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Foreword

Qualitative decision theory under uncertainty is receiving an increasing interest within
both Artificia Intelligence and Decision Analysis. Possibility theory offers a formal
framework to respresent uncertainty in those domains where uncertainty is basically of
ordinal, qualitative nature, and hence non-additive as opposed to probability theory.

In 1995 Dubois and Prade proposed afirst axiomatic system alaVVon Neumann and
Morgenstern for a possibility-based decision theory in a simple framework where only
finitelinear scales of uncertainty and utility are assumed. Inthisapproach, decisionsare
represented by possibility distributions on consequences, also named possibilistic lot-
teries, and they axiomatically characterize preference relationsinduced by apessimistic
and optimistic qualitative utilities. These qualitative utilitiesare particular kinds of ag-
gregations of the utilities of single consequences, weighted by their uncertainty levels,
and they are defined only from the ordering of the scales and an order reversing opera-
tion.

Following this seminal wortk, in this monograph the author systematically explores
two different kinds of extensions of the model. First, the author considers natural gen-
eralizations of the possibilistic utilities by means of the use of t-norm like operations
on the uncertainty scale. Second, the author considers more general settings than the
original one, moving from linear to partially ordered uncertainty and utility scales and
from totally consistent to partially inconsistent uncertainty representations. The author
provides axiomatic characterizations, always a la Von Neumann and Morgenstern, for
the preference relations induced in all of those situations. Moreover, she also provides
an axiomatic basis for a possibilistic Case-based Decision theory. In awhole, | believe
the book represents a remarkable step further in providing sound and well founded ax-
iomatic basisfor the relatively new paradigm of possibility-based decision theory.

This monograph is based on the author’s Ph.D. dissertation, which | had the enjoy-
able opportunity to supervise.

Lluis Godo
[1IA - CSIC, Béellaterra, September 2003
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Abstract

Representational issues of preferences in the framework of a possibilistic (ordinal)
decision model under uncertainty are analysed. In this framework, uncertainty and
preference are measured on different (finite) lattice structures, ranging from lineal scales
to general distributive lattices. These structures are required to be commensurate. In
this context, decisions can be ranked according to their expected utility in terms of
generalised Sugeno integrals where t-norms and t-conorms play a role. For these
generalised utility functions we provide axiomatic characterisations. Moreover, we
propose how to extend the utility functions to cope with belief states that may
be partially inconsistent and we show their usefulness to provide elements for a
qualitative case-based decision methodology. Finally, we provide characterisations of
the refinement orderings involving the utility functions proposed and we also propose a
new framework with a weaker commensurability hypotheses.
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Chapter 1

Decision under Uncertainty

We begin this Chapter giving a short introduction to situate our work. Next, in Sections
1.2 and 1.3, we give an outline of the goals and main contributions of the thesis, and we
link them with already published papers that summarise our work. Finally, in Section
1.4 we describe the structure of this Ph.D. dissertation.

1.1 Introduction

Decision making is a daily activity which is involved in most of the acts we usually do.
Several areas, such as Artificial Intelligence, Operation Research, Game Theory, Social
Psychology and others are frequently interested in modelBdarsion Making

Decision Theory (DTjnay be understood in a broad sense and therefore related to
differentissues like individual decision making or Game Theory. Bacharach and Hurley
(1991) observed that

“It (Decision Theoryis about the ways in which decisions are related to
the Decisions Makés aims and to her beliefs about how her options serve
her aims.”

There are two aspects that the differ®xt interpretations have in common:
e The subject oDecision Theorys the rational agent.

e The goal ofDecision Theorys to have abstract theories of rational agency. That
is, to obtain systematic constructions deduced from an axiomatic setting that are
independent of the decision making domain.

Taking a decision amounts to choose, according to some criteria, the “best” of a set of
available alternatives taking into account the available knowledge.

There are many approaches to rational decision making, however, many of them
agree on the fact that the selection of decisions is determined by two factors: the
Decision Maker’s preference on consequeraed theinformation or belief about the
current state of affairs the Decision Maker (DM for short) has

Usual assumptions in the different proposals for decision making theories are:

1



e rationality hypothesis the Decision Maker is interested in maximising his
utilities.

o the feasibility of representing DM’s preference relatigron consequences by a
preference function on therire. the existence of a function: X — (U, <y), X
beingthe set of consequencasd(U, <) thepreference valuation sesuch that

<y iff u(z) <u u(y),

is assumed. Usually, it is supposgd= R.

We are interested in those models that assume the existence of a mapping
representing Decision Maker’s preference on consequences. Hence, a problem of
decision making may be represented by-tuple < S, X, D, u > with S being the
set of states or situations( the set of consequences or outcomasd D is theset of
available decisions or alternatives

As it was mentioned, decision making depends on the available knowledge. For
example, if a precise description of situations is available and each dedisio% is
represented as a functidn S — X providing the consequence of the decision in each
situation, we may apply this simple decision making model (see Figure 1.1):

Given a situationsy and a set of available decisio, a best decision
will be a maximal element oD with respect to the ordex,, induced by
preferences on the consequencegs, being defined as

d=<s d i u(d(so)) <u uld(s0)). (1.1)

But in the real world, we may be faced with incomplete or ill-specified decision
problems in which we cannot apply on (1.1) to define an orddp.iffor example, we
may be in one of the following cases:

o the decision is precisely defined, but the real situation is imprecisely known (i.e.
the actual state may be represented by a probability or a possibility distribution
o on the situations).

e s is precisely known buf is imprecise (i.e. the actual consequence ofay be
represented by a possibility distribution on the consequences).

e sq is precisely known but is only partially known, i.ed is partially defined.

In these cases, the simple model has to be extended to take decisions in an uncertain
context.

As it has been mentioned, if there is no uncertainty, we may rank decisions applying
(1.1). However, there are many problems in which the available information is poor.
That is, we are in an uncertain decision making context. In these cases, a representation
for uncertainty may be given or not. If no uncertainty representation is given, we
may consider different criteria like those that evaluate a decision in terms of its worst
possible consequence, its best one, or in terms of some weighted aggregation of them

2



situations consequences preferences

S X,5) U, <)

’ u(d(s)
— > | u(d'(s))
u(d”(sy))

Ranking decisions induced by consequences

d' < g d iff  d(sg) < d(%) iff  u(d'(s)) <, u(d(s))

Figure 1.1: Decision without uncertainty: a simple model.

(for more details of some of these criteria you may see, for example, (Wald, 1950;
Hurwicz, 1951; Luce and Raiffa, 1957)).

Other alternatives emerge from considering that fuzzy measures can be applied
to model uncertainty (Grabisch, 97) (see Figure 1.2). In this case, another
component is added to the 4-tuple modelling the problem. Now, we are considering
<S8, X, D, u, p >, wherep : S — V is a fuzzy measuréy being an uncertainty
scale.

Some particular kinds of fuzzy measures are Probability, Possibility and Necessity
measures (Wang and Klir, 1992).

The basic references in classidaecision Theory under Uncertaintgre Von
Neumann and MorgensternBxpected Utility Theory(1944), and the version of
Savage (1972), characterising preference relations under uncertainty and the rationality
hypothesis. Both approaches assume thatertainty is represented by probability
distributions

Von Neumann and Morgenstern assume a probability distribuifoencoding
uncertainty on situations. Then, each decision induces a probability distribution on

X defined as
Pax)= > P(s).
s€ES|d(s)=x

They consideeach decision as identified with its associated probability distribution

3



uncertainty dist. onSu: S - V

uncertainty dist. on X p 4 X - V DM’s preferenceon X u: X- U

%(d): ranking of d’s according to somaggregation of (1 4, u)

d< d iff %(d) < #(d")
Figure 1.2: Decision Model with Uncertainty Representation

on X. So, to rank decisions they consider:
d=<d iff P;<Py. 1.2)

Hence, they focus on utility functions for probability distributions on consequences.
Distributions are ranked in terms of their expected value with respect to Decision

Maker’s preferences on consequences. That is, if numerical preferencads — R

are assigned to consequences, then, distributions are ranked as follows:

Py < Py iff  E(Pju) < E(Py,u), (1.3)

where
E(Pgu) = Pa(x)u(z)
reX
is the expected value af with respect to the probability distributiaf;.

They propose to extend the initial model considering (1.3) instead of (1.1). Namely,
Von Neumann and Morgenstern postulate that the “best” decisions, according to
Expected Utility Theory (EUTare those whose corresponding probability distributions
maximise the expected utility of.

Savage (1972) proposes a somewhat different framewoUJdr He axiomatically
characterises the preference relatmnactsof Decision Makerghat behave aEUT

4



agents, i.e. that satisfy
d=<d iff E(P,uod) < E(P,uod') (1.4)

with u : X — R (representinddM’s preferences on consequences) &dS — [0, 1]
being a probability distribution derived from the axiomatic setting. That is, Savage's
version of (1.1) is (1.4), which is the same as considering (1.2 ) together with (1.3).

The classical axiomatic frameworks of Utility Theory have actually been questioned
rather early, challenging some of the postulates leading to the expected utility criterion.
Noticeably, Allais (1953) and later Ellsberg (1961) laid bare the existence of cases
where a systematic violation of the expected utility criterion could be observed. Some
of these violations were due to a cautious attitudBetision Makers

Another problem withEUT is that it needs numerical probabilities for each state
and numerical utilities for all possible consequences. Sometimes, this assumption is
too strong if there is only incomplete or poor available information. In these cases, a
more qualitative approach is needed.

Another model is proposed by Gilboa and Schmeidler (1995). They claim that
Decision Making under uncertainty is, at least, partly case-based. They suggest that
people choose acts based on their performance in the past and they prdpase-a
Based Decision Theory (CBDT)

As Doyle and Thomason (1999) comment in a recent paper, there are many
experiences showing that usually people explain and make their decisions with partial,
generic and “uncertain” information. Hence, a qualitative approach may give tools for
representing this decision making behaviour. Doyle and Thomason summarise main
proposals orQualitative Decision Theory Among them, we find those models that
usePossibility Theoryas uncertainty formalism, in which two alternatives emeggkx
Von Neumann and Morgensteiinitiated by Dubois and Prade (1995),@fa Savage
Dubois et al. (1997h) propose a Savage's approach in a possibilistic framework and
Sabbadin (1998a) develops this approach in his Ph.D. thesis.

In this Ph.D. we will follow the former approach, an axiomatic framework that is a
gualitative counterpart to Von Neumann and Morgenstern’s Expected Utility Theory. It
makes use of qualitative/ordinal preference and uncertainty which are valued on finite
sets,that are commensurate, and equipped with the maximum, minimum and an order-
reversing operations. Th{3ualitative Decision Theorgppears as the natural decision
theory related tdPossibility Theory

1.2 Goals

We focus our work on representational issues of preferences in a framework of a
possibilistic (ordinal) decision model under uncertainty, in the Von Neumann and
Morgenstern’s style.

Working Framework

We will assume the following working hypotheses

5



o We will deal with individuals’ preferences.
o Rationality hypothesis, i.eDM will try to maximise his benefit.

e The feasibility of representinPM’s preference relation on consequences by a
preference functiom on them is assumed. But, instead of choosiras a real-
function, we consider that it is defined ovefiaite setU of qualitative/ordinal
values.

e Uncertainty is assumed of being of possibilistic nature, and it is measured on a
finite set of qualitative/ordinal valuds.

e One-shot decision problems.

We will be interested in different (finite) lattice structures where to measure
preferences and uncertainty, ranging from lineal scales to general distributive lattices
with involution.

First, following Dubois and Prade’s proposal, we shall assume (finite) linear
uncertainty and preference scales. We shall consider two qualitative criteria that
generalise the well-known maximin and maximax criteria, making them more realistic.
They are suited to one-shot decisions and they are not based on the notion of mean
value, but take the form of medians.

Thefirst goalwill be to improve the axiomatic characterisations of these pessimistic
and optimistic orderings. These functions are utility functions in the sense that they not
only preserve the preference ordering but the max-min mixtur€l@X), the set of
normalised possibility distributions ol , as well.

Besides max-min mixtures of possibility distributions, we consider other mixtures
involving t-conorms and t-norms. For each t-noffrand conormlL on V, we will be
interested inL-T mixtures that combine two possibility distributions and s into a
new one, denoted/~+ | (71, ma; A, 1), with A\, p € V and\ Ly = 1, defined as

M+ (71, mos A\, p)(x) = (AT () L(pTra(x)).

We shall require these mixtures to satisfy a form of reduction of lotteries, this will
lead to restrict ourselves taax — T mixtures (Dubois et al., 1996b). So, for each
t-norm T onV, we may consider Possibilistic Mixture.

Thus, asecond goaill be to characterise the behaviour of functions that preserve
these possibilistic mixtures. Moreover, we will look for preference relations on
(TI(X), M) that are representable by these generalised utility functions.

The direct application of these models for case-based decision problems may have
unsatisfactory results because of the possibly non-normalised distributions involved.
So, athird goal will be to extend the models to deal with these type of problems.

There are actual problems where the available information may be only partially
ordered, for example, preference on consequences may be given in terms of a vectorial
function over a product of linear scales if preference is expressed in terms of the
marginal preferences. To be able to deal with these types of problems, a further
extension of the model will be analysed. We will propose utility functions, representing
pessimistic and optimistic criteria, defined in terms of partially ordered preferences on

6



consequences where uncertainty may also be measured on lattices. Therédste, a
goal will be to characterise these orderings and the preference relations representable
by them as well.

1.3 Contributions

Our approach, as already mentioned first outlined by Dubois and Prade (1995), is
focused on an axiomatic framework fossibilistic Decision Theoryhat may be
regarded a qualitative counterpart to Von Neumann and Morgenstern’s Expected Utility
Theory.

First, we consider (finite) qualitative/ordinal preference and uncertainty linear
scales, equipped with theaximum, minimunand anorder-reversingoperations, that
are commensurate. Thismmensurateness hypothesisans that we are assuming the
existence of an onto order-preserving mappingl’ — U.

Under these hypotheses Dubois and Prade proposed a first axiomatic setting to
characterise the preference relation induced by a pessimistic qualitative utility which
is expressed in terms of the preference on consequences and the “possibilistic” lotteries
on S, S being the finite set of situations.

We provide an improvement of Dubois and Prade’s axiomatic setting together with
the representation theorem of preference relations induced by a pessimistic utility
function defined as

QU™ (m|u) = min max(n(w(x)), u(x)),
rzeX

with n = ny o h, ny being the reversing involution i@l

Sometimes, this criterion may be too conservative and we may be interested in an
optimistic criterion, like requiringr to make at least one of the good consequences
highly plausible at least to some extent. This behaviour is reflected assessing a degree
of intersection between the fuzzy set of possible consequences and the preferred ones.
That is, we shall also consider the utility function

QU (fu) = mayx min(h(n(x)), u()).

We adequate the axiomatic setting given for pessimistic utilities, to represent this
optimistic behaviour, providing the respective representation theorem.

We show that both qualitative functions are utility functions, in the sense that they
not only represent the given preference relation, but they preserve the internal operation
as well.

To sum up, two qualitative criteria are axiomatised in this setting: a pessimistic
one and an optimistic one, respectively obeying an uncertainty aversion axiom and an
uncertainty-attraction axiom. As it is said, these criteria generalise the well-known
maximin and maximax criteria, making them more realistic.

As also mentioned, we have been also concernedwith—T mixtures onlI(X).

Thus, we have been also interested in the behaviour of functions that preserve these
possibilistic mixtures.



We propose the following generalised qualitative utility functions, which are
extensions of the qualitative utilitlU ~ and QU *:

GQU ™ (m) = melr)l(n(ﬂ(:m)—l—)w),
GQU*(r) = maxh(r(w:) ),

wheren()\;) = u(z;) = h(w;), withn = ny o h, h : V — U being an onto order-
preserving mapping, verifying a furtheoherence condition w.r.tT to guarantee the
correctness of the above definition, namely:

h(A) = h(p) = h(aTA) =h(aTp), VYa,\peV.

These generalised utility functions may result in different orderings from the ones
associated witl§)U.

We characterise the preference relationsd(X) that are representable by the
above generalised qualitative utiliti€sQU ~ andGQU .

One of the possible applications of these decision models is for case-based decision
problems, where a memory of casks, summarising the behaviour of decisions in
previous situations, is assumed to be available as well as a similarity function on
situationsSim : S x S — V.

We propose to estimate to what extent a consequeneae be considered plausible,
in a current situations, after taking a decisionl, in terms of the extent to which the
current situationsg is similar to situations in which: was experienced after taking the
decisiond.

This amounts to assume, for each césel, z) in a memoryM, a principle stating
that

“The more similars is to s, the more plausible is a consequence dfat

S0 -
This kind of guiding meta-rule has been recently considered in (Dubois et al., 1997a)
for case-based reasoning. According to this principle, given a memory of déses
if a similarity relation is available in the set of situations, the following possibility
distributionmy s, : X — V on the set of consequences can be derived

Td,so () = max{Sim(so, )| (s,d,z) € M},

where, by convention, we takeax () = 0.

Then, given a preference function on the set of consequencés — U, the utility
U, (d) of decisiond can be estimated, in terms of its associated distribution

However, these distributions may result non-normalised, and the direct application
of the utility functions mentioned up to now may result in unsatisfactory results.

In order to cope with these problems, following the proposal of (Dubois et al.,
1997a),we obtain new criteria modifying the utility functions previously mentioned
with a level of uncertainty, which correspond to the degree of inconsistency of the
distributions. Hence, we extend the model to include non-normalised distributions
providing the axiomatic characterisations of these utilities
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In some case-based decision problems, as it is noticed by Gilboa and Schmeidler
(1996), the evaluation of the utility of a decision may involve not only the behaviour of
this act in previous situations but other decisions as well. In order to deal with this type
of problems, we propose to apply the principle:

“The more similar are(sg,d) and (s,d’), the more plausible: is a
consequence af at sy”.

There are certain kind of decision problems where we are not able to measure
uncertainty and/or preferences in such linearly ordered sets, but only in partially ordered
ones. For example , we may have partially ordered uncertainty in case-based decision
problems when the degrees of similarity on problems are only partially ordered. In
this case, if we are not provided with an aggregation criterion for similarity vectors
that summarises the criteria on an ordinal linear scale, we are not able to apply the
previously mentioned models.

Hence, we are also interested in a qualitative decision model that let us make
decisions in cases where tiEM’s preferences on consequences are only partially
ordered or when the uncertainty on the consequences is measured on a lattice.

In order to cope with some of these situations, we propose an extension of the model
in two steps

1. preferences and/or uncertainty are measured on finite products of (finite) linear
scales

2. both preferences and uncertainty are graded on distributive lattices.

Most of the contributions contained in this thesis have been reported in the following
publications:

e Lluis Godo and Adriana Zapico. On the Possibilistic-Based Decision Model:
Characterisation of Preferences Relations under Partial Inconsigtendy
Applied Intelligencel4(3), pages 319-333,2001.

e Didier Dubois, Llus Godo, Henri Prade and Adriana Zapico.On the Possibilistic-
Based Decision Model: From Decision under Uncertainty to Case-Based
Decision® In International Journal of Uncertainty, Fuzziness and Knowledge-
Based System3(6), pages 631-670,1999.

e Lluis Godo and Adriana Zapico. Generalised Qualitative Utility Functions for
Representing Partial Preferences Relatiodsint Conf. EUSFLAT-ESTYLF99
pages 343-346, Mallorca, 1999.

e Adriana Zapico. Axiomatic Foundations for Qualitative/Ordinal Decisions with
Partial Preferences. [b6th. International Joint Conf. on Atrtificial Intelligence
(IJCAI'99), pages 132—-137, Stockholm, 1999.

ILatter, two other other works were published in Dubois et al. (2000a) and Zapico (2001).
2This is a revised and extended version of the paper (Godo and Zapico, 2001).
3This is a revised and extended version of the papers (Dubois et al., 1998c) and (Dubois et al., 1998d).
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e Didier Dubois, LItus Godo, Henri Prade and Adriana Zapico.Making Decision in
a Qualitative Setting: From Decision under Uncertainty to Case-Based Decision.
In 6th International Conference on Principles of Knowledge Representation and
Reasoning(KR'98)pages 594 — 605, Trento, 1998.

¢ Lluis Godo and Adriana Zapico. Case-Based Decision: A Characterisation of
Preferences in a Qualitative Setting.Gongreso Espi@ol de Tecnolom y Logica
Difusa (ESTYLF'98)pages 405—412, Pamplona, 1998.

e Didier Dubois, Llds Godo, Henri Prade and Adriana Zapico. Possibilistic
Representation of Qualitative Utility: An Improved Characterisation.71n
Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU’9Bgris, pages 180-187, 1998.

e Adriana Zapico and Llis Godo. Axiomatic Foundations for Qualitative/Ordinal
Decisions with Partially Ordered Preferences. Tech. Rep. IlIA 98/33.

e Adriana Zapico and Llis Godo. On the Possibilistic-Based Decision Model:
Preferences under Partially Inconsistent Belief StatesE@AI'98 Workshop
on Decision theory meets atrtificial intelligence: qualitative and quantitative
approachesBrighton, pages 99-109, 1998.

e Adriana Zapico and Llis Godo. On the Representation of Preferences in
Possibilistic Qualitative Decision Theory.Jornades d’ Intel.li@ncia Artificial:
Noves Tendencies. Organised by the Catalan Society of Artificial Intelligence
Lleida, pages 118-125, 1997.

There are some on going works that, although they are in the first steps, we understand
that may result in further contributions:

e As it has been said, we are mainly interested in the representational issues of
possibilistic decision model under uncertainty, however, the possible application
of our model of course is of our interest. Two projects in which lingtitut
d’'Investigacé en Intel.ligencia Artificial (11IA- CSIC)is now involved give us the
context for beginning the analysis of the support that the models could provide.
Up to now we are in the first steps of the analysis.

e We propose to weaken the commensurability hypothesis, non-requirtiade
onto. We provide the characterisations of these orderings for finite linear scales

¢ In some problems it may be not enough to rank distribution taking into account
one criterion, for example the pessimistic criterion, and we may be interested
in refining it by another one (e.g. the optimistic criterion). We analyse the
characterisation of some refinements involving the generalised qualitative criteria
we have proposed.
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1.4 Structure of the Thesis

The Thesis is structured as it is detailed below.

Chapter 1 contains a small introduction, the organisation of the memory and our goals
and contributions.

In Chapter 2, we summarise some approaches to decision making under uncertainty,
mainly the classical approach of Von Neumann and Morgenstern together with
some alternative approaches, among which we are especially interested in
PossibilisticandCase-based Decision Theory

Expected Utility Theonhas two approaches. I@hapter 3, we summarise the
possibilistic view of these versions: Savage’s possibilistic approach, developed
by Sabbadin and Dubois et al. and Von Neumann and Morgenstern’s approach,
initially proposed by Dubois and Prade and which we extend in this work.

In Chapter 4, following the Von Neumann and Morgenstern’s
possibilistic approach, we propose an improvement of Dubois and Prade’s
axiomatic setting for qualitative decision criteria under uncertainty where
only ordinal commensurate scales are required for assessing uncertainty and
preference. These criteria generalise the well-known maximin and maximax
criteria, making them more realistic.

Chapter 5: These criteria measure a degree of intersection/inclusion tife set of
possible consequences, andhe set of preferred consequences. In this Chapter
we consider extended and alternative definitions of these operations, so that other
utility functions are obtained. In particular, two ordinal utility functions that
generalise previous ones are studied. We provide the characterisations of the
preference relations induced by these functions.

Chapter 6: Up to this Chapter, we have been applying finite linear order scales to
measure uncertainty and preferences. Now, we deal with decision problems
that do not satisfy this linearity hypothesis. This point is developed through
the memory in three steps. In this Chapter, we suppose that uncertainty and/or
preferences are measured in a finite product of (finite) linear scales.

Secondly, inChapter 7, uncertainty and/or preferences are measured on finite
distributive lattices and utility functions are defined assuming that the only
available operations amainimum maximumand aninvolution
Finally in a third step, we consider that other (t-norm-like) operations, different
from minimumand maximum are available. In particular, we consider finite,
distributive, residuated lattices with involution as uncertainty and preference
valuation sets. Consequently, the axiomatic decision model is extended to
adequately cover these general algebraic structures as evaluation domains for the
utility functions.

Chapter 8: In order to apply the models when the belief states are partially
inconsistent, what may happen in case-based decision problems or when different
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sources of inconsistent information are available, the possibilistic decision
framework is extended to cope with non-normalised distributions. Moreover,
elements for a qualitative case-based decision methodology are proposed, with
pessimistic and optimistic evaluations formally similar to the expressions which
cope with uncertainty, up to modifying factors which handle the lack of
normalisation of similarity evaluations. Also, we analyse the application of
similarity functions involving acts foPossibilistic Case-Based Decision Theory
following the proposal of Gilboa and Schmeidler.

Chapter 9: We describe some results obtained in the on going research, one related
with the commensurability hypothesis between the uncertainty and preference
values sets and the other with refinements of orderings are summarised here.

In Chapter 10, we show that our model may be applied for some decision making
problems involved in two projects that are being developed in Itsitut
d’Investigaco en Intel.ligencia Artificial (IlIA- CSIC)

Chapter 11: In this last Chapter of the memory we summarise the main contributions,
we list the most interesting open problems left in this Ph.D., and describe research
topics to be addressed in the near future.

12



Chapter 2

Decision Theory: Some
Approaches

A problem of decision making may be represented by-taple < S, X, D, u >
being S the set of states or situationsX the set of consequences or outcomess
it was said, we are interested in those models that assume the existence of a mapping
u representindecision Make's preference on consequences. Finallyis the set of
available decisions or alternatives, where decisions are funaticéhs- X.

As it was mentioned, if there is no uncertainty, we may rank decisions applying
(1.1) (see Figure 1.1), that is,

d=<s,d iff u(d(so)) <u u(d'(s0))-

However, there are many problems in which the available information is poor. That
is, we are in an uncertain decision making context. In these cases, a representation
for uncertainty may be given or not. If any uncertainty representation is given, we
may consider different criteria like those that evaluate a decision in terms of its worst
possible consequence, its best one, or as weighted aggregation of them. Some of these
models are introduced in the first Section.

Other alternatives emerge from considering that fuzzy measures can be applied to
model uncertainty (Grabisch, 97) (see Figure 1.2). In this case, another component is
added to the-tuple modelling the problem.

Now, we are considering. S, X, D, u, > whereu:S — V is afuzzy measuré/
being an uncertainty scale. Let us recall the definitiofuaty measures

Definition 1
A fuzzy measurg¢Grabisch, 97) on a finite sét is a set function.:P(X) — [0, 1]
satisfying

o u(0)=0andu(X) =1,

e AC BC Ximpliesu(A) < u(B).
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Some particular fuzzy measures aPeobability, Possibility and Necessityones.
Possibility measureglI, are fuzzy measures which also satisfy that

II(AU B) = max(II(A), II(B)),
while Necessity measuresatisfy
N(AN B) =min(N(A), N(B)),
andProbability measures Batisfy
P(AUB)=P(A)+ P(B) ifAnB=4.

The classical model for decision making under uncertainty is Von Neumann and
Morgenstern’s Expected Utility TheoneUT) (1944), and Savage’s version (1972),
which uses probability measures to model uncertainty about the state of the world.

This probabilistic model has some drawbacks, in Section 2.4 we summarise some
alternatives that lead to some of these problems.

Another model is proposed by Gilboa and Schmeidler, from a case-based view,
which also is summarised in Section 2.3.

Possibility theory provides other alternatives (Dubois and Prade, 1995;
Dubois et al., 1997e). As we are mainly interested in them, since our work is developed
in a possibilistic framework, we introduce these models in the next Chapter with more
detail.

Next, we introduce some decision models where uncertainty representation is not
available, while in Section 2.Expected Utility Theorys summarised. In Section 2.3,

a Case-Based approach suggested by Gilboa and Schmeidler is introduced, while other
approaches are briefly commented in the last Section.

2.1 Decision Models without Uncertainty
Representation

Luce and Raiffa (1957) gather some criteria to choose decisions when the states are
uncertain and no uncertainty representation is given. These chjtasawell as the
maximaxcriterion are detailed below.

Wald’s Criterion: Maximin

Wald (1950) suggests a conservative criterion that evaluates each act in terms of its
worst consequences. Next, he chooses the act with greatest payoff, i.e. the “best
decision” is
d = argmazaep (rrgg(u(d(s))))
S

INotice that in some of therfi and D are assumed as being finite.
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Maximax Criterion

The dual optimistic criterion evaluates each act in terms of its best consequences
choosing the act with great payoff, i.e. the “best decision” is

d = argmazaep (Igleagc(u(d(s)))).

Hurwicz's Criterion

Hurwicz (1951) proposes an intermediate criterion that combines the best and worst
consequences. Indeed, for eack [0, 1] (the so called pessimist-optimist index), each
actd is associated with an-index; i.e.

a - (min(u(d(s)))) + (1 — @) - (max(u(d(s))))-

seSs seSs

The best decision would be the one with the highéndex. Note, that it = 1, then
we recovemaximincriterion, while fora = 0, it results inmaximaxcriterion.

“Principle of Insufficient Reason” Criterion

This principle, formulated by Bernoulli (1738), asserts that in the case that one is
“completely ignorant” about the real state, one may consider that all states are equally
probable. Following this principle, each act is evaluated in terms of its expected utility,

that is, for eachl,
>ses uld(s))
S| ’

choosing the act with greatest payoff, whé$¢ denotes the cardinality of the sgt

2.2 Classical ApproachesExpected Utility Theory

The basic references in classical Decision Theory are Von Neumann and Morgenstern’s
Expected Utility Theory (1944), and the version of Savage (1972), characterising
preference relations under uncertainty and the rationality hypothesis. Both approaches
to decision making under uncertainty assume thatertainty is represented by
probability distributions In this Section we recall them, especially Von Neumann and
Morgenstern’s version.

2.2.1 Von Neumann and Morgenstern’s Expected Utility Theory

Von Neumann and Morgenstern suppose that uncertainty on real situation is represented
by a single probability distributio® on S, P:S — [0, 1], S beingthe set of situations

A decisionor actd on S is represented by a functiah S — X which provides the
consequence of the decision in each situation.
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Then, each decision induces a probability distribution’odefined as
Py(x)= > P(s).
seS|d(s)=x
Von Neumann and Morgenstern consider each decisioas identified with its
associated probability?;, so for ranking decisions they consider:
d<d iff P;<Pyp. (2.1)

Hence, they focus on utility functions on distributions on consequences.

Distributions are ranked in terms of their expected value with respdaetision
Makers preferences on consequences. That is, if numerical preferenées.> R, are
assigned to consequences, they define

Py < Py iff E(Pd,u) < E(Pd/,u). (22)
With
E(Pgu) =Y Py(x)u(z) (2.3)
zeX

the expected value aof with respect to the probability distributiaR;.

They propose to extend the initial model considering (2.2) instead of (1.1).

Let o denotethe set of probability distributions of'. Let us introduce the notion
of binary probabilistic lottery Let A, B be two events and € [0, 1], thebinary lottery
which is the combination of these two events withdenoted by

a®A®(l—a)oB,

is the prospect of considering that the first occurs with a probahilitsnd B occurs
with the remaining probability — «. In general, ift and!’ are lotteries, then

a®ld(l-a)ol

is a compound lottery. Thus, any (compound) probabilistic lottery decomposes as a
finite sequence of compositions of binary lotteries, in a tree-like form. The set of
probabilistic lotteries oX will be denoted by (X).

If we have a probability distributiod® on a set{x;, z2, 23}, observe that we may
see it as a compound lottery. Indeedp jf= P(z;), we have that

2 oo, 5o x3> '

P2 + p3 P2 + D3

Thus, in general, any probability distribution ofirite set, may be seen as a compound
lottery, that is, as a sequence of binary lotteries.

On the other hand, the so-callptbbabilistic mixtureoperation is defined op as
the convex linear combination of probability distributions &nNamely, if P andQ
are probability distributions oX and« € [0, 1], the probabilistic mixture of andQ
with respect tax is the probability distributio{ P, Q, ) defined as

(P,Q,a)(x) = - P(z) + (1 — @) - Q(x).

P — P1®£1@(P2+P3)®<
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Figure 2.1: The binary probabilistic lottery @f and B with o and 3

Figure 2.2: The lottery; ® =1 & (p2 + p3) © (p;jfps Oz @ p;j'fps ® :cg).

Since each probabilistic distribution o can be identified with a probabilistic lottery,
the probabilistic mixture operation can be seen as an operation between lotteries as well.
Indeed, if we formally define a combination operation on lotteries

C: L(X) x L(X) % [0,1] — L(X)

as
ClLil',a)=aole(1l-a)ol,
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it turns out that ifP and@ are probability distributions identifiable with lotterigs and

lg respectively, then the lottery corresponding to the probability mixtite), ), i.e.
l(p,0,a), is NOthing bu(lp, g, a). Therefore, from now on, we shall identify the get

of probability distributions orX equipped with the probabilistic mixture operation with
the setL(X) of lotteries onX equipped with the operatiof for combining lotteries

(for more details about mixtures, including hybrid ones, you may see (Dubois et al.,
2000by)).

Definition 2
e GivenC a preference relation an, let f be a function fromp toR. We say that

(f representsC) iff (VP,Q €p)(PC Q< f(P) < f(Q)).

e Given a setd, with an internal operation and a preference relation onutjlay
functionoverR, ut:A — R, is a function that represents the preference relation
and also preserves the internal operation.

Considering the probabilistic mixture as the internal operatiop,oronNeumann and
Morgenstern (1944) characterise the preference relationzaiability distributions
on consequences Decision Makerghat behave aBUT agents. Indeed, they propose
the following axiomatic setting ong(, <):

e AxA: X is atotal pre-order (i.ex is reflexive, transitive and complete).
e AzB.1: P<Q = P < (P,Q,a),with0 <a < 1.

e AtB2: P> Q = P+ (P,Q,a), with) < a < 1.

e AzB3:P<T <Q = Jac(0,1)s.t.(P,Q,a) <T.

e AzB4:P+T = Q = Jae (0,1)s.t.(P,Q,a) = T.

e Ax(C.1 (commutativity) (P, @, ) = (Q, P, «).

o AxC.2("lottery” reduction )(see Figure 2.3):

((P7Qaﬁ)7Q7a) = (P,Q7OZ.B).

Q ap 1-aB
B 1-B

Figure 2.3: Probabilistic mixture reduction

Ax A establishes that thBecision Makeris able to order all lotteries from worst to
best. AxB.1 andAxB.2 is likeness convexity, that is, they establish thaiis at least
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as preferred a®, then even a chance ¢ is least as preferred d3 and( is least as
preferred as each combination Bfand@Q. An assumption of continuity is expressed

by AzB.3 and Az B.4, while AxC.1 says that it is irrelevant the order in which the
constituents involved are named. Finally, the reduction axiom expresses how second
order lottery may coincide with a first order one. They proved the following theorem,
which provides foundations for tHexpected Utility Theory

Theorem 2.1 (Von Neumann - Morgenstern)
A relation on (b, <) satisfies the previous axiomatic setting if and only if there exists a
functionut : ¢ — R such that

P < Qe ut(P) <ut(Q)
and
ut(P,Q,a) = a-ut(P) + (1 — «) - ut(Q).

Moreoverut is unique up to a linear transformation.

2.2.2 Savage’s Version

Savage (1972) proposes a somewhat different frameworEf6F, he axiomatically
characterises the preference relatmnactsof Decision Makerghat behave aEUT
agents, i.e. that satisfy

d=<d iff E(P,uod) < E(P,uod') (2.4)

with u:X — R (representindM’s preferences on consequences) &d — [0, 1]
being a probability distribution. That is, his version of (1.1) is (2.4).

For a detailed explanation you may see (Savage, 1972), however, let us briefly
summarise his proposal. Generally speaking, the axiomatic setting establishes that the
preference is a complete pre-ordsuf1).

His characteristic axiom, thésure principle thing” (Sav2), establishes that
the choice between two alternatives must be unaffected by the value of outcomes
corresponding to states for which both alternatives have the same payoff.

Given the preference relation on aetsand an evenB, he defines &onditioned
preference on acts g:

“d xp d'iff f g gforall f andg that agree withi andd’, respectively,
on B and with each other in the complement®fandg < f for all such
pairs or for none”.

He defines an ever®® asnull iff d x5 d’ Vd, d'.
From the preference on acts, Savage induces a preference relatiom
consequences, i.e.

Vo,y € X, if d(s) =x,Vs € S,d'(s) =y,Vs € S, thenz <y < d=<d.

Sav3: If d(s) = x; andd'(s) = z2 Vs € B, B being not null, thend’ <p d iff
To < 27.
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He requires the preference relation induced on eventto be complete fav4).
While the preference induced on consequences is required to be non-trivial, i.e. there
exists at least one pair, ' such that is less preferred tharf (Sav5).

These axioms let Savage prove that the preference relatighisra “qualitative
probability”, that is

e (QP1: <is atotal preorder ofP(S). 3

e QP2:VBC S, 0B, h«S.

e QP3:VYB,C,Dst.DN(BUC) =0, B IC <= (BUD)<(CUD).
He also considers the following technical axioms:

e Sav6: if d < d' andz is a consequence, then there exists a partitiofl sfich
that, if d or d’ is so modified on any one element of the partition as to take the
value z at everys there, other values being undisturbed, then the modified
remains less preferred thah or d remains less preferred than the modifiéd
as the case may require.

o SavT:if d xp d'(s) Vs € B, thend <p d'.

This axiomatic setting lets him characterise the preference reladiorectsthat are
representable in terms of the expected value of a preference function on consequences
with respect to the probability distribution osi That is, Savage’s theorem says: If

(D, %) satisfies Savage’s axioms, there exists one and only one probability measure on
S, P7P(S) — [0, 1], whereP(S) denotes the power set §f and a preference function

on consequencas X — R such that

d<d <= FE(Puod) < E(Puod).

Of course Savage'’s axioms are sound, i.e. given a probability distributichamd a
preference function on consequenaeshe order induced itD by the expected utility
(that is, the order defined in (2.4)) satisfies Savage’s axioms.

2.3 Case-Based Decision Theory

Gilboa and Schmeidler (1995) claim that Decision Making under uncertainty is, at least,
partly case-based. They suggest that people choose acts based on their performance in
the past and they propose a case-based Decision Theory (CBDT).

People frequently reason establishing analogies between past cases and the one at
hand. Applying Hume’s principle (1748):

2A < Biffwhena’ < x, Az’ < xBx’, with thecompound act of andz’ w.rt. A C S defined as

z, if se€A
zAz'(s) =

z'(s), if s¢gA.

3P(9) is the power set of.
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“From causes which appear similar we expect similar effects”,

Gilboa and Schmeidler (1995) propose@ase-Based Decision Theory (CBDOT)

This theory assumes available partial information about the possible consequences
of decisions by having stored the performance of decisions taken in different past
situations as a set (memoryM of decision problem instances of triples (cases)
(situation, decision, consequengaid a giversimilarity Sim on situations as primitive.

The Decision Maker in face of a new situationy, is proposed to choose a decision
d which maximises a counterpart of classical expected utility, instead of (2.3) they
consider,

Uspa(d) = > Sim(so,5) - u(). (2.5)

(s,d,x)eM

Sim IS a non-negative function which estimates the similarity of situations @and
provides a numerical preference for each consequanc@ilboa and Schmeidler
axiomatically characterise the relations induced by this U-maximisation.

Observe that a difference witBUT is that, while inEUT the decision is evaluated
onall possible states, i€BDT each decision is evaluated andifferent set of states
Another one is that, for the utility functioli,, »s the similarity may not add to one, i.e.
it may be that for any

Z Sim(sg, s) # 1.
(s,d,x)eM
Gilboa and Schmeidler (1996) have also proposed another utility funitjory, which
is a modification of the previous one, replacifign with the similarity functionSim’
defined as

Sim(s,s0) if Z(S’,d,z)é[\/{ Sim(s',s0) # 0

.y 2 (st d,myem Stm(s,50)”
Sim'(s, sg) =

0, otherwise,
S0,

Vso,m (d) = Z Sim’(so, s).u(z).
(s,d,x)eM
Observe that now, for eacheither
Z Sim’(sg,8) =1 or Z Sim’(sg,s) = 0.
(s,d,x)eM (s,d,x)eM

Obviously, this model is still requiring numerical values for preferences and
similarity degrees. Another property that sometimes may be a drawback is that their
utility functions, as inEUT, compensate between good and bad results.

2.4 Other Approaches
The number of works on Decision under uncertainty is too big to try to summarise them

here, and it is not the goal of this work. Nevertheless, we briefly mentioned some of
them, those that are more related with different aspects of our work.
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One of the problems dEUT is that it needs numerical probabilities for each state
and numerical utilities for all possible consequences. Sometimes this assumption is
too strong if there is only incomplete or poor available information. In these cases, a
more qualitative approach is needed. Moreof¥T is specially tailored for repeated
decisions whose results accumulate additively. This is the underlying meaning of the
averaging nature of expected utility. However, in the case of one-shot decisions or
decisions whose individual results do not compensate each &bardoes not yield
a convincing criterion for rank-ordering decisions. This situation of non-additivity
naturally occurs with qualitative information about the worth of consequences.

The classical axiomatic frameworks of utility theory have actually been questioned
rather early, challenging some of the postulates leading to the expected utility criterion.
Noticeably, Allais (1953) and later Ellsberg (1961) laid bare the existence of cases
where a systematic violation of the expected utility criterion could be observed. Some
of these violations were due to a cautious attitude of Decision-Makers.

More recently Gilboa (1987) and Schmeidler (1989) have advocated and
axiomatised lower and upper expectations expressed by Choquet’s integrals attached
to non-additive numerical set-functions (corresponding to a family of probability
measures) as a formal approach to utility that accounts for Ellsberg’s paradox (see
also (Sarin and Wakker, 1992)). One of these generalised expected utility criteria (the
lower expectation) is also a numerical generalisation of the cautious Wald'’s criterion
for decision under ignorance. Choquet integrals, especially the lower expectations, are
mild versions of Wald criterion. The pessimistic (resp. optimistic) criterion, that we
will characterise, can again be viewed as a refinement of Wald’s criterion (resp. the
maximax criterion), but the utility functions are qualitative, hence they reject the notion
of averaging put forward by the classical theory, and also sanctioned by Choquet's
integrals.

Hendon et al. (1994) assume that uncertainty on consequences is measured by
belief functions. They assume as primitive a set of beliefs functions on consequences
and a preference relation on it. In order to take decisions, they assume a probability
distribution on the set of statés Their hypothesis is that each decision assigns to each
state not a consequence but a set of consequences. Hence, each decision is identified
with a belief function on consequences. Then, they develop a maddefon Neumann
and Morgenstern.

Other alternatives have been proposed in the literature and steps to qualitative
decision theory have been investigated in various directions by Al researchers in the
last years. Some approaches are based on an all-or-nothing notions of utility and/or
plausibility, e.g., Bonet and Geffner (1996), Brafman and Tennenholtz (1997). The
latter clearly advocates Wald cautious criterion. Others, like Pearl (1993,1994), use
integer-valued functions.

Bonet and Geffner (1996) propose a qualitative model based on rules, providing a
semantics based on high probabilities and lexicographic preferences. They argue that
the decision chosen is easy to justify on the basis of reasons for and against the decision.
Input situations are modelled by a set of propositions and observations, while output
situations are modelled as a set of goals, each one with its priority. A set of actions
and action rules are assumed to be given, as well as a plausibility measure on situations
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whose values are: unlikely, plausible and likely. They classify goals in positive or
negative taking into account if they are desired or not. A relative importance is defined
on goals using its priorities and polarities (+ or -).

Boutilier (1994) proposes a modal conditional logic, whose semantics enables him
to represent and reason with qualitative probabilities and preferences. He can represent
conditional preferences, these being defeasible. He suggests to focus on the states with
maximum plausibility only, a policy which Dubois et al. (1998a) argue that it leads to
debatable decisions.

Brafman and Tennenholtz (1996,1997) propose four decision criteria: maximin,
minimax, minimax regret and competitive ratio. These criteria use two parameters:
a qualitative utility function defined on states and decisions, and local states. The
Decision Maker's behaviours modelled by these criteria are characterised by an
approach similar to Savage’s.

For more details on Qualitative Decision Theory, a recent paper by Doyle and
Thomason (1999) summarises main works on it. Among them we find those models
that use Possibility Theory as uncertainty formalism, and two alternatives emerge:
a la Von Neumann and Morgenstern, initiated by Dubois and Prade (1995))ezor
Savage (Dubois et al. (1997h)) . Sabbadin (Sabbadin, 1998a) develops Savage’s
approach in a possibilistic framework in his Ph.D. thesis. As we are specially interested
in the possibilistic framework, we devote next Chapter to a detailed review of these
possibilistic approaches.

Another aspect of Decision under Uncertainty is Dynamic Decision Problems. In
a qualitative setting, for example, there is an approach by Sabbadin et al. (1998b)
proposing a generalisation of the possibilistic model of Dubois and Prade.

We may be interested not only in individuals preference as in the mentioned
approaches but in working with the preference of a group. Models involving this
second option are usually called Multiperson Decision Making models. There are
many researchers working with qualitative information in the different topics that this
type of problems involves. For example, Herrera et al. (1998) assume linguistic
preference relations for expressing the opinions of individuals and linguistic values for
expressing their respective power or importance degrees. In order to deal with non-
weighted linguistic information, they propose the linguistic ordered weighted averaging
(LOWA) operator, while to deal with weighted linguistic information, three operators
of linguistic weighted information aggregation are used: the linguistic weighted
disjunction (LWD) operator, the linguistic weighted conjunction (LWC) operator and
the linguistic weighted averaging (LWA) operator. Godo and Torra (1998a) propose a
method for aggregating qualitative information weighted with natural numbers, that is,
they propose qualitative weighted means involving T-norms on the set of values. As
it is mentioned, several issues are involved in Multiperson Decision Making models,
for example, summaries of some models involving fuzzy aggregation of numerical
preferences is provided by (Grabisch et al., 1998), for fuzzy preference in multiple
criteria by Fodor et al. (1998), and applying fuzzy quantifiers by Kacprzyk and Nurmi
(1998).

There are also some works applying fuzzy sets and possibility theory gathered in
(Kacprzyk and Fedrizzi, 1990).
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Chapter 3

Possiblilistic Approaches:
Antecedents

The following approaches are based on the hypothesis that uncertainty on states of
the world is possibilistic in nature. They are possibilistic views offtxpected Utility
Theory The first one assumes a possibility distribution on situations is known and deals
with preference relations goossibilistic lotterieswhile in the second one, preference
relations are defined afecisions In both cases, the preference relations satisfying their
axiomatic settings are representable by criteria with are expressible in terms of Sugeno
integrals (Sugeno, 1977).

3.1 Possibilistic Qualitative Decision Theorya la Von
Neumann and Morgenstern: Antecedents

Dubois and Prade (1995) have suggested a qualitative counterpart to Von Neumann
and Morgenstern'&xpected Utility Theory As it was mentioned, they assume that
uncertainty is of possibilistic nature, and they make usknite qualitative preference

and uncertainty scales equipped with the maximum, minimum and an order-reversing
operations.

It is also assumed that the scales of uncertainty and preferences are commensurate.
Dubois and Prade propose a characterisation of the preference relations that are
representable by qualitative utility functions which are a generalisation of the maximin
Wald’s criterion (see Section 2.1 or (Wald, 1950)).

In order to introduce their proposal, let us first present some useful notation and
definitions. S will denote afinite set of situationsand X will denote afinite set of
consequences of act8 decision or actd on S is represented by a functiehS — X,
which provides the consequence of the decision in each possible situation.

V will denote &finite linear scale of uncertaintywith inf (V') = 0y, sup(V) = 1y.

The belief state about which is the actual situation is supposed to be represented by a
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possibility distributionr:S — V, with the following conventions:

m(s) =0y means that stateis rejected as impossible
m(s) =1y means that is totally possible (=plausible)

Distinct states may simultaneously have a degree of possibility equgl. tBlexibility

in this description is modelled by letting(s) between0y and1, for some states.
Thus, the valuer(s) representthe degree of possibility of the statesome states being
more possible than others. ClearlySifis the complete range of states, at least one of
the elements of should be fully possible, so thats, 7(s) = 1y (normalisation. In

this Chapter, we only consider normalised possibility distributions.

A possibility distribution is said to beat least as specific ag’ if and only if for
each state of affairs s:(s) < 7’(s) (Yager, 1983). Theny is at least as restrictive and
informative asr’.

In the possibilistic framework extreme forms of partial knowledge can be captured,
namely:

e complete knowledgdor somesg, 7(sg) = 1y andw(s) = Oy Vs # s¢ (only
states is possible).

e complete ignorancer(s) = 1y, Vs € S (all states inS are possible).
I1(.S, V') will denote theset ofnormalisedpossibility distributions orb overV, i.e.

IS, V)={r:S - V|Ise Sn(s) =1y }.

Notation 3.1

For the sake of simplicity, we shall generally omit the reference to the uncertainty scale,
that is, we shall use the notati®@l(S). Also for the same reason, we shall uséor
denoting both an element belonging3@nd the possibility distribution ofi such that

(2) = ly, if z=s
e = 0y, otherwise

Similarly, we shall also denote by both a subsed C S and the possibility distribution
onS such thatr(s) = 1y if s € A andr(s) = Oy otherwise. With this convention, we
can considef as included if1(S).

Now, analogously with the previous Chapter, let us introduce the notion of
possibilistic lotteriesthe qualitative counterpart of the probabilistic lotteries. Given two
eventsA and B, and two values,, i € V such thatnax(\, 1) = 1, the (possibilistic)
binary lottery

(A/A, 1/ B),

is the prospect of considering thdt occurs with plausibility\, and B occurs with
plausibility . On the other hand the so-call@bssibilistic mixturethe qualitative
counterpart of the probabilistic mixture, is an operation defineH @#) that combines
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two possibility distributionsr;, 7w, with two values)\, i € V' s.t. max(A, u) = 1y into
a new distributionV (q, w2, A, ut), defined as

M (71,795 A, 1)(s) = max(min(\, 71 (s)), min(u, 72(s))). (3.2)

In particular, the possibilistic mixtur@/ (s, y, A\, u) is defined as the possibility
distribution onS such that

A if z2=s

M(s,y; \p)(z) =4 p if 2=y
0y otherwise.

Notation 3.2

Analogously to the probabilistic case, any possibility distribution on a finite set may be
seen as a compound possibilistic lottery, that is, as a sequence of binary possibilistic
lotteries. Hence, from now on, we identify the BB1S) equipped with the possibilistic
mixture, with the set of possibilistic lotteries o with the lottery combination
operation. That is, we will identifM (71, mo; A\, ) and (\/m1, /7). Moreover,
applying this identification, from now on, we shall sometimes combine the notation
of possibilistic mixtures and possibilistic lotteries.

Finally, U will denote afinite linearly ordered scale of preferenceith sup(U) =
1y andinf(U) = 0y, while ny:U — U will denote itsorder-reversing involution.

Notation 3.3
For simplicity reasons we shall omit the reference to the scales in their bottom and top
elements, hence 1 and 0 denote both assuming that they are identifiable by the context.

In order to define the qualitatiyerdinal utility functions, an assumption of
commensuratenedsetween the plausibility scalé and the preference scalé has
to be made. For the moment, what is basically needed isrder-reversing mapping
n:V — U such that(1) = 0 andn(0) = 1.

Let F' be thefuzzy set of preferred situationsith U-valued membership function
,[LF:S — U.

Notation 3.4
From now on, we identify the membership of a fuzzy set with the fuzzy set.

Dubois and Prade consider the following qualitative utility:

utp(m) = {queiglmax(n(w(s))7F(s)). (3.2)

This criterion was first proposed by Whalen (1984). Observe that (3.2) may also be
written as
utp(m) = mig max(ny (7 (s)), F(s))
se
wherern*(s) = ny on(w(s)) andny is the order reversing involution di Hence, this
utility value ut () coincides with the necessity degree of the fuzzy set of preferred
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situationsF' with respect to the possibility distribution*. It accounts for a degree
of inclusionship ofr* into F' (more details will be given in Section 5.1). Taking into
account that Inuiguchi et al. (1989) show that the necessity of a fuzzy eventis a Sugeno
integral, we have thaitr is a Sugeno integral.

Recalling that the well-known Wald maximin criterion suggests thatecision
is evaluated by the value of its worst possible consequemweemay observe that
maximisingutr generalises Wald’s criterion. Indeed, whenis an all or nothing
distribution, i.e. whenr(S) = {0,1}, # may be seen as the membership function
of a crisp set4, and then we have

utp(m) = minge 4 F(s).

That is,the worst situation compatible withis used to assess the utility of the decision
underlyingw. Hence, we refer tatr as apessimistior conservativeriterion.

The following axioms were proposed in (Dubois and Prade, 1995) for a “rational”
preference relatiomc on II(S) to be represented by a pessimistic qualitative utility
(caution:w ~ 7’ meanst’ C 7 andr C 7'):

e DPI1: Cis atotal pre-order (i.e— is reflexive, transitive and complete).
e DP2:If Aisacrisp subset of, then thereis € As.t.s ~ A.

e DP3 (uncertainty aversion)if r <« = «' C 7.

DP4 (independenceyr; ~ gy = M (my,m; A\, p) ~ M(mo, m; A\, p).

DP5 (reduction of lotteriegsee Figure 3.1):

M (s, M(s,y;c, B); A, ) ~ M(s,y; maz(\, min(u, &), min(u, 3)).

DP6 (continuity) 7’ C 7 = 3\ € Vsuchthatr' ~ M(x,S;1,)\).

Axiom D P1 allows us to represent utility on a totally ordered scale.
D P2, violated by expected utility, suggests that, contrary to it, the pessimistic utility
is not based on the idea of average and repeated decisions, but makes sense for one-
shot decisionsD P2 expresses that when the agent believes that the state liearmal
decision is put to work, then the state will be somi A, and the benefit from the
decision will indeed be the one in statdt comes down to rejecting the notion of mean
value.

Theuncertainty aversion axiorstates that the less informatiwé is, i.e. the more
uncertain the situation is, the less preferrédis: so, the worst state is total ignorance.
Because of this axiom, such a preference relation represents a pessimistic vision for
decision making, expressing aversion to lack of information. With this perspective,
D P2 now says that in fact, lotteryl is equivalent to the worst situation ih.

Theindependence axiomeans that if two distributions are indifferent with respect
to decision maker preferences, then we may exchange them in compound lotteries.

Axiom DP5 allows us to reduce lotteries to standard ones in the style of
possibilistic mixtures.
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in(u.B))
Max(A,min(u,a))

Figure 3.1: Possibilistic Reduction

Finally, thecontinuity axiomestablishes that if is at least as preferred a$, 7’ is
preferentially equivalent to having some uncertainty abkout

The following theorem, to represent such relations by pessimistic qualitative utility
functions, is proposed by Dubois and Prade (1995).

Theorem 3.1
Given a preference relatigh onIl(S) verifying axioms DP1 - DPG6, there exists a fuzzy
setF onS and a utility functionut  fromI1(.S) to a totally ordered séf representing
C such that for each < I1(S), we have that
utp(m) = minge g max(n(w(s)), F(s))

wheren is an order-reversing function from the possibility sctldo the preference
scaleU such that(0) = 1 andn(1) = 0, where 1 denotes the top elementdio&nd
V' and O their bottom elements.

Note that

utp(m) =1 if {seS|n(s)>0}C{seS|F(s)=1}

i.e. 7 has maximum utility if all the more or less possible situations are among the most
preferred ones. Also,

utp(r) =0 if {seS|n(s)=1}N{se S| F(s)=0}#0
i.e. w is the worst if there exists a most plausible situation whose payoff is minimum.
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3.2 Possibilistic Qualitative Decision Theorya la Savage

As it was previously mentionedEUT has two axiomatic frameworksa la Von
Neumann-Morgenstern, which works with probabilistic lotteries, linked with actsaand
la Savage, which is expressed directly in terms of acts. Dubois et al. (1997h) propose
a possibilistic axiomatica la Savage. This approach is developed in more detail by
Sabbadin (1998a) in his Ph.D. dissertation.

In this approach, they assume a primitive preference relatiam acts. As usual,
S represents a finite set of states, whilds the consequences set. The set of decisions
will be denoted byD. Before introducing their axiomatic setting, let us introduce some
definitions.

Definition 3
Given two decisiond, d’ the compound act off andd’ w.r.t. A C S is defined as

{ d(s), if seA
dAd' (s) =

d(s), if s¢&A

Let7:S — V a possibility distribution, the plausibility scalé being totally ordered.
Decision Makess preference on consequences are representedy— U, U being
a finite set linearly ordered. Then, the following qualitative utilities can be defined:

vi(d) = inf max(n(m(s)), p(d(s))),
vi(d) = iggmin(h(ﬂ(S))w(d(S))),

with h:V — U an order-preserving mapping, and= ny o h. Dubois (1986) defines a
qualitative possibility (necessity res@$ a set relation that verifies axio®9°1, Q P2
(see Section 2.2.2) and axiarh (IV respectively) which is a relaxation of the axiom
QP3,

e II. BI4C= (BUD)<(CUD),
e N: BIC= (BND)d(CND,).

Moreover, Dubois (1986) proposes a relaxation @P3 that includes both
definitions of qualitative probability and possibility.

e M:VB,C,Dst.DN(BUC)=0, BJIC= (BUD) < (CUD),
includeslI, while its dual
e M':VB,C,Dst.DU(BNC)=S8, BIC = (BND)<(CND).

includesN.

Savage proves that a relation on acts satisfyfingl — Sawv5 induces a relation on
events that is a qualitative probability.

The “utility” functions v, andv* do not satisfy Savage*sure thing principle”
(Sav2) axiom. Dubois et al. (1997f) observe that this fact results in that3 and
Sav4 are not verified by, orv*, but these functions verify the weaker Savage’s axioms
they propose.
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e W52 (weak sure thing principle) Let A C S, if diAd < dyAd then
diAd < dy Ad'.

e WS3 (weak coherence with constant act)x andy are constant acts, then if
y is at least as preferred aghenz Ah < yAh.

e WS4 (weak order on events)f x is preferred tar’ andy is preferred tag/’ then
rAx' < yAy'.

They also propose the following axioms:
e Pes: Vd,d € D, VAC Sd<dAd = d'Ad < d.
e Opt: Vd,d € D, VAC SdAd <d=d =< d Ad.

e RDD (Restricted Disjunctive Dominance)
if g < fandx < fthengVvax < f,

with g V 2 the maximum (point-wise) betwegrand:.

v, satisfiesPes axiom whilev* verifiesOpt.
The following representation theorem for characterising preference relation induced
by v, is proposed by Dubois et al. (1997e).

Theorem 3.2

Let < be a preference relation over the set of all attdom S to X, satisfying
Savl,WS3,Savs, PES, RDD. There exists a finite qualitative scale a utility
function

v, Of the formv,.(d) = infscs max(n(w(s)), u(d(s)))

on X, and a possibility distributiont on S, taking their values orl, such that
F=271 <= u(f) <v(f), withpu:X — L.

In Dubois et al. (1998e), they consider that uncertainty is modelled by a general
monotonic set-functiow : 25 — L, with L a finite linear scale which is applied for
measuring both uncertainty and preferences. In this hypothesis, and remaigifgy in
Savage framework, they characterise the ordering induced in the decisions set by the
utility defined in terms of the Sugeno integral with respect.to
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Chapter 4

Representation of Purely
Ordinal Utility Functions

In the previous Chapter we have introduced Dubois and Prade’s axiomatic setting to
characterise the preference relation induced by a pessimistic qualitative utility which is
expressed in terms of the preference on consequences and the “possibilistic” lotteries
on S, S being the finite set of situations (Section 3.1).

In this Chapter, we first analyse some shortcomings detected in that proposal.
Then, we suggest in Section 4.4 an improvement of the axiomatic characterisation
of preference relation induced by a possibilistic pessimistic utility function. We also
provide the representation theorem for preference relations satisfying the improved
axiomatics. Moreover, in Section 4.5 we introduce the characterisation for optimistic
utility functions.

But, before analysing our proposal, first we show in Section 4.2 that some decision
problems in which uncertainty is involved may be seen as a problem of ranking
possibility distributions on consequences, and we provide some preliminary results in
Section 4.3 as well. We end the Chapter showing the behaviour of these criteria in a
little toy example.

4.1 Some Remarks on Dubois and Prade’s Proposal

Let us briefly recall the proposal given in Section 3.1. The axioms proposed by Dubois
and Prade for a preference relationon II(.S) to be represented by a (pessimistic)
qualitative utility are:

e DP1: Cis atotal pre-order.
e DP2:If Aisacrisp subset of then thereis € As.t.s ~ A.
e DP3 (uncertainty aversion)if r < n’ = ' C 7.

e DPA4(independenceyr; ~ o = M (my,m; A\, 1) ~ M(ma,7; A, 11).
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e D P5(reduction of lotteries)

M (s, M(s,y; a, B); A, ) ~ M (s, y; mazx(A, min(p, @), min(p, 5)).

e DP6(continuityy 7' C 7 = I\ € V suchthatr’ ~ M(x,S;1,)).
and their theorem says:

“Given a preference relationm onII(.S) verifying axiomsDP1 — D PG,

there exists a fuzzy sét on S and a utility functionut from II(.S) to a
totally ordered sel/ representind- such that for each € I1(S), we have
that

utp(m) = minge g max(n(n(s)), F(s))

wheren is an order-reversing function from the possibility scEl¢o the
preference scal& such that:(0) = 1 andn(1) = 0, where 1 denotes the
top elements of/ andV and 0 their bottom elements.”

In this setting we have identified two possible shortcomings:

e The theorem does not really specify the characterisation of the preference
relations induced by

utp(m) = Isnelél max(n(n(s)), F(s)).

e The proof has some problems.

Also, the axiomatic setting turns out to be redundant (see Lemmas 4.2 and 4.3 for
more details).

With respect to the proof of the theorem, it starts claiming that the relation induced
by utp satisfies the axioms. But, there are some hypotheses which are implicitly
assumed in the proof that must be explicitly required if we want the preference relation
induced byut ¢ to satisfy the axiomatic setting, as it is shown in the following example.

Example:
Consider the following sets

S={s:535LV={0< X <A <1}
and
U={0<u <uy <1}
Let the set of preferred situatio#sbe defined as
F(s)=0,F()=1,F(s) = us,

that is, we haves C— s C 5. However, for each reversing functiom such that
u1 ¢ n(V), we have thatthereisnbe V s.t.s ~ (1/5,\/S) W.r.t. utp, i.e.
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PAstutp(s) =utp(1/5,)/S9).

Indeed,utp(s) = F(s) = wuy, while utp(1/5,A/S) = n(X). Hence,DP6 is not
satisfied by the preference relation induceduby. O

Let us remark that in the proof they claim the existence of a reversing funetion
which is also required to bleijective But, this requirement may be too strong as this
other example shows:

Example:
Suppose that = {s,s} while V is defined as in the previous example. Consider the
preference relatioi: defined by

sC (1/5,M/S) ~(1/5,X2/S) C 5,
and
s~ 8~ (1/5,M/5) ~ (1/3,A2/5),

and satisfying reflexivity.
This relationC satisfies the axioms. H:V — U is a bijective reversing mapping,
we have that

Utp(l/g, /\1/5) = n(/\l) > Tl()\g) = utp(1/§, )\2/5)

(1/5,A2/S) Cutr (1/5,M1/5),

while they are indifferent w.r.t= . Contradiction. That s, there is no bijective function
n such thatut » may represent the relation. O

Nevertheless, Dubois and Prade’s intuition with respect to the representation
theorem is still valid provided some technical corrections.

4.2 The Possibilistic Decision Framework Specified

A Decision Makemay be faced with different cases of incompletely or ill specified
decision problems.
Different cases that result in possibility distributions Brare the following:

e the situation is uncertain sy is represented by a normalised possibility
distribution onS, =,,:S — V, representing the belief state about which is the
real situation. Then, each decisidrb — X induces a corresponding possibility
distributionmg s, , on the set of consequences, defined as

Td,s0 () = max{m, (s)|d(s) = x}, 4.1)
with max ) = 0. 74 4, () represents the plausibility af being the consequence
of d.

As 7, is normalisedr s, is normalised as well.
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o the situation is precisely known but the decision is not precisely definezich
situation, we do not have a precise consequence but a possibility distribution on
the consequences. Sbis modelled by a possibility distribution; on the set of
conseguences.

e the decision is partially unknowrwe know how the decision resulted in some
other situations but not in the actual situation. Thus, we have partial information
about decisions by having stored the performance of decisions taken in different
past situations. This leads to a case-based decision problem. This point will be
developed in Chapter 8, however we advance here that each decision may also be
identified with a possibility distribution on consequences.

Therefore, we include these cases in our framework assuming as working
hypothesis thatuncertainty may be modelled by possibility distributions on
consequencethat is,

For an actual situationsy, we may identify each decision with a normalised
possibility distribution onX, therefore, choosing the “best” decision is
equivalent to choosing its associated possibility distribution.

Hence, in order to select the best decision, we are looking for possibility distributions
on conseqguences that maximise a utility funcibonII(X), i.e. we consider

d <s, d iff g & g iff U(ﬂ'd) < U(ﬂ'd/).

From now on, we focus on preference relations in the set of possibility distributions on
conseqguences.

4.3 Some Preliminary Results

Let us recall the context of our work/ will denote afinite linear plausibility scale,
whereinf(V) = 0 andsup(V) = 1, andII(X) will denotethe set of consistent
possibility distributions onX overV , i.e.

II(X) ={r: X — V]imax,ex 7(x)=1}.

We have already introduced qualitative binary lotteriggz, 11/y).1 More generally
using the notatiori\; /z1, ..., Ap/x,), With \; € V andmax;(\;) = 1, any consistent
possibility distributionr on X can be seen as a multiple consequence qualitative lottery
taking\; = m(x;).

U will denote afinite linearly ordered scale of preference (or utility), with
sup(U) = 1 andinf(U) = 0 and a preference functiomX — U that assigns to
each consequence &f a preference level df.

An interesting property of a preference relatioron I1(X) satisfyingDP1, DP2
and DP3 is that the extremal elements @K, C) are maximal and minimal elements
of (II(X),C) as well:

1Recall, we will identify possibilistic lotteries and mixtures.
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Lemma4.1l
If C verifies axioms DP1, DP2 and DP3, ancandz are a minimal and a maximal
element ofX, respectively, then:

ez~ (1/7,1/2) ~ X.
e 2 andzt are also the minimal and maximal element$16(X ), C).

Proof:
Let us first prove the equivalences~ X ~ (1/z,1/z). DP1 guarantees thatandz
exist. By the uncertainty aversion axiqi P3), it is clear thatX is a minimal element
of II(X), soitisX C z. But, by DP2 there exists, € X such thatey ~ X. Sincex
is minimal,z C xg, thus it must ber ~ X.

Furthermore, ordI(X) we havez < (1/z,1/z) < X (specificity point-wise
ordering), and again bp P3, X C (1/z,1/z) C z, and thus

z~X~(1/z,1/2).

On the other hand, for any € TI(X), sincer is normalised, there existssuch
thatw(z) = 1. So, we have: < 7 and thereforer C «, but sincez is maximal inX, it
isz C z, and thusr C . So,7 is maximal on(II(X), C) as well. Moreover, aX is a

minimal element ofI(X) andz ~ X, obviouslyz is a minimal element ofL( X )too.
O

Remark 1
Observe that as a consequence of the possibilistic mixture definition we have that

M(z,z; A\, u) =«  forall A\, u such thatmax(\, u) =1
and
Mz, X; 0 u) = M(x,X —{«};1,n)  forall A\, u such thatmax(A, u) = 1.
Moreover, we have that:

Lemma 4.2

M (71, M (71,725 0, B); A\, 1) ~ M (w1, 795 maz (A, min(u, @), min(u, 3)).
always holds.
lema

Proof:
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By definition of lotteries, we have that

M (my, M (71, 72500, B); A, ) () = max{min(m (), \),
min(p, max{min(m (z), &), min(me(x), 8)})}
= max[min(\, 71 (x)), min(y, a, 71 (x)),
min(s, 8, m2(z))]
=  max[min(m (), max(\, min(y, ))),
wmin(p, 5, m(z))]
= M(m1,me; max(A, min(p, @), min(u, 8))(z)

O

Hence, the axiom on reduction of lotterig® P5):
M (2, M(x, y; o, B); A, p) ~ M (x, y; maz (A, min(p, @), min(p, 5)).,

is unnecessary if we take the definition of possibilistic lotteries for granted. The same
remark applies to the Von Neumann and Morgenstern’s axiomatic setting if the notion
of probabilistic mixture is acknowledged (see Herstein and Milnor (1953)).

On the other hand, Axion P2 is also redundant since it follows from the rest of
the axioms. Indeed,

Lemma 4.3
Axioms DP1, DP4 and DP6 imply axiom DP2.

Proof:
SupposeAd = {z1,x2} with z; T z5. By DP6 there exists\ € V such that
x1 ~ (1/z2,2/X), and applyingD P1, reduction of lotteriesand D P4, we obtain

A= (1/161,1/.%‘2) ~ (1/(1/.%’2,)\/)(),1/,(62) = (1/1’2,)\/){) ~ T1.

The case wherd hasp elements is an easy generalisation. Indeed, suppose the
Lemma is valid if the cardinality of A i®, p being greater than 2. Now, let be

such that{A] = p + 1, and letz; be one of its minimal elements w.r.&C . Since

A = (1/z1,1/A — {x1}), by induction hypothesis we have thataif is one of the
minimal elements off — {z;} w.r.t. C, then

A~ (1/21,1/22) ~ 21.
O

Another interesting formulation of the continuity of the preference ordering, which
will be useful later, is the following one:

o A4: For allm € II(X) there exists\ € V such thatr ~ (1/Z,\/x), wherez
andz are any maximal and any minimal element &f, C) respectively.
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Observe thatd4 will be considered withD P1, since DP1 guarantees that the
maximal elements ofII(X),C) are equivalent, and the minimal ones are also
equivalent to each other.

It can be proved that,

Lemma 4.4
In the context of DP1-DP5 axioms, axiom DP6 is equivalent to A4.

Proof:
) Supposed4 holds, and letr, 7’ be such that’ = 7. We have two cases:

1. #’ ~ 7. Hencen’ ~ (1/m,0/X).
2. @' C =. By hypothesis, there exists \’ € V' such that
7~ (1/z,A\/z) and 7 ~ (1/Z,\/x).
Sincer’ C 7, by DP1 we have that
(1/z,XN/z) € (1/7, M),

and byD P3,itis X’ > . Now, taking into account that ~ z, the independence
axiom (D P4) and reducing lotteries, we obtain that

(/7 N/X) ~ (1/(1/z, N z), N [z) = (1/Z, max(N, A)/z).
Since) > A,
(1/z, max(\,\)/z) = (1/z, N /z) ~ 7',

i.e. (1/m, N /X) ~ «'. Therefore,DP6 also holds.

—) Suppose now thaDP6 holds. For anyr, we have thatr T z. Then, by
hypothesis, there existssuch thatr ~ (1/Z, A\/X), and thusr ~ (1/Z, \/z). This
proves thatd4 also holds. O

Taking into account these results, we propose next an improved set of axioms that
characterises pessimistic qualitative utilities providing new proof for the representation
theorem, and the corresponding axiomatic setting for an optimistic criterion is given in
Section 4.5.

4.4 Representation of Pessimistic Qualitative/Ordinal
Utilities

The above discussion has led us to propose this new set of axioms for preference

relations orlI(X') with the max-min mixture as the internal operationIdfiX).
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Al(structure): C is a total pre-ordér

A2(uncertainty aversion)if 7 < 7’ = 7' C 7.

A3 (independence)r; ~ mo = M (71,7 A, ) ~ M (g, w5 A, p1).

A4(continuity) Vrr € II(X)3 A € V such thatr ~ M (z,z; 1, \), wherez and
x are a maximal and a minimal element(d{, C) respectively.

Letu:X — U be a preference function such that'(1) # 0 # »~1(0), and let
h:V — U be an onto order-preserving function relating both scilesdU.
For anyr € II(X), consider the qualitative utility

QU™ (m|u) = II(IC_I)I’(I max(ny (7" (z)), u(z)),
wherer*(z) = h(w(z)) andny is the reversing involution iV. Notice thatQU —(.|u)
restricted toX coincides with the preference function i.e. QU (z|u) = u(x),

for all x € X. Let us introduce the order-reversing mapping — U defined as

T
Vv

X
u/
AN

ny

h
U

Figure 4.1: Diagram of the different mappings

n(A) = ny(h(N)). It verifiesn(0) = 1,n(1) = 0. Actually, sincen?, is the identity

in U, the mappingh can also be defined from, namely h(\) = ny(n())) (see
Figure.4.1). Using: instead ofh, the qualitative utility may be equivalently expressed
as:

QU™ (w|u) = min max(n(n(z)), u(x)). (4.2

zeX

Notation 4.1
For the sake of a simpler notation, we shall wt}¢ — () instead ofQU ~ (w|u) when
the mapping. is not relevant for the context.

2The reflexivity property involved in this axiom is redundant taking into accodit the reason for
remaining here is for the clarity of the presentation.
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We will show that the preference ordering ®f{X) induced by the qualitative
pessimistic utilityQU — satisfies the above set of axioms. First, it is interesting to
notice that:

Lemma4.5
QU ~ preserves the possibilistic mixture in the sense that

QU™ (M (71, m2; A, 1)) = min{max(n(\), QU™ (7)), max(n(p), QU™ (72))}. (4.3)

Proof:
By definitions of QU ~ and of possibilistic mixtures we have that

QU™ (M(my,mp; A, p)) = min(max(rn(M(m, m; A, p)(2)), u(z)))

= min(max(n((max(min(7my, A),

reX
min(m, 1)) (2)), u(z)))

= min(max(min(max(n(m(x)), n(A)),

rzeX
max(n(ma(x)), n(4))

)
= ar:réi)r(l(min(max(n(ﬂﬂ 7)), n(A), u(z

)’
))7
max(n(mw

2(2)
= min(g&i}l{l max(n(mi(z)), n(A), u(x)),

;Iéi)l(l max(n(mz(z)), n(w), u(x)))
(

Corollary 4.6
QU™ (max(my,m)) = min{QU ~ (m), QU (m2)}.

Lemma 4.7
Let<ou- be the preference ordering b{ X ) induced byQU ~, i.e

T =qu- 7 iff QU (m) <y QU (w).
Then,< gy - verifies axioms A1, A2, A3 and A4.
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Proof:

Axiom Al is easily verified, alsa2 is a consequence afaximurmandminimumbeing
non-decreasing functions, whil&3 results from the fact thapU — preserves max-min
possibilistic mixtures. Thus, we only check axiotd. We have to prove that

vr € TII(X), IA suchthaQU (7)) = QU (1/Z, \/x),

wherez, z are a maximal and a minimal element®fw.rt. <qp- -
Since we are assuming (1) # 0 # «~1(0), it must be the case thatz) = 0
andu(Z) = 1. Thus, by the possibilistic mixture preservation@¥ — we have that

QU™ (1/z,A/z) = min{max(n(1), QU™ (7)), max(n(}), QU™ (z))}
= n(\).

Sinceh is onto,n is onto as well, and it is(X) C U = n(V); therefore, for any
A € n~Y(QU(r)) we have that

QU () =n(\) =QU(1/z,\/z).

Notation 4.2
For a simpler notation, when it is obvious by the context, we may omit the reference to
U in the relation< .

Now, we can show that the preference orderings on epistemic states satisfying the
axioms proposed can always be represented by a pessimistic qualitative utility of the
type of QU .

Theorem 4.8 (Representation Theorem of Pessimistic Utility)
A preference relatiof onII(X) satisfies axioms A1,A2, A3 and A4 if, and only if,
there exist

(i) a finite linearly ordered utility scal€ with inf(U) = 0 andsup(U) = 1,
(ii) a preference function:X — U such that:=*(1) # 0 # u=1(0),
(i) an onto order-preserving functianV. — U,
in such a way that
' C iff ' Squ- T,

where< gy - Is the ordering induced ol (X) by the qualitative utilityQU ~(7) =
min,ex max(n(w(x)),u(z)), being as usual = ny o h.

Proof:
The “if” part corresponds to the preceding Lemma. As for the “only if” part, we
structure the proof in the following three steps.
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e In step (1) we define the utility scal€ and an order-preserving (and onto)
functionh from V to U.

¢ In step (2) we define a functicRU ~:I1(X) — U representing, i.e. such that
QU (m)<QU(«") iff =wC«.
o Finally, in step (3) we prove that
QU™ (7) = mingex max(n(n(z)), u(z)),
whereu: X — U is the restriction ofQU ™~ to X.

Now, we develop these steps.

1. First of all, notice that_ stratifiesII(X) in a linearly ordered set of classes of
equivalently preferred distributiong/( € [r] iff © ~ 7). The number of classes
is just the number of levels needed to rank the set of distributions. Therefore, we
take as utility scal&/ the quotient selfl(X ')/ ~ together with the natural (linear)
order

(7] < [7] iff T Cn'.

Denote by 1 and 0 the maximum and minimum elementd@X)/ ~, i.e. of
U. By Lemma 4.1, iff andz are a maximal and minimal elements (0f, C)
respectively, then clearlig] = 1 and[z] = 0.

Let 7, be the possibility distribution corresponding to the qualitative lottery
(1/z, \/x), and define the order-reversing functienV — U as

n(A) = [my]-
Observe that, sinc@ /z,1/z) ~ z,
n(1) = [(1/7,1/2)] = [z] =0,
also is
n(0) = [(1/z,0/z)] = [z] = 1.
We verify now thatn actually reverses the order. Let< X, thenw, < 7,

so using A2 we haver,, T w,. Then by definition,[ry,] < [r,], i.e.
n(A) < n(\).

Observe that, by constructiom, is onto. Indeed, for anyr € II(X), A4
guarantees that there exists.t. 7, ~ 7, son(\) = [x].

Let h = ny o n, ny being the reversing involution &Y. It is obvious thath
satisfies the conditions required.
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2. So far we have determined and h. Now, we define the qualitative function
QU™ onII(X) in two steps.

(a) First, let us defin€QU~ (7, ) = n(\).
It is easy to check that
my Cry <= QU (my) < QU (7).
Indeed,
m Cry <= [m] <[] <= n()) <n(Y)
= QU (my) < QU™ (my).
So, restricted to lotteries of typs, , QU ~ represents_ .

(b) We extendQU ~ to any lottery as follows.
Since for anyr, A4 guarantees that) s.t.w ~ (1/z, \/z), we define

QU (m) = n(A).

Notice thatQU ~ is well defined: suppose there exigts# A such that
7~ (1/7,p/x). But, since(1/z, p/z) ~ (1/7, \/z) then[r, | = [7,], SO
n(A) = n(p).

Finally, it is easy to check th&@U — represent& . This is due to the fact
that anyr is equivalent to some, , and by (a)QU ™ represents over the
Ty 'S.

3. Now, we defineu: X — U as
u(z) =3 QU (x).

Notice thatu(z) = 1 andu(z) = 0, and thusu~!(1) # 0 # «~1(0). It remains
to prove that

QU™ (7) = minge x max(n(mw(x)), u(z)).
To verify this, we will prove the following equalities:

e QU (1/x,A/y) = min(u(x), max(n(A), u(y))).
Indeed, A4 guarantees thal p,~ such thatz ~ (1/z,p/z) and such
thaty ~ (1/z,~/z) remember thaQU (z) = u(z) = n(u) and
QU (y) = u(y) = n(y) —, so usingA3, we have

(1/z, My) ~ (1/(1/Z, p/z), N/ (1/T,7/z)),
and reducing lotteries we obtain

(1/z, A/y) ~ (max(1, A)/Z, max(p, min(A,v))/x).

SUnderstanding in the righside of the equatioas the singleton distribution.
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Therefore,

QU™ (1/z,A/y)

n(max(u, min(A,v)))
min(n(u), max(n(A),n(v)))
min(u(z), max(n(), u(y))).

e QU™ (max(m1,m2)) = min(QU (1), QU (m2)).
By A4, 3u,~ such thatr; ~ (1/%, p/z) andme ~ (1/Z,v/x).
Then, using43, we have:

max(my, w2) = (1/m1, 1/me) ~ (1/(1/Z, /), 1/(1/T, v/ x)),
i.e. max(my, ma) ~ (1/Z, max(u,v)/x).

Therefore, ag)U ~ represents,

QU™ (max(my, m2)) = n(max(p,7))
min(n(u), n(7))
= min(QU™ (m),QU ™ (m2)).

More generally, we have

e QU™ (m) = min;—y,_, max(n(n(z;)),u((z;))).
As 7 is normalised there exists; € X such thatr(z;) = 1. Without loss
of generality, we assumge= 1.

Then, let
= (/z1,m(xi)/x:).

Sincer = max;—=1,._, 7;, We have:

.....

QU (r) = QU ( max m)

— min {min(u(a), max(a(r(z), u(a:))}

— i:r?’i&p max(n(m(x;)), u(x;)).

This ends the proof of the theorem. 0

“Note thatr(z1) = 1, sou(z1) = max(u(z1),n(n(z1))).
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4.5 Representation of Optimistic Qualitative/Ordinal
Utilities

An ordinal preference function: X — U can be regarded as describing a preference
profile: the greateru(x) is, the more preferredr is, analogously a possibility
distribution on consequences specifies the degree of plausibility of each consequence,
i.e. the greaterr(x) is, the more plausible: is. So, a pessimistic or conservative
criterion is to look for distributions which make, at least to some extent, all the bad
consequences hardly plausible.

Sometimes this criterion may be too conservative, we may be interested in an
optimistic behaviour, like requiring to make at least one of the good consequences
highly plausible at least to some extent. This behaviour is reflected assessing a degree
of intersection between the fuzzy sets of possible consequences and the preferred ones
(this point will be developed in more detail in Section 5.1). This leads to consider the
utility function which is “dual” toQU ~

QU (7r|u) = max min(h(rw(x)),u(z)), (4.4)

zeX

h being as usual an onto order-preserving mapping betweandU.

Note thatQU * (w|u) is the degree of possibility af with respect to
h o , and whenr is an all or nothing distribution, this criterion coincides with the
already known maximax criterion proposed by Yager (1979).

Regarding the axiomatic setting, in this new context, we have to change the
uncertainty aversion axiord2 by auncertainty-prongostulate

o A2T:if # < 7/ thenw C 7/,
and to adequately modify the continuity axiofd into

e A4t forall m € II(X), there exists\ € V such thatr ~ (\/z,1/z), whereZ
andz are a maximal and a minimal element(éf, C).

As in the pessimistic case, we have the following results, whose proofs are
analogous to the previous given ones, so they are omitted here.

Lemma 4.9
In the context of the axioms A1, A2and A3, the axiom

e OA4* (continuity):7' T m = 3 X € V such thatr ~ (1/7',\/X)
is equivalent to A%.

Lemma4.10
If C verifies axioms A1, A2, A3, and A4", thenC also verifies DP2 axiom that is:

If A is a crisp subset oX then there is: € A such thatr ~ A.

5But, now this axiom expresses thatis equivalent to its best consequence.
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Lemma 4.11
If C verifies axioms A1, A2, A3, and A4, andz andz are a minimal and a maximal
element ofX, respectively, then:

e the following equivalences holds:~ (1/z,1/z) ~ X.
e z andz are the minimal and maximal elements(Bff X ), C) respectively.

Observe thafX is now a maximal element ¢fI(X), C), this is a consequence of the
optimistic behaviour underlying id2*. It is also easy to verify thaQU ™ preserves
mixtures, that is

QU (N/m1, p/m2) = max{min(h(X), QU™ (1)), min(h(), QU™ (m2))}.

Now, we verify that the set of axiom41, A2+, A3 and A4 faithfully characterise the
preference orderings induced by an optimistic qualitative utility.

Theorem 4.12 (Representation for Optimistic Utility)
A preference relatiofl1(X ), C) satisfies axioms A1, A2, A3 and A4", if and only if
there exist

(i) a finite linearly ordered utility scal€, with inf(U) = 0,sup(U) = 1,
(ii) a preference function:X — U such that:=*(1) # 0 # «~1(0), and
(iii) an onto order-preserving functianV.— U,
in such a way that it holds:
o Cn iff 7 Kqu+ T,

where< oy+ is the ordering odI(X) induced by the qualitative utilitQU (m) =
max,e x min(h(m(z)), u(z)).

Proof:
The proof is analogous to the one for pessimistic utility, so we only sketch the proof
for the “only if” part.

e For the same reasons as before we chddse TI(X)/ ~ . Again, if z andz
denote a minimal and a maximal elemen( &f, C) respectively[z] and[z] will
be the 1 and 0 o

e We defineh:V. — U as h(\) = [(A\/Z,1/z)]. Observe thath(l) =
[(1/z,1/x)] = [z] = 1, andh(0) = [(0/Z,1/z)] = [z] = 0. Moreover, due
to the uncertainty-prone axiom it is easy to check tha order-preserving. By
A47, his onto.

From that, we only sketch the main steps of the proof:
e DefineQU* (N, 1/x) = h(\).
e Letr) = (\/z,1/z). Verify that if 77 C 7}, thenQU T () < QU (x}.).

47



ExtendQU ™ for anyr, due to axiom A4

Defineu(z) = QU (z).

Verify that QU (1/x, A/y) = max(u(z), min(h()), u(y))).

Verify that QU (max(my, m2)) = max(QU T (m1), QU T (m2)).

Verify that QU (1) = maxzex min(h(r(x)), u(x)).

Verify that <o+ agrees withic .

O

In practice, QU™ is a very optimistic index which can be used for refining the
ordering given byQU ~. We will analyse the characterisation of this refinement in
Chapter 9.

Finally, we would like to stress that the qualitative utility functigp&’~ andQU ™
are indeed “utility” functions inlI(X) in the sense that they preserve the preference
ordering and the “natural operation” of possibilistic mixtuk¢ used to combine
possibilistic lotteries or distributions. Indeed, let

¢max = {(OZ,B) eV x V| max(a,ﬁ) = 1}

If we consider the possibilistic mixture operatidhas the mappind/:I1(X) xII( X ) x
¢max — 11(X) defined asin (3.1), i.e.

M (7,75 a, 8)(x) = max(min(X, w1 (x)), min(p, m2(x))),
then by (4.3), we have that
QU™ (M(m,7";a, 8)) = UM~ (QU™ (), QU™ (x'); v, ),

whereU M ~ is the corresponding mixture in the preference s€al&/ M —:U x U x
¢Inax — U, defined by

UM~ (p, p'5y,6) = min(max(n(y), p), max(n(5), u'))-

That is to say@QU ~ is a morphism between the structure of possibilistic lotteries and
the structure of the qualitative preference scale.

For the optimistic qualitative utility we have analogous resuli& ™ preserves the
order and the mixture operation with respect to the operdfibfi™:U x U X ¢max — U,
defined as

UM* (1, 13, 6) = max(min(h(y), ), min(h(0), '),
in the sense that it holds

QU (M(m, 7", 8)) = UM (QU* (), QU™ (") o, B).
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Remark 2
Note that (4.3) is the median of three terms includiplg— (w1 ), QU ~ (m2). Indeed,

o |f QU_(ﬂ'l) <vu QU_(TFQ), then

QU™ (N1, p/m2) = median{QU ™ (m1), QU™ (72),n(A)}
It behaves like the classicBMUT, changing median by weighted mean. Analogously

we have that

o if QUT(m) >y QU™ (ma), we have that

QU (/1 p/m2) = median{QU ™ (m1), QU (m2), h(A)}

4.6 An Example: A Possibilistic View of Savage’s
Omelette

Finally, let us show the behaviour ¢fU~ andQU™ in a little toy example. We take

the well-known Savage’s omelette example (Savage, 1972) pp. 13-14, already used in
(Dubois et al., 1998c) to exemplify th@U — utility criterion. Here, we develop it
further, but first we recall the problem.

The goal of theDM is to make a six-egg omelette, already having five eggs in a bowl,
so DM has to decide what to do with a new egg, that can be eiteeh (F)or rotten

(R). TheDM can decide on three possible alternatives:

o to break the egg in the omelette (BIO)
e to break it apart in a cup (BAG)
e to throw it away (TA).

The consequences of the alternatives, depending on the state of the egg, are given
in Table 4.1. The grades between catch indicate an (reasonable) encoding of the

ACTS /STATES || fresh egg (F) | rotten egg (R) |

break egg in the omelettd] a6 egg omelette (6e0 for shoff)] nothing to eat (NE)O]
(BIO)

break it apart in a cup|| a 6 egg omelette , a cup to wash a 5 egg omelette, a cup to wash

(BAC) (6e0O-C)[d] (5e0-CJb]
throw it away (TA) a 5 egg omelette,one wasted egga 5 egg omelette (5e@9]
(5e0-1se]a]

Table 4.1: States, acts and consequences in Savage’s omelette example.

preferences of consequences, belonging to a totally ordered Bcate{0 < a <
b<ec<d<l1}

49



Notice that since only two states are presdfregh and Rotter), we deal with
binary acts. We also assume that plausibility degrees of each state will be measured
on the same scale, i.e. we také = U, and thus we also take the commensurateness
mapping as = identity, hencen = ny. Assume a possibility distribution on states
m{F,R} — Vis given.

Then, every decisiod € {BIO, BAC,T A} induces the corresponding possibility
distribution7,: X — U, on the set of consequences

X ={6e0,6e0 — C,5e0,5e0 — C,5e0 — 1se, NE},

defined asry(z) = max{w(s)|d(s) = x}, assumingnax @ = 0.
In a vectorial notation, the distributions are as follows:

7B10(6€0,6e0 — C, 50,50 — C,5e0 — 1se, NE) (n(F),0,0,0,0,7(R)),
mpAc(6e0,6e0 — C,5e0,5e0 — C,5e0 — 1lse, NE) (0,7(F),0,m(R),0,0),
w1 4(6€0,6e0 — C,5e0,5e0 — C,5¢0 — 1se, NE) = (0,0,7(R),0,7(F),0),

In the following we successively consider the different criteria. It is easy to check
that under the above hypotheses, and assuming that the distribution is normalised (i.e.
max(7(F), 7(R)) = 1), we get the following values for the pessimistic util®{ —:

QU™ (mpro) = N(F),
QU (rpac) = min(max(N(R),d), max(N(F),b)),
QU (7r4) = min(max(N(F),c),max(N(R),a)),

whereN (F) = 1-7n(R), N(R) = 1—=(F) are the necessity values of each state, with
min(N(F), N(R)) = 0. Table 4.2 exhibits the best acts according to the pessimistic
criterion and depending on tl@EM’s belief about the state of the egg.

’ N(F) ‘ N(R) H QU™ (mB10) ‘ QU™ (tpac) ‘ QU™ (rT4) H Best Acts ‘

1 0 1 d a BIO
d,c,b 0 N(F) N(F) a BIO or BAC

a 0 a b a BAC

0 0,a 0 b a BAC

0 b 0 b b BACorTA

0 c,d, 1 0 b c TA

Table 4.2: Pessimistic Qualitative utilities.

One can see that the model recommends decBAgdin case of relative ignorance
on the egg state, that is wherax (N (F'), N(R)) is not high enough (less tha and it
advices to act cautiously, breaking the egg in a spare cup, in case of serious doubt. Now,
let us consider the optimistic criterion modelled®@y *. The values are as follows:
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QU (mpro) = =(F),
QU (mpac) = max(min(n(F),d), min(7(R),b)),
QU™ (mra) =  max(min(7(R), c), min(7(F),a)),

| NP [ N®) || QU (nB10) | QU (mBac) | QU (mra) || Best Acts |
1 0 (F) d a BIO
d,c,b 0 w(F) d w(R) BIO
a,0 0 w(F) d c BIO
0 1,d 7(F) b c TA
0 c w(F) w(F) c TA
0 b (F) (F) c TA, BAC, BIO
0 a w(F) w(F) c BAC or BIO

Table 4.3: Optimistic Qualitative utilities.
suggests breaking the egg into the omelette as soon as there is no positive evidence about

the egg being rotten, even this is very small. Notice th&at™ scores each alternative
higher thanQU —.
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Chapter 5

Generalised Ordinal Utility
Functions Based on T-Norms

As it has been mentioned initially in Section 3.1 and in Section 4.5 as well, for
modelling a pessimistic behaviour we have been looking for decisions that always gave
good results irall possible consequences, while for an optimistic one our goal was to
find decisions thaat least in ongossible consequences gave good results. Indeed, for
example when the distribution is crisp, i.e. forallry(z) € {0, 1}, we have that

QU™ (mq) = min u(z),

TETY

that is,r, is evaluated in terms of th@orstconsequence compatible witty, while

QU (14) = maxu(x),

TETY

i.e. my is evaluated in terms of tHeest possible consequence.

With this objective, the estimation of the pessimistic (optimistic) utility of a decidion
was measured in terms of the degree of inclusion (or intersection resp.) faizttyeset
of possible consequences for a decisipthat is, the fuzzy set,, into thefuzzy set of
good results:. In particular, we have that

(i) supp g C coreur = QU™ (mg) =1,

(ii) core ma () (supp u)® # 02 = QU™ (mq) =0,
(iii) core mq () coreu#0 = QU*(rg) = 1,
(V) supp ma C (suppu)® = QU™ (mq) = 0.

(i) says that ifall possible consequences @fs a good one, the pessimistic criterion
considerd as a “best” decision. (ii) ithere exists totally possible consequencedf

Lf Alis fuzzy set onX, supp A = {x € X|A(x) > 0},core A = {z € X|A(z) = 1}.
2Recall A¢ means the complementary df
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that is considered bad, the pessimistic criterion consgidera bad decision. While (iii)
says that ifthere existsa totally possible consequence dfvhich is a good one, the
optimistic criterion considerg as a good decision. (iv) dll possible consequence &f

is considered a bad consequence, the optimistic criterion consaen bad decision.
Observe that if we have that

if A>0thenn(\) <1,

e.g. ifn is injective, then the reciprocals of the first and fourth affirmations are valid.
Moreover, if we have that

if A < 1thenn(\) >0,

then the reciprocals of the others are true as well.

From alternative definitions of degrees of inclusion and intersection, other utilities
are introduced in Section 5.1. These utility functions are based on (finite) conjunctive
and implication connectives. In particular, considerin@amplicationlike defined in
terms of t-norms on the uncertainty scale and the reversing mapping lifrkand U,
we obtain generalised pessimistic qualitative utility functich@U. While regarding
that conjunction is defined in terms of a t-norm Bngeneralised optimistic functions
are obtained. In the particular case of consideringttherm minimum QU ~ and
QU™ are recovered. But, this is not always the case. Indeed, if other t-norms are
chosen, the rankings induced 8§/ andGQU may be different, as it is shown in the
example of Section 5.2. The orderings induced by these generalised qualitative utility
are axiomatically characterised in Section 5.3.

5.1 Qualitative Utilities Expressed in Terms of
Inclusion and Intersection Degrees

In this Section, we analyse some utility functions that may be defined taking into
account that they measure a degree of intersection or inclusion of fuzzy sets. First,
we consider the intersection case. We recall usual definition$,df, and then we
extend them to the case of involving two different finite scdlesand U. Secondly,

we consider two alternative definitions for inclusion degreeaalinality-basedor a
“logical”-based one. Namely, for evaluating the inclusion degree 4f& B”:

e one can evaluate the proportion between the fuzzy cardinalitidsof3 and of
A, or

e one can evaluate the truth of the sentefatkelements ofA are elements aB”,
that is, the truth value of

(Va)(x € A=z € B).

The problem with the first one is that it may not be applied in problems in which the
available information is mainly ordinal. Therefore, we consider different alternatives
for applying the “logical” definition involving (mainly) ordinal scales, with this goal
we shall analyse different implications operations.
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5.1.1 Optimistic Behaviour

Let us first recall two definitions.

Definition 4
e A fuzzy conjunctior A is a binary operation:[0,1] x [0,1] — [0, 1], A being
commutative, associative, non-decreasing in both variables, also satisfying

1Az)==z Vzel0,1].

A is also said ariangular norm(t-normfor short), and we shall also denote it by
T.

e GivenA andB, two fuzzy sets inX, the degree of intersection of and B may
be defined as
[ANB] = mea))é(A(:l:) A B(x)) (5.1)

with A a conjunction on [0,1].

From this definition we may see that¥f = U is a subset 0f0, 1], and choosing
A = minimum, we have

UT(d|u) = [mgNu] = Igé%min(ﬂd(x),u(x)) = QU T (mglu).

That is, QU (m4) measures thelegree of intersectiobetween theset of possibles
consequenceand theset of preferred oness it has been mentioned.

However, the problems in which we are interested in involve two any commensurate
finite scales, thus, we are interested in intersection of fuzzy sets whose membership
functions may be valued over different scales. Indeedis V-valuated whileu is
U-valuated, usually” andU being different.

As afirst step, taking into account that in the conjunction definition we may consider
that we are only applying ordinal aspects of value§iot], we may regard their natural
extension to a fuzzy operation froii x V into V, with V' a finite linearly ordered
scale. From now on, assuming that we have fuzzy sets definedloesd U, with
V andU two finite linearly ordered scales that are commensurate, i.e. there exists an
onto order-preserving functiolm:V — U, we may think of both values of preference
and uncertainty as being in the “same” scale (the uncertainty one), although this is
not strictly true. So, we may define the conjunctionénx U, in terms of a fuzzy
conjunction on'V, i.e.

(vAu)=hv Ay Ay) (5.2)

with Ay a conjunction orV andh()\,) = u.
For the sake of a sound definitignis also required to satisfy @oherence condition
W.r.t. Ty, i.e. h verifies

h(A) = h(p) = h(aTy A) =h(aTy p) VYo, A\, peV.

SWe restrict ourselves to commutative and associative conjunctions.
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Notice that, for instance, whef is injective or whenTy, = min, this condition of
coherence is satisfied. In particular, when only ordinal information is available and we
takeAy = min, we again have

UT (dlu) = [rg Nu) = QU (m4]u).

In the general case, given a conjunctiofr on V, we consider the conjunction
induced inV x U by Ty, so the optimistic generalised utility function take this form,

GUT (dju) = max h(ma(z) Ty Az) (5.3)

with h()\;) = u(z). Obviously,h is involved inGU™ (d), but we omith in its notation
for simplicity reason. Note that whefy, = min, thenGuU/™ = U+,

The preference orderings induced by these optimistic generalised utility functions
are axiomatised in Section 5.3.

5.1.2 Pessimistic Behaviour

Now, we focus in modelling the degree of inclusion to be applied to evaluate the
pessimistic criterion. As it was mentioned we may consider two alternatives, if we
are speaking about of two fuzzy sets definedXorover [0, 1], cardinality-based and
logical-based definitions. Let us first recall some definitions.

Definition 5
e Given a fuzzy sel:X — [0, 1], its cardinalityis defined as

4] =) Alx).

zeX

e A fuzzy implicatiorf is a functionI:[0,1] x [0,1] — [0, 1] such thatl is non-
increasing with respect to the first argument, while it is non-decreasing with
respect to the second one. It also satisfies the following boundary conditions:

1(1,0) =0, I(0,z) =1andI(z,1) =1V x € [0,1].

e A negation(Trillas, 1979) is a non-increasing functier]0, 1] — [0, 1] satisfying
n(0) = 1, n(1) = 0, andn(n(a)) > aV a € [0,1]. A negationis strong if it
satisfies that.(n(a)) = a.

Hence, the alternatives definitions for an inclusion degree we are led to are:
1. From the “cardinality” point of view:

ANB|_ Y.(ANB):) _ XL AR)TB()
A > AG) S AG)

4In (Bouchon-Meunier et al., 1999; Chapter 1), a fuzzy implication is also required to satisfy an exchange
condition: I(z, I(y, 2)) = I(y, I(x, 2)).

|A c B|card =

(5.4)
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T being a t-norn?.

2. Within the tradition of many valued logic, the evaluation of the degree of truth of
the expressiolvz)(z € A = z € B) is defined as

|[AC B|=[(Vz)(r € A=z € B)| = a:eir[%)f,‘l] I(A(x), B(x)),

with I a fuzzy implication on [0,1].

In our case if we assunié = U, we have that

U (dlu) = [ra Cu
= [(Va)(z € g = z € u)]

= grgrél)r(l I(mq(x),u(x)).

Obviously, the cardinality-based definition require to deal with numerical values, and
sometimes we may require more ordinal expressions for the cases of having (mainly)
ordinal information available, hence we will focus in the second alternative. But, we
have to take into account that we are interested in the degree of inclusion of two fuzzy
sets with different valuated sets. So, the first step is to extend this definition. As before,
the extension t&/ x U of the definition of fuzzy implication is the obvious one, while
for speaking about implications di x U we propose to consider the “implication”
IV xU—U,

I(v,u) = Iy (h(v),u), (5.5)

Iy being an implication o/ x U in the sense of Definition 5.

5We would like to remark that if we considéf = Product, then Gilboa and Schmeidler’s utility
(defined in (2.5)) may be seen as a degree of inclusion too. Indeed, for each décisioth given the
similarity function on situationsSim, let

Sim:{s| (s,d,z) € M} — [0,1]

be the fuzzy set of situations which are similastpand where decisiod was experienced, with
Sim®(s) = Sim(s, so).

In a similar way, we consider the fuzzy set of preferred situations, that is,

G{s| (s,d,x) € M} — [0,1],
with

G(s) = u(z).

Then, Gilboa and Schmeidler’s utility is

Z(s,d,z)el\/l Sim(so, s) - u(z)

. = |S7fmd - Gd'car'd~
E(s,d,z)ejw Sim(so, s)

USn’M(d) =
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Hence, when we are consideridg B fuzzy sets onX overV andU respectively,
we have that

A C B) = min I(A(x), B(x)) = min Iy (h(A(x)), B(x).
If we choosel (v, u) = max(ny (h(v)),u), ny being the involution ifJ, we again
obtain that
U™ (d|u) = [rg Cu]l = QU™ (mglu).

Below, we propose another model for the fuzzy implication involved in the “logical”
definition of degree inclusion taking into account that we may consider availalile in
andU not only maximum and minimum but also other operators, obtaining therefore
their respective utility functions.

By analogy to the usual fuzzy implication on [0,1], some particular fuzzy
implications onV x U may be introduced using t-norms and t-conorms, the three more
important groups are:

e S-Implication Given a conormS on U and the strong negatian,; on U, theS-
implicationassociated to them is defined as

Is g, (v,u) = S(ny (h(v)),u).
o theresiduated implicationvith respect to a t-normi iy on U is defined as

Ig(ty)(v,u) = sup{z € U| h(v) Ty 2z < u}.

Thatis,
IR(TU)(U? u) = Ig(TU)(h(U)? ’U/),
with Ig(TU) the residuated implication dii defined as

Ig(-ru)(w,u) =sup{z € UlwTy z < u}.
o thereciprocal implicationwith respect to a negatiotegy on U, defined as
Irr(To)(v,u) = Ier,,) (negu (u), negu (h(v))).
We may also consider the following alternative definition:
o theS-implication-like defined as
Ig(v,u) =n(wTy 2) (5.6)

with n(z) = u, Ty a t-norm onV andn:V — U an onto order reversing
function.
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To guarantee the correctness of the above definition of implication we require
to satisfy the coherence condition with respecttg, i.e.

n(A) =n(p) =nlaTy A) =n(aTy p) Vo, \,peV.

Observe that this implication may be seen as a generalisationSfraplication
since whem is injective, then

Ig(v,u) =n(wTy z) =n(v)LyT, u,
with L,, T, being the conorm i/ defined as

(xLnTy y) =n(n""(2) Ty n7" (y)).
That is,IZ (v, u) is anS-implicationw.r.t. the conormL,, T, .

Next, we analyse the utility functions that emerge from these implications. As the
last implication defined includ8-implication we restrict the analysis to the residuated,
the reciprocal ones and tl&implication-like

1. Considerlg (v, u). As we are interested in a utility function that selects acts such
thatall the possible consequences of the decision are good results, we are looking
for

GU (dlu) = [ra Cu]
= xHél)I{l(ﬂd(l‘) = u(x))
= min I§(ma(2), u(x))
= mig n(ma(x) Ty Az)
with n(\;) = u(x).
Comparing these utility functions with the pure ordinal ones, we have that, for
any decisioni,

U (dlu) > GUT(du) > GU (d|u) > U (d|u).

Moreover, ifGUT andGU ™ are considered in terms of the t-noffy involved,
GU™ is non-increasing with respect T, while G/ " is non-decreasing. That
is, if T < Ty are t-norms in/, thenGU 7 > GU7, andGUT < GUT .

Obviously GU™ coincides with/~ if the involved t-norm is the minimum.
However, theGid andi{ orderings may be different when,, £ min, as it may
be verified in the example of the following section (Table 5.3).

2. Consider now the residuated implication
Ig(ty)(v,u) = sup{z € U| h(v) Tyz < u},
and its respective utility
Utiiry (du) = min It (male), u(a))

= min sup{z € U| h(ma(x))Tr 2z < u(x)}
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e If Ty does not have non-trivial zero divisérsand (supp (h o
7Td) N (Supp u)c) 7é Q)a then UIR(TU)(d) =0.

e U~ andU;, T,y may induce different rankings. Indeed, for instance:

— LetZ,z € X stu(Z) =1landu(z) =0,letA, p eV, A £0#pu
andh(\) # h(u), and consided andd’ s.t.
ma = (1/T,\/z) andry = (1/, u/z).
Consider thatT; does not have non-trivial zero divisors, then
Ulpry(d) = 0 = Uryr,,(d). S0, Ur,-,, may not distinguish
between them, whilé/—, may distinguish both because @f (d) =
n(A), U™ (d) = n(p).

— Moreover, although it may be that for all decisiohsatisfying
INeVstag=(1/7, N z),

both utilities coincide on their evaluations of these decisions, i.e.
Ulpr,,(d) = U(d) (for example, it happens wheffy is
Lukasiewicz t-norinhoweverl{~ is not a refinement df/}R(TU).
Indeed, giveny such thatxt — y C— Z, andu € V st 0 <
h(p) < u(y), letd be st. 7y = (1/Z,p/y). So, we have that
U (d) = max(n(p), u(y)) < 1, thatis,

T4 Cqu- .
HoweverUy,, . (d) = Ir(T,)(h(n), u(y)) = 1, thatis,mq andz are

equivalents for the ordering induced byR(Tm.

3. Given a t-normT ;; and a negation off negy we consider

Ipr(ry)(v,u) = Iger,,) (negu (u), negy (h(v)))-
Then, the respective utility function is
UlnrTo (dlu) - = min Inpr,)(ma(z), u()
= minlyer,)(negy(u(x), negu (ma(z))).

We notice that//z7(Tv) may give results that are considered unsatisfactory
in many contexts. For instance, here, the utility value of a decision which is
identified with a consequence may be different from the preference value that
DM assigns to this consequence. Indeed] le¢ s.t.m; = {x¢}, then

UIRR(TU) (d|u) =nT, (negU (U(x())))a

6A t-norm T in [0,1] has non-trivial zero divisors iffz, y € (0,1] s.t.z Ty = 0.
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wherent,, is the negation associated to the residuated implicafion- .,

ie. nt,(w) = Ig(TU)(va)- Therefore, if Ty does not have non-trivial zero
divisors, then

L, if negy (u(zo)) =0
Z/{IRR(TU) (d|u) = Z/{IRR(TU) (1‘0) =
0, otherwise.

That is, U 777w (d|u) will be different fromu(z) for almost all possible(z).

o If negy is bijective (i.e.negy = ny), thenf 7o) = (Y=o,
Indeed, if T is Lukasiewicz t-normnegy is bijective, aslgr(Tt,) =
Ir(Ty), theni recro) = YlrcTo)

e If negy is not bijective, it may be possible that/#z(To) £ yIrcro),
Indeed, we considet/ = {0 < w1 < ws < 1}, negu(w) =
1, negy(uz) = wy. Let us assumé&” = U, soh is the identity. Lety
be such thati(y) = u1, letd be s.t.ry = (1/Z, ua/y). Then,

U'RTL(d) = It (u2, u1) = ug,

while

UTRRCT L (d) Min{Igt,)(0,0), Ir(t,)(negu (ur), negu (u2))}

= Uz.

Remark 3
As it is mentioned, ifnegy is bijective thenlzp T,y = Ir(T,).- Moreover, if we
consider nowv = u) = Ig?(v,u) = S (negy(h(v)),u) andUs, its respective
utility, as we have thakg " (v,u) = Ir(T (v, u), thatis, theS-implicationbased on
Lukasiewicz is equal to the respective residuated and reciprocal one, hence the utility
functions defined from them are the same.

Moreover, if we assume thdtt = U, thereforen is bijective, n satisfies
coherence and we may consider the generalised utility fun¢llép associated to
the Lukasiewicz'’s t-norm. In this case, we have tgat; coincides with the utility
functions induced by th&, — implication, Ir(T ) or thelgg(T,)-

5.2 An Example: A Safety Decision Problem in a
Chemical Plant

To exemplify some of the notions introduced in this Chapter, and that will be continued

in other Chapters, we consider the following example.

Chemical plants are potentially dangerous industrial complexes, so they have to foresee
emergency plans in case of problems. Assume the chemical plant has three emergency
plans:

61



EP1 : emergency plan 1,

EP2 : emergency plan 2,

EV . total evacuation,
that only may be activated by the head of the Safety Department, depending on his
subjective evaluation of the seriousness of possible problems occurring in the plant.
Naturally, total evacuationmeans that people would be safe, but the activity in the
plant will be interrupted and this means that the plant has loss.emegency plan
2 consists of a group of safety measures (like to evacuate a zone of the plant without
stopping totally the production) that tries to guarantee the safety of the employees. It
has a high cost, but does not stop the production. Wdritergency plan ineans that
only local safety measures are taken. Depending on the type of problems occurring in
the plant, the situations of the plant may be classified in four modes:

S
S1
52

53

normal functioning
minor problem

major problem

very serious problem

To survey the functioning of the plant smoke detectors and pressure indicators are
distributed throughout different sectors of the plant and connected to alarms to warn
about either the existence of fire or broken pipelines. When the alarm system turns
on in some sector, plant engineers evaluate the readings of the alarm systems and they
forward a report to the head of the Safety Department. He has to undertake one of the

following actions:

do
dy
do
ds

do nothing (DN)

activate emergency plan(AEP1),
activate emergency plan(EP2),
activate evacuatiofAEV A).

Undertaking any of these actions has different consequences depending on which is the
actual state of the plant. We describe the consequences from two points othadew:

risky the situation for employees will be after having taken the agtienwill call this
situationpost-situatiof andwhich is the (economical) cost of the actidAoth issues

are measured in a qualitative sclle: 1 < 2 < 3. Their meanings are:

w N = O

None,
Small,
Medium,
High.

For instance, if decisiods is chosen, and it turns out that the actual state wasot
but sy, then there will be no risk aftgtRisk = 0) but to a higher cost than the required
one(Cost = 2). On the other hand, if the actual state wesda very serious problem)
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decisiond, is not enough to completely avoid any ri§Risk = 1) a posteriori. In
general, consequences of these actions (the situation after the action has been taken) are
given in Table 5.1 wher®&isk = i stands for risk level (i = 0, 1,2,3) andCost = i

I DN \ AEP1 \ AEP?2 \ AEVA ‘

S0 Risk = 0,Cost =0 Risk = 0,Cost =1 Risk = 0,Cost = 2 Risk = 0,Cost =3
s1 Risk =1,Cost =0 Risk =0,Cost =1 Risk = 0,Cost =2 Risk =0,Cost =3
S92 Risk = 2,Cost =0 Risk =1,Cost =1 Risk = 0,Cost = 2 Risk = 0,Cost =3
83 Risk = 3,Cost =0 Risk =2,Cost =1 Risk = 1,Cost = 2 Risk = 0,Cost =3

Table 5.1: States, decision and consequences after taking decisions.

for cost leveli(i = 0, 1,2, 3). The post-situations evaluated in terms of two criteria:
personal safetyand economical expensesThe final preference evaluation is made
assuming that personal safety reasons are considered more important than economical
reasons. Thatis, we rank order the post-situation considering first the level of risk it has
and then its cost. Obviously, the smaller the risk is, the most preferred the situation is.
For situations with the same level of risk, the smaller the cost, the most preferred the
situation is. That is, we consider the following ordering on consequences detailed on
Table 5.2, where we take as preference stale {0 = wy < w1 < ... < wg < wg =

1.

’ Uu H Cost:O‘C’ostzl‘C’ostzQ‘Cost:?)‘
Risk =0 W wg wy W ‘
Risk =1 Ws Wy w3
Risk =2 Wy w1
Risk =3 wo

Table 5.2: Assignment of preference values for each possible consequence.

Qualitative Utility Evaluations: QU™ and QU

At a given moment, alarms lights turn on and immediately after the following report
arrive to the head of the Department:

“A problem has been identified in Sector G, most plausibly it is a major
problem, but there is still some chance it can actually be a minor problem,
or even it might become a very serious problem”.

We model the information about the actual state of the chemical plant, provided by
the report, with a possibility distributionsrg:S — V, whereV is a finite uncertainty
(plausibility) scale, defined as follows:

ms(s0) =0, mg(s1) = 22, ms(s2) =1, ms(s3) = 21,
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with {0 < z; < 22 < 1} C V. Thus,ng is representing that, is a totally plausible
state,s; andss are somehow plausible ang) is not considered plausible at all.

For simplicity reasons we consider that the preference and uncertainty scales are
the same, so thafz;,2:} C U. Then, given the previously mentioned possibility
distribution 7 on the possible states, every decisidn (i = 0,3) induces a
corresponding possibility lottery (distribution),;: X — U on the set of consequences.
Here, they are:

a0 = (0/(Risk =0,Cost =0),z2/(Risk =1,Cost =0),
1/(Risk = 2,Cost = 0), 21 /(Risk = 3,Cost = 0));

a1 = (z2/(Risk =0,Cost =1),1/(Risk =1,Cost =1),
z1/(Risk = 2,Cost = 1));

ma2 = (1/(Risk =0,Cost =2),21/(Risk =1,Cost = 2));

a3 = (1/(Risk =0,Cost = 3)).
Now, we evaluate the pessimistic and optimistic criteria under the above hypotheses.

QU™ (mqo) = min[max(ny(0),1), max(ny(z2),ws),
max(ny (1), ws), max(ny(z1),0)]
= min[max(ny (22), ws), ws, ny (z1)]

min[wg, ny (Zl)];
QU™ (mg1) = minfwy, max(ny(2z1),w1)];
QU™ (mq2) = min[wy, max(ny(21),ws)];

QU™ (ma3) = we.
Independently of the value of;, we may see that
a3 Jou- ma1  and w3 Jgou- Tao-

That is,dy andd; are discarded. However, to choose betwéemandds we have to

take into account the value of. Indeed, ifz; < wy, thenmg, gy - mas, while for z;

= w3 we have thatrgy ~op- 743, and forz; > ws, the ordering istg3 Doy - Taz.
Analogously, the evaluations for the optimistic criterion are:

QU (1q0) = max[min(zo,ws),ws];

QU (mg1) = max[min(zg,ws),ws, min(z1,w;)]
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=  max[min(zg, ws), wy;
QU (1g2) = max|wy, min(zy,ws)] = wr;

QU+(7Td3) = Weg.
That is, we immediately have that

Ta2 JQu+ Td3 QU+ Tdo-

Thus,d, (activate plan 2) is preferred th andd,. But, to comparel; to d; we have to
take into account the value of. For instance, foe; > wsg, we have thatg; Jop+ ma2
and thusi; would be preferred tds in that case, while it; = wy, do andd; become
equally preferable or if; < wg, do is preferred tal;.

Generalised Pessimistic Qualitative EvaluationsGQU ~

Now, let us see howwQU ~ evaluates decisions. If we consider an arbitrary t-norm
TonV, the values we get are:

GQU ™ (mao) minfws, ny (21)],
GQU ™ (mq1) = minfwy,ny(z1)Lw],
GQU ™ (mg2) = minfwr,ny(z1)Lws],
GQU™ (ra3) = ws,

where L is the dual conorm of” with respect to the involutiony.. When we choose
T = minimum, GQU ~ obviously recover§)U ~. Let us consider the case 6fbeing
the so-called.ukasiewicz t-norndefined asv; Tw; = wy, with k£ = max(0,i+j—9).
The corresponding t-conorrh turns out to be defined as

wiijZ{ Wity I 92.i+j

Wy, otherwise

The choice of_ukasiewicz t-nornsomehow carries out the implicit assumption that the
values inV are equally distributed in the scale, which allows some form of additivity.
Hence, it could be argued that this assumption is beyond the pure qualitative approach
in which the ordering is what exclusively matters. But this hypothesis on the scale is
rather usual and we think it is worth to give room in the model for these, let us say, non
pure ordinal or qualitative assumptions.

In Table 5.3 we provide the preference orderings according to Qéfir and
GQU~ we get for two particular values af . One can see that fag = w3, the ranking
provided byGQU ~ seems a refinement of the one ®Y/ —. However, where; = ws,
GQU ™ reverses the ordering 6§U ~ for the decisiongl, andds. In this caseQU ~

turns out to be more conservative th&dQU — since it prefersis (evacuation) tals
(activate plan 2), while the preference f@GQU ~ is the opposite.
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’ z1 H Dist. ‘ QU~ ‘ GQU~ ‘ Pref. w.rt. QU — Pref. w.rt. GQU — ‘

Tdg w2 w2
Tdq w4 w4 -~

w3 Ty we wy Tdy ~ Tdz 1Tdy A Tdy | Tdy Ty 17Td; 1 Tdg
Tds we we
Tdg w2 w2

ws Ty wa wa Tdy 1 Tdy ~ Ty I Td Tdy, 0 Tdy O Tq, 7,
7Td2 wy wy 3 2 1 0 2 3 1 0
Tdg we wWe

Table 5.3: Differences in the rankings BYQU ~ andQU —.

5.3 Representation of Preference Orderings: Extension
to Generalised Ordinal Utilities

Now, given at-norm operation vi, T : V' xV — V, we are interested in characterising
the preference relations di(X) that are representable by the generalised qualitative
utility functions introduced in Section 5.1, which are extensions of the qualitative
utilities QU andQU T, that is,

GQU () = melr)lgn(w(,):l)'l')\l),
GQU™(m) = maxh(m(z:)Tps),

wheren(\;) = u(x;) = h(u;), u representing thé& M'’s preferences on consequences,
n = ny o h, with the onto order-preserving mappihgl” — U being as usual, but
further verifying acoherence condition w.r.t.T to guarantee the correctness of the
above definition, that is:

h(A) = h(p) = h(aTA) =h(aTp), VYa,\peV.

We are especially interested in characterising these utility functions since they may
result in different orderings from the associated witti orderings as it has been shown
in the previous example.

The possibilistic mixture operation considered so far to combine possibilistic
lotteries has been a max-min combination:

(a/7m1, B/m3) = max(min(a, 71), min(5, m3)).

Possibilistic mixtures, definable asdecomposableconsensus functions on, being

a t-conorm operation have been studied in (Dubois et al., 1996b). It is shown there
that for possibility measures, i.eax-decomposable measures, an admissible class of
mixture operations is obtained by defining

M+ (m,7';a, B) = max(a T, BT7) a,BeV

whereT is any t-norm operation ol andmax(«, 3) = 1. Thus, a particular case is to
take T = minimum, which results in the max-min mixture considered up to now.

A measurgy:2X — V is | -decomposable (A U B) = g(A) Lg(B) whenA N B = §.
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Lemma 5.1
GQU~ andGQU T preserve the possibilistic mixture in the sense that it holds

GQU ™ (M+(my,m2; A, 1)) = min(n(ATd1),n(uTds)),
GQU (M (my, w2 A, p)) = max(h(ATy1), h(1T72)),

with n(5;) = GQU ™ (m;), h(v;) = GQU*(;).

Proof:
As both proofs are analogous, we only include the prooff@U —. By definition

GQU™ (M (1, m2; A, p)) = ming, e x n(Mr (w1, w23 A, ) (24) i),
wheren(vy;) = u(x;). Since

Mr(m, o A p) () Ty = [max(AT (@), pTre(2:)] T
=8 max()\—l—m (SCZ)T’YZ, ,U/Tﬂ'z(l'l)—l—'}/z),

then
n((Mr(my,mos A p)(@i)) Ty) = n(max(ATry () Tyi, pTra(z:) Tyi))
=% min(n(A T (i) Tyi), n(pTre(2:) T)),
S0
min n(Mr(my, mo3 A, p)(2:) Tye) = min min(n(ATm(2:) Ty),
n(pTma (i) Ti))
= min{min n(ATm(:) T7),
nin n(uTme(z:) Tyi)}-
Since
min (N Tm (e Ty) = n(mag (T (@) T)
= ”()\T(gggg(ﬂl(xi)T%))),
then
GQU™ (M (mi,m3 A\, p)) = min{"(/\—r(glg)}gﬂl(xi)—r%)),
n(pT (max m(2:) Ty:))}-
Since

8Because ofmax(a, ) Ty = max(a Ty, 8T).
9Because we have(max(a, b)) = min(n(a), n(b)),since being a reversing ordering mappirgween

linear scalesmplies to be a reversing morphism.
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n(maxy,cx m;(x;) Ty;) = ming, e x n(mj(z;) Tv:) = GRQU ™ () = n(d;),

under the coherence hypothesis, we obtain that

n(AT (maxy,ex m1(2:) Ty:)) = n(ATd),
and analogously, we have that

n(pT (max,,cx m2(2;) Ty:)) = n(pT o).
Hence,

GQU ™ (M~ (my,m2; A, p)) = min(n(ATd1), n(uTd2)),

with n(d;) = GQU ™ (x;).

Now, we have that

Lemmab5.2
The reduction of lotteries follows the next rule:

M+ (M (71, 725 A1, A2), My (1, o5 pa, o), v, ) =
= Mt (m,me;max(aTAr, BTuy), max(aT A, BT us)).

Proof:
M~ (M~ (71,725 A1, Ag), Mt (71, w25 pia, pr2), o, 3) =
=max|a T M+ (71, m2; A1, A2), BT M+ (71, ma; i1, f12)]

= max[aT max(A Ty, A2 Tme), BT max(py Ty, po Tma)],
and since
aTmax(A,v) = max(aTA aTy)  Va, A7,
we obtain that

max[aT max(A; Ty, Ao Tma), BT max(py Ty, po Twe)] =
= max[max(aTA Tm,aTA A Tme), max(8T pus Ty, BT ue Tms)]
= max[aTA T, aTATme, BT ur T, BT e Tms]
= max[max(aTA Tmy, BT ur Try), max(aT A Trg, BT e Tms)]
= max(max(aT Ay, BT py) Try, max(aT g, BT ) T
= M+ (m,mo;max(aT Ay, BT p1), max(aT Az, BT p2)).
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O

In order to encompass this extended kind of possibilistic mixture operations in
the qualitative decision model, we have considered the modified axiom xet =
{A1, A2, A3+, A4+}, where

e A3+r(independence)r; ~ mo = M+t (71,7, 8) ~ Mt (7, 75 v, 5).

o Ad+ (continuity) : Vo € II(X) 3X € V such thatr ~ M+ (7, z;1,\), where
T andzx are a maximal and a minimal element &f (C) respectively.

Now, we introduce some results for this axiomatic setting that are analogous to the
results obtained in the previous Chapter.

Lemma 5.3
If C verifies axiomsAl, A2, A3+ andA4+, C also verifies axionD P2, i.e. if A is a

crisp subset oX then there i € A such that: ~ A.

Proof:
Suppose thatl = {x1,z2}, with 21 C x5. Let us first suppose that ~ x4, so

A= Mt (x1,22;1,1) ~ M7 (21, 2151,1) = 21.
If x1 C zo, by A4+ there exist\; and A, such that
x1 ~ M1 (T, z;1, A1) andxy ~ M1 (T, z; 1, A2),

asr; C xo, then byA2, A\ > .
Hence, applyingd3+ we obtain:

A = Mt(z1,22,1,1) ~ MT (M7 (%, z;1, M), M7(Z,2;1, X2), 1, 1)
= M+7(Z,z;1,max(Ai, \2)) = M7 (T, 251, A1) ~ 1.

Suppose the Lemma is valid|ift| = p. Now, let A be such thatA| = p + 1, and
let z; be one of its minimal w.r.tC .

SinceA = M~ (z1, A — {x1};1, 1), by induction hypothesis we have thatf is
one of the minimal elements of — {z;} w.r.t. C, then

A~ MT(xl,l'z; ]., ].) ~ X1.

Lemma 5.4
If C verifies axiomsAl, A2, A3+, and A4+, then, the maximal and minimal elements
of X w.r.t. toC are indeed maximal and minimal element3lgfX') as well.

Moreover, if T is a maximal andc is a minimal on(X,C), the following
equivalencies holds:
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Proof:
We may observe that the proof is “independent” of the definition of the mixture, since
we only use that < M+ (Z,z;1,1) < X.

Indeed, let us prove first the equivalencies

o~ X ~ My (@,231,1).

Al guarantees that andz exist. By theuncertainty aversiomxiom A2, it is clear that
X is a minimal element of[(X ), soitisX C z.

But by D P2 there existgy € X such thatrg ~ X, but sincer is minimal,z C z,
thus it must ber ~ X.

Furthermore, odI(X) we havezx < M+ (Z,z;1,1) < X, and by A2, X C
M~ (Z,z;1,1) C z, and thust ~ X ~ M1(Z,z;1,1).

On the other hand, for any € TI(X), sincer is normalised, there existssuch
thatr(z) = 1. So, we have: < 7 and thereforer C «, but sincez is maximal of X, it
isxz C 7, and thusr C 7. O

For the preference orderings induced by these generalised qualitative utilities we
have a representation theorem like in the previous Chapter.

Theorem 5.5
A preference relatioic onTI(X), equipped with the mixture operatidi—+, satisfies
the axiom setA X+ if and only if there exist

(i) a finite linearly ordered preference scélewith inf(U) = 0 andsup(U) = 1,
(ii) a preference function:X — U such thati=*(1) # 0 # u=*(0),

(iii) an onto order-preserving functidgnV — U1°, satisfying also
h(A) = h(p) = h(aTA) =h(aTp), Va,\\peV,

in such a way that it holds:
o Cn  iff 7 <gou- T,

where< cqu- is the ordering ol (X') induced by the qualitative utilitg:QU ~ () =
ming, e x n(m(x;) TA;), with n(X\;) = u(z;) andn = ny o h, as usuahy being the
reversing involution iriJ.

Proof:
«— ) Axiom Al is easily verified.

100bserve that also satisfies that such that0) = 0, k(1) = 1, as was observed by a reviewer of one
of our papers.
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e A2(uncertainty aversion)if 7 < 7’ = 7’ Kgou- 7.
By definition,
7<7 =n(z)<r'(zr) V.

SinceT is non-decreasing,
Hence,

GQU™(r) = min n(m(z;)TA)

] ! . .
Inin n(m' () TA;)

GQU~ ().

Vv

Therefore,
’ #GQU* .
e A3+ (independence)

GQU™(m) =GQU (m2) = GQU (Mr(m,7’;0,p)) =
= GQU™ (Mr(m,7's a0, B))

Indeed,

with GQU ™ () = n(};), andGQU ~ (') = n(A).
By hypothesis, we have that

n(A1) = GRQU ™ (m) = GQU  (m2) = n(A2).
As n satisfies the coherence condition w.T.t. we obtain that
n(aTA1) =n(aTA),
therefore
GQU™ (M~ (m, "5 a, B)) = GQU™ (M7 (72,75 v, 3)).

e A4+: We have to prove thatr € TI(X), there exists\ such thalGQU ~ (x) =
GQU~ (M~ (T, z; 1, \)), wherez, z are a maximal and a minimal elements of

(X, <gou-)-
Since we are assuming ti(1) # 0 # u~1(0), it must be the case thaiz) = 0
andu(Z) = 1, hence
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GQU~ (M (Z,2:1, 1)) = n(ATA)  with GQU~(z) = n(A) = 0.
Asn(1) = 0, by the coherence condition we have that
n(ATA) = n(AT1),
hence,
GQU™ (M (7,21, 1)) = n(ATA) = n()).
Therefore, since(X) C n(V), forany A € n=*(GQU ~(r)) we have that
GQU~(r) = n(\) = GQU~ (M~ (T, z;1, ).

—) We structure the proof in the following steps:

1. We define the preference scdleand an order-preserving (and onto) function

Now,
1.

fromV toU.

We define the functiodzQU ~:TI(X) — U, for ther,’s, and then we extend it
due to axiomA4+. GQU ~ represents .

Then, we prove that
GQU ™ (m) = min;—1,.., n(m(z;)TA;)
with n(\;) = u(z;) whereu:X — U is the restriction oiGQU ™~ on X, and
n =ny o h.
we develop these steps.

As usual,C stratifiesII(X) in a linearly ordered set of classes of equivalently
preferred distributionsa( € [r] iff 7 ~ «’). The number of classes is just the
number of levels needed to rank order the set of distributions.

Therefore, we take as preference sdalthe quotient sefll(X')/ ~ together with
the natural (linear) order

[r] <[] iff =xCx.

By Lemma 5.4, again iff andz denote a maximal and a minimal element of
X respectively, ] and [z] will be the maximum and minimum elements of
II(X)/ ~, i.e. of U, and will be denoted by 1 and O respectively.

Now, we denote byr, the possibility distribution defined as the qualitative
lottery M+ (T, z; 1, \).

We define the order-reversing functiotl — U asn(\) = [ ].

Observe that(1) = [M1(Z,2;1,1)] = [z] = 0andn(0) = [M+(Z,z;1,0)] =

[z] = 1.

By A2, n results reversing and it is onto by constructiemresults coherent w.r.t.
T because of the reduction property fr and A3+. As previously, we define

now h = ny o n. From the properties ot, it is easy to verify that, satisfies the
required conditions.

72



2. So far we have determindd andh. Now, let us define the qualitative function
GQU~ onII(X).
(a) First, defineGQU ~ (M~ (Z, z;1,\)) = n(A).

(b) Itis easy to check that, C my, iff GQU (7my) < GQU ™ (7y,).
So, restricted to lotteries of typg, , GQU ~ represents .

(c) We extendGQU ~ to any lottery as follows. For any, A4+ guarantees
that3\ such thatr ~ M+ (7, z; 1, A), so we defingzQU ~ (m) = n(\).

As a consequence of (c) and (IB§QU ~ represents_, i.e.
rnCr  iff GQU (7)< GQU™ (7).

3. Now, we definew:X — U asu(z) =
u(z) = 0, and thuspy=1(1) # 0 # u=1(0
It remains to prove that

GQU ™~ (x), Notice thatu(z) = 1 and
)

GQU™ (m) = minj=1 ., n(m(zi)T7i)
with n(v;) = u(z;), | X| =
To verify this, we will prove the following equalities:
o Vmy, o,
GQU™ (M (1, m2; ¢, B)) = n(max((aTA1), (BTA2))), (5.7)

with A; such thatGQU ~ (7;) = n(\;).
Indeed,A4+ guarantees that

dA; stom ~ MT(T,Q; 1,)\1) and3\; s.t. g ~ MT(f,g; 1,)\2),

remember thaGQU ~ (m1) = n(A1) andGQU ~ (m2) = n(A2). So, using
theindependence axiomi4,

MT(’]Tla 23 O‘aﬂ) ~ MT(MT(fa Z, ]-7 )‘1)3 MT(Tvla ]-7 )\Q)a O‘vﬂ)v

and by reduction of “lotteries” it reduces to
M (%, z; max((aT1), (BT1)), max((@TAi), (BT A2))) ~

~ M+ (Z, z; max(a, 8), max((«T A1), (BT A2)))

~ M7 (T, z; 1, max((aT A1), (BT A2))).

Therefore,
GQU ™~ (M~ (my,m2; 0, 8)) = n(max((aTA1), (6TA2)))
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with \; such thaGQU ~ (7;) = n(};), i.e.
GQU ™ (M~ (my, m2;cr, 8)) = min(n(aTA), n(BT A2)).

Finally, we verify that (5.7) does not depend on thehosen, i.e. ifu is
such thalGQU ~ (m) = n(p), then

n(max((aTA), (FTA2))) = n(max((aTu), (5TA2)))-
Indeed, asry, ~ m, then

M+ (Z, z; 1, max((aT A1), (BT A2))) ~ Mt (7y 7y 5, B)
~ MT(TF;,WXQ;CK,ﬁ) ~ M+ (T, z; 1, max((aTp), (6T A2))),

therefore

n(max((aTA1), (BT A2))) = n(max((aTp), (BTA2))).
In particular, we have that

GQU~ (M~ (z,y;1,8)) = min(n(1T A1), n(6TA2))
with u(z) = n(A1), u(y) = n(A2). So,
GQU (M~ (z,y;1,8)) = min(u(z), n(BT A2)),

with u(y) = n(A\2), and

GQU ™ (max(m1,m2)) = min(GQU ™ (1), GQU ™ (m2)).

Indeed, asnax(m,m2) = M~ (m,m; 1, 1), therefore,
GQU™ (max(my, m2)) = min(n(u1), n(u2))
with n(uy) = GQU ™ (1), n(ue) = GQU ™ (m3), SO
GQU™ (max(my,m2)) = min(GQU ™ (1), GQU ™ (m2)).

Moreover, we have

GQU™( max m;) = r?in GQU ™ (m;) V.
' P

i=1,..., P i=1,...,

GQU ™ (m) = min;—1,_p, n(m(z;)Ty).
As 7 is normalised, there exists; € X such thatr(z;) = 1. Without loss
of generality, let us assume that= 1. As for eachr, M+ satisfies that

) if T = T1,

M (xy, 21, 7(z;)) () = 7(), if 1 # 3 = 24,
0, otherwise

Then, choosing

T = Mt (zq, 2451, 7(25)),
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we obtainm = max;—; ., m;, therefore

GQU™ () = GQU ( max M+ (z1,z41,7(x;)))

=1,...,p

= min GQU_(MT(xlamiaLﬂ-(xi)))

1=1,...,p

= i:r%i.gp [min(u(zq), n(r(z;)TA;))]

with u(x;) = GQU ™ (z;) = n(\;), SO
GQU ™ (m) = min;—1,..., n(mw(z;) TA).
O

As in the case of purely ordinal information, sometimes th@§8/~ functions may
result too conservative and we may be interested in more optimistic behaviours. We
may model them by

GQU ™ (mr) = max h(m(z;)TX;) (5.8)

z,€X

with h(\;) = u(x;), T at-norm inV, and as usuak being an onto order-preserving
mapping that also satisfy coherence wit.t.

For characterising these behaviours, we consider the axiomatic sém'@where we
replaceA2 by A2* and A4+ by:

e A4t :Vr € II(X) 3\ € V such thatr ~ M+ (z,z; A, 1), whereZ andz are a
maximal and a minimal element ok{( C) respectively.

For this axiomatic setting we have the analogous results of Lemmas 5.3 and 5.4, and of
course, the representation theorem:

Theorem 5.6
A preference relatioft onTI(X), equipped with the mixture operatidi+, satisfies
the axiom se Xt if and only if there exist

(i) a finite linearly ordered preference scélewith inf(U) = 0 andsup(U) = 1,
(ii) a preference function:X — U such thati='(1) # 0 # u~*(0),

(i) an onto order-preserving functianV. — U, satisfying also
h(A) = h(p) = h(aTA) = h(aTu), Ve, \ueV,
in such a way that it holds:

o Cn iff 7 Kgqu+ T,

where<gqu+ is the ordering ofl(X) induced by the qualitative utilitgQU * (7) =
maXg,cx h(w(xi)"l’)\i), with h()\l) = ’U,(.’L‘Z)
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The proofs are omitted because they are analogues with the “pessimistic” case.

Now, let us show that the axiomatic setting proposed also guarantees the “unicity”
of the preference set of values, of the linking mappirend of the preference function
u 0N consequences. Indeed, we have

Theorem 5.7
Given

(i) two finite linearly ordered preference scalés U, with inf(Uy) = 04, inf(Us) =
02 andsup(U1) = 11 sup(Uz) = 12,

(i) two preference functions on them, i.e.;:X — U; such thatu;l(lj) #+ 0 #
u(05), j=1,2,

(iii) two onto order-preserving functioris;:V — U;, satisfying also
hj(A) = hj(p) = hij(aTX) =h;(aTp), VYo, \peV,j=1,2.
in such a way that it holds:
™ Seou-(Ui ) T I T KGQU- (U haus) T
or
™ KeQut (UL ™ I T <SGQUt (U haus) T
then
1. U, andU, are isomorphic.
2. If Uy = U,, thenhy = he andu, = us.

Proof:
We assume

T [eQu- (Ui T T <SGQU- (U2 ko) T
the other case being analogous.

1. Suppose U] = m, C; denotes the relation<cqu(.|u,n; u,)-
Henced\q,..., A\, € V sit.

T, E1 ... B 7y, == Ty Co...Comy

m m*

So,|Usz| > m. However, if|Us| > m, we have that
3)\1,...,)\m+1 € VS.t.ﬂ')\l Co...027x,yy == T C1...C1 Ty
Hence|U;| > m + 1. Contradiction, soU; | = |Us|.

2. Now, assuming both scales are the same,(8awe first verify that the linking
mapping is unique.
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e Supposé; # ho, then there existdy = inf{A|h1(\) # ha(N)}. Without
loss of generality we may assurhe(X\g) > ha(Ag), i.e.n1(Ag) < n2(Xo),
with n; = ny o h;. Asn;y is onto, there exists € V s.t.na(Ag) = n1(p),
o)

n1(p) = nz2(Ao) > n1(Ao).

Hence,m,, Jaou-(.|uh,uy) T, therefore as by hypothesis both induced
orderings are the same, we have haticqu - (.U, hs,us) Ther SO

na(p) > na(Xo) = n1 ().

That is,ho (1) # hi(p), with g < 9. Contradiction with the definition of
Ao. Hence iy = ho.

e Now, denoting byh the linking mapping, we verify that both preference
functions are the same. Indeed, givere X, u;(x) € U,asn =nyoh
isonto,3X € V s.t. n(A\) = ui(z), soxz ~q my, with C; denoting the
relation<cqu-(.ju,n,u,)- HENCe by hypothesis, we have that-; , i.e.
uz(x) = n(\) = uy(z), thereforeu; = us.

O
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Chapter 6

Preference and Uncertainty
Measured on Cartesian Product
of Linear Scales

So far we have considered that both uncertainty and preferences on consequences are
measured on finite linear scales. However, these hypotheses may not be valid in many
decision problems. There are certain kinds of decision problems where we are not
able to measure uncertainty and/or preferences in such linearly ordered sets, but only
in partially ordered ones. For instance, let us comment about some of such possible
scenarios:

e When there are several sources of uncertainty, each one being measured in a
linear scale, the set of values for uncertaintj, £57), is a product of scales, that
is,V =11, Vj;, eachV; being a finite linearly ordered set.

e In a similar way, we may have th&®M'’s preferences on consequences are only
partially ordered. Indeed, a preference relation among consequences is usually
modelled by a preference functianX — U, whereU is a finite preference scale,
frequently a (numerical or a qualitative) linear scale. However, in many cases,
this preference function may be vectorial. Indeed, suppose that consequences are
evaluated with respect fodifferent criteria or attributes, each one represented by
a preference function;: X — U. Then, the global preference on consequences
can be evaluated in terms of the vectorial functioX’ — U x*) ... x U, with
w(x) = (uy(x),. .., ux(x)). Considering il x*) ... x U = U the usual product
ordering (Pareto ordering), we are outside of the linear models.

e As it has been mentioned in Section 1.3, once we link the similarity between
situations with a possibility distribution on consequences (you may see Section
8.1 for more details), Case-Based Decision may be approached with the
qualitative utility functions we have been working. In this case, the distribution
is defined over the same set that the similarity function is applied in. Hence,
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we may have partially ordered uncertainty in case-based decision problems when
the degrees of similarity on problems are only partially ordered. For example,
consider that each situation is described &staples = (s!,...,s*). Suppose

we are provided withk feature similarity functionsSim?:S7 x $7 — E, that
measures the degree of similarity between fvieatures where E is a finite

linear scale. The global similarity function on situatiafien:S x S — V, can

be defined in terms of thie-feature similarity functions as

Sim(s,s') = (Sim*(s', ), ..., Sim"(s*, s')),

withV = E x ... x E, <y; being the ordering of. Again, if for instance<y
is the Pareto ordering}{, <) is not a linear lattice.

Hence, we are interested in extending the qualitative decision model to let us make
decisions in cases where tbé/’s preferences on consequences may be only partially
ordered or when the uncertainty on the consequences is valued on a non-linear lattice.
In order to cope with some of these situations, we propose to extend the model in three
steps:

e First, we will consider preferences and/or uncertainty are measured on finite
Cartesian product of (finite) linear scales.

e Second, we shall consider both preferences and uncertainty are graded on
distributive lattices, in particular when both are non-linear distributive lattices.

¢ Finally, we consider a particular case of allowing different type of measurement
lattices, indeed we measure preferences on a linear one, while uncertainty is
measured on a residuated distributive lattice.

In this Chapter, we develop the first extension, the other ones being developed in the
next Chapter.

In next Section, we introduce some possible orderings in a finite Cartesian product
of linearly ordered sets taking into account the orderings in each scale. Next, we
will propose vectorial pessimistic and optimistic qualitative utilities with respect to a
vectorial preference function defined ovéra Cartesian product of preference scales.

For these utility functions, we will consider the relations induced by them and by a
general “boolean” functiop, providing their characterisations. These theorems include
the cases of considering the ordering induced by the vectorial functions when we
are considerindexicographicor Paretoorderings in the preference set. Afterwards,
assuming that all linear preference scales are the same, we observe some properties
of the weighted-mirandweighted-marderings on the product of scales. In Section

6.3, we analyse the behaviour of these vectorial functions in the example introduced
in Section 5.2, but now, we consider a vectorial preference funatiam terms of the
marginal preferences: safety and cost. In Section 6.5, we consider the same example but
assuming that two evaluations of the possibility of being in the actual state are provided.
Finally in Section 6.4, we analyse the case in which uncertainty is measured on a
product of scales taking into account linear or cartesian representation for preferences.
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6.1 Some Orderings in Cartesian Products Induced by
the Marginal Orderings

Let us recall some possible orderings on a Cartesian product of finite linear scales.
Given{(E;,<g,)};=1,...r aset of finite linear scales, we consider= =1,k Ej
the Cartesian product of th&;'s. In E, different interesting orderings may be
considered in terms of the marginal orderingg, . In the following we introduce
some of them.

.

e Possibly the most natural ordering i is the product ordering known as the
Pareto orderingas well:

Ve=(e,..ex), e =(e,...e,) € E,
e<ne < (¢j<p ¢ Vi=1,....k).

<m is only a partial order. Indeed, if there exisy such thate; <g; €} and
e; >p, €;, thene ande’ are incomparable with respectqy .

e Another alternative option is to use an aggregation operator. Thatds7d is
an aggregation operator fromto E (E being a finite linear scale), we define

éSAGG? <~ AGG(el,...,ek) <g AGG(e’h,e;C)

<aqg is a total preorder. Indeed, aSg is complete, this fact allows us to
compare all vectors iff.

In the case of all the scales being the same, Bapome particular cases of
aggregation orderings are:

— min-ordering
€ <min € <= min{ey,...,ex} <p min{e],...€}},
— max-ordering
€ <max € < max{ey,....er} <p max{e,... e} }.
— Moreover, we may consider weighted versions of them, i.e. given a vector
of weightsw = (wy, ... ,wi) € E¥, theweighted-minimuris defined as
e <wm € <—
min{max(w1,e1), ..., max(wg, ex)} <p min{max(w1,e}), ..., max(wg,e})},
while theweighted-maximuns defined as
e<w_m e =
max{min(w1,e1), ..., min(wg, ex)} <p max{min(wi,e}),..., min(wg, e})}.

Note that<,,;, is a weighted minimum with a null vector of weights, while
<max IS @ weighted maximum for the vector whose components are 1's.
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Besides, we may rank the vectors in terms of the ordering of one of the
components, that is, if < » < k and we consider the vector of weights
w, = 0, andw; = 1 otherwise, then

— - /
e <g-m € < e <g e,

or in terms of<_as, if w, = 1, andw; = 0 otherwise,
e <w-Mm ¢ = er <g, 6;.

o Also, we may consider thexicographic orderingwhich acts like a “prioritised”
one, in the sense that the smaller the index of the attribute/criterion, the greater is
its relevance to determinate the ordering, because a critgii®oonly applied if
the previous criteria consider the elements equivalent. Indeetgxivegraphic
orderingis defined as

ESLEXQ < 3] <kstVi <J, € :eg andej SEJ 69.

<1 px IS atotal order.

We may consider a generalisation of these orderings. Giverna se{C; };—1,.
of binary relations, for each “boolean” mappipg0, 1}* x {0,1}* — {0, 1}, let us
introduce the following relations:

o if C; C E; x F;, then theinduced relation byR andg is defined as

]

4%? Aand g((ugl(€17e/1)""“ugk(ek”e;{:))’
(Mgl(ellv 61), ST e;c? ek))) =1,
pc, being the membership of the preference ordefing

¢ Analogously, ifC; C FE x E, then theinduced relation byR and gis defined as

exhe = g((pc, (@ €),. .. uc,(e€)),

Remark 4
Note that Pareto and Lexicographic orderings are of the #fpe Indeed, if(z,7y) =
min;—1, ., z; andR = {<g, }s=1,.. r @s usuaK g, being the linear order in the scale

..........

e<pne = e<%e€.

Analogously, ifg(Z,y) = max;—1,._x 2;, with

min(z1,1 —y1), ifi =1
zi =4 min(min;—; _;—1{min(z;,y;)}, min(z;,1 —y;)), ifl<i<k
min(minj—; r—1{min(z;,y;)}, zx), ifi =k,



6.2 Preferences on Product Scales

The first case we want to analyse is the following one. Assumelais provided
with k criteria of preference on consequences, each one evaluated on a finite linearly
ordered set of preference values. That is, D has a sef(U;, <;)};=1,... x of finite
linear scales such thatf(U;) = 0;, sup(U;) = 1, and eacly/; is commensurate with
V, as usual/ being a finite linear scale. A set of preference functiofis{ — U; such
thatu, ' (1;) # 0 # u;'(0;) is also assumed as given.

We consider the global vectorial preference function on consequenaes- U,
whereU =11,_; _, U, is the Cartesian product of tH&’s.

Now, in these conditions, we define the following vectorial qualitative utility
functions.

Definition 6
LetT be a t-norm orV and let the pessimistic generalised qualitative utility functions
be defined as usual as

GQU ™ (w|u;) = min,_x nj(w(x)TAN), j=1,...,k

with n;(M) = u;(x), nj = ny, o h;, andny, being the reversing involution d;.

The linking mapping.; : V — Uj is also required to satisfy coherence with respect to
T for having a good definition a#QU ~ (-|u;). Thevectorial pessimistic generalised
qualitative utility functionw.r.t. @ = (ug, ..., uy) is defined as

GQU (u) = (GQU™ (|ur),...,GQU™ (-lux)).
Analogously, let the optimistic ones be defined as
GQU ™t (mr|uj) = maxzex hj(m(z)TA), j=1,...,k

with h; (M) = u;(z). The vectorial optimistic generalised qualitative utility function
w.r.t. w is defined as

ATt =
GQU " (u) = (GRU™ (|ur), ., GRU (+]ug)).

As usual, from these functions we may induceltiX ) the orderings associated with

them, that is,

T Seor- () 7 <= GQU (r|u) <z GQU (n'[u),
where<z is the ordering considered dn, e.g. Pareto, minimum, lexicographic, or
one induced by a boolean function.

The dual ordering induced iyQU s
A7t = AT =
T SGGUt () ' = GQU (r|u) <z GQU (n'|u).
In particular, we may consider the relation induced ®)U and a boolean
functiong. Indeed, for each “boolean” mappiggwe consider thenduced relation by
GQU~ (orby GQU ™) andg defined as

g ! ~ATT _ g
™ 4@‘(-@ 7 <= GQU (n|n) <{<o



that is,

™ <2W7(W) = g((ILLGQU_("U/l)(ﬂ—7Tr/)’ s 7MGQU_(-|uk)(7T77r,)) ’

(heQu-(fu) (T, T); -+ s HaQU-(fuy) (', m))) = 1

HaqQu-(-luy) being the membership of the preference ordering induc&d®y — (-|u;).
Analogously, we may consider the relations induced by the optimistic criterion, i.e.

S— . arays il _
7r 4"(’;@“.@ < GQU (r|u) ﬁggw}i:l _____ L GQU " (n'[u).

Now, we propose a characterisation for these relations.

Axiomatic Setting

Given a boolean functiop, let GAXY be the following set of axioms for a preference
relationC on (II(X), M+):

e A0: There exists a familfR = {C;},—1,..., of orderings such that = <%, i.e.

.....

™ Eﬂ'/ <~ g((ﬂzl (W’ﬂ-/)r"vugk(ﬂﬁﬂ-/))v
(pe, (r',m), ... » HE (r',m))) =1

e AxR :EachC,; satisfiesAX+i=1,...,k

Now, we may also consider the problem from an optimistic view, that is, we consider
the axiomatic setting?AX}r 9, with A0 as previous, but now:

o AxRT :C, satisfyingAXFi=1,... k.

Then, the following theorem is an easy consequence of the representation theorems
in the framework of a unique linear preference scale.

Theorem 6.1 (Representation Theorem)
Given a boolean mapping a preference relatidn on (1(X), M~ ) satisfies the axiom
setGAXY (GAXT 9)if and only if there exist:

(i) a set of finite linearly ordered preference scdl€$};—1,. .. i, With inf(U;) = 0,
andsup(Uj) = 1ja

(i) a set{u; : X — Uj| u; ' (1;) # 0 # u; '(0;)},=1....x Of preference functions,

(iii) a set of onto order-preserving functiohs:V — Uj, j =1,...,k, eachh; also
satisfying coherence w.flt,

in such a way that it holds:

rCx iff 7<% ___ .



(r C o' iff 7 g2 7’ resp.) withn; = ny, o h; and considering the vectorial

SGQUT([u)
preference functiom = (uq, ..., ug).

Proof:

Here, we only verify the pessimistic behaviour, the optimistic case being analogous.
—) As each relatiol_; satisfiesd X1, then the existence ¢, } =1, x, {u;}j=1,. . &
and{h;};=1,. . is guaranteed by the theorem for the linear case (Theorem 5.5). It only

remains to verify that the relation induced 89U andg coincides withC .
By definition, we have that

rCna iff  pc(mn’)=1
Moreover, as_; is represented b QU ~ (-|u;), we have that
T = GQU™ () <u, GRU™ ('|u;).
That is,
pe, (m ') = p<, (GQU™ (1), GQU ™ (")) = paqu—(-juy) (7, ).

Hence, applyingd0, we have that
T — g((ﬂgl(ﬁ’ﬂl)v"'7MEI<,(7T»7TI))’
(NE1 (71—’7 7T)7 s M, (le ™ )) =1

Aand g((/J‘GQU (\ul)(ﬂ—7 /)7 - HaQu- (\uk)(777 /))a
HGaQu—( 1)(7T ,7T) <y HGQU = (Hu) (71' aﬂ'))) 1

= =% __ w’
GQU ™ (-|u)

—) Now, we verify A0. Given {U;}, {u;} and {h;}, we considerC, as the
preference relation induced ByQU ~ (-|u;). By Theorem 5.5 we have that eaCh
satisfiesA X . Hence,

Sear(m ™ g((MG‘QU’('\M)(TﬂrI)’""MGQU’(-IM)(T?T‘J))7
(Heou-(lun) (T ), - BGQU- (uy) (T, T))) = 1

Remark 5
As it has been mentioned, this theorem includes, as particular cases, the
characterisations of the Pareto and the lexicographic orderings.
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Preference Functions on the Same Scale

We consider now the particular case in whiell the preference functions on
consequences are evaluated inghmescale of preference.

Proposition 6.2 -
LetU; = ... = U, = U, all of them with the same ordering on &U = U*. Then,

1. (@) if umin(z) = min{uy (z), ..., ux(x)}, then
GQU (7]u) <min GQU ™ (7'|7) == GQU~ (7|tumin) < GQU (7' |umin)-

(b) Given a vector of weightst = (wy,...,w) € U*, if ug_m(z) =
min{max (w1, u1(x)), ..., max(wg, ur(z))}, then

GQU (1) <w-m GQU (7'[0) <= GQU™ (n|ug—m) < GQU™ (' |ug—m).
2. GQU (nfu) <n GQU (r'[u) = GQU (@) <min GQU (n'[u).
3. (@) If umax(x) = max{uy (), ..., ux(x)}, then
GQU ™ (7[1) <max GQU ™ (w'[7) <= GQU* (numax) < GQU* (' [umax).
(b) If um— i () = max{min(wy, u1 (), ..., min(wg, ux ()}, then

GQU (m|w) <w%— MGQU (r'[n) <= GQU (rlug_nm) < GQU ™ (7' |um—r)-

4. GQU " (x|w) <n GQU " («'[7) = GQU (n[@) <max GQU (r'|7)

Proof:
We only sketch the proofs of 1) and 2), the others being analogue.

1. Itis a direct consequence of having

GQU™ (7' |umin) = GQU™ (m| nllinkuj)
s

.....

= .min (GQU (m|uy),

J=1,...

and by the definition o0&, .
For the case of theveighted-minimumwe also know that

Vj,wj € U;, GQU ™ (m| max(wj, u;)) = max(w;, GQU ™ (m|u;)).
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2. By definition of Pareto ordering,
GQU (rlu) <n GQU (n'[u) <= Vi, GQU™ (r|w;) <y, GQU ™ (' |u;)
and thus we have that

GQU_(Wlﬂ) SH GQU_(W/‘E) ImplleS GQU_(W|5) Smin GQU_ (W/‘ﬂ).

Remark 6
Let us remark some points with respect to the preceding proposition:

e Initem 1 (a), the proposition guarantees that the order induced }) by the
pessimistic vectorial utility functio6’QU  (-|ui) together with the<,,;,, ordering
in U, is the same than the order induced by the utility function defined with
respect to the function minimum of preferences, i.e. YU~ (+|umin) With
Umin () = min{us(x), ..., ux(z)}, taking inU its linear ordering. That is,
it is the same to “aggregate” first the preferences with the minimum, and then
evaluating with a unidimensional utility function, than evaluating the vectorial
utility before aggregating.
Moreover, this property makes clear that thg;, ordering satisfies the axiom
setAX+ if the set of preference functions: X — U not only verifiesvj =
Lok, uyt(0) £ 0 but(,_y  ,uy (1) # 0 as well,

e Obviously, the reciprocal of the item 2 is not true, because both orderings may be
different since<,,;, is a linear order whilec;; may be an only partial one. Also,
both orderings distinguish different in the sense that there are distributions which
<min COnsider them equivalent whiter; distinguish them. An easy example of
this is the following one.

Example:
Suppose: = 2, letz, 2’ € X, s.t.uy(z) = uyr(2') < uz(x) < uz(z’). Since

GQU (zfw) = (wi(2)u2(x))

GQU (d'[u) = (ur(2'),uz(a")),
then

GQU (z[u) <n GQU («'[w),
while

GQU_(Z"E) ~min GQU_(-T,|E)
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e With respect to iten8, analogously with the case atinimum, it results the
same ordering if we max-aggregate first or at the end. A#sQ..-ordering
satisfies the axiom setX if the set of preference functions;:X — U not
only verifiesv j = 1,...,k, u; (1) # 0, but();,_; _,u;'(0) # 0 as well.

6.3 An Example: A Safety Decision Problem in a
Chemical Plant (Continuation)
To exemplify some of the notions introduced in this Chapter, we consider again the

example introduced in Section 5.2. Let us recall the framework. The chemical plant has
three emergency plans:

EP1 : emergency plan 1,
EP2 : emergency plan 2,
EV : total evacuation,

that may be only activated by the head of the Safety Department. Depending on the
type of problems, the situations of the plant may be classified in four modes:

S : normal functioning
s1 : minor problem

sy : major problem

s3 : very serious problem

The head of the Dept. has to undertake one of the following actions:

dy : donothing (DN)

d, : activate emergency plan(UEP1),
dy : activate emergency plan(2EP2),
ds : activate evacuatio(AEV A),

whose behaviours are given in Table 5.1.
As it was said, the@ost-situatiorof the plant is evaluated in terms of two criteria:

e personal safetyu,),
e economical costéus).

We take as preference scale for each criterion a linear scale of four values
W ={w)=0<w <wy <wz=1},
the criteria being defined as:
ui(Risk =14,Cost = j) =ws_; and  wuq(Risk =1i,Cost = j) = ws_;.

We take as scale of uncertainty the same linear scald/i=.U.
Assume that the received report says:

88



“A problem has been identified in Building G, likely it is a minor problem,
but it is not discarded that either it can finally turn out to be a false alarm
or even, in the worst case, it might become a major problem”

This information can be modelled by the possibility distribution on states —
V defined as

ms(s0) = w1, ms(s1) =1, ms(s2) = wa, 7s(s3) = 0.

Now, for choosing the “best” decision, we have to rank the associated distributions.
These distributions are defined as in (4.1), for instance, for declarating that the situation
is controlled, that is, to choose do nothing); its distribution is

mao(x) = sup{ms(s)| do(s) = z}.

So, in order to rank decisions we apply the generalised qualitative utility functions
to these distributions. We consider the global preference on consequences is given by
u = (’LL17 ’ILQ).

If T = minimum, then we have that:

GQU (mpolu) = (wy,1),
GQU (tafu) = (w2, w2),
GQU (ralw) = (1,w1),
GQU (mgslw) = (1,0).

Hence, onlyds is discarded ifPareto orderingis chosen inU = W x W, while d;

is the most preferred if theninimum ordering is considered. However, taking into
account that the safety of the persons is involved and it must be prioritised to economical
reasons, it is interesting to consider thricographic orderingonsideringu; first. For

this ordering, we have thdt, activate emergency plan B chosen, which responds to
giving priority to safety.

6.4 Uncertainty Measured on Product Scales

In this case, we assume the set of values for uncertaifity’¢:) is a product of scales,
thatis,V =I1;=1, . V;, eachV; being a finite linearly ordered set. For instance, this
may occurs when there are several sources of uncertainty each one being measured in
a linear scale. Although sometimes we might aggregate this information into a linear
scale, sometimes it may be interesting not to loose any information and go as far as
possible without aggregating.

Hence, we are interested in the special claspassibility vectorial distributions
II: X — V, such thagll their projections are normalised possibility distributioriEhat
is, if

;X —V; j=1,...,k
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are normalised distributions, then

I(z) = (mi(x),...,(x))

is the product of the normalised distributions. Observe that althdLigiconsistent, in
the sense thatp{Il(z)|x € X} = (1....,1),IT may result non-normalised.
Let us denote by

Vecl(X,V) ={(m1,...,m)| m; € U(X,V}), 1=1,....k},

the set of vectorial distributions dri whose projections are normalised.

As usual, we consider in this set a mixture operation defined in terms of a t-horm
inV.

In order to obtain a mixture operation that satisfies reduction of lotteries, we are
interested in t-norm3 in V whose projections are join morphisms. By (Baets and
Mesiar, 1999; theorem 7.1); satisfies this condition if and only there exists a finite
family of t-normsT; onV; s.t. T =1I,=1, ;T ;. From now on, we restrict ourselves
to work with t-norms inl” which are Cartesian products of t-normsiyis.

Given a set of t-norm$§T ; };—1, .. i, consider the t-norm product of thi;’s, i.e.

T=1=1, kT
Then, we define the mixturk/ on Vecll(X, V) as:

M+ (ILT; @, B) = (max(eq Timy, S Tamy), - .o max(a T pmn, Bk Te7y,)),s
witha = (a1,...,ax), B=(B1,...,8) € V s.t.max(a;, 3;) = 1.

Also, for each t-norm oV, we consider)M, the mixture induced ohl(X, V;).
Observe thafl/+ satisfies that:

E(Ha H/7a73> = (MTl (7717 7717 alaﬁ1)7 ceey MTk (Trka Tr;w akaﬁk))'

In (Vecll(X, V), MT) we may consider different orderings taking into account that
preference on consequences are represented by a linear preference furttion a
vectorial oneu. For each case, we may define a generalised pessimistic or optimistic
criterion. Indeed, we may have the following cases:

U linear. Given a preference functiom: X — U and a set of onto order-preserving
functionsh;:V; — U, eachh; being coherent w.r;, we propose to use the
following expressiohfor a pessimistic evaluation

VGQU™ (Mu) = (GRU™ (mfu), ..., GQU™ (m|u)),

where as usuakQU ~ (m;|u) = mingex n;(m(z)T; ML), with n; (M) = u(z).
For an optimistic behaviour we propose

VGQU T (Mu) = (GQU T (m1|u), ..., GQU ™ (mk|u)),

with GQU T (mj|u) = max,ex h;(m(z)T; A), whereh; (M) = u(z).

LActually, we should writeGQU — (m;lhj,w), however, for the sake of simplicity we omit thg’s.
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U cartesian product. LetU = II;_; ; U;, eachU; being a finite linear scale and let
u = (uy,...,ur) be a (vectorial) preference function @hwith components
uj:X — Uj such thatu; '(1Y) # 0 # u;'(0Y). Further we assume eaéh
is commensurate with’; through onto order-preserving functiohs:V; — Uj;
which are coherent w.rT ;. Then, we define the following utility functions

VGQU (I[u) = (GQU ™~ (ri|u1), ..., GQU (7 |uz))
VGQU " (Ifw) = (GQU* (mi[ur),. .., GQU* (my|ux)),

where GQU ™ (w|uj) = mingexn;(w(z) T; M) and GQU T (r|u;) =
maxgex hy(m(x)T; 0%), with n;(X]) = h; (6]) = u;(@).

In the following sections we analyse them in some detail.

6.4.1 Linear Preference

Let us consider a particular situation for the first case. We assumé/that ... =
Vi = W, W being a linear scale, and al3q = ... = Ty. For this case, for each fixed
boolean functiory, we have the following representation result.

Theorem 6.3 o
LetC a preference relation iV ecl1(X, W*), M~). Then, it satisfies

o there exists a preference relatiamn, on1I(X, W) such that
Hg(ﬁ:ﬁ) = g((“EW (7r177r/1)7 s HE (7"1@777;@)) ) (“EW (71’/1, 7"1)7 s HEw (7";@ ﬂ'k)))

WIth 11 = (mq,...,m), IV = (n),...,m).
o Ly satisfiesAX1(AXT resp.)
if and only if there exist:
(i) a finite linearly ordered preference scélewith inf(U) = 0 andsup(U) = 1,
(ii) a preference function:X — U such that:=*(1) # 0 # u=1(0),
(iii) an onto order-preserving functidonW — U, h being coherent w.rt ,
in such a way that it holds:
MCTW «— VGQU™ (Mu) 5., VGQU™ (IT'u)2.
[ICI = VGQU*(Ilju) x{.,, VGQUT (Il'|u) resp. )

Still assuming that all the linear scales in the cartesian product of uncertainty are the
same, i.eV = W* with I linear, we may consider the preference orderings related
with min-orderingin U*.

2Here,<f§<U} means thaR = {<y}i—1,.. k-
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Lemma 6.4
VILIU € Vecl(X, W¥),

VGQU ™ (IMu) <min VGQU ™ (W' |u) <= GQU ™ (max{m1,...,m}Hu) <y
GQU ™ (max{x},...,m} }u)

with the distributionmax{my, ..., 7 }(x) = max{m (z),..., 7k (x)}.
Proof:
It is a direct consequence of the definition of tig;,, ordering

and of being

GQU ™ (max{m, ..., Hu) = min{ GQU ~ (m1|u), ..., GQU ™ (m|u)}.
0

Notice that we have only considered the special case of having a linear scale of
preference and the same scale in the cartesian product where we measure uncertainty.
The case of having different scales remains as an open question.

6.4.2 Preferences Measured on Cartesian Products
Now, we consider the case of having a vectorial preference function on consequences
overU.

Axiomatic Setting

Given a boolean functiogJe’tﬂ?AX% be the following set of axioms for preference
relationsC on (VecII(X, V), M~), with T s.t. T =1II;,—,, ., T;, eachT; being a
t-norm onV:

.....

e VAQ There exists a family (II(X, V;), C;) };=1.... x Of orderings such that
pe(LIY) = g((pc, (v, 7)), . pe, (Tk, 7)), (pey (70, ™), - ey, (T, T)))

e AxR1: C,; satisfiesAX, foreachi =1, ...,k

For representing the preference relationd/anrIl(X, V') we propose the following
theorem.

Theorem 6.5 o
A preference relatiolt on(Vecll(X, V'), M), satisfies the axiom s&G AX~ ifand
only if there exist:

(i) a set of finite linearly ordered preference scalE5};—1,
andsup(U;) = 1Y,

k with Hlf(Uj) = 05]

ceey

(ii) a set of preference functions :X — U, such thatu; ' (1V) # 0 # u; ' (0),
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(iii) a set of onto order-preserving functiohs:V; — U;, eachh; being coherent w.r.t
T.

Js

in such a way that it holds:

NCI' — VGQU (Il[n) 4?2 i VGQU (IT'[),
with
VGQU (Iu) = (GQU  (m1|u1), ..., GQU ~ (mx|ug)),

andGQU ™ (m|u;) = minge x n; (W(m)'l'j)\g;), wherenj(Ag;) = u;(x).

The proof of the theorem is straightforward.
As usual for an optimistic behaviour, we considi&& A X, which is obtained from
VGAX~ replacingAzR1 by

e AzR1" :C, satisfiesdXT foreachi =1,....k

for characterising the preference ordering induced by
VGQU+(H|E) = (GQU T (m|u1), ..., GQU T (mi|ug)), GQU T (-|u;) being defined
as usual.

6.5 Another Framework for the Chemical Plant
Example

Now, assume that instead of receiving the report of the plant engineer the head of the
Safety Department receives the evaluations of the responsible of control of each system.
For each state, two evaluations of the possibility of being in this state are provided.
Assume he has the following evaluations:

HS(SO) = (’U)l,w1) Hs(Sl) (1 1) Hs(Sg) = (wg,wl), Hs(83) = (0,0)

Now, bothU and V" are supposed to be equallié x W, with W = {0 = wy <
w; < wy < ws = 1}. We choose the Pareto ordering bothlinand V. We are
interested in comparing the results of the ranking of distributions WithQU (-|@) for
different t-norms g being defined like as in Section 6.3 ahds the identity while the
same t-norm is considered h.

For each decision we have their associated distributions:

Mg = ((w1,w1)/(Risk =0,Cost =0),(1,1)/(Risk =1,Cost = 0),
(we,w1)/(Risk = 2,Cost = 0)),

Iy = ((1,1)/(Risk =0,Cost = 1), (wa,w1)/(Risk = 1,Cost = 1)),

gz = ((1,1)/(Risk = 0,Cost = 2)),

gz = ((1,1)/(Risk = 0,Cost = 3)),
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and their evaluations are:

VGQU (Ilglu) = (min{wq,w;lw},1),

VGQU (Ily|u) = (min{ws,w;lws}, min{ws,we Llws}),
VGQU (Maglw) = (L,wn),

VGQU (gsfu) = (1,0),

L being the dual conorm of with respect to the involution if¥. Note thatds is
preferred tads for any t-norm. In order to obtain the utility values fés andd,, we
take two particular t-norms. If we chooSe= minimum, we have

VGQU (liglu) = (wi,1),

VGQU (Ilyxu) = (we,ws).
So, we have that choosinginimumdy, d; andd, are incomparable, onlgs may be
discharged. While if we choodaikasiewicks t-normwe have

VGQU (glu) = (we,1),

VGQU (Il [u) (1,ws).

That is, d; is preferred tods (ds being preferred tais), while d; and d, remains
incomparable.
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Chapter 7

Utility Functions for
Representing Partial Preference
Relations

In this Chapter, we consider the remaining extensions mentioned in the introduction of
Chapter 6. That is, we consider now the cases in which uncertainty and preferences
values belong, in principle, to distributive lattices. Of course, the products of linear
scales considered in Chapter 6 are particular types of distributive lattices.

As usual, we are interested in having commensurate valuation sets for uncertainty
and preference, this means we require the existence of an onto order-preserving
mappingh:V — U. But now, we may have incomparable values of uncertainty, and
h may be required to treat them in different ways (see Figure 7.1). Indeed, given two
incomparable values and)\’ on 'V, their respective images may be required to be:

1. incomparable: it means that the associated distributiongs are considered
incomparable as well. In this case, the requirement will be,

if A<>X  then A(\) <> h(X).

2. equal: it means that their associated distributions are considered equivalent with
respect to the preference relation. In this case, we have two further alternatives
depending on the value thatassigns to\ vV )\'. Indeed, we have:

(@) The distribution associated with the supremum of the values is
indistinguishable from the associated wktand', i.e.

if A<>X  then AAVN)=h)=h(N).
In this caseh results a join-morphism.

(b) The associated distributions,’s are again indistinguishable, but they are
not indistinguishable with the distribution associated it \’.

That is,
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AN
T oy
/\ [ /\T
A’
A e .

A<>N 0O hQ) <>hQ)

ALV h
/\ ) .
A \’ T\ ~ T\ ~ T

A<>N O h\) =h@) = h(\) OhQ\)

ANV h
o
N, =
)\ )\’ T|.+)\ ~ T[+)\‘

A <>\ O hQ\) =h(\) < h\) DhQ\)

Figure 7.1: Different possible properties for the linking mapping.r.t. incomparable
values.

if A<>X then AAVXN)>h(X)=h(N).

Now, A is not a join-morphism. Observe that in this case the distribution
associated with v \’ will be less (more) preferred than the associated with
A and. if the behaviour is pessimistic (optimistic resp.).

In case 1) incomparability is “preserved”, hencéd/ifis a non-linear lattice, so i§.

We will analyse this case in detail, taking into account the different operators available
in V. In case 2a) incomparability is lost, moreover, it forééso be linear. We shall

deal with the option that considers the three associated distributions as equivalent, the
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remaining case being left as a future wbrk

In the next Section, we introduce some necessary background on lattices and some
preliminary results that are required through the Chapter. Next, we consider the
case of h preserving incomparability. In the first part, we shall only assume
available in the lattices theweet and join operations. As usual, we are interested

in considering “possibilistic mixtures” (like “max-min” mixtures) on the set of
“possibilistic” distributions or/, requiring this operation to satisfy reduction. Because

of this, we require the lattices to be distributive. In the second part, we assume available
other operations on the lattices, which allows us to consider other alternative mixtures.
Again, the requirement of satisfying reduction of lotteries leads us to work with
residuated distributive measurement lattices. For both cases, we introduce pessimistic
and optimistic criteria for these frameworks and their axiomatic characterisations as
well. Finally, in the last Section we consider the case of considering the distribution
associated to the supremum of incomparable valig¥), indistinguishable ofry ~

TN -

7.1 Some Background on Lattices

Let us recall some definitions and results related with lattices (see, for example, (Davey
and Priestley, 1990; @tzer, 1978) for more details) that we will use in the following.

e A set L with a binary relation on i, is anordered setalso called gartially
ordered setif for all x,y, 2z € L, < satisfies:
a) reflexivity: x < =z,
b) antisymmetryz <y, y < zimply z =y,
c) transitivity: z < y, y < zimply x < z.

o Let (L, <) be apartially ordered setlet beS C L,

— x € S,xisanupperboundof if s <z Vs e S.

— The set of all upper bounds 6f is denoted bys". If S* has a least element,
it is calledleast upper bound of & supremumalso denoted byup S.

— Analogously,x € S, zisan lower bound of if s > = Vs € S5, and the set
of all lower bounds ofS, is denoted byS'. If S* has a great element, it is
calledgreatest lower bound of & infimumalso denoted bynf S.

e A non-empty ordered sef is a join-semilatticeif sup{z,y} € S Vz,y € S.
Analogously,S is ameet-semilatticé inf{x,y} € S Vz,y € S.

e Anordered setL, <) is a lattice iff it is ajoin-semilatticeand ameet-semilattice

e A lattice (L, <) is boundedif it has supremun(1) andinfimum(0), in this case
we denote it by L, <,0,1).

INotice that sincé is not join morphism the generalised “utility” functio®QU (-| k) will not preserve
mixtures.
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e Given a lattice(L, <), two binary operations may be definednee{/) and
join(V).
xAy=inf{z,y} and zVy=sup{z,y}.

e Let (Ly,A1,Vy) and(La, Ag, Vo) be two lattices. A mapping:L; — Lo is a
lattice homomorphisma homomorphisnior short, if f is join-preserving and
meet-preserving, i.e.

flavib) = f(a) Vs f(b) and f(an1b)= f(a) A2 f(b).
If fisalso onto, itis calle@pimorphism

o If (L1,A1,V1,01,11) and(Ls, Ag, Va, 02, 15) are bounded latticeg, is a{0,1}-
homomorphisnif it is a homomorphism also satisfying(01) = 0z, f(11) = 1s.

Observe the well known connection betweem\ and<: Let L be a lattice and let
a,b € L. Then, the following are equivalent:

1. a<b,
2.aVvVb=b,
3.aANb=a,

e (L,A,V,nr,0,1) will denote a bounded lattice with a reversing involutipne.
L satisfies that,1 € Land0 < z < 1 Ve € L,andny:L — L is a strict
decreasing functidrs.t. ny (ny(z)) = =.

Proposition 7.1
e Let (L,A,V) be alattice, then, A andV are associative, commultative, satisfy

idempotency and the absorption I&ws
e If (L, A,V) is afinite lattice then,L is a bounded lattice.
o If (L,A,V,ny,0,1) is a lattice with reversing-involution, then;, satisfies that:
— nr(0) =1andn(1) =0,
—nr(x Ay) =nr(x)Vnr(y),

—nr(xVy)=nr@) Ang(y).

Definition 7
Given a patrtially pre-ordered s@t, <), i.e. < is reflexive and transitive, the associated

indifference relation~ and theincomparability relation<> are defined as:
ea~b < (a<b and b<a).

ea<>b <= (atb and b£a).

2n 1, is bijective.
3ldempotency means: V a = a,a A a = a, absorptionisa V (a Ab) = a,a A (aVb) =a
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Now, we introduce a new definition and related results that will be applied in our
proposal.

Definition 8
Let (L, <) be a patrtially pre-ordered set, denotelby~ the quotient set w.r.t~ and
let[a] = {y € L|a ~ y}.

(L, <) is apre-latticeiff (L/ ~,C) is a lattice, definindC as:

[ T[] iff a<b.
As a consequence of the definition, we have that

Proposition 7.2
Let(L, <) be a partially pre-ordered set, then:

e ~ IS an equivalence relation.

o if (L, <) is totally pre-ordered(L/ ~,C) is a linearly ordered set.

Theorem 7.3
(A, <) is a pre-lattice iff it is a partially pre-ordered set, such that satisfies:

1. For alla,b € A there exists an unique non-empty subSEtP(a,b) C A s.t.

e SUP(a,b) is an equivalence class of the quotient set ~, ie.
SUP(a,b) € A/ ~.

e Vc e SUP(a,b),a < candb < c.

e if a < e andb < e, then, eitherle € SUP(a,b)) or (e > “c, ¢ €
SUP(a,b)).

2. Foralla,b € A there exists an unique non-empty subls§tr’ (a,b) C A s.t.

e INF(a,b) is an equivalence class of the quotient skt ~, ie.
INF(a,b) € A/ ~ .

o ife < aande <b,theneithefe € INF(a,b)) or(c >e ¢ € INF(a,b)).

o Yce INF(a,b),c <aandc<b.

Proof:
— ) We will verify that (4/ ~,V) is a joint-semilattice and4/ ~, A) is a meet-
semilattice.

1. First, we verify that( A/ ~, V) is a joint-semilattice, with/ defined as

[a] V [b] = SUP(a,b). (7.1)

4e>ciﬁc§eande$c.
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Observe thav is well defined, i.e.
if a~a'thena]V [b] = [a']V [b].

Indeed, ifS,; and S, , denote an element a§U P(a,b) and SUP(d',b)
respectively, we verify now thef, , ~ Sy s, i.e. SUP(a,b) = SUP(d’,b).

As
Sab > an~ o and Sab >,

by definition of SUP(a’, b), we have that, , > S p.
Conversely, since

Syp>a ~a and S, >0,
by definition of SU P(a, b) we have thafS,. , > S, ;, therefore
Sap ~ Sar p.
In order to see thgtd/ ~, V) is a joint-semilattice, we will verify that

e \/is associative.
Indeed, by definition o6U P(c, S, ) we have that

Se.Suy =6 ScSuy > Sapy  Sap>a and S, >b.
So,S.,5,, > SpcandS. s, , > a, hence,
Se.S0p = SaSp.e-
Conversely,
Saspe >0, Sas,.>Spe, Spe>b and Sy >,

then,
Sa,Sb,c > Sa,b and Sa,Sb,C > c,

i.e.

a1t

S0S4,s,. > Se,s,,, thereforeS, s, . ~ Sc s
SUP(a,Sp,..) = SUP(c,Sap)-
Hence,

(la] v [b]) V [c] = SUP(Sap,c) = SUP(a, Sp.e) = [a] V ([b] V [])-

e V is commutative. It is obvious by definition of SUP.

¢ V satisfies idempotency.
Indeed, as > a, then,a > S, ,, but by definition ofSUP(a,a), S,,q >
a, S0a ~ S, q. Therefore,

[a] = [Sa,u] = SUP(a,a) = [a] V [a].
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So,(A/ ~, V) is a joint-semilattice.
. We verify that(4/ ~, A) is a meet-semilattice, with defined as
[a] A [b] = INF(a,b).
A is well defined, i.e.
if a ~ a’ then[a] A [b] = [a'] A [0].
Indeed, ifI,;, and I,/ , denotes an element diNF'(a,b) and INF(da',b)

respectively, we verify now that, , ~ I,/ p, i.e. INF(a,b) = INF(d',b).

As
Iny <a~ad and I, <b,

by definition of IN F(a/, b), we have thaf, , < I,/ .
Conversely, since

Ia’,b < a ~a and Ia’,b < b,

by definition of /N F'(a,b), we have thaf, , < I, .

Therefore,
Ia,b ~ Ia’7b-

In order to see thgtd/ ~, A) is a meet-semilattice, we will verify that

e A iS associative.
Indeed, by definition of N F(c, I, ;) we have thaf. ;, , < candl.j, , <
I,p,andasl,, <aandl,, <b,thenl.;, , < I .andl.z,, < a,SO

Ic,I < Ian,C-

ab =

Conversely,l,;,. < aandl,r, < Iy.andl,. < b, 1. < c, then

Iog,, <Ilspand by, <cs0lyg,,. <leg,,.
Therefore,

~Y
Ia,Ib,c ¢ lab-

So,
(lal A[B]) Ale] = INF(Igp,¢) = INF(a, Iy,c) = [a] A ([b] A [c]).

e A is commutative. It is obvious by definition @tV F.

e A satisfies idempotency.
Asa < a, thena < I, ,, but by definition ofINF(a,a), I, , < a, SO
a ~ I, 4. Therefore,

[a] = [Ia,a] = INF(a,a) = [a] A [a].
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Hence,(A/ ~, A) is a meet-semilattice.
Therefore(A/ ~, A, V) is a lattice.
Note that the order induced frofa/ ~, A), i.e.

are the same. Indeed,
[a] T [b] iff a < b iff INF(a,b) = [a]iff [a] A [b] = [a] iff [a] <" [b].

—) We verify the existence o$U P(a,b) andI N F(a,b). Let A andV be induced
in A/ ~ by the partial ordeE_, and define

SUP(a,b) =[a]V[b] and INF(a,b)=[a]Ab].
Both sets satisfy the required conditions as it is shown following.

eAs [a] VvV [b] (la] A [b] resp) is an equivalence class,
the elements oSU P(a,b) (INF(a,b) resp) are indifferent, and obviously if
f € SUP(a,b), thenV g ~ f, g € SUP(a,b).

o Letc e SUP(a,b) = [d], we verify thatc > a andc > b.

Indeed, ag ~ d, and by definition ofv, [a] C [d] and[b] C [d], we have that
a < dandb < d, so
c¢>aande > b.

e It remains to verify that: It > a ande > b, then,

(e ~¢, ce SUP(a,b)) or (e >c¢, c€ SUP(a,b)).
Indeed, ag > a ande > b, we have thaja] C [e] and[b] C [e], so
[d] = [a] v [b] E [e],
i.e.d < e, therefore ifc € SUP(a,b), then,c ~ d < e.

These sets are unique. Indeed,gp’ € A. Suppose thabU P(p,p’) satisfying
the conditions exists, denoting I}, ,» an element of SU P(p, p'), we will verify that
Sppr Nispyp" _ o

As S,y > pandSy,,, > p’, by definition of SUP(p,p’), we have that

gz),z)’ 2 Sp,p"
Conversely, as
Sy >p and S, >p,
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then, by definition oSUP(p,p’), Sp p > S, , therefore

Sp-,p’ ~ Sp,p’ )

hence,
SUP(p,p’) = SUP(p,p').

Analogously, we may verify thatN F'(p, p’) is unique. O

7.2 Ordinal/Qualitative Utility Functions on Lattices

Now, let us introduce the lattice-based context of an extension of the possibilistic model.

7.2.1 A Possibilistic Context on Lattices

Let X = {z1,..,z,} be a finite set of consequences. We will denote by
(V,Vv, Av,0v, 1y, ny) afinitedistributivelattice of uncertainty valuewith minimum
0y, maximumly, and areversing involutiomy,, <y being the lattice order induced
inV.

(U,Vu, Au, 0u, 1y, ny) will be afinite distributive lattice of preference valuegth
involutionng .

Remark 7

In order to simplify notation, we use, \ for denoting both operations an andU, as

well as 1 and 0 are used for denoting their minimum and maximum, although they may
be different, hoping they may be understood by the context.

We consider theet of consistent possibility distributions éhoverV,
OX,V)={r: X - V| \/ n(z) = 1}.
zeX
As usual, we define the point-wise order(ii(X), V)® induced by<y
<7 <= VreX n(zx)<yn(x).

For our purposes, we will consider a subsellgfX ), the set ofnormalisedpossibility
distribution, i.e.

I(X,V) ={r e I(X) | 3z s.t. 7(z) = 1}. (7.2)

As usual, we identify possibilistic lotteries and distributions. Givep € X,z #
y,and A, u € V s.t. AV u = 1, the qualitative lottery (\/x, 1/y) is the consistent
possibility distribution onX defined, as usual, as

A if z=2a

Nz, pufy)(z)=Q p, f 2=y
0, otherwise.

5For the sake of simplicity, we shall generally omit the reference to the uncertainty set.
6WhenV is a finite linear scale, botl (X ) andIT*(X) are the same set.
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The Possibilistic Mixture is now an operation defined (X ) that combines two
consistent possibility distributions; and s into a new one, denote@/my, uu/m2),
with A\, . € V andA Vv u = 1, defined as

(A1, p/me) (@) = (AA T (2)) V (1 A ().

In order to have a closed operationldn(X ), the mixture operation is restricted to
IT*(X) requiring the scalars to satisfy an additional condition, i.er,ik’ € IT*(X),
we considef\/, u/7") with X\, i € V beingh =1 orpu = 1.

Now, asV is distributive, we may verify that reduction of lotteries always holds.

Proposition 7.4
VA1, Ao, i, i €V S.EAM VA =1, YV € H(X),

(A /(Um0 / X)), Ao/ (L7 a2/ X)) = (1), (M A pn) V (A2 A pz) / X).

Proof:
By definition of lotteries, we have that

M/ 71/ X), Ao/ (7 2/ X)) (2) = (M A(7(2) V)V
(A2 A (7(2) V p2))
=7 (MAT(2) V(e AT(2) V
(A A p1) vV (A2 A pz))
=8 7(2) V(A Apn) V(A2 A pg)).

Therefore, we have that

A/ (/7,02 /X)), Ao/ (U, pa/ X)) = (17, (A A pa) V (Mg A pa2)] /X,
O

Consideru: X — U a preference function that assigns to each consequence of
X a preference level of/, requiringV andU to be commensurate, i.e. there exists
h:V — U a{0,1}-homomorphisnrelating both lattice$” andU. Letn be the reversing
homomorphismm:V — U defined as(\) = ny (h(X)). It also verifiesn(0) = 1, and
n(1) = 0. For anyr € IT*(X), consider the qualitative utility functions:

QU (m) = N (n(x(z)) Vu(z)),

zeX

QUt(m) = \/ (h(r(a)) Aula)).®

zeX

Now, we will introduce the axioms that characterise the preference relations induced
by these functions and some results that we need for the representation theorems.

7By distributivity and associativity ifV.
8Sincer; Va2 = 1,(M AT) V(A2 ATT) =
90bviously whenl” anU are linear scales these functions recover the ones introduced in Chapter 4.
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Proposition 7.5
If U is a distributive lattice with involution QU= andQU preserve the possibilistic
mixture in the sense that the following expressions hold:
QU-(V/m, /) = (n(X)V QU™ (m)) A (n(k) v QU™ (2)),
QUF(N/mi,pu/m2) = (h(A)AQUT(m))V (h(n) A QU™ (m2)).
Proof:

QU (Nmp/ma) = N\ ((Mmy, u/me)(@)) V ulx))

zeX

= A ((((m ANV (12 A ) (@) V u(@)™®

zeX

— /\ (((n(m(z)) V(X)) A

zeX
(n(ma(2)) V() V u(z)™

= AV @lm (@), n(0), u(@))) A

zeX

(\ (n(ma(@)), n(n), ul))))*
= (A (Vn(m(@),n(\), u(@))) A

(gc/e\i(\/(n(ﬂz(:L’))7n(u),U(SL’))))13
= (w;\)((n(k) V (n(mi(2)) V u(@)))) A

(IZE((N(M) V (n(m2()) V u(2)))) ¥
= (J(Cn(k) v ( é{(n(m(m)) vV u(x))))) A

(n(p) v (x&(n(ﬂz(x)) Vu(z))))

= (A VQU™ (m)) A (n(p) vV QU™ (m2)).

Therefore QU ~ preserves the “possibilistic” mixture.
The proof forQU is omitted because of it is analogous to the pessimistic one[]

Now, we have utility functions for making decisions on lattices, in the usual hypotheses
that ranking decisions is a problem of ranking normalised possibility distributions.

10Sincen = ny o h, and k is homomorphism, we have that(A v \') = n()\) A n()\) and
nAAN) =n(A) V().

USinceU is a distributive latticea V (b A c) = (a Vb) A (a V ¢).

12pssociativity ofA.

LAassociativity of V.

Lpistributivity: a V (bAc) = (a Vb) A (a V c).
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7.2.2 Characterisations for Ordinal/Qualitative Utility Functions

In this Section, we characterise the orderings induced by these functions as well as the
preference relations that are representable by these functions.

Proposition 7.6
Let(IT*(X), C), satisfying

o AP1(structure) : (II*(X), C) is a pre-lattice.
e A2 (uncertainty aversion)f r < 7’ = 7' C 7.
Then,
1. Themaximal® elements of11*(X), C) are equivalent.

2. The maximal elements dtX,C) are equivalent, and they are equivalent to the
maximal elements dfil* (X)), C).

Proof:

1. By AP1, (IT*(X), C) is afinite partial pre-order, then exists at least one maximal
element w.r.tC . Let m; andw, be maximal elements.
By AP1, existsSU P(my,ms). Letw € SUP(m,m2), then

mdm and 7 3w,
but asm; andwy are maximal elements, it must be

T ~ T~ T,

2. Let 7, be a maximal element gfX, C). Suppose it is not a maximal element
of (IT*(X), C). Hence, existr € (II*(X),C) s.t. Tps C w. As 7 is normalised,
existsz € X s.t.w(z) = 1,s0byA2, we have thatas < 7, thenz J 7 JTy,.
Contradiction sinc&,, is maximal in(X, C).

So, T)s is also a maximal element dfil*(X),C), and by 1) all maximal
elements of II*(X), C) are equivalent, so all maximal elements(éf, C) are
also equivalent.

O

Axiomatic setting

Let AXP be the following set of axioms ofil*(X),C) (as usualg ~ 7’ < = C
7 andw 3 7'):

e AP1: (II*(X),C) is a pre-lattice.

157 is amaximal elemeriff Vo’ € IT* (X),n C 7' = 7/ ~ 7.
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e A2 (uncertainty aversion)if r < «’ = «' C 7.
e A3 (independence)r; ~ my = (A/m1, u/m) ~ (N/m2, p/7).

Let 7 be a maximal element ofiI*(X), C) so, for each\ € V, we consider
my = (1/7, A/ X).

o AP4:Vre II"(X), INeVstr~m,.

o AP5:if 1, Ty, = W;V(/\) | W;V()\,).

e AP6(incomparability preservationif A <> )\ = 7, COm,,.

AP1 says that the quotient séfl*(X)/ ~,LC) results a lattice. A2, A3 and
AP4 have the analogous meanings to the linear case, whifé establishes that
two incomparable values of uncertainfyand\’, lead to two incomparable lotteries.
Finally, AP5 says that the preference between lotteries with degrees of unceriainty
and )\’ with respect to a maximaf results reversed when the lotteries are considered
with the respective “opposite” values of uncertainty.

Remark 8
If AP5 holds then,

TN ~ TN\ = Ty (A) ™ Ty (M)-

Lemma 7.7

Let(U,<y,0,1,ny) and(V, <y,0,1,ny) be two distributive lattices with involution,
h:V — U a epimorphisif andu:X — U.

If (QU-)~1(1) # 0 and(QU~)~1(0) # 0, then

o there exists € X s.t.u(zx) =1 and/\ . x u(z) = 0.
e QU™ is onto.

lema

Proof:

e Since(QU~)~1(1) # 0, there existst s.t.
QU (@) = N\ (n(7(x)) Vu(x)) =1,
zeX

thenn(7(x)) Vu(z) = 1 Vo € X. As7 is normalised there exists, € X s.t.
7(x1) = 1, hencel =n(1) V u(xy), sou(z;) = 1. On the other hand,

QU™ (X) = N\ (n(X(2)) Vu(2)) = /\ OVu@) = /\ ux).

rzeX zeX zeX

18|n fact, to bery well defined we are assuming that1 and A3 are also required
In fact, in the proof we only requirk to be onto and to satisfy(0) = 0 andh(1) = 1.
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Since(QU~)~1(0) # 0, there existsr s.t. QU (7) = 0, and asQU ~ (7)) >
Asex u(z), we have that
/\ u(x) = 0.

zeX

e Givenw € U, sincen is onto there exista € V' s.t. n(A\) = w. As we have seen,
there existse; € X s.t. u(zy) = 1, thusA o,y u(z) = 0. Letm, be the

distribution defined as
1, if z=x
mw(2) = (7.3)

Then,
QU () = N\ (n(mu(@)) Vu(z))
zeX
= n(A)V A )
zeX—{z1}
= n(})
= w.
O
Lemma 7.8
Leth:V — U be an onto non-decreasing function satisfying that
if A <> X thenh(\) <> h(\).
Then,h is a lattice epimorphism.
Proof:
First, we verify thath also satisfies that
R(X) > h(X) then) > ). (7.4)

Indeed, suppose that £ A, i.e. M’ > Aor A <> ). But,
e if A <> X, then, by hypothesigi(\) <>y h()\’). Contradiction.
e if X > )\, ashis non-decreasing, ther(\’) > h(\). Contradiction.

So, it must bex > ).
Now, we verify thath is distributive w.r.t.A andv.
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o h(A)VhA(N)=h(AVX).
Indeed, as: is order-preserving we have thiath) v h(X) < h(A Vv X).

<
As h is onto, we have that there exigtss V' s.t. h(\) V h(X\) = h(u), and thus
h(w) > h(X) andh(u) > h(N).

— If h(A\) <> h(X) thenh(p) > h(X) andh(u) > h(XN).
As h satisfies (7.4), we have that> A andy > X, sou > AV ).
Thereforehi(u) > h(AV X),i.e. h(A) V A(N) > h(AV N).

— Otherwise (X)) > k(M) or h(X) > h(N).
Suppose that(A) > h()\), thenh(X) V R(XN) = h(N).
Observe that sinck(\) > h()'), by hypothesis we have that<> X' is
impossible, so it must be

A< XN or A> )N (7.5)
Therefore, since
~n [ R(A) i AN
h(AV ) = { AN) if A<V, (7.6)

we have that

h(A) V A(X) > h(AV ).

Analogously, ifh(X\) > h(\) we obtain thath(A) V A(N) > h(AV X).
Thereforeh(A) V R(N) = h(AV X).

e In a similar way, we may verify that

AAAN) = h(\) AR(N).

Therefore is a lattice epimorphism. O

Finally, let< - be the preference ordering i (X') induced byQU —, i.e.

T<qu- 7 iff QU (m) <uy QU ().

In the following, we state that the set of axio®XP characterise these preference
orderings.

Theorem 7.9 (Representation Theorem for Pessimistic Utility)
A preference relatiofl1* (X)), C) satisfies axiomsl X P iff there exist

(i) a finite distributive utility lattice(U, A, V,ny, 0, 1),

(ii) a preference function:X — U, s.t.u™'(1) # 0 and\ ¢ y u(x) = 0,
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(i) an onto order-preserving functianV — U also satisfying
if A<>X then h(\) <> h()\), (7.7)

and
ny ohony = h'8, (7.8)

in such a way that it holds:
' Criff 7’ Sgu- ™
withn = ny o h.

Proof:

— ) We have to verify that the preference orderind®r{ X ) induced byQU ~ satisfies
the above set of axioms. Agy is a partial order,< - is reflexive and transitive.
By Lemma 7.7QU ~ is onto, so we may define

SUP(m,x") = (QU™)"HQU™ (m) v QU™ (")),

and
INF(r,7') = (QU™)"HQU ™ (m) A QU™ (x")).

Then, by Theorem 7.3]1* (X)), <qu- ) is a pre-lattice.

A2 results from the fact that andA are non-decreasing it andn is a reversing
function. While, A3 is a consequence of the fact th@/ — preserves mixtures.

Letus prove nowAP5: if m" <qu- ™y = T, () FeUu- Ty (-

Let 7 be a maximal element dii*(X), so QU (%) = 1. As QU™ preserves
mixtures and)U ~ (X) = 0, we have thaQU ~ (7, ) = n(\).

Asny onony = nandny andny are involutive, then

n(A) <n(X) = n(ny(N) = nu(n(X) 2 ny(n(X)) = n(ny (X)).

That is, AP5 is verified.
APG6 is a consequence of the,,- definition and that satisfies (7.7).

Now, we checkAP4. Let 7 be maximal element ofl*(X) w.rt. <gu- . As
QU (1/7, A/ X) = n(\), then

QU (1) =n(\) = QU (1/7,A/X) VYA en Y QU (n)).

—) The proof is very analogous with the one given for the linear case. We again
structure the proof in the following three steps.

1. We define the distributive utility lattic& with involution ny;, and a reversing
mappingn from V to U, satisfying if \ <> )\ thenn(\) <>y n()\), and
ny on ony = n. SO, we consider the preserving mapping- ny o n. Hence,
h will satisfy (7.8) and (7.7).

By Lemma 7.8} is actually a lattice epimorphism.

18This means thak is a mophism w.r.t. negations i andU.
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2. A function QU :II*(X) — U representing—, i.e. such thatQU (w) <
QU (') iff # C #’, is defined.

3. Finally, we prove thaQU ™~ (7) = A\, cx (n(7(z)) V u(x)), where
u:X — U is the restriction ofQU ~ on X. v also satisfies that=1(1) # () and

Nzex ulz) =0.
Now, let us develop these steps.
1. We consider odl*(X) the equivalence relation defined as
7w ~7n < 7 C« andn’ C 7.

By AP1,II*(X)/ ~ is a lattice. As in the linear case, we take as utility lattice
U =1I*(X)/ ~ . As Theorem 7.3 guarantees the existenc8©Gf andI N F,
we define inU the operationg andV induced by them, i.e.

[r] V [7'] = SUP(m,n"),
and
[7] A [x'] = INF (m, 7).

The <y induced fromv coincides withC . It is not difficult to verify that[X]
is minimum of (U, <y), and if 7 is a maximal element ofl*(X), [7] is the
maximum onlJ.

Let 7 a maximal element dil* (X)), and for each\ € V let

T = (/7 A/ X),

and letn:V — U be defined as

n(A) = [y ].

Itis not difficult to see, analogously to the linear case, thistonto, and thatl2
guarantees: actually reverses the order. Now, we definefrom n andny, . For
eachw € U, we define

ny (w) = n(ny(A)),

with A € V s.t. n(\) = w. By AP5, see Remark 8py is well defined. By
AP6,n satisfies

if A <> X thenn(\) <> n(\),

and by definition ofi;, we haveny onony = n andny o ny = identity. Let
h = ny o n. Then,h satisfies the conditions required.

Hence, a: is a reversing epimorphism, ardis a distributive lattice, so i§.
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2. As usual,QU~ can be defined ofil*(X) in two steps. First, we define it on
lotteries of typer, , asQU ~ (m, ) = n(\).
AP4 lets us to extend this definition. Sinter IAs.t.m ~ (1/7,A/X), we
defineQU ~ (w) = n(A). Itis not difficult to verify thatQU ~ representg .

3. Consideru: X — U defined asi(z) = QU (z).
It remains to prove thaQU~(7) = A, cx (n(m(z)) V u(z)). To verify this, we
will prove the following equalities:

o QU (A/m,A2/m2) = (n(A) VQU (1)) A (n(A2) V QU™ (m3)) with
either\; =1 or )\, = 1.
By AP4,3u, v s.t.
m o~ (1/7,u/X) and g ~ (1/7,v/X).
By A3,
A/, Ao /m2) ~ (M /(17 1/ X), Ao/ (1/7, v/ X)),
and reducing lotteries we obtain
(A1 /m1, Aa/ma) ~ (/T (A A p) V (A2 A )/ X).
Therefore, as is a reversing morphism, we have
QU™ (\i/m,A2/m2) = n((MAp)V (A2 A7Y))
= (n(A1) Va(p) A (n(A2) Vn(y))
(n(A1) V QU™ (m)) A (n(A2) V QU™ (m2)).

Therefore, we have that
QU_(TFl vV 7T'2) = QU_(Tl'l) N QU_(ﬂ'Q).
More generally, QU= (V,_, , m) = A\i=y, QU™ (m).

o QU (m) = N\izy...p (n(m(2:)) V ul(z)).
As7 € II*(X), thend z; € X s.t. w(x;) = 1. Without loss of generality
assumg = 1. Let

T = (1/1‘1,7’((.%1)/1’2)

m= V m
1=1...,p

Since

we have that

QU (m) = QU ( m)



Finally, asw is normalised, there exisig € X s.t.7(z) = 1, soxg < 7. Then,
by A2, o O 7. ASQU ™~ representg,

QU™ (z9) > QU (T) =1,

henceu(zy) = 1, sou'(1) # 0. As QU™ (X) = 0, and QU™ (X) =
Npex u(z), thenA\ oy u(z) = 0.

This ends the proof. d

As usual, in many situations we may be interested in an optimistic behaviour. With
this goal, we consideg g+ the preference ordering di (X)) induced byQU *, i.e.

T<qu+ ™ =  QUT(m) <QUT(n').

In order to represent this optimistic preference relation, we have to change the
uncertainty aversion axiom2 by the usual uncertainty-prone postulate:

o A2T:if # < 7/ thenw C «/,

and to modify the axioms involving; . Indeed, consider now, = (\/X,1/x),
wherer is a minimal on(II*(X), C), we have that

o AP4Y :Vr e II*(X), 3\ € V such thatr ~ 7.
T + + +

o AP5T:if i C ), = T (3) 2 Ty (31)-

e AP6TIifA<> N = nf COnf.

Now, the Representation Theorem says:

Theorem 7.10 (Representation Theorem for Optimistic Utility)

A preference relation C
onI1*(X) satisfies axioms setX PT = {AP1, A2 A3, APAT, AP5% AP6t}
iff there exist

(i) a finite distributive utility lattice with involutior(U,V, A,0,1,ny),
(ii) a preference function:X — U, s.t.u='(0) # 0 and\/ . y u(x) = 1,

(iif) an onto order-preserving functiol:V. — U, s.t. ny o h o ny = h, and also
satisfying

A <> X thenh(\) <> h(N),
in such a way that it holds:
' Cw — ' Squ+ T

The proof is very analogous to the one for pessimistic utility, and it will be omitted.

BAs 7(x1) = 1, thenu(z1) = u(x1) V n(n(z1)).
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7.2.3 Generalised Qualitative Utility Functions

Now, we assume available other operators (t-normdj.ithis assumption lets us to
consider also other operations Hri(X ). Before analysing this point, let us introduce
some notation and some previous facts about residuated lattices that we will use in the
following.

Definition 9

Given(L, A, V,0,1) afinite lattice, &-norm (t-conorm) operatiofi (L) on L is a non-
decreasing, associative and commutative binary operatioh werifying AT0 = 0

andXT1 = X (AL0 = Xand\Ll1 = 1,resp.) for all A € L. The residuum of
T, I:L x L — L, is defined as

I(a,c) = \/{b|T(a,b) < c}.
(T, I) is anadjoin pairif the following conditions hold:
1) (L, T,1) is a commutative semigroup with unit element 1.
2)Va,b,ce L, (aTb) <c iff a<I(bc).
(L,A,V,T,1,0,1) is aresiduated latticéf (L, A, V,0,1) is a lattice and T, 1) is an
adjoin pair.

We will denote by(V, Ay, Vy,0,1,ny, T) a finite distributive lattice of uncertainty
values with involutionny and T a t-norm onV. (U, Ay, Vi, 0, 1, ny) will be a finite
distributive lattice of preference values with involution. As before, in#thet and

join operators notations we will usually omit the reference to the lattice, assuming that
they may be identified by the context.

Theorem 7.11

Let (L,A,V,0,1) be a finite lattice, and a t-norm onL. Then, T distributes over
the lattice joint operation (that iSa vV b)Tc = (aTc) V (bT¢), Va,b,c € L) iff
(L,A,V,T,1,0,1) is a residuated lattice.

Proof:
—) Supposéa Vb)Te = (aTc)V (bTe), Va,b,c € L. Hence,

o (aTh) <c¢ = a < I(b,c) by the definition off

o letD = {d € L|(bTd) < ¢}, D is closed under supremum. Indeed by
distributivity of T w.r.t. vV, we have that

(\/ d)Tb: \V @mp) < \/ e=c,

deD deD deD

s0(V4ep d) € D. Therefore, if

a<I(bc)= \/ d

deD
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then

(aTh) < ( \/ d) To=\/{(dTb)|d € D} <.

deD
) Cf. Lemma 2.3.4 of (jek, 1998).

GeneralisedV-Mixtures and Utilities

We have seen in previous chapters tht — and QU™ are “utility” functions on
IT*(X), in the sense that they preserve the preference ordering and the max-min
combination of possibilistic mixtures. Now, we analyse the conditions required
to guarantee that the generalised utility functions functions preserve a generalised
possibilistic mixture. Instead of applying max-min combination of possibility
distributions, we consider other mixtures involving t-conorms and t-norms. For each
t-norm T and conormL on V, we will be interested inL — T mixtures that combine

two possibility distributionsr; andn, into a new one, denotetd+ ; (1, m2; Ap), with

A€ Vand\ Ly =1, defined as:

My 1 (w1, w3 A ) () = (AT (2)) L(p Tra ().

Remark 9
We require these mixtures to satisfy reduction of lotteries, that is:

M+ (M~ 1 (71, m25 A1, A2), M 1 (71, 73 i, pi2)s o, ) =
M i (71,725 (@T A1) L(BT 1), (@TA2) L(BT pa)).

Hence, we need th&tTc)L(bTe) = ¢T(ald) be satisfied. Therefore, we have to
restrict ourselves tg — T mixtures. Indeed, De Cooman and Kerre prove that jK)

is a bounded patrtially ordered set, then if a t-nornen (L, <) is distributive w.r.t. a
conorml in L itimplies that

(aTb)La=a, Va,be L. (7.9

Moreover, (7.9) implies that. satisfies idempotency, and they prove that the only
conorm idempotent igoin (see (De-Cooman and Kerre, 1993; Propositions 3.5, 3.6 and
3.7) for more details). Besides, by Theorem 7.11 we have to regdire V/, T,1,0,1)

to be a residuated lattice. Henceforthwill be assumed to be a finite, residuated, and
distributive lattice with involution. From now o/+ denotes\[ ..

So, for each t-norml' on V, we may consider a generalised T-Possibilistic
Mixture. In order to have a closed operation HA(X), the scalars\, u involved
in the mixture operation are also required to satisht 1 or = 1.

Since now we have iV other operators besidésfimum we can consider here
another alternative for modelling implication instead of = u) = n(v) V u, namely
the S-implication-likedefined in (5.6), but now with lattices,
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(v = u)=n(vTz2)

with n(z) =, T at-norm onV, n = ny o h, andh:V — U an onto order-preserving
function.u: X — U that assigns to each consequenc&’d preference level df, for
a pessimistic behaviour we propose

GQU™ (rlu) =[x Cul= )\ n(x(z)TA),

zeX

with A, s.t. n(A\;) = wu(z). As usual, to guarantee the correctness of the above
definition of implication we requiré to satisfy the coherence condition w.rTt,

h(A) = h(n) = h(aTX) = h(aTw) Va, A\ € V.

Like in Chapter 5, notice that, for example, either when= A or whenh is
injective this condition is satisfied. If is coherent w.r.t.T, so isn.

Instead, for an optimistic behaviour we consider the t-norm as the conjunction, that
is we consider

GQUT (m|u) = [r Nu] = Ve x h(m(2) Tha)

with u, s.t. u(z) = h(u,). Observe that a¥ is a residuated distributive lattice with
involution, if & is join-preserving, thelzQU ~ andGQU ™ preserves the possibilistic
mixture in the sense that:

Lemma 7.12
GQU~ andGQU ™ preserve the possibilistic mixture in the sense that it holds

GQU ™ (M~ (my,m; M\ 1)) = (n(ATé1) An(uTda))
GQUT (M~ (my,ma; A, 1)) = (R(ATy) V h(uT2))

with n(6;) = GQU~ (w}), h(v;) = GQU*(r;).

Proof:
As both proofs are analogous, we only include the prooff@U —. By definition

GQU ™ (M (w1, w25 A, 1)) = Ny, ex MM (1, 725 A, o) (@0) Ti)

wheren(y;) = u(x;). Since

M (my, o A p) (@) Ty = [(ATmu(es)) Vv (T ma(s))] Ty
=20 [ NTmy (@) Try] V [ Ta(2s) Tl
then
n((Mr(m1,mos A ) (@) Tvi) = n((ATm (@) Tyl V [T () Til)

=21 p(ATry () Ty) An(uTme () Ty),

20Because ofa vV B) Ty = (aTv) V (8TY).

116



SO

GQU™ (M (m,mo; A ) =\ n(Mr (w1, mo; A, ) () Ty)
z;€X

= /\ (n( AT (z) Ty) A

r,€X
n(pTma(x:i) Ti))

= { /\ AT (z:)Ty) P A
r;€X

{ /\ n(puTme(zs) Tys)

z;€X

Since

/\ n(ATm(x)Ty) = n( (ATWl(Ii)T%)>
r,€X i, €X

= n(AT( \V (m(:m)ﬁﬂ)),

z,€EX

then

GQU_(MT(Fl,WQ;)\,M)) = {TL(/\T( \/ wl(mi)"l"yi))}/\

Since
n(Va,ex (@) Tv) = Ag,ex n(m5(@:) Tvi) = GQU ™ () = n(5;),

under the coherence hypothesis, we obtain that

nAT(V,,ex m(x) Tyi)) = n(ATér),
and analogously, we have that

n(lﬂ—(\/mex T (w4) Ts)) = n(uTo2).
Hence,

GQU ™ (M~ (w1, m2; A, 1)) = n(ATd1) An(uTd),

with n(0;) = GQU ~ (7;).

21sincen(a v b) = n(a) A n(b).
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Representation of Generalised Qualitative Utilities

In this Section, we propose a set of axioms to characterise the generalised pessimistic
and optimistic qualitative utilities for normalised possibility distributions in the present
framework of lattice measurements.

Given (V,Av,Vy,0,1,ny,T,I) a finite distributive residuated lattice of
uncertainty values with involutiomy, and T a t-norm we consider the following
axiomatic setting.

Axiomatic Setting
Let AX Pr be the following set of axioms ofil* (X, V'), C, M),
e AP1:(II*(X),C) is a pre-lattice.
e A2(uncertainty aversion)if r <7’ = 7 J 7.
e A3+r(independenceyr; ~ my = M (my,m; A, 1) ~ M+ (me, w5 A, ).
Let 7 be a maximal element ¢fiI*(X,V),C, MT). So, for each\ € V, we consider
= Mt (7, X1, )22,
o AP47 :VrelIl*(X),IN eV strm~m,.
o AP5t:ifmy Cm,, = 777:‘/(/\) | 71';‘/(/\,).

e AP6T:if A <> )N = my COm,y,.

In order to represent an optimistic preference criterion, we consider now the
distributionry defined asr{ = M+ (X, x, \, 1), wherer is minimal of (II* (X), C),
and we have to change the uncertainty aversion axitrby the uncertainty-prone
postulate:

o A2T:if r < 7/ thenw C «/,

and to modify the axioms involving the lottery, by the axioms related with} , that
is, we have:

o APAT :Vr e II*(X),IN € Vsitr ~ 7,

o APSTiifal Tl = wb 3 7h )

o AP6T:if A <> N = 7w Cany.

Lemma7.13

Let (U,Au,Vu,0,1,ny) a distributive
lattice with involution andV, A, Vv, T,1,0,1,ny) a residuated distributive lattice with
involution, h:V' — U an onto join-preserving mapping satisfying coherence viir,t.
andu:X — U. If (GQU)7*(1) # 0 and(GQU~)~1(0) # 0 (if (GQUT)~*(1) # 0
and(GQU*)~1(0) resp.), then

22ps usual, to ber, well defined we are assuming tha1 and A3 are required.
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a) there existe € X s.t. u(xz) = 1 and A .y u(z) = 0 (there existsr € X s.t.
u(z) = 0 and\/ .y u(x) = 1, resp.).

b) GQU ™ is onto GQU ™ is onto, resp).

Proof:
We only provide the proof related with the pessimistic criterion, being the other very
analogous.

e Since(GQU~)~1(1) # 0, there existsr s.t.
GQU~ () = N\ n(m@)TA) =1,
zeX

with n(A\;) = u(z). Thenn(m(x)TA;) = 1 Vo € X. AsT is normalised there
existsz; € X s.t.7(z1) = 1, hencel = n(1TA;,) = n(Ay,) = u(ay).

e Onthe other hand, sind&QU ~)~1(0) # ), there existsr s.t. GQU ~(7) = 0,
and asr < 1, thenn(w(z) TA,) > n(1TA;) = u(x). So,

0=GQU (r)> N\ ulx),

zeX

therefore we have that

/\ u(zx) = 0.

zeX

e Givenw € U, sincen is onto there existd € V s.t.n(\) = w. As we have seen,
there existse; € X s.t. u(zy) = 1, thusA o,y u(z) = 0. Letm, be the

distribution defined as
1 if z=x
() = (7.10)
A otherwise.
Then,
GQU (mw) = /\ (n(mw(@)TAs))

reX

= n(lT)\ml)A( A n()\T)\m))

zeX—{z1}

= N\ n(ATA)

zeX—{z1}
n( \ ()\T)\I))
zeX—{z1}

()
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Recalling thatn(l) = 0 = A,cx_pw@) = Nex—qayn(he) =
n(V ,ex—{z1} A=), and by coherence condition we have that

GQU ™ (my) = n(AT1) = n(A) = w.

The Representation Theorem comes next.

Theorem 7.14 (Representation for Pessimistic/Optimistic Utility)
A preference relatiofl1*(X),C, M) satisfies axiomsiX Pr ( AXP{ resp.) iff
there exist

(i) a utility finite distributive lattice with involutior(U, A, V,ny, 0, 1),

(ii) a preference functiom:X — U, s.t. u='(1) # 0 and A .y u(z) = 0, (s.t.
u=1(0) # 0 and\/ .y u(z) = 1, resp.)

(i) an onto join-preserving mappiny:V — U, satisfying coherence w.r.iT, and
also satisfying
if A <> X thenh(\) <> h()\),
andny ohony = h,
in such a way that it holds:
7 Cr < GQU (r'|u) <y GQU ™ (r|u).
(' C7 = GQU*(r'|u) <y GQU* (r|u) resp.)

Proof:

< ) We have to verify that the preference orderingIdh(X) induced byGQU ~
satisfies the above set of axioms. Asy is a partial order,<qqu- is reflexive and
transitive. By Lemma 7. 7QU ~ is onto, so we may define

SUP(m,7") = (GQU )" HGQU ™ (n) vV GRU (x")),

and
INF(m,7') = (GQU ) HGQU ™ (7) AGQU ™ (7).

Then, by Theorem 7.@1*(X), <cqu- ) is a pre-lattice.

A2 results from the fact that andA are non-decreasing i andn is a reversing
function. While, A3+ is a consequence of the fact th&QU ~— preserves mixtures.

Letus prove nowA P57 if 3’ Scou- ™y = T, () FeQu- Ty, (-

Let 7 be a maximal element di*(X), soGQU~ (7) = 1. As GQU ~ preserves
mixtures andGQU ~ (X) = A cx n(X(z)TA;) = 0, we have thaGQU ~ (7} ) =
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n(1Td1) An(ATds), withn(d) = GQU(7) =1, n(d2) = GQU~(X) = 0. So, by
coherence condition,

GQU™ (1)) = n(ATd2) = n(AT1) = n(A).
Asny onony = n, andny andng are involutive, then
n(A) <n(\) = n(nv(N) =nu(n(N) > nu(n(N)) = n(ny (V).

That is,AP5 is verified.
APG6 is a consequence of the; - definition and that, satisfies (7.7).

Now, we checkAP4+. Let 7 be maximal element dfl*(X) w.r.t. <gqu- - As
GQU™ (m, ) = n(A), then

GQU (m)=n(\) =GQU (1) VYAen Y(GQU™ (r)).
—) We structure the proof in the following three steps.

1. We define a finite distributive utility lattic&” with involutionng;, and a reversing
mappingn from V' to U, satisfying if A\ <> )\ thenn(\) <>y n()), and
ny onony = n. SO, we consider the preserving mapping- ny o n. Hence,
h will satisfy (7.8) and (7.7).

By Lemma 7.8/ is actually a lattice epimorphism.

2. A function GQU ~:II*(X) — U representing_, i.e. such thaGQU ~(x) <
GQU~ (') iff m C «', is defined.

3. Finally, we prove thaGQU ~ (7)) = A c x (n(7(z) T A;)), where
u:X — U is the restriction olZQU ~ on X. v also satisfies that=!(1) # () and

Nzex u(z) =0.
Now, let us develop these steps.
1. We consider odl*(X) the equivalence relatior defined as
7w ~7n < 7 C« andn’ C 7.

By AP1,11*(X)/ ~ is a lattice. We take as utility latticE = IT*(X)/ ~ .
As Theorem 7.3guarantees the existenc8©Gf° andI N F, we define inU the
operations\ andV induced by them, i.e.

[r] V [7'] = SUP(m,7"),

and
[f] A [x'] = INF(m, 7).

The <y induced fromv (or A) coincides withC . It is not difficult to verify that
[X] is minimum on(U, <), and if7 is a maximal element di*(X), [7] is the
maximum onU.
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Let 7 a maximal element dil*(X), and for each\ € V let
Ty = (1/m, A/ X),

and letn:V — U be defined as

n(A) = [y ].

It is not difficult to see that is onto, and thatl2 guarantees: actually reverses
the order. Now, we definey from n andny, . For eachw € U, we define

ny (w) = n(ny(\)),

with A € V s.t. n(A) = w. By AP5, m, ~ ), impliesmjvm ~ T
henceny is well defined. ByAP6+, n satisfies

ny (N)?

if A <> A thenn()\) <> n(\),
and by definition of.;, we haveny onony = nandny o ny = identity. Let
h = ny o n. Then,h satisfies the conditions required.
Hence, as: is a reversing epimorphism, afdis a distributive lattice, so iF.
. GQU~ can be defined ofi*(X) in two steps. First, we define it on lotteries of
typen, ,asGQU ™ (r, ) = n(A).
AP4+ lets us to extend this definition. Sinter IAs.t.m ~ 7, we define
GQU~ (m) = n(A). ltis not difficult to verify thatGQU ~ represents .
. Considern: X — U defined asi(z) = GQU ™ (z).
It remains to prove that QU ~ () = A, x n(m(z) T A, ). To verify this, we will
prove the following equalities:
] GQU_(MT(ﬂ'l, Ty, A1, )\2)) = (n()\lTél)) A\ (n()\QT(SQD
with n(d,;) = GQU (m;), j=1,2, and eithen; =1 or A, = 1.
By AP4+,3du,y s.t.

T~ T, and Ty ~ T

By A3,
M (7,25 A1, Ag) ~ My (7, , 75 A1, A2)

and reducing lotteries we obtain o
M (my, w25 A1, A2) ~ M (7, X; 1, (A Tp) V (A2 T9))).
Therefore, as is a reversing morphism, we have
GQU™ (M (my,m2; A1, A2)) = n((MTp)V (A2T7))
= n(MTp) A (n(A2TY)).
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Hence, by coherence, we have that
GQU_(MT(Wl,’]Tg;)\l,)\Q)) = n()\lTél) /\n()\gT52)

As a consequence, we have that

GQUi(TI'l V 7T2) = GQU7 71'1) AN GQU7(7T2).
More generallyGQU ™~ (V,—,_,, ™) = Niz1., GRU ™ ().

o GQU™(m) = Nicy_p, (n(7(@:) TAs,))-
Asm e II*"(X), thend z; € X s.t. w(z;) = 1. Without loss of generality
assumeg = 1. Let

A~ —

i = M+ (x, 23,1, 7(x5)).
Since

we have that

GQU (m) = GQUu— | \/ m
1,

=2 N n(r()TA,)

i=1,...,p

Finally, asw is normalised, there exisig € X s.t.7(z) = 1, soxy < 7. Then,
by A2, zqg O 7. ASsGQU ™ represents,

GQU™(z0) = GQU~(7) = 1,

henceu(zg) = 1, sou"'(1) # 0. AsGQU(X) = 0, andGQU(X) =
Nzex u(z), thenA _ u(z) = 0.

This ends the proof for the pessimistic criterion, the optimistic one is very similar.
O

Remark 10

As h is onto and non-decreasing,Vif is linear, so idJ (i.e. If U is non-linear, then

V is non-linear as well). Moreover, as a consequence of the condifioh <> )\
thenh(\) <> h(N)", if V is non-linear so i4J. Hence, for the case that the linking
mappingh is a non-decreasing function also satisfying (7V7)andU are either both
linear lattices or both non-linear lattices. That is, the cases analysed in the previous
Chapter of having a linear scale of uncertainty and a partial order on the cartesian
product of preferences, or having a linear scale of preferences and a partial order on
the cartesian product of uncertainty are not covered by Theorem 7.14.

BAs(x1) = 1, thenu(z1) = n(r(z1) Tz, ).
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7.3 The Particular Case of Allowing Different Types of
Measurement Lattices

In the introduction of this Chapter we announced that there exist decision making
problems in which incomparability may not be preserved by the mapping linking
andU. In this Section, we analyse these cases. [Ldte a finite linear scale, and let
(V,A,V, T,1,0,1,ny) be aresiduated distributive lattice with involutiénph:V — U

is an onto join-preserving mapping satisfying coherence w.r.andu: X — U. Under
these hypotheses, let us consider:

GQU (m|u) = gICIél)I(l n(m(z)TAz),

with A\, s.t.n(\;) = u(x), and

GQUY (wlu) = max h(m(2) T prz)

o being s.t.u(x) = h(u,). As usualGQU; andGQU " preserve the possibilistic
mixture in the sense that the following expressions hold,

GQU (M (my, mo; A, p)u) () = min{n(ATor),n(pTds)},
GQU (M (my, ms A, pllu)(z) = max{h(ATy1), h(uT72)},

with n(8;) = GQU; (mj|u), andh(v;) = GQU; (rjlu), for j =1,2.

We consider as usual the set of distributi@dfig X, V') with the mixture operation
M+. We want to characterise the orderings induced by Giigl/;, and GQU
functions. With this goal, we consider the following axiomatic settiig P+ =
{Al, A2, AST, AP4T, APGeqT}, with

e APbeqr:if A <> )N = Ty~ TN

whererry, = M+ (7, X; 1, \), with 7 being a maxim&P element of I1* (X, V), C).
Observe that since> is symmetric we have that <> X' = 7, ~ 7.
AP6eqt establishes that two incomparable values of uncertaxignd \’, lead
to two indistinguishable lotteries, the lottery associated with their supremum being
indistinguishable with them as well.
For an optimistic behaviour we consider the axiom sBXP{ =
{A1, A2F, A3+, APAT, AP6eq*}, with

o AP6eghiif A <> N = 7 ~

whererr = M+ (X,x; A, 1), with = a minimal element ofI1* (X, V), C, M+).

24In Section 6.4.1 it has been mentioned that we have only considered there the special case of having a
linear scale of preference and the same scale in the cartesian product where we measure uncertainty. The case
of having different scales remains an open question. Here, we provide a first answer.

25| fact, to ber well defined we are assuming that and A3+ are required.
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Theorem 7.15 (Representation Theorem)

A preference relatiofl1* (X, V), C) satisfies axiom$&X P+ (BX P resp.) iff there
exist

(i) a finite linear utility scald’/,
(i) a preference function:X — U, s.t.u=1(1) # 0 # u=1(0),
(i) an onto join-preserving mappint:V — U, satisfying coherence w.r.fT , and
also satisfying
if A <> X thenh(AV X) = h(N), (7.11)

in such a way that it holds:

/ /
TCrn << ’/TﬁGQUE(.‘u)’iT,
T =« SeQut () «' resp.) withn = ny o h.

Proof:

We consider the pessimistic case, the optimistic one being analogous.

— ) We verify that the preference ordering 8 (X)) induced byGQU; satisfies the

above set of axioms. As s is a linear order, so i%GQUL’ . As usual,A2 results from

the fact thatsupremum andin fimum are non-decreasing i andn is a reversing

function. While, A3+ is a consequence of the fact th&f)U, preserves mixtures.
AP6eqgT is a consequence of the definition@gQUL_ and thath satisfies (7.11).
We checkAP4r. Let7 be maximum element dil*(X) w.rt. <gou,—. As

GQU (my ) = n(A), then

GQU (m) =n(\) = GQUL (ry) YA€ n  (GQU ().

—) The proof is again very analogous with the one given for the linear case. As
usual, we structure the proof in the following three steps.

1. We define the finite linear utility scalé = II*(X')/ ~ with the ordering induced
by C. n:V — U is defined as

n(A) = [ry];

with 7, = M+ (7, X;1,\), 7 being the maximum element ¢fI*(X,V),C
,M+). By A2, n is a reversing ordering mapping, whileP4+ guarantees it is
onto. By AP6eg+ andn being reversing ordering, we have that

n(AV ) =nA) A n(N).

As usual,n results coherent w.r.tT because of the reduction property ft
andA3+. So, we consider the onto join-preserving mapping ny on. Hence,
h will satisfy (7.11) and coherence w.rt.

125



2. Again, GQU; may be defined ofl*(X) in two steps. First, we define it on
lotteries of typer, , asGQU (7, ) = n(A).
AP4~ lets us to extend this definition. Sinter A s.t.m ~ 7, , we define
GQU; (m) = n(A). Itis not difficult to verify thatGQU; represents..

Consideru:X — U defined asi(z) = GQU (z).
3. We will prove that
GQUp (m) = mini—y,.p n(m(z:)T)
with n(v;) = u(z;).
To verify this, we will prove the following equalities:
o Vmy,ma,
GQUL (M (my w50, 8)) = n((aTAD V (BTA2),  (7.12)

with A; such thatGQU; (7;) = n();).

Indeed, A4+ guarantees thaiA; s.t. m; ~ M+ (7, X;1, A1) and 3\,
st. m ~ Mt(7,X;1,\), remember thaGQU; (m1) = n(A) and
GQU; (m2) = n(A2). So, using the independence axiotsr,

MT(T‘-L 2 O B) ~ MT(MT(ﬁv X; 17 )\1)’ MT(ﬁa X7 17 )‘Q)a «, 6)a
and by reduction of “lotteries” it reduces to
M (7, X; ((aT1) vV (BT1)), (@TA1) V (BTAz))) ~

~ M+ (7T, X; (aVB),((aTA1) V(6TA)))

~ M7 (7, X;1,((aTA) V(BT A2))).

Therefore,
GQU (M (m1, 750, 8)) = n((aTA1) V(BT A2))
with \; such thalGQU; (m;) = n(}), i.e.
GQU (M~ (m1,mo; e, 5)) = min(n(aT A1), n(BTA2)).

Finally, we verify that (7.12) does not depend on thehosen, i.e. ifu is
such thalGQU; (m1) = n(u), then

n((aTA)V(BTA)) =n((aTu)V (BTA)).
Indeed, asry, ~ m, then
MT(f7X717(aT)‘1)\/(/6TA2)) ~ MT(W;17TF)T2;O[7B)

~ MT(W;77T;2;aaﬁ)
~  Mr(m X1 (@Tp) V(BT A2)),

therefore
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n((aTA)V(BTA)) =n((aTu)V (BTA)).

In particular, we have that

GQUL (M (z,y;1,8)) = min(n(1T A1), n(BTA2))
with u(z) = n(A1), u(y) = n(A2). So,

GQUL (M (z,y;1,8)) = min(u(x),n(BTAz)),

with u(y) = n(\2), and

GQU; (m V mp) = min(GQU (m1), GQU[ (m2)).
Indeed, asry V 3 = M (7, 2,1, 1), therefore,

GQU; (m V me) = min(n(p1), n(pe))

with n(u1) = GQU  (m1), n(p2) = GQU, (m2), sO

GQUZ (7T1 V 7T2) = mln(GQU; (7T1), GQUE(?TQ))
Moreover, we have

GQU, ( \/ m—) = min GQU; (m) VY.

i=1,...p =l

GQUZ (’R’) = minizl
As 7 is normalised, there exists € X such thatr(z;) = 1. Without loss
of generality, let us assume that= 1. As for eachr, M+ satisfies that

1, if  xp =2,
M+ (z1, 21, 7(x)) (xg) = wl(xy), if x1 # xp = @y,
0, otherwise
Then, choosing
T = Mt (21, 2451, 7(2;)),

we obtainr =\/,_, , m, therefore

.....

GQU (m) GQUL< V MT(IE1,$2*;177T($¢)))
i=1,..., D

with u(w;) = GQU (w:) = n(X:), s0
GQU (m) = mini—y .., n(m(x;) TA;).
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Chapter 8

An Extended Model Allowing
Partially Inconsistent Belief
States: Application to
Possibilistic Case-Based
Decision Theory

The decision models described so far obviously rely on a possibilistic representation
of the belief states. Such a representation, i.e. a possibility distribution, can be made
explicit for instance if (uncertain) generic knowledge and information is available under
the form of a possibilistic knowledge base (Dubois et al., 1997¢g). But, suppose that
the available information about the consequences of decisions appears in the form of
already experienced instances of decision problem casdsciéion problem case an
account of a previous situation where a decision was made, and the actual consequence
of that decision was recorded. deecision problem casean be thus formalised as a 3-
tuple (situation-description, decision, consequencE)e idea of the so calletCase-

Based Decision Theoryis to select a decision that gave good results in the past in
situations similar to the current one.

For example, it is possible, and probably more realistic, to present the omelette story
of Savage of Section 4.6 as a case-based decision problem. The memory would consist
of descriptions of eggs broken in the past by the agent, the decisions made about those
eggs and the outcomes (described in Table 4.1). Descriptions could be done in terms of
attributes like colour, the smell, weight of the egg, etc. The decision made about a new
egg for a new omelette could then be based on the resemblance between the present
egg and the past ones. If the egg looks fresh (e.g. it is similar to the descriptions of
past fresh eggs), theBreak the egg In the Omelette (BlGfthe the egg looks rotten,
then, Throw it Away (TA)if the egg is only mildly fresh but not clearly rotten, oritis a
new type of egg not encountered in the past, then, for inst&@reak it Apart in a Cup
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(BAC).

In such a framework, as it has been mentioned in Section 2.3, Gilboa and
Schmeidler (1995) have proposed a case-based decision model where the decision-
maker, in face of a new situatiag, is supposed to choose a decisibiwhich maximises
a counterpart of classical expected utility. Namely,

Uso,m(d) =3 (s,d,z)em Sim(so, s) - u(x)

whereSim is a non-negative function which estimates the similarity between situations
and the current situatiofy andu provides a numerical preference for each consequence
x.

Dubois and Prade (1997d) propose another approach to case-based decision,
based on possibility and necessity measures. Instead of averaging the preference
of consequences obtained in similar situations, weighted by similarity degrees, they
propose to look for decisions that always gave good results in similar experienced
situations.

In the next Section, a link is established between Dubois and Prade’s Case-based
and Qualitative Decision models, by estimatimgw plausibler is a consequence of a
decisiond, in the current situatiorsg, in terms of the extent to whicly is similar to
situations in whiche was experienced after taking the decisibrSo again, a decision
or actiond can be identified with a possibility distribution on consequences.

This link between similarity on situations and possibility distributions on
consequences allows us to apply the possibilistic qualitative criteria described in the
previous Chapters to case-based decision problems. However, working with case-based
decision we face with problems in which non-normalised possibility distribution are
involved. Non-normalisation problems may also appe& DT when different sources
of information about the actual situation are available and they are partially conflicting.
Namely, in such a case, if a min-based aggregation of the corresponding possibility
distributions is performed to merge them into a single one, then, we can come up
with a non-normalised distribution as soon as their cores are disjoint, i.e. when the
distributions are mutually inconsistent to some extent. But even under these hypotheses
of partial inconsistency, one may be interested in making rational decisions.

In order to allow a proper handling of non-normalised distributions, in Section 8.2
we extend the basic model and provide corresponding characterisations of the orderings
induced by suitably modified utility functions. Then, we shall be ready to return in
Section 8.3 to the case based decision problem, applying these utility functions. In
Section 8.4 we analyse the example of the safety problem in the chemical plant from
a case-based decision problem view, while in Section 8.5 we consider the case of non-
normalised distributions in a lattice measurement framework. In Section, 8.6 we extend
the model in another direction to take into account the performance of “similar” acts
for evaluating the utility of a decisiod. This extension again leads us to deal with
possibility distributions on consequences, hence we may approach this type of problem
with the qualitative utility functions analysed in the previous Chapters.
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8.1 Possibilistic Case-Based Decision Theory

Dubois and Prade (1997d) propose an approach to case-based decision based on
possibility and necessity measures. Instead of averaging the utility of consequences
obtained in similar situations, they propose to look for decisions that always gave
good results in similar experienced situations. As in Gilboa and Schmeidler (1995)’s
proposal, they assume a given memory of cadesand a “similarity’® function
Sim:S x S — [0, 1] that measures the degree of similarity between two situations, and
a preference function: X — [0, 1] representing preferences on consequences. They
propose the following utility function

U;D)M(d\u) = (Mrl%i)réM (Sim(s, sp) = u(x)),
where=- is chosen agz = y) = N(z)Lly with L a conorm andV an involutive
negation in the real interval [0,1]. If only ordinal interpretations are meanindfus
taken asnazimum, SO
U;})M(d\u) = (s,glxi)I}EM max (N (Sim(s, s9)), u(z)).

The interpretation of this criterion is very natural if we think of it in terms of fuzzy
set inclusionship (see Section 5.1 for more details). Indeed, let us respectively denote
by Sim? and G¢ the fuzzy set of situations which are similar ¢g and whered was
already experience@nd thefuzzy set of situations where decisidled to good results
respectively, with membership functiosm®(s) = Sim(s, so) andG?(s) = u(z), if
(s,d,z) € M. Then, the above criterion of maximisirig, ,, looks for decisionsi
such that, irall situations wherel was previously experienced, it led to good results.

Indeed, if

{s] (s,d,x) € M, Sim(s,sg) >0} C {s|(s,d,z) € M, u(z) =1},

thenU, ,,(d) =1, and

U,, . (d) = 0as soon asSs s.t. Sim(s, so) = 1, (s, d,x) € M andu(z) = 0.

Actually, U, ,,(d) is a rather drastic criterion since it requires thataih the
situations similar ta, d led to good results.
A more “optimistic” behaviour consists in selecting decisions whézhto a good
result inat least onesituation similar tos,. They model it using the dual criterion
USJFO’M(d) = (.s,ff)}éM min(Sim(s, so), u(x)).
Thus, U;;M(d) is maximal as soon as there exists a case corresponding to a
situation completely similar te, whered led to an excellent result.

The pessimistic and optimistic decision rules differ from the Gilboa-Schmeidler
rule in that they do not assume that results obtained in past experiences accumulate

1Actually, we are speaking about a fuzzy proximity relation$ni.e Simis a symmetric and reflexive
relation.
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and, particularly, compensate. For instance, in the omelette example, using Gilboa-
Schmeidler rule, a few bad experiences with a certain kind of egg very similar to the
current one can be fully counterbalanced by sufficiently many half-fresh eggs of similar
appearance. The pessimistic criterion suggests mistrusting these eggs and the optimistic
one only partially tolerates them.
Observe that if the fuzzy sétm? is normalised, then,
USa(d) 2 Uy, i (d)

50,

as it is expected.

It is obvious the close relationship between these criteria and the ones described in
the previous Chapters. Actually, one can representtse-Based Reasoning Principle
stated in (Dubois et al., 1997b) saying that for eachi, =) € M,

“the more similarsg is to s, the more plausible: is a consequence fay
under decisionl”,

by the following inequality
Td,so () > max{Sim(so, s)| (s,d,z) € M},

wherernq s, X — V is the possibility distributionrepresenting thelausibility of =
being the consequencedét sy. For computational reasons (using a kind of minimum
specificity principle (Dubois and Prade, 1987)) we can just take the equality above and
let

Ta.s () = max{Sim(so, s)|(s,d,z) € M}?,

and so, a decision or adtat the new situatior, can be identified with the possibility
distributiony ,. TakingU = V' C [0, 1], it can be shown that

Uso,e(dl) = QU™ (a5 [u) = min max(N (mq,s (2)), u(2)),

Usb aa(dlu) = QU (ma s 1) = maxmin(ma s, (x), u(x)).

We have, however, to be very cautious if we want to apply this qualitative decision
model: nothing prevents the distributions, ;, from being non-normalised And
this may have undesirable consequences, such as the fact that the pessimistic utility
U, .a(d) may be higher than the optimistic utilifystyM(d). For example, when

Si , <1,
a5

it means that decisiod has been never experienced on a situation completely similar
to sq. In particular, when

{s|(s,d,z) € M, Sim(s,so) >0} =0,

we haveU, ,,(d) = 1 which is non-satisfactory.
In order to avoid these shortcomings, for distributions defined on [0,1],
Dubois et al. (1997b) suggest the following modifications. Consider

2By convention we takenax ) = 0.
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hsim(s0) = max{Sim(s, so) |(s,d,x) € M},

S

Ug, o (UE 5) with the similarity Sim* instead ofSim,
U;U,J\l(d) = min(hgjm(so), U;:JVI(d))v
U:;’M(d) = max(l — hgjp(s0), U:;TM(d)).

Analogously, for eacl andU, we propose to modify our previous definitions and
let

Sim* a renormalisatiof of Sim andU_*, (U "), resp. ) the result of considering

syt (d) = QU™ (7a,s,),
whererg ,, is the distribution associated t&m andM, and

QU™ (7d.so) = min(H(7a,s, ), QU™ (N (md,s,))) (8.1)

whereH (7) is the height of the distributionr, H(7) = max,ex m(x), andN (rq.s,)
is a normalised version ofy 5, defined as

1, if 7Ta,s0(x) = H(ma,s0)
N(Ta,s0)(x) =

Td,s0 (), otherwise

Notice that whertH(7rqs,) = 1, the original expression is retrieved. The rationale
behind this expression is that our willingness to apply decigioim sy is upper
bounded by the existence of situations completely similastavhere decisionl was
experienced. Moreovef, s, is renormalised in order to obtain a meaningful degree
of inclusion. Thus, equation (8.1) corresponds to the expression of the compound
condition:

“there exist situations similar tey where decisionl was applied and the
situations which are the most similar ¢g are among the situations where
decisiond led to good results”.

Note that the similarity is no longer estimated in an absolute manner, but in a relative
way, hence the normalisation. Clearly, it would be also natural that the optimistic
evaluation be all the greater as the decisiowas never applied to situations similar
to so in the past (indeed, in this case, the optimidiiecision Makeris prone to
experiencing new decisions on new situations he never met).

8.2 Representation of Possibilistic Utilities for Non-
Normalised Distributions

In Possibilistic Logic (Dubois et al., 1994), non-normalised possibility distributions
account for partially inconsistent belief states. Indeed;$f — V' is such thatr(s) < 1

3There are several forms of defining the renormalisation of a fuzzylseey suggest e.gA*(z) =
A(z)
max, A(z)"
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forall s € S, it means that there is no situation which is fully plausible. The consistency
degree ofr is measured by thaeight of the distribution(n) = maxses w(s),
whereas how fat(r) is from 1, measured as, (H(r)), provides an estimate of how
inconsistent the belief state is. Notice that in the case not dealt in our framewbrk of
being the real unit interval [0, 1], the inconsistency degree is ustialy- ().

In this Section, we extend the possibilistic decision model described through
the previous Chapters in order to take into account, not only fully consistent belief
states, but also those which are partially inconsistent. The idea is to adapt the
solutions presented in the previous Section, which basically consist of suitably
transforming the non-normalised distributions into normalised ones and then applying
the original model. However, the transformation is not simply a normalisation, the
inconsistency degree is also taken into account to endow the possibility distribution with
a uniform level of uncertainty. Hence, we could say that, in doing the transformation,
inconsistency is exchanged for uncertainty (you may see the details in the next
Subsections).

8.2.1 The Pure Ordinal Case

Here we consider as the working set of possibilistic lotteriessetél**(X) of non-
necessarily normalised distributions o%i with values on a finite linear uncertainty
scaleV, keeping the same definition of possibilistic mixture of (3.1), i.e.

(A1, /) (2) = max{min(A, 71 («)), min(p, 72 (2))},

with max(A, 1) = 1. Thus, the reduction property

N7, p/(efmr, B/m2)) = (max(X, min(p, a)) /my, min(u, §) /72)

still holds.

Now, in the usual linear setting, i.e. with finite linear uncertainty and preference
scalesV and U, we extend the utility functional®U~ and QU™ to evaluate non-
normalised distributions ofII¢*(X) as well, reflecting the solution proposed at the
end of the previous Section. Given an onto order-preserving mapping— U and
u:X — U as usual, we define for anye I1¢* (X):

QU™ (rfu) = min{QU ™ (N (7)[u), n o ny (H(m))}
@+(7r|u) = max{QU T (N (m)|u), h o ny (H(rm))}.

From these definitions, it is obvious that, for alc 11°*(X), we haveQU * (1) >
QU™ (), in particular, ifr = 0, QU™ (x) = 0 andQU " (7) = 1. Moreover,QU~
(QU T resp.) is an extension 63U~ (of QU resp.) since, ifr is normalised () =
1,andn ony (1) = 1 andh o ny (1) = 0, and thusQU~ andQU ~ (QUt andQU ™
resp.) collapse ofI(X). As before, when clear from the context, we will omit the
preference functiom from QU ~ andQU* for the sake of a simpler notation.
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Notice! that, instead of introducing the modifying fact(r, s, ) into the final step
of the utility computations, one could already introduce this factor in the normalisation
of the distributions by considering

Nl(ﬂd,so) = maX(H(Wd,SO)7N(7Td7SO))

and then just write, for instanc&®U ~ (w|u) = QU (N'(w)|u). We shall however
stick to the usual notion of (ordinal) normalisation and explicitly deal with the factors
in spite of a bit heavier notation.

In order to characterise the preference orderingsduced inll**(X) by QU™ and
QU™, we need to extend the axiom setX and AX * respectively, defined oA (X),
with the following additional axiom:

o AT:forallm € 11" (X), 7 ~ (1/N(x),ny (H(r))/X).5

The intuitive idea behind axior7 is that, as already pointed out, we make a non-
normalised possibilistic lottery indifferent to the corresponding normalised lottery
N (r), provided that it is modified by a uniform uncertainty level corresponding to the
inconsistency degree af, i.e. from a decision point of views is made equivalent
to m*, where 7*(x) = max(N(m)(z),nyv(H(n))). In other words, according to
Possibility Theory, the statement “it is certain thatrepresents the belief state” is
understood as “it ig1(r)-certain thatV (w) represents the belief state”. Obviously,
if 7 is an already normalised distributio¥,(7) = 7, H(7) = 1, and both statements
are exactly the same.

Now, let us prove the following representation theorem.

Theorem 8.1 (Representation Theorem)
A preference relationc on 11°* (X ) satisfies axiom se X* = AX + A7 (resp.
AXTer = AXT + A7) if, and only if, there exist

(i) a linearly ordered and finite preference sdalevith inf(U) = 0 andsup(U) = 1,
(i) a preference function:X — U such that a'(1)# 0 # u~'(0), and
(i) an onto order-preserving mappimgV — U,

in such a way that it holds:
for eachr € 11°* (X)),

e S QU™ (r'|u) E QU™ (7|u),

(' Cr iff  QUT(«'|u) T QU (r|u) resp.) where, as usual,= ny o h.

4This remark was made by a referee of one of our publications.

5Let C be a preference relation di*® (X). We will denote by its restriction tolT* (X ), the set of
normalisedpossibility distributionsand by~ and~’ the corresponding indifference relations. We say that
C onlI®* (X) satisfies axiom sed X ¢ = AXU{A7} (AX*®+ = AXTU{AT7} resp.) ifand only if its
restriction tol1* (X), satisfies AX (AX T resp.) andC also satisfiesA7. Following, for a simpler notation,
we useC for denoting this relation and its restriction too, understanding that they may be distinguished by
the context.
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Proof:
We only prove the theorem for the pessimistic criterion, the proof for the optimistic
criterion being very similar.

— ) We have to prove that, given a preference functio — U verifying (ii), and
an onto order-preserving mappingl’ — U, the ordering on possibility distributions
of I1¢*(X) induced by the utility evaluatioQU — satisfies the axioms of X ¢*. Since
QU™ coincides withQU ~ onTI(X), all axioms fromAX are automatically satisfied
by the theorem for the linear normalised case (Theorem 4.8). Thus, it only remains to
verify that A7 also holds. According to (ii), there is such thatu(z) = 0, and thus
QU™ (X) = 0. But sinceQU ™~ preserves possibilistic mixtures, we have formale
Iex (X),

U™ (1/N(m),ny (H(r))/X) = min(max(n(1), QU™ (N (r))),
max(n(ny (H(m))), QU™ (X)))
= min(QU™ (N ()),n o ny (H()))
= QU™ (m).

Thus,r is equivalent tq1 /N (7), ny (H(w))/X) w.r.t. to the ordering induced by
QU.
- —) Let us assume now that we have an orderiigf(X), C) satisfying the axioms
of AXe* In particular,C satisfies allAX axioms, hence, applying Theorem 4.8 again,
we can suppose the existencelofu: X — U andh:V — U satisfying (i), (ii) and
(iii), and such that the corresponding utilityU — representsC on II(X), i.e. for
all normalisedr, we have that’ C « iff QU («'|u) C QU (w|u). Axiom A7
guarantees that, for any, = ~ (1/N(7),ny(H(w))/X). SinceQU~ (X) = 0, and
(1/N(m),ny (H(n))/X) is a normalised distribution, we define

QU (m) = QU (1/N(m),ny(H(r))/X)
= min(QU (N (m)),n ony(H(n))).

Now, we have to verify thaQU ~ represents_, i.e. that for eachr, 7’ € I1°*(X) the
following equivalence holds

o Cr iff QU («") EQU ().

Indeed, by the continuity
axiom A4, there exist\ and X’ such that(1/N (w), ny (H(w))/X) ~ (1/Z,\/z) and
(L/N(#@"),ny (H(n'))/X) ~ (1/Z, N /x), wherez andz denote a maximal and a
minimal element of X, C) respectively. Therefore,

o Cnx iff  (1/,N/z) 1/, N\ z),
and we have that:

e since QU~ represents C on II(X), (1/z,N/z) C (1/z,)\/z)
U (1/z,N/z) < QU (1/Z,\/x),
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o QU (m) = QU™ (1/N(7),nv (H(m))/z) = QU™ (1/Z,\/z),
o QU™ (") = QU™ (1/N ('), nv (H(7"))/z) = QU (1/Z, N /z).
Hence, we finally have

©Cx it QU(r) < QU (),

thatis,QU ™ represents . a

8.2.2 The Case of Max -T Possibilistic Mixtures

Given a t-normT on V, let us consider now, in the set of possibility distributions
I1°*(X), the generalisechax — T mixtures introduced in Section 5.3

M+ (n, 750, 8) = max(aTr, 8T7'),

with max(«, 8) = 1. In this general setting, in order to correctly deal with non-
normalised distributions, we extend the utility evaluatiéh@U~ and GQU T in an
analogous way to the previous subsection:

GQU™ (r|u) = min{GQU ™~ (N (7)|u),n o ny (H(x))},

GQU ™ (r|u) = max{GQU (N (r)|u), h o ny (H(m))}.
In
a very mimetic way, we consider the axiom sdt¥$* = {A1, A2, A3+, A4+, AT1},
andAX+e" = {A1, A2+, A3+, A4, A7+ } where the new axiomd 7+ is the suitable
adaptation of previous axiom7 for the present type of mixtures.

e AT7t:Forallr € I**(X), 7 ~ Mt (N (m), X;1,ny (H(n))).
The corresponding representation theorem comes next.

Theorem 8.2 (Representation Theorem )

A preference relationC on 11°*(X), equipped with a mixture operatiohl,
satisfies the axiomsAX$® = {Al,A2, A3+, Adr, AT} (resp. AXT" =
{A1, A2%, A3+, A4%, AT1}) if and only if there exist

(i) a linearly ordered and finite preference sddlevith inf(U) = 0 andsup(U) = 1,
(ii) a preference function:X — U such thati=*(1) # 0 # u=1(0),
(i) an onto order-preserving mappingV — U satisfying coherence w.r.1.,
in such a way that it holds
T Ex it GQUT(r|u) T GQU(lu),
(' C = iff GQU*(7'|u) T GQU™ (w|u) respectively), where, as usual, we take

n=mnyoh.
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Proof:
The proof is very similar to the case = minimum of previous subsection, so we
shall only pay attention to main differences for the pessimistic utility.

— ) By Theorem 5.5, it only remains to verify axiosh7+. Taking into account
that GQU ~ coincides withGQU ~ on II(X), and thatGQU ~ preserves generalised
mixtures, we have

GQU™ (M1 (N (m), X; 1,ny (H(r)))) = min{n(1Té1), n(ny (H(7))Td2)}

wheren(d,) = GQU~ (N (m)) andn(d2) = GQU~(X) = 0. But, according to the
coherence condition, we have thatdz) = 0 = n(1) implies n(ny (H(7))Td2) =
n(ny (H(w))), so we actually have

GQU™ (Mt (N(m), X;Lny (h(m)))) = min{GQU ™ (N(r)),n ony (H(r))}
= GQU~(m).

Hence, axiomAT7+ is satisfied.

—) Since C satisfiesA X+, we may establish the existence 6f u: X — U and
h:V — U satisfying (i), (i) and (iii), such thatQU ~ (7)) = min,,ex n(m(z;)TA;),
where n(\;) = wu(z;), representsC on II(X). In particular, GQU~ so
defined preserves mixtures and verifiegQU~—(X) = 0. Axiom A7+, © ~
M+ (N (m), X;1,ny(H(m))), allows us to define, for each e 11¢*(X),

GQU™(m) = GQU™ (Mt (N(r), X;1,nv(H(r))))
= min{GQU ™ (N(rm)),nony(H(r))}.

Finally, one can easily check th&tQU ™~ representsC on I1¢*(X) using the fact
thatGQU ~— already represents onII(X), together with axiomsl7+ andA4+. O

Remark 11

Instead of using the involutiom, in the definition of the mappindsQU ~ andGQU T,
one could simply use a more general functlo’V — V s.t. F(1) = 0, and define the
pessimistic and optimistic utilities as

CQUL(m) = min{GQU~ (N (r)), hp(H(m))}
CQUE(m) = max{GQU*W(m)),np(H(m))} 8.2)

where hr =nyoho F andngp = ho F.

In that case, given such a functidh it is not difficult to show that Theorem 8.2 is
still valid provided that we replace axiodi’+ by an analogous one:

o ATFy : VrelI**(X), m ~ Mt(N(r), X;1, F(H(m))),

andGQU byGQUF.
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8.3 Back to Case-Based Decision

Again, using the link between similarity on situations and possibility distributions on
consequences, we just propose here to apply the generalised qualitative utility functions
GQU ™ andGQU™ for case-based decision problems.

So, if we are interested in acissuch that in all the situations similar tg, d led to
good results, we are looking for decisions maximising the function

GUp ,,(d) = GQU (T4,s,) = min{hr(H(Ta,s,)), GRU ™ (N (7a,s)) }

while if we are looking for decisions which gave a good result in a similar situation we
may want to maximise

GU3,,,(d) = GQU . (Ta,s,) = max{nr(H(ma,s,)), GRUT (N (1a,s,))}-

Finally, let us remark thaQU ~ (N (74 s,)) can still be regarded as a degree of
inclusion Bint? C G9] of the normalised fuzzy set of situations similardg Sim*?,
into thefuzzy set of situations in whichled to good resultsf we define

[Sim*? C G = ming, (s g,0)em (Sim*(s) = G4(s)) .

In this expression:V x U — U is a many-valued implication-like operation of
the type “not (a and not b)”, interpreting the “and” as it was mentioned in Chapter 5 by
at-normT onV and, because of the different domains involvEdandU) it has to be
formally expressed as

a= 3=n(aTy),

wheren(y) = 3. Analogously,GQU (N (m4s,)) is still a degree of intersection
[Sim*¢ C G9] provided that we define

[SLm*d - Gd] - Hlaxs:(s,d,w)EM(Sim*d(s) ® Gd(s))

where ® is a t-norm-like operation defined asx (6= h(a) Ty B, where Ty is a
transform by of the t-normT (defined on/) into U.

8.4 A Case-based Decision View of the Safety Decision
Problem in a Chemical Plant

To exemplify some of the notions introduced in this Chapter, let us return to the safety
problem in the chemical plant introduced in Section 5.2.

So far we have assumed that, in order to take a decision in front of a problem in
the plant, the head of the Dept. had available a report, under the form of a possibility
distribution, about the actual state of the plant. Now, assume the following situation:
the alarms turn on but, for some strange reason, the head of the Dept. does not receive
any report about the emergency state of the plant, and he is only provided with the
readings of the two alarm systems (fire and pipeline pressure).

The possible values for the readings of each system are
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e ¢y =normal
e ¢; =small problem,
e ¢, = big problem,
e e¢3 =danger
This time, the readings he gets are:

system = big problem (&)  systerg = normal (&).

Nevertheless, he had recorded past experienced problems and for each of those
problems he stored triples of the forfstate-description, action, consequencefere
state-descriptions consist of pajesaluation — systemy, evaluation — systems),
where system; refers to the fire alarm system argstem, refers to the pressure
pipelines alarm system.

We shall apply the model for case-based decision previously described. To do that,
consider the similarity evaluation between situation-description tuples defined as:

Sim((ei,ex). (e, e1)) = min(S(es, e;), max(n(a), S(ex, )

with o € V, and S the similarity on system evaluations defined in Table 8.1.

[ S [ eofer[en]es]

€o 1 We Wa 0
€1 We 1 wr Ws
€2 Wy wr 1 ws
€3 0 Ws ws 1

Table 8.1: Similarity on alarm system evaluatidfg;, e, ).

Notice that the global similarity is computed as a weighted-min aggregation of the
marginal similarities (which are the same), all of them taking values in the common
scalelU. Avaluea < 1 denotes a partial reliability on the alarm system 2. The available
memoryM of previously experienced cases is given in Table 8.2.

According to the model, the Decision Maker has to rank the induced possibility
distributions by the current cagg = (eq, ¢g) and the above similarity functioBim
which are defined as follows
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’ cases H evaluation sensorl | evaluation sensor2 | decision ‘ consequence\

c1 eo e1 do (risk=0,cost=2)
2 e1 eo do (risk=0,cost=2)
c3 e2 e1 dy (risk=1,cost=1)
ca e1 e2 di (risk=0,cost=1)
cs e e3 ds (risk=0,cost=3)
co e1 e3 ds (risk=0,cost=3)

Table 8.2: Memory of cases.

ma0 = 05

ma1 = (Sim((e2,e0), (e2,e1))/(Risk = 1,Cost = 1),
Sim((e2,eo), (e1,€2))/(Risk = 0, Cost = 1))
= (max(n(a),ws)/(Risk = 1,Cost = 1),
max(w4, min(wz, n(a))/(Risk = 0,Cost = 1)));

ma2 = (max(Sim((ez2,eon), (eo,e1)), Sim((e2,e0), (e1,¢e0)))/(Risk = 0,Cost = 2))
= (max(ws4,w7)/(Risk = 0,Cost = 2))
= (wr/(Risk = 0,Cost = 2));

mg3 = (max(Sim((ez2,en), (e2,e3)), Sim((e2,e0), (e1,e3)))/(Risk = 0,Cost = 3))
(max(n(a), min(n(a),wr))/(Risk = 0, Cost = 3))
= (n(e)/(Risk =0,Cost = 3)).

Observe thaif we do not pay attention to the fact that these distributions are non-
normalisedand we rank them in terms 6JU —, we get:

QU™ (mq0) =1,
QU™ (ma1) = wa,
QU™ (ma2) = wr,

QU™ (m43) = max(a, wg).

That is, for eaclw # 1, we have thatl, (do nothing) is ranked as the best, in spite of
the fact that the alarm system 1 warns about a big problem, and that personal safety is
the most important criteriaMoreover, in the case = 1, it is equally supported either

to do nothing or to evacuate, one may be too dangerous while the other may result
too drastic. However, if decisions are ranked taking into account that the distributions
involved are non-normalised we have that:

QU™ (map) = min{0, QU™ (N (7a0))} = min{0,0} = 0,

QU™ (mq1) = min{max(n(a),w6), QU (N (ma1))},

QU™ (mq2) = min{wr, QU™ (N (maz2))} = min{wr, wr} = wr,
QU™ (mq3) = min{n(a), QU™ (N (ma3))}-
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Hence, ifa < 1, QU™ (mg3) = min(n(a),ws), andQU ™ (mq3) = 0 otherwise.
Moreover, sinceQU ™~ (N (mq1)) < wy, we have thalQU ™ (r41) < wy. Therefore,
dy is the best decision, which is coherent with the fact of having one alert of a major
problem and giving preference to personal safety.

8.5 An Extension of the Model for Partially Inconsistent
Belief States Using Uncertainty and Preference
Lattices

Throughout these sections we have assumed that plausibility and preferences are
evaluated on (finite) linear scales. However, as already claimed, sometimes we may
face decision problems where tBecision Makes preferences may be only partially
elicited, or in case-based decision problems where a complete global similarity between
cases is not available but only partially specified. Along this line, we have proposed in
Chapter 7 an extension of the axiomatic model where both preferences and uncertainty
are measured on distributive lattices that are commensurate. Now, this proposal is
extended to also include belief states that may be partially inconsistent.

As is in the linear case, there are some decision problems in which the distributions
involved are non-normalised. Hence, we will consider other functions that let us work
with these distributions.

First, let us introduce the conceptswafrmalization andheight of a distribution
in the context of lattices. Defingl, the height of a distribution7:X — V, where
(V,V,A,0,1) is a lattice, as

H(m) = Vyex m(@),

and for each distribution we consider tlseibset of consequences with maximal
plausibility

Xe ={zeX|VyeX n(y) #n(x)}
We define N'(), thenormalisation ofr, as the normalised distribution
, if zeX,
m(x), otherwise.

Analogously, we extend the set of possibilistic lotteries to the H&t(X) of non-
necessarily normalised distributions & Hence, first we need to extend the concept
of possibilistic mixture PME oifI** (X') to combiner; andmy with (A, u) € &y, with

Oy ={(hp) eV XV I[AVp=1}

i.e. PMEII"(X) x II**(X) x &, — I1**(X), and we define
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PME(my, 7o, A\, p) () = (N 71, p/ma) () = (AN T1(2)) V (10 A ma(2)).

Given a functionF:V — V, such thatF'(1) = 0, now we may consider the
qualitative (or ordinal) utility functions ofii**(X), corresponding to those considered
previously:

QU (m) = QU™ (N (m)) An(F(H(r))),
QU (™) = QUF(N(m)) V h(F(H(m))).

Let Cr be a preference relation dim°*(X). We will denote byL its restriction
to IT*(X), the set of normalised possibility distributions and by ~r and ~ the
corresponding indifference relations.

In order to characterise the preference orderings induced by the u@qjs and

QU we extend the axiom set6X P and AX P+, defined on(Il*(X), C), with the
axiom:

o ATPF :Vr e II**(X), m ~p (1/N(m), F(H(m))/X).

We say that a preference relatiane on I1°*(X) satisfies axiom sel X PN =
AXPU{ATPF} (AXPN*™ = AXPtU{A7PF} resp.) ifand only if its restriction
to IT*(X), satisfies AX P (AX P* resp.) and_r also satisfiesi7PF.

Theorem 8.3
Given a functionF':V — V, such thatF'(1) = 0, then a preference relatiahr on
I1°* (X) satisfies axiom set X PN (AX PN resp.) iff there exist

(i) a finite distributive utility lattice with involutior(U,V, A,0,1,ny),

(i) a preference function:X — U, s.t. u™'(1) # 0 and oy u(z) = 0
(u=1(0) # 0 andV/ . x u(x) = 1 resp.),

(iii) an onto order-preserving functianV.— U s.t.nyohony = h, h also satisfying
if X <> X thenh(\) <> h(\),
in such a way that it holds:
7T Cpm <~ @;(ﬂ’) < Ql;(ﬂ'),
(' Crm <= QU(') < QU (r) resp.), withn = ny; o h.

Proof:

Since the proofs for pessimistic and optimistic criteria are very similar, we only provide
the pessimistic one.

) Consider now the utility functio@U ~ defined in terms of andu. Axioms AX P

are verified becaus@U . restricted toll*(X) is equal toQU ™ since F'(1) = 0,

and by Theorem 7.9, we have that the ordering induce@by in IT*(X) satisfies
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AX P. Now, we verifyA7TPF. SinceQU ~ preserves mixtures becausges distributive,
ATPF verifies trivially. Indeed by definition aU and as

QU™ (X)= A ulx) =0,
rzeX
we have that
QU (m) = QU™ (N (m)) An(F(H(r))) = QU™ (1/N (x), F(H(m))/X).

—) SinceL, the restriction ofC  to IT*(X), satisfies axiomsi X P, we may apply
Theorem 7.9. So, we have determined the existenc&,ofh and v satisfying the
conditions such thaQU ~ represents_, with

QU™ (m) = N\ (n(n(2)) v u(x)).
zeX
Since A7PF guarantees that
m~p (1/N(m), F(H(m))/X),
we define
QU (m) = QU™ (1/N(m), F(H(m))/ X).
Now, we verify that@F represent§ p, i.e.
' Crpm < @;(r’) < QU (m).

By A7PF and A6 we have that there exist A’ such thatr ~p 7, 7’ ~p 7}, SO

QU (m) = QU (my),

QUL (") = QU (7y).

Asn Cp m <= m, Cp m, and as QU™ represents_ we have
thatQU~ (m,,) < QU (my ).

Then, recalling thaQU ~ coincides withQU ;. onII*(.X), we obtain thatr’ Cr
T < QU (7') < QU (m).

It remains to prove thaQU , (m) = QU™ (N (7)) A n(F(H(r))). Since QU™
preserves mixtures, QU (X) = 0 and ATPF guarantees thatr ~p
(1/N(m), F(H(m))/X), we finally have that

QU (m) = QU™ (1/N (), F(H(m))/ X) = QU™ (N (m)) An(F(H(r))).

Generalised Utilities

As usual, we may consider that there are availablé more operators, and this fact let

us consider other utility functions. Now, we introduce the corresponding extension of
our previous proposal for generalised qualitative utility functioiglU — andGQU *.

We propose the qualitative (or ordinal) utility functions af* (X),°

6Take into account that now we are considering distributions on lattices.
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GQU .~ (wlu) = GQU™ (N(m)|u) An(F(H(r)))
GQU (nlu) = GQUT(N(m)lu)V h(F(H(r))). (8.3)
where the necessary additional axiom is:
o ATFr: Vrell*(X), 7 ~ Mt(N(m),X;1, F(H(nm))).

The representation theorem is analogous to the previous case and is omitted.

8.6 Similarity between Acts for Possibilistic Case-Based
Decision Theory

Many economical decision problems such as whether or not to “Offer to sell at price
p" for a specific valuep, would likely be affected by the results of previous offers

to sell with different but close values @f We would like to let theDecision Maker
evaluate a new decision taking into account the performance of other “similar” acts he
has experienced.

Gilboa and Schmeidler (1996) made a proposal along this line, they also claimed
that while a straightforward application @BDT to economical models with an infinite
set of acts may result in counter-intuitive and unrealistic predictions, the introduction
of a similarity also involving acts may improve these predictions.

We will analyse, in thdinite possibilistic context, a model to evaluate utilities on
each decision taking into account the performance of others acts, i.e. to deal with cases
in which the evaluation of an act may also depend on past performance of the acts,
maybe different but “similar” acts. Therefore, we shall consider a global similarity
function over problem-act pairs. The difference with the approach analysed in Section
8.1 is that for evaluating a decision now we are also interested in the behaviour of
“similar” acts in previous “similar” situations.

Given a situatiors and an actl, we will refer to the pair(s, d) as a decision-case.

Our proposal is to estimate to what extent a consequencan be considered
plausible of being the consequencesgfby d, in terms of what extent the current
decision-case(sg, d) is similar to previous decision-casgs,d’) in which x was
experienced. That is, for each cdsed’, «) in a memory)M, a principle stating that

“The more similar are the decision-casgs,d) and (s,d’), the more
possibler is the consequence dfin s;”.

is assumed.

ConsideringD the set of available decisions, we assume a similarity rel&tisfim
available on the decision-case set, i.e. a functi®fim:(S x D)? — V that measures
the degree of similarity between two pafsituation, decision)

Therefore, according to this principle, analogously to Section 8.1, we propose to
consider the following utility function:

Uy, yr(dlu) = (s,dr’r};?GM (G1Sim((s0,d), (s,d")) = u(x)).
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As already seen, this corresponds with a view of the degree of inclusion of the fuzzy
set of the similar decision-cases (e, d) into the fuzzy set of good consequences
experienced. That is, we are considering

GIG : {(s,d)|(s,d',x) e M} - U
the fuzzy set of decision-cases that obtained good results, whose membership is

GIG(s,d") = u(x).”
For eachd, let

GISim®: {(s,d') | (s,d',x) € M} -V

be the fuzzy set of decision-cases which are similar (1g,d), defined as
GI1Sim4(s,d’) = G1Sim((so,d), (s,d’)). Hence, the above expression tor ,,(dlu)
may be rewritten as the following degree of inclusion:

Uy, v (dlu) = [GLSim? C GIG).

We may apply here the alternative implications analysed in Section 5.1, obtaining
their respective utility functions. Analogously, we may consider the intersection of the
fuzzy set to reflect a more optimistic behaviour:

Ut i (du) = [GLSim® N GIG).

7GIG is well defined because we are assuming a minimal deterministic memory, i.e. for each situation
we only retain in the memory the case with the best consequence for any decision.

146



Chapter 9

Further Results: Ordering
Refinements and Weaker
Commensurability Conditions

In this Chapter, we introduce the last results obtained in the on going work. The first
concerns to the refinement orderings problemhen ranking distributions. Indeed, in
some problems it may be not enough to rank distribution taking into account only one
criterion, for example the pessimistic criterion, and we may be interested in refining the
ranking with another criterion, e.g. the optimistic one.

The second topic is related with an issue that has been of our interest since the
beginning, the commensurability hypothesis between the preference and the uncertainty
sets. Up to now, we have assumed the existence ohsmorder-preserving mapping
linking both sets. This fact forced to restrict ourselves to work with problems in which
the uncertainty set has a greater cardinality than the preference one. Here, we propose
to weaken this hypothesis requirihgo be only an order-preserving mapping satisfying
h(max V) = max U andh(min V) = min U.

9.1 Some Possible Refinements

We may consider different qualitative utility functionals for ranking decisions, among
them of course we have the pessimistic and optimistic critgtia andQU+ and their
generalised versiorSQU ~ andGQU T introduced in Chapters 4, 5, and 7. However,
in some decision problems it may be interesting to consider some refinements of these
orderings. In this Section, we summarise our first results in this issue.

Among different possible refinements we may consider the following ones:

1This work was begun during a Short-Term Scientific Mission of the author within the frame of
COST Action 15, Many-valued Logics for Computer Science Applications, at the Institut d&iRBehen
Informatique de Toulouse (IRIT) with Dr. Henri Prade.
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1. Afirst approach is to use the optimistic criterion to refine the pessimistic one, i.e.

TCom <= {{GQU (r|u) <y GQU (x'lu)} or
{[GQU™ (x|u) = GQU™ (n'|u)] A
[GQU (n|u) <v GQU™ ('[u)]}},

where we are considering that both generalised utility functions are defined in the
same latticd/ and with the same preference functienBut sometimes we may
have different lattices and preference functions for both criteria, hence in such a
situation the refinement would be defined as:

L1 <= {{GQU (r|u”) <y- GQU (n'|u~)} or
{[GQU™ (n|u™) = GQU™ («'[u™)] A
[GQU (n|u™) <p+ GQU (n'[u™)]}}.

2. In some cases, we may be interested in considering the problem of evaluating a
distribution7 by applying two different criteria tar, depending on the type of
consequences. Indeed, suppose for instance that the consequences involved in the
safety decision problem may be classified in two groups: consequienobsng
the safety of personsand another group of consequencelated to economic
costs In this case, we may be interested in being conservative with respect to
consequences of the first set, while a more optimistic criterion may be applied on
the second set. That is, given a subdetf X we consider

7 Ey <= Ut(n) <y Ut(r'),

with
Ut(r) = min(GQU . (x|u™), GQU (n|u™)),3
where
GQU; (mlu™) = GQU (m AM|u™)
and

GQU{ (r|u™) = GQU;(w A I¢lu™),

wherer A I denotes the intersection of the distributions, i.e. the distribution,
non-necessarily normalised, defined as

(m AD)(x) = inf(n(x), I(x)).

m A I may be seen as the conditioning ofby the event/. As we will apply
the same sef for all distributionsz, we will call GQU; the generalised utility
function conditioned by. That s,

1 Lo = (GQUL (m|ut),GQU; (7|u™)) <min (GQU (7' |ut), GQU; (n'|u™)).

2Analogously, if we are interested inté-fuzzy setl on X.
3As usual,I¢ denotes the complement Hfwith respect taX.
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3. Sometimes we may be interested in refining itexicographicstyle ordering
considering these priority levels: firstcou—(.ju-), then, <qou+(|.+) and
finally SGQU*(-W) . That s,

I

7C3n = {{GQU (r|lu”) <y- GQU (x'|u")} or
{GQU ™ (mr|lu™) = GQU  (x'|u™) A
GQU* (xlut) <u+ GQU* (w'ju™)} or
{GQU (mr|lu™) = GQU  (7'|u~) A
GQU T (njut) = GQU ™ (' |u™) A
GQU; (rlu™) <y- GQU (n'|[u™)}},

4. or, analogously, considering ;+ .|, +) iNstead of< ;o -,y

Ty = {{GQU (r|lu”) <y- GQU (x'|u~)} or
{GQU™ (7lu™) = GQU™ ('|u™) A
GQU* (x|ut) <y+ GQU* ('ju*)} or
{GQU™ (n|u™) = GQU ™ (x'|[u™) A
GQU (r|ut) = GQUt (x'|u™) A
GQUY (n|u™) <y+ GQUY (n'[u™)}}.

Let us show a little example about how these rankings may classify distributions.

Example:
Let X = {z,21,22,%} and its subset = {Z,z,}. We considel/~ = UT =V =
{0 < u < A < 1}, and the distributions:

m=(1/Z,1/x1,\/z),

and
' =(1/z,1/x2,\/2).

We assume both preference functions are the samey,saith u(z) = 0, u(x;) =
iy, u(za) = X andu(z) = 1. So,

QU (m)=QU (x)=n(\) and QU (r)=QU(x")=1.

That is, both distributions are indistinguishable w.r.t. the pessimistic and optimistic
criteria. Moreover,QU;r cannot distinguish both distributions. However, other
rankings can do it. Indeed,

QU (7) = u(z1),while  QU; (7') =1,
and
QU () = max{QU* (N'(x A 1)), h o ny ()} = h() = p,
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while

Moreover,

Remark 12

We might wonder if theZQU; rankings induced by subsets of the same cardinality
coincide. This is not true. Indeed, given proper subsefs @fith the same cardinality,
we can show that the orderings induced®®U conditioned by these subsets may be
different.

GivenY; C X, Y» C X, s.t.|Y1| = | Y3,

GQUy (m) > GQUy (7)) - GQUy5 (1) > GQUy (7).
Indeed, supposé& = {x; C ... C x5}, consider the “crisp” distributions
™= {xla z3, I4}7 7T/ = {xla x2, 'I5}7

and the sets
Yi=X-— {.131,.%'3} andY; = X — {$1,l‘2}.

So, we have that
QUy () > QUy (),
while
QUy,(T) < QUy,(7).
That is, the rankings conditioned by andY; are different.
There are several other refinements, for example, other refinements orderings

based in ordinal information araiscrimaxandleximin If 7 = (z1,...,z,),7 =
(y1,---,Yn), considering the sed(z,y) = {i|z; # vy, }, we have that

T Zdiscrimaz Y < IMaX x; > max ¥,

i€D(T,7) i€D(Z,Y)
while
T Zieximin Y < T* Zlex Y,

where zx, yx are increasing reordering af andy (for more details you may see
(Dubois et al., 1996a; Moulin, 1988)).
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9.1.1 Axiomatic Characterisation of some Refinement Orderings

Here, we provide the axiomatic characterisation of some refinements of the orderings
involving the generalised qualitative criteria.  In particular, we characterise the
refinement orderings C;,C3 and T4 previously introduced. First, let us introduce
some definitions analogous to the ones introduced in Chapter 6. Given a finite set
R = {C;}i=1 & Of binary relations on sets {E;},=1 5 respectively, for each
“boolean” mapping ¢:{0, 1}* x {0,1}* — {0,1}, the following relation may be
considered:

64% ¢ <~ g((ﬂg1(61a6/1)a"'aﬂEk(ek’e;c))’
(ﬂgl(ell’el)a : ~~a/igk(€;wek))) =1

where ¢ = (e1,...,ex), ¢ = (ef,...,e;), and uc, is the membership of the
preference ordering C; .

Recall (see Section 6.1) that Pareto and |exicographic orderings are particular types
of therelations <% .

Consider (V,A,V,T,1,0,1,ny) a finite distributive residuated lattice with
involution for uncertainty and two utility finite distributive lattices with involution
(U=, A",V ng=,0,1), (UT, AT, VT ny+,0,1), both lattices being commensurate
with V| i.e. there exist two onto order-preserving functionsh =:V — U=, ht:V — UT,
both h’s also satisfying coherence w.rt. T,andletu=:X — U~,ut:X — Ut betwo
preference functions representing preferences on consequences on these lattices such
that (u™)=1(1) # 0 # (u*)7H0), Aex(u)(@) = 0and V ey (uF)(z) = 1.
Then, we can consider the following “ utility” functional:

RGQU™ ™ (-|(u™,u*)(h™,h*)) = (GQU™ (-|u, h™), GQU* (-|u+, h¥)),

where GQU™ (-|u=,h™) is the generalised pessimistic utility function defined in
terms of «—, A~ (and the involution in (I/ —,<7)) and the t-norm T in V, and
GQU™ (-|ut, h™) isthe optimistic one expressed in terms of ut, h™ and T.

Notation 9.1 .,
For the sake of a simpler notation, we shall write RGQU " (-|(u™,ut)) instead of

RGQU_’+(~|(u—,u+)(h—,h+)) when the mapping h involved in the GQU function
has in its notation the same sign that «. The same ruleis applied to GQU , in the sense
that instead of writing, for instance, GQU ™ (-|u—, h™) wewill writeGQU ™ (-|u™).

Under these hypotheses, and given a boolean function g, we may consider the
orderings* induced by ¢ and RGQU_’+(~|(u‘, u')) defined as

41t is obviousthat not for all g we obtain an ordering, however for decision making we are interested in
thosethat result in orderings.
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T -\<f{7u T = RGQU ™ (w|(u™,ut)) _\<§{7S‘,S+} RGQU (7' |(u™, ut)).
That is,
<Y T =
9((1e= (GRU™ (n]u™), GRU™ (' [u™)), n et (GQU* (x|ut), GQU (n'ut)) )
(“s— (GQU™ (x'|u™), GRU ™ (r|u™)), ue+ (GQUT (7r'|u+),GQU+(7r|u+)))) =1.
Remark 13
In particular, if we choose g for lexicographic ordering, we have that the refinement

orderingsC,,C3 and C, proposed in the beginning of the Chapter are obtained. For
example, if we take,

g(x,y) = max(min(zy, 1 —yi), min(z1, y1, v2)),
andglz'sGQU—Hu—) EZ—'<GQU+( [ut)s : we have that
T <= {{GRQU (rju”) < GRU (r'|lu™)} Vv

{GRQU (n|u™) = GQU~ («'|u~) and
GQU* (r|ut) < GQU* (a'lut)}}.

As afirst approach for characterising these orderings, we propose the following set
of axioms, RAXY, for a preference relation C on (II¢" (X ), M ):
o GAO: Thereexistsaset R = {C—,Ct} of orderlngssuch that C = <%, i.e

REw e g ((ng-(r 7). g (r 7))  (g- (7, 7). g (7, 7)) =

o AzGroup: C~ satisfies AX PNt, whileC+ satisfies AX PN,
Then, the following theorem is a consequence of the representation Theorem 7.14.

Theorem 9.1 (Representation Theorem)
Given a boolean mapping g, a preference relation C on (11°% (X)), M+), satisfies the
axiom set RAXY if and only if there exist:

(i) two utility finite distributive lattices with involution (U —, A=,V ™, ny-,0, 1) and
(U+a /\+a \/+a ny+, Oa 1)a

(ii) two preference functions u=:X — (U~,<7), ut:X — (U*, <) such that
(7)) # 0 # (W) 7H0), Apex (w7) (@) = 0and Ve x (u?)(x) = 1.
(iii) two onto join-preserving mappings h =V — U~, hT:V — U™, both satisfying
coherence w.r.t T, also satisfying
if A <> X thenh™(A) <> h™ (X)),
ng-oh~ony =h~, ng+ohTony =hT,and

if A <> X then ht(\) <> AT (X)),
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in such a way that it holds:

/ H g /
TCw iff T =Slum by T

The vectorial function of utility inducing < f{’ -ty DEING

RGQU™™ (J(u™,uh) = (GQU™(Ju™, h™), GQU* (fu*, h*)),
withn = ng— o h™.

Proof:

—) Since relation C~ satisfies AXPNyt and C* satisfies AXPN{, then, the
existence of {(U~,<7),(U*,<H)}®, {ut,u~} and {h~, T} is guaranteed by the
Theorem analogous to Theorem 8.3. So, it only remains to verify that the relation
induced by RGOU ™" and ¢ coincideswith C .

As C~ and C* are represented by GQU™ (-ju=,h™)and GQU™(-|Jut,ht)
respectively, we have that

rC- ' < GQU (rlu™,h7) <~ GQU ™ ('|u™,h7),

and
rCt 7 <= GQU (nju™,ht) <t GQU («'|ut, hT).
That is,
He- (m,7') = us_(GQU_(ﬂu_), GQU™ (7'|u™))
and

po+(m, ') = per (GQUT (n|ut), GQU™ (x'|ut)).
Hence, applying G A0, we have that

rCn = g((pc- (), g (m ),
(Ng—(”laﬂ)aﬂg(ﬂlaﬂ))):l
= g((n<-(GQU™ (rfu™),GQU™ (n'|u7)),
p<+(GQUT (xlut), GRQU T (2'|u™)))
(h<-(GQU™ (x'|u7), GRU™ (w|u™))
e+ (GQUT (' [ut), GQUT (w|ut)))

= Tl T

)=1

) Given {(U~,<7), (U, <)}, {ut,u} and {h~,hT}, we consider C~
and Ct as the preference relations induced by GQU ™ (-|u~) and GQU™ (-|ut)
respectively. By the Theorem anaogous to Theorem 8.3, we have that C~ satisfies
AX PNt andCt satisfies AX PNT. That is, AzGroup isverified,

Taking into account the definition of <7 _ ) and the fact that

QU= (Ju-) (™, 7') = pe- (GQU™ (n|u™), GQU™ (x'|u™)),
5< isthe order induced in the lattice by the meet or joint operation of the lattice.
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and
paQu(ut) (T, ™) = pet (GQUT (n]u), GQUT (x'|ut)),
we have that

/

Tl ™ = 9((Haqu- (=) (T, ), taqu+(ut (T, ™)),
(NGQU—(~|U—)(7T/a W)a/iGQU+(~|u+)(7T/a ™)) =1
That is, GAOQ is verified. O

9.1.2 A First Approach for Characterising Refinements Orderings
Applying the Same Preference Function on Consequences

Now, we focus in the refinement orderings that apply the same preference function
on consequences. As a first approach for characterising these orderings, we propose
the following set of axioms, M RAX ¥, for a preference relation C on (IT* (X ), M)
induced by thelinear ordersC~ and C+:

e GGAO: Thereexistsaset R = {C~,C*} of orderingssuch that C = <%, i.e.
rCn = g ((pc-(m "), pe+(m 7)), (pe- (7', 7)), pes (7', 7m))) = 1

o ArGroup’: C~ satisfies AXT *, whileCt satisfies AXT #5.

o AxCompl

lL.2Cy < zCty.
2. Let z,z be a maxima and a minimal element of (X,C~) = (X,CY),
denote 7y = M (z,z,1,\), 7t = Mt(z,z,),1). Then,

T, C 7w, = 71';'\' ot 71':'.

3 X/~ | = [I(X)/ ~ |

Observe that as consequence of axiom AxzCompll, we have that
X/~ | =X/ ~F .

Before considering the characterisations of these orderings, let us introduce some
necessary results:

Proposition 9.2
1. Consider twofinitelatticesU,U’, b : U — U’ alatticeisomorphism, apreference
mapping v : X — U, and an onto linking mapping h : V — U, satisfying
coherence.
Ifu' = bowandh’ = bo h, theorderingsinduced by GQU w.r.t. U’ h' v and
w.r.t. U, h, u, are the same.
6AX; * and AX%r = are the same axiom setsas AX T and AX‘TF respectively but now considering the

distributions on IT* (X', V') with the mixture operation defined with the supremum and the infimum instead
of the maximum and teh minimum
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2. Given afinitelinear scale W, and two onto mappingsm : X — U, m’ : A = W,
such that they represent the same orderingin A, i.e.

m(z) < m(y) < m'(z) <m'(y),Vo,y € A
thenm = m'.
Proof:

1. We consider the optimistic criterion, being the pessimistic one very analogous.
We have that

/
GQUT (x|U', W u') = \/ W (x(2)TA,)
rzeX

with 2'(AL) = «/(z). Moreover, since w = bowu, h' = bo h, we have that
(bo h)(X,) = A (X)) =/ (2) = (bou)(z), thatis, h(X,) = u(z), hence

GQUT(x|U, hyu) = \/ h(m(2)TA,).
rzeX

Therefore, as b is an isomorphism and

/

\ (@) T

= \/ (boh)(m(z)TAL)

rzeX

= o[y wetea)

= bGQUT(x|U, h,u)),

GQU*(x|U" I o)

both orderings are the same.

2. Indeed, consider (A,C), withz C y <= m(z) < m(y)( < m'(z) <
m/(y)). Suppose that m # m/, hence Z = {z|m(x) £ m/(z)} # @ Let zp
be the minimum, w.r.t C, of Z. Without loss of generality we may assume, that
m/(zo) > m(xg), am' isonto there exists 1 € A st. m/(z1) = m(zg) <
m/(l‘o). Thatis, z1 C xo.

By hypotheses, m/(z1) < m'(zq) <= m(x1) < m(zo), SO, we have
that m(z1) < m(xo) = m'(x1), that is, m(zy) # m/(x1), hence z; € W.
Contradiction because 1 C zg, and ;¢ istheinfimum of Z. Hence, m = m’'.

d
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X1 a C
9 b
X3 C a

Table 9.1: « and ' definitions.

Notice that 2) is not true if U is non-linear. Indeed, consider U = {a,b,c} st.
a < be < b X = {x,xs, 23}, and u, v’ defined in Table 9.1, u, v’ satisfy that
u(z) < u(y) < v(x) < v/(y) and they are different mappings.

Then, the following theorem is a consequence of the representation Theorem for the
linear case and the previous proposition.

Theorem 9.3 (Representation Theorem)
Given a boolean mapping g, a preference relation C on (IT*(X), M), satisfies the
axiom set M RAXY if and only if there exist:

(i) afinite linear scale of utility U
(ii) an onto preference function u:X — U,
(iii) an onto order-preserving mapping h:V — U, satisfying coherence w.r.t T,
in such a way that it holds:
/ i g /
TCnr iff ST

The vectorial function of utility inducing < f{’ ) DEING

RGQU ™Y (| (u,w)) = (GQU™ (-|u, h), GQU™(-|u, h)),
withn = ngy o h.

Proof:

—) Asusud, C* stratifies TI(X) in a linearly ordered set of classes of equivalently
preferred distributions (7’ € [x] iff 7 ~ 7). The number of classes isjust the number
of levels needed to rank order the set of distributions.

Therefore, we take as preference scae (U+, <*) the quotient set TI(X)/ ~*
together with the natural (linear) order

[]*T <t [x]T iff xCT A

Again, as usual we define the order-preserving function ht:V — U* as ht(\) =
(7], while we define GQU* (M~ (z,2;A,1)) = ht()), and we extend it due to
axiom A4%. Whileut:X — U* isdefined as ut (z) = GQU*(z). It is known that
GQU™T(r) = max;=1, h+(ﬂ'(l‘i)—|—/\?—) and that GQU T represents C+ .

Anaogously we defined U~ =, h™, st. GQU(-|[U~,u~,h™) represents C—
Now, we verify that GQU ™ (-|[U~,u~, h™) also represents C+.
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Indeed, as by AzCompl2 we have that

71';'\' ct 71':' S N

then U~, U areisomorphic. Let b : U~ — U be anisomorphism. Moreover,

<~ m, O 7
= hT(N) <" AT ()
< boh™(A) <t boh™(u).

AP\ <t ht(p) — =fctaf
"

Hence, by Proposition9.2, AT = b o h~. Analogously, as by AxCompl1 we have that
u™, u~ represent the same ordering, and by Az Compl3, both mappings are onto, again
by Proposition 9.2, we havethat ut = b o u~. Therefore,

SGQU+(U= u= h=) TSGQU+(|U+ut ht) -

Hence, wedefinel/ = U~ ,h=h~,u=u".
So, it only remainsto verify that the relation induced by RGQU -t and ¢ coincides
withC .
AsC~ and C* are represented by GQU ™ (-|u, k) and GQU T (+|u, h) respectively, we
have that
T < GQU ™ (r|u,h) < GQU™ (7' |u, h),

and
Tt 1 = GQU(r|u,h) < GQU™T (7' |u, h).
That is,
/JE—(TF, = p<(GQU ™ (m|u), GQU ™ (7'|u))
and

pe(m, ') = pe(GQU (afu), GQU* (x' ).
Hence, applying G A0, we have that

rCr = g((uc-(m ), pe+(r, 7))
(uc- (7', ), pe+ (', m)) = 1
= g((p<(GQU™ (m|u), GQU™ (x'[u)),
p<(GQUT (mlu), GQU™ (n'[u))),
(h<(GQU™ ('|u), GQU™ (m|u)),
p<(GQU (n'|u), GRU* (r]u)))) = 1.
— 7w f{yu,u} 7.

+) Given (U, <) v and h, we consider C~ and C* as the preference relations
induced by GQU ~ (-|u) and GQU *(-|u) respectively. By an analogous to the Theorem
5.5 considering supremum and infimum instead of maximum and minimum, we have
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that C~ satisfies AX* and C* ﬂisfiesAX}’*. That is, AxGroup’ is verified.
Taking into account the definition of <§’u ) and the fact that

taQu-(uw)(m, ') = p<(GQU ™ (r|u), GRU™ ('|u)),

and
faQu+(lu)(m, 7') = p (GQU Y (rlu), GQU* (n'|w)),

we have that

TSl ™ = 9(kequ- (T, ), paqu+pu (7, 7)),
(HaQu- (w7, T), pagu+py (', m))) =1

That is, G AQ isverified. AxCompl, verifiestrivialy. d

9.2 A First Approach with aWeaker Commensur ability
Hypothesis

In the models developed up to now, we have been assuming an hypothesis of
commensurateness between the plausibility set V' and the preference set U in order
to define the criteria for ranking possibility distributions. Actually, in Section 4.4, it is
assumed the existence of an order-preserving mapping 2:V — U such that 2(1) = 1
and £(0) = 0 to define the qualitative utility functions. However, to characterise the
orderings, h isalso required to be onto (Lemma 4.7 and Theorem 4.12).

Now, we are interested in characterising the orderings resulting when # is not required
to be onto. This weakening of the commensurability hypothesis will alow us to
deal with other types of problems, in particular, those in which the cardinality of the
preference valuation set may be greater than the cardinality of the uncertainty valuation
Set.

9.21 A New Working Framework

Let us define the framework for this section. V' will denote a finite linear plausibility
scale, whereinf(1) = 0 and sup(V) = 1, and IT(X') will denote the set of consistent
possibility distributionson X over V, i.e.

IM(X) ={n: X - V|maxzex m(z)=1}.

U will denote afinitelinearly ordered scale of preference (or utility), withsup(U') =
1 and inf(U) = 0. As usua, we assume as working hypothesis the existence of a
preference function representing Decision Maker’s preference on consequences, i.e.
there exists a function u: X — U that assigns to each consequence of X a preference
level of U such that u(xz) < u(y) if and only if y isat least as preferred as .
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Let h:V — U be an order-preserving functiomlating both scale¥ andU such
thath(0) = 0, A(1) = 1. In such a frameworkalso assuming that is ontq we have
been considering the preference relations induced by the utility functions

QU™ (w|u) = min max(n(w(x)), u(x)),

zeX

wheren = ny o h, ny is the reversing-involution i&/, and

QU (r|u) = max min(h(m(x)), u(x)).

Notation 9.2

As usual, for the sake of a simpler notation, we shall wi}g —(w) instead of
QU (w|u) when the mapping. is not relevant for the context. In fact, these utility
functionsalso depend on the mappihdinking both scalesWith the goal of simplicity,
we will omit it and will use the notation apU to refer a utility involving an ontéd and
QUyy for the case of not requiringy this onto condition.

9.2.2 Qualitative Utility Functions with a Weaker Assumption of
Commensurability

Let us remark that the great difference with the cases analysed previously in Chapter 4
and with the work of (Dubois et al., 1997e€) is that nbws not required to be onto.
Givenh : V — U, for anyr € II(X), consider the gqualitative utility functions

QU (rlu) = min max(n(r(x)), u())

wheren = ny o h, ny being the reversing involution ifi, and

QU (r|u) = maxmin(h(r(z)), u(z)).

reX

Notice thatQUy, (-|u) and QUy, (-|u), restricted toX, coincide with the preference
functionu, i.e. QUyy (z|u) = u(z) = QU (z|u), for all z € X. As usual, since:? is
the identity inU, the mapping: can also be defined from namelyh(\) = ny (n(A)).

It is interesting to notice that these functions still preserves the possibilistic mixture:

Lemma 9.4
QUy, andQU;fV preserve the possibilistic mixture in the sense that

QUyy (A1, p/m2) = min{max(n(A), QUy, (m1)), max(n(p), QUyy (72)) },

and
QUi (M1, /) = max{min(h(A), QUi (1)), min(h(s1), QUi (m2))}.

We omit the proof since it is easy to verify that in the proof of Lemma 4.5 we do not
apply the fact ofs being onto.
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Corollary 9.5
The following properties remain true fQUy;, andQU;;, :

1. QUy, (max(my, m2)) = min{QUy, (m1), QUy, (m2) }.
2. if QU{;/(’/Tl) < QU‘X/(’/’I‘Q), then

QU (N7, p/m2) = median{QUy, (71), QUy, (72), n(A) }.
3. if QUy, (m1) > QUy,, (7o) then
QUyy (A m1, p/m2) = median{QUy; (m1), QUyy (m2), n(p) }.

The fact of allowingh to be anorronto mapping results in that the continuity axiom
A4 may be not true. Indeed, if we consideér = {0,1}, U = {0 < w < 1}
and X = {z, =1, T}, with u(z) = 0, u(z1) = w, uw(T) = 1, it is obvious that
QU (1) = minge, u(x). Thatis, the ordering induced U, coincides with the
maximincriterion while the ordering induced YU}, coincides with thenaximaxone.
Observe that ifr = x1, there does not exist € V such thatr ~ (1/Z, \/z).

Now, let us introduce the axiomatic setting we propose for characterising the
ordering induced by these pessimistic qualitative utility functions.

9.2.3 Axiomatic Setting Proposed

The above discussion has led us to propose this new set of axiahig for preference
relations orlI(X') with the max-min mixture as the internal operationIdfX).

o Al(structure) : C is a total pre-order .
o A2(uncertainty aversion): if < 7' = 7' C .
o A3(independence) : m ~ mg = (N1, pu/7) ~ (A/72, u/m).

Letz andz be a maximal and a minimal ¢fX, C) respectively. We denote by, the
lottery (1/Z, A/ ).

e A4C (relaxed continuity. There exists a sub$etX,; C X such that all
maximal elements ofX,C) and all minimal elements ofX,C) are in the
complement ofX ,, and such that

(Vr € II(X)) either (3N €V sit. m~ 7, )or (3z € Xyp St 7~ 2x).

o AxMizx:
1. ifx,y € Xyum, B €V, then,

z if(zCy)or(zCmy)

(1/z,5/y) ~{ m, fyCryCa

Y ifngyEx,

60bserve thaf 2, = 0 is possible, and then axior4 (see Section 4.4) is recovered.
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2. ifx e XNM, then,

my, if (my C ) or (my Cmy)
(1/my,B/x) ~ ¢ 75 fazCmg Comy
r ifry CaxComy.

The underlying idea ir44C is to relax the continuity of the preference. Now,
we may say that there exists a subset X¥nsuch that either the distributions are
preferentially equivalent to individual consequences on this set, or, the distributions
are preferentially equivalent to having\devel of uncertainty with respect to

Remark 14

Let us consider the simplest scale of uncertaility= {0,1}, that is, consequences
can be either fully possible or fully impossible. This is a very particular case since for
any preference scalé, the only requirement to be fulfilled by a mappihg’ — U is
thath(0) = 0 andh(1) = 1. In this frameworK1(X) is just the power s&* and the
resulting utility functionals are

QUyy (Alu) = minu(z),

QUi (Afu) = max u(z),

leading to the well-knowmaximinandmaximaxdecision models.
Now, it is very easy to check that, in order to fully characterise a preference relation
on2X induced by thesQUy;, andQU;;,, the above axioms simplify to these ones:

e Al:LC is atotal preorder,

e A2:if AC BthenB C A,

e A3:if A~ BthenAUC ~ BUC,

e A4C': forall A C X, there exista: € X such thatA ~ zx,
o AxMix: if x C y then{z,y} ~ z.

Actually, in this setting axionA2 is redundant since it is a logical consequence of the
remaining axioms. Moreover, as we are working as usual with a finit& sdtlC' is a
consequence ofxMizx.

The axiomatic frameworka la Savage of these maximax and maximin criteria are
provided in (Brafman and Tennenholtz, 1996; Brafman and Tennenholtz, 1997).
Some Auxiliary Results

Now, we introduce some results that will be applied to characterise the pessimistic
orderings.

Lemma 9.6
Axioms Al, A2, A3, A4C and AxMix imply
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Ax2: If Ais a crisp subset aX then there exists € A s.t.x ~ A.

Proof:
Supposed = {x1,x2} with z; C z5. Note thatA = (1/x1,1/x9). If 1 ~ x2, then,
A ~ z1. Now, we assume; C z».

By A4C, there are four alternatives for , zo:

1. Ip, Astey ~ (1/z,A/x) andzy ~ (1/T, p/x).
2. dxz,y € Xy Stoxy ~xandzy ~ y.
3.3 xeVze Xyy stay ~zandey ~ 7, .
4. I e Vo € Xnp Stz ~m, andzy ~ 2.
Now, we analyse them:
1. By A2, asx; C z2, then,\ > u. Applying reduction of lotteries, we have that

A~ Tonax(Oup) ™ (1/z, AN/x) ~ 1.

2. As A~ (1/z,1/y) andz C y by AzMiz1, we have that

A~x o~z

3. SinceA ~ (1/z,1/(1/Z, \/z)), applying Ax Miz2 we have that

ANle‘l.

4. Finally, A ~ (1/7, ,1/x) and byAzMix2, it results

AN’]T;NSCl.

Therefore, ifx1 T xo, it holds that4 ~ z;.
The case whenl hasp elements is an easy generalisation. Indeed, suppose the Lemma
is valid if |A| = p. Now, let A be such thatA| = p+ 1, and letr; be one of its minimal
elements w.r.tC .

SinceA = (1/x1,1/A — {x1}), by induction hypothesis we have thatif is one
of the minimal elements ot — {z; } w.r.t. C, then,

A~ (1/z1,1/22) ~ 21.
O

An interesting property of a preference relatignon II(X) satisfying A1, Ax2
and A2 is that the extremal elements @K, C) are maximal and minimal elements of
(TII(X), C) as well. Indeed, recall that we have proved Lemma 4.1:

If C verifies axiomsAl, Az2 and A2, andz, = are a minimal and a
maximal element of{, respectively, then:

e z~m ~X.
e 1 andz are also the minimal and maximal elementglaf X ), C).
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9.2.4 Representation of Pessimistic Qualitative/Ordinal Utilities

Next, we show that the preference ordering 00X ) induced by the qualitative
pessimistic utilityQUy,;, satisfies the above set of axioms.

Lemma 9.7
Let< - be the preference ordering 8i{ X) induced byQUy,,, i.e.

™ <quy o iff QUy (m) < QUy (7).

Then,<QU— verifies axioms sedt X M.
w

Proof:
Axiom A1l is easily verified, alscd2 is a consequence of maximum and minimum
being non-decreasing functions, while8 results from the fact thaQUy,,, preserves
max-min possibilistic mixtures.
Thus, we only check axiomd4C and AxzMix. If h is onto, Xy = 0, and A4C
reduces tad4, hence, we are in the case detailed in Section 4.4.

Now, we consider the case bfbeing non-onto. Let

Xnum = ({z| u(z) € n(V)})".

Asu~!(1) # 0 # v 1(0) andh(0) = 0 andh(1) = 1, if x is a maximal or a
minimal element of X <QUV’V)’ thenz ¢ Xy

With respect toA4C, we have to prove that if, x are a maximal and a minimal
element of( X, <QUV_V), for any distributionr in II(X) we have either

(AN s.t.QUy, (m) = QU (1/T, A/ z))
or
(Fr € Xym st.QUy, (m) = QU ().

By definition of QUy;,, for eachr, we have that exists, € X s.t. QU (1) =
max(n(m(xo)), u(zo)).
Hence,

o if QUy, (m) = n(m(xo)), then, taking\ = 7(xo)(obviously X is in V), we have
thatQUsy (r) = QUyy (1/7, A/z).

e Otherwise,QUy, (7) = u(xo). In this case, there are two alternatives, either
u(xo) € n(V) or not. In the first option, we have that there exists V s.t.
QU (1) = u(zo) = n(X) = QUy,(1/z, A/x). While in the second option, we
have that(zo) € Xnyar, andQUy, (7) = u(xo) = QUy, (20).

Finally, is not difficult to verify Az Miz taking into account Lemma 9.4. O

Now, we can show that the preference orderings satisfying the axioms proposed can
always be represented by a pessimistic qualitative utility of the tyjge(gf,.
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Theorem 9.8 (Representation Theorem of Pessimistic Utility)
A preference relatior onIl(X) satisfies axiom set X M if, and only if, there exist

(i) a finite linearly ordered utility scal€ with inf(U) = 0 andsup(U) = 1,
(ii) a preference function:X — U such that:=*(1) # 0 # u~1(0),
(i) an order-preservingfunctionh:V — U such that(0) = 0 andh(1) = 1,
in such a way that
o Cw iff m’ <qusz ™
where= ;- is the ordering ill(X) induced by the qualitative utilitUy; () =

mingex ma‘;vc(n(ﬂ(af))7 u(x)), being as usual = ny o h.

Proof:

The “if” part corresponds to the preceding Lemma. As for the “only if” part, we go
on structuring the proof, analogously to our previous approaches, in the following three
steps:

¢ In step (1) we define the utility scalé and an order-preserving functiénfrom
ViU

o In step (2) we define a functioRUy,;,:II(X) — U representing_, i.e. such that

QUy (m) < QUy, (x") iff  wC .

e Finally in step (3) we prove that
QUy () = minge x max(n(w(z)), u(z)),

whereu: X — U is the restriction oQUy;, to X andn = ny o h, ny being the
reversing involution orv.

Now, we develop these steps.

1. As usual,C stratifiesII(X) in a linearly ordered set of classes of equivalently
preferred distributionsa( € [#] iff m ~ 7). The number of classes is just the
number of levels needed to rank the set of distributions. Therefore, we take as
utility scaleU the quotient sefl(X )/ ~ together with the natural (linear) order

[r] <[] iff T

Denote by 1 and 0 the maximum and minimum elementd@X )/ ~, i.e. of
U. As Lemma 4.1 still holdsz andx are a maximal and minimal elements of
(X, C) respectively, thefiz] = 1 and[z] = 0.

Let 7, be the possibility distribution corresponding to the qualitative lottery
(1/z, \/z) and define the order-reversing functiorV’ — U as

"Note thath is not required to be onto.
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n(A) = [my].
Observe that, since /Z, 1/z) ~ z, we have

n(1) = [(1/7,1/x)] = [z] = 0,

and

n(0) = [(1/z,0/z)] = [z] = 1.

A2 guarantees that reverses the order.

Let h = ny o n, ny being the reversing involution ify. It is obvious thath
satisfies the conditions required.

2. Now, we define the qualitative functiagpU,,, onII(X) in three steps.

(a) First, let us defin€QU;, (1/Z, \/z) = n(N).
It is easy to check that

T By = QUy (my) < QUy (7).

(b) Secondly, let us define for eaghe Xy, QUy, (z) = [x]. Analogously,
itis easy to verify that, restricted to distributions of typeQU,, represents
C.

(c) We extendQUy,, to any lottery as follows.

Since for anyr, A4C guarantees that eitheB\ s.t. 7 ~ 7, ) or (3= €
Xnym Stom~ x), we define

_ (N f3IXNstm~Ty
QUW(W)f { x] if 3z € Xyp St ~ .

Notice thatQU,,, is well defined: byA4C it is not possible to hava € V
andz € Xy s.t.m ~ (1/Z, A\/z) andw ~ x. However, one of these cases
may happen:

e dr,7’' € Xnum, St m~xzandr ~ 2/, or
e there existg, # A such thatr ~  andr ~ .

But, sincez’ ~ m ~ z, we have that’ ~ z, therefore they are in the
same equivalence class, aRd’;,, (7) = [z] = [2']. In the other case, since
m, ~my then[ry] = [r,], son(A) = n(p).

Finally, it is not difficult to verify thatQU,, represent& . This is due to
the fact that anyr is equivalent to some, or to somer € Xy and

QU represents over ther, ’s and over ther’s in Xy ;.

3. Now, we defineu: X — U as
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u(x) = QUy (2).

Notice thatu(Z) = 1 andu(z) = 0, and thusu~1(1) # 0 # = 1(0).
It remains to prove thaQUy;, (7) = min,ec x max(n(n(x)),u(z)).
With this goal, we will prove the following equalities:
o QUi (1/m1, B/m) = min(QUyy (m), max(n(B), QUyy (m2)))-

By A4C, there are several alternatives for, 7o :

(@) Fu, Ast.m ~ (1/z,A/z) andmy ~ .

(b) Fx,y € Xy St ~ zandms ~ y,

() INeV,x e Xyu St.m ~aandmy ~ 7y,

(d) INeV,x e Xyy St ~ 7, andmy ~ 2.

Now, we analyse them:

(a) By 43,

(1/m1, B/ma) ~ (17, B/ (1), p/z)),

and reducing lotteries we obtain
(1/m1, B/m3) ~ (1/Z, max(X, min(p, 5))/z).
Therefore,

QUy (1/m,B/m2) = mn(max(X, min(u, 3)))
min(n(A), max(n(u), n(3)))
min(QUi (), max(n(8), QUi (72)).

(b) Again by A3,
(1/m, B/m2) ~ (1/z, B/y).

Now, taking into accountiz M iz, we have that

z if(zCy)or(zCmy)

(1/z,B/y) ~q 75 fyCryCa
y ifryCyCa.

So,
u(z) if (zCy)or(zC my)
QUy, (1/z,8/y) =4 n(B) HyCmyCx
uly) ifr; CyCa.
That is,

QUy (1/m1, B/m2) = min(QUyy, (1), max(n(8), QUyy, (m2)))-
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(c) Now,

(1/m1, B/m2) ~ (L/z, B/my) ~ (L/2,1/7 00 5)

and byAx Mz, we have that

Tonin(x,6)" if (ﬂr;in()\ﬁ) C x)or

. ~ X
(12, 1/ 0) ~ (Tine) ~ X)

x, fXCaxC Tonin(\,8)°

So,

min(u(z), n(min(A, 5))

QUy (1/m1, B/m2) )
= min(QUy, (1), max(n(8), QUy,(m2))).

(d) Analogously, ifr; ~ (1/z,A/z) andme ~ z, then,

(1/m, B/m2) ~ (17, B/ ),

SO,
my if (my Cx)or(ry E7g)
(1)1, B/ma) ~ § 75 ?f.l?l:ﬂ'ﬁ_ Cmy
r fryCxCmy.
Hence,

QUyy (1/m1, B/72) = min(QUyy (m1), max(n(5), QUy, (m2)))-
In particular, we have that
QUyy (max(my, m2)) = min(QUy, (1), QUy, (m2)).
This may be easy generalised to

QUy ( max m;)= min QU (7).
1 1 p

e Now, we verify
QU (m) = E{lin max(n(m(x;)), u(z;)).

As 7 is normalised there exists; € X such thatr(x;) = 1. Without loss
of generality we assumg= 1.

Then, let
T, = (1/1’177T(£L'i)/$i).
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Sincer = max;—1,. , m;, We have:

QUy(m) = QUy( max m)
= pin QUT(m)
= mnin {minu(z), max(n(r(z:)), u(z:)))}
=° minmax(n(r(z:)), u(z))-

This ends the proof of the theorem.

9.2.5 Representation of Optimistic Qualitative/Ordinal Utilities

For modelling an optimistic behaviour of the Decision Maker, we consider the axiom
setAXM™T = {Al, A2T, A3, AACT, AzMiz*}, with 7y = (\/Z,1/z) where as
usualz andz are a maximal and a minimal element(df, C) respectively, with
o A2T:if r < 7/ thenw C 7/,
e AACt: There exists a subSeX x5, C X, such that all maximal elements of
(X, ) and all minimal elements ¢fX, C) are in its complement, such that

vr € I(X) either (GA €V st. m~ 7 )or 3z € Xnu St 7~ z).

o AzMiz™:
1. if z,y € XNm, [CRS V then,
x if(xgy)or(xjﬂ;)
(1/2z,8/y) ~ WZ{ ify:lngx
y f ﬂ;,“ Jy Jx,
2. if x € Xy then
my if (7} J2)or (7 3 77;)
(1/75,B/z) ~ 71'3 if.r:lﬂ';; i

T ifﬂ;jxjﬂ'j.

As in the pessimistic case, we have the following results, whose proofs are
analogous to the previous ones, so they are omitted here.

Lemma 9.9
1. Axioms A1, A2+, A3, A4CT andAxMix™ imply

8Note thatr(z1) = 1, sou(z1) = max(u(z1), n(7(x1))).
90bserve thaf 2, = 0 is possible, and then, axiom4 ™ is recovered.
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Ax2: If Ais a crisp subset aX then there i € A s.t.x ~ A.

2. We still have the Lemma 4.11:

If C verifies axiomsAl, A2%, andAx2, andx andz are a minimal
and a maximal element df, respectively, then:

o the following equivalences hold: ~ (1/Z,1/z) ~ X.
e x andZT are the minimal and maximal elements (®f(X), C)
respectively.

Lemma 9.10
Let< o+ be the preference ordering BH{X) induced byQU,, ie.

T <Squi, 7 iff QU (m) < QU (7).
Then,< QU verifies the axioms set X M.
w
The respective Representation Theorem is:

Theorem 9.11 (Representation Theorem of Optimistic Utility)
A preference relatioi onTl(X) satisfies axiom setX M if, and only if, there exist

(i) a finite linearly ordered utility scalg with inf(U) = 0 andsup(U) = 1,
(i) a preference function:X — U such that,=1(1) # 0 # u=1(0),
(iii) an order-preserving functioh:V' — U such that(0) = 0 andh(1) = 1,
in such a way that
o Crw iff ’ <Squi ™

Where<QUV+V is the ordering iM1(X) induced by the qualitative utilitQU,}, (7) =
max;ex min(h(n(z)), u(x)).

9.2.6 Utilities for Non-Normalised Distributions

Now, we consider as the working set of possibilistic lotteries thdi§&{.X) of non-
necessarily normalised distributions &nwith values on the finite uncertainty scale
keeping the usual definition of possibilistic mixture.

We extend the utility functional€Uy;,, and QU;}, to evaluate non-normalised
distributions of II¢*(X) as well. Given an order-preserving mapping” — U, s.t.
h(0) =0andh(l) = 1,andF:V — V s.t. F(1) = 0, we define, for anyr € I1¢*(X):

QU (mu) = min{QUyy (N (7)|u), n o F(H(r))},
@;rv(ﬂu) = max{QU;, (N (m)|u), h o F(H(T))}.
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From these definitions, it is obvious that, for alle II°*(X), we have@;rv(w) >
QU (), in particular, ifr = 0, QU (7) =0 andeU‘fV(w) = 1. MoreoverQUy;,
(@;q, resp.) is an extension &fUy,, (of QUy\, resp.) since, ifr is normalised(n)
=1,andn o F(1) = 1andh o F(1) = 0, and thusQUy;, andQUy;; (QU+,, andQUy,
resp.) coincide oml(X).

In order to characterise the preference orderingsiduced inI1¢*(X) by QU
and@jv, we need to extend the axiom set&X M and AX M respectively, defined
onII(X), with the usual additional axiom:

o ATF:forallm € I°*(X),w ~ (1/N(w), F(H(n))/X).
Now, let us prove the following representation theorem.

Theorem 9.12 (Representation Theorem)
A preference relatior onll** (X ) satisfies axiom set X M¢* = AX M + A7TF (resp.
AXMTer = AXM™ + ATF ) if, and only if, there exist

(i) a linearly ordered and finite preference sdalevith inf(U) = 0 andsup(U) = 1,
(i) a preference function:X — U such thata'(1)# 0 # u~1(0), and
(iii) an order-preserving mappirigV. — U, h(0) = 0 andh(1) = 1,
in such a way that it holds, for eaahe 11¢* (X ),
P Ca i QUL () < QU (nlw),
(' Cx iff QUY, (7'|u) < QU *V'V(w|u) respectively) where, as usual= nyoh.

Proof:
We only prove the theorem for the pessimistic criterion, the proof for the optimistic
criterion being very similar.

) We have to prove that, givaii, a preference function: X — V/, and an order-
preserving mapping:V — U, verifying (i),(ii) and (iii), the ordering on possibility
distributions ofII°*(X) induced by the utility evaluatio)U,, satisfies the axioms

of AXMe®. SinceQUy,, coincides withQUy;, onTI(X), all axioms fromAX M are
automatically satisfied by Theorem 9.8. Thus, it only remains to verify AfTdt also
holds. According to (ii), there is such thatu(z) = 0, and thusQU,,(X) = 0. Since
QU preserves possibilistic mixtures, we have forralf I1¢*(X),

QUy, (1/N(m), F(H(w))/X) = min(max(n(1), QUyy, (N(m))),
max(n(F(H(m))), QUy (X))
= min(QUy (N ()),n o F(H(r)))
= QU (7).
Thus, 7 is equivalent to(1 /N (r), F(H(w))/X) w.r.t. to the ordering induced by
QUy-
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—) Let us assume now that we have an orde(iig’ (X ), C) satisfying the axioms
of AXMe*. In particular,C satisfies allAX M axioms, hence, applying Theorem 9.8
again, we can suppose the existenc&pfi: X — U andh:V — U satisfying (i), (ii)
and (i), and such that the corresponding utiligy/,;, represents- onII(X), i.e. for
all normalisedr, we have thatt’ C 7 iff QU (7'|u) < QUy, (7|u). Axiom ATF
guarantees that, for any, = ~ (1/N(7), F(H(r))/X). SinceQU,;,(X) = 0, and
(1/N(m), F(H(m))/X) is a normalised distribution, we define
QU (m) = QUy (1/N(m), F(H(m))/X)
= min(QU, (N (7)), n o F(H(n))).

Now, we have to verify thaQU,, represents_, i.e. that for eachr, 7’ € T1°*(X)
the following equivalence holds

Cr iff QU (7)< QU (n).

Indeed, by axiom
ATF, m ~ (1/N(w), F(H(r))/X) andn’ ~ (1/N(x'), F(H(x"))/X), so we have
that

T e = 7~ (1/N(@), F(H(a")/X) E (1/N (), F(H(r))/X),
and since&)Uy,, represents- on normalised distributions, we have that
T e = QUy(1/N(a), F(H(n')/X) < QUy, (1/N(r), F(H(r))/X).
As QUy,, preserves mixtures we have that
' C 7 <= min(QUy, (N (7)), no F(H(x"))) < min(QUy;, (N (x)), n o F(H(x))).

Thatiis,
o Cr  iff @;V(W') < QU ().

Remark 15
We have considered other alternatives for characterising the ordering induGéd by
in particular these ones:

1. The set of axiom$§ Al, A2, A3, AAL, Ax2} with

o ML :Vrell(X)Ixzge X IANe Vst m~(1/Z,\ xg).
2. The sef{ A1, A2, A3, A4L, Az2, A-Monotony}, with

e A-Monotony: if m; C o then(1/m, A/71) E (1/7, A/m2).

However, they do not characterise it as the following examples show.
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Example:
Consider the following examples:

lletX ={zCaC %}, Xynm = {2}, V = {0 < 8 < 1}, and consider the
relation
xCaxCmg Co,

also satisfying

x~ (17, 8/2) ~ (4], 1/z) VpeV.

All other distributions are taken equivalentto

This relation does not satisfx Mix2, since although: C 5 C T, instead of
being(1/z, 8/x) ~ m; we have(1/z, 8/z) C 5.

That means that having a relation satisfyidg — A3, A4L and Ax2 is not
enough for having a relation that is representabl€by,,, since of cours€U,,,

satisfiesAdz Mix.

2. letX ={zCczC T}, Xnmu = {z},V = {0 < 8 < 1}, and consider the

relation

xCrxC7mgCw,
also satisfying

T~ (1/z,0/x),
and

x~ (u/T,1/x) VYpevVv

All other distributions are taken equivalentito
This relation does not satisiyx Mix2, since although: C g C T, instead of
being(1/z, 3/x) ~ 75 we have(1/z, /) Jmy.
Again, this shows that having a relation satisfying — A3, A-Monotony A4L
andAz2 is not enough for having a relation representabl&)by;; .

&
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Chapter 10

Possible Applications of the
Possibilistic Decision Model

In this Chapter, we analyse two possible applications of the qualitative/ordinal models
we have been working with. Indeed, we show that these models may be applied to
solve problems of making decisions in the context of two of the projects in which
the Institut d’Investigad en Intel.ligencia Artificial (IIA-CSIC) was involved:Co-
Habited Mixed-Reality Information Spaces project (COMRIS)FishMarket. In the

case ofCOMRISwe propose an approach to solve a particular decision problem in it,
while in FishMarketwe revise an approach already proposed by other IlIA researchers.

10.1 Co-Habited Mixed-Reality Information Spaces
Project

Big conferences bring different ways for interacting: people talk about the results
obtained, show demos, want to meet people with the same interests, etc; moreover,
the same person may has different roles during the event like being an invited talker
and looking for partners for an european project.

Usually there are a lot of available information, events and possible activities on
different topics, making the organisation for optimising the participation a non-trivial
work.

The Co-Habited Mixed-Reality Information Spaces project (COMRt&)\elde,
1997) propose an approach for integrating software and human agents moving in virtual
and real spaces closely related (see Figure 10.1 (Plaza et al., 1998)).

COMRISchooses for experimentation a conference center as their framework.

“In the mixed-reality conference center real and virtual conference
activities are going on in parallel. Each participant wears its personal

IFor more
details you may see http://www.iiia.csic.es/Projects/comris/ and http://www.iiia.csic.es/Projects/fishmarket/
respectively.
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Figure 10.1: A description of the virtual interest-based space and the physical

proximity-based space @OMRIS

assistant, an electronic badge and ear-phone device, wirelessly hooked
into an Intranet. This personal assistant - the COMRIS parrot - realises
a bidirectional link between the real and virtual spaces. It observes
what is going on around its host (whereabouts, activities, other people
around), and it informs its host about potentially useful encounters,
ongoing demonstrations that may be worthwhile attending, and so on. This
information is gathered by several personal representatives, the software
agents that participate on behalf of a real person in the virtual conference.
Each of these has the purpose to represent, defend and further a particular
interest or objective of the real participant, including those interests that
this participant is not explicitly attending to.”

The COMRISproject studies the synergy of these two spaces, and their relationship.
Its goal is to help the user in optimising the user’s participation in terms of his interests

while attending to the conference. With this goal they propose (Plaza et al., 1998):

“To develop software agents inhabiting the virtual space that take up
some specific activities on behalf of some interest of an attendant in the
conference. Specifically, Rersonal Representative Agent (PR&)an
agent inhabiting the virtual space that is in charge of advancing some
particular interest of a conference attendant by searching for information
and talking to other software agents.”

Next, we analyse the application of the possibilistic decision making model in the

context of theCOMRISProject.
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10.1.1 The Framework

For each user, we have two different type of agents:

Personal Representative AgelfBRAsfor short), each one pursuing a different
interest for a same user. They search information at the virtual space for some
particular interests, for example, one of them may be in charge of looking for
appointments with people who may know about vacancies in their laboratories
while other is instructed to look for activities related with the to@iBR The
collection of the possible actions in which tRRAmay participate, in order to
achieve user interests, is provided by the conference organisation, for instance,
meeting people, attending a demo, etc. FtRAchooses its “best” proposal in
terms of the knowledge about user preferences anddhtext informatior{i.e.

the physical situation and the activity of the user and of other attendants) it has.
It will try so send this information to the user, but its communication with him is
not direct, since a user may have sev@&®lAsthat would try to compete for his
attention. EachPRAsends its information to Bersonal Assistant agent

Personal Assistant (PAgents coordinate the proposals presented by aifftiss

of the users. Each user has only dPethat evaluates all proposals in terms of
the contextual information it has. That is, it “solves” the problem of competition,
in the sense that it decides whiBfRAwill be listened by the user.

EachPRApresents its most relevaptoposalamong one of the following:

anappointmentvith a persongpp),
a proximity alertof a person or event of interest for the ugenoj,

a proposal ofeceiving propagandép) related with events like demonstrations,
future conferences, etc.,

acommitment remindesf an event that will happen soorefr) and to which the
user has promised to be present, for example, it may remember the user that he
has soon a meeting;

together with astimation of the relevance degree of the proposal

great importanc€gi),
moderate importancémi,
doubtful importancédi),

null.

In fact, aPRAnNot only has to provide a relevance of the proposal but an argumentation
of it as well. However, this point is out of the scope of our work.

For more details of the project you may consult the URL http://www.iiia.csic.es/
Projects/comris/ or (Plaza et al., 1998).
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Figure 10.2: Comris Framework

10.1.2 Our Proposal

As itis mentioned, th®A's goal is to choose, in the current context, one of the received
proposals to send it to the user, but previouslyPAehas to assigiits own evaluation

of relevance to the proposal. On the other hand, the goal of daB\is to make a
proposal to thd°A based in the result/proposal of each task (the set of available tasks
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being {appointment, proximity, propaganda, remingetaking into account the local
context information available it has. An assignment of the proposal relevance has to
be made as well.
In this framework, the available information is of qualitative nature rather than
numerical. Possibilistic Decision Theoris specially suited for this framework since
it can be based only on ordinal scales of uncertainty and preference. Besides, the
feasibility of working with partial orders may be useful in this context, because
sometimes giving a total global preference may result very difficult for the user.
Moreover, is it feasible to have available a memory of cases summarising the
behaviour of theéP?A and PRAsIn previous experienced situations. This, leads us to
propose that;

o PAmay be supported in looking for its goal Bgssibilistic Case-Based Decision
Theory (PCBDT)

e AnalogouslyPCBDT may be applied for giving support to eaBRAfor making
its decisions.

Following, we focus in the behaviour of tir&.

PA’s Decision Making Problem

We assume as available a memory of cases for helpinBAh€onsider cases given by
the following 4-tuple:

cpa = (vs, proximity-context,winner,user-feedback
where

o vs = ((dy,rely), ..., (dn,rely)), with (d;, rel;) describing the proposdl made
by the PRA; and the importance¢l;, that theP RA; assigned to its proposal,
being the number dPRAsthe user has.

e proximity-contexis a 3-tuple(user-loc user-neighuser-actiy representing the
information thatPA has about the actual context of the user. Wheser-loc
gives information about the place in which the user is (dal, meeting point,
demo-roombetc.),user-neighis a list of the keywords in common that the user
and the participants that are “near” the user have. Finafigr-activprovides
information about the type of activity in which user is involved (eggssion,
social event, appointmergic.)3

e winneris a pair(PA-proposal, PA-eval-re/\wherePA-proposalis one of thed;
received, which théA preferred, whilePA-eval-relis the own evaluation of the
relevance thaP A assigns tdPA-proposal

2This context information although in some sense is more “partial” than the one managedPdy its
however, may result more complete in the sense that not only include context information about his owner
but the one provided blyRAs of other persons as well.

3As it is said, we assume that there may exist different levels of information with respect to this topic, the
PA having the most complete one, and e&&Ahas a partial view of it.
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e Finally, user-feedbacks a pair (21, 22) reflecting the user opinion. lIts first
componenty; is user’s evaluation ofPA's proposal, while the second ong
is his evaluation of the relevan&A has assigned to it.

For applying PCBDT, also asimilarity function defined on the set of pairs
(vs,proximity-contexthas to be available, as well as theer's general preferences
The latter is referred to his main or priority goals. For example, although he may be
more interested in the keywobkcision Theorythan inCBR however, if his first goal
is to obtain a fellowship, the user might prefer an appointment for a possible fellowship
related toCBRto a invited talk aboubDecision Theory With respect to theimilarity
on pairs(vs,proximity-context)it may be given either explicitly (i.e. directly from the
user) or it may be evaluated in terms of marginal similarity functions corresponding to
tasks, labels of relevance, etc, and then, for instance, performing a weighted aggregation
where the weights may depend on tiser general preference$hat is,we can propose
the following expression:

SIM ((vsg, conty), (vs1,cont1)) = GAGG(Sst(vSg, v81), Seont(conty, conty ),

Wst wcont)

whereGAGGis an aggregation operator and ang andw,,,; are the weights related
with S,; andS..,.: respectively, and

Sat(vso,vs1) = AGG(Stask(d),d}), ..., Stask(dd, d}),
Srei(rell,rell), ..., Sper(rel?, rel}), Wiask, Wrer )

with vsy, = ((d¥,rel?), ..., (d*,rel¥)), and Siask, Srer @and Seo,; are the marginal
similarity functions defined on task proposals, labels of relevance and proximity
contexts respectively and,,.; andw,.; are the weights related with;,s; and S,
respectively, andlGG is an aggregation operator.

Example:
As a matter of example, we consider a simplified perspective of the problems involved
in this project. For instance, we may assumer-feedbacls measured oty = E x E,
with E = {0 < A < u < 1}, andng being the reversing involution of. The set
of labels foruser-activis {private, social, public-active public-passivé, while for
user-locis {working-room, social-room, private-rogm

The similarity functionS;, ;. on tasks defined over, is described in Table 10.1,
while the similarity on labels of relevancs,.;, is provided in Table 10.2.

Now, we consider the similarity function on contexts defined as:

Scont(conto, cont;) = min(Seon:((user-log, user-act),
(user-log, user-act)), Sg(ukw(Lo), ukw(L1))),

where Seons is the similarity function on pairguser-loc user-acj, while Sg is the
similarity on £, provided in Table 10.3, andj.,(L) summarises the user preference
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| Stask || app [ pro | rem [ rp |

app 1 W A 0
pro W 1 A 0
rem A A 1 0

D 0 0 0 1

Table 10.1: Similarity between tasks.

’ Srel H gi \ mi \ di \ null ‘
gt 1 oA 0
mi n 1 A 0
di Al A1 0
null || O | 0 | O 1

Table 10.2: Similarity between relevance labels.

(S [[0[A]n[1]
0 1| A]0
A J72 I R T2 D
poffA el p
1 Ol A |pl|l

Table 10.3: Similarity orf.

with respect to the keywords involved in the list(list of keywords of interest for the
user’s neighbours).
Now, we assume that memory of cases provides us directlyayitfi L) instead of
L.
The aggregation operator can be defined, for example, as
GAGG(x,y;wi,w2) = (np(w1) V) A (ng(w2) V y).

and

AGG(Z,g;wy,wa) = (nE(wl)\/< /\ xl>)/\

i=1...n

(nE(wz)\/< /\ yz>)

i=1..n

Consider the current situation-context described as:

(vso, contg) = (((appl, mi), (rem2, mi), (rem3,di)), (work — room, u, social)),

and suppose there aréePRAs. Hence, the similarity on states is:

Set(vso,vsi) = (np(wiask)V N\ Srask(d), di)) A

j=1,...,3
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(nE(Wrer) V /\ S’Tel(rel%rel;-)).
j=1,..,3

The subset of cases of the memadvy related with the current situation, that is,
cases in whichlP A has proposed aapp1, rem?2 or rem3 with some relevance level, is
described in Table 10.4.

’ ‘ vs ‘ prox — cont ‘ winner ‘ us — feed ‘
c1 ((appl, gi), (pro2, mi), (rem3, gi)) (soc — room, 1, publ — pass) (rem3, gt) (1,1)
co ((rpl, mi), (rem2, gi), (pro3, di)) (work — room, p, publ — pass) | (rem2,mi) (1, p)
c3 ((appl, di), (rem2, mi), (rem3, mi)) (soc — room, A, social) (rem2, mi) (1, )
cq ((appl, mi), (pro2, mi), (rem3, di)) (soc — room, p, social) (appl, di) (1, X)
cs ((appl, mi), (rem2,di), (rp3, di)) (work — room, p, social) (appl, gi) (1, p)
ce ((appl, di), (rem2, mi), (rem3, di)) (work — room, p, social) (appl, gi) (1, p)
cr ((rem1,di), (pro2, mi), (rem3, di)) (work — room, p, social) (rem3, gi) (A, )
cs ((prol, mi), (app2, mi), (rem3, di)) (private — room, u, social) (rem3, gt) (s )
co ((appl, gi), (app2, gi), (rem3, di)) (work — room, p, social) (rem3, gi) (0,0)

Table 10.4: The memory of cases M.
Hence, for eaclPA's available decision*, we define the associated distribution as
usual, i.e.
T, (vso,conto) (T) = \/{SIM((sz, conty), (vs, cont))| ((vs, cont),d, xz) € M}.

~ Notice that for defining these distributions it is necessary to know the similarity
Scont ON pairs(user-loc user-acj, at least for some particular pairs. Table 10.5 provide
these similarity values.

’ Secont H (work — room, social) ‘

(work — room, pub — pass) A

(soc — room, social) L

(work — room, social) 1
private — room, social

L

(work — room, pub — pass) A

Table 10.5: Some values of the similariy, ;.

Now, we consider some of the associated distributions:
o for d=(appl,gi)

SIM ((vso, conty), (vss, conts))V
SIM ((vsog, conty), (vse, contg)), if z=(1,p)

Td, (vso,conto) (I) =

0, otherwise

“Recall that since PA has to choose between the received proposal, the possible decisions are

(appl,rel), (rem2,rel) and (rem3, rel), whererel is the degree of relevance that PA assigns to the
proposal.
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o for d=(appl,di)

SIM ((vso,conty), (vsy, conty)), if x=(1,A)
7TLl,(Uso,conto)(:17) - 0, OtherWise
o if d=(rem3,gi)
STM ((vsg, conty), (vsy,conty)), ifxz=(1,1)
SIM ((vso,conty), (vs7, contr)), if x = (A N)
Wd,(USO’wntO)(a:) = SIM ((vsg, conty), (vsg, conts)), if x = (u, \)
SIM ((vsg, conty), (vsg, conty)), if x = (0,0)
0, otherwise
o for d=(rem2,mi)
STM ((vsg, conty), (vsa, conta))V
SIM ((vsg, conty), (vss, conts)), if x = (1,p)
7-‘-cl,(vso,conto)('r) =
0, otherwise.

Hence, once we are provided with, or have choosen, the values of the weights
Weask, Wrel, Weont @aNAwy, We are ready to rank the distributions.

As several of these distributions may be non-normalised, we a@p)yJ; and

GQU;F where we consideF' = ny. In U we may consider different orderings like
Pareto, minimum, lexicographic, etc.. So, we would consider for ddbb values

UF_‘, (vso,conto) (d) = GQU;‘ (Wd,(vsmconto))
= nony(H(m, (vso,conto))) N GQU (N (T4, (usg conto)))s

and

U;(U507007Lt0)(d) = GQU+ (N(ﬂ-d,(vso,conto))) \ (h © nV)(H(ﬂ-d,(vso,contg)))a
where these values are obtained taking into account the ordering chosén kor
example, the distributions associatedR&'s proposals not made before likeem3,
di),(rem3, null)(rem3, di) (rem2, di),(rem2,null),(rem2,gi), (appl,may (appl,null)
are null. Hence, their utilities ai®; and1y w.r.t. pessimistic and optimistic criteria
respectively.

&

5In fact, we have not provided in Chapter 8 the extension for non-normalised distributions for the utility
functions introduced in Chapter 6, but it may be done analogously.
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PRA's Decision Making Problem

Now, we focus on the behaviour of eaBPfRA which is the main interest of the IlIA
COMRISteam. PRAhas to make a proposal to tif& based in the results/proposal

of each task, taking into account the available local context information it has. The
relevance of its proposal has to be assigned as well.

As in the case o A, we thinkPCBDT may provide support for this problem if we
assume we have amemory of casestoring the performance of proposals made in the
past by the®RA and the ones made by oth&RAs together with the fingdPAproposal.

Indeed, @PRAcase may be represented as the 4-tuple:

Cpra= (vs, partial-context, PRA-task-prop, PA-answer)
with:
e vsis defined as previously, i.es = ((dy,rely), ..., (dyn, rely)).

e partial-contextis a variable describing the actual conttadting into account the
information that the®PRA has

e PRA-task-props a 4-tuple descriptoapp-result, proximity-result, propaganda-
result, reminder-resulf)each component representing the “best” task-proposal.
Observe that the winner task, i.e. the task that PRA proposed, is included (with
its degree of relevance) s Indeed, if we are working with th& RA;, the
winner task isi;.

e PA-answeris a pair(win?,PA-relevancelepresenting the feedback th2a may
provide itsPRA win? tells wether thisPRAwas or not the winner, anBA-
relevanceis the relevance assigned B to the proposal (this wants to reflect
that for example the relevance function of tARRAmay be modified for next
time taking into account thBA’s answer, sinc®Ahas more information).

itemize

The possibility distributions associated to each decision are defined as usual,
then, they are ranked applying the generalised utility functions for non-normalised
distributions as usual.

Finally, let us introduce, some comments on PRA's Tasks. So far, we have assumed
that eachPRAhas the results of each task, now we are interested in analysing a bit
more this point, that is, having a local context information, some knowledge about
user preferences with respect to the activity he/she is interested, which may be the best
proposal for a task. As an example, we consider the appointment task. Its goal is to
look for the more interesting appointment in terms of the available information it has
about the preferences of the user and the other participants of the conference.

The available information in this moment specifies the actual situation as

s ={s;|li € I},
with I a finite set, and
s; = (reg, kw, TA, g, partial-context , ),
with:
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’ Task H Characterisation of its result ‘

Appointment (reg, kw, T A, g, partial — context )
Reminder || (deadline,distance-fromT A, kw, partial — context, em )
Proximity (reg or event, kw, partial — contexty,,)

Propaganda (kw,way-of T' A, g)

Table 10.6: Results of the Different Tasks

e reg: is the identifier of the person, for example, the registration number each
participant has.

e kw: is a (or a set of) keyword(s) in which the user is interested.

e TA: stands for a type of activity, (for example grants, future projects, etc.). This
wants to represent that although the user may be interested in an appointment
related with a certaikw, it is not the same interest for example for a person who
gave an invited talk related with this topic or for a person who is selling books of
this issue.

e ¢ stands for the group to which the person belongs (we may have a classification
taking into account for example the organisation of the person pertains).

o partial — context,py, as usual, it summarises the information of context related
with this task, in this case, the appointment one.

As it is mentioned, the goal of the appointment task is to choose the best ranked
The ranking has to take into account user’s preferences with resplestaindTA, i.e.

u = f(kw,TA). However, other facts have to be taken into account, for example, it
may be the case that the preferences are also expressed in tgrms of

Another point to consider is the number of persons related kitland TA that
are available as well as whether they are near the user (which may be known by the
partial — context,yy), and of course theser-activhas to be taken into account, mainly
if the activity proposed is a forthcoming event.

As a conclusion, we may say that this is a first analysis and several points need to
be considered with more detail. However, it already allows us to propose some answers
to the decision making problems involved in the project. Of course, we are interested
in following this work to improve our proposal and to face some issues not yet worked.

10.2 FishMarket. A Possibilistic Based Strategy for
Bidding

Electronic commerce is currently an increasing area of interest, there are many
research works related with this matter in the broad sense of it. In particular, there
is a considerable number of electronic auction houses (as you may see in the URL
http://fullcoverage.yahoo.com/Fuloverage/Business/Onlinkuctions/, for instance,
http://www.auctionline.com or http://www.onsale.com, etc.). Taking into account the
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actual development of internet, and in particular of electronic commerce, we think that
this is an interesting topic.

In auction houses, different bidding protocols may be applied, for example the
Downward Bidding Protoco(DBP also known asDutch Bidding Protocgl or the
English Bidding Protocol

The FishMarket project is mainly concerned with communicational aspects of
multi-agent systems (see http://www.iiia.csic.es/ Projects/fishmarket/ for more details).
To test these ideas, Raduez-Aguilar et al. (1998) propose a multi-agent test-bed,
FM96.2, which is an electronic auction house that allows the definition and evaluation
of some experimental trading scenarios, in particulaffisaMarketone with aDutch
Bidding Protocol.In this context, a very interesting issue is to model buyer’s strategies
to bid. The goal is to model a buyer’s strategy to make a bid, trying to maximise the
tournament evaluation function, taking into account that the strategies of other buyers
is unknown. To bid in a such environment means to decide a price to offer taking into
account all the available information like goods that will be auctioned and their expected
resale prices, other buyers in the buyers’ room as well, etc. This information has to be
handled with some restrictions, the behaviour of other buyers may be approximated
but not precisely predicted, deliberations are time-bounded, etc. That is, the buyer
has to bid in an uncertain environment, i.e. he has to face a decision problem under
uncertainty. Garcia et al. (1998b) made a first proposal in this line applying the
possibilistic qualitative decision model.

Although in this moment the problem is only attacked in terms of tournaments rather
than in actual market situations, the analysis is interesting. It is a problem with a lot of
information and so with many possible sources of uncertainty as well.

Of course, there are many possible approaches for modelling the strategy of
buyer’s bidding, moreover, inside the model there are many alternatives available. The
knowledge the agent has about the other agents’ strategies is usually incomplete, if we
assume that the knowledge the agent has is reduced to a memory of previous market
situations and their results, and to general information about the maekssibilistic
Case-Based Decision Theanay be useful.

In the following, we describe th&ishMarket environment and the restrictions
in which the problem of bidding will be attacked. In Section 10.2.2, we introduce
Garcia et al. (1998b,1998,1998a)’s proposal. In a first analysis of their proposal, we
realise that the implementation of the model has some drawbacks. In Section 10.2.3,
we make some remarks about them, like for instance that there are some specification
problems with the referential sets, and that theynit take into account that the
possibility distributions involved are probably non-normalised. This latter point may
have unsatisfactory results as it has been mentioned before in this dissertation. In
order to solve the issue of possible non-normalised distributions, we propose to use
the generalised utility functions we have described in Chapter 8. Finally, we also
include some remarks about some points that, although are non-directly related with
our framework, may result interesting to develop in the future from the application
point of view.

6Currently, it is available a new version FM100, which may be download at
http://www.iiia.csic.es/Projects/fishmarket/agents2000/FM100/index.html.

184



10.2.1 Background: TheFishMarket Environment

The definition of a tournament involves a set of descriptor parameters, for example, the
time between prices, decrement or increment in the price, goods that will be auctioned,
etc..

In order to characterise the elementsF$hMarketas a tournament scenario,
Garcia et al. (1998b) first introduce the notion ®urnament Descriptor A
Tournament Descriptor is described as the 6-tuple

T = <Aprice;BaSaWnu?E>a

Aprice being the decrement of price between two consecutive quotatiBnss
{by,...,b,} is a finite set of identifiers of dlihe participating buyers, anfl for the
participating sellersC'r is a vector which components are the initial endowment of each
buyer at the beginning of each auctign,c M is the tournament mode wherel =
{random, automatic, one auction, fish market,}.is the set of possible tournament
modes. FinallyF is the buyers’ evaluation function.

The FishMarket uses a specifiDownward-Bidding Protocol (DBR)which is
implemented irFM96.5 as follows:

Step 1 The auctioneer chooses a good out of a lot of goods that is sorted according to
the order in which sellers deliver their goods to the sellers’ admitter.

Step 2 With a chosen goog, the auctioneer opehs bidding round by quoting offers
downward from the good'’s starting price, previously fixed by the sellers’ admitter,
as long as these price quotations are above a reserve price previously set by the
seller.

Step 3 For each price called by the auctioneer, several situations might arise during the
open round in an interval of time previously fixed:

e Multiple bids Several buyers submit their bids at the current price. In this
case, a collision comes about, the good is not sold to any buyer, and the
auctioneer restarts the round at a higher price. Nevertheless, the auctioneer
tracks whether a given number of successive collisions is reacrady,
in order to avoid an infinite collision loop. This loop is broken by randomly
selecting one buyer out of the set of colliding bidders.

e One bid Only one buyer submits a bid at the current price. The good is
sold to this buyer whenever his credit can support his bid. Whenever there
is an unsupported bid the round is restarted by the auctioneer at a higher
price, the unsuccessful bidder is punished with a fine, and he is expelled out
of the auction room unless such fine is paid off.

7In fact, they forget to include in this s&g the buyer agent which is being modelled.

8We assume that a condition that is checked by the auctioneer is whether there is any buyer with credit
higher than the reserve price.

90ther option for assigning the good to a buyer may be considered.
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e No bids No buyer submits a bid at the current price. If the reserve price has
not been reached yet, the auctioneer quotes a new price which is obtained
by decreasing the current price according to the price step. If the reserve
price is reached, the auctioneer declares the good withdrawn (i.e. the good
is returned to its owner) and closes the round.

Step 4 The first three steps repeat until there are no more goods left.

For describing theFishMarket environment these additional parameters are
involved:

Ps Since aDutch Bidding Protocolis assumed, the price is decreasing .
Ps represents the decrement of price between two consecutive offers
shouted out by the auctioneer.

to is the delay between consecutive offers.
tr Delay between the end of a round and the beginning of the next round.

Cmax Maximum number of successive collisions. The auctioneer randomly
chooses one buyer out of the set of bidders when the maximum
number of successive collisions is reached.

Sf This coefficient,Sanction factaris utilised by the buyers’ manager
to calculate the amount of the sanction to be imposed on buyers
submitting unsupported bids.

Pi Price increment determines how the new offer is calculated by the
auctioneer from the current offer when either a collision, a fine or an
expulsion occurs.

Cr As it is said, it is a vector which establishes the available credit of
each buyer. At the beginning of each auction of the tournament all
them are provided with the same credit.

For example, for the “Agent
Mediated Electronic Commerce IIl Trading Agents’ Tournament”, they are initialised
(for more details http://www.iiia.csic.es/Projects/fishmarket/agents2000/tourdesc.html)
as itis shown in Table 10.7.

’ Parameter \ InitialValue ‘

Ps 50EUR

to 500ms

tr 4000ms
Cmazx 3

Sf 25%

Pi 25%

Table 10.7: Initialisation of the Parameters.
While Cr, that is, the buyers’ credits initial value, is assigned in terms on the

number of participants, usually they assign each buyer an initial credit on EUR that
results of dividing 70,000 by the total number of buyers.
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Available Information for Buyers

All the buyers that are in the auction room are provided with general information of
the goods that will be auctioned before the tournament begin. They are informed of
the types of goods (i.e. cod, prawns, etc.) that will participate in the auction as well
as the number of boxes of each type of good, and the upper and lower bounds for the
starting and resales prices. Indeed, up to this moment all these numbers are generated by
uniform distributions on different intervals. At the beginning of the tournament, buyers
are only informed on these intervals, not on the values on which the distributions results
(see Table 10.8). But in the beginning of each round, a more precisely information is

’ good ‘ number of boxes ‘ starting price ‘ resale price ‘
cod UJ1..15] U1[1200..2000] | U[1500..3000]
tunafish UJ1..15] U[800..1500] | U[1200..2500]
prawns UJ1..15] U[4000..5000] | U[4500..9000]
halibut UJ1..15] U[1000..2000] | U[1500..3500]
haddock UJ1..15] U[2000..3000] | U[2200..4000]

Table 10.8: Previous information available

given. That is, the number of boxes of each good is precisely known as well as the
starting price and the resale one.

- X
FM 100 Tournament Parameter Setting
Auction Parameters Tournament Type Participants
Information revelation Buyers
Market cha 0.0
i 4 [V Seller identity  [v] Good type david {aval" TFTAgent —login dav |
Num ber of auctions 10 Jar (Java)* ZAgent —login jar —pass
W [Vl Starting price  [] Reserve price KQLAT (java)* NAgent —login KQLA
Time between rounds {ms) 4 I |
5000 [/l Resale price [2] Buyer Idertity
Time between auctions (ms)
Minimum number of buyers |1 :
Bidding protocol M Tournament mode | 0 ARSI s
Avkomsatic: Unifovm |1 It N ECE EE
Max. number of collissions |3
Time between offers (ms) 500 Boxes per good |16 Spliers
Price step 500 Typeotgood AL
Peralty factor (%) 750
Price increment (%) 25.0 Starting price  [2000.0 |(1200.0
Min. price rate 0.5 ,[]4_
Buyers’ credit Amount Resale price  [3000.0 [[1500.0
Same — 20000.0
[ Aecept | Load | Save | Default | Exit

Figure 10.3: The Parameter Setting that buyers see.
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Determining the evaluation of Buyers

There are many different possible functions for evaluating the behaviour of the buyer
agents. The one proposed in http://www.iiia.csic.es/ Projects/fishmarket/ is

E(b) = Z In(k + 1) By (b) (10.1)
k=1

b being a buyer]3,.(b) stands for the accumulated benéfiof buyerd during auction
k, andz is the number of auctions of the tournament.

They argue that this evaluation tends to favour buyers learning in order to improve
their strategy.

10.2.2 Previous Proposal: Building a Possibilistic-Based Strategy
for FishMarket

We are in a decision problem, where our buyer agent has to take a decision, i.e. to
choose a bid among a set of available alternatives taking into account its preferences
on the set of possible consequences in terms of maximising its utility. The winner is
determined as the the buyer maximising (10.1). The buyer has to take into account not
only its benefits but other buyers’ benefits as well. The agent has to choose a bid for
each round of each auction of the tournament.

Garcia et al. (1998b) affirm that:

“ Due to the nature of the domain faced by the agent, we must demand
that such bidding strategy balances the agent’s short-term benefits with its
long-term benefits in order to succeed in long-run tournaments.”

They structure their proposal in three steps:
e They apply interpolation to obtain a first subset of possible bids.
e Fuzzy Rules are applied for improving the global behaviour.

o Possibilistic Case-based Decision Model is applied on this subset of bids to came
up with a single bid.

First of all, let us introduce the definitions of the problem they suggest.

The Decision Problem

For each round the agent has to choose a bid between the allowed ones. A memory of
casesM summarising the behaviour of market in previous situations of (past and the
current) tournaments is assumed, hence the idea is to apply Possibilistic Case-Based
Decision Theory to choose a bid. The first requirement is, obviously, the identification
of the variables involved in the problem. Garcia et al. (1998a) propose to consider

19The benefit is the difference between the resale price and the paid price.
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the following ones. The modelled buyer agent will be denote#ybwhile the market
situation at round:, of the auctiors will be specified as:

s = (rvavTvg7pa7pTSl7a7E’ R),

with 7 being the type of the googl to be auctionedp,, is its starting pricep,.; is its
resale price. As it is mentioned}r is the vector of buyers’ credits arfd is the vector
of scores E; is the score of buyedr; in terms of the evaluation functiof). Finally, R
is the number of remaining rounds to end auction

The set of possible decisioti3 for a roundr, that is, the set of bids that the agent
bo may do in a market situatios, is initially defined by them as:

D= {bld(p) | P = Pa — m-Apm'ce7m € Naprsv <p< W(bo)}, (102)

wherebid(p) means that the agent submits a bid at pficA ;.. being the decrement

in the price (also denoted b¥s) and p,., the reserve price. At each round, if the
reserve price is not reached, one of the possible buyers acquires the good. For each
round, the set of possible consequences is defined as the set

X = {wzn(bzap) | 1= O, .,nip e Lprsv + ApriCE7pa]}7 (103)

wherex = win(b;, p) means that buyer; wins the round by submitting a bid at price
p. As it is mentioned, a memory of cas#é$ summarising the behaviour of market is
assumed. They consider the following cases:

c= (S, bvps)

with s the market situation previously definddthe buyer who bought the good at a
priceps.
Let us summarise the different stages they proposed:

¢ Interpolation To apply directly the possibilistic case-based model to thigset
might be too slow for this type of problem, hence the idea is to reduce the set of
potential bids according to the general trend of the market. This is the goal of the
interpolation stage. They assume a principle establishing:

“Similar market situationsisually lead tosimilar sale pricesof the
good”.

The idea is to take advantage of the interpolation mechanism implicit in the fuzzy
case-based reasoning model proposed in (Dubois et al., 1997b). Thatis, for each
case(s,p) € M*! gradual fuzzy rule (you may see Dubois and Prade (1996c¢) for
the semantics of fuzzy gradual rules)

“If YissthenTisp”,

11They omit the reference to the buyer arguing they are only interested in the situation and in the sale price.
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wheres is the fuzzy set of situations similar o andp is the fuzzy set of prices
similar top; ¥ andY are variables defined on situations and prices respectively.
This leads them to define the following fuzzy set of possible bids:

pbid(p') = 1(5(s0),p(p")),

with I a residuated implication. As a memory of cadéss assumed as given,
and similarity functions/” on prices and situationS are assumed as well, they
consider:

prd(p/) = min I(S(S, 80)7 T(pap/))
(s,p)eM
Finally, they propose to restrict the set of bidsAg, the a-cut of pbid (a > 0),
i.e.
B, = {p | pbid(p') > a}.

e Fuzzy Rules: Garcia et al. (1998a) argue that for modelling the rational
behaviour of buyers in particular situations which may not be sufficiently
described by the cases in the memoéfythey consider the following set of fuzzy
rules:

if [C(b;) is high] and [Ris very.shorf and [E(b;) is low]
then ABidp, isvery_positive

if [C(b;) is mediunpand [Ris very_shorf and [E(b;) is low]
then ABid,, is slightly_positive

e Possibilistic Case-Based Decision Theorgs it was mentioned, ilrPCBDT
instead of ranking decisions, possibility distributions on consequences are
ranked. Hence, it is necessary to obtain the possibility distributions associated
to each decision, in this case, to each bid that the bbyenay make, for the
current market situation,. Garcia et al. (1998a) define first the distributions
in terms of the similarities on situations and prices. Indeed, they assume the
principle:

“the more similaris (so, po) to (s, p), themore possiblé; will be the
winner ins, (paying a pricep)”

Hence, for each consequeneén(b;, po) they consider that for eadls, b;,p) €
M, they have that

Tso (win(bi, po)) = 3(s0) @ p(po)

with 3 the fuzzy set of situations similar toandp the fuzzy set of prices similar
to p'? and® is a t-norm on0, 1]. Hence, they propose for eah# by and for

12Both sets are defined in terms of similarity functions from situations and prices respectively over [0,1].
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all win(b;,po) € X:

o (wzn(bi7p0)) B {(s,bi,pr)rg\ifi\pépo} S(SO) ®p(po).

From these distributions, for each participating bulett by, they propose an
initial fuzzy setBidgl_ of the possible winner bids

Bidy (p) = ms, (win(b;,p))

with p such thatwin(b;, p) € X.
Following, they modify these sets by the fuzzy rules previously mentioned, that
is,
Bidy, = Bid), & ABidy,,
whered denotes fuzzy addition, i.e.
Bidy, (p) = max{min{Bidy, (p1), ABids, (p2)} | p = p1 + p2},

andA Bidy, is the fuzzy set representing the expected variation on the observed
bidding strategy of other buyers. Now, they define the possibility distribution
associated to each bjg as:

— eachb; # by

Bldf,(p): if po > p > pa

Tso,pq (Win(bi, p)) = {

0, otherwise

— for by, they retrieve those cases such that the sale price was not greater than
pd, i.€. a subset of the memoty,,, = {(s,b;,p) € M | p < pq,b; # by}
Then,
N
B Bidy, (p'), ifp=pa
Tso.pa (Win(bo, p)) =
0, otherwise

Finally, they rank decisions applyin@U ~ (|u) andQU ™ (|u), u being the preference
functions on consequences= win(b;,p). Several functions may be considered,

with this goal, they introduce one arguing that it models an agent that is conservative
when it is winning and becomes aggressive when it is handing back. The preference
function is defined in terms of a scoring functignand a linear scaling functianover

[0,1]. Wheref is defined as:

k-t ifk <0
f(bi,s0,p) = { k-t~1, otherwise,
with
k = (m#ax E(bj)) — E(b;),
J#i
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and __
t = (R —1)/(max(Cr(b;) — p,1) - (prst — D))-

They assume that.,; — p > 0, that is nobody pay more than the resale price, and no
buyers make unsupported bids, i&:(b;) — p > 0.13. They mention that “ accounts

for the position of buyeb; with respect to the other buyers in the ranking of scores”, and
the first factor involved int estimates the cost of winning the round, while obviously
(prsi — p) is the benefit of the buyer agent. Finally, they define

wtwinti ) = { TGRS0 e @0

wherer is a normalisation linear scaling function.

10.2.3 Comments on the Proposal

In a first analysis we realise about the following drawbacks of the proposal:

e D and X are not well defined, and it seems that the involved measurement sets
may be not finite.

e The problem may involve non-normalised distributions and this fact is not taken
into account in the proposal.

itemize Next, we give more details about these points, and we introduce some general
comments on the proposal.

Some Problems Detected

e The definitions ofD (10.2) andX (10.3) may result confuse. They are expressed
in terms of the reserve price, howevéne buyer agents have not information
about it. Thus, both sets are not well defined.
There is another upper bound for possible decisions that could be taken into
account: theesale price Since the evaluation function takes into account the
benefits of the agents in terms of the difference between the paid price and the
resale price,;, the bids greater or equal thap,; must be discarded as feasible
bids for our buyer.

Obviously a buyer may submit a bid greater than his available credit, however he
could not win because his bid will be discarded. This fact allows us to restrict the
values ofp in the set of consequencés

A little remark is that taking into account (10.% seems a non-finite set, but

it is easy to see that it if we assume ths},,.. € N, X is finite as soon as we
consider:

X = {wjn(bi7p)‘i =0,...,1n;8price <P =Pa — M.LDprice < a(bz)v meNU {0}}

L3However, it seems that these hypotheses may be too strong, since in some tournaments it is the case that
some buyers do not satisfy these conditions.
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while for the initial decision seb we propose:

D= {b'Ld(p) Ip < Prsi, Apm'ce <p=pa— m-Ap’rice < a(bO)a meNU {0}}

e The proposed preference functianis not well defined since in the case that
it only remains one round to finish an auction, that is, when= 1, then,
t = 0. Hence, ifb; is a buyer that is not winning in this moment, i.e.
(max;.; E(bj)) — E(b;) > 0, f(bi,so,p) is not well defined for each.
We wonder how this function works when the auction begins, in particular which
values takes during the rounds of the the first auction (which value takes k?)?
It is not clear for us the meaning ofin (10.4), since it seems it is not only a
linear function to scaling’ but it may exchange the order in the ranking.
We think that the function should consider that the case of a buyer (in particular,
if it is currently in a better position in the evaluation ranking w.r.t. our agent)
paying a price greater than the resale one,lijes.t. win(b;, p) with p > p,g.
This is a case that benefits for our agent since that agent has loss if he pays this
amount.
We consider that this preference functiemas to be analysed with more detall,
14 put it may be interesting to take into account other facts as well.

e In PQDT we may face in with non-normalised distributions. This point has
not been taken into account in Garcia et al.'s proposal. Indeed, the possibility
distribution 7,, may be non-normalised, then, the distributiong ,, may be
non-normalised as well.

In this dissertation we have analysed the drawback of applyingtieutility
functions to non-normalised distributions, to avoid it, we propose to apply the
generalised utilities for non-normalised distributions introduced in Chapter 8.

Some General Comments

e In the proposal, some fuzzy rules are suggested to improve the heuristic in order
to reduce the number of decisions to be evaluated. They argue that they attempt
to model the rational behaviour bfiyersin particular situations.

We are not convinced about applying rules to model the behaviour of the other
agents, however, we agree in the convenience of applying fuzzy rules, but we are
thinking in rules “directly” related with the behaviour of the buyer aggntAs

an example, we may consider rules like:

— if[pot —benefit is high] and [R is short], then [p is nearly —to —min —
{pa, Cr(bo) .
—if[R=1]p= Cr(by).

14n particular, if we adequate it to a finite set, aiidand V" as well, we will be able of characterising the
behaviour of the agent we are modelling as well.
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that may result useful. Another option for proposing rules is to take into account
the available credit that the other buyers have in this round.

e We suggest that a first analysis, before starting the auction, may be to determine
which are the more potential profitable rounds to participate. It might be done
in terms of a possibility distribution evaluating the potential benefits margin
expressed as the expected difference between the initial sale price and the
expected resale one.

¢ In the suggested algorithm f@BP, in Step 3, it is analysed the situations that
may occur during the round: multiple bids, one bid, no bid.

In the case of only one bid, if the buyer has not enough credit, the round is
restarted at a higher price. May be this is the usual procedure in the actual market,
but it seems this results in a disadvantage for other buyers, why at a higher price?,
why not restart the round at the price in which was stopped?

o |t seems that the credit of the buyers is not controlled when the round begins.
Suppose that the reserve price of the good is higher than the credit of each
possible buyer, why not to declare the good withdrawn?

We are interested both in deepening the analysis of their current proposal and in the
necessary improvements for adapting it to actual auction houses.
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Chapter 11

Conclusions and Future Work

In Decision under Uncertaintit is usually the case that the available information is

of qualitative nature rather than numeric&lossibilistic Qualitative Decision Theory

is specially suited for this framework since it can be based only on ordinal scales of

uncertainty and preference.

In this proposal, our aim has been to develop some extensions to the initial proposal
of Dubois and Prade (1995) for making decision under uncertainty in a framework

analogous to vonNeumann and Morgenstern (1944) assuming that uncertainty is of
possibilistic nature. The initial working hypotheses were:

To deal with individuals’ preferences.
To assume rationality hypothesis, i2M will try to maximise his benefit.
To deal with one-shot decision problems.

To assume the feasibility of representinigM’'s preference relation on
consequences by a preference functioan them. But, instead of choosing
as a real-valued-function as it is usual, we consider that it is defined dirétea
linearly ordered set/.

The sets of decisions, of consequen&esnd of situationss' are finite.

Uncertainty, assumed of being of possibilistic nature, is measured foitea
linearly ordered sev'.

The valuation sets for measuring uncertainty and preferences are assumed to be
commensurate, that is, there exists an onto order-preserving malpfiimgng
them.

A decision or actd on S is represented by a functioh : S — X which
provides the consequence of the decision in each situation. Hence, each decision
is identified with a possibility distribution on consequences. Therefore, choosing
decisions amounts to ranking possibility distributions on consequences.
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The original proposal by Dubois and Prade deals with normalised distributions
considering the max-min possibilistic mixture as its internal operation, in the sense
that the qualitative utility functions they propose not only preserve the ordering but the
possibilistic mixture as well.

In this context, the extensions we have proposed are:

e Besides max-min mixtures of possibility distributions, we have considered other
mixtures involving t-normsT on V. We have axiomatically characterised the
behaviour of the generalised qualitative utility functions that preserve these
possibilistic mixtures. Namely, in the same context but requifing further
verify a coherence condition w.rT., we have defined the pessimistic (optimistic)
generalised qualitative utility as:

Vrell(X), GQU (w|u)= meu}l( n(m(x;) TA),

with n(X\;) = u(z;), ny being the reversing involution iy, andn = ny o h.
The dual optimistic evaluation is defined as

vr e I(X), GQU(r|u)= max h(m(x:) Tys),
x;€
whereh(vy;) = u(z;).
These utilities may result in different rankings than the ones induced by the
qualitative criteria introduced by Dubois and Prade.

e We have considered partially ordered uncertainty and preference measurement
sets. There are certain kinds of decision problems where we are not able
to measure uncertainty and/or preferences in linearly ordered scales, but only
in partially ordered ones. For example, preference on consequences may
be given in terms of a vectorial function over a product of linear scales if
preference is expressed in terms of a set of criteria. To deal with these types
of problems, we have provided different generalised utility functions for these
cases taking into account the available operations in the set of uncertainty values
V. We have also been working with different (finite) lattice structures where
to measure preferences and uncertainty. Again, we have supplied the respective
utility functions for working in these structures and the characterisations of the
preference relations that are representable by them.

e We have considered the applications of the possibilistic decision models for
case-based decision problems. We have proposed to estimate to what extent a
consequence can be considered plausible, in a current situatipafter taking
a decisiond, in terms of the extent to which the current situatigns similar to
situations in whiche was experienced after taking the decisibhis amounts
to assume, for each caée d, z) in a memoryM, a principle stating that

“The more similarsg is to s, the more plausible is a consequence of
datsg”.
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According to this principle, one can derive the possibility distribution associated
to each decision. Thus, the utility of a decision can be estimated in terms of its
associated distribution.

Besides, we have shown that the utility of a decision may be evaluated also taking
into account the previous behaviours of other similar decisions.

e In Possibilistic Case-Based Decision Theory or in Decision Making problems
involving several sources of information, we may be faced with non-normalised
possibilistic distributions. We have extended the model to deal with these types
of problems.

e We have also proposed an approach to weaken the commensurability hypothesis,
non-requiringh to be onto. We have provided the characterisations of these
resulting orderings for finite linear scales.

e Sometimes it may be not enough to rank distributions taking into account, for
example, the pessimistic criterion, and it is interesting to refine it by another one,
for example by optimistic one. We have analysed the characterisations of some
refinements involving the generalised qualitative criteria we have proposed.

The proposed extensions provide us with possibilistic qualitative models of broader
applicability. These decision models may be useful for a large range of applications in
different areas, from Medicine to Economy.

Future Work

We have provided several extensions to the model, however, it is also true that there are
still several extensions and improvements of Possibilistic Qualitative Decision Theory
to be developed, extensions that will become interesting not only from a theoretic point
of view, but also in order to provide a better decision theoretic support to many real
problems as well. Let us summarise some of them:

e Commensurability: This hypothesis has been a point for interest of some
researchers (see for example (Fargier and Perny, 1989aiSavage framework).
In particular, the onto condition involved in the commensurability mapping forces
us to restrict our work to problems in which the uncertainty set has an equal or
greater cardinality than preference one. We have already proposed to weaken this
hypothesis, by non-requiring the commensurability mapging be onto, but
we have restricted to linear scales and to work with max-min mixtures. Hence,
it will be interesting to extend our analysis of weakening commensurability
to distributive lattices. Moreover, it will be also interesting to analyse the
behaviour of other utility functions involving t-norms dn. This problem is
more complicated since the onto condition is also required to guarantee the good
definition of the utility functions.

e Refinement Orderings:This point may result specially interesting since in
many applications refinements of orderings are necessary. We are interested in
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deepening the analyses on the characterisations of some refinements involving the
generalised qualitative criteria we have proposed. A related topic is conditional
preferences. Sabbadin (1998a) has worked with them in the Savage framework,
and it may be interesting to see how conditional preferences can be introduced in
our framework.

Frameworks: There are a number of algebraic structures (e.g. interval orders,
semiorders or distributive lattices without requiring their maximal elements to
be equivalent) that are being applied by other researchers, in other contexts,
for evaluating preferences. We want to analyse the feasibility of measuring
uncertainty and/or preference in these more general structures.

There are two frameworks that may also result interesting from the
characterisations point of view. Indeed, as it has been mentioned, Godo and
Torra (1998a) propose a method for aggregating qualitative information weighted
with natural numbers, by mean of qualitative weighted means involving t-
norms on the set of values. Their characterisations have not been provided yet.
(Dubois et al., 2000b) propose a family of mixtures that combines probabilistic
and possibilistic mixtures via a threshold, also suggesting hybrid utility functions
for this framework. We are interested in the behaviour of these utilities.

Another point is to consider non-finite structures for representing uncertainty and
preferences.

Dynamic Decision ProblemsThere are some works studying the problem of
adapting these possibilistic qualitative decision models to dynamic problems
(Pereira et al., 1997; Fargier et al., 1996). We are interested in analysing
them from the axiomatic setting point of view.

Applications: As it is obvious, up to now, we have been mainly involved in
the representational issues of these possibilistic decision models, however, as we
are also interested in applying the models, we hope that in our future works we
will be involved in other actual decision making problems. In particular we are
interested in following with the analysis of the the decision problems involved in
both projects we have been working on.
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