UNIVERSITAT POLITECNICA DE CATALUNYA

DEPARTAMENT DE LLENGUATGES Y SISTEMES INFORMATICS

PROGRAMA DE DOCTORAT EN INTEL-LIGENCIA ARTIFICIAL

TESIS DOCTORAL

Validation of Multi-Level
Rule-Based Expert Systems

Abril 1992

Memoria presentada por Pedro Meseguer
Gonzélez para optar al titulo de Doctor en
Informética. El trabajo contenido en esta
memoria ha sido realizado en el Institut
d'Investigacié en Intel.ligencia Artificial (Centre
d'Estudis Avangats de Blanes-C.S.I.C.).

Director: Ramon Lépez de Méntaras i Badia

I T S

Abstract

Expert systems (ESs), as any other kind of software, should be validated. ESs present
some differences with respect to conventional software, because of that validation methods
used in conventional software are not directly applicable to ESs. Some of these methods
can be adapted to ESs, although specific methods for ESs are also required. After a wide
review of previous work in this field, we analyze ES validation as a whole. We consider a
number of fundamental questions (what, when, how) drawing the complete picture of the
problem. We devote special attention to terminological issues, proposing a number of
definitions for validation terms that include specific ES characteristics and keep the basic
meanings of these terms in software engineering. They fit pretty well in a general
framework for software validation, where different kinds of software coexist with a
common understanding of the kernel issues.

We consider multi-level rule-based ESs performing medical diagnosis. These systems
contain explicit representations of domain and control knowledge, including uncertainty
management. For them, we present two new validation methods. The first one is a
verification method that checks a number of properties in the KB, in order to assure its
structural correctness. New verification issues appear on this ES model, caused by the
presence of uncertainty and control knowledge. The verification method solves these
issues using extended labels, an extension of ATMS constructs. We have implemented an
incremental version of this method in the verifier IN-DEPTH II. Using it, we are verifying
the expert system PNEUMON-IA with encouraging results. We have detected and corrected
a number of errors that, without the verifier help, would have been missed. In addition,
we can guarantee the absence of certain types of errors.

The second validation method is a refinement system to improve the ES performance.
With respect to previous refinement approaches, this method provides three new
contributions. First, ES performance is not measured as the raw number of errors
performed by the ES but considering the relative importance of these errors for the ES
task. Second, domain and control knowledge are subject to refinement. And third, a new
type of error, ordering mismatch, is considered as a consequence of working with ESs
providing multiple diagnoses. We have implemented this method in IMPROVER, an
automatic refinement tool. Using IMPROVER on a library of 66 cases, we have refined
PNEUMON-IA obtaining very good results, specially considering false negatives, the most
important error type.

Keywords: validation, verification, testing, refinement, evaluation, ES life-cycle, user
requirements, incremental verification, gold standard, medical ES validation.

A Romero.

Preface

Today, expert systems are not longer experimental programs. They have shown their
effectiveness in solving complex problems in many different settin gs. In the last ten years,
knowledge engineering has developed a significant number of methods and techniques for
expert system construction. Now, these techniques allow to build expert systems on an
industrial basis. In this context, a question appears: do really expert systems do what they
intend to do? This question, that was previously occluded by other more exciting
problems, is of fundamental importance for the use of expert systems on a regular basis.
Users demand substantive evidences of expert system correctness prior to their acceptance
and use. This demand has generated a new subfield in expert system research, expert

system validation, that is the topic of this thesis.

Since I started on this topic, I have followed two drawing ideas: practical validation and
realistic models. Practical validation refers to the imperious necessity to show the
effectiveness of validation methods in practice. Without this test, validation methods
cannot be considered really useful. Realistic model refers to the necessity to consider for
validation all the information contained in the knowledge base. Many validation methods
assume simplistic expert system models, what render them inapplicable to actual systems.
These two ideas have been complemented with a third one, the use of automatic tools to
support an effective validation. This is required by the high number of different situations
that can occur in rule-based expert systems. For an actual application, manual checking of

some properties is unfeasible.

This work is biased towards the validation of implemented expert systems. This is
partially due to the ideas exposed in the last paragraph, but also by the availability of a
shell, MILORD, and an application, PNEUMON-IA, that presented interesting validation
problems not considered before. In addition, MILORD and PNEUMON-IA developers were
accessible to discuss about these topics. I have exploited this infrequent situation, aware of
its potential value. Results confirm that it was a good choice.

A substantial part of the work presented here was developed when I was working in the
VALID project. Although this work is not directly bounded with the VALID results, it has
been obviously benefited from all the studies and developments on validation made in
VALID. The first version of the IN-DEPTH verifier was developed inside the project.

Discussions among VALID partners have also contributed to the clarification and

consolidation of validation concepts.

This work is the natural continuation of a research line on expert systems in the IIIA
(Institute for Research on Artificial Intelligence). Previous works have been focused on
knowledge acquisition, shell construction, medical expert system development and

uncertainty management.

Acknbwledgements

This work has been influenced by many people. I specially thank Ramén Lépez de
Mintaras, who introduced me in research activities and who has provided guidance and
support in the development of this work. Enric Plaza, CEAB project leader in the VALID
project, has been the partner for innumerable and vivid discussions on validation topics.
Carlos Sierra, MILORD developer, has provided extensive support explaining how and
why MILORD works. Lluis Godo has collaborated in all the questions dealing with
uncertainty management. I have to make a special mention to Albert Verdaguer, the
physician who developed PNEUMON-IA, who has largely contributed to achieve the
practical results of this work. Without his cooperation, an important part of this thesis

would have not been possible.

I also thank Francesc Esteva, CEAB director, who has always provided every facility to
perform research at CEAB. Last but not least, I thank Romero for her constant support

during the development of this work.

Preliminary stages of this work were supported by a scholarship CSIC-La Caixa. Later,
a substantive part of this work was partially funded by the ESPRIT II project VALID,
under the grant #2148.

Contents

1 Introduction. euiuin ittt ittt iiiieteieneensoneansnsonsonas 1
LT MOBIVALION Lttt ettt et e et e e et e e e et et et e e e e e e eeeaneeeans 3
1.2 Experts Systems versus Conventional Software................ccovvviinnnn.. 5
1.3 Scope and Orientationcovueirttiiernitiitee it eiteeeeaeeaeaaanans 7
| O O A4S o 1o PP 8

2 Previous WOorK. ..ottt ittt ittt it e eeeeneeeeanannannns 11
2.1 Verificationc.ooooeiiiinn., . 12

2.1.1 Early SyStems .c.uuuiiiiiii e 13
2.1.2 Inconsistency Checkers..........cooevviiiiiiiiiiiiiinnennan... 15
2.1.3 Verifiers with Extended Functionalities...................... 16
2.1.4 Other Approaches...........cooeiiiiiiiiiiiiiiiiiiiiii e, 17
2.1.5 Verification SUMMATYoueiiiiiiiiiinieriiiaaaeaannnes 18
2.2 TOSHIME ettt e e e 19
2.2.1 Test Set Selectioniviviiiiiviiiiiiieiiie e eeeeans 21
2.2.2 Human Interventionoooiiiiiiiniiiiniiiaineananns. 21
2.2.3 Statistical APproachesocvvevriiiiiiinieiiennennennnn. 22
2.2.4 Test-case GENeratorSo.euueeuiuienierneeneeennaaaaneenann 23
2.2.5 Heuristic TeStiNg. ..eeueiniiiiiitiiieiieiieeeeeeeeanennss 23
2.2.6 Testing SUMMATY ...c.oiuiiiiiiitiiiiittiieeiieeieananeeann. 24
2.3 Knowledge Base Refinement...........ccooiiiiiiiiiiiiiiiiiniiiieieiinanns 25
2.3.1'Empirical approaches...........cccoeiviiiiiieiiiniinneianenns. 27
2.3.2 Operationalization ceeueerinininieneeeeeeenienenenannns 28
2.3.3 One-concept theoTiescooviiiiiiiiiiiiiiii i 29
2.3.4 Knowledge-Base Refinement Summary 30
2.4 EvalUAtioN ..ttt e e e aaaaas 32

2.4.7 COmMPIEXItY . ouueeetee et 32

2.4.2 Utility and Qualitycooiiiiiiiiiiiiiiiniiiiaes 33

2.4.3 Quantitative Evaluation..........cccocveeiiiiiiiniiiiianenne. 34

2.4.4 Evaluation SUMMATY «...oouvinniitineiieieieaieeieeeanens 34

2.5 Validation in the ES Life-Cycleoooiuiiiiiiiiiiiii i 35
2.5.1 Buchanan’s approachc.ooo. e, 35

2.5.2 Rapid Prototypingcouivuiuiiiiiiininiiiiiiiiiineiaeinans 36

2.5.3 Spiral Model....cooiiiiiiiiiiiiiii 39

2.5.4 Validation in the ES Life-Cycle Summary.................... 40

2.6 CaSE StUAICS.tuuiiitiieit e e 41
2.6.1 MY CIN Lot e 42

2.6.2 R 43

2.6.3 State-of-the-Practice.........coooiiiiiiiiiiiiiiiiii i, 44

2.6.4 Case Studies SUMMATY ...oeieiniiriereiiiieiiieeeaenes 45

2.7 SUIMIMIATY .« ente et et et e et et e ettt e et et et e e e e te e e et eaateeaneanaens 46
3 The Validation ISSUe........couiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiennennens 49
3.1 What is Validation?eiitiit i e 50
3.1.1 Requirements and Specificationscc.ccoeeeiieinnnen. 51

3.1.1.1 Totally and Partially Formalizable Requirements .52

3.1.1.2 Service and Competence Requirements............. 53

3.1.1.3 User Requirements at the Knowledge Level....... 54

3.1.2 Verification . .oeue e et it 55

3.3 Evaluation «oue e 57

T B B NN i1 Y- S PP PPN 58

3.1.5 The Global Picture.......cccooeciiiiiriiiiiiiiiiniiniinnnn. 59

3.1.6 Relation with Software Engineering...........cccccevveereene 61

3.2 What Should be Validated?........ooeiuiiiiiiiiiiiiiicic e 62
3.2.1 User Requirementso.evveiiiiiiiiiiiniiiiniiiannnes 63

3.2.2 Knowledge ACQUISIHON..cuvuueueineinreaieeneeiiicennenne, 63

3.2.3 Expert System Architecture..........ceeviiimueniiiinniinnnnns 64

3.2.4 Knowledge Base Structure and Contents..................... 65

3.2.5 Inference ENgine......cooeiiiiiiiiiiiiiiiiiiiiiiiiiinnenn, 66

3.2.6 Expert System Behavior................oooo 67

33 How to Validate? ...ttt ettt 68
3.3.1 User Requirements.....c.cooiveiiiiniiiiiiiiiiiiniiiniiannaene. 69

3.3.2 Knowledge AcquiSitionovvveiiiiiiiieeiiniieaannnn.. 69

3.3.3 Expert System Architecture...........c.cooeiiiiiiiiii.n. 70
3.3.4 Knowledge Base Structure and Contents.................... 71
3.3.5 Inference Engine........ccoooiiiiiiiiiiiiiiiiii i 72
3.3.6 Expert System Behaviorcooeviiiiiiiiiiiinn. 73
3.4 When to Validate?......coieiiiiiiiiiiiiiiiiiee e 73
3.4.1 Validation in the Life-Cycle......ccccoivveiiiiiiiiiiennencni. 74
3 S S UIMIIMIATY ettttiteneit e et ettt et et e 75
4 Verification using Extended Labels.............ooooiiiiiiiiiiiiiiiat, 77
41 The ES MOEL. ... 79
411 KB ObBJECES vttt e 79
4.1.2 Uncertainty Management.........oeuuveeriiniinniineinnennnnnn. 80
4.1.3 Control Representation.........ocvvuieieiiiuieiiineeiniennnnns 81
4.1.4 ES Function and StucCture..........coovvviiiieineeenneeennan. 82
4.1.5 Verification ASSUMPHONSo.ouitiniiniiiiiiiiiiieenannen. 82
4.2 Verification ISSUESuuuuit ettt e 83
4.2.1 INCONSISIENCY «.uve ettt ettt et et eeeeenas . 84
4.2.2 RedundancCycoouuiiiiiiiii i 85
4.2.3 Circularity...cooooeoiiiiiiiii e 86
4.2.4 Useless ObJECS ..uuuutenuiiiitiiii i e, 87
4.3 Extended Labels and Extended Environments...........ccccceveieiieeennn.n. 88
4.3.1 OPETationS ..eueuenninitiiteiiitiit ettt eeeeaeaanans 89
4.3.2 Computing e-1abels ... 92
4.4 Solving Verification ISSUEScoitiitiiii i e 95
4.5 An ExXample.....oooiiii 97
4.6 Incremental VerifiCation.........vvvetiitiii i e 102
4.6.1 Conditions for Incremental Verification...................... 103
4.6.1.1 OPErator ADD.......ccivuiiuiiiiiiiiaaieiiiiiaiaens 104
4.6.1.2 Operator REMOVEcoouiiineeaneeinennennn. 105
4.6.1.3 Operator MODIFYcc.ceuiuieeunaiinaeniaeeannnnns 106
4.6.2 IN-DEPTHII: An Incremental Verifier..................c....... 106
4.6.2.1 Computation of KBjjpeeeeeeeeeneeuariinieeiinaannn. 106
4.6.2.2 Incremental Algorithm...................cooeinnl. 107
" 4.6.2.3 Multiple Operatorsccoviviiiiiiiiieennnnn.. 108
4.7 Verifying PNEUMON-TA ..ottt ittt 108

4.7.1 Adding Extra Knowledge............oooeeiviiiiiiiiinieeninn.s. 109

4.7.2 Interpretation and Correction of Error Occurrences 110

4.7.2.1 INCONSISIENCY c.vvuititriti ittt eieneens 112

4722 RedundanCyocoviiiiiiiiiiiiiiiiiii e 114

4.7.2.3 Useless ObJeCts ...vvvuriinniiiniiiiiiiiieeeiinns. 117

4.7.3 Verifier UsSaZe...ciiiiiiiiiiiiiiiiiiiiieiieeeiieeeieeie e, 118

4.7.3.1 Collected Error Occurrences................c.euv.... 118

4.7.3.2 Time and Memory Requirements 120

4.7.4 Verification Impactcooooiiiiiiiiiiii e 122

4.7.4.1 Major Changes in Knowledge Expression......... 122

. 4.7.4.2 Minor Changes in Knowledge Expression 124

4.8 CONCIUSIONS ..ttt ittt ettt e eeaaeas 124
S Performance Improvement by Knowledge Base Refinement............. 127
5.1 Validation and Refinement.........ccccouuiiiiiiiiiiieiiiiiiiiiiiieee e, 129
5.2 The ES Task..ooooiiiiiiiiiiiiiiiii 131
5.3 Refinement on the ES Model.........coouiiiiiiiiiiiiiiiiiiieeeiea 132
5.3.1 Refining Control and Domain Knowledge 133

5.3.2 Heuristics to Control Refinement Generation................ 134

5.3.3 Legal Refinement Operators..........c.cooeeveiuirienennannnnn.. 135

5.3.4 Acceptance Criteria......ocoueuiiuiniiiiiniiniaiiiienaennnns, 136

5.4 IMPROVER: A Tool for Knowledge Refinement..................c.ccoeeienn.n. 137
5.4.1 Error Identificationcooiiiiiiiiiiiiiiiiiieee 138

5.4.1.1 Gold Standard..............cooiiiiiiiiiiiiii 138

5.4.1.2 Solution Matchingcceeeiiiiiiiiinnnn.n. 139

5.4.2 Solving False Negativeso.ovvviiiniiiiiiiiniiieiienennnns 139

5.4.2.1 LocaliZation.....c.coiuiiiiiiiiniieiiaeneeeanaananns 140

5.4.2.2 Generation/Selection.........ccueeeviuieveneninnennss 140

5.4.3 Solving False POSItIVESouuuiiiitiiiiiiiiiiiiieieeenans 142

5.4.3.1 Localization........coouveniiiiiniiiiiieeiianaaannnns 142

5.4.3.2 Generation/Selection..........ccceeeeviveneervnnnnnnn. 143

5.4.4 Solving Ordering Mismatches.........ccoeeeeviieiiieeeeeeennns 144

5.4.4.1 Localization......cocvvueiniinnianiiranianeanaiannannn. 144

5.4.4.2 Generation/Selection............cceeeeevvieeerennnnn. 145

5.5 Refining PNEUMON-TAuttnittittateteiietane et ee e e aneenaneenes 145
5.5.1 Gold Standard........ccocooviiiiiiiiiiiiiiiiiiieieeeieen 146

iv

5.5.2 False Negatives ...c..oeutiuiiiiiiiiiiieieieiaenne, 147
5.5.2.1 False Negatives: Refining Control Knowledge... 147
5.5.2.2 False Negatives: Refining Domain Knowledge .. 148

5.5.3 False POSItIVES ...voveeniitiiiiiiiiiieiiieee e 150
5.5.3.1 False Positives: Refining Control Knowledge.... 150
5.5.3.2 False Positives: Refining Domain Knowledge ... 151

5.5.4 Ordering MismatChes...........ccoieiiiiiiiiiiiiiii i, 152

5.5.5 Performance Improvement........cc.ccccooeiiiieennnennnnenn. 154
5.5.5.1 Performance Improvement of IMPROVER Stages 154

5.5.5.2 Performance Improvement with Respect to Human

EXPCITS .ottt 155

5.5.6 Evaluation of the Refinement Process..........ccovvvuunnn.... 157

5.5.6.1 Case Library EXtension.............ccccceeeeeennnnn. 157

5.5.6.2 Gold Standard Quality...........covveeiiiinninn... 158

5.5.6.3 Analysis of IMPROVER Behavior................... 158

5.5.7 Time and Memory Requirementsccooevvenenn.. 160

5.6 COMNCIUSIONS .ttt e e et et e e e et et e e e e e e e et 162

6 Conclusions and Further Research......coviiiiiiiiiiiiiiiiiiiiieeeneenanns 165
0.1 COMCIUSIONS e teitttiet ettt e e e e et 166

6.2 FUIher RESEaATCH ...ttt e et e 168
Appendix: Refinement Results......cooooiiiiiiiiiiiiiiiiiiiiiiiiiiiiii. 171
Annotated Bibliography..........ooviiiiiiiiiiiiiiiiiin e eeseesenescnnnns 187

Chapter 1

Introduction

This thesis deals with validation of experts systems, a special kind of software. In general,
validation of a product consists in checking that this product is fully operational and
performs satisfactorily its intended function. When applied to software, validation aims at
- checking that programs are free of errors and satisfy the users needs. A number of
different methods and techniques exists for program validation. In practice, no method
assures total program correctness. Each method provides partial evidences about program
validity. To achieve a reasonable degree of confidence in program correctness, a
combination of validation methods providing complementary evidences is usually
required. It is well known that validation cannot be delayed until program implementation.
Then, the cost of error correction can be very expensive, since the required modifications
can imply significant changes in the implemented program. To prevent that, validation
activities are distributed during the software life-cycle, from specifications to maintenance.
Nevertheless in practice, the major part of validation activities are still made in the

implementation phase.

Experts systems (ESs) are problem solvers for specialized domains of competence in
which effective problem solving normally requires human expertise. ESs are included in
the broader class of artificial intelligence systems, in the sense that they solve problems
that could previously be solved only applying human intelligence. ESs present two main
differences with respect to conventional software: the type of problems considered and the

Chapter 1. Introduction

type of development techniques used. Regarding the type of problems, typical ES
applications are medical diagnosis, troubleshooting, credit authorization, equipment
configu?ation, and others. These tasks are usually ill-structured and no efficient
algorithmic approach is known for them. Humans solve these tasks using knowledge and
previous experience. The combination of these two aspects is called expertise, and is very
important to achieve efficiently an acceptable solution. Regarding the type of development
techniques, ESs are constructed using declarative languages (rule or frame based) that are
interpreted by inference engines. This kind of languages is mainly based on 10gic. ES
programming is concerned with truth values, rule dependencies and heuristic associations,
in contrast to conventional programming that deals with variables, conditionals, loops and
procedures.

In its final aims ES validation does not differ from conventional software validation.
However, differences between ESs and conventional software make difficult the
application to ESs of validation methods successfully used in conventional software. ES
peculiarities, such as the definition of acceptance in terms of human expert competence,
cause new validation issues that have not been addressed before. In addition; differences
in the programming languages used make inapplicable specific techniques of conventional
software. Therefore, although the basic validation concepts are shared by conventional
software and ESs, validation methods of conventional software are not directly applicable
to ESs. Some of them can be adapted, while new methods specific for ES validation are
also required. In this context, this thesis aims to be a step forward in the definition and
consolidation of validation concepts for ESs, as well as in the development of methods
allowing for an effective validation of actual ESs.

The structure of this introductory chapter is as follows. In section 1.1 we give some
reasons about the necessity of validation in ESs. In section 1.2 we compare ESs versus
conventional software, enumerating commonalties and differences. From this analysis, we
extract validation issues that are specific for ESs. In section 1.3 we describe the approach
to validation taken in this thesis. We consider ES validation as a part of software
validation, that has to be developed without ignoring all the achievements and experience
obtained in software engineering. Regarding new validation methods for ESs, our work is
based on the three following guidelines: practical validation, realistic ES models and
automatic tools. Finally, in section 1.4 we provide a brief overview of the thesis contents,
describing its main parts and summarizing the obtained results.

1.1 Motivation 3

1.1 Motivation

ESs are programs and programs must be validated. Even more, validation is a part of the
programming activity [Adrion et al, 82]. This is the first reason justifying why validation
is required for ESs. In addition to that, a number of characteristics specific for ES
reinforce this necessity of validation. These characteristics are related to the kind of tasks
performed by ESs and to the available techniques for ES development and implementation.
Without aiming to be exhaustive, we discuss some of them in the following.

ESs perform tasks on specialized domains of competence usually performed by human
experts. In any field, expertise is scarce and expensive, so ESs perform tasks that are
economically relevant. In addition, some ESs are used in situations where a failure can
cause consequences that are very expensive to recover. To illustrate these ideas, let us
consider an ES for troubleshooting of satellite devices. Such an ES has a quite relevant
economic importance, because if the ES can substitute the presence of astronauts in the
satellite, it will save large amounts of money (sending a computer is cheaper than sending
an astronaut!). In addition, if the ES fails and does not solve a problem in a satellite
device, this may cause a satellite crash with the corresponding catastrophic consequences.
This example, although extreme, indicates clearly the relevance of the tasks executed by
ESs. The degree of validation that ESs have to achieve should be at least similar to the
degree of validation of applications of conventional software that perform less important
tasks., Currently, this is not the case since validation is more developed in conventional
software than in ESs. Nevertheless, this situation reinforces the necessity of better
methods for ES validation.

ESs perform tasks that until now have been made by humans. These tasks are usually
ill-structured and they have to deal with incomplete, uncertain or even inconsistent
information. Task boundaries are normally fuzzy. In practice, a task instance frequently
does not have a single solution; on the contrary multiple solutions may be equally
acceptable. In this context, a precise definition for the intended task is difficult. An
incomplete definition of the ES task may cause important deviations of the implemented
system with respect to the original aim. In addition, difficulties in ES task definition have
direct consequences in ES evaluation, that usually has to rely on matching ES performance
against human expert competence. However, human expert behavior is not always exact
and coherent. Some experts exhibit prejudice against computers, others exhibit prejudice

4 Chapter 1. Introduction

against other experts. Discrepancies among experts always exist. These issues have been
studied-in some ES experiences, getting answers for their specific needs (see in sections
2.6.1 anE 2.6.2 the case studies of MYCIN and R1), although they still hold today when a
new ES is developed. In summary, the elusive nature of typical ES tasks makes difficult
their precise definition. This increases the risk of errors in ES development and hinders
their detection in ES evaluation. To overcome these shortcomings sound validation
methods for ESs are required.

ESs are usually constructed using rule-based languages. The knowledge engineer
develops condition-action pairs, that are conceived separately (or in small groups) and
joined together forming the knowledge base (KB). However, the ES behavior arises from
the cooperative interaction of these rules. Given that the number of possible interactions
among rules raises exponentially with the number of rulesl, for applications with hundreds
or thousands of rules the number of possible interactions in the KB is very high. Then,
spurious or unexpected interactions among rules may appear in ES execution, causing
undesired behaviors. Preventing in advance these interactions is a difficult task for the
knowledge engineer, who cannot be totally aware of all possible interactions. In addition,
other factors such as a long KB development period, multiple KB builders or KB
maintenance can contribute negatively to this problem. Therefore, specific validation
techniques are required for rule-based ESs, in order to assure a correct KB structure and to

prevent as far as possible unexpected interactions.

In sumrhary, we conclude that ESs perform important tasks that demand a significant
degree of validation. A precise definition of these tasks is difficult, what causes problems
for ES development and evaluation. In addition, rule-based languages do not provide
enough security in their implementation. All these points reinforce the necessity of ES
validation. Currently, the degree of validation reachable in ESs is far below the validation
degree reachable in conventional software. In spite of the significant successes obtained by
the ES technology? and its potential benefits, it will not be really applicable in industrial
settings if it cannot guarantee the validity of its products. In consequence, better validation
methods and techniques are required, with the final aim to achieve for ESs the confidence
level that is currently available for conventional software.

1 Assuming that the number of possible rule chaining increases as the number of rules increases, that is
the usual situation.
2 An important deposit of molybdenum was discovered with the help of the PROSPECTOR expert system.

1.2 Expert Systems versus Conventional Software 5

1.2 Experts Systems versus Conventional Software

What differentiates ESs from conventional software?. Are these differences so important to
justify specific validation methods?. In the first part of this chapter, we have mentioned
two basic differences between ESs and conventional software: the type of tasks considered
and the type of development techniques used. From these two basic differences, we extract
the following detailed points:

+ Solving Approach: ESs are programs that solve problems by heuristic
associations. ESs are based on models of the intended task, models that are
inspired in the behavior of a human expert in the problem domain. Conversely,
conventional software solves problems by means of algorithms. This is a quite
fundamental difference regarding validation. Algorithms can be proved to be
correct, and this provides substantive evidence of the correctness of a program
(though the specific implementation can contain some errors). However, we do
not dispose of an analogous formalization for ES tasks. The correctness of the
underlying model is guaranteed by human experts, subject to personal opinion or
prejudice. This point is, doubtless, the most critical for ES validation. It is
concerned with the validation of the knowledge itself, and not about its
representation. To consider this problem we need forms to describe, manipulate
and evaluate knowledge in a way abstracted for its particular representation.
These foms are currently not available, although new cognitive architectures may

represent an step forward in this direction.

* Available Information: ESs have to deal with incomplete, uncertain or inconsistent
information, while conventional software works with sharp and precise data. The
presence of uncertain data is represented with certainty degrees in the KB. This
causes specific validation problems, since typical issues like inconsistency or

) redundancy are no longer boolean but weighted with certainty degrees.
Uncertainty may have also some impact in ES sensitivity, in the sense that small
changes in the input certainty may produce quite different outputs.

* Programming Languages: ESs are usually implemented using declarative
programming languages, while conventional software is constructe# using
procedural programming languages. This difference determines to a great extent

the kind of specific errors that can be found in a program. Considering rule-based

6 Chapter 1. Introduction

languages, the type of errors that may occur are inconsistency, circularity,

A.gredundancy, etc., quite different from errors of procedural languages.

» Specifications: as it has said before, typical ES tasks are difficult to define
precisely. An experience has been made, trying to formally specify an ES for
medical diagnosis [Krause et al, 91], but it seems that it can only partially be
achieved. In contrast, conventional software can be formally specified, aiming at
the presence of specifications for all the different software stages. Ideally, this
situation allows to validate by the verification (matching the stage product against

its specification) of each software development stage.

* Life-Cycle: ESs do not have a consclidated life-cycle. Early systems were
developed just by exploratory programming. The necessity to develop more
complex ESs has generated several approaches including the life-cycle concept.
These approaches share many points but also present some differences (see
section 2.5). Conventional software has a quite consolidated life-cycle, with a
very exhaustive and detailed set of activities for each development stage. A
consolidated life-cycle provides a standard and safe way of software
development, and is an important element for assuring the quality of the final
product.

From these points we conclude that ESs present important differences with
conventional software. These differences justify to revisit the definitions of validation
concepts in order to adapt them to ESs. This does not mean that ES validation is
considered essentially different from conventional software validation, but that the
validation concepts so far used in exclusive for conventional software have to be enlarged
to include the special characteristics of ESs as a new type of software. In addition, new
validation methods and techniques are required to deal with the specific features and issues
that ESs present. This is not exclusive with the adaptation of conventional software
methods to ESs, which can take advantage of years of experience in software validation.

Finally, and from a practical point of view, [Bobrow et al, 86] mention that,

Knowledge engineering is more than software engineering,
. but not much more.

In other words, the process of rule coding has much in common with conventional
software. General-purpose software engineering guidelines regarding task decomposition,
modularization, programming standards and documentation are totally advisable for

knowledge engineering.

1.3 Scope and Orientation 7

1.3 Scope and Orientation

This thesis is devoted to validation of multi-level rule-based expert systems. Rule-based
languages are widely used for ES development. By a multi-level rule-based expert system,
we mean an ES where its KB is formed by a hierarchy of different types of rules, each
level acting on the levels below it. We also include the presence of an uncertainty
management system in this model (for a precise description of the ES model, see section
4.1). This new type of ES generates a wide variety of validation problems that have not
been considered before. We present here a number of solutions for these problems,
solutions that have been theoretically developed, implemented and tested in practice with a
real ES application.

The validation methods we have developed assume the existence of an implemented ES.
This is not a major drawback for their usage, since many ES applications early develop an
initial prototype that is subsequently expanded in an incremental form. This approach,
based on rapid prototyping, is the most frequently proposed in ES development
methodologies (see section 2.5.4)3.

In addition to validation methods, we have made a conceptual analysis of ES validation
as a whole. We have considered a number of key questions in ES validation (what, when,
how), drawing the complete picture of the problem. We have devoted special attention to
terminological issues in ES validation. We propose a number of definitions for validation
terms that include specific ES characteristics and keep the basic meanings of these terms in
software engineering. In this sense, the proposed definitions fit pretty well in a general
framework for software validation, where different kinds of software coexist with a

common understanding of the kernel issues.

Our approach to validation, both regarding conceptual analysis or effective methods, is
based on the following guidelines:

* Practical Validation: current ESs demand methods and techniques to achieve
validation in practice. This is a actual requirement of ES technology that cannot be
ignored. In addition, we consider that validation methods should be theoretically

well-founded, but their effectiveness has to be shown with real appligations.

3 However, some authors consider that it has some disadvantages for validation [Rushby 88b].

8 Chapter 1. Introduction

Practice is the test that any validation method has to pass before to be considered

- ’qrcally useful and effective.

¢ Realistic ES Models: many validation methods currently available assume
simplistic models for the target ES. Namely, they consider rules in propositional
logic, fired forward, exhaustive firing, monotonic, without any feature to deal
with uncertainty or control. This simplistic model is quite far from the advanced
capabilities that current shells offer, inside the rule-based paradigm. When
validation methods based on these simplistic models are applied to current ESs,
their results are neither accurate nor complete, since an important part of ES
contents has not been taken into account. Then, the consideration of realistic ES
models is a necessary condition to achieve a true validation for ESs.

e Automatic Tools: as we have said in section 1.1, the number of possible
interactions among rules in real ES applications is very high. Some validation
issues (for instance, inconsistency) demand exhaustive checking, that is to say,
each combination of rules that can potentially contain an error should be checked.
In this context, manual validation is useless. We have to develop automatic
validation tools able to detect errors and even to suggest modifications. From that
point, the responsibility relies on the ES developers, that have to devise the best
form to correct the detected errors. Automatic validation tools provide the
necessary support to the mechanical task of error detection, that, as it is shown in
chapter 4, can require important amounts of time.

1.4 Overview

This thesis is composed of six chapters, an appendix and an annotated bibliography.
Broadly speaking, the contents of this thesis can be divided in two parts. First part is
composed of the three first chapters and it is devoted to the analysis of validation in ESs.
Second part, composed of the three last chapters and the appendix is devoted to new
validation methods for ES validation. We have developed two new validation methods for
the ES model, verification using extended labels and knowledge base refinement. We have
implemented them, producing two automatic tools: IN-DEPTH II, an incremental verifier,
and IMPROVER, an automatic refinement system. We have used these tools to validate
PNEUMON-IA [Verdaguer 89], an ES for pneumonia diagnosis based in the MILORD shell
[Sierra 89]. In these validation methods we have followed the previously mentioned

1.4 Overview 9

guidelines, since we have performed a practical validation on PNEUMON-IA, we have
followed closely the ES model defined by the MILORD shell, and we have developed
automatic tools to effectively support validation. In the following, we describe the contents
of the rest of the chapters (2 to 6) of this thesis.

Chapter 2 is devoted to previous work in ES validation. It considers the following
topics: verification, testing, knowledge base refinement, evaluation, validation in the ES
life-cycle and case studies. On each topic early approaches have been described first,
following an historical perspective with the aim to make explicit the topic evolution. When
adequate, references to conventional software validation methods have been made.

Chapter 3 contains a conceptual analysis of ES validation as a whole. It addresses four
important questions: What is Validation?, What Should be Validated?, How to Validate?,
and When to Validate?. In the answer to the first question, a detailed analysis of validation
terminology is made. The proposed definitions capture the peculiarities of ES validation

without losing the basic meanings of the validation terms in software engineering.

Chapter 4 considers the verification of multi-level rule-based ESs. It first describes the
ES model used for validation. It is c—omposed of facts, rules, modules and metarules. Facts
and rules compose what is known as domain knowledge, while modules and metarules are
explicit representations of control knowledge. A hierarchy exists, acting control
knowledge on domain knowledge. In this model, four classical verification issues are
analyzed: inbonsistcncy, redundancy, circularity and useless objects. As a result of the
presence of control knowledge, these issues considered previously single problems unfold
and generate new verification problems not considered before. The concepts of extended
labels and extended environments, extensions of ATMS concepts, are successfully used to
formulate the solutions for the mentioned issues. These solutions are implemented in the
tool IN-DEPTH II, an incremental verifier. The idea underlying the incrementality of IN-
DEPTH 11 is the following. If a verified KB is modified obtaining a new KB', to verify KB'
we do not need to repeat the verification process on all its components. Verification has to
be performed on (i) the additions to KB, that is to say, the elements of the set KB' - KB,
and (ii) on those KB objects for which previous verification results in KB are not valid in
KB'. IN-DEPTH II has been used to verify PNEUMON-IA, with encouraging results. A low
number of actual error causes has been found, comparatively with PNEUMON-IA size.
Some of the detected errors reveal subtle mistakes in knowledge organization, that were
not easy to find. Actual occurrences of detected errors are described. -

10 Chapter 1. Introduction

Chapter 5 addresses the role that knowledge base refinement systems can play in ES
validation. A KB refinement system is formed by an automatic testing system coupled with
a learning mechanism. ES execution is performed (or simulated) on a set of test cases with
known solutions. When an error is detected by the automatic testing system, the learning
mechanism is able to (i) localize its causes, (ii) generate the KB modifications that solve
the error, and (iii) select the modification that best solves the error (that is to say, it has less
undesired side-effects). Refinement systems had been used before in the comtext of
machine learning, but when used for validation, refinement has to change some criteria.
Selection is not made on the basis of the number of errors solved and caused, but on the
importance that these errors have for the ES task. To implement the selected modifications,
they have to be accepted for the human expert responsible for ES development. Regarding
the ES model, there are two other contributions: refinement of control knowledge and
solution of ordering mismatches, a new type of error. Medical diagnosis is the considered
ES task. In this context, IMPROVER, an automatic refinement tool, has been developed and
implemented. Its use has substantially enhanced the performance level of PNEUMON-IA.
Before IMPROVER, PNEUMON-IA exhibited more false negatives (the most ‘serious error
type for medical diagnosis) and more false positives that any of the five independent
human experts used in PNEUMON-IA validation. After IMPROVER, PNEUMON-IA exhibited
a number of false negatives smaller than that of any of the human experts. The number of
false positives has also decreased. Conversely, the number of ordering mismatches, the
less important error, has increased. These results shows clearly the capacity of a
refinement system for validation. Actual occurrences of proposed modifications are

described in this chapter.

Chapter 6 summarizes the conclusions of this work in five points: a single validation
definition is applicable to software and knowledge engineering, ES validation is feasible,
automatic tools are needed for ES validation, verification and refinement are useful
methods with complementary effects, and theory and practice are both required in ES
validation. Regarding points for further research, they are the following: conceptual
models of ES tasks, validation of conceptual models, verification of knowledge properties,

knowledge acquisition for validation, validation by construction and test set selection.

The appendix contains the results of IMPROVER on PNEUMON-IA. For the 66 test cases
considered, the correct solution is described, as well as the solution provided by
PNEUMON-IA before and after the use of IMPROVER. The three types of errors considered
are detailed for each case and each PNEUMON-IA version. Finally, an annotated

bibliography in ES validation with approximately one hundred entries is given..

Chapter 2

Previous Work

ES validation is a very young field. First papers are dated on late 70s and early 80s, while
most of the research has been made after year 85. Only in the last years, given the
increasing industrial demand on ES validation, the main Al conferences (ECAIL AAAI,
IJCAI) have included in their programs tutorials and workshops on the field. As a
consequence of its youngness, ES validation is not a well-structured field. Its different
aspects are unevenly developed and there is not a common and comprehensive approach to
ES validation. Historically, research on this field has been guided by the necessity to
obtain validation solutions for specific ESs. This have produced many ad-hoc approaches,
where the applicability into a more general setting was not the main concern. Nevertheless,
the practical experience on validating specific ESs has been of an immense value to

improve and push forward the state-of-the-art in the field.

The goal of this chapter is to present a representative sample of what has been done on
ES validation, with special attention to those works that have meant significant
improvements in the field, but without attempting to an exhaustive enumeration. We have
divided previous work on ES validation in the following topics: verification, testing,
refinement, evaluation, validation in the ES life-cycle and case studies. Each topic is
contained in a different section, where a number of relevant approaches are t;rieﬂy
explained. We have followed an historical perspective, describing early approaches first
with the aim to make explicit the topic evolution. When adequate, we have made references

11

12 Chapter 2. Previous Work

to conventional software validation methods, although without aiming to a comparative
analysis _gf conventional versus Al software. Each part is closed with a summary, where
the main ideas on the topic are exposed. Finally, a global summary containing a general

evaluation of current validation approaches closes the chapter.

2.1 Verification

Verification aims at checking a number of mandatory or advisable properties in rule bases
as well as specific situations on the set of possible inferences. Verification properties arise
from the rule-based knowledge representation, which requires some conditions to be
fulfilled to assure the correct usage of the KB. Specific situations are originated by the
specific problem domain, which imposes some constraints on the mapping from inputs to
outputs in the ES. A large set of verification properties can be tested (for a detailed
description see [Nazareth 89]), many of them are defined below when describing specific
verifiers. Most of these properties have a logical basis, given the close relationship
between production rules and logic. They were initially classified regarding consistency
and completeness of the logical theory associated to the KB. Now, it seems more accurate
to classify them with respect to the role they play in the ES. Broadly speaking, verification

issues can be classified in four groups: -

« Inconsistency: a KB is inconsistent if it can produce contradictory or conflicting
outputs from a valid input. Inconsistency includes logical contradiction (deducing
p and —p) as well as semantical incompatibility (deducing facts not logically
related but incompatible, for instance male and pregnancy). Causes of
inconsistency are modeled by special declarations called integrity constraints.

« Redundancy: a KB is redundant when some elements, which are used, can be
removed without affecting its deductive power (the transitive closure). Different

types of redundancy exist, depending on the rule semantics of the specific ES.

+ Circularity: a KB is circular if there is a cycle in the rule dependency chain that

can generate malfunctions (endless loops) of the inference engine.
« Useless objects: an object is useless if it is never used, no matter the ES input.

Some verifiers also detect syntactic errors in rule writing, illegal values assigned to

attributes (type checking) and other minor issues. In this classification, inconsistency and

2.1 Verification 13

redundancy are the most difficult problems. To be completely tested, they require
algorithms of exponential complexity in the worst case, raising the danger of combinatorial
explosion. They have been considered only partially by some verifiers.

Undoubtedly, verification is the most developed subfield of ES validation. Quite a few
verifiers have been developed in the last ten years, giving adequate response to many
verification issues. These systems take as input the KB plus some extra, application-
dependent information (typically integrity constraints) required for the verification tasks.
They produce as output a listing with the verification issues detected. Some of the most

representative verifiers are described below, following an historical perspcctive.

2.1.1 Early Systems

The ONCOCIN RULE CHECKER [Suwa et al, 82] could be considered as the first verifier

referenced in the literature. It detects the following issues on attribute-value! rule bases:

» Conflict: two rules r, r" are in conflict when [hs(r)=Ilhs(r") and rhs(r) is
contradictory or in conflict with ras(r’).

+ Redundancy: two rules r, r’ are redundant when [hs(r)=lhs(r’) and
rhs(r)=rhs(r’). ‘

. Sub§umption: rule r subsumes rule ' when [(hs(r)olhs(r") and rhs(r)=rhs(r").

« Missing rules: an input situation is not covered in the KB.

Rules are grouped by their concluding attribute, forming a table for each group. On
each table, conflict, redundancy and subsumption are tested by exhaustive comparison of
its rules. Missing rules are computed under the hypothesis that all possible combinations
of values for the attributes present at the table should exist. The ESC system [Cragun &
Steudel 87] follows a very similar approach, using decision tables to represent group of
rules which causes some efficiency improvements.

The-CHECK system [Nguyen et al, 85] [Nguyen et al, 87] tests goal-driven and data-
driven rules with variables belonging to the LES shell. In addition to conflicts, redundancy

and subsumption, issues defined above, it detects the following:

+ Unnecessary if-conditions: two rules with the same right-hand side differ in their

left-hand sides in one condition, affirmed in one rule and negated in the ot};er.

1 Attribute-value rules are equivalent to rules in propositional logic, in which literals have been substituted
by boolean expressions relating attributes and their corresponding values.

14 Chapter 2. Previous Work

+ Circular rules: a set of rules forms a cycle.

--«@Unreferenced attribute-values: legal values of an attribute are not covered in the
KB.

+ Illegal attribute-values: an illegal value for an attribute is referenced.

+ Unreachable conclusions: the right-hand side of a rule is unreachable if it matches
neither a goal nor another condition in the left-hand side of another rule.

* Dead-end if-conditions and goals: an if-condition or goal is a dead-end if it is not
askable and it does not match the right-hand side of another rule.

CHECK analyzes these issues in the following way. First, every clause (condition in the
left-hand side or assertion in the right-hand side of a rule) is compared against every other
clause of every other rule and every goal. Potential results are same, different,
conflict, subset and superset. Results are stored in a table of clause
relationships. Second, left and right-hand sides of every rule are compared against every
left and right-hand sides of every other rule using the table of clause relationships. Results
are stored in a table of part relationships. Using this table, conflict, redundancy,
subsumption and unnecessary if-conditions are easily tested. Using also the table of clause
relationships, unreachable conclusions, dead-end if-conditions and goals are computed.
Circular rules are detected representing rule dependencies by a directed graph an checking
cycles in it.

These early systems perform only a partial analysis of inconsistency (conflict) and
rcdundancy because they test these issues locally, comparing statically pairs of rules and
ignoring rule chaining. Inconsistencies and redundancies requiring more than two rules to
occur cannot be detected. Figure 2-1 contains two set of rules which are trivially
inconsistent (a) and redundant (b) that cannot be detected as erroneous by these verifiers.
These examples show clearly that inconsistency and redundancy are global properties of
sets of rules, and therefore, rule sets should be globally analyzed to achieve a complete

analysis.
(a) PAqQ —r (b) DAGQ —r
r - u r — U
DAQ — —U DPAQ — U

Figure 2-1. Inconsistent (a) and redundant (b) sets of rules.

2.1 Verification 15

2.1.2 Inconsistency Checkers

The KB-REDUCER system [Ginsberg 88b] detects all inconsistencies and redundancies in
forward-chaining, propositional rule bases. Ginsberg points out the different meanings of
consistency in logic and in rule bases. A set of logic formulas is consistent if there exists
an assignment of truth values to literals such that all formulas are true. A KB is consistent
if no contradictions can be obtained from a valid input. The set of rules (a) in figure 2-1 is
consistent in the logic interpretation (for example, when p=r=false) but it is not as a KB
(when p=q=true, both u and —u are concluded as true). An input is valid if it represents a
real situation in the problem domain. To model legal input values in the problem domain, a
set of integrity constraints is defined, including logical or numerical constraints (always
holding), single valuation of attributes (assumed by default) and semantical constraints
(restrictions on the values of certain attributes that are purely domain-dependent). Then, an
“input is valid if no integrity constraint is violated. A set of rules R is irredundant when no
rule follows from other members of R, and every rule in R is satisfiable by some valid
input. Inconsistency and redundancy are tested by computing labels and environments.
The label for a deducible fact h, L(h), is the minimal disjunctive normal form asserting A,
where each disjunction consists solely of external facts and is denominated an environment
for h, E(h)(terminology borrowed from ATMS [deKleer 86]). Thus, L(h) represents all
the minimal s;:ts of external facts that cause / to be deduced. Given an integrity constraint
(hy, h2), an inconsistency occurs if there exist E;(h;) € L(hj), Ej(hy) € L(hy) such that
one of the following conditions hold: (i) Ei(h;) > Ej(hy), (ii) E{(h2) > E;(hy), (iii) E;j(h) U
Ej(hz)ﬂis valid (case (iii) includes (i) and (ii)). Redundancy is detected by computing, for
every deducible fact 4, the contribution of each rule r concluding 4 to L(h). When the
contribution of r is null or it implies the contribution of other rules, r is redundant and can

be removed.

The COVADIS system [Rousset 88] follows a close (but independent) approach. It
detects inconsistencies in forward-chaining, propositional rule bases. Inconsistency is
defined in terms of meaningful (valid in KB-REDUCER) inputs using integrity constraints,
which are defined as rules concluding the special fact false. COVADIS generates the
specification of all inputs that can conclude false. This is made by an extended forward-
chaining process, where contextual facts are computed. A contextual fact has the form
(ATTR; = VALj) [CONTX], meaning that the attribute ATTR; will take the valu%.VALj
only when the boolean expression in CONTX is true. Contextual facts are propagated by

16 Chapter 2. Previous Work

rule firing, generating new ones. When an integrity constraint is fired, the contextual fact
for its cgnclusion Jfalse is shown to the expert, who will judge whether it is meaningful or
not. If it is meaningful, the KB is inconsistent and it should be corrected; if not, some
integrity constraints are missing and they should be added.

The PENIC system [Meseguer 90] checks KBs formed by propositional rules for
inconsistency. The KB is translated into a Petri net, representing each fact by a place and
each rule by a transition. Facts considered true are places with one or more tokens. A
token distribution is denominated a marking. Transition firing generates new markings. An
inconsistency occurs when all the places representing facts involved in an integrity
constraint are reachable from an initial marking representing a real input. Using the
algebraic foundations of Petri nets, it is shown that this reachability problem is equivalent
to solve a linear equation system in {0,1}. In this way, a problem traditionally solved by
symbolic computation is transformed in an algebraic problem. Petri nets have also been
used for verification in [Pipard 88] [Agarwal & Tanniru 91].

The GCE system [Beauvieux & Dague 90] performs incremental consistency checking
in attribute-value rule bases. When a KB already verified is modified, GCE checks
consistency without doing a complete proof again, just focusing on what has been
changed. This is made by building maximal consistent set of facts, denominated base
models. Logical or semantical inconsistencies are modeéled by integrity constraints. Legal
modifications are adding or removing a rule or an integrity constraint.

2.1.3 Verifiers with Extended Functionalities

The EVA system [Chang et al, 90] provides a wide range of verification facilities. EVA
functions were initially designed to work on ART knowledge bases. The long-term goal of
EVA is to build an integrated set of generic tools to verify any knowledge base written in
any shell, such as ART, CLIPS, OPS5, KEE and LES. EVA is composed of the following
modules: structure checker (extended), logic checker (extended), semantics checker,
omission checker, rule refiner, control checker, behavior verifier, test case generator,
uncertainty checker, rule satisfiability checker and model-based verifier. These modules
cover the usual verification issues. EVA is written in PROLOG and represents knowledge
bases in an internal format. Verification predicates are written as predicates on objects
which are elements of the target knowledge representation language. For this reason, they
can be considered as metapredicates, forming a metalanguage specific for verification. This
approach offers a set of high order constructs to represent knowledge about the verification

2.1 Verification 17

task, which can be of great interest to build verification tools. A crucial aspect of this
approach is the genericity of the internal representation of knowledge bases. Some work
has been done translating OPSS5 into the EVA environment in [Childress & Valtorta, 91].

The COVER system [Preece & Shinghal 91] checks propositional rule bases for
anomalies that are symptoms of possible errors. Deficiency, ambivalence, redundancy and
circularity are the considered anomalies. A KB is deficient if there exists a permissible
input for which not final hypothesis is given, because some knowledge is missing.
Considered deficiencies are missing rules, unusued literals and missing values.
Ambivalence occurs when the same input can generate different outputs. A rule is
redundant when it can be removed without any effect in the hypothesis that can be inferred
by the KB. Subsumption between two rules is a particular case of redundancy, as well as
rules with unusable consequent (unreachable conclusion). All these issues are analyzed by
COVER in three phases: integrity checker, rule checker and environment checker. The
integrity checker solves the "easy problems": unusued literals, unusable consequents,
circularity and missing values. The rule checker solves simplified versions of
inconsistency and redundancy, restricted to rule pairs. The environment checker solves the

general version of inconsistency, redundancy and missing rules.

2.1.4 Other Approaches

The SACCO system [Ayel 88] checks rule bases for incoherence (inconsistency) but it does
not aim to be exhaustive. Coherence (integrity) constraints are added to the KB. Some of
them dre considered "pertinent" using specific knowledge. They are tested using labels that

are selectively built using heuristic filters to prevent combinatorial explosion.

The SVEPOA system [Prakash et al, 91] is a specific verifier for OPS5 applications. It
detects situations that may generate error: conflict and likely-to-activate relations, as well as
dead-end and impossible rules. These situations are computed translating rules into a linear
system of equalities and inequalities, and testing it for a feasible integer solution.

The AbsPS system [Evertsz 91] performs some verification tests based on the abstract
interpretation of the KB. Abstract interpretation has the same meaning as symbolic
execution in conventional software. AbsPS takes as input the KB and an specification of its
input, and produces the specification of its output. In this process, AbsPS takss into
account the procedural semantics of the rules, specifically the different criteria for conflict

resolution.

18 | Chapter 2. Previous Work

Finfilly, [Herod & Bahi{l 91] have developed a verification tool to test the correctness of
ESs in §uestion sequenciﬁg (what they denominate the pregnant man problem). This tool
requires a question matrix filled by the domain expert where question dependencies or
incompatibilities are represented. Using this matrix the KB is updated using an heuristic
procedure, to assure that no conflicting questions will occur (although this can affect the

ES performance).

2.1.5 Verification Summary

This enumeration shows clearly the evolution of verifiers. Three generations of verifiers
can be identified, corresponding respectively to early verifiers, inconsistency checkers and
verifiers with extended functionalities. Evolution that can be analyzed under three points of

view:

« Partial vs. complete checking: first generation verifiers check only partially the
"hard problems", inconsistency and redundancy. These issues aré completely
tested in the next generation, which is focused on these problems. Third
generation systems incorporate, in addition to complete checking, an extended set
of functions to check different aspects of the encoded knowledge.

+ Simple vs complex ES models: most of these verifiers work on a simple ES
model, namely, rules underlaying propositional logic, without uncertainty,
without control and assuming monotonic deduction. Some verifiers deal with
rules with variables, only EVA has a facility to represent uncertainty, AbsPS

includes the role of implicit control and SVEPOA deals with non-monotonicity.

+ Number and type of verification functions: first generation verifiers consider a
wide set of issues, set that is restricted in the next generation, more interested in
complete inconsistency checking. This set becomes wider again in the third
generation. Finally, the latest verifiers (svepoa and absps) offer a more restricted
set of verification capabilities, however, they work on a more complex ES model
than their predecessors. Also it is noticeable that new, non-logical properties as

question ordering begin to be tested.

Future trends in verifiers can be centered mainly in two points. First, verifiers should
consider more realistic ES models. Aspects such as uncertainty management and control

(implicit conflict set resolution, or explicit metarules) currently available inside the rule-

2.1 Verification 19

based paradigm, should be taken into account to achieve accurate and precise verifications.
In addition, some of these aspects now ignored can be of great help to fight against the risk
of combinatorial explosion, always present when checking inconsistency or redundancy.
Second, verifiers should test new properties, more informative for the knowledge engineer
or human expert. So far, most of the verification functionalities check some kind of
correctness with respect to the rule-based representation but they do not consider specific
verification functions for the intended ES task. This may require the addition of new

knowledge to the ES to be exclusively used at the verification phase.

2.2 Testing

Testing examines the behavior of a program by its, actual or simulated, execution on
sample data sets [Adrion et al, 82]. The main goal of testing is to check program
correctness. To guarantee a complete correctness, testing has to be exhaustive, that is to
say, every potential input should be tested. This is obviously unfeasible for real
applications, so testing only analyzes the program behavior on a finite set of test data (fest
set). The selection of the test set is an essential point for the testing process. This set
should be large enough to be a representative sample of the program domain and yet small
enough to allow the testing process to be executed on each element of the test set
consuming a‘reasonable amount of resources. A formal treatment of test set selection is
given in [Goodenough & Gerhart 75], setting the following fundamental theorem of
testing:

Ef there exists a consistent, reliable, wvalid and complete

_criterion for test set selection for a program P and if a test

set satisfying the criterion is such that all test instances
succeed, then the program P is correct. 2

However, no algorithm can find consistent, reliable, valid and complete test criteria
[Howden 76]. Therefore, other simpler criteria can be used for test set selection, such as
random testing, functional testing, structural testing, heuristics, etc. [Howden 78]. In spite
of the fact that, using these criteria testing can never guarantee correctness, testing has
shown to be very effective in practice, and therefore it is unavoidable in program

validation.

The testing fundamentals exposed so far have been developed cdnsidering conventional
software, but they are equally applicable to ESs. In addition to the problem of test set

2 For the precise meanings of consistent, reliable, valid and complete, see [Goodenough & Gerhart 75].

20 Chapter 2. Previous Work

selection, testing in ESs raises some new issues, some of them are outlined in the
following:
ad

+ The correctness of ES final output should be tested, as well as the correctness of
ES reasoning. This second aspect is very important to gain confidence in the ES,
specially from the final user. In this sense, definite experiences have been
obtained in medical ESs (see MYCIN description in section 2.6.1).

+ A correct pattern for ES behavior, also known as gold standard, has to be
established. This is not an easy task because either (i) many correct solutions can
exist, or (ii) if only one solution exists, it can be very difficult to determine
accurately. Examples of the first case are ESs in configuration tasks, while the
second case appears in ESs on medical diagnosis. In the selection of the gold
standard for a problem there are two options:

1. the objective correct answer to the problem, or
2. the answer given by a group of experts to the problem, using the same
information available to the ES.

The first option is often unfeasible because the objective correct answer can be
unknown and only can be obtained by very expensive or unacceptable methods
(for example, autopsy in medicine). The second option is generally chosen, on
the basis that the ES goal is to reproduce the skill of human experts so the ES
should be compared against them. For medical ESs there is a wide consensus that
ES output should be compared against human expert behavior [Chandrasekaran
83] [Gaschnig et al, 83]; otherwise, the ES would be tested against some kind of
superhuman capacity, what can be misleading. Given that human experts may
disagree, procedures to set expert consensus are needed. Whatever is the choice
of gold standard, it should be agreed before ES construction and maintained
throughout the ES development [Rushby 88b].

* Acceptable performance standards: an ES never achieves a performance level of
100% success, in the same way that human experts are not infallible. The
performance level from which the system can be considered as expert should be
stated. To assess this level, measures of the performance of human experts and
practitioners in the ES task can be used. These standards of performance have to
be realistic. The case studies of MYCIN and R1 contain interesting experiences on
this topic.

2.2 Testing 21

Some other problems can also exist such as unavailability of experts to support
validation, short number of test cases, bias in the test set or in expert judgements, etc. In
addition to these issues and to the kernel problem of test set selection, usually there is a
total lack on ES requirements. This causes that, in many occasions, testing cannot be made

on a sound basis and becomes a matter of guesswork [Green & Keyes 87].

No uniform approach exists on ES testing. A variety of techniques have been
developed, in many occasions adapted to specific problem domains. In the following,
some ES testing techniques are briefly exposed.

2.2.1 Test Set Selection

From conventional software the most effective testing methods are random testing (test set
is randomly selected), functional testing (test set is selected on the basis of the expected
program function, described in the requirements, black box approach) and path testing
(test set is selected to exercise a maximum of different paths in the program, white box
approach) in this order and with complemented effects [Rushby 88b]. This testing schema
can be adapted to ES testing. Random testing, where cases are selected using stratified
sampling is recommended in [O'Keefe et al 87]. Used test values should be in accordance
to the actual (or expected) distribution of these values in the problem-domain. However,
random testing can generate meaningless combinations of values, of little interest for the
testing process. Functional testing is suggested by [Green & Keyes 87]. It is performed by
testing each single requirement, singular point and boundary condition. However, the
usual lack of detailed requirements for ESs can difficult the practical application of this
approach. To adapt path testing to ESs, the idea of path in conventional software is
substituted by a rule sequence in ESs. Systematic path testing can be performed when the
conditions for firing a rule sequence can be computed for a significant number of possible

rule sequences. For this purpose a test-case generator (see below) seems very adequate.

2.2.2 Human Intervention

Human intervention is always required in testing. From [Gaschnig et al, 83] and [O'Keefe

et al, 87], three different aspects of human intervention are described: face validation,
L

Turing tests and field test. Face validation is a preliminary testing process invdlving

developers, experts and potential end-users, who compare subjectively ES performance

22 Chapter 2. Previous Work

against human expert performance on a set of test cases. A Turing test compares the ES
against h,:xman experts in the following way. A set of cases is provided to both the ES and
a group of human experts. ES outputs and human experts' judgements are evaluated by
another group of human experts, without knowing the identity of each performer. For a
detailed description of Turing tests on medical diagnosis ESs see [Chandrasekaran 83].
Turing tests guarantee blindness, preventing from anti- or pro- computer bias in human
evaluators. However, Turing tests can be very expensive to carry out. A field test consists
on placing the ES at the work place under supervision for error detection. Users pérform
the testing process: when they detect malfunctions or incorrect results, they report them to
the ES developers. An acceptable level of performance is achieved when users cease to
report problems. This kind of testing is only applicable to non-critical applications, when a
set of users is willing to accept the burden of ES testing.

Dealing with human judgements is not easy. Even elite experts exhibit the following
problems [Green & Keyes 87]: prejudice, parochialism and inconsistence. Prejudice exists
when some experts refuse to consider the possibility that the ES output is as good as
theirs. Parochialism appears when experts in different geographical regions apply different
criteria and different bodies of knowledge. Inconsistence occurs when some experts rated
as unacceptable answers that are substantially identical to their own. To overcome these

issues, blind testing and expert independence from ES developers is required.

2.2.3 Statistical Approaches

The following statistical techniques have been proposed in [O'Keefe et al, 87] to evaluate
the goodness of testing results: paired r-tests, Hotelling's one-sample T2 tests and
simultaneous intervals. Paired #-tests can be used to evaluate the difference between ES
output and human performance, represented as D; = X; - Y;, where X; is the ES output, ¥;
is the human performance or known solutions. Given n cases, the ES response 1is

acceptable if zero lies in the following confidence interval,
dttyg ez Sal\n

where dis the mean difference, Sy the standard deviation and #,.; ¢y is the value from the
t distribution with n degrees of freedom. When the ES output is composed of multiple
elements, Hotelling's one-sample T2 test should be used instead of multiple paired ¢-tests.
If the set of possible elements for ES output has & elements, each test case can generate k
differences between the ES output and the human performance. Repeating this process for

2.2 Testing 23

every test case, k vectors of differences, one for each element, are obtained. Then, the
one-sample T2 test can be used to determine if the means of the difference vectors are
significantly different from zero. Also simultaneous confidence intervals for differences of

paired responses can be constructed when the ES output is composed of multiple elements.

The problem of consistency between multiple experts is also considered in [O'Leary &
O'Keefe 91]. To measure consistency they suggest to use the interclass correlation
coefficient when expert responses are in a continuous scale or the kappa statistic in the
discrete case. Also another statistic to compare joint expert agreement with ES output is

mentioned.

2.2.4 Test-case Generators

Given that test cases are difficult to find and select, some approaches have tried to generate
test cases lying on the structure of the program to test. While this approach has not been
very successful in conventional software [Howden 78], it seems more promising in ESs
where it is easier to compute the conditions for a feasible path (sequence of rules to fire).

The SYCOJECT system [Vignollet & Ayel 90] is a test case generator for rule bases.
SYCOIJECT uses a conceptual model for test case building, which contains testing
knowledge for an specific ES. Test cases are divided in equivalence classes, where each
class contains all cases that will cause the same output. An equivalence class is
characterized by the set of deduced facts plus the set of fired rules. Only cases
representative of different classes will be generated. These cases can make use of the
“inside/outside singular values" for an attribute, which are the legal/illegal values for that
attribute considered semantically relevant for the expert. Test cases are checked for their
structural and semantical validity, using information on the allowed values for the
considered attributes.

2.2.5 Heuristic Testing

Another approach is heuristic testing [Miller 90] for attribute-value rule bases. The basic
idea underlying this approach consists in classifying all possible ES failures into categories
based on their consequences. Failures are ordered and tested by decreasing risk for system
competency. This approach is denominated heuristic testing since it is a reasonable ;irategy
to eliminate the worst problems first. Faults are classified by decreasing importance in the

24 Chapter 2. Previous Work

following classes: basic safety, system integrity, essential function, robustness-failure,
secondary function, incorrect input/output, user-interface, error -metric, resource
consump';ion and other. Faults are solved when they are detected, in a fix-as-you-go basis.
The heuristic testing procedure is composed of the following steps: (i) selection of the fault
classes to be considered, (ii) selection of test cases for each considered fault class, (iii)
preparation of the testing plan, and (iv) execution and evaluation of the selected tests.
Testing can consider only one rule or a chain of rules. Test cases are generated using the
generic testing method, which computes the adequate values for the attributes of a rule (or
rule chain) to be satisfied with three levels of reliability, regarding the vicinity of the
constant appearing as value for each attribute. Test cases are specifically generated for each
fault class, requiring human intervention to discriminate among the fault classes and to
evaluate the results of test outputs. When an error is fixed performing some change in the
KB, regression testing (repetition of the testing process on previously considered cases) is

required to check that this modification does not cause previously considered errors.

2.2.6 Testing Summary

From the previous description, it is apparent that ES testing is a quite complex topic on
which there are many relevant factors. A large number of different aspects have been
studied and several testing techniqu‘es have been devéloped, although a uniform and
integrated approach of ES testing including all different aspects is currently missing.

Essentially, ES testing presents two problems: test set selection and ES performance
evaluation. The test set should be reasonably small but representative of the problem
domain. Sometimes, test case representativity is not easily assessed since typical ES
applications consider ill-structured domains with fuzzy boundaries. Independent experts
can assess the representativeness of the test set. ES performance evaluation depends
largely on the existence of an absolute and correct standard of performance (also known as
"gold standard") commonly accepted by the experts in the problem-domain, for all the
cases in the test set. When no external gold standard exists, ES performance should be
compared against human performance using experts' judgements. However, experts'
judgements can be biased, inconsistent or even erroneous. To overcome these issues,
statistical techniques can evaluate the degree of agreement among human experts
themselves, which can be compared with the degree of agreement of the ES against the
experts' judgements. Blind testing and independent expert assistance seem to be necessary
to guarantee as much as possible an objective testing.

2.3 Knowledge Base Refinement 25

2.3 Knowledge Base Refinement:

Knowledge base refinement considers the improvement of performance of an ES by
learning from a set of known cases C that fall into the problem domain. A refinement
problem for an ES exists when, presenting a reasonable performance degree, a number of
cases in the problem domain are treated incorrectly. Refinement is focused on the
declarative part, the knowledge base, assuming that the procedural part of the ES is
correct. It is assumed that only minor changes are required to lead the knowledge base to a
satisfactory state, so the learning process will respect as much as possible its original
structure and vocabulary. The knowledge base is usually formed by rules in propositional
logic (Horn clauses), although some systems include rules with certainty factors.
Knowledge base facts are divided in two disjoint sets, O the set of observables and H the
set of hypothesis (also known as the sets of external and deducible facts), representing
respectively the sets of inputs and deductions of the ES. Taking as input a subset of valued
observables, the ES is executed obtaining as result the subset of hypothesis that it assigns
for this particular input. The closed world assumption usually holds: if an hypothesis is
not deduced for a particular case, its negation is assumed. A case C; e C is composed of
two sets < O; , H;* >, such that O > O; and H > H;* 4. The sets O; and H;* respectively
represent the'subset of observables and the subset of hypothesis that effectively hold for
the case Cj.

The refinement process consists of the following four phases:

+ Identification: for each case Cj, the set of hypothesis H; that the ES assigns to C;
is computed and compared with the correct set of hypothesis H;*. From this
comparison, hypothesis # € H are classified in:

» True positives: h € H; n H;*.
« True negatives: h ¢ H; u H;*.
» False positives: h € Hj, h ¢ H;*.

”

3The terms “knowledge base refinement”, theory refinement” and “theory revision” are used with very
close meanings in the literature. The first one has been selected because it is the most specific in the
context of expert systems. In the description of specific systems we have followed each author's
terminology. . =

4H;* usually contains a small subset of the total set of hypothesis H: the final goals of the ES. However,
this discussion can be applied to any intermediate hypothesis without losing generality.

26 Chapter 2. Previous Work

« False negatives: h ¢ H;, h e H;*.

“The existence of false positives means that the knowledge base is too general and
it should be specialized. Conversely, the existence of false negatives means that
the knowledge base is too specific and it should be generalized. In both cases, the
knowledge base should be refined to achieve all the correct hypothesis, and only
those, for each Cj.

* Localization: once an error has been identified, the part of the theory responsible
for it should be localized. This task requires the analysis of the knowledge base,
normally using explanation-based learning techniques. The way the knowledge
base is used by the ES should be taken into account.

* Generation: in this phase potential refinements to solve an error are generated.
The generation process is driven by the error nature (specialization/generalization)
to select refinement operators. Typical specialization/generalization operators are
adding conditions or deleting rules/removing conditions or creating new rules.
Also changes in the certainty values associated to the rules are considered.
Refinement operators will be applied on the knowledge base part localized as
responsible for the error. When new conditions or rules are added, they are

usually computed by inductive learning methods over the set of cases.

-+ Selection: from the set of generated refinements one is selected and applied on the
knowledge base. One principle drives the selection process: refinements should
not generate new errors in the ES performance. Following this principle, the
selection process has to know how a refinement can affect the ES functionality, in
order to maintain its correct behavior on those cases in which no error has been
detected. This can require either simulation or real execution of the modified
knowledge base over the set of cases. The set of generated refinements is ordered
following rankings or heuristics. Refinements are tested in this order, and when a
refinement leads the modified ES to a satisfactory performance it is selected and
added to the knowledge base as a consolidated change.

The identification phase is performed at the beginning of the process, to determine the
cases that are correctly treated by the ES and those cases that show errors. Next phases,
localization, generation and selection, are usually performed sequentially once for each
identified error. To evaluate the power of the refinement process, the set of available cases
is divided in two: the training set and the test set. The initial KB is refined using the

2.3 Knowledge Base Refinement 27

training set and generating KB’. These knowledge bases, KB and KB’, are executed over
the test set and their results are compared. It is expected that KB’ will show a better
performance than KB, assuming the representativity of the training set over the problem
domain and the homogeneity in both training and test sets.

In the following some refinement systems are described. They have been selected for
their capabilities to refine knowledge bases from both generalization and specialization
issues, with empirical results of their performance. Anyway, this enumeration is not

exhaustive.

2.3.1 Empirical approaches

The SEEK system [Politakis 85] suggests possible refinements for tabular knowledge bases
developed with the shell EXPERT. A table consists of (i) a description of major and minor
findings for a hypothesis, and (ii) a set of rules concluding this hypothesis. A rule contains
a conjunction of conditions (involving numbers of major and minor findings) and a
conclusion confidence degree (no confidence propagation exists). Rules with higher
confidence degrees have priority. Performance is evaluated by matching the ES top ranked
conclusion with the expert's conclusion in each case (no multiple diagnosis is considered).
When a discrepancy exists, all fired rules with wrong conclusions and higher confidence
degree than the expert's conclusion are marked for specialization, while the unsatisfied rule
closest to the expert's conclusion is marked for generalization. Specialization operators
weaken or remove rule conditions while generalization operators strengthen or add rule
conditions. Increasing rule confidence is seen as a generalization because a conclusion
overrides previous conclusions with lower confidence. Conversely, decreasing rule
confidence is seen as an specialization. Changes are limited to existing rules (adding or
removing rules is not allowed). Generalization/specialization statistics are gathered for
marked rules. Heuristics use these statistics and specific knowledge about conditions to
generate refinements (denominated "experiments"), which are proposed to the user in a
ranked Tlist. The user can interact with SEEK and evaluate the exact effect of each

experiment, and eventually accept one.

Based on SEEK, the SEEK2 system [Ginsberg 88a] enhances the capabilities of its
predecessor in three aspects. First, it extends the SEEK tabular knowledge representation,
since SEEK2 works on any knowledge base developed with the shell EXPERT. Second, it
has an "automatic pilot capability", able to perform all the réfinement phases without

human interaction and to generate a refined knowledge base (that is, SEEK2 automatizes the

28 Chapter 2. Previous Work

selection phase). This capability is based on a hill-climbing strategy. Suggested
experiments are ordered by their potential net gain. Every proposed experiment for every
final di;gnostic is attempted in the knowledge base, assuming that heuristics have
generated a small fraction of all admissible experiments. Out of all these experiments
SEEK? accepts only the one that provides the highest net gain in ES performance for all the
final diagnostics. And third, a metalanguage for knowledge base refinement, RM, has
been developed in which knowledge about the refinement process (metaknowledge) can be
naturally expressed, separated from irﬁplcmentation details and available to the refinement
user. SEEK2 has been rewritten in RM.

The KRUST system [Craw & Sleeman, 90][Craw & Sleeman, 91] refines propositional,
backward chaining rule bases taking into account rule priority. Rules have a priority factor
used to solve the conflict set. When a case is misclassified, rules are divided in error-
causing, potential error-causing and target. The error-causing rule is the fired rule
generating the erroneous conclusion. Potential error-causing rules are those rules that have
not been fired because they had lower priority than the error-causing rule, but they are
satisfied and their conclusion is erroneous. Target rules are those with ‘the correct
conclusion. Target rules are further subclassified considering why they have not been
fired, because unsatisfied or low priority. Refinement operators are adding or removing
conditions to rules, changing rule priorities, changing conclusions and adding new rules.
All possible minimal refinements are generated. These refinements are filtered using
statistical, heuristic and consistency criteria. The remaining refinements are actually
implemented and evaluated on a set of test cases. A subset of cases denominated
“chestnuts" are used to remove those refined knowledge bases that do not provide the
correct answer. Remaining knowledge bases are ranked by discrepancies in the set of

cases.

2.3.2 Operationalization

Ginsberg in [Ginsberg 88c] describes a revision method for propositional logic theories
restricted to rules (Horn clauses) with three stages: theory reduction, theory revision and
retranslation. The first stage, theory reduction, translates the original theory into the
reduced theory, a more amenable form for revision. The reduced theory is formed by the
set of labels for all the hypothesis in the theory. Theory reduction is computed by KB-
REDUCER [Ginsberg 88b] (see section 2.1.2). The second step, theory revision, is the
refinement process of the reduced theory. A case C; poses a generalization problem for

2.3 Knowledge Base Refinement 29

hypothesis & when h e H;" but there is no environment in L(k) satisfied by (contained in)
0;. Conversely, C; poses a specialization problem for 4 when h ¢ H;* but there are
environments in L(h) satisfying O;. Refinement generation and selection is made in five
steps: massive label generalization and specialization, focussed label generalization and
specialization, and correction of remaining errors. The first two steps try to solve problems
spread out in the theory, while the three last steps consider specific problems. Refinement
operators are add/remove observables to/from environments and, in the last case,
add/remove environments to/from labels (minor changes are always preferred). The
evaluation of refinement effects in the reduced theory is just testing environment (set)
inclusion. Theory revision is performed by the RTLS system [Ginsberg 88c]. The third
stage, theory retranslation, considers the translation of the revised reduced theory into rule
terms. The goal is to obtain a new theory that will perform over C at least as good as the
revised reduced theory, although its reduction could not be exactly identical to the revised
reduced theory (relaxed retranslation). This is made by top-down retranslation, starting
from the final hypothesis and helped by the rule structure of the original theory [Ginsberg
90].

2.3.3 One-concept theories

The EITHER system [Ourston & Mooney, 90] refines propositional Horn clause theories
handling muléiple faults of both generalization/specialization issues. The theory describes
one concept, so cases are just positive or negative examples. Identification is
straig}}tforward: a problem exists when a positive example fails to be proved or a negative
example is proved. Refinement is performed separately for both types of issues, since the
generalization algorithm will not cause new specialization problems and vice versa.
Refinement operators are remove conditions or add rules for generalization, and remove
rules or add conditions for specialization. To generalize the theory, the minimum set of
assumptions that will classify correctly all the unproved positive examples are computed
using partial proof trees. Each rule containing one of these assumptions is considered in
turn. Assumptions in the current rule are removed if no negative example becomes
provable. Otherwise, one or more rules are learned by induction over the set of positive
and negative examples misclassified for the current rule. To specialize the theory, the
minimum set of retractions that will not prove all the proved negative examples are
computed. Each rule containing one of these retractions is considered in turn. The current

L
rule is removed if all positive examples remain probable. Otherwise, conditions are added

30 Chapter 2. Previous Work

to the current rule, learned by induction over the set of positive and negative examples
misclassified for this rule.
s

Similar to EITHER is the DUCTOR system [Cain 91]. It revises one-concept propositional
theories using a set of positive and negative examples. DUCTOR generates refinements for
each generalization/specialization problem in turn. For each unproved positive example, an
explanation is constructed assuming literals. If a non-operational literal has been assumed,
arule is learned for this literal. Otherwise, DUCTOR removes the assumed literals from the
rules in the explanation if no negative example becomes provable. For each proved
negative example, DUCTOR tries to remove a rule from its explanation. If this rule is
required for positive examples, DUCTOR adds conditions to it if no positive example
becomes unprovable. As inductive learning method, DUCTOR computes the most spemﬁc
cover of positive examples that do not cover any negative example (EITHER computes the
most general one). The revision process loops until no modification is performed ori the
knowledge base.

2.3.4 Knowledge Base Refinement Summary

Significant similarities can be found among the previous knowledge base refinement
systems. Regarding the knowledge representation on which they work, all of them
consider prop051t10nal rule bases. Two systems, SEEK and SEEK?2, include uncertainty in
rules, and only one, KRUST, considers the control role in the refinement process. All of
them assume that the solution is to select 1 class from one set of predetermined classes.

These points are summarized in table 2-1.

Regarding the refinement process, all the described systems share the basic sequence
composed of identification, localization, generation and selection (with the extra stages of
theory reduction and retranslation for RTLS). In the identification phase, all of them
execute the knowledge base on the set of known cases, except RTLS, which can anticipate
the knowledge base results by label analysis. All the systems perform this phase on all the
available cases, except KRUST, that does it only for one case. In consequence, KRUST will
introduce refinements to solve just this case. This simplifies the localization and generation
phases but requires an exhaustive testing in the selection phase. More diversity exists in
the localization phase, where statistics, rule analysis, environment tests and explanation
analysis coexist. In the generation phase all the systems generate many refinements trying
to solve all the identified problems, but KRUST generates all the refinements to solve one
problem. Of these refinements, only 1 is selected in SEEK and SEEK2, a few are selected in

2.3 Knowledge Base Refinement

31

KRUST, and many can be selected in RTLS, EITHER and DUCTOR. In table 2-2 all these

aspects are summarized, including the basic cycle for each system denoted by the initials of

the four considered phases and where a parenthesis indicates that a loop exists in the

contained sequence.

Rules Uncertainty Control #Classes in sol ~ # Classes
SEEK yes (tabular) yes no 1 N
SEEK2 yes yes no 1 N
KRUST yes no yes 1 N
RTLS yes no no 1 N
EITHER yes no no 1 2
DUCTOR yes — no no 1 2

Table 2-1. Comparison of refinement systems regarding the assumed knowledge

' representation.

Identification Localization Generation Selection Cycle

(method/#cases) (method) #refinements (#refinements/method)
SEEK execution/all statistics many 1/execution I-L-G-S)
SEEK2 execution/all statistics many 1/execution (I-L-G-S)
KRUST execution/one rule analysis all a few/filters, execution [-L-G-S
RTLS label analysis/all environment tests many many/env test I-L-(G-S)
EITHER execution/all explanation analysis many many/execution I-L-(G-S)
DUCTOR execution/all explanation analysis many many(execution (Iﬂ(I:—G-S))

Table 2-2. Comparison of refinement systems regarding their phases and cycle.

32 Chapter 2. Previous Work

=2

2.4 Evaluation

Evaluation considers the assessment of ES characteristics. Many ES characteristics can be
considered, from those that are of general applicability to very specific or application-
dependent ones. General characteristics are correctness, efficiency, complexity, utility and
quality. Except for ES correctness, assessed using testing methods (see section 2.2), little
attention has been devoted to this field [Liebowitz 86]. However, ES characteristics can

play a significant role in ES acceptability [Buchanan & Shortliffe 84].
Four evaluation principles are provided in [Gaschnig et al, 83]. They are the following:

+ Complex objects or processes cannot be evaluated by a single criterion or
number.

+ The larger number of evaluation criteria, the more information is gathered.

« People will disagree about the relative significance of evaluation criteria according
with their respective interests.

+ Anything can be measured experimentally, as long as how to take the

measurements is exactly defined.

The generality of these principles is illustrative of the looseness of the topic. In the

following, some scattered work on it is briefly described.

2.4.1 Complexity

Several attempts have been made to evaluate ES complexity. Some simple metrics on basic
parameters of a KB, such as the number of rules or the vocabulary size are suggested in
[Buchanan 87]. The vocabulary is assessed as the sum of different objects, attributes and
legal values present in the KB. Other metrics include the size of the solution space,
computed as the set of potential outputs (109 in MYCIN), and the complexity of the solution
space defined as b9, where d is the average depth of search and b is the average branching
factor (5.54 = 1000 in MYCIN). How well these metrics assess ES complexity is not
clearly known, since they are not supported by a sound experimental work.

More formally, [Shapiro 84] has defined some complexity measures for logic
programs, based on the dimensions of proof tree. Let R be a proof tree. The length of R is

2.4 Evaluation 33

defined as the number of nodes in R. The depth of R is the depth of the tree. The goal-size
of R is the maximum size of any node of the proof tree, where the size of a node is the
number of symbols in its textual representation. A logic program P is of goal-complexity
G(n) if for any goal A in I(P) of size n there is a proof of goal-size < G(n), where I(P) is
an interpretation for P, a set of variable-free goals. Similar definitions are given for depth

and length complexity.

2.4.2 Utility and Quality

A number of utility and quality characteristics for ESs have been defined, based in
occasions on equivalent aspects in conventional software [Boehm et al, 78] [Lopez et al,
90]. Among them, the following are briefly discussed: efficiency, accuracy, sensitivity,
robustness, understandability, usability and transferability.

Efficiency in ESs can be seen as execution efficiency or as task efficiency. Execution
efficiency considers the cost in computing resources of executing an abstract inference
structure (a bunch of rules), looking for less costly ways to achieve the same result.
Execution efficiency of rule structures has been analyzed in [Tao et al, 87], using a Petri
net model. Task efficiency considers the optimum use of knowledge encoded in the KB to
achieve correct results with less cost. Task efficiency addresses points such as
opportunistic scheduling and complex control hierarchies, allowing for the required
flexibility to obtain the best usage of knowledge.

Accuracy is the capacity of an ES to produce the most exact response for the input data.
Neither extra nor missing information is given in the ES output. A related characteristic is
sensitivity, that considers how variations in the input have consequences in the output.
ESs have been criticized for having very sensitive, that is to say, small variations in the
input can cause exaggerated changes in the output. Robustness is the capacity of an ES to
give meaningful outputs (or at least, to keep operative) when non-meaningful inputs are
provided.

Man-machine communication is usually performed through a computer terminal.
Understandability consider the quality of ES questions and messages. On a more global
setting, usability addresses the quality of man-machine interface, how easy the user can
interact with the ES and its potential misuse. Transferability considers the ES capacity to
interact or to be integrated with other software. The usage of knowledge representation

standards as well as machine or shell dependency is also addressed.

34 Chapter 2. Previous Work

243 buantitative Evaluation

In [Liebowitz 86] a method to obtain quantitative measurements of different evaluation
criteria is described. This method is based on the Analytic Hierarchy Process, which
breaks down a problem into its smaller consistent parts and then calls for pairwise
comparison judgements to develop priorities among them. This method allows for multiple
criteria to be used and it can quantify the user's relative significance of various criteria, in
accordance with the principles of [Gaschnig et al, 83] described above. This method has
been implemented in a software tool called Expert Choice. The READ system, a prototype
ES for determining software functional requirements, has been evaluated using this tool.
Seven criteria have been evaluated: ability to update, easy to use, hardware, cost-
effectiveness, discourse, quality of decisions and design time. Three experts gave their
opinions on READ behavior on these criteria. Experts gave their opinions as preferred
alternatives, without numerical guesses. Numerical values for each criterion are internally

computed and given as evaluation result.

2.4.4 Evaluation Summary

There are dozens of characteristics to be assessed in ESs since, as stated in [Gaschnig et
al, 83], complex systems as they are cannot be evaluated with a criterion or number. Some
of these characteristics have been presented, but no technique to compute them has been
given. Only one case study, the READ evaluation, has been provided. With the exception
of performance evaluation that is assessed using testing methods (see section 2.2),
evaluation is poorly developed. Characteristics are measured on ad-hoc basis, depending
on evaluators preferences and without standard techniques. Transference from
conventional software, where some similar issues have been found, can help greatly to

develop a sound basis for ES evaluation.

2.5 Validation in the ES Life-Cycle ‘ 35

2.5 Validation in the ES Life-Cycle

Several methodologies for ES development have been proposed in the last ten years. All of
them contain, to more or less extent, elements of verification and testing. Only recently,
methodologies including a comprehensive treatment of validation in the ES life-cycle have
been proposed.

2.5.1 Buchanan’s approach

One of the first comprehensive methodologies for ES development is proposed in
[Buchanan et al, 83]. This methodology is composed of the following five stages:

o lIdentification: this phase consists in determining clearly the problem to be solved
(including the ES final purpose) and establishing the participants and their roles in
the ES development, together with the necessary allocation of resources.

» Conceptualization: the key concepts and. relations of the problem are made
explicit. These concepts refer to the structure of the problem domain, its
decomposition in subproblems, hierarchies and causal relations among facts,
strategies and heuristics used, etc. Intensive interaction with human experts is
required.

« Formalization: the key concepts and relations identified at the previous stage are
mapped into more formal representations based on knowledge representation
schemas. The selection of a shell is a major goal that can require the evaluation of
different shells and their adequacy to the problem at hand.

o Implementation: the formalized knowledge is coded using the shell selected at the

“previous phase. A prototype is developed to show the adequacy of the

formalization and the feasibility of the ES approach in this specific problem. This
prototype can be used as an starting point for further versions.

+ Testing: the implemented ES is executed on a set of test cases with known
solutions. The ES behavior is analyzed in different aspects, includimg: ES
input/output adequacy, rule errors identified from wrong ES outputs and issues in

36 Chapter 2. Previous Work

the control strategy. The selection of a representative set of test cases is essential

to achieve an accurate testing.
aty

These phases are performed sequentially. Depending on the testing results, the ES
development process can go back to previous phases resulting in an iterative process that
will terminate after achieving a satisfactory performance at the testing phase. Concerning
validation, the main drawback of this methodology is that testing is delayed to the last
phase. Errors can be detected only when the ES (prototype or operational system) has been
implemented and their correction can be very expensive, specially when error repair
implies major changes in the formalization or conceptualization stages.

To avoid this weakness [Radwan et al, 89] suggest to adapt an independent verification
schema extracted from classical software engineering [Fujii 77], with the goal of adding
verification checkpoints after each development phase. The initial schema of [Buchanan et
al, 83] is modified, specifying the development product obtained after each phase and
adding verification activities to be performed after the completion of each phase. The
results of these verification activities have effect on previous phases. Seven independent
verification activities are proposed: (1)literature base critique (literature review), (2) paper-
based methodology analysis, (3) heuristic approach analysis, (4) program logic component
integrity verification, (5) example application of methodology conformance analysis, (6)
literature base methodology conformance analysis, and"(7) problem domain definition
conformance. The experience of using this verification framework to develop an ES in
traffic enginéen'ng is described in [Radwan et al, 89], although its applicability to other ES

domains is not considered.

2.5.2 Rapid Prototyping

Rapid prototyping is in the kernel of several ES methodologies. The basic idea of rapid
prototyping is that software development can be guided by incrementally expanding a
product until reaching an operational state. An executable prototype constitutes an
operational environment in which the user can experiment and determine further
improvements, at relatively low cost. The prototype is used as an starting point for the
specifications of next developments. In ESs, rapid prototyping gives response to two
important issues when a problem is going to be solved by ES means: the ES feasibility in
this specific problem is shown by developing an early prototype, and rapid prototyping
allows to circumvent the usual absence of detailed requirements at the beginning of an ES
development, absence that makes inapplicable the conventional software life-cycle.

2.5 Validation in the ES Life-Cycle 37

Following this methodology, the ES development is divided in four stages: [Geissman &
Schultz, 88]

* Problem Determination: the major objective is to ensure that the intended ES will
satisfy a real need and it is technically feasible. This involves analysis of existing
successful ESs and shells and determine knowledge base requirements (not very
detailed at this point).

* Initial Prototype: the goal is to show the economical and technical feasibility of the
intended ES through an executable prototype, which is concerned with a subpart
of the problem. The initial prototype is the source of requirements for further

developments.

* Expanded Prototype: the target is to achieve an ES with a full range of capacities
to solve the problem, either by expansion of the initial prototype or by rewriting it
from scratch. As in the previous stage, the prototype is the source of requirements
for the next stage.

* Delivery System: the goal is to develop an operational system suitable for an
specific hardware, optimizing critical resources and with a user-friendly interface.

Requirements identified at previous stages are used to verify the delivery system.
In this model the following validation guidelines are proposed:

* Develop initial prototype resulting in testable requirements.
* Design in terms of formal paradigms.
~+ Certify inference engines.
+ Design for verification.
* Verify the knowledge base.
* Perform formal validation.

These recommendations are all quite reasonable, but they are not detailed enough to be
considered as a comprehensive methodology for ES development. Following the rapid
prototyping approach, [Weitzel & Kerschberg, 89] suggest a more detailed scheme for
building a prototype. Their proposal (KBSDLC) consists of a modification of the
sequential phases for conventional software development. The KBSDLC is composed of a
list of processes that can be activated, deactivated and reactivated. Initially a process only

can be activated after the previous process has been activated. An active process can

38 Chapter 2. Previous Work

reactivate any previously activated process, so processes can run in parallel. The ordered

list of processes is:
&

 Identify problem.
 Definition/Feasibility.
« Identify subproblems.
« Identify concepts.

+ Conceptual design.

¢ Detailed design.

+ Code.

« Test reasoning.

+ Test knowledge.

+ Validation.

+ Convert, maintain/enhance.

This approach has been used to develop successfully an ES in medical insurance.
However, the process reactivation capability arises some questions that are not solved in
the proposal. For instarice: Does exist any synchronization between the reactivating and
the reactivated processes, once the second has been reactivated?. How can a process
reactivation affect other active processes that are below it and different from the

reactivating process?. Is termination guaranteed?. -

Another approach inside the rapid prototyping paradigm is the waterfall life-cycle
[Miller 89]. This approach combines the waterfall development process in conventional
software engineering [Royce 70] as a fixed sequence of development steps driven by the
system requirements, with the advantages of prototype building. There are five steps that
are performed sequentially: (1) requirements, (2) knowledge acquisition, (3) design, (4)
development and (5) evaluation. This sequence is performed twice, for prototype
development and for building the baseline system. In addition, there are some steps
devoted to the delivery system. Validation procedure consists in checking the system
performance against system requirements. Validation is performed at each evaluation step,
with more emphasis in the delivery system. Validation phases, documents and reviews are
defined and located in the ES life-cycle.

2.5 Validation in the ES Life-Cycle 39

2.5.3 Spiral Model

The spiral model [Boehm 88] is a software process model based on risk analysis that can
integrate previous models such as the waterfall model [Royce 70] or the evolutionary
model [McCracken & Jackson, 82]. The nuclear idea of this model is the following:
software development is driven by risk analysis and risk resolution. If in a portion of
software product, performance or user-interface risks dominate program development or
internal interface-control risks, an evolutionary development can be selected. On the
contrary, if program development or interface-control risks dominate, a waterfall approach
can be selected. Thus, this model can accommodate different approaches to software

development at different stages.

Based on the evolutionary model and on the spiral model, [O'Keefe & Lee, 90]
propose an integrative model of ES verification and validation. Each spiral cycle begins
with a requirement analysis, followed by knowledge acquisition and resulting in setting the
Acceptable Level of Performance (ALP). Next phases include developing a prototype (at
the corresponding stage) and verifying and testing it with respect to the established ALP.
In particular, verification and validation activities are concentrated in the following phases:

* Requirements analysis: requirements involve the fit between the intended ES and
the receiving organization, the problem determination and identification of
potential users. ES functionalities and constraints are also defined. The final step
consists in verifying the collected requirements, and it can be performed

manually.

» Knowledge acquisition: the knowledge acquisition (KA) process is a major task
in ES development, and its validation is very important. This can be made by
diagrams made by knowledge engineers summarizing the collected knowledge

_and verified by the experts. Verification is also possible in automated KA tools,

specially to check conflicts.

« Prototypes: prototypes are developed following the evolutionary (rapid
prototyping) approach. Prototypes can be validated by mechanical verification,
case testing, field testing and Turing tests. When the prototype evolves to a

L

production system, a control group experiment can be made.

40 Chapter 2. Previous Work

The main advantage of this approach is that validation is incorporated into all the stages
of ES development. In spite of the fact that is based on the spiral model, risk analysis is

not present in the proposal.

2.5.4 Validation in the ES Life-Cycle Summary

Significant similarities can be extracted from a comparison among the previous
approaches. All of them include the concept of prototype as a basic concept that drives (or
in [Buchanan et al, 83] can drive) the development process. To develop a prototype they
provide a sequence of steps (except [Geissman & Schultz, 88]). Comparing these steps
among the different approaches shows that they they match quite well. This matching is
shown in the table 2-3.

Buchanan et al, 83 Weitzel & Kershberg 89 Miller 89 O'Keefe & Lee 90
Identification Identify problem Requirements Requirement analysis
Definition/Feasibility (includes verification)
Conceptualization Identify subproblems Knowledge Acquisition Knowledge Acquisition
. Identify concepts (includes verification)
Formalization Conceptual design Design Prototype
Detail design
Implementation Code Development Prototype
Testing Test reasoning Evaluation Prototype
Test knowledge (verification, case test,
Validation field test, control group)

Table 2-3 Matching development steps.

The five steps of [Buchanan et al, 83] have an almost direct correspondence in the most
detailed methodology of [Weitzel & Kershberg, 89]. Only the last step in Weitzel's
methodology, Convert/Maintain/Enhance, is not considered (maintenance is also

mentioned in Buchanan's approach but it is not included in the basic stages). However,

2.5 Validation in the ES Life-Cycle 41

there is a major difference in the step sequencing, it is iterative from the testing step to
previous steps in Buchanan's approach while Weitzel allows steps to be executed in
parallel. There is also a pretty direct correspondence with the steps proposed in [Miller
891, but it should be taken into account that Miller proposes an specialization of these
steps, first for the initial prototype and later for the baseline system. Also the final stage in
Miller's approach (integration stage) is not included. In spite of the differences there is a
high degree of matching among these three proposals. The approach of [O'Keefe & Lee,
90] is more distant because it includes verification activities in the initial steps of the ES
development, and prototype design and coding are not separated.

The following points summarize the different approaches to ES life-cycle:
+ Prototype building is in the kernel of ES methodologies.

« Several step sequences are proposed to develop a prototype. There exists a

significant degree of matching among steps belonging to different approaches.

+ Early approaches [Buchanan et al, 83] only consider testing after implementation.
This is identified as a weakness that later approaches try to solve including
validation activities after each development step.

+ Some proposals, [Radwan et al, 89] [Weitzel & Kershberg, 89], have been
developed to implement an specific ES but their applicability as global ES
methodologies is unclear. ’

» Regarding validation, the most promising approaches are those that include a
comprehensive treatment of validation in the whole ES life-cycle [Miller 89]
[O'Keefe & Lee, 90]. No practical case studies of these proposals has been
reported.

2.6 Case Studies

Most of what has been learned on ES validation has been obtained from the practical
experience on validating ESs, when these systems were more software experiments than
mature programs with interesting capabilities. Two of the most widely cited ESs, MYCIN
and R1, have been chosen to summarize their well-documented experience in validation.
The description of these systems, implemented 10-15 years ago, is completed with a
survey of the state-of-the-practice in ES validation in USA.

42 Chapter 2. Previous Work

2.6.1 MYCIN

The MYCIN system provides therapy advice for infectious diseases. It is probably the best
documented ES in history due to the book of [Buchanan & Shortliffe 84]. Chapters 30, 31
and 36 of this book contain significant information on MYCIN validation. Among the
lessons learned with MYCIN, it is mentioned a clear separation between the performance
level achieved by an ES and those factors affecting its utility and acceptance by its end-
users. It is concluded that high performance is a necessary but not sufficient condition for

ES usage, and it deserves separate evaluation.

MYCIN performance was assessed using three evaluation studies. The first study was
made in early 70s, using 15 test cases on which MYCIN had offered therapy advice. Five
physicians of Stanford reviewed these cases, giving an approval rating of 75%. In mid
70s, the second study was made using the same 15 cases with the MYCIN
recommendations. Ten physicians (five from Stanford, five from other centers) acted as
evaluators. Although MYCIN knowledge had been considerably refined from the first
study, the approval ration was again about 75%. The third study was made in a different
form. Ten "diagnostically challenging" cases were selected from a county hospital. Ten
prescriptions were compiled for each case: the one actually given by the treating physicians
at the hospital, the recommendation made by MYCIN and the recommendations of seven
Stanford physicians and a medical student. These 100 prescriptions were given to eight
non-Stanford experts in the field, who acted as evaluators without knowing the
prescribers' identity (Turing test). Results showed that the evaluators disagreed with
MYCIN recommendations no more often than with the recommendations of Stanford
experts. In other words, MYCIN performance was at the same level than human experts.
The MYCIN experience has shown the real utility of Turing tests. However, they are
expensive and require a considerable effort by researchers and experts in the problem

domain.

Regarding utility and acceptance factors for ESs, the MYCIN project does not provide an
study as detailed as the performance one. It was assumed that for ES acceptance, it was
enough with the existence of a demonstrated need coupled with a high performance of the
ES for that need. Retrospectively, this point of view was naive. Acceptability is different
from high performance. To assess physicians' opinions about ESs in medicine, a survey
was made. Three aspects were considered: acceptability in medicine, effect expectations
and performance demands. This survey collected opinions of 146 physicians, of which 85

2.6 Case Studies 43

had followed a tutorial on medical computing and 61 had not had prior relation with
computing. From the survey results, it is clear that explanations are necessary for
acceptance. If an ES is unable to explain its line of reasoning it will not gain the
confidence of the clinicians. Most physicians accepted ESs as aids to clinical practice but
rejected them as a way to automate clinical activities. They could see ESs as a threat to the
traditional clinical function. As tools, ESs are accepted when they provide assistance to
physicians, but rejected if they provide a dogmatical advice, no matter how good is their

performance.

2.6.2 R1

The R1 system provides help in configuring computer systems. In practice, R1 testing was
made in two phases: a formal testing plus a field test at the working place. Formal testing
consisted on configuring 50 orders on which no selection was made; they were just the last
orders to come through. Twelve people involved in the configuration task, six of them
were actual experts, acted as evaluators working together. They examined carefully the R1
outputs. Significant disagreement among evaluators about the right way to do
configurations was reported, although agreement about the difference between acceptable
and unacceptable configurations was pretty good [Gaschnig et al, 83]. In the examination
of the produced configurations, twelve were found to contain errors. All but two of these
mistakes were: at a level of detail below that at which humans work out configurations. The
team of experts was very impressed of R1 performance, and after correcting the rules
responsible for these errors, R1 was formally accepted in December 1979. After formal
acceptance, R1 was put in operation on a regular basis, causing a real field test. Users
reviewed R1 outputs, reporting errors to the review committee. According to the R1
performance results given in [Bachant & McDermott 84], during the first year of use,
1980, R1 was a quite unskilled configurer with more than 50% of errors in the processed
orders (339 problem instances in a total of 591 orders). However, R1 performance
improved drastically until achieving 10.8% of errors in more than 20,000 orders in
December 1983. Most of these errors, 9.8%, were due to incorrect or missing update of

the data base, while knowledge in rules was responsible for only the 0.4%.

A number of lessons were learned from R1 experience. The test set of the formal
testing procedure was judged too short and not representative by his developer, from a
retrospective point of view [McDermott 81]. Rushby points out.that the test criterfon was
naive, without a clear gold standard, confusing development and acceptance purposes, and

44 Chapter 2. Previous Work

without enough involvement of end-users [Rushby 88b]. Acceptance testing cannot be
considergd complete until the ES is actually employed routinely for the intended task
[Gaschnig et al, 83]. Regarding the high performance expectations (90% hits expected
during the first year) [Bachant & McDermott 84] qualify this kind of expectations for ESs
in complex tasks as a serious mistake. They also consider that to keep the ES away from
regular use until completing its knowledge is a poor idea. R1 experience has shown the
capacity of field test and the important role that end-users can play to achieve a fully
operational ES. ’

It should be noticed that R1 was greatly expanded during these four years. At December
1979, R1 was composed of 777 rules and 420 parts in the database, and was able to
configure one computer model. At December 1983, R1 was composed of 3,383 rules with
a database of 5,481 elements, with a capacity of configuring ten different computer
models. The problem of maintainability of R1 has been addressed in [S oloway et al, 87].

2.6.3 State-of-the-Practice

The results of a survey assessing the state-of-the-practice in verification and validation of
ESs are reported [Hamilton et al, 91]. The survey was composed of two parts: a
questionnaire and an interview. The questionnaire asked for the kind of application,
expertise information, ES development, evaluation and performance information. Seventy
people responded to the survey, most of them (93%) were developers. The majority of
considered ESs were operational (70%) with predominance on diagnosis in the aeroespace
field (73%). Regarding performance, most of them considered their ESs to be less accurate
than expected and also less accurate than the expert. No requirements were documented,
using the expert as oracle for correct ES behavior. The most frequently (40%) used life-
cycle model was the evolutionary model (rapid prototyping), while 22% did not use any
model. Most common validation activities were functional testing (66%) and structural
testing (44%), commonly performed by the expert (59%) and requiring the 24% of
development effort. The validation issues most often cited were test coverage
determination (63%), knowledge validation (60%) and problem complexity (40%). There
was a wide range of techniques mentioned.

Interviews were used to gather additional information and clarify survey responses.
Structural testing was generally performed on each element as an independent piece,
without considering rule interactions. The measure of test coverage was not generalized.
Experts were heavily involved in the development and evaluation of the knowledge base,

2.6 Case Studies 45

to the point that some of them were the only developers. Writing requirements were
associated to software development models not adequate for ESs, detecting a clear
reluctance to them. Also the distinction between prototype and operational system was not

clear.

From these information, the survey authors concluded that the current state-of-the-
practice could be improved, suggesting direct and inferred recommendations. Direct
recommendations included: (i) developing requirements for ES validation, (ii) addressing
common issues to ES validation (test coverage, knowledge validation, real-time
performance and problem complexity) and (iii) recommending a life-cycle for ES
development. As inferred recommendations, they suggest to address the following issues:
(i) readability and modularity, (ii) configuration management , (iii) criteria to classify ESs
by their intended use, and (iv) applicability of analysis tools.

2.6.4 Case Studies Summary

The experiences of MYCIN and R1 illustrate the random path followed to achieve an
accurate evaluation of ES performance. Both failed in the first testing approach (unblind
testing in MYCIN, unstructured testing in R1) and succeeded in the subsequent (Turing test
in MYCIN, field test in R1). The difference between performance and acceptance is clear,
together with the importance of end-users and actual task execution on acceptability
criteria. These experiences have required lots of effort by developers, experts and users,
and it seems reasonable to get benefits from them. The survey shows that current ES
developers devote 1/4 of development effort to validation (what could be reasonable) but it
is also clear that validation is made without plan or methodology. The wide variety of
validation methods, together with the incomplete testing (rules are tested independently,
without considering interactions), suggest that ES validation does not achieve the degree of
depth and exhaustivity required to guarantee a high level of quality in ES applications. On
a more global basis, ESs are developed informally, without written requirements and
leaving the expert alone in many cases. Survey recommendations attack these pitfalls
aiming to a more formal development methodology combined with the usage of available

techniques that can largely improve ES quality.

46 Chapter 2. Previous Work

=

2.7 Summary

Analyzing each of the considered topics, it is clear that verification is the most developed
part of ES validation. This is due, to a large extent, to the logical foundations of the
knowledge representation based on rules. Verification is now evolving, leaving the
assumption that rules are considered as pure logical entities, without taking into account
the way they are actually used. More realistic (and therefore more complex) ES models
(including uncertainty, control and non-monotonicity) begin to be considered. Also, no

logically-based verification properties are checked.

Regarding testing, a diversity of partial approaches is currently available. However, a
comprehensive testing approach including the fundamental issues of test set selection and
performance evaluation is missing. Testing is a key aspect of ES validation that can be
solved on an ad-hoc basis with substantial effort (see section 2.6 on Case Studies).
Regarding its importance, testing can be seen as a weak point in ES validation. Some of
these lacks can be solved using knowledge base refinement techniques. Refinement, a
topic traditionally included into machine learning, can be of great help for ES validation. It
aims at automatically improving the contents of the knowledge base by inductive learning
from a library of cases with known solutions. The knowledge base is considered as the
base theory that is imperfect and should be refined. Refinement tools can automatize the
testing process to a certain extent and under human supervision. They can automatically
compute the performance level as the number of the cases correctly solved in the case
library. This can have a significant impact in acceptance procedures and in ES

maintenance, since the case library can be maintained and updated during the ES existence.

Evaluation is a part of ES validation very unevenly developed. Except for evaluating ES
performance, where testing techniques are used, no methods exist to assess ES
characteristics. Some theoretical studies have been made, but confirmation from practical
experience is missing. It is reasonable to expect some further developments on this topic in
the next years, as a result of the implantation of ES applications on a regular basis.

Regarding the ES life-cycle, an almost general agreement exists about the fact that
validation should be present in all stages of ES development. Early validation is
recommended because the later an error is detected the more expensive it is to correct.
Some experiences have been made to include validation in all stages of ES development,
modifying proposed ES methodologies. Also, new proposals of ES life-cycle with special

2.7 Summary 47

attention to validation have been made. Special attention should be deserved to the
existence of written requirements for ESs, because of the key role they play in validation.
Testing and verification depend heavily on the existence of clear and detailed requirements
for the intended task. ES methodologies have to address the effective development of ES

requirements.

The Case Studies section contains the description of two validation experiences (MYCIN
and R1), from which many practical conclusions can be extracted, specially about the
testing aspects. In addition, the interesting survey of the state-of-the-practice suggests, to
some extent, a certain divorce between ES research and ES industry in the validation field.
For instance, verification is not mentioned as an important validation technique, in spite of
being the most developed part and of the existence of a large number of automatic verifiers
available for different shells. Conversely, testing is rightly mentioned as one of the first
validation problems, but ES research does not offer a comprehensive solution to it. In spite
of the general agreement on the convenience of using ES life-cycle models, the survey
reveals little usage of these models in practice as well as a clear absence of written
requirements. This divorce can be explained by a double hypothesis: ES research might
have been more attracted to solve feasible problems than to cope with real issues;
conversely ES industry might not have been receptive to research results, considered too
theoretical.

There is a ¢lear evolution of ES validation work regarding its relation with conventional
software validation. Early work on ES validation included almost no references to
conventional software. As the field matured, the presence of conventional software
increased, specially regarding validation concepts and methods that can be successfully
adapted to ES peculiarities.

Finally, it is apparent that a lot of work has been devoted to ES validation in the last
years. This work is now producing results, which are improving rapidly the state-of-the-
art on the field. In consequence, it seems to be a quite reasonable forecast to expect better
ES validation methods in the near future.

Chapter 3

The Validation Issue

In this chapter, we address a number of fundamental questions around ES validation. The
final aim is to get a conceptual framework for ES validation, where the meaning and main
components of ES validation are defined and understood in an integrated way. This
framework also consider those ES aspects that are suitable for some kind of validation, as
well as specific techniques to achieve validation in practice. Developing a conceptual
framework is a difficult aim because of the immaturity of the field. Different validation
aspects are unevenly developed, appearing clearer those parts to which more work has
been devoted. Fundamental definitions such as, for instance, the meanin g of ES
validation, are still not consolidated. Many validation aspects are today elements for debate
in the research community. Therefore, the work we present here reflects the lacks and
defects of the current state. Nevertheless, drawing the whole validation picture is a useful
exercise that, at least, will allow us to identify the most obscure parts.

We a’nalyze ES validation from four points of view. First, we discuss the meaning of
validation in ES. This raises some terminological questions about the precise meaning of
terms like verification, validation, evaluation or testing, commonly used in the literature.
We propose precise definitions for these terms using the concepts of totally and partially
formalizable requirements. In addition, these definitions are in compliance with the
established meanings for these terms in software engineering. Second, we corsider
elements and processes on which some kind of validation can be performed. We consider

49

50 Chapter 3. The Validation Issue

the following validation targets: user requirements, knowledge acquisition, expert system
architecture, knowledge base structure and contents, inference engine and expert system
behavio’:. Third, we identify specific techniques for each one of these validation targets,
aiming for an effective validation. We devote special attention to those aspects that are
specific of ESs, although there are a number of points in common with software
engineering. And fourth, we locate these validation targets in an ES life-cycle. Every step
in the life-cycle has associated one or several validation activities. Then, the whole

validation process is the agregattion of all these validation activities.

The structure of this chapter reflects these four points of view. Section headings are
questions on the meaning, contents, methods and time of validation. Section 3.1 raises the
question What is Validation?, analyzing validation in ESs. This section contains a
terminological discussion about validation terms in ESs, considering the meaning of these
terms in software engineering. Section 3.2 addresses the question What Should be
Validated?, considering the previously mentioned validation targets. We analyze the
relevance and impact of their validation in the knowledge engineering process. Section 3.3
investigates the question How to Validate?, considering how to perform validation on
these validation targets. Section 3.4 addresses the question When to Validate?, looking for
the right time in the ES life-cycle for validation activities. Finally, section 3.5 summarizes
the chapter.

3.1 What is Validation?

Validation is not a new topic in computer science. In the context of software engineering,
[Adrion et al, 82] define software validation as,

Determination of the correctness of a program with respect to
the user needs and requirements.

This is an open, non-constructive definition. No single validation method can assure a
complete validation. On the contrary, a large variety of validation methods for conventional

software exist with complemented effects.

Differences between ESs and conventional software, specially regarding the kind of
problems addressed and the type of programming languages used in both fields, have
caused that some authors consider ES validation as somehow different from conventional
software validation. We do not share this point of view. An ES is a piece of software that

performs some tasks aiming to satisfy the needs of potential users. These needs have to be

3.1 What is Validation? ' 51

explicited to allow for an effective definition of the ES purposes. Therefore, the previous
definition for validation is perfectly applicable to ESs. From now on, we assume this
definition as the right one for ES validation.

The applicability of the conceptual definition does not imply the direct applicability of
many validation methods for conventional software to ESs. The existing differences
between both fields (see section 1.2) justify and demand the existence of specific
validation methods for ESs. However, the accumulated experience in conventional
software validation cannot be ignored in ES validation. This experience has to be applied
considering the essential issues to be solved (shared to a significant extent by both
conventional software and ESs) regardless of specific techniques employed that are usually
bounded to the style of the used programming languages. A study of conventional
validation methods and its potential application to ESs is found in [Rushby 88b].

In the current state of ES validation, terms like validation, verification, testing or
evaluation are very frequently used. However, their exact definitions and the ways to
achieve them in practice are still unclear. In the following we make a tour on these terms,
trying to elucidate their meanings and relations. We consider validation as a global term,

that embodies all others terms as specific aspects.

3.1.1 Requirements and Specifications

According to the previous definition of validation in software engineering, a program
cannot be validated without a set of user requirements. These requirements can be clear or
ill-defined, they can be communicated by speech or by written means, or even they can be
implicit. But when somebody emits a judgement evaluating a program, these requirements
are involved. User requirements are usually expressed in natural language. To enforce
their understanding, user requirements are translated into a formal language, generating
what is called user requirement specifications, or simply specifications. A specification is a
non-ambiguous expression defining some kind of program characteristic or property. A
specification must be verifiable and testable with respect to the specified program.

Specifications can exist for all the software development steps.

Regarding ESs, user requirements play the same role that in software engineeringl.
However, the complete translation of user requirements into specifications, theoretically
e

1 However, a recent survey on the state-of-the-practice reveals a strong reluctance to record written
requirements for ESs [Hamilton et al, 91].

52 Chapter 3. The Validation Issue

assumed in conventional software, does not hold for ESs. There are user requirements
that, at-the current state of the ES technology, cannot be expressed in formal terms using
an speci?ication language?. This conclusion, extracted from our own experience [Hoppe &
Meseguer, 91], is also shared by [Krause et al, 91] in the context of medical ESs. They
used the formal specification language Z to specify the intended behavior of a medical ES
using available medical protocols. They conclude that the protocol acts as a specification of
the default behavior, but an explicit representation of the circumstances in which this
behavior is valid, is missing. So, it seems that the ill-defined nature of ES tasks is the main
reason to prevent an accurate and complete specification of the intended ES.

3.1.1.1 Totally and Partially Formalizable Requirements

Although a complete translation of user requirements into specifications seems unfeasible,
a partial translation is reachable. This suggests us to divide the user requirements in“two
classes: totally formalizable and partially formalizable3. A requirement is totally
formalizable if it can be completely translated into specifications. Conversely, a
requirement is partially formalizable if it cannot be completely translated into
specifications. An example of totally formalizable requirement is:

"The KB should be structurally correct"

The concept of structural correctness for KBs is well-defined, so this requirement can be

translated into the following specifications (assuming the rule-based paradigm):

The KB objects should be syntactically correct.
The KB should be contradiction-free.

The KB should not contain redundancies.

The KB should be cycle-free.

All the KB objects should be potentially usable.

N AW N =

These specifications are expressed in natural language for readability reasons, but they can
be clearly expressed in a formal language. Considering medical ESs, an example of
partially formalizable requirement is:

2 We stress that a specification must be verifiable and testable against the ES. Therefore, it should be
expressed in terms of actual elements of the ES design and implementation.

3 These concepts correspond to formalizable and informal specifications introduced in [Hoppe & Meseguer
91]. However, after reading an earlier version of [Laurent 92], I realized that a specification is always
formal, so the concept of informal specification was somehow contradictory. I also realized that the
insights underlying these concepts (and the examples provided) were aiming to the user requirements. These
are the reasons for this terminological, but important, change.

3.1 What is Validation? 53

"The ES has to provide an acceptable diagnosis for all the typical cases"

In many medical domains there is not a sharp definition of what is an acceptable diagnosis
for a case. In addition, the concept of typicality is not well-defined and, in occasions, it is
a matter of personal preference. Due to the lack of a precise definition for these concepts,
this requirement cannot be completely translated into specifications. However, it can be
partially translated into specifications, which capture to a certain extent the meaning of the
requirement. For instance, in the context of pneumonia diagnosis, the previous
requirement about correct diagnosis for typical cases can generate the following

specification:
"If rusty sputum is present, the pneumococal etiology has to be considered"

that is expressed in formal terms saying that the ES cannot stop without having pursued
the pneumococal etiology as a goal. The translation is performed by human experts, who
interpret the requirement and provide some specifications. In occassions, these
specifications are tentative and they have to be confirmed or discarded by experimentation.
Nevertheless, specifications obtdined from partially formalizable requirements are
completely formal. This is pointed out in [Laurent 92], who calls them pseudo-
specifications but stressing their formal nature.

3.1.1.2 Service and Competence Requirements

Rushby points out the necessity of requirements for ESs [Rushby 88a]. He divides ES
requirements into service and competence requirements. Service requirements consider the
operation of the ES as a software tool: input-output formats, processing rate, operational
conditions, and so on. Competence requirements are concerned with the definition of the
intended task for an ES, in the sense that it is a typical human task requiring "knowledge".
Competence requirements are further subdivided into desired and minimum requirements.
Desired competence requirements describe how well the ES is expected to perform.
Minimum competence requirements define how badly the ES is allowed to perform: they
state the threshold for ES acceptance. Rushby admits that desired competence requirements
can be vague or incomplete, because they are usually made in comparison with human
performance. However, he states that service requirements and minimum competence

requirements should be precisely defined, specially for safety critical applications. -

54 Chapter 3. The Validation Issue

Rushby classifies requirements guided by their role in defining the ES task. Our
classifi¢ation of requiremehts (totally formalizable vs. partially formalizable) is guided by
a more syntactical criterion: their complete translation into specifications. A clear
parallelism exists between both classifications. Service and minimum competence
requirements are totally formalizable requirements, since they generate "specifications that
should be traceable, verifiable and testable just like those of conventional software"
[Rushby 88a]. Desired competence requirements can be vague or incomplete, so they fall
into the class of partially formalizable requirements, to an extent depending on the specific
application.

3.1.1.3 User Requirements at the Knowledge Level

Why do partially formalizable requirements exist?. Why are not all the requirements totally
formalizable?. One may think that is a purely technological matter, that the development of
better specification languages would solve. Although this point is important (specially for
practical reasons), we think on deeper causes to explain the nature of partially formalizable
requirements. These causes are intimately related with the question of knowledge and its
representation, addressed by Allen Newell in [Newell 82].

Newell differentiates between the knowledge level and the symbol level in Al systems.
At the knowledge level, a system is viewed as an idealized rational agent, who posseesses
knowledge, goals and actions. This agent is not subject to computational limitations and it
behaves according to the principle of rationality:

If an agent has knowledge that one of its actions will lead
to one of its goals, then the agent will select that action.

At the symbol level, a system is viewed as a collection of of computational entities
(facts, rules, frames, etc) that interact according to some predetermined operations
(matching, assignement, etc.). The symbol level is the computational realization of the
knowledge level. The relation between knowledge and symbol levels is not univoque. On
the contrary, a radical incompleteness characterizes the knowledge level that cannot predict
the system behavior in many cases. Mapping a knowledge level description into an
adequate symbol representation is an open problem, currently considered by a number of
cognitive architectures [Chandrasekaran 87] [McDermott 88] [Steels 90].

The distintion bewteen knowledge and symbol level in ESs is very relevant to us. When
users express their requirements, specially the functional ones, they are usually

3.1 What is Validation? 55

considering the ES at the knowledge level. An expert views the ES as another colleague
and expresses the requirements assuming that it posseses the background to understand
them. However, specifications are clearly at the symbol level. They deal with well-defined
computational objects such as facts, certainty degrees, pursued goals or termination
conditions. In this view, the difficulties to express user requirements into specifications are

explained by the following causes:

+ The knowledge level is an approximation of the actual ES behavior in degree as
well as in scope. When user requirements at the knowledge level are translated
into specifications at the symbol level, their approximate nature causes difficulties

in their complete translation.

+ The knowledge level is incomplete since it does not determine completely the ES
behavior. A user requirement at the knowledge level may generate many possible
and alternative specifications at the symbol level. In addition, Newell affirms that
knowledge level descriptions may be completed with precise descriptions at the
symbol level (mixed systems). These precise descriptions can be séen as the
requirements that are totally formalizable.

» The absence of precise and complete mappings between the knowledge and
symbol levels is another cause for the partial translation of user requirements into
specifications. The development of cognitive architectures at the knowledge level
can represent a significant step towards the accurate expression of user

requirements.

3.1.2 Verification

- We define ES verification as the process of checking an ES against the specifications
generated by its formalizable requirements. The verification process produces accurate
responses about the satisfaction of each specification. Given that specifications completely
contain the meaning of totally formalizable requirements, the verification process allows
for a complete checking of them.

Usually, specifications establish conditions that should (or should not) hold for all the
possible ES executions. To test these specifications, verification has to be exhaustive, that
is to say, it has to analyze all the possible situations where a specification may be yiolated.
Frequently, specifications contain terms involving the dynamicﬁ execution of the ES, such

as termination, goal pursuing or fact deduction. In order to check accurately these

56 Chapter 3. The Validation Issue

specifications, the verification process has to reproduce faithfully the execution conditions
of the specific ES, that is too say, verification has to consider the operational semantics of
KB objgcts [Evertsz 91]. Otherwise, specifications will not be totally checked and the
verification results may be questionable.

Totally formalizable requirements can be domain-dependent or domain-independent. An
example of domain-dependent requirement in pneumonia diagnosis is that the concepts of
typical bacterial pneumonia and atypical pneumonia cannot be considered both witha high
degree of certainty for the same patient (see section 4.7.2.1 for a medical explanation).
This domain-dependent requirement is modeled as an integrity constraint and it is tested as
a potential inconsistency. An example of domain-independent requirement is the common
requirement about the structural correctness of a KB, that can be decomposed into (1)
correct syntax, (2) contradiction-free, (3) no redundant, (4) cycle-free and (5) without
useless objects. Some specifications from domain-independent requirements remain
somehow implicit. For instance, the trivial specification of correct syntax is often not
explicited. A KB containing objects with syntax errors can cause serious problems in the
ES function (an ES crash or an erratic behavior). Therefore, the decomposition of
requirements into specifications should be careful and detailed. Some work on ES
specifications can be found in [Slage et al, 90] [Batarekh et al, 91].

So far, verification has been mainly focused on checking properties coming from the
knowledge representation language used in the KB (see section 2.1), corresponding to
domain—indcpcndent requirements. The reason for this predominance relies on the fact that
knowledge representation languages offer a higher level of formalization than the
knowledge coded using them. In consequence, extracting formal properties of a
representation language is more direct than obtaining formal properties of the involved
knowledge. Properties of the representation language can only assure some kind formal
correctness in the knowledge expression, but they cannot deal with the knowledge
organization and semantics. To check properties more related to knowledge, some extra
knowledge with respect to the KB contents is usually required. The reason for this extra
knowledge relies on the fact that the KB usually contains enough knowledge to achieve
correct conclusions, but this knowledge is not enough to check the correctness of these
conclusions. For instance, if we want to check the following property regarding

pneumonias,

When ecthyma-gangrenosum is present, the main symptoms and signs supporting

atypical pneumonias should not be considered.

3.1 What is Validation? 57

we need to describe what are the main symptoms and signs? for atypical pneumonias. This
information is not explicitely recorded in the KB, since a classification of symptom
importance is not contained in it. This information is not explicitely recorded in the KB
because it is not needed for deduction. The KB has been constructed only considering
deduction, without including support for verification. To a minor extent, another example
of extra knowledge can be seen in section 4.7.1, where incompatible values for
multivalued facts and integrity constraints on the input are added to the KB contents for
verification purposes. This necessity of specific knowledge for verification, and in general
for validation, has to be considered at early stages in ES development in order to collect it

using knowledge acquisition techniques.

3.1.3 Evaluation

We define ES evaluation as the process of checking an ES against its partially formalizable
requirements. This definition is very close to the one given in [Laurent 92]. Given that no
complete translation of partially formalizable requirements into specifications is achieved,

the evaluation process always contains a subjective element of interpretation.

In ES evaluation we can differentiate three steps: (i) requirement analysis, (ii)
specification checking and (iii) result interpretation. The requirement analysis step consists
in exprcssiné the partially formalizable requirements into specifications. This step can be
tentative or experimental in many cases, given the vagueness and imprecision of the
requirements. The specification checking step considers the satisfaction of the
specifications for the ES, in the same way they are considered in verification. The result
interpretation step consists in, from the specification checking results, assessing to which
extent the original requirements are satisfied. The subjective element of interpretation is

present in steps (i) and (iii).

An example may help to understand these steps. Let us consider the following partially
formaliZable requirement for ESs in medical diagnosis:

"The ES has to provide an acceptable diagnosis for all the typical cases"

The first step, requirements analysis, has to specify what is understood by acceptable
diagnosis and by typical cases. A possible interpretation of acceptable diagnosi§ is the

4 A symptom is what the patient feels (headache, sickness, etc) while a sign is what the physician
objectively obtain from the patient state (temperature, number of leukocytes, etc).

58 Chapter 3. The Validation Issue

ability to explain all the important symptoms and signs encountered in the patient. To
define typlcal case, a subset of all possible combinations of the considered symptoms and
signs has to be specified. Assuming these definitions as specifications, the second step
checks them in the ES, This can be made either (i) analyzing the KB, inferring the ES
function for the typical cases and showing for which typical cases all the important
symptoms and signs are explained, or (i) selecting a sample of typical cases and executing
the ES on them. The third step interprets the ES results in terms of the original
requirement. Those typical cases for which no acceptable diagnosis has been obtainéd, are
studied to assess (a) the importance of the non explained symptoms, and (b) their degree
of typicality. If specification checking has been made by test sample, the degree of sample
representativity has also to be considered.

So far, evaluation has been focused almost exclusively on assessing ES performance
using testing methods. It is known that high performance is not synonymous of ‘user
acceptability for ESs [Buchanan & Shortliffe, 84]. Therefore, other ES characteristics have
to be evaluated to achieve a global ES validation. In this sense, the development of metrics
assessing ES characteristics numerically can be of significant help. ES characteristics can
be quantitative or qualitative, while metrics are always quantitative, so metric results have
to be interpreted in the context of the specific ES in order to obtain their real meaning. No
one-to-one relation exists between characteristics and metrics, for each characteristic

several metrics can be considered.

In the three step process for ES evaluation described above, the use of metrics to assess
user requirements is limited to step (ii). Step (i) considers the expression of requirements
in terms of metrics, while step (iii) interprets metric results. A variety of ES metrics is
needed to assess ES characteristics, since according to [Gasching et al, 83], complex
objects like ESs cannot be evaluatéd by a single number. The final goal of ES metrics is to
summarize information to allow for an effective checking of the different types of user
requirements, ranging from well-defined structural properties to other aspects of imprecise
definition like utility or understandability.

3.1.4 Testing

We define ES testing as the process of examinating ES behavior by its execution on
sample cases. According to this definition, ES testing has the same meaning that
conventional program testing [Adrion et al, 82]. In practice, ES testing is a very important

3.1 What is Validation? 59

technique to evaluate ES correctness. Testing has been used as a fundamental criterion for

formal acceptance of ESs (see in section 2.6 the MYCIN and R1 experiences).

A central issue in testing, shared for both conventional software and ESs, is the
selection of the test set. Random, structural and functional approaches have been
developed for conventional software. ES random testing can be used in ESs to check
robustness, although it seems to be of little value to check correctness, since a random
input will probably be meaningless in the ES domain. ES structural testing is performed
using test-case generators (see section 2.2). ES functional testing relies completely on the
selection of test cases by human experts. Historical files on the domain of the ES task are
usually taken as source of potential test cases. The quality of the test set depends largely on
the extension of these files and on the accuracy of the recorded data.

Specific issues of ES testing are: (i) comparing the ES performance against human
expert competence and (ii) judging the adequacy of the deduction path followed, as well as
the correctness of the ES output. To assess the ES performance, the presence of human
experts as evaluators is needed. This raises new issues, since human experts often
disagree and can exhibit problems like prejudice, parochialism and inconsistence. To
prevent prejudice in human evaluators, Turing tests have been successfully used (see
section 2.6.1, the MYCIN case). To measure the consistency degree among several experts
some statistical approaches have been proposed. Considering the adequacy of the
deduction path followed by the ES, this aspect has been traditionally evaluated in relation
to its explanation capability. This aspect has great importance for final ES acceptance, so it
has to be considered in isolation. Some work related to ES deduction path adequacy can be
found in [Lopez 91].

3.1.5 The Global Picture

The validation definition given at the beginning of this section establishes that validation
has to be determined with respect to the user requirements. We have classified user
requirerﬁents into totally formalizable and partially formalizable, depending on their total
or partial translation into specifications. Verification is the process of checking an ES
against its totally formalizable requirements, while evaluation considers ES compliance
with respect to its partially formalizable requirements. Combining these definitions,
validation appears composed of two parts: verification and evaluation [Laurent 92]. This
separation is induced by the existence of two types of requireriients, differentiat;d by a

syntactical criterion. In this way, properties that can be objectively checked (by

60 Chapter 3. The Validation Issue

verification) are differentiated from the other aspects that require subjective assessment (by

evaluation)’. With respect to testing, it is currently the most important technique for
a

assessing ES performance.

In practice, the difference between totally and partially formalizable requirements, or
what is the same, between verification and evaluation processes is not always totally
definite. With the exception of domain-independent requirements, that are always perfectly
defined in formal terms since they are originated by properties of the knowledge
representation language, a few user requirements are totally formalizable. Some
requirements are of a clear formalizable nature, but some experimentation is required to
obtain the right specifications. For instance, the domain-dependent, totally formalizable
requirement explained in section 3.1.2,

"Typical bacterial pneumonia and atypical pneumonia cannot be considered with high
evidence for the same patient”

generates four alternative specifications for a MILORD-based ES,

1 (bact < quite-possible) and (atip < quite-possible)
2 (bact < very-possible) and (at ip < quite-possible)
3. (bact < quite-possible) and (atip < very-possible)
4 (bact < very-possible) and (atip < very-pbssible)

where the facts bact and at ip represent the concepts of typical bacterial pneumonia and
atypical pneumonia respectively. These specifications are not independent, since some are
included in others. Then, what is the right specification set for the previous requirement?.
This problem occurred in the verification of PNEUMON-IA. We tested the four
specifications, computing the situations in which these specifications were violated. From
these situations, we realized that the specification (1) was too restrictive while (4) was too
loose. Specifications (2) and (3) reflected properly the desired behavior, so we selected
them as the right specification set for the mentioned requirement. This example shows that
boundaries between requirements in practice are not as crisp as they can be conceived in
theory. Some interpretation is almost always required when checking requirements.

In the mid-term future it seems reasonable that partially formalizable requirements will
evolve into a more formalizable ones. This is based on the short history of ES verification.

3 Other authors, like [O'Keefe et al, 87] and [Grogono et al, 92], assign different meanings to these terms.
They consider evaluation as the most global term, that includes validation as checking the correctness of
ES behavior. These terminological differences are due to the early development stage of the field.

3.1 What is Validation? 61

Early verifiers saw ESs as classical logical systems, where only logical issues were tested.
Currently, verifiers consider ESs as complex software programs that have to be analyzed
taking into account the operational semantics of the knowledge representation language,
which is only partially based on logic. Verification issues do not only consider properties
of the knowledge representation, but also include properties of knowledge. This evolution
will continue in the future, allowing for a more accurate and exhaustive checking of

requirements.

Finally, we can view ES validation into the wider framework of software quality
assurance (SQA). SQA is concerned not only with assuring the compliance of a program
with the user requirements at the present, but also with those aspects that influence how
well the software will continue to satisfy the user needs in the future [Rushby 88b].
Software quality is analyzed in [Boehm et al, 78]. A hierarchy of software attributes is
proposed in [Adrion et al, 82], including the concepts of reliability, adequacy, testability,
understandability, measurability, usability, efficiency, transportability and maintainability.
Very little work has been made on these topics considering ESs [Barrett 90]. It seems
reasonable to think that these topics will be addressed in the future for ESs, as a result of
the consolidation of ES technology.

3.1.6 Relation with Software Engineering

Previous definitions for validation, verification, testing and evaluation are in compliance
with the essential meaning for these terms in software engineering. Definitions of
validation and testing are the same for ESs and for conventional software. The definition
of verification for conventional software as "the demonstration of the consistency,
completeness and correctness of the software at each stage and between each stage of the
development life cycle" [Adrion et al, 82], is based on the notion of specification, that
determines the correct pattern at each stage. This definition fits pretty well the one we give
for ES verification as the checking the compliance of an ES against the specifications
coming from its formalizable requirements. The definition of evaluation in software
engineering has always an aspect of subjective assessment. This aspect fits the subjective
interpretation of the satisfaction of partially formalizable requirements, involved in the

definition of evaluation for ESs.

Regarding validation methods, a major difference exists between software engineering

S
and ESs. In software engineering it is assumed, at least theoretically, that validationcan be
obtained by verification of successive software development stages [Adrion et al, 82]. This

62 Chapter 3. The Validation Issue

approach does not hold for ESs, because of the impossibility of a complete translation of
user requirements into specifications [Hoppe & Meseguer 91].
B

In summary, previous definitions are in compliance with corresponding terms in
software engineering, capturing their essential meanings. The stated difference about the
complete achievement of validation by verification, is caused by the type of user
requirements for ESs, but this difference is not fundamental. In this sense, the previous
definitions fit pretty well in a general framework of software validation, where different
kinds of software coexist with a common understanding of the kernel issues.

3.2 What Should be Validated?

The practical application of ES validation can be seen from two points of view:

1. An ES is composed of several parts (KB, IE, etc.). ES validation consists in
the validation of ES components plus the validation the relationships among
these components.

2. An ES is the result of a knowledge engineering process with several phases. A
set of intermediate results are produced along these phases. The validation of
an ES consists in the validation of each phase, by validating the intermediate

“ results produced.

Both approaches are complementary and non-exclusive. Approach (1) is effective in the
sense that decomposes the validation of a complex object into the validation of its parts.
Approach (2) includes the idea of validation by construction. Validating intermediate
results demands the existence of requirements for the knowledge engineering phases.
These requirements would be originated from the decomposition of high-level user
requirements. Given the early development stage of user requirements in ESs, this
decomposition is only partial. In addition, the kind of products generated at each phase is
not yet consolidated, as a result of the evolution of knowledge engineering techniques.
Nevertheless, validation cannot be delayed until the final ES stage. The cost of correcting
an error escalates as the development advances®, so correcting an error at the very end of
the development can be very expensive. Therefore, checking a number of properties
enforcing validation on these intermediate results is almost mandatory, in order to assure
the effective validation of the final system. '

6 Just as it happens in software engineering.

3.2 What Should be Validated? 63

With these ideas in mind, we identifiy the following set of processes and ES parts on
which validation has to be present: user requirements, knowledge acquisition, ES
architecture, KB structure and contents, inference engine and ES behavior. This list does
not aim to be an exhaustive enumeration of all the potential validation aspects, but a set of
validation targets common to any ES. Regarding the different procedural elements
composing the ES, all of them can be validated using software engineering techniques and
they are not analyzed here. As an exception, we consider the inference engine because of
its key role in the ES function. In the following, we discuss each one of these validation
targets.

3.2.1 User Requirements

Given that ES validation is performed against user requirements, it seems quite reasonable
to validate them prior to any use, assessing their internal consistency and completeness.
Service and competence requirements have to be clearly differentiated, as well as minimum
and desirable competence requirements. Totally formalizable requirements have to be
completely decomposed into speci—fications, while for partially formalizable requirements
this decomposition is only partial and in some cases tentative. The subjective aspects of
partially formalizable requirements have to be clearly identified.

3.2.2 Knowledge Acquisition

Knowledge acquisition (KA) is defined as the elicitation and analysis of data on expertise
with the aim of building an ES [Breuker & Wielinga 87]. KA activities are developed
during the initial stages of ES development, aiming to obtain a conceptual picture of the
task to be performed by the ES. This picture has to be detailed and complete, since it will
be the basis for ES implementation. The elusive nature of human expertise causes many
difficulties to capture it, to the extent that KA has been considered as a bottleneck for
knowledge engineering (for an analysis of human expertise see [Gaines 87]). Many
different KA techniques exists, all of them sharing an intense interaction with a human
expert in order to extract his/her expertise. Among these techniques, we can mention
focussed interviews, structured interviews, instrospection, self-report, expert-user
dialoges and reviews. See [Hart 86] for an overview of these techniques. A number of
tools supporting automated KA exist, see [Buchanan et al, 83] [Anjewierden*87] for
further details.

64 Chapter 3. The Validation Issue

Some authors consider knowledge engineering as a modelling activity. In this view, an
ES is ﬁét a container filléa with extracted knowledge, but a model that behaves in an
specific way analogous to a system in the real world. To build this model we have to set a
mapping from the data extracted from the expert into a given representation formalism. But
in addition to this transformation, the assessment of data relevance and data structuration
has to be made by abstraction [Breuker & Wielinga 87]. The knowledge acquisition
process is very related to abstraction, since it is a fundamental method to conceptualize and
structure complex domains. In this view, an important result of knowledge acquisition is a
conceptual model of the intended task for the ES, expressed in some language.

KA is at the basis of knowledge engineering. KA results have a determinant impact in
the further stages of ES development. In addition, the conceptual model of the ES task will
be used for validation purposes on the implemented ES. Therefore, validation of KA
appears as a very important aspect in the global set of validation activities. Validation of
KA has two main parts: assuring the quality of KA techniques used in the knowledge
engineering process, and checking the adequacy and completeness of the conceptual model
conceived. Adequacy is concerned with the correction, grain-size description,
homogeneity and integrity of the conceptual model. Completeness considers to which
extent teh conceptual model captures the whole intended task.

A related point is the acquisition of knowledge for validation, mentioned in section
3.1.2. It is increasingly apparent that verification of knowledge properties demands more
knowledge than the minimum required to perform correct deductions. This extra
knowledge has to be obtained in the KA phase, requesting the expert for justifications or
causal explanation of his/her behavior. The knowledge for validation has to be included in
the conceptual model of the ES, completing and enhancing the conceptual model required

for pure deduction.

3.2.3 Expert System Architecture

An ES is a complex piece of software that contains different parts such as the knowledge
base, the inference engine, the user-interface, explanation capabilities, input-output
facilities, and others that are application-dependent. ES validation requires the validation of
each part in isolation plus the validation of the interrelations among these parts. This
problem exists in software engineering when a complex program composed of different

modules is validated. Except the KB, all the mentioned ES parts are conventional

3.2 What Should be Validated? 65

procedures and their relations can be validated using software engineering techniques. In
the following, we will concentrate on the validation of the KB architecture.

A previous step to the validation of KB architecture is the evaluation of the
representation capabilities offered by the knowledge representation language with respect
to the problem to be solved. If the language does not provide facilities to represent the
different aspects of the domain knowledge, the resulting KB is unlikely to be adequate. As
an example of this kind of inadequacy, consider a problem dealing with uncertain or

imprecise information and a representation language without uncertainty management.

A KB is no longer a bunch of rules without structure. On the contrary, a KB has an
internal structure induced by the characteristics of the problem domain. Different types of
knowledge are expressed by different elements of the representation. The variety of KB
objects (facts, goals, rules, rule sets, metarules and others) and its internal organization are
the actual expression of the KB architecture (see section 4.1 for a specific example). The
KB has to be designed before rule coding, to assure that its organization is adequate for the
problem to be solved and not the result of an unordered addition of KB objects. Assuring
the adequacy of the KB architecture is a main concern in the validation of the overall ES
architecture. The conceptual model of the ES task obtained during the knowledge
acquisition phase acts as the basic support for the validation of the KB architecture.

3.2.4 Knowledge Base Structure and Contents

The KB is a central part of the ES It contains the knowledge of the system coded in some
repreéentation language (frequently production rules). The KB is formed by a set of
declarations that are interpreted by a fixed procedure, called inference engine, that carries
out the operational semantics of the representation language. The KB plays a fundamental
role in the ES function since all the actions performed by the system have their origin in the
interpretation of the KB contents. Therefore, the validation of KB is a essential step in the
global ES validation.

Regarding KB validation, two main aspects exist: validation of KB structure and
validation of KB contents. Validation of KB structure is concerned with checking a set of
properties of the knowledge representation language on the KB objects. These properties
have a double aim. First, to guarantee that no ES malfunctions will exist during the
interpretation process performed by the inference engine. And second, to detect tifase KB
objects that can appear as anomalous, although they do not cause any malfunction. So far,

66 | Chapter 3. The Validation Issue

validation of KB structure is the most developed subfield of ES validation, with a
significant a number of techniques available.
s

Validation of KB contents considers the adequacy of the KB objects with respect to the
knowledge they are supposed to represent. Adequacy includes correctness, consistency
and completeness, and it requires checking knowledge properties. Validation of KB
contents can be two-fold. First, validation of each single KB object, in the sense that it is a
proper representation of a piece of knowledge. This validation is relatively easy to
perform, since it implies the analysis of simple elements (typically condition-action pairs).
Second, validation of those sets of KB objects that can interact in a ES execution,
producing a global effect. The number of these sets is very high (consider for instance the
potential number of rule chains in a KB of some hundreds of rules). For this reason, this
second aspect of validation is quite difficult in practice.

Validation of KB contents cannot be performed in a complete form without a conceptual
model of the knowledge involved in the KB. This conceptual model acts as a framework
that supports, integrates and gives sense to the different validation activities, that can be
performed regarding the KB contents. Without this model, different aspects can be
validated in isolation but a global validation of KB contents will not be reached. The role
of models in ES validation is analyzed in [Bellman 90]. She mentions that ES task models
act as the framework supporting ES design and implementation, so they should be used to
support ES validation. Several models can be used for different aspects of the ES task
(they are called minimodels). In this sense [Rushby 88b] points out that models bring
internal coherence to collections of rules. He considers the explicit construction and

scrutiny of models as an essential aspect for trustworthy ESs.

3.2.5 Inference Engine

The inference engine (IE) is the procedure that interprets the KB objects and executes the
actions stated in them according to their operational semantics. Most of the effort in ES
validation has been put on the declarative part, i.e. the KB, while the IE was usually
assumed correct by default. However, the role of the IE is so important in the ES function
that an ES cannot be considered validated without a prior validation of its IE.

Validation of the IE aims at checking that it implements correctly the operational
semantics of its knowledge representation language. To perform IE validation, a precise
and formal definition of the operational semantics of the considered knowledge

3.2 What Should be Validated? 67

representation language is required. This formal definition acts as the specification for the
desired behavior of the IE. However, most of the knowledge representation languages do
not have a formal definition for their operational semantics. This represents a serious
drawback to validate an IE since, without a formal definition, IE validation can only be
made by informal means. The absence of formal validation increases the probability of
errors in the IE code. In addition, many IEs allows the user to program some IE aspects
such as the conflict-set resolution strategy. This means that the user can modify the
operational semantics of KB objects. If this occurs, the IE has to be revalidated as well as
those KB objects that have been created assuming a different sematics.

The absence of formal definitions for the operational semantics of knowledge
representation languages has other consequences for ES validation. Automatic verifiers
analyze KB objects considering their operational semantics, in order to predict the ES
behavior in a number of situations. If this semantics is not well-defined, the simulation
intended by the verifier will be only approximate. This may cause that erroneous situations

will be missed, at expenses of the verifier accuracy.

3.2.6 Expert System Behavior

Validation of the ES behavior consists in assessing to which extent the ES fulfils the end-
user requirements for the intended task. While in previous sections, validation was
focused on specific ES parts, now validation considers the ES as a whole. User
requirements are again the key point for a true validation. User requirements are clearly
application-dependent but they commonly refer to operation conditions, performance level,

user interaction, explanation capabilities and acceptance criteria.

Operation conditions establish the requirements for a fully operational ES. Basic
hardware and software for the ES, loading time, maximum requirements of time and
memory for an execution, etc. are examples of these requirements. For safety-critical
applications the operation conditions have to be carefully detailed and exhaustively
checkeé, since a failure in the ES operation may lead to situations very expensive to
recover (and this may be caused by a simple syntax error).

The performance level of an ES plays an important role in user requirements, since the
ES is expected to perform at a human expert competence level. An accurate assessment of
human expert competence is a difficult task that requires statistical measures and cohsensus

functions among experts' opinions (see sections 2.2 and 2.6). For this reason,

68 Chapter 3. The Validation Issue

performance evaluation is a complex task always requiring human assistance. Performance
evaluation can also include the assessment of a lower performance bound, corresponding

= R
to the minimal competence requirements described in section 3.1.1.2.

User interaction involves all the ways in which the user can interact with and use the
ES. The communication with the ES is performed through the user interface, that has to be
easy-to-use and adaptable to the operational environment. An important point is the quality
of ES questions and answers, that should be precise and prevent possible
misunderstandings. The ES execution can admit several options: providing data manually
or from a file, storing the dialog for later examination, recording the fired rules for archival
purposes, etc. A flexible set of execution options can enhance the ES usability. The
explanation capability is an aspect of user interaction of particular importance in ESs.
Users will not gain confidence in the system without a clear explanation of its reasoning

line. This fact conveys a great relevance to the explanation quality.

Acceptance criteria are a number of conditions that the ES must satisfy. In the selection
of acceptance criteria, we have to consider that no technique provides.a complete
validation. On the contrary, partial validation evidence is obtained from a variety of
different techniques with complemented effects. Therefore, the acceptance criteria have to
involve a representative combination of validation techniques focusing on different ES

parts. The critical conditions for the ES function have also to be present in this selection.

3.3 How to Validate?

A set of techniques for ES validation have been developed in the last years (see chapter 2
for a detailed description). This set is far from being complete, since there are many
validation aspects without an appropriate answer. However, these techniques can validate
significant portions of current ESs and they can be of great help for knowledge engineers.
Validation methods developed for software engineering can be imported into knowledge
engineering, after their adaptation to ES peculiarities. Al techniques, and specially the ones
coming from machine learning like KB refinement, can also be of great help for ES
validation. In the following, the validation aspects considered in section 3.2 are revisited,
identifying some of the available techniques that are suitable for them.

3.3 How to Validate? 69

3.3.1 User Requirements

No specific technique has been developed to validate user requirements for ES. This
problem exists in software engineering, so it seems reasonable to adapt software
engineering techniques to the ES case. Reviews involving end-users, human experts and
knowledge engineers can be the basic element for validation of these requirements.

3.3.2 Knowledge Acquisition

Little work has been devoted to develop validation techniques for KA. The work of
[Benbasat & Dhaliwal, 89] provides an initial framework for KA validation. They define
validation of KA as the degree of homomorphism between the representation system, i.e.
the ES, and the system that it is supposed to represent, i.e. the expert. They differentiate
three stages in the development of a KB: conceptual KB, elicited KB and implemented
KB. They consider four types of validation: conceptual, elicitation, implementation and
representational. Conceptual validdtion considers the quality of the modelling process that
has generated the conceptual KB from the human expert. Elicitation validation addresses
the completeness and correctness of the process of translating the conceptual KB into the
elicited KB. Implementation validation considers the quality of the process that transforms
the elicited KB into the implemented KB. Representational validation aims at matching the
characteristics of the implemented ES with the human expert. For each validation type,
they give a number of tests to assess different aspects with respect to the intended
homo;norphism. Regarding conceptual and elicitation validation, they suggest as specific
validation techniques different forms of KB inspections and structured walkthroughs,
involving source experts, independent experts, knowledge engineers and final users.

The ES development methodology determines, to a great extent, the style of the KA
process and the kind of validation we can perform on it. Broadly speaking, we can
differeritiate two types of ES development methodologies: bottom-up and top-down. A
bottom-up methodology develops an implemented system as soon as some domain data are
structured and understood. Rapid prototyping is the paradigm of bottom-up
methodologies. In this approach, the conceptual structuration and abstraction of the data
extracted from the expert is relatively low and a global conceptual model is missing. KA
validation is limited to assuring the quality of KA techniques, such as expert intétyiews,
and an adequate implementation of the recorded knowledge. This second aspect is not easy

70 Chapter 3. The Validation Issue

to fulfil, given that available techniques such as KB inspections are of difficult applicability

when a significant amount of knowledge is involved.
3

Top-down methodologies, like KADS methodology [Breuker & Wielinga 87], include
the development of a conceptual model of the intended task prior to any implementation.
This conceptual model is expressed in a modelling language, that provides a vocabulary in
which the expertise can be described in a coherent way. In this approach, validation can be
performed not only assuring the quality of expert interviews, but also and what is more
important, on the conceptual model. Getting a true validation of the conceptual model
would mean an step of immense value in knowledge engineering. In this case, the most
ellusive validation issues, those involving deep knowledge aspects that are not properly
captured by its representation, would be solved. Some preliminary results on validation of
acquired knowledge using specific tools, as well as on validation of conceptual models can
be found in [Shadbolt 91].

3.3.3 Expert System Architecture

As stated in section 3.2.3, validation of ES architecture can be done for all the ES
components (except the KB) by using standard techniques of software engineering.
Validating the internal KB architecture involves experts and knowledge engineers. Experts
have to evaluate how well the KB design fits the overall structure of the problem domain.
Knowledge engineers act as interfaces between experts and specific constructs of the KB.
The conceptual model of the ES task is an important element to support this kind of
validation. This model acts as a reference point for both experts and knowledge engineers.
Without a conceptual model, differences of vocabulary and points of view between experts
and knowledge engineers may cause a superficial validation of the KB architecture. In this
case, undetected errors will appear later in the ES development, with a higher correction

cost.

The expressive capacity of KB objects has a significant impact in this kind of
validation. Advanced knowledge architectures, like generic tasks [Chandrasekaran 87] or
component of expertise [Steels 90], provide high level constructs that are closer to the
conceptual model expression and make easier its scrutiny and validation. On the other
hand, modularity features in the knowledge representation language facilitate a correct KB
design and allow to define some hierarchical relationships among KB objects that can be

exploited for validation purposes [Sierra et al, 91].

3.3 How to Validate? 71

3.3.4 Knowledge Base Structure and Contevhts

Validation of KB structure is performed by checking those requirements related with the
knowledge representation language used. These requirements are usually formalizable and
domain-independent, so validation of the KB structure is totally achieved by verification.
Validating the KB structure demands exhaustive checking, only reachable by automatic
verifiers. A significant number of verifiers is currently available for different ES models
(see section 2.1), to the extent that this is the most developed subfield of ES validation. A
verifier of the KB structure has to analyze KB objects considering their operational

semantics [Evertsz 91].

Validation of KB contents implies checking knowledge properties, to assess the
knowledge correctness, consistency and completeness. The set of knowledge properties
to be tested has to convey a significant evidence about the adequacy of the KB contents.
Selection of the knowledge properties has to be supported by the conceptual model of the
intended ES task. Otherwise, only isolated knowledge properties will be tested without
achieving an integrated revision of the encoded knowledge. The existence of a conceptual
model is specially relevant when checking the KB completeness, in the sense that all the
knowledge required for the intended task is contained in the KB. In the elicitation of the
knowledge properties to be tested, new aspects of the knowledge contained in the KB are
usually required. These aspects have not been explicited because they are not required for
deduction, but they are needed for validation purposes. These new aspects have to be
encoded in auxiliary representations (like integrity constraints). Techniques used in
automatic verifiers can be adapted to check those knowledge properties that assess the
validity degree of KB contents.

Validation of individual KB objects can be made by inspection of the KB using an
independent expert. It provides evidence on the correctness of single KB objects, but does
not give any proof of the correctness of the KB as a whole. Validation of sets of
intera(;ting KB objects always requires computer-supported tools, since manual checking
is unfeasible due to the large number of sets involved. Inconsistency is a good example of
this kind of validation, that has been extensibly considered in the literature (see section
2.1). Inconsistency is a serious error that demands important computational efforts for
effective checking. On the other hand, procedures for checking inconsistency are relatively
simple. Integrity constraints declaring those facts that are incompatible are the ogly extra

72 Chapter 3. The Validation Issue

knowledge required for inconsistency checking. Facilities for inconsistency checking are
currently available in most of the existing automatic verifiers.
=&

Validation of KB contents can be obtained by means of ES testing. Validation through
testing is indirect, partial and incomplete. Validation is indirect because it can only be
induced from the results of ES executions. Validation is partial because there is no
guarantee that all the KB components have been used in the testing executions. Validation
is incomplete because no specific knowledge properties are checked in ES executions,
except for the functionality of some KB objects in some test cases. In spite of these
drawbacks, testing is the most frequently used method to assess the validity of KB
contents. This is due to the following causes: (i) testing is much easier and direct than
using complex verifiers for knowledge properties (verifiers that have to be built
specifically for a shell), (i1) conceptual models supporting the validation of KB contents
are infrequently built, and (iii) developers have an strong inclination to validate ‘KB
contents by ES execution. This inclination is reinforced by the usual lack of written
requirements for the ES, so the only way to check the correctness of its constituting parts

4

is by comparing ES outputs with the opinion of human experts.

Validation of KB contents can be made using KB refinement techniques. KB
refinement aims at improving the KB contents from a set of cases with known solutions.
When some cases are treated incorrectly by the ES, the KB is modified to achieve a correct
treatment in all cases. It is assumed that only minor KB changes are required. KB
refinement is founded on ES testing, so it shares the testing drawbacks. However,
automatic refinement tools able to detect errors and to suggest substantiated changes in the
KB, repiesent a significant help for the practical assessment of KB validity.

3.3.5 Inference Engine

An IE is a conventional interpreter of a knowledge representation language. It can be
validated using standard techniques of software engineering. Knowledge representation
languages do not oftenAprovide a formal definition of their operational semantics (see
section 3.2.5). This is an important difficulty to achieve a true IE validation. Facilities to
link user programs to the IE also difficult its validation.

As any other interpreter, the IE has to be defined in terms of a set of elementary
operations that actually implement its functionality. Interpreters of standard programming

languages are defined using memory cells, stacks, assignments, increments, conditionals

3.3 How to Validate? 73

and branchings. Elementary operations for an IE can be condition satisfaction, logical
operators, truth value assignment and others. No consolidated set of elementary operations
to deal with knowledge representation languages exists. This lack is an extra difficulty
since, prior to any IE validation, the set of elementary operations has to be defined.
Methods and techniques used to validate interpreters of standard programming languages
can be adapted for IE validation. '

3.3.6 Expert System Behavior

Validation of ES behavior is usually made by testing, although in case of critical
requirements other techniques such as exhaustive verification can be used. The testing
process has to allow for an effective checking of user requirements. Simulated test cases
can be used to check specific conditions, while real test cases are needed to assess ES
performance. Test set composition and comparison with human behavior are two of the

key issues in ES testing (see section 2.2 for further details).

Two testing techniques have an special relevance in ESs, Turing tests and field tests. A
Turing test consists in the evaluation of the ES output mixed with recommendations of
human experts for a set of given cases. A set of independent experts acts as evaluators
without knowing which is the system and who are the humans. This test is very suitable
for performance evaluation. A field test consists in the regular use of the ES in its target
working environment. ES errors and users complains are recorded and solved. The ES is
considered tested when user complains have ceased. This test is suitable for assessing
aspects of the user interaction, overall utility, and regular performance. Both types of

testing require important amounts of human effort.

3.4 When to Validate?

Paraphrasing [Adrion et al, 82], knowledge engineering is an exercise in problem solving.
As with any problem-solving activity, determination of the validity of the solution is part
of the process. Therefore, validation has to be explicitely included in knowledge
engineering, that will not be considered finished until the produced ES has been validated.

Validation cannot be delayed until the final phases of ES development. At this stage, ES
errors could be very expensive to correct. As we have stated in section 3.2, the cost of

correction of a hidden error escalates as the development advances. Therefore, early

74 Chapter 3. The Validation Issue

validation is always recommended. A number of validation activities can be performed

during the ES development. The position of the validation activities in the ES life-cycle is
o

discussed in the following.

3.4.1 Validation in the Life-Cycle

Following the comparative study of ES life-cycle contained in the section 2.5, we propose
an ES life-cycle composed of the following steps: requirements, knowledge acquisition,
design, implementation and maintenance. The first four steps fit exactly with the first four
steps of the development cycles proposed by [Buchanan et al, 83] or [Miller 89]. We add a
fifth step, maintenance, that includes all the operations made on the ES after its release.
Maintenance operations can be frequent in some applications (it has been said that a KB is
never complete because new knowledge is always ready to be added”). Therefore,, this
step is needed for a comprehensive treatment of the different stages in the ES life-cycle.
No specific step devoted to testing or evaluation exists; validation activities are included in
each development step. The whole process is represented in figure 3-1.

We want to stress the importance of validation activities in the ES life-cycle in a two-
fold way. First, the products originated in each development step are validated by specific
activities. This enhances the quality of intermediate products and increases the validity of
the final ES. Second, the presence of validation in each step reinforces the design for
validation. If knowledge engineers are aware that validation is a part of their job, they will
acquire knowledge for validation and they will include facilities for validation in the design
and implementation phases. The final product should be valid and this has to be kept in
mind throughout the ES development.

We notice that the validation of an ES is more that the validation of its KB. If in the
implementation step procedural parts are developed, they should be verified following
standard techniques of software engineering. In particular, this holds for the inference
engine that should be validated, at least informally, if it is not certified. Changes in the
maintenance phase can affect to any previous development step. To validate these changes,
the validation activities corresponding to the affected steps should be repeated.

The proposed life-cycle does not imply necessarily a waterfall or rapid prototyping
methodology. It can be used to develop a prototype, that can be later refined and expanded

7 We share this opinion. After the release of PNEUMON-IA, a new etiological diagnosis called Chlamidia
Pneumoniae was identified. To include this new knowledge, we have reorganized an existing module and
we have created a new one.

3.4 When to Validate? 75

Life-cycle step Step Products Validation Activity
Requirements Service/Competence Validation of User Requirements
Totally/Partially Formalizable
Specifications
Knowledge Acquisition Conceptual Model Validation of Knowledge Acquisition
Design ES architecture Validation of ES architecture
Implementation Operational ES Validation of KB Struct & Contents
Validation of Procedural Parts
Validation of ES Behavior
Maintenance New operational ES Any of the previous

Figure 3-1. Proposed ES life-cycle and corresponding validation activities.

to achieve a final system, like [Miller 89]. In this case, all the life-cycle steps have to be
repeated (requirements, knowledge acquisition, etc.), although the implementation step
will not start from scratch but from the previously developed prototype.

3.5 Summary

This chapter contains several ideas about the meaning of validation for ESs and on the
forms to achieve it in practice. Some of these ideas are supported by the experience, others
are proposals to improve the current state of validation. In the following, the main ideas

exposed in this chapter are summarized:

* Validation Terminology: we define validation in terms of user requirements, just
" like in software engineering. User requirements for ESs are totally or partially
formalizable, depending on their complete or partial decomposition in
specifications. Validation is composed of two main parts, verification and
evaluation, depending on the type of user requirements respectively checked.
Verification aims at objectively checking ES properties, while evaluation
considers those aspects that require subjective assessment. Testing is vi®wed as
the main technique to assess ES performance. These definitions are in compliance

Chapter 3. The Validation Issue

with the corresponding ones in software engineering, forming a general
.- framework of sofware validation.
P

e Complete Validation: KB validation is not synonymous for ES validation. To
achieve a complete validation, all the ES parts have to be validated. Procedural
parts can be validated using standard software engineering techniques. Special
emphasis has to be devoted to the inference engine, because of its central role in
the ES function. To validate declarative parts specific techniques for ESs are

required.

« Validation throughout the ES life-cycle: an ES life-cycle is proposed, including
maintenance as a separate step. Validation, as an element of knowledge
engineering, has to be present in all the steps of the ES development. . Different
validation activities can be performed at each step. This presence in the whole, life
cycle enforces validation by construction, improving the quality of the
intermediate products. In addition, it stresses the design and implementation for
validation.

« Knowledge Validation: all the knowledge extracted from the expert has to be
validated. To effectively perform this validation, the knowledge has to be
organized forming a conceptual model. This model has to contain all the
dependencies and relations among the intended task elements, as well as the
heuristics and processes used by the expert to perform this task. The accuracy and
completeness of this model is a crucial point, since it acts as the supporting
framework to validate the ES implementation. In order to validate knowledge
properties, some extra knowledge is required. This extra knowledge is not used
for deduction, it is just for validation. It is acquired and represented in the usual
ways, and it is also subject to validation. Early validation activities in the ES life-
cycle enforce the acquisition of this kind of knowledge.

Chapter 4

Verification using Extended
Labels

As we have stated in the chapter 3, verification consists in checking the ES against the
specifications obtained from its formalizable requirements. From now on, we assume the
existence of these specifications and we concentrate our efforts on checking four classical
verification issues: inconsistency, redundancy, circularity and useless objects. The first
one can be considered domain-dependent since it depénds on the integrity constraints to be
tested, while the other three can be considered as domain-independent. This chapter
considers the effective checking of these four verification issues in an ES model including

uncertainty and control.

We cannot talk about verification or validation techniques in precise terms without a
previous definition of the ES model on which these techniques will be applied. We have
selected an ES model that includes explicit and implicit control representation and
uncertainty management. This model is a faithful representation of the MILORD shell
[Sierra 89], on which the medical applications PNEUMON-IA [Verdaguer 89] and RENOIR
[Belmonte 90] have been developed. The motivation for this choice is a very practical one:
the absence of techniques applicable to verify these applications. Available verification
techniques usually assume a quite simple ES model, which does not include €ssential
aspects of MILORD-based applications such as uncertainty or the explicit representation of

77

78 Chapter 4. Verification using Extended Labels

control knowledge. If these techniques were applied, they would have a very partial and
incomplete representation of the target application and the results would be neither accurate
nor compTete. As Evertsz states [Evertsz 91], ES verification should be made considering
the procedural semantics of the knowledge representation language used, that is to say,
considering the way in which KB objects will be used in practice. In consequence, the
model assumed in verification has to be a faithful representation of the target ES.

On this ES model we analyze the four classical verification issues mentioned above:
inconsistency, redundancy, circularity and useless objects. From this analysis we obtain
new verification issues, caused by the splitting of the original issues when considered in
an ES model with several layers of knowledge organized hierarchically. For instance,
inconsistency does not only occur between rule chains concluding incompatible facts
(classical case). Inconsistency also occurs between metarules concluding opposite control
actions (inconsistency in the control knowledge), or between rules and metarules
(inconsistency relating control and domain knowledge). The inclusion of uncertainty also
modifies the definitions of these issues, that have been conceived in a boolean framework.

To solve these verification issues, we use ATMS constructs. Taking the work of
Ginsberg in KB-REDUCER [Ginsberg 88] as starting point, we extend the concepts of
labels and environments to incorporate more information, defining the concepts of
extended-labels and extended environments. Using them, we formulate a constructive way
to test the verification issues. The verifier IN-DEPTH Il implements this verification method
in an incremental way. It accepts a KB and a set of modified objects as input and performs
the minimal verification tests to achieve a global correctness of the KB with respect to the

modifications.

Using IN-DEPTH II we are verifying PNEUMON-IA, an ES for etiological diagnosis of
community acquired pneumonias in adults during the first days of infection. PNEUMON-IA
is composed of 600 rules, 100 metarules and 24 modules, covering 22 different etiologies.
For its size and complexity, PNEUMON-IA is an ideal application to assess the practical
effectivity of a verifier. In addition, the expert who developed it participates very actively
in the verification, what is very important to interpret and correct the defects detected by
the verifier. So far we have verified the 50% of PNEUMON-IA rules, finding a low number
of errors. That could be expected, because PNEUMON-IA had been previously validated
showing a performance level comparable to human experts [Verdaguer 89]. IN-DEPTH II
has allowed us to identify some errors in the organization of knowledge, errors that would
be overlooked without the usage of a verifier. After the verification process, the confidence
level in PNEUMON-IA hads increased by two reasons: (i) the low number of actual errors

79

detected, what is indicative of a good KB structure, and (ii) the improvement of the KB by
correcting the detected errors. We expect to complete the verification of PNEUMON-IA

during the next months.

The structure of this chapter is as follows. Section 4.1 contains a description of the ES
model considered for verification and refinement (chapter 5). Section 4.2 includes the
definition of the four verification issues in the ES model. Section 4.3 comprises the
concepts, operations and formal construction of the extended labels and extended
environments. Section 4.4 contains the tests for the verification issues in terms of extended
labels and extended environments. Section 4.5 presents an example to help in
understanding these ideas. Section 4.6 includes the incremental verification approach and a
brief description of the algorithms used in the verifier IN-DEPTHII . Section 4.7 describes
our practical experience on verifying PNEUMON-IA. Section 4.8 encloses some

conclusions, supported by our practical experience on verification.

4.1 The ES Model

We assume the following ES model: (i) based on rules, underlying propositional logic, (ii)
with uncertainty management, (iii) with implicit and explicit control, and (iv) monotonic. A
description of this model follows, detailing its objects and how they interact. Regarding
control, we have made some choices to allow for an effective computation. The results
obtained from this model remain essentially applicable to any other ES with a similar

structure.

4.1.1 KB Objects

A KB is composed of a 5-tuple <F, R, M, MR, IC> where F is a set of facts, R is a set of
rules, M is a set of modules, MR is a set of metarules and /C is a set of integrity
constraints. A fact fe F represents an attribute of the problem domain. Facts are divided
into deducible (or hypotheses) and external (or findings) depending on whether their
values can be deduced or they must be provided as an input, forming the sets DF and EF.
A syntactic criterion discriminates them: a deducible fact appears in the right-hand side of
some rule, while an external fact only appears in the left-hand side of rules. Special facts

called goals drive the deduction process. ™.

80 Chapter 4. Verification using Extended Labels

Two kind of rules exist, concludmg rules and up-down rules, forming the disjoint sets
R, and R4, such that R = R UR 4. A concluding rule re R is formed by a conjunction
of conditions on facts in its left-hand side (hs), an assertion about the value of one fact in
its right-hand side (rhs) and a cv. When r is fired, the concluding fact is asserted with a cv
computed from the cvs of [hs(r) and r. An up-down rule re R, is formed by a conjunction
of conditions on facts in /As(r) and an action to increase or decrease the cv of a fact fin
rhs(r). Up-down rules concerning the fact f are always fired after rules concluding f. Rules
are fired backwards. Each rule belongs to one module. A module me M contains a
collection of rules and one or several goals. Rules belonging to a module are intended to be
enough to conclude the module goals, although rules can use facts deduced in modules
different from their own module. A metarule mre MR is formed by a conjunction of
conditions on facts in its left-hand side, and an action in the the right-hand side. Two
different types of actions are allowed: actions on modules and actions on the wholeES.
The set MR is divided in two disjoint sets MRM and MRS, formed by metarules acting on
modules and metarules acting on the whole ES, respectively. Metarules are fired forward
as soon as their conditions are fulfilled.

An integrity constraint ice/C is an expression involving certainty values of one or
several facts, which should be satisfied by every deduction in order to avoid
inconsistencies. Integrity constraints have no role in the ES execution, since no testing
process is performed in real time to check whether they are satisfied. However, they
contain essential information for consistency checking.

4.1.2 Uncertainty Management

The uncertainty management system assigns one certainty value cv to each fact,
representing always positive evidence. A fact (f) and its opposite (—f) are represented
separately and each has its own certainty value. Concluding rules and metarules have also
certainty values associated. The certainty value of a concluding rule r represents the expert
evidence for the fact asserted in rhs(r), assuming /As(r) as true. The certainty value of a
metarule mr represents the strength for the control action in rhs(mr), assuming lhs(mr) as
true. When a concluding rule or metarule x is fired, the cv of the concluding fact in rhs(x)
is computed from the cvs of facts in /hs(x) and the cv of x., using the functions cv-
conjunction and cv-modus-ponens. The function cv-conjunction computes the certainty
value of a conjunction of facts from the certainty value of each fact. It is used to obtain the
certainty value of the whole left-hand side part of a concluding rule or metarule when it is

4.1 The ES Model 81

going to be fired. The function cv-modus-ponens computes the certainty value associated
to the consequent of a logical implication from the certainty values corresponding to the
antecedent and the implication. It is used to obtain the certainty value of the right-hand side
of a concluding rule or metarule when it is fired. There exists a certainty threshold t, and

all deductions with a cv less than T are eliminated.

When a fact f can be concluded by more than one rule, all the possible deductions are
tried. Then a parallel certainty combination occurs, combining the different certainty values
obtained for f using the cv-disjunction function. The resulting value is assigned as the final
cv for f.

4.1.3 Control Representation

The control is divided in implicit and explicit. Implicit control is coded as the conflict-set
resolution criteria, embedded in the inference engine. Three criteria of decreasing
importance have been considered: (i) select the most specific rule (ii) select the rule with
highest cv, and (ii1) select the first rule. These criteria establish a total order in R. A rule r
1s more specific than r"if rhs(r) = rhs(r") and lhs(r") < [hs(r). The most specificity criterion
induces a mutual exclusion relation between those rules among which a relation of
specificity holds. Let r,7'e R, such that r is most specific than . If r has been fired, there
is no point in'firing r" because all the information contained in r’ has already been used in
r. So r’ should never be fired. Conversely, if 7’ has been fired, it means that » had been
tried but failed. Under the monotonicity assumption 7 cannot be fired later. Therefore, if r
is mote specific than ' (or vice versa), r and r’ are mutually exclusive and cannot occur in

the same deduction.

Explicit control is coded in metarules acting on modules (MRM) or on the whole ES
(MRS). On modules two actions can be performed, add m or remove m, meaning that the
module m is activated or inhibited for deduction. Activated/inhibited modules are
added/removed to/from the active module list. A module can be added several times to the
active module list, but once it has been removed, it cannot be entered again. At each time,
the active module list contains those modules considered more adequate to contribute to the
final solution. On the whole ES only the stop action can be made. Stopping metarules have
priority for firing over metarules acting on modules, which have priority for firing over

rules. B

82 Chapter 4. Verification using Extended Labels

4.1.4 F:’S Function and Structure

When the ES starts, a metarule builds up an initial active module list. Then the following
cycle starts. A module is selected from the active module list and it becomes the current
module. Their goals are pursued using the rules contained in it. As soon as new facts are
deduced, metarules are tested for firing. If a metarule acting on modules is fired, the active
module list is updated. Metarules adding modules to the active module list can have a
certainty value associated, as a measure of the metarule strength. Certainty values have a
significant role in selecting the current module. When every goal in the current module has
been tried (no matter whether it has been effectively deduced or it remains unknown), a
new current module is selected and the cycle restarts. The ES stops when no more

modules are available in the active module list, or a metarule stopping the ES is fired.

From the previous description it is clear that there is a knowledge hierarchy in the ES,
composed by the control knowledge and the domain knowledge, acting the former on the
latter. This knowledge hierarchy is translated into a KB object hierarchy, according to their
capabilities in the ES model. The KB object hierarchy is formed by

Level 4: metarules acting on the ES

Level 3: metarules acting on modules

Level 2: modules containing goals and rules
Level 1: rules acting on facts

Level O: facts

4.1.5 Verification Assumptions

In the verification work described in this chapter, we have made two simplifying
assumptions on this ES model: we have neither considered up-down rules nor the parallel
certainty combination performed by the cf-disjunction function. These simplifications

allow us to decrease significantly the computational complexity of the verification process.

Verification is exhaustive, that is to say, all the possible rule chains are explored.
Parallel certainty combination has a determinant impact in the number of rule chains. Let
assume that there are n different rules concluding the fact f. Without parallel certainty
combination, a lower bound of the number of rule chains to consider is n (in the trivial

4.1 The ES Model 83

case when each rule is involved in a single rule chain). With parallel certainty combination,
we have to consider all the combinations of these n rules, in groups of one, two, three,

until » rules. That is to say,

n

n!
2 m! (n-m)! =21

m=1

so the lower bound for rule chains to consider is 2” - 1. This increment in the
computational complexity is extremely high, specially if compared with the accuracy gain
that would be obtained. The parallel certainty combination produces small changes in the
certainty value of f (or not changes at all) depending on the certainty values to be

aggregated.

The impact of up-down rules in complexity is not as important as the caused by the
parallel certainty combination. Let us consider n concluding rules and £ up-down rules for
~ f. Assuming that the lower bound for rule chains caused by concluding rules is », the
inclusion of up-down rules increases this lower bound to nk, since for each rule chain
there are k up-down rules potentially applicable. This cost is expensive for the accuracy
gain obtained, since up-down rules perform small changes in the certainty of deduced
facts. Typically they have a tuning effect, including minor elements (that by themselves
would have neither caused nor prevented the deduction of a fact) into the final certainty for
this fact.

Therefore, we have preferred to loose some accuracy exploring rule chains, that could
requfre very high computational resources, for an easier and more efficient verification
implementation. Given the practical usage of the verification results (see section 4.7,
where we report the practical experience) we estimate that these simplifications have a
minimum impact in the overall correctness of the verification method. In this chapter,
given that no up-down rules are mentioned, concluding rules are simply called rules.

4.2 Verification Issues

We consider four classic verification issues: inconsistency, redundancy, circularity, and

useless objects. A conceptual definition for each of them follows, definitions that become
e

operational after their application on the assumed ES model. Following the hierarchy of

levels present in the ES model, we analyze each issue in a twofold way: intra-level,

84 Chapter 4. Verification using Extended Labels

considering the KB objects contained at each level in isolation, and inter-level, considering
the KB objects contained in a level together with all the objects belonging to upper levels.
&

4.2.1 Inconsistency

A KB is inconsistent if conflicting situations among KB objects can be obtained from a
valid set of input data. Typically, only situations in which an integrity constraint was
violated were considered as conflicting and therefore causing inconsistency. However, in
the multi-level ES model, new conflicting situations can occur besides integrity constraint
violation. These new causes are (i) potential conflicts can happen at different levels, and
(ii) conflicts can occur between levels, specifically between rules and metarules. A set of
input data is valid when it reflects some situation that happens in the real world. Assuming
that the integrity constraints contained in IC are a good model of the real world, a set of
input data will be considered valid if it is consistent. Conflicting situations are the

following:

Intra-level

I-1. At level 3: if after an action remove m, an action add m is performed, on the

same module m.

I-2. At level O: if two or more facts violating an integrity constraint are deduced
together from a valid set of input data.

Inter-level

I-3. Between levels 3 and 1: if the firing of a metarule adding the module m

prevents a rule contained in m to be fired.

I-4. Between levels 3 and 1: if the firing of a metarule removing the module m

would cause a rule contained in m to be fired.

Clearly, these four types of conflicting situations focus on different aspects of the ES
function. Type I-2 involves facts that can be provided to the user as output, so it can
generate erroneous answers. Types I-1, I-3 and I-4 are more related with the internal
structural consistency of the ES. Type I-1 reveals a conflict in the control knowledge
guiding the solution search process through the modules, this means that the right solution

4.2 Verification Issues 85

can be missed. Types I-3 and I-4 show that a conflict exists between control knowledge
and domain knowledge, situation that can affect the ES response.

4.2.2 Redundancy

A KB is redundant if it contains repeated or duplicated knowledge. Redundancy can either
have no effect on the ES functionality (just affecting the computational efficiency) or
influence some deductions especially when they are weighted with certainty values. In any
case, repeated knowledge should be identified and removed from the KB. Redundancy

between KB objects can occur in the following cases:
Intra-level

R-1. At level 4, 3 or 1: let x, x’eR or x, x'e MR. Then, x’ is redundant with x if (i)
rhs(x) = rhs(x"), and (i) whenever x’vis fireable, x is also fireable with

identical results.

R-2. Atlevel O: letf, f'e DF, f' 1s redundant with f if in all the situations where f" is
deduced, fis also deduced with the same certainty value.

Inter-level

R-3. Between levels 3 and 1: let me M, mre MRM, and reR, such that rem and
rhs(mr) = add m. Then, r is redundant with mr if whenever mr is fireable, r is

also fireable.

In the R-1 case, the redundant object can be removed from the KB without losing
information. In the R-2 case, the role of the redundant object in further deductions has to
be analyzed, to see whether /' can be substituted by f. The R-3 case is not properly
redundant, since the role of rules and metarules is different and they cannot supersede each
other. We consider it as an anomaly that can be useful to detect. In this case, rule r can
neither be removed (a rule chain could be broken), nor modified without considerin g the

metarules adding m (r could be non-redundant with other metarules, different from mr,
adding m).

86 Chapter 4. Verification using Extended Labels

4.2.3 éircularity

A KB is circular if it contains a cycle. A cycle exists if an object depends on itself.
Different kind of cycles can exist, as a function of the dependencies among KB objects.
Three different dependency relationships exist in the ES model. First, a rule (or metarule) r
depends on facts f such that fe lhs(r). If [hs(r) is not satisfied, r will not be fired. This
dependency is represented by r <-f, reading r requires f. This dependency also exists
between the fact f* = rhs(r) and r, represented by f* <~ r. Second, a rule r depends on the
module m to which it belongs. If m is not activated, will not be considered for firing.
This dependency is represented by r <= m, reading r belongs to m. And third, a module m
depends on the metarules activating it. If no metarule mr such that rhs(mr) = add m is
fired, m will not be considered for deduction. This dependency is represented by m <= mr,

reading m is activated by mr. Potential cycles are the following:

Intra-level

C-1. A factf] depends on itself through a chain of rules and facts.

Jl<ri<fr<ry<..<rm< f=f f1, 12, ..fneDF
ri,r2, ... ,rpeR
Inter-level

C-2. A fact f depends on rules contained in different modules, and a metarule

adding one of these modules depends on f.

f<r<f<r<em<mr<f f, f'eDF; r,r'eR,
m'eM; mr'e MRM

C-3. Two metarules mr, mr' adding respectively the modules m and m’, depend on
facts f* and f, deduced by rules contained in m' and m.

f<rem csmr<f<r<m<=m<f [, f'eDF;r,r'eR;
m,m'eM; mr, mr'e MRM

Only in case C-1 the ES can effectively loop because only rules are involved in the cycle.
Cases C-2 and C-3, including dependencies <= and <=, do not cause the ES to loop

4.2 Verification Issues 87

because these dependencies do not generate any chaining. These cycles can prevent some
KB parts to be considered by the inference engine, what can seriously affect the

correctness of the ES output.

4.2.4 Useless Objects

A KB object is useless if it can never be used. Useless objects include non-fireable objects
(rules or metarules), unreachable objects and shadowed objects. An object is non-fireable
when it is supported by a non-valid set of input data. An object is unreachable when there
exists a gap in the dependency graph linking the object with the inputs. An object is
shadowed if there exist other objects that prevent it to be used. Potential cases for useless

objects are the following:

Intra-level

U-1. Atlevel 4, 3 or 1: a non-fireable metarule or rule.

U-2. Atlevel 0: let fe F, reR, fis unreachable if every r, such that fe rhs(r), is non-
fireable.

Inter-level

U-3. Between levels 4 and 3: let mre MRS, mr'e MRM, mr' is shadowed by mr if

mr is always fired before mr’.

U-4. Between levels 4 and 1: let mre MRS, reR, r is shadowed by mr if mr is
) always fired before r.

U-5. Between levels 3 and 2: let me M, mre MRM, m is unreachable if every

metarule mr, such that rhs(mr) = add m, is either non-fireable or shadowed.

U-6. Between levels 2 and 1: let me M, reR, rem, r is unreachable if m is

unreachable.

U-7. Between levels 1 and O: let fe F, re R, f is unreachable if every r, such that
ferhs(r), is either non-fireable, shadowed or unreachable.

88 Chapter 4. Verification using Extended Labels

o~

4.3 Extended Labels and Extended Environments

deKleer introduced the concepts of label and environment for a deducible fact f in the
ATMS context [deKleer 86]. An environment for f, E;j(f), is a minimal conjunction of
external facts supporting f. The label for f, L(f), is the minimal disjunctive normal form of
external facts supporting f. Clearly, L(f) includes all the E;(f) as disjunctions. Ginsberg
has used successfully labels and environments for verification purposes (inconsistency and
redundancy checking [Ginsberg 88]). However, they do not contain all the required
information to verify ESs with uncertainty and control features. Additional information is
needed about (i) the cv range in which a fact can be deduced and (ii) the control actions
required for a fact to be deduced.

To apply these concepts for verification purposes on our ES model, we have extended
their definition in the following way. An extended environment (e-environment, for short)
for a deducible fact f, EE;(f), is a triplet < SS;(f), RCVi(f), RSi(f) >. SSi(f) is a minimal
set of external facts supporting f, that is to say, an environment in deKleer or Ginsberg
sense. RCV(f) is the range of certainty values in which f can be deduced from SS;(f).
RCV(f) is represented by the interval [LCV(f), UCV(f)], where LCV(f) and UCV(f)
are respectively the lower and upper bounds. RS;(f) is the rule sequence connecting SS;(f)
with f, and it is recorded for control reasons: (a) to identify e-environments that are
incompatible with this one because of mutual exclusion between their corresponding rule
sequences, and (b) to identify the set of metarules that have been eventually fired to
activate the rules contained in the rule sequence. Two rule sequences RS;, RS; are
mutually exclusive (m-exclusive for short) if there exist re RS; and r'e RS such that r and
r’ are mutually exclusive. Two rules are mutually exclusive if one is more specific than the
other. The extended label (e-label for short) for a deducible fact f, EL(f), is the minimal

collection of e-environments for f.

The concepts of e-environment and e-label are not only applicable to deducible facts,
but also to rules and metarules. An e-environment for x, EEj(x), xe RUMR, is formed by
the same components < SSj(x), RCVj(x), RSj(x) > with the same meanings: SS;j(x) is the
set of external facts causing r to be fired, RCVj(x) is the allowed range for the cv of the
rhs(x), and RS;(x) is the rule sequence required for x to be fired. Similarly, the e-label for
x, EL(x) is the minimal collection of e-environments. E-environments and e-labels for m,

4.3 Extended Labels and Extended Environments 89

meM, are defined in terms of e-environments for metarules that introduce m in the active
module list. Thus, EL(m) = UEL(mr), mre MR, such that rhs(mr) = add m.

A number of relations hold between e-labels and e-environments. Let EE be the set of
e-environments, EEj, EEje EE. EE; is compatible with EE j iff (a). SS;USS] is consistent,
and (b) RSj is not m-exclusive with RS; EE; subsumes EEj iff (a) SS; contains SSj and
(b) RSj is not m-exclusive with RS j- EEj includes EEj iff (a) EEj subsumes EE j and (b)
RCVj is contained in RCV;. Let EL be the set of e-labels, EL, EL'eEL. EL is compatible
with EL" iff there exists EEje EL, EE je EL" such that EEj is compatible with EE j- EL is
fully compatible with EL" iff for all EE;e EL there exists a EE je EL’ such that EEj is
compatible with EE j- EL partially subsumes EL" iff there exist EEje EL, EE 7€ EL', such
that EEj subsumes EEj. EL totally subsumes EL’iff for all EE;e EL there exists a
EEje EL', such that EE} subsumes EEj. EL totally includes EL' iff for all EEjc EL there
exists a EEje EL', such that EE; includes EE;.1

4.3.1 Operations

To effectively compute e-labels and e-environments for KB objects, we need the following
operations: (1) a disjunction v between e-labels, (2) a conjunction-1 A1 between e-labels or
between e-environments, (3) a modus-ponens ® between rules or metarules and e-labels or
e-environmehts, and (4) a conjunction-2 A, between e-labels or between e-environments.
These operations allow to represent all potential steps that the ES can perform in terms of
e-labels and e-environments. The definition for each operation follows. The same symbol

is used to indicate the same operation on e-labels or e-environments.
1. Disjunction: models the different ways to conclude a fact. It is defined by,
v:EL xEL - EL ELv EL'={EE; |EE;ceEL or EE;cEL'}

The disjunction between two e-labels is the union of the sets of e-environments
belonging to each e-label.

2. Conjunction-1: models the computations performed at the left-hand side of a
rule or metarule when it is going to be fired. It is defined by,

~rELxEL 5 EL EL nEL"={EE; \\EEj| EE;cEL, EEje EL} .

IThis terminology slightly differs from [Meseguer 91] to better fit the intuitive meaning of inclusion.

90

"y

Chapter 4. Verification using Extended Labels

~EEXEE > EE,E EE; n\EEj = EE}, defined by

SSk =85;0 SS; if consistent
empty otherwise

RCVy=[LCVy, UCVy] if UCVE>1
empty otherwise

RSy =RS;uURS; if not m-exclusive.
empty otherwise

where LCVy = cv-conjunction (LCV;, LCV}) and UCVy = cv-conjunction
(UCV;, UCV)). When any of the parts is empty, the resulting environment is
empty. Assuming that the the left-hand side of a rule r is the conjunction of the
facts x and y, EE; (x)a1EEj(y) models the computation performed to check if
lhs(r) is satisfied: (a) if the union of their support sets is consistent, (b) if the
cv-conjunction of their certainty values is greater than the threshold t (only
upper bounds are considered), and (c) if their respective rule sequences are not
mutually exclusive. ’

Modus ponens: models the computations performed when a rule or metarule is
fired, assuming its left-hand side is satisfied. It is defined by,

:RxEL - EL X®FEL = { x®EE; | EE;cEL}
®:RxEE 5 EE X®FEE; = EE}, defined by
SSr =8S;
RCVy =[LCVy, UCVy]
RSk =RS; xe MR

RS; u{x} xeR;x, RSj not m-exclusive

empty xeR; x, RS; m-exclusive

where R. = RUMR, and LCVy = cv-modus-ponens(LCVj,cv(x)),
UCVy = cv-modus-ponens(UCV;,cv(x)). Assuming that EE; is an e-
environment satisfying /hs(x) (x stands for a rule or a metarule), x® EE;
models the action of firing x: (a) if x is a rule it should be not mutually
exclusive with the rule sequence required to satisfy its left-hand side, and (b) if
it is fired, the certainty value of rhs(x) is obtained from the certainty values of
lhs(x) and x itself, using the function cv-modus-ponens.

4.3 Extended Labels and Extended Environments 91

4. Conjunction-2: models the relations that should exist between a rule r
belonging to a module 7 and a metarule mr activating m, to allow r to be fired.
It is defined by,

~:EL xEL - EL ELAnEL'= {EE; mEE; | EEicEL, EEjeEL}

n:EEXEE 5 EE EE; mEEj = EEy, defined by

S8k =88;uSS; if consistent
empty otherwise

RCVy=RCV;

RSk =RS;URS; if not m-exclusive
empty otherwise

Assuming r and mr as above, EE;(r)axEE(mr) models the conditions for r to
be fired: (a) the union of their support sets should be consistent and (b) their
rule sequences should be not mutually exclusive. The metarule mr has no
action on the certainty value range of the rule. Obviously A, is not
conmutative, e-environments for rules must appear on its left, while e-

environments for metarules must appear on its right.

As an example of the previous definitions, let EL and EL’ be e-labels defined by,

EL = {EE], EE3} EL'= {EE3, EE4}
EE;={(ab)[0,1] (r]1 r2)} EE; = {(c d)[0,0.4] (r3)}
EE3 = {(e N[0,0.4] (4)} EE4= {(—a ¢)[0,0.6] (r5)}

with numeric certainty values, from 0 to 1, cv-conjunction and cv-modus-ponens are the
product of reals, threshold t = 0.2, and rules 73 and r5 are mutually exclusive. Thus,

ELvEL" ={EE], EE;, EE3, EE4}

EL MEL'={EE] \M\EE3, EE] AM\EE4, EE2 AM\EE3, EE3 A{\EE4) =
={EE; MEE3}={(abeN[0,04] (rlr2r4) }

EL mEL'= {EE] nEE3, EE] amgEE4, EE) mEE3, EE) A EE4} =
= {EE] AmEE3, EE) mEE3} =
={(abeN0,1](rir21r4), (cdeN[0,0.4]1.(r3rd)} ™

rS®EL ={r5®EE], rS®FEE;}={(ab)[0,1] (rl r2r5)}

92 Chapter 4. Verification using Extended Labels

In EL AjEL" only EE] A1EE3 is not empty. The rest of e-environments are empty because
of the following reasons: iﬁ EE; A1EE4 the union of support sets is not consistent, in EE}
~1EE3 the threshold is not surpassed, and in EE) A EE4 the rule sequences are mutually
exclusive. Similar situations occur in EL aoEL’, except for the e-environment EE7 AyEE3
which is not empty because there is no condition on certainty in ;. Finally, in 5 ® EL the
e-environment r5 ® EE; is empty because r3 and r5 are mutually exclusive.

4.3.2 Computing e-labels

Using the operations defined above, the e-labels for the KB objects are the following:

feEF EL(f) = {EEo(H)) 1) .
feDF EL(h= v EL(r))
reR, f<—r
reR, r<m EL(nN= re(A1 EL(f)) A2EL(m) ‘ 3)
feF, r< f
mre MR EL(mr) =mr ® (A1 EL(f)) 4)
JfeF, mr< f -
meM , EL(m) = v EL(mr) (5)

mre MR, m <= mr

The meaning of these expressions is straightforward. In (1) the e-label of an external fact f
1s composed by only one e-environment EE(f), the terminal environment, trivially built.
In (2) the e-label of a deducible fact f is the disjunction of the e-labels of the rules
concluding f. In (3) the e-label of a rule r is obtained in three steps: (a) conjunction-1 of the
e-labels of facts appearing in the left-hand side of r, (b) modus ponens with r, and (c)
conjunction-2 with the e-label of m, the module to which r belongs. The justification of
each step is clear: step (a) requires the left-hand side of r to be satisfied, computing the
certainty value of the whole premise (that should be greater than the threshold 1), and
checking that no mutually exclusive rules have been used to deduce facts in the left-hand
side, step (b) adds the rule r in the computation, including its certainty value and checking
again r for mutual exclusion with those rules previously used, and step (c) establishes that
r can only be fired when the explicit control has activated the module containing r. In
expression (4) the e-label of a metarule is computed like the e-label of rule that is not

included in any module. Finally, in (5) the e-label of a module is the disjunction of the e-

4.3 Extended Labels and Extended Environments . 93

labels of the metarules activating m. Expressions (1) to (5) allow the e-label computation

for any KB object.

The information contained in an e-environment EE(f) has been generated by the action
of (a) the explicit control knowledge and (b) the domain knowledge. These actions are
disjoint, as they are the constructs representing them (rules vs metarules). So we can
distinguish, for each piece of information contained in EE(f), whether it has been
generated by the action of domain or control knowledge. According to this EE(f) can be
decomposed into an e-environment restricted to the domain EE(f)lq, and an e-environment
restricted to the control EE(f)l., related by the operator Ay,

EE(f) = EE(f)lg mEE()c 6)

The main motivation for computing these components is because they are adequate to
check a number of verification issues, specially those in which a rule is tested against the
metarules that add or remove its module. To compute each of these components, EE(f;) is

expressed in terms of terminal environments. Using (2) and (3)
EE()=ri®{ arj®[amrm®...rm®(~EE);))

ri<—fj rj<— fk rm<_ fn

N EE(mm) A EE(mk)] n) EE(mj)}) EE(m,)
where, for all i, it is understood that r; is the rule concluding f;, and m; is the module
containing r;. It is easy to see that these operations verify the following properties,
M(EEinEE) = (\EE) r2 (EE;)

1 1 1

r®(EEAEE") = rfQEE)AEE’ @)

Using (7) all the module e-environments can be shifted to the right, and

EE(f;) =<r;® { AT @ [MMre®...r®(~NEEOR))]) >)
I‘i<—f:]‘ i< Tk rm<—In
<{ a2 [A ... (nEE@my)...EE(myp)] EE(mj) } o EE(m;) >
ri< fj ri<s T 'm<—In

expression in which all the information corresponding to the domain knowledge appears in

the first part, while the second part contains the e-environments corresponding to modules.

94 Chapter 4. Verification using Extended Labels

Therefore, they constitute the expressions for the restricted environments EE(f;)lq EE(f;)lc,

expressions that can be rewritten as,
3

EE(flag=ri® ~ EE(fjla (8)
ri <—fj
EE(fplc = ro EE(mj) ®
ri€ RS(f,-)|d,r,- <=m;

From expression (8) e-labels and e-environments restricted to domain knowledge can be
defined for any ES object as follows,

feEF EL(ly ={EE,() (10)
feDF ELHly = v EL(Nlg 1)
reR, f<—r

reR, rem ELlg = re(~ EL(lQ) (12)
feF, r<f

mre MR ELtmPlg=mr® (~ EL(Plg) " a3)
feF, mr<f

meM EL(m)lg = v EL(mr)lq (14)

mre MR, m <= mr

The e-environments restricted to the control knowledge depend on the modules to which
belong the rules contained in the rule sequence of each e-environment. This set of modules
can vary among e-environments belonging to the same e-label. For this reason is not
possible to define e-labels restricted to control knowledge, and the most general expression
for e-environments restricted to control knowledge is the following,

EE®), = rny EE(mj), xeFURUMRUM (15)

rieRS(x)Id,r,-<: m;

It is worth noticing that, to compute all e-labels, is enough to compute all the e-labels
restricted to domain knowledge. In (15) e-environments restricted to control knowledge
depend on e-environments of modules. These e-environments can also be decomposed
into domain and control parts, and control parts are subsequently decomposed until
modules with empty control parts (not depending on other modules) are reached.

4.4 Solving Verification Issues 95

4.4 Solving Verification Issues

From the definition of the verification issues and e-labels, we can easily express each issue

in terms of e-label relations. Using the constructive definitions of e-labels, we obtain a

effective method to check the verification issues. The precise checking for each issue is as

follows:
Inconsistency
I-1. Let meM and mr, mr'e MRM, such that rhs(mr) = add m and rhs(mr’) =
remove m. There exists inconsistency if EL(mr’) partially subsumes EL(mr).
I-2. Let f, f'eF, iceIC, such that f, f'eic. There exists inconsistency if there exist
EE;(f)e EL(f) and EE;(f)e EL(f ") such that they are compatible and ic is
violated in RCV;(f) and RCV(f").
1-3. Let me M, mre MRM and re R, such that rhs(mr) = add m and re m. There
exists inconsistency if EL(mr) is not fully compatible with EL(r).
1-4. Let me M, mre MRM and reR, such that rhs(mr) = remove m and re m. There
“exists inconsistency if EL(r)lq partially subsumes EL(mr).
Redundancy
R-1. Let x, x'eR or x, x'’e MR, such that rhs(x) = rhs(x"). Then, x’ is redundant
with x if EL(x") totally includes EL(x).
R-2. Letf, f'eDF. Then, f" is redundant with fif EL(f") totally includes EL(f).
R-3 Let me M, mre MRM and reR, such that rem and rhs(mr) = add m. Then, r is

redundant with mr if EL(mr) totally subsumes EL(r)lq.

In addition to these tests, we found convenient to test situations that can be close to

redundancy. One of these situations occurs between two rule chains deducing the same

fact f, when the conditions of one rule chain are a subset of the conditions of the other. No

restrictions are imposed on the certainty values of f reachable by both rule chains. Ve have

called this situation R-4, but it is not an actual error pattern, since correct deductions can

satisfy it. In terms of e-labels this situation is as follows,

96

R-4.

Circularity

C-1.

Chapter 4. Verification using Extended Labels

LetfeDF, a po‘gential redundancy may occurs when there exist EE;(f), EEj(f)

™ e EL()) such that EE;(f) subsumes EE/(f).

Let reR and me M, such that rem. There is a cycle if there exists
EE(nlge EL(r)lg, such that re RS;i(r)lq.

C-2. LetreR and meM such that rem. Let EE;(r)lqe EL(r)lq. Let my,...,my be the
modules to which rules in RS;(r)lq belong. There is a cycle if there exists
EE|(mj)lae EL(m))lg such that re RS)(mjlg, j = 1,... k.

C-3. LetmeM and EE;j(m)lge EL(m)lq. Let mj,...,m; be the modules to which rules
in RS;(m)lq belong. There is a cycle if there exists EE;(m)lge EL(mj)lq.and
rem, such that re RS;(mjlq, j = 1,....k.

Useless objects

U-1. LetxeRUMR. Then, x is non-fireable if EL(x) = @.

U-2. LetfeF. Then, fis unreachable if EL(f) = g¢.

U-3. Let mre MRS and mr'e MRM. Then, mr’ is shadowed by mr if EL(mr") totally
subsumes EL(mr).

U-4 Let mre MRS and re R. Then, r is shadowed by mr if if EL(r) totally subsumes
EL(mr).

U-5. Let meM and mre MRM, such that rhs(mr) = add m. Then, m is unreachable
if every metarule mr is either non-fireable or shadowed.

U-6. LetmeM and reR, such that rem. Then, r is unreachable if m is unreachable.

U-7. LetfeF and reR, such that ferhs(r). Then, f is unreachable if every r is either

non-fireable, shadowed or unreachable.

From these expressions we can design a verification procedure with the following

steps: (i) for all KB objects compute their e-labels restricted to the domain knowledge,

detecting all circularities of type 1 (otherwise the procedure could loop itself), (ii) check

4.4 Solving Verification Issues 97

circularities cases 2 and 3, (iii) detect all useless KB objects, removing them for further
processing, (iv) check inconsistency, and (v) check redundancy.

The computational complexity of this method is, in the worst case, exponential with
respect to the set of external facts. By worst case it is understood that all the possible
combinations of external facts with all their possible values are present as different e-
environments. But this is quite far from reality, given that a theory of these characteristics
will lack the required degree of compactness to be learned by anyone in the first place
[Ginsberg 88]. So, it is reasonable to expect an average case complexity that allows one to
effectively check a rule base of several hundreds of rules (< 1000). The practical results
obtained using IN-DEPTH II to verify PNEUMON-IA confirm this estimation (see section
4.7.3).

4.5 An Example

Let us consider the following rule base,

MRS = {mr0}
MRM = {mrl, mr2, mr3, mrd, mrS, mr6, mr7, mr8}
M = {ml, m2, m3}

"R ={rl,12,13,r4,15,16,17, 18, r9, r10, rl 1, ri2}

EF = {a, b7 c, d’ e7f’ g}
DF ={p,q,r,S,t,v>w,xvy»Z}_

i1c = { cv(q) + cv(w) < 1}
mr0) a, x, e — stop mr3) y — add m2 mr6) b — add m3
mrl) a — add ml mrd) w = add m2 mr7) q — add m3
mr2) —me — addml mrS)a,e —removem2 mr8)x,f — removem3
ml: - m2: m3:
rl)c,d —x; cv=1 rS5) x =t cv=1 ri0) —a,y — s; cv=1
r2)x, e =y, cv=0.8 ro)p =t cv=1 ril)yd,f - v; cv=1
r3)c,d,e >y, cv=0.8 r7)t —p; cv=1 ri2) f, r - w; ¢cv=0.8
1)y — z; cv=1 r8) t, v - qg, cv=20 .17

r9) z, = g —>>_Ar~; cv=29 .9

98 Chapter 4. Verification using Extended Labels

Extemal,qfacts can take boolean values only. Certainty values are numeric, from 0 to 1,
with the product as cv-conjunction and cv-modus-ponens functions, and threshold = 0.2.
Computing e-labels restricted to domain knowledge a circularity C-1 is found, between p
and ¢, involving the rules r6 and r7. Removing these rules for further processing, the e-
labels restricted to domain knowledge are, for deducible facts,

EL(p)lq =)
EL(Qlg={ (cdf) [0, 0.7] (rlr5r8rll) }
ELNg={ (cde—g) [0, 0.72] (rl r2 rd r9)

(cde—g) [0, 0.72] (r3rd r9) }
EL(s)lg ={ (—acde) [0, 0.8] (r1 r2 rl0) }

(—acde) [0, 0.8] (r3rl0) }
EL()lg ={ (c d) [0, 1] (rl1rs) }
ELMla={ @dh [0, 1] (r11) }
ELWlg={ (cdef—g) [0, 0.5] (rir2rdr9ri2)

(cdef—g) [0, 0.5] (r3rdr9ri2) "}
EL@lg={ (cd) [0, 1] (rl) }
EL)la={ (cde) [0, 0.8] (rl r2)

(cde) [0, 0.8] (r3) }
EL@la=((cde) [0,08] (172 rd)

(cde) [0, 0.8] (r3 r4) }

for rules,

EL(rDla={ (cd) [0, 1] ¢ }
EL(r2)lg={ (cde) [0, 0.8] (rl) }
EL(r)la={ (cde) [0, 0.8] @ }
EL(rdla={ (cde) [0, 0.8] (rl r2)

(cde) [0, 0.8] (r3) }
EL(r5)la={ (cd) [0, 1] (rD) }
EL®lg={ (cdf) [0, 0.7] (rir5ril) }
EL0Dla={ (cde—g) [0, 0.72] (rir2 rd)

(cde—g) [0, 0.72] (r3rd) }
EL(riO)lg={ (—acde) [0, 0.8] (rir2)

(—acde) [0, 0.8] (r3) }

EL(rIDlg={ (@) [0, 1] 2 }

4.5 An Example

99

EL(ri2)lg={ (cdef—g) [0, 0.5] (rir2 r4r9)
(cdef—g) [0, 0.5] (r3r4 r9) }
for metarules,
EL(mrO)lq={ (acde) [0, 1] (rl) }
EL(mrDlg={ (a) [0, 1] g }
EL(mr2)lg ={ (—e) (0, 1] @ }
EL(mr3)lg={ (cde) [0, 0.8] (rlr2)
(cde) [0, 0.8] r3) }
ELmrd)la={ (cdef—g) [0, 0.5] (rir2r4érori2)
(cdef—g) [0, 0.5] (r3rdr9ri2) }
EL(mrS)la={ (ae) [0, 1] ¢ }
EL(mr6)la={ (b) [0, 1] @ }
ELmr7)lg=((cdf) [0, 0.7] . (rirSr8ril) }
EL(mr8)lg={ (cd)) [0, 1] (rl) }
for modules,
EL(mDlg={ (a) [0, 1]]
(—e) [0, 1] @ }
EL(m2)lg={ (cde) [0, 0.8] (rl r2)
' (cde) 0,08 @3
(cdef—g) [0, 0.5] rlr2r4r9ri2)
) (cdef—g) [0, 0.5] (r3r4r9ri2) }
EL(m3)lg={ (b) [0, 1])
(cdf) [0, 0.7] (rirSr8ril) }

From these labels is easy to see that circularities of type C-2 and C-3 exist. A circularity of
type C-2 is formed by g, r8, v, r11, mr7, q. This is detected considering the rule sequence
for r8, (r1 r5 r1l1), which includes rules belonging to mI, m2 and m3, and checking that
r8 appears in one e-environment for one of these modules, specifically for m3. A
circularity of type C-3 is formed by w, rI2, mr7, q, r8, mr4 ,w. This is detected
considering one of the rule sequences in the e-label for m2, for instance (r3 r4 r9 ri2),
containing rules belonging to m/ and m3. But there is an e-environment for m3 including a
rule belonging to m2, specifically the rule r8. To allow for an effective computation of e-
labels, metarules mr4 and mr7 are removed for further processing. So, without'r6, r7,
mr4 and mr7, the full e-labels for deducible facts are,

100 Chapter 4. Verification using Extended Labels

ELp)= o
EL(g)=((abcdef [0, 0.7] 1 12 15 r8 r1l)

(abcdef) [0, 0.7] (rir3rsr8ril) }
EL(r) = { (@acde—p) [0, 0.72] (rlr2r4 r9)

(acde—g) [0, 0.72] (r3r4 r9 }
EL(s) = '
EL(t) ={ (acde) [0, 1] (r1 r2rS)

(acde) , [0, 1] (rlr3rs5) }
EL(v) ={ (bdj) [0, 1] (rl1) }
EL(w) ={ (abcdef—g) [0, 0.5] (rlr2r4r9ri2)

(abcdef—g) [0, 0.5] (r3rdrori2) }
EL(x) ={ (acd [0, 1] (rl)

(—e cd) [0, 1] (rl) }
EL(y) ={ (acde) [0, 0.8] (rl r2)

(acde) [0, 0.8] (r3) }
EL(z) ={ (acde) [0, 0.8] (rlr2 r4) ’

(acde) [0, 0.8] (r3 rd) }

for rules,

ELr)={ (acd) [0, 1] ¢

(mecd) [0, 1] 8 }
EL(r2) ={ (acde) [0, 0.8] (rl) }
EL(r3) ={ (acde) [0, 0.8] i) }
EL(r4) ={ (acde) [0, 0.8] (rl r2)

(acde) [0, 0.8] (r3) }
EL(r5) ={ (acde) [0, 1] (rl r2)

(acde) [0, 1] rir3) }
EL(r8) ={ (abcdef) [0, 0.7] (rir2r5ril)

(abcdef) [0, 0.7] (rlr3rSril) }
EL(r9) ={ (acde—g) [0, 0.72] rir2rd)

(@acde—g) [0, 0.72] (r3rd) }
EL(rl10)= ¢
ELriD)={ (®bdf [0, 1] ¢ }
EL(ri2)={ (abcdef—g) [0, 0.5] (rlr2r4 r9)

(abcdef—g) [0, 0.5] (r3 r4 19) }

4.5 An Example 101

for metarules,

EL(mr0)={ (acde) [0, 1] (rl) }
EL(mrl) ={ (@) [0, 1] ¢ }
EL(mr2) ={ (—e) [0, 1] ¢ }
EL(mr3) ={ (acde) [0, 0.8] (rlr2)

(acde) [0, 0.8] (r3) }
EL(mr5)={ (ae) [0, 1] @ }
EL(mr6) ={ (b) [0, 1] ¢ }
EL(mr8) ={ (acd)f) [0, 1] (rI)

(—mecdf) [0, 1] (rl) }

for modules,

EL(nD) ={ (a) [0, 1] ?

(—e) [0, 1] 4 }
EL(m2)={ (acde) [0, 0.8] r1r2)

(@cde) - [0, 0.8] (r3) }
EL(m3)={ (b) [0, 1] ¢ }

Using these results, the verification procedure identifies the following errors:

I-1.

I-3.

I-4.

Metarule mr3 is inconsistent with 775 because an action add can be performed
on m2 after an action remove (EL(mr3) partially subsumes EL(mrS5)).

Integrity constraint cv(q) + cv(w) < 1 is violated by the input set(@bcdef
—g) which can deduce ¢ and w with maximum certainty values of 0.72 and

0.5 respectively.

Metarule mr2 is inconsistent with r2 because if mr2 is fired (adding the module
ml to which r2 belongs), r2 cannot be fired (EL(mr2) is not fully compatible
with EL(r2)lq).

Metarule mr§ is inconsistent with r/1 because when mr8 is fired (removing the
module to which 711 belongs), r11 would have satisfied its conditions for
firing (EL(mr8) partially subsumes EL(r11)lg).

102

R-1.

R-2.

U-1.

U-2.

U-3.

U-5.

Chapter 4. Verification using Extended Labels

There exists redundancy between r2 and r3, because they require the same

™ conditions to be fired with identical results (EL(r2) totally includes EL(r3) and

vice versa).

There exists redundancy between y and z, because whenever z is deduced y is
also deduced with the same cv (EL(y) totally includes EL(z) and vice versa).

There exists redundancy between mr3 and r5, because when mr3 is fired
(adding the module m2 to which r5 belongs), all the conditions of r5 are
already satisfied (EL(mr3) totally subsumes EL(r5)lg).

Rule r10 is non-fireable because there is no consistent input set firing r10
(EL(r10) = ¢).

Fact s is unreachable because there is no consistent input set supporting s
(EL(s) = 9).

Metarule mr3 is shadowed by mr0 because they have the same supp‘ort set (ac
d e) but mr0 has priority for firing because it is an stopping metarule.
Therefore, mr0 is always fired before mr3 (EL(mr3) totally subsumes
EL(mr0)). .

Rules r2, r3, r4, r5, r8, r9, r12, are shadowed by mr0 because mr0 is always
fired before any of them (the e-label of each one of these rules totally
subsumes EL(mr0)).

Module m2 is unreachable because mr3, the unique metarule adding m2, is

shadowed.

Every rule belonging to m2 is unreachable because m2 is unreachable.

Facts y, z, t, g, r, w, are unreachable because their concluding rules are
shadowed or unreachable.

4.6 Incremental Verification

We implemented the verification method in a verifier called IN-DEPTH. This verifier was

able to verify KBs of small-to-medium size only (<300 rules) because it required large

4.6 Incremental Verification 103

computational resources (CPU time and memory). The reason was the brute-force
approach being used: the whole KB was verified without considering the relations between
its different parts nor the necessity for specific verification tests with respect to previous
verifications. Looking for an effective verification of larger KBs, we developed an
incremental approach of the verification method. We have implemented this approach in a
new verifier, called IN-DEPTH II. This section describes the incremental verification
approach and the IN-DEPTH II implementation.

4.6.1 Conditions for Incremental Verification

Incrementality of a process P on a set S is based on the following facts. First, the same
result is obtained when P is executed on the whole set S as when performing a sequence of
executions of P on a collection of subsets S;, such that US; = S. And second, if subsets S;
are chosen incrementally, that is to say S; S+, then when executing P on S;;; the
results of a previous execution of P on S; can be reused, simplifying the computation.
Incremental processes are of great interest, because they can provide important savings of
computational resources. Candidafes for incrementality of special interest are processes of
exponential complexity, because from several executions on input sets of small size the
same result of a single execution on a large set can be obtained (execution that could be
unfeasible because of computational resource constraints). Also good candidates for
incrementali'ty are processes which should be repeated on sets with high change rate but

where the changed part is relatively small with respect to the set size.

Expert system verification shares both conditions: exponential complexity and high
change rate in rule bases, resulting from previous error correction. Therefore, it is a very
suitable candidate for incrementality. An incremental verification process can be formulated
in the following way. Let KBy be a verified rule base on which a change operator O is

applied on an object o, generating a new rule base KB].
KBj =KBp + 0 (0)

Then, what kind of tests should be performed and on which elements of KB; to verify
the new rule base with a minimum effort?. Legal change operators are ADD, MODIFY and
REMOVE,? acting on rules, modules or metarules. Verification of KB is composed of two

independent steps: N

2 They are different of add and remove actions performed by metarules on modules.

104 Chapter 4. Verification using Extended Labels

1. If KBj contains new objects not appearing in KBy, these objects should be
* verified.
2. Changes in KBj can affect the verification results on objects in KB; u KBy

(objects already verified in KBp). Those verification tests and those objects for
which verification results obtained at KB do not hold in KB}, should be
repeated.

An example may clarify these steps. Let KB; = KBy + ADD (m), me M. Step 1 consists
in verifying the new module, for instance testing that it does not contains inconsistencies
or checking that its rules are not redundant with other existing rules. Step 2 consists in
determining how m affects the results of verification tests performed at KBy, and to which
extent these results are maintained in KBj. This step only considers those verification tests
which, performed in KBy, should be repeated in KBj on the same objects. For instanc;:, if
m contains a new way to deduce a fact f existing in KBy, all verification tests involving f
should be repeated since they are incomplete in KBj. Step 2 is of key impiortancc for

incrementality, and the remainder of this section is devoted to it.

The verification method is based on computing e-labels for objects in KB and testing
that some relations hold among these e-labels. Those objects in KBy n KB for whose e-
labels do not change from KBy to KB, the results of _/erification tests in KBy are still
valid at KBy, since they cannot change. On the contrary, those objects for which their e-
labels change from KBy to KB should be verified again, because their results can no
longer be guaranteed. The set of objects in KB n KBy sharing e-labels in KBy and KB;
is called KBjyy. In the following, we investigate the composition of KBj,, in function of
legal change operators.

4.6.1.1 Operator ADD

Proposition 1: Let KB; = KBg + ADD (x), xe R U M u MRM. The set KB;py is composed
of those objects in KBy that do not depend on x.

Proof. The proof is based on the form of the equations (1)-(5) for e-label computation in
section 4.3.2. Let xeR. If facts in KB;,, do not require x to be deduced, equation (2) will
be applied in KB to the same rules than in KBy. If rules and metarules of KBj,y, do not
require facts deduced by x, equations (3) and (4) will be applied in KB; to the same facts
than in KBy. If modules in KBjy, are not activated by metarules requiring x, equation (5)

4.6 Incremental Verification 105

will be applied in KB to the same metarules than in KBy. Let xe M. Adding a module is
reduced to adding rules: it simply consists of a sequence of rule additions. Let xe MRM. If
modules in KB;yy are not activated by x, equation (5) will be performed on KB; on the
same metarules than on KBy. If rules in KBy, do not depend on x, equation (3) will be
applied in KB; to the same objects than in KBg. Analogous reasoning can be applied to
facts and metarules, equations (2) and (4). Therefore, for objects not depending on x their
e-labels are not modified by ADD (x).+

Proposition 2: Let KBy = KBy + ADD (mrs), mrse MRS. Then, KB;y,,, = KBy.

Proof. Metarules MRS do not appear in the computation of e-labels, equations (1)-(5).+

4.6.1.2 Operator REMOVE

Proposition 3: Let KB; = KBy + REMOVE (x), xeR u M u MRM. Set KBny is
composed of those objects in KBy which do not depend on x.

Proof. Same as that of proposition 1.+
Proposition 4: Let KB; = KBy + REMOVE (mrs), mrse MRS. Then, KB;,, = KBy.
Proof. Same as that of proposition 2. ¢

Finally, to show that not all verification tests should be repeated in KB; - KBy, after an
operator REMOVE, we need the following proposition.

Proposition 5: Let KB; = KB + REMOVE (x), xe R U M U MRM. Then, for yeF; U R}
uMjuMRy, EL;(y) c ELp(y).

Proof. Disjuntions in equations (2) and (5) are performed in KB; on a subset of the set of
objects on which they were performed at KBy. Therefore, EL;(y) c EL(y) for yeFj u
M;j . Using the equations (3) and (4) this condition is extended to yeR; U MR;. +

Corollary 1: Let KB; = KBy + REMOVE (x), xeR U M U MRM. The verification tests to
be repeated in KB - KBjyy are the following: I-3, R-1, R-2, R-3, U-1, U-2, U-3, U-4,
U-5, U-6, U-7.

Proof. Verification tests I-1, I-2, I-4, R-4, C-1, C-2, C-3 generate errors if there cﬂxists a
pair of e-environments in the e-labels of two objects satisfying some condition. All these

tests have failed in KBy, that is to say, it does not exist a pair of e-environments in the e-

106 Chapter 4. Verification using Extended Labels

labels of objects in KBy satisfying this condition. Proposition 5 shows that e-labels of

objects in KB are subsets.of their corresponding e-labels in KB. Therefore, these
b

verification tests will also fail in KBj.+

4.6.1.3 Operator MODIFY

Proposition 6: Let KBy = KBy + MODIFY (x), xeR U M u MRM. The set KBjy, consists
of those objects in KBy that do not depend on x.

Proof. Direct from propositions 1 and 3, since MODIFY (x) = REMOVE (x) + ADD (x). +

4.6.2 IN-DEPTH II: An Incremental Verifier

The IN-DEPTH II verifier can perform specific verification tests on specific KB parts,
allowing for a flexible verification process. IN-DEPTH II implements the verification method
in an incremental way. It accepts a KB and the list of modifications as input and performs
the minimum set of tests to achieve a global correctness. Obviously, it can also work in a
non-incremental mode. Incrementality is based on the computation of KBjy,. Specific
algorithms used in IN-DEPTH II follow.

4.6.2.1 Computation of KB,

Given KB; = KBy + O (x), from propositions 1, 3 and 6 it is clear that KB, is the set of
objects of KBy which do not depend on x. To compute KB;,, we only need to build a
directed dependency graph G representing all the dependencies in KByy,,y, where KB yqx =
KB} if ©= ADD, MODIFY and KB ,qx = KBy if © = REMOVE. G is formed by (N, E)
where N is a set of nodes and E is a set of directed arcs. Each fact, rule, module or
metarule of KBy, 1s represented by a different node in N. Each node is labelled by the
object that it represents. There is an arc from node n; to nj when the object labelling n;
depends on the object labelling nj by the three possible dependencies: <- , <=, <= . The
transitive closure of G can be computed using the Warshall's algorithm [Sedgewick 88],
giving the set of nodes connected with any other node in G. In particular, those nodes
reachable from x represent all objects in KB4y depending on x. The complement set,

nodes not reachable from x, represents those objects in the set KBjy,.

4.6 Incremental Verification 107

4.6.2.2 Incremental Algorithm

The incremental algorithm consists of the two steps mentioned at the beginning of section
4.6.2. In step 1, objects added to the KB are verified by themselves and in their relation
with other existing objects. This step is described in figure 4-1. If a stop metarule is added
it is tested for useless objects only, because this type of metarules is not involved in any
other verification issue. Before executing step 2, the directed dependency graph G is built
to compute the set KBjyy. In step 2, objects in KB - KBjp, are verified. If an object is
removed, only the following verification tests should be made (corollary 1): I-3, R-1, R-2,
R-3, U-1, U-2, U-3, U-4, U-5, U-6 y U-7. This step is described in figure 4-2.

procedure step-1 (6, x)
if © = ADD, MODIFY then
case x
rule, module, metarule on module
execute U-1, U-2, U-3, U4, U-5, U-6, U-7,
C-1, C-2, C-3,
I-1, I-2, I-3, I-4,
R-1, R-2, R-3, R-4
on x
stop metarule
execute U-1, U-2, U-3, U-4, U-5, U-6, U-7
on x
endcase
endif
endprocedure

Figure 4-1. Step 1 procedure.

procedure step-2 (KBj, KBjyy,0)
case O
ADD, MODIFY
execute U-1, U-2, U-3, U4, U-5, U-6, U-7,
C-1, C-2,C-3,
I-1, I-2, I-3, I-4,
R-1, R-2, R-3, R-4
on KBj - KBijny
REMOVE
execute U-1, U-2, U-3, U-4, U-5, U-6, U-7
I-3, R-1, R-2, R-3
on KB - KBjny
endcase
endprocedure o

Figure 4-2. Step 2 procedure.

108 Chapter 4. Verification using Extended Labels

4.6.2.3 *Multiple Operators

The previous algorithms assume that KB is obtained from KB from the action of a single
change operator. This situation can be generalized to multiple change operators, when

KB, =KBgp + 01(0]) + ... + 04(0y)

Procedures of section 4.6.2.2 can be applied to the sequence of operators, considering
each time one 0;(0;) and obtaining a new verified rule base KB;. This formulation
considers KB; = KB;_1 + 0;(0;) where KB;.; includes operators 0;(cj) + ... + 0;.1(0-1).
However, this approach is not optimal in the common case when many change operators
act on the same module m of KBy. At the execution of the st ep-2 procedure for 6;(0;),
module m will be verified, operation that will be repeated again at the next operator acting
on m. Therefore, it seems more efficient to group all the change operators in the sequence,
performing the step-2 procedure only once. This modifies the computation of KBj,, in
the following way: the dependency graph G is built from KB, u KBy, and KB;yy is
computed as the subset of unreachable nodes from any object o; present in the change
operator sequence. The multiple change procedure is described in figure 4-3.

procedure multiple-change
For every 6;(0;) do
step-1(6;0))
endfor
compute KBjy, from 0;(0;) + ... + 6,(0p)
if any ©; = REMOVE then © =REMOVE else © =ADD endif
step-2 (KBj, KBj,y, ©)
endprocedure

Figure 4-3. Multiple-change procedure.

4.7 Verifying PNEUMON-IA

We have used the IN-DEPTH II verifier to verify the expert system PNEUMON-IA [Verdaguer
89], which was developed with the shell MILORD [Sierra 89)]. This system performs
etiological diagnosis of community acquired pneumonias in adults. It is composed of 500
facts, 600 rules and 100 metarules distributed in 25 modules considering 22 different
etiologies. PNEUMON-IA was validated after its construction by a team of 5 independent

4.7 Verifying PNEUMON-IA 109

experts in the field using a test set composed of 66 cases. Validation results showed that
the performance level of PNEUMON-IA was comparable to that of human experts. In
addition, a field test was performed using PNEUMON-IA in a hospital for a three months

period.

In spite of the quality of PNEUMON-IA recommendations, its verification was
challenging. We started executing IN-DEPTH II on the whole KB and testing all the
verification issues. That generated long listings of results difficult to read and manipulate,
so we proceeded in a different way. We concentrated our verification efforts on specific
parts of the KB and considered specific issues. Then we started to get results, as non-
fireable rules, redundancies or potential inconsistencies. For the expert developer of
PNEUMON-IA that was a innovative way to analyze the system. He studied IN-DEPTH II
outputs to discriminate actual errors from situations that appeared to be anomalous but they
had some kind of justification. Correcting actual errors caused further modifications in the
KB improving its structure, robustness and safety. So far, we have verified the 50% of the
KB contents. The number of actual errors detected has been low in comparison with the
KB size. The verification process has increased our confidence on PNEUMON-IA, specially
because it has certified the absence of certain error types.

Verification sessions were made weekly. Each session lasted two or three hours, where
the developer of IN-DEPTH II and the expert worked together analyzing verification results
and considering potential updates. Sessions were devoted to a small KB part, one or two
modules, and considering specific problems. After each session the KB was updated and
IN-DEPTH Il was executed on the KB parts under study. The incremental procedure has
been of great help for an effective verification at a reasonable computational cost. These
sessions also caused improvements to IN-DEPTH II. In addition to a few bugs fixed, some

extra functionalities were conceived and added to the verifier, as the redundancy R-4.

4.7.1 Adding Extra Knowledge

The first problem we faced when started to use IN-DEPTH II for verification was the large
amount of unrealistic situations considered by the verifier. This was specially relevant for
inconsistency checking, where situations are combined in unexpected ways. We had to
add extra knowledge for verification purposes, to define those inputs that were
meaningless in the problem domain. This was made in two ways: (i) by defining
incompatible values on multivalued facts and (ii) by adding a set of integrity constraihts on
the input.

110 | Chapter 4. Verification using Extended Labels

A mu_ltivalucd fact represents an attribute in the problem domain that can take several
values. If*occasions, not all the possible values can be taken simultaneously because some
of them are incompatible. For example, there are several types of sputum, i.e, watery
sputum, rusty sputum, purulent sputum, etc. A watery sputum can also be rusty (in the
beginning of the disease), but it cannot be purulent. In PNEUMON-IA there are 19
multivalued facts. Their possible values were analyzed by the expert for incompatibilities.
He found 54 sets of incompatible values affecting to 10 multivalued facts. These
incompatible values were recorded in a file that is read by IN-DEPTH II before any <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>