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Abstract

Case-Based Reasoning (CBR) methodology’s approach to problem-solving that “similar problems
have similar solutions” has proved quite favorable for many industrial artificial intelligence appli-
cations. However, CBR’s very advantages hinder its performance as case bases (CBs) grow larger
than moderate sizes. Searching similar cases is expensive. This handicap often makes CBR less
appealing for today’s ubiquitous data environments while, actually, there is ever more reason to
benefit from this effective methodology. Accordingly, CBR community’s traditional approach of
controlling CB growth to maintain performance is shifting towards finding new ways to deal with
abundant data.

As a contribution to these efforts, this thesis aims to speed up CBR by leveraging both problem
and solution spaces in large-scale CBs that are composed of temporally related cases, as in the
example of electronic health records. For the occasions when the speed-up we achieve for exact
results may still not be feasible, we endow the CBR system with anytime algorithm capabilities
to provide approximate results with confidence upon interruption. Exploiting the temporality of
cases allows us to reach superior gains in execution time for CBs of millions of cases. Experiments
with publicly available real-world datasets encourage the continued use of CBR in domains where
it historically excels like healthcare; and this time, not suffering from, but enjoying big data.

i



Contents

Contents ii

List of Definitions v

List of Figures vi

List of Tables vii

List of Algorithms viii

Acknowledgements ix

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Why CBR still matters . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Why ‘temporal case bases’ matter . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Why ‘anytime CBR’ matters . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Why ‘anytime kNN’ matters . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Speed-up in exact kNN search . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Further speed-up by anytime kNN search . . . . . . . . . . . . . . . . . 5

1.2.3 Accounting for the solution space . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 More than algorithms, a methodology . . . . . . . . . . . . . . . . . . . 6

1.2.5 Open source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ii



2 Background 8

2.1 Case-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Utility problem in CBR . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Temporal case base / Domain of interest . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Metric problem space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Definitions of domain concepts . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Anytime algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Lazy kNN 20

3.1 Upper-bound of similarity in a temporal case base . . . . . . . . . . . . . . . . . 21

3.2 Lazy assessment of kNN candidates . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Lazy kNN algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Experiment datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Evaluation of Lazy kNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Anytime Lazy kNN 37

4.1 Incremental Lazy kNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 ALK algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Quality measure and quality map . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Performance distribution profile . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Evaluation of ALK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.1 Efficiency of confidence . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.3 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Insights on ALK’s gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Alternative RANK iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

iii



5 Anytime Lazy kNN Classifier 63

5.1 Interrupting ALK Classifier with exact solution . . . . . . . . . . . . . . . . . . 63

5.1.1 Majority and plurality votes . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.2 Distance-weighted vote . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3 Guaranteeing exact solution . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 ALK Classifier algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Evaluating ALK Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Approximate solution confidence . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Conclusions 82

6.1 Recommendations for ALK practitioners . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Glossary 88

Bibliography 89

iv



List of Definitions

2.1 Problem sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Time window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Temporally related cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Temporal case base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Upper-bound of similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 kNN candidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Cut-off point in kNN search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Gain of Lazy kNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Quality of a best-so-far NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Quality map of ALK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Performance distribution profile of ALK . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Confidence for a best-so-far NN . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Standard deviation of confidence for a best-so-far NN . . . . . . . . . . . . . . . 47

4.6 Interruption point for a confidence threshold . . . . . . . . . . . . . . . . . . . . 47

4.7 Efficiency of confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



List of Figures

2.1 Problem & solution spaces in CBR . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Expanding vs fixed-width time window approaches to form queries . . . . . . . . 16

3.1 Using the triangle inequality to calculate the upper-bound of similarity of a case . 21

3.2 RANK during kNN search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Generating cases out of time series . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Gain of Lazy kNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Generation and use of confidence . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Quality map of ALK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Efficiency of confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Actual vs total number of similarity assessments to find exact kNN . . . . . . . . 57

5.1 Distance-weighted classification with ALK Classifier . . . . . . . . . . . . . . . 65

5.2 Neighbor sets for a target query . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Exploiting dubiosity neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



List of Tables

3.1 Time series datasets used to generate experiment case bases . . . . . . . . . . . . 29

3.2 Average gain of Lazy kNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Performance distribution profile with confidence . . . . . . . . . . . . . . . . . . 46

4.2 Average gain upon interruptions at confidence thresholds . . . . . . . . . . . . . 53

4.3 Average execution time and speed-up factor per query . . . . . . . . . . . . . . . 55

4.4 Average gain with Jumping vs Top-down iterations . . . . . . . . . . . . . . . . 61

4.5 Average gain with Exploit Approaching Candidates vs Top-down iterations . . . 61

5.1 Average gain upon interruptions by exact solution with plurality vote and at con-
fidence thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Average solution hit % upon interruptions by exact solution with plurality vote
and at confidence thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Average gain upon interruptions by exact solution with distance-weighted vote and
at confidence thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Average solution hit % upon interruptions by exact solution with distance-weighted
vote and at confidence thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



List of Algorithms

3.1 Lazy KNN Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Lazy KNN Class - Public Methods . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Lazy KNN - Core algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Anytime Lazy KNN Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Anytime Lazy KNN Class - Public Methods . . . . . . . . . . . . . . . . . . . . 42

4.3 Anytime Lazy KNN - Core algorithm . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Anytime Lazy KNN Classifier Class . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Anytime Lazy KNN Classifier Class - New Public Method . . . . . . . . . . . . . 67

5.3 Anytime Lazy KNN Classifier Class - Auxiliary Method . . . . . . . . . . . . . . 67

5.4 Anytime Lazy KNN Classifier - Core algorithm . . . . . . . . . . . . . . . . . . . 68

viii



Acknowledgements

Thank you Josep Lluı́s, for counting me in all those years after we said one day we would resume
from where we left. And thank you for your innate optimism and insightful tutorship during my
unconventional PhD journey. I consider myself privileged to have worked with and learned from
you. You are definitely one of my heroes!

Gracias Ana (Beltran) por tu apoyo más amable con todo el papeleo tedioso que necesitaba hacer
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Chapter 1

Introduction

Inspired by Schank’s dynamic memory theory for reminding and learning in cognitive science
(Schank, 1982), Case-Based Reasoning’s (CBR) approach to problem-solving is very reminiscent
to everyday human reasoning. CBR suggests a solution to a present problem by remembering and
reusing past similar problem-solving experiences that it keeps in its case base (CB). Subsequently,
CBR learns from each new experience, both from success and failure in the suggested solution, by
saving the new experience in its CB for future use.

CBR has been one of the most successful approaches to build intelligent systems that are able to
learn from experience (e.g. Goel and Dı́az-Agudo, 2017). Especially, it had a significant impact
on domains where reasoning is inherently based on experience. For example, a doctor tries to
diagnose a patient based on his/her past experience with patients showing similar symptoms. A
help-desk operator tries to solve an issue based on the solution to the most similar past problem, if
available. A music recommender is expected to recommend a song that is popular among listeners
of similar preferences and listening history. An attorney justifies his/her arguments using similar
past cases as precedents, etc.

Therefore, CBR’s reasoning is memory-based. It typically starts with an initial CB that is expected
to be enough representative of future problems in the domain. Consequently, every problem-
solving experience that is worth to remember (usually only those which cannot be readily inferred
from existing cases) is saved as a new case. As the CB grows, its coverage of the problem and
solution spaces of the domain also expands and the CBR system becomes likely to suggest more
accurate solutions to future problems. Nevertheless, a growing CB also causes the slow-down of
the search for similar past problems because now there are more cases to evaluate and similarity
assessments are computationally expensive. And eventually, the size of the CB reaches a point that
the time spent on this search makes a CBR system practically unusable. For example, k-Nearest
Neighbors (kNN) (Cover and Hart, 1967) is a widely used algorithm1 in CBR for the retrieval of
similar past problems. However, its linear runtime complexity slows down the retrieval consid-
erably as the CB grows. The phenomenon of the decrease in overall CBR system performance
due to CB growth is known as the utility problem (e.g. Francis and Ram, 1993) and has been a
major focus in CBR research until today. The main approach to tackle this problem has been con-
trolling the CB growth either by deletion of cases (e.g. Smyth and Keane, 1995) or avoidance of
their retention into CB (e.g. Muñoz-Avila, 1999). Both approaches trade performance for solution

1We will be using the kNN acronym both for the algorithm itself and the k nearest neighbors of a query point.

1



accuracy, however they inevitably imply a loss of information in the CB as a side effect too. You
might never know if a case that is considered redundant and left out of the CB today would not
prove critical in the future. For example, a feature of cases can later be deemed (or learned to be)
more crucial in similarity comparisons, and this would have ranked a left-out case more important.

On the other hand, a case base “doesn’t have to be very large to be very useful” (Kolodner, 1996,
p. 358). If solutions to future problems can successfully be suggested by adapting the solutions
to existing cases, the CB can be kept minimum in size. However, where accurate answers could
be vital like healthcare domain, relying only on adaptation and representativeness of a small case
base may not suffice. You may want to have more past evidence backing your present diagnosis.
Also, choosing representative cases can be a problem on its own. We have to make sure that the
selected cases are and will continue to be representative as the CB evolves.

Besides, increasingly abundant digital data makes controlling CB growth less practical. While
data is flowing into intelligent systems as never before, it may not even be possible to decide on
time which data goes and which stays. Naturally, CBR community is adapting its approach and
exploring ways on how to benefit from the abundance of data instead of suppressing its growth. For
example, a recent research is leveraging big-data tools to find approximately similar past problems
to a present problem among millions of cases (Jalali and Leake, 2015).

When it is inevitable to resort to approximate results for the sake of performance, anytime al-
gorithms (T. Dean and Boddy, 1988) offer a very appealing choice for algorithm design. An
anytime algorithm provides the best-so-far result when interrupted. The algorithm quickly finds a
good-enough approximate result and, if allocated more execution time, improves on it ultimately
yielding the exact result. Riesbeck (1996, pp. 384-5) argues that “CBR is a select and adapt al-
gorithm” and “the selection process should be an ‘anytime’ algorithm” to serve as an “intelligent
component” of a system. He adds that “...true CBR systems, typically have an ‘anytime’ capabil-
ity”. He attributes this capability to finding “some answer almost immediately” and then improve
the answer as more similar cases are reminded by retrieval if allocated more time. However, there
is more to an anytime algorithm than just to improve its solution over execution time. It is desired
to attach a quality value to its approximate results. Also, it is desired that the improvement in
the quality is more pronounced in the early stages of computation compared to the final stages.
For example, if an acceptable quality can only be reached towards the end of execution, it could
make sense to wait just a bit more to have the exact solution. Hence, although anytime algorithms
are very tempting to implement, not all algorithms can be easily transformed into their ‘anytime’
versions to comply with desired properties (for these properties see Zilberstein, 1996, p.74).

Against the challenges that CBR is facing with increasingly available large-scale case bases, we
saw a promising opportunity to tackle this challenge for a particular type of domain where the case
bases are comprised of temporally related cases as in the examples of electronic health records and
meteorological data. In such a temporal case base the search for similar past cases has to take into
account the evolution of cases instead of treating each case individually. The temporal dimension
regarding the evolution of cases has long started to gain the attention of CBR researchers (e.g.
Montani and Portinale, 2006).

Under the light of above-mentioned challenges and opportunities, in the following section we
explicitly state our motivations for this thesis. In section 1.2, we headline our contributions to
CBR research. Section 1.3 outlines the organization of the dissertation.
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1.1 Motivations

The motivation of our research presented in this dissertation stems from the answers to the implied
questions in the following subsections’ titles:

1.1.1 Why CBR still matters

The advantages that CBR historically brought to developing artificial intelligence (AI) applications
are still worthy today. These advantages (Leake, 1996b, pp. 3-4) (Kolodner and Leake, 1996, p. 33)
can be summarized as below:

• Domains like healthcare, fault diagnosis, help desk systems where each problem solving
is committed to corporate memory as an experience are very “natural domains” for CBR
(Leake, 1996b, pp. 4) ;

• CBR allows a quicker start to building applications in domains that are not easy/possible
to formalize completely. Instead of extracting rules from training data or hand-crafting
them, CBR can start with a smaller initial CB of past experiences. The initial CB grows
incrementally as CBR attains new cases after every new problem solving experience;

• In poorly understood domains, generalization of rules may be imperfect or impossible.
CBR’s reasoning based on past episodes makes the rule generalization unnecessary;

• Some eager learning methods like artificial neural networks typically produce black boxes
and thus, it is harder or impossible to give explanations to their reasoning for the results.
CBR’s results are easier to explain since they are based on similar past evidence and the
chosen adaptation method is explicitly known. Especially in domains where decisions may
be life-critical or where there is a high cost of failure, experts may need a convincing justi-
fication to apply the suggested solution;

• CBR’s incremental learning with new cases improves the solution accuracy without having
to retrain a model with the updated data that is needed by eager methods.

Noted as a CBR research challenge by Goel and Dı́az-Agudo (2017), CBR can bring a “cognitive
approach to big data”. As mentioned above, there are domains which demand explanation for the
solutions/predictions of an AI application. Unless an eager learning method produces a black-box
model of a domain that always gives correct results and the experts trust it without questioning,
justification of the results of an AI application will always support decision making. And, CBR
can offer explainability as one of its innate strengths to these domains.

1.1.2 Why ‘temporal case bases’ matter

Health sciences have been one of the major application domains for AI in general (Jiang et al.,
2017), and for CBR in particular (Bichindaritz and Marling, 2010; Begum et al., 2011). The
knowledge acquisition, reasoning and learning practices intrinsic to this domain make it a perfect
match with CBR. The characteristics of healthcare case bases have been one of the driving inspira-
tions for our research. In particular, a medical CB bears a temporal dimension that has to be dealt
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with specifically. The cases in this CB are not only snapshots of information in a point of time,
but they are temporally related as in the health record of a patient where each of his/her sessions
is a case. And consequently, a search for similar patients has to take into account the medical his-
tories in the form of temporally related cases instead of assessing individual cases. Although time
dimension has been a part of many CBs, the evolution of temporally related cases are addressed
by CBR research rather recently (e.g. Sánchez-Marré et al., 2005; Montani and Portinale, 2006).

On the other hand, time series data is becoming increasingly available in healthcare as biomedical
signals. Time series is a sequence of data observations for a particular phenomenon. Furthermore,
time series data generation is accelerating everyday due to the increase in integrated and wearable
devices in many other fields as well. Time series analysis has grown to be an investigation field on
its own and there is ever-growing research for their analysis and interpretation. Time series data
has long been integrated into case bases (e.g. Nakhaeizadeh, 1994; Funk and Xiong, 2006). And,
similarity assessment within a CB of biomedical signals inevitably has to consider the evolution
of the phenomenon represented by the cases (e.g. Montani and Portinale, 2006).

1.1.3 Why ‘anytime CBR’ matters

Industrial scale machine learning (ML) systems have to deal with larger amounts of digital data
everyday due to the exponential growth of both its generation and availability (Reinsel, Gantz,
and Rydning, 2018). Being a member of the instance-based learning (Aha, Kibler, and Albert,
1991) subdivision of the larger ML family, many CBR systems are not exempt from this laborious
opportunity either. However, if CBR is to benefit from ubiquitous digital data, instead of control-
ling the CB growth, there will have to be found new ways to tackle case bases of unprecedented
scales with millions of cases. From our perspective, the above-mentioned “anytime capability” of
CBR systems becomes more crucial for their efficiency and usability with such large-scale case
bases. In particular, since reasoning in CBR starts with retrieving similar past cases to the present
problem, an anytime CBR retrieval will have to yield ‘good-enough’ approximate neighbors of a
target query in a short time and improve on them given more execution time, eventually finding
the exact neighbors if allowed to run to termination.

1.1.4 Why ‘anytime kNN’ matters

k-Nearest Neighbors algorithm seamlessly fits CBR’s approach to problem solving. It is a non-
parametric learning method, i.e. there are no parameters of a model to learn from training data.
All training data is kept in memory and generalized for every unseen problem. Hence, kNN is
an instance-based learning method. kNN is commonly used for classification and regression tasks
in many fields (see Chávez et al., 2001). Given a distance (or similarity) measure and k value,
the output for a target query is decided/calculated by finding and using the labels of its k nearest
neighbors. So in a way, just like CBR, kNN also assumes that the solution for a query is similar
to the solutions of its neighbors.

Using kNN in CBR retrieval brings several advantages of lazy learning (Aha, 1997). Primarily,
all available data is used as a model itself. Contrary to eager learning models, kNN does not need
any re-training of a previously built model for updated and/or continuously growing data. Second,
the approximation of a suggested solution is carried out locally, and this gives CBR the ability to
deal with specific cases (e.g. cases that form separate small groups in the problem space) more
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accurately. Besides, since case bases incrementally grow after each problem solving experience
and they are not just randomly collected data, the susceptibility of kNN to noise in data is less
likely to occur in CBR.

Given a dataset of examples (or CB), the naı̈ve approach to find the kNN of a query is to exhaus-
tively calculate the distances between the query and the instances in the dataset and return the
nearest k instances. Unless the algorithm is massively parallelized, the linear time complexity of
this method prohibits its usage with very large data.

To speed up the kNN, many techniques (some of which we will be briefly reviewing in section 2.1)
opt for approximate neighbors. Besides, for some applications we may do just fine with similar
enough neighbors and there may not be a critical need for the exact ones. When approximation is
a choice on the table, a nice approach is to use anytime algorithms as they offer both approximate
and exact result options. When interrupted, they yield approximate results of improving quality
over execution time, and if they are allowed to finish, they return exact results. Therefore, a
‘well behaving’ Anytime kNN search can be the foundation to an Anytime CBR. Nevertheless, as
we will discuss in Chapter 4, implementing an anytime kNN algorithm is not trivial. However,
leveraging the temporality of cases in a temporal case base gives us the means to achieve it.

1.2 Contributions

Pursuing our motivations reflected above, we present our following contributions to the CBR re-
search:

1.2.1 Speed-up in exact kNN search

We developed an algorithm, Lazy kNN (Mülâyim and Arcos, 2018), that achieves significant
speed-up in kNN search in temporal case bases. The gain in speed is thanks to the evaluation
of only the true kNN candidates of a query in a CB. The candidacy assessment leverages the
triangle inequality property of metric spaces and the temporal relation between the cases. The al-
gorithm is tested with moderate-to-large sized case bases generated out of publicly available time
series datasets.

1.2.2 Further speed-up by anytime kNN search

To deal with the occasions where the speed-up in exact search provided by Lazy kNN may still
be insufficient for time-critical decisions, we extended our algorithm to Anytime Lazy kNN (ALK)
by endowing it with desired anytime algorithm capabilities (Mülâyim and Arcos, 2020). Anytime
Lazy kNN finds exact kNN when allowed to run to completion with remarkable gain in execution
time by avoiding unnecessary neighbor assessments. And, for applications where the gain in exact
kNN search may not suffice, it can be interrupted earlier and it returns best-so-far kNN together
with a confidence value attached to each neighbor. The confidence for an approximate neighbor is
based on a probabilistic model. ALK can also be interrupted automatically after reaching a desired
confidence threshold. Furthermore, we devised a means to measure the efficiency of confidence
estimation. Anytime Lazy kNN is evaluated on the same datasets as Lazy kNN to indicate the
further speed-up achieved by the interruption of the algorithm at given confidence thresholds.
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1.2.3 Accounting for the solution space

The ultimate goal of most CBR systems is to suggest solutions. Both Lazy kNN and Anytime Lazy
kNN attain the speed-up by leveraging the properties of the metric problem space. Accordingly,
to account for the solution space as well, we extended ALK for its use in classification, a common
task for CBR systems in our target domains. Anytime Lazy kNN Classifier can suggest a solution
for both approximate and exact kNN of a target problem. ALK Classifier also gives an option
to be interrupted automatically upon guaranteeing the exact solution. Thus, when used for exact
classification, it exceeds the speed-up of its predecessor Lazy kNN.

A desired property of CBR systems is to attach a confidence for their solutions. However, to the
best of our knowledge, all existing solution confidence measures in CBR literature use exact neigh-
bors of a query. To provide a solution confidence when ALK Classifier suggests a solution with
best-so-far kNN as well, we formally transformed some of the confidence measures in literature
to be used in approximate classification.

1.2.4 More than algorithms, a methodology

We see our work more than the introduction of efficient algorithms. We believe that the candidacy
assessment, proposed data structures to track kNN search histories and the methodology that we
used in the construction of the anytime kNN algorithm and confidence estimations can be applied
to a multitude of application domains that operate with temporal case bases in metric spaces. It
will be seen that these mentioned mechanisms are parametric and/or extendable in our algorithms.
For example, our algorithms can work with any other case representation and its accompanying
similarity metric. Besides, even the search for kNN candidates can be carried out in a different
way that is deemed to fit better for a particular application domain. We give examples to candidate
search alternatives.

1.2.5 Open source code

All algorithms given as pseudocodes in this dissertation are publicly available as open source code
at the online repository https://github.com/IIIA-ML/alk. Moreover, at the same address, simple
instructions are provided to easily repeat the experiments and reproduce the results that we shared
in the thesis.

1.3 Dissertation organization

In the following chapter, we give further background information and a brief overview of the
related work for case-based reasoning, temporal case bases and anytime algorithms. We also
give explicit definitions of the concepts in our domain of interest that are used throughout the
dissertation.

Chapter 3 introduces Lazy kNN as our first contribution and details the theory and the mechanism
behind its speed-up in exact kNN search that will form the foundation for the following contribu-
tions. Then, we describe how we generate the CBs for experiments that will be used to test all
algorithms. Finally, we share the experiment results for Lazy kNN.
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Chapter 4 presents Anytime Lazy kNN (ALK) as the second contribution of this thesis. We describe
the steps to transform Lazy kNN to ALK. We detail the probabilistic model of adjustable accuracy
used in the estimation of the confidence for best-so-far kNN. Then, we show how we can autom-
atize interruption by reaching a given confidence threshold. Moreover, we introduce a means to
measure the efficiency of confidence estimations. We share the experiment results which empir-
ically demonstrate that we can reach superior speed-up even when the algorithm is interrupted at
very high confidence thresholds. And we shed more light to the insights of this superior gain. We
conclude this chapter by providing alternative ways to search kNN candidates.

Chapter 5 explores the solution space and presents ALK Classifier, an extension to ALK for clas-
sification tasks. We describe how and when ALK Classifier can guarantee the exact solution with
best-so-far kNN. The chapter also introduces the extensions to a set of solution confidence mea-
sures in literature to be used with approximate kNN instead of exact ones.

In Chapter 6, we discuss the outcomes of this dissertation, provide recommendations for the ap-
plication of proposed algorithms, and suggest future work to further enhance our contributions.
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Chapter 2

Background

This chapter presents background information within the scope of this dissertation. In Section 2.1
we briefly summarize the Case-Based Reasoning paradigm and highlight the challenges for large-
scale case bases of past and today. In Section 2.2, we introduce our domain of interest, namely tem-
poral case bases, and related terminology that we will be using throughout the thesis. Section 2.3
gives a brief overview of anytime algorithms that forms the foundation of our contributions.

2.1 Case-Based Reasoning

With its roots in the cognitive theory of the role of memory for understanding (Schank, 1982),
CBR methodology, just like us, assumes that “similar problems have similar solutions” (e.g.
Leake, 1996b, p.1). Thus, CBR solves a present problem by reusing or adapting the solutions
to similar previous problems retrieved from its case base. A case typically consists of three parts:
the problem representing the query, the solution suggested by the CBR system and the outcome
(feedback) after applying the solution (Kolodner and Leake, 1996, p.39). Most simplistic—yet
very common—problem description of a case is a vector of surface features where each feature
is represented by an attribute-value pair. Depending on the problem being solved, the solution
can be a label for classification, or a real value for regression, an action schema for planning, etc.
Figure 2.1 depicts the retrieval of similar problems to the target query from the problem space and
the suggestion of a solution by adaptation in the solution space.

Each suggested solution may further be revised by the feedback from an expert or from the out-
come of its application to the real world. Finally, the problem together with its accepted solution
are retained as a new case in the CB for future use. By the retention of a solved case, CBR system
essentially learns a new problem solving experience and this completes the typical CBR cycle
given in Figure 2.2. For the foundations of these steps see (Agnar and Plaza, 1994), for a thorough
review of them and, particularly, for alternative approaches to case representation and retrieval see
(López De Mántaras et al., 2005).

CBR’s method of learning is known as lazy learning (Aha, 1997) in Machine Learning literature
since a CBR system does not build a model prior to a query—as opposed to eager learning meth-
ods (e.g. artificial neural networks) which do so, and generalizes its cases every time a query is
posed to the system. This behaviour is an advantage of CBR for continuously changing large CBs
since it discards the need to re-train learned models with the updated data.
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Retrieve

Adapt

= description of new problem to solve

= descriptions of problems solved previously

= stored solutions

= new solution generated by adaptation of stored solution

Problem Space

Solution Space

Input problem description

Figure 2.1: Problem & solution spaces in CBR and the generation of a new solution. Adapted
from (Leake, 1996b).

Figure 2.2: The CBR cycle & its ‘4 REs’. Adapted from the emblematic depiction by Agnar and
Plaza (1994), still serving as the ‘coat of arms’ in the field.
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CBR has been successfully applied to a variety of domains for diverse tasks such as classifica-
tion, design, planning, justification and explanation. For example in help desk systems, Compaq’s
SMART (Acorn and Walden, 1992) stores prior problem-solving knowledge and increases the
effectiveness of the customer support staff. It also handles previously unseen cases by revision.
The product is awarded by the Association for the Advancement of Artificial Intelligence (AAAI)
as an ‘Innovative Application’ in AI. In industrial aiding systems, Lockheed’s CLAVIER (Hinkle
and Toomey, 1994) suggests most appropriate layouts of composite material to be used in auto-
clave curing ovens. CBR reduced the need for the availability of experts during the process and
eliminated the costs due to incompatible loads. Before the application of CBR, other reasoning
methods methods like rule-based systems were used and found to be impractical due to high com-
plexity of the processes (Mark, Simoudis, and Hinkle, 1996, p. 274). Law, as a natural domain
where knowledge is in the form of ‘cases’, has been an area of particular interest for CBR (for
a survey see Rissland, Ashley, and Branting, 2005). CBR has also been helpful for educational
purposes where students can learn from concrete past problems and their solutions (for a review
see Kolodner, Cox, and González-Calero, 2005). Case-based recommender systems is also a very
active and prolific research area in CBR. Example applications vary from e-commerce product
recommendation (e.g. Burke, 1999) to music recommenders (Baccigalupo and Plaza, 2007) and
travel advisors (e.g. Ricci, Arslan, et al., 2002). One of the interesting aspects of this domain
is that, in order to avoid mundane recommendations, CBR is usually expected to have diversity
within retrieved similar content for a query (e.g. McSherry, 2002). For a review and a frame-
work describing case-based recommenders, see (e.g. Bridge et al., 2005). Health sciences have
always been another major application domain of CBR for a variety of purposes including diagno-
sis (e.g. López and Plaza, 1993), prognosis (e.g. Armengol, Palaudàries, and Plaza, 2001), therapy
planning (e.g. Marling, Shubrook, and Schwartz, 2008), personalized medicine recommendation
(e.g. Torrent-Fontbona and López, 2019) and tutoring of medicine students (e.g. Kwiatkowska and
Atkins, 2004). For a survey of medical CBR applications see (Begum et al., 2011).

Besides, there has been significant research demonstrating that CBR is not only capable of suggest-
ing similar solutions but, with flexible retrieval and adaptation mechanisms, it can also introduce
novelty in solutions that leads to creativity (Kolodner, 1994). With a case base of buildings of dif-
ferent styles, Schmitt (1993) proposes case adaptation and case combination as a means to suggest
innovative architectural designs. Given a musical score and an inexpressive interpretation of it, Ar-
cos, López De Mántaras, and Serra (1998)’s SaxEx generates an expressive musical performance
of the score. Beside musical background knowledge, SaxEx uses a CB of sample human per-
formances and associated high-level expressiveness parameters which are automatically extracted
from these recordings. Using an ontology for story generation and a case base of tales, Gervás
et al. (2005) generate a story in the form of natural language as a response to a user query. The
query determines the components of the desired story like characters, roles, places and actions.
For more examples of CBR applications see (Leake, 1996a; Cheetham and Watson, 2005; Goel
and Dı́az-Agudo, 2017). The success of CBR led to development of generic CBR frameworks as
well, e.g. Noos (Arcos and Plaza, 1997), jCOLIBRI (Dı́az-Agudo et al., 2007), myCBR (Stahl
and Roth-Berghofer, 2008) and eXiT*CBR (López, Pous, et al., 2011)—a framework specifically
developed for medical applications.

Success stories for CBR exhibit common application domain characteristics. In these domains,
first, the above-mentioned basic assumption of CBR holds, i.e. similar problems have reasonably
similar solutions. And to this end, there can be built a notion of similarity so that the CBR sys-
tem can reliably assess the similarity between a present problem and a past experience. Second,
a complete formalization of domain knowledge is not practical or not possible, hence, training a
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domain model or generalizing rules for the domain is also impractical. However, it is still possible
to construct an initial case base that is representative enough of the domain. Here, representa-
tiveness is two-fold: (1) case representation comprises necessary information of the problem and
the solution to be effectively used in retrieval and reuse steps, and, (2) the initial CB plausibly
covers the problem and the solution spaces. See (Mark, Simoudis, and Hinkle, 1996, p.292) for an
interesting discussion on the laborious knowledge engineering effort behind case representation
and domain coverage for the commercially successful CLAVIER system. In the same work, their
claim that “adaptation is for humans” (ibid., p.293) is also of interest, especially when the cost of
failure is high, as it is so in their domain.

2.1.1 Utility problem in CBR

The coverage of a CB widens as new cases from the uncovered regions of the problem and solution
spaces are revised and retained. By the retention of new cases the CB becomes richer in experience
and CBR system is likely to provide more precise solutions in the future. Nevertheless, the richness
in the number of cases comes with a cost. Due to its lazy nature, the efficiency of CBR’s retrieval
phase affects overall system performance. And in practice, despite the seeming advantage for
better problem solving, a growing CB eventually causes the so-called swamping utility problem
(Francis and Ram, 1993; Smyth and Cunningham, 1996). This problem emerges when adding new
cases to a CB degrades the system efficiency instead of improving it. Specifically, degradation
happens due to computationally expensive search for similar past problems. For example, being
simple and effective, k-Nearest Neighbors (kNN) (Cover and Hart, 1967) search is a widely used
algorithm in CBR retrieval in particular and in instance-based learning (Aha, Kibler, and Albert,
1991) in general. The naı̈ve approach to find the kNN of a query is to perform a brute-force search
(a.k.a. linear search) in the CB by evaluating the similarity of each case to the given query and
return the k most similar cases. The linear runtime complexity1 of this method may be acceptable
for small sized CBs, but it implies an excessive execution time for large-scale CBs due to costly
similarity calculations, and is likely to evolve into the utility problem.

Among considerable efforts in early CBR research to improve retrieval performance are using
parallel architectures for brute-force search (Kolodner, 1988) and especially, defining index vo-
cabularies to guide retrieval (e.g. Schank et al., 1990). However, as CBR came into more use and
CBs started to grow in size, the main approach in CBR community to tackle the utility problem has
shifted towards controlling the CB growth via case base maintenance (CBM) techniques. CB size
is kept under control primarily via deletion of select cases while preserving the competence of the
overall CB (e.g. Smyth and Keane, 1995) or by avoiding their retention (e.g. Muñoz-Avila, 1999).
The reduction in CB size, in one way or another, inevitably causes a loss in information that was
rightfully learned by the CBR system. However, this trade-off has been justified by the increase in
retrieval efficiency. For competence definition see (Smyth and Keane, 1995), for CBM examples
see (Leake et al., 2001; Juarez et al., 2018), and for more dimensions of CBM see (Wilson and
Leake, 2001).

On the other hand, despite the present ubiquity of digital data in domains such as healthcare (W.
Raghupathi and V. Raghupathi, 2014) where CBR historically excelled at, the loss of information

1Runtime complexity of brute-force kNN is O(ndk) + O(nk log k) where n is the number of instances the query
is made against, d the dimension of each instance, k the number of nearest neighbors searched for; the first part of the
complexity is for distance calculations and the second part is for sorting the neighbors.
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itself may be costly in terms of a decrease in accuracy of life-critical solutions. If effective strate-
gies to overcome the utility problem cannot be developed, once-very-effective CBR is bound to
be less appealing for these domains, and at best it can play a less important role downgrading its
proven potential. CBR community has an open eye for this challenge and beside the obligation to
deal with large-scale data that comes with ever-growing CBs, current availability of the tools to
interpret big-data is also encouraging CBR researchers to work on systems that could benefit from
millions of cases—a scale far beyond previous CBR applications. Goel and Dı́az-Agudo (2017)
refer to big-data as one of the “hot” topics in the field.

For example, to tackle the computational cost of retrieval in large-scale case-based regression,
Jalali and Leake (2015) use Locality Sensitive Hashing (LSH) (Indyk and Motwani, 1998) for
approximate nearest neighbors search on top of a MapReduce framework (J. Dean and Ghemawat,
2004) that allows parallel processing of multiple queries. LSH technique partitions similar cases
into the same ‘buckets’ and tries to maximize the probability of the collision of their ‘hashes’.
And, with an appropriate hash function, a target query is directed to the bucket where its nearest
neighbors are expected to reside without actual similarity comparison of the query with the cases.
Thus, LSH discards the need to reduce the CB size for speeding up retrieval. However, due to its
approximate nature, LSH may imply a loss in solution accuracy as well. The authors show they
can compensate this loss with their “ensemble” method for adaptation. Woodbridge et al. (2016)
emphasize the challenge against the immensity of data produced by medical devices and they
propose a Monte Carlo approximation method on an LSH scheme to improve the search speed
and result quality in a medical CBR system with a case base of millions of biomedical signals. In
another application for on-line smart grids optimization, Troiano, Vaccaro, and Vitelli (2016) also
apply MapReduce to the retrieval of similar past ‘power system states’ from a large-scale smart
grid database to suggest an ‘optimal power flow’ solution.

Of course, big-data tools do not eliminate the need for CBM altogether. Maintaining the correct-
ness of cases and an adequate index are always useful for an efficient CBR. Besides, there is more
to CBR maintenance than just refining the case base. Other knowledge containers like similarity
and adaptation methods can require maintenance too (Wilson and Leake, 2001). That said, big-
data tools may indeed outdate CB compression strategies as discussed in (Jalali and Leake, 2015,
p.184).

Due to the commonness of the problem they address, nearest neighbor search (NNS) and its natural
variant kNN have been extensively used in a plethora of fields apart from CBR. For application
examples and general overview of NNS see (Chávez et al., 2001). Accordingly, there have been
vast efforts to speed up NNS by researchers from this variety of fields. There are two ramifications
in these contributions. First is speeding up the search to find exact neighbors of a target query.
Second, when finding exact neighbors would not be computationally feasible no matter what,
some efforts resorted to approximation methods to find approximate enough neighbors instead.
And, some proposed methods can serve for both purposes—as our proposal in this dissertation.

A notable method to overcome the computational overhead of both exact and approximate kNN
search is using search trees such as k-d trees and its variants. Search trees partition the multidi-
mensional search space and NNS is conducted by pruning parts of the tree that cannot include
the nearest neighbor(s) (e.g. Wess, Althoff, and Derwand, 1993; Yianilos, 1993). See also (Kib-
riya and Frank, 2007) for a comparison of search tree based exact NNS algorithms. However,
beside the cost of their construction and maintenance, k-d trees are prone to the curse of dimen-
sionality phenomenon (Bellman, 1957) and although improvement suggestions exist (e.g. Eastman
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and Weiss, 1982), they are usually not recommended for high dimensional spaces.2 In fact, high-
dimensionality may become a problem for NNS in a more general sense. This phenomenon occurs
when/if the distance between nearest and farthest neighbors of a point in space becomes negligible
as the dimensionality increases. Beyer et al. (1999) show the conditions when it is meaningful to
use NNS, especially when approximate NNS is used as heuristics. Typical techniques for approx-
imate matching in high dimensions are using search tree adaptations (e.g. Muja and Lowe, 2014),
proximity graphs (e.g. Hajebi et al., 2011) and hashing (e.g. Andoni and Indyk, 2006). On the
other hand, recent availability of GPUs for general purpose computation, and the parallelizable
nature of brute-force NNS led some researchers also to harness GPUs to speed up exact kNN (e.g.
Garcia, Debreuve, and Barlaud, 2008; Arefin et al., 2012).

When time is a dire constraint, thanks to their ability to provide always a solution upon inter-
ruption, anytime algorithms (T. Dean and Boddy, 1988; Zilberstein, 1996) have also been incor-
porated in NNS. For example, in data stream mining, Kranen and Seidl (2009) apply their own
approaches to existing anytime versions of Support Vector Machines, NNS and Bayes classifiers.
They implement a simple classification confidence measure of their own and evaluate their ap-
proaches on constant data streams and compare these three classifiers. In the same domain, Ueno
et al. (2006) propose an anytime algorithm for nearest neighbor classification where they use a
presorted (worst first) index which is created by assigning ranks to all instances based on their con-
tribution in classification on the training set. This index is used as heuristics in NNS. For database
applications, Xu et al. (2008) use an anytime search strategy for kNN searches with Multi-Vantage
Point Trees (Bozkaya and Ozsoyoglu, 1997). We give examples to usages of anytime algorithms
in CBR in section 2.3.

2.2 Temporal case base / Domain of interest

Temporal dimension has been taken into account since earlier CBR research for application do-
mains like times series prediction (Nakhaeizadeh, 1994), eating disorders in healthcare (Bichin-
daritz and Conlon, 1996), robot navigation (Ram and Santamarı́a, 1997) and more recently, fault
prediction in oil well drilling (Jære, Aamodt, and Skalle, 2002). Some of these early works (e.g.
last three mentioned) propose frameworks for the representation of temporal cases and for the
steps of the full CBR cycle in Figure 2.2. In these works, temporality has been represented either
as a point in time or an interval of time as a feature of case problem description. However, the
representation of time dimension ‘per case’ is not enough to meet the needs of domains where a
set of cases represent an evolution of a phenomenon. Healthcare is such a domain that for diag-
nosis, prognosis and/or treatment of patients, medical experts usually need to take into account
the evolution of a patient’s health rather than considering only his/her current condition (e.g. Sox,
Higgins, and Owens, 2013, p.8). Therefore, to compare the medical histories of patients, there
has to be more to retrieval than just treating each session as an individual case. That is, medical
histories of patients represented as sequences of related cases should be comparable against each
other as well.

Accordingly, reasoning with temporally related cases is addressed by later work in CBR com-
munity. Sánchez-Marré et al. (2005) propose an “Episode-Based Reasoning” framework where
a sequence of temporally related cases is referred to as an “episode”. They use a method for

2A good rule of thumb is to use k-d trees only ifN � 2d, whereN is the number of data points and d is the number
of dimensions (Bentley, 1975, p.516).
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the abstraction of cases to form episodes and the similarity is calculated by “the aggregation of
the similarity values among cases belonging to each episode”. They evaluate their framework in
wastewater treatment domain. Montani and Portinale (2006) emphasize the importance of tempo-
rality especially in healthcare domain and propose a framework for the representation and retrieval
of cases that are in the form of time series data in medical applications of CBR. The retrieval is
addressed both at “case” and “history” levels, the latter taking into account the evolution of the
temporally related cases. For a history level comparison, first they “summarize” the contents of
cases in a history by means of temporal abstraction (Shahar, 1997) that allows qualitative ab-
straction of time series data. In a more recent work, Van den Branden et al. (2011) present a
CBR system as an additional component to a proprietary software for clinical decision support.
Although the temporal relation between cases is not defined explicitly, their cases can capture
multiple instances of “special forms” belonging to different clinical stages where each form may
hold multiple “instances” of clinical data for a patient. They use weighted kNN (Wettschereck,
Aha, and Mohri, 1997) so that recent data instances contribute more to the similarity.

In this dissertation, we are particularly interested in domains where:

• the CB can be organized as sequences of temporally related cases;

• the similarity metric takes into account the evolution of a sequence (partially/fully) instead
of treating each case individually (e.g. considering the partial or complete medical history
of a patient instead of treating each of his/her sessions as a standalone case);

• the problem space is a metric space.

We give a brief summary of the properties of metric spaces in the following subsection. Then,
in subsection 2.2.2, we define the concepts for the temporal case bases regarding our domain of
interest.

2.2.1 Metric problem space

The set of problems comprised by cases in a case base and the distance measure used to calcu-
late the distance (a.k.a. dissimilarity) between two problems define the problem space for a CBR
system. A problem space X becomes a metric space if the distance measure d : X ×X → R is
a true metric and thus satisfies the following four axioms (M. M. Deza and E. Deza, 2009, p. 4):
∀x, y, z ∈ X ,

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Euclidean space is arguably the most popular metric space used in CBR systems. Where each
case is represented by a feature vector of attribute-value pairs, the simplest euclidean distance in
an n-dimensional space between a case x and a target problem y is given by the formula:
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d(x,y) =

√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 =

√√√√ n∑
i=1

(xi − yi)2 (2.1)

where xi and yi are the values of the ith attributes of x and y respectively.

To avoid an unintended bias for an attribute that has a wider numeric range, it is also common
practice to normalize attributes’ values and scale them into the same range before distance cal-
culation. Furthermore, since similarity plays a more central role in CBR, the distance measure d
itself is normalized into the [0, 1] range and it is converted to a similarity metric sim as:

sim(x,y) = 1− d(x,y) (2.2)

The triangle inequality property of metric spaces is of particular interest in kNN search as it
provides the upper-bound of distance between two points x, y when the distances of these two
points to a common third point z are known. And it has been widely exploited for speeding up
NNS in many different domains such as time series (e.g. Mueen et al., 2009), databases (e.g. Xu
et al., 2008) and CBR retrieval (e.g. Schaaf, 1996; Montani, Bellazzi, et al., 1998). We will also
be leveraging this property of metric spaces to define the upper-bound of similarity (section 3.1)
which helps us to identify kNN candidates of a query (section 3.2).

2.2.2 Definitions of domain concepts

For clarification purposes, we define the concepts for a temporal case base with respect to our
domain of interest below:

Definition 2.1 (Problem sequence). A sequence of temporally related problems (detailed in Def-
inition 2.4) that belong to a particular entity (e.g. to a patient, to a particular sensor that sends
time series data).

Definition 2.2 (Update). Any new information/data for a particular problem sequence that is
related to problem description (e.g. a consecutive session for a particular patient, a new data
observation from a particular sensor).

Definition 2.3 (Time window). A conceptual time frame marking the start and end updates on
a sequence, and which is used to derive a problem description. Specifically used for similarity
assessments in CBR retrieval. Depending on the design choice for a CBR system, ‘expanding’ or
‘fixed-width’ time window approach is applied.

Definition 2.3.1 (Expanding time window). Time window that expands for each consecutive up-
date, encompassing whole problem sequence.

Definition 2.3.2 (Fixed-width time window). Time window of fixed width w that slides for each
consecutive update, encompassing the last w updates to form the problem description (a.k.a. slid-
ing time window). Where u is the index of the end update for the time window, this approach
encompasses updates between [0, u] when u<w; whereas, for u≥w, updates between (u−w, u]
are covered.
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Definition 2.4 (Problem). A problem description generated for the updates encompassed by a
time window. The ‘initial problem’ is derived from the initial update regardless of the time window
approach (e.g. a sequence is created for each patient in their first session, for the first data received
from a sensor)

Definition 2.5 (Query). Invoked by a new update of a particular sequence, it is the target problem
that is posed as a query to the CBR system.

Definition 2.6 (Case). After CBR’s problem solving episode, the problem posed as the query and
its solution are saved as the problem and solution parts of a new case.

Definition 2.7 (Temporally related cases). All consecutive problem solving episodes for the
queries of the same problem sequence form a sequence of ‘temporally related cases’.

Definition 2.8 (Temporal case base). A case base comprising sequences of temporally related
cases.

(a) Time window width: Expanding

(b) Fixed time window width: 4

Figure 2.3: Expanding vs fixed-width time window approaches to derive problem descrip-
tions out of the updates of a problem sequence.

Figure 2.3 illustrates the basic defined concepts. We interpret the figure following the examples in
definitions for healthcare domain: A unique electronic health record (problem sequence) is created
for the initial session (initial problem) of each particular patient. The initial problem (which can
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be seen as the 0th update to the sequence) invokes a query for similar patients. When the problem
solving episode ends by suggesting a solution, say a therapy plan, the problem-solution pair is
saved as the initial case of the patient. Each following update invokes the generation of a new
query by applying a time window onto the sequence. Depending on the design choice for whether
the whole medical history or a part of it should be queried, the similarity metric would use an
expanding (Figure 2.3a) or fixed-width (Figure 2.3b) time window approach respectively to derive
the problem description for a query. Note that both approaches envelop the same updates for the
first w problem updates, and for a given sequence, they generate the same number of queries (e.g.
six queries in total in Figure 2.3).

After each CBR’s problem solving episode, the problem that served as a query and its solution are
saved as the problem and solution parts of a new case. All consecutive problem solving episodes
of the same problem sequence thus form a sequence of temporally related cases.

In implementation, case generation by time window approach can be conceptual or literal. In other
words, there may be only a single data structure representing a problem sequence, and, the case
for a particular update can be formed on the fly when needed. Or, there may be l data structures
for the cases of a sequence of length l.

Regardless of the implementation for case generation, we underline the important fact that con-
secutive problems of a sequence bear the information of their predecessors. For the expanding
time window approach the information of predecessors is complete (see Figure 2.3a), and for the
fixed-width approach it is partial (see Figure 2.3b).

We note that our definition of ‘sequence of temporally related cases’ (Def. 2.1 & 2.7) is concep-
tually akin to the “history” in (Montani and Portinale, 2006). We leave the generation of problem
description to implementation. Their temporal abstraction method could be used in our proposal
as well, as long as a similarity metric is used later with the abstracted data. Our sequence definition
is also reminiscent of the “episode” in (Sánchez-Marré et al., 2005). An interesting aspect of this
latter temporal framework is that it allows a case to belong to multiple episodes. For our domain of
interest, a case can belong to a single problem sequence, e.g. as a session can belong only to a par-
ticular patient. Furthermore, in certain aspects, our ‘problem’ encompassing sequence ‘updates’
resembles the “instances” of clinical data captured by a “special form” in (Van den Branden et al.,
2011). Their special forms are of more general purpose and can hold demographic information
about patients as well. Whereas in our problem description, we are mainly interested in features
that can be used in similarity assessment.

2.3 Anytime algorithms

An anytime algorithm (AA) is a computer algorithm designed in such a way that given an input
problem, it can provide a best-so-far solution at any time it is interrupted3 and the solution is ac-
companied by a quality value reflecting how close the interruption output is to the exact solution.
In the core of a typical AA lies a function which incrementally improves the solution. The quality
measure4 can be based on any characteristic of the output which is deemed important. It is prefer-
able that the output quality monotonically increases over computation time and the improvement

3Some anytime algorithms may need a short initialization time before they can be interrupted (e.g. Ueno et al.,
2006).
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in quality is greater at the early stages of execution and it diminishes over time.

After being interrupted, an AA should resume its execution if it is allocated more computation
time. AAs also bear statistical information about their output quality over execution time for
the input data they received. This information makes them predictable and it can be used for
meta-reasoning about allocated computation time (Grass and Zilberstein, 1996). See (Zilberstein,
1996) for a list of desired properties of AAs and quality metrics. All these characteristics make
AAs useful in application domains where complete computation to solve the problem at hand is
ineffective or impossible in real-time.

Performance Profile (PP) of an AA is used in estimating the quality of the output of the algorithm
as a function of the amount of execution time (Zilberstein, 1993). An AA can have several PPs to
track different result attributes (Boddy and T. Dean, 1989). After devising a quality measure, the
PP of an anytime algorithm is typically constructed by using a simulation method. The algorithm
is run with numerous input instances which are provided within a training dataset that can be
randomly generated using the domain knowledge and the quality of the results over execution
time are recorded. This statistical data composed of (execution time, output quality) pairs forms
the Quality Map of the algorithm. Once the quality map is obtained, the corresponding PP of
the algorithm can be derived from it as a formula by means of curve fitting methods or it can be
represented as a table which reflects the discrete probability distribution of quality for discrete
time allocations. The latter representation is called the Performance Distribution Profile (PDP) of
the anytime algorithm and helps us give more accurate decisions compared to a single value of a
fitted function. In our work, we opted for PDPs. See (Grass, 1996) and (Zilberstein, 1993, p.45)
for further discussion on possible representations of PPs.

In accordance with the above description of a preferable AA, and regarding the focus of this disser-
tation, an anytime kNN search algorithm to be used in CBR retrieval is expected to monotonically
improve on its k nearest neighbors and provide a quality value attached to the best-so-far neighbors
upon interruption. Also the improvement in output quality is preferred to be diminishing over time
which means that the nearest neighbors found in early stages of search are almost as close to the
query as the exact neighbors. Furthermore, the algorithm should be able to resume its execution
without a major overhead if it is allocated extra computation time to improve on its results.

Although not a very common practice, anytime algorithms have been used in CBR as well. For
example, in Schaaf’s “Fish and Sink” (FaS) (Schaaf, 1995), the author deals with domains where
“aspects” of similarity between two cases might change. The CB also holds “aspect” distances
of the cases among each other which are weighted according to the “view” of the user asking
the query. The NNS in CB starts with a predefined order of cases and “directly tested” (DT)
cases “sink” with regards to their distances to the query, dragging down their view neighbors with
them and labelling those neighbors as “indirectly tested” (IDT) cases. The time of interruption
is important and only after all cases are labelled either as DT or IDT, FaS can show best k cases
found so far regarding the relative depths of the DT and IDT cases. A prior interruption yields
unconfident results. If FaS is not interrupted, it tests and sorts all cases. In this work, although the
‘quality’ of results are discussed (ibid., p. 545), there is no explicit definition of quality as such.

Ricci and Avesani (1995) use an anytime algorithm not to speed up CBR retrieval but in learning a
local similarity metric to be used in retrieval where the distance around a “trial case” is measured
using the metric attached to that case. Their anytime algorithm updates the distance between an

4In this dissertation we follow the terminology for anytime algorithm components given in (Zilberstein, 1996).
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input case c and its neighbors depending on the role of the neighbors in solving c by incorporating
a reinforcement learning procedure that adjusts the local weights.

In the following chapter, we introduce our base algorithm that significantly speeds up exact kNN
search for CBR retrieval. Then, in Chapter 4, we convert it to an anytime algorithm exhibiting all
desired properties mentioned in this section.
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Chapter 3

Lazy kNN

For our domain of interest, the temporal nature of case bases offers opportunities to speed up
the kNN search in CBR retrieval, in particular when similarity measures take into account the
evolution of cases rather than treating them individually.

As described above, when a new update is appended to a problem sequence, the case formed for
this update bears the information of previous updates. Consequently, as the number of updates in
a problem sequence increases, the difference between the cases formed for the last and penulti-
mate updates decreases due to shared long history between them. Therefore, when this difference
becomes minimal, it is intuitive to think that the kNN of both cases will likely be similar, if not
identical. Effectively, the fundamental assumption of CBR that “similar problems have similar
solutions” also supports this hypothesis.

This intuition brings about a thought-provoking question on similarity estimation: How similar a
neighbor of a case can get to the consecutive case of the same sequence? Following the previous
health record example, if patient C was found similar for patient P ’s eighth therapy session P 8,
at most how similar can C become for P ’s ninth session P 9? And, more importantly, could C
even be a candidate for k most similar patients for P 9? The last question is of particular interest.
Because, if somehow we can prove that C cannot be a kNN candidate for P 9, then there is no use
of evaluating it in that kNN search. That is, there is no need to calculate its similarity to P 9 since
it could never make it to the final kNN list. After all, kNN are what we are looking for within the
problem space.

This chapter is organized as follows. In the following section, we define the upper-bound of
similarity of a case to a consecutive query of a problem sequence in metric spaces. Later in
section 3.2, we show how we can leverage this upper-bound to identify kNN candidates and more
importantly, how we can rule out non-candidate cases. Section 3.3 presents the complete Lazy
kNN algorithm that utilizes this candidacy assessment and remarkably speeds up kNN search
by avoiding unnecessary similarity calculations. Then, we describe how we built small-to-large
temporal CBs out real-world datasets for our experiments in section 3.4. Finally, we give the
results of the experiments that empirically demonstrate the speed-up achieved by Lazy kNN in
section 3.5.
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3.1 Upper-bound of similarity in a temporal case base

In this section we define the upper-bound of similarity in a temporal case base by leveraging the
triangle inequality detailed previously in subsection 2.2.1. Later in section 3.2, we show how this
upper-bound serves us to identify the true kNN candidates in a CB for a target problem.

The candidacy assessment that we will describe forms the basis of our proposed algorithm in
which a case in the CB is evaluated only when it is deemed a candidate for a query. The assessment
of true candidates in such a lazy fashion helps us to avoid unnecessary distance calculations and,
as we will show, results in remarkable speed-up in kNN search.
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Figure 3.1: Using the triangle inequality to calculate the upper-bound of similarity of a case
to two consecutive problems of the same sequence. Where d is the distance metric, P ′ and P ′′

are the problems for the first and second consecutive updates to the initial problem P in the same
sequence respectively, and C is a case in the CB whose distance to P we had calculated before;
we have d(P,C) ≤ d(P ′, C) + ∆′ and d(P,C) ≤ d(P ′′, C) + ∆′ + ∆′′.

As illustrated in Figure 3.1, given a normalized metric d and four points in problem space

〈P, P ′, P ′′, C〉

where P ′ and P ′′ are the problems for the first and second consecutive updates to initial problem
P in the same sequence respectively, and C is a case in the CB whose distance to P we had
calculated before; these four points satisfy following inequalities:

d(P,C) ≤ d(P ′, C) +

∆′︷ ︸︸ ︷
d(P, P ′) (3.1)

d(P ′, C) ≤ d(P ′′, C) +

∆′′︷ ︸︸ ︷
d(P ′, P ′′)

Then, using the latter inequality in the former, we get:

d(P,C) ≤ d(P ′′, C) + ∆′ + ∆′′ (3.2)
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Now, where sim(x, y) = 1 − d(x, y), we can transform the distance inequalities (3.1) and (3.2)
into inequalities for similarities. Following the inequality (3.1):

1− d(P,C)︸ ︷︷ ︸ ≥ 1− d(P ′, C)︸ ︷︷ ︸−∆′

sim(P,C) ≥ sim(P ′, C)−∆′

which leads to:

sim(P ′, C) ≤ sim(P,C) + ∆′ (3.3)

And following the inequality (3.2):

1− d(P,C)︸ ︷︷ ︸ ≥ 1− d(P ′′, C)︸ ︷︷ ︸−∆′ −∆′′

sim(P,C) ≥ sim(P ′′, C)−∆′ −∆′′

which leads to:

sim(P ′′, C) ≤ sim(P,C) + ∆′ + ∆′′ (3.4)

The inequality (3.3) states that, just by calculating ∆′, we know that a new update P ′ can be more
similar to any case C than its predecessor P is to C, at best by a degree of ∆′. We would like
to reemphasize the word “any” here, because note that ∆′ calculation does not involve any other
case but only the two consecutive problems P and P ′. Likewise, a following problem P ′′ can be
more similar to any case C in the CB than P is to it, at best by a degree of ∆′ + ∆′′ as shown in
the inequality (3.4). Figure 3.1 depicts above inequalities between three consecutive problems of
a sequence and a case in a CB. And if we generalize the inequality (3.4), we have:

sim(P u, C) ≤ sim(P j , C) +
u∑

s=j+1

∆s (3.5)

where ∆s = d(P s−1, P s). Finally, the right-hand side of the inequality (3.5) gives us the follow-
ing generic definition of the upper-bound of similarity:

Definition 3.1 (Upper-bound of similarity). Given a problem sequence P , a caseC and a distance
metric d; when we know the similarity of C to a prior problem P j in the sequence—sim(C,P j),
the upper-bound of similarity of C to any later coming problem P u—UB(C,P u)—is obtained by
adding the sum of all inter-problem distances between P j and P u to the already known similarity:

UB(C,P u) = sim(C,P j) +
u∑

s=j+1

∆s, where ∆s = d(P s−1, P s)

3.2 Lazy assessment of kNN candidates

We designed our proposed algorithm Lazy kNN in order to exploit the upper-bound of similarity
defined above. Lazy kNN utilizes this upper-bound in identifying the true kNN candidate cases for
a given query.
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Definition 3.2 (kNN candidate). A case C is a kNN candidate for a consecutive problem P u of
the sequence P if its upper-bound of similarity UB(C,P u) is greater than the similarity of any of
the best-so-far kNN to P u.

Accordingly, during the kNN search, a case in the CB is evaluated—i.e. its actual similarity to
the query is calculated—only when it is deemed a candidate by Lazy kNN, hence the lazy. The
calculated similarity, of course, may or may not meet the expectancy and the case may not make it
to the kNN list. However, to find exact kNN of a query, it is necessary to calculate all candidates’
similarities since they all have the potential to be a kNN member.

On the other hand, and most importantly, this candidacy assessment helps us to avoid unnecessary
similarity calculations in kNN search. If a case is not deemed a kNN candidate for a query, there
is no use in calculating its distance. Because, if the upper-bound of similarity of a case cannot
beat the best-so-far kNN, there is no chance that its actual similarity would do so. Lazy kNN
leverages this ability to ignore “non-candidate cases” in the CB and thus speeds up kNN search
considerably. And it does so not by checking the candidacy of each individual case, but by using
the candidacy assessment to detect cut-off points in search where the triangle inequality assures
that from that point onwards there could be no case which can beat the kNN found so far. Thus,
the true strength of Lazy kNN comes from its ability to ignore ‘bulks’ of cases with a ‘single’
candidacy check.

Definition 3.3 (Cut-off point in kNN search). When we know the neighbors of problem P u−1

sorted in a descending order regarding their similarities to P u−1, during the kNN search for the
next update P u, the first neighbor C of P u−1 which proves not to be a kNN candidate marks the
cut-off point in kNN search within neighbors of P u−1.

Specifically, in the definition above, the neighbors following C would have equal or lower simi-
larities to P u−1 due to being sorted and this assures that their upper-bounds of similarity given by
Definition (3.1) cannot beat best-so-far kNN either. And as a result, together with C, the rest of
the neighbors of P u−1 can also be ignored without further candidacy checking among them.

Of course, a neighbor C of P u−1 which is ignored at the kNN search for P u can prove to be
a kNN candidate for a later problem P u+1. Precisely, this happens when its upper-bound of
similarity to P u+1 (i.e. sim(C,P u−1) + ∆u + ∆u+1) beats the kth NN of P u+1 found so far.
Therefore, remembering the neighbors of previous problems in a sequence helps us to identify
kNN candidates for later problems and discard non-candidate cases in their kNN searches. And
for this purpose, Lazy kNN maintains a data structure that we call RANK for every problem
sequence posed as a query to the CBR system.

The RANK instance created for a problem sequence P holds assessed cases during the kNN
search for each problem in the sequence separately and in sorted order regarding their similarities
to that particular problem. The distance between each problem and its predecessor in the sequence
(i.e. ∆) is also stored in this structure for candidacy assessments. More formally, where:

P j is the target problem for the jth update of the problem sequence P ;

NN is the sorted list of (case, sim) 2-tuples formed for every case to whose similarity sim
to P j is actually calculated; and NN is sorted in a descending order, the most similar case
being at the top;
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Stagej is the (NN , ∆j) 2-tuple created for P j and;

NN(Stagej) denotes the NN in Stagej ;

RANK is the reversed list of Stages that are populated for all past problems in the problem
sequence P . When a new problem P u arrives, the content of this list is as follows:

RANK = [Stageu−1, Stageu−2, . . . , Stage1, Stage0]

Figure 3.2a gives an example of a RANK instance maintained for a problem sequence P7. After
the kNN search for the 3rd consecutive problem (i.e. P 3

7 ), there are four stages including the one
for the initial problem (Stage0). When Lazy kNN terminates for a k=3 setting, top three cases in
Stage3 are the kNN of P 3

7 . Note that, the similarities of all cases in a jth stage were evaluated for
the corresponding update P j7 . A case Cba denotes the bth case in the ath sequence of temporally
related cases in the CB.

Lazy kNN algorithm works as follows. When the initial problem P 0 of a new sequence P is
posed as a query, Lazy kNN creates an instance of RANK dedicated to this particular sequence.
The definition of the upper-bound of similarity in Definition (3.1) of a case C to a problem P u

requires the knowledge of C’s similarity to a problem of any prior sequence update. Therefore,
the candidacy assessment cannot be applied to the initial problem P 0. So, Lazy kNN delegates
the kNN search for the initial problem P 0 to any search algorithm of choice that will return all
cases in the CB sorted in a descending order regarding their similarities to P 0. Once we know
all neighbors of the initial problem P 0, they are added into Stage0 maintaining their order. And,
starting from the first consecutive problem P 1, the algorithm uses the candidacy assessment we
have just outlined to speed up kNN search.

To find the kNN of uth problem P u, Lazy kNN uses the RANK instance maintained for the
sequence P . First, it creates an empty Stageu for the new query and calculates the distance of the
query with the predecessor problem (i.e. ∆u). Later, Lazy kNN follows the above-mentioned (p. 3)
intuition that the neighbors of P u are likely to be within the neighbors of the previous problem.
So, the kNN search starts from Stageu−1 which holds the assessed cases for P u−1, and continues
backwards till and including Stage0 in RANK.1

The search in Stageu−1 starts by calculating the similarities of the top k cases in Stageu−1. These
cases are removed fromNN(Stageu−1) and placed intoNN(Stageu) in a ranked order regarding
their similarities to P u. Thus, these k cases form the initial kNN. Throughout the rest of the kNN
search, for a case to be a true kNN candidate, its upper-bound of similarity to the query has to beat
(i.e. be greater than) the similarity of the current kth member of NN(Stageu). Then, continuing
from Stageu−1, all Stages in RANK are iterated in the search for the candidate cases.

As a rule, if a case is deemed a kNN candidate for P u, (i) its actual similarity to P u is calculated,
(ii) it is removed from the Stagej it was in and (iii) it is added to NN(Stageu) together with its
calculated similarity. As we mentioned, the NN list of a Stage is maintained sorted. In order
to avoid excessive sorting during kNN search, if a candidate case’s actual similarity surpasses
the current kth NN, it is inserted at the appropriate position within the top k members of the
NN(Stageu) list. And if it does not beat, it is appended to the end of the list instead. And the
wholeNN(Stageu) list is sorted only once at the end of the kNN search. Insertion of the winning

1This is not the only way to iterate RANK, some alternatives will be presented in section 4.9.
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(a) After kNN search for P 3
7

(b) Evaluated cases for P 4
7

Figure 3.2: RANK during the kNN search for the 4th consecutive problem of the sequence
P7 (i.e. P 4

7 ). The orange colored horizontal lines are the cut-off points in the search within that
particular stage. Evaluated candidates in the blue shaded areas will be removed from their current
stages and placed into the new Stage4 created for this problem. Cba denotes the bth case in the ath

sequence of temporally related cases in the CB.

candidates adequately guarantees that we always have a ranked kNN list during the search. Thus,
when a candidate really surpasses the kth NN found so far, the kNN list and hence the threshold
for candidacy for the remaining cases change. And this is enough for the algorithm to work.
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During the kNN search, if a case in a Stagej proves not to be a candidate (i.e. its upper-bound
of similarity remains equal to or below the current kth NN’s), this means that from that point
onwards there will not be any candidates in Stagej . So, the search continues from the next stage,
Stagej−1. The algorithm continues to iterate all stages in a likewise manner till after evaluating
the last candidate case in the last non-empty stage in RANK. When all candidate cases in all
Stages in RANK are evaluated, Lazy kNN guarantees that the top k cases in Stageu are the
exact kNN of P u.

Figure 3.2b depicts evaluated cases during the kNN search for P 4
7 in blue shaded areas of stages.

The horizontal lines right after the last evaluated case marks the cut-off point in search in the stage.
For example, the line in Stage3 shows that the 211th case was the first case in this stage which
proved not to be kNN candidate. That is, its upper-bound of similarity could not beat the best kth

NN found so-far. Thus, the search continued from Stage2 which yielded 111 candidates, and so
on. All the cases in shaded areas are removed as they are evaluated during the search and placed
into Stage4.

If all of the cases in an intermediate Stagej are evaluated as candidates, Stagej becomes empty.
But we still keep this empty intermediate stage in RANK since we will need its attached ∆j for
the sequence updates to come. However, an empty stage at the end of the RANK can be purged,
as its attached ∆ will never contribute to future kNN searches.

We also note that the initial Stage0 had all cases in the CB and later during the evolution of the
problem sequence, evaluated cases for consecutive problems are moved into the corresponding
stages. Therefore the size of RANK never changes and is equal to the CB size throughout the
evolution of the sequence. In Figure 3.2a, the CB size is the sum of the size of all stages which is
2,000 cases. When the kNN search for P 4

7 finishes, the evaluated cases will be moved into Stage4,
but the RANK size will still remain the same. In this illustrated example, we see that Lazy kNN
evaluated only 800 out of 2,000 cases to find the exact kNN.

Below section presents the pseudo-code of Lazy kNN.

3.3 Lazy kNN algorithm

The detailed pseudo-code of the components and the core algorithm of Lazy kNN are given in
Algorithms 3.1, 3.2 and 3.3. Algorithm 3.1 defines the LazyKNN class structure, namely, private
class attributes, private and public methods; and implements the object constructor Construct.
An instance of this class is created for each particular problem sequence. Two other classes Stage
and Assessment are for inner use to track evaluated cases throughout queries for the consecutive
problems of the sequence in RANK. For each query, including the initial problem, a Stage
instance is created and inserted into the top of the RANK list. Each Stage instance holds the
∆ distance to the previous query and is populated with the evaluated candidates during the kNN
search in the form of Assessment instances. Each Assessment instance holds an evaluated
case and its calculated similarity to the query for the related problem in the sequence. We note
that we use ‘zero-based’ indexing for the lists in the pseudo-code.

Algorithm 3.2 implements the two public methods which are the means of interaction with the
LazyKNN object for kNN search. InitialSearch is used only for the initial problem of the
sequence for which the object was created. To find the kNN, this method delegates the search to
the fn initialNNS function passed as an argument to the constructor. This can be a linear or any
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Algorithm 3.1: Lazy KNN Class

1 Class LazyKNN:
Attributes : CB: Case Base

k: k of kNN
fn initialNNS: kNN search function to be used for the initial problem of the sequence. This

function has to return all cases in the CB sorted in a descending order with respect to their—exact
and/or maximum expected—similarities to the problem
fn dist: Distance measure to be used both in the provided fn initialNNS and consecutive

searches by LazyKNN. It must be a metric
RANK: List of Stage items where the stage for the latest problem of the sequence is the first

item with index 0
query: The latest problem in the sequence for which the current kNN search is to be conducted

Methods : InitialSearch(query): see Algorithm 3.2
ConsecutiveSearch(query): see Algorithm 3.2
Construct(CB, k, fn initialNNS, fn dist): see below
LazyKNN(): see Algorithm 3.3

2 Class Stage:
Attributes : NN : List of Assessment items, holds evaluated cases for a particular problem in the sequence

sorted in a descending order with respect to their similarities to the problem
∆: Distance between the related problem and its predecessor in the sequence; measured by the
fn dist

3 Class Assessment:
Attributes : case: Case

similarity: Similarity of case to the related problem in the sequence that the resided Stage was
created for

4 Function Construct(CB, k, fn initialNNS, fn dist):
Input : see related class instance attributes above
Output : A LazyKNN instance to be used for a particular problem sequence (e.g. history of treatment sessions

of a particular patient)

5 this. CB ← CB
6 this. k ← k
7 this. fn initialNNS ← fn initialNNS
8 this. fn dist← fn dist
9 this. RANK ← [ ]

10 this. query ← null
11 return this

other kNN search of choice. fn initialNNS has to return all cases in theCB sorted in a descend-
ing order regarding their exact and/or maximum expected similarities to the problem. It does not
need to be a complete exact search either. As long as it returns the exact kNN and the upper-bound
of similarities of the not-evaluated cases, Lazy kNN can perfectly exploit this partial informa-
tion as well.2 For the queries of consecutive updates to the sequence, ConsecutiveSearch is
called. ConsecutiveSearch calls the private LazyKNN method which is the core Lazy kNN
algorithm implemented in Algorithm 3.3. Both InitialSearch and ConsecutiveSearch
return exact kNN of the query.

As it can be seen in the Algorithm 3.3, throughout the consecutive problems of the sequence, we
delay the similarity assessment of a case in a lazy manner until we consider it as a true candidate
for the kNN list (line 10 in Algorithm 3.3). Note that a case can become a kNN candidate for
more than one problem in a sequence. We also note that Lazy kNN sorts the neighbors that could

2As an extreme example, if standard k-d tree search is used in fn initialNNS, discarded cases’ similarities can
all be assigned to the kth neighbor’s similarity. This would result making almost all cases as candidates for the next
problem and Lazy kNN would perform almost like a linear-search for P 1, but the algorithm would work, and starting
from P 2 it would speed up the search as usual.
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Algorithm 3.2: Lazy KNN Class - Public Methods

1 Function InitialSearch(this, query):
Input : Initial problem of a particular problem sequence
Output : Exact kNN list

2 stage0 ← newStage

3 stage0.NN ← this. fn initialNNS(query, this. CB, this. fn dist)

4 stage0.∆← 0

5 this. RANK.insert(stage0)
6 this. query ← query

7 return stage0.NN [ : this. k]

8 Function ConsecutiveSearch(this, query):
Input : The query for the new problem in the sequence for which ‘this’ object was created
Output : See output of the LazyKNN method in Algorithm 3.3

9 stageu ← newStage
10 stageu.NN ← [ ]
11 stageu.∆← this. fn dist(query, this. query)
12 this. RANK.insert(stageu)
13 this. query ← query
14 return this. LazyKNN()

Algorithm 3.3: Lazy KNN - Core algorithm

1 Function LazyKNN(this):
Input : None. No need to pass the query, it is accessed via the instance attribute query
Output : Exact kNN list

2 stageu ← this. RANK[0]
3 sum∆← stageu.∆
4 sort flag ← False
5 for j ← 1 to |this. RANK|−1 do // Iterate previous Stages in RANK
6 stagej ← this. RANK[j]

7 foreach assess in stagej .NN do
8 case← assess.case
9 sim← assess.similarity

10 if |stageu.NN | < this. k or (sim+ sum∆) > stageu.NN [this. k−1].similarity then
11 stagej .NN.remove(assess) // case is candidate
12 sim← 1− this. fn dist(this. query, case) // Calculate case’s sim
13 new assess← newAssessment(case, sim)
14 if sim > stageu.NN [this. k−1].similarity then
15 stageu.NN.insert(new assess, i) // Insert case to kNN, i<k
16 else
17 stageu.NN.append(new assess)
18 sort flag ← True

19 else // case is not candidate
20 break // Continue with the next Stage

21 sum∆← sum∆ + stagej .∆ // Accumulate ∆s

22 if sort flag then stageu.NN.sort descending()
23 return stageu.NN [ : this. k]

not make it to the kNN list only ‘once’ at most as mentioned previously (ibid. line 22). The
computational cost for the positioning of a winning candidate in the kNN list (ibid. line 15)
should be negligible for small k values.

In the formalization of the upper-bound of similarity and in the algorithm presented, for the sake
of simplicity, we have assumed that the CB remains unchanged between the updates of a problem
sequence P . To deal with the changes to the CB, the algorithm can be updated easily by adding
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Table 3.1: Time series datasets used to generate CBs of temporally related cases in experi-
ments and their corresponding CB sizes generated with two different time window step settings.
Data points are essentially updates to the time sequence. While the time window moves on a se-
quence, the data points encompassed by the window for each step constitute a case and eventually
the cases generated out of a sequence forms a sequence of temporally related cases.

# Dataset Type Sequences Length CB Size

step=10 step=1

1 PowerCons Device 180 144 2,700 25,920
2 SwedishLeaf Image 625 128 8,125 80,000
3 Strawberry Spectrograph 613 235 14,712 144,055
4 EOGHorizontalSignal Medical 362 1,250 45,250 452,500
5 InsectWingbeatSound Sensor 1,980 256 51,480 506,880
6 ECG5000 Medical 4,500 140 63,000 630,000
7 UWaveGestureLibraryX Motion 3,582 315 114,624 1,128,330
8 Yoga Image 3,000 426 129,000 1,278,000
9 Phoneme Sound 1,896 1,024 195,288 1,941,504

10 Mallat Simulated 2,345 1,024 241,535 2,401,280
11 MixedShapesRegularTrain Image 2,425 1,024 249,775 2,483,200

following behaviors:

1. If new cases are incorporated into the CB after the kNN search for the last problem P u, the
similarities of these cases to the next problem P u+1 have to be calculated in the kNN search
for P u+1;

2. If old cases are modified after the kNN search for the last problem P u and if these mod-
ifications affect similarity calculations, these cases should be removed from RANK list
and their similarities to the next problem P u+1 have to be calculated in the kNN search for
P u+1;

3. If old cases are deleted, they have to be deleted from RANK list as well.

3.4 Experiment datasets

In order have real-world data from different application domains in our experiments, we used
eleven univariate time series datasets publicly available at The UEA & UCR Time Series Classifi-
cation Repository (Bagnall et al., 2018). Every dataset in the repository is available as a two-pack
of ‘train’ and ‘test’ sub-datasets. Some test sub-datasets are larger than their train reciprocals. In
order to build a larger case base with each dataset, we took the liberty to use the larger sub-dataset
in Lazy kNN experiments.

To build a CB out of a given univariate TS dataset, as described in section 2.2, we treated each
instance in the dataset as a sequence for our CB and each data point of the TS instance as an
update to the sequence. Then we applied time window on every instance to create individual
cases of the sequence. Each window represented the problem part of a case and we regarded each
data point enveloped by the window as a feature of that case. We adopted two approaches to
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(a) Time window: Expanding, step=1, Update: 45 (b) Time window: Expanding, step=10, Update: 5

(c) Time window: width=40, step=1, Update: 45 (d) Time window: width=40, step=10, Update: 5

Figure 3.3: Generating cases out of univariate time series. The two example time series in-
stances (light gray colored) are taken from the SwedishLeaf dataset. Each subsequence (green/red
colored) on a time series forms the problem part of a unique case. Cases from the same time series
instance form a unique sequence of temporally related cases.

implement time windows. The first approach used a sliding window of fixed-width and the second
one an expanding window. For a TS instance of length l (i.e. having l data observations), both
approaches generated l cases.

To generate even more diverse CBs out of a given TS dataset, we also incorporated time window
step concept. With a step ≥ 1 setting, we moved the time window in steps over the sequence
and we generated cases for every step number of updates instead of doing it for each update
in a sequence. Having step ≥ 1 as an optional parameter, for a problem sequence of length l,
both expanding and fixed-window approaches generated

⌈
l/step

⌉
number of cases. Table 3.1

summarizes the datasets and their corresponding CBs used in our experiments.

Figure 3.3 shows examples to the generation of cases out of a univariate time series dataset with
different time window settings. Each subsequence on a time series forms the problem part of a
unique case. A subsequence is defined by index of the sequence update and the time window
width and step settings. Cases from the same time series instance form a unique sequence of
temporally related cases.
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3.5 Evaluation of Lazy kNN

The experiments in this section aim to show the speed-up achieved by Lazy kNN. In order to
have a measure independent of the computation platform that the algorithm works on, we defined
our speed-up measure in terms of the number of similarity assessments made in kNN search as
follows:

Definition 3.4 (Gain of Lazy kNN). Given P u—the target problem for the uth update of the se-
quence P , NN(Stageu)—the list of cases in the CB whose similarities to P u are calculated,
and where |X| denotes the cardinality of a set X , the gain of Lazy kNN at the kNN search con-
ducted for P u is the percentage of the number of avoided similarity calculations by the algorithm
compared to a linear search for P u:

gain(P u) =
|CB| − |NN(Stageu)|

|CB| × 100 % (3.6)

If need be, gain can be translated into actual execution time by using the average duration of a
similarity calculation on a particular platform.

In subsection 3.5.1 we describe the experiment settings and finally we present the results in section
3.6.

3.5.1 Experiment Settings

With respect to distance and similarity measures, since Lazy kNN relies on true metrics, we used
normalized euclidean distance and the similarity functions given in Eq. (2.1) and (2.2) respectively
in all experiments.3

Regardless of the time window approach used, a decision has to be made with respect to how
to measure the distance between two cases of different number of features. A straight-forward
decision could be not measuring this distance at all and returning 0. However in order to test our
algorithm with larger CBs in our experiments, we opted to extend the shorter case to the length of
the longer one by filling in missing features with values that maximized the distance.

After deciding the similarity assessment method, for each TS dataset given in section 3.4 we
launched four experiments for combinations of two different time window width and step settings.
We used time window width w∈{Expanding, 40} and time window step∈{1, 10}. Having k set
to 9, each experiment for a configuration 3-tuple of

(
dataset, w, step

)
was conducted as follows:

Using the larger TS sub-dataset, we generated a set of sequences of temporally related cases for
the experiment configuration. Then, we split this set into two parts; where one part served as
the CB TEST and the other part as input sequences for our algorithm. For each input sequence,
we generated input queries along its updates starting from the initial problem. By feeding the
algorithm with these queries over CB TEST, we recorded the gain of Lazy kNN at the kNN search
for each query using the Eq. (3.6). The results are presented in the section below. Note that, the

3See (Serrà and Arcos, 2014; Wang et al., 2013) for empirical comparison of similarity measures for time series data
in general. Mueen et al. (2009)’s work may be of special interest where they also benefit from the triangle inequality
for early abandoning of the costly distance measuring to find exact motifs in time series.
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difference between the size of a CB in Table 3.1 and its corresponding CB TEST in Table 3.2 for
a
(
dataset, step

)
setting is the number of input queries used in that experiment that are extracted

from the former CB.

3.6 Results

Table 3.2 lists the average gain of Lazy kNN for each experiment conducted with a specific(
dataset, w, step

)
setting. Average gain for an experiment is calculated throughout the gains

in kNN searches for all input queries (i.e. for all problems of all input sequences). The results
show that Lazy kNN achieves notable to outstanding speed-up. Average gains lie in the range of[
33.63%, 96.65%

]
for exact kNN search in CBs of different characteristics and sizes from 2,430

to 2,457,600 cases. And more importantly, we see that Lazy kNN yields a higher gain when the
generated CB is larger for each dataset. For example, for the

(
MixedShapesRegularTrain, w=40,

step = 1
)

setting, the average gain is 95.53%. This means that on average 2,347,745 cases out
of a CB of size 2,457,600 were ignored by Lazy kNN per query since they proved not to be kNN
candidates. Thanks to the effective candidacy assessment method of the algorithm on RANK
data structure, it is possible to discard higher proportions of cases in kNN search in large CBs
where sequences of temporally cases are longer. And of course, this is a much desired result as
the gain in a large CB is more significant regarding actual execution time.

Figures 3.4a and 3.4b give a more in-depth view of the gain of Lazy kNN for experiments with the
MixedShapesRegularTrain dataset as an example. The plots reflect four different combinations
of time window settings as described in subsection 3.5.1. The difference between two figures is
the time window step setting used by the experiments which defines the number of problems in a
sequence, and thus the CB size. Time window step=1 setting in Figure 3.4a yields more problems
per sequence, and hence, a larger CB compared to the smaller CB generated with step=10 setting
used in Figure 3.4b. See section 3.4 for case and CB generation details and Table 3.1 for CB sizes.

These two figures illustrate the phenomenon of “higher gain in larger CB” that we described above.
Lazy kNN’s gain is much higher on average in the larger CBs of Figure 3.4a than the ≈ 10 times
smaller CBs of the Figure 3.4b. Second observation is the higher variance of gain in Figure 3.4b
compared to Figure 3.4a. In Figure 3.4b, step= 10 setting introduces more change between two
consecutive problems of a sequence (i.e. ∆s are greater). And depending on the input sequence,
this may cause the gain to fluctuate in a wider range. The variance is more pronounced for the
experiment with (w=40, step=10) in the same figure where a consecutive problem P u has 25%
different feature values (i.e. 10 in 40) than P u−1.
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Table 3.2: Average gain of Lazy kNN. The table summarizes average gains of the algorithm in
terms of % of avoided similarity assessments compared to a brute-force search throughout all
problems of input sequences.

Problem
Time window Updates |CB TEST| Gain (%)

Dataset w step

PowerCons
Expanding

1 144 23,328 75.90
10 15 2,430 48.39

40
1 144 23,328 70.67

10 15 2,430 34.64

SwedishLeaf
Expanding

1 128 71,936 76.05
10 13 7,306 48.22

40
1 128 71,936 80.62

10 13 7,306 37.38

Strawberry
Expanding

1 235 129,485 81.69
10 24 13,224 56.76

40
1 235 129,485 89.21

10 24 13,224 58.65

EOGHorizontalSignal
Expanding

1 1,250 440,000 91.18
10 125 44,000 76.01

40
1 1,250 440,000 96.65

10 125 44,000 87.24

InsectWingbeatSound
Expanding

1 256 501,760 82.88
10 26 50,960 59.27

40
1 256 501,760 85.17

10 26 50,960 41.51

ECG5000
Expanding

1 140 623,700 77.13
10 14 62,370 50.00

40
1 140 623,700 80.99

10 14 62,370 50.80

UWaveGestureLibraryX
Expanding

1 315 1,116,990 84.31
10 32 113,472 62.22

40
1 315 1,116,990 91.66

10 32 113,472 65.74

Yoga
Expanding

1 426 1,266,498 87.16
10 43 127,839 68.12

40
1 426 1,266,498 92.82

10 43 127,839 64.22

Phoneme
Expanding

1 1,024 1,922,048 89.06
10 103 193,331 71.96

40
1 1,024 1,922,048 63.29

10 103 193,331 33.63

Mallat
Expanding

1 1,024 2,390,016 90.43
10 103 240,402 75.14

40
1 1,024 2,390,016 94.01

10 103 240,402 68.90

MixedShapesRegularTrain
Expanding

1 1,024 2,457,600 90.88
10 103 247,200 75.42

40
1 1,024 2,457,600 95.53

10 103 247,200 76.72
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(a) k=9, time window width∈ [Expanding, 40], step=1 where |CB|=2, 483, 200.

(b) k=9, time window width∈ [Expanding, 40], step=10 where |CB|=249, 775.

Figure 3.4: Gain of Lazy kNN for experiments with the MixedShapesRegularTrain dataset
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Both in Figure 3.4a and 3.4b, we also see that the gain of the algorithm is lower and it has more
variance during the first problems in a sequence. And as the number of consecutive problems in
a sequence increases, the gain converges into a narrower band around a higher average gain. This
behaviour is due to the increase in shared history between consecutive problems in a sequence.
The resemblance of histories is not only important for two successive problems, but it may also
transcend further back than the previous problem. In other words, as the sequence grows longer
with more problems, i.e. for u� 0, kNN of P u are more likely to be found within the evaluated
cases for P u−2 than within near neighbors of P 0.

Another interesting pattern is the spiking convergence of gain for the experiment with w = 40
setting (i.e. orange colored) in Figure 3.4a. This pattern occurs due to our similarity function
described in subsection 3.5.1. Until the 39th consecutive problem, the target problem has less than
40 features, and during similarity calculations, the missing features are filled with values so as to
maximize the distance to the evaluated case. It is after 40th problem that the target problem fully
benefits from the shared history with its predecessors, and target problem’s similarity is calculated
“as is” to the candidate cases.

Finally, we can say that no matter what time window settings are, Lazy kNN provides a remarkable
speed-up in kNN search.4 The speed-up reaches to significant factors when the problem sequences
have more updates and the CB’s are larger. Thus, the results of these experiments endorse the use
of Lazy kNN on large-scale temporal CBs, this being the very motivation of its design.

3.7 Summary

In this chapter, we introduced an exact kNN search algorithm Lazy kNN that excels in application
domains with large-scale temporal case bases. We described how we can exploit the triangle
inequality to avoid unnecessary similarity assessments in metric spaces which is the common
problem space of most of CBR systems. Then we presented our proposed algorithm. Later in
experiments, we showed how we generated small-to-large temporal CBs out of publicly available
real-world time series datasets of different domains and characteristics. And we presented and
commented on the experiment results with these CBs.

The results empirically demonstrated that the proposed algorithm reaches notable to remarkable
speed-up in kNN search. The average speed-up was higher for the larger CB compared to the
smaller CB, both generated out of the same dataset. These results add to the merit of using Lazy
kNN in large-scale CBs which was the main focus of the algorithm’s design.

Lazy kNN is an exact kNN search algorithm. And for certain domains and/or applications where
response time is more critical, it is possible that even the speed-up provided by the algorithm may
not meet time limitations. Or, for some domains where good enough neighbors would also suffice,
we may even not be interested in finding exact neighbors anyways. On the other hand, there may
be applications that we cannot trust the accuracy of our distance measure and/or the representation
of data. Therefore, exact kNN would not make much sense. In either of these cases, we can
conform with approximate kNN instead of exact ones as it is the common practice in many kNN
search implementations described earlier in Chapter 2.

4As a theoretical experiment, Lazy kNN would work as a linear search with no speed-up only if w = step. This
would mean that a problem sequence has no shared history with its predecessor and each problem is totally a different
case. But then, this would not be a temporal case base for which Lazy kNN is designed.
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We deal with both exact and approximate kNN search by introducing an anytime kNN algorithm
in the next chapter. After discussing the challenges in building a well-tempered anytime kNN
search algorithm, we point out why we deem Lazy kNN a very good candidate to be converted into
an anytime algorithm which overcomes these difficulties. Then, we explain how we endow Lazy
kNN with the capability to provide best-so-far kNN with confidence any time it is interrupted, and
ultimately how we achieve our fully-fledged Anytime Lazy kNN search algorithm.
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Chapter 4

Anytime Lazy kNN

In accordance with the description of a preferable anytime algorithm given in section 2.3, an
anytime kNN search algorithm is expected to monotonically improve on its k nearest neighbors
and provide a quality value attached to the best-so-far neighbors upon interruption. Also the im-
provement in output quality is preferred to be diminishing over time which means that the nearest
neighbors found in early stages of search are almost as close to the query as the exact neighbors.
Furthermore, the algorithm should be able to resume its execution without a major overhead if it
is allocated extra computation time to improve on its results. But, it is not straightforward to build
such a well-tempered anytime kNN search algorithm.

The main difficulty of converting an exact kNN search to an anytime algorithm lies in the quality
assessment of the best-so-far neighbors. The quality in AAs is a notion of closeness to exact
solutions. Therefore, having the search interrupted, we would like to compare the similarities of
approximate and exact kNN to the query. However, it is impossible to build an accurate quality
measure for such an assessment. The reason is obvious, exact kNN remain unknown till the end
of search and even though we might have already found them earlier, we cannot be aware of this
until we evaluate all candidates in the search space. Consequently, for an algorithm which searches
kNN all at once (e.g. brute-force kNN search), exact kNN are available only as a whole and after
the completion of the search.

As an enhancement to partially ease the constraint of having to wait till completion, if we conduct
kNN search in an incremental fashion finding k nearest neighbors one by one in k iterations, we
would at least guarantee the exactness of the top i−1 nearest neighbors (NNs) when interrupted
at the ith iteration (i≤k). Of course, this method would make sense only if extra iterations do not
imply an additional cost of redundant similarity calculations. And clearly, although incremental
search bears the possibility of providing some of the exact kNN upon interruption, it does not
eliminate the need to assess the quality of the remaining kNN list members that are yet-to-be
ascertained for exactness.

In this chapter, we first deal with the design of an anytime kNN algorithm that exhibits the desired
performance profile outlined in section 2.3. And, we show how we refactor Lazy kNN to serve
as the core of the proposed AA. Specifically, although Lazy kNN was designed to provide exact
kNN as a whole list after running to completion, we show how it can be converted to an incre-
mental kNN search without any redundant similarity assessments in section 4.1. Then, we explain
how Incremental Lazy kNN can be used in the core of an AA and present the Anytime Lazy kNN
(henceforth ALK) algorithm in section 4.2.

37



Once we have the AA algorithm, we introduce the steps required to define the appropriate mech-
anism to assess the quality of best-so-far kNN at any given moment. In AA literature, when
accuracy is not an option as a metric to build a deterministic quality measure, it is common to re-
sort to a certainty metric to reflect a degree of correctness of intermediate results, e.g. by using the
probability distribution of output quality over time (Zilberstein, 1996). As a road map, Figure 4.1
illustrates the steps of the generation and use of the probabilistic quality measure that we imple-
mented for our algorithm. Top two steps are to build the Performance Distribution Profile (PDP)
of ALK for an application domain. In the first step, ALK runs kNN search simulations and gathers
statistical data to generate the Quality Map of the algorithm. We detail this step in section 4.3. In
the second step which is described in section 4.4, PDP is built out of the quality map. PDP endows
our algorithm with the ability to predict the expected quality of best-so-far kNN upon interruption.
In concordance with CBR literature (e.g. Cheetham, 2000), we refer to expected output quality as
confidence and define our confidence estimator based on PDP in section 4.5. We also show how
PDP helps us to automatize the interruption upon reaching a given confidence threshold. In the
final step of Figure 4.1, ALK is now ready to serve as an anytime kNN search algorithm. It accepts
a query and an optional interruption point, and returns the exact/best-so-far kNN together with a
confidence value for each neighbor.

Train
Sequences ALK

Quality Map

Performance Distribution Profile

query,
interrupt ALK

Train
Case Base

Case Base

kNN,
confidence

Gather Insights
for Quality Map 

Build PDP

Use PDP to provide 
confidence for
best-so-far kNN  
when interrupted

PDP Generation

Anytime kNN search with Confidence

Figure 4.1: Generation and use of confidence. First, the Quality Map of the algorithm for the
application domain is created out of interruption simulations with training data. Then, Perfor-
mance Distribution Profile is generated out of Quality Map. PDP endows ALK with the ability to
attach confidence values to its best-so-far kNN when interrupted. PDP also provides a means to
automatize interruption at given confidence thresholds.
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Section 4.6 describes our methodology to evaluate ALK and the experiment settings. Section 4.7
gives highly encouraging results of experiments we conducted with the same real-world time se-
ries datasets used in Lazy kNN experiments in the previous chapter. We see that the speed-up
can be dramatically increased by ALK even for interruptions at high confidence thresholds. Sec-
tion 4.8 presents the insights of this superior gain in execution time achieved by ALK. Finally in
section 4.9, we present alternative ways to search for kNN candidates which may further boost
ALK’s performance.

4.1 Incremental Lazy kNN

Lazy kNN’s strength in speeding up exact kNN search comes from the evaluation of only the true
kNN candidate cases in the CB for a query. During the execution of Lazy kNN, best-so-far kNN
list members and their positions in the list are subject to change until the last candidate case in
the CB is evaluated. And, the exact kNN list is provided as output only after the evaluation of
the last candidate. This is because, with respect to the triangular inequality used in the candidacy
assessment, even the last candidate can potentially surpass the nearest neighbor found so far. Due
to this nature of having to run to completion, Lazy kNN cannot say how confident it is of its
best-so-far kNN when interrupted.

To gradually improve on each of the kNN and to be able to provide at least some of the exact
NNs upon interruption, we developed an incremental version of Lazy kNN. The new version can
basically be regarded as invoking the original algorithm k times iteratively, while at each iteration
i, we find the ith exact NN. Thus, if the algorithm is interrupted during the ith iteration, it ensures
that the top i-1 NNs are the exact NNs of the query.

The beauty of the conversion of the algorithm from standard to incremental kNN search is that,
despite reiterations, Incremental Lazy kNN does not carry out any redundant similarity calculation
compared to the original version of the algorithm. Though surprising it might be at first glance,
this behaviour is due to the fact that we always evaluate the minimum number of candidate cases at
each iteration, and after k iterations, the total number of assessed candidates equals the number of
assessments made by Lazy kNN. On the other hand, if Lazy kNN is invoked k times ‘as is’ without
any alteration in the algorithm, this would cause k times sorting of the assessed cases and would
become an extra overload prolonging the execution time. But, in the following section we will
show that sorting can be reduced to only once (at most) easily by a little tweak in the handling of
the evaluated candidates.

With respect to the desired monotonicity property of an AA mentioned in section 2.3, we can
argue that exact kNN search in general exhibits monotonicity. Because, any kNN search algorithm
could maintain best-so-far neighbors even if it cannot improve any of them after a new neighbor
candidate evaluation, and provide these when interrupted. However, for all-at-once algorithms this
gradual improvement is for the kNN list as a whole. That is, any kNN member can be improved
during search any time. On the other hand, Incremental Lazy kNN possesses a monotonicity at
individual nearest neighbor level that serves better for AA purposes. Given more time, current
exact NNs will not change but the approximate ones are likely to be replaced by nearer neighbors,
eventually all kNN becoming the exact ones.

We note that the incremental nature of our algorithm is analogous to Broder (1990)’s incremental
nearest neighbor search which also finds kNN iteratively starting from the first, ending with the
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kth; but it differs from the incremental retrieval concept of Cunningham, Smyth, and Bonzano
(1998) and Jurisica, Glasgow, and Mylopoulos (2000) because there, the iteration takes place in
conversational CBR systems where the retrieval is incrementally refined via iterative user interac-
tions.

The section below gives our Anytime Lazy kNN search algorithm with Incremental Lazy kNN at
its core.

4.2 ALK algorithm

Besides monotonicity, another desired property of AAs is preemptability (Zilberstein, 1996), that
is, the capability to resume their execution after being interrupted. Incremental Lazy kNN can
easily be made resumable by introducing two attributes to the algorithm to preserve the point in
kNN search where the interruption has occurred: (1) index of the current iteration and, (2) index
of the next candidate in RANK to be assessed.

The detailed pseudo-code of the components of ALK are given in Algorithms 4.1, 4.2 and 4.3. As
can be seen, these algorithms are extensions to the Algorithms 3.1, 3.2 and 3.3 presented for Lazy
kNN in section 3.3 respectively. We give all shared components (e.g. Stage and Assessment
classes) once more here for completeness’ sake.

Algorithm 4.1 defines AnytimeLazyKNN class structure, namely, private class attributes, pri-
vate and public methods; and implements the object constructor Construct. An instance of
this class has to be created for each particular problem sequence. Two other classes Stage and
Assessment are for inner use to track evaluated cases throughout the queries for consecutive
problems of the sequence in RANK.

Algorithm 4.2 implements the three public methods which are the means of interaction with
the object. InitialSearch is used only for the initial problem of the sequence for which
the object was created. To find the kNN, this method utilizes the fn initialNNS function
passed as an argument to the constructor. For the queries of consecutive updates to the sequence,
ConsecutiveSearch is called with an optional interrupt argument that is the number of sim-
ilarity assessments after which we want to interrupt the algorithm. If the algorithm is wished to
be resumed, ResumeLastSearch is called, again with an optional interrupt argument. Both
ConsecutiveSearch and ResumeLastSearch call the private IncrementalLazyKNN
method and return its output.

IncrementalLazyKNN, the core of ALK, is implemented in Algorithm 4.3. It is the incremen-
tal, interruptible and resumable implementation of Lazy kNN. Compared to the core Algorithm 3.3
of Lazy kNN it can be seen that RANK is iterated k times in Algorithm 4.3. And, at an iterth

iteration , the upper-bound of similarity of a case in RANK has to beat the iterth NN found so
far to be a candidate (line 13) whereas the candidacy assessment in Lazy kNN was for the kth

NN (line 10 in Algorithm 3.3). We remind that ‘zero-based’ indexing is used for the lists in the
pseudo-code. If a case is deemed a candidate, its actual similarity to the target problem is calcu-
lated. After each similarity calculation, the counter calc is incremented and is checked against the
optional interruption point passed with the interrupt (line 23).

If the calculated similarity of a candidate actually wins over the iterth NN, the winner replaces
the current NN. As mentioned in the above section, to avoid the extra overload of k times sorting
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Algorithm 4.1: Anytime Lazy KNN Class

1 Class AnytimeLazyKNN:
Attributes : CB: Case Base

k: k of kNN
fn initialNNS: kNN search function to be used for the initial problem of the sequence. This

function has to return all cases in the CB sorted in a descending order with respect to their—exact
and/or maximum expected—similarities to the problem
fn dist: Distance measure to be used both in the provided fn initialNNS and consecutive

searches by IncrementalLazyKNN. It must be a metric
RANK: List of Stage items where the stage for the latest problem of the sequence is the first

item with index 0
current iter: Iteration index to start/resume the IncrementalLazyKNN from
current index: Index to the candidate assessment within RANK to start/resume the
IncrementalLazyKNN from
query: The latest problem in the sequence for which the current kNN search is to be conducted.

This holds either a new problem or the latest one when an interruption occurred in its kNN search
Methods : InitialSearch(query): see Algorithm 4.2

ConsecutiveSearch(query, interrupt): see Algorithm 4.2
ResumeLastSearch(interrupt): see Algorithm 4.2
Construct(CB, k, fn initialNNS, fn dist): see below
IncrementalLazyKNN(interrupt): see Algorithm 4.3

2 Class Stage:
Attributes : NN : List of Assessment items, holds evaluated cases for a particular problem in the sequence

sorted in a descending order with respect to their similarities to the problem
∆: Distance between the related problem and its predecessor in the sequence; measured by the
fn dist

3 Class Assessment:
Attributes : case: Case

similarity: Similarity of case to the related problem in the sequence that the resided Stage was
created for

4 Function Construct(CB, k, fn initialNNS, fn dist):
Input : see related class instance attributes above
Output : An AnytimeLazyKNN instance to be used for a particular problem sequence (e.g. history of

treatment sessions of a particular patient)

5 this. CB ← CB
6 this. k ← k
7 this. fn initialNNS ← fn initialNNS
8 this. fn dist← fn dist
9 this. RANK ← [ ]

10 this. current iter ← 1
11 this. current index← 1
12 this. query ← null
13 return this

of all assessed cases in k iterations, we always maintain the best-so-far kNN in order, as we did so
in Lazy kNN. And in order to keep kNN ordered at all times, when a candidate’s actual similarity
cannot beat the iterth NN, we check if it beats any of the remaining members of the kNN. And if it
beats any, we insert the case at its rank in kNN. On the other hand, if the candidate cannot beat any
of the kNN, it is simply appended to Stage.NN . Therefore, just like in Lazy kNN, throughout
kNN search, the sorting of all assessed candidates that could not make it to the kNN list is carried
out ‘once’ at most (line 32). The computational cost for the positioning of a winning candidate in
the kNN list (line 19) should be negligible for small k values.

IncrementalLazyKNN returns the kNN list and the confidence of the algorithm for each
member of the list. If the algorithm is run to completion, the kNN will be exact and their confi-
dence values will be 1. If the algorithm is interrupted, best-so-far kNN list is returned together with
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Algorithm 4.2: Anytime Lazy KNN Class - Public Methods

1 Function InitialSearch(this, query):
Input : Initial problem of a particular problem sequence
Output : Exact kNN list and their associated confidence values (i.e. 1)

2 stage0 ← newStage

3 stage0.NN ← this. fn initialNNS(query, this. CB, this. fn dist)

4 stage0.∆← 0

5 this. RANK.insert(stage0)
6 this. query ← query

7 return stage0.NN [ : this. k], [1] ∗ this. k

8 Function ConsecutiveSearch(this, query, interrupt =null):
Input : The query for the new problem in the sequence for which ‘this’ object was created and an optional

interruption point for similarity calculations
Output : See output of the IncrementalLazyKNN method in Algorithm 4.3

9 stageu ← newStage
10 stageu.NN ← [ ]
11 stageu.∆← this. fn dist(query, this. query)
12 this. RANK.insert(stageu)
13 this. current iter ← 1
14 this. current index← 1
15 this. query ← query
16 return this. IncrementalLazyKNN(interrupt)

17 Function ResumeLastSearch(this, interrupt =null):
Input : Optional new interruption point for similarity calculations
Output : See output of the IncrementalLazyKNN method in Algorithm 4.3

18 return this. IncrementalLazyKNN(interrupt)

the expected quality values for each member of the list provided by the confidenceKNN system
function. confidenceKNN is based on the PDP of the algorithm generated for the application
domain and time window settings.

Generation of the Quality Map, PDP and confidence will be described in the following sections 4.3,
4.4 and 4.5 respectively. The complete code of ALK including all its functionality that will be
covered throughout the rest of the dissertation is publicly available at the online repository: https:
//github.com/IIIA-ML/alk

4.3 Quality measure and quality map

Quality measure of an AA is usually a function of execution time. However, in order to have a
measure independent of the computer platform that the algorithm runs on, we opted to implement
a measure which is a function of the number of similarity calculations carried out so far in kNN
search. So, given a query and a number of calculations c as the interruption point, we could define
the quality measure for ALK as follows:

Qc =
sim(NN

k

c , query)

sim(NN
k

E , query)
(4.1)

where sim is the similarity metric, NN
k

c and NN
k

E are the best-so-far and exact kth NN respec-
tively, Qc gives the output quality as the ratio of their similarities to the query after c number
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Algorithm 4.3: Anytime Lazy KNN - Core algorithm

1 Function IncrementalLazyKNN(this, interrupt =null):
2 w

Input : Optional interruption point for similarity calculations. No need to pass the query, it is accessed via the
instance attribute query

Output : kNN list and the list of associated confidence for each neighbor. If the algorithm is run to completion,
kNN are exact and their confidence values are 1; otherwise, at least some of the kNN are approximate and
the confidence values are given by the system-provided confidenceKNN function ∈ [0, 1]

3 stageu ← this. RANK[0]
4 sort flag ← False
5 calc← 0
6 for iter ← this. current iter to this. k do // Iterate RANK k times

7 sum∆←
∑this. current index−1
j=0 this. RANK[j].∆

8 for j ← this. current index to |this. RANK|−1 do // Iterate Stages in RANK
9 stagej ← this. RANK[j]

10 foreach assess in stagej .NN do
11 case← assess.case
12 sim← assess.similarity
13 if |stageu.NN | < iter or (sim+ sum∆) > stageu.NN [iter−1].similarity then
14 stagej .NN.remove(assess) // case is candidate
15 sim← 1− this. fn dist(this. query, case) // Calc case’s sim
16 calc← calc+ 1
17 new assess← newAssessment(case, sim)
18 if sim > stageu.NN [this. k−1].similarity then
19 stageu.NN.insert(new assess, i) // Insert case to kNN, iter−1≤ i<k
20 else
21 stageu.NN.append(new assess)
22 sort flag ← True

23 if calc = interrupt then // Interrupt?
24 this. current iter ← iter
25 this. current index← j
26 if sort flag then stageu.NN [iter+1: ].sort descending()
27 return stageu.NN [ : this. k], confidenceKNN(u, this. k, calc)

28 else // case is not candidate
29 break // Continue with the next Stage

30 sum∆← sum∆ + ∆j // Accumulate ∆s

31 this. current index← 1

32 if sort flag then stageu.NN [this. k : ].sort descending()
33 return stageu.NN [ : this. k], [1] ∗ this. k

of similarity assessments. If need be, c can be translated into actual execution time by using the
average duration of a similarity calculation on the platform ALK is running on.1

However, a quality map generated with this measure would not reflect neither the incremental
nature of ALK nor the temporal relations between cases. If we want a finer-grained quality measure
incorporating these characteristics as well, we may add two more dimensions to the map. Since
ALK finds the kNN in an incremental fashion, the first extra dimension would be the index i of a
nearest neighbor in the kNN list. This would allow us to assign a quality value per neighbor.

As for the temporal dimension, we could use the index u of the problem in the sequence for which
the query is generated for. This dimension provides even a finer-grained quality map, because,
the more sequence updates are covered by the time window, the less difference will have been
introduced by the new problem. Therefore, the more similar will be two successive queries and
intuitively, the more similar will be their neighbors. Consequently, for a new query covering

1Just like the gain of the algorithm can be translated to execution time as described in definition 3.4.
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multiple updates, although ALK needs to evaluate all candidates within the neighbors of prior
queries for the sake of mathematical exactness, it is very likely that the exact kNN are found
within the neighbors of the recent queries of the same sequence. As a result, this likelihood leads
to higher quality values after fewer calculations. This phenomenon also helps ALK to fulfill the
desired AA property of diminishing output quality values. In other words, the increase in the
quality of best-so-far kNN are likely to be higher in the early similarity assessments during the
kNN search compared to the later assessments. Hence, we define the finer-grained quality as
follows:

Definition 4.1 (Quality of a best-so-far NN). When ALK is interrupted, the output quality of the
best-so-far ith NN is the ratio of the similarities of that NN and of the ith exact NN to the query.

Formally, where P u is the uth query of a problem sequence P , NN
u,i

c is the ith NN returned by
the algorithm when it is interrupted after c similarity calculations during the kNN search for P u,

and NN
u,i

E is the exact ith NN for the same query, the quality of NN
u,i

c is:

Q
u,i

c
=
sim(NN

u,i

c , P u)

sim(NN
u,i

E , P u)
(4.2)

Now after having the finer-grained quality measure, we can formally define the quality map of
ALK as follows:

Definition 4.2 (Quality map of ALK). The quality map of ALK on a particular case base is the

set of (u, i, c,Q
u,i

c
) 4-tuples generated out of all problems of input sequences used in kNN search

simulations on that case base; where u is the problem index in a sequence, i is the kNN member
index, c is the number of similarity assessments made for a query.

Given representative input sequences for a CB, the quality map of ALK for that particular CB
can be generated as follows. When an input query for a problem in a sequence is passed to the
ALK’s core algorithm (Algorithm 4.3), the number of the Stages in RANK created for that se-
quence gives us the problem index u of the query. After each similarity assessment (Algorithm 4.3,
line 16), we record the

(
u, i, calc, sim(NN

u,i

c , P u)) 4-tuple for each of the best-so-far kNN mem-
bers. Note that we record this data after every calculation regardless of whether or not the evalu-
ated candidate alters the best-so-far kNN list. When the simulation ends for that query, the exact
kNN and their similarities (i.e. the divisor in Eq. (4.2)) are obtained. Then, by backtracking the

simulation, the quality Q
u,i

c
values for each 4-tuple are calculated using the Eq. (4.2). Eventually,

all (u, i, c,Q
u,i

c
) 4-tuples collected during simulations provide us with the QualityMap of our

algorithm for this particular CB and time window settings.

Figure 4.2 shows an example to the quality map of ALK generated by using the quality measure in
Eq. (4.2). It is generated throughout simulations with input sequences taken from the SwedishLeaf
dataset (see subsection 4.6.2). The figure is a 2D excerpt of the 4D map plotted for the third nearest
neighbors of the queries generated for the tenth updates (i.e. Q

10 ,3

c
) of input sequences.
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Figure 4.2: Quality map of ALK for the SwedishLeaf dataset. Here the map is shown for the 10th

consecutive problem and the 3rd nearest neighbor. Every point on the map is an instance of output
quality observed throughout simulations.

4.4 Performance distribution profile

As the final step to have Anytime Lazy kNN fully functional as an anytime algorithm, we define its
performance distribution profile:

Definition 4.3 (Performance distribution profile of ALK). The performance distribution profile
(PDP) of ALK on a particular case base is the discrete probability distribution of quality of best-
so-far kNN over number of similarity assessments. PDP is essentially a four-dimensional array
and is built out of the quality map of ALK for that particular case base. The dimensions are
problem and kNN member indices, the numbers of calculation and quality intervals. Each entry is
the probability value of having an output quality within the given quality range.

In order to build the PDP, we first discretize the calculation range intom discrete calculation values
c1, . . . , cm of equal intervals of δc, where cm is the maximum number of similarity calculations
performed for a test input during simulations to generate the QualityMap. Then we discretize
the quality range

[
0, 1
]

into n discrete quality values q1, . . . , qn of equal intervals of δq.

In coherence with the QualityMap defined above, we create a four-dimensional array PDP to
hold the discreet probability distribution of quality. The dimensions of PDP are the maximum
problem index in input sequences during simulations, k of kNN, the number of calculation inter-
vals m, and the number of quality intervals n respectively.

And we populate PDP out of Quality Map in such a way that the entry PDP
[
u, i, r, v

]
represents

the discrete probability of the output quality of the best-so-far ith NN to be ∈
(
qv−δq, qv

]
after a

number of similarity calculations ∈
(
cr−δc, cr

]
made during the kNN search for the uth problem

in a sequence. The values of system parameters δc and δq, hence the size of the PDP can be
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Table 4.1: Performance distribution profile with confidence. The PDP that corresponds to the
Quality Map in Fig. 4.2 is given. The PDP is essentially a 4-dimensional array; here the table
for 10th consecutive problem and the 3rd nearest neighbor is shown. confidence for a calculation
range is the expected quality which is defined as the weighted mean of the probability distribution
of quality for that range. Note that δc = 220 and δq = 0.025 settings are used in the generation of
this PDP .

quality µ σ

c 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000

220 0.001 0.023 0.165 0.297 0.265 0.140 0.063 0.008 0.024 0.880 0.106
440 0.146 0.320 0.294 0.156 0.052 0.032 0.919 0.030
660 0.203 0.387 0.240 0.127 0.042 0.935 0.027
880 0.011 0.273 0.422 0.186 0.108 0.953 0.024

1100 0.112 0.367 0.301 0.219 0.966 0.024
1320 0.028 0.341 0.325 0.306 0.973 0.022
1540 0.016 0.222 0.356 0.407 0.979 0.020
1760 0.002 0.102 0.351 0.546 0.986 0.017
1980 0.025 0.327 0.647 0.991 0.013
2200 0.004 0.182 0.814 0.995 0.010
2420 0.099 0.901 0.998 0.007
2640 0.019 0.981 1.000 0.003
2860 1.000 1.000

adjusted with respect to the desired accuracy of the quality estimation. The smaller δc and δq are,
the more accurate will be the expected quality predicted by the PDP .

The corresponding Performance Distribution Profile of the quality map in Figure 4.2 is given in
Table 4.1. For example, the entry at c=800, quality=0.925 says that after

(
660, 800

]
number of

similarity assessments made for the 10th consecutive problem in a sequence, the probability that
the quality of the 3rd NN lies in

(
0.9, 0.925

]
is 0.273.

4.5 Confidence

Equipped with PDP, our algorithm becomes ready to predict the output quality of best-so-far kNN
when the search for an unseen query is interrupted. Henceforth, we refer to the expected output
quality as the confidence of our algorithm in conformity with the CBR literature (e.g. Cheetham,
2000). And we define it as follows:

Definition 4.4 (Confidence for a best-so-far NN). The confidence of ALK for a member of the
best-so-far kNN is the expected quality for that NN. When ALK is interrupted after c number
of similarity assessments, confidence (µ) is the weighted mean of the probability distribution of
quality for the related calculation interval in PDP for that NN. When c does not coincide exactly
with the calculation intervals, linear interpolation is used.

Formally, the confidence µ
u,i

c
∈
[
0, 1
]

of the best-so-far ith NN of the uth consecutive problem in
a sequence when ALK is interrupted after c number of similarity assessments during kNN search
is:

µ
u,i

c
=
∑
v

qv P
u,i

c
(qv) (4.3)
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where P
u,i

c
(qv) is a shorthand for PDP

[
u, i, rc, v

]
and rc is the interval in the calculation range

where c falls into.

Since confidence gives us a mean value µ, we also provide its standard deviation σ to be used
together with it:

Definition 4.5 (Standard deviation of confidence for a best-so-far NN). When ALK is interrupted
after c number of similarity assessments, standard deviation of confidence (σ) for a member of
the best-so-far kNN is the weighted standard deviation of the probability distribution of quality for
the related calculation interval in PDP for that NN. When c does not coincide exactly with the
calculation intervals, linear interpolation is used.

Formally, the standard deviation of confidence σ
u,i

c
of the best-so-far ith NN of the uth consecutive

problem in a sequence when ALK is interrupted after c number of similarity assessments during
kNN search is:

σ
u,i

c
=

√∑
v

(
qv − µ

u,i

c

)2
P
u,i

c
(qv) (4.4)

The confidence µ and its deviation σ for the quality map example in Figure 4.2 are given in
Table 4.1. In this PDP excerpt, we can see that σ is higher for early calculations when fewer
candidates are assessed and it decreases as we assess more candidates. When c does not coincide
exactly with the PDP calculation intervals, we use linear interpolation for both µ and σ.

Beside giving us a confidence value to reason with the best-so-far kNN, the PDP of our algorithm
also provides us with a means to automatize the interruption itself. This may be achieved in two
ways: either by specifying a time of execution or reaching a desired confidence threshold for
the output. In the former case, the execution time can be translated into a number of similarity
calculations by the average calculation time on the computer system that the algorithm is running
on. In the latter case, the PDP gives us the estimated number of similarity calculations to reach a
desired confidence. In either case, obtained number of calculations is used for interruption.

Interruption point for a confidence threshold can be selected by also taking into account the stan-
dard deviation of confidence provided by PDP along with the confidence itself. Accordingly, the
function defined below can be used to determine the number of similarity assessments needed to
reach a threshold.

Definition 4.6 (Interruption point for a confidence threshold). Given the problem index u of a
query, a confidence threshold τ for interruption, the index i of the kNN member to check against
the threshold, and a z offset parameter for the standard deviation of confidence; the Interrupt
function defined below gives the number of similarity assessments needed for the ith NN of the uth

problem in a sequence to reach the desired threshold τ :

Interrupt(u, i, τ, z) =
{
c : µ

u,i

c
+ zσ

u,i

c
= τ

}
Passing the return value of Interrupt function as the interrupt parameter to ALK’s core algo-
rithm in Algorithm 4.3 would automatize the interruption of the algorithm upon reaching the con-
fidence threshold τ . The choosing of the z offset parameter, i.e. the number of σ’s subtracted from
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or added to µ, would depend on how precautious or optimistic we want to be with the confidence
provided by PDP respectively. z=−1 would be a more cautious choice than the neutral z= 0,
and we would be making more assessments than we would with the latter choice. Whereas with
z=1, we would be more optimistic and interrupt the algorithm after fewer similarity assessments
suggested by the raw confidence value for z=0.

The trustworthiness of a probabilistic model depends on how much of the plausible problem space
is represented by the model. In other words, the more representative the input queries used in
simulations are for our domain, the more we can trust our model in predicting the confidence of our
algorithm for future queries. Regarding CBR’s fundamental representativeness assumption (e.g.
Smyth, 1998), we can safely assume that the CB that we will train our model with is representative
of our problem space. Nevertheless, as we will describe in subsection 4.6.2, in our experiments we
chose our training and test datasets in a way to enable a rigorous testing of the representativeness
of the PDP as well.

4.6 Evaluation of ALK

There have been three main goals for the development of ALK: (1) To be able to interrupt kNN
search and get best-so-far kNN when exact kNN search is not feasible; (2) to attach confidence
values to best-so-far kNN that indicate how much we can trust each one of them in the reasoning
process; and, (3) to be able to automatize interruption upon reaching given confidence thresholds.
The previous sections detailed the steps of how we developed such an anytime algorithm and a
confidence measure that gives us the expected output quality.

Confidence plays a key role in ALK both to assess the quality of the best-so-far output and to
determine thresholds to automatize interruption. Therefore, to evaluate whether we met our above-
mentioned goals, first we need to have a notion of efficiency for our confidence estimation. In other
words, we would like to know how much we can trust the confidence measure itself. Accordingly,
we define our efficiency measure in subsection 4.6.1 and explain how to interpret it. Later, in
subsection 4.6.2, we describe how we built temporal CBs out of time series datasets to be used in
the experiments for ALK. In subsection 4.6.3, we give the settings and insights of the experiments
that we carried out. The results both demonstrate empirically that our confidence measure is
efficient enough, and they provide evidence regarding the speed-up achieved by ALK when we
interrupt the algorithm upon reaching given confidence thresholds.

4.6.1 Efficiency of confidence

Confidence µ is an estimator of how close the best-so-far kNN are to the query compared to the
exact kNN. In other words, it is an estimator of the expected quality of the best-so-far kNN. There-
fore, to measure the efficiency of a confidence estimation, we utilize the ratio of the confidence µ
and the observed actual quality Q and we formally define efficiency as follows:

Definition 4.7 (Efficiency of confidence). When ALK is interrupted after c number of similarity
assessments during the kNN search for the uth problem of a sequence, the efficiency of confidence
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Figure 4.3: Efficiency of confidence.µ+zσ
Q ratio for interruption tests on the SwedishLeaf dataset,

with z=−1 and different time window width w and step settings and using the PDP for which an
excerpt is given in Table 4.1.

for the ith NN, η
u,i

c
, is:

η
u,i

c
=
µ
u,i

c
+ zσ

u,i

c

Q
u,i

c

(4.5)

Just like in confidence thresholds, we use the zσ offset parameter to be able to incorporate the devi-
ation of the confidence into efficiency measure, if wanted so. When interrupted with a confidence
threshold τ , it makes sense to measure the efficiency with the same z value used in the Interrupt
function to determine the interruption point (Def. 4.6). An efficiency value η� 1 would signal
an overconfident confidence measure that can possibly mislead reasoning with best-so-far kNN;
whereas η � 1 would imply an overcautious measure suggesting longer times of execution till
reaching an acceptable approximation. On the other hand, while interpreting efficiency, we should
bear in mind that, due to its discrete nature, the precision of PDP (i.e. the choosing of δc and δq)
affects the accuracy of quality estimation as well.

An example plot for the efficiency of confidence is shown in Figure 4.3. Interruption tests for
this plot were conducted on four different CBs generated out of the SwedishLeaf dataset by four
different time window width w and step settings. The confidence thresholds for interruption were
selected with z = −1 setting. For all CBs, we see that the dispersion in efficiency is larger for
lower confidence thresholds and it diminishes for higher thresholds. But, the efficiency almost
consistently remains below 1.0. And the efficiency converges to 1.0 as the confidence threshold
also gets closer to 1.0, to which we ultimately reach when we have the exact kNN. This is a
behavior that we desired by setting the z parameter to −1 preferring to be precautious with the
confidence provided by the PDP. And indeed, Figure 4.3 shows that, when the algorithm was
interrupted at µ−σ ∈

{
0.7, . . . , 0.98

}
, the actual quality of the best-so-far kNN were higher than

these confidence threshold values since the efficiency stays below 1.0.
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4.6.2 Datasets

In the experiments for ALK we used the same eleven univariate time series datasets described in
section 3.4. For every dataset, we chose the larger of the ‘train’ and ‘test’ sub-datasets to generate
the CB TRAIN and input sequences to be used in building the PDP for that particular dataset. On
the other hand, as in any probabilistic model, the representativeness of the PDP built for a specific
training CB is crucial for the efficiency of the confidence estimation for future queries. Therefore,
to be able to test the representativeness of the PDP as well, we carried out interruption tests on the
CB TEST generated out of the corresponding smaller sub-dataset. In other words, in interruption
tests both the CB and the input sequences were unseen.

The same method described in section 3.4 was used in the application of time window on TS
sequences in the generation of both CB TRAIN and CB TEST. Both expanding and fixed-width
time window approaches were combined with the time window step concept. See Table 3.1 for
the datasets and their corresponding CBs used in our experiments to build PDPs.

4.6.3 Experiment settings

In all experiments we used normalized euclidean distance and the similarity functions given in
Equations (2.1) and (2.2) respectively. To measure the distance between two cases of different
number of features, again we opted to extend the shorter case to the length of the longer one by
filling in missing features with values that maximized the distance as described in subsection 3.5.1.

After deciding the similarity assessment method, for each TS dataset given in subsection 4.6.2, we
launched four experiments for combinations of two different time window width and step settings.
We used time window width w ∈ {Expanding, 40} and time window step ∈ {1, 10}. Having k
set to 9, each experiment for a configuration 3-tuple of

(
dataset, w, step

)
was conducted in three

stages:

In the first stage, using the larger TS sub-dataset, we generated a set of sequences of temporally
related cases for the experiment configuration. Then, we split this set into two parts; where one
part served as the CB TRAIN and the other part as input test sequences for our algorithm. For each
input sequence, we generated input queries along its updates starting from the initial problem. By
feeding the algorithm with these queries over CB TRAIN, we generated the Quality Map for the
dataset as described in section 4.3.

Consecutively, in the second stage, we built its PDP as described in section 4.4. While building
PDP for each dataset, we discretized the range of similarity calculations and the quality range
with δc=

⌈
cm/400

⌉
and δq=0.05 interval settings respectively, where cm was the highest number

of similarity calculations reached for that experiment.

In the third stage, out of the smaller TS sub-dataset, we generated the CB TEST and the set of
unseen input queries for interruption tests, using the same method and time window configuration
in the first stage. Then, we fed the algorithm with these queries over CB TEST. And for each
query, we interrupted the algorithm using a set of confidence thresholds as interruption points.

In coherence with the dividend of the efficiency definition in Eq. (4.5), confidence thresholds for
interruptions were determined with a zσ offset. We chose to be slightly cautious with PDP’s
confidence estimation and set z to −1. The thresholds were chosen for the 9th NN and taking into
account the problem index of the query. And the set of confidence thresholds for interruption was
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τ = µ-σ ∈
{

0.70, 0.75, 0.80, 0.85, 0.90, 0.92, 0.95, 0.98
}

. So, for example, given the uth query
for a test sequence and a threshold τ =0.95, the algorithm was automatically interrupted after the
number of similarity calculations needed for the µ-σ provided by PDP for the 9th NN of a uth

query of an input sequence to reach 0.95.

4.7 Results

In order to assess if we met our design goals for ALK, in this section we provide the results of
average gains upon interruptions, and average efficiency of confidence estimation along experi-
ments. We calculated these values precisely as follows. At each interruption, similarities of the
best-so-far kNN to the query, and the confidence µ together with its deviation σ for each member
of the kNN were recorded. Finally, we let the algorithm finish and we obtained the similarities
of the exact kNN to the query. And later, by backtracking, we calculated the actual qualities Q.
This allowed us to calculate and record the efficiency η of the confidence for each NN using the
Eq. (4.5). At interruptions, we also recorded the gain in similarity calculations for the query given
in the Eq. (3.6).

Finally, the recorded efficiency and gain values throughout experiments gave us the answers we
were looking for. We show the average gain of the algorithm for the set of confidence thresholds
used as interruption points in Table 4.2. In the same table, we also provide the average efficiency
of confidence for each experiment together with its average deviation.

The average gain at an interruption threshold was calculated out of the gains of all test queries at
that threshold. As mentioned in section 4.1, gains of uninterrupted ALK are precisely the gains
that would be achieved by the original Lazy kNN. While interpreting the average gains, we note
that, especially for the expanding window setting, the gain for later updates will be greater than
earlier updates of a sequence as discussed in section 3.6. In Table 4.2, we see that average gains
for uninterrupted runs are in the range of

[
28.07%, 96.35%

]
. While the upper limit of this range

can correspond to quite acceptable execution times for some CBs to wait for the exact kNN, the
lower limit may not be tolerable for very large CBs. And in the latter case, we would have to trade
time for approximate results and this is when we benefit from the true merit of ALK.

In Table 4.2, for many configurations, we observe a notable leap between the gain for an uninter-
rupted run and the corresponding gain upon an interruption at a confidence threshold as high as
0.98. And for some experiment configurations, like the Phoneme with w=40 and step=10, this
difference is tremendous. In this particular example, although the algorithm reaches a confidence
threshold of 0.98 with an average 94.06% gain, it ends up doing many more calculations to ascer-
tain the exact kNN, and this ultimately reduces the gain down to 28.07% level. The confidence
being quite efficient

(
η=0.94, ση=0.05

)
for this experiment, this phenomenon occurs due to the

fact that, in this particular CB, there are many similar kNN candidates which need to be assessed,
but, in the end they cannot win over best-so-far kNN. The following section will shed more light
into the underlying reasons for these leaps. Another common observation is that we reach higher
gains for step= 1 compared to step= 10, because with the former configuration, less change is
introduced per a consecutive problem, and thus the kNN of a problem are more similar to the kNN
of its predecessor in the problem sequence. Thus, less calculations are needed to obtain the exact
kNN and, in the case of interruption, to reach the desired confidence threshold.

We also see that for z=−1 setting, the quality estimation of PDP (i.e. the confidence) was quite
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efficient with a relatively minor deviation throughout our experiments
(
η ∈

[
0.89, 0.98

]
, ση ∈[

0.02, 0.09
])

. The average efficiency was slightly below 1.0, which means that the actual quality
was a bit above the confidence threshold. This was a desired behaviour of efficiency, since we
wanted to be precautious by lowering the confidence µ by −σ for interruptions. In other words,
we preferred to have slightly lower gain in execution time to giving slightly overconfident results.
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Table 4.2: Average gain upon interruptions at confidence thresholds. The algorithm is inter-
rupted at the number of calculations when the µ-σ (z=-1) value provided by PDP reaches to the
given confidence thresholds. For e.g., a threshold of 0.95 means “stop when µ-σ reaches 0.95”.
The table summarizes average gains in terms of % of avoided similarity assessments during tests
compared to a brute-force search. The gains upon interruption can be compared to the gain at the
‘Unint.’ column which is achieved when the algorithm is run to completion uninterrupted for exact
kNN. We also provide the mean of efficiency η together with the mean of its standard deviation
ση to reflect the efficiency of the quality estimation (i.e. confidence) for each experiment.

Unint. Interruption at µ-σ= Efficiency

Time window 0.98 0.95 0.92 0.90 0.85 0.80 0.75 0.70 η ση

Dataset w step

PowerCons
Expanding

1 75.65 97.78 98.63 98.96 99.01 99.17 99.30 99.38 99.45 0.92 0.07
10 47.67 75.47 84.37 87.62 88.06 89.46 91.10 92.27 93.47 0.95 0.07

40
1 69.62 97.44 98.49 98.91 98.96 99.16 99.27 99.39 99.46 0.92 0.08

10 35.12 74.78 81.52 84.14 84.32 85.33 88.91 91.26 96.04 0.97 0.05

SwedishLeaf
Expanding

1 75.96 98.79 99.14 99.25 99.31 99.43 99.52 99.61 99.66 0.92 0.07
10 47.55 76.04 79.95 81.38 82.10 87.00 91.68 93.24 96.36 0.94 0.07

40
1 79.11 98.97 99.14 99.25 99.32 99.44 99.54 99.62 99.66 0.92 0.07

10 38.01 63.69 75.34 84.17 89.44 95.32 96.29 96.34 96.37 0.94 0.07

Strawberry
Expanding

1 81.59 98.74 99.10 99.20 99.26 99.39 99.50 99.55 99.57 0.92 0.06
10 56.39 74.92 80.33 83.01 83.51 87.07 96.16 96.75 97.07 0.94 0.06

40
1 89.08 98.95 99.15 99.25 99.30 99.43 99.52 99.55 99.57 0.93 0.06

10 57.79 79.98 83.81 85.27 85.91 92.04 95.29 98.03 98.34 0.94 0.07

EOGHorizontalSignal
Expanding

1 91.12 99.51 99.60 99.68 99.72 99.73 99.73 99.73 99.73 0.95 0.03
10 76.32 98.84 98.96 99.02 99.20 99.41 99.50 99.57 99.63 0.94 0.07

40
1 96.35 99.39 99.47 99.63 99.73 99.73 99.73 99.73 99.73 0.95 0.03

10 87.04 99.08 99.21 99.24 99.25 99.29 99.33 99.63 99.68 0.91 0.08

InsectWingbeatSound
Expanding

1 81.50 95.22 96.09 96.90 97.18 97.34 97.43 97.48 97.50 0.94 0.05
10 55.96 58.04 62.29 68.29 71.22 78.89 87.11 91.28 93.59 0.89 0.09

40
1 84.97 95.40 96.25 97.03 97.25 97.41 97.50 97.56 97.60 0.95 0.05

10 42.27 44.81 48.76 61.17 70.70 84.19 88.62 90.03 94.11 0.91 0.08

ECG5000
Expanding

1 76.71 92.23 94.56 95.89 96.42 97.09 97.32 97.41 97.46 0.93 0.05
10 48.09 48.09 48.09 48.09 48.09 65.35 86.86 87.28 95.64 0.94 0.07

40
1 79.90 93.51 95.34 96.37 96.61 97.07 97.31 97.40 97.45 0.94 0.05

10 48.79 73.24 81.79 85.49 85.63 86.00 86.37 86.74 89.11 0.92 0.08

UWaveGestureLibraryX
Expanding

1 84.20 98.15 98.66 98.84 98.87 98.91 98.93 98.95 98.95 0.96 0.03
10 61.93 84.27 87.09 89.42 90.60 93.00 95.62 97.76 98.06 0.91 0.07

40
1 91.78 98.11 98.75 98.89 98.91 98.95 98.97 98.99 98.99 0.96 0.03

10 61.62 90.84 93.73 93.90 94.00 94.26 97.69 97.76 98.13 0.93 0.06

Yoga
Expanding

1 86.70 95.22 96.65 97.04 97.14 97.22 97.24 97.26 97.28 0.96 0.03
10 67.32 79.12 85.34 87.85 88.74 90.99 94.15 95.65 96.38 0.89 0.08

40
1 92.59 95.42 96.66 96.89 96.93 97.20 97.23 97.26 97.28 0.96 0.03

10 63.99 70.68 89.03 91.44 91.83 92.84 95.20 95.70 95.79 0.93 0.06

Phoneme
Expanding

1 88.95 96.27 97.54 97.56 97.56 97.56 97.57 97.57 97.57 0.97 0.02
10 71.60 90.53 93.00 94.48 95.25 96.42 97.06 97.37 97.52 0.92 0.06

40
1 66.97 96.29 97.54 97.56 97.57 97.57 97.57 97.57 97.57 0.97 0.02

10 28.07 94.06 94.63 95.13 95.46 96.25 97.27 97.31 97.50 0.94 0.05

Mallat
Expanding

1 89.66 90.29 90.66 90.75 90.78 90.82 90.84 90.87 90.87 0.97 0.02
10 72.83 73.29 74.24 76.14 77.86 83.29 86.10 86.84 86.96 0.91 0.06

40
1 93.07 93.48 93.98 94.07 94.13 94.21 94.25 94.28 94.30 0.97 0.02

10 67.74 69.40 71.43 75.86 77.85 83.05 85.49 86.00 86.97 0.93 0.05

MixedShapesRegularTrain
Expanding

1 90.52 97.92 98.60 98.63 98.65 98.66 98.67 98.67 98.67 0.97 0.02
10 74.30 96.23 96.94 97.32 97.55 98.06 98.38 98.51 98.59 0.92 0.06

40
1 95.68 97.95 98.56 98.57 98.62 98.67 98.68 98.68 98.68 0.98 0.02

10 76.13 95.36 95.70 97.11 97.32 97.62 97.63 98.43 98.56 0.95 0.04
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The gain concept that we have been using throughout the dissertation is based on the percent-
age of the avoided similarity calculations compared to the number of similarity calculations that
would have been carried out by brute-force search. This definition lets us establish a platform-
independent measure for the speed-up in kNN search by ALK. To give a more thorough view of
this speed-up, we also provide Table 4.3 that translates the gain into real execution time for a test
platform that we used. The table gives the average execution times for kNN search per query con-
ducted by brute-force search and ALK. The former evaluates all the cases in the case base while
our algorithm assesses only the true kNN candidates for a query. The table shows that even when
ALK is not interrupted and run to completion to find exact kNN, it is faster than brute-force search
by orders of magnitude. However, the real contribution of our algorithm is for the occasions when
this speed-up is still not feasible and we have to resort to approximate kNN. In this case, even when
we interrupt ALK at a high confidence threshold like 0.98, the speed-up drastically increases. For
example, in the EOGHorizontalSignal experiment with w=40 and step=1 setting, ALK delivers
best-so-far kNN of the query for a sequence update with 0.98 confidence 163.93 times faster than
the brute-force search on average, reducing the execution time from 8.057 seconds down to 0.049
seconds. For the same experiment, the speed-up factor increases to 370.37 if we settle with a
confidence of 0.85. Table 4.3 also reveals that the speed-up is more dramatic for the larger case
base of the same dataset. The CB generated for a dataset with step= 1 is ≈ 10 times larger than
the CB of a step = 10 setting as explained in section 3.4. And this observation underpins the
very purpose of the ALK: larger the CB is, higher becomes the speed-up. We also note that the
average execution time for an experiment is inversely proportionate to the corresponding average
gain given in Table 4.2.

For each application, the definition of acceptable approximate results will be different. For some
critical decisions, we may need approximate results with very high confidence whereas for less
critical situations we may conform with less confidence. The gain that we will achieve for inter-
rupting the algorithm with higher or lower thresholds will change according to the nature of the
CB and used time window configurations. But in any case, if we opt for the approximate results
instead of the exact ones, ALK will boost the speed-up in kNN search higher than Lazy kNN.

54



Table 4.3: Average execution time and speed-up factor per query. Average execution time of kNN
search per query is given in milliseconds. Speed-up factor is given with respect to the execution time
of a brute-force search. Note that, average execution time for an experiment is inversely proportionate
to its average gain in Table 4.2.

Uninterrupted ALK interrupted at µ-σ=

Time window Brute ALK 0.98 0.95 0.85 0.70

ms ms Speed ms Speed ms Speed ms Speed ms Speed
Dataset w step

PowerCons
Expanding

1 421.93 102.74 4.11x 9.37 45.05x 5.78 72.99x 3.50 120.48x 2.32 181.82x
10 28.85 15.10 1.91x 7.08 4.08x 4.51 6.4x 3.04 9.49x 1.88 15.31x

40
1 425.86 129.37 3.29x 10.90 39.06x 6.43 66.23x 3.58 119.05x 2.30 185.19x
10 24.10 15.64 1.54x 6.08 3.97x 4.45 5.41x 3.54 6.82x 0.95 25.25x

SwedishLeaf
Expanding

1 1826.04 438.98 4.16x 22.10 82.64x 15.70 116.28x 10.41 175.44x 6.21 294.12x
10 86.03 45.12 1.91x 20.61 4.17x 17.25 4.99x 11.18 7.69x 3.13 27.47x

40
1 1295.09 270.54 4.79x 13.34 97.09x 11.14 116.28x 7.25 178.57x 4.40 294.12x
10 69.82 43.28 1.61x 25.35 2.75x 17.22 4.06x 3.27 21.37x 2.53 27.55x

Strawberry
Expanding

1 2118.25 389.97 5.43x 26.69 79.37x 19.06 111.11x 12.92 163.93x 9.11 232.56x
10 119.03 51.91 2.29x 29.85 3.99x 23.41 5.08x 15.39 7.73x 3.49 34.13x

40
1 1437.21 156.94 9.16x 15.09 95.24x 12.22 117.65x 8.19 175.44x 6.18 232.56x
10 98.52 41.59 2.37x 19.72 5.0x 15.95 6.18x 7.84 12.56x 1.64 60.24x

EOGHorizontalSignal
Expanding

1 10206.39 906.33 11.26x 50.01 204.08x 40.83 250.0x 27.56 370.37x 27.56 370.37x
10 1485.92 351.87 4.22x 17.24 86.21x 15.45 96.15x 8.77 169.49x 5.50 270.27x

40
1 8057.42 294.10 27.4x 49.15 163.93x 42.70 188.68x 21.76 370.37x 21.76 370.37x
10 710.63 92.10 7.72x 6.54 108.7x 5.61 126.58x 5.05 140.85x 2.27 312.5x

InsectWingbeatSound
Expanding

1 1656.07 306.37 5.41x 79.16 20.92x 64.75 25.58x 44.05 37.59x 41.40 40.0x
10 80.18 35.31 2.27x 33.65 2.38x 30.24 2.65x 16.93 4.74x 5.14 15.6x

40
1 958.27 144.03 6.65x 44.08 21.74x 35.94 26.67x 24.82 38.61x 23.00 41.67x
10 54.77 31.62 1.73x 30.22 1.81x 28.06 1.95x 8.66 6.33x 3.23 16.98x

ECG5000
Expanding

1 1736.38 404.40 4.29x 134.92 12.87x 94.46 18.38x 50.53 34.36x 44.10 39.37x
10 107.11 55.60 1.93x 55.60 1.93x 55.60 1.93x 37.12 2.89x 4.67 22.94x

40
1 1370.28 275.43 4.98x 88.93 15.41x 63.86 21.46x 40.15 34.13x 34.94 39.22x
10 69.98 35.84 1.95x 18.73 3.74x 12.74 5.49x 9.80 7.14x 7.62 9.18x

UWaveGestureLibraryX
Expanding

1 6669.74 1053.82 6.33x 123.39 54.05x 89.37 74.63x 72.70 91.74x 70.03 95.24x
10 808.32 307.73 2.63x 127.15 6.36x 104.35 7.75x 56.58 14.29x 15.68 51.55x

40
1 6408.30 526.76 12.17x 121.12 52.91x 80.10 80.0x 67.29 95.24x 64.72 99.01x
10 354.34 136.00 2.61x 32.46 10.92x 22.22 15.95x 20.34 17.42x 6.63 53.48x

Yoga
Expanding

1 3189.04 424.14 7.52x 152.44 20.92x 106.83 29.85x 88.66 35.97x 86.74 36.76x
10 309.08 101.01 3.06x 64.54 4.79x 45.31 6.82x 27.85 11.1x 11.19 27.62x

40
1 2329.18 172.59 13.5x 106.68 21.83x 77.79 29.94x 65.22 35.71x 63.35 36.76x
10 138.37 49.83 2.78x 40.57 3.41x 15.18 9.12x 9.91 13.97x 5.83 23.75x

Phoneme
Expanding

1 5085.99 562.00 9.05x 189.71 26.81x 125.12 40.65x 124.10 40.98x 123.59 41.15x
10 610.76 173.46 3.52x 57.84 10.56x 42.75 14.29x 21.87 27.93x 15.15 40.32x

40
1 4383.57 1447.89 3.03x 162.63 26.95x 107.84 40.65x 106.52 41.15x 106.52 41.15x
10 435.54 313.28 1.39x 25.87 16.84x 23.39 18.62x 16.33 26.67x 10.89 40.0x

Mallat
Expanding

1 1329.64 137.49 9.67x 129.11 10.3x 124.19 10.71x 122.06 10.89x 121.40 10.95x
10 189.64 51.52 3.68x 50.65 3.74x 48.85 3.88x 31.69 5.98x 24.73 7.67x

40
1 867.53 60.12 14.43x 56.56 15.34x 52.23 16.61x 50.23 17.27x 49.45 17.54x
10 62.13 20.04 3.1x 19.01 3.27x 17.75 3.5x 10.53 5.9x 8.10 7.67x

MixedShapesRegularTrain
Expanding

1 11534.43 1093.46 10.55x 239.92 48.08x 161.48 71.43x 154.56 74.63x 153.41 75.19x
10 1380.13 354.69 3.89x 52.03 26.53x 42.23 32.68x 26.77 51.55x 19.46 70.92x

40
1 9590.46 414.31 23.15x 196.60 48.78x 138.10 69.44x 127.55 75.19x 126.59 75.76x
10 1076.32 256.92 4.19x 49.94 21.55x 46.28 23.26x 25.62 42.02x 15.50 69.44x

Test environment specs: CPU: 12× Intel(R) Core(TM) i7-8700K @ 3.70GHz; Memory: 31GiB; OS: Ubuntu 18.04; Python: 3.7.3.
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4.8 Insights on ALK’s gain

This section aims to scrutinize the superior gain provided by ALK, and in particular, intents to
answer how the algorithm can remarkably exceed the gain of Lazy kNN even for interruptions
at confidence thresholds as high as 0.98. Indeed, this was one of the striking observations for
many experiments in the previous results section (cf. columns ‘Unint.’ and ‘0.98’ in Table 4.2).
The confidence thresholds in experiments were selected for the kth NN (for details see subsec-
tion 4.6.3). So, as given by the threshold definition 4.6, interrupting the algorithm at a threshold
of 0.98 for z=−1 setting, we expect the similarity of the best-so-far kth NN to the query to be at
most 2% below the similarity of the exact kth NN. So, the algorithm must have evaluated enough
number of “good” candidates to reach this very close approximation. Therefore, the observed leap
in gain for high thresholds indicates that we obtain fairly near—if not exact—kNN after much
fewer similarity assessments compared to the total number of candidates.

On the other hand, this observed phenomenon corroborates our intuition as one of the motivations
in the design of our proposed algorithm. In chapter 3 (p. 20), we discussed that as the shared
history between two consecutive queries of the same problem sequence grows, it is likely to find
the kNN within the neighbors of recent queries.

In order to thoroughly clarify the interpretation of the results given above, we wanted to see when
exact kNN are actually found even if the search continues among other candidates in the guidance
of their upper-bounds of similarity. To have this information, for each kNN member, we tracked
the actual number of similarity assessments made till that NN was found and the total number of
evaluated candidates to ascertain its exactness. More specifically, we kept a counter of performed
similarity assessments during kNN search. And whenever a nearer neighbor replaced an existing
kNN member (shifting it down) after cth assessment, we set the actual value of all affected kNN
members to c as their ranks are decided at the same time. The counter value at the end of ith

iteration gave the total value for ith kNN member. And in the end of kNN search, we had the
actual values for all kNN members.

Figure 4.4 shows the actual and total number of similarity calculations recorded in two experi-
ments with MixedShapesRegularTrain dataset.2 To better mark the difference between these two
values throughout updates, the figure plots the cumulative sum of assessments made for each kNN
member until that problem index. More formally, where actual(u, i) and total(u, i) are the actual
and total values recorded for the ith NN during the kNN search for the uth problem of an input
sequence respectively, cumulative sums of these values are calculated as follows:

cumsum actual(u, i) =
u∑
x=1

i∑
y=1

actual(x, y)

cumsum total(u, i) =
u∑
x=1

i∑
y=1

total(x, y)

Later while plotting in Figure 4.4, curve fitting is applied to the cumulative sum data points ob-
tained from all input queries. In the figure, we can clearly see that the actual number of similarity

2The actual and total values in Figure 4.4 were gathered throughout the same corresponding experiments used in
Figures 3.4a and 3.4b.
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(a) Time window: width=Expanding, step=1

(b) Time window: width=Expanding, step=10

Figure 4.4: Actual vs total number of similarity assessments to find exact kNN in experiments
with the MixedShapesRegularTrain dataset with k = 9 setting. We see that ALK actually finds
exact kNN after very few similarity calculations compared to the total number of evaluated can-
didates to mathematically guarantee that they are the exact kNN. The numbers are cumulative for
each NN and for each problem index of the test sequence.
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calculations needed to find each NN is quite below than the total number of evaluated all candi-
dates for that NN. In other words, although we have to evaluate all candidates during the search for
exact kNN, the figure shows that exact kNN are indeed found among the early candidates which
are essentially within neighbors of recent predecessor problems. Consequently, the actual values
reflect to the quality of best-so-far kNN. The sooner we approach to exact kNN, the higher quality
we will get for fewer similarity calculations. And thus, the PDP will estimate higher confidence
for smaller number of calculations. So, when we interrupt the algorithm at these estimate confi-
dence thresholds, we will have higher gain. And this explains the reason behind the leap in gain
between interruption at high confidence thresholds and uninterrupted run in Table 4.2.

Of course, as seen in Table 4.2, the increase in gain can be very drastic such as 28.07%→94.06%
for threshold 0.98 in (Phoneme, 40, 10) experiment, or more modest like 55.96%→ 58.04% for
threshold 0.98 in (InsectWingbeatSound,Expanding, 10) experiment. The leap in gain is defined
by how good the neighbors found in the early stages of kNN search are compared to the exact
kNN. A big difference between the ratios of actual and total values to the CB size is a good
indicator that we would have this leap upon interruption. But, it is not the only indicator. If there
are many good candidates for a query, actual values would be closer to total. However, we could
still be finding very approximate NNs from the beginning of search. In this case, the leap should
be expected as well since the quality would be high starting from the early stages of search. So,
we can say that the selection of interruption thresholds and the expected gain should depend on
the CB and domain characteristics.

Finalizing this section, we would like to note another aspect of the kNN search conducted by
ALK. Figure 4.4 also shows that most of the similarity assessments made by ALK is by far for
the nearest neighbor (i.e. kNN [0] in the figure). Later, remaining k−1 NNs are found relatively
very fast. This observation may not be very surprising. The first iteration of the incremental core
of ALK evaluates all candidates for ‘the’ nearest neighbor. And every time a candidate beats a
best-so-far kNN member, the winner shifts the loser down (see Algorithm 4.3, line 19) and sets a
new candidacy threshold for the rest of the cases in RANK. Eventually, when the first iteration
ends and the second starts, there is already a very high threshold for the candidates of the second
nearest neighbor (i.e. kNN [1]). Precisely, it was the penultimate best-so-far nearest neighbor
before losing against the exact NN. So, high candidacy threshold results in fewer candidates. And
this goes on likewise at each iteration for the rest of kNN.
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4.9 Alternative RANK iterations

Until now both Lazy kNN and ALK searched kNN candidates in RANK in a Top-down fashion
starting from the most recent Stage towards the initial one. This section aims to highlight that
this is not necessarily the only way for iteration over RANK. As long as the upper-bound of
similarity of a case is calculated accordingly taking into account the Stage that case resides in, the
algorithms are capable of telling if the case proves to be a candidate or not. Thus, the mathematical
certainty in candidacy assessment thanks to the triangle inequality gives us a freedom of iterating
over the RANK in any manner that suits us best. Below we give four examples to alternative
iterations:

Bottom-up
As the extreme alternative to top-down style, this iteration searches kNN candidates in
RANK just in the opposite direction. The kNN search for a consecutive problem P u

starts from the top case in Stage0 created for the initial problem P 0. Although it is more
likely that the true kNN are to be found in nearer predecessor problems as discussed in the
introduction to Chapter 3, it is mathematically possible that the accumulated ∆s until uth

stage may yield kNN candidates of P u within Stage0 even for a u�0 (see Definition 3.1).

Interleaved
This alternative is a hybrid of top-down and bottom-up iterations. For a target problem P u,
the candidacy assessments are made in both directions alternately. One case is assessed
in top-down direction (starting from Stageu−1) and the next one in bottom-up direction
(starting from Stage0).

Jumping
After evaluating every nth candidate in a stage, this iteration makes a momentary jump to
the next stage for candidacy assessment. Precisely, after every nth evaluation within the
current stage Stagej , if the top case in Stagej−1 is a candidate, we calculate its similarity
and continue back with the Stagej . This iteration expects this momentary randomness in
candidate selection to improve the gain by reducing the number of candidates.

Exploit Approaching Candidates
During the kNN search for P u, if a candidate proves nearer to P u than it was to a previous
problem P j (j <u), this iteration exploits the predecessor and successor cases of that can-
didate to check if they get nearer to P u as well. More formally, where seqx is the xth case
in a sequence seq and seqx resides in Stagej :

If candidate(seqx, P u) ∧ sim(seqx, P u) > sim(seqx, P j), then we give priority to pre-
vious and later candidate problems in seq whose similarities to P u are ≥ sim(seqx, P u).
The set of these consecutive problems in seq can be formalized as follows:

{seqy | candidate(seqy, P u) ∧ sim(seqy, P u) ≥ sim(seqx, P u), ∀y ∈ [a, b]} where
a, b are the indices of the first predecessor and successor cases of seqx, respectively, that
give lower similarity than sim(seqx, P u).

Exploit Approaching Candidates iteration expects that if a case seqx got nearer to P u, then its
adjacent cases in the same sequence starting from seqx+1 and seqx−1 can prove to be even nearer
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to P u. However, in the implementation of this iteration, accessing adjacent cases in RANK is
not straightforward as we don’t have the knowledge of the Stage they reside in. RANK does
not hold the indices of cases per se. So, an efficient implementation of this iteration requires
an additional hash table RANK HASH for fast and arbitrary access to the cases in RANK.
Moreover, RANK HASH should be maintained as candidate cases are moved between Stages
during kNN search. Access to the hash table does not introduce a significant time complexity given
that its maintenance is also handled cautiously. However, this alternative iteration does have an
additional space cost. Here we present this example just to show the possibility of implementing
more complex iterations.

In our experiments, Bottom-up and Interleaved alternatives did not surpass the gain of Top-down
iteration as expected. In particular, candidates were found within the stages at the far end of
RANK thanks to their upper-bound of similarities. However, the actual similarity of these candi-
dates usually could not win over best-so-far kNN. And when they did win, they were soon replaced
by candidates from more recent stages. And finally, the number of more similarity assessments
made by these two iteration methods lowered the gain of Lazy kNN compared to top-down iter-
ation. Although there is no need to present their experiment results, we still wanted to mention
these alternatives as examples to extreme and hybrid iterations.

On the other hand, Jumping iteration did improve the gain slightly. Table 4.4 shows that this
alternative has equal or slightly better gain on average compared to Top-down for the CBs of these
select datasets. And interestingly, the gain is higher when the jumps are more frequent. It seems
that sometimes we find better kNN candidates for P u in the penultimate stage Stageu−2 than the
candidates in the last stage Stageu−1. This is most probably due to the fact that although upper-
bound of similarity provides us with a radius to identify our candidates in the problem space,
it does not indicate a direction. And the sporadic jumps are sometimes made towards the right
direction and this increases the gain of the algorithm.

Table 4.5 shows the gains of Lazy kNN with the Exploit Approaching Candidates iteration, com-
pared to Top-down. These results show that with this alternative we may have a slight increase
in gain as well. Nevertheless, due to the considerations regarding its additional space complexity
and maintenance effort for the hash table that we discussed above, this iteration method requires
careful studying of the domain and CB characteristics beforehand to make sure that it is worth
using it.

The alternative iterations in this section are discussed on their own with comparison to Top-Down.
However, Lazy kNN and ALK can benefit from alternative approaches using them in a hybrid way
too. For example, for the first problems corresponding to the early sequence updates, the algorithm
cannot make the most of a long shared history between these consecutive problems. Then, it may
resort to the Jumping iteration hoping that random search of candidates may result in higher gain
compared to Top-Down, as it is the case for some experiments in Table 4.4. And when the number
of consecutive problems in a sequence increases, the algorithm can switch to Top-Down as it is
more likely that the kNN are within the neighbors of recent predecessor problems. Or, we can
switch back and forth between these two type of iterations when one of them does not seem to
yield good enough candidates.

The complete code for Jumping and Exploit Approaching Candidates iterations together with sim-
ple instructions for reproducing the experiments given in this section are publicly available at the
online repository: https://github.com/IIIA-ML/alk
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Table 4.4: Average gain (%) with Jumping vs Top-down iterations

TopDown Jump after every # of candidates =
Time window 50 10 5 2 1

Dataset w step

PowerCons
40

1 70.81 70.81 70.81 70.82 70.83 70.83
10 35.81 35.82 35.82 35.85 35.98 36.17

Expanding
1 75.76 75.76 75.76 75.76 75.77 75.78
10 48.22 48.22 48.26 48.33 48.43 48.43

SwedishLeaf
40

1 80.09 80.09 80.10 80.10 80.10 80.11
10 36.26 36.32 36.52 36.70 37.18 37.56

Expanding
1 76.16 76.16 76.16 76.16 76.17 76.18
10 47.70 47.72 47.88 48.02 48.24 48.33

Strawberry
40

1 89.24 89.25 89.25 89.25 89.25 89.25
10 58.70 58.71 58.75 58.80 58.89 59.00

Expanding
1 81.65 81.65 81.65 81.65 81.66 81.67
10 56.87 56.98 57.53 57.74 58.03 58.20

EOGHorizontalSignal
40

1 96.34 96.34 96.35 96.35 96.35 96.35
10 87.74 87.75 87.77 87.78 87.79 87.79

Expanding
1 91.27 91.27 91.27 91.27 91.27 91.28
10 75.95 75.96 75.95 75.95 76.00 76.03

InsectWingbeatSound
40

1 85.81 85.81 85.81 85.81 85.82 85.82
10 43.91 43.93 43.96 43.97 43.97 43.97

Expanding
1 82.67 82.67 82.67 82.67 82.67 82.67
10 59.37 59.39 59.49 59.56 59.72 59.79

ECG5000
40

1 80.56 80.56 80.56 80.57 80.58 80.60
10 50.42 50.46 50.58 50.71 50.87 50.89

Expanding
1 77.07 77.07 77.08 77.08 77.09 77.10
10 49.85 49.89 49.90 49.98 50.17 50.48

UWaveGestureLibraryX
40

1 91.80 91.80 91.80 91.80 91.80 91.80
10 56.12 56.13 56.13 56.16 56.23 56.29

Expanding
1 84.21 84.21 84.21 84.21 84.21 84.22
10 61.85 61.86 61.95 61.96 62.01 62.08

Table 4.5: Average gain (%) with Exploit Approaching Candidates vs Top-down iterations

Time window TopDown ExploitCandidates
Dataset w step

PowerCons
40

1 72.96 72.97
10 30.69 30.71

Expanding
1 75.12 75.14
10 48.01 48.05

SwedishLeaf
40

1 80.21 80.21
10 37.86 37.89

Expanding
1 76.17 76.17
10 48.27 48.34

Strawberry
40

1 88.83 88.83
10 58.74 58.84

Expanding
1 81.71 81.72
10 56.12 56.83

EOGHorizontalSignal
40 10 84.32 84.33
Expanding 10 77.14 77.18

ECG5000
40 10 46.01 46.08
Expanding 10 50.04 50.29
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4.10 Summary

The exact kNN search algorithm Lazy kNN introduced previously in Chapter 3 reaches remarkable
speed-ups in CBR retrieval in domains with large-scale CBs of temporally related cases. However,
for some applications and/or domains the speed-up provided by this algorithm may not suffice and
the execution time for finding exact kNN may still not be feasible. Therefore, to fit the CBR system
with an approximate retrieval option for time-critical applications, in this chapter we described our
methodology to transform Lazy kNN to Anytime Lazy kNN (ALK).

Specifically, we detailed how we constructed a probabilistic model of adjustable accuracy to esti-
mate the quality of best-so-far kNN upon interruption. We referred to the expected quality as the
confidence of the algorithm for its output in accordance with CBR literature. Later, we showed
how we can implement confidence thresholds to automatize the interruption with options to be
precautious, neutral or optimistic about the confidence estimation provided by our probabilistic
model. Before experimentation, we explained how we generated CBs out of time series datasets
for training our probabilistic model and for interruption tests. Furthermore, we devised a means
to measure the efficiency of confidence estimation to be used throughout experiments. Finally,
we presented the results of numerous experiments conducted on publicly available TS datasets of
diverse domains and characteristics.

The results show us that we can reach superior speed-up in approximate kNN search even when
we interrupt the algorithm at very high confidence thresholds which means that best-so-far kNN
are almost as near to the query as the exact kNN. So, with ALK, the expert can opt to wait for
the completion of the algorithm to obtain exact kNN or, he/she can interrupt the search manu-
ally/automatically any time when a prompter response is needed and get best-so-far kNN together
with a confidence value for each NN to reason with.

We also presented alternative ways of iterating over RANK for kNN candidates. And with some
of them we were able to achieve higher average gains compared to the conventional Top-down
iteration style. These iteration examples indicate that we can even consider implementing domain-
specificRANK iterations when domain knowledge could help us find better candidates in shorter
times.

Until now, we managed the speed-ups in kNN search by exploiting the problem space only. Pre-
cisely, we achieved this performance by leveraging the similarity between consecutive problems of
a sequence in temporal case bases. However, in CBR, there is more to the case base than the prob-
lem space. In the next chapter, we show how we can further increase the speed-up by exploiting
the solution space, in particular for classification purposes.

62



Chapter 5

Anytime Lazy kNN Classifier

A kNN classification algorithm that depends on a kNN search which ascertains exact kNN all-at-
once has to wait for the completion of the search to provide the exact solution. However, a kNN
classifier utilizing Anytime Lazy kNN (ALK) could yield the exact solution class before the ter-
mination of the kNN search by leveraging the incremental essence of the algorithm. Specifically,
depending on the classification method, there may be occasions when the already-found exact NNs
suffice to decide the class of the query without the need to find the remaining exact members of
the kNN list.

In this chapter, we propose extensions to ALK for its use as a kNN classifier. And doing so, we
empirically demonstrate how we further increase ALK’s gain in execution time by exploiting the
solution space for classification. The chapter is organized as follows. In section 5.1, we describe
the conditions where the algorithm can be terminated earlier with an exact solution for three major
kNN classification methods. In section 5.2, we introduce the extensions to ALK for classification
and give the pseudo-code of the new algorithm ALK Classifier. Later we present the results which
show the increase in gain by ALK Classifier compared to uninterrupted ALK. In the same section,
we also explore the accuracy in solutions that we would suggest at interruptions upon reaching
confidence thresholds for kNN.

Furthermore, having a measure of confidence for suggested solutions is a desired feature of CBR
systems (e.g. Cheetham, 2000). Therefore, beside the confidence for approximate kNN that we
defined in section 4.5, we also present extensions to several solution confidence measures in CBR
literature for classification with those approximate kNN in section 5.5. In particular, regardless of
the exactness of solution, extended versions of these measures take into account best-so-far NNs
instead of all-exact NNs used by their original versions.

5.1 Interrupting ALK Classifier with exact solution

In the following two subsections, we detail how we can pinpoint the moments of early termination
by guaranteeing exact solution for widely-used kNN classification methods—namely, majority,
plurality and distance-weighted voting. We cover the first two together as they are closely related.
And in subsection 5.1.3, we give a generic method for the decision of exact solution with the exact
NNs found so far.
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5.1.1 Majority and plurality votes

In majority vote (a.k.a simple majority), all of the k nearest neighbors participate in classification
with equal votes regardless of their proximities to the query. The majority class wins. If there
is no simple majority (i.e. a class represented by more than half of the kNN), the decision can
be taken by plurality vote (a.k.a. relative majority). In plurality vote, the winner class has the
number of votes that is greater than any other class. k is usually chosen an odd number to avoid
ties. However, a tie can occur even in this case and it has to be dealt with one way or another; e.g.
by random choice between classes of equal votes, increasing the k etc.

ALK Classifier can be interrupted automatically and guarantee the exact solution class if the fol-
lowing conditions are met for majority and plurality votes, respectively:

1. When the majority of the kNN are exact and there is a majority class among them, there
is no need to find the rest of the exact kNN members. For example, with k = 9, if five of
the seven exact NNs are of the same class, e.g. (A, A, A, B, A, B, A), we do not need to
continue the kNN search for the eighth and ninth NNs.

2. When the majority of the kNN are exact but there is no majority class, however, some of
the exact NNs form a plurality which cannot be overcome by the remaining exact kNN
members, then there is no need to continue either. For example, with k = 9, if the classes
of the already-found seven exact NNs are (B, A, A, D, A, C, A), then there is no need to
continue the search for the eighth and ninth NNs. “A” does not have the majority (five)
votes, but it would win by plurality vote (four) because no other class can win even if the
eighth and ninth NNs are in its favor.

5.1.2 Distance-weighted vote

Majority and plurality votes have a drawback when the distances of kNN to the query vary widely.
For example, even though there is a very near neighbor, the voting ends in favor of the very distant
neighbors of another class just because they form the majority. And in this example we might
have preferred to label the query with the nearest neighbor’s class instead. To tackle this issue,
distance-weighted vote gives more importance to nearer neighbors than further ones where each
neighbor contributes to voting inversely proportional to its distance to the query. In other words,
the more similar a NN is to the query, the higher is its contribution.

For this voting, ALK Classifier ensures the exactness of the solution when either of the following
conditions is met:

1. Just like the Majority Vote in subsection 5.1.1, when the majority of the kNN are exact and
there is a majority class among them, then there is no need to continue the kNN search. This
is because, due to the incremental nature of ALK Classifier, the remaining exact kNN mem-
bers cannot be nearer to the query than the already-found furthest exact neighbor. There-
fore, the total contribution of the remaining exact NNs cannot exceed the contribution of the
already-found exact NNs of the majority class;

2. When the majority of the kNN are not exact but there are at least two exact NNs among
them, it is still possible to determine if the exact solution can be guaranteed as follows. At
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any given moment in kNN search, the furthest exact NN sets the lower-bound of distance for
candidacy (dLB ) for the remaining kNN candidates. As mentioned above, ALK Classifier
guarantees that no kNN candidates surpass the furthest exact NN, although they can equal
it. So, if there is a chance that the runner-up class (i.e. the class that currently has the second
highest vote) could win—‘assuming’ that the remaining exact kNN members are all of this
class and their distances to the query equal dLB , we should continue the search. Otherwise,
we can stop since the class of the solution is guaranteed to not change.

For example in Figure 5.1, while ALK Classifier is searching for the 4th NN where k= 5,
a weighted vote among green exact NNs and red approximate NNs yields a ‘circle’ class
for the target query t. However, if the search continued, two imaginary candidates shown
as hollow triangles would change the solution class to a ‘triangle’. So, to obtain the exact
solution in ALK Classifier classification, the search should continue until no such supposed
candidates could change the voting result. And, dLB can be used to determine the cut-
off point for ALK Classifier classification where no imaginary candidates can change the
current solution.

Figure 5.1: Distance-weighted classification with ALK Classifier. Green filled NNs are exact,
red filled NNs are approximate, and hollow NNs are imaginary best rival NNs of the target query
t.

5.1.3 Guaranteeing exact solution

For each of the majority, plurality and distance-weighted voting, we observe a common pattern in
the decision of whether or not we can guarantee the exact solution with best-so-far kNN. While
deciding, what we essentially do is checking the solution that is suggested by the current exact
neighbors against the solution with the full kNN list where the missing members are filled with
imaginary neighbors. In majority and plurality votes, these imaginary neighbors are of the runner-
up class. For k = 9, in the majority vote example (A, A, A, B, A, B, A) in subsection 5.1.1,
imaginary neighbors would be (B, B). And in the plurality example (B, A, A, D, A, C, A) in the
same place, they would be any of the (B, B), (C, C), (D, D) pairs.

In distance-weighted vote, imaginary neighbors are also of the runner-up class that are supposedly
at the same distance to the target query as the furthest exact NN. In Figure 5.1 these are the hollow
triangles at the distance dLB set by the furthest exact NN, i.e. the further green circle.
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On the other hand, for any of these three types of voting, there is also an implicit prerequisite of
having a single leading solution among the competing classes of exact NNs. Otherwise, if there is
more than one leading class with the same vote, the exact solution cannot be guaranteed since we
cannot know which one of the competing classes will come forward during the rest of the kNN
search.

So, for these three votings, the decision of whether or not we can guarantee the exact solution at
any moment in kNN search consists of three steps: (1) make sure there is a single leading class
among the competing exact NNs, and if so; (2) create an imaginary best rival and fill the missing
exact kNN members with this rival; (3) check the solution with the current exact NNs against the
solution with the supposed kNN list. If the solutions of both are the same, it means that no matter
how good the future rivals are, they cannot change the current solution. Thus, we can guarantee
the exact solution with the exact NNs found so far. However, if the solution with the supposed
kNN is different, it means there is still chance for the other classes to win. Therefore, the exact
solution cannot be guaranteed for the moment. In the ALK Classifier algorithm that we introduce
in the following section, we will use this generic method of decision for the exact solution.

5.2 ALK Classifier algorithm

In this section, we fully detail ALK Classifier—as an extension to ALK—in four sub-algorithms
covering its class structure, implementations of the public and auxiliary class methods and the core
algorithm respectively.

Algorithm 5.1 defines the AnytimeLazyKNNClassifier class structure that is a sub-class of
AnytimeLazyKNN introduced in Algorithm 4.1. It extends the parent class with an additional
private attribute fn reuse and a public method SuggestSolution. And, it overrides parent’s
constructor. Construct calls parent constructor and sets the fn reuse with the CBR reuse
function passed as an argument that will serve as the classification method (e.g. plurality vote).
Just like its parent, an instance of this class has to be created for each particular problem sequence.

Algorithm 5.2 implements the new public method SuggestSolution. This method can be
called any time we want to suggest a solution for the current query by reusing the solutions of
best-so-far/exact kNN. SuggestSolution returns the solution suggested by the fn reuse
function. Together with the solution itself, the method also returns the confidence for the solution
with the system-provided confidenceSOLN function.

In Algorithm 5.4, AnytimeLazyKNNClassifier overrides parent’s core method. The new
implementation of IncrementalLazyKNN provides an extra option to interrupt the algorithm
when an exact solution is guaranteed. So, IncrementalLazyKNN can be interrupted in two
ways: (i) after a given number of similarity calculations (line 22); or (ii) when the exact NNs within
the best-so-far kNN guarantee an exact solution (line 31). For the latter interruption choice, the
interrupt argument of the ConsecutiveSearch and ResumeLastSearchmethods should
be −1 (see Algorithm 4.2). If interrupt = −1, the auxiliary method IsExactSolution
(Algorithm 5.3) is called after each iteration in IncrementalLazyKNN to check if the exact
solution is guaranteed with current exact NNs (Algorithm 5.4 line 31). And if this is the case, the
algorithm is interrupted. IncrementalLazyKNN returns the kNN list and the confidence of
the algorithm for each member of the list. If the algorithm is run to completion, the kNN will be
exact and their confidence values will be 1. If the algorithm is interrupted, best-so-far kNN list
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Algorithm 5.1: Anytime Lazy KNN Classifier Class

1 Class AnytimeLazyKNNClassifier (base AnytimeLazyKNN):
Attributes : fn reuse: Function to suggest the solution out of kNN (e.g. plurality vote for classification), for

parent attributes see Algorithm 4.1
Methods : SuggestSolution(): see Algorithm 5.3, for parent methods see Algorithm 4.1

2 Function Construct(CB, k, fn initialNNS, fn dist, fn reuse):
Input : see related class instance attributes above
Output : An AnytimeLazyKNNClassifier object to be used for a particular problem sequence (e.g.

history of treatment sessions of a particular patient)

3 this← AnytimeLazyKNN. Construct(CB, k, fn initialNNS, fn dist, fn reuse) // see Alg 4.1
4 this. fn reuse← fn reuse
5 return this

Algorithm 5.2: Anytime Lazy KNN Classifier Class - New Public Method

1 Function SuggestSolution(this):
Output : The suggested solution for the best-so-far/exact kNN and the confidence for this solution. The

solution confidence is calculated by the system-provided confidenceSOLN measure

2 stageu ← this. RANK[0]
3 return this. fn reuse(stageu.NN [ : this. k]), confidenceSOLN(stageu.NN, this. k)

Algorithm 5.3: Anytime Lazy KNN Classifier Class - Auxiliary Method

1 Function IsExactSolution(this, iter):
Input : The # of completed iterations, i.e the # of exact NNs
Output : True if the solution with current exact NNs (NNE ) is equal to the solution with the supposed kNN

(kNNS ); False otherwise. kNNS consists of NNE and imaginary exact NNs. The latter are the
clones of an imaginary neighbor (NS ) that is of the runner-up class and has the similarity of the
furthest exact NN to the query

2 stageu ← this. RANK[0]
3 kNNA ← stageu.NN [ : this. k] // Best-so-far kNN
4 NNE ← kNNA[ : iter] // Exact NNs
5 if not SingleLeadingSolution(NNE) then return False
6 NS ← ImaginaryBestRival(NNE) // Imaginary best rival neighbor
7 kNNS ← NNE + [NS ] ∗ (this. k − iter) // Supposed kNN

8 return this. fn reuse(NNE)
?
= this. fn reuse(kNNS)

is returned together with the expected quality values for each member of the list provided by the
confidenceKNN system function. confidenceKNN is based on the PDP of the algorithm
generated for the application domain and time window settings as detailed in section 4.4.

Algorithm 5.3 implements the above-mentioned IsExactSolution following the generic
method detailed in subsection 5.1.3. In this method, we first ensure that there is only a single
leading solution among current exact NNs (NNE). Otherwise, since we cannot know which of
the equally voted leading classes will win, we cannot guarantee the exact solution. So, the method
quits returning False. If there is a single leading solution however, we create a supposed kNN list
(kNNS) to check if there is any chance that the runner-up class in NNE (i.e. the second highest
voted in competing classes) could win if the kNN search continued. kNNS consists of current ex-
act NNs NNE and imaginary future exact NNs that are clones of an imaginary best rival neighbor
NS . NS is a fictive case that is of the runner-up class and has the similarity of the furthest exact
NN to the query. This is the maximum similarity that we can assign to NS , because, due to the
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Algorithm 5.4: Anytime Lazy KNN Classifier - Core algorithm

1 Function IncrementalLazyKNN(this, interrupt =null):
Input : Optional interruption point for similarity calculations—null for no interruption, > 0 for interruption

after a number of similarity calculations, −1 for interruption when an exact solution is guaranteed.
No need to pass the query, it is accessed via the instance attribute query

Output : kNN list and the list of associated confidence for each neighbor. If the algorithm is run to
completion, kNN are exact and their confidence values are 1; otherwise, at least some of the kNN
are approximate and the confidence values are given by the system-provided confidenceKNN
function ∈ [0, 1]

2 stageu ← this. RANK[0]
3 sort flag ← False
4 calc← 0
5 for iter ← this. current iter to this. k do // Iterate RANK k times

6 sum∆←
∑this. current index−1
j=0 this. RANK[j].∆

7 for j ← this. current index to |this. RANK|−1 do // Iterate Stages in RANK
8 stagej ← this. RANK[j]

9 foreach assess in stagej .NN do
10 case← assess.case
11 sim← assess.similarity
12 if |stageu.NN | < iter or (sim+ sum∆) > stageu.NN [iter−1].similarity then
13 stagej .NN.remove(assess) // case is candidate
14 sim← 1− this. fn dist(this. query, case) // Calc case’s sim
15 calc← calc+ 1
16 new assess← newAssessment(case, sim)
17 if sim > stageu.NN [this. k−1].similarity then
18 stageu.NN.insert(new assess, i) // Insert case to kNN, iter−1≤ i<k
19 else
20 stageu.NN.append(new assess)
21 sort flag ← True

22 if calc = interrupt then // Interrupt w/ calc
23 this. current iter ← iter
24 this. current index← j
25 if sort flag then stageu.NN [iter+1: ].sort descending()
26 return stageu.NN [ : this. k], confidenceKNN(u, this. k, calc)

27 else // case is not candidate
28 break // Continue with the next Stage

29 sum∆← sum∆ + ∆j // Accumulate ∆s

30 this. current index← 1
31 if interrupt=-1 and this. IsExactSolution(iter) then // Interrupt w/ soln
32 this. current iter ← iter
33 return stageu.NN [ : this. k], confidenceKNN(u, this. k, calc)

34 if sort flag then stageu.NN [this. k : ].sort descending()
35 return stageu.NN [ : this. k], [1] ∗ this. k

incremental nature of our algorithm, we know that none of the remaining exact NNs can surpass
the current furthest exact NN. If there is no runner-up class in NNE , this class is chosen from
existing classes in the CB. Finally, we compare the suggested solutions with NNE and kNNS .
If the two solutions are different, it means that the imaginary neighbors which we created to back
up the runner-up class were able to change the current leading solution. Then, it is possible that
the solution changes as new actual exact NNs are found. So in this case, we cannot guarantee
the exact solution for the moment and IsExactSolution returns False. On the other hand,
if the solutions with NNE and kNNS are the same, it means that even if the remaining exact
kNN are of the runner-up class, it is impossible to change the current solution. Therefore, we can
guarantee the exact solution with the current exact NNs that we found and IsExactSolution
returns True. After an interruption with exact solution, calling SuggestSolution would
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yield the exact solution together with a confidence value for the suggested solution provided by
confidenceSOLN.

The complete code of ALK Classifier including simple instructions for reproducing the experi-
ments that will be covered in the following section is publicly available at the online repository:
https://github.com/IIIA-ML/alk

5.3 Evaluating ALK Classifier

In section 3.5, we evaluated the gain of our first proposed algorithm Lazy kNN in terms of avoided
similarity assessments. Lazy kNN is an exact kNN search algorithm that provides the kNN all-at-
once after termination and consisted the foundation for two more algorithms that followed. Later
in section 4.6, we evaluated the gain of the second proposed algorithm ALK at interruptions upon
reaching given confidence thresholds for kNN. And we compared the gain of the algorithm at
interruptions against the gain at uninterrupted runs.1 And, in this section our goal is to evaluate
the gain of our third proposed algorithm ALK Classifier when it is interrupted automatically upon
guaranteeing the exact solution during kNN search.

For this purpose, we launched experiments with ALK Classifier using CBs that were generated
out of time series datasets introduced in section 3.4. CB generation settings were the same as the
ones described in section 4.6.3. For each

(
dataset, w, step

)
setting, we launched three parallel

experiments that used the same input sequences and CB TEST .

In the first experiment, ALK Classifier was interrupted upon reaching a given set of confidence
thresholds for kNN τ=µ−σ∈

{
0.70, 0.75, 0.80, 0.85, 0.90, 0.92, 0.95, 0.98

}
(i.e. the z parameter

for standard deviation was −1). For threshold selection details see subsection 4.6.3. And after the
interruption at the highest threshold 0.98, we resumed the algorithm and let it run till completion.
In the second and third experiments, ALK Classifier was interrupted upon guaranteeing the exact
solution where the fn reuse was plurality and distance-weighted vote respectively.

When ALK Classifier is run uninterrupted or configured to interrupt with exact solution, calling
SuggestSolution (Algorithm 5.2) after the algorithm stops would give us the exact solution.
On the other hand, we were intrigued by the question as to the accuracy of solution when ALK
Classifier is interrupted by kNN confidence threshold. In particular, we wondered how accurate
the solution suggested by best-so-far kNN is when the algorithm is interrupted at a high threshold
like 0.98. In this case, best-so-far kNN are expected to be almost as close to the query as the
exact kNN. So, would their solutions also be the same? To find the answer to this question, in
the first experiment detailed above, we called SuggestSolution after each interruption of
the algorithm upon reaching a confidence threshold. And later, we compared the solutions at
interruptions with the exact solution which we had upon the completion of the algorithm. When
the solutions were the same, we called this a solution hit.

5.4 Results

The average gain for interruption with exact solution can be compared to the average gain upon
interruption at confidence thresholds in Table 5.1 and Table 5.3, given for plurality and distance-

1We remind that ALK has exactly the same gain with its predecessor Lazy kNN when it is run uninterrupted.
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weighted voting respectively. The average solution hits for the same experiments are given in
Table 5.2 and Table 5.4. A solution hit occurs when the suggested solution with best-so-far kNN
is equal to the solution with exact kNN.

The results show that interruption with exact solution increases the gain of ALK Classifier com-
pared to its uninterrupted runs. This is an expected result as we do not continue the search to find
remaining exact kNN members whenever we can guarantee the solution with current exact NNs.
We also see that distance-weighted vote provides a slightly better gain compared to the plurality
vote. This result is because, for k= 9, while we need at least five exact NNs to decide the exact
solution with plurality vote, we may guarantee the exact solution with even only two exact NNs
with distance-weighted vote depending on NNs’ distances to the query. Specifically, if the nearest
neighbor is too close and the second nearest neighbor is too far to the query, seven remaining NNs
may not change the result since they are bound by the distance of the second exact NN.

On the other hand, although interruption with exact solution increases the gain of the algorithm,
we observe that this additional gain is usually minuscule regardless of the voting method. This is
due to the fact that the majority of the similarity assessments in kNN search are conducted to find
‘the’ nearest neighbor compared to the rest of the kNN members as discussed in section 4.8.

Of course, every time we interrupt ALK Classifier upon guaranteeing exact solution, we have a
solution hit (see ‘w/soln’ column in Tables 5.2 and 5.4). When we interrupt the algorithm upon
reaching confidence thresholds, however, the average solution hit in experiments are variable. For
many CBs, we have high average hit percentage even for interruptions at relatively low confidence
thresholds. And for a few other experiments, we have very low hit percentage. Virtually all
of these low hit % experiments are with w = 40 and step = 10 setting which introduces more
difference between two consecutive problems. Another observation of interest with hits is that we
do not necessarily have a higher hit rate upon interruption at a higher confidence threshold. In
some experiments, e.g.

(
SweedishLeaf,Expanding, 1

)
in Table 5.2, the average solution hit %

is higher for interruptions at the threshold of 0.70 compared to the average hit for the threshold
0.98. So, although best-so-far kNN for a higher confidence threshold are nearer to the query than
the best-so-far kNN for a lower threshold, this does not necessarily imply that the solutions will
be more accurate for the higher threshold. These results indicate us that the accuracy of solution
with best-so-far kNN depends on the cluster structure in the CB solution space. In particular,
when there are no clear boundaries between cases of different classes, further approximate kNN
of a target query may suggest the same class with the exact solution while nearer kNN can give a
different class. And the results show that this was the case for some of the CBs that we generated
for our experiments.

Therefore, we can conclude that before using ALK Classifier for classification task in a CBR
system, it would be a good practice to carry out solution hit experiments detailed in this chapter
for the CB and select the confidence thresholds for interruption accordingly. If low solution hits
are observed even for interruptions at high thresholds, this may indicate that we do not have clear
boundaries in the solution space of the CB and/or there may be ‘noise’ cases. And to be sure of
the underlying reason, we can perform clustering methods to the solution space. And if necessary,
we can apply case-base maintenance methods that we briefly mentioned in section 2.1.
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Table 5.1: Average gain upon interruptions by exact solution with plurality vote and at confidence
thresholds.

Unint. Intrpt. Interruption at µ-σ= Efficiency

Time window w/Soln 0.98 0.95 0.85 0.70 η ση

Dataset w step

PowerCons
40 1 71.81 73.14 97.42 98.47 99.16 99.46 0.92 0.08

10 36.53 37.50 74.83 81.50 85.30 96.04 0.97 0.05

Expanding 1 75.56 76.76 97.75 98.62 99.17 99.45 0.92 0.07
10 47.80 48.55 75.40 84.36 89.46 93.47 0.96 0.06

SwedishLeaf
40 1 80.35 81.07 98.97 99.14 99.44 99.66 0.92 0.07

10 37.83 38.34 63.75 75.32 95.32 96.37 0.94 0.07

Expanding 1 75.48 76.21 98.75 99.14 99.43 99.66 0.92 0.07
10 46.93 47.37 75.98 79.94 87.00 96.36 0.94 0.07

Strawberry
40 1 88.97 89.57 98.95 99.15 99.43 99.57 0.93 0.06

10 58.24 58.81 79.89 83.69 92.07 98.34 0.94 0.07

Expanding 1 81.59 82.01 98.71 99.10 99.39 99.57 0.92 0.06
10 56.48 56.87 74.82 80.25 87.06 97.07 0.94 0.06

EOGHorizontalSignal
40 1 96.54 96.66 99.40 99.47 99.73 99.73 0.95 0.03

10 87.61 87.70 99.08 99.21 99.29 99.68 0.91 0.08

Expanding 1 91.14 91.41 99.51 99.60 99.73 99.73 0.95 0.03
10 76.21 76.37 98.84 98.96 99.41 99.64 0.94 0.07

InsectWingbeatSound
40 1 84.65 85.02 95.34 96.19 97.37 97.55 0.95 0.05

10 40.26 40.43 42.76 47.32 83.86 94.12 0.91 0.08

Expanding 1 81.35 82.37 95.22 96.09 97.34 97.51 0.94 0.05
10 56.81 57.76 58.49 62.43 78.73 93.44 0.89 0.09

ECG5000
40 1 80.28 81.18 93.49 95.34 97.07 97.45 0.94 0.05

10 48.91 49.69 72.64 81.31 85.52 89.06 0.92 0.08

Expanding 1 77.15 77.96 92.26 94.58 97.10 97.46 0.93 0.05
10 48.08 48.70 48.08 48.08 65.45 95.64 0.94 0.07

UWaveGestureLibraryX
40 1 91.53 91.78 98.12 98.76 98.96 99.00 0.96 0.03

10 63.98 64.13 90.70 93.67 94.20 98.10 0.93 0.06

Expanding 1 84.28 84.98 98.14 98.66 98.91 98.95 0.96 0.03
10 62.17 62.90 84.34 87.12 93.03 98.07 0.91 0.07

Yoga
40 1 92.71 93.15 95.44 96.69 97.21 97.28 0.96 0.03

10 63.80 64.19 70.57 89.11 92.92 95.86 0.93 0.06

Expanding 1 86.40 87.52 95.24 96.67 97.22 97.28 0.96 0.03
10 66.35 67.81 78.69 85.21 90.92 96.40 0.89 0.08

Phoneme
40 1 64.27 64.80 96.33 97.55 97.58 97.58 0.97 0.02

10 26.21 26.31 94.06 94.63 96.26 97.51 0.94 0.05

Expanding 1 89.12 89.30 96.27 97.54 97.56 97.57 0.97 0.02
10 71.51 71.63 90.47 92.92 96.34 97.53 0.92 0.06

Mallat
40 1 92.47 92.88 93.13 93.61 93.83 93.93 0.97 0.02

10 64.16 64.43 66.39 69.39 82.86 86.82 0.93 0.05

Expanding 1 90.10 90.92 90.75 91.07 91.25 91.30 0.97 0.02
10 73.14 74.64 73.42 74.48 83.20 86.98 0.91 0.06

MixedShapesRegularTrain
40 1 95.22 95.45 97.94 98.56 98.67 98.68 0.98 0.02

10 76.00 76.19 95.41 95.73 97.62 98.56 0.95 0.04

Expanding 1 90.55 91.54 97.92 98.60 98.66 98.67 0.97 0.02
10 74.45 75.95 96.22 96.93 98.06 98.58 0.92 0.06
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Table 5.2: Average solution hit % upon interruptions by exact solution with plurality vote and
at confidence thresholds.

Intrpt. Interruption at µ-σ=

Time window w/Soln 0.98 0.95 0.85 0.70

Dataset Width Step

PowerCons
40 1 100.00 95.09 94.37 92.59 93.50

10 100.00 81.45 76.82 74.96 72.69

Expanding 1 100.00 95.30 92.37 91.52 92.83
10 100.00 86.23 78.26 59.24 71.29

SwedishLeaf
40 1 100.00 87.62 85.99 85.11 86.77

10 100.00 65.59 48.40 31.89 43.41

Expanding 1 100.00 86.75 83.18 85.16 90.46
10 100.00 89.86 81.99 70.69 75.08

Strawberry
40 1 100.00 95.41 94.08 92.02 90.88

10 100.00 81.01 74.57 70.05 70.21

Expanding 1 100.00 91.09 83.02 83.79 86.02
10 100.00 98.99 97.84 97.07 98.52

EOGHorizontalSignal
40 1 100.00 98.32 98.24 97.87 97.35

10 100.00 61.40 61.16 59.22 54.82

Expanding 1 100.00 99.35 98.46 96.32 95.76
10 100.00 68.07 75.04 82.44 86.62

InsectWingbeatSound
40 1 100.00 93.38 92.65 91.37 91.29

10 100.00 51.85 47.97 27.52 22.62

Expanding 1 100.00 97.73 97.36 96.74 96.64
10 100.00 100.00 99.55 96.14 74.95

ECG5000
40 1 100.00 99.85 99.79 99.64 99.62

10 100.00 78.27 69.88 64.51 73.78

Expanding 1 100.00 99.73 99.70 99.69 99.63
10 100.00 100.00 100.00 98.80 99.00

UWaveGestureLibraryX
40 1 100.00 95.78 94.87 94.71 94.45

10 100.00 44.81 44.18 40.47 39.88

Expanding 1 100.00 98.25 98.20 98.19 97.88
10 100.00 99.16 98.91 89.12 84.26

Yoga
40 1 100.00 99.49 98.32 98.02 98.04

10 100.00 90.24 67.90 63.08 60.81

Expanding 1 100.00 99.53 99.30 99.19 99.15
10 100.00 99.38 98.96 98.23 92.51

Phoneme
40 1 100.00 92.17 91.38 91.38 91.38

10 100.00 32.33 31.47 27.50 26.81

Expanding 1 100.00 99.87 99.80 99.76 99.76
10 100.00 99.85 99.86 96.97 91.51

Mallat
40 1 100.00 94.96 96.91 96.73 96.62

10 100.00 80.15 73.71 60.22 53.70

Expanding 1 100.00 94.00 97.80 97.95 97.95
10 100.00 100.00 100.00 100.00 99.79

MixedShapesRegularTrain
40 1 100.00 98.73 98.15 98.07 98.08

10 100.00 64.11 63.16 58.35 57.97

Expanding 1 100.00 99.84 99.84 99.79 99.78
10 100.00 99.75 99.59 99.38 95.44
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Table 5.3: Average gain upon interruptions by exact solution with distance-weighted vote and at
confidence thresholds.

Unint. Intrpt. Interruption at µ-σ= Efficiency

Time window w/Soln 0.98 0.95 0.85 0.70 η ση

Dataset w step

PowerCons
40 1 71.52 74.50 97.37 98.44 99.16 99.46 0.92 0.08

10 34.99 36.90 74.70 81.51 85.34 96.04 0.98 0.05

Expanding 1 75.46 77.65 97.74 98.61 99.17 99.45 0.92 0.07
10 47.70 48.88 75.52 84.37 89.47 93.47 0.96 0.07

SwedishLeaf
40 1 80.08 80.98 98.97 99.15 99.44 99.66 0.92 0.07

10 36.19 36.84 63.58 75.35 95.32 96.37 0.94 0.07

Expanding 1 75.78 76.43 98.79 99.14 99.43 99.66 0.92 0.07
10 47.07 47.67 75.94 79.94 87.00 96.36 0.94 0.07

Strawberry
40 1 89.23 89.80 98.96 99.15 99.43 99.57 0.92 0.06

10 58.44 59.11 79.65 83.54 92.11 98.35 0.94 0.07

Expanding 1 81.58 82.14 98.72 99.10 99.39 99.57 0.92 0.06
10 56.53 57.09 74.97 80.32 87.10 97.06 0.94 0.06

EOGHorizontalSignal
40 1 96.17 96.33 99.39 99.47 99.73 99.73 0.95 0.03

10 86.76 86.90 99.08 99.21 99.29 99.68 0.91 0.08

Expanding 1 91.17 91.53 99.51 99.60 99.73 99.73 0.95 0.03
10 76.19 76.41 98.84 98.96 99.41 99.64 0.94 0.07

InsectWingbeatSound
40 1 85.37 85.89 95.47 96.29 97.43 97.61 0.95 0.05

10 44.55 44.86 46.72 50.23 83.88 94.06 0.91 0.08

Expanding 1 81.18 82.57 95.22 96.09 97.34 97.50 0.94 0.05
10 55.99 57.27 57.48 61.76 78.49 93.54 0.89 0.09

ECG5000
40 1 79.92 80.82 93.53 95.37 97.08 97.45 0.94 0.05

10 49.89 50.65 73.28 81.95 86.15 89.33 0.92 0.08

Expanding 1 76.90 77.91 92.28 94.60 97.11 97.47 0.93 0.05
10 47.88 48.65 47.88 47.88 65.30 95.58 0.94 0.07

UWaveGestureLibraryX
40 1 91.39 91.70 98.11 98.75 98.95 98.99 0.96 0.03

10 65.08 65.27 90.73 93.68 94.21 98.10 0.93 0.06

Expanding 1 84.32 85.26 98.15 98.66 98.91 98.95 0.96 0.03
10 61.90 62.79 84.46 87.24 93.10 98.08 0.91 0.07

Yoga
40 1 92.35 92.84 95.38 96.68 97.20 97.27 0.96 0.03

10 64.33 64.79 70.89 89.19 92.96 95.89 0.92 0.06

Expanding 1 86.73 88.39 95.21 96.64 97.21 97.28 0.96 0.03
10 66.55 67.95 78.80 85.33 90.96 96.43 0.89 0.08

Phoneme
40 1 55.54 56.09 96.26 97.53 97.56 97.57 0.97 0.02

10 31.87 32.04 94.06 94.63 96.26 97.50 0.94 0.05

Expanding 1 89.06 89.20 96.28 97.55 97.57 97.57 0.97 0.02
10 71.70 71.79 90.55 93.02 96.41 97.53 0.92 0.06

Mallat
40 1 93.45 94.26 94.05 94.36 94.58 94.68 0.97 0.02

10 66.37 67.15 68.31 70.85 82.98 86.93 0.93 0.05

Expanding 1 89.70 90.54 90.42 90.78 90.96 91.01 0.97 0.02
10 72.87 75.08 73.40 74.27 83.30 87.00 0.91 0.06

MixedShapesRegularTrain
40 1 95.47 95.72 97.95 98.56 98.67 98.68 0.98 0.02

10 75.86 76.10 95.37 95.70 97.61 98.56 0.95 0.04

Expanding 1 90.69 91.86 97.92 98.60 98.66 98.67 0.97 0.02
10 74.65 76.27 96.22 96.93 98.06 98.58 0.92 0.06
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Table 5.4: Average solution hit % upon interruptions by exact solution with distance-weighted
vote and at confidence thresholds.

Intrpt. Interruption at µ-σ=

Time window w/Soln 0.98 0.95 0.85 0.70

Dataset Width Step

PowerCons
40 1 100.00 96.94 96.37 94.15 92.71

10 100.00 80.65 72.47 73.37 67.51

Expanding 1 100.00 96.35 94.22 91.07 90.02
10 100.00 94.40 89.52 74.68 79.69

SwedishLeaf
40 1 100.00 90.71 89.01 87.20 90.75

10 100.00 64.93 46.39 34.56 42.74

Expanding 1 100.00 85.93 81.63 82.40 89.96
10 100.00 89.35 80.27 69.18 78.13

Strawberry
40 1 100.00 94.80 93.24 90.48 89.09

10 100.00 84.37 79.13 72.78 73.44

Expanding 1 100.00 92.09 84.65 84.96 85.17
10 100.00 99.16 97.98 96.92 98.89

EOGHorizontalSignal
40 1 100.00 98.79 98.78 98.50 98.01

10 100.00 61.48 61.08 58.90 55.06

Expanding 1 100.00 99.84 99.02 96.79 96.24
10 100.00 69.61 76.49 84.27 87.19

InsectWingbeatSound
40 1 100.00 95.95 95.65 95.25 95.12

10 100.00 63.46 66.91 33.83 28.49

Expanding 1 100.00 98.38 98.08 97.92 97.82
10 100.00 100.00 100.00 98.88 87.14

ECG5000
40 1 100.00 99.97 99.94 99.93 99.82

10 100.00 81.04 70.52 64.54 74.18

Expanding 1 100.00 100.00 100.00 100.00 99.99
10 100.00 100.00 100.00 98.80 99.17

UWaveGestureLibraryX
40 1 100.00 97.46 96.64 96.43 96.20

10 100.00 44.35 43.88 44.46 41.43

Expanding 1 100.00 99.59 99.58 99.56 99.36
10 100.00 99.00 98.96 89.94 84.26

Yoga
40 1 100.00 99.43 98.23 97.90 97.87

10 100.00 88.46 69.30 64.24 63.67

Expanding 1 100.00 99.94 99.92 99.81 99.80
10 100.00 99.88 99.90 99.21 90.67

Phoneme
40 1 100.00 89.12 88.40 88.38 88.39

10 100.00 35.14 33.41 30.36 29.86

Expanding 1 100.00 99.95 99.92 99.91 99.91
10 100.00 99.85 99.86 97.20 89.95

Mallat
40 1 100.00 97.95 97.64 97.93 97.96

10 100.00 89.47 79.62 64.04 58.76

Expanding 1 100.00 99.55 99.85 99.85 99.85
10 100.00 100.00 100.00 100.00 100.00

MixedShapesRegularTrain
40 1 100.00 98.84 98.37 98.28 98.28

10 100.00 63.70 63.46 59.40 58.89

Expanding 1 100.00 99.87 99.86 99.80 99.81
10 100.00 99.96 99.84 99.44 95.89
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5.5 Approximate solution confidence

In CBR, confidence for a solution is an indicator of its correctness and it helps to judge how much
we should trust that particular solution (Cheetham, 2000). For example, a classification solution
would be more trustworthy when all kNN are very close to the query and they are all of the same
class; compared to a classification where the solution is suggested by a simple majority vote among
further neighbors. Many confidence indicators have been studied and corresponding confidence
measures have been proposed by the CBR community (e.g. Cheetham and Price, 2004; Delany
et al., 2005). Regarding classification, to the best of our knowledge, virtually all of them take into
account similarities and/or solutions of exact neighbors of the query.

Accordingly, solution confidence becomes especially important when ALK Classifier provides an
exact solution while not all kNN members are exact NNs. In this case, although the exact solution
will remain the same, the solution confidence for best-so-far kNN will possibly be different from
the confidence that would have been calculated for the exact kNN. For example, for a confidence
measure that only takes into account the classes of kNN, the confidence value would fluctuate
while approximate kNN are being replaced by other NNs of different classes during kNN search.

This section describes how we can transform some of the well-known confidence measures in
CBR literature by incorporating ALK Classifier’s ability to provide the exact solution without the
need to find all exact kNN. To give concrete examples, we will extend the measures in Delany
et al. (2005)’s work that were suggested for a case-based spam e-mail filter.

While defining extensions to these confidence measures, we will assume that the target query t
is classified exactly by the ALK Classifier and thus the solution class cannot change afterwards
even if we continued the kNN search, as explained in section 5.1. The original versions of the
measures that we extend use exact NNs of a given query and provide a single confidence value for
the solution. However, when ALK Classifier terminates with an exact solution prior to finding all
of the exact kNN, some of the kNN members will still be approximate NNs. Consequently, we
will calculate the exact contribution of the already found exact NNs to the solution confidence.
On the other hand, the remaining exact NNs that are still to-be-found will help us define the lower
(LB) and upper-bound (UB) of the confidence value for each measure. In particular, we will be
calculating the limits of the solution confidence range by taking into account the number and/or
possible similarities of the still to-be-found exact NNs. For all these measures, a greater return
value means a higher confidence.

5.5.1 Nomenclature

The following notation will be used in the definition of the extended confidence measures. Some
terms are akin to the original nomenclature in (ibid.). Where t is the target query:

– An already-found exact NN of t is a NN whose rank within t’s kNN is ascertained by ALK
Classifier and cannot change afterwards;

– A to-be-found exact NN of t is a NN that is yet undecided and is still to be ascertained by
ALK Classifier;

– A like neighbor of t is a neighbor sharing the same class with t;
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kNN(t)

<latexit sha1_base64="ZAHxIJoyWPifRXvo7cxh00Jkdug="></latexit>

NLNE(t) [ NUNE(t) = NNE(t)

<latexit sha1_base64="IJcxT4UsqgzWcqVE4BPTzSMZZwU="></latexit>

NLNR(t) [ NUNR(t) = NNR(t)

<latexit sha1_base64="KiLKaCyACXaDocha0Oi4Z2hmDc4="></latexit>

NN (t)

<latexit sha1_base64="kb1yeUX7c0zZY2bZylKYRXlICcw="></latexit>

Figure 5.2: Neighbor sets for the target query t. NLNE(t) and NUNE(t) are the already-found
like and unlike exact neighbors of t that altogether guaranteed an exact solution before finding all
of the exact kNN. NLNR(t) and NUNR(t) are the to-be-found like and unlike exact neighbors of
t, and NN (t) is the set of all evaluated kNN candidates for t.

– An unlike neighbor of t is a neighbor having a different class from t;

– NLNE(t) is the set of already-found exact like neighbors of t,

– NUNE(t) is the set of already-found exact unlike neighbors of t;

– NNE(t) =NLNE(t) ∪ NUNE(t) is the set of all already-found exact neighbors of t which
altogether guaranteed the exact solution and so the algorithm was terminated (possibly prior
to completion of the kNN search);

– NLNR(t) is the set of still to-be-found exact like neighbors of t;

– NUNR(t) is the set of still to-be-found exact unlike neighbors of t;

– NNR(t)=NLNR(t)∪NUNR(t) is the set of all to-be-found exact neighbors of t, and when
the algorithm runs to completion, NNR(t)=∅;

– NN (t) = NNE(t) ∪ NNR(t) is the set of all evaluated kNN candidates for t in the CB by
ALK Classifier so far, and when the algorithm runs to completion, NN (t)≡NNE(t);

– kNN(t) is the set of best-so-far kNN of t, and when the algorithm runs to completion, all
kNN are exact;

– All of the sets above are assumed to be sorted in descending order regarding the similarities
of their contained cases to t;
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– NLN
i

E(t), NUN
i

E(t), NN
i

E(t), NLN
i

R(t), NUN
i

R(t), NN
i

R(t) are the ith members of each
set respectively;

– Index(a) is the index (i.e. ordinal rank) of case a in NN (t);

– dLB ∈ [0, 1] is the normalized distance of the furthest already-found exact NN to t;

– sim(a, b) ∈ [0, 1] is the calculated similarity between cases a and b;

– 1(a, b) is an indicator function that returns 1 if cases a and b are of the same class, or 0
otherwise;

– min(v1, v2) returns the smaller of the two given values v1 and v2;

– κ is the number of neighbors used in a confidence measure and may optionally be different
from the k parameter of ALK Classifier.

The sets mentioned above are depicted in Figure 5.2. In the original definitions of the measures
that we will be extending in below subsections, the same letter k is used for both kNN search
and for the number of neighbors taken into account by confidence measures. We find this usage
confusing because of the fact that these two values may optionally be different as suggested by the
authors. Especially, in the case of ALK Classifier where the kNN search may be interrupted before
termination, this might lead to more confusion. Nevertheless, we stick to the original notation for
the sake of coherence. However, we use the uppercase κ instead to mark the difference. Accord-
ingly, while quoting an original definition, we replace k with κ and use the latter in the extended
definition.

Avg NUN Index

“The Average Nearest Unlike Neighbour Index (Avg NUN Index) is a measure of how close the
first κ NUNs are to the target case t” (Delany et al., 2005, p.180).

If ALK Classifier terminates with the exact solution before completion of the kNN search, only top
|NNE(t)| number of kNN members will be exact and thus, only their ranks will be certain. Conse-
quently, if κ> |NNE(t)|, we will not have found κ exact unlike neighbors needed by this measure
yet. Therefore, to be able to useAvgNUNIndex as a solution confidence measure for ALK Clas-
sifier, we need to extend this measure by taking into account to-be-found exact neighbors. The
extended definition is given in Eq. (5.1):

AvgNUNIndex(t, κ) =

min(κ,|NUNE(t)|)∑
i=1

Index(NUN
i

E(t)) +

κ−|NUNE(t)|∑
i=1

Index(NUN
i

R(t))

κ
(5.1)

In the left part of the dividend of the above equation, we sum the indices of the already-found
unlike neighbors of t. Since, these neighbors are already ascertained by the incremental ALK
Classifier, their contributions to the confidence value are fixed and will not change even if the
kNN search is resumed. The second part of the dividend is the summation of the indices of the
to-be-found unlike neighbors of t.
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The min(κ, |NUNE(t)|) expression in the upper-bound of the left summation is to handle the
occasions where κ < k. In this case, |NUNE(t)| might be bigger than the κ value, and this
occasion would also make the second summation in the dividend obsolete.

While calculating the measure value for the more expected occasions where |NUNE(t)|<κ, we
need to refer to to-be-found unlike neighbors, i.e. NUNR(t). But, since to-be-found neighbors
are still not ascertained, their exact contributions to confidence remains unknown. However, as
mentioned previously, ALK Classifier allows us to define the lower and upper-bounds of their
contributions. Specifically, for the lower-bound of AvgNUNIndex, all to-be-found neighbors
in kNN (i.e. kNN(t) − NNE(t)) are supposed to be unlike neighbors. And for its upper-bound,
unlike neighbors are supposed to be the furthest cases to t in the CB. Formally:

AvgNUNIndex(t, κ)
LB−−→ Index(NUN

i

R(t))= |NNE(t)|+i,∀i ≤κ− |NUNE(t)|;

AvgNUNIndex(t, κ)
UB−−→ Index(NUN

i

R(t))= |CB|−i−1,∀i ≤κ− |NUNE(t)|

Similarity Ratio

“The Similarity Ratio measure calculates the ratio of the similarity between the target case t and
its κ NLNs to the similarity between the target case and its κ NUNs” (Delany et al., 2005, p.181).
The extension for this measure is given in Eq. (5.2):

SimRatio(t, κ) =

min(κ,|NLNE(t)|)∑
i=1

sim(t,NLN
i

E(t)) +

κ−|NLNE(t)|∑
i=1

sim(t,NLN
i

R(t))

min(κ,|NUNE(t)|)∑
i=1

sim(t,NUN
i

E(t)) +

κ−|NUNE(t)|∑
i=1

sim(t,NUN
i

R(t))

(5.2)

The lower-bound of SimRatio is obtained by supposing the extreme case that the similarities of
the rest of the κ like neighbors to-be-found are all zero and the rest of the κ unlike neighbors
to-be-found have the same similarity with the already-found furthest exact neighbor. Accordingly,
the upper-bound is obtained by assuming that the rest of the κ like neighbors to-be-found have the
same similarity with the already-found furthest exact neighbor and that the similarities of the rest
of the κ unlike neighbors to-be-found are near zero.2 Formally:

SimRatio(t, κ)
LB−−→ sim(t,NLN

i

R(t))=0,∀i ≤ κ− |NLNE(t)|,

sim(t,NUN
i

R(t)) = 1− dLB , ∀i ≤ κ− |NUNE(t)|;

SimRatio(t, κ)
UB−−→ sim(t,NLN

i

R(t)) = 1− dLB , ∀i ≤ κ− |NLNE(t)|,

sim(t,NUN
i

R(t)) = ε, ∀i ≤ κ− |NUNE(t)|

where ε ≈ 0.
2ε is used to avoid the case where |NUNE(t)|=0. In this case, UB →∞.
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Sum of NLN Similarities

This measure corresponds to the “Sum of NN Similarities” in Delany et al.’s work and is defined as
“the Sum of NN Similarities measure is the total similarity of the NLNs in the first k neighbours
of the target case t” (Delany et al., 2005, p.182). The extended definition of this measure is in
Eq. (5.3):

SumNLNSim(t, κ) =

min(κ,|NNE(t)|)∑
i=1

sim(t,NN
i

E(t))1(t,NN
i

E(t)) +

κ−|NNE(t)|∑
i=1

sim(t,NN
i

R(t))1(t,NN
i

R(t))

(5.3)

For the lower-bound of this measure, we suppose that all of the kNN members to-be-found will
be unlike neighbors. Conversely, for the upper-bound, we suppose that all of the kNN members
to-be-found will be like neighbors and they will have the same similarity with the already-found
furthest exact neighbor. Formally:

SumNLNSim(t, κ)
LB−−→ NLNR(t) ∩ {NNi

R(t) : ∀i ≤ κ− |NNE(t)|} = ∅;

SumNLNSim(t, κ)
UB−−→ NUNR(t) ∩ {NNi

R(t) : ∀i ≤ κ− |NNE(t)|} = ∅,

sim(t,NLN
i

R(t)) = 1− dLB , ∀i ≤ κ− |NNE(t)|

Similarity Ratio Within K

“The Similarity Ratio Within K is similar to the Similarity Ratio as described above except that,
rather than consider the first κ NLNs and the first κ NUNs of a target case t, it only uses the NLNs
and NUNs from the first κ neighbours” (ibid., p.181). The extended definition of this measure is
given in Eq. (5.4):

SimRatioWithinK(t, κ) =
SumNLNSim(t, κ)

1 + SumNUNSim(t, κ)
(5.4)

where SumNLNSim(t, κ) is essentially the measure defined in Eq. 5.3 and,

SumNUNSim(t, κ) =

min(κ,|NNE(t)|)∑
i=1

sim(t,NN
i

E(t))(1− 1(t,NN
i

E(t)))+

κ−|NNE(t)|∑
i=1

sim(t,NN
i

R(t))(1− 1(t,NN
i

R(t)))
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For the lower-bound of this measure, we suppose that all of the kNN members to-be-found will
be unlike neighbors and they will have the same similarity with the already-found furthest exact
neighbor. And for the upper-bound, we suppose that all of the kNN members to-be-found will
be like neighbors and they will have the same similarity with the already-found furthest exact
neighbor. Formally:

SimRatioWithinK(t, κ)
LB−−→ NLNR(t) ∩ {NNi

R(t) : ∀i ≤ κ− |NNE(t)|} = ∅,

sim(t,NUN
i

R(t)) = 1− dLB , ∀i ≤ κ− |NNE(t)|

SimRatioWithinK(t, κ)
UB−−→ NUNR(t) ∩ {NNi

R(t) : ∀i ≤ κ− |NNE(t)|} = ∅,

sim(t,NLN
i

R(t)) = 1− dLB ,∀i ≤ κ− |NNE(t)|

Avg of NLN Similarity

This measure corresponds to the “Avg of NN Similarity” in Delany et al.’s work and is defined as
“the Average NN Similarity measure is the average similarity of the NLNs in the first κ neighbours
of the target case t” (Delany et al., 2005, p.182). The extended definition of this measure is given
in Eq. (5.5):

AvgNLNSim(t, κ) =
SumNLNSim(t, κ)

min(κ,|NNE(t)|)∑
i=1

1(t,NN
i

E(t)) +

κ−|NNE(t)|∑
i=1

1(t,NN
i

R(t))

(5.5)

Since the simmeasure that we use returns a normalized value ∈ [0, 1], having more like neighbors
in NLNE(t) lowers the AvgNLNSim value. This is because, additional like neighbors can have
a maximum similarity of 1 − dLB that is defined by the furthest already-found exact neighbor.
Hence, as the divisor integer value increases, the result of the division decreases.

Therefore, contrary to SumNLNSim, for the lower-bound of AvgNLNSim, we suppose that
all of the kNN members to-be-found will be like neighbors and they will have a similarity of zero
to t. And for the upper-bound, we suppose that all of the kNN members to-be-found will be unlike
neighbors. Formally:

AvgNLNSim(t, κ)
LB−−→NUNR(t) ∩ {NNi

R(t) : ∀i ≤ κ− |NNE(t)|} = ∅,

sim(t,NLN
i

R(t)) = 0,∀i ≤ κ− |NNE(t)|;

AvgNLNSim(t, κ)
UB−−→NLNR(t) ∩ {NNi

R(t) : ∀i ≤ κ− |NNE(t)|} = ∅

5.6 Summary

In this chapter, we have extended Anytime Lazy kNN to be used as a classifier. ALK Classifier
is able to suggest a solution for both approximate and exact kNN of a target query by using the
parametric reuse method.
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As another enhancement to its predecessor, ALK Classifier also benefits from the solution space
and offers the option to interrupt the algorithm upon guaranteeing the exact solution without the
need to find all exact kNN when possible. We showed that interruption with exact solution in-
creases the gain of the algorithm compared to its uninterrupted runs. We also carried our exper-
iments to look into solution hits when the algorithm is interrupted prior to guarantee the exact
solution.

As a desired property of CBR systems, beside attaching confidence to best-so-far kNN like its pre-
decessors, ALK Classifier also provides the confidence value for a suggested solution. Confidence
for kNN are estimated by the algorithm itself as described in section 4.5. The solution confidence
is calculated by a given parametric measure.

Although there are a multitude of solution confidence measures in CBR literature, to the best of
our knowledge, they all take into account exact kNN. To tackle situations when ALK Classifier
suggests a solution with best-so-far kNN instead, we gave formal examples of how we can trans-
form some of the confidence measures in literature so that they can incorporate approximate NNs
as well. Beside calculating the confidence value, the extended versions of these measures also
provide lower and upper-bounds of solution confidence to better help the expert in his/her deci-
sion making. For example, if the solution confidence range is too wide, the expert has the option
to resume ALK Classifier. Naturally, resuming the algorithm after interruption with exact solution
would not change the solution itself. However, the confidence value would be more precise as
more exact neighbors are found.

81



Chapter 6

Conclusions

Case-Based Reasoning (CBR) is a prominent methodology for solving problems in domains where
reasoning is inherently based on remembering and adapting past experience. Since 1980’s till
today, CBR has proved its value with many successful applications in a vast spectrum of fields.
Thanks to being a multifaceted paradigm, sometimes it served as a standalone intelligent system,
other times it smoothly integrated as a component into a larger application.

Nevertheless, from its very early years, CBR has been facing the faster performance vs richer
knowledge dilemma caused by growing case bases (CBs). As new problem-solving experiences
are learned and retained in the case base, CBR is expected to give more accurate solutions. How-
ever, its lazy-learning approach to retrieving similar past problems for a present query considerably
slows down the overall system performance. This slow-down is primarily caused by the increase
in the computational cost of expensive similarity assessments with increased number of cases in
the CB. The main approach of the CBR community that addressed this problem by an efficient
control of CB growth is being questioned by CBR researchers due to the abundance of digital data
today. And the approach has started to shift from avoiding large data towards benefiting from it.
New techniques are recently being sought after to improve CBR’s performance in large-scale case
bases. We consider our thesis as a contribution to this line of research.

In our research, we focused on temporal case bases, a particular—yet increasingly important—
type of case base where a sequence of cases captures the evolution of a phenomenon. Most com-
mon examples of temporal case bases are found in (but not limited to) medical CBR systems, one
of the major application areas of the research field. We believe that the boom in the availability
of data-producing devices will eventually make temporal case bases more common in many other
fields; on the condition that CBR community finds efficient ways to deal with CBs of unprece-
dented scales.

Thanks to its seamless fit in CBR methodology, k-nearest neighbors (kNN) algorithm is the most
used retrieval method in CBR. Alas, kNN’s run-time complexity practically prohibits its use with
big data when response time is a constraint. Current approaches to tackle this complexity are
using data structures that partitions the search space a-priori and/or use approximation techniques.
However, we showed how we can remarkably speed-up kNN search by exploiting the evolution
of cases in temporal case bases without the need to a create and maintain an overall partitioning
structure. Specifically, we demonstrated how we can identify true kNN candidates of a problem
in metric spaces and discard bulks of non-candidate cases all-at-once just by leveraging the kNN
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search history of predecessor cases of a present problem. To account for time critical applications
where the speed-up for exact kNN search may not suffice and for applications where exact kNN
are not even necessary, we addressed both exact and approximate kNN search by developing a
fully-fledged anytime kNN search algorithm, namely Anytime Lazy kNN (ALK). ALK finds exact
kNN of a query when it is allowed to run to termination. Or, if it is interrupted, it provides
best-so-far kNN and a confidence value for each of these neighbors. The confidence of ALK
is based on a probabilistic model and reflects the expected quality of an approximate neighbor
regarding its similarity to the query compared to the exact neighbor. The confidence monotonically
increases and we showed that this increase is more pronounced in the early stages of computation.
This means that we get near-to-exact neighbors very quickly long before the termination of the
algorithm. We also used our model to automatize interruption of the algorithm upon reaching
confidence thresholds. The thresholds can be chosen with an adjustable optimism for model’s
estimation. Moreover, we devised a means to measure the efficiency of confidence estimation
itself.

To have a platform-independent speed-up measure, we calculate the gain of ALK in terms of
the percentage of avoided similarity calculations compared to a brute-force kNN in the CB. We
evaluated ALK on numerous small to large-scale CBs with thousands to millions of cases that
we generated out of publicly available time series datasets from diverse real-world domains. The
results empirically demonstrate that ALK speeds up exact kNN search for all CBs of all datasets
from a notable to remarkable level. And, when resorting to approximate kNN is an option or
inevitable for time limitations despite the speed-up, ALK further boosts retrieval with superior
speed-up even when the approximation is near exact kNN. One key observation in the results is
that ALK’s gain is higher for the larger CBs generated from the same dataset. We also note that
the experiments were conducted on generated CBs without any knowledge engineering applied
to them. The distance metric was also the standard euclidean distance. With a carefully crafted
metric which better discriminates the cases of an application domain, ALK could provide even
higher speed-up.

Overall, the empirical results meet our very goals that we set for the speed-up in both exact and
approximate kNN search. And, we believe the results strongly encourage the use of ALK in CBR
applications with large-scale temporal case bases of millions of cases.

Furthermore, since most CBR systems are expected to suggest a solution for a problem and not just
find similar past problems, we addressed the solution space for classification which is a common
task for CBR systems in domains of our interest. For this purpose, we developed ALK Classifier
as an extension to ALK. We showed that when an exact solution is demanded, ALK Classifier
can further improve the gain of ALK by automatically terminating upon guaranteeing the exact
solution. We provided the solution accuracy for classification with approximate kNN. Although
our aim was not time series classification (which is a research field of its own) and we continued
to use only the euclidean distance, the solution accuracy largely overlapped with the confidence in
approximate kNN.

As ALK provides confidence for best-so-far kNN, we also extended some existing ‘solution confi-
dence’ measures used in CBR literature for classification so that they can be used with approximate
kNN. We formalized the extensions of these measure in order to provide a confidence range for
the solution. To the best of our knowledge, these are the first examples to approximate solution
confidence measures in CBR literature.

We believe our contribution is more than a set of fast algorithms. Our methodology both for the
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search for kNN candidates and for the building of anytime algorithm components are quite ex-
tendable. As long as the candidacy assessment is preserved, these components can be tailored
for the domain of application. We also gave examples to alternative search for kNN candidates
to show that even a domain-specific search method implementation can be integrated to our al-
gorithms. We discussed how we can adjust the accuracy of confidence and also, in the case of
automatic interruption, how we can set confidence thresholds in terms of an adjustable optimism
with model’s estimation. On the other hand, we mainly focused on its use in a CBR context, but
ALK can be used as a standalone kNN algorithm in any domain that exhibits temporal relation
between examples in a metric search space.

Complete source code of ALK, ALK Classifier and alternative search methods for kNN candidates
together with simple instructions to launch the scripts to repeat all experiments and reproduce
all plots and result tables that are detailed in this dissertation are publicly available at the online
repository https://github.com/IIIA-ML/alk.

In the following two sections, we give recommendations for the application of our algorithms in a
specific domain and directions for future work, especially to obtain further speed-up.

6.1 Recommendations for ALK practitioners

Following recommendations are for the use of ALK in a CBR application or as a standalone kNN
algorithm. They include advice for extending our open source code. They are given for ALK but
they hold for ALK Classifier as well.

Similarity metric As in any CBR system design, the choice of the similarity measure is highly
important. The more discriminative it is between the cases, the less candidates will show up and
thus, the faster will work the algorithm. The measure should be a true metric as a prerequisite for
ALK.

Initial problem ALK speeds up search starting from the first consecutive problem in a problem
sequence. The search for the initial problem in a sequence is parametric and any search function
can be passed as an argument to ALK. This search can be an exhaustive exact search or it can be
an approximate search. The only prerequisite is that the function should return all cases in the CB
sorted regarding their exact or upper-bound of similarities to the query.

Curse of dimensionality kNN search in general is prone to this phenomenon. High dimensional-
ity is not necessarily a curse per se, especially if the data forms dense clusters in the search space
(see Beyer et al., 1999). On the other hand, it can occur in relatively low number of dimensions
too. For a better performance of ALK on a particular CB, the problem space should be analyzed
(e.g. by examining the distribution of distance between cases), and if necessary, dimensionality
reduction and/or temporal abstraction techniques should be applied. In this case, ALK should
work on reduced dimensions.

Space complexity ALK uses an instance of the internal data structure RANK for every problem
sequence to benefit from the kNN search history of predecessor problems. At any time, this
structure has exactly |CB| entries which are references to the cases and their similarities to past
updates. RANK should be saved to and loaded from a persistence layer. Furthermore, if the
application allows concurrent multiple queries, in order to save space in Random-Access Memory,
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the Stages inRANK can be read sequentially from the persistence layer instead of loading whole
RANK into memory.

On the other hand, the Performance Distribution Profile (PDP) of ALK can occupy a large space
on disk if very small intervals are used in the discretization of the quality and calculation ranges
to obtain high precision in confidence estimation. In this case, it is better to use a sparse matrix
instead of a regular multidimensional array for PDP representation.

Up-to-date Performance Distribution Profile Representativeness of the PDP of ALK in an ap-
plication domain plays a key role in the accuracy of confidence estimation. As the CB grows, PDP
is likely to become outdated and this may cause a decrease in the accuracy of estimations. To
avoid this, PDP can be regenerated on a regular basis (e.g. when the CB grows by a certain per-
centage) or the efficiency of confidence estimations can be used as an indicator to decide when to
update the PDP. If efficiency becomes� 1 on average although we are not being optimistic when
choosing interruption thresholds, this means that PDP is giving overconfident estimations due to
the fact that current size of the CB is larger than the CB used for building the PDP. Therefore, time
has come to regenerate PDP for the current CB. Efficiency can be monitored as follows.

Efficiency monitoring This would be a nice example for Introspective CBR techniques. To mea-
sure the efficiency of confidence estimation for the approximate kNN of a query, when ALK is
interrupted, it can later be resumed as an offline process to have the exact kNN in order to calcu-
late the efficiency. These offline processes can be carried out for arbitrary or all queries, and the
efficiency results can be saved and analyzed automatically.

Confidence thresholds The definition of an acceptable confidence for best-so-far kNN depends
on the query, application and/or domain. Especially if ALK is to be interrupted automatically,
confidence thresholds for interruptions should be chosen adequately. In any case, a good practice
could be interrupting ALK at a lower confidence threshold, and if the approximate results are not
good enough, the algorithm could be resumed and interrupted at a higher threshold until a desired
quality in kNN is achieved within time limitations, if any. Interrupting and resuming ALK do not
imply any significant computational overload.

6.2 Directions for future work

Planned applications of ALK We are planning to use ALK in IIIA-CSIC’s healthcare projects
Innobrain (2017) and Play&Sing (2018) when their data are available for use. Both projects
will provide us with large-scale temporal case bases. For the latter project in particular, we are
planning to integrate ALK in the AI platform that we have been developing for home-based music
supported therapy of chronic stroke patients (Sanchez-Pinsach et al., 2019). There, while planning
the next therapy session for a patient, ALK would be responsible for the fast retrieval of similar
past sessions in the CB.

Other CBR tasks with ALK We want to implement a new extension of our algorithm, ALK Re-
gressor, and test it for regression tasks. This new extension can be utilized in a forecasting appli-
cation on medical records and/or other time series data.

Flexible time window choice In the current implementation of ALK, each problem sequence can
use a different time window setting. However, when a time window choice is made for a particular
problem sequence, it stays fixed during the evolution of that sequence. It would be interesting to
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explore the possibilities to apply a flexible time window setting for the queries throughout the up-
dates of the same sequence. This would give the expert an option to apply a different time window
of choice for each update. Besides, he/she could run ALK for the same query with different time
window settings and compare the results before a final decision. We have not explored this idea
yet but we note it here as food for thought.

Better accuracy for confidence estimation A way to increase both the accuracy and efficiency
of confidence estimation for best-so-far kNN can be to discretize the calculation range of PDP
logarithmically. Thus, more importance would be attributed to the beginning of the calculation
range given the fact that NNs are actually found by ALK in the early stages of execution for the
domains of our interest.

Further speed-up by parallelization ALK can be easily converted to a multithreaded application
(or a multiproccessing one for that matter). A separate thread can be dedicated to iterate a unique
Stage in RANK, or multiple threads can iterate over the same Stage simultaneously. In the
latter option, when a thread encounters a non-candidate case, others should be warned gracefully
in order to jump to the next Stage all together.

Further speed-up by a different RANK design The triangle inequality helps us to define an
upper-bound of similarity to identify true kNN candidates of a query. However, this upper-bound
does not bear any sense of direction. More specifically, the ∆ between two consecutive problems
does not help us to judge if a neighbor of a prior problem has become closer or further to the
current problem. We want to explore other representations of RANK that might give us a sense
of direction of change between sequence updates so that we can use them in discarding more non-
candidates in search. In particular, we are interested in exploring proximity graphs (e.g. Toussaint,
2005) for this purpose.

Further speed-up by introspection Introspective CBR systems use metareasoning (Cox and Raja,
2011) to improve their performances (e.g. Arcos, Mülâyim, and Leake, 2011). As a proactive
introspection approach, we previously investigated dubious future problems (DFPs) for a CBR
system. A DFP is a synthetically generated problem near existing cases in a CB and it yields a low
solution confidence (Mülâyim and Arcos, 2007). DFPs are created by an evolutionary algorithm
using domain ontology in order to predict possible future reasoning deficiencies of a CBR system.
Each DFP holds the information of its neighbor cases and their similarities to it, and the cases
reciprocally hold the information of their neighbor DFPs. Neighborhood of a DFP is defined by
a given similarity threshold δ. Likewise, Map of Dubious Regions (MDR) is a graph where the
vertices are DFPs and the edges connect neighbor DFPs that are within a given similarity threshold
δ′ to each other (Mülâyim and Arcos, 2008; Mülâyim and Arcos, 2010).

We can exploit MDR to further speed up ALK in the search of kNN candidates as follows. During
the kNN search for a target query t, let us assume that we evaluate a kNN candidate case A which
happens to be a neighbor of a DFP D. Then, for candidacy assessment, instead of continuing
the search for the next kNN candidate in the current Stage in RANK, we can give priority to
the cases within the same DFP neighborhood with A. By giving the priority to these cases, we
hope that some of them will be closer to t than A as we already know that they are in the same
neighborhood of a DFP. For example, if C is one of D’s neighbor cases and it is a true kNN
candidate—UB(C, t) > sim(A, t) (see Definition 3.1), we calculate C’s actual similarity to t—
sim(C, t). If C proves to be closer to t than A, then the kNN candidacy threshold increases and
this may result in having fewer future candidates. Thus, the gain of ALK may increase.
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Figure 6.1: Exploiting dubiosity neighborhood. E is the furthest exact neighbor and A is the
closest approximate neighbor of the target query t. D is a dubious future problem (DFP) that
was previously found in the vicinity of A. And C is a case which shares the neighborhood of
D—defined by δ—with A. dAD and dCD distances are known from the Map of Dubious Regions
that holds the DFPs and their neighbors. dtE marks the lower-bound of distance for the remaining
exact NNs. The left and right images show the closest and furthest points that C can be to t
respectively.

Figure 6.1 illustrates an example for the closest and furthest possible distances of C to the target
query t where there is at least one already-found exact NN E. Due to the incremental nature of
ALK, the distance of E to t—dtE—marks the lower-bound of distance for the remaining exact
NNs. While searching for the second NN, we find an approximate NN A. MDR indicates that A
has a DFP neighborD and that C lies in the same neighborhood. MDR also gives us the distances
dAD and dCD in Figure 6.1. Although we do not know where A and C exactly fall inside D’s
neighborhood circle, we can still estimate the lower and upper-bound of the distance of C to t (i.e.
dtC) as follows:

max(dtE , dtA−dAD−dCD) ≤ dtC ≤ dtA+dAD+dCD

If we want to be fairer with all candidates, before accessing C’s information in RANK, we can
compare the lower-bound of dtC to the lower-bound of distance of the next candidate in RANK
derived from the Definition 3.1, and evaluate the actual similarity of the better candidate among
these two.

To be able to access to C within RANK for candidacy assessment without a time overload, we
can maintain a hash table RANK HASH as an attribute of the AnytimeLazyKNN class. This
would be the same hash table that we used for the Exploit Approaching Candidates alternative
RANK iteration explained in section 4.9.

This line of investigation poses two engineering challenges. In our previous research, DFPs were
found for CBR applications with rather small case bases (< 1,000 cases). The evolutionary algo-
rithm that we had implemented to find DFPs should now be scaled to work with millions of cases.
Also, an efficient way to maintain RANK HASH structure should be ensured as previously
mentioned for the Exploit Approaching Candidates iteration.
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Glossary

Case see Definition 2.6. 16

Evaluating a case Calculating the similarity of the case to the target query. 23

kNN candidate see Definition 3.2. 23

Lazy evaluation of a case Evaluating a case only when the case is deemed a kNN candidate. 23,
see also Evaluating a case

Problem see Definition 2.4. 16

Problem sequence see Definition 2.1. 15

Query see Definition 2.5. 16

Sequence . see Problem sequence

Temporal case base see Definition 2.8. 16

Temporally related cases see Definition 2.7. 16

Time window see Definition 2.3. 15

Update see Definition 2.2. 15
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Mülâyim, Mehmet Oğuz and Josep Lluı́s Arcos (2007). “Exploring Dubious Future Problems”.
In: UK Workshop on Case-Based Reasoning. Ed. by Miltos Petridis. CMS Press, University of
Greenwich, pp. 52–63 (cit. on p. 86).

— (2008). “Understanding Dubious Future Problems”. In: Advances in Case-Based Reasoning,
ECCBR 2008. Ed. by Klaus-Dieter Althoff, Ralph Bergmann, Mirjam Minor, and Alexandre
Hanft. Vol. LNCS, 5239. Springer Berlin Heidelberg, pp. 385–399. DOI: 10.1007/978-3-540-
85502-6 26 (cit. on p. 86).

— (2010). “Predicting Dubiosity in CBR Systems”. In: Expert UPDATE 10.2, pp. 1–8 (cit. on
p. 86).

— (2018). “Perks of Being Lazy: Boosting Retrieval Performance”. In: International Confer-
ence on Case-Based Reasoning. Ed. by Michael T Cox, Peter Funk, and Shahina Begum.
Vol. LNAI, 11156. Springer Verlag, pp. 309–322. DOI: 10.1007/978-3-030-01081-2 21 (cit.
on p. 5).

— (2020). “Fast Anytime Retrieval with Confidence in Large-Scale Temporal Case Bases”. In:
Knowledge-Based Systems 206, p. 106374. DOI: 10.1016/j.knosys.2020.106374 (cit. on p. 5).
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