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Abstract

Recent technological advances have radically changed the way we communicate. Today’s
communication has become ubiquitous and it has fostered the need for information that is
easier to create, spread and consume. As a consequence, we have experienced the short-
ening of text messages in mediums ranging from electronic mailing, instant messaging to
microblogging. Moreover, the ubiquity and fast-paced nature of these mediums have pro-
moted their use for previously unimaginable tasks. For instance, reporting real-world events
was classically carried out by news reporters, but, nowadays, most interesting events are
first disclosed on social networks like Twitter by eyewitness through short text messages.
As a result, the exploitation of the thematic content in short text has captured the interest
of both research and industry.

Topic models are a type of probability models that have traditionally been used to
explore this thematic content, a.k.a. topics, in regular text. Most popular topic models fall
into the sub-class of LVMs (Latent Variable Models), which include several latent variables
at the corpus, document and word levels to summarise the topics at each level. However,
classical LVM-based topic models struggle to learn semantically meaningful topics in short
text because the lack of co-occurring words within a document hampers the estimation of
the local latent variables at the document level. To overcome this limitation, pooling and
hierarchical Bayesian strategies that leverage on contextual information have been essential
to improve the quality of topics in short text.

In this thesis, we study the problem of learning semantically meaningful and predictive
representations of text in two distinct phases:

• In the first phase, Part I, we investigate the use of LVM-based topic models for the
specific task of event detection in Twitter. In this situation, the use of contextual
information to pool tweets together comes naturally. Thus, we first extend an existing
clustering algorithm for event detection to use the topics learned from pooled tweets.
Then, we propose a probability model that integrates topic modelling and clustering
to enable the flow of information between both components.

• In the second phase, Part II and Part III, we challenge the use of local latent variables
in LVMs, specifically when the context of short messages is not available. First of all,
we study the evaluation of the generalization capabilities of LVMs like PFA (Poisson
Factor Analysis) and propose unbiased estimation methods to approximate it. With
the most accurate method, we compare the generalization of chordal models without
latent variables to that of PFA topic models in short and regular text collections.

In summary, we demonstrate that by integrating clustering and topic modelling, the perfor-
mance of event detection techniques in Twitter is improved due to the interaction between
both components. Moreover, we develop several unbiased likelihood estimation methods for
assessing the generalization of PFA and we empirically validate their accuracy in different
document collections. Finally, we show that we can learn chordal models without latent
variables in text through Chordalysis, and that they can be a competitive alternative to
classical topic models, particularly in short text.
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1
Introduction

“The medium is the message”
Marshall McLuhan, 1964

Written communication has undergone a profound transformation in recent years. The
rapid adoption of telecommunication and information technologies together with the in-
crease of worldwide literacy rates have brought into scene new mediums and more players.
Unrecognisable compared with those initial efforts of communication in the form of cave
paintings or even the later development of papyrus and writing systems which made it
mobile. Today’s communication is mostly ubiquitous due to the existence of electronic,
interconnected and portable devices.

The ubiquity of digital technology has given birth to new mediums that complement
or replace existing ones. For instance, many day-to-day business activities are currently
managed through the exchange of e-mails, informal conversations are kept uninterrupted
in instant messaging applications, on-line newspapers are continuously refreshed and po-
litical marketing campaigns take advantage of social networks to influence voters through
personalised messaging. Writing has also evolved accordingly to accommodate the new
capabilities of these mediums. For example, text nowadays incorporates emojis to express
feelings, passages are hyper-linked to external websites with related content and words can
be explored to find similar publications.

The growth in the number of literate people, who are able to create, store and consume
text, has also had a huge impact on the current deluge of data. With more people connected
to Internet (more than 50% of the worldwide population in 2018), the number of e-mails,
tweets, Wikipedia articles and other written material keeps increasing yearly. Therefore, all
this textual information needs to be organized in some structured way in order to make it
findable. Search engines have enabled the massive indexation of documents, i.e. web pages,
articles, items, etc., as per their relevance to certain terms and they have played a key role
to answer specific user queries.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Probabilistic Topic Model (Blei, 2012).

However, search engines are not helpful to explore a collection of documents when the
query is not clear. Imagine that an analyst receives a collection of documents whose content
is unknown. First of all, the analyst will need to explore the themes of these documents in
order to get an idea of what they are about. If the collection size is small, the exploration
could be done by manually inspecting each document. For slightly larger collections, some
statistics about the most relevant words could be insightful to the analyst to infer the
content. As the collection grows, these solutions become impractical because not only the
number of documents increases, but also does the vocabulary. In contrast, unsupervised
machine learning methods excel at uncovering hidden patterns in growing data sets.

Probabilistic topic models (Blei, 2012), in particular, are unsupervised machine learning
methods suitable for this thematic exploration of text. These models define a probability
distribution over the set of documents which is then fitted to data in order to achieve
good generalisation properties to unseen documents. The probability distribution contains
several latent variables associated with words, documents and corpus. The word-level latent
variables assign the corresponding topic to every word, whereas document and corpus latent
variables provide useful summaries of topics at these levels.

In Fig. 1.1, the coloured nodes in the right hand side correspond to the word-level
topic assignments. Each colour represents a distinct topic and topics are defined at the
corpus level as the different probability distributions across the vocabulary. For instance,
the yellow topic in Fig. 1.1 defines a probability distribution across the vocabulary with the
probabilities set as in the table on the left hand side. The fact that the most likely words
are “gene”, “DNA” and “genetic”, suggests that this topic might be related to genomics. By
setting a number of topics to be much lower than the vocabulary size, these models act
as dimensionality reduction methods in which documents can be represented in terms of
topics. Latent variables at the document-level, like the probability distribution in the right
hand-side of Fig. 1.1, summarise the proportion of topics in each document. For instance,
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Figure 1.2: Topic model with tweets pooled by user.

according to Fig. 1.1, the document is a mix of three topics: genomics, evolution theory
and computer science, but not neuroscience.

To exemplify how topic models work and point out their Achilles’ heel, we make use of
their generative story which shares some similarities to the writing process. The writing
process starts with a writer deciding to communicate an idea via text. Assume that this
idea can be described in terms of a mix of topics or themes. The number of topics ultimately
depends on the interdisciplinarity of the field and the writer’s style, but this should not be
too high for obvious reasons of semantic coherence. In each topic, the writer has a subset
of highly probable words that can be used to compose the text, i.e. in the genomics topic
above, this subset of words are the yellow table in Fig. 1.1. The longer the document is, the
more words from each topic are used and the higher the co-occurrence of words from a topic
is. This co-occurrence of words is what defines the existence of semantic structure and the
lack of it hampers to learn semantically meaningful and predictive topics. As suggested, the
document length clearly impacts on the word co-occurrence, with very few co-occurrences in
short text like tweets, text messages and headlines, among others. Therefore, classical topic
models like the popular LDA (Latent Dirichlet Allocation) (Blei et al., 2003), which belongs
to the class of LVMs (Latent Variable Models), are known to perform poorly with short
text. Intuitively, these models have the same troubles than an unfamiliar reader trying to
figure out what a 140-character-long tweet is about.

New digital mediums like Twitter are thought for fast creation and consumption of



4 CHAPTER 1. INTRODUCTION

information. This explains the limitation of the tweet length initially to 140 characters
and currently to 280. In such social networks, users create their own sphere by following
other users with whom they have overlapping interests. This determines the context of
the communication in which these short text messages are exchanged. When readers know
about the context, tweets also become more meaningful to them. Thus, it seems logical
for topic models to leverage on contextual information to learn more meaningful thematic
representations for short text. Hong and Davison (2010) studied different tweet pooling
strategies in which context was built by putting tweets together and showed that not only
topic coherence improves but also does the performance in external tasks for which topic
models can be used. For instance, the pooling scheme in Fig. 1.2 aggregates tweets per user
to mitigate the lack of co-occurrences in a single tweet. More principled approaches have
been proposed to incorporate context to topic models through hierarchical structures and
they have been shown to outperform classical pooling strategies (Lim et al., 2016). These
approaches enable sharing of statistical strength by stacking up probability distributions
that account for the context of the communication, i.e. authors, hash tags, network, etc..

1.1 Research Questions

Against this background, we wonder whether there exist specific tasks or queries on text
for which the aggregation or the use of contextual information becomes more natural and
effective. That is the case for the event detection task as per its definition in the TDT
(Topic Detection and Tracking) project (Allan et al., 1998): “The notion of an event differs
from a broader category of events both in spatial/temporal localization and in specificity.
For example, the eruption of Mount Pinatubo on June 15th, 1991 is considered to be an
event, whereas volcanic eruption in general, a class of events”. Under this definition of event,
classes of events could conform to the idea of topics, while specific events could correspond
to instantiations of these topics with a specific spatial/temporal context. Besides, in this
setup we are not particularly interested in the individual documents but in the groupings
of them that compose these events. Therefore, the first research question that we address
goes as follows: Can probability models that leverage on contextual information
be effective for detecting events in mediums like Twitter? To answer this ques-
tion, we will take a pragmatic approach. Firstly, we will propose and study the detection
performance of a heuristic algorithm that combines LVM-based topic models and event
clustering via the pooling strategies in Hong and Davison (2010). Secondly, we will develop
a LVM that jointly learns topics and events by automatically pooling tweets as per their
spatial/temporal context. To conduct this experimental work, we will also introduce a data
set for event detection in Twitter in which specific events are manually identified by domain
experts. The evaluation of both methods will be conducted in terms of task-specific metrics,
like precision and recall.

Nonetheless, the evaluation of probability models is commonly performed independently
of the task at hand in terms of the probability of the unseen data given the model, which
measures the generalisation capabilities of the model to unseen data. For most interesting
LVM-based topic models, this probability is intractable to compute since it usually involves
a sum or integral over a huge space of probabilities. The unbiased estimation of this prob-
ability for the well-known LDA model has attracted lot of interest and different estimation
methods have been proposed (Wallach et al., 2009b; Buntine, 2009). However, the same
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Figure 1.3: Chordal Graphical Model (CGM).

problem for a broader class of LVM-based topic models, referred here to as PFA (Poisson
Factor Analysis) (Zhou et al., 2012), remains unexplored. PFA-like topic models are more
appropriate than LDA-like ones for comparing across probability models that are based on
the the bagged representation of text and this study will pave the way to compare different
types of probability models for text in a consistent way. As a result, the second research
question can be formulated as follows: Can we develop accurate likelihood estimation
methods for PFA topic models? To do this, we first extend the state-of-the-art Left-to-
right sequential sampler proposed for LDA by Buntine (2009) to PFA and we then propose
a different approach called VIS (Variational Importance Sampling) which gives rise to two
distinct estimation methods. These methods will also be applied to the BPFA (Bernoulli
PFA) model (Zhou, 2015), where the observed variables are binarised.

As discussed above, LVM-based topic models experience difficulties to learn meaningful
topic representations in short text when contextual information is not available. A plausible
explanation for this shortcoming is attributed to the fact that document and word level
latent variables are less certain in short documents due to the lack of co-occurring words.
See in Fig. 1.2 how challenging it is to figure out that the fourth tweet is about “health care”
if one does not have more information about “Obamacare”. Therefore, probability models
without these local variables could be, in principle, a better alternative to LVM-based
models. This will bring us to the third research question of this thesis: Can probability
models without latent variables but with richer structures be good alternatives
for text prediction? To address this question, we will search for probability models
within the subclass of CGMs (Chordal Graphical Models), which is an expressive class of
graphical models that can be efficiently explored in data sets with thousands of variables
through the Chordalysis algorithm (Petitjean and Webb, 2015a). The resulting models
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Model	 Criticize	Inference	

Tasks	

Data	

Figure 1.4: Box’s loop (Blei, 2014).

express the relationships (edges) that exist among words (nodes) through chordal graphs.
For example, Fig. 1.3 plots the resulting chordal model learned from a collection of NIPS
papers which have been processed with a vocabulary of 100 words. We can observe that
words tend to group together in the graph as per their semantic meaning, so that words
like “cluster”, “clustering” and “mixture” appear interconnected in the north-east part of the
graph and they are far from words like “oscillator”, “inhibitory” and “perceptron”, which
appear in the south-west. Therefore, we will use these chordal graphs to learn probability
models for binarised text which have good generalisation in held-out data. To do that, we
will propose new exploration metrics and parameter estimation methods for Chordalysis
that are more appropriate for prediction tasks. Finally, the experimental work will compare
CGMs, other representatives without local latent variables to PFA-like topic models in
several collections with good representatives of short and long text. The comparison will
assess their generalisation capabilities in terms of probability of unseen documents through
the estimation methods developed earlier, but also in terms of other task-specific metrics
such as omni-directional prediction and anomaly detection.

In a nutshell, we study the use of probability models for thematic exploration of text,
with special emphasis on short text. We first focus on the event detection task in Twitter in
which tweet pooling and the use of side information are intrinsic to the task and beneficial
for short text. Then, we address the evaluation of LVM-based topic models in terms of their
probability on unseen data. This probability is often intractable to compute and hence we
study and propose different unbiased estimation methods. Finally, we question the use of
document-level latent variables in topic modelling, especially for short text, and propose
to learn probability models without latent variables but with a richer set of dependencies
among the observed, known as chordal graphical models.

1.2 Methodology

In this thesis, we follow the probabilistic modeling approach to machine learning (Bishop,
2013; Blei, 2014; Ghahramani, 2015). In this approach, machine learning solutions explicitly
state the modeling assumptions in a compact language enabling to change and upgrade them
in an iterative manner. Fig. 1.4 shows the iterative process presented in (Blei, 2014) as an
adaptation of Box’s perspective (Box, 1976). Next, we review how this thesis approaches
each of the stages of Fig. 1.4:

• Data. The thesis revolves around text data, with particular emphasis on short text.
A text corpus or data set is a collection of documents, each composed of a sequence
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of words. A text corpus might contain meta-data such as authors, date, location, etc.
which might be relevant to characterize the context of the communication. In the first
part of the thesis, we create a hand-crafted data set from Twitter for the problem of
event detection. In the second and third parts, we use existing and publicly available
data sets of text with good representatives of short and long text.

• Tasks. Machine learning solutions are formulated with a particular (or multiple)
task(s) in mind. We address the task of retrospective event detection from short text
tweets as part of the more general task of thematic exploration of text.

• Model. The model refers to the mathematical formalisms used to express the assump-
tions of the data generation process. In this dissertation, we focus on the probability
models whose conditional independences can be expressed in a graph, also known as
PGMs (Probabilistic Graphical Models) (Koller and Friedman, 2009b). In particular,
most probabilistic topic models are based on a particular type of PGM with latent
variables known as LVM. Therefore, we will study this particular type of PGM, but we
will also propose an alternative without latent variables and based on chordal graphs.

• Inference. This is the process to draw conclusions from the data. When performed
in combination to probability models, statistical inference enable us to deal with
uncertainty in a principled way. However, exact inference is intractable for most
interesting models due to the coupling of multiple variables and their complex re-
lationships. In this thesis, we will mainly use variational methods, but also Gibbs
sampling, to approximate intractable inference. Although probabilistic programming
tools (BUGS (Lunn et al., 2012), Edward (Tran et al., 2016), etc.) exist to automate
this inference, we implement our own inference algorithm since these tools mostly
work for continuous latent variables and do not always support every probability
distribution.

• Criticise. This stage questions the model as well as the inference method against
true data in order to confirm or refute their validity. In case the model is refuted, the
feedback loop enables to change or upgrade some of the hypothesis in the model. Here,
we will use the probability of unseen data to evaluate how well or poorly the joint
solution (model+inference) performs. Other task-specific measures, like detection
accuracy, have been considered to drive this iterative process.

1.3 Major Contributions
The technical contributions of this dissertation can be listed under each of the three research
questions presented earlier.

I. Can probability models that leverage on additional information be effective
for detecting events in new mediums like Twitter?

• We build a data set of public tweets for the task of event detection, in which events
were manually tagged by domain experts.

• We extend DBSCAN (Density-based Spatial Clustering of Applications with Noise)
to deal with textual features to uncover events in the previous data set.
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• We propose a probability model and a learning algorithm for event detection from
tweets.

II. Can we develop accurate likelihood estimation methods for PFA topic
models?

• We present L2R for PFA, a left-to-right sequential sampler initially proposed for LDA.

• We propose new estimation methods based on IS (Importance Sampling) with upper-
and lower-bounded mean-field proposals.

• We tune up the proposed estimation methods for BPFA.

III. Can probability models without latent variables but with richer struc-
tures be good alternatives for text prediction?

• We propose CGMs, an expressive class of graphical models without document-level
latent variables, for thematic exploration of text.

• We study different metrics to explore the space of CGMs through Chordalysis and
several smoothing techniques to improve the predictability on held-out text.

• We present a method to incorporate counts into CGMs learned from binarised text.

1.4 A Note on the Notation

In this thesis, we conduct applied and fundamental research in the field of probability models
for text. To develop and present the research ideas in a formal way, we make use of the
existing mathematical notation and terminology in the field. In Appendix A, we list the
main conventions used throughout the thesis. We classify them with respect to the context
that they are used to dispel confusion in case of the same term or notation is used to refer
to different things, instead of changing notation. For instance, V is commonly used to
refer to the number of vertices in graph theory and to the vocabulary size in text analysis.
However, we also develop our own notation to distinguish between key aspects of this thesis.
For example, we make explicit the distinction between the two common representations of
text data. Sequence-specific notation represents words in a document using w, wn, wnm

and W , whereas we use y, yn, ynp and Y to refer to the corresponding concepts in the
bagged representations.

1.5 List of Published Papers

Next, we present the list of research papers that have been written and published during
the doctoral studies. We link the papers to the corresponding research question addressed
in this thesis or to other research activities done in parallel.

I Can probability models that leverage on contextual information be effective for detect-
ing events in mediums like Twitter?



1.5. LIST OF PUBLISHED PAPERS 9

• Capdevila, J., Cerquides, J., Nin, J., and Torres, J. (2015). Tweet-SCAN: An event
discovery technique for geo-located tweets. In Artificial Intelligence Research and
Development: Proceedings of the 18th International Conference of the Catalan
Association for Artificial Intelligence, volume 277, page 110. IOS Press

• Capdevila, J., Cerquides, J., and Torres, J. (2016b). Recognizing warblers: a
probabilistic model for event detection in twitter. Presented at the Workshop of
Anomaly Detection at the International Conference on Machine Learning (ICML)

• Capdevila, J., Cerquides, J., Nin, J., and Torres, J. (2017a). Tweet-SCAN: An
event discovery technique for geo-located tweets. Pattern Recognition Letters,
93:58 – 68. Pattern Recognition Techniques in Data Mining

• Capdevila, J., Cerquides, J., and Torres, J. (2017b). Event detection in location-
based social networks. In Data Science and Big Data: An Environment of Com-
putational Intelligence, pages 161–186. Springer

• Capdevila, J., Cerquides, J., and Torres, J. (2018a). Mining urban events from the
tweet stream through a probabilistic mixture model. Data Mining and Knowledge
Discovery, 32(3):764–786

II Can we develop accurate likelihood estimation methods for PFA topic models?

• Capdevila, J., Cerquides, J., Torres, J., Petitjean, F., and Buntine, W. (2018c). A
left-to-right algorithm for likelihood estimation in gamma-poisson factor analysis.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 638–654. Springer

III Can probability models without latent variables but with richer structures be good
alternatives for text prediction?

• Capdevila, J., Zhao, H., Petitjean, F., and Buntine, W. (2018d). Experiments
with learning graphical models on text. Behaviormetrika https://doi.org/10.
1007/s41237-018-0050-3

IV As a product of other research activities:

• [Joan Capdevila’s MSc Thesis] Capdevila, J., Arias, M., and Arratia, A. (2016a).
GeoSRS: A hybrid social recommender system for geolocated data. Information
Systems, 57:111 – 128

• [Gonzalo Pericacho’s MSc Thesis] Capdevila, J., Pericacho, G., Torres, J., and
Cerquides, J. (2016c). Scaling DBSCAN-like algorithms for event detection sys-
tems in twitter. In International Conference on Algorithms and Architectures for
Parallel Processing, volume 10048, pages 356–373. Springer.

• [5th BSC Severo Ochoa Doctoral Symposium] Capdevila, J., Cerquides, J., and
Torres, J. (2018b). Model-based machine learning for retrospective event detec-
tion. Presented at 5th BSC Severo Ochoa Doctoral Symposium

https://doi.org/10.1007/s41237-018-0050-3
https://doi.org/10.1007/s41237-018-0050-3
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1.6 Dissertation Outline
The rest of this dissertation is split into three parts preceded by the preliminary work in
Chapter 2, which contains the basics of probability models for text. Each part is self-
contained with its own problem statement and related work and it addresses one of the
three research questions presented earlier.

Part I of this dissertation leverages on side information and pooling methods to carry out
the task of event detection in Twitter. Chapter 3 presents the problem of event detection
in Twitter, reviews the existing literature and describes a data set suitable for detection of
local events. Then, Chapter 4 extends a well-known heuristic algorithm for clustering to
deal with topics that are learned from pooled tweets. Chapter 5 describes Warble, a new
probability model that jointly uncovers events and topics.

Part II studies the problem of assessing the document likelihood in PFA. Chapter 6
explains the problem of likelihood evaluation and present a methodology to evaluate esti-
mation methods. Chapter 7 presents a left-to-right algorithm to decompose the document
estimation problem into smaller sub-problems. Chapter 8 introduces a class of methods to
perform IS with factorised distributions as proposal distributions and propose the use of
variational bounds to sandwich the estimates of the document likelihood.

Part III proposes CGM as an alternative for text modelling. In particular, Chapter 9
introduces new scoring functions and parameter estimation methods for Chordalysis to learn
expressive graphical models for binarised text. This chapter also present the experimental
results of comparing a wide range of graphical models with and without latent variables in
short and regular text.

Finally, Chapter 10 points at future research in each of the three research lines developed
along the thesis and it summarises the main conclusions of this work.



2
Probability Models for Text

“What I cannot create, I do not understand”
Richard Feynman, 1988

This chapter introduces the basic building blocks for this thesis, the so-called probability
models. We can think of probability or probabilistic models as the set of simplifying as-
sumptions about the problem that we are presented with. Thus, the understanding of basic
probability models is essential to use them for certain tasks and to build tailored models
for the problem at hand.

For instance, a professional gambler who bets on the outcomes of a game often builds a
model about the game. After having observed several games, the gambler has also acquired
some knowledge about the most likely events. Based on both the model and the recorded
games, the gambler bets on the most likely outcomes. Therefore, the success of the gambler
ultimately depends on how well his/her simplified model represents the true game and how
much data have been able to gather.

The generative process of text, i.e. the set of rules by which we write, is also unknown,
and even more relevant, too complex to specify. Therefore, the probability models for text
presented in this chapter will trade off complexity and utility. This means that we will make
simplifying assumptions about the generation process of text in order to present models that
have practical uses for thematic exploration of text.

The contents of this chapter are organized as follows. In Section 2.1, we introduce the
exponential family, a wide group of probability distributions which embraces most of the
discrete and continuous distributions used in this thesis. We then present in Section 2.2 an
approach to build more complex probability models based on a compact graphical represen-
tation known as PGMs (Probabilistic Graphical Models). In Section 2.3, we introduce two
common representations of text in the literature which only differ on a combinatoric term,
but they give rise to two classes of probability models for text. After that in Section 2.4,
we review different probability models for text whose conditional independences can be ex-

11
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pressed in the graphical language introduced earlier. In Section 2.5, we present how these
models can be learned from data and how certain tasks can be formulated as inferences.
Finally, we will discuss the evaluation of these models in Section 2.6.

2.1 The Exponential Family
The Exponential family embraces several probability distributions that have a particular
form with useful algebraic properties. Discrete members of this family are the Bernoulli,
Categorical, Multinomial with also known number of trials, Poisson and Negative Multino-
mial with known number of failures. The Normal, Beta, Dirichlet, Gamma are some good
representatives of the continuous distributions in this family.

The probability density or mass function for a continuous or discrete random variable
x = (x1, ...xd) ∈ X d in the exponential family can be written as,

p(x;θ) = h(x) exp(θT t(x)− A(θ)) (2.1)

where θ = (θ1, ...θk) ∈ Θ ⊆ RK are the natural or canonical parameters, t(x) is a vector
of sufficient statistics, h(x) is the base measure and A(θ) is the log-partition function or
cumulant which normalises the distribution as follows,

A(θ) = log

∫
h(x) exp(θT t(x)) dx. (2.2)

A more general form for the exponential family is given by,

p(x;θ) = h(x) exp(η(θ)T t(x)− A(η(θ))) (2.3)

where η() is the function that maps from parameter θ to the canonical parameters η = η(θ).
For example, the Bernoulli distribution with binary events x ∈ {0, 1} is expressed in its
canonical form through the natural parameter η, the function mapping from parameters
η = θ = {p} to η(θ) = log p

1−p where p is the success probability of x = 1, a sufficient
statistic t(x) = x, a base measure h(x) = 1 and a log-partition function A(η) = log(1 + eη).
In Appendix B.1, we present the common parametrisation of the probability distributions
used in the thesis. Moreover, Table B.1 summarises their parametrisation in the exponential
family.

An important property of the Exponential family for Bayesian statistics is that one
can obtain a conjugate prior to a likelihood in the Exponential family by considering the
following form for the prior over parameters η in Eq. (2.3),

p(η;χ) = h(η) exp(χT t(η)− A(χ)) (2.4)

where χ = (χ1, χ2) is a vector whose components χ1 is also a vector of the same size as
η and χ2 is a scalar. Then, the sufficient statistics have to satisfy that t(η) = (η,−A(η)).
A prior distribution is conjugate to a likelihood, if the normalised product of both dis-
tributions gives a posterior distribution which is in the same form than the prior. For
instance, a conjugate prior for the Bernoulli distribution above can be derived by set-
ting up a distribution with natural parameters χ = (χ1, χ2) and sufficient statistics t(η) =
(η,−A(η)) = (η,− log(1+eη)). If we express the sufficient statistics w.r.t. parameters θ = p,
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then t(θ) = (log p
1−p , log(1 − p)), one observes that the Beta distribution parametrised as

Beta(α = χ1, β = χ2 − χ1) is a conjugate prior to the Bernoulli. Similarly, one can derive
other well-known conjugacies for Binomial-Beta, Poisson-Gamma, Multinomial-Dirichlet
and Categorical-Dirichlet.

2.2 Probabilistic Graphical Models (PGMs)

In this section, we introduce PGMs, a sub-class of probability models which allows a graph-
ical representation of the conditional independences among the random variables. Fig. 2.1
sketches the different subclasses of probability models that exists. Within graphical models,
there are two main sub-classes called Directed and Undirected, which differ on the type of
conditional independences able to model through directed or undirected graphs. Chordal
or decomposable models appear in the intersection of both classes, since they represent
distributions that can be modelled by either directed or undirected graphs. In the following
subsections, we review in detail the type of conditional independences represented by each
class.

Probability Models

Graphical Models

Directed UndirectedChordal

Figure 2.1: Classification of probability models (Murphy, 2012).

2.2.1 Directed Graphical Models (DGMs)

DGMs (Directed Graphical Models), also known as Bayesian, belief or causal networks, are
a subclass of graphical models whose nodes in the graph are ordered following a topological
ordering. Topological sorting is a property of directed graphs such that no parent occurs
after their children. At least one topological ordering exists in any graph if and only if the
graph has no directed cycles, that is to say, if it is a DAGs (Directed Acyclic Graphs).

In the following, we assume that a DAGs G has V nodes (V ∈ N) and we use v
(v ∈ {1, ..., V }) to denote a node label in G. The type of conditional independences that
a DGM encodes about its variables x = {x1, ...xV } can be expressed in terms of the rela-
tionships among the corresponding nodes in G. In particular, we have that a variable xv is
conditionally independent of all its predecessors given its parents. That is,

xv |= xpred(v)|xpar(v) (2.5)
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xnzn

Φγ

N

Figure 2.2: Latent Variable Model (LVM).

where pred(v) and par(v) represent the set of predecessors and parents of v in G, respectively.
This property enables the factorisation of the probability distribution from the graph as
follows,

p(x) =
V∏
v=1

p(xv|xpar(v);θv). (2.6)

where p(xv|xpar(v);θv) is the conditional probability of variable xv given its parents xpar(v)

and parametrised by θv.
An interesting subgroup of DGMs are the so-called template models (Koller and Fried-

man, 2009a). These are models that have some interesting recurrences in their variables
that enable their specification through a more compact graphical representation. Next, we
review LVMs (Latent Variable Models) (Blei, 2014) a type of template model that encom-
passes many of the probability models for text that we later review.

2.2.1.1 Latent Variable Models (LVMs)

LVMs (Blei, 2014) (Blei, 2014) defines a sub-class of DGMs with a specific recurrent rela-
tionship of the variables in the model. This sub-class embraces a broad range of probability
models for text like mixture models, mixed-membership models and matrix factorisation,
but also for other types of data and problems like linear factor models and time-series.

Fig. 2.2 shows a LVM graphical model in Plate notation. As the name suggests, LVMs
contains latent or hidden variables (z,Φ), white nodes in the graph, combined with observed
variables (xn), shaded nodes. Moreover, this template model contains two types of variables:
local and global. Local variables {zn,xn} are defined at the observation level, whereas
global variables Φ are shared by all the observations. The plate grouping the local variables,
which is indexed by the number of observations N , indicates that the local variables are
repeated N times. Therefore, this model assumes that the n-th local variables {zn,xn}
are independent from the rest of local variables {z\n,x\n} given the global variables Φ.
Moreover, the graphical representation also displays hyperparameters like γ and N in plain
text attached to the variable or plate they refer to.

Furthermore, conditionally conjugate LVMs assume that the complete conditionals, i.e.
the probabilities of each variable conditioned to all other variables in the model, are in
the Exponential family. Because of this assumption, the conditionals of both local and
observed variables as well as the prior on the global variables are also in the exponential
family and they can often be set accordingly to obtain a conditionally conjugate model.
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Mathematically, this means that these conditionals have to be of the form,

p(xn, zn|φ) = h(xn, zn) exp
(
ΦT t(wn, zn)− Al(Φ)

)
(2.7)

p(Φ; γ) = h(Φ) exp
(
γT t(Φ)− Ag(γ)

)
(2.8)

and the sufficient statistics of p(Φ; γ) must be equal to t(Φ,−Al(Φ)), as seen in section 2.1
for conjugate distributions. This type of conditional conjugacies between global and local
variables are less strict than requiring full conjugacy. For example, a conditionally conjugate
global prior for a GMM (Gaussian Mixture Model) would be independent Dirichlet and NIW
(Normal-Inverse-Wishart) distributions.

2.2.2 Undirected Graphical Models (UGMs)

UGMs (Undirected Graphical Modelss), also called Markov Random Fields or simply Markov
Networks, are a subclass of graphical models whose nodes are connected through undirected
edges. This subclass of graphs is more appropriate to represent probability distributions in
which the direction of the correlation is not clear, e.g. the interaction between neighbouring
pixels in an image.

Next, we assume an undirected graph G with S nodes whose node labels are depicted
by s ∈ {1, ..., S}. The conditional independences of an UGM with variables x = {x1, ...xS}
can be expressed in this graph G as,

xs |= X\cl(xs) |mb(xs) (2.9)

where xs is any of the variables in the UGM, mb(xs) is the Markov blanket of xs which
corresponds to the immediate neighbours of xs for undirected graphs and cl(xs) is the closure
of xs defined as the union of the Markov blanket with itself, mb(xs) ∪ xs. This means that
xs is conditionally independent of all other variables given its immediate neighbours.

The factorisation of the joint distribution in UGMs is not as straightforward as in DGM,
since undirected graphs do not provide a natural way to factorise this distribution. Nonethe-
less, the Hammersley-Clifford theorem formulates the joint through potential functions or
factors associated to each maximal clique. A potential function or factor is any non-negative
function of its arguments. A clique is a subset of nodes in the graph such that the induced
subgraph is complete, every pair of nodes are connected. Then, a clique is maximal if it
cannot be enlarged without breaking the clique property. More precisely, the Hammersley-
Clifford theorem says that any positive distribution whose conditional independences can
be expressed through a UGM can be represented as,

p(x;θ) =
1

Z(θ)

∏
c∈C

ψc(xc;θc) (2.10)

where C represent the set of maximal cliques, ψc() is the potential function corresponding to
clique c and parametrised through θc. Z(θ) is the partition function or normalising constant
which is given by,

Z(θ) =
∑
x

∏
c∈C

ψc(xc;θc) (2.11)

where
∑

x represents the sum over all possible states of x. This sum or integral if x is
continuous is usually intractable because it involves too many states.
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2.2.3 Chordal Graphical Models (CGMs)

CGMs (Chordal Graphical Models) or decomposable models are a subset of graphical models
that can faithfully represent a probability distribution either through a DGM or an UGM.
A graphical model is chordal or decomposable if all cycles in the induced graph that pass
through more than 3 nodes contain a chord, that is an edge that connects two of the nodes
in the cycle but it is not part of it.

x1

x2x3

x4x5

x6 xM
· · ·

(a) Markov network
representation.

x1

x2x3

x4x5

x6 xM
· · ·

(b) Bayes network
representation.

Figure 2.3: Chordal Graphical Model (CGM).

In Fig. 2.3a, we show a CGM in the form of Markov network and in the form of Bayesian
network in Fig. 2.3b. Note that the two possible induced cycles in the graph go across 3
nodes, e.g. (x1, x2, x3) and (x4, x5, x6). If an edge would exist between x2 and x4, then a
chord should also exist between x5 and x2 or between x3 and x4, in order to keep the graph
chordal.

An important property of chordal or decomposable models is that the graph of their
maximal cliques is a tree, which is known as the junction tree, and hence the joint probability
of a CGM can be expressed in the form,

p(x;θ) =

∏
c∈C(T ) ψc(xc;θc)∏
s∈S(T ) ψs(xs;θs)

(2.12)

where C(T ) are nodes of the junction tree that contain the maximal cliques in the chordal
graph and S(T ) are the separators of the tree. A separator is the set of variables that inter-
sect between two neighbours in the junction tree. In Fig. 2.3, C(T ) = {(x1, x2, x3) (x4, x5, x6)
(x3, x5) (x6, xM)} are the maximal cliques defining the junction tree nodes and S(T ) =
{(x3) (x5) (x6)} are the separators of the tree. Note that the joint probability for a CGM
does not require to compute the normalising constant. Thus, the joint probability for the
UGM in Fig. 2.3a can be written as,

p(x;θ) =
p(x1, x2, x3; θc1)p(x4, x5, x6; θc2)p(x3, x5; θc3)p(x6, xM ; θc4)

p(x3; θs1)p(x5; θs2)p(x6; θs3)
(2.13)
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and its counterpart for the DGM in Fig. 2.3b can be derived though basic conditioning of
probabilities. Another important property of chordal models to transform between repre-
sentations is that a perfect elimination ordering can be found through LBFS (Lexicographic
Breadth First Search). That is, a corresponding directed graph can be simply obtained with
an algorithm that is linear to the cardinality of nodes and edges.

2.3 Text Representation

Text data is composed of words, numbers and other symbols separated by delimiters like
white spaces or punctuation marks. In what follows, we use the term word to refer to any
symbol within these delimiters. The arrangement of these words forms documents and their
groupings, document collections or corpora. We consider documents exchangeable within
the corpus, which means that any reordering of the corpus is equally likely to occur in
probabilistic terms. The set of all unique words constitutes the vocabulary V = {v1, ...vV }.

The n-gram representation considers contiguous sequences of n words from a text doc-
ument or part of it. For instance, the sentence “What I cannot create” contains one 4-gram
(«What-I-cannot-create»), two Trigrams («What-I-cannot», «I-cannot-create»), three Bi-
grams («What-I», «I-cannot», «cannot-create») and four Unigrams («What», «I», «cannot»,
«create»). Probability models build on n-grams of text, a.k.a. language models, suffer from
the curse of dimensionality for large n because the probability space grows exponentially
with the vocabulary size. Therefore, the simplifying Unigram model or bag of words is usu-
ally convenient for applications that do not require to exactly recover the original document,
like in information retrieval or topic modelling.

2.3.1 Bag of Words Model

The Unigram model or bag of words, assumes that words are exchangeable within the
document. This implies that the word order is lost and hence, a document is seen as a
group or bag of words. Moreover, the bag of words model allows two possible representations
depending on whether the selection order of words in the bag matters or not (Buntine and
Jakulin, 2006).

wnm

Ln
N

(a) Sequenced.

yn:

N
(b) Bagged.

Figure 2.4: Bag-of-words or Unigram model.

In Fig. 2.4, we draw the two representations of the bag of words model in Plate notation.
Due to the exchangeability of documents, both representations repeat the document random
variables N times, i.e. the number of documents in the corpus. Representational differences
arise within documents, where words can be:
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• Sequenced. Words in the n-th document are represented as a sequence of Ln in-
dexes in the vocabulary set V , where Ln corresponds to the document length. Each
word index is modelled as a Categorical random variable wnm with V = |V| possible
outcomes, that is the vocabulary size. Fig. 2.4a shows that each r.v. in the n-the doc-
ument is repeated Ln times. This representation disregards the possible word orders
in the bag and hence, the probability of the n-th document can be expressed as,

p(wn;pn) =
Ln∏
m=1

Cat(wnm; psnm) (2.14)

where Cat(.) is a Categorical distribution as defined in Eq. (B.3) and psnm is a prob-
ability vector over the vocabulary for the m-th word in the n-th document and
psn = {pn1, ...pnLn} is the set of probability vectors in this document.

• Bagged. Words in the n-th document are the total number of counts of that word in
that document. Word counts are modelled as the number of successes of a Multinomial
random variable yn: with V categories and Ln trials. Fig. 2.4b shows that each
document is a single Multinomial random variables wn. This representation accounts
for all the possible word orders and hence, the probability of the n-th document can
be expressed as,

p(yn;pn) = Mult(yn;Ln,pn) (2.15)

where Mult(.) is a Multinomial distribution as defined in Eq. (B.4) and pbn is a prob-
ability vector over the vocabulary for all words in the n-th document.

Despite the differences, when the set of probability vectors in the sequenced represen-
tation psn are all equal to that in the bagged representation pbn, the probability of the n-th
document in the sequenced representation only differs from that in the bagged representa-
tion in a combinatoric term Ln!∏

p ynp!
, which accounts for the word order in the latter.

To give an example, let us consider a corpus of a document whose content is: “What I
cannot create I do not understand”. In this corpus, let us assume that the vocabulary is the
set {What, I, cannot, create, do, not, understand, Richard, Feynman}, which include two
more words not in the document. The sequenced representation of this document would
be a list of indexes pointing at the words in the vocabulary [0, 1, 2, 3, 1, 4, 5, 6]. The bagged
representation would be a vector of size 9, i.e. vocabulary size, with the corresponding
word counts [1, 2, 1, 1, 1, 1, 1, 0, 0]. Then, every index in the sequenced representation is
generated from an independent Categorical distribution over the vocabulary V , whereas
the count vector in the bagged representation is generated from a Multinomial distribution
with V = 9 categories and Ln = 8 trials. Note that the sequenced representation imposes a
specific word order and the bagged representation accounts for any possible order through
the combinatoric term that in this example is 8!/(1! 2! 1! 1! 1! 1! 1! 0! 0!) = 20160. This means
that the same document in the bagged representation is 20160 times more likely than in
the sequenced representation.

From the bagged representation above, one can also create other observational models
by replacing the Multinomial distribution by other distributions. For instance, later we will
introduce a model that uses independent Poisson distributions for each word to generate
the word count vector. A more radical approach is to instead of modelling word counts,
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simply capture the presence or absence of words. This is interesting because it exists
an extensive literature on learning graphical models from binary data, despite the lost of
information in binarisation. Therefore, one can develop a binarised representation for
the presence/absence of words through V independent Bernoulli distributions as defined in
Eq. (B.1). The result of this representation in the previous example is a binary vector of
length Ln = 8 such that [1, 1, 1, 1, 1, 1, 1, 0, 0].

2.4 Topic Models

Topic models (Blei, 2012) are algorithms for discovering the main themes of a document col-
lection. Most topic models also rely on directed or undirected graphical models to described
the statistical dependencies between their variables. Besides most of them represent text
through a bag of words model given that the thematic information is preserved under this
representation. Next, we review the most basic topic models that this thesis builds on and
we classify them as per their type of PGM, their representation model and whether they fix
or infer the number of topics and length. Fig. 2.1 shows a summary of this classification.

Topic Model Type of
PGM

Sequenced
/ Bagged

Count
/ Binary

Topics
K

Document
Length Ln

MoU (Nigam et al., 2000) DGM/LVM Sequenced Count Fixed Fixed
MoB (Juan and Vidal, 2002) DGM/LVM Bagged Binary Fixed Fixed
LDA (Blei et al., 2002) DGM/LVM Sequenced Count Fixed Fixed
HDP (Teh et al., 2006b) DGM/LVM Sequenced Count Inferred Fixed
mPCA (Buntine, 2002) DGM/LVM Bagged Count Fixed Fixed
GaP (Canny, 2004) DGM/LVM Bagged Count Fixed Inferred
βγΓ-PFA (Zhou et al., 2012) DGM/LVM Bagged Count Inferred Inferred
BPFA (Zhou, 2015) DGM/LVM Bagged Binary Inferred Inferred
HLTM (Chen et al., 2017) DGM Bagged Binary Inferred Inferred
RBM (Hinton, 2002) UGM Bagged Binary Fixed Inferred
Replicated softmax (Hinton
and Salakhutdinov, 2009) UGM Sequenced Count Fixed Fixed

Table 2.1: Summary of existing Topic Models for text.

2.4.1 Mixture of Unigrams (MoU)

The MoUs (Mixture of Unigramss) model (Nigam et al., 2000) assumes that the document
corpus is composed of different subpopulations of documents. Each document belongs to
ones of these subpopulations and documents in a subpopulation are generated from the
same probability distribution. A document can be generated either from a sequence of Ln
Categorical distributions, i.e. sequenced, or from a Multinomial distribution, i.e. bagged,
as we show next.
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wnmznπ φk ηα

Ln

N

K

(a) Sequenced.

ynznπ φk

Ln

ηα

N
K

(b) Bagged.

Figure 2.5: Mixture of Unigrams (MoU) graphical models.

Fig. 2.5 depicts the graphical model of MoU in the sequenced and bagged representations.
MoU belongs to the subclass of LVM presented in Section 2.2.1.1. The document plate
indexed by the number of documentsN contains the local variables. In both representations,
grey nodes, {wn1, ..., wnLn} and yn, refer to the observed words (sequenced) and counts
(bagged) in the n-th document; and white node, zn, to the latent variable that assigns the
subpopulation to the n-th document. The global latent parameters for this model are in
charge of modelling the proportions of subpopulations π and the K subpopulations Φ =
{φ1, ...φK}. Each subpopulation φk is a probability vector over the vocabulary V which is
usually referred as the k-th topic. Finally, the graphical model shows the hyperparameters as
plain text linked to the variables or plates. We note that Ln is a distribution hyperparameter
in the bagged representation whereas it is a model hyperparameter in the sequenced.

Following, the factorisation property of DGMs in Eq. (2.6), we can express the joint
probability of MoUs in its bagged form as,

p(w, z, π,Φ;α,Ln, η) = p(π;α)
N∏
n=1

p(zn|π)p(yn|zn,Φ;Ln)
K∏
k=1

p(φk; η) (2.16)

where the observational model p(yn|zn,Φ;Ln) is Mult(yn;Ln, φzn) and φzn indicates that
variable zn indexes the corresponding distribution in the set Φ = {φ1, ...φK}.

The sequenced version uses a different observational model. The conditional probability
of the observed words given their parents is expressed through Ln independent distributions
such that,

p(wn|zn,Φ;Ln) =
Ln∏
m=1

p(wnm|zn,φ). (2.17)

where each p(wnm|zn,Φ) comes from a Cat(wnm;φzn). The difference in probability between
the sequenced and bagged representations is the same combinatoric term than in the bag
of word model, given that φzn is shared across words. The graphical models above are
complemented with the generative processes below that indicate the distributions used for
each variable.
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π ∼ Dir(α)

For each topic k = 1...K

φk ∼ Dir(η)

For each document n = 1...N

zn ∼ Cat(π)

For each word m = 1...Ln

wnm ∼ Cat(φzn)

Process 2.1: Sequenced MoU.

π ∼ Dir(α)

For each topic k = 1...K

φk ∼ Dir(η)

For each document n = 1...N

zn ∼ Cat(π)

yn ∼ Mult(Ln, φzn)

Process 2.2: Bagged MoU.

In both representations, we observe that MoU considers Dirichlet priors, see definition
in Eq. (B.8), for the topic proportions π and topic distributions Φ. Besides the topic
assignments zn are also drawn from a Categorical distribution with proportions π in both.
Thus, the differences occur in how they generate the observed words, from Ln Categorical
distributions in the sequenced model or from a Multinomial in the bagged representation.
As suggested earlier, one could also use an observational model with V Bernoullis to derive
a MoB (Mixture of Bernoullis) (Juan and Vidal, 2002). MoU model is considered the
most basic topic model since it only allows one topic per document.

2.4.2 Latent Dirichlet Allocation (LDA)

LDA (Latent Dirichlet Allocation) (Blei et al., 2002, 2003) extends the MoU topic model
in the previous section to more than one topic per document. It does that by assuming
that each word in a document is generated from a mixture of topics whose proportions are
determined at the document level Θ = {θ1, ...θN}.

For each topic k = 1...K

φk ∼ Dir(η)

For each document n = 1...N

θn ∼ Dir(α)

For each word m = 1...Ln

znm ∼ Cat(θn)

wnm ∼ Cat(φznm)

Process 2.3: LDA.

wnmznmθnα φk η

Ln

N

K

Figure 2.6: LDA graphical model.

That is to say, the n-th document can be summarised by its proportions over topics
θn, which correspond to the mixture proportions for generating each of the Ln observed
words {wn1, ..., wNLn}. We note that LDA considers the sequenced representation of text
introduced in Section 2.3.

From the graphical model in Fig. 2.6, we can write down the joint probability distribution
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as follows,

p(w, z,Θ,Φ;α, η) =
N∏
n=1

p(θn;α)
Ln∏
m=1

p(znm|θn)p(wnm|znm,Φ)
K∏
k=1

p(φk; η) (2.18)

where the p(znm|θn) = Cat(znm; θn) and p(wnm|znm,Φ) = Cat(wnm; Φznm) and Dirichlet
priors on p(θn;α) and p(φk; η), as specified in Proc. 2.3.

The LDA model has been extended in many different directions. For instance, Blei and
Lafferty (2006) introduced a dynamic topic model that uses a state-space model in the
topics’ plate to account for their evolution over time, i.e. φt,k|φt−1,k ∼ N (φt−1,k, σ). Blei
and Lafferty (2007) also proposed to use a K-variate Normal prior over the proportions
Θ to capture the correlation between topics and overcome one of the main drawbacks of
the Dirichlet prior. Wallach (2006) went beyond bag of words and proposed a bigram (i.e.
2-gram) language model to learn topics that are less dominated by function words (i.e.
prepositions, conjunctions, etc.). Alternatively, Wallach et al. (2009a) studied the impact
that has the use of symmetric and asymmetric Dirichlet priors for topics and their propor-
tions. While they found that the use of asymmetric priors over the topic proportions, i.e.
α = (α1, ...αK), improved the model performance, they reported that symmetric Dirichlet
priors were sufficient for the topic distributions, i.e. η = (η, ..., η).

However, MoU, LDA and many of these extensions still require to specify the number of
topics K beforehand, limiting the exploration capabilities of these algorithms in unknown
document collections.

2.4.3 Hierarchical Dirichlet Process (HDP)

The number of topics K in LDA has to be fixed in advance and this might compromise
the performance of the topic model. Although cross-validation can be used to determine
the right number of topics, nonparametric models such as the HDP (Hierarchical Dirichlet
Process) (Teh et al., 2006b) have been introduce to address this limitation. These non-
parametric models can be framed in the context of LVMs with stochastic processes as
priors, e.g. a hierarchical DP (Dirichlet Process) is used as prior in a LDA-like topic model.

The DP (Ferguson, 1973) is a distribution over probability measures G : Θ→ R+ such
that G(θ) ≥ 0 and

∫
θ
G(θ)dθ = 1. That is to say that any realization of a DP is a probability

distribution over the space Θ. Moreover, any finite partition of the space Θ =
⋃K
k=1 Tk is

jointly distributed according to a Dirichlet distribution parametrised as,

G(T1), ..., G(TK) ∼ Dir(αH(T1), ...αH(TK)) (2.19)

where α is a positive real number called the concentration parameter and H, the base
measure. A Dirichlet process with this parametrisation is often expressed as DP(α,H).
Sethuraman (1994) provided a constructive definition of DPs in which a draw from G ∼
DP(α,H) is, with probability one,

G0 =
∞∑
k=1

πkδθk (2.20)

where θk ∼ H, δθk represents an atom at θk ∈ Θ and πk ∼ GEM(α) are the proportions
drawn from the distribution underlying the stick-breaking process, see Appendix B.4. DPs
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can be used as priors for mixture models to infer the number of mixture components. For ex-
ample, one can simply derive a non-parametric extension of the MoU model in Section 2.4.1
by using a DP(α,H) where H is a Dirichlet distribution over the vocabulary and α the
same Dirichlet parameter. Then, the mixture proportions are generated from the GEM(α)
and words, from the corresponding atoms, i.e. topics.

G0 ∼ DP(γ,H)

For each document n = 1...N

Gn ∼ DP(α0, G0)

For each word m = 1...Ln

θnm ∼ Gn

wnm ∼ Cat(θnm)

Process 2.4: HDP.

wnmθnmGn

α0

G0

γ

H

Ln

N

Figure 2.7: HDP graphical model.

The HDP is a hierarchical construction of Dirichlet processes to enable multiple topics
in the same document as in LDA. The top-layer of the model is a process of the form G0 ∼
DP(γ,H), where γ is the concentration parameter that controls the amount of variability
around H, which is the base measure on the probability vectors that encode the topics. The
next layer is then constructed using the realization of the process G0 as base measure for the
document-level DP and α0 as concentration, Gn ∼ DP(α0, G0). Therefore, α0 controls how
much the Gn process deviates from G0. This hierarchy enables topics, which are the atoms
of the top-layer DP, to be shared across documents, but each exhibits different proportions
according to the proportions drawn from Gn. Finally, words in the n-th document are
generated in a sequenced fashion from the corresponding topic distributions. The generative
process is detailed in Proc. 2.4 and the graphical representation in Fig. 2.7. Although it is
omitted in the above descriptions, the HDP model, like LDA, often considers a Dirichlet
prior over the topics such that H ∼ Dir(η).

In conclusion, the result of using a hierarchy of Dirichlet processes enables HDP to learn
a posterior distribution over the number of topics K, as it is done for any other latent
parameter in a probability model. Through this posterior, one can set the number of topics
to its mean, mode or any other value related to this distribution.

2.4.4 Multinomial Principal Component Analysis (mPCA)

mPCA (Multinomial Principal Component Analysis) (Buntine, 2002; Buntine and Jakulin,
2004) was presented around the same time as LDA as a discrete extension of PCA (Principal
Component Analysis).
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For each topic k = 1...K

φk ∼ Dir(η)

For each document n = 1...N

θn ∼ Dir(α)

yn ∼ Mult(θnΦ)

Process 2.5: mPCA.

yn

Ln

θnα φk η

N

K

Figure 2.8: mPCA graphical model.

In contrast to LDA, the model is built on the bagged representation of text by assuming
that words in the n-th document are generated from Mult(yn;Ln, θnΦ), where the event
probabilities come from the product of two matrices Θ (N×K) and Φ (K×V). Similar to
LDA, the model considers the same prior distributions over the proportion θn and over the
topic distributions φk. From Fig. 2.8, the joint probability distribution can be written as,

p(y,Θ,Φ;α, η) =
N∏
n=1

p(θn;α)p(yn|θn,Φ;Ln)
K∏
k=1

p(φk; η) (2.21)

where the term p(yn|θn,Φ;Ln) is given by the Multinomial distribution above. Therefore,
the main difference between LDA and mPCA is in the observational model, where the
sequenced representation is considered in LDA and the bagged representation, in mPCA.
We can see that if we collapse the topic assignments z in the LDA model, their joint
distributions are related by the combinatorial term that accounts for the multiple ordering
of words in a document,

pmPCA(y,Θ,Φ;α, η) =
N∏
n=1

Ln!∏
m ynp!

pLDA(w,Θ,Φ;α, η). (2.22)

where ynp on the right hand side indicates the total counts of the p-th word in the vocabulary
in the n-th document.

Given that the combinatoric term does not depend on the parameters, the evidence of
both models only differ on this combinatoric term. Thus, the relationship in terms of the
posterior distribution cancels out this term and hence, both models has the same posterior.

pmPCA(Θ,Φ|y;α, η) = pLDA(Θ,Φ|w;α, η) (2.23)

This mean that the representation of text in the sequenced or bagged forms is irrelevant
when the fitting of LDA and mPCA (Buntine and Jakulin, 2006). However, this bagged
representation in mPCA is interesting to introduce a fully generative class of models that
do not condition on the document length.

2.4.5 Gamma Poisson (GaP)

GaP (Gamma Poisson) was proposed by Canny (2004) to address the fact that previous
models did not represent the uncertainty over the document length. To achieve that, GaP
builds on the mPCA factorisation but it instead considers a Poisson observational model.
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The observational model p(yn|ln,Φ) is the product of V Poisson distributions, each
with rate λnm =

∑
k lnkφkm. Furthermore, a Gamma prior is considered for each parameter

lnk ∼ Ga(αk, βk), as defined in (B.9). In contrast to LDA and mPCA, the original GaP
did not consider a prior over Φ, but subsequent extensions did use a Dirichlet prior too, as
we show in Proc. 2.6.

For each topic k = 1...K

φk ∼ Dir(η)

For each document n = 1...N

For each topic k = 1...K

lnk ∼ Ga(αk, βk)

For each word p = 1...V

ynp ∼ Pois(
∑
k

lnkφkm)

Process 2.6: GaP (I).

ynplnkαk
βk φk η

VK

N

K

Figure 2.9: GaP graphical model (I).

The joint probability for GaP can also be written down from the graphical model in
Fig. 2.9 as,

p(y, L,Φ;α, β, η) =
N∏
n=1

K∏
k=1

p(lnk;α, β)
V∏
p=1

p(ynp|ln,Φ:p)
K∏
k=1

p(φk; η) (2.24)

where the main difference to mPCA is not only the Gamma priors over theK-th components
of ln, but also the Poisson likelihoods over the V words in the vocabulary without any
conditioning to the sum of their counts, i.e. the document length.

For each topic k = 1...K

φk ∼ Dir(η)

For each document n = 1...N

For each topic k = 1...K

lnk ∼ Ga(αk, βk)

Ln ∼ Pois(
∑
k

lnk)

yn ∼ Mult(Ln,
∑
k

lnk∑
k′ lnk′

φkm)

Process 2.7: GaP (II).

ynlnk

Ln

αk
βk φk η

K

N

K

Figure 2.10: GaP graphical model (II).

An equivalent representation to GaP can be derived from a property which relates the
Poisson and Multinomial distributions. Given that {wnm ∀m = 1...V } are independent
Poisson random variables with rates

∑
k lnkΦkm, the joint probability of these variables can
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be expressed as,

p(yn|ln,Φ) = Mult(yn;Ln,
∑
k

lnk∑
k′ lnk′

φk)Pois(Ln;
∑
k

lnk) (2.25)

where Ln is the latent document length which corresponds to the sum of V independent
Poisson random variables. Fig. 2.10 and Proc. 2.7 depicts the GaP graphical model under
this new representation which is more explicit on how the uncertainty over the document
length is modelled.

Two properties of the Gamma distribution allowed Buntine and Jakulin (2006) to draw
connections between GaP, mPCA and LDA. When K independent random variables are
drawn from lnk ∼ Ga(α, β) and their values are normalised by their sum ln∑

k′ lnk′
, the

resulting random variable follows a Dirichlet distribution with parameter α = {α1, ..., αK}.
Besides the sum of these K random variables,

∑
k lnk, is distributed according to a Gamma

distribution with shape
∑

k αk and scale β. This implies that θn = ln∑
k′ lnk′

in Eq. (2.25) is
now distributed according to Dir(α) when the hyperparameters βk are kept constant to β
for all k. Furthermore, the resulting observational model, after integrating out

∑
k lnk, can

be written as,

p(yn|θn,Φ) = Mult(yn;Ln, θnΦ)NB(Ln;
∑
k

αk,
β

1 + β
) (2.26)

where θn ∼ Dir(α) and the marginalized Poisson-Gamma composition produces a NB
(Negative Binomial) distribution as in Eq. (B.12). Given that the NB distribution on the
document length only depends on the hyperparameters, the GaP model becomes equivalent
to mPCA and LDA ignoring representational issues.

Finally, a property of Poisson random variables allows the expression of GaP in a way
that the assignment of words to topics is made explicit through a latent count variable.
This representation will also be useful for introducing the non-parametric extensions. A
Poisson random variable with rate λnm =

∑
k lnkφkm is equivalent to the sum of K Poisson

random variables, each with rate λnmk = lnkφkm. As a results, we can augment the model
in Fig. 2.9 with latent variables xnmk ∼ Pois(λnmk), and express the observed counts as the
sum of these latent variables ynm =

∑
k xnmk. These latent variables represent the number

of times that topic k has been assigned to m-th word in the n-th document.
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For each topic k = 1...K

φk ∼ Dir(η)

For each document n = 1...N

For each topic k = 1...K

lnk ∼ Ga(αk, βk)

For each word p = 1...V

For each topic k = 1...K

xnpk ∼ Pois(lnkφkp)

ynp =
∑
k

xnpk

Process 2.8: GaP (III).

ynpxnpklnkαk
βk

φkη

VK

N

K

Figure 2.11: GaP graphical model (III).

Proc. 2.8 and Fig. 2.11 show the generative process and graphical model for this aug-
mented model, respectively. We note that the relationship between observed counts ynp and
latent counts xnpk is deterministic, as displayed by the double-lined node.

GaP can also be extended with non-parametric prior that enable to infer the number of
topics. However, the fact that in the general case its latent variables ln are not normalised
by their sum, requires to use a different types of stochastic processes to achieve similar
capabilities to the HDP .

2.4.6 Beta-Negative Binomial Process (BNB)

The number of topics in GaP is a model hyperparameter that has to be fixed beforehand.
To address this in a non-parametric fashion, we need to introduce the BNB (Beta-Negative
Binomial Process) (Zhou et al., 2012), which is constructed from coupling a NB with a
marked BP (Beta Process).

The BP (Hjort et al., 1990; Thibaux and Jordan, 2007) is a positive Lévy process whose
Lévy measure is defined on the product space [0, 1]× Ω as,

νBP (dpdω) = cp−1(1− p)c−1dpB0(dω) (2.27)

where c > 0 is called the concentration parameter, B0 is a continuous measure over Ω
called the base measure, and α = B0(Ω) is the mass parameter. Then, the points from this
process, (wk, pk) ∈ [0, 1]×Ω, can be marked with a random variable rk taking values in R+

where rk and r′k are independent for k 6= k′. This leads to a marked BP with Lévy measure
defined on the product space [0, 1]× R+ × Ω as,

ν∗BP (dpdrdω) = cp−1(1− p)c−1dpR0(dr)B0(dω) (2.28)

where R0 is a continuous finite measure over R+ with mass parameter given by γ = R0(R+).
To sample from this marked process, B∗ ∼ BP (c, R0B0) one can draw a set of points
(pk, rk, ωk) from a Poisson process with mean measure ν∗BP and express,

B∗ =
∞∑
k=1

pkδrk,ωk (2.29)
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where δrk,ωk is the atom at (rk, ωk) ∈ [0, 1]×R+ and pk ∈ [0, 1] is the corresponding weight.
Note that these weights do not have to be normalised as in the DP in Section 2.4.3.

Finally, a draw from a NBP (Negative Binomial Process), NBP(B∗) is defined as,

Xi =
∞∑
k=1

κikδωk , κik ∼ NB(rk, pk) (2.30)

where the i-th count κik drawn from the NB(rk, pk) is associated to the atom δωk . This
construction is similar to that of the Bernoulli Process (BeP) (Thibaux and Jordan, 2007),
but κik are related to counts rather than binary values.

However, the above process is not finite and it leads to countably infinite points. Thus,
a finite approximation to the marked Beta process above is usually considered in practice.
The modified Lévy measure for the finite approximation is given by,

ν∗εBP (dpdrdω) = cpε−1(1− p)c(1−ε)−1dpR0(dr)B0(dω) (2.31)

where ε > 0 is introduced to ensure that the measure on [0, 1]×R+×Ω is finite with value,

ν+
εBP = ν∗εBP ([0, 1]× R+ × Ω) = cγαB(cε, c(1− ε)). (2.32)

Zhou et al. (2012) incorporated this finite approximation of the BP as the base measure
for a NBP to construct an εBNB. This finite process was then used as the non-parametric
prior for the latent counts in the extended GaP model described in Proc. 2.8. Furthermore,
they placed a Gamma prior over the rk to build a Beta-Gamma-Gamma-Poisson model
named βγΓ-PFA, where the hierarchy Beta-Gamma-Gamma acts as a prior of PFA (Poisson
Factor Analysis). Proc. 2.9 and Fig. 2.12 show its generative process and graphical model.

K ∼ Pois(ν+
εBP )

For each topic k = 1...K

φk ∼ Dir(η)

pk ∼ Beta(cε, c(1− ε))
rk ∼ Ga(c0r0, 1/c0)

For each document n = 1...N

For each topic k = 1...K

lnk ∼ Ga(rk,
pk

1− pk
)

For each word p = 1...V

For each topic k = 1...K

xnpk ∼ Pois(lnkφkp)

ynp =
∑
k

xnpk

Process 2.9: βγΓ-PFA.

ynpxnpklnk
rk

pk

r0

c0
ε
c

φkη

V
K

N

K

Figure 2.12: βγΓ-PFA graphical model.

A wide range of topic models for binarised text can be constructed from combining
the BerPo (Bernoulli-Poisson) Link presented in (Zhou, 2015) with PFA models in (Zhou
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et al., 2012), which it is called BPFA (Bernoulli PFA). The BerPo link is a function which
threshold the the counts ynp to presence (“1”) or absence (“0”). Mathematically, we can
express this function as,

bnp = 1(ynp), ynp ∼ Pois(λnp) (2.33)

where bnp = 1 if ynp ≥ 1, and bnp = 0, otherwise; and λnp refers to the corresponding Poisson
rate, which is lnkφkp for the model above. However, the counts ynp are not observed in the
BPFA model, because it assumes a binarised representation of text. Therefore, one might
be interested in deriving the marginal distribution that integrates out the latent counts ynp.
It turns out that this distribution is,

bnp ∼ Ber(1− e−λnp) (2.34)

a Bernoulli distribution with probability parameter as defined in Eq. (B.1). Another impor-
tant property to derive inference algorithms for this model is that the conditional probability
of the latent counts given the presence/absence of words can be expressed as,

ynp|bnp, λnp ∼ bnpPois+(λnp) (2.35)

where Pois+(.) is a zero-truncated Poisson distribution over the positive integers as defined
in Eq. (B.6) and bnp is in charge of forcing the zeros.

2.4.7 Latent Tree Models (LTMs)

LTMs (Latent Tree Models) (Choi et al., 2011) are rooted tree-structured graphical models
with leaf nodes corresponding to the observed variables and internal nodes, to the latent or
hidden variables, see an example of graphical model in Fig. 2.13. In contrast to the previous
models they do not necessarily have a recurrence that enables their expression as template
models. They represent a more general class of probability distributions than fully-observed
trees due to the presence of latent variables, but they preserve some of the computational
advantages, like efficient exact inference.

y3 y4 y5

z1

y6 y7

z2

z0

y1y2

yV· · ·

Figure 2.13: Latent Tree Models (LTMs).

The joint probability distribution of LTMs can be compactly represented as,

p(y, z) = p(xr)
∏
u→v

p(xv|xu); ∀x ∈ Y ∪ Z (2.36)
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where Y corresponds to the set of observed variables, and Z to the set of latent variables.
In contrast to the general probability rule for directed graphical models in Eq. (2.6), tree-
structured graphs only have one parent for each variable in the model.

Lately, latent trees have been used to build hierarchies of topics in text (Chen et al.,
2017), the so-called HLTMs (Hierarchical Latent Tree Models). In HLTMs, the observed
variables represent the presence or absence of words while the hidden variables represent
the unknown topics. Therefore, they use a binary and bagged representation of text. A
topic is represented through the subset of observed words that the latent variable connects
to, whereas in previous models, topics were distributions over the whole vocabulary. As
a result, latent variables at high levels of the tree provide more general topics than those
at lower levels, because they connect to more latent variables and they are able to capture
long-range dependencies.

One of the main limitations of HLTMs is that text data needs to be binarised in order
to learn the structure of latent trees, losing the representational power of count data. This
is due to the fact that most structure learning algorithms only work for categorical data,
not for count data.

2.4.8 Restricted Boltzmann Machines (RBMs)

RBMs (Restricted Boltzmann Machiness) (Hinton, 2002) are undirected models with a
bipartite graph of latent and observed variables. Observed variables are usually placed at
the bottom and the layer of latent variables stack on top. No edge is allowed among observed
nor among latent, but layers are usually fully-connected. Therefore, the joint distribution
can be written as,

p(y, z;θ) =
1

Z(θ)

V∏
m=1

K∏
k=1

ψmk(ym, zk|θmk) (2.37)

following the Hammersley-Clifford theorem and the graphical model in Fig. 2.14, where y is
the set of observed variables, z is the set of latent variables and ψmk the potential functional
between every pair of observed and latent nodes. One can show that the partition function,
Z(θ), becomes quickly intractable even for a few binary hidden variables.

y1 y2 y3 y4 yV· · ·

z1 z2 z3

Figure 2.14: Restricted Boltzmann Machines (RBMs).

The main difference between RBMs and directed latent variable models like GaP is that
latent variables in RBM are mutually independent given the observed words. This makes
inference easier than in directed latent models, since each latent variable zk can be estimated
independently. Moreover, the fact that RBMs multiply a set of potential functions, instead
of computing a mixture of these potentials, enables sharper distributions. For example,
undirected topic models with RBMs (Hinton and Salakhutdinov, 2009) are capable of giving
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high probability to words like “Berlusconi”, which are not high probable word in any of the
topics present in the document (e.g. government, mafia and playboy), whereas mixture-
based topic models like LDA or GaP smooth the probability of “Berlusconi” because of the
averaging effect of the mixture.

2.5 Bayesian Inference

In the previous section, we have presented several probability models that encode the as-
sumptions about the data generating process. To reverse the process, statistical inference
uncovers properties of the underlying distribution by going from data to distributions. In
particular, we focus here on Bayesian inference, which is a particular case of inference that
makes use of the Bayes’ theorem to reverse the process. The Bayes’ rule applied to statistical
inference can be written as,

p(θ|x) =
p(x|θ)p(θ)
p(x)

(2.38)

where p(θ) is the prior distribution over the parameters of the model θ, p(x|θ) is the likeli-
hood of the data x under the model parametrised by θ and p(x) is the model evidence or
marginal likelihood. Bayes’ rule relates these three probabilities with the posterior proba-
bility p(θ|x), which represents the uncertainty over the parameters after having observed
the data x. In contrast, MAP (Maximum a Posteriori) inference outputs the mode of the
posterior distribution.

Computing the posterior distribution plays a central role in Bayesian inference. First,
it enables to uncover hidden structure in the data (i.e. clusters, topics, etc.) through the
posterior distribution over certain model parameters. For example, the posterior distribu-
tion p(Φ|w) in the LDA or mPCA model from Section 2.4.2 contain the underlying topic
distributions in this corpus. Second, the probability of unseen data given the probability
model can be computed by averaging over the posterior distribution as,

p(x∗|x) =

∫
p(x∗|θ,x)p(θ|x) dθ (2.39)

where p(x∗|θ,x) is the likelihood of an unseen datum x∗ and p(x∗|x) is its posterior pre-
dictive distribution. This quantity enables to quantify the uncertainty over a prediction as
well as to compare the performance of different models in terms of their predictability.

However, computing a closed-form and tractable expression for the posterior distribution
is only feasible for simple models with conjugacy like the Bernoulli-Beta or Poisson-Gamma
models discussed earlier. In most interesting models, conjugacy does not hold and poste-
rior computation becomes intractable due to the normalising factor in the denominator of
Eq. (2.38), which consist of,

p(x) =

∫
p(x|θ)p(θ) dθ (2.40)

an integration (or sum) over all model variables. In the next sections, we will present two
basics approaches used to address this problem in approximate manner, which will be used
throughout the thesis.
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2.5.1 Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984) is a MCMC (Markov Chain Monte Carlo)
method to sample from high-dimensional distributions, where simpler Monte Carlo methods
like rejection sampling have difficulties to draw samples. To address this, MCMC methods
construct a Markov Chain on the state space whose equilibrium or stationary distribution
is the desired one. That is to say that the fraction of visits in a given state is proportional
to the target density.

Gibbs sampling performs this through an iterative scheme in which each variable is
sampled sequentially according to its complete conditional, p(x′i|x

(s)
\i ). The complete condi-

tionals are built by conditioning on the previous samples and the process is repeated until
reaching equilibrium. After that, samples, supposedly coming from the desired distribution,
are recorded during several more cycles to build an empirical posterior distribution.

Gibbs sampling is a particular case of a more general algorithm called MH (Metropolis
Hastings). The MH algorithm is also an iterative algorithm in which one decides at each
step to move from one state x to another x′ with probability q(x′|x). In Gibbs sampling,
the proposal distribution q(x′|x) that modulates the jump from state x to state x′ has the
following form,

q(x′|x) = p(x′i|x\i)I(x′\i = x\i) (2.41)

where p(x′i|x\i) is the complete conditional distribution for variable i and the term I(x′\i =

x\i) indicates that all other variables except xi are left unchanged.
Despite this proposal distribution has 100% acceptance rate, the fact that each vari-

able is sampled sequentially does not imply that this method converges faster than others.
However, this simple scheme makes Gibbs sampling very popular and general to use it
for different types of models. This is the reason of its use in software packages such as
BUGS (Lunn et al., 2012) and JAGS (Hornik et al., 2003), that automatize the inference
for a great variety of probabilistic models.

Moreover, Gibbs sampling leverages on the structure of graphical models to reduce the
number of variables that the complete conditionals depend on. These are the variables in
the Markov Blanket of xv in a graph G, which for undirected graphs are its immediate
neighbours and for directed, the union set of its children, parents and co-parents. For
instance, the zn variable in the LVM in Fig. 2.2 is conditionally independent of z\n given
its parent φ and child xn. Thus, one can express the complete conditional for the n-th
local latent variable, which is assumed to be in the exponential form for the conditionally
conjugate LVM, as,

p(zn|xn, φ) = h(zn) exp (ηl(xn, φ)t(zn)− a(ηl(xn, φ))) (2.42)

where ηl(xn, φ) is the corresponding vector of natural parameters corresponding to zn and
the expression also reveals the independence between zn and z\n when φ is observed. Sim-
ilarly, the complete conditional for the global latent parameters φ can be written as,

p(φ|x, z; γ) = h(φ) exp
(
ηg(x, z)T t(φ)− a(ηg(x, z))

)
(2.43)

where ηg(x, z) is the vector of global natural parameters corresponding to φ and the de-
pendence among all the local contexts is also highlighted by this expression.

Therefore, one can sample the posterior distribution of the LVM in Fig. 2.2 through
a Gibbs sampling algorithm that iteratively samples the global complete conditional in
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Eq. (2.43) and then the N complete conditionals for the local variables in Eq. (2.42). As
mentioned earlier, the initial samples are discarded until the Markov Chain has converged
to equilibrium. After this burn-in period, samples are collected to compute statistics of
the posterior distribution. However, determining the duration of the burn-in period as well
as when to stop the sampling are known drawbacks of MCMC methods. In the following
section, we will introduce a deterministic method that does not suffer from this drawback.

2.5.2 Mean-field Variational Inference

Mean-field variational inference (Wainwright et al., 2008) approximates the posterior distri-
bution by a family of distributions over the latent variables which is optimised to be close
to the posterior.

The mean-field variational family assumes that latent variables in the model are inde-
pendent and each variable is controlled by its own variational parameters. In the LVM from
Fig. 2.2, the mean-field variational family can be written as,

q(φ, z|Ω) = q(φ|λ)
∏
n

q(zn|ψn) (2.44)

where Ω = {λ,ψ} are the set of variational parameters and q() are the mean-field distribu-
tions governing each latent variable.

The optimisation framework to approximate p(φ, z|w; γ) with the variational family
q(φ, z|Ω) is formulated in terms of minimizing the KL (Kullback-Leibler) divergence be-
tween both distributions,

Ω∗ = arg min
Ω

KL(q(φ, z|Ω), p(φ, z|w; γ)). (2.45)

However, this objective cannot be directly optimised because it depends on the unknown
posterior, but one can maximise a surrogate known as the ELBO (Evidence Lower BOund).
The maximization of ELBO, which is equivalent to minimizing Eq. (2.45), can be written
as,

Ω∗ = arg max
Ω

Eq[p(φ, z,w|Ω)]− Eq[q(φ, z|Ω)] (2.46)

where the expectation Eq are with respect to the mean-field variational family q(φ, z|Ω).
Moreover, if the complete conditionals in the LVM and the mean-field distributions are

all in the Exponential family, one can derive closed-form updates for Eq. (2.46). For the
conditionally conjugate LVM in Fig. 2.2, the updates for the variational parameters are the
following:

ψ∗n = Eq [ηl(xn, φ)] (2.47)
λ∗ = Eq [ηg(z,x)] (2.48)

where ηl(xn, φ) and ηg(z,x) are again the natural parameter vectors corresponding to the
complete conditionals described in Eq. (2.42) and Eq. (2.43), respectively.

One then sets up a coordinate ascent algorithm that iteratively updates Eq. (2.48) and
the N local variables in Eq. (2.47) until convergence. Convergence can be easily diagnosed
by monitoring the increase in ELBO and stopping the process when the objective plateaus.
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Similar to Gibbs Sampling, mean-field variational inference enables to derive simple
algorithms that approximate the posterior by updating the variational parameters with
expectations on the complete conditionals. This has paved the way to develop software
packages, such as Infer.NET (Minka et al., 2012), capable of automatizing variational in-
ference in certain type of graphical models. In contrast to Gibbs sampling, the fact that
the optimisation goal is often non-convex and variational methods are deterministic might
cause variational algorithms to get trapped in local maxima. To avoid this, multiple ran-
dom restarts might be used to guarantee a good maxima. Nonetheless, the determinism in
these methods has also led to algorithms that are computationally faster than their Gibbs
sampling counterparts due to the high cost associated with sampling.

To obtain better approximations of the posterior, one has to necessarily go beyond the
fully factorised assumption of mean-field. One way is, for instance, to perform structured
mean-field which looks for tractable substructures in the problem that can be analytically
solved (Saul and Jordan, 1996). Another way is to use an inference network as the ap-
proximating distribution and perform stochastic optimisation (Kingma and Welling, 2014).
However, these methods are problem specific and their implementation often leads to more
sophisticated and slower algorithms.

2.5.3 Importance Sampling (IS)

IS (Importance Sampling) is often used to approximate integrals or sums such as the model
evidence in Eq. (2.40). The idea is to draw samples from a proposal distribution Q(θ)
which is large in the regions of θ that both p(x|θ) and p(θ) have high probability. Then, the
IS estimator approximates the probability by computing a weighted average across these
samples,

p(x) ≈ 1

S

S∑
s=1

p(x|θ(s))w(θ(s)) where θ(s) ∼ Q(θ). (2.49)

where the weights w(θ(s)) = p(θ(s))

Q(θ(s))
are the fraction between the prior probability and the

proposal. This estimator is proved to be unbiased for any proposal distribution Q(θ) that
has support everywhere p(θ) does. However, the optimal proposal distribution, the one
that minimise the estimator variance, is also intractable because it requires to normalise
the integrand with the same quantity that we seek to estimate, the model evidence.

To get around this, one can use unnormalised proposal distributions, like Q̃(θ) =
p(x|θ)p(θ), to provide an unbiased estimate of the evidence as follows

p(x) ≈
∑S

s=1 p(x|θ(s))w̃(θ(s))∑S
s=1 w̃(θ(s))

where θ(s) ∼ Q̃(θ) (2.50)

where the weights w̃(θ(s)) = p(θ(s))

Q̃(θ(s))
. In fact, by using the unnormalised posterior as proposal

Q̃(θ) = p̃(θ|x), one obtains the HM (Harmonic Mean) estimator (Newton and Raftery,
1994),

p(x) ≈ 1
1
S

∑S
s=1

1
p(x|θ(s))

where θ(s) ∼ p̃(θ|x). (2.51)

Despite the HM method is unbiased and easy to implement, this estimator is also
highly unstable due to the fact that the smallest sampled value dominates the harmonic
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mean (Newton and Raftery, 1994). This is attributed to the fact of having to estimate the
normalising constant of Q̃ and hence, one might prefer to use a normalised proposal. In
fact, one of the things that this thesis will explore is the use of mean-field distributions
that are close to the optimal proposal in terms of KL divergence. In other words, we will
explore the family of distributions Q(θ) =

∏
kQk(θk) such that they minimise the forward

and reverse KL,

QL(θ) = arg min
Q(θ)

KL(Q(θ), p(θ|x)) (2.52)

QU(θ) = arg min
Q(θ)

KL(p(θ|x), Q(θ)) (2.53)

where QL(θ), QU(θ) will correspond to different types of solutions, because the asymmetry
of this divergence.

2.6 Evaluation
We distinguish between two different types of evaluation for probability models: intrinsic
and extrinsic evaluation. The former type represents the natural way to evaluate probability
models independently of the application at hand. The latter is tied to the application or
task and we will pay attention to the task of clustering, which is linked to the approach of
event detection discussed later.

2.6.1 Intrinsic Evaluation

An intrinsic way to evaluate probability models consist in computing the probability of the
unseen data via the posterior predictive distribution. For instance, the posterior predictive
for the LVM in Fig. 2.2 can be written as,

p(x∗|x) =

∫
p(x∗|φ)p(φ|x) dφ

=

∫ (∫
p(x∗, z∗|φ) dz∗

)
p(φ|x) dφ (2.54)

where x∗ are the unseen observations and z∗, their corresponding local latent variables.
The first row above integrates out the global variables φ, whereas the inner integral in the
second collapses the local variables z∗.

It is common to evaluate Eq. (2.54) by taking a point estimate of the posterior on the
global variables φ̂ and then compute the inner marginal distribution p(x∗|φ̂). When the
inner marginal is not tractable to compute, one can use the IS method discussed earlier to
approximate it,

p(x∗|φ̂) ≈ 1

S

S∑
s=1

p(x∗|z∗(s), φ̂)w(z∗(s)) where z∗(s) ∼ Q(z∗). (2.55)

However, the high dimensionality of the local variables z∗ requires more complex estima-
tion methods to approximate this integral. For example, Wallach et al. (2009c) and Buntine
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(2009) discuss several estimation methods that approximates this marginal distribution for
the LDA model. In this thesis, we will extend some of these methods to a broader class of
topic models, referred to as PFA.

Another way to evaluate models intrinsically in the statistical community is known
as PPC (Posterior Predictive Checks) (Gelman et al., 1996). This method consists in
generating data from the posterior predictive distribution and measure the discrepancy
with the observed data. If the discrepancy is high, then the model does not capture well
the assumptions of the data. For example, Mimno and Blei (2011) used PPC for LDA to
determine which topics violated the assumptions of the model.

2.6.2 Extrinsic Evaluation

Probabilistic topic models are often used for exploratory data analysis tasks, such as clus-
tering a collection of documents into distinct groups. For example, a cluster can be assigned
to every document in the collection through the topic indicator variable zn of a MoU model
or through the most likely topic in the topic proportions variable θn in a LDA model. Clus-
tering consists in grouping together documents or, more generally objects, that are similar
while keeping apart those that are not. When a gold standard exists for a particular cluster-
ing problem, the solution can be evaluated extrinsically against it in terms of its goodness
on grouping these similar items together and separating dissimilar ones. Amigó et al. (2009)
defined four formal constraints that form the desiderata that a good clustering algorithm
should accomplish, and hence, a proper evaluation metric must be able to validate. Next,
we review these formal constraint and two families of extrinsic metrics that satisfy some/all
of them.

The four formal constraints for a clustering metric specified in (Amigó et al., 2009) are:

1. Cluster homogeneity states that a cluster must not mix objects from different
categories.

2. Cluster completeness imposes that a cluster must not split object from the same
category into different clusters.

3. Rag bag establishes that is better to have one cluster with unclassified objects than
to distribute unclassified objects among “clean” clusters.

4. Cluster size vs. quantity prefers a small error in a big cluster than a large number
of small errors in small clusters.

In what follows we present two families of metrics: set matching and BCubed.

2.6.2.1 Set Matching Metrics

The set matching family is composed of Purity, Inverse Purity and their harmonic mean
known as F-measure. These metrics are equivalent to the Precision and Recall concepts
from Information Retrieval and they are the most popular metrics for evaluating clustering.

Purity is defined as the weighted average across all clusters Ci of the category that has
maximum precision w.r.t this cluster. That is to say,

Purity =
∑
i

| Ci |
N

maxj Precision(Ci, Lj) (2.56)



2.6. EVALUATION 37

where the weight is the proportion of items in each cluster and precision is the proportion
of elements in cluster Ci that are labelled as Lj. Mathematically, precision is expressed as,

Precision(Ci, Lj) =
| Ci ∩ Lj |
| Ci |

. (2.57)

Higher purity figures indicate that items in a cluster tend to be from the same category,
whereas lower values indicates the contrary. Given that the number of clusters is not fixed,
purity can be trivially maximised to 1 by placing each item into a different cluster, but it
is minimum when all items are grouped into a single cluster.

To compensate for this trivial solution, inverse purity is introduced. Inverse purity is
the weighted average across categories Li of the cluster that has maximum precision w.r.t.
this category. Formally,

Inv. Purity =
∑
i

| Li |
N

maxj Precision(Li, Cj) (2.58)

where the weight is now the proportion of items in each category and precision, the propor-
tion of elements in category Li that are clustered as Cj. Precision is also defined as Recall
but with labels and clusters swapped. That is,

Recall(L,C) = Precision(C,L). (2.59)

Higher Inverse Purity figures indicates that items from a category are grouped into the
same cluster, and lower Inverse Purity means the opposite. Hence, Inverse Purity is trivially
maximised to 1 when all items are grouped into a single cluster, but it is minimum when
each item belongs to a different cluster.

Van Rijsbergen (1974) took the harmonic mean of both Precision and Recall and propose
the F-measure or F1 score. This score is often used for binary classification as a measure
of the retrieval accuracy which gives equal importance to Precision and Recall. Weighted
versions of this score also exist. Later, Steinbach et al. (2000) also used this score for
clustering to compensate for the trivial solutions that Purity and Inverse Purity have.
Mathematically, the F-measure for clustering is expressed as,

F =
∑
i

| Li |
N

maxjF(Li, Cj) (2.60)

where,

F(Li, Cj) = 2 ·
Recall(Li, Cj)Precision(Li, Cj)

Recall(Li, Cj) + Precision(Li, Cj)
. (2.61)

Although Purity satisfies the cluster homogeneity constraint presented above, none of
the other metrics does as shown in (Amigó et al., 2009). Besides, none of the three metrics is
sensible to the cluster completeness and Rag Bag properties. And only inverse purity and F-
measure satisfy the fourth constraint. The reason why these metrics have counterexamples
for each of these properties is due to the fact that they only consider the cluster/category
that has maximum precision, recall or F-measure, but disregard the others.
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2.6.2.2 BCubed Metrics

The BCubed family (Bagga and Baldwin, 1998) calculates the Precision and Recall associ-
ated to each item to address the issues of the set matching family in the previous section.
As shown in (Amigó et al., 2009), BCubed metrics together satisfy all four constraints
previously stated, being the only metric to account for the Rag Bag property.

BCubed family is also composed of the BCubed Precision, Recall and F-measure but,
in contrast to set matching metrics, they are defined at the item level. Their definition can
be done through the notion of correctness between a pair of objects o and o′,

correctness(o, o′) =

{
1 L(o) = L(o′)⇐⇒ C(o) = C(o′)

0 otherwise
(2.62)

where L(p) is the label of object o and C(o), its cluster assignment. This means that two
points are considered to be correctly related whenever they are from the same category, i.e.
L(o) = L(o′), and are grouped into the same cluster, i.e. C(o) = C(o′).

Then, the BCubed Precision and Recall are defined as the averages over all objects.
For each object, precision is computed as the proportion of objects in its cluster that are
correctly related (from the same category) and recall is the proportion of objects in its
category that are correctly related (from the same cluster). That is,

BCubed Precision = Avgo[Avgo′|C(o)=C(o′)[correctness(o, o
′)]] (2.63)

BCubed Recall = Avgo[Avgo′|L(o)=L(o′)[correctness(o, o
′)]]. (2.64)

As shown by Amigó et al. (2009), BCubed Precision satisfies constraints 1 and 3, while
BCubed Recall covers constraints 2 and 4. Besides one can combine both metrics through
Van Rijsbergen’s F-measure in Eq. (2.61) and obtain a metric that covers all four restric-
tions. We note, however, that the computation of the BCubed metrics grows quadratically
with the number of objects, whereas set matching metrics are in the worst case linear.
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3
Event Detection in Twitter

“We do not remember days, we remember moments”
Cesare Pavese, 1940

Capdevila, J., Cerquides, J., and Torres, J. (2017b). Event detection in location-based social
networks. In Data Science and Big Data: An Environment of Computational Intelligence, pages
161–186. Springer

Social networks have been attracting the interest of both academia and industry because
they do not only serve as communication platforms, but they also offer numerous opportu-
nities to study and monetize human behaviour. For instance, Borge-Holthoefer et al. (2011)
studied the dynamics of the anti-austerity movement that took place in Spain during the
spring of 2011 through the analysis of the tweet messages exchanged in Twitter during days
prior and after the central day, the 15th of May. Similarly, Kim et al. (2013) demonstrated
that monitoring the spread of an epidemic influenza in populations could be done faster
from tweet messages than with current practices, which used telephone triage calls, over-
the-counter medication sales, among others. In short, social networks have enabled the
computerization of social sciences and hence, the advent of new tools to address important
questions in this field.

Twitter is one of the most popular social networks and micro-blogging sites with more
than 330 millions monthly active users worldwide in 20181. In this network, users post tweet
messages in response to the question What’s happening?. These messages are composed of
280-character-long (140 at the time of this work) texts that also contain a large amount of

1https://www.statista.com/statistics/274565/monthly-active-international-twitter-users/
[Access: 02/09/2018]
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contextual data, such as user name, posting time, geographical localization, among much
more metadata. The rise in popularity of Twitter has been often attributed to the faster
speed to publish breaking news than to traditional channels. For example, the Mumbai
terrorist attacks (Stelter and Cohen, 2008) or the Osama Bin Laden raid (Newman, 2011)
were first reported in Twitter by eyewitnesses. From a technical point of view, the ease
of access to the public data through a friendly API (Application Programming Interface)
has also boosted its popularity among the developer community and social computing re-
searchers, despite the compliance of Twitter legal terms which do not allow you to share it
even for non-commercial uses.

Along this line, an event happening in a specific location (such as a demonstration, a
music concert, an accident or a street fight), a.k.a., at the “local level” (Lee, 2012), is likely to
be reported on Twitter through geo-referenced tweet messages posted by eyewitness users.
Identifying and summarising these local events, their temporal and spatial extent, their
social composition, etc. has become an interesting research problem with a broad range of
applications (Panagiotou et al., 2016). For instance, a city council might want to know about
events that have happened in its city during the past week, month or year in order to assess
and plan future events. Spreading a team of pollsters might be too costly and still incapable
of identifying certain types of events (e.g. unscheduled events) or dimensions (e.g. social
relationships). Through data flowing from social networks via their public APIs, pattern
detection techniques that automatically identify events and geographic information systems
to explore and visualize them, one can envision end-to-end systems capable of providing
actionable insights for the city authorities. See, for instance, the European funded project
Insight2 to develop methods and systems that enable to improve the emergency responses
in cities and countries or the commercial products developed by Event Registry3 to monitor
and explore worldwide events.

The problem of event detection has been extensively studied in traditional media chan-
nels (Allan et al., 1998) as well as in surveillance systems (Wong and Neill, 2009). However,
each field took a slightly different definition of the problem and hence have given rise to
distinct detection methods. Moreover, the type of data in media channels (e.g. images,
text, videos) is different from that in surveillance systems (e.g. sensor readings, spatio-
temporal) and also from that in social networks like Twitter (e.g. high-dimensional and
multimodal data). These two approaches have influenced the problem in social networks
and, as a result, the existing literature contains a mix of methods depending on whether
they focus on the spatio-temporal features of tweets or on the dynamics of text over time.
In this chapter, we will first present a definition for the broad task of event detection in
social networks. Then, we will review the literature for the problem of local event detection
and we will classify the existing methods according to their influences.

In contrast to event detection in traditional news media, the problem definition will
expose that not all postings in a social network can be categorized as event-related since
most might have other intentions. For example, a global event about the release of the final
episode of the TV show Game of Thrones has to be ignored by a detection method of local
events. To deal with this, we will review different approaches in the literature to identify
event-related publications, and we will assert the need to explicitly model this identification
process in any detection method. In particular, we will show that methods developed by

2http://www.insight-ict.eu/ [Access: 02/09/2018]
3http://eventregistry.org/ [Access: 02/09/2018]

http://www.insight-ict.eu/
http://eventregistry.org/
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the spatial statistics community might be more suitable to this definition because they also
consider that an event is reflected as an anomalous pattern in the data, and hence their
methods are based on anomaly detection.

Moreover, Twitter poses a set of special features that make the task of event detection
challenging and different from that in traditional media channels and in surveillance systems.
Text messages addressing What’s happening? are sometimes too short and too informal to
understand their meaning for someone without contextual information. Besides this, brevity
is also one of the main limitations of probabilistic topic models (Blei, 2012) to learn good
semantic representations, as discussed in Chapter 2. Therefore, event detection techniques
for Twitter need to address the tweet shortness in order to identify semantically meaningful
events. Fortunately, the abundance of contextual information offers a unique opportunity
to either pool tweet messages together or build hierarchical probability models that leverage
on the context.

In this chapter, we review in Section 3.1 the problem of event detection in social net-
works, and more specifically in Twitter. In Section 3.2, we provides an overview of the
related work in this field. Finally, we present in Section 3.3 a publicly available data set for
the task of local event detection in Twitter, which will be used in the subsequent chapters.

3.1 Event Detection: Problem Definition

Event detection was first studied under the project Topic Detection and Tracking (TDT) (Al-
lan et al., 1998) for traditional media channels. The project was focused on (1) segmenting
a stream of data into distinct stories, (2) detecting events from this corpus of stories and
(3) tracking the evolution of events as well as their association to stories. The project also
distinguished between two types of detection, either RED (Retrospective Event Detection)
or NED (New Event Detection). While the former sub-task consisted in retrieving all events
from the stories basically through clustering, the latter was more about processing stories
sequentially and associating these to new events in an on-line manner. In this dissertation,
we focus on the RED problem, which we also refer to as event discovery to emphasize the
exploratory nature of this task.

The problem of event detection is also studied in other fields beyond news media. For in-
stance, the early detection of events like disease outbreaks or terrorists in video surveillance
systems are occurrences of critical importance for public safety (Weng and Lee, 2011). Event
detection in sensor networks for surveillance considers that events are groups of anomalous
observations hidden in the data. Therefore, the goal of event detection is not simply to
cluster observations, but it is also to uncover the anomaly observations that compose these
events.

Event detection in social networks like Twitter (Atefeh and Khreich, 2015) inherits a
little bit of both worlds. On the one hand, social networks are media channels in which
users publish stories about relevant events, but these channels also serve as communication
platforms with tones of non-event messages. On the other hand, social networks can also
be seen as sensor networks in which users, acting as sensors, report daily occurrences, but
the reported information is in the form of noisy and unstructured text. The different views
of event detection in social networks have led to a myriad of methods, each tackling the
problem in a different way.
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An important step on unifying the different views on the problem was proposed in Pana-
giotou et al. (2016), where the authors provided a formal definition for the problem that
takes into account previous attempts and that accommodates the distinct types of events:
planned, unplanned, breaking news, local or entity related. Their definition is based on the
observation that an event is the cause of an increase in the number of actions performed
by accounts. These actions can be any type of interaction with content (e.g. like, retweet)
or with other accounts (e.g. follow, unfollow).

Definition 3.1.1. Account(p): An agent that can participate (i.e. perform actions) in a
social network after following a registration procedure.

Therefore, accounts can be individuals, organizations or computer bots. In some cases,
one might want to exclude bots or organizations if they do not contribute to the type of
event that is being explored. For instance, in local event detection bots are often excluded
because they are unlikely to contribute to a real-world event.

Definition 3.1.2. Content Object (c): A textual or binary object that is published or
shared via the social network (e.g. text, image, video).

Content objects are published by accounts. A content object might also be enriched
with extra information, such as tweets which sometimes combines text and images or video.
Content might also be geo-located, meaning that it can be geographically referenced through
exact coordinates of the GPS system or associated with a specific place (e.g. Piccadilly
Circus).

Definition 3.1.3. Action (a): Depending on the social network, an action, a, can be either:
(i) a post of new content (e.g. a new tweet) (ii) an interaction with another profile (e.g. a
new follower, a friend request, etc.) (iii) an interaction with another user’s content (e.g. a
retweet, or a “like”).

Thus, actions are performed by accounts either through the publishing of Content objects
or through the interactions with other account ’s profile. Finally, an event is defined as the
cause of the increase of these actions.

Definition 3.1.4. Event(e): In the context of social networks, (significant) event e is
something that causes (a large number of ) actions in the social network.

An event is significant if it is associated with (or causes) an increase of the actions, but
we also note that a decrease of actions could be an interesting type of event to consider
(e.g. a terrorist attack might cause a decrease of actions in the area under attack).

Finally, the task of event detection consists in identifying and characterizing groups of
actions that have been caused by the event. Therefore, it is clear that the identification
sub-task consists in (i) distinguishing event-related actions from those that are not, (ii)
grouping these actions into events. Besides the characterization sub-task seeks to summarise
the events through the features of these actions.

Definition 3.1.5. Event detection in a social network: Given a stream of actions An of the
social network n, identify all tuples E = {e1, ..., eM}, such that M is the number of events
and ei = 〈R(ei), A

ei , T eA, locei , Iei〉 is the set that contains some of the following information:



3.2. RELATED WORK 45

(a) the (textual) representation of the event R(e),

(b) a set of actions that related to this event Ae ⊂ An,

(c) a temporal definition of the set of actions

T eA = [t(Ae, start), t(Ae, end)]

(d) a location loce that is correlated with the event,

(e) the involved accounts Ie.

To perform the identification of events, one might proceed in a supervised or unsuper-
vised manner. When a labelled data set exists or the events are topic-specific, supervised
machine learning techniques might be more effective for the task. However, labelling a data
set is costly and one does not always know which types of event is looking for, such as for
unspecified events. In such cases, unsupervised machine learning techniques can be more
flexible because they are not constrained to a particular type of event.

In our case, we focus on detecting unspecified local events from geo-located tweets (i.e.
content objects). Therefore, we are interested in identifying the cause (i.e. events) behind
an increase of the tweeting activity (i.e. actions) in a region. Accounts can be either
individual or organizations, but bots should be excluded since they can induce virtual events.
Moreover, we are also interested in summarising events in terms of their spatio-temporal,
textual and user features. In the next section, we review the literature of detection methods
that address this very same problem.

3.2 Related Work
The multiple definitions of the problem have led to a vast literature of event detection
methods in social networks (Panagiotou et al., 2016), as well as in Twitter (Atefeh and
Khreich, 2015). In this section, we present a condensed revision of the existing work that is
most related to our particular problem of discovering unspecified local events from tweets.
Therefore, we exclude those techniques that are thought to detect specified events (e.g.
earthquake trackers (Sakaki et al., 2010), crime and disaster detectors (Li et al., 2012)
or traffic monitoring systems (D’Andrea et al., 2015)) or non-local events (e.g. Event
Detection With Clustering of Wavelet-based Signals (Weng and Lee, 2011) or the trending
topic detectors (Becker et al., 2011)). We redirect the reader to surveys (Atefeh and Khreich,
2015; Panagiotou et al., 2016) for an exhaustive revision of these other methods.

We classify the event detection methods depending on which technique they are based:
anomaly detection or clustering. Besides, methods that are clustering-based can be further
split into supervised and unsupervised in reference to the level of supervision to identify
the event-related clusters.

3.2.1 Anomaly-based Methods

The development of anomaly-based methods for event detection in social networks was
deeply influenced by the field of spatial statistics. This community had already developed
sophisticated detection techniques, such as the spatial scan statistic (Kulldorff, 1997), when
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social networks appeared. Later on, with the advent of sensor networks, these techniques
evolved to deal with more complex features and patterns. For instance, Kulldorff et al.
(2005) extended (Kulldorff, 1997) to enable the detection of spatio-temporal patterns and
Wong et al. (2005) proposed an algorithm called WSARE to detect disease outbreaks from
multivariate time series, such as health records.

With the appearance of social networks, these techniques start to be applied in this new
domain. First methods like Lee and Sumiya (2010) split the region into sub-areas to monitor
the anomalous patterns inside these sub-areas. Sub-areas were created by partitioning the
space with a K-means clustering on the geo-located tweets and creating a Voronoi map
from the clusters’ center. For each Voronoi cell, they defined the normality or usual pattern
in order to detect the anomalous patterns on it through the quartile ranges in a boxplot.
Similarly, Garcia-Gasulla et al. (2014) aggregated tweets into cells that expand 15 minutes
along time and regions of 0.55 km2 to associate events to cells that follow a particular
anomalous pattern. The anomaly is defined by means of a specific rule that also makes use
of the deviations in the interquartile range. Krumm and Horvitz (2015) proposed a similar
approach that, in addition to partition space uniformly, also explores different spatial and
temporal resolutions to detect events that spread over multiple cells. A statistically sound
approach was introduced by Cheng and Wicks (2014), who used the STSS (Spatial Scan
Statistic) developed in (Kulldorff et al., 2005) to detect unspecified events from the spatio-
temporal features of a tweet.

All methods above focus on finding unspecified events from the spatio-temporal features
of geo-located tweets, hence disregarding the textual information in them. Despite showing
their effectiveness for certain types of events that significantly change the tweeting activity,
distinguishing fine-grained events that overlap spatio-temporally with other occurrences
necessarily requires to take text into account. Lately, the spatial statistics community has
been researching ways to develop semantic scan statistics to detect events in geo-located
text. For example, (Maurya et al., 2016) explores the combination of topic models (Blei,
2012) and scan statistics.

3.2.2 Clustering-based Methods

The development of clustering-based methods is closely related to the TDT (Topic Detection
and Tracking) project (Allan et al., 1998) in traditional media channels. As stated earlier,
event detection in the TDT project was more about associating stories to events than finding
anomalous patterns in the text stream. Therefore, most methods were based on clustering
documents (e.g. through a probability model (Li et al., 2005)) or their bursty features
(e.g. through a Gaussian mixture (He et al., 2007)) to associate events to documents or to
group features, respectively. However, these methods could not be directly applied to social
networks and Twitter, because most social content is not event-related. Therefore, the
different strategies to identify which clusters were event-related have induced two different
types of identification methods: supervised and unsupervised.

3.2.2.1 Supervised Cluster Identification

As the name suggests, the identification of event-related clusters is done in a supervised
manner. This means that a labelled data set is required to train a classifier to distinguish
between classes.
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Boettcher and Lee (2012) proposed EventRadar, a scheme to detect local events by
first clustering tweets with DBSCAN (Density-based Spatial Clustering of Applications
with Noise) (Ester et al., 1996) and then applying a logistic regression to identify which
clusters are event-related. They showed that EventRadar outperforms Jasmine (Watanabe
et al., 2011), an unsupervised method that identified event-related groups merely based on
the word co-occurrence in tweets from the same group. Similarly, Walther and Kaisser
(2013) presented a system that clusters tweets as per their spatio-temporal characteristics
following a simple rule-based clustering algorithm and then scores each candidate cluster
via a classifier that uses textual an non-textual features. Authors reported that the presence
of different users in the cluster and the use of the same words in the clustered tweets were
the features that had the biggest impact on the performance of the classifier.

Despite the good performances of these methods, the cost of tagging a data set as
well as maintaining it updated for new events motivated the study of fully unsupervised
identification approaches.

3.2.2.2 Unsupervised Cluster Identification

In contrast, methods that perform unsupervised cluster identification use a scoring function
to determine which clusters are event-related and which are not. In this group, one can find
feature-pivot and document-pivot methods. While the former is based on clustering words,
the latter focuses on clustering documents.

Chen and Roy (2009) presented an event detection method for Flickr photos which
exploits their spatio-temporal features and textual annotations and disregards the picture.
The method is considered to be feature-pivot since it filters out the spatio-temporal noisy
terms in the annotations through wavelet analysis and, then, clusters them to form events.
Clustering is performed through the DBSCAN (Ester et al., 1996) algorithm with a tailored
distance metric that takes into account the semantic similarity of terms in the cluster as
well as their spatial distance. Finally, photos are associated to events by finding those with
event-related terms in their annotations and checking that their spatio-temporal features
also match those of an event.

In Abdelhaq et al. (2013), authors presented EvenTweet, a system to detect local events
from tweets. It also employs a feature-pivot method that clusters keywords as per their
spatial signature, where the spatial signature is the spatial distribution of a keyword. This
spatial distribution is defined per cell in terms of the normalised usage of the keyword
in each cell. Finally, clusters whose keywords have high burstiness, i.e. words that are
suddenly used, but low spatial entropy are identified as event-related.

Another method that uses density-based clustering but is document-pivot based was
proposed by Lee (2012). The solution first clusters tweets with the incremental DBSCAN
algorithm as per their textual and temporal features. In fact, authors tuned up the clustering
metrics with a dynamic term weighting scheme that accounts for word burstiness. Then,
event-related clusters are mapped into locations by maximizing the probability of the event
over all possible locations. Events are considered global if the maximum probability is below
a certain threshold and hence, not mapped to a specific location.

In Singh (2015), authors also proposed an extension of DBSCAN algorithm to cluster
tweets as per their spatio-temporal and textual features. Textual features were represented
through a term vector model and tweet messages compared in terms of the cosine similar-
ity. The resulting clusters were associated to real world events like football matches and
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Oktoberfest.
Similarly, Zhang et al. (2016a) proposed GeoBurst, a document-pivot method to detect

local events that was shown to outperform the feature-pivot methods introduced in Chen
and Roy (2009) and in Abdelhaq et al. (2013). This detector first clusters tweets as per
their spatial and semantic information and then identifies event-related clusters as per their
spatio-temporal burstiness.

A fully probabilistic approach to the event detection problem was proposed by McInerney
and Blei (2014). Their probability model is a sort of mixture model commonly used for
clustering in which events are the latent assignments of tweets and the observed tweets
are generated from the mixture components over the spatio-temporal and textual features.
On the textual dimension, a topic model (Blei, 2012) is used to summarise the semantic
information of tweets. To learn newsworthy events, an external news data set is also used in
order to transfer their semantic information to the probability model. However, this model
does not propose any scoring function to distinguish between event and non-event tweets,
and hence their identification is performed by a qualitative exploration of topics.

In summary, we have covered two types of methods for unspecified local event detection.
The first was inspired by techniques developed in the spatial statistics field and the second
was more influenced by methods in the TDT project. Whereas there are fewer attempts to
include the textual features of tweets in anomaly-based methods, clustering-based methods
have historically been built taking into account this unstructured type of information, either
through document-pivot or feature-pivot techniques. Within clustering-based methods, we
have distinguished between those that supervise the identification of event-related clusters
and those that do not. The former requires a tagged data set with event and non-event
categories, which might hamper the development of real-time systems in fast-paced envi-
ronments. The latter requires the use of a scoring function or metric that takes into account
the characteristics of events. In this latter group, we have seen proposals that first apply
clustering and then identify event-related clusters, but also schemes that use clustering
methods that intrinsically can deal with non-event observations like DBSCAN.

3.3 “La Mercè”: a Data Set for Local Event Detection

One of the issues that slowed down the progress of event detection in social networks is
the lack of publicly available data sets. Although Twitter allows one to crawl tweets and
other social content through its API, the sharing of this data is forbidden even for academic
purposes, as stated in Twitter’s legal terms. A workaround consists in publishing the list of
tweet IDs that compose the data set and recovering the tweets by querying the Twitter API
with these specific IDs. However, it might still not be possible to recover the whole data set
because some tweets might have been deleted by users or some users might have decided to
switch their profiled into private mode, compromising the reproducibility of experiments.

The TREC (Text REtrieval Conference) organized a Microblog Track from 2011 to 2015,
in which a data set of approximately 16 million tweets was released yearly by publishing a
list of tweet IDs (McCreadie et al., 2012). Moreover, the data set contained the judgement
on 50,324 tweets such that 2,965 were considered relevant to one of the 49 selected topics.
However, the data set was designed for ad-hoc retrieval, and hence, the topics and relevance
judgements are unsuitable for event detection.
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To address this, McMinn et al. (2013) proposed to build a large-scale corpus for evalu-
ating event detection. In contrast to the TREC corpus, they identified tweets as per their
definition of event which differs from ours. For them, an event was a significant thing that
had happened in a specific place and time and it was significant if it had been discussed
in the media. Thus, their definition did not take into account the activity in the social
network and it relied on external information. They crawled 120 million tweets in English
from Twitter during 28 consecutive days and they grouped these tweets through existing
event detection and information retrieval techniques that leverage on the event information
published in the Wikipedia Current Events Portal4. Finally, they used crowdsourced work-
ers to decided whether grouped tweets were event-related or not. Moreover, events were
not necessarily local, but of global interest in order to appear in the media.

To the best of our knowledge there is no public data set composed of a list of tweet IDs
for studying the problem of event detection as defined in Section 3.1. As a consequence, we
decided to crawl and label our own Twitter corpus in the city of Barcelona during a week
full of local events.

3.3.1 “La Mercè” Data Set

“La Mercè” are the local festivities of Barcelona that take place yearly during a week in late
September. Several types of events, like music concerts, free museums days, fireworks etc.
take place in many parts of the city at different times. Most of these events are reported
on in social networks by attendees who share pictures and text information of these events.
Besides the existence of a public agenda with the scheduled time and place for all events
enable the manual identification of all planned events5 . Therefore, we propose “La Mercè”
as a testbed to study the problem of local event detection.

We have gathered a data set of tweets through the Twitter streaming API6. In particular,
we have established a long standing connection to Twitter public stream which filters all
tweets geo-located within the bounding box of Barcelona city. After that, only tweets
that were exactly within the boundaries of the city were considered. This connection was
established during the local festivities of “La Mercè”, that took place from the 19th to the
25th of September in 2014 and from 18th to 24th of September in 2015.

#Tweets #Tagged tweets #Tagged events

“La Mercè” 2014 43.572 522 14
“La Mercè” 2015 12.159 635 15

Table 3.1: “La Mercè” local festivities data sets.

Table 3.1 summarises the main statistics for the two hand-crafted data sets of “La Mercè”.
We first note that the number of tweets collected in 2015 is less than in 2014. This is because
Twitter released new smart-phone apps in April 2015 that enable to attach a location to
a tweet (such as a city or place of interest) instead of the precise coordinates7; and lots of

4https://en.wikipedia.org/wiki/Portal:Current_events [Access: 02/09/2018]
5http://lameva.barcelona.cat/merce/en/ [Access: 02/09/2018]
6http://dev.twitter.com/streaming/overview [Access: 02/09/2018]
7https://support.twitter.com/articles/78525 [Access: 02/09/2018]

https://en.wikipedia.org/wiki/Portal:Current_events
http://lameva.barcelona.cat/merce/en/
http://dev.twitter.com/streaming/overview
https://support.twitter.com/articles/78525
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users chose this option instead of precise location. Since tweets generated during “La Mercè”
2014 data set did not contain this functionality, we only consider tweets whose location is
specified through precise coordinates for “La Mercè” 2015 data set (12.159 tweets).

(a) Spatial distributions of tweets. (b) Time series.

(c) Wordcloud. (d) Histrogram of tweets per user.

Figure 3.1: Tweets generated during “La Mercè” 2014.

In fact, we are interested in detecting events from the spatial, temporal, textual and
user dimensions of tweets, but events in “La Mercè” 2014 are apparently not evident by
simply analysing each tweet dimension separately, as shown in Fig. 3.1. Fig. 3.1a shows the
spatial distribution of tweets within the borders of Barcelona, where different tweet density
levels can be appreciated in the map. Fig. 3.1b represents the time series of tweets from the
19th to the 24th of September and the daily cycles are clear, i.e. high tweeting activity at
evenings and low tweeting activity during mornings. Fig. 3.1c is a wordcloud in which more
frequent words are drawn with larger font size, such as “Barcelona”. The multilingualism is
also reflected in the wordcloud, where Catalan, Spanish and English words occur frequently.
Last, Fig. 3.1d is an histogram of the number of tweets per user, which shows that most
of the users tweet very few times, while there are a few, although non-negligible number of
users, who tweet very often.

Then, we manually tagged several tweets with the corresponding events as per the agenda
in “La Mercè” website and our own knowledge as Barcelona citizens. To not go through
all tweets in the data set, we used QGIS, a GIS (Geographical Information System), to
explore tweets that occur near the planned location and the time and then tag those that



3.4. SUMMARY AND CONCLUSION 51

“La Mercè” 2014 “La Mercè” 2015

Food market - day 1 (31) and 2 (22)
Wine tasting - day 1 (18) and 2 (49)
Human towers - day 1 (5)
Fireworks (34)
Bogatell concerts (50)
Projections (16)
MACBA concerts (83)
Fabrica Damm concerts (39)
Maria Cristina concerts (19)
CaixaForum conference (15)
Atypl conference (58)
Pro-referendum protest (83)

Food market - day 1 (30) and 2 (40)
Wine tasting - day 1 (20) and 2 (25)
Human towers - day 1 (24) and 2 (31)
Fireworks (54)
Bogatell concerts (90)
Giants and Bigheads (10)
Firerun (67)
Maria Cristina concerts (31)
OBC Sagrada Familia concert (10)
Drupal conference (18)
Political meeting (17)
Barça football game (168)

Table 3.2: Labelled events in “La Mercè”.

were related to the event. As shown in Table 3.1, a total of 511 tweets were associated
with 14 events in 2014 and 476 tweets, with 15 events in 2015. Table 3.2 shows the list of
events that were manually tagged in “La Mercè” 2014 and 2015 and the number of tweets
found per event between parenthesis. At the bottom of the table, in Italics, we also show
three events that were not in “La Mercè” agenda but occur in Barcelona during those days.
These events were discovered by manual inspection with QGIS. Therefore, the final list of
events is very diverse ranging from cultural or leisure events to political acts or gastronomic
tastings.

Both data sets, “La Mercè” 2014 and 2015, are made public8 as lists of tweet IDs. As
explained above, this publishing procedure is in accordance to Twitter’s Terms of Service
because we do not distribute tweets, but simply their IDs. Tweets, if not deleted or priva-
tized by their owners, can be easily recovered through the Twitter public API through the
statuses/show/:id endpoint. We also provide a list of event-related tweets labelled according
to the event.

3.4 Summary and Conclusion

In this chapter, we have introduced event detection in Twitter, a data mining task that has
attracted the interest of academia and industry due to the new challenges and opportunities
that this task entails. We have seen that this popularity has also caused multiple definitions
of the concept of event in the literature, and hence a myriad of methods and techniques to
detect them has been already proposed.

Because of this, we have presented an agreed definition of event as something that causes
a large number of actions in the social network, and hence, the task of event detection
consists in detecting these abnormal increases of actions and grouping them into event-
related clusters. Under this umbrella, we have classified the existing literature for the
problem of local event detection into three groups depending on the type of method used.

Moreover, the revision of literature highlights the lack of publicly available Twitter data

8https://github.com/jcapde/Twitter-DS [Access: 02/09/2018]

https://github.com/jcapde/Twitter-DS
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sets, hampering the advance of the research field. As a result of this, we have crawled
and published our own data set composed of geo-located tweets in the city of Barcelona
during its local festivities “La Mercè” in 2014 and 2015. Manual tagging of the schedule
events during the festivities of “La Mercè” will enable the evaluation of local event detection
methods against this ground truth.



4
Tweet-SCAN: a Heuristic Approach

“An algorithm must be seen to be believed,
and the best way to learn what an algorithm is all about is to try it.”

Donald Knuth, 1969

Capdevila, J., Cerquides, J., Nin, J., and Torres, J. (2015). Tweet-SCAN: An event discovery
technique for geo-located tweets. In Artificial Intelligence Research and Development: Proceedings
of the 18th International Conference of the Catalan Association for Artificial Intelligence, volume
277, page 110. IOS Press
Capdevila, J., Cerquides, J., Nin, J., and Torres, J. (2017a). Tweet-SCAN: An event discovery
technique for geo-located tweets. Pattern Recognition Letters, 93:58 – 68. Pattern Recognition
Techniques in Data Mining

Most event detection methods in the previous chapter relied on text representations of
tweets that often consisted of simple vectors of indexed words. These representations might
compromise the detection performance if they are not flexible enough to capture complex
semantic relationships. A wide range of probabilistic topic models (Blei, 2012) have been
proposed to better represent the high-dimensional thematic structure in text in terms of
topics. However, as we have discussed in Chapter 1, these topic models usually do not
work well in short text such as tweets. Pooling strategies (Hong and Davison, 2010), i.e.
aggregations of short documents by some contextual feature, are known to improve the
coherence of topics and hence, can be also beneficial for event detection.

In this chapter, we explore the use of topic models for representing the textual fea-
tures of tweets in an event detection setup. In particular, we extend a well-known spa-
tial clustering algorithm called DBSCAN (Density-based Spatial Clustering of Applications
with Noise) (Ester et al., 1996) to also consider the temporal and textual dimensions of
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tweets. Because DBSCAN intrinsically deals with noise points, i.e. points which are not
densely packed, it has been extensively used for event detection in social networks as a
clustering-based method with unsupervised cluster identification (Lee, 2012; Singh, 2015;
Zhang et al., 2016a). Although Zhang et al. (2013) have explored different ways to com-
bine the LDA (Latent Dirichlet Allocation) topic model (Blei et al., 2002) with DBSCAN
to learn geographically meaningful topics, their integration for event detection purposes
remains unexplored.

The proposed solution, called Tweet-SCAN, associates events to sets of density-connected
tweets as per their spatio-temporal and textual features. While time and location of tweets
are directly represented in the euclidean space, text messages are modelled in terms of
topic distributions learned through the non-parametric HDP (Hierarchical Dirichlet Pro-
cess) model in Section 2.4.3 and messages are compared with a proper distance metric for
probability distributions.

The structure of this chapter is as follows. In Section 4.1, we present Tweet-SCAN, an
algorithm based on DBSCAN, but better described in terms of its generalised version GDB-
SCAN (Generalised Density-based Spatial Clustering of Applications with Noise) (Sander
et al., 1998). In Section 4.2, we evaluate the event detection performance of Tweet-SCAN
in “La Mercè” dataset, presented earlier in Section 3.3. In fact, we aim to understand the
role and sensibility of the different Tweet-SCAN parameters as well as the importance of
text in discriminating distinct events. We close this chapter in Section 4.3 by summarising
the main points of this work .

4.1 Tweet-SCAN: a Heuristic Algorithm
We next present Tweet-SCAN, a detection algorithm to discover local and unspecified events
from a dataset of geo-located tweets. The algorithm is based on the GDBSCAN (Sander
et al., 1998), which generalises DBSCAN (Ester et al., 1996) to cluster spatially extended
objects according to their spatial and non-spatial attributes. Therefore, we will associate
events to density-connected sets of tweets according to the definition of the GDBSCAN
predicates. In the following sections, we define these predicates for the particular task of
event detection in Twitter.

4.1.1 Events as Density-connected Sets

DBSCAN (Ester et al., 1996) was proposed for uncovering arbitrarily-shaped spatial clusters
whose points form a dense or packed group. The notion of density is articulated through the
cardinality of the neighbourhood of a point o within a radius of ε. In particular, DBSCAN
specifies this through two binary predicates:

1. NPred(o, o′) ≡ |o− o′| ≤ ε.

2. MinWeight(o) ≡ |{o′ ∈ D | |o− o′| ≤ ε}| ≥MinPts.

where the first establishes the neighbourhood via the euclidean distance at ε and the second
fixes its cardinality to be greater or equal to MinPts.

The fulfilment of both predicates determines if a point p is directly density-reachable
from another point q, see (left) Fig. 4.1. In this case, q is considered to be a core point
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because it satisfies the above predicates, i.e. it has 4 points in its neighbourhood, and p is
a border point since it breaks the second predicate, i.e. it has 1 point in its neighbourhood.
The notion of being directly reachable is then extended to density-reachable points when p
and q are far apart, but there is a chain of points in which each pair of consecutive points
are directly density-reachable, as in (middle) Fig. 4.1. Finally, it might happen that p and q
are not density-reachable, but there is a point o from which they are both density-reachable,
that is when p and q are said to be density-connected, for example in (right) Fig. 4.1. Note
that both points, p and q, are border points, while o is a core point.

Figure 4.1: DBSCAN definitions: Directly density-reachable (left), density-reachable (middle)
and density-connected (right) points for ε =radius, MinPts = 2.

Moreover, a cluster in DBSCAN is defined to be a set of density-connected points that
contains all possible density-connected points. And, hence, noise points are all those points
which do not belong to any cluster since they are not density-connected to any.

GDBSCAN (Sander et al., 1998) generalizes DBSCAN by redefining the above predicates
to cope with spatially extended objects. For example, the neighbourhood of a set of polygons
is defined by the intersect predicate instead of a distance function. It is also the case for a
set of points with financial income attributes within a region whose MinWeight predicate
is a weighted sum of incomes instead of mere point cardinality, so that clusters become
regions with similar income. Therefore, both predicates are generalized as follows:

1. NPred(o, o′) is binary, reflexive and symmetric.

2. MinWeight(o) ≡ wCard({o′ ∈ D | NPred(o, o′)}) ≥ MinCard , where wCard assigns
a non-negative weight to the whole neighbourhood.

These new predicates enable one to extend the concept of density-connected points to
objects and thus generalize density-based clustering to spatially extended objects. Par-
ticularly, this extension allows us to formulate the event discovery task from geo-located
tweets in terms of GDBSCAN, which we refer as Tweet-SCAN from now on. Within this
framework, the resulting clusters will consist of density-connected tweets with respect to
its predicates. Because of this, tailored neighbourhood and MinWeight predicates need to
be set up in order to associate real world events to density-connected sets of tweets. The
following subsections deals with these specifications of the neighbourhood and MinWeight
predicates. Besides, we explain how the textual content from a tweet can be modelled in
terms of topics.



56 CHAPTER 4. TWEET-SCAN: A HEURISTIC APPROACH

4.1.2 Tweet-SCAN Neighbourhood Predicate

Most event-related tweets are generated throughout the course of an event near the area
where it takes place. Although it can happen that some users might be tweeting about an
event remotely or even long after it has finished, these tweets are here not considered part
of an event. Consequently, it is imperative to find density-connected sets of tweets close
in space and time, as well as similar in semantic meaning. We also note that closeness in
space is not directly comparable to that in time, nor to that in semantic meaning.

Because of this, Tweet-SCAN is defined to use separate ε1, ε2, ε3 parameters for space,
time and text, respectively. Moreover, specific metrics will be chosen for each dimension
given that each feature contains different type of data. The neighbourhood predicate for a
point o in Tweet-SCAN can then be expressed as follows,

NPred(o, o′) ≡ |o1 − o′1| ≤ ε1 ∧ |o2 − o′2| ≤ ε2 ∧ |o3 − o′3| ≤ ε3 (4.1)

where |oi − o′i| represent here distance functions defined for each dimension, namely space,
time and text. The predicate symmetry and reflexivity are guaranteed as long as |oi − o′i|
are proper distances. Particularly, we propose to use euclidean distance for the spatial and
temporal dimensions given that latitude and longitude coordinates as well as timestamps
are real-valued features and straight line distance seems reasonable for this problem. The
metric for the textual component will be defined later together with the text model for
Tweet-SCAN.

If we scale each metric in the above predicate with its corresponding εi parameter, the
predicate then must satisfy that the maximum scaled component is less or equal than 1.
Each component being the distance for each separate dimension. Writing this down in
terms of the ∞-norm metric leads to the following expression,

NPred(o, o′) ≡
∥∥∥∥ |o1 − o′1|

ε1
,
|o2 − o′2|

ε2
,
|o3 − o′3|

ε3

∥∥∥∥
∞
≤ 1 (4.2)

which is equivalent to DBSCAN predicate expressed in terms of the metric scaled by ε
parameter,

NPred(o, o′) ≡
∣∣∣∣o− o′ε

∣∣∣∣ ≤ 1 (4.3)

Therefore, Tweet-SCAN can be seen as DBSCAN clustering which considers the ∞-norm
of the scaled components as a metric function for the neighbourhood predicate. This result
is important since it enables us to determine εi parameter and MinPts through heuristics
similar to those defined for DBSCAN.

4.1.3 Tweet-SCAN MinWeight Predicate

Tweet-SCAN seeks to find clusters of tweets which are generated by a diverse group of
users, rather than just a few users. User diversity is imposed to avoid that a few users
continuously posting tweets from nearby locations could create an event-related cluster in
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Tweet-SCAN. Forcing a certain level of user diversity within a cluster can be achieved
through two predicates that must be satisfied at the same time,

MinWeight(o) ≡ |NNPred(o)| ≥ MinPts ∧ UDiv(NNPred(o)) ≥ µ (4.4)

where NNPred(o) is the set of neighbouring tweets of o such that {o′ ∈ D | NPred(o, o′)}
w.r.t. the predicate in Eq. (4.1). The first condition in Eq. (4.4) establishes that neigh-
bouring tweets must have a minimum cardinality MinPts, whereas the second condition
imposes that the diversity of users in the neighbour must be higher than a threshold µ. The
diversity is simply defined as the proportion of unique users in NNPred(o).

This combined predicate can be also expressed as one single predicate as in GDBSCAN
by,

MinWeight(o) ≡ min

(
|NNPred(o)|
MinPts

,
UDiv(NNPred(o))

µ

)
≥ 1 (4.5)

where wCard() function corresponds to the minimum of both quotients and MinCard is
equal 1.

Note that if we set the user diversity level to 0 in Eq. (4.4), the second condition is always
satisfied and the MinWeight predicate is simply |NNPred(o)| ≥ MinPts which is equivalent
to that of DBSCAN. Similarly, if we fix µ to 1, we impose that no two tweets in a cluster
are tweeted by the same user.

4.1.4 Tweet-SCAN Text Model

Tweet messages are short text fields in which users can type freely their thoughts, experi-
ences or conversations. The fact that users tweet in different languages, argots and styles
dramatically increases the size of the vocabulary, making the use of simple term vector
models (Salton et al., 1975) not viable. Therefore, we propose to use probabilistic topic
models (Blei, 2012), which reduce the dimensionality in a semantically meaningful way. Un-
der this scheme, text messages can be expressed as probability distribution over topics and
a meaningful distance metric can be defined over this lower dimension probability space.

In particular, we propose to use the non-parametric topic model introduced in Sec-
tion 2.4.3, known as HDP. We use the HDP implementation from (Teh et al., 2006b)
available here 1 and we use vague informative gamma priors for γ ∼ Gamma(1, 0.1) and
α ∼ Gamma(1, 1) as suggested by authors.

The straightforward use of HDP models on raw tweets does not provide meaningful
topics due to the lack of word co-occurrence in short texts like tweets (Hong and Davison,
2010). Because of this, we propose a scheme depicted in Fig. 4.2 which aims to alleviate
these shortcomings. First, raw tweets, modelled as Bag of Words, are pre-processed through
classical data cleaning techniques from Natural Language Processing (NLP): lowering case,
removing numbers and special characters, and stripping white-spaces. Then, processed
tweets are pooled together in order to create longer training documents with more word
co-occurrences. Next, these training documents feed the HDP model that learns the global
topics and the topic distributions for each pooled document in training. Finally, the trained
HDP model is used to predict topic distributions for each individual tweet.

1https://github.com/blei-lab/hdp
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Figure 4.2: Text model scheme.

In this article, we consider two pooling strategies:

• By hashtags : it consists in creating a new training document per hashtag, which will
append all tweets that contains it. Therefore, there will be as many training docu-
ments as hashtags. One drawback of this aggregation approach is that tweets which
do not have hashtags are pooled together, although they might refer to completely
different themes. Others (Hong and Davison, 2010) have aggregated tweets by user,
but it did not work well for local event detection because users tweeted few times
about the same event.

• By top keywords: it consist in first identifying a set of top keywords through the TF-
IDF (Term Frequency Inverse Document Frequency) statistic (Salton and Buckley,
1988), and then aggregating by these keywords all tweets that contains them. Thus,
there will be as many training documents as top keywords and few tweets will be
unassigned as long as we choose a reasonable number of keywords.

Finally, we introduce the JS (Jensen-Shannon) distance to be used for the textual com-
ponent in Tweet-SCAN neighbourhood predicate. JS is a proper distance metric for prob-
ability distributions (Endres and Schindelin, 2003) and hence, appropriate for comparing
topic distributions representing different tweet documents. It is defined as,

JS(p, q) =

√
1

2
DKL(p||m) +

1

2
DKL(q||m) (4.6)

where p, q and m are probability distributions and DKL(p||m) is the KL (Kullback-Leibler)
divergence between probability distribution p and m written as,

DKL(p||m) =
∑
i

p(i)log2
p(i)

m(i)
m =

1

2
(p+ q) (4.7)

where m is the average of both distributions.
In Tweet-SCAN, p and q from Eq. (4.6) are two probability distributions over topics

which are associated to two tweet messages. Given that Jensen-Shannon distance is defined
through base 2 logarithms, JS distance will output a real value within the [0, 1]. Documents
with the similar topic distribution will have a Jensen-Shannon distance close to 0 and those
topic distributions which are very far apart, distance will be almost 1.
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4.2 Experimentation

In this section, we assess Tweet-SCAN for the task of local event detection in “La Mercè”. In
particular, we want to show the benefits of using text for event discrimination. We also seek
to provide insights on the role of each parameter and its impact to the overall performance.

With the spatio-temporal parameters (ε1, ε2), the user diversity threshold µ andMinPts
set to reasonable values, we first study the impact of the textual parameter (ε3) to the
detection performance, in terms of the set matching metrics introduced in Section 2.6.2.
Then, we show the importance that the pooling method has for the discrimination of events
that overlap in space-time. After that, we analyze the impact that the user diversity
threshold µ has on the number of detected events and the detection performance. Finally,
we explore the detection capabilities for different spatio-temporal and textual configurations.

4.2.1 Analyzing the Textual Component

Here, we aim to analyze the textual parameter ε3 by first fixing the rest of parameters to
reasonable values. In particular, we choose to set ε1 = 250m, ε2 = 3600s because these
values seem to be in accordance to the spatial and temporal extent of the events in “La
Mercè” dataset. Besides we also set MinPts = 10 and µ = 0.5, thus fixing that the
smallest possible event will have 10 tweets and that events are composed of at least a 50
% of unique users. To study ε3, we then plot Purity, Inverse Purity and F-measure from
Section 2.6.2 as a function of this parameter for “La Mercè” 2014 and 2015, and identify
the ε3 that maximises F-measure.

(a) “La Mercè” 2014. (b) ‘La Mercè” 2015.

Figure 4.3: Set matching metrics as a function of ε3 for ε1 = 250m, ε2 = 3600s, µ = 0.5
and MinPts = 10.

From Fig. 4.3, it is clear that F-measure is maximum when ε3 is within the range 0.8-0.9
for both data sets. Given that the maximum is achieved for ε3 < 1, this indicates that the
textual component improves the clustering performance. If the maximum would have been
achieved at ε3 = 1, this would mean that the best Tweet-SCAN configuration does not need
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text to discriminate between events. Besides, we also observe that Tweet-SCAN performs
slightly better in “La Mercè” 2015 than in 2014, what can be explained from the fact that
the proportion of tagged tweets in “La Mercè” 2015 is greater than in 2014. The plots also
show that the Purity of clusters is optimised for the same range of ε3, meaning that the
maximum cluster homogeneity is also achieved in this range. In contrast, the Inverse Purity
deteriorates with increasing values of ε3 as expected since ε3 = 0 corresponds to the trivial
solution in which all points are clustered as noise.

Event “La Mercè” 2014 “La Mercè” 2015

Food market - day 1 and 2 0.41 and 0.27 0.93 and 0.94
Wine tasting - day 1 and 2 0.14 and 0.33 0.21 and 0.34
Human towers - day 1 and 2 0.88 and - 0.54 and 0.74
Giants and Bigheads - 0.34
Firerun - 0.62
Fireworks 0.98 0.94
Projections 0.57
MACBA concerts 0.45 -
Fabrica Damm concerts 0.97 -
Maria Cristina concerts 0.59 0.78
Bogatell concerts 0.96 0.84
OBC Sagrada Familia concert - 0.85
CaixaForum conference 0.63 -
Atypl conference 0.40 -
Drupal conference - 0.88
Pro-referendum protest 0.94 -
Political meeting - 0.27
Barça football game - 0.99

Table 4.1: F-measure per event for ε1 = 250m, ε2 = 3600s, ε3 = 0.8 MinPts = 10, µ = 0.5.

Table 4.1 shows F-measures for each event tagged in “La Mercè” 2014 and 2015. We
observe that the “fireworks” event has been successfully identified both years, while, for
instance, the “wine tasting” event has been poorly detected in both. The point is that
“fireworks” occurred during the closure of the festivities and in isolation of other events.
Something similar happened with “Barça football game” which was a huge event that oc-
curred in an area and time with low tweeting activity. On the contrary, “wine tasting” took
place near the “food market” event (at Passeig Lluís Companys and Parc de la Ciutadella,
respectively) during the same hours (all day events). Since both events were close in space
and time and occurred in a region with high tweeting activity, Tweet-SCAN has difficulties
to distinguish between them. In fact, we next show that the use of text is in particular
beneficial in such situations, where the events might overlap in time and space.

To show this, Fig. 4.4 plots the geo-location of tweets from the “wine tasting” and “food
market” events which took place in “La Mercè” 2014 (top) and 2015 (bottom). The left
maps in both editions show the geo-location of tweets tagged for these events, where green
dots means that tweets belong to the “wine tasting” and orange dots, to the “food market”.
Maps in the middle show the clustering results of Tweet-SCAN with the textual component
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disabled ε3 = 1. This configuration does not only merge both events into the same, but other
tweets nearby are also clustered together. Maps on the right-hand side show the clustering
results of Tweet-SCAN for a ε3 = 0.8, which uncovers both events in “La Mercè” 2014 and
one in “La Mercè” 2015. Note that grey dots in the middle and left maps represent tweets
clustered as noise. Through this example, we show that text enhance the discrimination
between certain types of events but a better textual representation might also boost the
detection capabilities of this method.

(a) Tagged Events. (b) ε3 = 1. (c) ε3 = 0.8.

(d) Tagged Events. (e) ε3 = 1. (f) ε3 = 0.8.

Figure 4.4: Spatial representation of “wine tasting” and “food market” events in
“La Mercè” 2014 (top), “La Mercè” 2015 (bottom).

To explore this, we plot in Fig. 4.5a the same Tweet-SCAN results than in Fig. 4.4f.
Next to it, we include the histograms of all inter- and intra- class distances in terms of
the JS distance of the topic distributions per tweet. Blue bars represent the intra-class
distances among tweets in the “food market” event, whereas green bars are the inter-class
distances between tweets in the “food market” and tweets in the “wine tasting”. Ideally, one
would expect that all intra-class distances were concentrated around 0, whereas inter-class
distances, concentrated around 1. However, in reality, if classes are not perfectly separable
or the textual representation is not good enough, there exists an overlap of both histograms.
As we can see in Fig. 4.5b, the overlapping region for the “food market” and “wine tasting”
events is high. Next, we explore whether a different text model would reduce the overlapping
and hence improve the detection.

In Fig. 4.6, we study again the discrimination between “food market” and “wine tasting”
events in “La Mercè” 2015 by considering now the HDP text model that aggregates tweets
by top keyword from Section 4.1.4. As it can be seen in Fig. 4.6a, we can now distinguish
between tweets related to the “wine tasting” and those about the “food market” thanks
to the larger separation between the histograms of inter- and intra- class distances, see
Fig. 4.6b. This preliminary result encourages to develop event-specific topic models with
richer textual representations. In Chapter 5, we will develop a method that simultaneously
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learns topics and events by grouping tweets per event.

(a) ε3 = 0.8. (b) Inter- Intra- class distances.

Figure 4.5: Event discrimination in “La Mercè” 2015 when pooling tweets by hashtag.

(a) ε3 = 0.8. (b) Inter- Intra- cluster distances.

Figure 4.6: Event discrimination in “La Mercè” 2015 when pooling tweets by keyword.

4.2.2 Analyzing User Diversity

The role of the user diversity threshold, µ, is to guarantee that Tweet-SCAN clusters are
composed of a diverse set of users, not a few. By increasing this parameter, we reduce the
number of clusters created by a few users or bots actively tweeting from nearby locations
about similar topics; but too high values might also impact the detection performance.

In what follows, we examine the effect of different user diversity thresholds µ to the
clustering results in terms of F-measure and number of events. For that, we use the same
spatio-temporal parameters (ε1 = 250m, ε2 = 3600s,MinPts = 10) than above and we also
set the textual parameter to its optimum value (ε3 = 0.8). We then plot the F-measure as
a function of the user diversity threshold µ.

Fig. 4.7 plots the F-measure and number of clusters as a function of µ for both editions.
It is clear that F-measure starts decreasing in both data sets for values of µ above 0.6. We
observe that a user diversity level of 50% (µ = 0.5) provides a high detection performance
and a reasonable number of events (∼50 events in “La Mercè” 2014 and ∼30 in 2015).
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(a) “La Mercè” 2014. (b) “La Mercè” 2015.

Figure 4.7: Tweet-SCAN for different µ values.

4.2.3 Analysing Spatio-temporal Components

In this section, we analyse the impact of different neighbourhood sizes to the detection
performance. Thus, we compute Purity, Inverse Purity and F-measure scores when varying
ε1, ε2 and ε3. Fig. 4.8 shows 4 possible configurations of ε1, ε2 as function of ε3 for both
data sets: “La Mercè” 2014 (top), “La Mercè” 2015 (bottom).

A Tweet-SCAN configuration with smaller neighbourhoods in time and space (ε1 =
250m, ε2 = 1800s) than the ones used in Section 4.2.1, optimises F-measure for ε3 = 1.
This means that Tweet-SCAN disregards the textual component and it can be explained by
the fact that these ε1ε2-neighbourhoods are too restrictive for the tagged events. Besides,
the maximum F-measure for this configuration in “La Mercè” 2014 is comparable to that in
Section 4.2.1 and hence, is the highest across all configurations in this data set.

For the spatio-temporal values considered in Section 4.2.1 (ε1 = 250m, ε2 = 3600s), we
have seen that the optimum value for ε3 is achieved in the range 0.8-0.9 in both data sets.
Now, we can also observe that this spatio-temporal configuration performs much better
than others in “La Mercè” 2015 and comparably to the previous configuration in 2014.

If we increase the spatial neighbourhood to ε1 = 500m, but we keep the temporal short
ε2 = 1800s, F-measure lowers in both data sets, and the optimum value is attained for ε3
within 0.8-0.9 in 2014, and for ε3 = 1 in 2015. In fact, the curves for “La Mercè” 2015
are very similar to those given by ε1 = 250m, ε2 = 1800s, so we think that temporal
neighbourhoods of 1800s are too short to achieve a good performance in this data set.

Last, we increase both dimensions to ε1 = 500m and to ε2 = 3600s. Although the opti-
mum F-measure score is lower than the ε1 = 250m, ε2 = 3600s setup in both data sets, we
observe that the textual component gains importance, since the larger ε1ε2-neighbourhoods
require more textual discrimination to identify meaningful events.
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(a) ε1 = 250m,
ε2 = 1800s.

(b) ε1 = 250m,
ε2 = 3600s.

(c) ε1 = 500m,
ε2 = 1800s.

(d) ε1 = 500m,
ε2 = 3600s.

(e) ε1 = 250m,
ε2 = 1800s.

(f) ε1 = 250m,
ε2 = 3600s.

(g) ε1 = 500m,
ε2 = 1800s.

(h) ε1 = 500m,
ε2 = 3600s.

Figure 4.8: Tweet-SCAN for different ε1, ε2, ε3 and MinPts = 10, µ = 0.5.
“La Mercè” 2014 (top), “La Mercè” 2015 (bottom).

4.3 Summary and Conclusion

In this chapter, we have presented Tweet-SCAN, an extension of the DBSCAN algorithm
that is capable to cluster tweets as per their spatio-temporal, textual and user features.
We have re-defined DBSCAN predicates to accommodate for the multimodal information
in tweets as well as to perform well in the task of event detection. Furthermore, we have
proposed to model text messages through the HDP topic model and a pooling scheme that
mitigates the tweet shortness. We have analysed the algorithm performance in “La Mercè”
dataset through extrinsic clustering measures. In particular, we have studied the sensitivity
that the algorithm performance has to the variation of its parameters.

The results of Tweet-SCAN points out to the benefits of using text, when uncovering
events from geo-located tweets, specially for large spatial and temporal neighbourhoods.
We have also shown that better text models could help to discriminate overlapping events
in space and time, as we have seen for the “wine tasting” and “food market” events. On
another level, we have seen that imposing user diversity does not worsen performance if the
threshold is carefully set, but it helps to discard clusters of tweets posted by computer bots
or conversation groups.

We showed that text can play a big role in discriminating between events, despite the
shortness of tweets. Therefore, the development of tailored topic models for event detection
in Twitter is another interesting avenue for future research. Specifically, topic models that
at the same time pool tweets together (e.g. into events) and learn thematic representation
could have a positive impact to the overall detection performance, since they are jointly
optimised for the same goal. In the next Chapter, we will present a fully probabilistic
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models for event detection that jointly learn event-specific topics.
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5
Warble: a Probabilistic Approach

“All models are wrong, but some are useful”
George E. P. Box, 1976

Capdevila, J., Cerquides, J., and Torres, J. (2016b). Recognizing warblers: a probabilistic model for
event detection in twitter. Presented at the Workshop of Anomaly Detection at the International
Conference on Machine Learning (ICML)
Capdevila, J., Cerquides, J., and Torres, J. (2018a). Mining urban events from the tweet stream
through a probabilistic mixture model. Data Mining and Knowledge Discovery, 32(3):764–786

Despite their shortness, tweet messages play an important role in event detection, as we
showed in the previous chapter. Their textual content is not only necessary to distinguish
between different types of events that overlap in space and time, but it has also shown to
improve the Purity of the detected clusters. Previously, we have used two pooling schemes
to learn useful topic representations from tweet messages to improve the performance of a
detection method. However, the proposed topic model, aggregation scheme and detection
method acted as three separate components, which prevented that the components could
mutually benefit from each other. In contrast, an integral solution to the problem could
enable the topic model to learn topics from tweets pooled at the event level and, similarly,
the detection method to benefit from event-specific topic representations.

Therefore, we set ourselves the goal of developing a fully probabilistic model that jointly
learns good topic representations and performs well at detecting local events. McInerney
and Blei (2014) proposed a probability model that integrates both sub-tasks to discover
newsworthy geo-located events from topics learned in an external news data set. However,
their model does not perform well at discovering local events that cause an increase of actions

67
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in the social network, mainly because it cannot identify which clusters are event-related.
Therefore, an integral solution to local event detection has to explicitly consider that events
are anomalous groups of tweets and they must be isolated from other patterns in the data.
Moreover, the probabilistic formulation of the solution allows us to consider principled
methods for setting the model parameters as well as to deal with partially observed data,
e.g. non-located tweets.

In this chapter, we present Warble, a probabilistic model and learning scheme that
performs topic modelling and event detection in an integrated way, likewise McInerney &
Blei’s model. In contrast to them, our model is thought for the task of local event detection
in Twitter as defined in Section 3.1 and hence, it addresses three well-known challenges of
this problem:

rarity. Event-related publications are masked by tones of non-event data such as memes,
user conversations or retweet activities, making it very hard to uncover interesting
patterns (Becker et al., 2011).

text-shortness. The length limit in the textual component of tweets hampers the ap-
plication of standard text models which rely on the co-occurrence of words such as
traditional topic models (Hong and Davison, 2010).

variability. The tweeting activity is not flat along a day (it peaks during late night and
falls in early morning, i.e. see Fig. 5.5a), nor over a urban area (it concentrates in the
city center and spreads in suburbs, i.e. see Fig. 5.5b) (Li et al., 2013).

Warble addresses rarity by grouping non-event tweets together in a separate back-
ground component of a heterogeneous mixture model. The spatio-temporal features of this
background component are preset through empirical backgrounds learned from geo-located
tweets prior to the period of interest. Because of these spatio-temporal empirical back-
grounds, the model is able to detect events in varying tweet densities in space and time.
For instance, the solution is able to detect events in areas/periods of low tweeting activity
(e.g. suburbs, off-peak hours) likewise in those of high activity (e.g. downtown, peak hours).
Furthermore, by learning topics and events simultaneously the proposed method is able to
exclusively use the tweet stream to obtain useful topic representation, thus dropping the
dependence on an external data set or pooling strategies.

Although the Tweet-SCAN algorithm presented in Chapter 4 also deals with the rarity
of events and shortness of tweets, this algorithm cannot capture their temporal and spatial
variability due to the inability of DBSCAN (Density-based Spatial Clustering of Applica-
tions with Noise) to detect clusters in data of varying density. Therefore, Warble is not
only an integrated solution to the problem of event detection, but it also address one of the
major weaknesses of Tweet-SCAN.

The rest of the chapter is structured as follows. In Section 5.1, we introduce the Warble
model in full detail. The learning scheme for the background model and the variational
inference algorithm are described in Section 5.2. In Section 5.3, we learn Warble in
“La Mercè 2014” data set and compare its detection performance against McInerney &
Blei’s model (McInerney and Blei, 2014) and Tweet-SCAN. We conclude in Section 5.4 by
presenting some remarks and future work.
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5.1 Warble: the Probability Model
In this section we explain how the Warble model explicitly addresses rarity, variability and
text-shortness. In the remaining, Tn corresponds to a random variable which represents the
time, geolocation and message of the n-th tweet, and T = {T1, . . . ,TN} is the full collection
of observed tweets.

5.1.1 Addressing Rarity

The model proposed by McInerney and Blei (2014) is a mixture model in which every
mixture component shares the same distributional form. Fig. 5.1a shows the PGM (Prob-
abilistic Graphical Model) for their model where the N plate corresponds to the collection
of tweets and the K plate, to the mixture components (i.e. events). Every mixture com-
ponent is a probability distribution governed by a different global variable βk. Besides,
the mixture proportions π define another global variable on the K-simplex that assigns the
proportion of tweets to each event. For each tweet Tn, authors assume the existence of a
latent event, encoded in the discrete hidden variable en, from which the data for the n-th
tweet is generated as follows. Given en, the distribution of Tn is

Tn ∼ f (βen) (5.1)

where f is the pdf, common for all mixture components. That is, the only difference between
two events k and k′ is that their parameters βk and βk′ are different, but the functional
form of f remains the same among components.

The joint probability distribution for McInerney and Blei’s model can be expressed as
follows,

p(T, e, β, π) = p(π|απ)
N∏
n=1

p(Tn |βen)p(en|π)
K∏
k=1

p(βk|αβ) (5.2)

where p(π|απ) = Dir(απ) follows a Dirichlet distribution, p(en|π) = Cat(π) is a Categorical
distribution with parameters π and the functional form of p(Tn |βen) is common for all K
components. Moreover, the model considers a prior over the event parameters p(βk|αβ).

Tn

enπαπ

βk

αβ

N

K

(a) McInerney & Blei’s model. .

Tn

cnπαπ

βk

αβ

γB

N

K-1

(b) Warble model.

Figure 5.1: Simplified PGMs.

As discussed in the introduction, a vast majority of tweets is not event related. We would
like to address rarity of event data by introducing a new mixture component, to which we
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refer as background, which will group all those tweets which are not part of any event.
In probabilistic terms, this means that the distribution of tweets inside the background
component should be widely different from that inside events. McInerney and Blei’s model
assumes (Eq. 5.1) that all components follow the same base distribution f , and thus it
is unable to deal with the introduction of a background component whose distribution is
widely different from that of events.

Accordingly, we propose to generalize McInerney and Blei’s model to handle heteroge-
neous components. To do that, for each component k, we enable a different base function
fk as shown in Eq (5.3).

Tn ∼ fen (βen) . (5.3)

Our model fits into the framework proposed by (Banfield and Raftery, 1993). To the best
of our knowledge no application of that framework to event modelling has been reported.

The Warble model depicted in Fig. 5.1b is the PGM representation for an hetero-
geneous mixture model of tweets in which the K-th component (the background) follows
a different statistical distribution. This component corresponds to the background and is
represented through a set of parameters γB. Moreover, the latent assignments are now
symbolized through cn to denote that a tweet might be generated by event components
(cn < K) or by background (cn = K).

The joint probability distribution for Fig. 5.1b can be written as,

p(T, c, β, π) = p(π|απ)
N∏
n=1

pcn(Tn |βcn , γB)p(cn|π)
K−1∏
k=1

p(βk|αβ) (5.4)

where now the tweet distribution depends on the component assignment, pcn(Tn |βcn , γB).
Moreover, we observe that the background component does not consider a prior over its
parameters. The next section provides additional details on how we model the distribution
of the background component.

5.1.2 Addressing Variability

Geo-located social data such as tweets tends to be unevenly distributed through space and
time. For example, it is known that users are more likely to tweet during late evening and
from highly populated regions (Li et al., 2013). Because of this, we foresee the need to
explicitly take this variability into account in order to identify events at peak hours as well
as during valleys. The Warble model proposed in Fig. 5.1b enables to consider an arbitrary
distribution with parameters γB for the background component. Here, we propose to model
this background through two independent histogram distributions with parameters TB and
LB, respectively.

The temporal histogram distribution can be represented through a piecewise-continuous
function which takes constant values (TB1 , TB2 , ...TBIT ) over the IT contiguous intervals in
the variable domain. For example, Fig. 5.2 shows the 1D-histogram distribution in the
temporal range from tmin to tmax, in which there are IT intervals of length b. Moreover, we
must note that the piecewise function has to be normalised to sum 1 in order to fulfil the
properties of probability distributions.

Similarly, the spatial background is modelled through a 2D-histogram distribution over
the geographical space, which is represented in a Cartesian coordinate system. The 2d-
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tmin tmax

TB1

TB2

TBIT

b

Figure 5.2: Temporal histogram distribution 1d-Hist(.).

piecewise-continuous function is expressed through IL constant values (LB1 , LB2 , ...LBIL ) in
a grid of squares with size b x b each.

Through these histogram distributions, the Warble model can consider different spatio-
temporal backgrounds which can be learned from tweets as we will see in Section 5.2.1.

5.1.3 Addressing Text-shortness

The shortness of tweets requires novel ways to address the lack of word co-occurrences
to learn good topic representations. A common approach, seen in Section 4.1.3, consists
in grouping tweets by hashtag or other related features (Hong and Davison, 2010). Oth-
ers (McInerney and Blei, 2014) have leveraged on an external data set to perform transfer
learning of topics. Here, we instead propose to address this issue in a probabilistic manner
by clustering tweets into components cn and learning component-specific topic proportions
θk at the same time. Integration of clustering and topic models has been studied for long-
text (Xie and Xing, 2013) and short text (Quan et al., 2015) and shown that the integrated
model improves both clustering and topic modelling.

π ∼ Dir(απ)

For each component k = 1...K

θk ∼ Dir(αθ)
For each topic t = 1...T

φt ∼ Dir(αφ)

For each document n = 1...N

cn ∼ Cat(α)

For each word m = 1...Ln

znm ∼ Cat(θcn)

wnm ∼ Cat(φznm)

Process 5.1: Warble TM.

wnmznmcnπ

θk

απ

αθ

φt αφ

Ln

N

K

T

Figure 5.3: Warble topic model (TM).

In Fig. 5.3, we show the PGM for the Warble topic model and Proc. 5.1 describes
the generative process. To keep it simple, this graphical model only shows the variables
related to the textual features of tweets. Hence, this model is a particular case of that
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in Fig. 5.1b for the textual features of tweets. In fact, the textual content of the n-th
tweet, Tn, is represented here by the sequenced bag of words introduced in Section 2.3.1,
wn = {wn1, ...wnMn}. Moreover, the global variables β in Fig. 5.1b correspond here to the
topic proportions, θ = {θ1, . . . , θK} and to the topic distributions, φ = {φ1, . . . , φT}. For
both types of variables, the Warble considers prior distributions in the form of Dir(φt|αφ)
and Dir(θk|αφ), as defined by Eq. (B.8). Note also that the topic model does not consider
a different background component for text, since the background is devoted to the spatio-
temporal features whose variability can be better estimated.

The generative process for the local variables of the n-th tweet goes as follows. First,
a component cn is drawn from a Categorical distribution over the global component pro-
portions π. For each word in the sequenced representation m = 1...Ln, the topic assign-
ment variable znm is then sampled from a Categorical distribution parametrised with the
component-specific topic proportions θcn . Finally, each word wnm is sampled from the cor-
responding topic distribution with parameter φznm . Formally, the joint probability of the
n-th tweet given all the global variables π, θ and φ can be written as,

p(wn, zn, cn|π, θ, φ) = Cat(cn|π)
Mn∏
m=1

Cat(znm|θcn)Cat(wnm|φznm). (5.5)

This topic model is different from traditional topic models like LDA (Latent Dirichlet
Allocation), see PGM in Fig. 2.6, in the sense that the topic proportions θ are not per-
document, but per-component. Therefore, topic proportions in Fig. 5.3 are global variables
that contain the topic proportions of the k-th cluster of tweets. Note that this distribution
would be the same than that of a LDA model which has been trained with the documents
pooled by these components. However, the main difference is that one has to jointly learn
the clustering (i.e. assigning tweets to components cn) and the topic proportions per-
component.

Next, we will show that by integrating this topic model into the complete Warble
model, the assignments of component to tweets, i.e. clustering, can be done taking the
spatio-temporal features and background into account. This might enable to obtain event-
related topics from the event components, providing an interesting approach for automatic
event summarisation (Long et al., 2011).

5.1.4 The Complete Warble Model

We present next the complete Warble model. The PGM in Fig. 5.4 provides a more
detailed graph of the model depicted in Fig. 5.1b and also extends the topic model in
Fig. 5.3 with the spatio-temporal part. Furthermore, we provide the complete generative
process for Warble in Proc. 5.2.

In the complete Warble model tweets Tn are represented by their temporal tn, spatial
ln and textual wn features. The parameters βk associated with the k-th event component
comprise the set of variables βk = {τk, λk, µk,∆k, θk}. As for the hyperparameters, αβ in
Fig. 5.1b, now corresponds to the set of hyperparameters mτ , βτ , aλ, bλ, mµ, βµ, ν∆, W∆,
αθ in Fig. 5.4. Finally, the hyperparameter of the background component γB in Fig. 5.1b
is composed of the hyperparameters for the temporal (TB) and spatial (LB) features in
Fig. 5.4. Note that the complete Warble model also contains the global topic variables,
φ, and their hyperparameters, αφ.
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Figure 5.4: The Warble model in detail.

In Eq. (5.6) we provide the joint probability distribution, which fully describes the
Warble model in probabilistic terms.

p(T, c, β, π, φ, θK) = p(π|απ)p(φ|αφ)
N∏
n=1

pcn(Tn |βcn , γB)p(cn|π)
K−1∏
k=1

p(βk|αβ)p(θK |αβ) (5.6)

In the remaining we specify each of the factors in the right hand side of Eq. (5.6). As
discussed earlier, p(π|απ) follows a Dirichlet distribution, that is p(π|απ) = Dir(π|απ) and
p(φ|αφ) =

∏T
t=1Dir(φt|αφ) is the product of T Dirichlet distributions with hyperparameter

αφ.
As for the tweet probability distribution pcn(Tn |βcn , γB), we have that

pcn(Tn |βcn , γB) = pcn(tn|τcn , λcn , TB)pcn(ln|µcn ,∆cn , LB)p(wn|θcn , φ) (5.7)

Here, the posting time tn of event-related tweets arises from a Normal distribution N(.)
with unknown mean τcn and precision λcn , and that of non-event tweets is generated by a
1D histogram distribution Hist(.) with parameter TB, formally

pcn(tn|τcn , λcn , TB) =

{
Hist(tn|TB), if cn = K

N(tn|τcn , λcn), otherwise.
(5.8)

Similarly, the geographical locations ln of event-related tweets comes from a multivariate
Normal distribution with unknown mean µcn and precision ∆cn and that of non-event tweets
is generated by a 2D histogram distribution Hist(.) with parameter LB:

pcn(ln|µcn ,∆cn , LB) =

{
Hist(ln|LB), if cn = K

N(ln|µcn ,∆cn), otherwise.
(5.9)

Finally, the bag of words wn = {wn1, ...wnMn} for event and non-event components are
generated according to the topic model described by Eq. (5.5). That is,
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p(wn|θcn , φ) =
Ln∏
m=1

∑
znm

Cat(znm|θcn)Cat(wnm|φznm). (5.10)

The prior over event component parameters p(βk|αβ) is

p(βk|αβ) = N(µk|mµ, βµ∆k)W(∆k|ν∆,W∆)N(τk|mτ , βτλk)Ga(λk|aλ, bλ)Dir(θk|αθ) (5.11)

where the unknown means and precisions are drawn from a Normal-Gamma N(.)-Ga(.) and
a Normal-Wishart N(.)-W(.), which are conjugate priors to the uni-variate and multivariate
Normal, respectively. As explained in Section 5.1.3, the topic proportions of the background
component also follow the same Dirichlet than the event-related components, Dir(θk|αφ),
which are also conjugate to the Categorical.

π ∼ Dir(απ)

θK ∼ Dir(αθ)
For each event component k = 1...K − 1

µk ∼ N(mµ, βµ∆k)

∆k ∼ W(ν∆,W∆)

τk ∼ N(mτ , βτλk)

λk ∼ Ga(aλ, bλ)

θk ∼ Dir(αθ)
For each topic t = 1...T

φt ∼ Dir(αφ)

For each tweet n = 1...N

ln ∼ pcn(ln|µcn ,∆cn , LB)

tn ∼ pcn(tn|τcn , λcn , TB)

cn ∼ Cat(α)

For each word m = 1...Ln

znm ∼ Cat(θcn)

wnm ∼ Cat(φznm)

Process 5.2: The Warble generative process in detail.

5.2 Learning Scheme
In this section we describe how to use the Warble model to identify a set of events in
a region during a period of interest. The procedure assumes the availability of a recorded
data set of tweets from that region and follows two steps. First, we use the tweets previous
to the start of the period of interest to derive a background model. Then, we use the tweets
recorded during the period of interest to find the most probable assignment of tweets to
mixture components.

5.2.1 Learning the Background Component

To learn the spatio-temporal background from tweets, we propose to collect tweets previous
to the period of interest and within the same region in order to add a sense of typicality to
the model.

From the collected tweets, the temporal background is built by first computing the daily
histogram with IT bins. Then, the daily histogram is smoothed by means of a low pass
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filter that removes the high frequency components. The filter is constructed by multiplying
the signal in the Fourier or frequency domain by a rectangular function with a certain
cut-off frequency fc. The smoothed histogram is finally normalised and its parameters
TB1 , TB2 , ...TBIT correspond to the temporal background.

The spatial background is build following the same procedure. However, geographical
location has to be first projected into a Cartesian coordinate system in order to consider
locations in a 2D Euclidean space. The spatial range limits can be determined from the most
southwestern and northeastern points. We consider instead a two dimensional Gaussian
filter with a standard deviation σ. The smoothed 2D-histogram provides the parameters
for the spatial background LB1 , LB2 , ...LBIL .

Therefore, the number of bins for the temporal IT and spatial IL histograms as well as
the cut-off frequency fc and standard deviation σ for the low pass filters are hyperparameters
that will be set during the experimentation.

5.2.2 Assigning Tweets to Mixture Components

We are interested in finding the most probable assignment of tweets to mixture components,
given the data at hand, that is finding c∗

c∗ = argmax
c

p(c|l, t,w; Γ) (5.12)

where Γ stands for the model hyperparameters LB, TB, απ, αθ, αφ, mτ , βτ , aλ, bλ, mµ, βµ,
ν∆ and W∆. Exactly assessing c∗ is computationally intractable for the Warble model.
Therefore, we propose to

1. Use mean-field variational Bayesian inference, presented in Section 2.5.2, to approxi-
mate p(X|D; Γ) (where X stands for the set of random variables containing c, z, π,
τ , λ, µ, ∆, θ and φ, and D stands for our data, namely l, t, and w) by a distribution
q(X; η) (where η stands for the variational parameters to be detailed later).

2. Assess c∗ from the approximation, that is

c∗ = argmax
c

q(c; η) = argmax
c

∫
X−c

q(X; η). (5.13)

In the following we provide detail on each of these two points.

5.2.2.1 Mean-Field Variational Bayesian inference

Our mean-field variational inference algorithm relies on minimising the KL (Kullback-
Leibler) divergence between p(X|D; Γ) and a distribution q(X; η) which factorises as

q(X; η) = q(π)
T∏
t=1

q(φt)
N∏
n=1

q(cn)
Mn∏
m=1

q(znm)

q(θK)
K−1∏
k=1

q(τk)q(λk)q(µk)q(∆k)q(θk). (5.14)
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The KL divergence is minimised through an iterative coordinate-descent scheme until
convergence is reached. Thus, the factors in Eq. (5.14) are sequentially updated, one factor
at a time. The mean-field variational update for the factor corresponding to a random
variable x whatsoever is

q(x) ∝ exp

(∫
X−x

q(X; η) log p(X,D; Γ)

)
(5.15)

where log p(X,D; Γ) is the logarithm of the join probability distribution for the Warble
model defined in Eq. (5.6) . After all variables have been updated the KL divergence is
compared with that of the previous iteration. In case convergence has not been reached
yet, another round of updates is started.

We notice that due to the introduction of the background distributions, the model is not
fully conditionally conjugate as the LVM (Latent Variable Model) discussed in Section 2.5.2.
Thus, the updates in Eq. (5.15) need to be manually derived for each variable. To exemplify
the derivations, we include here the development of the most complex update, that of the
assignment variable cn. Since our distribution follows the Bayesian network in Fig. 5.4,
Eq. (5.15) can be simplified to

q(cn) ∝ exp

(∫
Z

q(Z) log p(cn, Z,D; Γ)

)
(5.16)

where Z is the set of variables in the Markov blanket of cn, which are π, tn, τ , λ, ln, µ, ∆,
zn,. and θ.

Given that the right side of Eq. (5.16) is proportional to the approximate distribution
q(cn), we can disregard terms that do not depend on cn and express the remaining as a
product,

q(cn) ∝ fprior(cn) · ftime(cn) · floc(cn) ·
Mn∏
m=1

fm-word(cn) (5.17)

where

fprior(cn) = exp

(∫
π

q(π) log p(cn|π)

)
ftime(cn) = exp

(∫
τcn ,λcn

q(τcn)q(λcn) log p(tn|τcn , λcn)

)
floc(cn) = exp

(∫
µcn ,∆cn

q(µcn)q(∆cn) log p(ln|µcn ,∆cn)

)
fm-word(cn) = exp

(∫
θcn ,znm

q(θcn)q(znm) log p(znm|θcn)

)
. (5.18)

We observe that there are four factors, one for the mixture proportions and one for each
tweet feature (posting time, geographical location and text message).

Since cn is a discrete variable, q(cn) fits in the functional form of a Categorical distribu-
tion with variational parameter c′n, defined as the normalisation of c̃′nk,

c′nk =
c̃′nk∑K
k=1 c̃

′
nk

(5.19)
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q(x) Functional form

q(π) Dir(π|π′k)
q(cn) Cat(cn|c′nk)
q(znm) Cat(znm|z′nmt)
q(φt) Dir(φt|φ′t)
q(τk) N(τk|mτk , β

′
τk

a′λ
b′λ

)

q(λk) Ga(λk|a′λ, b′λ)
q(µk) N(µk|µ′k, β′µkν

′W ′)
q(∆k) W(∆k|ν ′,W ′)
q(θk) Dir(θk|θ′k)

Table 5.1: Functional forms for q(X).

where c̃′nk can be obtained from Eq. (5.17):

c̃′nk = fprior(k) · ftime(k) · floc(k) ·
Mn∏
m=1

fm-word(k). (5.20)

Note that the background component takes no part in fprior and fm-word, whose expres-
sions can hence be derived following a standard procedure described in Section 2.5.2. Thus,
we omitted them next.

However, the introduction of a background model entails differences in the spatio-
temporal factors floc and ftime, since the background component (k = K) follows a different
distribution function. Considering the pdf in Eq. (5.8), the temporal factor can be defined
as follows,

ftime(k) =

{
Hist(tn|TB), k = K

exp
(∫

τk,λk
q(τk)q(λk) logN(tn|τk, λk)

)
, otherwise

(5.21)

and from Eq. (5.9), the spatial factor is,

floc(k) =

{
Hist(ln|LB), k = K

exp
(∫

µk,∆k
q(µk)q(∆k) logN(ln|µk,∆k)

)
, otherwise

(5.22)

where in each equation the event components are computed from the corresponding Normal
distributions and the background component from the Histogram distribution.

Nonetheless, to find a closed-form expression for Eq. (5.21) we need to derive the ap-
proximated distributions for q(τk) and q(λk). We provide a summary of the functional forms
for each variational distribution q(x) in Table 5.1. Full details on the updates can be found
in Appendix C.

5.2.2.2 Assigning Tweets to Components through Variational inference

Recall that our objective was to find the most likely assignment of tweets to mixture com-
ponents using the variational approximation to the posterior shown in Eq. (5.13). Note that
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we can take benefit from the fact that q(X) factorises as shown in Eq. (5.14) to assess the
mixture component for each tweet independently. Thus, the n-th tweet will be assigned to
the mixture component which maximises the Categorical distribution q(cn; c′n), that is,

c∗n = argmax
cn

q(cn; c′n) = argmax
k

c′nk. (5.23)

This means that tweets will be assigned to the most likely component according to the
probabilities given by Eq. (5.19). If the K-th component of c′n: is the largest, then the n-th
tweet is assigned to the background; otherwise, it is assigned to one of the K − 1 events.

5.3 Experimentation

In this section, we present how to setup Warble for detecting events in “La Mercè 2014”
data set introduced earlier in Section 3.3. We then evaluate the detection performance
of Warble and compare to other event detection methods in terms of extrinsic clustering
metrics introduced in Section 2.6.2. The code to reproduce all the experiments can be found
in this repository1.

5.3.1 Warble Settings for “La Mercè 2014”

In this section, we detail the parameters of the Warble model as well as the spatio-temporal
backgrounds for “La Mercè 2014”. We focus on the 2014 edition because it contains more
tweets with exact geo-location than “La Mercè 2015”. Besides we restrict this study to a
particular day, the 24th of September 2014, when most of the labelled events occurred.
Therefore, the data set is composed of 2173 tweets out of which 202 belong to 6 distinct
real-world events in Tab 3.2. These are the music concert at Bogatell beach area, the human
towers exhibition at Plaça Sant Jaume, the open day at MACBA museum, the food market
at Parc de la Ciutadella, the wine tasting fair at Arc de Triomf and the fireworks near
Plaça d’Espanya. Moreover, we have also identified a 7th anomalous increase of tweets
in the Bogatell area during the afternoon as a result of several users reviving the earlier
concert.

The Warble model presented in Section 5.1 contains several hyperparameters. Al-
though their optimization is left for future work, we have not experimented substantial
differences in the results when changing them. The number of components K is set to 8
so that the model is able to capture the 7 previously identified events occurring during the
24th of September 2014. Following the results from the previous chapter with the non-
parametric topic model, we set the number of topics T to 30. Table 5.2 shows the values
used for Warble in “La Mercè 2014” data set and for the rest of probabilistic methods that
we compare later.

1https://github.com/jcapde/WARBLE
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K T απ αθ αφ mτ βτ aλ bλ mµ βµ ν∆ W∆

8 30 0.1 0.1 0.1 t̄n
9

10‖tmax−tmin‖2 100 1 l̄n
9

10‖lmax−lmin‖2 100 I2×2

Table 5.2: Hyperparameter settings. t̄n and l̄n correspond to the average values across
temporal and spatial featues. tmax, tmin and lmax, lmin to the maximun and minimum

values in the corresponding dimensions. I2×2 is a 2× 2 identity matrix.

In addition to the tweets of the 24th of September, we also consider tweets previous
to the period of interest in order to learn the spatio-temporal backgrounds TB and LB
as explained in Section 5.2.1. In particular, we used tweets from the 20th to the 23th of
September 2014 to build the spatio-temporal distributions as described next.
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Figure 5.5: Spatio-temporal backgrounds.

Fig. 5.5a shows the daily histogram of tweets in which we observe a valley during the
early morning and a peak at night, indicating low and high tweeting activity during these
hours, respectively. The 1D histogram has been computed with IT = 100 bins and a cut-off
frequency fc = 0.6. Fig. 5.5a also contains the smoothed histogram distribution (black line)
that is used to set the temporal background parameters TB1 , TB2 , ...TBIT .

Fig. 5.5b is the smoothed histogram for all tweet locations, which give us the parameters
for the spatial background LB1 , LB2 , ...LBIL . The 2D histogram has been computed with
IL = 1600 bins and a standard deviation of σ = 1.5 . We observe that the most likely areas
in the filtered histogram (in bright yellow) correspond to highly dense regions of Barcelona
like the city center, while city surroundings are coloured in blue indicating lower density of
tweets.

We note that the above backgrounds are in accordance with spatio-temporal behaviours
founds in other studies (Li et al., 2013) and we did not experience significant changes when
varying the hyperparameters specified above.
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5.3.2 Results

First, we assess Warble in “La Mercè 2014” data set through recall figures for each labelled
event. Then, we compare its performance against related methods such as McInerney &
Blei model (McInerney and Blei, 2014) and Tweet-SCAN.

5.3.2.1 Assessment of Warble in “La Mercè 2014”

Table 5.3 summarises the events that Warble was able to discover during the 24th of
September in “La Mercè 2014” data set.

For each event, the set matching recall provides the fraction of relevant tweets that
are correctly identified and BCubed recall, shown in parentheses, provides the average
correctness. Despite their differences, both recall figures show very similar results. We
observe that larger events (# tweets), such as concert and fireworks, are correctly identified
(high recall) while smaller ones, like museums open day or human towers exhibition, are
harder to detect. However, we notice that the food market and wine tasting exposition
could not be discovered at all. We argue that this is because both were all-day events and
had fewer tweets in comparison to the rest. Future work could explore to treat all-day events
differently, for instance introducing priors for these events with greater temporal variance.
Finally, the resulting mean coordinates (lat, long) and times from the probabilistic model
are also coherent with “La Mercè” schedule.

Event Proportion
of tweets

Recall
(BCubed)

Time
(hh:mm:ss)

Location
(lat;long)

Concert 27/28 0.96 (0.93) 02:32:40 ± 0:11:32 41.3931 ± 0.0014;
2.2058 ± 0.0018

Human towers 11/20 0.55 (0.36) 12:46:56 ± 0:08:40 41.3834 ± 0.0013;
2.1775 ± 0.0016

Concert revival 26/30 0.86 (0.76) 13:44:19 ± 0:10:17 41.3926 ± 0.0012;
2.2056 ± 0.0017

Museums open day 18/25 0.72 (0.56) 18:18:33 ± 0:08:27 41.3836 ± 0.0012;
2.1716 ± 0.0044

Fireworks 62/65 0.95 (0.91) 22:11:10 ± 0:06:18 41.3734 ± 0.0015;
2.1496 ± 0.0022

Table 5.3: Recall figures and spatio-temporal features per event.

The Warble model, apart from spatio-temporal information, also provides information
about which topics are linked to each event, as per the topic model presented in Section 5.1.3.
Topic distributions plotted in Fig. 5.6, show that each event is mainly about one topic,
except for the last one which corresponds to background component (k = K) and its a mix
of lots of topics. Therefore, there are two events whose main topic is number 17, one event
for topic 24, another for topic 5 and one last event which is mainly about topic 14.

The content of each topic can be found in the corresponding topic distribution. Table 5.4
shows the most probable words for each topic, enabling us to understand the relationship
between topics and events. For example, Topic 17 refers to music since words concert,
txarango (local band) and manel (local band) are very likely. We have already seen that
this topic was linked to two resulting events in Fig. 5.6 which we can associated with the
music concert at Bogatell beach area and the revival on the afternoon. We also note that
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Figure 5.6: Topic proportions (θ′k:/
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kt) per component (5 detected events and 1

background).

top words in each topic usually refer to the event location, which can be explained from the
fact that most tweet messages explicitly mention the place. A complete list of the 10 most
probable words for each topic can be found in Appendix D.1.

Table 5.4: 5 most probable words per topic φ′t:/
∑

v φ
′
tv.

English translations in italics.

Topic 5 Topic 14 Topic 17 Topic 24 Topic 26
museu
museum

piromusical
fireworks

platja
beach

plaça
square

im
I’m

macba
MACBA

plaça
square

bogatell
Bogatell

dia
day

q
that

contemporani
contemporary

despanya
from Spain

txarango
Txarango

jaume
Jaume

gran
big

fan
do

font
fountain

concert
concert

catalunya
Catalonia

mercé
Mercé

veient
looking

poder
power

manel
Manel

day
day

hoy
today

By simultaneous learning of topics and events, we observed that event-related compo-
nents contain event-specific topics which are very different from those in the background
component. As we show next, this feature improves the discrimination capabilities of War-
ble.

5.3.2.2 Evaluation against State-of-the-art

In what follows, we compare Warble from Section 5.1 against other event detection tech-
niques. In particular, we will compare the performance of:
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(A) McInerney & Blei model, which does not consider background and does not perform
simultaneous topic-event learning.

(B) The Warble model without simultaneous topic-event learning.

(C) The Warble model without modelling background.

(D) The complete Warble model.

(E) Tweet-SCAN with ε1 = 250m, ε2 = 3600s, ε3 = 0.9, µ = 0.5 as the best performing
configuration in Chapter 4, and MinPts = 7, according to Fig. 5.7.
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Figure 5.7: Best-performing Tweet-SCAN configuration
on the 24th of September in “La Mercè” 2014.

For those models that do not perform simultaneous topic-event learning, the LDA
model (Blei et al., 2003) is separately trained with tweets aggregated by key terms as
proposed in (Hong and Davison, 2010). That is the case for models (A), (B) and (E).

Fig. 5.8a shows the results for each event detection model introduced earlier in terms
of set matching metrics, whereas Fig. 5.8b shows the same experiments with the BCubed
metrics. Results show that Warble outperforms the existing state-of-the-art models (A
& E) in terms of F-measure and purity. Moreover, by analyzing the results of models B
and C we see a clear synergy between background modelling and simultaneous topic-event
learning. Neither of them separately achieves a large increase of the F-measure, but when
combined they do. The same conclusions can be drawn from the analysis of BCubed metrics.

Fig. 5.9 provides visual insight on the quality of the events detected by each of the
alternatives, by drawing tweets in a 3-dimensional space corresponding to the spatial (lat,
long) and temporal (time) features. Each tweet is colored with the maximum likelihood
event assignment (c∗n) for that tweet. Moreover, to improve visualization, the most pop-
ulated cluster, which usually is the background, is plotted with tiny dots for all models,
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Figure 5.8: F-measure detection performance. (A) McInerney & Blei model (B) Warble
w/o simultaneous topic-event learning (C) Warble w/o background model (D) Warble

model (E) Tweet-SCAN.

except model A, which fails to capture a clear background cluster. The figure shows that
the similarity between hand-labelled data and the Warble model can only be compared
to that of Tweet-SCAN.
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Figure 5.9: Visual comparison of results. (A) McInerney & Blei model (B) Warble w/o
simultaneous topic-event learning (C) Warble w/o background model (D) Warble

model (E) Tweet-SCAN (F) Labelled events
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5.4 Summary and Conclusion
In this chapter, we identified three main challenges in event detection from Twitter data,
namely rarity, text-shortness and variability. In order to address them, we proposed War-
ble, a new probabilistic model and variational learning algorithm that uncovers real-world
events from tweets in an unsupervised manner. The Warble model explicitly tackles rarity
and variability through a background component, which captures varying tweet densities in
time and space. To mitigate text-shortness, our proposal simultaneously learn topics and
events making it easier to find word co-occurrences among tweets that belong to the same
event. Furthermore, this probabilistic approach to event detection paves the way to reason
about unseen observations or partially observed data in a probabilistically well-principled
way.

The experimental results show that Warble outperforms other techniques in detecting
local events from “La Mercè 2014” data set. In particular, we observe that Warble outper-
forms the McInerney & Blei’s model thanks to the use of spatio-temporal backgrounds and
the simultaneous learning of topics and events. As shown in the results, the performance
of Warble is also slightly superior to that of Tweet-SCAN due to the extra capacity to
deal with varying tweet densities in space and time and the simultaneous learning of topics
and events. Warble allows users to define a spatio-temporal background that can han-
dle changes in these dimensions (i.e. people tweeting more at night than at midday or at
the city center, than at residential areas). Besides, the simultaneous learning of topics and
events enables to better specify both components and increase the overall precision. Despite
Warble contains 13 hyperparameters, Table 5.2, and Tweet-SCAN only 5, some of War-
ble’s hyperparameters are less sensitive to changes because they are parameters of prior
distributions which become less important with increasing amounts of data. Nonetheless,
Tweet-SCAN uncovers the number of events K from data and parametrisation, while this
hyperparmeter has to be set beforehand in Warble. Finally, we showed that the proposed
model also provides automatic summarisation about events, enabling to describe different
aspects of events, such as when and where it took place and what was about.
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6
Likelihood Estimation

in Poisson Factor Analysis

“Without proper self-evaluation, failure is inevitable”
John Wooden

Capdevila, J., Cerquides, J., Torres, J., Petitjean, F., and Buntine, W. (2018c). A left-to-right
algorithm for likelihood estimation in gamma-poisson factor analysis. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 638–654. Springer

As shown in the previous chapters, topic models can be built in bigger models or methods
to perform a particular task, and hence their performance can be evaluated extrinsically,
i.e. in terms of the task. However, when comparing across different topic models, one
usually prefers to evaluate their performance intrinsically, or in other words, independently
of the task at hand. The intrinsic evaluation of topic models has attracted the interest
of the community and several estimation methods have been developed for the popular
LDA (Latent Dirichlet Allocation) (Wallach et al., 2009c; Buntine, 2009). However, the
evaluation of topic models that use the bagged representation of text, see Table 2.1 for a
summary, has not yet been explored. Thus, the study of the intrinsic evaluation in these
models is not only of great importance per se, but it will also enable us later on to compare
across different probability models that are based on the bagged representation.

The GaP (Gamma Poisson) model, introduced in Section 2.4.5, and its non-parametric
counterparts that build on the NBP (Negative Binomial Process), presented in Section 2.4.6,
are forms of factor analysis with Poisson likelihoods, commonly referred to as PFA (Pois-
son Factor Analysis). Apart from modeling bagged text (Canny, 2004; Zhou et al., 2012),
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these models have also been extensively used to model genomic sequences (Zhang et al.,
2016b), user ratings (Gopalan et al., 2015) or spatial occurrences (Oliveira, 2013). Fur-
thermore, extensions of PFA suitable for binary data, presented as BPFA (Bernoulli PFA)
in Section 2.4.6, have also been used in other fields like network analysis with unweighted
edges (Zhou, 2015; Hu et al., 2016). Although the results from this part also apply to a
wide variety of count data, we develop the theory and methods around text.

As we have presented in Chapter 2, PFA models build on the bagged representation of
text, as opposed to other popular topic models like LDA (Blei et al., 2003) which consider
the sequenced representation. Because the document length in the bagged representation
is a distribution hyperparameter, PFA models can place a hyperprior on the length and
avoid the model to be conditioned on it, as shown in Fig. 2.10 for the GaP model. This
does not only provide extra capacity to the model (Canny, 2004), but it also turns it into
a fully generative model capable of synthesizing documents in accordance with the topics
learned. Despite the popularity of PFA models for a wide variety of tasks, their intrinsic
evaluation as probability models, as presented in Section 2.6.1, has not yet been studied. To
circumvent this, authors in (Zhou et al., 2012; Zhou and Carin, 2015; Zhou, 2015; Hu et al.,
2016) have used a likelihood score that holds out a few words instead of a few documents.
However, rigorous studies have not yet been conducted to prove whether this score is well
correlated with the intrinsic evaluation of PFA, and hence, a valid metric to compare across
different models. In contrast, the intrinsic evaluation of LDA has been studied in far more
detail in (Wallach et al., 2009c; Buntine, 2009). While Wallach et al. (2009c) presented
different estimation methods for the marginal document likelihood in LDA, Buntine (2009)
provided a closed-form expression for this marginal which enabled to compare the accuracy
of the existing estimation methods and propose new unbiased estimators. In our opinion,
the existence of a closed-form expression allows the assessment of the estimation methods
in terms of the accuracy to the true value at least in small setups.

In this chapter, we benefit from the recent finding of a closed-form expression for the
marginal likelihood of Poisson factorisation (Filstroff et al., 2018) to develop analytic expres-
sions for the marginal document likelihood in PFA and BPFA from Section 2.4.6. However,
due to computational complexity reasons the exact evaluation of PFA is only tractable in
small setups with up to 5 topics, documents with up to 10 non-zero words and all words
having 1 or 2 counts; and that of BPFA has not even a closed-form expression. Thus,
estimation methods are required for approximating the marginal document likelihood in
realistic scenarios. Although generic likelihood estimation methods exist in the literature,
we show that no previous work has yet considered their use for approximating this likeli-
hood in PFA and BPFA. Therefore, this chapter paves the way to propose and evaluate
estimation methods by introducing a rigorous experimental methodology to compare their
accuracy and convergence. Furthermore, the study of unbiased likelihood estimation in
these models will enable to calibrate other evaluation tasks such as document completion
and word prediction.

In what follows, we define in Section 6.1 the intrinsic evaluation of PFA and BPFA as
a problem of likelihood estimation. Based on this, we then present the related work for
estimation methods as well as for other evaluation strategies. In Section 6.3, we present the
experimental setup to assess the accuracy and convergence of likelihood estimation methods
in document collections. Finally, we close this chapter by summarizing the main points in
Section 6.4.
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6.1 Problem Definition
In this section, we formalise the problem of intrinsic evaluation for PFA and BPFA as one
of likelihood evaluation. As in Section 2.6.1, we use the posterior predictive distribution
as a metric to evaluate the generalisation capabilities of a probability model to predict
unseen observations. Under this metric, a better model produces higher posterior predictive
probabilities on held-out data. That is, the problem can be formally defined for LVM (Latent
Variable Model) in general and PFA in particular through the subsequent definitions:

Problem 6.1. Given a training set x = {x1, ...,xN}, a held-out set x∗ = {x∗1, ...,x∗Nt} and
the LVMM, we seek to compute the posterior predictive distribution p(x∗|x;M).

Although the training and held-out sets are conditionally independent given the global
parameters φ, the posterior predictive distribution in Problem 6.1 involves the following
integral over these global latent parameters,

p(x∗|x;M) =

∫
p(x∗|φ)p(φ|x) dφ. (6.1)

However, it is common to consider point estimates for the global latent variables (Wal-
lach et al., 2009c; Buntine, 2009) i.e. the mean value or mode of their posterior p(φ|x), and
solve instead the following problem:

Problem 6.2. Given the point estimates for the global variables φ̂, a held-out set x∗ =
{x∗1, ...,x∗Nt}, and the LVMM, we seek to compute the likelihood p(x∗|φ̂;M).

The likelihood above factorises across the Nt held-out observations for LVMs, but each
likelihood still involves a marginal over the local latent variables z∗, and hence we need to
solve the following Nt integrals,

p(x∗|φ̂;M) =
Nt∏
n=1

p(x∗n|φ̂) =
Nt∏
n=1

∫
p(x∗n, z

∗
n|φ̂) dz∗n. (6.2)

where we refer to each integral p(x∗n|φ̂;M) =
∫
p(x∗n, z

∗
n|φ̂) dz∗n as the marginal document

likelihood.
The solution for each marginal ultimately depends on the LVM, hence we next particu-

larize the problem for PFA and BPFA.
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Figure 6.1: PFA graphical models with global point estimates.
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Let us first consider the simplified PFA graphical model in Fig. 6.1b, in which the non-
parametric model presented before in Fig. 2.12 has been modified with point estimates for
the global latent variables {Φ,p, r}. Note that these variables are now drawn as constant
values and their parents have been removed from the graph. Furthermore, we know that
by collapsing the topic counts x in Fig. 6.1b, we can obtain the collapsed PFA model in
Fig. 6.1a which is equivalent to that in Fig. 2.9. Therefore, we can particularise Problem 6.2
for both PFA models as follows,

Problem 6.3. Given the point estimates for the global variables {Φ,p, r} for a PFA model
in Fig. 6.1 and a held-out collection of documents y∗ = {y∗1:, ..., y

∗
Nt:
}, we seek to compute

the likelihood p(y∗; Φ,p, r) =
∏Nt

n=1 p(y
∗
n:; Φ,p, r).
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Figure 6.2: BPFA graphical models with global point estimates.

Similarly, one can specify a simplified graphical model for the collapsed and augmented
versions of BPFA as depicted by Fig. 6.2a and Fig. 6.2b, respectively. Note that the
collapsed version can be defined because the marginal distribution of the observed indicators
bn: given the latent factors ln: is a Bernoulli distribution given by Eq. (2.34). Thus, we can
particularize Problem 6.2 for both BPFA models as follows,

Problem 6.4. Given the point estimates for the global variables {Φ,p, r} for a BPFA
model in Fig. 6.2 and a held-out collection of binarised documents b∗ = {b∗1:, ..., b

∗
Nt:
}, we

seek to compute the likelihood p(b∗; Φ,p, r) =
∏Nt

n=1 p(b
∗
n:; Φ,p, r).

In what follows, we derive closed-form and analytic expressions for the marginal doc-
ument likelihoods in Problem 6.3 and Problem 6.4, respectively. Because the problem is
equivalent for training and held-out documents, we omit the distinction between them and
derive the above-mentioned expressions for p(yn:; Φ,p, r) and p(bn:; Φ,p, r).

6.1.1 Closed-form Marginal Document Likelihood for PFA

Filstroff et al. (2018) showed that a closed-form marginal likelihood for PFA could be derived
from the augmented PFA model in Fig. 6.1b. Firstly, we note that the marginal can be
written by making explicit the deterministic relationship between the observed word counts
yn: and latent topic counts xn::. That is, given that yn: are sums of xn:: across topics, one
can re-express the marginal document distribution as,

p(yn:; Φ,p, r) =
∑

xn:∈Xyn:

∫
p(xn::, ln:; Φ,p, r) dln: (6.3)
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where the summation set Xyn: = {xn:: ∈ NV×K
0 | yn: =

∑K
k=1 xn:k} contains all matrices of

non-negative integers xn:: whose rows add up to the word counts of the n-th document yn:.
Secondly, we note that the joint distribution on xn:: and ln: factorises across topics

according to the graphical model in Fig. 6.1b and hence,

p(yn:; Φ,p, r) =
∑

xn::∈Xyn:

K∏
k=1

∫
p(xn:k, lnk;φk, pk, rk) dlnk (6.4)

where each marginal p(xn:k; rk, pk, φk) =
∫
p(xn:k, lnk;φk, pk, rk) dlnk can be calculated inde-

pendently.
Finally, each marginal distribution is the result of compounding V independent Poisson

distributions with a scaled gamma random variable on the rates, as indicated by Proc. 2.9.
The compound distribution can then be found by solving the integral,

p(xn:k;φk:, pk, rk) =

∫ V∏
p=1

Pois(xnpk|lnkφkp)Ga
(
lnk; rk,

pk
1− pk

)
dlnk (6.5)

which corresponds to the NM (Negative Multinomial) distribution, as defined in Eq. (B.14),
and is parametrised by,

p(xn:k;φk, pk, rk) = NM

(
xn:k; rk,

pkφk
1− pk + pk

∑
p φkp

)
(6.6)

where φk:, pk, rk are the topic-dependent global variables for which we have assumed a point
estimate.

In conclusion, the closed-form marginal document likelihood for PFA can be computed
exactly by solving,

p(yn:; Φ,p, r) =
∑

xn:∈Xyn:

K∏
k=1

NM

(
xn:k; rk,

pkφk
1− pk + pk

∑
p φkp

)
. (6.7)

Next, we present the computational cost to compute the exact marginal given by
Eq. (6.7) and discuss its tractability for real document collections and model sizes.

6.1.1.1 On the Complexity of the Closed-form Marginal

Evaluating Eq. (6.7) means summing the K independent marginals on xn:k over all elements
in the set Xyn: . As shown in Eq. (6.6), each marginal consists of a NM distribution which has
a cost linear with the number words in the vocabulary V in an unoptimised implementation
of NM, or linear with the number of non-zero words in the n-th document Vcn when all
zero words are jointly evaluated. Therefore, the cost of each summand is linear with both
the number of topics K and the number of non-zeros Vcn , since K marginals need to be
computed for each summand.

The number of sums in Eq. (6.7) equals the cardinality of the set |Xyn: |. The cardinality
is given by the product of the partitions in each word. The latter consist of the number
of partitions of a natural number, i.e. ynp, into K parts, which is the combinatorial term
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of selecting K − 1 objects from a collection of ynp + K − 1. Therefore, the overall number
of partitions for document n is

∏
{p|ynp 6=0}

(
ynp+K−1
K−1

)
, where {w|ynp 6= 0} corresponds to the

Vcn non-zeros in the n-th document.
In the limit, one can show that this set grows exponentially with both the number of

topics and the number of non-zeros O((ynmax)
KVc). We note that the base of the exponent

is the maximum word count in the n-th document ynmax. Therefore, the cost of summing
over the set |Xyn: | dominates the complexity of evaluating the exact marginal document
likelihood. If we compare this complexity with that of LDA, which is given by O(KLKL)
where L refers to the document length (Buntine, 2009), we note that the former grows faster
or equal than LDA’s. The equality is satisfied when all non-zero words in PFA have one
single count.

As a result, the exact evaluation of the marginal document likelihood for PFA is only
tractable for quite small problems, such as in models with 5 topics, documents with 10 non-
zero words and all words having 1 or 2 counts. However, the existence of this closed-from
expression motivates the development of tailored estimation methods and to calibrate their
outputs with the true values.

6.1.2 Analytic Marginal Document Likelihood for BPFA

Similarly, one can write down the marginal document likelihood for the augmented BPFA
model in Fig. 6.2b by making explicit the deterministic relationship between the observed
indicators bn: and the latent word counts yn:. That is to say, the marginal document
likelihood for BPFA can be expressed as,

p(bn:; Φ,p, r) =
∑

yn:∈Ybn:

∑
xn::∈Xyn:

∫
p(xn::, ln:; Φ,p, r) dln: (6.8)

where the set Ybn: = {yn: ∈ NV
0 | bn: = 1(yn:)} contains all non-negative vectors yn: of length

V whose elements are either 0 when the p-th word in the vocabulary is absent, bnp = 0, or
any positive integer when it is present, bnp = 1. Note that the inner summand corresponds
to the marginal document likelihood for PFA and hence it can be computed in closed-form,
as presented earlier. As a result, this marginal can be expressed as,

p(bn:; Φ,p, r) =
∑

yn:∈Ybn:

∑
xn:∈Xyn:

K∏
k=1

NM

(
xn:k; rk,

pkφk
1− pk + pk

∑
p φkp

)
(6.9)

where we note that the expression is analytic but has no closed-form due to the summation
over the infinite set Ybn: . As a result, the exact evaluation of the marginal document
likelihood for BPFA is not even tractable for downsized setups and hence, we need to
develop estimation methods to approximate it and bounds to sandwich the estimates and
evaluate its accuracy. Note that a lower bound could be built from Eq. (6.9) by truncating
the infinite sum over Ybn: to a finite number of terms, but we would still have to deal with
the complexity of the closed-form marginal inside the sum. In Chapter 8, we will explore a
different approach based on variational approximations with less computational cost.

Next, we review the existing estimation methods for marginal likelihoods in LVMs and
discuss which methods can be extended for the marginal document likelihood estimation in
PFA and BPFA.
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Method LDA PFA BPFA

Discrete DS Eq. (10) in (Wallach et al., 2009c) 7 7
IS-IP ≡ MFI Eq. (11) in (Wallach et al., 2009c) 7 7
Continuous DS Eq. (12) in (Wallach et al., 2009c) Eq. (6.11) Eq. (6.13)
Discrete HM Eq. (15) in (Wallach et al., 2009c) 7 7
Continuous HM 7 Eq. (6.14) Eq. (6.15)
AIS Algo. 1 in (Wallach et al., 2009c) 7 7
Chib-style Algo. 2 in (Wallach et al., 2009c) 7 7
Left-to-right Particle Sampler Algo. 3 in (Wallach et al., 2009c) 7 7
Left-to-right Sequential Sampler Section 3.6 in (Buntine, 2009) Chapter 7 Chapter 7

Table 6.1: Summary of existing likelihood estimation methods for LDA, PFA and BPFA.
7 indicates that the method has not been yet extended and/or its extension is not trivial.

6.2 Related Work

Wallach et al. (2009c) presented several estimation methods for evaluating LDA in terms
of the held-out likelihood. Buntine (2009) also compared the performance of these methods
against the exact calculation for the same LDA model. The conclusion of both studies
was that simple and commonly-used estimation methods fail to accurately estimate the
document likelihood, specially in high-dimensional scenarios. But Wallach’s Left-to-right
algorithm was also modified to a Sequential Sampler scheme and proven to be unbiased
by Buntine. Given the quick convergences and unbiasedness properties of the Left-to-right
Sequential Sampler, it can now be used as a gold standard for estimation in LDA with large
number of samples.

To the best of our knowledge, no prior work exists for document likelihood estimation
in PFA. However, it is natural to wonder whether LDA methods can be directly applied
in PFA. As we have seen previously, the Gamma-Poisson construction differs from that of
LDA and the computational cost of the exact marginal document likelihood is much higher.
Therefore, existing estimation methods (Wallach et al., 2009c; Buntine, 2009) for LDA have
to be amended accordingly. Next, we extend certain methods proposed for LDA and discuss
the hindrances for a straightforward extension of the rest. Table 6.1 provides a summary
of the existing methods for LDA and references to the parts of this thesis that extend some
of the methods for PFA and BPFA.

6.2.1 Direct Sampling (DS)

In contrast with LDA, DS (Direct Sampling) or IS (Importance Sampling) with the prior
as proposal cannot be formulated over the discrete variables in PFA, because the observed
counts yn: follow a deterministic relationship with the topic counts xn::. Therefore, DS has
to be formulated over the continuous variables ln: in the collapsed PFA model given in
Fig. 6.1a. The marginal document likelihood for the collapsed PFA model is given by,

p(yn:; Φ,p, r) =

∫
p(yn:|ln:; Φ)p(ln:; r,p) dln: (6.10)
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and it can be approximated by Monte Carlo sampling as,

p(yn:; Φ,p, r) ≈ 1

S

S∑
s=1

p(yn:|l(s)n: ; Φ,p, r) where l(s)n: ∼ p(ln:; r,p) , (6.11)

where the likelihood p(yn:|l(s)n: ; Φ,p, r) =
∏V

p=1 Pois(ynp; l
(s)
n: φ:k) is the product of V Poisson

distributions with rates computed from the product of vector l(s)n: and the topic matrix Φ.
Besides, the vector of l(s)n: is sampled from p(ln:; r,p) =

∏K
k=1 Ga(ln:; rk,

pk
1−pk

) the product
of K Gamma distributions parametrised with shape rk and scale pk

1−pk
.

Similarly, one can develop the DS method over the continuous variables ln: for the
collapsed BPFA model in Fig. 6.2a. Its marginal document likelihood can be expressed as,

p(bn:; Φ,p, r) =

∫
p(bn:|ln:; Φ)p(ln:; r,p) dln: (6.12)

and the DS sampler formulated as follows,

p(bn:; Φ,p, r) ≈ 1

S

S∑
s=1

p(bn:|l(s)n: ; Φ,p, r) where l(s)n: ∼ p(ln:; r,p) , (6.13)

where l(s)n: samples comes from the same K-variate Gamma distribution than in PFA and
the likelihood p(bn:, |l(s)n: ,Φ,p, r) =

∏V
p=1 Ber(bnp; 1− e−l

(s)
n: φ:p) is the product of V Bernoulli

distributions whose probabilities are a function of the product of vector l(s)n: and the topic
matrix Φ.

Although these DS estimators are theoretically unbiased, the main caveat is that the
proposal distribution, i.e. the prior, ignores the observed word counts and hence, the
estimator might require lots of samples to converge for high-dimensional scenarios, i.e.
K ↑↑ , where the posterior distribution is far from the prior.

6.2.2 Harmonic Mean (HM)

An alternative to the DS method is to use samples from the posterior distribution to build
an unbiased estimator known as the HM (Harmonic Mean) method (Newton and Raftery,
1994). This estimator, in contrast to that for LDA, cannot be built for the discrete counts
either, but only for the continuous factors ln: for the very same reasons. The HM method
for PFA is formulated as,

p(yn:|Φ,p, r) ≈ HM({p(yn:, |l(s)n: ,Φ,p, r)}Ss=1) where l(s)n: ∼ p(ln,:|yn:,Φ,p, r) , (6.14)

where p(yn:, |l(s)n: ,Φ,p, r) is the same likelihood than in Eq. (6.11) and l(s)n: are samples from
the posterior distribution on ln:. HM({.}Ss=1) indicates the harmonic mean across the S
probabilities. As explained in Section 2.5.1, one can sample the posterior via a Gibbs
sampling algorithm, that iteratively samples the complete conditionals of the augmented
PFA model in Fig. 6.1b, which is conditionally conjugate.

The HM method for BPFA is also formulated over the continuous variables ln: and
uses the likelihood distribution from Eq. (6.13) to calculate an estimate for the marginal
document likelihood as follows,

p(bn:|Φ,p, r) ≈ HM({p(bn:, |l(s)n: ,Φ,p, r)}Ss=1) where l(s)n: ∼ p(ln,:|bn:,Φ,p, r) , (6.15)
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where samples from the posterior on ln: can be also drawn through a Gibbs sampling
algorithm on the augmented BPFA model in Fig. 6.2b.

Although this method has been used for likelihood estimation in LDA-like topic mod-
els (Griffiths and Steyvers, 2004; Wallach, 2006), Newton and Raftery (1994) already ex-
pressed some reservations when introducing it due to the non-stable convergence and high
variance.

6.2.3 Other Sampling Methods

The deterministic relationship between the observed counts yn: and the latent topic counts
xn:: in PFA prevent the trivial extension of many state-of-the-art methods proposed for
likelihood estimation in LDA.

Apart from the discrete versions of DS and HM above, the IS-IP (Iterated Pseudo-
Counts) proposed in (Wallach et al., 2009c) and shown to correspond with a Mean-Field
Importance MFI (Mean Field Importance) sampler in (Buntine, 2009) cannot be directly
extended because it is based on sampling the discrete topic assignments. In the same
way, the AIS (Annealed Importance Sampling) (Neal, 2001), is based on sampling a series
of tempered distributions that transition between the prior and the posterior on the dis-
crete topic assignments. The Chib-style estimators (Murray and Salakhutdinov, 2009) also
chooses a “special” set of latent topic assignments and apply a transition operator in these
discrete state space. Finally, both left-to-right algorithms also sample the left-hand topic
assignments and there is no straightforward extension to PFA.

As a result of this, Chapter 7 will present an extension for the Left-to-right Sequen-
tial Sampler to PFA and BPFA and Chapter 8 will develop the idea of the MFI sampler
in (Buntine, 2009) for building VIS (Variational Importance Sampling) estimators for PFA
and BPFA, but also, more broadly, for other LVMs.

6.2.4 Other Evaluation Tasks

Zhou et al. (2012) have evaluated PFA models for topic modelling by computing likelihood
or perplexity scores on held out set of random words in the document-term matrix instead
of complete documents However, rigorous studies has not yet been conducted to validate
that this task is well correlated with the marginal likelihood and hence, these scores can be
misleading when comparing across different models.

A similar approach in LDA-like topic models consists in holding out the second half of
a document, while the first half is added to the training data. The evaluation task, known
as document completion (Wallach et al., 2009c), consists then in computing the probability
of the second half from an empirical estimate of the topic proportion of the document θn:,
which has been learned for the half documents added into the training. Although this
task is known to be well correlated but biased for LDA, rigorous studies have not yet been
conducted for PFA.

Therefore, the study of estimation methods for the marginal document likelihood in
PFA will also pave the way for calibrating evaluation tasks and to develop specialized and
unbiased sampling methods that approximate these tasks.
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6.3 Experimental Setup

The development of estimation methods for intrinsic evaluation of PFA models demands for
a robust experimental setup in which to evaluate the estimator properties. In particular, we
are interested on assessing the accuracy and the convergence speed of every method. While
the former is related to the number of samples needed to plateau, the latter is related to
whether or not the estimates are biased.

In what follows, we describe a way to determine whether an estimator is biased or not
in small scenarios where the exact computation is feasible. Then, we establish how to
assess the speed of convergence of an estimation method in small and realistic scenarios.
Finally, we present how to build both types of scenarios from publicly available document
collections, commonly used in topic modelling.

6.3.1 Assessing the Accuracy

We would like to measure the accuracy of an estimator in small and realistic scenarios.
To compare several document probabilities to their exact marginal, we propose to use

the KL (Kullback-Leibler) or relative entropy, which is a proper divergence measure for
probability distributions. We can interpret it as the number of extra bits added on aver-
age per word due to the use of estimated probabilities instead of the exact in decoding a
codebook of length the number of evaluated documents. In particular, we compute the KL
divergence of,

KL(p, p̂) =
N+1∑
n=1

pn log
p̂n
pn

(6.16)

where p = {p1, ...pN , pN+1} is the set of probabilities for the N documents plus the probabil-
ity of any other document pN+1 = 1−

∑N
n=1 pn. A low KL value means that the estimation

method has accurately approximated the exact marginal likelihood.

6.3.2 Assessing the Convergence in Realistic Scenarios

To study the convergence in realistic scenarios, we plot the marginal document likelihood
for all documents as function of the number of samples. The log of this likelihood enables
to visually analyse and compare the speed of convergence of different methods. The faster
this curve reaches the plateau, the better the convergence.

6.3.3 Document Collections

Finally, Table 6.2 contains the 6 collections that we propose to use for the experimentation.
Note that these collections are ordered decreasingly on the average document length, being
data sets at the top commonly used as long text representatives, while those at the bottom
are commonly used for short text studies.
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Data set Vocabulary Documents Document Length

NIPS Proceedings 11,463 5,811 1, 899± 513
Associated Press (AP) 10,473 2,246 194± 111
20Newsgroups (20NGs) 11,928 18,846 123± 247
Reuters 8,843 19,043 79± 75
Twitter 6,344 10,523 25± 4
Web Snippets (WS) 4,679 12,309 9± 3

Table 6.2: Document collections.

All data sets, except NIPS which was used as it is published1, were pre-processed by
removing stopwords, non-letters and words with two or less characters. We have also applied
Porter Stemming and filtered out words that appeared less than 5 times or in more than
50% of documents. The processed data sets can be freely access in Capdevila (2018).

To build data sets for tractable scenarios, vocabularies were cropped to the 100 most
frequent words and only those documents that lead to a number of partitions lower than
109 in a model with K = 5 topics were kept.

Finally, to build the binarised data sets, word counts in the pre-processed documents
are simply encoded as “1” if the counts are non-zero and as “0” if they are zero.

6.4 Summary and Conclusion

In this chapter, we discussed the intrinsic evaluation of PFA models, like GaP, its non-
parametric counterparts (i.e. PFA) and its binary extensions (i.e. BPFA). As presented
earlier in Section 2.6.1, the intrinsic evaluation of probability models can be conducted
through the posterior predictive probability of the held-out documents. We showed that
one can similarly evaluate PFA models by approximating this probability taking point esti-
mates of the global variables and then marginalizing out the local variables in the resulting
joint distribution of the observed and latent variables. Although there exists a closed-form
expression for this marginal in PFA (but not for BPFA), we showed that its calculation is
only tractable for reasonably small setups, such as models with up to 5 topics and documents
with up to 10 non-zero words whose counts are all less than 3. Therefore, we highlighted
the need to approximate this intractable marginal in an unbiased manner for more realistic
scenarios, in order to use the predictive probability on the held-out data as an intrinsic
evaluation metric useful for comparing different models.

The existing literature has addressed the same problem for the LDA model, but, to our
best knowledge, no prior work exists for PFA. Moreover, we showed that the problem is far
more intractable in PFA than in LDA and the same estimation methods might not directly
apply. As a result, in this chapter we extended simple estimation methods (DS and HM) and
we laid down the experimental setup to compare the accuracy and convergence properties
of different estimators in tractable and intractable scenarios. In the next chapters, we
will address the estimation problem by extending the state-of-the art method in LDA and
proposing novel approaches to approximate this marginal. Furthermore, we will conduct

1https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
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thorough experimentation and study the accuracy and convergence of these estimators in
small and large scenarios.



7
Left-to-right Sequential Samplers

“Dı̄vide et ı̄mpera”
Philip II of Macedon

Capdevila, J., Cerquides, J., Torres, J., Petitjean, F., and Buntine, W. (2018c). A left-to-right
algorithm for likelihood estimation in gamma-poisson factor analysis. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 638–654. Springer

In the previous chapter, we showed that computing the probability of a single document
in PFA (Poisson Factor Analysis) requires integrating out all local latent variables. By
means of the augmented PFA model in Fig. 6.1b, we derived a closed-form expression for
this marginal document likelihood, whose complexity grows exponentially with the number
of topics and the number of non-zero words in the document. Furthermore, the base of the
exponential depends on the maximum count of any word in the document. This means that
the computation of the exact marginal is only feasible in reasonably small setups. Thus,
approximation methods to the marginal document likelihood are essential for evaluating
PFA under more realistic conditions.

Simple approximation methods, such as DS (Direct Sampling) or the HM (Harmonic
Mean) method (Newton and Raftery, 1994), are known to produce inaccurate estimations,
particularly in high-dimensional setups. Despite this, their ease of implementation and low
computational cost have encouraged their use in LDA-like models (Griffiths and Steyvers,
2004; Wallach, 2006). Against this background, there is a need for more accurate and
computationally efficient estimation methods. One approach which has been reported to
produce state-of-the-art results in LDA (Latent Dirichlet Allocation) is the Left-to-right
Sequential Sampler (Buntine, 2009). By leveraging on the chain rule of probability, the

99
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algorithm decomposes the joint document probability into a product of conditionals, one
conditional per word. Then, unbiased estimates can be built for each conditional given the
posterior samples on the left-hand topics.

However, three issues arise due to the Gamma-Poisson construction in PFA:

1. The posterior distribution over the left-hand topic counts is not tractable.

2. The computational cost of each conditional is exponential in the number of topics.

3. The time complexity grows quadratically in the number of non-zero words.

In this chapter, we propose a left-to-right sequential sampler for PFA called L2R that
addresses (1) by means of Gibbs sampling on the augmented model, (2) via Importance
Sampling with proposal distributions that condition on the left-hand samples (3) through a
mathematical simplification that enables computing the conditional probability for all zero
words at once. For the sake of comparison, we also introduce the vanilla L2R, a left-to-right
sequential sampler that computes the exact condition of (2) in small setups.

Moreover, we extend the L2R sampler for the BPFA (Bernoulli PFA) model whose
marginal document likelihood can be computed from that of PFA, as indicated by Eq. (6.9).
Despite the fact that we show that this model enables the computation of the exact con-
ditionals in (2), the left-hand topics in (1) are not constrained to sum up to the observed
counts but to some latent counts which can be any non-negative integer. As a result, we
note that the sampling space of the left-hand counts in BPFA is not finite and it entails
the probability mass to spread over larger regions than in PFA. Due to these differences, it
is important to empirically validate the performance of the BPFA estimator in short and
long binarised text too.

Therefore, we compare the accuracy of L2R to that of DS and HM methods,

• for PFA in reasonably small setups, where the exact marginal can be assessed in
moderate time and hence, conclusions about their accuracy can be drawn;

• for PFA and BPFA in realistic scenarios, where the exact marginal and the vanilla
left-to-right are computationally infeasible and hence, only their convergence can be
studied.

In the rest of this chapter, we first describe the L2R algorithm for PFA in Section 7.1
where we address the three above-mentioned issues. Then, we extend the L2R sampler for
the BPFA model and we show the main differences in sampling the left-hand counts and
computing the exact conditionals. Section 7.3 contains the experiments carried out in both
scenarios for both models. We conclude this chapter in Section 7.4 summarising the main
contributions and pointing at open problems.

7.1 A Left-to-right Sampler for PFA
In this section we present L2R, a left-to-right sequential sampler for PFA. L2R builds on
the general product rule of probability, in which any joint distribution can be decomposed
into the product of several conditionals. By considering a left-to-right order of words, the
joint probability of a document is decomposed by the product of V conditional probabilities
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where each is conditioned on the preceding left words. We can express this decomposition
for PFA as,

p(yn:; Φ,p, r) =
V∏
p=1

p(ynp|yn<p; Φ,p, r) (7.1)

where "< p" refers to words on the left side of p. Nonetheless, the exact calculation of
these conditionals is still intractable. We now introduce the left-hand topic counts xn<p:
and marginalize them out as follows,

p(yn:; Φ,p, r) =
V∏
p=1

∑
xn<p:

p(ynp, xn<p:|yn<p; Φ,p, r). (7.2)

Given that the p-th word count, ynp, is conditionally independent from the left-hand
counts yn<p given their topic counts xn<p:, the joint probability above can be split into two
factors as,

p(yn:; Φ,p, r) =
V∏
p=1

∑
xn<p:

p(ynp|xn<p:; Φ,p, r)p(xn<p:|yn<p; Φ,p, r). (7.3)

This expression uncovers a sampling structure which suggests to draw samples from the
posterior over the topic counts on the left-hand side of p and to evaluate the conditional
probability of the current word count given these left-hand samples. In other words, the
two step process can be summarised as follows,

x
(s)
n<p: ∼ p(xn<p:|yn<p; Φ,p, r) (7.4)

p(yn:; Φ,p, r) ≈
V∏
p=1

1

S

S∑
s=1

p(ynp|x(s)
n<p:; Φ,p, r) (7.5)

or expressed through a simplified Left-to-right sequential sampler depicted in Algorithm 7.1.
Given S samples, the n-th document yn: and the global point estimates {Φ,p, r}, the algo-
rithm loops though the V words in the vocabulary and for each word compute its conditional
probability on the left-hand word counts (line 5). Each conditional is then approximated
via Monte Carlo sampling by drawing S samples from the posterior distribution over the
left-hand topic counts (line 3) and evaluating its likelihood (line 4). Finally, the marginal
document likelihood is computed by multiplying the V unbiased estimations of the condi-
tionals.

Algorithm 7.1: Simplified pseudocode for L2R algorithm.
input : S, yn:,Φ,p, r
output: p(yn:; Φ,p, r)

1 for p← 1 to V do
2 for s← 1 to S do
3 x

(s)
n<p: ∼ p(xn<p:|yn<p; Φ,p, r)

4 p(ynp|x(s)
n<p:; Φ,p, r) ← p(ynp|x(s)

n<p:; Φ,p, r)

5 p(ynp|yn<p; Φ,p, r) = 1
S

∑
s p(ynp|x

(s)
n<p:; Φ,p, r)

6 p(yn:; Φ,p, r) ≈
∏

p≤V p(ynp|yn<p; Φ,p, r)
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Next, we present a method for drawing samples from the posterior on the left-hand topic
counts in Eq. (7.4) and a strategy to approximate the inner conditionals in Eq. (7.5). This
will enable us to address the first two issues mentioned in the introduction. Then, we show
that by re-ordering documents in a particular way, we can compute the product in Eq. (7.5)
across the non-zero words in the n-th document Vcn , which addresses the third issue. Finally,
we summarise all these contributions in the pseudo-code for the L2R algorithm and discuss
its computational complexity.

7.1.1 Sampling the Left-hand Topics from Word Counts

The posterior distribution in Eq. (7.4) does not have a closed-form expression due to the in-
tractable normalising constant. Therefore, a common thing to do is to build a Gibbs sampler
to draw samples from it. However, the complete conditionals p(xnp′:|x¬p

′

n<p:, yn<p; Φ,p, r) ∀p′ <
p do not admit a computationally feasible sampler due to the conditioning on the observed
counts ynp′ .

One way to sample from this posterior is to consider the augmented PFA model in
Fig. 6.1b, but only over the left-hand side of p. This augmentation makes the model locally
conjugate and it enables the derivation of the complete conditionals as,

p(lnk|−) = Ga

(
lnk; rk +

∑
p′<p

xn<p′k,
pk

1− pk + pk
∑

p′<p φkp′

)
∀k ≤ K (7.6)

p(xnp′:|−) = Mult
(
xnp′:; ynp′ ,

φ:p′ln:∑
k φkp′lnk

)
∀p′ < p (7.7)

where “|−)" refers to all variables except the conditioned. These expressions can be inte-
grated in a Gibbs sampling scheme, as explained in Section 2.5.1, in which we first sample
Eq. (7.6) and then each of the left word counts as in Eq. (7.7), or vice-versa. However, only
samples from the left-hand topics need to be recorded for the L2R algorithm.

7.1.2 Approximating the Conditional Probability

The inner conditional probability in Eq. (7.5) can be expressed as the sum of the marginal
on xnp: over all possible topic counts, which must add up to the p-th word count ynp. Given
that topic counts are independent among them, the marginal also factorises. We can write
this as,

p(ynp|x(s)
n<p:; Φ,p, r) =

∑
xnpk∈Xynp

K∏
k=1

p(xnpk|x(s)
n<pk;φk:, pk, rk). (7.8)

where the summation set Xynp = {xnp: ∈ (N ∪ 0)K | yn: =
∑K

k=1 xn:k} has cardinality∣∣Xynp

∣∣ =
(
ynp+K−1
K−1

)
.

The marginal above, which is conditioned on the left samples, can be derived by lever-
aging on the augmented model. By introducing lnk, the probability of the actual count
xnpk becomes conditionally independent of the left samples x(s)

n<pk given the introduced lnk.
Therefore, the left samples influence the probability over lnk, but not that over xnpk as
shown,
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p(xnpk|−) =

∫
p(xnpk|lnk;φkp)p(lnk|x(s)

n<pk;φk:, pk, rk) dlnk (7.9)

where "−)" refers to the set {x(s)
n<pk, φk:, pk, rk}.

In the integral above, we substitute the probability over xnpk for Pois(xnpk; lnkφkp) and
that over lnk for the complete conditional in Eq. (7.6). The resulting integral corresponds
to a NB (Negative Binomial) 1 parameterized as follows,

p(xnpk|−) = NB

(
xnpk; rk +

∑
p′<p

x
(s)
np′k,

φpkpk
1− pk + pk

∑
p′≤p φp′k

)
. (7.10)

Although it is possible to compute the exact conditional probability through the closed-
form expression given by Eq. (7.8), its computational cost still grows exponentially with
the number of topics (note that the exponential growth is now independent of the number
of non-zeros) and hence it is only tractable for a small number of topics or word counts ynp.

Therefore, our alternative to the exact calculation consists in replacing the complicated
sum in Eq. (7.8) with a Monte Carlo estimate. To do that, we propose to perform Impor-
tance Sampling, described in Section 2.5.3, with a proposal distribution which is conditioned
on the left samples as follows,

Q(xnp:|x(s)
n<p:;φ:p,p, r) = Mult(xnp:; ynp,∝ φ:pEp(ln:|x(s)n<p:,Φ,p,r)

[ln:]) (7.11)

where expectation over ln: is computed w.r.t the complete conditional in Eq. (7.6). Given
that this proposal is built taking into account the left-hand samples, the proposal will be
close to the marginal xnp: as long as the left counts are good predictors of the target.

Finally, we estimate the conditional probability as,

x(s′)
np: ∼ Q(xnp:|x(s)

n<p:;φ:p,p, r)

p(ynp|x(s)
n<p:; Φ,p, r) ≈ 1

S ′

∑
s′

p(x
(s′)
np: |x(s)

n<p:; Φ,p, r)

Q(x
(s′)
np: |x(s)

n<p:;φ:p,p, r)
(7.12)

where S ′ corresponds to another set of samples which replace the intractable sum in
Eq. (7.8). However, we will show in the experiments that with one single sample S ′ = 1, we
can provide an accurate approximation in situations where the topics for the p-th word are
likely to be predicted from the preceding topics, which is often the case if some thematic
structure exists in the corpus.

7.1.3 Dealing with Zero Words

The left-to-right decomposition rule in Eq. (7.1) does not impose any specific word order
to be valid. Besides, the inspection of the exact conditional formula from Eqs. (7.8) (7.10)
reveals that words without counts contribute with a tractable term which only depends on
the left-hand counts.

This suggests that if we reorder documents in such a way that all non-zero words pre-
cede zeros, we can reuse the posterior samples drawn for non-zero words to calculate the

1the NB probability distribution is given in Eq. (B.12)
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probability of zeros. Note that zeros do not contribute to the posterior sampling over the
left-hand topics. This allows to build a conditional probability for all words without counts
p ≥ vz that occur after the non-zeros p < vz. A closed-form expression can be derived for
this probability which can be computed in linear time with the number of topics as,

p(yn≥vz |x
(s)
n<vz :; Φ,p, r) =

∏
k

(
1− pk + pk

∑
p<vz

φpk

1− pk + pk
∑

p≤V φpk

)rk+
∑
p<vz

x
(s)
npk

. (7.13)

By re-ordering the document, reusing the posterior samples and the mathematical sim-
plification shown above, we can speed up the algorithm from computing the conditional
probability across all words in the vocabulary V to only those with non-zero counts Vcn .
Given that for most corpora, the vocabulary size is widely larger than the non-zero words
per document (V � Vcn), this makes a critical enhancement to the time-complexity of this
algorithm as we show later.

7.1.4 Algorithm Pseudocode

In Algorithm 7.2, we present the pseudocode of L2R, summarising the developments from
the previous sections. The input data consists of the number of samples S used to approxi-
mate each of the factors in the left-to-right decomposition, the number of samples S ′ to draw
from the proposal distribution in the case of sampled conditionals, the n-th document yn:

sorted as in Section 7.1.3 and the point estimates for the global parameters Ω = {Φ,p, r}.
The algorithm outputs the approximate marginal document likelihood p(yn:; Φ,p, r).

Algorithm 7.2: Pseudocode for L2R algorithm.
input : S, S ′, yn:, Ω = {Φ, p, r}
output: p(yn:; Ω)

1 for p← 1 to Vcn do
2 for s← 1 to S do
3 x

(s)
n<p: ← PostSamp(x(s)

n<p:, Ω); Eqs. (7.6) (7.7)
4 p(ynp|x(s)

n<p:; Ω) ← CondProb (x(s)
n<p:, Ω, S ′); Eq. (7.12)

5 p(ynp|yn<p; Ω) = 1
S

∑
s p(ynp|x

(s)
n<p:; Ω)

6 vz ← Vcn + 1
7 for s← 1 to S do
8 x

(s)
n<vz : ← PostSamp(x(s)

n<vz :, Ω); Eqs. (7.6) (7.7)
9 p(yn≥vz |x

(s)
n<vz :; Ω) ← CondProbZeros (x(s)

n<vz :, Ω); Eq. (7.13)

10 p(ynvz |yn<vz ; Ω) = 1
S

∑
s p(yn≥vz |x

(s)
n<vz :; Ω)

11 p(yn:; Ω) ≈
∏

p≤vz p(ynp|yn<p; Ω)

From line 1 to 5, the algorithm approximates the conditional distributions for non-zero
words by computing the averaged probability across S samples for each word. To approx-
imate this conditional probability, the algorithm uses the Importance Sampling scheme
defined in Eq. (7.12).



7.2. A LEFT-TO-RIGHT SAMPLER FOR BPFA 105

From line 6 to 10, the algorithm approximates the conditionals for all words without
counts following the same procedure as for non-zeros, except that the conditional for all
non-zeros is computed at once in line 9 through its exact form given by Eq. (7.13).

The final estimate for marginal document likelihood is built from the product of the
Vcn + 1 probabilities in line 11.

7.1.5 On the Time Complexity of the L2R Algorithm

The time complexity of the L2R algorithm can be derived from the cost of the subprocesses
of Algorithm 7.2. We first note that the cost of computing the conditionals for all non-zero
words dominates over that of zeros because line 4 is linear in both the number of samples
S ′ and the number of topics K, whereas line 9 is only linear in the latter. The cost of the
posterior sampling process in line 3 and 8 is also linear in the number of topics K and the
number of non-zero words in the n-th document Vcn . Therefore, the overall cost is given by
O(SVcn(Vcn +K +S ′)) which is quadratic in the number of non-zero words. Note also that
without the optimization of zeros it would have been quadratic in the vocabulary size and
without the approximate conditionals, exponential in the number of topics.

7.2 A Left-to-right Sampler for BPFA

The L2R sampler can be extended for the BPFA model following the same process than in
Section 7.1. We next repeat these developments for BPFA to show that the sampler has
the same structure but different ways to compute the left-hand topics and its conditionals.

We start with the chain rule of probability that enables to decompose the marginal
document likelihood from left to right into V conditional probabilities, one probability for
each word in the vocabulary conditioned on their left-hand words. That is to say,

p(bn:; Φ,p, r) =
V∏
p=1

p(bnp|bn<p; Φ,p, r) (7.14)

where bn: to indicate the binary vector of size V that indicates the presence or absence of
each word in the n-th document. Similar to PFA, bnp is the indicator for the p-th word in
the n-th document and bn<p are the indicators on the left-hand side of p. As defined in
Section 6.1, Φ,p, r are the point estimates for the global variables of BPFA.

As in Eq. (7.2), we introduce the left-hand topic counts xn<p and marginalize them out,

p(bn:; Φ,p, r) =
V∏
p=1

∑
xn<p

p(bnp, xn<p|bn<p; Φ,p, r). (7.15)

Finally, the indicator of the p-th word, bnp, is conditionally independent from the left-
hand indicators, bn<p given these left-hand counts xn<p, and hence, we can split the joint
distribution above in,

p(bn:; Φ,p, r) =
V∏
p=1

∑
xn<p

p(bnp|xn<p; Φ,p, r)p(xn<p|bn<p; Φ,p, r). (7.16)
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This leads to the same sampler structure than in PFA, but we now have a document as
a vector of indicators bn: instead of a vector of counts yn:. That is,

x
(s)
n<p: ∼ p(xn<p:|bn<p; Φ,p, r) (7.17)

p(bn:; Φ, p, r) ≈
V∏
p=1

1

S

S∑
s=1

p(bnp|x(s)
n<p:; Φ,p, r) (7.18)

where the differences with the PFA sampler are in the posterior probability on the left-hand
topics, Eq. (7.17), and in the conditional probability, Eq. (7.18). We next review how we can
sample the left-hand topic counts from the left-hand indicators, as well as how to calculate
the conditional probability of the p-th indicator in the n-th document.

7.2.1 Sampling the Left-hand Topics from Word Indicators

Similar to PFA, the posterior distribution in Eq. (7.17) does not have a parametric distri-
bution easy to sample from. Therefore, one can draw xn<p: samples from the augmented
BPFA model which includes the latent factors ln: and counts yn:. Through this augmen-
tation, one can derive the corresponding complete conditionals and integrate them in the
Gibbs sampling scheme. The complete conditionals are given by,

p(lnk|−) = Ga

(
lnk; rk +

∑
w′<w

xn<w′k,
pk

1− pk + pk
∑

w′<w φkw′

)
∀k ≤ K (7.19)

p(xnp′:|−) = Mult
(
xnp′:; ynp′ ,

φ:p′ln:∑
k φkp′lnk

)
∀p′ < p (7.20)

p(ynp′|−) =

{
0, if bnp′ = 0

Pois+ (ynp′ ;
∑

k φkp′lnk) , if bnp′ = 1
∀p′ < p (7.21)

where Eq. (7.19) corresponds to the same K Gamma distributions conditioned to the left-
hand topic counts than in Eq (7.6). Likewise, Eq. (7.20) samples the left hand p′ < p topic
counts from Multinomials conditioned to the ln: factors and word counts ynp′ . However, the
word counts ynp′ are now latent and Eq. (7.21) establishes how to sample them. It does it
from a zero-truncated Poisson distribution if the word in present, bnp′ = 1, or it forces the
counts ynp′ to be zero if the word is absent, bnp′ = 0. Again, only samples from the left-hand
topics xn<p: have to be recorded for the L2R algorithm in BPFA.

We note that the sampling of the counts for each word increases vastly the sampling
space of BPFA in comparison to that of PFA. Thus, we expect that the sampling of this
extra count variable to impact negatively the convergence of this estimator, specially for
long documents (with lots of present words). However, we need to quantify empirically how
badly this extra sampling compromises the estimation.

7.2.2 Computing the Conditional Probability

The conditional probability in Eq. (7.18) can be expressed as the marginals over the latent
variables xnp: and ynp of their conditional on the left-hand samples. We can write this as,

p(bnp|x(s)
n<p:; Φ,p, r) =

∑
ynp∈Ybnp

∑
xnpk∈Xynp

K∏
k=1

p(xnpk|x(s)
n<pk;φk:, pk, rk) (7.22)
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where Xynp is the same summation set than in Eq. (7.8) and Ybnp = {ynp ∈ N0 | bnp =
1(ynp)}. Because of this double marginal and the fact that Ybnp is not finite, the evaluation
of this conditional seems far more intractable than in PFA, but fortunately the binary states
of bnp enable to exactly compute this conditional with very little cost. We first note that an
absent word bnp = 0 reduces the set to Ybnp = {0} and hence, the set Xynp = {(0, ..., 0)}. As
a result, the probability for an absent word is basically the product of the K probabilities,
each evaluated at 0. Second, the probability of a present word is simply one minus the
probability of the absent word, given that both must add up to 1. Mathematically, that is
to say,

p(bnp|x(s)
n<p:; Φ,p, r) =

{∏K
k=1 p(xnpk = 0|x(s)

n<pk;φk:, pk, rk), if bnp = 0

1−
∏K

k=1 p(xnpk = 0|x(s)
n<pk;φk:, pk, rk), if bnp = 1

(7.23)

where p(xnpk = 0|x(s)
n<pk;φk:, pk, rk) is given by the same NB distribution in Eq. (7.10).

Finally, we note that the posterior sampling in the previous section and the exact com-
putation of the conditional probability can be integrated in the same Algorithm 7.2 by
replacing Eqs. (7.6) (7.7) by Eqs. (7.19) (7.20) (7.21) in lines 3 and 8 and Eq. (7.12) by
Eq. (7.23) in line 4. Because, one can deal with all absent words equally than with zero
words in PFA, the probability for all zero words in Eq. (7.13) can be still used for the BPFA
L2R. Therefore, the time complexity for this algorithm is O(SVcn(Vcn +K)), which is faster
than that for PFA since it does not require to draw the S ′ importance samples, but it is
still quadratic with the number of absent words in the n-th document Vcn .

7.3 Empirical Evaluation

In this section, we present the comparison of the proposed L2R algorithms against DS and
HM methods for PFA and BPFA. Following the experimental setup described in Section 6.3,
we evaluate the accuracy of the three PFA samplers by comparing their estimates to the
exact marginal likelihood in reasonably small setups and we also study the convergence
properties of these methods for PFA and BPFA in more realistic scenarios. The lack of
a closed-form expression for the marginal of BPFA hampers the comparison of the BPFA
samplers with the exact. The code for all estimation methods has been made public2, the
document collections have been presented in Section 6.3.3 and the configuration parameters
for training the corresponding models as well as for setting up the samplers are presented
next.

7.3.1 Model Training and Samplers Settings

Among all possible PFA models, we have chosen to train the βΓ-PFA model (Zhou et al.,
2012), which considers the non-marked Beta Process on p, so it does not infer the r vari-
ables as in βγΓ-PFA. The motivation to choose βΓ-PFA is that it corresponds to the
non-parametric version of GaP (Gamma Poisson) (Canny, 2004) which was proposed as an
alternative to LDA (Blei et al., 2003) and it is considered to be the most basic Poisson fac-
tor analysis model. Besides, the non-parametric prior of βΓ-PFA allows us to avoid model

2https://github.com/jcapde/L2R

https://github.com/jcapde/L2R
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selection on a critical parameter such the number of topics. Despite the choice of βΓ-PFA,
the estimators developed in this chapter are valid for βγΓ-PFA and many other PFA mod-
els. For estimation purposes, these two models only differ on the global parameters, and
hence, we expect to reach the same conclusions if βγΓ-PFA would have been used.

The hyperparameters of the βΓ-PFA are set according to (Zhou et al., 2012). We use
a symmetric Dirichlet prior η = 0.1 on the topic distributions Φ. The finite Beta Process
uses ε = 0.01 and c = 1. Besides, the shape hyperparameters on the Gamma-distributed
factors r are set all to 1. Then, the training of this model is performed through the Gibbs
Sampling algorithm described in (Zhou et al., 2012). We decide to run the algorithm for
1,000 iterations and to discard a burn-in period of 500 samples. The algorithm also uses
an upper-bound for the number of topics Kmax which is set to ε−1 = 100 for realistic
document collections and Kmax = 5 (and hence, ε = 0.2) for downsized collections. The
point estimates for the global parameters Φ,p are calculated as the averages across the last
500 samples.

For BPFA, we have instead chosen to train the βγΓ-BPFA model which does infer both
p and r variables, because it is used later on as candidate for comparing different probability
models on binarised text. Moreover, we have also considered placing a Gamma prior on the
symmetric hyperparameter η of the Dirichlet distributions over Φ, which usually provides
extra capacity to learn more meaningful topics. The choice of this BPFA model is motivated
by its use later in the thesis as a candidate topic model in binarised text. However, we note
that the estimators are also valid for BPFA models without prior on η and, obviously,
without inference of r variables.

The hyperparameters of the βγΓ-BPFA are set as follows. We use a Gamma distribution
with shape and scale equal to 1 for the prior on the symmetric hyperparameter η of the
Dirichlet distribution. The finite Beta Process uses ε = 0.005 and c = 1. Besides, the
Gamma random variables used to mark the Beta Process uses c0 = 1 and r0 = 1. Then,
the training is also performed through a Gibbs Sampling algorithm that samples η, r and
the latent counts Y = {y1:, ..., y1N} on top of the variables in the βΓ-PFA above. We also
run the algorithm for 1,000 iterations and we discard a burn-in period of 500 samples. The
algorithm also considers an upper-bound for the number of topics Kmax which is set to
ε−1 = 200. Averages for the point estimates of the global variables are computed across the
last 500 samples.

For both models, we have adapted the MATLAB code3 to use the hyperparameters and
settings above, which are also summarised in Table 7.1.

Regarding the samplers, we vary the number of samples up to S = 10, 000 for all three
methods in both PFA and BPFA, and we use S ′ = 1 for L2R to keep the same overall
number of samples for all estimators.

3https://mingyuanzhou.github.io/Softwares/NBP_PFA_v1.zip

https://mingyuanzhou.github.io/Softwares/NBP_PFA_v1.zip
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Hyperparameter βΓ-PFA βγΓ-BPFA

η 0.1 ∼ Ga(1, 1)
Kmax 100 200
ε 0.01 0.05
c 1 1
rk 1 ∼ Ga(c0r0 = 1, 1/c0 = 1)
Burn-in 500 500
Collect 500 500

Table 7.1: Hyperparameters and configuration.

7.3.2 Experiments with PFA in Downsized Collections

As described in Section 6.3.3, the collections in this experiment are downsized to a vocabu-
lary of 100 words and only documents whose counts give rise to a cardinality of the set Xyn:

smaller than 109 are kept. As a result, 1,000 documents are considered for each collection
from Table 6.2, except for NIPS and AP which only contain 1 and 460 documents with a
tractable marginal, respectively.

In this experiment, we also include the L2R with the exact conditionals given by
Eqs. (7.8)-(7.10) to compare against the proposed importance sampling approach. More-
over, each experiment is repeated 10 times and we plot their mean and standard error.
Fig. 7.1 plots the KL (Kullback-Leibler) divergence between the exact and estimated prob-
abilities as a function of the number of samples for the 4 estimation methods.

Figure 7.1: Relative Entropy or KL between the estimated document probabilities and the
exacts as a function of samples used (Lower KL is better).

Results show that L2R with exact conditionals achieves the lowest KL across all 6 data
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sets, followed very closely by the proposed L2R algorithm with S ′ = 1 which obtains the
second lowest KL in 4 data sets. We note that L2R performs worse than DS in Twitter and
WS data sets, which both are the shortest text data sets. This poor performance in short
text could be explained from the fact that vanilla topic models struggle to learn predictive
topic structure due to few word co-occurrence in a document, and hence the proposal in
Eq. (7.11) is not close enough to the target to accurately estimate the conditionals with a
single sample.

In Fig. 7.2, we have compared the quality of L2R vs DS, as per the results obtained in
the last sample of Fig. 7.1, as a function of the average document length of the downsized
corpora. We observe that the KL divergences between the exact and approximate estimates
in long text data sets are far smaller in L2R than in DS.
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Figure 7.2: KL divergence ratios of L2R and DS estimates.

7.3.3 Experiments with PFA in Realistic Collections

In Fig. 7.3, we plot the log-likelihood of 1,000 documents as a function of samples for the
three methods that scale to the realistic collections described in Section 6.3.3 and the upper
bound for the number of topics set to Kmax = 100.

Results show that L2R converges faster than DS in all six collections. The HM method
also has a good convergence rate in the four data sets with longest documents, although the
inaccuracy reported previously suggests that the method might over-estimate the document
likelihood like in LDA (Wallach et al., 2009c; Buntine, 2009). In contrast, the DS method
plateaus much slower than any other method across the six collections and specially in long-
text, which could indicate that this estimator might be under-estimating the likelihood in
high-dimensional scenarios like this.

Therefore, the fast convergence and the fact that its estimates are sandwiched by esti-
mators that tend to under- and over- estimate, validates L2R’s use for document likelihood
estimation in PFA with just a few hundred samples.
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Figure 7.3: Document log-likelihood as a function of the number of samples in PFA.

7.3.4 Experiments with BPFA in Realistic Collections

Finally, we present the experiments with BPFA which are conducted on four of the binarised
collections in Table 6.2, two representatives of long text (i.e. NIPS and 20Newsgroups) and
two of short text (i.e. Twitter, WS).

As shown in Fig. 7.4, the proposed L2R does not converge even with 10,000 samples
in long text collections and although its convergence improves in shorter text, it is only
comparable to that of the basic DS method. We attribute this poor performance specially
in long text to the large sampling space of the left-hand topics described in Section 7.2.1.
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7.4 Summary and Conclusion
In this chapter, we proposed L2R, a left-to-right sequential sampler for estimating the
marginal document likelihood in PFA and BPFA. For both models, we introduced a Gibbs
sampling scheme to draw the left-hand topics from the word counts yn: in PFA and word
indicators bn: in BPFA. For PFA, we showed that the conditional probabilities to the left-
hand samples were intractable and hence, we proposed an approximating method based
on IS (Importance Sampling). On the contrary, these same conditionals for BPFA were
tractable to compute in an exact manner. For both, the estimators could benefit from
grouping all zero words at the right-hand side to assess their conditional probability at
once and reduce the overall computational cost. Nonetheless, we showed that the time
complexity of both estimators is quadratic with the average number of non-zero words.

We then evaluated the L2R samplers in long and short text collections. We analysed
the accuracy of the proposed L2R sampler for PFA by comparing its estimates to the
exact marginal probability in reasonably small setups. We observed that while it performed
similar to the same left-to-right method with exact conditionals in long text, its accuracy
dropped in short text because of the approximated conditionals. In more realistic setups,
the convergence of the L2R estimator with approximated conditionals by means of one
importance sample was faster than any other in both short and long text. These results
encourage the use of the L2R sequential sampler for evaluating and comparing PFA topic
models, specially in long text collections.

Regarding the convergence analysis of the L2R sampler for BPFA, we showed that the
method does not plateau even with 10,000 samples in long text collections. Since this
method can compute the conditional probabilities exactly, we associate the poor perfor-
mance in the binarised model to the unbounded sampling space on the left-hand topics.
This hypothesis is reinforced by the fact that the same method in shorter documents, and
hence, smaller sampling spaces achieves a very good performance.

In the next chapter, we will explore other estimation methods capable of reducing the
time complexity of L2R, which is quadratic in the number of non-zero words, and sometimes
impractical for large collections. Moreover, the poor performance of the L2R for BPFA in
long text collections also demands to revisit other estimation methods whose sampling
process is more focused towards the high probability regions or methods with a completely
different sampling space.



8
Mean-field Variational Importance Sampling

“All exact science is dominated by the idea of approximation”
Bertrand Russell

The left-to-right algorithm presented in the previous chapter had a computational cost
quadratic with respect to the number of non-zero words, due to the sampling of the topics
on the left-hand side of each word in the document. Besides, the performance of this algo-
rithm for binarised counts was specially poor in long text documents due to the unbounded
sampling space of topics and words. Therefore, there is a need for more accurate PFA
likelihood estimation methods with sub-quadratic cost.

In this chapter, we address the issues above through an alternative algorithm that ap-
proximates the marginal document likelihood by means of IS (Importance Sampling) 1 for
both PFA (Poisson Factor Analysis) and BPFA (Bernoulli PFA). Instead of leveraging on
the chain rule of probability, we leverage on variational inference to define a normalised
proposal that approximates the posterior distribution, that is VIS (Variational Importance
Sampling). In particular, we consider a variational distribution in the mean-field family,
i.e. a fully factorised distribution on the parameters, which we optimise to be close to
the posterior in terms of the KL (Kullback-Leibler) divergence. Mean-field importance
sampling with the reverse KL divergence was firstly introduce by Buntine (2009) for LDA
(Latent Dirichlet Allocation) to frame the IS-IP (Iterated Pseudo-Counts) from Wallach
et al. (2009c). However, the use of mean-field VIS in a broader sense to build IS proposal
distributions which are tight to the the optimal proposal has not yet been explored. We

1see Section 2.5.3
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show that two types of solutions arise from applying the KL divergence in the reverse or
forward modes. In particular, we show that the forward KL leads to approximating dis-
tributions that might be more suitable for VIS. As a by-product of the KL minimisation,
we derive upper and lower bounds to the marginal document likelihood. These bounds are
also useful to sandwich the estimates of different methods in realistic scenarios and hence,
to determine their accuracy.

We explain in detail the derivation of the mean-field proposals for PFA and BPFA mod-
els, which takes advantage of the conditional conjugacy of these models. We show that the
lower-bounded proposals can be found through a coordinate ascent algorithm that updates
the variational parameters one at a time and the lower bound or ELBO (Evidence Lower
BOund) can be assessed in finite time with a tractable closed-form expression. In contrast,
the variational parameters for the upper-bounded proposals require of a stochastic algo-
rithm that samples the posterior distribution to approximate the expectations of several
sufficient statistics. These samples are also used to approximate the upper bound. There-
fore, we also present a Gibbs sampling algorithm to draw these samples from the posterior
distribution for both PFA and BPFA.

In the rest of this chapter, we first present the main concepts of mean-field VIS for general
LVM (Latent Variable Model) in Section 8.1. In Section 8.2, we derive the lower-bounded
and upper-bounded proposals for PFA and their respective optimization algorithms. In
Section 8.3, we do the same for BPFA. Then, we evaluate the accuracy and convergence of
the proposed VIS methods both in small and realistic scenarios in Section 8.4. Finally, we
summarise the main ideas and conclusions of this chapter in Section 8.5.

8.1 Mean-Field Variational Importance Sampling
In Section 2.5.3, we introduced the idea behind IS, which we specify next for approximating
the marginal likelihood in LVMs. Given a proposal distributionQ(z; γ), IS approximates the
expectation of p(x|z;φ) w.r.t. p(z) by drawing S samples from the proposal z(s) ∼ Q(z; γ)
and then, evaluating the weighted average across the likelihood samples p(x|z(s);φ). That
is to say,

p(x;φ) =

∫
p(x|z;φ)p(z)dz = Ep(z)p(x|z;φ)

≈ 1

S

S∑
s=1

p(x|z(s);φ)w(z(s)) where z(s) ∼ Q(z; γ) (8.1)

where the weights w(z(s)) are defined as the likelihood ratio p(z(s))

Q(z(s);γ)
. This estimator is unbi-

ased as long as the proposal distribution has the same support as the prior p(z). Therefore,
the problem of IS boils down to finding a proposal distribution that reduces the variance
of this estimator. The optimal proposal Q(z; γ), in terms of the least variance, is known to
be proportional to p(x|z;φ)p(z), but its normalisation constant

∫
p(x|z;φ)p(z)dz is, in fact,

the integral that we want to estimate. Thus, the optimal proposal has little practical use
despite of the fact that a distribution Q(z; γ), that is close to the optimal, also has little
variance.

A well-known family of distributions used to approximate the posterior in variational
inference is the mean-field family. The mean-field family, presented in Section 2.5.2, assumes
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a fully factorised distribution across variables and each distribution is governed by its own
variational parameters. That is, we introduce mean-field VIS by specifying the proposal
Q(z; γ) in Eq. (8.1) to be in the form of,

Q(z; γ) =
K∏
k=1

Qk(zk; γk) (8.2)

where the random variables zk are assumed to be independent, distributed according to
Qk(.) and governed by its own variational parameters γk. Mean-field importance sampling
was first mentioned in (Buntine, 2009), who showed that the IS-IP method from Wallach
et al. (2009c) could be understood in these terms.

We then impose that the mean-field distribution approximates the optimal proposal
in terms of KL divergence. The KL is an asymmetric divergence that leads to different
types of solutions depending on the order of its elements. Whereas variational inference has
classically considered the reverse KL because its optimization leads to simple coordinate
ascent algorithms, we also considered here the forward KL. The forward KL divergence
between an optimal proposal distribution 2 p(z|x;φ) and the approximating distribution
QU(z; γU) is defined as,

KL(p(z|x;φ), QU(z; γU)) =

∫
p(z|x;φ) log

p(z|x;φ)

QU(z; γU)
dz = Ep(z|x;φ) log

p(z|x;φ)

QU(z; γU)
(8.3)

where Ep(z|x;φ) refers to the expectation w.r.t. the posterior p(z|x;φ). And the reverse KL
between the approximating distribution QL(z; γL) and an optimal proposal p(z|x;φ) is given
by,

KL(QL(z; γL), p(z|x;φ)) =

∫
QL(z; γL) log

QL(z; γL)

p(z|x;φ)
dz = EQL(z) log

QL(z; γL)

p(z|x;φ)
(8.4)

where EQL(z) is the expectation w.r.t. the proposal QL(z; γL).
The difference between the type of approximations created by the reverse and forward

KL are depicted in Fig. 8.1. Whereas the reverse KL leads to solutions QL(z; γL) that force
zeros wherever p(z|x;φ) is zero, the solutions for the forward KL QU(z; γU) can be non-zeros
in these regions, as Eq. (8.3) (8.4) suggest. This causes the reverse KL to focus on a single
mode whereas the forward KL can span across several modes. As a result, we expect the
proposal QU(z; γU) to be more suitable for approximating multi-modal distributions, since
it will enable the different modes to be sampled z(s) ∼ QU(z; γU).

However, the direct optimization of the KL divergences is not trivial because both con-
tain unknown posterior probabilities p(z|x). One approach to optimise the KL divergence
consists in building a surrogate objective by bounding the marginal document likelihood (Ji
et al., 2010). In the next section, we explain how to build a lower and upper bound to the
marginal document likelihood and how these bounds are related to the KL divergences,
presented above.

2see the definition of optimal Q(z) ∝ |f(z)|p(z) for f(z) = p(x|z;φ) and p(z) = p(z) in Section 23.4
from Murphy (2012)
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Figure 8.1: Reverse vs. forward KL divergence for a mixture of univariate Gaussians
(blue) approximated by a Gaussian distribution (red).

8.1.1 Variational Lower Bounds

To build a lower bound to the logarithm of the marginal likelihood, we first multiply and di-
vide the likelihood p(x|z;φ) inside the expectation by the variational distribution QL(z; γL),

log p(x;φ) = logEp(z)[p(x|z;φ)] = logEp(z)
[
p(x|z;φ)

QL(z; γL)

QL(z; γL)

]
(8.5)

and then, we swap the expectation w.r.t. p(z) for that w.r.t. QL(z; γL)

log p(x;φ) = logEQL(z;γL)

[
p(x|z;φ)p(z)

QL(z; γL)

]
= logEQL(z;γL)

[
p(x, z;φ)

QL(z; γL)

]
(8.6)

where we use p(x, z;φ) = p(x|z;φ)p(z).
Finally, we build the lower bound to the marginal likelihood by applying the Jensen’s

Inequality to,

log p(x;φ) = logEQL(z;γL)

[
p(x, z;φ)

QL(z; γL)

]
≥ EQL(z;γL)

[
log

p(x, z;φ)

QL(z; γL)

]
= UL (8.7)

where the logarithm can be pushed inside of the expectation because the log is a convex
downward function.

This bound, also known as the ELBO in variational inference, is tight when the ap-
proximating distribution QL(z; γL) is close to the posterior distribution p(z|x) in terms of
reverse KL divergence, as expressed by,

UL = log p(x;φ)−KL
(
QL(z; γL), p(z|x;φ)

)
. (8.8)

which can be derived from Eq. (8.7) by expressing the joint distribution as p(x, z;φ) =
p(x;φ)p(z|x;φ) and applying basic properties of logarithms to make the KL in Eq. (8.4)
appear.

Therefore, we can minimise the reverse KL divergence by instead maximising the lower
bound in Eq. 8.7. The fact that this lower bound does not depend on the posterior p(z|x)
allows us to optimise for the variational distribution QL(z; γL). When this variational
distribution is chosen to be in the mean-field family as in Eq. (8.2), this optimization can
be done independently for each mean-field distribution. Furthermore, analytical mean-field
distributions can be derived for conditionally conjugate models, as we will show later for
the augmented PFA and BPFA models.
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8.1.2 Variational Upper Bound

To build an upper bound to the marginal likelihood, we first add and subtract the logarithm
of the posterior distribution log p(z|x;φ) to the marginal document log-likelihood,

log p(x;φ) = log p(x;φ) + log p(z|x;φ)− log p(z|x;φ) (8.9)

where the first two terms can be combined into the logarithm of their joint distribution as
shown next,

log p(x;φ) = log p(x, z;φ)− log p(z|x;φ). (8.10)

Given that the marginal document likelihood does not depend on z, we can then take
expectations w.r.t the posterior on z on the right-hand side of the equality,

log p(x;φ) = Ep(z|x;φ)[log p(x, z;φ)− log p(z|x;φ)]

= Ep(z|x;φ)[log p(x, z;φ)] + H(z|x;φ) (8.11)

where H(z|x;φ) is the entropy of the random variable z conditioned on x.
Finally, we apply the Gibbs’ inequality to upper bound the marginal document likelihood

in the previous equation as follows,

log p(x;φ) ≤ Ep(z|x;φ)[log p(x, z;φ)]− Ep(z|x;φ)[logQU(z; γU)] (8.12)

which says that the entropy of the posterior on z is less or equal to its cross-entropy with
any other distribution QU(z; γU). We can rearrange the logarithmic terms in the equation
above to present the upper bound as,

log p(x;φ) ≤ Ep(z|x;φ)

[
log

p(x, z;φ)

QU(z; γU)

]
= UU . (8.13)

This bound, also known as EUBO (Evidence Upper BOund), is tight when QU(z; γU)
is close to the posterior p(z|x;φ) in terms of KL divergence, expressed as,

UU = log p(x;φ) + KL(p(z|x;φ), QU(z; γU)). (8.14)

which can be derived from Eq. (8.13) by expressing the joint distribution as p(x, z;φ) =
p(x;φ)p(z|x;φ) and applying basic properties logarithms to make the KL in Eq. (8.3) appear.

Therefore, minimising the forward KL divergence is equivalent to minimise their upper
bounds UU w.r.t the variational distributions QU(z; γU). However, the upper bound in
Eq. (8.13) still involves the posterior expectations. Nonetheless, when the variational dis-
tributions are chosen to be in the mean-field family and specific forms are imposed to the
mean-field distributions, we can still optimise this objective w.r.t the variational parameters
γU , as we show later for PFA and BPFA.

8.2 Mean-field VIS for PFA
We define the VIS estimator for PFA through the augmented model in Section 2.4.6, because
this model allows us to marginalize the continuous factors ln: as in Eq. (6.4) and hence, to
simply sample the discrete topic counts xn::. It is known that the sampling of continuous
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values may lead to estimators with infinite variance, so it is a good practice to collapse first
continuous variables when possible (Wallach et al., 2009c). Thus, the marginal document
likelihood for PFA can be expressed as,

p(yn:; Φ,p, r) =
∑

xn::∈Xyn:

p(xn::; Φ,p, r) (8.15)

where the sum is over all matrices of non-negative integers whose rows add up to the
observed counts Xyn: = {xn:: ∈ NV×K

0 | yn: =
∑K

k=1 xn:k} and the summands are computed
as,

p(xn::; Φ,p, r) =
K∏
k=1

NM

(
xn:k; rk,

pkφk
1− pk + pk

∑
p φkp

)
(8.16)

the product of K NMs (Negative Multinomials). To avoid the sum over this constrained
set, we introduce a proposal distribution Qyn:(xn::|γn), whose support is in Xyn: and is
parametrised with the variational parameter γn. By multiplying the numerator and denom-
inator with the proposal distribution, we can express the marginal likelihood as,

p(yn:; Φ,p, r) =
∑

xn::∈Xyn:

p(xn::; Φ,p, r)

Qyn:(xn::; γn)
Qyn:(xn::; γn) = EQyn: (xn::;γn)

p(xn::; Φ,p, r)

Qyn:(xn::; γn)
(8.17)

where EQyn: (xn::;γn) is the expectation w.r.t. the proposal distribution. Finally, one can
approximate this expectation via sampling by simply,

p(yn:; Φ,p, r) ≈ 1

S

S∑
s=1

p(x
(s)
n:: ; Φ,p, r)

Qyn:(x
(s)
n:: ; γn)

where x(s)
n:: ∼ Qyn:(xn::; γn) (8.18)

where x(s)
n:: are the samples drawn from the conditioned proposal distribution. Note that

Qyn:(x
(s)
n:: ; γn) refers to both proposals QUyn: (xn::; γ

U
n ) and QLyn: (xn::; γ

L
n ) build either from

minimising the forward KL or the backward KL and their support is in Xyn: . For notation
clarity, we omit the subscript yn: in the proposal distribution from now onwards. Further-
more, we note that the importance weights in Eq. (8.18) are not as explicitly stated as in
Eq. (8.1), because the dependency between xn:: and yn: is deterministic.

Despite the benefit of sampling from a discrete distribution, the distribution p(xn::; Φ,p, r)
does not enable to directly obtain analytic variational distributions across words because
its complete conditionals are not in the exponential family and the closed-form mean-field
distributions cannot be derived from them. To circumvent this, we can learn a mean-field
distribution for an augmented model, which might include other variables beyond xn::, and
then, use as proposal the mean-field distributions associated to xn:: to perform VIS in
Eq. (8.18).

In the following sections, we derive the mean-field distributions for the augmented PFA
model in Section 2.4.6, in which the factor ln: are not collapsed, and then we only use as
proposal the mean-field distributions associated to xn::.

8.2.1 Lower-bounded Mean-field Proposal

In the next two sections we first show how to maximise the lower bound from Section 8.1.1
for the PFA and then, how to compute its value.
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8.2.1.1 Maximising the Lower Bound

The ELBO in Eq. 8.7 can be rewritten for the augmented PFA model as,

UL = EQLyn: (xn::,ln:;γLn ,βLn ) log
p(yn:, xn::, ln:; Φ,p, r)

QLyn: (xn::, ln:; γLn , β
L
n )

= EQLyn: (xn::,ln:;γLn ,βLn ) log p(yn:, xn::, ln:; Φ,p, r) + Hyn:(xn::, ln:; γ
L
n , β

L
n ) (8.19)

where the joint distribution of the observed word counts yn:, the latent topic counts xn::

and factors ln:: is given by,

p(yn:, xn::, ln:; Φ,p, r) =
K∏
k=1

V∏
p=1

Pois(xnpk|lnkφkp)Ga
(
lnk; rk,

pk
1− pk

)
(8.20)

with xn:: ∈ Xyn: . Besides, the lower-bounded proposal QLyn: (xn::, ln:; γ
L
n , β

L
n ) is the mean-

field distribution that factorises across words V and factors K as follows,

QLyn: (xn::, ln:; γ
L
n , β

L
n ) =

V∏
p=1

QLynp (xnp:; γ
L
np)

K∏
k=1

QLynp (lnk; β
L
nk) (8.21)

Moreover, the augmented PFA model is conditionally conjugate and its complete con-
ditionals can be written in the exponential family as,

p(xnp:|yn:, xn¬p:ln:,Φ,p, r) = Mult(xnp:|ynp,
ln:φ

T
:p∑K

k=1 lnkφ
T
kp

) (8.22)

p(lnk|yn:, ln¬k, xn::,Φ,p, r) = Ga(lnk|rk +
V∑
p=1

xnpk, pk) (8.23)

where Mult(.) and Ga(.) are Multinomial and Gamma distributions parametrised as in
Eq. (B.4) and Eq. (B.9), respectively. Under these circumstances, the mean-field distribu-
tions that optimises the lower bound in Eq. (8.19) has the same analytic expression than
the corresponding complete conditionals

QLynp (xnp:|γLnp) = Mult(xnp:|ynp, γLnp:)
QLynp (lnk|βLnk) = Ga(lnk|βLnk1, β

L
nk2) (8.24)

where their variational parameters γLnp, βLnk can be computed in their natural form as the
expectations of the natural parameters of the complete conditionals,

η(γLnp) = EQLynp (ln:|βLn ) [η(xnp:)] =

 EQLynp (ln1|βLn ) [log ln1] + log φ1p + C
...

EQLynp (lnK |βLn ) [log lnK ] + log φKp + C

 (8.25)

η(βLnk) = EQLynp (xn::|γLn ) [η(lnk)] =

[
rk +

∑V
p=1 EQLynp (xnp:|γLn ) [xnpk]− 1

− 1
pk

]
. (8.26)
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Note that the expectations above are taken w.r.t. the mean-field distribution without
the factor corresponding to the variable of interest (xnp in Eq. (8.25) and lnk in Eq. (8.26)).
These expectations can be calculated analytically by exploiting the property of the exponen-
tial family that the derivatives of the cumulant w.r.t the natural parameters correspond to
the expectations of the sufficient statistics. Therefore, the expected logarithm of a gamma
random variable is given by,

EQLynp (lnk|βLn ) [log lnk] =
δA(η(βLnk)

δβLnk1

= Ψ(βLnk1) + log βLnk2 (8.27)

where Ψ(.) is the digamma function. Besides, the expectation of a Multinomial random
variable is simply its mean value,

EQLynp (xnp:|γLn ) [xnpk] = ynpγ
L
npk. (8.28)

Finally, the variational parameters can be written in the original parametrization of the
Multinomial and Gamma distributions as follows,

ξLnp: ← φ:w β
L
n:2e

Ψ(βLn:1) (8.29)

γLnp: ←
ξLnp:∑K
k=1 ξ

L
npk

(8.30)

βLnk1 ← rk +
V∑
p=1

ynpγ
L
npk βLnk2 ← pk (8.31)

where the dependency between the updates of ξLnp:, γLnp: and βLnk1 forces us into a coordinate
ascent algorithm.

8.2.1.2 Computing the Lower Bound

To assess the convergence of the coordinate ascent, we can use the same lower bound in
Eq. (8.19) for which we can derive a closed-form expression as follows.

Thanks to the mean-field factorisation, the entropy term in Eq. (8.19) can be calculated
by summing the entropy associated to each random variable,

Hyn:(xn::, ln:; γ
L
n , β

L
n ) =

V∑
p=1

Hyn:(xnp:; γ
L
np:) +

K∑
k=1

Hyn:(lnk|βLnk1, β
L
nk2) (8.32)

where the entropy for a Multinomial random variable can be found in Appendix E.1 and
that of a Gamma random variable in Appendix E.2. Besides, the expectation term in
Eq. (8.19) requires to take into account the factorisation of the graphical model in order to
push the expectations inside. With that, we can calculate the corresponding expectation
for each variable individually and sum them as follows,

EQLyn: (xn::,ln:;γLn ,βLn ) log p(xn:, ln:; Φ,p, r) =
K∑
k=1

V∑
p=1

EQLynp (xnp:,lnk;γLnpk,β
L
nk1,β

L
nk2) log p(xnpk|lnk, φkp)

+
K∑
k=1

EQLynp (lnk;βLnk1,β
L
nk2) log p(lnk|pk, rk) (8.33)

where the expectation of the logarithm of the Poisson distribution can be found in Ap-
pendix E.3 and the expectation of the logarithm of a Gamma distribution in Appendix E.4.
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8.2.1.3 Coordinate Ascent Algorithm

In Algorithm 8.1, we depict the pseudocode to compute the parameters for the Lower-
bounded proposal QLyn: (xn::, ln:; γ

L
n , β

L
n ) as well as the lower bound UL, based on the deriva-

tions above. Given that the VIS estimator defined in Eq. (8.18) only requires the marginal
on the topic counts, the algorithm simply returns γLn::, but note that it also computes βLn::.
The coordinate ascent part has a computational cost linear in the number of topics K
and the number of non-zero words Vcn , whereas the function lower bound computation,
ComputeELBO(), is linear in K, Vcn , but also in the maximum word count in yn:.

Algorithm 8.1: PFA Lower-bounded Proposal.
input : yn:, r, p, Φ
output: γLn::

1 Vcn ← |yn: > 0|
2 K ← Length(p)
3 Function ComputeELBO(yn:, r, p, Φ, γLn::, βLn::)
4 UL ← 0
5 for p← 1 to Vcn do
6 UL ← UL+ EntropyMult(ynp, γLnp:) Eq. (E.5)

7 for k ← 1 to K do
8 UL ← UL+ EntropyGa(βLnk:) Eq. (E.12)
9 UL ← UL+ ExpLogGa(rk, pk, βLnk:) Eq. (E.19)

10 for p← 1 to Vcn do
11 UL ← UL+ ExpLogPois(ynp, φkp, γLnpk, βLnk:) Eq. (E.17)

12 return UL

/* Coordinate ascent algorithm */
13 for k ← 1 to K do
14 βLnk: ← Init(rk, pk)

15 while UL ← ComputeELBO(yn:, r, p, Φ, γLn::, βLn::) not converged do
16 for p← 1 to Vcn do
17 for k ← 1 to K do
18 ξLnpk ← UpdateXi(ynp, φkp, βLnk:) Eq. (8.29)

19 γLnp: ← UpdateGamma(ξLnp:) Eq. (8.30)

20 for k ← 1 to K do
21 βLnk: ← UpdateBeta(yn:, γLn:k) Eq. (8.31)

8.2.2 Upper-bounded Mean-field Proposal

In the next two sections we first show how to minimise the upper bound from Section 8.1.2
for the PFA and then, how to approximate its value.
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8.2.2.1 Minimising the Upper Bound

Similar to the ELBO, we can write the EUBO in Eq. (8.13) for the augmented PFA model
as,

UU = Ep(xn::,ln:|yn:;Φ,p,r) log
p(yn:, xn::, ln:; Φ,p, r)

QUyn: (xn::, ln:; γUn , β
U
n )

= Ep(xn::,ln:|yn:;Φ,p,r) log p(yn:, xn::, ln:; Φ,p, r)− Ep(xn::,ln:|yn:;Φ,p,r) logQUyn: (xn::, ln:; γ
U
n , β

U
n )

(8.34)

where the joint distribution on the observed word counts yn:, the latent topic counts xn:: and
factors ln: is the same as in Eq. (8.20), but the posterior p(xn::, ln:|yn:; Φ,p, r) is intractable
to compute. This complex posterior is what hampers the derivation of closed-form updates
for this upper-bounded proposal.

One approach to solve this problem is to consider specific forms for the mean-field distri-
butions. In our case, we assume the same statistical forms than the mean-field distributions
in the lower bound case: lnk is distributed according to a Gamma and each xnw:, follows a
Multinomial. That is,

QUyn: (xn::, ln:|γUn::, β
U
n::) =

V∏
p=1

Mult(xnp:|ynp, γUnp:)
K∏
k=1

Ga(lnk|βUnk1, β
U
nk2). (8.35)

Then, we seek to minimise the upper bound in Eq. (8.34) with respect to the varia-
tional parameters, γUnp:, βUnk1 and βUnk2. Mathematically speaking, we would like to find the
variational parameters that equal the gradients of the upper bound to 0,

∇γUnp:,β
U
nk1,β

U
nk2
UU(γUnp:, β

U
nk1, β

U
nk2) = 0, (8.36)

where we note that the first expectation in Eq. (8.34) does not depend on the variational
parameters and hence, its gradient is 0. As a result of this, we focus next on the second
expectation,

−∇γUnp:,β
U
nk1,β

U
nk2

Ep(xn::,ln:|yn:;Φ,p,r) logQUyn: (xn::, ln:; γ
U
n , β

U
n ) = 0 (8.37)

Because the expectation is w.r.t. the posterior which does not depend on the variational
parameters, the gradient can be pushed inside the expectation,

Ep(xn::,ln:|yn:;Φ,p,r)∇γUnp:,β
U
nk1,β

U
nk2

logQUyn: (xn::, ln:; γ
U
n , β

U
n ) = 0 (8.38)

and the upper-bounded proposal, which factors across variables, can be decomposed into
a sum of logarithmic distributions and each variational parameter solved independently.
Furthermore, the fact that each mean-field distribution is in the exponential family implies
that the logarithm of these distributions will be a convex function w.r.t. its parameters.
Therefore, the global minimum can be found by solving the following system of equations,

Ep(xn::,ln:|yn:;Φ,p,r)[t(xnp:)]
δη(γnp:)

δγnp:
− δA(η(γnp:))

δγnp:
= 0 p = 1...V (8.39)

Ep(xn::,ln:|yn:;Φ,p,r)[t(lnk)]
δη(βnk:)

δβnk:

− δA(η(βnk:))

δβnk:

= 0 k = 1...K (8.40)
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where the mean-field distributions have been expressed in the exponential family to show
the structure of the problem. Eq. (8.39) is the equation that results from taking the partial
derivative in Eq. (8.38) w.r.t the variational parameters associated with variable xnp:, which
is assumed to be Multinomial. Thus, t(xnp:) is the vector of sufficient statistics, η(γnp:) is
the vector of natural parameters and A(η(γnp:), the cumulant displayed in Table B.1 for the
Multinomial distribution. Similarly, Eq. (8.40) is the equation that refers to the Gamma
random variable lnk with sufficient statistics t(lnk), natural parameters η(βnk:) and cumulant
A(η(βnk:)). In summary, each equation in the system can be derived as the expectation
w.r.t. the posterior distribution of the sufficient statistics of that variable times the partial
derivative of the natural parameters w.r.t. the original parametrization minus the partial
derivatives of the cumulant.

In particular, the system for PFA is described by the following equations,Ep[xnp1]
...

Ep[xnpK ]




1
γnp1
...
1

γnpK

 =

λ...
λ

 p = 1...V (8.41)

[
Ep[log lnk]
Ep[lnk]

] [
1

1/βUnk2
2

]
−
[
Ψ(βUnk1) + log βUnk2

βUnk1/β
U
nk2

]
=

[
0
0

]
k = 1...K (8.42)

where λ is the Lagrange multiplier that accounts for the restriction
∑K

k=1 γnpk = 1 and Ep
refers to expectation w.r.t the posterior p(xn::, ln:|yn:; Φ,p, r). While this system can be
solved analytically for γnp:, the non-linearity in the βnk: parameters requires to solve them
numerically. We propose to use the Newton’s method to iteratively solve Eq. (8.45) below,

ξUnp: = Ep[xnp:] (8.43)

γUnp: =
ξUnp:∑K
k=1 ξ

U
npk

(8.44){
Ep[lnk] = βnk1βnk2

Ep[log lnk] = Ψ(βnk1) + log βnk2

(8.45)

However, the equations above involve three expectations w.r.t. the posterior distribu-
tion which cannot be solved analytically, and they require a moment matching algorithm.
That is, the expectations are approximated by drawing samples from the posterior dis-
tribution through Gibbs sampling, which iteratively samples the complete conditionals in
Eqs. (8.22)(8.23) until convergence. At that time, the samples from these conditionals cor-
responds to those of the true posterior x(s)

n:: , l
(s)
n: ∼ p(xn::, ln:|yn:,Φ, p, r). With these samples,

one can approximate the expectations above as the following Monte Carlo estimates,

Ep[xnp:] ≈
1

S

S∑
s

x(s)
np: (8.46)

Ep[lnk] ≈
1

S

S∑
s

l
(s)
nk (8.47)

Ep[log lnk] ≈
1

S

S∑
s

log l
(s)
nk (8.48)
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where S is the number of samples drawn with Gibbs sampling after an initial burn-in period
of I iterations. Finally, these estimated expectations or moments can be used to find the
variational parameters in Eqs. (8.43) (8.44) (8.45).

8.2.2.2 Approximating the Upper Bound

Given that Eq. (8.34) does not have an analytical closed-form solution, the upper-bound
needs to be approximated. This can be done via a Monte Carlo sampler that reuses the
same posterior samples used to compute the moments in Eqs. (8.46) (8.47) (8.48). That is,

ÛU ≈
1

S

S∑
s=1

log
p(yn:, x

(s)
n:: , l

(s)
n: |Φ, p, r)

QUyn: (x
(s)
n:: , l

(s)
n: |γUnp:, βUnk:)

(8.49)

where x(s)
n:: , l

(s)
n: ∼ p(xn::, ln:|yn:,Φ, p, r) and QUyn: (x

(s)
n:: , l

(s)
n: |γUnp:, βUnk:) is given by Eq. (8.35).

8.2.2.3 Moment matching Algorithm

In Algorithm 8.2, we present the pseudocode to compute the parameters for the upper-
bounded proposal QU(xn::, ln:; γ

U
n , β

U
n ) as well as the approximated upper bound ÛU , based

on the procedure above. The algorithm returns the variational parameters γUn:: which are
used in the VIS estimator defined in Eq. (8.18), but the algorithm also computes βUn , which
are used to approximate the EUBO. Note the Gibbs sampling algorithm is linear in the
total number of Gibbs cycles I + S and in the number of non-zeros words Vcn and topics
K. Besides, the computation of the variational parameters is linear in the number of words
and topics and for βUn also in the number of iterations of the Newton’s method.

8.3 Mean-field VIS for BPFA
As we showed in Section 2.4.6, the augmented model for BPFA involves two discrete latent
variables, the word counts yn: and the topic counts xn:: and one continuous variable, the
factors ln:. If we collapse the continuous factors as in PFA, the two count variables, one
of them with infinite support, have to be sampled with the IS. In the previous chapter, we
showed that the sampling of these two variables leads to poor performance of the left-to-
right sampler, specially for long-text. Besides we also experimented with this configuration
for VIS and the convergence was slow too. Therefore, we present the VIS sampler for BPFA,
which collapses both discrete variables and samples the continuous ln: factors. The marginal
document likelihood for the collapsed BPFA can be written as,

p(bn:; Φ,p, r) =

∫
p(bn:, ln:; Φ,p, r)dln: (8.50)

where the joint distribution p(bn::, ln:; Φ,p, r) is given by,

p(bn:, ln:; Φ,p, r) =
P∏
p=1

Ber(bnp; 1− e−ln:φ:p)
K∏
k=1

Ga(lnk; rk,
pk

1− pk
) (8.51)

according to the BerPo link property in Eq. (2.34).
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Algorithm 8.2: PFA Upper-bounded Proposal.
input : I, S, yn:, r, p, Φ
output: γUn::

1 Vcn ← |yn: > 0|
2 K ← Length(p)
3 Function GibbsSampling(I, S, yn:, r, p, Φ)
4 for k ← 1 to K do
5 l

(0)
nk ← Init(rk, pk)

6 for i← 1 to I + S do
7 for p← 1 to Vcn do
8 x

(i)
np: ← MultinomialSampling(ynp, Φ,l(i−1)

n: ) Eq. (8.22)

9 for k ← 1 to K do
10 l

(i)
nk ← GammaSampling(rk, pk, x

(i)
n:k) Eq. (8.23)

11 return x
(I:(S+I))
n:: , l

(I:(S+I))
n:

12 x
(:)
n::, l

(:)
n: ← GibbsSampling(I, S, yn:, r, p, Φ)

13 Ep[xnp:]← ApproxExpX(x(:)
n::) Eq. (8.46)

14 Ep[ln:]← ApproxExpL(l(:)n: ) Eq. (8.47)
15 Ep[log ln:]← ApproxExpLogL(l(:)n: ) Eq. (8.48)

16 for p← 1 to Vcn do
17 for k ← 1 to K do
18 ξUnpk ← ComputeXi(Ep[xnpk]) Eq. (8.43)

19 γUnp: ← ComputeGamma(ξUnp:) Eq. (8.44)

20 for k ← 1 to K do
21 βUnk: ← ComputeBeta(Ep[lnk], Ep[log lnk]) Eq. (8.45)

22 ÛU ← ApproximateEUBO( yn:, r, p, Φ, x(:)
n::, l(:)n: , γUn::, βUnk:) Eq. (8.49)

As a result, we can build an IS estimator for Eq. (8.50) that samples ln: from a proposal
Q(ln:; βn) with support in RK

>0 and computes a weighted average as follows,

p(bn:; Φ,p, r) ≈ 1

S

S∑
s=1

p(bn:|l(s)n: ; Φ)w(l(s)n: ) where l(s)n: ∼ Q(ln:; βn) (8.52)

where the importance weights are given by w(l
(s)
n: ) = p(l

(s)
n: ;p,r)

Q(l
(s)
n: ;βn)

. The proposal Q(ln:; βn)

can again be any variational distribution derived from the minimisation of KL divergences
above. We next described how to derive mean-field distributions Q(ln:; βn) that minimises
the KL divergences through the optimization of the upper and lower bounds of the marginal
document likelihood, as in PFA.

However, the complete conditionals of the collapsed BPFA model are not in the expo-
nential family and hence, analytical mean-field distributions cannot be derived from them.
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Similar to what happened for PFA, we address this issue by learning the mean-field distri-
butions for the augmented model in Section 2.4.6, and then, use the mean-field distributions
associated to ln: as proposal Q(ln:; βn) for the VIS estimator in Eq. (8.52).

8.3.1 Lower-bounded Mean-field Proposal

We can write the ELBO in Eq. (8.7) for the augmented BPFA model as follows,

UB
L = EQL(yn:,xn::,ln:;λLn ;γLn ,β

L
n ) log

p(bn:, yn:, xn::, ln:; Φ,p, r)

QL(yn:, xn::, ln:;λLn ; γLn , β
L
n )

= EQL(yn:,xn::,ln:;λLn ;γLn ,β
L
n ) log p(bn:, yn:, xn::, ln:; Φ,p, r) + H(yn:, xn::, ln:;λ

L
n ; γLn , β

L
n )
(8.53)

where the joint distribution for the observed indicator bn:, the latent word counts yn:, topic
counts xn:: and factors ln: are given by the same Eq. (8.20), except that the support for the
word counts yn: is also restricted in Ybn: = {yn: ∈ NV

0 | bn: = 1(yn:)}. We propose to use a
structured mean-field proposal such as,

QL(yn:, xn::ln:;λ
L
n ; γLn , β

L
n ) = QL(ln:; β

L
n )

V∏
p=1

QLp(ynp, xnp:;λ
L
np, γ

L
np:) (8.54)

where QL(ln:; β
L
n ) is the same mean-field approximation than in PFA given by the product

of the K distribution in Eq. (8.21), and the mean-field associated with the counts yn: and
xn:: is defined on Ybn: × Xyn: . Given that bnp = 0 implies that both ynp and xnp: are 0,
one only needs to define the variational distribution for the non-zero cases p = 1...Vcn (we
assume document are ordered such that all non-zeros precedes zeros).

The complete conditional for each factor lnk is the same than in PFA, and it is given by
Eq. (8.23). In contrast, the jointly conditional distribution for ynp, xnp: in a non-zero word
p is expressed as follows,

p(ynp, xnp:|bnp, ln:; Φ,p, r) = Pois+(ynp;
K∑
k=1

lnkφkp)Mult(xnp:; ynp,
ln:φ:p∑K
k=1 lnkφkp

) (8.55)

which can be derived from the quotient of the joint distribution p(ynp, xnp:, bnp, ln:; Φ,p, r)
given by Eq. (8.20) and its marginal p(bnp, ln:; Φ,p, r) in Eq. (8.51). We note that the pmf
for this distribution is given by,

Pois+Mult(x:; ξ:) =
1

e
∑
k ξk − 1

∏
k

ξxkk
xk!

(8.56)

where ξ: = ln:φ:p and x: = xnp: in Eq. (8.55). Note that this distribution is also in the expo-
nential family with base measure h(x) = 1∏

k xk!
, sufficient statistics t(x) = [x1, ..., xK ], nat-

ural parameters η(ξ) = [log ξ1, ..., log ξK ] and cumulant or log-partition function A(η(ξ)) =
log
(
e
∑
k ξk − 1

)
. This is the distribution for K Poisson random variables, whose K realiza-

tions cannot be all 0 at the same time.
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Therefore, the mean-field distribution for both ynp, xnp: has the same analytical form
than its conditional, and hence it is independent of ynp. Thus, we can write the mean-field
distribution for ynp, xnp: in Eq. (8.54) as,

QLp(ynp, xnp:;λ
L
np, γ

L
np:) = QLp(xnp:; ξ

L
np:) = Pois+Mult(xnp:; ξLnp:) (8.57)

where ξLnp: is the variational parameter for the p-th non-zero word. We can derive closed-
form expressions for these parameters by taking the expectation of the natural parameters
of the conditional in Eq. (8.55) as follows,

η(ξLnp:) = EQL(ln:;βLn )[log ln:] + log φ:p (8.58)

where the expectation of log ln: can be computed for each factor according to Eq. (8.27),
and then express the variational parameters in their original parametrisation as,

ξLnp: = φ:w β
L
n:2e

Ψ(βLn:1). (8.59)

We note that for the variational parameters of QL(ln:; β
L
n ), we can follow the same

derivation than in PFA,

η(βLnk) = EQL(xn::|γLn ) [η(lnk)] =

[
rk +

∑V
p=1 EQLp (xnp:;ξLnp:)

[xnpk]− 1

− 1
pk

]
(8.60)

except that the expectation is now w.r.t. QLp(xnp:; ξ
L
np:). This expectation can be calculated

from the partial derivatives of the cumulant of the Pois+Mult(.) and it is given in Eq. (E.22).
Therefore, the variational parameters are as follows

βLnk1 ← rk +
V∑
p=1

ξnpk

1− e−
∑K
k=1 ξnpk

βLnk2 ← pk (8.61)

The ELBO for BPFA in Eq. (8.53) can be derived from that of PFA by noting that only
those terms that involve xnp: must be rederived because their expectations are taken w.r.t.
another distribution QLp(xnp:; ξ

L
np:). Therefore, the entropy term in Eq. (8.32) associated

with xnp: is derived in Appendix E.5; and similarly, the derivation of the expectation of
log p(xn:, ln:; Φ,p, r) in Eq. (8.33) can be found in Appendix E.6.

In Algorithm 8.3, we highlight in blue the main changes with respect to the same al-
gorithm for PFA and line through an update that is no more required. Structurally, the
algorithm is the same with only minor differences on the updates and expectations derived
above. However, the lower-bounded mean-field proposal in Eq. (8.52) is constructed from
the βLn:: variational parameters, and hence the algorithm returns them instead. We also
note that the observed data bn: is only used to determine the last present word Vcn in the
ordered document.

8.3.2 Upper-bounded Mean-field Proposal

We can express the EUBO in Eq. (8.13) for the augmented BPFA as,

UB
U = Ep(yn:,xn::,ln:;|bn:;Φ,p,r) log

p(bn:, yn:, xn::, ln:; Φ,p, r)

QU(yn:, xn::, ln:;λUn ; γUn , β
U
n )

= Ep(yn:,xn::,ln:;|bn:;Φ,p,r) log p(bn:, yn:, xn::, ln:; Φ,p, r)− logQU(yn:, xn::, ln:;λ
U
n ; γUn , β

U
n )

(8.62)
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Algorithm 8.3: BPFA Lower-bounded Proposal.
input : bn:, r, p, Φ
output: βLn::

1 Vcn ← |bn: > 0|
2 K ← Length(p)
3 Function ComputeELBO(r, p, Φ, ξLn::, βLn::)
4 UL ← 0
5 for p← 1 to Vcn do
6 UL ← UL+ EntropyZTPs(ξLnp:) Eq. (E.24)

7 for k ← 1 to K do
8 UL ← UL+ EntropyGa(βLnk:) Eq. (E.12)
9 UL ← UL+ ExpLogGa(rk, pk, βLnk:) Eq. (E.19)

10 for p← 1 to Vcn do
11 UL ← UL+ ExpLogPois(φkp, ξLnp:, βLnk:) Eq. (E.27)

12 return UL

/* Coordinate ascent algorithm */
13 for k ← 1 to K do
14 βLnk: ← Init(rk, pk)

15 while UL ← ComputeELBO(r, p, Φ, ξLn::, βLn::) not converged do
16 for p← 1 to Vcn do
17 for k ← 1 to K do
18 ξLnpk ← UpdateXi(φkp, βLnk:) Eq. (8.59)

19 γLnp: ← UpdateGamma()

20 for k ← 1 to K do
21 βLnk: ← UpdateBeta(ξLnp:) Eq. (8.61)

where the joint distribution is again given by Eq. (8.20) with support for yn: ∈ Ybn: . Sim-
ilar to PFA, we assume the same statistical forms for the mean-field distributions as the
ones derived for the lower bound of BPFA. Thus, we reduce the variational distribution
QU(yn:, xn::, ln:;λ

U
n:, γ

U
n::, β

U
n::) to a distribution for the non-zero words that is function of xn::

and ln:, as expressed by,

QU(xn::, ln:; ξ
U
n::, β

U
n::) =

K∏
k=1

Ga(ln:; β
U
n::)

Vcn∏
p=1

Pois+Mult(xnp:; ξUnp) (8.63)

where Pois+Mult(.) is the pmf given in Eq. (8.56) and Ga(.) is th pdf of a Gamma distri-
bution give in Eq. (B.9)

Because of the factorisation across variables, parameters can be derived independently
by applying Eq. (8.38) to the variational distribution above. Therefore, the variational
parameters for βUn:: derived in Eq. (8.45) are also valid for BPFA, but with expectations taken
w.r.t. p(yn:, xn::, ln:; |bn:; Φ,p, r). In addition, because Pois+Mult(.) is in the exponential
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family, a global minimum for ξnp: also exists and can be found by solving the equation,

Ep(yn:,xn::,ln:|bn:;Φ,p,r)[t(xnp:)]
δη(ξnp:)

δξnp:
− δA(η(ξnp:))

δξnp:
= 0 p = 1...V (8.64)

which, by substituting η(ξnp:) = log ξnp:, A(η(ξnp:)) = log(eξnp: − 1) and deriving w.r.t. ξnp:,
it can be expressed as,Ep′ [xnp1]

· · ·
Ep′ [xnpK ]

 1
ξnp1

· · ·
1

ξnpK

−


ξnp1

1−e−
∑K
k=1

ξnpk

· · ·
ξnpK

1−e−
∑K
k=1

ξnpk

 = 0 p = 1...Vcn . (8.65)

where Ep′ refers to Ep(yn:,xn::,ln:|bn:;Φ,p,r). That is, we need to solve the equation for every
factor k = 1...K and non-zero word p = 1...Vcn .

Ep′ [xnpk] =
ξ2
npk

1− e−
∑K
k=1 ξnpk

. (8.66)

Because this expression does not have an analytical solution, we use the Newton’s method
to iteratively solve it. As before, the expectations are approximated with Monte Carlo
estimates, such as,

Ep′ [xnpk] =
1

S

S∑
s=1

x
(s)
npk, where x

(s)
npk ∼ p(yn:, xn::, ln:|bn:,Φ, p, r) (8.67)

where the x(s)
npk samples comes from the posterior of BPFA. Similarly, the expectations of

lnk and for log lnk in Eq. (8.45) must be computed w.r.t. this new posterior.
As a result, the algorithm to find the upper-bounded proposal for BPFA requires to

sample the posterior distribution. We propose to use a Gibbs sampling algorithm that,
apart from sampling the complete conditionals given by Eqs. (8.23) (8.22), it also samples
the complete conditionals of yn: for the non-zero words bnp = 1 as follows,

p(ynp|ln:; Φ,p, r) = Pois+(ynp;
K∑
k=1

lnkφkp) (8.68)

With these posterior samples, we can compute a Monte Carlo estimate of the upper
bound for BPFA as,

ÛB
U ≈

1

S

S∑
s=1

log
p(bn:, y

(s)
n: , x

(s)
n:: , l

(s)
n: ; Φ, p, r)

QU(x
(s)
n:: , l

(s)
n: ; ξUn::, β

U
n::)

, where y(s)
n: , x

(s)
n:: , l

(s)
n: ∼ p(yn:, xn::, ln:|bn:; Φ, p, r).

(8.69)

In Algorithm 8.4, we present the pseudocode for deriving the upper-bounded mean-field
proposal for BPFA. In blue, we also highlight the main differences w.r.t. the algorithm
developed for PFA. We observe that these are mainly in the Gibbs Sampling scheme, where
the word counts need to be sampled, and in the computation of the variational parameters
ξUnpk, where there is different update formula. Moreover, we also note that the expectation
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are computed w.r.t. another posterior distribution. Finally, as in the lower-bound proposal
for BPFA, we note that the observed variables bn: are only involved in determining the
number of non-zero words, as long as the document is sorted such that all non-zeros precedes
zero words.
Algorithm 8.4: BPFA Upper-bounded Proposal.

input : I, S, r, p, Φ
output: βUn::

1 Vcn ← |bn: > 0|
2 K ← Length(p)
3 Function GibbsSampling(I, S, r, p, Φ)
4 for k ← 1 to K do
5 l

(0)
nk ← Init(rk, pk)

6 for i← 1 to I + S do
7 for p← 1 to Vcn do
8 y

(i)
np ← Pois+Sampling(Φ, l(i−1)

n: )
9 x

(i)
np: ← MultinomialSampling(y(I:(S+I))

n: , Φ, l(i−1)
n: ) Eq. (8.22)

10 for k ← 1 to K do
11 l

(i)
n: ← GammaSampling(rk, pk, x

(i)
n:k) Eq. (8.23)

12 return x
(I:(S+I))
n:: , l

(I:(S+I))
n:

13 x
(:)
n::, l

(:)
n: ← GibbsSampling(I, S, r, p, Φ)

14 Ep′ [xnp:]← ApproxExpX(x(:)
n::) Eq. (8.46)

15 Ep′ [lnk]← ApproxExpL(l(:)n: ) Eq. (8.47)
16 Ep′ [log lnk]← ApproxExpLogL(l(:)n: ) Eq. (8.48)

17 for p← 1 to Vcn do
18 for k ← 1 to K do
19 ξUnpk ← ComputeXi(Ep′ [xnpk]) Eq. (8.66)

20 γUnp: ← ComputeGamma()

21 for k ← 1 to K do
22 βUnk: ← ComputeBeta(Ep′ [lnk], Ep′ [log lnk]) Eq. (8.45)

23 ÛU ← ApproximateEUBO(r, p, Φ, x(:)
n::, l(:)n: , ξUn::, βUn::) Eq. (8.69)

8.4 Experimentation

In this section, we evaluate the accuracy and convergence properties of the VIS estimators
presented earlier. We follow the experimental setup described in Section 6.3: we evaluate
the accuracy of PFA estimators against the exact marginal likelihood in tractable scenarios,
and we assess the convergence of PFA and BPFA estimators in realistic document collec-
tions. For both PFA and BPFA, we train the same non-parametric models described in
Section 7.3.1 and compare the VIS estimators with the L2R, DS (Direct Sampling) and HM
(Harmonic Mean) methods studied in the previous chapter. Furthermore, we use the lower
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(UL, UB
L ) and upper (ÛU , ÛB

U ) bounds derived earlier to sandwich the marginal document
likelihood and discuss the accuracy of the candidate methods in realistic conditions.

8.4.1 Experiments with PFA in Downsized Collections

We first evaluate the VIS estimators developed for PFA in tractable scenarios. We use the
downsized collections presented in Section 6.3.3 and train a βΓ-PFA model (Zhou et al.,
2012) with hyperparameters set according to Table 7.1 and Kmax = 5. Under these con-
ditions, we compute the exact marginal document likelihood given by Eq. (6.7) for those
documents that cause less than 109 partitions in the exact formula. With this quantity as a
ground truth, we compare the estimates of the methods in the previous chapter (DS, HM,
L2R and L2R with exact conditionals) against the lower-bounded (LB-VIS) and upper-
bounded (UB-VIS) methods proposed here. More specifically, we compare the likelihood
estimates of N documents against their exact likelihood in terms of KL divergence as de-
scribed in Section 6.3.1.

Fig. 8.2 plots the KL divergences as a function of the number of samples used for
each estimation method in the 6 downsized collections. As depicted in the plots, the UB-
VIS (Upper-Bounded Variational Importance Sampling) method achieves the lowest KL
divergence across all data sets. Furthermore, the LB-VIS (Lower-Bounded Variational
Importance Sampling) method obtains the 2nd best position in 5 out of 6 corpora and
its accuracy is comparable to that of the L2R methods in the NIPS collection. However,
the comparison in the downsized NIPS collection might no be significant because it only
contains one document with less than 109 partitions.
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Figure 8.2: Relative Entropy or KL between the estimated document probabilities and the
exacts as a function of samples used (Lower KL is better).



132 CHAPTER 8. MEAN-FIELD VARIATIONAL IMPORTANCE SAMPLING

8.4.2 Experiments with PFA in Realistic Collections

We then evaluate the convergence properties of these estimators in the realistic collections
reported in Table 6.2, by analysing the convergence in terms of the number of samples
required by the log-likelihood to plateau. That is, we plot the marginal document log-
likelihood of N = 1000 documents as a function of the number of samples and we visually
identify which methods stabilize faster than others.

In Fig. 8.3, we observe that the upper-bounded and lower-bounded VIS estimators reach
convergences faster than the rest of candidates in 5 collections. Moreover, not all methods
converge to the same values because of the different type of approximation considered by
each method. In the WS data set, which is composed of the shortest documents, the
convergence of the L2R is better than its competitors, followed closely by the UB-VIS and
DS methods. We speculate that the slow convergence of the LB-VIS estimator could be
related with the fact that the lower-bounded proposal is focused into one of the multiple
modes of the posterior, that would explain why even the prior proposal used for the DS
method can converge faster and to a higher log-likelihood than the LB-VIS. Furthermore,
the fact that the convergence of the UB-VIS method is similar to that of DS suggests that
the posterior distribution in this data set is spread across a wide space which cannot be
precisely captured by the upper-bounded approximation. The spread of probability in short
text data sets like WS or Twitter can be attributed to the troubles that topic models have
in learning meaningful thematic structure in short text. More importantly, we note that
the L2R algorithm from the previous chapter shows good performance in these data sets.
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Figure 8.3: Document log-likelihood as a function of the number of samples in PFA.

In Fig. 8.4, we add the upper and lower bounds to the marginal document log-likelihoods
from the previous figure. The lower bound or ELBO given by Eq. (8.19) can be assessed
analytically in linear time in the number of topics and non-zero words, and hence it is a
strong reference to determine which methods underestimate the log-likelihood. Whereas
the upper bound or EUBO given by Eq. (8.49) is approximated via sampling, but we have
observed a fast convergence in all setups and hence, it can be used to determine which meth-
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ods might overestimate the log-likelihood. As it is shown in the figure, the VIS estimators
developed in this chapter are the only methods sandwiched by both bounds. We note that
the DS method underestimates the log-likelihood in the 4 long text collections (NIPS, AP,
20Newsgroups and Reuters) and the HM methods overestimates the log-likelihood in the
AP corpus. We note, however, that both bounds are too loose in short text data sets
(Twitter and WS) to be useful for determining the accuracy of these methods. The loose
bounds also indicate us that the mean-field approximations might not be expressive enough
to capture the complex posterior distribution in short text, and hence, why these mean-field
proposals do not work in short text as well as in long text.
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Figure 8.4: Sandwiched estimates as a function of the number of samples in PFA.

8.4.3 Experiments with BPFA in Realistic Collections

In this section, we evaluate the VIS estimators for BPFA developed earlier. For that, we
train a βγΓ-BPFA model (Zhou et al., 2012; Hu et al., 2016) with hyperparameters set
according to Table 7.1. We evaluate them directly in realistic collections, because there
is not a closed-form expression for computing the exact marginal document likelihood in
finite time. In particular, we consider four binarised collections: two long text (NIPS and
20Newsgroups) and two short text (Twitter and WS).

In Fig. 8.5, we plot the marginal document log-likelihood as a function of the number
of samples and observe the speed of convergence. For the long text data sets NIPS and
20Newsgroups, the L2R method was not plotted because the estimates were far below the
rest as seen in the experimental results of the previous chapter. We notice that the UB-
VIS’s convergence is extremely fast in the 4 data sets. However, the convergence of LB-VIS
was the worst across all corpora and comparatively worse than in PFA. We think that the
posterior distribution is far more complex in BPFA than PFA, because of the latent word
counts yn:. This would explain why the lower-bounded approximation, which is focused on
a single mode, is even a worse proposal in the binarised scenarios.
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Figure 8.5: Document log-likelihood as a function of the number of samples in BPFA.

Finally, in Fig. 8.6 we add the upper and lower bounds derived in Eq. (8.53) and
Eq. (8.62). Through these bounds, we can now confirm the inaccurate estimates obtained
by the L2R algorithm in long text. Unfortunately, the bounds are too loose to determine
the accuracy of the other methods.
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8.5 Summary and Conclusion
In this chapter, we introduced a new class of estimators based on IS. In particular, we
addressed the problem of finding proposal distributions which are close to the optimal in
terms of KL divergence. We proposed a class of factorised distributions, known as the mean-
field family, to construct proposal distributions for IS estimators. Furthermore, we showed
that the minimisation of the KL divergences can result in two different types of solutions
due to its asymmetry. Specially, we hypothesise that the minimisation of the forward KL
divergence can lead to better proposals due to the fact that they are not centred at a
specific posterior mode. Besides we showed that the minimization of the reverse KL and
the forward KL lead respectively to an upper bound and a lower bound of the marginal
log-likelihood, which can be useful to determine the accuracy of the estimation methods in
realistic conditions.

We then derived the lower-bounded and upper-bounded mean-field proposals for the
PFA and BPFA models. On the one hand, we showed that the lower-bounded proposals
for PFA and BPFA can be found via coordinate ascent algorithms that iteratively update
the variational parameters in a deterministic manner until convergence. The final values
for the variational parameters can be also used to compute the lower bounds. On the other
hand, we showed that the upper-bounded proposals for PFA and BPFA can be found by
approximating several expectations with Monte Carlo sampling. With these expectations,
the algorithms solve a system of equations to find the variational parameters in analytical
manner (for γUnp:) and via the Newton’s method (for βUnk:). Moreover, the posterior samples
are used to approximate the upper bounds. It is important to note that these algorithms
are linear in the number of topics and the number of non-zero words.

With these proposals, we then evaluated the VIS methods for both PFA and BPFA and
compared their estimates to those of DS, HM and L2R in six document collections. For
PFA, we showed that the proposed VIS methods are the most accurate in approximating
the exact marginal in downsized collections. In more realistic setups, UB-VIS is always the
best whilst LB-VIS has slower convergence in short text. Furthermore, we could determine
the inaccuracy of some methods thanks to the bounds derived in this chapter. Although
it is unsurprising that VIS methods are always sandwiched by the upper and lower vari-
ational bounds, we observed that the other methods were out of these bounds in some of
the data sets. Besides, we could confirm that the DS and HM methods tend to under-
and over- estimate the marginal log-likelihood, respectively. For BPFA, we studied the
convergence and accuracy properties directly in realistic scenarios, because of the lack of a
tractable closed-form expression to compare with the exact marginal. We showed that the
immediate convergence of the UB-VIS method in long and short text and confirmed the
underestimation of the L2R method in long text.

In conclusion, we proposed an upper-bounded mean-field variational importance sam-
pling method, referred to as UB-VIS, that achieves the best accuracy in both short and
long text for PFA and BPFA. Moreover, due to its fast convergence, this method can also
produce highly accurate estimates with less samples than its competitors. Despite its higher
computational cost, we also note that the L2R sequential sampler performed particularly
well in short text, achieving faster convergence than its competitors in the WS collection.
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9
Learning Chordal Models on Binarised Text

“New ideas must use old buildings”
Jane Jacobs

Capdevila, J., Zhao, H., Petitjean, F., and Buntine, W. (2018d). Experiments with learning
graphical models on text. Behaviormetrika

In Part I of this dissertation, we used latent variable graphical models for uncovering
events in short text. In particular, we showed that topics learned from pooled tweets
helped the detection of events, and vice versa, pooling helped the semantic coherence of
topics. Unfortunately, the prediction performance of LVM-based topic models in short text
is known to deteriorate when contextual information is not available. This poor performance
is attributed at the insufficient word co-occurrence to accurately estimate the local latent
variables. In what follows, we consider a different class of graphical models which does not
use local latent variables, but is capable of learning complex probability models for text
through the statistical relationships in the global variables, i.e. words in the vocabulary.

The earliest forms of PGMs (Probabilistic Graphical Models) were BNs (Bayesian Net-
works) over discrete fully-observed variables, for which a huge variety of algorithms to learn
their structure and parameters has already been developed (Heckerman and Chickering,
1995). Standard implementations, however, are usually restricted to less than 100 vari-
ables. More recently, improved data structures and algorithms have allowed models to be
built with a larger number of variables. Branch and bound techniques allow best model
search (Suzuki and Kawahara, 2017), but the use of memoization and restriction to chordal
graphs (Petitjean and Webb, 2015b) have enabled the scaling to thousands of discrete vari-
ables. The algorithm for doing this is known as Chordalysis and it allows learning graphical
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models on text corpora with vocabulary sizes in the order of thousands. However, Chordal-
ysis was initially proposed for finding statistically significant associations and the models
it learns are usually too simple to fit and generalise well on unseen data (i.e. prediction).
Therefore, the Achilles’ heel of Chordalysis in prediction tasks lies in:

• Scoring function to learn the structure of the graphical model: Webb and Petitjean
(2016) proposed the SMT (Subfamilywise Multiple Testing) metric which is sought to
minimise the probability of false discoveries.

• Parameter estimation: Chordalysis uses maximum likelihood estimates to learn the
model parameters, which might not be appropriate for more complex models with
bigger cliques.

In this chapter, we propose more optimistic metrics (i.e. more prone to identify associ-
ations among variables), to learn the chordal structure of these models as well as suitable
parameter estimation techniques for models with higher complexity. In particular, we show
how to integrate the BIC (Bayesian Information Criterion) (Schwarz et al., 1978) and the
qNML (quotient Normalized Maximum Likelihood) (Silander et al., 2018) with Chordalysis
and we introduce three parameter estimation methods (two based on m-estimates and one,
on Back-off estimates (Friedman et al., 1997)) which mitigate the scarcity of data in big
cliques. We show that these scoring functions and parameter estimates all achieve bet-
ter prediction performance than the original methods in Chordalysis (Petitjean and Webb,
2015b).

To compare the new Chordalysis models with existing LVMs (Latent Variable Models)
on text, we restrict the experimental study to models that use the binarised and bagged
representation of text introduced in Chapter 2. In particular, we use the non-parametric
Poisson factorisation presented in Section 2.4.6 as a representative for topic modelling and
we modify it according to Zhou (2015) for binarised data. Another type of graphical model
built on binarised data is the HLTA (Hierarchical latent tree analysis) (Liu et al., 2014;
Chen et al., 2017), which yields intriguing “local” topics, that only interact with a limited
set of variables. The experiments are performed across several document collections with
good representatives of short and long text, as well as big and small data. The results
indicate that the amended Chordalysis models perform better in short text than existing
topic models and they also scale to bigger datasets.

In Section 9.1, we review the original Chordalysis algorithm proposed in Petitjean and
Webb (2015b); Petitjean et al. (2013) and introduce metrics and parameter estimation
methods more suitable for prediction tasks. Then, we present the related work of graph-
ical models for binarised text in Section 9.2. In Section 9.3, we discuss the experimental
methodology. Finally, the results of experiments on binarised text collections are reported
in Section 9.4.

9.1 The Chordalysis algorithm
The Chordalysis algorithm was initially proposed in Petitjean and Webb (2015b); Petitjean
et al. (2013) to scale LLA (Log-Linear Analysis) to high-dimensional data. LLA is a well-
established statistical technique for finding associations between several categorical variables
and classical approaches consist in searching for a probability modelM∗ that explains the



9.1. THE CHORDALYSIS ALGORITHM 141

observed associations. The probability model can be expressed through a graph G = (V , E)
and naively discovered through a forward selection algorithm in which a model is refined by
adding edges one at a time until a specific metric (e.g. χ2 goodness-of-fit) stops improving.
However, the evaluation of one model over another in these approaches is exponential with
respect to the number of variables and hence, they do not scale to more than a few variables.

Chordalysis addresses this issue by restricting to the sub-class of decomposable models,
which have interesting computational properties. These are probabilistic graphical models
whose supporting graph is chordal1. This class of models is not only practical for searching
purposes, but it is also an expressive class of models, because a model in this class can
subsume any non-decomposable model, and hence it can represent its statistical distribution.
For instance, the saturated model, which is decomposable, subsumes any other graphical
model.

As shown in Section 2.2.3, the probability mass function of a chordal model with V
random variables X = {X1, ..., XV } can be expressed in terms of its graphical structure as,

p(X; θ,M) =

∏
c∈C p(Xc; θc)∏
s∈S p(Xs; θs)

(9.1)

where C represents the set of maximal cliques in the graph G and S, the set of minimal
separators. θc and θs represent the sets of parameters corresponding to the distributions
p( · ) of the cliques and separators, respectively. From this expression, Petitjean et al. (2013)
re-wrote the likelihood ratio test statistic G2 for a chordal model as follows,

G2(M) = 2N

(∑
c∈C

H(Xc)−
∑
s∈S

H(Xs)−H(X)

)
(9.2)

where N is the total number of data points, H(Xc) denotes the entropy of the variables
in the maximal cliques, H(Xs), the entropy of the variables in the minimal separators and
H(X) is the empirical entropy, independent ofM.

The factorisation in Eq. (9.1) also enabled Petitjean et al. (2013) to rewrite the G2 statis-
tic of a reference model M∗ versus a candidate model Mc, which both are decomposable
and only differ on the edge {a, b}, as,

G2(M∗ v.s.Mc) = 2N
(
H(XSab∪{a}) + H(XSab∪{b})−H(XSab∪{a,b})−H(XSab)

)
(9.3)

where Sab was the minimal separator between a and b, H(.) denoted the entropy of the
variables in the clique and N is the number of data points. As a result, the G2 statistic
calculation to compare the current model with a model that incorporated the edge {a, b}
could be reduced to the evaluation of four marginal entropies. Furthermore, they showed
that the forward selection process entails many overlapping sub-problems which involve
the evaluation of these entropies. Thus, they proposed the memoization of these partial
solutions which were pre-computed through efficient counting on Tidsets, i.e. data struc-
tures for itemset counting (Ogihara et al., 1997). In Petitjean and Webb (2015b), authors
identified that at every step of the forward process, only a subset of edges needed to be
re-evaluated and proposed the Prioritized Chordalysis algorithm that identifies this subset
efficiently.

1See definition in Section 2.2.3
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Therefore, any metric that decomposes the scoring of two chordal models into the scoring
of these 4 cliques (Sab ∪ {a}, Sab ∪ {b}, Sab ∪ {a, b}, Sab) can be used in Chordalysis. Next,
we will present new decomposable scoring functions suitable for prediction, which can be
integrated with Chordalysis to learn more complex chordal models. These new models
will lead to graphs with bigger cliques and hence, they will require more sophisticated
estimation techniques to learn their parameters. Next, we will also introduce parameter
estimation methods for smoothing the estimates in such situations.

9.1.1 Scoring Functions

The Chordalysis algorithm was initially proposed for uncovering statistical significant as-
sociations and hence, it makes extensive use of statistical testing through the G2 statistic.
To control for the multiple hypothesis testing, which might lead to false discoveries, Webb
and Petitjean (2016) introduced the SMT which was shown to be superior to the Bonfer-
roni correction method and the layered critical values (Webb, 2008). However, the SMT
score is too conservative for prediction purposes and other existing metrics such as the
BIC (Schwarz et al., 1978), BDeu (Bayesian Dirichlet equivalent uniform) (Buntine, 1991)
or qNML (Silander et al., 2018), seem more appropriate for this task.

9.1.1.1 Bayesian Information Criterion (BIC)

For a modelM with V variables and a data collection D = {x1:, ..., xN :} with N observa-
tions, the BIC (Schwarz et al., 1978) is defined as,

BIC(M) = −2 log p(D; θML,M) + k logN (9.4)

where p(D|θML;M) is the likelihood at its maximum, which is given by the maximum
likelihood parameters θML, and k is the number of parameters used by the model. A model
with lower BIC is preferred because it leads to higher likelihoods while penalizing the model
complexity through the number of parameters.

Then, the BIC score between a reference modelM∗ and a candidate modelMc with an
extra edge {a, b} can be expressed as,

BIC(M∗ v.s.Mc) = −2 log
p(D; θML,M∗)

p(D; θML,Mc)
+ (k∗ − kc) log(N) (9.5)

where p(.) refers to the likelihood at its maximum for each model, and k∗−kc is the difference
on the number of parameters between models. The log ratio between the two likelihoods
can be simplified as before by considering the corresponding cliques,

log
p(D; θML,M∗)

p(D; θML,Mc)
=

N∑
n=1

log p(XSab∪{a} = xn,Sab∪{a}) + log p(XSab∪{b} = xn,Sab∪{b})

− log p(XSab∪{a,b} = xn,Sab∪{a,b})− log p(XSab = xn,Sab) (9.6)

where log p(.) denotes the log probability of the variables in each clique. As shown in Pe-
titjean et al. (2014), the difference in the parameters can also be simplified to the number
of parameters of the 4 cliques above,

k∗ − kc = param(XSab∪{a}) + param(XSab∪{b})− param(XSab∪{a,b})− param(XSab) (9.7)
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where param(A) = −1+
∏

v∈A |dom(v)| and |dom(v)| is the number of outcomes of variable
v.

However, BIC tends to require large sample sizes to recover the appropriate struc-
ture (Liu et al., 2012), as well as it has stronger bias for simpler models in both small
and large sample sizes due to its pessimistic penalty term.

9.1.1.2 Quotient Normalised Maximum Likelihood (qNML)

Recently, the qNML (Silander et al., 2018) was proposed as an alternative for learning BN
structures and shown to be more optimistic than BIC, but less than the BDeu. Moreover,
qNML satisfies the score equivalence property (i.e. it produces equal scores to graphs that
encode the same independences), is decomposable and is not sensitive to hyperparameters.
Because of all this, we next detail how qNML is integrated with the Chordalysis algorithm.

The qNML was defined in (Silander et al., 2018) for a directed graphical modelM and
the data collection D = {x1:, ...xN :} in which each datum xn: is a V -dimensional vector and
Xi refers to the i-th random variable. Then, the qNML is given by the following expression,

sqNML(D;M) =
V∑
i=1

sqNML
i (D;M) (9.8)

=
V∑
i=1

log
p1
NML(Xi∪par(i))

p1
NML(Xpar(i))

(9.9)

where the score factorises across variables with each factor being the logarithm of the
quotient of the one-dimensional NML (Normalized Maximum Likelihood), i.e. p1

NML(.). The
numerator of this ratio corresponds to the normalised likelihood for a single Multinomial
variable with r =

∏
t∈{i∪par(i)} rt outcomes and the denominator is the normalised likelihood

for a Multinomial variable with r =
∏

t∈{par(i)} rt outcomes. Thus, the number of outcomes
is calculated from the product of outcomes for each variable rt in the corresponding set.
The set in the numerator {i, par(i)} is composed of the i-th variable and its parents par(i),
whereas the denominator only contains the parents of variable i. Furthermore, each one-
dimensional normalised likelihood for a set of variables S can be computed as,

p1
NML(XS) =

p(XS|θML)∑
X′S
p(X ′S|θML)

(9.10)

where θML are the maximum likelihood estimates for the parameters in the set S and the
sum in the denominator goes over all possible data matrices X ′S ∈ {1, ..., r}N . Therefore,
the numerator is simply the likelihood of the Multinomial distribution with r outcomes, N
trials and parameters θML = {n1

N
, ..., nr

N
}. The logarithm of the denominator, also called

regret, can be either approximated with the formulas given in (Silander et al., 2018) or
computed exactly for fixed N through the recursion that reg(r,N) = logC(r,N),

C(1, N) = 1

C(2, N) =
N∑
n=0

(
N

2

)( n
N

)n(N − n
N

)N−n
C(r + 2, N) = C(r + 1, N) +

N

r
C(r,N) (9.11)
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as presented in (Kontkanen and Myllymäki, 2007). We note that this can be computed in
O(K).

For decomposable models, we propose to implement the qNML by applying the loga-
rithm to the quotient of the one-dimensional NMLs associated to each maximal clique and
the NMLs associated with the minimal separators in Eq. (9.1). That is to say, the qNML
for decomposable models is given by the expression,

sqNML(D;M) := log

∏
c∈C p

1
NML(Xc)∏

s∈S p
1
NML(Xs)

. (9.12)

where each NML can be assessed according to Eq. (9.10). We can further express the qNML,
as in BIC, in terms of a log-likelihood and a penalization term as follows,

sqNML(D;M) = log

∏
c∈C p(Xc; θ

ML
c )∏

s∈S p(Xs; θML
s )

−

(∑
c∈C

reg(θML
c , c)−

∑
s∈S

reg(θML
s , s)

)
= log p(D; θML,M)− reg(θML,M). (9.13)

The qNML score between two decomposable modelsM∗,Mc is given by

sqNML(M∗ v.s.Mc) = log
p(D; θML,M∗)

p(D; θML,Mc)
− (reg(θML,M∗)− reg(θML,Mc)) (9.14)

which can be reduced to the evaluation of the log probabilities and regret differences of the
four cliques above Sab ∪ {a}, Sab ∪ {b}, Sab ∪ {a, b}, Sab, given that both the log-likelihood
and the regret terms are also local to the cliques and separators in the chordal graph.

9.1.2 Parameter Estimation

Because Chordalysis was presented for association discovery, the parameter estimation was
simply performed through maximum likelihood. This type of estimation is known to overfit
the training data and hence, not appropriate for prediction. In what follows, we describe
three techniques to smooth the estimates of the parameters associated with the structure
previously uncovered by Chordalysis.

9.1.2.1 Markov Network m-estimates

The first type of estimate builds a MN (Markov Network) from the uncovered structure and
applies m-estimates to JPTs (Joint Probability Tables) (Mitchell, 1997). That is to say, we
compute the probability of the data x given the modelM as,

p(X = x; θm-est,M) =

∏
c∈C p(Xc = x:c; θ

m-est)∏
s∈S p(Xs = x:s; θm-est)

(9.15)

where the joint probability table for a given subset of variables A, either a clique or sepa-
rator, is given by,

p(XA = x:A; θm-est) =
∏
a∈A

nxa +m/rA
N +m

(9.16)
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where nxa are the of observed counts in D of variable Xa taking the value xa, m is called
equivalent sample size and it can be interpreted as if the N observations were augmented
with m samples distributed evenly over the joint probability table. rA is all the possible
outcomes in the set A defined as

∏
a∈A ra, where ra is the number of outcomes for variable

a.

9.1.2.2 Bayesian Network m-estimates

The second type of estimates builds a BN from the uncovered structure and apply m-
estimates to the CPTs (Conditional Probability Tables) (Mitchell, 1997). It is possible to
create a BN from the structure because chordal graphs have a PEO (Perfect Elimination
Ordering) which can be found through a LBFS (Lexicographic Breadth First Search) with
a lexicographic order set as per the decreasing TF-IDF (Term Frequency Inverse Document
Frequency) score. Once the order is established, a DAG (Directed Acyclic Graph) can be
build and the probabilities estimated by means of m-estimates on the conditional probability
tables. That is, the probability of the data x given the modelM is,

p(X = x; θm-est,M) =
∏

v=1...V

p(Xv = xv|par(Xv) = xpar(Xv); θ
m-est) (9.17)

where the conditional probability table for variable v is computed as follows,

p(Xv = xv|par(Xv) = xpar(Xv); θ
m-est) =

nxv∪xpar(Xv)
+m/rv

N +m
(9.18)

where nxv∪par(xv) refers to the observed counts in the collection X such that Xv takes the
value xv and its parents par(Xv), the values par(xv). m is the equivalent sample size and
it can be interpreted as if the augmentation was done with m samples distributed evenly
over a row of the conditional probability table. Finally, rv is the cardinality of the domain
of variable v.

9.1.2.3 Bayesian Network Back-off estimates

We consider a third type of estimate that also builds on the BN structure from the previ-
ous section. Furthermore, this estimator orders the variables in the CPT such that those
combinations with few data points can use the estimates from their parents, which would
embrace more data. This scheme was first introduced for Bayesian classifiers (Friedman
et al., 1997) and we refer to it as a Back-off scheme. We expect this technique to improve
previous estimators specially in situations with big cliques and/or little data.

For each CPT, we first build a tree with as many levels as parents or conditioning
variables. The tree order is also determined through the same TF-IDF ordering established
to build the BN. Thus, parents with higher TF-IDF are placed in a higher position in the
tree. A node in level l contains the counts for the value of the conditioned variable xv and
its parents until that level the parl(Xv). Therefore, the leaf nodes contain the counts for
the conditioned variable with all its parents as in the CPT.

In each node, we first smooth the corresponding probabilities by applying the same m-
estimates from Eq. (9.18), but with the set of parents specified by the tree level l. Then, we
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estimate the probability of Xv given its l parents as a weighted average of the probability
of Xv from parents at level l and that at level l − 1. Mathematically, we can write,

p(Xv|parl(Xv)) = w · p(Xv|parl(Xv)) + (1− w) · p(Xv|par(l−1)(Xv)) (9.19)

where w is the weight given by,

w =
Np(parl(Xv))

Np(parl(Xv)) +No

(9.20)

where p(parl(Xv)) is the marginal probability of variables at level l and No is the confidence
associated with the probability estimate at the previous level. In other words, when No �
Np(parl(Xv)) the probability calculated at the previous level of the tree dominates. We
also note that if No = 0, node probabilities are calculated only with the information at
their level and hence, the probabilities at the leaf nodes are equivalent to that of the BN
m-estimates from the previous section.

9.2 Related Work

In this section, we present the related models suitable for comparison with the chordal
graphical models learned with Chordalysis. Fig. 9.1 shows the graphical representation
of the variables for the models discussed below for a single document with six words “a”,
“b”, “c”, “d”, “e” and “f”. While Bernoulli-Poisson factorisation (blue) uses the local latent
variable ln: to induce correlations among the observed variables, chordal (green) and latent
tree (red) models do not consider any local latent variables. However, we note that the
latent trees employ the global latent variable z = {z1, z2, z3} to model the correlations that
chordal models can directly induce among the observed variables.
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Figure 9.1: Examples of the three graphical models for a single document. Chordal
graphical models (green), hierarchical latent tree analytis (red) and Bernoulli-Poisson

factorisation (blue).
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9.2.1 Hierarchical Latent Tree Analysis (HLTA)

HLTA (Liu et al., 2014; Chen et al., 2017) has recently been developed to build hierarchies
of topics, where each is defined from the interaction with a limited set of words or other
topics. This is achieved by introducing a hierarchy of Boolean latent variables, so that
the final model is a tree with the observed words, represented as present/absent, at the
leaves. HLTA is comparable to Boolean matrix factorisation, and has been scaled to work
with thousands of Boolean variables. The hierarchical nature of the latent variables leads
to semantically insightful structures that seem inherently more interpretable than standard
topic models (e.g. Chen et al., 2017, Figure 8).

The algorithm to learn these trees from data operates as follows. First, leaves are
grouped using a “common latent Boolean factor” statistical test, latent Boolean factors are
added and then the grouping process repeated, with progressive expectation-maximization
runs to re-estimate probability tables as the trees are grown. This can be done by using
all the data (i.e. Batch) or with less accurate mini-batch updating of parameters (i.e.
Step-wise) on large data sets.

In (Chen et al., 2017), HLTA was compared with nHDP (nested Hierarchical Dirichlet
Process), which is a hierarchical topic model that uses the sequenced representation of text.
This comparison has the disadvantage that nHDP is not run natively: it is being trained
on Boolean data for which it was not designed. Moreover, the nHDP algorithm used has
only demonstrated a marginal improvement in perplexity (Paisley et al., 2015) over HDP-
LDA (Teh et al., 2006a). Therefore, we will not compare with nHDP but to another topic
model more suitable for binary bagged data presented next.

9.2.2 Bernoulli Poisson Factor Analysis (BPFA)

Zhou (2015) introduced the Bernoulli-Poisson link technique to extend Poisson factorisation
methods to Boolean data. With this technique, we can take the Poisson factorisation model
from Section 2.4.6, which is a flexible model, and add the Bernoulli-Poisson link on top to
obtain a representative factor analysis method for Boolean vector data. We refer to this as
BPFA (Bernoulli PFA).

The BPFA model does matrix factorisation to create matrices Φ (the loading matrix)
and Θ (the factor matrix) with the following probability forms:

φk ∼ DirichletV (β~1) lnk ∼ Gamma
(
rk,

pk
1−pk

)
ynp ∼ Poisson

(∑K
k=1 θnkφkp

)
bnp = 1ynp≥1 ,

(9.21)

where K is the number of topics, d indexes documents, V is the size of the vocabulary, and
β, r and p (where 0 < pk < 1) are hyper-parameters with their own priors. Note Φ is made
up of rows φk which normalise. This parametrisation means that BPFA is comparable to
HDP-LDA. More details can be found in (Zhou et al., 2012; Zhou, 2015; Hu et al., 2016)
and Section 2.4.6. The observed data is the Boolean matrix Y which has a corresponding
latent count matrix X.

The algorithm to learn the model parameters from data goes as follows. After random
initialization, a Gibbs sampler iterates over parameters and latent counts and topic values.
The sampler is built on the conditional exponential family structure of the model, and in
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some cases using data augmentation to create fast simple sampling. Hyper-parameters are
similarly sampled.

9.3 Experimental Methodology
We first discuss general evaluation methods. Because of the variety of different algorithms,
this turns out to be a challenging, so we discuss the literature and report our conclusions
on how evaluations should be done. We then present the software implementations, data
sets and parameter setting for the experiments.

9.3.1 Evaluation Methods

Perplexity for topic models is a measure of the predictive log-likelihood of a held-out doc-
ument scaled to a “per-word” measure. Because the probability models in this chapter do
not consider counts, we believe it is more appropriate not to scale the log-likelihood in
the held-out set and simply report log-likelihood. Furthermore, Chordalysis and HLTA do
not include local latent variables and hence this quantity can be computed exactly, while
BPFA requires unbiased estimation methods to approximate it because of the presence
of ln:. Fortunately, we have studied the likelihood estimation problem for PFA (Poisson
Factor Analysis) methods in general and BPFA in particular in Part II. In Chapter 7, we
have extended state-of-the-art estimation methods for LDA-based topic models (Wallach
et al., 2009c) to PFA and we have proposed new variational methods that are superior to
the state-of-the-art in Chapter 8. As a result, we will use the upper-bounded variational
importance sampling method to provide an unbiased estimate for the held-out likelihood of
BPFA.

Another common evaluation method for factorisation methods is link prediction (Zhou,
2015). The idea is to hold out some of the variables (which may be positive or negative), and
then evaluate how well their occurrence is predicted from the remainder of the record. For
this to be done correctly, the missing link/variable needs to be made temporarily “missing”,
and the various models ran to predict its probability of occurrence. This computation is
not always done correctly: some researchers simply set the variable equal to zero rather
than treating it as missing. We refer to this task as omni-directional learning, as the task is
to do predictive modelling, but on a random selection of variables, rather than on a single
target variable as is done for classification.

A final task we consider is anomaly detection (Chandola et al., 2009), an important
task in security and engineering domains for instance. This is a broad area but we consider
the problem of point anomaly detection (whether a single data item or document as an
anomaly). There are a broad number of techniques in use, and we use ranking by log
probability (lower is more likely to be an anomaly) as a straw-man algorithm to compare
with. Note that text anomaly detection is more challenging because of the huge number of
variables.

Thus we use three different evaluation protocols, briefly described here, but more detail
of implementation is given later.
Log-likelihood: Simple measure of predictive probability for documents held out from

the training set. Because the exact likelihood is intractable to compute for BPFA, we
report an unbiased estimate.
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Omni-directional prediction: for each document, a variable (word) is drawn at random
from a candidate set and then a prediction is made for it (is it in or out of the
document). We then evaluate the accuracy of these predictions.

Anomaly detection: an infrequent subclass of documents are held out from training and
then added to a test set and fed to the model. The subclass are presumably the
anomalies in the test set, and are supposed to be low probability documents. Log
probability gives a base ranking to predict if it is an anomaly, but other derived
measures can be used.

9.3.2 Implementation

We modified the Java code of Chordalysis2 to include qNML and BIC. We used the existing
Java code of HLTA3. We extended the Matlab code for the BPFA in (Hu et al., 2016) with
the sampling of model hyper-parameters. The three evaluations were done in Java and
Matlab respectively and care was taken to ensure standardisation across implementations.

Note that most of the evaluations for HLTA and Chordalysis are simple to implement
because of their convenient structure as simple Bayesian networks. Suppose that the n-th
document is represented by a Boolean vector bn:, and if entry p, bnp, is converted to a
missing value, this is denoted as bn¬p. Then computation of the measures works as follows,
given a specific modelM.

Log-likelihood: we compute log p(bn:|M) for CGM (Chordal Graphical Model) and HLTA
and approximate it for BPFA. For CGM, this log-likelihood can be computed exactly
by summing the logarithms of the entries in the CPTs or JPTs that correspond to the
held-out document b. For HLTA, we also evaluate the corresponding CPTs entries
and sum out the latent variables z through exact belief propagation in trees. For
BPFA, we approximate this quantity by using the upper bounded variational impor-
tance sampler UB-VIS (Upper-Bounded Variational Importance Sampling) presented
in Section 8.3.2.

Omni-directional prediction: We have a candidate set of words S and for each p ∈ S,
we compute p(bnp|bn¬p,M), and compare it to the correct value bp given in the data.
That gives a set of |S| scores calibrated as probabilities, which we measure in terms
of AUC (Area Under Curve) by changing the threshold (0 < th < 1). We chose AUC-
PR (Area Under Curve - Precision Recall) instead of AUC-ROC (Area Under Curve
- Receiver Operating Curve) because of the data set skewness (Davis and Goadrich,
2006), i.e there are more absent than present words. Alternatively, we compute root
mean square error by averaging (bp − p(bnp|bn¬p,M))2 across all words S and all test
documents, and then reporting the square root.

Anomaly detection: We test two scores, one based on log p(bn:|M) and another, on
log p(bnp|bn¬p,M) for p ∈ S and S consisting of all present words. For both, we train
the models holding out the anomalous subclass and we then compute/approximate
these scores in a test set that contains anomalous and common documents. As in

2https://github.com/fpetitjean/Chordalysis
3https://github.com/kmpoon/hlta
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Omni-directional prediction, we compare these scores for the held-out documents with
the true label in terms of AUC-PR. In particular, we show that by adding the term
frequencies in the second score, we can achieve higher AUC-PR.

BPFA is the most computationally costly algorithm because it needs to estimate the
marginal document likelihood log p(bn:|M) and the predictive probabilities log p(bnp|bn¬p,M).
The former is done through the estimation method discussed earlier. The latter, with a
Gibbs sampler that draws samples from the posterior p(bnp|bn¬p,M) through the extended
representation given in Algorithm 8.4 together with bnp ∼ Ber(1 − e−

∑K
k=1 φkplnk). The

estimate for each missing word is then built as,

p(bnp = 1|bn¬p,M) ≈
(

1− e−
∑K
k=1 φkp l̄nk

)
(9.22)

where l̄n: is an average over the posterior samples.

9.3.3 Data sets

We selected three regular and three short text corpora for the experimentation. Collections
were preprocessed with the text mining tool assembled in Scala included in the HLTA
software4, which is suited to build Boolean vector data. For each collection, we tokenised
text strings by space, lower-cased tokens, normalised them according to the Normalisation
Form KC (NFKC), removed stopwords based on the Lewis list and filtered out words with
less than 3 characters. From the resulting vocabularies, we selected the top-500 and top-
2000 words with highest TF-IDF score (the raw counts of a term normalised by the negative
logarithm of the fraction of documents that contain that term) to build two vocabularies for
each collection. All data sets were tokenised and binarised based on these vocabularies and
documents without any word were removed. The final Boolean data sets have the following
features:

Twitter: is extracted in 2011 and 2012 microblog tracks at Text REtrieval Conference
(TREC) 3, preprocessed by (Yin and Wang, 2014). It has 11,109 tweets in total and
a tweet contains 21 words on average.

WS: Web Snippet, used by (Li et al., 2016), contains 12,327 web search snippets and each
snippet belongs to one of 8 categories. Documents are typically 15 words long before
reducing the vocabulary.

TMN: Tag My News, consists of 32,573 English RSS news snippets from Tag My News,
used by (Nguyen et al., 2015). Belonging to one of 7 categories, each snippet contains
a title and a short description, average length 18 words.

NIPS: consists of 1,740 conference papers published at NIPS between 1988 and 19995.

20NG: 20Newsgroups, consists of 18,828 news articles and each article is in one of 20
categories6. An article has on average 65 different words.

NYT: New York Times Annotated Corpus supplied by the Linguistic Data Consortium7.
4https://github.com/kmpoon/hlta
5http://www.cs.nyu.edu/~roweis/data.html
6http://qwone.com/~jason/20Newsgroups
7http://catalog.ldc.upenn.edu/LDC2008T19
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It contains 1,855,658 news articles. An article has on average 196 different words.

In the likelihood and omni-directional prediction experiments, we looked at the perfor-
mance of the different graphical models as function of the amount of training data. For
each data set, we randomly generated four training splits of different size and evaluated the
trained models in a held-out set, which we kept the same for all training splits.

In the omni-directional prediction task, we held-out some words from the test set. In
particular, we have randomly selected |S| = 10 words per test document for all data sets
except for NIPS, in which we chose |S| = 50 given that the test set was smaller and there
was too much variance in the results.

In the anomaly detection task, we used the 20Newsgroups and the WS data set given
that both are labeled and they are a good representatives of long and short text. For this
task, data sets were split in the classical 80% training, 20% testing framework and the
anomalous class was held-out from the training set. To do a fair comparison, we report
results by holding out each category in the collection.

In all tasks, each experiment was performed 5 times and different training-test splits
were randomly generated at each repetition.

9.3.4 Model parameters

Next, we report all model parameters set in this experimentation. A detailed summary can
be found in Table 9.1.

For the Chordalysis models based on BIC and qNML, we set a safety parameter lim-
iting the tree-width of the network Kmax equal to 20 to avoid models with extremely big
cliques. Nonetheless, this value was never reached and most of the graphs have smaller tree-
width. For Chordalysis with the SMT score, we specified the maximum family-wise error
rate perr = 0.05. For all three Chordalysis models, we use the simple Back-Off estimates
introduced for Bayesian classifiers (Friedman et al., 1997) that computes each cell in the
conditional probability table as a weighted average between the cell itself and its parents, in
the probability tree. N0 controls how much we back-off to the parent estimate, being 0, no
back-off and∞ complete back off to the parent value. As in (Friedman et al., 1997), we use
N0 = 5. Moreover, we also smooth each cell in the CPT with m-estimates with parameter
m = 0.5.

For HLTA, we used the default values reported by (Chen et al., 2017), except for the
structural-batch-size parameter, which we set to 1,000 in the small data sets (20Newsgroups,
WS, Twitter) and to 10,000 in the large ones (TMN, NYT).

For BPFA, all hyper-parameters were sampled using benign priors using standard aug-
mented Gibbs samplers. Details of the priors are in Table 9.1.

9.4 Experiment Results

In this section, we report the comparison on the experiments presented earlier. For clarity’s
sake, we first present the assessment of Chordalysis models and then we select the best
performing model to show the comparison with HLTA and BPFA.
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Table 9.1: Model hyper-parameters and algorithm parameters.

Chord - BIC Chord - qNML Chord - SMT

Kmax = 20 Kmax = 20 p = 0.05
No = 5 No = 5 No = 5
m = 0.5 m = 0.5 m = 0.5

perr = 0.05

BPFA HLTA - batch HLTA - step

β ∼ Ga(1, 1) max-EM-steps: 50 max-EM-steps: 50
pk ∼ Beta(1/K, (1− 1/K)) num-EM-starts: 5 num-EM-starts: 5

rk ∼ Ga(1, 1) EM-threshold: 0.01 EM-threshold: 0.01
K = 200 UD-test-threshold: 3 UD-test-threshold: 3

train-burnin: 500 max-island: 10 max-island: 10
train-collect: 500 max-top: 15 max-top: 15
test-burnin: 100 Global-batch-size: 1,000
test-collect: 100 Global-max-epochs: 10

Global-max-EM-steps: 128
Structural-batch-size: 1,000/10,000

9.4.1 Log-likelihood Experiments

To compare models in terms of held-out log-likelihood, we first train them in one of the
four training splits and then compute/approximate the marginal document log-likelihood
in the test set. We use the same held-out set for all four train/test splits and repeat the
experiment 5 times with different splits. We finally plot the averaged log-likelihood across
held-out documents and show the variability across experiments through error bars.

In the first experiment, we compare the likelihood performance of the three Chordalysis
scores discussed in this chapter: SMT, BIC and qNML. In Fig. 9.2, we plot the averaged
log-likelihood of the held-out set (top) and the number of parameters (bottom) as a function
of the training documents. As expected, we observe that the proposed criteria for predic-
tion, BIC and qNML, achieve higher log-likelihood than the SMT criterion proposed for
association discovery. As shown by the plots at the bottom, this improvement is achieved
by learning models with more parameters, i.e. edges in the graph. We also note that
qNML results are slightly superior to those of BIC, hence we select this score as a reference
for comparison with other models. Note that these experiments were performed with the
Back-off method presented in Section 9.1.2.3.
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Figure 9.2: Averaged log-likelihood (top) and number of parameters (bottom) as function
of training size. Parameters were estimated with the BN Back-off method.

We next compare the three parameter estimations methods presented earlier: MN m-
estimates, BN m-estimates and BN Back-off. The top row in Fig. 9.3 displays the averaged
log-likelihood as a function of training documents and shows marginally higher log-likelihood
for BN m-estimates and Back-off estimators, specially for small training sizes. For this
experiment, we chose the chordal graphs learned with the qNML score. Moreover, the
bottom row in Fig. 9.3 plots the averaged log-likelihood as a function of the clique size and
we can see that the performance of BN Back-off estimates do not drop as fast as the other
two methods for large clique sizes. For this experiment, we selected chordal graphs that are
saturated up to a clique size. As a consequence of these results, we suggest to use chordal
graphs with Back-off parameter estimation for prediction tasks.
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Figure 9.3: Averaged log-likelihood as function of training data (top) and of clique size
(bottom). Chordal graphs learned with the qNML score.

Finally, we report in Fig. 9.4 the performance of the two methods discussed in the related
work (i.e. HLTA and BPFA) and compare them to Chordalysis with qNML metric. Note
that we next only provide results for the batch version of HLTA (HLTA - batch) since its
stepwise version (HLTA - step) has always worse performance for these collections. As it
is shown in the plots, chordal models are superior to hierarchical latent trees and Poisson
factorisation in short text collections, whereas Poisson factorisation is superior in regular
text collections. Chordalysis ’ performance is comparable to that of HLTA in the large
training set regime in NIPS and 20Newsgroups. We also observe that the performance of
chordal models improves more than its competitors with the training size, so it would be
interesting to see these results for bigger data sets.
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Figure 9.4: Averaged log-likelihood as a function of training size.

In all experiments above, we have found almost no difference between the log-likelihood
result in document collections with 500 and 2000 words vocabulary, so we only reported
the later. We next report results for the biggest document collections (i.e. TMN and NYT)
with a vocabulary of 500 words for those methods that are able to scale to these dimensions,
as depicted in Fig. 9.5. More concretely, these methods are the HLTA - step, BPFA and
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chordal models for TMN and the HLTA - step and chordal models for NYT. We observe
that Chordalysis with qNML achieves the higher log-likelihood in short and regular data
sets.
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Figure 9.5: Averaged log-likelihood as a function of training size in big collections.

9.4.2 Omni-directional Prediction Experiments

For each document in the test set we randomly hold out a set of S words (|S| = 50 in
NIPS, |S| = 10 in the rest) and predict their presence or absence given all other words in
the document and the model. Predictions are compared to the true word labels (present or
absent) and assessed in terms of AUC-PR and RMSE (Root Mean Squared Error). Higher
is better for AUC-PR, whereas lower is better for RMSE.

Fig. 9.6 shows the AUC-PR (top) and RMSE (bottom) for the different scoring functions
of Chordalysis as a function of the number of training documents. Similar to the log-
likelihood task, qNML achives higher AUC-PR across all data sets and training set ranges
followed by BIC, despite SMT achieves lower RMSE in small training sets. We select
Chordalysis with qNML score for the remaining experiments.
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Figure 9.6: AUC-PR scores (top) and RMSE (bottom) as a function of training
documents for Chordal graphs learned with Back-off estimates.

Fig. 9.7 shows the comparison of the related method in the omni-directional prediction
task. As depicted, Chordalysis achieves highest AUC-PR in short text collections as well as
in NIPS, whereas BPFA is superior in 20Newsgroups. We also observe that RMSE results
are not completely correlated with those of AUC-PR in small training regimes.
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Figure 9.7: AUC-PR scores (top) and RMSE (bottom) as a function of training
documents.

These results confirm that the Chordalysis and HLTA have higher prediction power in
short text, whereas BPFA is superior in regular text collections. Since neither Chordalysis
nor HLTA have local latent variables, we validate our hypothesis that models without local
latent variables should achieve better prediction in short text.



9.4. EXPERIMENT RESULTS 157

9.4.3 Anomaly Detection Experiments

A statistical approach to assess how anomalous a test document consist sin computing its
log-likelihood under a model which has been learned from the normal or typical documents,
i.e. the null model (Chandola et al., 2009). If the log-likelihood is low, the document cannot
be explained well by the null model and hence, it is likely to be an anomalous document.
Next, we compare the different graphical models discussed earlier on this new task. To do
this, we first train each model in a collection without documents from the anomalous class
and we then compute the log-likelihood for each of the test documents, which might be
either from the anomalous or the normal class.

In Table 9.2, we show the AUC-PR figures obtained from considering the anomalous
class for each of the WS categories. For each category, we trained all models on the training
split of 10,000 documents, excluded documents from the anomalous class and evaluated
the log-likelihood of test documents. We observe that Chordalysis with qNML obtains the
highest AUC-PR figures across all categories and HLTA - batch the lowest in 5 categories.

Table 9.2: AUC-PR figures for the log-likelihood anomaly score in the WS collection. The
highest figure is boldfaced and the lowest, underlined.

Category Chord - qNML BPFA HLTA - batch

business 0.9272 ± 0.0054 0.923 ± 0.0055 0.9222 ± 0.0055
computers 0.9138 ± 0.0052 0.9069 ± 0.0055 0.9099 ± 0.0053
culture-arts-entertainment 0.8343 ± 0.0029 0.8272 ± 0.003 0.8269 ± 0.0029
education-science 0.8518 ± 0.003 0.8412 ± 0.0044 0.8436 ± 0.0035
engineering 0.9707 ± 0.0032 0.9677 ± 0.0028 0.9693 ± 0.003
health 0.9429 ± 0.0036 0.9408 ± 0.0034 0.9382 ± 0.0032
politics-society 0.9072 ± 0.0023 0.9024 ± 0.0021 0.9016 ± 0.0019
sports 0.9331 ± 0.0028 0.9303 ± 0.0027 0.9284 ± 0.0027

Table 9.3 presents the results for the 20Newsgroups data set trained in the data split
of 15,000 documents and excluding the anomalous class. In this scenario, BPFA achieves
the highest score across more categories than Chordalysis qNML, but this obtains less
lowest AUC-PR scores than the rest, meaning that it has an average performance . These
results confirms that Chordalyis qNML is particularly good for prediction tasks in short
text collections, whereas BPFA is superior in regular collections.



158 CHAPTER 9. LEARNING CHORDAL MODELS ON BINARISED TEXT

Table 9.3: AUC-PR figures for the log-likelihood anomaly score in the 20Newsgroups
collection.The highest figure is boldfaced and the lowest, underlined.

Category Chord - qNML BPFA HLTA - batch

sci_electronics 0.9378 ± 0.0032 0.9392 ± 0.003 0.9382 ± 0.003
sci_space 0.9495 ± 0.0023 0.9507 ± 0.0022 0.949 ± 0.0023
comp_sys_ibm 0.9442 ± 0.0052 0.9443 ± 0.0051 0.9444 ± 0.0052
comp_graphics 0.9364 ± 0.0043 0.9363 ± 0.004 0.9366 ± 0.004
rec_motorcycles 0.94 ± 0.0035 0.9402 ± 0.0034 0.9391 ± 0.0036
sci_crypt 0.9715 ± 0.0013 0.9722 ± 0.0013 0.9713 ± 0.0013
soc_religion_christian 0.9667 ± 0.0017 0.9659 ± 0.0019 0.9662 ± 0.0017
talk_religion_misc 0.9749 ± 0.002 0.9746 ± 0.002 0.9749 ± 0.002
rec_sport_hockey 0.9484 ± 0.001 0.9467 ± 0.0013 0.9477 ± 0.0011
alt_atheism 0.9712 ± 0.001 0.971 ± 0.0009 0.9709 ± 0.001
rec_sport_baseball 0.9393 ± 0.0017 0.9383 ± 0.0017 0.9392 ± 0.0017
comp_windows_x 0.9472 ± 0.0024 0.9473 ± 0.0023 0.9477 ± 0.0024
sci_med 0.9446 ± 0.0028 0.945 ± 0.0029 0.9436 ± 0.003
talk_politics_guns 0.9699 ± 0.0018 0.9705 ± 0.0017 0.9695 ± 0.0018
rec_autos 0.9422 ± 0.0017 0.9425 ± 0.0016 0.9411 ± 0.0018
talk_politics_mideast 0.9735 ± 0.0019 0.9734 ± 0.0018 0.9732 ± 0.0018
comp_sys_mac_hardware 0.9415 ± 0.0014 0.9418 ± 0.0013 0.9417 ± 0.0014
comp_os_ms 0.9387 ± 0.002 0.9381 ± 0.002 0.9389 ± 0.0019
talk_politics_misc 0.9754 ± 0.0018 0.9756 ± 0.0018 0.9752 ± 0.0018
misc_forsale 0.9277 ± 0.0029 0.9279 ± 0.0028 0.931 ± 0.0031

In what follows, we argue that the log-likelihood of a document given a null model might
not be enough to find anomalies in binarised text, because the model disregards that there
are words which are more common than others. As a result, a test document that mostly
contains common words will obtain a high log-likelihood score even if it is anomalous.
Therefore, we propose to instead compute an anomaly score that weights the probability of
each word by the IDF (Inverse Document Frequency). For each present word in a document
from the test set, we compute the anomaly score Sc as,

Sc =
1

|S|
∑
p∈S

log p(bnp|bn¬p,M) log
N

1 + c.p
(9.23)

where N are the number of documents in the training set, c.p, the counts of word p across
all training documents and S, the set of present words in the n-th test document.

In Table 9.4, we demonstrate that models with this score achieve always higher AUC-PR
figures than with the log-likelihood score. The baseline column refers to the best performing
model from Table 9.2 which now achieves the lowest score when compared to the models
with this new score. Moreover, the HLTA - batch now achieves the best performing model,
although we notice that the differences are not significant in most categories. This indicates
us that the Inverse Document Frequency term is playing a more important role than the
probability of the word in discriminating between anomalous and normal documents.
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Table 9.4: AUC-PR figures for the IDF-weighted anomaly score in the WS collection. The
highest figure is boldfaced and the lowest, underlined.

Category Baseline Chord - qNML BPFA HLTA - batch

business 0.9272 ± 0.0054 0.9656 ± 0.0033 0.9633 ± 0.0038 0.9642 ± 0.0019
computers 0.9138 ± 0.0052 0.9562 ± 0.0021 0.9552 ± 0.0019 0.9578 ± 0.002
culture-arts-entertainment 0.8343 ± 0.0029 0.9323 ± 0.0017 0.9312 ± 0.0019 0.9325 ± 0.0017
education-science 0.8518 ± 0.003 0.9152 ± 0.0041 0.9086 ± 0.0052 0.9181 ± 0.0038
engineering 0.9707 ± 0.0032 0.9911 ± 0.002 0.9908 ± 0.0017 0.9919 ± 0.0019
health 0.9429 ± 0.0036 0.9695 ± 0.002 0.972 ± 0.0005 0.969 ± 0.0015
politics-society 0.9072 ± 0.0023 0.9608 ± 0.0034 0.962 ± 0.0035 0.9602 ± 0.0037
sports 0.9331 ± 0.0028 0.9749 ± 0.0031 0.974 ± 0.003 0.9723 ± 0.0024

Finally, we report the results of the IDF-weighted score for the 20Newsgroups collection.
In this data set, we observe that the Baseline, which is the best performing model from
Table 9.3, is not always the worst. This can be explained from the fact that the IDF weights
are smaller in regular text than in short text because terms tend to occur more frequently
across documents. Therefore, the impact of the IDF term in the 20Newsgroups is smaller
than in WS and for some categories it can even be harmful. Nonetheless, the Baseline
achieves the worst performance for most of the categories and Chordalysis with qNML is
superior in more categories than any other model.

Table 9.5: AUC-PR figures for the IDF-weighted anomaly score in the 20Newsgroups
collection. The highest figure is boldfaced and the lowest, underlined.

Category Baseline Chord - qNML BPFA HLTA - batch

sci_electronics 0.9392 ± 0.003 0.9634 ± 0.0011 0.965 ± 0.0014 0.9644 ± 0.0007
sci_space 0.9507 ± 0.0022 0.9691 ± 0.0013 0.9647 ± 0.0014 0.9665 ± 0.0021
comp_sys_ibm 0.9444 ± 0.0052 0.9632 ± 0.0014 0.9595 ± 0.0014 0.9585 ± 0.0022
comp_graphics 0.9364 ± 0.0043 0.9639 ± 0.002 0.9627 ± 0.001 0.9629 ± 0.0016
rec_motorcycles 0.94 ± 0.0035 0.9758 ± 0.0009 0.9789 ± 0.0009 0.9782 ± 0.001
sci_crypt 0.9722 ± 0.0013 0.9746 ± 0.0009 0.9663 ± 0.0015 0.9691 ± 0.0014
soc_religion_christian 0.9667 ± 0.0017 0.9422 ± 0.0026 0.9332 ± 0.0022 0.9303 ± 0.0026
talk_religion_misc 0.9749 ± 0.002 0.9607 ± 0.001 0.9591 ± 0.0008 0.9599 ± 0.0008
rec_sport_hockey 0.9484 ± 0.001 0.9706 ± 0.0002 0.9622 ± 0.002 0.9693 ± 0.0016
alt_atheism 0.9712 ± 0.001 0.9597 ± 0.0015 0.9553 ± 0.0025 0.9566 ± 0.0015
rec_sport_baseball 0.9393 ± 0.0017 0.9585 ± 0.0017 0.955 ± 0.0017 0.9627 ± 0.0013
comp_windows_x 0.9477 ± 0.0024 0.9774 ± 0.0015 0.9711 ± 0.0026 0.9739 ± 0.0019
sci_med 0.945 ± 0.0029 0.9623 ± 0.0016 0.9641 ± 0.0007 0.9596 ± 0.0017
talk_politics_guns 0.9705 ± 0.0017 0.951 ± 0.0017 0.949 ± 0.0026 0.9481 ± 0.0022
rec_autos 0.9422 ± 0.0017 0.9619 ± 0.0023 0.9646 ± 0.0014 0.9651 ± 0.0019
talk_politics_mideast 0.9735 ± 0.0019 0.977 ± 0.0009 0.9647 ± 0.0013 0.9651 ± 0.0012
comp_sys_mac_hardware 0.9417 ± 0.0014 0.9683 ± 0.0012 0.9675 ± 0.0007 0.9678 ± 0.0011
comp_os_ms 0.9389 ± 0.0019 0.9626 ± 0.0014 0.9589 ± 0.0013 0.959 ± 0.002
talk_politics_misc 0.9754 ± 0.0018 0.9613 ± 0.0011 0.9577 ± 0.0018 0.9586 ± 0.0017
misc_forsale 0.931 ± 0.0031 0.9761 ± 0.001 0.976 ± 0.0008 0.9759 ± 0.0012

9.4.4 Running Times

Finally, we measured the running times for the 6 models under study in the 20Newsgroups
collection. Although these running times have been measured in similar conditions, the
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Figure 9.8: Running times as a function of the training documents in the 20Newsgroups
collections with a vocabulary of 500 (left) and 2,000 (right) words.

implementations do not only differ from the algorithmic point of view, but also from the
programming language used. Therefore, the aim of these results is simply to provide some
insights on the scaling performance of each algorithm rather than providing an absollute
time comparison.

As we can see in Fig. 9.8, BPFA and HLTA - batch are the most time consuming algo-
rithms, specially for large training sizes. This hampered the execution of these algorithms
in large data sets, where the HLTA - step algorithm had to be used. We notice that the
running time of HLTA - batch surpasses that of BPFA when changing the vocabulary size
from 500 words to 2,000 words. This is due to the fact that BPFA does not depend on the
vocabulary size but on the number of present words, whereas the HLTA - batch depends
on the vocabulary size.

We also note that the running time of Chordalysis models exceed that of HLTA - step
when changing the vocabulary size from 500 to 2,000 words. This hampers the use of
Chordalysis models for vocabularies larger than thousands of words.

Although the differences between the three Chordalysis scores are small, we highlight
the fact that qNML takes more time than BIC and SMT. This is due to the fact that the
search for qNML takes more steps than that of BIC and SMT given that the qNML score
is more optimistic.

The HLTA - step algorithm keeps the running time quite steady across different vo-
cabulary sizes and training sets by sub-sampling the vocabulary to learn the structure
(structural-batch-size in Table 9.1) and sub-sampling the observations to learn the parame-
ters (Global-batch-size in Table 9.1). However, we found that the performance penalty was
often severe for this model.

9.4.5 Summary of Results

Finally, we summarise the main findings from the previous experiments:



9.5. CONCLUSION 161

• Chordalysis with the qNML scoring function achieved a higher held-out likelihood
across collections than Chordalysis with BIC or SMT.

• While the three parameter estimation methods performed similarly in small cliques,
Back-off estimates performed better in models with bigger cliques. Therefore, we
proposed to use this method together with the qNML score for learning graphical
models in binarised text collections.

• Chordalysis with qNML performed better than existing topic models (HLTA and
BPFA) in short text data sets (Twitter & WS), whereas BPFA did better in long text
collections (NIPS & 20Newsgroups).

• Similar conclusions were drawn from the omni-directional prediction and the anomaly
tasks, in which Chordalysis with qNML tended to perform better in short text and
BPFA and HLTA in longer text.

• Experiments also showed that the running time of Chordalysis models grows slower
than BPFA and HLTA - Batch models with the number of training documents, but
faster than HLTA - stepwise. The held-out likelihood of HLTA - stepwise is much
lower than Chordalysis in big document collections (TNM & NYT).

9.5 Conclusion

In this chapter, we presented an algorithm, known as Chordalysis, for learning chordal
graphical models on binarised text. However, the scoring metrics used by the original
algorithm were thought for association discovery and hence, not appropriate for prediction
tasks. Therefore, we introduced new scoring metrics and parameter estimation techniques
more suitable for the tasks at hand. Through experimentation in different text collections,
we demonstrated that the qNML score and Back-off estimates performed better in short and
regular text than the early proposed methods (SMT and maximum likelihood estimates).
Therefore, we selected qNML and Back-off estimates for comparing Chordalysis with the
rest of models.

We then sought to compare three very different styles of unsupervised text models that
are based on the bagged and binarised representation of text: Chordalysis, which learns
chordal graphs, HLTA, which learns trees with observed variables at the leaves, and BPFA,
which is a matrix factorisation method. For evaluation we used document log-likelihood,
omni-directional prediction, and anomaly detection. Document log-likelihood was computed
exactly for HLTA and Chordalysis models thanks to their tree and chordal structures and it
was approximated for BPFA models through the unbiased estimators presented in Part II,
in particular the upper-bounded variational importance sampler. The omni-directional
prediction task could be performed again in an exact manner for trees and chordal models
and it was estimated via a Gibbs sampling scheme for BPFA. Finally, the anomaly detection
reused these two calculations to build two distinct anomaly scores.

For document log-likelihood, Chordalysis was superior in short text (Twitter & WS) and
BPFA, in regular/long text (NIPS & 20Newsgroups). The performance of HLTA was also
superior to that of BPFA in short text, confirming that the lack of local latent variables
is helpful in this situation. Moreover, we showed that Chordalysis scales to big document
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collections and its performance improves with larger training sets, surpassing HLTA - step
in TMN and NYT collections and BPFA in the TMN collection.

For the omni-directional prediction task, we reported similar results to the document
log-likelihood task, except for the NIPS data set, where Chordalysis was superior to BPFA.
We also noted that the RMSE results were not correlated with AUC-PR in the small training
set regime.

For anomaly detection with the log-likelihood score, Chordalysis was superior in short
text (i.e. WS) and BPFA, in regular/long text (i.e. 20Newsgroups). We showed that the
IDF-weighted score was more discriminative than the log-likelihood score, specially in short
text, encouraging the use of word count information for anomaly detection in text.

We also showed that whereas Chordalysis scaled well with the number of training doc-
uments, it did not scale with the vocabulary size. BPFA, whose time complexity does not
depend on the vocabulary size but on the number of non-zero words, scaled much better
with the vocabulary than with the training set. Finally, HLTA - batch had troubles to
scale with both the vocabulary and training set, and the HLTA - step, which scales in both,
suffered a severe performance penalty.
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Future Work and Conclusion

“Ancora Imparo”
Unknown

To close this dissertation, we first present open problems and future research derived
from this work and then, we summarise the main results and conclusions.

The future work is presented per part since each has finally resulted in a separate
research line. We expect that the independent progresses in each part can contribute to
move forward the whole field of probabilistic topic models, for both short and long text.

The conclusion reviews the main points addressed by this thesis and it is structured to
answer the research questions posed in the introduction.

10.1 Future Work

10.1.1 Part I: Event Detection

The concept of event was first discussed in the context of news media as some unique
thing happening at some point in time. The community then focused on building detection
methods that were capable of uncovering these event from media stories. Similarly, an event
in the context of social networks was defined as something that causes a large number of
actions in the network, and we then built detection techniques to identify these increases. In
our opinion, the descriptors “some unique thing” or “a large number of” are often too vague
to enable the identification, even manually, of events and hence, we need to encourage more
precise definitions of what constitutes an event. Furthermore, the fact that events cannot be
measured directly, but we can only measure their effects, i.e. media stories or social network
actions, makes the problem of event detection even more challenging. Therefore, we believe
that the task requires to work hand in hand with domain experts who perfectly know the
characteristic of the events that have to be detected. By eliciting knowledge from them,
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not only can we identify which events can be measured from their effects, but also be more
precise about their formal definitions. In fact, we think that the definition of event varies
across domains, and hence the detection techniques to uncover them need to be flexible to
adapt as well.

In this thesis, we have addressed the problem of event detection in an unsupervised
manner, in which we aimed to identify these latent or hidden events that best explained
the tweets that we observed. However, when building and tuning up the techniques, we
brought expert knowledge about the events, such as events in “La Mercè” did not cover the
whole city of Barcelona or they did not span during the whole week. Furthermore, when
evaluating the discovered events, we had a ground truth data set built from our own expert
knowledge of the festivities. Nonetheless, we believe it is necessary to elicit this knowledge
from a final user of the application. For example, the city authorities of Barcelona could be
a better final user for “La Mercè” test bed.

Along this line, the progress of this research field is also tied to the creation and public
release of this expert knowledge in the form of data sets or services to evaluate the results.
In the case of Twitter, the publication of tweets’ IDs, as done in this thesis or in (McMinn
et al., 2013), seems an interesting way to go, although the deletion or privatization of
tweets by their owners can prevent the full reproducibility of research. In a similar way,
evaluation services, like the one adopted by the TREC (Text REtrieval Conference) in which
researchers submit their results to a service that returns the evaluation score, could also be
employed.

Regarding the detection methods proposed in this thesis, we have seen that fully prob-
abilistic approaches enable the inclusion of domain knowledge in a principled way. Fur-
thermore, the learning of the probability model can also be formulated in an integral
manner, avoiding to train things separately like in Tweet-SCAN. However, the Warble
model contained many more hyper-parameters than Tweet-SCAN and some of them are
quite critical, such as the number of events and topics. Therefore, future work should con-
sider non-parametric extensions of Warble to infer these critical hyper-parameters, for
instance, through HDP (Hierarchical Dirichlet Process) (Teh et al., 2006b). Similarly, non-
parametric density estimation could be used to integrate the learning of backgrounds into
the same scheme.

10.1.2 Part II: Likelihood Evaluation

To the best of our knowledge, the estimation of the marginal document likelihood for PFA
(Poisson Factor Analysis) had not been considered until this thesis. However, we have shown
that its unbiased estimation is a prerequisite for comparing the prediction performance of
PFA with other models that work on bagged counts. Therefore, we believe that this research
line can advance in different ways.

First, there exist many estimation methods developed for LDA (Latent Dirichlet Allo-
cation) and other LVMs (Latent Variable Models). Although their extension is not always
trivial for PFA, it would be interesting to look more in depth at methods like the AIS
(Annealed Importance Sampling) (Neal, 2001) or the Chib-style estimator (Murray and
Salakhutdinov, 2009), as we did for the Left-to-right sequential sampler.

Second, the VIS (Variational Importance Sampling) presented in Chapter 8 used the KL
(Kullback-Leibler) divergence to approximate the optimal proposal with a mean-field distri-
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bution. Future work could consider other divergence metrics, such as the χ-divergence (Di-
eng et al., 2017), or other variational approximations such as inference networks (Kingma
and Welling, 2014).

Third, the variational bounds developed in Chapter 8 to sandwich the marginal docu-
ment likelihood and determine the accuracy of these estimators in realistic scenarios were
often too loose. Therefore, we need to develop tighter bounds to this marginal in order to
discriminate between different methods in realistic setups. The stochastic bounds proposed
in (Grosse et al., 2015) could be particularized for PFA.

Last, exploring the use of the proposed estimation methods as well as the exact calcu-
lation for other evaluation tasks like document completion or word prediction is another
interesting avenue for future work. These tasks have been performed through specialized
samplers (Zhou et al., 2012) but rigorous studies to evaluate how well they correlate with
the exact computation have not yet been conducted.

On another front, we showed that the upper-bounded VIS method built from the min-
imisation of the forward KL achieved state-of-the-art accuracy and convergence results for
different PFA models. As far as we know, the use of the forward KL has not yet consid-
ered for learning PFA models, but it could potentially learn models with greater prediction
power than the reverse KL. Similarly, the use of the upper-bounded proposal for likelihood
estimation in LDA has not yet been explored, but it could also improve the accuracy of the
mean-field importance sampling methods which are based on the lower bound approxima-
tion (Buntine, 2009).

10.1.3 Part III: Chordal models

In the last part of this thesis, we showed how to build chordal models for binarised text
through an algorithm called Chordalysis that scales to a vocabulary of thousands of words.
Nonetheless, most topic models scale with the number of non-zero words in the corpora,
which is much lower than the vocabulary size (V̄c � V ), and hence Chordalysis cannot
compete with them in ever-increasing vocabularies. Future work should address the scaling
to larger vocabularies or completely remove its dependency with the size.

Another important venue for future work consists in extending the CGMs (Chordal
Graphical Models) to count data. This would suppose a major re-definition of the Chordal-
ysis algorithm which was thought for categorical data, and hence not easy to extend for
count data. However, one could proceed in a two-stage process by first learning the chordal
graphs from binarised text through the same scoring functions in Section 9.1.1, and then
perform the parameter estimation of Poisson likelihoods from counts, as we did in Sec-
tion 9.1.2 for the categorical entries. In particular, we have already been developing two
estimation strategies that we explain next:

• Poisson Markov Network. This strategy consists in learning the maximum likelihood
parameters of a multivariate Poisson distribution via an EM algorithm (Karlis, 2003)
for each clique and separator in the chordal graph. Then, we use Eq. (9.15) to calculate
the joint probability distribution.

• Poisson Bayesian Network. This strategy consists in learning a Poisson regression
model for each word in the graph with its parents as independent variables. Then, we
use Eq. (9.17) to calculate the joint probability distribution.



166 CHAPTER 10. FUTURE WORK AND CONCLUSION

Apart from PFA, the resulting Poisson chordal models should be compared with other
recently proposed graphical models (Inouye et al., 2017) and sum-product networks (Molina
et al., 2017) for count data.

Similar to hierarchical latent trees, we also envision the incorporation of global latent
variables that interact with a few observed variables and summarise the topical structure
of a subset of words. For example, we could proceed by identifying “structural signatures”
in the graph which suggest the presence of a hidden variable (Elidan et al., 2001).

10.2 Conclusion

Probabilistic topic models have enabled the representation of high-dimensional text into
semantically meaningful structures known as topics. Unfortunately, with the advent of new
forms of communication, written communication has experienced the shortening of text
messages. Topic models, which were not originally thought for short documents, have had
troubles to learn meaningful topics on them. Fortunately, these new forms of communication
have also brought lots of metadata associated with the message which has become essential
for contextualizing the medium. By leveraging on this metadata, a new wave of topic
models for short text was developed to learn context-specific topics which became useful
for a wide range of tasks. However, most of these topic models still fell into the class of
LVMs, which is composed of probability models that use several document-specific latent
variables to explain the observed words. The estimation of these local latent variables from
little evidence, such as short documents, is challenging and hence, it becomes natural to
question their need.

In this thesis, we went from tasks to fundamentals on the exploration of the topical
structure of short text. We started by tackling the problem of event detection in Twitter
through context-specific topic models. We first showed that we could detect local events by
aggregating tweets by hash tag and using these pooled documents in a standard topic model
whose topics were used by an extension of DBSCAN (Density-based Spatial Clustering of
Applications with Noise) to uncover the events. We then proposed a fully probabilistic event
detection method which integrated topic modeling and clustering, so that topics could be
learned from clustered documents and clusters could rely on context-specific topics. Before
proposing new probability models for text, we addressed the intrinsic evaluation of PFA,
a sub-class of LVM which builds on the bagged representation of text. We did that by
extending a left-to-right sequential sampler that had previously provided state-of-the-art
results in LDA and by proposing several samplers that build proposals from the mean-field
approximation to the optimal proposal. Finally, we questioned the need for local latent
variables, specially for short text, by proposing new CGMs for binarised text and comparing
them to BPFA (Bernoulli PFA) models. The unbiased comparison between different classes
of graphical models could be done in terms of likelihood thanks to the samplers presented
previously.

Therefore, this thesis has provided new insights, that we summarise next, to the research
questions posed in the introduction:

Can probability models that leverage on contextual information be effective for
detecting events in mediums like Twitter? We conducted this study in a data set of
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tweets crawled during the festivities of “La Mercè” in Barcelona and we showed that topic
models, a well-known class of probability models for text, must be amended to take con-
textual information into account and, in that way, mitigate the lack of word co-occurrence
in short text documents like tweets. We explored two ways to integrate contextual infor-
mation with topic models: the heuristic Tweet-SCAN and the probabilistic Warble. In
the heuristic approach, we pooled tweets by hash tag and we also tried by top keyword.
Both pooling strategies were useful to detect events from tweets in “La Mercè”, but the
latter was slightly more discriminative than the former with events that overlap in time
and space. This preliminary result motivated the development of a fully probabilistic ap-
proach that grouped tweets into different components based on their likelihood to belong
either to an event or to a non-event component. This allowed tweets, that were grouped
into an event component, to be more homogeneous than the heuristic grouping performed
earlier, and hence, topics were more discriminative than in the previous heuristic solution.
Furthermore, the fully probabilistic approach allowed us to define a spatio-temporal back-
ground for non-event tweets which tend to vary smoothly across space and along time. We
showed that the presence of this background was also helpful for uncovering local events in
“La Mercè” where events were concentrated in space and time. Furthermore, we compared
Tweet-SCAN and Warble to an existing method in the literature and we showed that
both solutions were far better than that proposed by McInerney and Blei (2014) which did
not consider spatio-temporal backgrounds and did not jointly perform clustering and topic
modelling. Finally, we pointed at multiple directions to keep validating the hypothesis that
the use of context is crucial for uncovering events from short text. First, we highlighted
the need for publicly available event data sets as well as the existence of labelled events
performed by the domain experts or final users. Second, we discussed that Warble should
be extended with non-parametric Bayesian methods to infer the right number of events and
topics from the data, as well as the spatio-temporal densities for the background.

Can we develop accurate likelihood estimation methods for PFA topic models?
The recent finding of a closed-form expression for the marginal likelihood of PFA (Filstroff
et al., 2018) enabled us to validate the accuracy of the proposed estimation methods in
downsized setups. For real-world scenarios, the intractability of the closed-form expres-
sion hampered the validation of their accuracy, but it did not prevent us from studying
their convergence and bounding their accuracy. In particular, we developed two estimation
methods/approaches whose accuracy was studied in these terms: the left-to-right sequential
sampler and the mean-field variational importance sampling. The former was a non-trivial
extension of the state-of-the-art sampler for LDA topic models, which needed to take into
account many peculiarities of the Gamma-Poisson construction. Despite the good con-
vergences and accuracy properties compared to simpler methods, the computational cost
associated with this method was quadratic in the number of non-zero words. Furthermore,
the extension of this sampler for the binarised version of PFA, known as BPFA, did not
perform as well as in the original PFA in long text documents due to the much bigger
sampling space. These results motivated the development of a family of samplers based
on importance sampling with variational mean-field proposals. These samplers did not
only have lower computational cost, i.e. linear in the number of non-zero words, but the
method with upper-bounded proposal built with the forward KL divergence was superior
in accuracy and convergence to the previous methods in both PFA and BPFA. Moreover,
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the development of variational importance sampling allowed us to derive a stochastic upper
and deterministic lower bound to sandwich the marginal likelihood. These bounds were
essential to reason about the accuracy of the proposed methods in realistic setups. Finally,
we highlighted the need to derive bounds tighter to the marginal likelihood, given that in
some situations the variational bounds were too loose and indecisive. We also suggested
that the use of more complex variational distribution and other divergences beyond KL
could be interesting ways to extend this family of samplers.

Can probability models without local latent variables generalize better for text?
Thanks to the likelihood estimation methods developed in Part II, we were equipped with
a set of tools to assess the generalization of probability models with local latent variables
like PFA and BPFA. At that point, we proposed to learn CGMs, an expressive family
of probability models without latent variables, on binarised text. The Chordalysis algo-
rithm (Petitjean and Webb, 2015b), initially proposed for finding associations in categorical
data through chordal graphs, was extended with more appropriate metrics and parameter
estimation for prediction tasks on text. CGMs constituted the first representative of prob-
ability models without local latent variables. The second was a recently proposed topic
model (Chen et al., 2017) which learned tree-structured graphs from binarised text and
which incorporated several global latent variables. With these two models, we compared
their generalization capabilities against BPFA, through their marginal likelihood as well as
in extrinsic tasks such as omni-directional prediction and anomaly detection. The outcome
of these experiments pointed at the fact that probability models without local latent vari-
ables generalized better to unseen documents in short text, but latent variables models like
BPFA were superior in regular text. Furthermore, we saw that the proposed CGMs were
superior to hierarchical latent trees in short text and they had similar performance in reg-
ular text. Last but not least, Chordalysis was able to scale to much bigger data sets than
its competitors without compromising the prediction capabilities. However, future work
should address the scaling of Chordalysis with the vocabulary size, as well as the extension
to count data. An approach to address the latter problem was already developed in the
future work which consists in learning multivariate or conditional Poisson distributions for
each clique or variable in the chordal graph.

In conclusion, this thesis has explored the topical structure of short text from different
angles. In the first part, we have studied a concrete application of context-specific topic
models for short text, proposing two different techniques to address the problem. In this
part, we did not only learn the basics of probability models, but also identified one of the
potential causes of the poor generalization of topic models in short text: the local latent
variables. In the second part, we equipped ourselves with a toolbox of samplers to evaluate
the generalization capabilities of probability models like Poisson factorisation which contain
several local latent variables. In the third part, we compared the generalization capabilities
of probability models with and without local latent variables and showed that the newly
proposed chordal models are specially superior in short text.

The ubiquity of text production and consumption is here to stay as is and the short-
ening of the message, a consequence of this fast-paced process. With that, the context of
communication becomes even more important than the message itself. Therefore, models
that are able to accommodate contextual information when available as well as models that
intrinsically work well with the lack of context are necessary to answer complex questions
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such as “What’s happening?” or “What’s this document about?”. As we have shown, prob-
ability models provide a principled and structured way to encode the context into a graph
of relationships and groupings, but they are also useful to learn important relationships
among words when context is not available. Therefore, this thesis has advanced the use of
probability models for short text in situations with and without context, and thus, it has
paved the way for current and future forms of written communication.
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AIS Annealed Importance Sampling

API Application Programming Interface

AUC Area Under Curve

AUC-PR Area Under Curve - Precision Recall

AUC-ROC Area Under Curve - Receiver Operating Curve

BDeu Bayesian Dirichlet equivalent uniform

BerPo Bernoulli-Poisson

BIC Bayesian Information Criterion

BN Bayesian Network

BNB Beta-Negative Binomial Process

BP Beta Process

BPFA Bernoulli PFA

CGM Chordal Graphical Model

CPT Conditional Probability Table
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DBSCAN Density-based Spatial Clustering of Applications with Noise

DGM Directed Graphical Model

DP Dirichlet Process

DS Direct Sampling

ELBO Evidence Lower BOund

EUBO Evidence Upper BOund

GaP Gamma Poisson

GDBSCAN Generalised Density-based Spatial Clustering of Applications with Noise

GIS Geographical Information System
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HDP Hierarchical Dirichlet Process

HLTA Hierarchical latent tree analysis

HLTM Hierarchical Latent Tree Model

HM Harmonic Mean
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IS Importance Sampling

IS-IP Iterated Pseudo-Counts

JPT Joint Probability Table

JS Jensen-Shannon

KL Kullback-Leibler

LB-VIS Lower-Bounded Variational Importance Sampling

LBFS Lexicographic Breadth First Search

LDA Latent Dirichlet Allocation

LLA Log-Linear Analysis

LTM Latent Tree Model

LVM Latent Variable Model

MAP Maximum a Posteriori

MCMC Markov Chain Monte Carlo

MFI Mean Field Importance

MH Metropolis Hastings

MN Markov Network

MoB Mixture of Bernoullis

MoU Mixture of Unigrams

mPCA Multinomial Principal Component Analysis

NB Negative Binomial

NBP Negative Binomial Process
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NML Normalized Maximum Likelihood

PCA Principal Component Analysis
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PFA Poisson Factor Analysis

PGM Probabilistic Graphical Model

PPC Posterior Predictive Checks

PTM Probabilistic Topic Models

qNML quotient Normalized Maximum Likelihood

RBM Restricted Boltzmann Machines

RED Retrospective Event Detection

RMSE Root Mean Squared Error

SMT Subfamilywise Multiple Testing

STSS Spatial Scan Statistic

TDT Topic Detection and Tracking

TF-IDF Term Frequency Inverse Document Frequency

TREC Text REtrieval Conference

UB-VIS Upper-Bounded Variational Importance Sampling

UGM Undirected Graphical Models

VIS Variational Importance Sampling
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A
Notation and terminology

In this appendix, we introduce the mathematical notation and terminology that is used
throughout the thesis. In general, we use regular lower case to denote fixed and random
scalars and bold lower case to denote vectors. Bold upper case letters denote matrices
and non-bold upper case, constants. Greek letters are used to denote random and fixed
parameters in statistical distributions and sample estimates.

General math notation: to introduce to scalar, vector, matrices and other data struc-
tures.

x scalar
x [x1, ..., xK ] vector of size K
X [x1, ...,xK ] matrix of size N ×K
xi: i-th row vector in X
x:j j-th column vector in X
xij i, j-th scalar entry in X
[...] vector and matrix
(...) sequence
〈...〉 tuple
{...} set

Probability and statistics notation: to discuss a wide variety of probability concepts.
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r.v. random variable
x |= y r.v. x is independent of r.v y
x |= y | z r.v. x is independent of r.v. y given r.v. z
pmf probability mass function
pdf probability density function
p(x; θ) pdf or pmf of x parametrised according to θ
p̃(x; θ) unnormalized pdf or pmf of x parametrised according to θ
p(x|y; θ) conditional pdf or pmf of x parametrised according to θ
p(x, y; θ) joint pdf or pmf of x and y parametrised according to θ
x ∼ p x is distributed according to p
x|y ∼ p x conditioned to y is distributed according to p
x∗ held-out observation
θ̂ point estimate of θ
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Graph notation: is used to introduce probability models in general.

G graph G = (V , E)
V set of nodes V = {1...V }
V number of nodes V = |V|
E set of edges E = {(s, t) : s, t ∈ V}
E number of edges E = |E|
DAG Directed Acyclic Graph
par(s) set of parents of v ⊂ V in a DAG
pred(s) set of predecessors of v ⊂ V in a DAG
C cliques of a graph
S separators of a graph
ψc(.) potential function for clique c

Plate notation: is used to draw probabilistic graphical models.

x
observed variable

z
latent variable

φ
latent parameter (represented through a letter in the Greek alphabet)

N plate of size N
statistical dependency

N model hyperparameter (inside a plate)
γ distribution hyperparameter (connected to the related variable)

Common text notation: is used for probability models for text.

V vocabulary size
v word
V vocabulary set V = {v1, ...vV }
w index in the in the vocabulary set V
N number of documents
Ln length of the n-th document

Sequenced-specific notation: is used for probability models that consider a sequenced
representation of the bag of words.

wn: n-th document represented as a sequence (wn1, ..., wnLn)
m m-th position in a document
wnm n,m-th index in the vocabulary set V
W document collection represented as a sequence of sequences (w1:, ...,wN :)
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Bagged-specific notation: is used for probability models that consider a bagged repre-
sentation of the bag of words.

yn: n-th document represented as a vector [yn1, ..., ynV ] ∈ NV
0

ynp counts of the word p-th word in V in the n-th document
Y document collection represented as a matrix [y1:, ...,yN :] ∈ NN×V

0

y:p p-th word vector
ynp n, p-th scalar entry
yn. document length (Ln), i.e. sum over words
y.p total word counts in the collection, i.e. sum over documents



B
Probability Distributions

B.1 Elemental Probability Distributions

B.1.1 Discrete Distributions

Bernoulli Distribution is a discrete distribution that expresses the probability of a
binary event that is x = 1 with probability p and x = 0 with probability 1− p. It describes
the outcome of a coin toss with heads’ probability p and tails’ 1− p. The probability mass
function (pmf) can be expressed as,

Ber(x; p) = px(1− p)1−x (B.1)

where 0 < p < 1, p ∈ R and the support for this probability distribution is x ∈ {0, 1}.
Besides, the mean of a Bernoulli random variable is p and its variance p(1− p).

Binomial Distribution is a discrete distribution that expresses the probability of x
successes after n Bernoulli trials with probability of success p. It describes the outcome of
n coin tosses with heads’ probability p and tails’ 1− p. The pmf can be expresses as,

Bin(x;n, p) =

(
n

x

)
px(1− p)n−x (B.2)

where 0 < p < 1, p ∈ R and the support for this probability distribution is x ∈ N0. Note
that the binomial coefficient

(
n
x

)
accounts for the number of ways to choose x items from n

trials. Besides, the mean of a Binomial random variable is np and its variance np(1− p).

Categorical Distribution or Multinoulli distribution is the generalisation of the Bernoulli
distribution to K outcomes x = (x1, x2, ..., xK) with probabilities p = (p1, p2, ..., pK). It
describes the outcome of throwing a K-sided dice with side probabilities p. The pmf can
be expressed as,

Cat(x;p) =
K∏
k=1

p
I(xk=1)
k (B.3)

where 0 < pk < 1, pk ∈ R and the support for this probability distribution is xk ∈ {0, 1}.
The mean of the k-th component is pk and its variance pk(1− pk).
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Multinomial Distribution is a multivariate discrete distribution that expresses the
probability of x = (x1, x2, ..., xK) successes after n Categorical trials with probabilities
p = (p1, p2, ..., pK). It is also the generalization of the Binomial distribution to K out-
comes with probabilities p. It describes the outcomes of n throws of a K-sided dice with
probabilities p. The pmf can be expressed as,

Mult(x;n,p) =

(
n

x1... xK

) K∏
k=1

pxkk (B.4)

where 0 < pk < 1, pk ∈ R and the support for this probability distribution is xk ∈ N0. Note
that the multinomial coefficient

(
n

x1... xK

)
accounts for the number of ways to divide the

whole set of size n items into subsets with sizes x1... xK . The mean of the k-th component
is npk and its variance npk(1− pk).

Poisson Distribution is a univariate discrete distribution that expresses the number of
events x happening in a fix interval knowing that events occur with constant rate λ and
independently of the the latest event. It is often used to describe temporal events like
the number of phone calls received by a call centre or radioactive decay. The pmf can be
expressed as,

Pois(x;λ) = e−λ
λx

x!
(B.5)

where λ > 0λ ∈ R and the support for this probability distribution is x ∈ N0. The mean
and variance of a Poisson r. v. is λ, the same for both moments.

Zero-Truncated Poisson Distribution is a univariate discrete distribution with sup-
port in the positive integers. It is a conditional distribution of a Poisson r.v. whose value
is positive. The pmf is given by,

Pois+(x;λ) = e−λ
λx

x!
(B.6)

where λ corresponds to the same rate than in the Poisson distribution. A Zero-Truncated
Poisson r.v. has mean λeλ

eλ−1
and variance λ+λ2

1−e−λ −
λ2

(1−e−λ)2
.

B.1.2 Continuous Distributions

Beta Distribution is a univariate continuous distribution with support over the interval
[0, 1] and parametrised with two positives values α and β. The probability density function
(pdf) can be expressed as,

Beta(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1 (B.7)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β)

is the Beta function and Γ(.) the Gamma function. This distri-
bution is commonly used to model the randomness of the proportion p in the Bernoulli,
Binomial and Negative Binomial distributions, amongst others, since it is conjugated to
them.
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Dirichlet Distribution is the multivariate generalisation of the Beta distribution to K
dimensions with support in the K − 1 simplex for K ≥ 2 and parametrised with a vector
of positives values α = {α1, ..., αK}. The pdf can be expressed as,

Dir(x;α) =
1

B(α)

K∏
k=1

xαk−1
k (B.8)

where B(α) =
∏K
k=1 Γ(αk)

Γ(
∑K
k=1 αk)

is the generalised Beta function to K dimensions. This distri-
butions is commonly used to model the randomness of proportions in the Categorical and
Multinomial distributions, amongst others, since it is conjugated to them.

Gamma Distribution is a univariate continuous distribution with support in the interval
(0,∞) and parametrised with two positives values referred to as scale k and shape θ. The
pdf can be expressed as,

Ga(x) =
1

Γ(k)θk
xk−1e−

x
θ (B.9)

where Γ(k) refers to the Gamma function. This distribution is commonly used to model
the randomness of the rate in Poisson and Exponential distributions, amongst others, since
it is conjugated to them.

B.2 Table of distribution in the exponential family

B.3 Compound Probability Distributions
Compound or composite distributions are the result of considering that some of the pa-
rameters of an elemental probability are random variables distributed according to an-
other elemental distribution. These random variables are then marginalised out and new
parametrised distributions emerges.

Dirichlet-Multinomial Distribution is a multivariate discrete distribution on the finite
support of non-negative integers x = {x1, ...xK} which add up to the number of trials n
and parametrised with a positive parameter vector α = {α1, ..., αK}. The p.m.f. has the
following parametric form,

DirMult(x|n,α) =
n! Γ(n+

∑
k αk)

Γ(
∑

k αk)

K∏
k=1

Γ(xk + αk)

xk! Γ(αk)
(B.10)

The mean of the k-th dimension is given by n αk∑
k αk

and its variance, by n αk∑
i αi

(1 −
αk∑
i αi

) n+
∑
αi

1+
∑
i αi

. This compound distribution is built by considering a Multinomial distribution
whose probabilities p follows a Dirichlet distribution,

DirMult(x|n,α) =

∫
Mult(x;n,p)Dir(p;α) dp. (B.11)

and then integrating out the probabilities p.
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Distribution Parameter(s)
θ

Natural
Parameter(s)
η = η(θ)

Base
Measure
h(x)

Sufficient
Statistics

t(x)

Log-partition
A(η)

Bernoulli p log p
1−p 1 x log(1 + eη)

Binomial
with known n

p log p
1−p

(
n
x

)
x n log(1 + eη)

Poisson λ log λ 1
x!

x eη

Categorical
p1, ..., pk
where∑
k pk = 1


log p1

...

log pk

 1


I(x = 1)

...

I(x = k)

 0

Multinomial
with known n

p1, ..., pk
where∑
k pk = 1


log p1

...

log pk


n!∏
k xk!


x1

...

xk

 0

Beta α, β

α
β

 1
x(1−x)

 log x

log(1− x)

 log Γ(η1) +
log Γ(η2)−

log Γ(η1 + η2)

Dirichlet α1, ..., αk


α1

...

αk


1∏
k xk!


log x1

...

log xk


∑

k log Γ(ηk)−
log Γ(

∑
k ηk)

Gamma k, θ

k − 1

−1
θ

 1

log x

x

 log Γ(η1 + 1)−
(η1 + 1) log(−η2)

Table B.1: Basic probability distributions in Exponential family form.

Negative Binomial Distribution is a discrete distribution for the number of successes
in a sequence of i.i.d Bernoulli trials with probability p after observing a given number of r
failures. The p.m.f. can be expressed as,

NB(x|r, p) =
Γ(r + x)

Γ(r)
(1− p)rpx (B.12)

This distribution is used to model over-dispersed counts since its variance rp
(1−p)2 is higher

than its mean rp
1−p .

As shown in (Zhou et al., 2012), the NB can be constructed by marginalizing a Poisson
distribution whose rate θ is controlled by a gamma random variable parameterized with
shape r and scale p

1−p as above. In other words, we can build a NB distribution by,
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NB(x; r, p) =

∫
Pois(x|θ)Ga(θ; r,

p

1− p
) dθ. (B.13)

Negative Multinomial Distribution (Sibuya et al., 1964) is the multivariate general-
ization of the NB distribution to W outcomes (W > 1), each occurring with probability qw
and for a given number of failures r.

NM(x|r, q) =
Γ(r +

∑
w xw)

Γ(r)
(1−

∑
w

pw)r
∏
w

qxww
xw!

(B.14)

As shown in (Filstroff et al., 2018), the NM can be built by marginalizingW independent
Poisson distributions whose rate is controlled by a gamma random variable θ that is scaled
by a vector φ: of length W . This can be expressed mathematically as,

NM(x:; r, q: =
pφ:

1− p+ p
∑

w φw
) =

∫ ∏
w

Pois(xw|θφw)Ga(θ; r,
p

1− p
) dθ (B.15)

where r are the number of failures and q: = pφ:
1−p+p

∑
w φw

is the vector of W success proba-
bilities. When φ: is a probability vector, which sums up to 1, the success probabilities of
the NM become q: = pφ:.

B.4 Stick-breaking construction
This section describes the stick-breaking process used in the constructive definition of Dirich-
let Process provided by (Sethuraman, 1994) to draw the proportions (πk)

∞
k=1. The process

goes as follows. It first draws a collection of Beta random variables,

vk ∼ Beta(1, α) k ∈ {1, 2, ...} (B.16)

where Beta(1, α) is parameterized as in Eq. (B.7). Then, this collection of Beta variables
is used to create the sequence (πk)

∞
k=1, a.k.a. stick proportions, through the formula,

πk = vk

k−1∏
i=1

(1− vi) (B.17)

which guarantees
∑∞

k=1 πk = 1. The distribution of stick proportions is known as GEM
named after Griffiths, Engen and McCloskey.
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C
Variational updates for Warble

C.1 Introduction
This appendix presents the variational inference updates for the mean-field approximation
of the Warble model depicted in Fig. 5.4. The mean-field approximation assumes the
factorized distribution in Eq. (5.14). As introduced earlier, the goal of variational inference
is to minimize the KL divergence between the posterior distribution p(X|D; Γ) and the
factorized distribution q(X; η), through a coordinate ascent algorithm that sequentially
updates each variable at a time. The variational update for a random variable x whatsoever
can be found by solving Eq. (5.15). Next, we present the functional forms and parameter
updates for each variational distribution.

C.2 Mixture Proportions q(π)

We can derive the variational distribution for the mixture proportions q(π) by applying
Eq. (5.15) with x = φ and X\x = mb(x) = {π, c}

q(π) ∝ exp

(∫ ∏
n

q(cn)

(
log p(π;α) +

∑
n

log p(cn|π)

)
dc

)
(C.1)

where we note that the integral w.r.t c only affects the second summation term in the
exponent.

Because both p(π;α) and p(cn|π) are in the exponential family, we can write,

q(π) ∝ exp

(
η(α)t(π) + η(π)

∑
n

−A(η(α))

∫
q(cn)t(cn)dcn −NA(η(π))

)
(C.2)

where η(α), t(π) and A(η(α)) are the natural parameters, sufficient statistics and log-
partition function of p(π;α). Besides, η(π), t(cn) and A(η(π)) are he natural parameters,
sufficient statistics and log-partition function of p(cn|π).

Since p(π;α) is a Dirichlet and p(cn|π) is a Categorical, the sufficient statistics of the
former t(π) are equal to the natural parameters of the latter η(π), as shown in Table B.1.
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Besides the log-partition function of the Categorical is 0 and that of the Dirichlet is inde-
pendent of π. Therefore, one can simplify the equation above as,

q(π) ∝ exp

(
t(π)

(
η(α) +

∑
n

∫
q(cn)t(cn)dcn

))
(C.3)

where the variational distribution q(π) is clearly a Dirichlet distribution with updated nat-
ural parameters η(π′) = η(α) +

∑
n

∫
q(cn)t(cn)dcn.

Therefore, the mean-field distribution for the mixture proportions is a Dirichlet with
parameters π′k.

q(π) ∼ Dir(π; π′k)

π′k = απ +
N∑
n=1

c′nk

where c′nk =
∫
q(cn)I(cn = k)dcn = Eq(cn)[I(cn = k)].

C.3 Topic Distributions q(φt)

The word distribution for each topic t is Dirichlet with parameters φ′t.

q(φt) ∼ Dir(φt;φ′t)

φ′t = αφ +
N∑
n=1

wnmz
′
nmt

C.4 Temporal Mean and Precision q(τk), q(λk)

The temporal Mean and Precision distributions for each component k are Normal and
Gamma with parameters m′τk , β

′
τk

and a′λk , b
′
λk

respectively.

q(τk) ∼ N(τk;m
′
τk
, β′τk

a′λ
b′λ

)

m′τk =
mτβτ +

∑N
n=1 c

′
nktn

β′τk
β′τk = βτ +Nck

q(λk) ∼ Ga(λk; a
′
λk
, b′λk)

a′λk = aλ +
Nck

2

b′λk = bλ +
1

2

N∑
n=1

(tn −m′τk)
2 +

βτ
2

(m′τk −mτ )
2
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C.5 Spatial Mean and Precision q(µk), q(∆k)

Consider the following expressions:

lk =
1

Nck

N∑
n=1

c′nkln

Sk =
1

Nck

N∑
n=1

c′nk(ln − lk)T (ln − lk)

The spatial mean and variance distributions for each component k are Normal and
Wishart with parameters m′µk , β

′
µk

and ν ′k, W ′
k, respectively.

q(µk) ∼ N(µk;mµ′k
, β′µkν

′
kW

′
k)

m′µk =
mµβµ +Nck lk

β′µk
β′µk = βµ +Nck

q(∆k) ∼ W(∆k; ν
′
k,W

′
k)

ν ′k = ν∆ +Nck

W ′
k =

(
W−1

∆ +NckSk +
βµNck

βµ +Nck

(lk −mµ)T (lk −mµ)

)−1

C.6 Topic proportions q(θk)

The topic proportions for each component k are Dirichlet with parameters θ′k.

q(θk) ∼ Dir(θk; θ′k)

θ′k = αθ +
N∑
n=1

c′nk

Ln∑
m=1

wnmz
′
nmt

C.7 Topic Assignments q(zn,m)

Consider the following expression:

E(log φt)v =

∫
φt

q(φt;φ
′
tv) log φt = Ψ(φ′tv)−Ψ(

V∑
v=1

φ′tv)
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The topic assignments distribution is a Categorical with parameters z′n,m,t.

q(znm) ∼ Cat(znm; z′nmt)

z′nmt =
z̃′nmt∑T
t=1 z̃

′
nmt

z̃′nmt ∝ exp

(
E(log φt)m +

K∑
k=1

c′nk E(log θk)t

)

C.8 Component Assignments q(cn)

Consider the following expressions:

E(log π)k =

∫
π

q(π; π′k) log π = Ψ(π′k)−Ψ(
K∑
k=1

π′k)

E(log θk)t =

∫
θk

q(θk; θ
′
kt) log θk = Ψ(θ′kt)−Ψ(

T∑
t=1

θ′kt)

where Ψ(.) corresponds to the digamma function.
The mixture assignments distribution is a Categorical with parameters c′nk.

q(cn) ∼ Cat(cn; c′nk)

c′nk =
c̃′nk∑K
k=1 c̃

′
nk

c̃′nk ∝ exp

(
E(log π)k +

Mn∑
m=1

wnm

T∑
t=1

znmt E(log θk)t

+ I(k = K) (logHist(ln;LB) + logHist(tn;TB))

+ I(k 6= K)

(
− log 2π +

1

2

(
2 log 2 + Ψ(

ν ′k
2

) + Ψ(
ν ′k − 1

2
)

+ log |W ′
k| −

2

β′µk
− ν ′k(ln −m′µk)

TWk(ln −m′µk)
)

−1

2
log 2π +

1

2

(
Ψ(a′k)− log b′k −

1

β′τk
− a′k
b′k

(tn −m′τk)
2

))



D
Warble Topics in “La Mercè”

D.1 Topic Distributions in “La Mercè” 2014

Topic 0 dice puedo pasa pedro relax buen playa gràcia follow jordi
Topic 1 espectacular santa sólo beer concerts beautiful pluja internet geniales heart
Topic 2 ciutadella ver feliz barça así da jajaja ayer plaza h
Topic 3 montjuic end fuegos palabras país seguir iphone joder two
Topic 4 party one publicar photo crappy friends vols vol bonita pot
Topic 5 museu macba contemporani fan veient negra visca moment millor gallina
Topic 6 vaya mola sants coming nonono j nice original red ferran
Topic 7 felicidades ir km celebrar pp güell amor saben par p
Topic 8 catedral born igersbcn deja autumn momento fent impressionant caves mnac
Topic 9 bon mostracat espero especial cuenta pronto ole perfecte despierta tope
Topic 10 pues liampayne horas music home parte farem bracafé beauty montaña
Topic 11 messi rambla coses personas ajuntament thanks club sun nova vine
Topic 12 montjuïc w mas dels família piromusical castell fiesta amazing park
Topic 13 passeig dias nueva tibidabo disfrutando tiempo creo rovira piro
Topic 14 piromusical plaça despanya font poder part video running sueño teatre
Topic 15 sant barceloneta x felicitats back youre ever govern people che
Topic 16 dart manera friends apolo ciudad dun vuelta cute merçè duda
Topic 17 platja bogatell txarango concert manel ganas dormir k mejores new
Topic 18 happy genial veure igers somnis cosas die año get first
Topic 19 maria castells dir tricentenari programa mierda festival torre quién dóna
Topic 20 madrid muchas go música madre metro fc hora pena vamos
Topic 21 gracias spain casa sagrada familia mañana time acabo fiesta años
Topic 22 diada ve falta felip verdad zijn sky petit grande ºc
Topic 23 st gothic seen leer gobierno visita musical kiwi pèssima
Topic 24 plaça dia jaume catalunya day mejor ahora im love bueno
Topic 25 parc camp palau today mundo gente like dont city puede
Topic 26 im q gran mercé hoy nit día españa noche cat
Topic 27 pell debe viure avda lany alcohol cas sabe gol
Topic 28 sort mujeres ok alla pesado cantante verdadero turismetlímit hecho vemos
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Topic 29 vida foto festa concierto joan vez bona quiero buenas cataluña



E
Useful Expectations for PFA and BPFA

E.1 Entropy of a Multinomial RV

The entropy of a Multinomial r.v. xnp: = [xnp1 · · ·xnpK ] with ynp trials and γnp: = [γnp1 · · · γnpK ]
distributed according Q(xnp:; ynp, γnp:) can be computed as follows,

H(xnp:) = EQ [− logQ(xnp:; ynp, γnp:)] (E.1)

where EQ refers to the expectation w.r.t. distribution Q(xnp:; ynp, γnp:).
By substituting the pmf from Eq. (B.4) in the definition of entropy above, we can use

the logarithm properties to transform products into sums and push the linear operator of
expectation inside as follows

H(xnp:) = − log ynp!−
K∑
k=1

EQ[xnpk] log γnpk +
K∑
k=1

EQ[log xnpk!]. (E.2)

Given that the individual components of the Multinomial random variable are dis-
tributed according to a Binomial with ynp trials and γnpk probability, the expectation of the
random variable xnpk is equal to the mean of the k-th binomial EQ[xnpk] = ynpγnpk. Thus,
we can rewrite the previous expression as,

H(xnp:) = − log ynp!− ynp
K∑
k=1

γnpk log γnpk +
K∑
k=1

EQ[log xnpk!]. (E.3)

Finally, we compute the expectation of the logarithm of the factorial of the random
variable xnpk. Again, we take advantage that each component is distributed according to a
binomial to express this expectation as,

EQ[log xnpk!] =

ynp∑
xnpk=1

(
ynp
xnpk

)
γ
xnpk
npk (1− γnpk)ynp−xnpk log xnpk!. (E.4)

Putting it all together, the entropy of a Multinomial r.v. is given by the closed-form
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expression,

H(xnp:) = − log ynp!−ynp
K∑
k=1

γnpk log γnpk+
K∑
k=1

ynp∑
xnpk=0

(
ynp
xnpk

)
γ
xnpk
npk (1−γnpk)ynp−xnpk log xnpk!

(E.5)
which has a computational cost O(K(ynp + 1)) linear in the number of trials ynp and the
the number of components K. However, the EQ[log xnpk!] is not needed for the evaluation
of ELBO since it cancels out with another term in the equation, as we will show later.

E.2 Entropy of a Gamma RV

The entropy of a Gamma r.v. lnk with shape βnk1 and scale βnk2 distributed according to
Q(lnk; βnk1, βnk2) can be computed as follows,

H(lnk) = EQ [− logQ(lnk; βnk1, βnk2)] (E.6)

where EQ refers to the expectation w.r.t. distribution Q(lnk; βnk1, βnk2).
By substituting the pdf from Eq. (B.9) in the definition above, we can apply the product

and power rules of logarithms, and push the expectation operator, which is linear, inside as
follows,

H(lnk) = log Γ(βnk1) + βnk1 log βnk2 − (βnk1 − 1)EQ[log lnk] + EQ[lnk]/βnk2. (E.7)

To compute the EQ[lnk] and EQ[log lnk)], we can take advantage that the Gamma dis-
tribution is part of the Exponential Family and hence, the expectation of its sufficient
statistic are the partial derivatives of its cumulant. By considering the natural parameteri-
zation of the Gamma distribution in Table B.1, one can compute the partial derivatives of
the cumulant A(η) = log Γ(η1 + 1)− (η1 + 1) log(−η2) as,

EQ[log lnk)] =
δA(η1, η2)

δη1

= Ψ(η1 + 1)− log(−η2) (E.8)

EQ[lnk] =
δA(η1, η2)

δη2

=
η1 + 1

−η2

(E.9)

where η1 = βnk1−1 and η2 = −1
βnk2

and hence, the expectations in the original parametrization
are,

EQ[log lnk] =
δA(η1, η2)

δη1

= Ψ(βnk1) + log(βnk2) (E.10)

EQ[lnk] =
δA(η1, η2)

δη2

= βnk1βnk2. (E.11)

Putting it all together, the entropy of a Gamma r.v. is given by the expression,

H(lnk) = βnk1 + log Γ(βnk1) + log(βnk2) + (1− βnk1)Ψ(βnk1). (E.12)
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E.3 Expectation of the log of a Poisson - PFA

Here, we develop the expectation of the logarithm of a Poisson distribution p(xnpk; lnkφkp)
w.r.t. the mean-field distributionQL(xnp:, lnk; γ

L
npk, β

L
nk1, β

L
nk2), which appears in Section 8.2.1.

We start by applying logarithm properties to the Poisson pdf in Eq. (B.5) and push the
expectation operator inside as follows,

EQ[log p(xnpk; lnkφkp)] = EQ[xnpk log lnk]− (1− log φkp)EQ[xnpk]− EQ[log xnpk!] (E.13)

where EQ refers to the expectation w.r.t. QL(xnp:, lnk; γ
L
npk, β

L
nk1, β

L
nk2). Next, given that Q

is a factorized distribution, we can compute the expectation of each term independently as,

EQ[xnpk log lnk] = EQ(xnp:;ynp,γnp:)[xnpk]EQ(lnk;βnk1,βnk2)[log lnk] (E.14)
EQ[xnpk] = EQ(xnp:;ynp,γnp:)[xnpk] (E.15)

EQ[log xnpk!] = EQ(xnp:;ynp,γnp:)[log xnpk!] (E.16)

where each of these expectations has been calculated in the previous section for the en-
tropy of a Multinomial and Gamma random variable. Note that, here the expectations
EQ(xnp:;ynp,γnp:) are taken w.r.t. the Multinomial distribution and EQ(lnk;βnk1,βnk2) w.r.t the
Gamma distribution.

Putting it all together, the expectation is given by the expression,

EQ[log p(xnpk; lnkφkp)] = ynpγnpk(Ψ(βnk1) + log(βnk2) + log φkp − 1)

−
ynp∑

xnpk=1

(
ynp
xnpk

)
γ
xnpk
npk (1− γnpk)ynp−xnpk log xnpk!. (E.17)

Note that the term EQ[log xnpk!] is not required to compute for the evaluation of the
ELBO because it cancels out with the same term in the entropy.

E.4 Expectation of the log of a Gamma

Similar to the entropy of a gamma random variable, we now develop the expectation of the
logarithm of a Gamma Distribution w.r.t. a different Gamma distributionQL(lnk; β

L
nk1, β

L
nk2),

which also appears in Section 8.2.1.
We start by applying the logarithm properties to the Gamma pdf in Eq. (B.9) and

pushing the expectation operator inside,

EQ[log p(lnk|rk, pk)] = − log Γ(rk)− rk log pk + (rk − 1)EQ[log lnk]− EQ[lnk]/pk. (E.18)

By substituting the expectations above with those from Eqs. (E.11) (E.10), we can
express this expectation as,

EQ[log p(lnk|rk, pk)] = − log Γ(rk)− rk log pk + (rk − 1) (Ψ(βnk1) + log(βnk2))− βnk1βnk2

pk
.

(E.19)
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E.5 Entropy of Jointly Zero Truncated Poisson RVs
The entropy of a K Poisson random variables with K rates given by ξnp: which cannot be
0 all at the same time can be computed as follows,

H(xnp:) = EQ [− logQ(xnp:; ξnp:)] (E.20)

where EQ refers to the expectation w.r.t. distribution Q(xnp:; ξnp:).
By substituting the pmf p(xnp:; ξnp:) given by Eq. (8.56) in the definition of entropy

above, we can use the logarithm properties to transform products into sums and push the
linear operator of expectation inside as follows,

H(ynp:) = log
(
e
∑K
k=1 ξnpk − 1

)
−

K∑
k=1

EQ[xnpk] log ξnpk + EQ[log xnpk!]. (E.21)

Thanks that this distribution is in the exponential family, the first expecation term can
be derived as follows,

EQ[xnpk] = EQ[t(xnpk)] =
δA(η(ξnpk))

δη(ξnpk)
=

ξnpk

1− e−
∑K
k=1 ξnpk

. (E.22)

Finally, the expectation term EQ[log xnpk!] is given by the sum,

EQ[log xnpk!] =
∑

xnp:∈{ZK |xnp: 6=[0···0]}

log xnpk! p(xnp:; ξnp:) (E.23)

where the summation set are the vectors ofK non-negative integers which are not all 0 at the
same time. To the best of our knowledge a close-form expression does not exist to compute
this entropy in finite time. Fortunately, this term will cancel out with an expectation term
in the bound, so we can avoid its computation. In conclusion, the entropy of the jointly
zero truncated Poisson required for the lower bound is given by,

H(ynp:) = log
(
e
∑K
k=1 ξnpk − 1

)
− 1

1− e−
∑K
k=1 ξnpk

K∑
k=1

ξnpk log ξnpk. (E.24)

E.6 Expectation of the log of a Poisson - BPFA
The expectation of the logarithm of the Poisson distribution that appears in the ELBO in
Section 8.3.1 can be derived as follows,

EQ[log p(xnpk; lnkφkp)] = EQ[xnpk log lnk]− (1− log φkp)EQ[xnpk]− EQ[log xnpk!] (E.25)

where EQ refers to the expectation w.r.t. QL(xnp:, lnk; ξ
L
npk, β

L
nk1, β

L
nk2). Again, we can com-

pute the expectation for each term separately because Q is a factorized distribution.
The first expectation can be split in two as follows,

EQ[xnpk log lnk] = EQ(xnp:;ξnp:)[xnpk]EQ(lnk;βnk1,βnk2)[log lnk] (E.26)

where the first expectation is given by Eq. (E.22) and the second, by Eq. (E.10).
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The rest of expectations were also given by Eq. (E.22) and Eq. (E.23), respectively, but
fortunately, EQ[log xnpk!] appears with the sign reversed and it cancels out with the term
in the entropy.

Therefore, the contribution of this expectation to the overall lower bound can be written
as,

EQ[log p(xnpk; lnkφkp)] =
ξnpk

1− e−
∑K
k=1 ξnpk

(Ψ(βnk1) + log(βnk2) + log φkp − 1). (E.27)
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