GQU−(M>(π1, π2;λ, µ)) = (n(λ>δ1) ∧ n(µ>δ2))
GQU+(M>(π1, π2;λ, µ)) = (h(λ>γ1) ∨ h(µ>γ2))

with n(δj) = GQU−(πj), h(γj) = GQU+(πj).

Proof:
As both proofs are analogous, we only include the proof forGQU−. By definition

GQU−(M>(π1, π2;λ, µ)) =
∧

xi∈X n(M>(π1, π2;λ, µ)(xi)>γi),

wheren(γi) = u(xi). Since

M>(π1, π2; λ, µ)(xi)>γi = [(λ>π1(xi)) ∨ (µ>π2(xi))]>γi

= 20 [λ>π1(xi)>γi] ∨ [µ>π2(xi)>γi],

then

n((M>(π1, π2; λ, µ)(xi))>γi) = n([λ>π1(xi)>γi] ∨ [µ>π2(xi)>γi])
= 21 n(λ>π1(xi)>γi) ∧ n(µ>π2(xi)>γi),

20Because of(α ∨ β)>γ = (α>γ) ∨ (β>γ).
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so

GQU−(M>(π1, π2;λ, µ)) =
∧

xi∈X

n(M>(π1, π2; λ, µ)(xi)>γi)

=
∧

xi∈X

(n(λ>π1(xi)>γi) ∧

n(µ>π2(xi)>γi))

= {
∧

xi∈X

n(λ>π1(xi)>γi)} ∧

{
∧

xi∈X

n(µ>π2(xi)>γi)}.

Since

∧

xi∈X

n(λ>π1(xi)>γi) = n

( ∨

xi∈X

(λ>π1(xi)>γi)

)

= n(λ>
( ∨

xi∈X

(π1(xi)>γi)

)
),

then

GQU−(M>(π1, π2; λ, µ)) = {n(λ>(
∨

xi∈X

π1(xi)>γi))} ∧

{n(µ>
( ∨

xi∈X

π2(xi)>γi

)
)}.

Since

n
(∨

xi∈X πj(xi)>γi

)
=

∧
xi∈X n(πj(xi)>γi) = GQU−(πj) = n(δj),

under the coherence hypothesis, we obtain that

n(λ>(
∨

xi∈X π1(xi)>γi)) = n(λ>δ1),

and analogously, we have that

n(µ>(
∨

xi∈X π2(xi)>γi)) = n(µ>δ2).

Hence,

GQU−(M>(π1, π2; λ, µ)) = n(λ>δ1) ∧ n(µ>δ2),

with n(δj) = GQU−(πj). ¤

21Sincen(a ∨ b) = n(a) ∧ n(b).
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Representation of Generalised Qualitative Utilities

In this Section, we propose a set of axioms to characterise the generalised pessimistic
and optimistic qualitative utilities for normalised possibility distributions in the present
framework of lattice measurements.

Given (V,∧V ,∨V , 0, 1, nV ,>, I) a finite distributive residuated lattice of
uncertainty values with involutionnV and> a t-norm, we consider the following
axiomatic setting.

Axiomatic Setting

Let AXP> be the following set of axioms on(Π∗(X, V ),v,M>),

• AP1 : (Π∗(X),v) is a pre-lattice.

• A2(uncertainty aversion): if π ≤ π′ ⇒ π w π′.

• A3>(independence): π1 ∼ π2 ⇒ M>(π1, π; λ, µ) ∼ M>(π2, π; λ, µ).

Let π be a maximal element of(Π∗(X, V ),v,M>). So, for eachλ ∈ V, we consider
π−λ = M>(π, X; 1, λ)22.

• AP4> : ∀π ∈ Π∗(X), ∃λ ∈ V s.t.π ∼ π−λ .

• AP5>: if π−λ v π−λ′ ⇒ π−nV (λ) w π−nV (λ′).

• AP6>: if λ <> λ′ ⇒ π−λ @A π−λ′ .

In order to represent an optimistic preference criterion, we consider now the
distributionπ+

λ defined asπ+
λ = M>(X,π, λ, 1), whereπ is minimal of(Π∗(X),v),

and we have to change the uncertainty aversion axiomA2 by the uncertainty-prone
postulate:

• A2+: if π ≤ π′ thenπ v π′,

and to modify the axioms involving the lotteryπ−λ by the axioms related withπ+
λ , that

is, we have:

• AP4+
> : ∀π ∈ Π∗(X), ∃λ ∈ V s.t.π ∼ π+

λ ,

• AP5+
>: if π+

λ v π+
λ′ ⇒ π+

nV (λ) w π+
nV (λ′).

• AP6+
>: if λ <> λ′ ⇒ π+

λ @A π+
λ′ .

Lemma 7.13
Let (U,∧U ,∨U , 0, 1, nU ) a distributive
lattice with involution and(V,∧,∨,>, I, 0, 1, nV ) a residuated distributive lattice with
involution, h:V → U an onto join-preserving mapping satisfying coherence w.r.t.>,
andu:X → U . If (GQU−)−1(1) 6= ∅ and(GQU−)−1(0) 6= ∅ (if (GQU+)−1(1) 6= ∅
and(GQU+)−1(0) resp.), then

22As usual, to beπ−λ well defined we are assuming thatAP1 andA3 are required.
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a) there existsx ∈ X s.t. u(x) = 1 and
∧

x∈X u(x) = 0 (there existsx ∈ X s.t.
u(x) = 0 and

∨
x∈X u(x) = 1, resp.).

b) GQU− is onto (GQU+ is onto, resp).

Proof:
We only provide the proof related with the pessimistic criterion, being the other very

analogous.

• Since(GQU−)−1(1) 6= ∅, there existsπ s.t.

GQU−(π) =
∧

x∈X

n(π(x)>λx) = 1,

with n(λx) = u(x). Then,n(π(x)>λx) = 1 ∀x ∈ X. As π is normalised there
existsx1 ∈ X s.t.π(x1) = 1, hence1 = n(1>λx1) = n(λx1) = u(x1).

• On the other hand, since(GQU−)−1(0) 6= ∅, there existsπ s.t.GQU−(π) = 0,
and asπ ≤ 1, thenn(π(x)>λx) ≥ n(1>λx) = u(x). So,

0 = GQU−(π) ≥
∧

x∈X

u(x),

therefore we have that
∧

x∈X

u(x) = 0.

• Givenw ∈ U, sincen is onto there existsλ ∈ V s.t.n(λ) = w. As we have seen,
there existsx1 ∈ X s.t. u(x1) = 1, thus

∧
x∈X−{x1} u(x) = 0. Let πw be the

distribution defined as

πw(x) =





1 if x = x1

λ otherwise.
(7.10)

Then,

GQU−(πw) =
∧

x∈X

(n(πw(x)>λx))

= n(1>λx1) ∧

 ∧

x∈X−{x1}
n(λ>λx)




=
∧

x∈X−{x1}
n(λ>λx)

= n


 ∨

x∈X−{x1}
(λ>λx)




= n


λ>


 ∨

x∈X−{x1}
λx





 .

119



Recalling thatn(1) = 0 =
∧

x∈X−{x1} u(x) =
∧

x∈X−{x1} n(λx) =
n(

∨
x∈X−{x1} λx), and by coherence condition we have that

GQU−(πw) = n(λ>1) = n(λ) = w.

¤

The Representation Theorem comes next.

Theorem 7.14 (Representation for Pessimistic/Optimistic Utility)
A preference relation(Π∗(X),v,M>) satisfies axiomsAXP> ( AXP+

> resp.) iff
there exist

(i) a utility finite distributive lattice with involution(U,∧,∨, nU , 0, 1),

(ii) a preference functionu:X → U, s.t. u−1(1) 6= ∅ and
∧

x∈X u(x) = 0, (s.t.
u−1(0) 6= ∅ and

∨
x∈X u(x) = 1, resp.)

(iii) an onto join-preserving mappingh:V → U, satisfying coherence w.r.t.>, and
also satisfying

if λ <> λ′ thenh(λ) <> h(λ′),

andnU ◦ h ◦ nV = h,

in such a way that it holds:

π′ v π ⇐⇒ GQU−(π′|u) ≤U GQU−(π|u).

(π′ v π ⇐⇒ GQU+(π′|u) ≤U GQU+(π|u) resp.)

Proof:
← ) We have to verify that the preference ordering onΠ∗(X) induced byGQU−

satisfies the above set of axioms. As≤U is a partial order,4GQU− is reflexive and
transitive. By Lemma 7.7,GQU− is onto, so we may define

SUP (π, π′) = (GQU−)−1(GQU−(π) ∨GQU−(π′)),

and
INF (π, π′) = (GQU−)−1(GQU−(π) ∧GQU−(π′)).

Then, by Theorem 7.3,(Π∗(X), 4GQU−) is a pre-lattice.
A2 results from the fact that> and∧ are non-decreasing inU andn is a reversing

function. While,A3> is a consequence of the fact thatGQU− preserves mixtures.
Let us prove nowAP5>: if π−λ 4GQU− π−λ′ ⇒ π−nV (λ) <GQU− π−nV (λ′).

Let π be a maximal element ofΠ∗(X), soGQU−(π) = 1. As GQU− preserves
mixtures andGQU−(X) =

∧
x∈X n(X(x)>λx) = 0, we have thatGQU−(π−λ ) =
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n(1>δ1) ∧ n(λ>δ2), with n(δ1) = GQU−(π) = 1, n(δ2) = GQU−(X) = 0. So, by
coherence condition,

GQU−(π−λ ) = n(λ>δ2) = n(λ>1) = n(λ).

As nU ◦ n ◦ nV = n, andnV andnU are involutive, then

n(λ) ≤ n(λ′) ⇒ n(nV (λ)) = nU (n(λ)) ≥ nU (n(λ′)) = n(nV (λ′)).

That is,AP5> is verified.
AP6> is a consequence of the4GQU− definition and thath satisfies (7.7).

Now, we checkAP4>. Let π be maximal element ofΠ∗(X) w.r.t. 4GQU− . As
GQU−(π−λ ) = n(λ), then

GQU−(π) = n(λ) = GQU−(π−λ ) ∀λ ∈ n−1(GQU−(π)).

→) We structure the proof in the following three steps.

1. We define a finite distributive utility latticeU with involutionnU , and a reversing
mappingn from V to U, satisfying if λ <> λ′ then n(λ) <>U n(λ′), and
nU ◦ n ◦ nV = n. So, we consider the preserving mappingh = nU ◦ n. Hence,
h will satisfy (7.8) and (7.7).

By Lemma 7.8,h is actually a lattice epimorphism.

2. A function GQU−:Π∗(X) → U representingv, i.e. such thatGQU−(π) ≤
GQU−(π′) iff π v π′, is defined.

3. Finally, we prove thatGQU−(π) =
∧

x∈X(n(π(x)>λx)), where
u:X → U is the restriction ofGQU− onX. u also satisfies thatu−1(1) 6= ∅ and∧

x∈X u(x) = 0.

Now, let us develop these steps.

1. We consider onΠ∗(X) the equivalence relation∼ defined as

π ∼ π′ ⇐⇒ π v π′ andπ′ v π.

By AP1, Π∗(X)/ ∼ is a lattice. We take as utility latticeU = Π∗(X)/ ∼ .
As Theorem 7.3guarantees the existence ofSUP andINF, we define inU the
operations∧ and∨ induced by them, i.e.

[π] ∨ [π′] = SUP (π, π′),

and
[π] ∧ [π′] = INF (π, π′).

The≤U induced from∨ (or∧) coincides withv . It is not difficult to verify that
[X] is minimum on(U,≤U ), and ifπ is a maximal element ofΠ∗(X), [π] is the
maximum onU.
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Let π a maximal element ofΠ∗(X), and for eachλ ∈ V, let

π−λ = (1/π, λ/X),

and letn:V → U be defined as

n(λ) = [π−λ ].

It is not difficult to see thatn is onto, and thatA2 guaranteesn actually reverses
the order. Now, we definenU from n andnV . For eachw ∈ U, we define

nU (w) = n(nV (λ)),

with λ ∈ V s.t. n(λ) = w. By AP5>, π−λ ∼ π−λ′ impliesπ−nV (λ) ∼ π−nV (λ′),
hencenU is well defined. ByAP6>, n satisfies

if λ <> λ′ thenn(λ) <> n(λ′),

and by definition ofnU , we havenU ◦ n ◦ nV = n andnU ◦ nU = identity. Let
h = nU ◦ n. Then,h satisfies the conditions required.

Hence, asn is a reversing epimorphism, andV is a distributive lattice, so isU.

2. GQU− can be defined onΠ∗(X) in two steps. First, we define it on lotteries of
typeπ−λ , asGQU−(π−λ ) = n(λ).

AP4> lets us to extend this definition. Since∀π ∃λ s.t.π ∼ π−λ we define
GQU−(π) = n(λ). It is not difficult to verify thatGQU− representsv .

3. Consideru:X → U defined asu(x) = GQU−(x).

It remains to prove thatGQU−(π) =
∧

x∈X n(π(x)>λx). To verify this, we will
prove the following equalities:

• GQU−(M>(π1, π2, λ1, λ2)) = (n(λ1>δ1)) ∧ (n(λ2>δ2))
with n(δj) = GQU−(πj), j=1,2, and eitherλ1 = 1 or λ2 = 1.

By AP4>, ∃µ, γ s.t.

π1 ∼ π−µ and π2 ∼ π−γ .

By A3>,
M>(π1, π2;λ1, λ2) ∼ M>(π−µ , π−γ ; λ1, λ2)

and reducing lotteries we obtain

M>(π1, π2; λ1, λ2) ∼ M>(π,X; 1, ((λ1>µ) ∨ (λ2>γ))).

Therefore, asn is a reversing morphism, we have

GQU−(M>(π1, π2;λ1, λ2)) = n((λ1>µ) ∨ (λ2>γ))
= n(λ1>µ) ∧ (n(λ2>γ)).
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Hence, by coherence, we have that

GQU−(M>(π1, π2; λ1, λ2)) = n(λ1>δ1) ∧ n(λ2>δ2).

As a consequence, we have that

GQU−(π1 ∨ π2) = GQU−(π1) ∧GQU−(π2).

More generally,GQU−(
∨

i=1...,p πi) =
∧

i=1...,p GQU−(πi).

• GQU−(π) =
∧

i=1...,p (n(π(xi)>λxi
)).

As π ∈ Π∗(X), then∃ xj ∈ X s.t. π(xj) = 1. Without loss of generality
assumej = 1. Let

πi = M>(x1, xi, 1, π(xi)).

Since
π =

∨

i=1...,p

πi,

we have that

GQU−(π) = GQU−


 ∨

i=1,...,p

πi




=
∧

i=1,...,p

(u(x1) ∧ (n(π(xi)>λxi)))

= 23
∧

i=1,...,p

n(π(xi)>λxi)

Finally, asπ is normalised, there existsx0 ∈ X s.t.π(x0) = 1, sox0 ≤ π. Then,
by A2, x0 w π. As GQU− representsv,

GQU−(x0) ≥ GQU−(π) = 1,

henceu(x0) = 1, so u−1(1) 6= ∅. As GQU−(X) = 0, andGQU−(X) =∧
x∈X u(x), then

∧
x∈X u(x) = 0.

This ends the proof for the pessimistic criterion, the optimistic one is very similar.
¤

Remark 10
As h is onto and non-decreasing, ifV is linear, so isU (i.e. If U is non-linear, then
V is non-linear as well). Moreover, as a consequence of the condition“if λ <> λ′

thenh(λ) <> h(λ′)” , if V is non-linear so isU. Hence, for the case that the linking
mappingh is a non-decreasing function also satisfying (7.7),V andU are either both
linear lattices or both non-linear lattices. That is, the cases analysed in the previous
Chapter of having a linear scale of uncertainty and a partial order on the cartesian
product of preferences, or having a linear scale of preferences and a partial order on
the cartesian product of uncertainty are not covered by Theorem 7.14.

23As π(x1) = 1, thenu(x1) = n(π(x1)>λx1 ).
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7.3 The Particular Case of Allowing Different Types of
Measurement Lattices

In the introduction of this Chapter we announced that there exist decision making
problems in which incomparability may not be preserved by the mapping linkingV
andU . In this Section, we analyse these cases. LetU be a finite linear scale, and let
(V,∧,∨,>, I, 0, 1, nV ) be a residuated distributive lattice with involution24, h:V → U
is an onto join-preserving mapping satisfying coherence w.r.t.>, andu:X → U . Under
these hypotheses, let us consider:

GQU−
L (π|u) = min

x∈X
n(π(x)>λx),

with λx s.t.n(λx) = u(x), and

GQU+
L (π|u) = max

x∈X
h(π(x)>µx)

µx being s.t. u(x) = h(µx). As usualGQU−
L andGQU+

L preserve the possibilistic
mixture in the sense that the following expressions hold,

GQU−
L (M>(π1, π2; λ, µ)|u)(x) = min{n(λ>δ1), n(µ>δ2)},

GQU+
L (M>(π1, π2; λ, µ)|u)(x) = max{h(λ>γ1), h(µ>γ2)},

with n(δj) = GQU−
L (πj |u), andh(γj) = GQU+

L (πj |u), for j = 1, 2.
We consider as usual the set of distributionsΠ∗(X, V ) with the mixture operation

M>. We want to characterise the orderings induced by theGQU−
L and GQU+

L

functions. With this goal, we consider the following axiomatic settingBXP> =
{A1, A2, A3>, AP4>, AP6eq>}, with

• AP6eq>: if λ <> λ′ ⇒ π−λ ∼ π−(λ∨λ′).

whereπ−λ = M>(π, X; 1, λ), with π being a maximal25 element of(Π∗(X, V ),v).
Observe that since<> is symmetric we have thatλ <> λ′ ⇒ π−λ ∼ π−λ′ .
AP6eq> establishes that two incomparable values of uncertainty,λ andλ′, lead

to two indistinguishable lotteries, the lottery associated with their supremum being
indistinguishable with them as well.

For an optimistic behaviour we consider the axiom setBXP+
> =

{A1, A2+, A3>, AP4+
>, AP6eq+

>}, with

• AP6eq+
>: if λ <> λ′ ⇒ π+

λ ∼ π+
(λ∨λ′).

whereπ+
λ = M>(X, π;λ, 1), with π a minimal element of(Π∗(X, V ),v,M>).

24In Section 6.4.1 it has been mentioned that we have only considered there the special case of having a
linear scale of preference and the same scale in the cartesian product where we measure uncertainty. The case
of having different scales remains an open question. Here, we provide a first answer.

25In fact, to beπ−λ well defined we are assuming thatA1 andA3> are required.
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Theorem 7.15 (Representation Theorem )
A preference relation(Π∗(X, V ),v) satisfies axiomsBXP> (BXP+

> resp.) iff there
exist

(i) a finite linear utility scaleU ,

(ii) a preference functionu:X → U, s.t.u−1(1) 6= ∅ 6= u−1(0),

(iii) an onto join-preserving mappingh:V → U, satisfying coherence w.r.t.>, and
also satisfying

if λ <> λ′ thenh(λ ∨ λ′) = h(λ′), (7.11)

in such a way that it holds:

π v π′ ⇐⇒ π 4GQU−L (·|u) π′,

(π v π′ ⇐⇒ π 4GQU+
L (·|u) π′ resp.) withn = nU ◦ h.

Proof:
We consider the pessimistic case, the optimistic one being analogous.
← ) We verify that the preference ordering onΠ∗(X) induced byGQU−

L satisfies the
above set of axioms. As≤U is a linear order, so is4GQU−L

. As usual,A2 results from
the fact thatsupremum andinfimum are non-decreasing inU andn is a reversing
function. While,A3> is a consequence of the fact thatGQU−

L preserves mixtures.
AP6eq> is a consequence of the definition of4GQU−L

and thath satisfies (7.11).

We checkAP4>. Let π be maximum element ofΠ∗(X) w.r.t. 4GQUL−. As
GQU−

L (π−λ ) = n(λ), then

GQU−
L (π) = n(λ) = GQU−

L (π−λ ) ∀λ ∈ n−1(GQU−
L (π)).

→) The proof is again very analogous with the one given for the linear case. As
usual, we structure the proof in the following three steps.

1. We define the finite linear utility scaleU = Π∗(X)/ ∼ with the ordering induced
byv. n:V → U is defined as

n(λ) = [π−λ ],

with π−λ = M>(π,X; 1, λ), π being the maximum element of(Π∗(X, V ),v
,M>). By A2, n is a reversing ordering mapping, whileAP4> guarantees it is
onto. ByAP6eq> andn being reversing ordering, we have that

n(λ ∨ λ′) = n(λ) ∧ n(λ′).

As usual,n results coherent w.r.t.> because of the reduction property ofM>
andA3>. So, we consider the onto join-preserving mappingh = nU ◦n. Hence,
h will satisfy (7.11) and coherence w.r.t.>.
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2. Again, GQU−
L may be defined onΠ∗(X) in two steps. First, we define it on

lotteries of typeπ−λ , asGQU−
L (π−λ ) = n(λ).

AP4> lets us to extend this definition. Since∀π ∃λ s.t.π ∼ π−λ , we define
GQU−

L (π) = n(λ). It is not difficult to verify thatGQU−
L representsv.

Consideru:X → U defined asu(x) = GQU−
L (x).

3. We will prove that

GQU−
L (π) = mini=1,...,p n(π(xi)>γi)

with n(γi) = u(xi).

To verify this, we will prove the following equalities:

• ∀π1, π2,

GQU−
L (M>(π1, π2; α, β)) = n((α>λ1) ∨ (β>λ2)), (7.12)

with λj such thatGQU−
L (πj) = n(λj).

Indeed,A4> guarantees that∃λ1 s.t. π1 ∼ M>(π, X; 1, λ1) and ∃λ2

s.t. π2 ∼ M>(π, X; 1, λ2), remember thatGQU−
L (π1) = n(λ1) and

GQU−
L (π2) = n(λ2). So, using the independence axiomA3>,

M>(π1, π2; α, β) ∼ M>(M>(π, X, 1, λ1),M>(π, X; 1, λ2); α, β),

and by reduction of “lotteries” it reduces to

M>(π, X; ((α>1) ∨ (β>1)), ((α>λ1) ∨ (β>λ2))) ∼

∼ M>(π, X; (α ∨ β), ((α>λ1) ∨ (β>λ2)))

∼ M>(π, X; 1, ((α>λ1) ∨ (β>λ2))).

Therefore,

GQU−
L (M>(π1, π2; α, β)) = n((α>λ1) ∨ (β>λ2))

with λj such thatGQU−
L (πj) = n(λj), i.e.

GQU−
L (M>(π1, π2; α, β)) = min(n(α>λ1), n(β>λ2)).

Finally, we verify that (7.12) does not depend on theλ chosen, i.e. ifµ is
such thatGQU−

L (π1) = n(µ), then

n((α>λ1) ∨ (β>λ2)) = n((α>µ) ∨ (β>λ2)).

Indeed, asπ−λ1
∼ π−µ then

M>(π, X; 1, (α>λ1) ∨ (β>λ2)) ∼ M>(π−λ1
, π−λ2

;α, β)
∼ M>(π−µ , π−λ2

;α, β)
∼ M>(π, X; 1, (α>µ) ∨ (β>λ2)),

therefore
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n((α>λ1) ∨ (β>λ2)) = n((α>µ) ∨ (β>λ2)).

In particular, we have that

GQU−
L (M>(x, y; 1, β)) = min(n(1>λ1), n(β>λ2))

with u(x) = n(λ1), u(y) = n(λ2). So,

GQU−
L (M>(x, y; 1, β)) = min(u(x), n(β>λ2)),

with u(y) = n(λ2), and

GQU−
L (π1 ∨ π2) = min(GQU−

L (π1), GQU−
L (π2)).

Indeed, asπ1 ∨ π2 = M>(π1, π2, 1, 1), therefore,

GQU−
L (π1 ∨ π2) = min(n(µ1), n(µ2))

with n(µ1) = GQU−
L (π1), n(µ2) = GQU−

L (π2), so

GQU−
L (π1 ∨ π2) = min(GQU−

L (π1), GQU−
L (π2)).

Moreover, we have

GQU−
L


 ∨

i=1,...,p

πi


 = min

i=1,...,p
GQU−

L (πi) ∀ πi.

• GQU−
L (π) = mini=1,...,p n(π(xi)>γi).

As π is normalised, there existsxj ∈ X such thatπ(xj) = 1. Without loss
of generality, let us assume thatj = 1. As for eachπ, M> satisfies that

M>(x1, xi; 1, π(xi))(xk) =





1, if xk = x1,
π(xi), if x1 6= xk = xi,
0, otherwise.

Then, choosing

πi = M>(x1, xi; 1, π(xi)),

we obtainπ =
∨

i=1,...,p πi, therefore

GQU−
L (π) = GQU−

L


 ∨

i=1,...,p

M>(x1, xi; 1, π(xi))




= min
i=1,...,p

GQU−
L (M>(x1, xi, 1, π(xi)))

= min
i=1,...,p

[min(u(x1), n(π(xi)>λi))]

with u(xi) = GQU−
L (xi) = n(λi), so

GQU−
L (π) = mini=1,...,p n(π(xi)>λi).

¤
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Chapter 8

An Extended Model Allowing
Partially Inconsistent Belief
States: Application to
Possibilistic Case-Based
Decision Theory

The decision models described so far obviously rely on a possibilistic representation
of the belief states. Such a representation, i.e. a possibility distribution, can be made
explicit for instance if (uncertain) generic knowledge and information is available under
the form of a possibilistic knowledge base (Dubois et al., 1997g). But, suppose that
the available information about the consequences of decisions appears in the form of
already experienced instances of decision problem cases. Adecision problem caseis an
account of a previous situation where a decision was made, and the actual consequence
of that decision was recorded. Adecision problem casecan be thus formalised as a 3-
tuple (situation-description, decision, consequence). The idea of the so called“Case-
Based Decision Theory”is to select a decision that gave good results in the past in
situations similar to the current one.

For example, it is possible, and probably more realistic, to present the omelette story
of Savage of Section 4.6 as a case-based decision problem. The memory would consist
of descriptions of eggs broken in the past by the agent, the decisions made about those
eggs and the outcomes (described in Table 4.1). Descriptions could be done in terms of
attributes like colour, the smell, weight of the egg, etc. The decision made about a new
egg for a new omelette could then be based on the resemblance between the present
egg and the past ones. If the egg looks fresh (e.g. it is similar to the descriptions of
past fresh eggs), then,Break the egg In the Omelette (BIO), if the the egg looks rotten,
then,Throw it Away (TA), if the egg is only mildly fresh but not clearly rotten, or it is a
new type of egg not encountered in the past, then, for instance,Break it Apart in a Cup
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(BAC).

In such a framework, as it has been mentioned in Section 2.3, Gilboa and
Schmeidler (1995) have proposed a case-based decision model where the decision-
maker, in face of a new situations0, is supposed to choose a decisiond which maximises
a counterpart of classical expected utility. Namely,

Us0,M (d) =
∑

(s,d,x)∈M Sim(s0, s) · u(x)

whereSim is a non-negative function which estimates the similarity between situations
and the current situations0 andu provides a numerical preference for each consequence
x.

Dubois and Prade (1997d) propose another approach to case-based decision,
based on possibility and necessity measures. Instead of averaging the preference
of consequences obtained in similar situations, weighted by similarity degrees, they
propose to look for decisions that always gave good results in similar experienced
situations.

In the next Section, a link is established between Dubois and Prade’s Case-based
and Qualitative Decision models, by estimatinghow plausiblex is a consequence of a
decisiond, in the current situations0, in terms of the extent to whichs0 is similar to
situations in whichx was experienced after taking the decisiond. So again, a decision
or actiond can be identified with a possibility distribution on consequences.

This link between similarity on situations and possibility distributions on
consequences allows us to apply the possibilistic qualitative criteria described in the
previous Chapters to case-based decision problems. However, working with case-based
decision we face with problems in which non-normalised possibility distribution are
involved. Non-normalisation problems may also appear inQDT when different sources
of information about the actual situation are available and they are partially conflicting.
Namely, in such a case, if a min-based aggregation of the corresponding possibility
distributions is performed to merge them into a single one, then, we can come up
with a non-normalised distribution as soon as their cores are disjoint, i.e. when the
distributions are mutually inconsistent to some extent. But even under these hypotheses
of partial inconsistency, one may be interested in making rational decisions.

In order to allow a proper handling of non-normalised distributions, in Section 8.2
we extend the basic model and provide corresponding characterisations of the orderings
induced by suitably modified utility functions. Then, we shall be ready to return in
Section 8.3 to the case based decision problem, applying these utility functions. In
Section 8.4 we analyse the example of the safety problem in the chemical plant from
a case-based decision problem view, while in Section 8.5 we consider the case of non-
normalised distributions in a lattice measurement framework. In Section, 8.6 we extend
the model in another direction to take into account the performance of “similar” acts
for evaluating the utility of a decisiond. This extension again leads us to deal with
possibility distributions on consequences, hence we may approach this type of problem
with the qualitative utility functions analysed in the previous Chapters.
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8.1 Possibilistic Case-Based Decision Theory

Dubois and Prade (1997d) propose an approach to case-based decision based on
possibility and necessity measures. Instead of averaging the utility of consequences
obtained in similar situations, they propose to look for decisions that always gave
good results in similar experienced situations. As in Gilboa and Schmeidler (1995)’s
proposal, they assume a given memory of casesM and a “similarity”1 function
Sim:S × S → [0, 1] that measures the degree of similarity between two situations, and
a preference functionu:X → [0, 1] representing preferences on consequences. They
propose the following utility function

U−
s0,M (d|u) = min

(s,d,x)∈M
(Sim(s, s0) ⇒ u(x)),

where⇒ is chosen as(x ⇒ y) = N(x)⊥y with ⊥ a conorm andN an involutive
negation in the real interval [0,1]. If only ordinal interpretations are meaningful,⊥ is
taken asmaximum, so

U−
s0,M (d|u) = min

(s,d,x)∈M
max(N(Sim(s, s0)), u(x)).

The interpretation of this criterion is very natural if we think of it in terms of fuzzy
set inclusionship (see Section 5.1 for more details). Indeed, let us respectively denote
by Simd andGd the fuzzy set of situations which are similar tos0 and whered was
already experiencedand thefuzzy set of situations where decisiond led to good results
respectively, with membership functionsSimd(s) = Sim(s, s0) andGd(s) = u(x), if
(s, d, x) ∈ M. Then, the above criterion of maximisingU−

s0,M looks for decisionsd
such that, inall situations whered was previously experienced, it led to good results.

Indeed, if

{s| (s, d, x) ∈ M,Sim(s, s0) > 0} ⊆ {s|(s, d, x) ∈ M, u(x) = 1},
thenU−

s0,M (d) = 1, and

U−
s0,M (d) = 0 as soon as∃s s.t.Sim(s, s0) = 1, (s, d, x) ∈ M andu(x) = 0.

Actually, U−
s0,M (d) is a rather drastic criterion since it requires that inall the

situations similar tos0, d led to good results.
A more “optimistic” behaviour consists in selecting decisions whichled to a good

result inat least onesituation similar tos0. They model it using the dual criterion

U+
s0,M (d) = max

(s,d,x)∈M
min(Sim(s, s0), u(x)).

Thus, U+
s0,M (d) is maximal as soon as there exists a case corresponding to a

situation completely similar tos0 whered led to an excellent result.
The pessimistic and optimistic decision rules differ from the Gilboa-Schmeidler

rule in that they do not assume that results obtained in past experiences accumulate

1Actually, we are speaking about a fuzzy proximity relation onS, i.e Sim is a symmetric and reflexive
relation.
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and, particularly, compensate. For instance, in the omelette example, using Gilboa-
Schmeidler rule, a few bad experiences with a certain kind of egg very similar to the
current one can be fully counterbalanced by sufficiently many half-fresh eggs of similar
appearance. The pessimistic criterion suggests mistrusting these eggs and the optimistic
one only partially tolerates them.

Observe that if the fuzzy setSimd is normalised, then,

U+
s0,M (d) ≥ U−

s0,M (d)

as it is expected.
It is obvious the close relationship between these criteria and the ones described in

the previous Chapters. Actually, one can represent theCase-Based Reasoning Principle
stated in (Dubois et al., 1997b) saying that for each(s, d, x) ∈ M,

“the more similars0 is to s, the more plausiblex is a consequence fors0

under decisiond”,

by the following inequality

πd,s0(x) ≥ max{Sim(s0, s)| (s, d, x) ∈ M},
whereπd,s0 :X → V is thepossibility distributionrepresenting theplausibility of x
being the consequence ofd at s0. For computational reasons (using a kind of minimum
specificity principle (Dubois and Prade, 1987)) we can just take the equality above and
let

πd,s0(x) = max{Sim(s0, s)|(s, d, x) ∈ M}2,

and so, a decision or actd at the new situations0 can be identified with the possibility
distributionπd,s0 . TakingU = V ⊂ [0, 1], it can be shown that

U−
s0,M (d|u) = QU−(πd,s0 |u) = min

x∈X
max(N(πd,s0(x)), u(x)),

U+
s0,M (d|u) = QU+(πd,s0 |u) = max

x∈X
min(πd,s0(x), u(x)).

We have, however, to be very cautious if we want to apply this qualitative decision
model: nothing prevents the distributionsπd,s0 from being non-normalised. And
this may have undesirable consequences, such as the fact that the pessimistic utility
U−

s0,M (d) may be higher than the optimistic utilityU+
s0,M (d). For example, when

max
(s,d,x)∈M

Sim(s, s0) < 1,

it means that decisiond has been never experienced on a situation completely similar
to s0. In particular, when

{s | (s, d, x) ∈ M, Sim(s, s0) > 0} = ∅,
we haveU−

s0,M (d) = 1 which is non-satisfactory.
In order to avoid these shortcomings, for distributions defined on [0,1],

Dubois et al. (1997b) suggest the following modifications. Consider

2By convention we takemax ∅ = 0.
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hSim(s0) = max{Sim(s, s0) |(s, d, x) ∈ M},
Sim* a renormalisation3 of Sim andU−∗

s0,M (U+∗
s0,M resp. ) the result of considering

U−
s0,M (U+

s0,M ) with the similaritySim* instead ofSim,

U−
s0,M (d) = min(hSim(s0), U−∗

s0,M (d)),

U+
s0,M (d) = max(1− hSim(s0), U+∗

s0,M (d)).

Analogously, for eachV andU, we propose to modify our previous definitions and
let

U−
s0,M (d) = QU−(πd,s0),

whereπd,s0 is the distribution associated toSim andM, and

QU−(πd,s0) = min(H(πd,s0), QU−(N (πd,s0))) (8.1)

whereH(π) is the height of the distributionπ,H(π) = maxx∈X π(x), andN (πd,s0)
is a normalised version ofπd,s0 defined as

N (πd,s0)(x) =





1, if πd,s0(x) = H(πd,s0)

πd,s0(x), otherwise.

Notice that whenH(πd,s0) = 1, the original expression is retrieved. The rationale
behind this expression is that our willingness to apply decisiond in s0 is upper
bounded by the existence of situations completely similar tos0 where decisiond was
experienced. Moreover,πd,s0 is renormalised in order to obtain a meaningful degree
of inclusion. Thus, equation (8.1) corresponds to the expression of the compound
condition:

“there exist situations similar tos0 where decisiond was applied and the
situations which are the most similar tos0 are among the situations where
decisiond led to good results”.

Note that the similarity is no longer estimated in an absolute manner, but in a relative
way, hence the normalisation. Clearly, it would be also natural that the optimistic
evaluation be all the greater as the decisiond was never applied to situations similar
to s0 in the past (indeed, in this case, the optimisticDecision Makeris prone to
experiencing new decisions on new situations he never met).

8.2 Representation of Possibilistic Utilities for Non-
Normalised Distributions

In Possibilistic Logic (Dubois et al., 1994), non-normalised possibility distributions
account for partially inconsistent belief states. Indeed, ifπ:S → V is such thatπ(s) < 1

3There are several forms of defining the renormalisation of a fuzzy setA, they suggest e.g.A∗(z) =
A(z)

maxz A(z)
.
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for all s ∈ S, it means that there is no situation which is fully plausible. The consistency
degree ofπ is measured by theheight of the distribution, H(π) = maxs∈S π(s),
whereas how farH(π) is from 1, measured asnV (H(π)), provides an estimate of how
inconsistent the belief state is. Notice that in the case not dealt in our framework ofV
being the real unit interval [0, 1], the inconsistency degree is usually1−H(π).

In this Section, we extend the possibilistic decision model described through
the previous Chapters in order to take into account, not only fully consistent belief
states, but also those which are partially inconsistent. The idea is to adapt the
solutions presented in the previous Section, which basically consist of suitably
transforming the non-normalised distributions into normalised ones and then applying
the original model. However, the transformation is not simply a normalisation, the
inconsistency degree is also taken into account to endow the possibility distribution with
a uniform level of uncertainty. Hence, we could say that, in doing the transformation,
inconsistency is exchanged for uncertainty (you may see the details in the next
Subsections).

8.2.1 The Pure Ordinal Case

Here we consider as the working set of possibilistic lotteries thesetΠex(X) of non-
necessarily normalised distributions onX with values on a finite linear uncertainty
scaleV, keeping the same definition of possibilistic mixture of (3.1), i.e.

(λ/π1, µ/π2)(x) = max{min(λ, π1(x)),min(µ, π2(x))},

with max(λ, µ) = 1. Thus, the reduction property

(λ/π1, µ/(α/π1, β/π2)) = (max(λ, min(µ, α))/π1,min(µ, β)/π2)

still holds.
Now, in the usual linear setting, i.e. with finite linear uncertainty and preference

scalesV and U, we extend the utility functionalsQU− and QU+ to evaluate non-
normalised distributions ofΠex(X) as well, reflecting the solution proposed at the
end of the previous Section. Given an onto order-preserving mappingh:V → U and
u:X → U as usual, we define for anyπ ∈ Πex(X):

QU−(π|u) = min{QU−(N (π)|u), n ◦ nV (H(π))}

QU+(π|u) = max{QU+(N (π)|u), h ◦ nV (H(π))}.

From these definitions, it is obvious that, for allπ ∈ Πex(X), we haveQU+(π) ≥
QU−(π), in particular, ifπ ≡ 0, QU− (π) = 0 andQU+(π) = 1. Moreover,QU−

(QU+ resp.) is an extension ofQU− (of QU+ resp.) since, ifπ is normalised,H(π) =
1, andn ◦ nV (1) = 1 andh ◦ nV (1) = 0, and thusQU− andQU− (QU+ andQU+

resp.) collapse onΠ(X). As before, when clear from the context, we will omit the
preference functionu from QU− andQU+ for the sake of a simpler notation.

134



Notice4 that, instead of introducing the modifying factorH(πd,s0) into the final step
of the utility computations, one could already introduce this factor in the normalisation
of the distributions by considering

N ′(πd,s0) = max(H(πd,s0),N (πd,s0))

and then just write, for instance,QU−(π|u) = QU−(N ′(π)|u). We shall however
stick to the usual notion of (ordinal) normalisation and explicitly deal with the factors
in spite of a bit heavier notation.

In order to characterise the preference orderingsv induced inΠex(X) by QU− and
QU+, we need to extend the axiom setsAX andAX+ respectively, defined onΠ(X),
with the following additional axiom:

• A7: for all π ∈ Πex(X), π ∼ (1/N (π), nV (H(π))/X).5

The intuitive idea behind axiomA7 is that, as already pointed out, we make a non-
normalised possibilistic lotteryπ indifferent to the corresponding normalised lottery
N (π), provided that it is modified by a uniform uncertainty level corresponding to the
inconsistency degree ofπ, i.e. from a decision point of view,π is made equivalent
to π∗, where π∗(x) = max(N (π)(x), nV (H(π))). In other words, according to
Possibility Theory, the statement “it is certain thatπ represents the belief state” is
understood as “it isH(π)-certain thatN (π) represents the belief state”. Obviously,
if π is an already normalised distribution,N (π) = π,H(π) = 1, and both statements
are exactly the same.

Now, let us prove the following representation theorem.

Theorem 8.1 (Representation Theorem)
A preference relationv on Πex(X) satisfies axiom setAXex = AX + A7 (resp.
AX+ex = AX+ + A7) if, and only if, there exist

(i) a linearly ordered and finite preference scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such that u−1(1) 6= ∅ 6= u−1(0), and

(iii) an onto order-preserving mappingh:V → U,

in such a way that it holds:
for eachπ ∈ Πex(X),

π′ v π iff QU−(π′|u) v QU−(π|u),

(π′ v π iff QU+(π′|u) v QU+(π|u) resp.) where, as usual,n = nU ◦ h.

4This remark was made by a referee of one of our publications.
5Let v be a preference relation onΠex(X). We will denote byv′ its restriction toΠ∗(X), the set of

normalisedpossibility distributions, and by∼ and∼′ the corresponding indifference relations. We say that
v onΠex(X) satisfies axiom setAXex = AX∪{A7} (AXex,+ = AX+∪{A7} resp.) if and only if its
restriction toΠ∗(X), satisfiesAX (AX+ resp.) andv also satisfiesA7. Following, for a simpler notation,
we usev for denoting this relation and its restriction too, understanding that they may be distinguished by
the context.
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Proof:
We only prove the theorem for the pessimistic criterion, the proof for the optimistic

criterion being very similar.
← ) We have to prove that, given a preference functionu:X → U verifying (ii), and

an onto order-preserving mappingh:V → U, the ordering on possibility distributions
of Πex(X) induced by the utility evaluationQU− satisfies the axioms ofAXex. Since
QU− coincides withQU− on Π(X), all axioms fromAX are automatically satisfied
by the theorem for the linear normalised case (Theorem 4.8). Thus, it only remains to
verify thatA7 also holds. According to (ii), there isx such thatu(x) = 0, and thus
QU−(X) = 0. But sinceQU− preserves possibilistic mixtures, we have for allπ ∈
Πex(X),

QU−(1/N (π), nV (H(π))/X) = min(max(n(1), QU−(N (π))),
max(n(nV (H(π))), QU−(X)))

= min(QU−(N (π)), n ◦ nV (H(π)))
= QU−(π).

Thus,π is equivalent to(1/N (π), nV (H(π))/X) w.r.t. to the ordering induced by
QU−.

→) Let us assume now that we have an ordering (Πex(X),v) satisfying the axioms
of AXex. In particular,v satisfies allAX axioms, hence, applying Theorem 4.8 again,
we can suppose the existence ofU, u:X → U andh:V → U satisfying (i), (ii) and
(iii), and such that the corresponding utilityQU− representsv on Π(X), i.e. for
all normalisedπ, we have thatπ′ v π iff QU−(π′|u) v QU−(π|u). Axiom A7
guarantees that, for anyπ, π ∼ (1/N (π), nV (H(π))/X). SinceQU−(X) = 0, and
(1/N (π), nV (H(π))/X) is a normalised distribution, we define

QU−(π) = QU−(1/N (π), nV (H(π))/X)

= min(QU−(N (π)), n ◦ nV (H(π))).

Now, we have to verify thatQU− representsv, i.e. that for eachπ, π′ ∈ Πex(X) the
following equivalence holds

π′ v π iff QU−(π′) v QU−(π).

Indeed, by the continuity
axiomA4, there existλ andλ′ such that(1/N (π), nV (H(π))/X) ∼ (1/x, λ/x) and
(1/N (π′), nV (H(π′))/X) ∼ (1/x, λ′/x), wherex andx denote a maximal and a
minimal element of(X, v) respectively. Therefore,

π′ v π iff (1/, λ′/x) v (1/x, λ/x),

and we have that:

• since QU− represents v on Π(X), (1/x, λ′/x) v (1/x, λ/x) iff
QU−(1/x, λ′/x) ≤ QU−(1/x, λ/x),
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• QU−(π) = QU−(1/N (π), nV (H(π))/x) = QU−(1/x, λ/x),

• QU−(π′) = QU−(1/N (π′), nV (H(π′))/x) = QU−(1/x, λ′/x).

Hence, we finally have

π′ v π iff QU−(π′) ≤ QU−(π),

that is,QU− representsv . ¤

8.2.2 The Case of Max -> Possibilistic Mixtures

Given a t-norm> on V, let us consider now, in the set of possibility distributions
Πex(X), the generalisedmax−> mixtures introduced in Section 5.3

M>(π, π′; α, β) = max(α>π, β>π′),

with max(α, β) = 1. In this general setting, in order to correctly deal with non-
normalised distributions, we extend the utility evaluationsGQU− andGQU+ in an
analogous way to the previous subsection:

GQU−(π|u) = min{GQU−(N (π)|u), n ◦ nV (H(π))},

GQU+(π|u) = max{GQU+(N (π)|u), h ◦ nV (H(π))}.
In
a very mimetic way, we consider the axiom setsAXex

> = {A1, A2, A3>, A4>, A7>},
andAX+ex

> = {A1, A2+, A3>, A4+
>, A7>} where the new axiomA7> is the suitable

adaptation of previous axiomA7 for the present type of mixtures.

• A7>: For allπ ∈ Πex(X), π ∼ M>(N (π), X; 1, nV (H(π))).

The corresponding representation theorem comes next.

Theorem 8.2 (Representation Theorem )
A preference relationv on Πex(X), equipped with a mixture operationM>,

satisfies the axiomsAXex
> = {A1, A2, A3>, A4>, A7>} (resp. AX+ex

> =
{A1, A2+, A3>, A4+

>, A7>}) if and only if there exist

(i) a linearly ordered and finite preference scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0),

(iii) an onto order-preserving mappingh:V → U satisfying coherence w.r.t.>,

in such a way that it holds

π′ v π iff GQU−(π′|u) v GQU−(π|u),

(π′ v π iff GQU+(π′|u) v GQU+(π|u) respectively), where, as usual, we take
n = nU ◦ h.
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Proof:
The proof is very similar to the case> = minimum of previous subsection, so we

shall only pay attention to main differences for the pessimistic utility.
← ) By Theorem 5.5, it only remains to verify axiomA7>. Taking into account

that GQU− coincides withGQU− on Π(X), and thatGQU− preserves generalised
mixtures, we have

GQU−(M>(N (π), X; 1, nV (H(π)))) = min{n(1>δ1), n(nV (H(π))>δ2)}

wheren(δ1) = GQU−(N (π)) andn(δ2) = GQU−(X) = 0. But, according to the
coherence condition, we have thatn(δ2) = 0 = n(1) implies n(nV (H(π))>δ2) =
n(nV (H(π))), so we actually have

GQU−(M>(N (π), X; 1, nV (h(π)))) = min{GQU−(N (π)), n ◦ nV (H(π))}
= GQU−(π).

Hence, axiomA7> is satisfied.
→) Sincev satisfiesAX>, we may establish the existence ofU, u:X → U and

h:V → U satisfying (i), (ii) and (iii), such thatGQU−(π) = minxi∈X n(π(xi)>λi),
where n(λi) = u(xi), representsv on Π(X). In particular, GQU− so
defined preserves mixtures and verifiesGQU−(X) = 0. Axiom A7>, π ∼
M>(N (π), X; 1, nV (H(π))), allows us to define, for eachπ ∈ Πex(X),

GQU−(π) = GQU−(M>(N (π), X; 1, nV (H(π))))

= min{GQU−(N (π)), n ◦ nV (H(π))}.

Finally, one can easily check thatGQU− representsv on Πex(X) using the fact
thatGQU− already representsv onΠ(X), together with axiomsA7> andA4>. ¤

Remark 11
Instead of using the involutionnV in the definition of the mappingsGQU− andGQU+,
one could simply use a more general functionF :V → V s.t. F (1) = 0, and define the
pessimistic and optimistic utilities as

GQU−
F

(π) = min{GQU−(N (π)), hF (H(π))}
GQU+

F
(π) = max{GQU+(N (π)), nF (H(π))} (8.2)

where hF = nU ◦ h ◦ F andnF = h ◦ F.
In that case, given such a functionF, it is not difficult to show that Theorem 8.2 is

still valid provided that we replace axiomA7> by an analogous one:

• A7F> : ∀π ∈ Πex(X), π ∼ M>(N (π), X; 1, F (H(π))),

andGQU by GQU
F
.
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8.3 Back to Case-Based Decision

Again, using the link between similarity on situations and possibility distributions on
consequences, we just propose here to apply the generalised qualitative utility functions
GQU− andGQU+ for case-based decision problems.

So, if we are interested in actsd such that in all the situations similar tos0, d led to
good results, we are looking for decisions maximising the function

GU−
F,s0

(d) = GQU−
F

(πd,s0) = min{hF (H(πd,s0)), GQU−(N (πd,s0))}
while if we are looking for decisions which gave a good result in a similar situation we
may want to maximise

GU+
F,s0

(d) = GQU+

F
(πd,s0) = max{nF (H(πd,s0)), GQU+(N (πd,s0))}.

Finally, let us remark thatGQU−(N (πd,s0)) can still be regarded as a degree of
inclusion [Sim∗d ⊆ Gd] of the normalised fuzzy set of situations similar tos0, Sim∗d,
into thefuzzy set of situations in whichd led to good results, if we define

[Sim∗d ⊆ Gd] = mins:(s,d,x)∈M

(
Sim∗d(s) ⇒ Gd(s)

)
.

In this expression,⇒:V × U → U is a many-valued implication-like operation of
the type “not (a and not b)”, interpreting the “and” as it was mentioned in Chapter 5 by
a t-norm> on V and, because of the different domains involved (V andU ) it has to be
formally expressed as

a ⇒ β = n(α>γ),

wheren(γ) = β. Analogously,GQU+(N (πd,s0)) is still a degree of intersection
[Sim∗d ⊆ Gd] provided that we define

[Sim∗d ⊆ Gd] = maxs:(s,d,x)∈M (Sim∗d(s)⊗Gd(s))

where⊗ is a t-norm-like operation defined asα⊗ β= h(α) >U β, where>U is a
transform byh of the t-norm> (defined onV ) into U.

8.4 A Case-based Decision View of the Safety Decision
Problem in a Chemical Plant

To exemplify some of the notions introduced in this Chapter, let us return to the safety
problem in the chemical plant introduced in Section 5.2.

So far we have assumed that, in order to take a decision in front of a problem in
the plant, the head of the Dept. had available a report, under the form of a possibility
distribution, about the actual state of the plant. Now, assume the following situation:
the alarms turn on but, for some strange reason, the head of the Dept. does not receive
any report about the emergency state of the plant, and he is only provided with the
readings of the two alarm systems (fire and pipeline pressure).

The possible values for the readings of each system are
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• e0 = normal,

• e1 =small problem,

• e2 = big problem,

• e3 = danger

This time, the readings he gets are:

system1 = big problem (e2) system2 = normal (e0).

Nevertheless, he had recorded past experienced problems and for each of those
problems he stored triples of the form(state-description, action, consequence),where
state-descriptions consist of pairs(evaluation− system1, evaluation− system2),
wheresystem1 refers to the fire alarm system andsystem2 refers to the pressure
pipelines alarm system.

We shall apply the model for case-based decision previously described. To do that,
consider the similarity evaluation between situation-description tuples defined as:

Sim((ei, ek), (ej , et)) = min(S(ei, ej),max(n(α), S(ek, et)))

with α ∈ V, andS the similarity on system evaluations defined in Table 8.1.

S e0 e1 e2 e3

e0 1 w6 w4 0
e1 w6 1 w7 w5

e2 w4 w7 1 w8

e3 0 w5 w8 1

Table 8.1: Similarity on alarm system evaluationsS(ei, ej).

Notice that the global similarity is computed as a weighted-min aggregation of the
marginal similarities (which are the same), all of them taking values in the common
scaleU. A valueα < 1 denotes a partial reliability on the alarm system 2. The available
memoryM of previously experienced cases is given in Table 8.2.

According to the model, the Decision Maker has to rank the induced possibility
distributions by the current casec0 = (e2, e0) and the above similarity functionSim,
which are defined as follows
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cases evaluation sensor1 evaluation sensor2 decision consequence

c1 e0 e1 d2 (risk=0,cost=2)
c2 e1 e0 d2 (risk=0,cost=2)
c3 e2 e1 d1 (risk=1,cost=1)
c4 e1 e2 d1 (risk=0,cost=1)
c5 e2 e3 d3 (risk=0,cost=3)
c6 e1 e3 d3 (risk=0,cost=3)

Table 8.2: Memory of cases.

πd0 = 0;

πd1 = (Sim((e2, e0), (e2, e1))/(Risk = 1, Cost = 1),

Sim((e2, e0), (e1, e2))/(Risk = 0, Cost = 1))

= (max(n(α), w6)/(Risk = 1, Cost = 1),

max(w4, min(w7, n(α))/(Risk = 0, Cost = 1)));

πd2 = (max(Sim((e2, e0), (e0, e1)), Sim((e2, e0), (e1, e0)))/(Risk = 0, Cost = 2))

= (max(w4, w7)/(Risk = 0, Cost = 2))

= (w7/(Risk = 0, Cost = 2));

πd3 = (max(Sim((e2, e0), (e2, e3)), Sim((e2, e0), (e1, e3)))/(Risk = 0, Cost = 3))

= (max(n(α), min(n(α), w7))/(Risk = 0, Cost = 3))

= (n(α)/(Risk = 0, Cost = 3)).

Observe thatif we do not pay attention to the fact that these distributions are non-
normalisedand we rank them in terms ofQU−, we get:

QU−(πd0) = 1,

QU−(πd1) = w4,

QU−(πd2) = w7,

QU−(πd3) = max(α, w6).

That is, for eachα 6= 1, we have thatd0 (do nothing) is ranked as the best, in spite of
the fact that the alarm system 1 warns about a big problem, and that personal safety is
the most important criteria. Moreover, in the caseα = 1, it is equally supported either
to do nothing or to evacuate, one may be too dangerous while the other may result
too drastic. However, if decisions are ranked taking into account that the distributions
involved are non-normalised we have that:

QU−(πd0) = min{0, QU−(N (πd0))} = min{0, 0} = 0,

QU−(πd1) = min{max(n(α), w6), QU−(N (πd1))},
QU−(πd2) = min{w7, QU−(N (πd2))} = min{w7, w7} = w7,

QU−(πd3) = min{n(α), QU−(N (πd3))}.
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Hence, ifα < 1, QU−(πd3) = min(n(α), w6), andQU−(πd3) = 0 otherwise.
Moreover, sinceQU−(N (πd1)) ≤ w4, we have thatQU−(πd1) ≤ w4. Therefore,
d2 is the best decision, which is coherent with the fact of having one alert of a major
problem and giving preference to personal safety.

8.5 An Extension of the Model for Partially Inconsistent
Belief States Using Uncertainty and Preference
Lattices

Throughout these sections we have assumed that plausibility and preferences are
evaluated on (finite) linear scales. However, as already claimed, sometimes we may
face decision problems where theDecision Maker’s preferences may be only partially
elicited, or in case-based decision problems where a complete global similarity between
cases is not available but only partially specified. Along this line, we have proposed in
Chapter 7 an extension of the axiomatic model where both preferences and uncertainty
are measured on distributive lattices that are commensurate. Now, this proposal is
extended to also include belief states that may be partially inconsistent.

As is in the linear case, there are some decision problems in which the distributions
involved are non-normalised. Hence, we will consider other functions that let us work
with these distributions.

First, let us introduce the concepts ofnormalization andheight of a distribution
in the context of lattices. DefineH, the height of a distribution, π:X → V , where
(V,∨,∧, 0, 1) is a lattice, as

H(π) =
∨

x∈X π(x),

and for each distribution we consider thesubset of consequences with maximal
plausibility

Xπ = {x ∈ X | ∀ y ∈ X π(y) ≯ π(x)}.

We defineN (π), thenormalisation ofπ, as the normalised distribution

N (π)(x) =





1, if x ∈ Xπ

π(x), otherwise.

Analogously, we extend the set of possibilistic lotteries to the setΠex(X) of non-
necessarily normalised distributions onV . Hence, first we need to extend the concept
of possibilistic mixture PME onΠex(X) to combineπ1 andπ2 with (λ, µ) ∈ Φ∨, with

Φ∨ = {(λ, µ) ∈ V × V | λ ∨ µ = 1},

i.e. PME:Πex(X)×Πex(X)× Φ∨ → Πex(X), and we define
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PME(π1, π2, λ, µ)(x) = (λ/π1, µ/π2)(x) = (λ ∧ π1(x)) ∨ (µ ∧ π2(x)).

Given a functionF :V → V, such thatF (1) = 0, now we may consider the
qualitative (or ordinal) utility functions onΠex(X), corresponding to those considered
previously:

QU−
F

(π) = QU−(N (π)) ∧ n(F (H(π))),
QU+

F
(π) = QU+(N (π)) ∨ h(F (H(π))).

Let vF be a preference relation onΠex(X). We will denote byv its restriction
to Π∗(X), the set of normalised possibility distributions, and by∼F and ∼ the
corresponding indifference relations.

In order to characterise the preference orderings induced by the utilitiesQU−
F

and

QU+

F
, we extend the axiom setsAXP andAXP+, defined on(Π∗(X),v), with the

axiom:

• A7PF : ∀π ∈ Πex(X), π ∼F (1/N (π), F (H(π))/X).

We say that a preference relationvF on Πex(X) satisfies axiom setAXPN =
AXP ∪{A7PF} (AXPN+ = AXP+ ∪{A7PF} resp.) if and only if its restriction
to Π∗(X), satisfiesAXP (AXP+ resp.) andvF also satisfiesA7PF.

Theorem 8.3
Given a functionF :V → V, such thatF (1) = 0, then a preference relationvF on
Πex(X) satisfies axiom setAXPN (AXPN+ resp.) iff there exist

(i) a finite distributive utility lattice with involution(U,∨,∧, 0, 1, nU ),

(ii) a preference functionu:X → U, s.t. u−1(1) 6= ∅ and
∧

x∈X u(x) = 0
(u−1(0) 6= ∅ and

∨
x∈X u(x) = 1 resp.),

(iii) an onto order-preserving functionh:V → U s.t.nU ◦h◦nV = h, h also satisfying

if λ <> λ′ thenh(λ) <> h(λ′),

in such a way that it holds:

π′ vF π ⇐⇒ QU−
F

(π′) ≤ QU−
F

(π),

( π′ vF π ⇐⇒ QU+

F
(π′) ≤ QU+

F
(π) resp.), withn = nU ◦ h.

Proof:
Since the proofs for pessimistic and optimistic criteria are very similar, we only provide
the pessimistic one.
←) Consider now the utility functionQU− defined in terms ofh andu. AxiomsAXP
are verified becauseQU−

F
restricted toΠ∗(X) is equal toQU− sinceF (1) = 0,

and by Theorem 7.9, we have that the ordering induced byQU− in Π∗(X) satisfies
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AXP. Now, we verifyA7PF. SinceQU− preserves mixtures becauseU is distributive,
A7PF verifies trivially. Indeed by definition ofQU−

F and as

QU−(X) =
∧

x∈X

u(x) = 0,

we have that

QU−
F

(π) = QU−(N (π)) ∧ n(F (H(π))) = QU−(1/N (π), F (H(π))/X).

→) Sincev, the restriction ofvF to Π∗(X), satisfies axiomsAXP, we may apply
Theorem 7.9. So, we have determined the existence ofU, h and u satisfying the
conditions such thatQU− representsv, with

QU−(π) =
∧

x∈X

(n(π(x)) ∨ u(x)).

SinceA7PF guarantees that

π ∼F (1/N (π), F (H(π))/X),

we define
QU−

F
(π) = QU−(1/N (π), F (H(π))/X).

Now, we verify thatQU
F

representsvF , i.e.

π′ vF π ⇐⇒ QU−
F

(π′) ≤ QU−
F

(π).

By A7PF andA6 we have that there existλ, λ′ such thatπ ∼F π−λ , π′ ∼F π−λ′ , so

QU−
F

(π) = QU−
F

(π−λ ),

QU−
F

(π′) = QU−
F

(π−λ′).

As π′ vF π ⇐⇒ π−λ′ vF π−λ and as QU− representsv we have
thatQU−(π−λ′) ≤ QU−(π−λ ).

Then, recalling thatQU− coincides withQU−
F

on Π∗(X), we obtain thatπ′ vF

π ⇐⇒ QU−
F

(π′) ≤ QU−
F

(π).
It remains to prove thatQU−

F
(π) = QU−(N (π)) ∧ n(F (H(π))). Since QU−

preserves mixtures, QU−(X) = 0 and A7PF guarantees thatπ ∼F

(1/N (π), F (H(π))/X), we finally have that

QU−
F

(π) = QU−(1/N (π), F (H(π))/X) = QU−(N (π)) ∧ n(F (H(π))).

¤

Generalised Utilities

As usual, we may consider that there are available inV more operators, and this fact let
us consider other utility functions. Now, we introduce the corresponding extension of
our previous proposal for generalised qualitative utility functionsGQU− andGQU+.
We propose the qualitative (or ordinal) utility functions onΠex(X),6

6Take into account that now we are considering distributions on lattices.
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GQU
F
−(π|u) = GQU−(N (π)|u) ∧ n(F (H(π)))

GQU+

F
(π|u) = GQU+(N (π)|u) ∨ h(F (H(π))). (8.3)

where the necessary additional axiom is:

• A7F> : ∀π ∈ Πex(X), π ∼ M>(N (π), X; 1, F (H(π))).

The representation theorem is analogous to the previous case and is omitted.

8.6 Similarity between Acts for Possibilistic Case-Based
Decision Theory

Many economical decision problems such as whether or not to “Offer to sell at price
p” for a specific valuep, would likely be affected by the results of previous offers
to sell with different but close values ofp. We would like to let theDecision Maker
evaluate a new decision taking into account the performance of other “similar” acts he
has experienced.

Gilboa and Schmeidler (1996) made a proposal along this line, they also claimed
that while a straightforward application ofCBDT to economical models with an infinite
set of acts may result in counter-intuitive and unrealistic predictions, the introduction
of a similarity also involving acts may improve these predictions.

We will analyse, in thefinite possibilistic context, a model to evaluate utilities on
each decision taking into account the performance of others acts, i.e. to deal with cases
in which the evaluation of an act may also depend on past performance of the acts,
maybe different but “similar” acts. Therefore, we shall consider a global similarity
function over problem-act pairs. The difference with the approach analysed in Section
8.1 is that for evaluating a decision now we are also interested in the behaviour of
“similar” acts in previous “similar” situations.

Given a situations and an actd, we will refer to the pair(s, d) as a decision-case.
Our proposal is to estimate to what extent a consequencex can be considered

plausible of being the consequence ofs0 by d, in terms of what extent the current
decision-case(s0, d) is similar to previous decision-cases(s, d′) in which x was
experienced. That is, for each case(s, d′, x) in a memoryM, a principle stating that

“The more similar are the decision-cases(s0, d) and (s, d′), the more
possiblex is the consequence ofd in s0”.

is assumed.
ConsideringD the set of available decisions, we assume a similarity relationGlSim

available on the decision-case set, i.e. a functionGlSim:(S×D)2 → V that measures
the degree of similarity between two pairs(situation, decision).

Therefore, according to this principle, analogously to Section 8.1, we propose to
consider the following utility function:

U−s0,M (d|u) = min
(s,d′,x)∈M

(GlSim((s0, d), (s, d′)) ⇒ u(x)) .
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As already seen, this corresponds with a view of the degree of inclusion of the fuzzy
set of the similar decision-cases to(s0, d) into the fuzzy set of good consequences
experienced. That is, we are considering

GlG : {(s, d′)|(s, d′, x) ∈ M} → U

the fuzzy set of decision-cases that obtained good results, whose membership is
GlG(s, d′) = u(x).7

For eachd, let

GlSimd : {(s, d′) | (s, d′, x) ∈ M} → V

be the fuzzy set of decision-cases which are similar to(s0, d), defined as
GlSimd(s, d′) = GlSim((s0, d), (s, d′)). Hence, the above expression forU−s0,M (d|u)
may be rewritten as the following degree of inclusion:

U−s0,M (d|u) = [GlSimd ⊆ GlG].

We may apply here the alternative implications analysed in Section 5.1, obtaining
their respective utility functions. Analogously, we may consider the intersection of the
fuzzy set to reflect a more optimistic behaviour:

U+
s0,M (d|u) = [GlSimd ∩GlG].

7GlG is well defined because we are assuming a minimal deterministic memory, i.e. for each situation
we only retain in the memory the case with the best consequence for any decision.
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Chapter 9

Further Results: Ordering
Refinements and Weaker
Commensurability Conditions

In this Chapter, we introduce the last results obtained in the on going work. The first
concerns to the refinement orderings problem1 when ranking distributions. Indeed, in
some problems it may be not enough to rank distribution taking into account only one
criterion, for example the pessimistic criterion, and we may be interested in refining the
ranking with another criterion, e.g. the optimistic one.

The second topic is related with an issue that has been of our interest since the
beginning, the commensurability hypothesis between the preference and the uncertainty
sets. Up to now, we have assumed the existence of anonto order-preserving mapping
linking both sets. This fact forced to restrict ourselves to work with problems in which
the uncertainty set has a greater cardinality than the preference one. Here, we propose
to weaken this hypothesis requiringh to be only an order-preserving mapping satisfying
h(max V ) = max U andh(min V ) = min U.

9.1 Some Possible Refinements

We may consider different qualitative utility functionals for ranking decisions, among
them of course we have the pessimistic and optimistic criteriaQU− andQU+ and their
generalised versionsGQU− andGQU+ introduced in Chapters 4, 5, and 7. However,
in some decision problems it may be interesting to consider some refinements of these
orderings. In this Section, we summarise our first results in this issue.

Among different possible refinements we may consider the following ones:

1This work was begun during a Short-Term Scientific Mission of the author within the frame of
COST Action 15, Many-valued Logics for Computer Science Applications, at the Institut de Rechèrche en
Informatique de Toulouse (IRIT) with Dr. Henri Prade.
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1. A first approach is to use the optimistic criterion to refine the pessimistic one, i.e.

π v0 π′ ⇐⇒ {{GQU−(π|u) <U GQU−(π′|u)} or

{[GQU−(π|u) = GQU−(π′|u)] ∧
[GQU+(π|u) ≤U GQU+(π′|u)]}},

where we are considering that both generalised utility functions are defined in the
same latticeU and with the same preference functionu. But sometimes we may
have different lattices and preference functions for both criteria, hence in such a
situation the refinement would be defined as:

π v1 π′ ⇐⇒ {{GQU−(π|u−) <U− GQU−(π′|u−)} or

{[GQU−(π|u−) = GQU−(π′|u−)] ∧
[GQU+(π|u+) ≤U+ GQU+(π′|u+)]}}.

2. In some cases, we may be interested in considering the problem of evaluating a
distributionπ by applying two different criteria toπ, depending on the type of
consequences. Indeed, suppose for instance that the consequences involved in the
safety decision problem may be classified in two groups: consequencesinvolving
the safety of personsand another group of consequencesrelated to economic
costs. In this case, we may be interested in being conservative with respect to
consequences of the first set, while a more optimistic criterion may be applied on
the second set. That is, given a subset2 I of X we consider

π v2 π′ ⇐⇒ Ut(π) ≤U Ut(π′),

with
Ut(π) = min(GQU+

Ic(π|u+), GQU−
I (π|u−)), 3

where
GQU−

I (π|u−) = GQU−
F

(π ∧ I|u−)

and
GQU+

Ic(π|u+) = GQU+

F
(π ∧ Ic|u+),

whereπ ∧ I denotes the intersection of the distributions, i.e. the distribution,
non-necessarily normalised, defined as

(π ∧ I)(x) = inf(π(x), I(x)).

π ∧ I may be seen as the conditioning ofπ by the eventI. As we will apply
the same setI for all distributionsπ, we will call GQUI the generalised utility
function conditioned byI. That is,

π v2 π′ ⇐⇒ (GQU+
Ic (π|u+), GQU−I (π|u−)) ≤min (GQU+

Ic (π′|u+), GQU−I (π′|u−)).

2Analogously, if we are interested in aV -fuzzy setI onX.
3As usual,Ic denotes the complement ofI with respect toX.
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3. Sometimes we may be interested in refining in alexicographicstyle ordering
considering these priority levels: first≤GQU−(·|u−), then, ≤GQU+(·|u+) and
finally ≤GQU−I (·|u−) . That is,

π v3 π′ ⇐⇒ {{GQU−(π|u−) <U− GQU−(π′|u−)} or

{GQU−(π|u−) = GQU−(π′|u−) ∧
GQU+(π|u+) <U+ GQU+(π′|u+)} or

{GQU−(π|u−) = GQU−(π′|u−) ∧
GQU+(π|u+) = GQU+(π′|u+) ∧
GQU−

I (π|u−) ≤U− GQU−
I (π′|u−)}},

4. or, analogously, considering≤GQU+
I (·|u+) instead of≤GQU−I (·|u−):

π v4 π′ ⇐⇒ {{GQU−(π|u−) <U− GQU−(π′|u−)} or

{GQU−(π|u−) = GQU−(π′|u−) ∧
GQU+(π|u+) <U+ GQU+(π′|u+)} or

{GQU−(π|u−) = GQU−(π′|u−) ∧
GQU+(π|u+) = GQU+(π′|u+) ∧
GQU+

I (π|u+) ≤U+ GQU+
I (π′|u+)}}.

Let us show a little example about how these rankings may classify distributions.

Example:
Let X = {x, x1, x2, x} and its subsetI = {x, x1}. We considerU− = U+ = V =
{0 < µ < λ < 1}, and the distributions:

π = (1/x, 1/x1, λ/x),

and
π′ = (1/x, 1/x2, λ/x).

We assume both preference functions are the same, sayu, with u(x) = 0, u(x1) =
µ, u(x2) = λ andu(x) = 1. So,

QU−(π) = QU−(π′) = n(λ) and QU+(π) = QU+(π′) = 1.

That is, both distributions are indistinguishable w.r.t. the pessimistic and optimistic
criteria. Moreover,QU+

I cannot distinguish both distributions. However, other
rankings can do it. Indeed,

QU−
I (π) = u(x1), while QU−

I (π′) = 1,

and

QU+
Ic(π) = max{QU+(N (π ∧ Ic)), h ◦ nV (λ)} = h(µ) = µ,
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while

QU+
Ic(π′) = u(x2) = λ.

Moreover,

Ut(π) = µ andUt(π′) = λ.

♦

Remark 12
We might wonder if theGQUI rankings induced by subsets of the same cardinality
coincide. This is not true. Indeed, given proper subsets ofX with the same cardinality,
we can show that the orderings induced byGQU conditioned by these subsets may be
different.
GivenY1 ⊂ X, Y2 ⊂ X, s.t. |Y1| = |Y2|,

GQU−
Y 1(π) > GQU−

Y 1(π
′) 9 GQU−

Y 2(π) > GQU−
Y 2(π

′).

Indeed, suppose,X = {x1 @ . . . @ x5}, consider the “crisp” distributions

π = {x1, x3, x4}, π′ = {x1, x2, x5},

and the sets

Y1 = X − {x1, x3} andY2 = X − {x1, x2}.
So, we have that

QU−
Y 1(π) > QU−

Y 1(π
′),

while

QU−
Y 2(π) < QU−

Y 2(π
′).

That is, the rankings conditioned byY1 andY2 are different.

There are several other refinements, for example, other refinements orderings
based in ordinal information are:discrimaxand leximin. If x = (x1, . . . , xn), y =
(y1, . . . , yn),, considering the setD(x, y) = {i|xi 6= yi}, we have that

x ≥discrimax y ⇐⇒ max
i∈D(x,y)

xi ≥ max
i∈D(x,y)

yi,

while

x ≥leximin y ⇐⇒ x∗ ≥lex y∗,
where x∗, y∗ are increasing reordering ofx and y (for more details you may see
(Dubois et al., 1996a; Moulin, 1988)).
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9.1.1 Axiomatic Characterisation of some Refinement Orderings

Here, we provide the axiomatic characterisation of some refinements of the orderings
involving the generalised qualitative criteria. In particular, we characterise the
refinement orderings v1;v3 and v4 previously introduced. First, let us introduce
some definitions analogous to the ones introduced in Chapter 6. Given a finite set
R = fvigi=1;:::;k of binary relations on sets fEigi=1;:::;k respectively, for each
“boolean” mapping g:f0; 1gk � f0; 1gk ! f0; 1g; the following relation may be
considered:

e 4g
R e0 () g((�v1(e1; e

0
1); : : : ; �vk

(ek; e
0
k)) ;

(�v1 (e
0
1; e1); : : : ; �vk

(e0k; ek))) = 1

where e = (e1; : : : ; ek); e0 = (e01; : : : ; e
0
k); and �vi

is the membership of the
preference orderingvi :

Recall (see Section 6.1) that Pareto and lexicographic orderings are particular types
of the relations4g

R :
Consider (V;^;_;>; I; 0; 1; nV ) a finite distributive residuated lattice with

involution for uncertainty and two utility finite distributive lattices with involution
(U�;^�;_�; nU� ; 0; 1); (U

+;^+;_+; nU+ ; 0; 1); both lattices being commensurate
withV; i.e. there exist two onto order-preserving functionsh�:V ! U�; h+:V ! U+;
both h’s also satisfying coherence w.r.t. >; and let u�:X ! U�; u+:X ! U+ be two
preference functions representing preferences on consequences on these lattices such
that (u�)�1(1) 6= ; 6= (u+)�1(0);

V
x2X(u�)(x) = 0 and

W
x2X (u+)(x) = 1:

Then, we can consider the following “utility” functional:

RGQU
�;+

(�j(u�; u+)(h�; h+)) = (GQU�(�ju�; h�); GQU+(�ju+; h+));

where GQU�(�ju�; h�) is the generalised pessimistic utility function defined in
terms of u�; h� (and the involution in (U �;��)) and the t-norm > in V; and
GQU+(�ju+; h+) is the optimistic one expressed in terms of u+; h+ and >:

Notation 9.1
For the sake of a simpler notation, we shall write RGQU

�;+
(�j(u�; u+)) instead of

RGQU
�;+

(�j(u�; u+)(h�; h+)) when the mapping h involved in the GQU function
has in its notation the same sign that u: The same rule is applied to GQU; in the sense
that instead of writing, for instance, GQU�(�ju�; h�) we will write GQU�(�ju�):

Under these hypotheses, and given a boolean function g; we may consider the

orderings4 induced by g and RGQU
�;+

(�j(u�; u+)) defined as

4It is obvious that not for all g we obtain an ordering, however for decision making we are interested in
those that result in orderings.
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� 4g

fu�;u+g �
0 () RGQU

�;+(�j(u�; u+)) 4g

f��;�+g RGQU
�;+(�0j(u�; u+)):

That is,

� 4g

fu�;u+g �
0 ()

g(
�
���(GQU

�(�ju�); GQU�(�0ju�)); ��+ (GQU
+(�ju+); GQU+(�0ju+))

�
;�

��� (GQU
�(�0ju�);GQU�(�ju�)); ��+ (GQU

+(�0ju+);GQU+(�ju+))
�
) = 1:

Remark 13
In particular, if we choose g for lexicographic ordering, we have that the refinement
orderings v1;v3 and v4 proposed in the beginning of the Chapter are obtained. For
example, if we take,

g(x; y) = max(min(x1; 1� y1);min(x1; y1; x2));

and v1=4GQU�(�ju�); v2=4GQU+(�ju+); we have that

� v1 �
0 () ffGQU�(�ju�) < GQU�(�0ju�)g _

fGQU�(�ju�) = GQU�(�0ju�) and
GQU+(�ju+) � GQU+(�0ju+)gg:

As a first approach for characterising these orderings, we propose the following set
of axioms, RAXg

>, for a preference relationv on (�ex(X);M>):

� GA0: There exists a setR = fv�;v+g of orderings such thatv = 4g
R; i.e.

� v �0 () g
��
�v� (�; �

0); �v+(�; �
0)
�
;
�
�v�(�

0; �); �v+(�
0; �)

��
= 1

� AxGroup: v� satisfies AXPN>; while v+ satisfies AXPN+
> :

Then, the following theorem is a consequence of the representation Theorem 7.14.

Theorem 9.1 (Representation Theorem)
Given a boolean mapping g; a preference relation v on (�ex(X);M>); satisfies the
axiom set RAXg

> if and only if there exist:

(i) two utility finite distributive lattices with involution (U �;^�;_�; nU� ; 0; 1) and
(U+;^+;_+; nU+ ; 0; 1);

(ii) two preference functions u�:X ! (U�;��); u+:X ! (U+;�+) such that
(u�)�1(1) 6= ; 6= (u+)�1(0);

V
x2X (u�)(x) = 0 and

W
x2X (u+)(x) = 1:

(iii) two onto join-preserving mappings h�:V ! U�; h+:V ! U+, both satisfying
coherence w.r.t >; also satisfying

if � <> �0 then h�(�) <> h�(�0);

nU� Æ h
� Æ nV = h�; nU+ Æ h

+ Æ nV = h+, and

if � <> �0 then h+(�) <> h+(�0);
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in such a way that it holds:

� v �0 iff � 4g

fu�;u+g
�0:

The vectorial function of utility inducing4 g

fu�;u+g
being

RGQU
�;+

(�j(u�; u+)) = (GQU�(�ju�; h�); GQU+(�ju+; h+));

with n = nU� Æ h
�:

Proof:
!) Since relation v� satisfies AXPN> and v+ satisfies AXPN+

> ; then, the
existence of f(U�;��); (U+;�+)g5, fu+; u�g and fh�; h+g is guaranteed by the
Theorem analogous to Theorem 8.3. So, it only remains to verify that the relation

induced by RGQU
�;+

and g coincides with v :
As v� and v+ are represented by GQU�(�ju�; h�) and GQU+(�ju+; h+)
respectively, we have that

� v� �0 () GQU�(�ju�; h�) �� GQU�(�0ju�; h�);

and
� v+ �0 () GQU+(�ju+; h+) �+ GQU+(�0ju+; h+):

That is,
�v� (�; �

0) = ���(GQU
�(�ju�); GQU�(�0ju�))

and
�v+(�; �

0) = ��+(GQU
+(�ju+); GQU+(�0ju+)):

Hence, applyingGA0; we have that

� v �0 () g(
�
�v� (�; �

0); �v+(�; �
0)
�
;�

�v� (�
0; �); �v+(�

0; �)
�
) = 1

() g((��� (GQU
�(�ju�); GQU�(�0ju�));

��+(GQU
+(�ju+); GQU+(�0ju+)));

(���(GQU
�(�0ju�); GQU�(�ju�));

��+(GQU
+(�0ju+); GQU+(�ju+)))) = 1

() � 4g

fu�;u+g
�0:

 ) Given f(U�;��); (U+;�+)g; fu+; u�g and fh�; h+g; we consider v�

and v+ as the preference relations induced by GQU�(�ju�) and GQU+(�ju+)
respectively. By the Theorem analogous to Theorem 8.3, we have that v� satisfies
AXPN> and v+ satisfies AXPN+

> : That is, AxGroup is verified.
Taking into account the definition of 4g

fu�;u+g and the fact that

�GQU�(�ju�)(�; �
0) = ��� (GQU

�(�ju�); GQU�(�0ju�));

5� is the order induced in the lattice by the meet or joint operation of the lattice.
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and
�GQU+(�ju+)(�; �

0) = ��+ (GQU
+(�ju+); GQU+(�0ju+));

we have that

� 4g

fu�;u+g �
0 () g((�GQU�(�ju�)(�; �

0); �GQU+(�ju+)(�; �
0));

(�GQU�(�ju�)(�
0; �); �GQU+(�ju+)(�

0; �))) = 1

That is, GA0 is verified. �

9.1.2 A First Approach for Characterising Refinements Orderings
Applying the Same Preference Function on Consequences

Now, we focus in the refinement orderings that apply the same preference function
on consequences. As a first approach for characterising these orderings, we propose
the following set of axioms, MRAX g

>, for a preference relation v on (��(X);M>)
induced by the linear orders v� and v+:

� GA0: There exists a setR = fv�;v+g of orderings such thatv = 4g
R; i.e.

� v �0 () g
��
�v� (�; �

0); �v+(�; �
0)
�
;
�
�v�(�

0; �); �v+(�
0; �)

��
= 1

� AxGroup0: v� satisfies AX�
>�; whilev+ satisfies AX+

>�
6.

� AxCompl

1. x v� y () x v+ y.

2. Let x; x be a maximal and a minimal element of (X;v�) = (X;v+),
denote ��� =M>(x; x; 1; �); �

+
� = M>(x; x; �; 1). Then,

��� @
� ��� () �+� A

+ �+� :

3. jX= �� j = j�(X)= �� j

Observe that as consequence of axiom AxCompl1, we have that
jX= �� j = jX= �+ j:

Before considering the characterisations of these orderings, let us introduce some
necessary results:

Proposition 9.2
1. Consider two finite latticesU;U 0, b : U ! U 0 a lattice isomorphism, a preference

mapping u : X ! U , and an onto linking mapping h : V ! U; satisfying
coherence.
If u0 = b Æ u and h0 = b Æ h, the orderings induced by GQU w.r.t. U 0; h0; u0 and
w.r.t. U; h; u, are the same.

6AX
�
> � and AX+>� are the same axiom sets as AX�

> and AX+> respectively but now considering the
distributions on ��(X;V ) with the mixture operation defined with the supremum and the infimum instead
of the maximum and teh minimum
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2. Given a finite linear scale W , and two onto mappingsm : X ! U , m0 : A!W ,
such that they represent the same ordering in A, i.e.

m(x) < m(y) () m0(x) < m0(y); 8x; y 2 A

then m = m0.

Proof:

1. We consider the optimistic criterion, being the pessimistic one very analogous.
We have that

GQU+(�jU 0; h0; u0) =
0_

x2X

h0(�(x)>�0x)

with h0(�0x) = u0(x). Moreover, since u0 = b Æ u; h0 = b Æ h, we have that
(b Æ h)(�0x) = h0(�0x) = u0(x) = (b Æ u)(x), that is, h(�0x) = u(x), hence

GQU+(�jU; h; u) =
_
x2X

h(�(x)>�0x):

Therefore, as b is an isomorphism and

GQU+(�jU 0; h0; u0) =
0_

x2X

h0(�(x)>�0x)

=
0_

x2X

(b Æ h)(�(x)>�0x)

= b

 _
x2X

h(�(x)>�0x)

!

= b(GQU+(�jU; h; u));

both orderings are the same.

2. Indeed, consider (A;v), with x v y () m(x) � m(y)( () m0(x) �
m0(y)). Suppose that m 6= m0, hence Z = fxjm(x) 6= m0(x)g 6= ;. Let x0
be the minimum, w.r.t v, of Z. Without loss of generality we may assume, that
m0(x0) > m(x0); as m0 is onto there exists x1 2 A s.t. m0(x1) = m(x0) <
m0(x0). That is, x1 @ x0.
By hypotheses, m0(x1) < m0(x0) () m(x1) < m(x0), so, we have
that m(x1) < m(x0) = m0(x1), that is, m(x1) 6= m0(x1), hence x1 2 W .
Contradiction because x1 @ x0, and x0 is the infimum of Z. Hence, m = m0.

�
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u u0

x1 a c
x2 b b

x3 c a

Table 9.1: u and u0 definitions.

Notice that 2) is not true if U is non-linear. Indeed, consider U = fa; b; cg s.t.
a < b; c < b, X = fx1; x2; x3g, and u; u0 defined in Table 9.1, u; u0 satisfy that
u(x) < u(y) () u0(x) < u0(y) and they are different mappings.

Then, the following theorem is a consequence of the representation Theorem for the
linear case and the previous proposition.

Theorem 9.3 (Representation Theorem)
Given a boolean mapping g; a preference relation v on (��(X);M>); satisfies the
axiom set MRAXg

> if and only if there exist:

(i) a finite linear scale of utilityU

(ii) an onto preference function u:X ! U;

(iii) an onto order-preserving mapping h:V ! U; satisfying coherence w.r.t >;

in such a way that it holds:

� v �0 iff � 4g

fu;ug
�0:

The vectorial function of utility inducing4 g

fu;ug being

RGQU
�;+

(�j(u; u)) = (GQU�(�ju; h); GQU+(�ju; h));

with n = nU Æ h:

Proof:
!) As usual, v+ stratifies �(X) in a linearly ordered set of classes of equivalently

preferred distributions (� 0 2 [�] iff � � �0). The number of classes is just the number
of levels needed to rank order the set of distributions.

Therefore, we take as preference scale (U+;�+) the quotient set �(X)= �+

together with the natural (linear) order

[�]+ �+ [�0]+ iff � v+ �0:

Again, as usual we define the order-preserving function h+:V ! U+ as h+(�) =
[�+� ], while we define GQU+(M>(x; x;�; 1)) = h+(�); and we extend it due to
axiom A4+>: While u+:X ! U+ is defined as u+(x) = GQU+(x): It is known that
GQU+(�) = maxi=1;:::;p h+(�(xi)>�

+
i ) and that GQU+ represents v+ :

Analogously we defined U�; u�; h�, s.t. GQU�(�jU�; u�; h�) represents v�

Now, we verify that GQU+(�jU�; u�; h�) also represents v+.
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Indeed, as by AxCompl2 we have that

�+� @
+ �+� () ��� A

� ��� ;

then U�; U+ are isomorphic. Let b : U� ! U+ be an isomorphism. Moreover,

h+(�) <+ h+(�) () �+� @
+ �+�

() ��� A
� ���

() h�(�) <� h�(�)

() b Æ h�(�) <+ b Æ h�(�):

Hence, by Proposition 9.2, h+ = b Æ h�. Analogously, as by AxCompl1 we have that
u+; u� represent the same ordering, and byAxCompl3; both mappings are onto, again
by Proposition 9.2, we have that u+ = b Æ u�. Therefore,

4GQU+(�jU�;u�;h�)=4GQU+(�jU+;u+;h+) :

Hence, we define U = U�; h = h�; u = u�:

So, it only remains to verify that the relation induced byRGQU
�;+

and g coincides
withv :
As v� and v+ are represented by GQU�(�ju; h) and GQU+(�ju; h) respectively, we
have that

� v� �0 () GQU�(�ju; h) � GQU�(�0ju; h);

and
� v+ �0 () GQU+(�ju; h) � GQU+(�0ju; h):

That is,
�v�(�; �

0) = ��(GQU
�(�ju); GQU�(�0ju))

and
�v+(�; �

0) = ��(GQU
+(�ju); GQU+(�0ju)):

Hence, applyingGA0; we have that

� v �0 () g(
�
�v�(�; �

0); �v+(�; �
0)
�
;�

�v� (�
0; �); �v+(�

0; �)
�
) = 1

() g((��(GQU
�(�ju); GQU�(�0ju));

��(GQU
+(�ju); GQU+(�0ju)));

(��(GQU
�(�0ju); GQU�(�ju));

��(GQU
+(�0ju); GQU+(�ju)))) = 1:

() � 4g

fu;ug
�0:

 ) Given (U;�) u and h, we consider v� and v+ as the preference relations
induced by GQU�(�ju) and GQU+(�ju) respectively. By an analogous to the Theorem
5.5 considering supremum and infimum instead of maximum and minimum, we have
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thatv� satisfies AX�
> and v+ satisfies AX+

>
�: That is, AxGroup0 is verified.

Taking into account the definition of 4g

fu;ug and the fact that

�GQU�(�ju)(�; �
0) = ��(GQU

�(�ju); GQU�(�0ju));

and
�GQU+(�ju)(�; �

0) = ��(GQU
+(�ju); GQU+(�0ju));

we have that

� 4g

fu;ug �
0 () g((�GQU�(�ju)(�; �

0); �GQU+(�ju)(�; �
0));

(�GQU�(�ju)(�
0; �); �GQU+(�ju)(�

0; �))) = 1

That is, GA0 is verified. AxCompl, verifies trivially. �

9.2 A First Approach with a Weaker Commensurability
Hypothesis

In the models developed up to now, we have been assuming an hypothesis of
commensurateness between the plausibility set V and the preference set U in order
to define the criteria for ranking possibility distributions. Actually, in Section 4.4, it is
assumed the existence of an order-preserving mapping h:V ! U such that h(1) = 1
and h(0) = 0 to define the qualitative utility functions. However, to characterise the
orderings, h is also required to be onto (Lemma 4.7 and Theorem 4.12).
Now, we are interested in characterising the orderings resulting when h is not required
to be onto. This weakening of the commensurability hypothesis will allow us to
deal with other types of problems, in particular, those in which the cardinality of the
preference valuation set may be greater than the cardinality of the uncertainty valuation
set.

9.2.1 A New Working Framework

Let us define the framework for this section. V will denote a finite linear plausibility
scale, where inf(V ) = 0 and sup(V ) = 1; and �(X) will denote the set of consistent
possibility distributions on X over V , i.e.

�(X) = f� : X ! V jmaxx2X �(x) = 1g:

U will denote a finite linearly ordered scale of preference (or utility),with sup(U ) =
1 and inf(U ) = 0: As usual, we assume as working hypothesis the existence of a
preference function representing Decision Maker’s preference on consequences, i.e.
there exists a function u:X ! U that assigns to each consequence of X a preference
level of U such that u(x) � u(y) if and only if y is at least as preferred as x:
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Let h:V → U be an order-preserving functionrelating both scalesV andU such
thath(0) = 0, h(1) = 1. In such a framework,also assuming thath is onto, we have
been considering the preference relations induced by the utility functions

QU−(π|u) = min
x∈X

max(n(π(x)), u(x)),

wheren = nU ◦ h, nU is the reversing-involution inU, and

QU+(π|u) = max
x∈X

min(h(π(x)), u(x)).

Notation 9.2
As usual, for the sake of a simpler notation, we shall writeQU−(π) instead of
QU−(π|u) when the mappingu is not relevant for the context. In fact, these utility
functionsalso depend on the mappingh linking both scales.With the goal of simplicity,
we will omit it and will use the notation ofQU to refer a utility involving an ontoh and
QUW for the case of not requiringh this onto condition.

9.2.2 Qualitative Utility Functions with a Weaker Assumption of
Commensurability

Let us remark that the great difference with the cases analysed previously in Chapter 4
and with the work of (Dubois et al., 1997e) is that nowh is not required to be onto.

Givenh : V → U , for anyπ ∈ Π(X), consider the qualitative utility functions

QU−
W (π|u) = min

x∈X
max(n(π(x)), u(x))

wheren = nU ◦ h, nU being the reversing involution inU, and

QU+
W (π|u) = max

x∈X
min(h(π(x)), u(x)).

Notice thatQU−
W (·|u) andQU−

W (·|u), restricted toX, coincide with the preference
functionu, i.e. QU−

W (x|u) = u(x) = QU+
W (x|u), for all x ∈ X. As usual, sincen2

U is
the identity inU, the mappingh can also be defined fromn, namelyh(λ) = nU (n(λ)).

It is interesting to notice that these functions still preserves the possibilistic mixture:

Lemma 9.4
QU−

W andQU+
W preserve the possibilistic mixture in the sense that

QU−
W (λ/π1, µ/π2) = min{max(n(λ), QU−

W (π1)), max(n(µ), QU−
W (π2))},

and

QU+
W (λ/π1, µ/π2) = max{min(h(λ), QU+

W (π1)), min(h(µ), QU+
W (π2))}.

We omit the proof since it is easy to verify that in the proof of Lemma 4.5 we do not
apply the fact ofh being onto.
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Corollary 9.5
The following properties remain true forQU−

W andQU+
W :

1. QU−
W (max(π1, π2)) = min{QU−

W (π1), QU−
W (π2)}.

2. if QU−
W (π1) ≤ QU−

W (π2), then

QU−
W (λ/π1, µ/π2) = median{QU−

W (π1), QU−
W (π2), n(λ)}.

3. if QU−
W (π1) > QU−

W (π2) then

QU−
W (λ/π1, µ/π2) = median{QU−

W (π1), QU−
W (π2), n(µ)}.

The fact of allowingh to be anon-onto mapping results in that the continuity axiom
A4 may be not true. Indeed, if we considerV = {0, 1}, U = {0 < w < 1}
andX = {x, x1, x}, with u(x) = 0, u(x1) = w, u(x) = 1, it is obvious that
QU−

W (π) = minx∈π u(x). That is, the ordering induced byQU−
W coincides with the

maximincriterion while the ordering induced byQU+
W coincides with themaximaxone.

Observe that ifπ = x1, there does not existλ ∈ V such thatπ ∼ (1/x, λ/x).
Now, let us introduce the axiomatic setting we propose for characterising the

ordering induced by these pessimistic qualitative utility functions.

9.2.3 Axiomatic Setting Proposed

The above discussion has led us to propose this new set of axiomsAXM for preference
relations onΠ(X) with the max-min mixture as the internal operation onΠ(X).

• A1(structure) : v is a total pre-order .

• A2(uncertainty aversion): if π ≤ π′ ⇒ π′ v π.

• A3(independence) : π1 ∼ π2 ⇒ (λ/π1, µ/π) ∼ (λ/π2, µ/π).

Let x andx be a maximal and a minimal of(X,v) respectively. We denote byπ−λ the
lottery (1/x, λ/x).

• A4C (relaxed continuity): There exists a subset6 XNM ⊆ X such that all
maximal elements of(X,v) and all minimal elements of(X,v) are in the
complement ofXNM , and such that

(∀π ∈ Π(X)) either (∃λ ∈ V s.t. π ∼ π−λ ) or (∃x ∈ XNM s.t. π ∼ x).

• AxMix:

1. if x, y ∈ XNM , β ∈ V , then,

(1/x, β/y) ∼




x if (x v y) or (x @ π−β )
π−β if y @ π−β @ x

y if π−β @ y @ x,

6Observe thatXNM = ∅ is possible, and then axiomA4 (see Section 4.4) is recovered.
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2. if x ∈ XNM , then,

(1/π−λ , β/x) ∼




π−λ if (π−λ @ x) or (π−λ v π−β )
π−β if x @ π−β @ π−λ
x if π−β @ x @ π−λ .

The underlying idea inA4C is to relax the continuity of the preference. Now,
we may say that there exists a subset onX such that either the distributions are
preferentially equivalent to individual consequences on this set, or, the distributions
are preferentially equivalent to having aλ level of uncertainty with respect tox.

Remark 14
Let us consider the simplest scale of uncertainty,V = {0, 1}, that is, consequences
can be either fully possible or fully impossible. This is a very particular case since for
any preference scaleU, the only requirement to be fulfilled by a mappingh:V → U is
thath(0) = 0 andh(1) = 1. In this frameworkΠ(X) is just the power set2X and the
resulting utility functionals are

QU−
W (A|u) = min

x∈A
u(x),

QU+
W (A|u) = max

x∈A
u(x),

leading to the well-knownmaximinandmaximaxdecision models.
Now, it is very easy to check that, in order to fully characterise a preference relation

on2X induced by theseQU−
W andQU+

W , the above axioms simplify to these ones:

• A1: v is a total preorder,

• A2: if A ⊆ B thenB v A,

• A3: if A ∼ B thenA ∪ C ∼ B ∪ C,

• A4C: for all A ⊆ X, there existsx ∈ X such thatA ∼ x,

• AxMix: if x v y then{x, y} ∼ x.

Actually, in this setting axiomA2 is redundant since it is a logical consequence of the
remaining axioms. Moreover, as we are working as usual with a finite setX, A4C is a
consequence ofAxMix.

The axiomatic frameworks̀a la Savage of these maximax and maximin criteria are
provided in (Brafman and Tennenholtz, 1996; Brafman and Tennenholtz, 1997).

Some Auxiliary Results

Now, we introduce some results that will be applied to characterise the pessimistic
orderings.

Lemma 9.6
Axioms A1, A2, A3 , A4C and AxMix imply
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Ax2: If A is a crisp subset ofX then there existsx ∈ A s.t.x ∼ A.

Proof:
SupposeA = {x1, x2} with x1 v x2. Note thatA = (1/x1, 1/x2). If x1 ∼ x2, then,
A ∼ x1. Now, we assumex1 @ x2.

By A4C, there are four alternatives forx1, x2:

1. ∃ µ, λ s.t.x1 ∼ (1/x, λ/x) andx2 ∼ (1/x, µ/x).

2. ∃ x, y ∈ XNM s.t.x1 ∼ x andx2 ∼ y.

3. ∃ λ ∈ V, x ∈ XNM s.t.x1 ∼ x andx2 ∼ π−λ .

4. ∃ λ ∈ V, x ∈ XNM s.t.x1 ∼ π−λ andx2 ∼ x.

Now, we analyse them:

1. By A2, asx1 @ x2, then,λ > µ. Applying reduction of lotteries, we have that

A ∼ π−max(λ,µ) ∼ (1/x, λ/x) ∼ x1.

2. As A ∼ (1/x, 1/y) andx @ y by AxMix1, we have that

A ∼ x ∼ x1

3. SinceA ∼ (1/x, 1/(1/x, λ/x)), applyingAxMix2 we have that

A ∼ x ∼ x1.

4. Finally, A ∼ (1/π−λ , 1/x) and byAxMix2, it results

A ∼ π−λ ∼ x1.

Therefore, ifx1 @ x2, it holds thatA ∼ x1.
The case whenA hasp elements is an easy generalisation. Indeed, suppose the Lemma
is valid if |A| = p. Now, letA be such that|A| = p+1, and letx1 be one of its minimal
elements w.r.t.v .

SinceA = (1/x1, 1/A − {x1}), by induction hypothesis we have that ifx2 is one
of the minimal elements ofA− {x1} w.r.t.v, then,

A ∼ (1/x1, 1/x2) ∼ x1.

¤

An interesting property of a preference relationv on Π(X) satisfyingA1, Ax2
andA2 is that the extremal elements of(X,v) are maximal and minimal elements of
(Π(X),v) as well. Indeed, recall that we have proved Lemma 4.1:

If v verifies axiomsA1, Ax2 andA2, andx, x are a minimal and a
maximal element ofX, respectively, then:

• x ∼ π−1 ∼ X.

• x andx are also the minimal and maximal elements of(Π(X),v).
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9.2.4 Representation of Pessimistic Qualitative/Ordinal Utilities

Next, we show that the preference ordering onΠ(X) induced by the qualitative
pessimistic utilityQU−

W satisfies the above set of axioms.

Lemma 9.7
Let 4QU−W

be the preference ordering onΠ(X) induced byQU−
W , i.e.

π 4QU−W
π′ iff QU−

W (π) ≤ QU−
W (π′).

Then,4QU−W
verifies axioms setAXM.

Proof:
Axiom A1 is easily verified, alsoA2 is a consequence of maximum and minimum

being non-decreasing functions, whileA3 results from the fact thatQU−
W preserves

max-min possibilistic mixtures.
Thus, we only check axiomsA4C andAxMix. If h is onto,XNM = ∅, andA4C
reduces toA4, hence, we are in the case detailed in Section 4.4.

Now, we consider the case ofh being non-onto. Let

XNM = ({x| u(x) ∈ n(V )})c.

As u−1(1) 6= ∅ 6= u−1(0) andh(0) = 0 andh(1) = 1, if x is a maximal or a
minimal element of(X, 4QU−W

), thenx /∈ XNM .

With respect toA4C, we have to prove that ifx, x are a maximal and a minimal
element of(X, 4QU−W

), for any distributionπ in Π(X) we have either

(∃λ s.t.QU−
W (π) = QU−

W (1/x, λ/x))

or
(∃x ∈ XNM s.t.QU−

W (π) = QU−
W (x)).

By definition of QU−
W , for eachπ, we have that existsx0 ∈ X s.t. QU−

W (π) =
max(n(π(x0)), u(x0)).
Hence,

• if QU−
W (π) = n(π(x0)), then, takingλ = π(x0)(obviouslyλ is in V ), we have

thatQU−
W (π) = QU−

W (1/x, λ/x).

• Otherwise,QU−
W (π) = u(x0). In this case, there are two alternatives, either

u(x0) ∈ n(V ) or not. In the first option, we have that there existsλ ∈ V s.t.
QU−

W (π) = u(x0) = n(λ) = QU−
W (1/x, λ/x). While in the second option, we

have thatu(x0) ∈ XNM , andQU−
W (π) = u(x0) = QU−

W (x0).

Finally, is not difficult to verifyAxMix taking into account Lemma 9.4. ¤

Now, we can show that the preference orderings satisfying the axioms proposed can
always be represented by a pessimistic qualitative utility of the type ofQU−

W .
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Theorem 9.8 (Representation Theorem of Pessimistic Utility)
A preference relationv onΠ(X) satisfies axiom setAXM if, and only if, there exist

(i) a finite linearly ordered utility scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0),

(iii) an order-preserving7 functionh:V → U such thath(0) = 0 andh(1) = 1,

in such a way that

π′ v π iff π′ 4QU−W
π,

where4QU−W
is the ordering inΠ(X) induced by the qualitative utilityQU−

W (π) =
minx∈X max(n(π(x)), u(x)), being as usualn = nU ◦ h.

Proof:
The “if” part corresponds to the preceding Lemma. As for the “only if” part, we go

on structuring the proof, analogously to our previous approaches, in the following three
steps:

• In step (1) we define the utility scaleU and an order-preserving functionh from
V to U.

• In step (2) we define a functionQU−
W :Π(X) → U representingv, i.e. such that

QU−
W (π) ≤ QU−

W (π′) iff π v π′.

• Finally in step (3) we prove that

QU−
W (π) = minx∈X max(n(π(x)), u(x)),

whereu:X → U is the restriction ofQU−
W to X andn = nU ◦ h, nU being the

reversing involution onU.

Now, we develop these steps.

1. As usual,v stratifiesΠ(X) in a linearly ordered set of classes of equivalently
preferred distributions (π′ ∈ [π] iff π ∼ π′). The number of classes is just the
number of levels needed to rank the set of distributions. Therefore, we take as
utility scaleU the quotient setΠ(X)/ ∼ together with the natural (linear) order

[π] ≤ [π′] iff π v π′.

Denote by 1 and 0 the maximum and minimum elements ofΠ(X)/ ∼, i.e. of
U. As Lemma 4.1 still holds,x andx are a maximal and minimal elements of
(X,v) respectively, then[x] = 1 and[x] = 0.

Let π−λ be the possibility distribution corresponding to the qualitative lottery
(1/x, λ/x) and define the order-reversing functionn:V → U as

7Note thath is not required to be onto.
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n(λ) = [π−λ ].

Observe that, since(1/x, 1/x) ∼ x, we have

n(1) = [(1/x, 1/x)] = [x] = 0,

and

n(0) = [(1/x, 0/x)] = [x] = 1.

A2 guarantees thatn reverses the order.

Let h = nU ◦ n, nU being the reversing involution inU. It is obvious thath
satisfies the conditions required.

2. Now, we define the qualitative functionQU−
W onΠ(X) in three steps.

(a) First, let us defineQU−
W (1/x, λ/x) = n(λ).

It is easy to check that

π−λ v π−λ′ ⇐⇒ QU−
W (π−λ ) ≤ QU−

W (π−λ′).

(b) Secondly, let us define for eachx ∈ XNM , QU−
W (x) = [x]. Analogously,

it is easy to verify that, restricted to distributions of typex, QU−
W represents

v .

(c) We extendQU−
W to any lottery as follows.

Since for anyπ, A4C guarantees that either(∃λ s.t. π ∼ π−λ ) or (∃x ∈
XNM s.t. π ∼ x), we define

QU−
W (π) =

{
n(λ) if ∃ λ s.t.π ∼ π−λ
[x] if ∃x ∈ XNM s.t.π ∼ x.

Notice thatQU−
W is well defined: byA4C it is not possible to haveλ ∈ V

andx ∈ XNM s.t.π ∼ (1/x, λ/x) andπ ∼ x. However, one of these cases
may happen:

• ∃x, x′ ∈ XNM , s.t. π ∼ x andπ ∼ x′, or

• there existsµ 6= λ such thatπ ∼ π−µ andπ ∼ π−λ .

But, sincex′ ∼ π ∼ x, we have thatx′ ∼ x, therefore they are in the
same equivalence class, andQU−

W (π) = [x] = [x′]. In the other case, since
π−µ ∼ π−λ then[π−λ ] = [π−µ ], son(λ) = n(µ).

Finally, it is not difficult to verify thatQU−
W representsv . This is due to

the fact that anyπ is equivalent to someπ−λ or to somex ∈ XNM and
QU−

W representsv over theπ−λ ’s and over thex′s inXNM .

3. Now, we defineu:X → U as
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u(x) = QU−
W (x).

Notice thatu(x) = 1 andu(x) = 0, and thus,u−1(1) 6= ∅ 6= u−1(0).

It remains to prove thatQU−
W (π) = minx∈X max(n(π(x)), u(x)).

With this goal, we will prove the following equalities:

• QU−
W (1/π1, β/π2) = min(QU−

W (π1), max(n(β), QU−
W (π2))).

By A4C, there are several alternatives forπ1, π2 :

(a) ∃µ, λ s.t.π1 ∼ (1/x, λ/x) andπ2 ∼ π−µ .

(b) ∃x, y ∈ XNM s.t.π1 ∼ x andπ2 ∼ y,

(c) ∃λ ∈ V, x ∈ XNM s.t.π1 ∼ x andπ2 ∼ π−λ ,

(d) ∃λ ∈ V, x ∈ XNM s.t.π1 ∼ π−λ andπ2 ∼ x.

Now, we analyse them:

(a) By A3,

(1/π1, β/π2) ∼ (1/π−λ , β/(1/x, µ/x)),

and reducing lotteries we obtain

(1/π1, β/π2) ∼ (1/x, max(λ,min(µ, β))/x).

Therefore,

QU−
W (1/π1, β/π2) = n(max(λ, min(µ, β)))

= min(n(λ), max(n(µ), n(β)))
= min(QU−

W (π1), max(n(β), QU−
W (π2))).

(b) Again byA3,

(1/π1, β/π2) ∼ (1/x, β/y).

Now, taking into accountAxMix, we have that

(1/x, β/y) ∼




x if (x v y) or ( x @ π−β )
π−β if y @ π−β @ x

y if π−β @ y @ x.

So,

QU−
W (1/x, β/y) =





u(x) if (x v y) or (x @ π−β )
n(β) if y @ π−β @ x

u(y) if π−β @ y @ x.

That is,

QU−
W (1/π1, β/π2) = min(QU−

W (π1), max(n(β), QU−
W (π2))).
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(c) Now,

(1/π1, β/π2) ∼ (1/x, β/π−λ ) ∼ (1/x, 1/π−min(λ,β))

and byAxMix, we have that

(1/x, 1/π−min(λ,β)) ∼





π−min(λ,β), if (π−min(λ,β) @ x) or
(π−min(λ,β) ∼ X)

x, if X @ x @ π−min(λ,β).

So,

QU−
W (1/π1, β/π2) = min(u(x), n(min(λ, β)))

= min(QU−
W (π1), max(n(β), QU−

W (π2))).

(d) Analogously, ifπ1 ∼ (1/x, λ/x) andπ2 ∼ x, then,

(1/π1, β/π2) ∼ (1/π−λ , β/x),

so,

(1/π1, β/π2) ∼




π−λ if (π−λ @ x) or (π−λ v π−β )
π−β if x @ π−β @ π−λ
x if π−β @ x @ π−λ .

Hence,

QU−
W (1/π1, β/π2) = min(QU−

W (π1), max(n(β), QU−
W (π2))).

In particular, we have that

QU−
W (max(π1, π2)) = min(QU−

W (π1), QU−
W (π2)).

This may be easy generalised to

QU−
W ( max

i=1,...,p
πi) = min

i=1,...,p
QU−

W (πi).

• Now, we verify

QU−
W (π) = min

i=1,...,p
max(n(π(xi)), u(xi)).

As π is normalised there existsxj ∈ X such thatπ(xj) = 1. Without loss
of generality we assumej = 1.

Then, let

πi = (1/x1, π(xi)/xi).
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Sinceπ = maxi=1,...,p πi, we have:

QU−
W (π) = QU−

W ( max
i=1,...,p

πi)

= min
i=1,...,p

QU−(πi)

= min
i=1,...,p

{min(u(x1), max(n(π(xi)), u(xi)))}
= 8 min

i=1,...,p
max(n(π(xi)), u(xi)).

This ends the proof of the theorem. ¤

9.2.5 Representation of Optimistic Qualitative/Ordinal Utilities

For modelling an optimistic behaviour of the Decision Maker, we consider the axiom
setAXM+ = {A1, A2+, A3, A4C+, AxMix+}, with π+

λ = (λ/x, 1/x) where as
usualx andx are a maximal and a minimal element of(X, v) respectively, with

• A2+: if π ≤ π′ thenπ v π′,

• A4C+: There exists a subset9 XNM ⊆ X, such that all maximal elements of
(X,v) and all minimal elements of(X,v) are in its complement, such that

∀π ∈ Π(X) either (∃λ ∈ V s.t. π ∼ π+
λ ) or (∃x ∈ XNM s.t. π ∼ x).

• AxMix+:

1. if x, y ∈ XNM , β ∈ V then,

(1/x, β/y) ∼




x if (x w y) or ( x A π+
β )

π+
β if y A π+

β A x

y if π+
β A y A x,

2. if x ∈ XNM then

(1/π+
λ , β/x) ∼





π+
λ if (π+

λ A x) or (π+
λ w π+

β )
π+

β if x A π+
β A π+

λ

x if π+
β A x A π+

λ .

As in the pessimistic case, we have the following results, whose proofs are
analogous to the previous ones, so they are omitted here.

Lemma 9.9
1. AxiomsA1, A2+, A3, A4C+ andAxMix+ imply

8Note thatπ(x1) = 1, sou(x1) = max(u(x1), n(π(x1))).
9Observe thatXNM = ∅ is possible, and then, axiomA4+ is recovered.
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Ax2: If A is a crisp subset ofX then there isx ∈ A s.t.x ∼ A.

2. We still have the Lemma 4.11:

If v verifies axiomsA1, A2+, andAx2, andx andx are a minimal
and a maximal element ofX, respectively, then:

• the following equivalences hold:x ∼ (1/x, 1/x) ∼ X.

• x and x are the minimal and maximal elements of(Π(X),v)
respectively.

Lemma 9.10
Let 4QU+

W
be the preference ordering onΠ(X) induced byQU+

W , i.e.

π 4QU+
W

π′ iff QU+
W (π) ≤ QU+

W (π′).

Then,4QU+
W

verifies the axioms setAXM+.

The respective Representation Theorem is:

Theorem 9.11 (Representation Theorem of Optimistic Utility)
A preference relationv onΠ(X) satisfies axiom setAXM+ if, and only if, there exist

(i) a finite linearly ordered utility scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such thatu−1(1) 6= ∅ 6= u−1(0),

(iii) an order-preserving functionh:V → U such thath(0) = 0 andh(1) = 1,

in such a way that

π′ v π iff π′ 4QU+
W

π,

where4QU+
W

is the ordering inΠ(X) induced by the qualitative utilityQU+
W (π) =

maxx∈X min(h(π(x)), u(x)).

9.2.6 Utilities for Non-Normalised Distributions

Now, we consider as the working set of possibilistic lotteries the setΠex(X) of non-
necessarily normalised distributions onX with values on the finite uncertainty scaleV,
keeping the usual definition of possibilistic mixture.

We extend the utility functionalsQU−
W and QU+

W to evaluate non-normalised
distributions of Πex(X) as well. Given an order-preserving mappingh:V → U, s.t.
h(0) = 0 andh(1) = 1, andF :V → V s.t.F (1) = 0, we define, for anyπ ∈ Πex(X):

QU−
W

(π|u) = min{QU−
W (N (π)|u), n ◦ F (H(π))},

QU+

W
(π|u) = max{QU+

W (N (π)|u), h ◦ F (H(π))}.
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From these definitions, it is obvious that, for allπ ∈ Πex(X), we haveQU+

W
(π) ≥

QU−
W

(π), in particular, ifπ ≡ 0, QU−
W

(π) = 0 andQU+

W
(π) = 1. Moreover,QU−

W

(QU+
W resp.) is an extension ofQU−

W (of QU+
W resp.) since, ifπ is normalised,H(π)

= 1, andn ◦ F (1) = 1 andh ◦ F (1) = 0, and thusQU−
W andQU−

W (QU+
W andQU+

W

resp.) coincide onΠ(X).
In order to characterise the preference orderingsv induced inΠex(X) by QU−

W

andQU+

W
, we need to extend the axiom setsAXM andAXM+ respectively, defined

onΠ(X), with the usual additional axiom:

• A7F : for all π ∈ Πex(X), π ∼ (1/N (π), F (H(π))/X).

Now, let us prove the following representation theorem.

Theorem 9.12 (Representation Theorem)
A preference relationv onΠex(X) satisfies axiom setAXMex = AXM +A7F (resp.
AXM+ex = AXM+ + A7F ) if, and only if, there exist

(i) a linearly ordered and finite preference scaleU with inf(U) = 0 andsup(U) = 1,

(ii) a preference functionu:X → U such that u−1(1) 6= ∅ 6= u−1(0), and

(iii) an order-preserving mappingh:V → U, h(0) = 0 andh(1) = 1,

in such a way that it holds, for eachπ ∈ Πex(X),

π′ v π iff QU−
W

(π′|u) ≤ QU−
W

(π|u),

(π′ v π iff QU+
W (π′|u) ≤ QU+

W
(π|u) respectively) where, as usual,n = nU◦h.

Proof:
We only prove the theorem for the pessimistic criterion, the proof for the optimistic

criterion being very similar.
← ) We have to prove that, givenU , a preference functionu:X → V , and an order-

preserving mappingh:V → U, verifying (i),(ii) and (iii), the ordering on possibility
distributions ofΠex(X) induced by the utility evaluationQU−

W satisfies the axioms
of AXMex. SinceQU−

W coincides withQU−
W on Π(X), all axioms fromAXM are

automatically satisfied by Theorem 9.8. Thus, it only remains to verify thatA7F also
holds. According to (ii), there isx such thatu(x) = 0, and thusQU−

W (X) = 0. Since
QU−

W preserves possibilistic mixtures, we have for allπ ∈ Πex(X),

QU−
W (1/N (π), F (H(π))/X) = min(max(n(1), QU−

W (N (π))),
max(n(F (H(π))), QU−

W (X)))
= min(QU−

W (N (π)), n ◦ F (H(π)))
= QU−

W
(π).

Thus,π is equivalent to(1/N (π), F (H(π))/X) w.r.t. to the ordering induced by
QU−

W .
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→) Let us assume now that we have an ordering(Πex(X),v) satisfying the axioms
of AXMex. In particular,v satisfies allAXM axioms, hence, applying Theorem 9.8
again, we can suppose the existence ofU, u:X → U andh:V → U satisfying (i), (ii)
and (iii), and such that the corresponding utilityQU−

W representsv on Π(X), i.e. for
all normalisedπ, we have thatπ′ v π iff QU−

W (π′|u) ≤ QU−
W (π|u). Axiom A7F

guarantees that, for anyπ, π ∼ (1/N (π), F (H(π))/X). SinceQU−
W (X) = 0, and

(1/N (π), F (H(π))/X) is a normalised distribution, we define

QU−
W

(π) = QU−
W (1/N (π), F (H(π))/X)

= min(QU−
W (N (π)), n ◦ F (H(π))).

Now, we have to verify thatQU−
W representsv, i.e. that for eachπ, π′ ∈ Πex(X)

the following equivalence holds

π′ v π iff QU−
W

(π′) ≤ QU−
W

(π).

Indeed, by axiom
A7F, π ∼ (1/N (π), F (H(π))/X) andπ′ ∼ (1/N (π′), F (H(π′))/X), so we have
that

π′ v π ⇐⇒ π′ ∼ (1/N (π′), F (H(π′))/X) v (1/N (π), F (H(π))/X),

and sinceQU−
W representsv on normalised distributions, we have that

π′ v π ⇐⇒ QU−
W (1/N (π′), F (H(π′))/X) ≤ QU−

W (1/N (π), F (H(π))/X).

As QU−
W preserves mixtures we have that

π′ v π ⇐⇒ min(QU−W (N (π′)), n ◦ F (H(π′))) ≤ min(QU−W (N (π)), n ◦ F (H(π))).

That is,
π′ v π iff QU−

W
(π′) ≤ QU−

W
(π).

¤

Remark 15
We have considered other alternatives for characterising the ordering induced byQU−

W ,
in particular these ones:

1. The set of axioms{ A1, A2, A3, A4L, Ax2} with

• A4L : ∀π ∈ Π(X) ∃x0 ∈ X ∃ λ ∈ V s.t. π ∼ (1/x, λ/x0).

2. The set{A1, A2, A3, A4L,Ax2, A-Monotony}, with

• A-Monotony: if π1 v π2 then(1/π, λ/π1) v (1/π, λ/π2).

However, they do not characterise it as the following examples show.
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Example:
Consider the following examples:

1. Let X = {x @ x @ x}, XNM = {x}, V = {0 < β < 1}, and consider the
relation

x @ x @ πβ @ x,

also satisfying

x ∼ (1/x, β/x) ∼ (µ/x, 1/x) ∀µ ∈ V.

All other distributions are taken equivalent tox.
This relation does not satisfyAxMix2, since althoughx @ π−β @ x, instead of

being(1/x, β/x) ∼ π−β we have(1/x, β/x) @ π−β .
That means that having a relation satisfyingA1 − A3, A4L and Ax2 is not
enough for having a relation that is representable byQU−

W , since of courseQU−
W

satisfiesAxMix.

2. Let X = {x @ x @ x}, XNM = {x}, V = {0 < β < 1}, and consider the
relation

x @ x @ πβ @ x,

also satisfying
x ∼ (1/x, β/x),

and
x ∼ (µ/x, 1/x) ∀µ ∈ V

All other distributions are taken equivalent tox.
This relation does not satisfyAxMix2, since althoughx @ π−β @ x, instead of

being(1/x, β/x) ∼ π−β we have(1/x, β/x) A π−β .
Again, this shows that having a relation satisfyingA1−A3, A-Monotony, A4L
andAx2 is not enough for having a relation representable byQU−

W .

♦
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Chapter 10

Possible Applications of the
Possibilistic Decision Model

In this Chapter, we analyse two possible applications of the qualitative/ordinal models
we have been working with. Indeed, we show that these models may be applied to
solve problems of making decisions in the context of two of the projects in which
the Institut d’Investigacío en Intel.lig̀encia Artificial (IIIA-CSIC) was involved:Co-
Habited Mixed-Reality Information Spaces project (COMRIS)andFishMarket1. In the
case ofCOMRISwe propose an approach to solve a particular decision problem in it,
while in FishMarketwe revise an approach already proposed by other IIIA researchers.

10.1 Co-Habited Mixed-Reality Information Spaces
Project

Big conferences bring different ways for interacting: people talk about the results
obtained, show demos, want to meet people with the same interests, etc; moreover,
the same person may has different roles during the event like being an invited talker
and looking for partners for an european project.

Usually there are a lot of available information, events and possible activities on
different topics, making the organisation for optimising the participation a non-trivial
work.

The Co-Habited Mixed-Reality Information Spaces project (COMRIS)(deVelde,
1997) propose an approach for integrating software and human agents moving in virtual
and real spaces closely related (see Figure 10.1 (Plaza et al., 1998)).

COMRISchooses for experimentation a conference center as their framework.

“In the mixed-reality conference center real and virtual conference
activities are going on in parallel. Each participant wears its personal

1For more
details you may see http://www.iiia.csic.es/Projects/comris/ and http://www.iiia.csic.es/Projects/fishmarket/
respectively.
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Figure 10.1: A description of the virtual interest-based space and the physical
proximity-based space ofCOMRIS.

assistant, an electronic badge and ear-phone device, wirelessly hooked
into an Intranet. This personal assistant - the COMRIS parrot - realises
a bidirectional link between the real and virtual spaces. It observes
what is going on around its host (whereabouts, activities, other people
around), and it informs its host about potentially useful encounters,
ongoing demonstrations that may be worthwhile attending, and so on. This
information is gathered by several personal representatives, the software
agents that participate on behalf of a real person in the virtual conference.
Each of these has the purpose to represent, defend and further a particular
interest or objective of the real participant, including those interests that
this participant is not explicitly attending to.”

TheCOMRISproject studies the synergy of these two spaces, and their relationship.
Its goal is to help the user in optimising the user’s participation in terms of his interests
while attending to the conference. With this goal they propose (Plaza et al., 1998):

“To develop software agents inhabiting the virtual space that take up
some specific activities on behalf of some interest of an attendant in the
conference. Specifically, aPersonal Representative Agent (PRA)is an
agent inhabiting the virtual space that is in charge of advancing some
particular interest of a conference attendant by searching for information
and talking to other software agents.”

Next, we analyse the application of the possibilistic decision making model in the
context of theCOMRISProject.
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10.1.1 The Framework

For each user, we have two different type of agents:

• Personal Representative Agents(PRAsfor short), each one pursuing a different
interest for a same user. They search information at the virtual space for some
particular interests, for example, one of them may be in charge of looking for
appointments with people who may know about vacancies in their laboratories
while other is instructed to look for activities related with the topicCBR. The
collection of the possible actions in which thePRAmay participate, in order to
achieve user interests, is provided by the conference organisation, for instance,
meeting people, attending a demo, etc. ThePRAchooses its “best” proposal in
terms of the knowledge about user preferences and thecontext information(i.e.
the physical situation and the activity of the user and of other attendants) it has.
It will try so send this information to the user, but its communication with him is
not direct, since a user may have severalPRAsthat would try to compete for his
attention. EachPRAsends its information to aPersonal Assistant agent.

• Personal Assistant (PA)agents coordinate the proposals presented by all thePRAs
of the users. Each user has only onePA that evaluates all proposals in terms of
the contextual information it has. That is, it “solves” the problem of competition,
in the sense that it decides whichPRAwill be listened by the user.

EachPRApresents its most relevantproposalamong one of the following:

• anappointmentwith a person (app),

• a proximity alertof a person or event of interest for the user (pro),

• a proposal ofreceiving propaganda(rp) related with events like demonstrations,
future conferences, etc.,

• acommitment reminderof an event that will happen soon (rem) and to which the
user has promised to be present, for example, it may remember the user that he
has soon a meeting;

together with aestimation of the relevance degree of the proposal:

• great importance(gi),

• moderate importance(mi),

• doubtful importance(di),

• null.

In fact, aPRAnot only has to provide a relevance of the proposal but an argumentation
of it as well. However, this point is out of the scope of our work.
For more details of the project you may consult the URL http://www.iiia.csic.es/
Projects/comris/ or (Plaza et al., 1998).
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Figure 10.2: Comris Framework

10.1.2 Our Proposal

As it is mentioned, thePA’s goal is to choose, in the current context, one of the received
proposals to send it to the user, but previously thePA has to assignits own evaluation
of relevance to the proposal. On the other hand, the goal of eachPRA is to make a
proposal to thePA based in the result/proposal of each task (the set of available tasks
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being{appointment, proximity, propaganda, reminder}), taking into account the local
context2 information available it has. An assignment of the proposal relevance has to
be made as well.
In this framework, the available information is of qualitative nature rather than
numerical. Possibilistic Decision Theoryis specially suited for this framework since
it can be based only on ordinal scales of uncertainty and preference. Besides, the
feasibility of working with partial orders may be useful in this context, because
sometimes giving a total global preference may result very difficult for the user.

Moreover, is it feasible to have available a memory of cases summarising the
behaviour of thePA andPRAsin previous experienced situations. This, leads us to
propose that:

• PAmay be supported in looking for its goal byPossibilistic Case-Based Decision
Theory (PCBDT).

• Analogously,PCBDTmay be applied for giving support to eachPRAfor making
its decisions.

Following, we focus in the behaviour of thePA.

PA’s Decision Making Problem

We assume as available a memory of cases for helping thePA. Consider cases given by
the following 4-tuple:

cPA = (vs, proximity-context,winner,user-feedback),

where

• vs = ((d1, rel1), ..., (dn, reln)), with (di, reli) describing the proposaldi made
by thePRAi and the importance,reli, that thePRAi assigned to its proposal,n
being the number ofPRAsthe user has.

• proximity-contextis a 3-tuple(user-loc, user-neigh, user-activ) representing the
information thatPA has about the actual context of the user. Whereuser-loc
gives information about the place in which the user is (e.g.hall, meeting point,
demo-room5, etc.),user-neighis a list of the keywords in common that the user
and the participants that are “near” the user have. Finally,user-activprovides
information about the type of activity in which user is involved (e.g.session,
social event, appointment,etc.).3

• winner is a pair(PA-proposal, PA-eval-rel), wherePA-proposalis one of thedi

received, which thePA preferred, whilePA-eval-relis the own evaluation of the
relevance thatPA assigns toPA-proposal.

2This context information although in some sense is more “partial” than the one managed by itsPA,
however, may result more complete in the sense that not only include context information about his owner
but the one provided byPRAs of other persons as well.

3As it is said, we assume that there may exist different levels of information with respect to this topic, the
PAhaving the most complete one, and eachPRAhas a partial view of it.
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• Finally, user-feedbackis a pair (z1, z2) reflecting the user opinion. Its first
componentv1 is user’s evaluation onPA’s proposal, while the second onev2

is his evaluation of the relevancePAhas assigned to it.

For applying PCBDT, also a similarity function defined on the set of pairs
(vs,proximity-context)has to be available, as well as theuser’s general preferences.
The latter is referred to his main or priority goals. For example, although he may be
more interested in the keywordDecision Theorythan inCBR, however, if his first goal
is to obtain a fellowship, the user might prefer an appointment for a possible fellowship
related toCBRto a invited talk aboutDecision Theory. With respect to thesimilarity
on pairs(vs,proximity-context), it may be given either explicitly (i.e. directly from the
user) or it may be evaluated in terms of marginal similarity functions corresponding to
tasks, labels of relevance, etc, and then, for instance, performing a weighted aggregation
where the weights may depend on theuser general preferences.That is,we can propose
the following expression:

SIM ((vs0, cont0), (vs1, cont1)) = GAGG(Sst(vs0, vs1), Scont(cont0, cont1),
wst, wcont)

whereGAGGis an aggregation operator and andwst andwcont are the weights related
with Sst andScont respectively, and

Sst(vs0, vs1) = AGG(Stask(d0
1, d

1
1), . . . , Stask(d0

n, d1
n),

Srel(rel01, rel
1
1), . . . , Srel(rel01, rel

1
1), wtask, wrel)

with vsk = ((dk
1 , relk1), ..., (dk

n, relkn)), and Stask, Srel and Scont are the marginal
similarity functions defined on task proposals, labels of relevance and proximity
contexts respectively andwtask andwrel are the weights related withStask andSrel

respectively, andAGG is an aggregation operator.

Example:
As a matter of example, we consider a simplified perspective of the problems involved
in this project. For instance, we may assumeuser-feedbackis measured onU = E×E,
with E = {0 < λ < µ < 1}, and nE being the reversing involution onE. The set
of labels for user-activ is {private, social, public-active, public-passive}, while for
user-locis {working-room, social-room, private-room}.

The similarity functionStask on tasks defined overE, is described in Table 10.1,
while the similarity on labels of relevance,Srel, is provided in Table 10.2.

Now, we consider the similarity function on contexts defined as:

Scont(cont0, cont1) = min(Ŝcont((user-loc0, user-act0),
(user-loc1, user-act1)), SE(ukw(L0), ukw(L1))),

where Ŝcont is the similarity function on pairs(user-loc, user-act), while SE is the
similarity on E, provided in Table 10.3, andukw(L) summarises the user preference
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Stask app pro rem rp

app 1 µ λ 0
pro µ 1 λ 0
rem λ λ 1 0
rp 0 0 0 1

Table 10.1: Similarity between tasks.

Srel gi mi di null

gi 1 µ λ 0
mi µ 1 λ 0
di λ λ 1 0

null 0 0 0 1

Table 10.2: Similarity between relevance labels.

SE 0 λ µ 1
0 1 µ λ 0
λ µ 1 µ λ
µ λ µ 1 µ
1 0 λ µ 1

Table 10.3: Similarity onE.

with respect to the keywords involved in the listL (list of keywords of interest for the
user’s neighbours).

Now, we assume that memory of cases provides us directly withukw(L) instead of
L.

The aggregation operator can be defined, for example, as

GAGG(x, y; w1, w2) = (nE(w1) ∨ x) ∧ (nE(w2) ∨ y).

and

AGG(x, y;w1, w2) = (nE(w1) ∨
( ∧

i=1...n

xi

)
) ∧

(nE(w2) ∨
( ∧

i=1...n

yi

)
).

Consider the current situation-context described as:
(vs0, cont0) = (((app1, mi), (rem2, mi), (rem3, di)), (work − room, µ, social)),

and suppose there are 3PRAs. Hence, the similarity on states is:

Sst(vs0, vsi) = (nE(wtask) ∨
∧

j=1,...,3

Stask(d0
j , d

i
j)) ∧
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(nE(wrel) ∨
∧

j=1,...,3

Srel(rel0j , rel
i
j)).

The subset of cases of the memoryM related with the current situation, that is,
cases in whichPA has proposed anapp1, rem2 or rem3 with some relevance level, is
described in Table 10.4.

vs prox− cont winner us− feed

c1 ((app1, gi), (pro2, mi), (rem3, gi)) (soc− room, 1, publ− pass) (rem3, gi) (1, 1)

c2 ((rp1, mi), (rem2, gi), (pro3, di)) (work − room, µ, publ− pass) (rem2, mi) (1, µ)

c3 ((app1, di), (rem2, mi), (rem3, mi)) (soc− room, λ, social) (rem2, mi) (1, µ)

c4 ((app1, mi), (pro2, mi), (rem3, di)) (soc− room, µ, social) (app1, di) (1, λ)

c5 ((app1, mi), (rem2, di), (rp3, di)) (work − room, µ, social) (app1, gi) (1, µ)

c6 ((app1, di), (rem2, mi), (rem3, di)) (work − room, µ, social) (app1, gi) (1, µ)

c7 ((rem1, di), (pro2, mi), (rem3, di)) (work − room, µ, social) (rem3, gi) (λ, λ)

c8 ((pro1, mi), (app2, mi), (rem3, di)) (private− room, µ, social) (rem3, gi) (µ, λ)

c9 ((app1, gi), (app2, gi), (rem3, di)) (work − room, µ, social) (rem3, gi) (0, 0)

Table 10.4: The memory of cases M.

Hence, for eachPA’s available decisiond4, we define the associated distribution as
usual, i.e.

πd,(vs0,cont0)(x) =
∨
{SIM((vs0, cont0), (vs, cont))| ((vs, cont), d, x) ∈ M}.

Notice that for defining these distributions it is necessary to know the similarity
Ŝcont on pairs(user-loc, user-act), at least for some particular pairs. Table 10.5 provide
these similarity values.

Ŝcont (work − room, social)
(work − room, pub− pass) λ

(soc− room, social) µ
(work − room, social) 1

(private− room, social) µ
(work − room, pub− pass) λ

Table 10.5: Some values of the similaritŷScont.

Now, we consider some of the associated distributions:

• for d=(app1,gi),

πd,(vs0,cont0)(x) =





SIM((vs0, cont0), (vs5, cont5))∨
SIM((vs0, cont0), (vs6, cont6)), if x = (1, µ)

0, otherwise,

4Recall that since PA has to choose between the received proposal, the possible decisions are
(app1, rel), (rem2, rel) and (rem3, rel), whererel is the degree of relevance that PA assigns to the
proposal.
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• for d=(app1,di),

πd,(vs0,cont0)(x) =
{

SIM((vs0, cont0), (vs4, cont4)), if x = (1, λ)
0, otherwise,

• if d=(rem3,gi),

πd,(vs0,cont0)(x) =





SIM((vs0, cont0), (vs1, cont1)), if x = (1, 1)
SIM((vs0, cont0), (vs7, cont7)), if x = (λ, λ)
SIM((vs0, cont0), (vs8, cont8)), if x = (µ, λ)
SIM((vs0, cont0), (vs9, cont9)), if x = (0, 0)
0, otherwise

• for d=(rem2,mi),

πd,(vs0,cont0)(x) =





SIM((vs0, cont0), (vs2, cont2))∨
SIM((vs0, cont0), (vs3, cont3)), if x = (1, µ)

0, otherwise.

Hence, once we are provided with, or have choosen, the values of the weights
wtask, wrel, wcont andwst, we are ready to rank the distributions.

As several of these distributions may be non-normalised, we applyGQU
+

F
and

GQU
−
F

,5 where we considerF = nV . In U we may consider different orderings like
Pareto, minimum, lexicographic, etc.. So, we would consider for eachd the values

U−
F, (vs0,cont0)

(d) = GQU
−
F

(πd,(vs0,cont0))

= n ◦ nV (H(πd, (vs0,cont0))) ∧GQU
−

(N (πd,(vs0,cont0))),

and

U+
F,(vs0,cont0)

(d) = GQU
+
(N (πd,(vs0,cont0))) ∨ (h ◦ nV )(H(πd,(vs0,cont0))),

where these values are obtained taking into account the ordering chosen inU . For
example, the distributions associated toPA’s proposals not made before like(rem3,
di),(rem3, null),(rem3, di), (rem2, di),(rem2,null),(rem2,gi), (app1,mi)or (app1,null),
are null. Hence, their utilities are0U and1U w.r.t. pessimistic and optimistic criteria
respectively.

♦

5In fact, we have not provided in Chapter 8 the extension for non-normalised distributions for the utility
functions introduced in Chapter 6, but it may be done analogously.
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PRA’s Decision Making Problem

Now, we focus on the behaviour of eachPRA, which is the main interest of the IIIA
COMRISteam. PRAhas to make a proposal to thePA based in the results/proposal
of each task, taking into account the available local context information it has. The
relevance of its proposal has to be assigned as well.

As in the case ofPA, we thinkPCBDTmay provide support for this problem if we
assume we have amemory of casesstoring the performance of proposals made in the
past by thePRA, and the ones made by othersPRAs, together with the finalPAproposal.

Indeed, aPRA-case may be represented as the 4-tuple:

CPRA= (vs, partial-context, PRA-task-prop, PA-answer)

with:

• vs is defined as previously, i.e.vs = ((d1, rel1), ..., (dn, reln)).

• partial-contextis a variable describing the actual contexttaking into account the
information that thePRAhas.

• PRA-task-propis a 4-tuple descriptor,(app-result, proximity-result, propaganda-
result, reminder-result), each component representing the “best” task-proposal.
Observe that the winner task, i.e. the task that PRA proposed, is included (with
its degree of relevance) invs. Indeed, if we are working with thePRAj , the
winner task isdj .

• PA-answeris a pair(win?,PA-relevance)representing the feedback thatPA may
provide itsPRA, win? tells wether thisPRA was or not the winner, andPA-
relevanceis the relevance assigned byPA to the proposal (this wants to reflect
that for example the relevance function of thePRA may be modified for next
time taking into account thePA’sanswer, sincePAhas more information).

itemize
The possibility distributions associated to each decision are defined as usual,

then, they are ranked applying the generalised utility functions for non-normalised
distributions as usual.

Finally, let us introduce, some comments on PRA’s Tasks. So far, we have assumed
that eachPRAhas the results of each task, now we are interested in analysing a bit
more this point, that is, having a local context information, some knowledge about
user preferences with respect to the activity he/she is interested, which may be the best
proposal for a task. As an example, we consider the appointment task. Its goal is to
look for the more interesting appointment in terms of the available information it has
about the preferences of the user and the other participants of the conference.

The available information in this moment specifies the actual situation as

s = {si|i ∈ I},
with I a finite set, and

si = (reg, kw, TA, g, partial-contextapp),

with:
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Task Characterisation of its result

Appointment (reg, kw, TA, g, partial − contextapp)
Reminder (deadline, distance-from, TA, kw, partial − contextrem)
Proximity (reg or event, kw, partial − contextpro)

Propaganda (kw, way-of, TA, g)

Table 10.6: Results of the Different Tasks

• reg: is the identifier of the person, for example, the registration number each
participant has.

• kw: is a (or a set of) keyword(s) in which the user is interested.

• TA: stands for a type of activity, (for example grants, future projects, etc.). This
wants to represent that although the user may be interested in an appointment
related with a certainkw, it is not the same interest for example for a person who
gave an invited talk related with this topic or for a person who is selling books of
this issue.

• g stands for the group to which the person belongs (we may have a classification
taking into account for example the organisation of the person pertains).

• partial− contextapp, as usual, it summarises the information of context related
with this task, in this case, the appointment one.

As it is mentioned, the goal of the appointment task is to choose the best rankedsj .
The ranking has to take into account user’s preferences with respect tokw andTA, i.e.
u = f(kw, TA). However, other facts have to be taken into account, for example, it
may be the case that the preferences are also expressed in terms ofg.

Another point to consider is the number of persons related withkw and TA that
are available as well as whether they are near the user (which may be known by the
partial−contextapp), and of course theuser-activhas to be taken into account, mainly
if the activity proposed is a forthcoming event.

As a conclusion, we may say that this is a first analysis and several points need to
be considered with more detail. However, it already allows us to propose some answers
to the decision making problems involved in the project. Of course, we are interested
in following this work to improve our proposal and to face some issues not yet worked.

10.2 FishMarket: A Possibilistic Based Strategy for
Bidding

Electronic commerce is currently an increasing area of interest, there are many
research works related with this matter in the broad sense of it. In particular, there
is a considerable number of electronic auction houses (as you may see in the URL
http://fullcoverage.yahoo.com/FullCoverage/Business/OnlineAuctions/, for instance,
http://www.auctionline.com or http://www.onsale.com, etc.). Taking into account the
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actual development of internet, and in particular of electronic commerce, we think that
this is an interesting topic.

In auction houses, different bidding protocols may be applied, for example the
Downward Bidding Protocol(DBP also known asDutch Bidding Protocol) or the
English Bidding Protocol.

The FishMarket project is mainly concerned with communicational aspects of
multi-agent systems (see http://www.iiia.csic.es/ Projects/fishmarket/ for more details).
To test these ideas, Rodrı́guez-Aguilar et al. (1998) propose a multi-agent test-bed,
FM96.56, which is an electronic auction house that allows the definition and evaluation
of some experimental trading scenarios, in particular theFishMarketone with aDutch
Bidding Protocol.In this context, a very interesting issue is to model buyer’s strategies
to bid. The goal is to model a buyer’s strategy to make a bid, trying to maximise the
tournament evaluation function, taking into account that the strategies of other buyers
is unknown. To bid in a such environment means to decide a price to offer taking into
account all the available information like goods that will be auctioned and their expected
resale prices, other buyers in the buyers’ room as well, etc. This information has to be
handled with some restrictions, the behaviour of other buyers may be approximated
but not precisely predicted, deliberations are time-bounded, etc. That is, the buyer
has to bid in an uncertain environment, i.e. he has to face a decision problem under
uncertainty. Garcia et al. (1998b) made a first proposal in this line applying the
possibilistic qualitative decision model.

Although in this moment the problem is only attacked in terms of tournaments rather
than in actual market situations, the analysis is interesting. It is a problem with a lot of
information and so with many possible sources of uncertainty as well.

Of course, there are many possible approaches for modelling the strategy of
buyer’s bidding, moreover, inside the model there are many alternatives available. The
knowledge the agent has about the other agents’ strategies is usually incomplete, if we
assume that the knowledge the agent has is reduced to a memory of previous market
situations and their results, and to general information about the market,Possibilistic
Case-Based Decision Theorymay be useful.

In the following, we describe theFishMarket environment and the restrictions
in which the problem of bidding will be attacked. In Section 10.2.2, we introduce
Garcia et al. (1998b,1998,1998a)’s proposal. In a first analysis of their proposal, we
realise that the implementation of the model has some drawbacks. In Section 10.2.3,
we make some remarks about them, like for instance that there are some specification
problems with the referential sets, and that they donot take into account that the
possibility distributions involved are probably non-normalised. This latter point may
have unsatisfactory results as it has been mentioned before in this dissertation. In
order to solve the issue of possible non-normalised distributions, we propose to use
the generalised utility functions we have described in Chapter 8. Finally, we also
include some remarks about some points that, although are non-directly related with
our framework, may result interesting to develop in the future from the application
point of view.

6Currently, it is available a new version FM100, which may be download at
http://www.iiia.csic.es/Projects/fishmarket/agents2000/FM100/index.html.
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10.2.1 Background: TheFishMarket Environment

The definition of a tournament involves a set of descriptor parameters, for example, the
time between prices, decrement or increment in the price, goods that will be auctioned,
etc..

In order to characterise the elements ofFishMarket as a tournament scenario,
Garcia et al. (1998b) first introduce the notion ofTournament Descriptor. A
Tournament Descriptor is described as the 6-tuple

T = 〈∆price,B,S, Cr, µ, E〉,

∆price being the decrement of price between two consecutive quotations;B =
{b1, . . . , bn} is a finite set of identifiers of all7the participating buyers, andS for the
participating sellers;Cr is a vector which components are the initial endowment of each
buyer at the beginning of each auction;µ ∈ M is the tournament mode whereM =
{random, automatic, one auction, fish market, . . .} is the set of possible tournament
modes. Finally,E is the buyers’ evaluation function.

The FishMarket uses a specificDownward-Bidding Protocol (DBP), which is
implemented inFM96.5, as follows:

Step 1 The auctioneer chooses a good out of a lot of goods that is sorted according to
the order in which sellers deliver their goods to the sellers’ admitter.

Step 2 With a chosen goodg, the auctioneer opens8 a bidding round by quoting offers
downward from the good’s starting price, previously fixed by the sellers’ admitter,
as long as these price quotations are above a reserve price previously set by the
seller.

Step 3 For each price called by the auctioneer, several situations might arise during the
open round in an interval of time previously fixed:

• Multiple bids: Several buyers submit their bids at the current price. In this
case, a collision comes about, the good is not sold to any buyer, and the
auctioneer restarts the round at a higher price. Nevertheless, the auctioneer
tracks whether a given number of successive collisions is reached (Cmax),
in order to avoid an infinite collision loop. This loop is broken by randomly
selecting one buyer out of the set of colliding bidders.9

• One bid: Only one buyer submits a bid at the current price. The good is
sold to this buyer whenever his credit can support his bid. Whenever there
is an unsupported bid the round is restarted by the auctioneer at a higher
price, the unsuccessful bidder is punished with a fine, and he is expelled out
of the auction room unless such fine is paid off.

7In fact, they forget to include in this setb0 the buyer agent which is being modelled.
8We assume that a condition that is checked by the auctioneer is whether there is any buyer with credit

higher than the reserve price.
9Other option for assigning the good to a buyer may be considered.
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• No bids: No buyer submits a bid at the current price. If the reserve price has
not been reached yet, the auctioneer quotes a new price which is obtained
by decreasing the current price according to the price step. If the reserve
price is reached, the auctioneer declares the good withdrawn (i.e. the good
is returned to its owner) and closes the round.

Step 4 The first three steps repeat until there are no more goods left.

For describing theFishMarket environment these additional parameters are
involved:

Ps Since aDutch Bidding Protocolis assumed, the price is decreasing .
Ps represents the decrement of price between two consecutive offers
shouted out by the auctioneer.

to is the delay between consecutive offers.

tr Delay between the end of a round and the beginning of the next round.

Cmax Maximum number of successive collisions. The auctioneer randomly
chooses one buyer out of the set of bidders when the maximum
number of successive collisions is reached.

Sf This coefficient,Sanction factor, is utilised by the buyers’ manager
to calculate the amount of the sanction to be imposed on buyers
submitting unsupported bids.

Pi Price increment determines how the new offer is calculated by the
auctioneer from the current offer when either a collision, a fine or an
expulsion occurs.

Cr As it is said, it is a vector which establishes the available credit of
each buyer. At the beginning of each auction of the tournament all
them are provided with the same credit.

For example, for the “Agent
Mediated Electronic Commerce III Trading Agents’ Tournament”, they are initialised
(for more details http://www.iiia.csic.es/Projects/fishmarket/agents2000/tourdesc.html)
as it is shown in Table 10.7.

Parameter InitialV alue

Ps 50EUR
to 500ms
tr 4000ms

Cmax 3
Sf 25%
Pi 25%

Table 10.7: Initialisation of the Parameters.

While Cr, that is, the buyers’ credits initial value, is assigned in terms on the
number of participants, usually they assign each buyer an initial credit on EUR that
results of dividing 70,000 by the total number of buyers.
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Available Information for Buyers

All the buyers that are in the auction room are provided with general information of
the goods that will be auctioned before the tournament begin. They are informed of
the types of goods (i.e. cod, prawns, etc.) that will participate in the auction as well
as the number of boxes of each type of good, and the upper and lower bounds for the
starting and resales prices. Indeed, up to this moment all these numbers are generated by
uniform distributions on different intervals. At the beginning of the tournament, buyers
are only informed on these intervals, not on the values on which the distributions results
(see Table 10.8). But in the beginning of each round, a more precisely information is

good number of boxes starting price resale price

cod U [1..15] U [1200..2000] U [1500..3000]
tunafish U [1..15] U [800..1500] U [1200..2500]
prawns U [1..15] U [4000..5000] U [4500..9000]
halibut U [1..15] U [1000..2000] U [1500..3500]
haddock U [1..15] U [2000..3000] U [2200..4000]

Table 10.8: Previous information available

given. That is, the number of boxes of each good is precisely known as well as the
starting price and the resale one.

Figure 10.3: The Parameter Setting that buyers see.

187



Determining the evaluation of Buyers

There are many different possible functions for evaluating the behaviour of the buyer
agents. The one proposed in http://www.iiia.csic.es/ Projects/fishmarket/ is

E(b) =
z∑

k=1

ln(k + 1)Bk(b) (10.1)

b being a buyer,Bk(b) stands for the accumulated benefit10 of buyerb during auction
k, andz is the number of auctions of the tournament.

They argue that this evaluation tends to favour buyers learning in order to improve
their strategy.

10.2.2 Previous Proposal: Building a Possibilistic-Based Strategy
for FishMarket

We are in a decision problem, where our buyer agent has to take a decision, i.e. to
choose a bid among a set of available alternatives taking into account its preferences
on the set of possible consequences in terms of maximising its utility. The winner is
determined as the the buyer maximising (10.1). The buyer has to take into account not
only its benefits but other buyers’ benefits as well. The agent has to choose a bid for
each round of each auction of the tournament.

Garcia et al. (1998b) affirm that:

“ Due to the nature of the domain faced by the agent, we must demand
that such bidding strategy balances the agent’s short-term benefits with its
long-term benefits in order to succeed in long-run tournaments.”

They structure their proposal in three steps:

• They apply interpolation to obtain a first subset of possible bids.

• Fuzzy Rules are applied for improving the global behaviour.

• Possibilistic Case-based Decision Model is applied on this subset of bids to came
up with a single bid.

First of all, let us introduce the definitions of the problem they suggest.

The Decision Problem

For each round the agent has to choose a bid between the allowed ones. A memory of
casesM summarising the behaviour of market in previous situations of (past and the
current) tournaments is assumed, hence the idea is to apply Possibilistic Case-Based
Decision Theory to choose a bid. The first requirement is, obviously, the identification
of the variables involved in the problem. Garcia et al. (1998a) propose to consider

10The benefit is the difference between the resale price and the paid price.
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the following ones. The modelled buyer agent will be denoted byb0, while the market
situation at roundr, of the auctiona will be specified as:

s = (r, a, τ, g, pα, prsl, Cr, E,R),

with τ being the type of the goodg to be auctioned,pα is its starting price,prsl is its
resale price. As it is mentioned,Cr is the vector of buyers’ credits andE is the vector
of scores (Ei is the score of buyerbi in terms of the evaluation functionE). Finally,R
is the number of remaining rounds to end auctiona.

The set of possible decisionsD for a roundr, that is, the set of bids that the agent
b0 may do in a market situations0, is initially defined by them as:

D = {bid(p) | p = pα −m.∆price, m ∈ N, prsv ≤ p ≤ Cr(b0)}, (10.2)

wherebid(p) means that the agent submits a bid at pricep, ∆price being the decrement
in the price (also denoted byPs) andprsv the reserve price. At each round, if the
reserve price is not reached, one of the possible buyers acquires the good. For each
round, the set of possible consequences is defined as the set

X = {win(bi, p) | i = 0, . . . , n ; p ∈ [prsv + ∆price, pα]}, (10.3)

wherex = win(bi, p) means that buyerbi wins the round by submitting a bid at price
p. As it is mentioned, a memory of casesM summarising the behaviour of market is
assumed. They consider the following cases:

c = (s, b, ps)

with s the market situation previously defined,b the buyer who bought the good at a
priceps.

Let us summarise the different stages they proposed:

• Interpolation: To apply directly the possibilistic case-based model to this setD
might be too slow for this type of problem, hence the idea is to reduce the set of
potential bids according to the general trend of the market. This is the goal of the
interpolation stage. They assume a principle establishing:

“Similar market situationsusually lead tosimilar sale pricesof the
good”.

The idea is to take advantage of the interpolation mechanism implicit in the fuzzy
case-based reasoning model proposed in (Dubois et al., 1997b). That is, for each
case(s, p) ∈ M11 gradual fuzzy rule (you may see Dubois and Prade (1996c) for
the semantics of fuzzy gradual rules)

“ If Σ is s̃ thenΥ is p̃ ”,

11They omit the reference to the buyer arguing they are only interested in the situation and in the sale price.
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wheres̃ is the fuzzy set of situations similar tos, andp̃ is the fuzzy set of prices
similar top; Σ andΥ are variables defined on situations and prices respectively.
This leads them to define the following fuzzy set of possible bids:

pbid(p′) = I(s̃(s0), p̃(p′)),

with I a residuated implication. As a memory of casesM is assumed as given,
and similarity functionsT on prices and situationsS are assumed as well, they
consider:

pbid(p′) = min
(s,p)∈M

I(S(s, s0), T (p, p′)).

Finally, they propose to restrict the set of bids toB̂α, theα-cut of pbid (α > 0),
i.e.

B̂α = {p′ | pbid(p′) ≥ α}.

• Fuzzy Rules: Garcia et al. (1998a) argue that for modelling the rational
behaviour of buyers in particular situations which may not be sufficiently
described by the cases in the memoryM , they consider the following set of fuzzy
rules:

if [ C(bi) is high] and [R is very short] and [E(bi) is low]
then ∆Bidbi is very positive,

if [ C(bi) is medium] and [R is very short] and [E(bi) is low]
then ∆Bidbi is slightly positive

• Possibilistic Case-Based Decision Theory: As it was mentioned, inPCBDT
instead of ranking decisions, possibility distributions on consequences are
ranked. Hence, it is necessary to obtain the possibility distributions associated
to each decision, in this case, to each bid that the buyerb0 may make, for the
current market situations0. Garcia et al. (1998a) define first the distributions
in terms of the similarities on situations and prices. Indeed, they assume the
principle:

“the more similaris (s0, p0) to (s, p), themore possiblebi will be the
winner ins0 (paying a pricep)”

Hence, for each consequencewin(bi, p0) they consider that for each(s, bi, p) ∈
M , they have that

πs0(win(bi, p0)) ≥ s̃(s0)⊗ p̃(p0)

with s̃ the fuzzy set of situations similar tos andp̃ the fuzzy set of prices similar
to p12 and⊗ is a t-norm on[0, 1]. Hence, they propose for eachbi 6= b0 and for

12Both sets are defined in terms of similarity functions from situations and prices respectively over [0,1].
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all win(bi, p0) ∈ X:

πs0(win(bi, p0)) = max
{(s,bi,p)∈M |p≤p0}

s̃(s0)⊗ p̃(p0).

From these distributions, for each participating buyerbi 6= b0, they propose an
initial fuzzy setBid0

bi
of the possible winner bids

Bid0
bi

(p) = πs0(win(bi, p))

with p such thatwin(bi, p) ∈ X.

Following, they modify these sets by the fuzzy rules previously mentioned, that
is,

Bidω
bi

= Bid0
bi
⊕∆Bidbi ,

where⊕ denotes fuzzy addition, i.e.

Bidω
bi

(p) = max{min{Bid0
bi

(p1), ∆Bidbi(p2)} | p = p1 + p2},

and∆Bidbi is the fuzzy set representing the expected variation on the observed
bidding strategy of other buyers. Now, they define the possibility distribution
associated to each bidpd as:

– eachbi 6= b0

πs0,pd(win(bi, p)) =

8<: Bidω
bi

(p), if pα ≥ p ≥ pd

0, otherwise

– for b0, they retrieve those cases such that the sale price was not greater than
pd, i.e. a subset of the memoryMpd

= {(s, bi, p) ∈ M | p < pd, bi 6= b0}.
Then,

πs0,pd(win(b0, p)) =

8><>:
max

(s,bi,p′)∈Mpd

Bidω
bi

(p′), if p = pd

0, otherwise

Finally, they rank decisions applyingQU−(|u) andQU+(|u), u being the preference
functions on consequencesx = win(bi, p). Several functionsu may be considered,
with this goal, they introduce one arguing that it models an agent that is conservative
when it is winning and becomes aggressive when it is handing back. The preference
function is defined in terms of a scoring functionf , and a linear scaling functionr over
[0, 1]. Wheref is defined as:

f(bi, s0, p) =
{

k · t, if k ≤ 0
k · t−1, otherwise,

with
k = (max

j 6=i
E(bj))− E(bi),
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and
t = (R− 1)/(max(Cr(bi)− p, 1) · (prsl − p)).

They assume thatprsl − p ≥ 0, that is nobody pay more than the resale price, and no
buyers make unsupported bids, i.e.Cr(bi)− p ≥ 0.13. They mention thatk “ accounts
for the position of buyerbi with respect to the other buyers in the ranking of scores”, and
the first factor involved int estimates the cost of winning the round, while obviously
(prsl − p) is the benefit of the buyer agent. Finally, they define

u(win(bi, p)) =
{

r(f(b0, s0, p)), if i = 0
r(−f(bi, s0, p)), otherwise (10.4)

wherer is a normalisation linear scaling function.

10.2.3 Comments on the Proposal

In a first analysis we realise about the following drawbacks of the proposal:

• D andX are not well defined, and it seems that the involved measurement sets
may be not finite.

• The problem may involve non-normalised distributions and this fact is not taken
into account in the proposal.

itemize Next, we give more details about these points, and we introduce some general
comments on the proposal.

Some Problems Detected

• The definitions ofD (10.2) andX (10.3) may result confuse. They are expressed
in terms of the reserve price, however,the buyer agents have not information
about it.Thus, both sets are not well defined.
There is another upper bound for possible decisions that could be taken into
account: theresale price. Since the evaluation function takes into account the
benefits of the agents in terms of the difference between the paid price and the
resale priceprsl, the bids greater or equal thanprsl must be discarded as feasible
bids for our buyer.

Obviously a buyer may submit a bid greater than his available credit, however he
could not win because his bid will be discarded. This fact allows us to restrict the
values ofp in the set of consequencesX.
A little remark is that taking into account (10.3)X seems a non-finite set, but
it is easy to see that it if we assume that∆price ∈ N, X is finite as soon as we
consider:

X = {win(bi, p)|i = 0, . . . , n ;∆price ≤ p = pα −m.∆price ≤ Cr(bi), m ∈ N ∪ {0}}.
13However, it seems that these hypotheses may be too strong, since in some tournaments it is the case that

some buyers do not satisfy these conditions.
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while for the initial decision setD we propose:

D = {bid(p) | p < prsl, ∆price ≤ p = pα −m.∆price ≤ Cr(b0), m ∈ N ∪ {0}}.

• The proposed preference functionu is not well defined since in the case that
it only remains one round to finish an auction, that is, whenR = 1, then,
t = 0. Hence, if bi is a buyer that is not winning in this moment, i.e.
(maxj 6=i E(bj))− E(bi) > 0, f(bi, s0, p) is not well defined for eachp.
We wonder how this function works when the auction begins, in particular which
values takes during the rounds of the the first auction (which value takes k?)?
It is not clear for us the meaning ofr in (10.4), since it seems it is not only a
linear function to scalingf but it may exchange the order in the ranking.
We think that the function should consider that the case of a buyer (in particular,
if it is currently in a better position in the evaluation ranking w.r.t. our agent)
paying a price greater than the resale one, i.e.bj s.t. win(bj , p) with p > prsl.
This is a case that benefits for our agent since that agent has loss if he pays this
amount.
We consider that this preference functionu has to be analysed with more detail,
14 but it may be interesting to take into account other facts as well.

• In PQDT we may face in with non-normalised distributions. This point has
not been taken into account in Garcia et al.’s proposal. Indeed, the possibility
distributionπs0 may be non-normalised, then, the distributionsπs0,pd

may be
non-normalised as well.

In this dissertation we have analysed the drawback of applying theQU utility
functions to non-normalised distributions, to avoid it, we propose to apply the
generalised utilities for non-normalised distributions introduced in Chapter 8.

Some General Comments

• In the proposal, some fuzzy rules are suggested to improve the heuristic in order
to reduce the number of decisions to be evaluated. They argue that they attempt
to model the rational behaviour ofbuyers in particular situations.
We are not convinced about applying rules to model the behaviour of the other
agents, however, we agree in the convenience of applying fuzzy rules, but we are
thinking in rules “directly” related with the behaviour of the buyer agentb0. As
an example, we may consider rules like:

– if [ pot−benefit is high] and [R is short], then [p is nearly− to−min−
{pα, Cr(b0)}].

– if [ R = 1] p = Cr(b0).

14In particular, if we adequate it to a finite set, andU andV as well, we will be able of characterising the
behaviour of the agent we are modelling as well.
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that may result useful. Another option for proposing rules is to take into account
the available credit that the other buyers have in this round.

• We suggest that a first analysis, before starting the auction, may be to determine
which are the more potential profitable rounds to participate. It might be done
in terms of a possibility distribution evaluating the potential benefits margin
expressed as the expected difference between the initial sale price and the
expected resale one.

• In the suggested algorithm forDBP, in Step 3, it is analysed the situations that
may occur during the round: multiple bids, one bid, no bid.

In the case of only one bid, if the buyer has not enough credit, the round is
restarted at a higher price. May be this is the usual procedure in the actual market,
but it seems this results in a disadvantage for other buyers, why at a higher price?,
why not restart the round at the price in which was stopped?

• It seems that the credit of the buyers is not controlled when the round begins.
Suppose that the reserve price of the good is higher than the credit of each
possible buyer, why not to declare the good withdrawn?

We are interested both in deepening the analysis of their current proposal and in the
necessary improvements for adapting it to actual auction houses.
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Chapter 11

Conclusions and Future Work

In Decision under Uncertaintyit is usually the case that the available information is
of qualitative nature rather than numerical.Possibilistic Qualitative Decision Theory
is specially suited for this framework since it can be based only on ordinal scales of
uncertainty and preference.
In this proposal, our aim has been to develop some extensions to the initial proposal
of Dubois and Prade (1995) for making decision under uncertainty in a framework
analogous to vonNeumann and Morgenstern (1944) assuming that uncertainty is of
possibilistic nature. The initial working hypotheses were:

• To deal with individuals’ preferences.

• To assume rationality hypothesis, i.e.DM will try to maximise his benefit.

• To deal with one-shot decision problems.

• To assume the feasibility of representingDM’s preference relation on
consequences by a preference functionu on them. But, instead of choosingu
as a real-valued-function as it is usual, we consider that it is defined over afinite
linearly ordered setU .

• The sets of decisions, of consequencesX, and of situationsS are finite.

• Uncertainty, assumed of being of possibilistic nature, is measured on afinite
linearly ordered setV .

• The valuation sets for measuring uncertainty and preferences are assumed to be
commensurate, that is, there exists an onto order-preserving mappingh linking
them.

• A decision or actd on S is represented by a functiond : S → X which
provides the consequence of the decision in each situation. Hence, each decision
is identified with a possibility distribution on consequences. Therefore, choosing
decisions amounts to ranking possibility distributions on consequences.
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The original proposal by Dubois and Prade deals with normalised distributions
considering the max-min possibilistic mixture as its internal operation, in the sense
that the qualitative utility functions they propose not only preserve the ordering but the
possibilistic mixture as well.
In this context, the extensions we have proposed are:

• Besides max-min mixtures of possibility distributions, we have considered other
mixtures involving t-norms> on V . We have axiomatically characterised the
behaviour of the generalised qualitative utility functions that preserve these
possibilistic mixtures. Namely, in the same context but requiringh to further
verify a coherence condition w.r.t.>, we have defined the pessimistic (optimistic)
generalised qualitative utility as:

∀π ∈ Π(X), GQU−(π|u) = min
xi∈X

n(π(xi)>λi),

with n(λi) = u(xi), nU being the reversing involution inU , andn = nU ◦ h.
The dual optimistic evaluation is defined as

∀π ∈ Π(X), GQU+(π|u) = max
xi∈X

h(π(xi)>γi),

whereh(γi) = u(xi).
These utilities may result in different rankings than the ones induced by the
qualitative criteria introduced by Dubois and Prade.

• We have considered partially ordered uncertainty and preference measurement
sets. There are certain kinds of decision problems where we are not able
to measure uncertainty and/or preferences in linearly ordered scales, but only
in partially ordered ones. For example, preference on consequences may
be given in terms of a vectorial function over a product of linear scales if
preference is expressed in terms of a set of criteria. To deal with these types
of problems, we have provided different generalised utility functions for these
cases taking into account the available operations in the set of uncertainty values
V . We have also been working with different (finite) lattice structures where
to measure preferences and uncertainty. Again, we have supplied the respective
utility functions for working in these structures and the characterisations of the
preference relations that are representable by them.

• We have considered the applications of the possibilistic decision models for
case-based decision problems. We have proposed to estimate to what extent a
consequencex can be considered plausible, in a current situations0 after taking
a decisiond, in terms of the extent to which the current situations0 is similar to
situations in whichx was experienced after taking the decisiond. This amounts
to assume, for each case(s, d, x) in a memoryM, a principle stating that

“The more similars0 is tos, the more plausiblex is a consequence of
d ats0”.
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According to this principle, one can derive the possibility distribution associated
to each decision. Thus, the utility of a decision can be estimated in terms of its
associated distribution.
Besides, we have shown that the utility of a decision may be evaluated also taking
into account the previous behaviours of other similar decisions.

• In Possibilistic Case-Based Decision Theory or in Decision Making problems
involving several sources of information, we may be faced with non-normalised
possibilistic distributions. We have extended the model to deal with these types
of problems.

• We have also proposed an approach to weaken the commensurability hypothesis,
non-requiringh to be onto. We have provided the characterisations of these
resulting orderings for finite linear scales.

• Sometimes it may be not enough to rank distributions taking into account, for
example, the pessimistic criterion, and it is interesting to refine it by another one,
for example by optimistic one. We have analysed the characterisations of some
refinements involving the generalised qualitative criteria we have proposed.

The proposed extensions provide us with possibilistic qualitative models of broader
applicability. These decision models may be useful for a large range of applications in
different areas, from Medicine to Economy.

Future Work

We have provided several extensions to the model, however, it is also true that there are
still several extensions and improvements of Possibilistic Qualitative Decision Theory
to be developed, extensions that will become interesting not only from a theoretic point
of view, but also in order to provide a better decision theoretic support to many real
problems as well. Let us summarise some of them:

• Commensurability: This hypothesis has been a point for interest of some
researchers (see for example (Fargier and Perny, 1999) inà la Savage framework).
In particular, the onto condition involved in the commensurability mapping forces
us to restrict our work to problems in which the uncertainty set has an equal or
greater cardinality than preference one. We have already proposed to weaken this
hypothesis, by non-requiring the commensurability mappingh to be onto, but
we have restricted to linear scales and to work with max-min mixtures. Hence,
it will be interesting to extend our analysis of weakening commensurability
to distributive lattices. Moreover, it will be also interesting to analyse the
behaviour of other utility functions involving t-norms onV . This problem is
more complicated since the onto condition is also required to guarantee the good
definition of the utility functions.

• Refinement Orderings:This point may result specially interesting since in
many applications refinements of orderings are necessary. We are interested in
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deepening the analyses on the characterisations of some refinements involving the
generalised qualitative criteria we have proposed. A related topic is conditional
preferences. Sabbadin (1998a) has worked with them in the Savage framework,
and it may be interesting to see how conditional preferences can be introduced in
our framework.

• Frameworks:There are a number of algebraic structures (e.g. interval orders,
semiorders or distributive lattices without requiring their maximal elements to
be equivalent) that are being applied by other researchers, in other contexts,
for evaluating preferences. We want to analyse the feasibility of measuring
uncertainty and/or preference in these more general structures.
There are two frameworks that may also result interesting from the
characterisations point of view. Indeed, as it has been mentioned, Godo and
Torra (1998a) propose a method for aggregating qualitative information weighted
with natural numbers, by mean of qualitative weighted means involving t-
norms on the set of values. Their characterisations have not been provided yet.
(Dubois et al., 2000b) propose a family of mixtures that combines probabilistic
and possibilistic mixtures via a threshold, also suggesting hybrid utility functions
for this framework. We are interested in the behaviour of these utilities.
Another point is to consider non-finite structures for representing uncertainty and
preferences.

• Dynamic Decision Problems: There are some works studying the problem of
adapting these possibilistic qualitative decision models to dynamic problems
(Pereira et al., 1997; Fargier et al., 1996). We are interested in analysing
them from the axiomatic setting point of view.

• Applications: As it is obvious, up to now, we have been mainly involved in
the representational issues of these possibilistic decision models, however, as we
are also interested in applying the models, we hope that in our future works we
will be involved in other actual decision making problems. In particular we are
interested in following with the analysis of the the decision problems involved in
both projects we have been working on.
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Bacharach, M. and Hurley, S. (1991).Foundations of Decisions Theory. Issues and
Advances.

Baets, B. D. and Mesiar, R. (1999). Triangular norms on product lattices.Fuzzy Sets
and Systems, 104:61–75.

Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis.Comentarii
Academide Scientiarum Imperalis Petropolitanae, 22:23–36.

Bonet, B. and Geffner, H. (1996). Arguing for decisions: A qualitative model of
decision making. In E. Horwitz, e.F. Jensen, editor,12th Conf. on Uncertainty in
Artificial Intelligence, pages 98–105, Portland, OR.

Bouchon-Meunier, B., Dubois, D., Godo, L. and Prade, H. (1999).Fuzzy Sets an
Possibility Theory in Approximate and Plausible Reasoning, chapter 1. The Handbooks
of Fuzzy Sets Series. Kluwer Academic Publisher.

Boutilier, C. (1994). Toward a logic for qualitative decision theory. In4th. Inter. Conf.
on Principles of Knowledge Representation and Reasoning, pages 75–86, Bonn.

Brafman, R. and Tennenholtz, M. (1996). On the foundations of qualitative decision
criteria. In13th Nat. Conf. on A.I.(AAAI’96).

Brafman, R. and Tennenholtz, M. (1997). On the axiomatization of qualitative decision
criteria. In14th Nat. Conf. on A.I.(AAAI’97), pages 76–81.

Davey, B. and Priestley, H. (1990).Introduction to Lattices and Order. Cambridge
Univ. Press.

De-Cooman, G. and Kerre, E. (1993). Order norms on bounded partially ordered sets.
Journal of Fuzzy Mathematics, 2:281–310.

de Velde, W. V. (1997). Co-habited mixed reality. InProc. of IJCAI’97 Workshop on
Social Interaction and Comunityware.

199



Doyle, J. and Thomason, R. (1999). Background to qualitative decision theory.AI
Magazine, 20(2):55–68.

Dubois, D. (1986). Belief structures, possibility theory and decomposable confidence
measures on finite sets.Computers and Artificial Intelligence, 5:404–416.

Dubois, D. and Prade, H. (1987).The principle of minimum specifity as a basis for
evidential reasoning. Springer.

Dubois, D., Lang, J. and Prade, H. (1994). Possibilistic logic. In Gabbay, D. M.,
Hogger, C. and Robinson, J., editors,Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 3 ofNon monotonic Reasoning and Uncertain Reasoning,
pages 439–513. Oxford University Press.

Dubois, D. and Prade, H. (1995). Possibility theory as a basis for qualitative decision
theory. In14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95), pages 1924–1930,
Montreal.

Dubois, D., Fargier, H. and Prade, H. (1996a). Refinements of the maximin approach
to decision-making in fuzzy environment. (81):103–122.

Dubois, D., Fodor, J., Prade, H. and Roubens, M. (1996b). Aggregation of
decomposable measures with application to utility theory.Theory and Decision,
(41):59–95.

Dubois, D. and Prade, H. (1996c). What are fuzzy rules and how to use them.Fuzzy
Sets and Systems, 84:169–185.

Dubois, D., Esteva, F., Garcia, P., Godo, L., de Mantaras, R. L. and Prade, H. (1997a).
Fuzzy modelling of case-based reasoning and decision. In Leake, and eds, P., editors,
2nd. Int. Conf. on Case Based Reasoning (ICCBR’97), pages 599–611. Springer-Verlag.

Dubois, D., Esteva, F., Garcia, P., Godo, L., de Mantaras, R. L. and Prade, H. (1997b).
Fuzzy set modelling in case-based reasoning.International Journal of Intelligent
Systems, pages 345 –373.

Dubois, D., Godo, L., Prade, H. and Zapico, A. (1997c). Making decision in a
qualitative setting: from decision under uncertainty to case-based decision. Technical
Report IIIA 97/21, Institut d’Investigació en Intel.liǵencia Artificial.
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