
Universitat de Barcelona (UB)
Facultat de Filosofia

Programa de doctorat en Lògica Pura i Aplicada (2011-2013)
Pure and Applied Logic H0C03

Departament de Lògica, Història i Filosofia de la Ciència

PhD Thesis

Logical planning in Temporal Defeasible

and Dynamic Epistemic Logics: the case

of t-DeLP and LCC

Pere Pardo Ventura

Advisors:
Llúıs Godo Lacasa (IIIA-CSIC)

Mehrnoosh Sadrzadeh (Oxford University)

Tutor:
Ramon Jansana Ferrer (Univ. de Barcelona)

Institut
d’Investigació

en Intel·ligència
Artificial

Consejo
Superior
de Investigaciones
Cientificas

SETEMBRE 2013

A la meva famı́lia i amics.

Als meus millors mestres.

Acknowledgments

La tesi que el lector té a les mans no hauria estat possible sense el suport de
moltes persones, aix́ı com el d’unes quantes institucions.

En primer lloc, voldria agräır el suport de la meva famı́lia, començant pels
meus pares Pere i Carme, aix́ı com el que vaig rebre dels meus avis Josep i
Montserrat, Emili i Montserrat; també agraeixo el suport dels meus germans
Emili i Elisa, Mia i Olga (i la Júlia!), i el de tots els cosins, tiets, tietes i oncle.

En segon lloc, vull agräır també el suport dels meus amics més immediats,
Aleix Ojeda, Jaume Clavé, Xavi Miret, Andreu Machuca, Ruben Calvo, Lour-
des Bohé, Ricard Roig, Núria Ravents, Milkah Gutiérrez, Carlos Camins, Joan
Mart́ı, Núria Galofré, Carles Castillo, Omar Merino i Sara Qadar, amb qui he
compartit calçotades i partits de futbol. Gràcies també a la Laura Casademont
per la seva hospitalitat, i al Fèlix Llopart i a la Cristina S. pel seu suport.

Pel que fa a la vessant acadèmica, en primer lloc voldria reconèixer i agräır la
paciència, dedicació i bons consells dels meus directors de tesi, el Llúıs Godo i la
Mehrnoosh Sadrzadeh. No costa gaire d’imaginar què se n’hauria fet d’aquesta
tesi sense ells. Gràcies també al meu tutor, en Ramon Jansana, per la seva ajuda
i supervisió.

En segon lloc, voldria donar les gràcies també a l’Eva Onaindia i el Sergio
Pajares, de la Universitat Politècnica de València, sense els quals bona part
d’aquesta tesi tampoc hauria estat possible.

També m’agradaria esmentar totes les persones de l’IIIA que he tingut el
plaer de conèixer i de qui he pogut aprendre tantes coses. Molt especialment,
Carles Sierra, Ramon López de Mántaras, Pablo Noriega, Francesc Esteva,
Marco Cerami, Félix Bou, Pilar Dellunde, Àngel Garćıa-Cerdanya el Sueco,
Enrico Marchioni, Carles Noguera, Tommaso Flaminio, Pedro Messeguer, i la
Teresa Alsinet de la UdL. Un agräıment també a les famı́lies de’n Llúıs Godo,
Carles Sierra, Ramon López de Mántaras, i Francesc Esteva, i especialment un
record per al Marc Esteva i la Noëlle, a qui vaig tenir l’honor de conèixer.

Vull agräır també els professors del(s) Dept. de Lògica de la UB, de qui tant
he après durant els estudis de llicenciatura i de màster. Molt especialment, els
professors Ramon Jansana, Ignasi Jané, Joan Bagaria, Calixto Badesa, Enrique
Casanovas, Juan Carlos Mart́ınez, Rafel Farré (de la UPC), Ventura Verdú,
Josep Macià, Manuel Pérez de Otero, i Manuel Garćıa-Carpintero.

Finalment, també he tingut la sort de conèixer molts investigadors i estudi-

v

ants d’arreu del món durant tots aquests anys. M’agradaria esmentar especial-
ment en Guillermo R. Simari, Ana Casali, David Pearce, Sasha Ossowski, Levan
Uridia, Dick Walther, Barteld Kooi, Alexandru Baltag, Wieve van der Hoek,
Colin Howson, Nicholas J.J. Smith, Thomas Jech, Hugh Woodin, Petr Hàjek,
Chris Fermüller, Ondrej Majer, Raquel Fernández, Petr Cintula, Didier Dubois,
Henri Prade, Peter Gärdenfors, Samson Abramsky, Jeremy Seligman, Jeff Paris,
Wang Qin, Ilan Frank, Marjon Blondeel, i finalment Bob Coecke, Chris Heunen
i James Vicary.

Aquesta llista d’agräıments no estaria completa sense esmentar els compa-
nys de despatx amb qui he pogut compartir les pors i esperances t́ıpiques dels
estudiants de doctorat. De l’IIIA, la Mari Carmen Delgado, Toni Penya-Alba,
Xavi Ferrer, Julián Salas, Jesús Giráldez, Marc Pujol, Vı́ctor Bellón, Àngela
Fàbregues, Andrew Koster, Amanda Waldermert, Thomas Trescak, Tito Cruz,
Isaac Pinyol, Oguz Mulayim, Meritxell Vinyals, Dani Villatoro, Pablo Alma-
jano, Arnau Ramisa, Arturo Ribes, Norman Salazar, Gunnes Baydin, i la resta
d’estudiants de l’IIIA amb qui he coincidit en els darrers anys. També el su-
port de molts investigadors de la IIIA, com ara en Felip Manyà, Sandra Sandri,
Marco Schorlemmer, Enric Plaza, Jesús Cerquides, Juan Antonio Rodŕıguez
JAR, Josep Puyol, Pere Garćıa, Gonçal Escalada i la resta d’investigadors de
l’IIIA, aix́ı com el de tots els treballadors de l’IIIA i els companys de la UDT.

De la UB, voldria donar les gràcies a en Dan López de Sa, Sònia Roca, Gemma
Celestino, Marta Campdelacreu, José Gil, Vı́ctor González, Óscar Cabaco, Joan
Trench, Marc Canals, Adán Cassán, Ana González i Jordi Guzmán, aix́ı com als
companys de màster Andrés Stissman, Neus Castells i Josep Pons.

Finalment, de la UAB, voldria esmentar l’Anna, les dues Raquels, els tres
Xavis i la Jèssica, amb qui he compartit tantes converses i avaries als trens.

Aquesta tesi tampoc hauria estat possible sense el suport econòmic dels
diferents projectes: AT Agreement Technologies (CSD2007-022 Ingenio 2010);
LOCOMOTION corresponent al projecte EUROCORES FP006 LoMoReVI
(FFI2008-03126-E/FILO); ARINF (TIN2009-14704-C03-03) del MICINN; i el
projecte 2009-SGR-1434 de la Generalitat de Catalunya. Agraeixo també el
suport de l’Institut d’Investigació en Intel.ligència Artificial (IIIA-CSIC), de la
Universitat de Barcelona, i també el suport de la Oxford University durant la
meva visita acadèmica l’estiu del 2011.

En cap cas, cap de les persones o institucions esmentades més amunt pot
ser considerada responsable dels errors que hagin pogut quedar en aquesta dis-
sertació, però śı en canvi dels encerts que aquesta pogués contenir.

Pere Pardo

Moja - Olèrdola

26 d’Agost de 2013

Abstract

The design of artificial agents -that autonomously decide what to do in order
to fulfill their goals- has become an important problem at the intersection of
applied logic, computer science, game theory and artificial intelligence. This
problem is just a rephrasing in contemporary terms of some older questions on
practical reasoning and rationality, with an added emphasis on the need for
social abilities in multi-agent systems.

The topics of this thesis are logics and methods for planning. Historically,
these two areas independently introduced the same agency-related concepts (ac-
tions, time, causality, observations, beliefs, non-determinism, intention), but
they developed completely different tools and models for them in order to solve
the tasks of inference and plan search (e.g. logical calculi and search methods).

As a consequence, it is difficult to obtain formal theories for practical reason-
ing that combine the strengths of the two fields for practical reasoning. Thus, for
example, the tools used in planning do not easily generalize to planning problems
demanding sophisticated reasoning tasks. At its turn, logics have also experi-
enced considerable difficulties to accomplish tasks that plan search algorithms
routinely do. Combining the strengths of the two areas would greatly extend
the class of scenarios that can be addressed by self-motivated artificial agents.

The aim of this thesis is the study of methods for extending a logic into
a planning system (with the expressivity of this logic), and the use of plan-
ning techniques to solve practical goals in a logically sound way. To this end,
two particular logics are considered: temporal defeasible logic programming and
dynamic epistemic logics. These logics are respectively oriented towards the
physical or causal aspects of actions, and their epistemic and social dimensions.
Although we focus on those particular logics, the proposed techniques seem to
generalize to other logics with similar characteristics.

vii

Contents

Acknowledgments v

Preface xiii

I Planning in t-DeLP Temporal Defeasible Logic Pro-
gramming 1

1 t-DeLP Temporal Defeasible Logic Programming 5

1.1 Introduction . 5

1.2 Representing Temporal Change in t-DeLP 8

1.3 A general t-DeLP framework . 10

1.4 A study of t-DeLP for simple programs 23

1.5 A study of t-DeLP for mutex programs 28

1.6 A comparison of t-DeLP with Dung semantics, DeLP and TDR . 35

1.6.1 t-DeLP and Dung acceptability semantics 35

1.6.2 Defeat criteria in DeLP and t-DeLP. 36

1.6.3 t-DeLP and Temporal Defeasible Reasoning (TDR) . . . 37

1.7 Conclusions and Related Work 38

1.8 Appendix: proofs . 40

2 A Planning System based on t-DeLP for centralized planning 47

2.1 Introduction . 47

2.2 Representing actions and indirect effects in planning. 49

2.2.1 A simple model for temporal actions in t-DeLP 52

2.3 Basic concepts in t-DeLP multi-agent planning 54

2.4 A brief look at Forward Planning in t-DeLP 59

2.5 A t-DeLP planning system for backward search 61

2.6 Algorithms for t-DeLP backward planning 68

2.7 Soundness of BFS search for backward t-DeLP planning 69

2.8 Completeness of BFS search for backward t-DeLP planning . . . 77

2.9 Conclusions and Related Work 81

ix

3 Multi-planner Dialogues for cooperative planning in t-DeLP 83
3.1 Introduction . 83
3.2 Distributed and centralized planning domains 86
3.3 Turn-based Dialogues for Cooperative Planning in t-DeLP 87
3.4 Soundness and Completeness of the Dialogue-based Plan Search

algorithm . 93
3.5 Conclusions and Related Work 99

II Planning in Dynamic Epistemic Logics 103

4 Logics of Communication and Change 107
4.1 Introduction . 108
4.2 Epistemic PDL . 112
4.3 Action models U, e . 114
4.4 Axiom system . 116
4.5 Other Approaches . 120

5 Deterministic Planning in LCC 123
5.1 Introduction . 123
5.2 Planning systems for deterministic backward LCC planning . . . 124
5.3 A planning algorithm for deterministic planning in LCC. 126
5.4 Conclusions and Related Work 132

6 LCC with composition and choice 135
6.1 Introduction . 135
6.2 Update with the product of n actions in Un. 136
6.3 Update with the product of at most n actions in U≤n. 141
6.4 The logic LCC⊗n of the action model U≤n. 143
6.5 LCC∪⊗n: choice and non-deterministic actions. 145
6.6 Conclusions and Related Work 150

7 Non-Deterministic Planning in LCC 151
7.1 Introduction . 151
7.2 Non-determinism and distinguishability 152
7.3 A non-deterministic planning system for LCC∪⊗n logics. 158
7.4 A Search Algorithm for Non-deterministic Plans 160
7.5 Conclusions and Related Work 168

Conclusions and Open Problems 173

III Appendixes 181

A Search 185
A.1 Problems represented in graphs and trees. 186
A.2 Uninformed search in OR-graphs (trees): BFS, DFS. 190

x

A.3 Informed search in OR-graphs: Best First Search 192

B Planning 193
B.1 Classical Planning. 194
B.2 Beyond Classical Planning: lifting assumptions. 196

C Argumentation Systems 203
C.1 Abstract Argumentation Frameworks 204
C.2 Logic-based argumentation . 206

Bibliography 211

xi

Preface

The topic of this dissertation is the study of some ways in which logics can be
extended into formal models of practical reasoning, using ideas and tools from
the area of automated planning. This is shown for two particular logics, called
t-DeLP Temporal Defeasible Logic Programming and LCC Logics of Communi-
cation and Change. As with many other applied logics in the literature, each of
these two logics defines a (meaningful) planning system: first, the propositions
of the logical language express world states, planners’ goals and also the effects
and preconditions of actions; and second, the dynamic transitions between states
that model the execution of actions are given by the relation of logical conse-
quence. The class of planning problems in some given logic, i.e. finding a plan
that enforces some goals from a given initial state, is thus defined according to
this logic. The main contributions of this thesis consist in the study of plan
search techniques for the t-DeLP and LCC logics; in each case, these techniques
must take into account the particular kind of logical reasoning involved in the
construction and verification of solution plans.

A motivation for such an approach to practical reasoning is the possibility
of combining the strengths of both planning (e.g. heuristic search) and logics
(expressivity and reasoning power). An important part of this thesis is devoted
to show how (or to which extent, at least) this can be done for these particular
logics, t-DeLP and LCC. Since the approach for practical reasoning followed
in this thesis is not unique, it also remains to be seen that it makes sense, in
light of other methods for practical reasoning existing in the literature. In this
Preface, we try to motivate the present approach also by comparing it to those
methods from the two areas of logic and planning.

Logic, or the formal study of valid reasoning, has proved quite successful in
solving problems that can be encoded as tasks of propositional reasoning. In
applications of logic, these inference tasks are performed by an agent (human or
software) trying to decide whether some propositions follow from a knowledge
base (a set of non-logical axioms). In most logics, these inference tasks can
generally be read as the tasks of an agent trying to decide what to think (or
what to believe).

Since Aristotle, it has been a matter of debate whether logical reasoning
includes, as a particular case, practical reasoning. That is, whether the task
of deciding what to do reduces to that of deciding what to think. Practical

xiii

reasoning, in its many forms, seems to be ultimately inspired by the following
general form of means-ends inference:

if the agent desires that B

and the agent knows that (doing) A implies/ causes B

then the agent intends that A.

Real-world problems, though, exhibit features that suggest that this task is
not to be easily accomplished. For example, by applying twice the above form,
one obtains the Short-sighted Suitor problem (adapted from [78]):

if I had money she would agree to my proposal for marriage

robbing her is a means to having money

if I robbed her she would agree to my proposal for marriage

This example contains some aspects addressed in either part of the thesis. It
can be seen (1) as an illustration of the ramification problem, i.e. the problem
of computing the indirect effects of an intention or plan (dealt with in Part I),
but (2) it also exhibits epistemic aspects that are essential for a successful plan
(studied in Part II); thus, for example, if the suitor proceeds with this plan, it
should include some actions like wearing a mask, distort his voice, not to call
her by her name, and so on. Finally, this example also illustrates (3) a related
area of research, that of multi-agent systems.

Multi-agent systems have become an important paradigm in artificial intelli-
gence [54, 151] and computer science. Some aspects and applications related to
the existence of multiple agents are also discussed in this thesis, mainly from the
standpoint of cooperative multi-agent planning. In this respect, the logic-based
planning systems proposed in each part of the thesis can at least be extended or
applied to problems of this kind.

In the above debate on the reducibility of practical reasoning to logic, the
existing formal systems in the literature can be broadly classified into two posi-
tions:

• reductionist position: a task in practical reasoning is an inference task (in
some appropriate logic); or a possibly infinite set of inference tasks

• non-reductionist position: practical reasoning does not essentially (or in
practice) consist in logical reasoning

A strong reductionist position, for example, seems to have been assumed by
the proponents of logics of intentions (or motivational attitudes, like desires or
goals). These logics try to capture the above form of means-ends reasoning solely
by logical means; for example, in the belief-desire-intention BDI logics. An im-
portant advantage to the reductionist approach is the already existing literature
on logics for different concepts related to agency: actions, time, causality, ob-
servations, belief, non-determinism, uncertainty, and so on. See Section 5.4 for
a more detailed review of these logics.

xiv

At the opposite end, the areas of decision theory, planning, game theory, and
the like, did not initially pay much attention to advances in logical reasoning, and
proposed their own models for the above agency-related concepts. In classical
planning, for example, the task is to find a list of actions that lead to a goal
state from the initial state. These states, goals and actions –preconditions,
effects– are described only by logical atoms and their negations (and classical
implications for conditional effects). Thus, modal logics or non-monotonic logics
cannot immediately be used in order to represent or reason with other aspects
of states, goals and actions. This is also the case, in practice, for contemporary
planners allowing for first-order representations of states and goals. (On the
other hand, game theory is much more disconnected from logic, since it fully
abstracts from any propositional representation within states, goals and actions.
Thus, the algorithm never knows what makes a given state desirable, or why
some actions lead to a given particular state.)

The source of disagreement between the two positions can be traced back
to the two tasks involved in practical reasoning. Practical reasoning, it has
been claimed, decomposes into two tasks: the generation of possible intentions
(or plans, or strategies), and the selection of one of these intentions. In this
sense, the confronted positions put the emphasis on either the generation or the
selection tasks. Thus, logics, on the one hand, can express or generate plans
involving logical concepts and use their syntactic or semantic tools to evaluate
the actual effects of these plans. Planning algorithms, on the other hand, take
advantage of embedding the selection task within the (step-wise) generation of
plans, often with specialized selection mechanisms.

The goal of this thesis is to seek a compromise between these two approaches
to practical reasoning. Thus, plans are based on some logic, but their construc-
tion, made step-by-step, can involve selections that are external to the methods
of the logic. This compromise is reached by renouncing to logical models of in-
tentions, and hence the promise of higher-order practical reasoning tacitly made
by the language of logics of intentions.1 From the point of view of planning,
the price is in terms of the efficiency of existing planning algorithms that solve
problems in the planning systems studied in the literature.

By this, we do not claim that a strong reductionist position in this debate
is wrong, but simply current proposals along this line do not seem completely
satisfactory. (In comparison, it is relatively straightforward to apply either of
the methods proposed here to some suitable logic –without intentions– in order
to obtain a planning system.)

Indeed, a major challenge for a logic of intentions is that practical reasoning,
in its many forms, seems to be deeply non-monotonic, as noted e.g. by [103].
Thus, if an agent expands its beliefs, its (knowledge of its) own abilities or its
goals, the result can be a completely different intention. If this intention is to
be generated purely by means of logical inference, then the logic might well

1A language with intention modalities permits to express, for example, I believe that you
want me to believe that you do not want my money; it should also permit agents to intend
propositions with nested modalities like the former.

xv

be non-monotonic. The intuition of this issue seems to have provoked different
reactions in the literature.

First, some logics clearly oriented to practical reasoning simply restrict them-
selves to the monotonic fragment of practical reasoning. This fragment includes
the generation of possible intentions, and excludes the selection step. This is
the case, for example, of graded BDI logic [37], that infers possible intentions
with associated degrees of desirability, leaving to the end-user the task of se-
lecting some optimal intention. (Similar comments apply to logics of strategic
ability, with logical theorems be of the form the coalition has some strategy that
forces this proposition. The utility of the existing strategy depends on that of
the proposition, both to be externally judged.)

A second reaction has been to embrace the non-reductionist approach and
introduce elements of planning as part of the implementation of these logics.
This is the case of some BDI logics, where the reasoning agent is assumed to be
endowed with a module for plan generation, or simply with a library of plans.
See [151], [37]; see also [28] for a dynamic epistemic logic viewpoint on this issue.
The present approach also falls in this class.

Finally, a third reaction has been to embrace non-monotonicity for the se-
lection of intentions, see [125] for an argumentation-based approach, and [103]
for a defeasible extension of BDI logics, using the defeasible logic in [102], [10].
(Note that, even if Part I makes use of argumentation tools and defeasible logic,
these are only used to generate plans, not to select among them. The latter task
is not to be carried out by the logic but by the planning algorithm.)

The present dissertation can rather be seen along the line of the second kind
of reaction. A major difference, though, is that the selection task is carried out
by the planning algorithm, so no intention modalities need to be assumed in the
logical language. Instead, the logics selected in this dissertation focus on other
aspects of reasoning about agency. The two logics t-DeLP and LCC studied in
each part of this thesis are motivated by the following considerations.

On the one hand, most planning systems assume classical logic, i.e. mono-
tonic logics, as their base logic. Different issues like the frame problem have long
been identified that prevent sophisticated reasoning about actions in this kind of
logics and planning systems. For scenarios oriented to temporal causal reason-
ing, in Part I we propose a temporal extension of defeasible logic programming
DeLP[61]. The resulting temporal defeasible logic programming system t-DeLP
allows to encode temporal processes as arguments (proofs) and, in case of a
conflict due to their interaction, select among the former according to some
structural properties of the arguments representing them.

On the other hand, different (monotonic) logics have been studied in or-
der to reason about agent-related notions. Besides initial attempts based on
classical first-order logic, the advantages of modal logic over first-order logic in
representing agent-related notions have lately been recognized and are generally
accepted [92, 90, 141]. Along this line, in Part II we focus on dynamic epistemic
logic. These study the epistemic aspects of multi-agent systems, including the
epistemic effects (and preconditions) of actions. To this end, we selected an

xvi

expressive dynamic epistemic logic, the family of LCC logics of communication
and change [139].

We hope the present studies can be seen as particular contributions to the two
areas of logic and planning. From the point of view of logic, the main contribu-
tions are proofs of standard logical properties (logical soundness, completeness)
or standard argumentation-theoretical properties (consistency, closure). From
the point of view of planning, the main contribution is an increase in the expres-
sivity of (the languages) of existing planning systems, or in the reasoning power
of the logics underlying these planning systems (see below). Part I is mostly an
example of the latter w.r.t. temporal planning, while Part II is an example of
both, w.r.t. classical planning or planning with partial observability. Finally,
some issues in multi-agent planning are also considered.

Overview and structure of the dissertation

The chapters in each part of the thesis roughly follow the same structure: first,
a logic is introduced; then, this logic is seen to induce (by introducing actions)
or contain some kind of state transition system, where the effects of actions and
plans can be computed. The addition of goals permits to define a planning sys-
tem based on this logic. The planning system that will result mainly depends on
two aspects: the nature of actions and the direction of plan search (whether we
opt for a forward or a backward approach to build plans). Then some planning
algorithms –mostly based on Breadth First Search– are proposed for the corre-
sponding planning systems. Finally, these algorithms are shown to be sound and
complete w.r.t. the space of plans. In other words, if given some planning prob-
lem, the algorithm terminates with a plan, then this plan is a solution for that
planning problem (soundness). And conversely, if a solution exists, the planning
algorithm terminates with such a solution plan (completeness). A more detailed
summary of the different chapters, and their relations to the list of publications
is given next.

Chapter 1 In this first chapter we present a general framework for the
t-DeLP temporal defeasible logic programming, as well as a detailed study of
its argumentation-theoretic properties for two classes of logical programs, called
simple and mutex. As in logic-based argumentation, the idea is to replace the
notion of proof (from monotonic logics) by that of argument, and then compare
the existing arguments for or against a claim, to decide about the truth-value of
this claim (true, false, undecided). Thus, the t-DeLP logic programming system
focuses on non-monotonic temporal reasoning for answering simple queries (tem-
poral literals) on future states, according to some logical program or knowledge
base. The t-DeLP system was first presented in [106] for simple programs, and
an expanded and revised version appeared later as [108], which also dealt with
mutex programs. This Chapter is mostly based on [108], except for the general
definition of defeat, and a rephrasing of the section on mutex programs in a more
logical vein. A related contribution, not included in this dissertation, is [70], on

xvii

a possibilitic extension of t-DeLP.

Chapter 2 In this chapter, a multi-agent planning system built on t-DeLP
is proposed. First, temporal actions are externally introduced, as in planning.
A state transition system is presented, which combines the traditional action
update with t-DeLP reasoning. A planning system based on t-DeLP is then
defined for planning domains of the form (t-DeLP program, actions, goals). This
Chapter focuses on centralized planning, where a planner algorithm generates a
joint plan for the set of executing agents, that enforces the temporal goals. The
main contribution of this paper is the proof that Breadth First Search (BFS) is
sound and complete for (centralized) plan search, both for forward and backward
search. This Chapter is entirely based on the paper [107].

Chapter 3 We study in this chapter a decentralized version of the algorithms
from the previous Chapter 2. The central planner from Chapter 2 is replaced by
a set of planners, who agree upon the set of goals, and aim to agree as well upon
a joint plan for these goals. Each planner, though, is assumed to have its own
knowledge base and abilities. This Chapter studies a dialogue-based plan search
algorithm for this task, where agents exchange new suggestions or evaluations for
plans The main contributions in this Chapter are the preservation of soundness
and completeness of BFS centralized planning to the present dialogue-based
algorithm. This Chapter is essentially based on [109], though many of the ideas
were first studied in the DeLP-POP framework [110] and [111].

Chapter 4 In this chapter, we review the dynamic epistemic logics used in
later chapters for the purpose of planning. These logics, proposed in [139] are
called Logics of Communication and Change (LCC), a family of DEL logics which
capture and generalize most of the standard DEL logics in the literature. In
general, dynamic epistemic logics are modal logics with both dynamic modalities
for actions, and epistemic modalities for agents’ knowledge. This Chapter is
mostly based on

[139] J. van Benthem, J. van Eijck and B. Kooi. Logics of communication and
change, Information and Computation, 204: 1620–1662 (2006)

Chapter 5 In this chapter we study a planning system for backward search
in an arbitrary LCC logic. This planning system is simply introduced as usual
by a tuple (initial state, actions, goals), where now the initial state and goals are
formulas of the LCC logic, and the available actions are a subset of the action
model. Since the assignments considered in LCC logics represent deterministic
actions, any such LCC logic induces a deterministic planning system. In the
present Chapter, then, we focus on Breadth First Search for backward deter-
ministic planning. The main contributions are the proofs for the soundness and
completeness of this search method. A first version of this chapter can be found
in [113], which makes use of generalized frame axioms for the persistence (or

xviii

change) of goals. This technique was replaced in [112] and [114] by syntactic
tools from [139]. This chapter is mostly based on the paper [114].

Chapter 6 In this chapter, we propose an extension of LCC logics with
non-deterministic actions. This is done by combining the (atomic) determin-
istic actions of LCC logics with the PDL program constructors of choice and
(bounded) composition, denoted LCC∪⊗n. These logics extend the language of
LCC with modalities for complex dynamic epistemic programs (or plans), which
are conditional upon the actual results of their non-deterministic actions. The
construction of the LCC∪⊗n logics takes place in a step-wise fashion. We in-
troduce the different elements (composition and non-deterministic choice) in an
increasing way. The main contribution of this Chapter is the soundness and
completeness of the logics LCC∪⊗n, which naturally extend the semantics and
axioms of LCC. This Chapter is mainly based upon the paper [114].

Chapter 7 A planning system for an arbitrary LCC∪⊗n logic is introduced.
A planning domain is as in Chapter 5, except that certain combinations of (pos-
sibly unavailable) deterministic actions logic describe non-deterministic actions
available to an agent. For example, tossing a coin decomposes into tossing heads
and tossing tails. A non-deterministic planning method for arbitrary LCC∪⊗n
logics is proposed, which reduces non-deterministic planning in some LCC∪⊗n
logic into a series of deterministic plan searches in the LCC fragment of this logic.
The main contribution of Chapter 7 is the proof that the new BFS-inspired algo-
rithm is a sound and complete algorithm for strong non-deterministic planning.
That is, a solution plan necessarily leads to some goal state, in any particular
execution (or instantiation) of this plan in the initial state. This Chapter is also
mostly based on the paper [114].

xix

List of publications related to this dissertation.

Most of the contributions of the present thesis are based on the following publi-
cations.

[106] Pere Pardo and Llúıs Godo
t-DeLP: a temporal extension of the defeasible logic programming
argumentative framework
Proc. of Scalable Uncertainty Management SUM 2011
Benferhat and Grant (eds.) LNAI vol. 6929 pp. 489–503, Dayton, USA (2011)

In this paper, a proposal to extend the language of defeasible logic program-
ming DeLP with explicit time was first considered. The language contains two
types of rules: strict and defeasible. Certain aspects of temporal reasoning are
taken into account (persistence, future-oriented causality). The contributions of
this paper concern the class of simple programs. Basic properties of consistency
and closure are proved for this class of t-DeLP programs.

[108] Pere Pardo and Llúıs Godo.
t-DeLP: an argumentation-based Temporal Defeasible Logic
Programming framework
Annals of Mathematics and Artificial Intelligence, Elsevier (In Press, 2013)

This is an expanded and revised version of [106]. The main difference is the
introduction and study of mutex programs. A mutex program is just a simple
program extended with strict rules modeling mutex constraints (used in planning
systems to capture strong incompatibilities). This class is studied by considering
a strengthening of the relation of attack beyond the two-valued case. The class
of t-DeLP mutex programs is shown to satisfy the basic properties of consistency
and closure.

[70] Llúıs Godo, Enrico Marchioni and Pere Pardo
Extending a temporal defeasible argumentation framework with
possibilistic weights
Proceedings of the 13th European Conference on Logics in Artificial Intelli-
gence JELIA 2012, Fariñas del Cerro, Herzig and Mengin (eds.) Toulouse,
France (2012)

In this contribution, we study a system related to t-DeLP, that extends the
language of temporal literals with possibilistic weights. This permits to reason
with qualitative uncertainty in the style of PDeLP, a possibilistic version of
DeLP. The proposed system, called pt-DeLP results from combining the defeat
relations of t-DeLP and PDeLP based on temporal criteria and the strength of
beliefs. Two lexicographic orderings on these notions of defeat are studied. The
paper shows that under any of these two orderings, pt-DeLP is a conservative
extension of t-DeLP, but not of PDeLP.

xx

[107] Pere Pardo and Llúıs Godo
An argumentation-based multi-agent temporal planning system
built on t-DeLP
Proceedings of the Spanish Conference on Artificial Intelligence CAEPIA 2013
Bielza, Salmerón, Alonso-Betanzos et al. (eds.) LNAI vol. 8109, Madrid, Spain
(In press)

In this paper, a multi-agent planning system based on t-DeLP logic program-
ming is considered. The focus is on centralized planning, where a unique planner
generates a sound plan (or solution). This paper describes the state transition
system that corresponds to extending t-DeLP with temporal actions in the style
of planning. The main contribution concerns the soundness and completeness
of Breadth First Search in forward and backward planning, though most of the
paper is devoted the less trivial case of backward plan search.

[109] Pere Pardo and Llúıs Godo
A temporal argumentation approach to cooperative planning using
dialogues
Proceedings of the 14th Workshop on Computational Logic in Multi-Agent
Systems CLIMA 2013, Leite, Son, Torroni, van der Torre and Woltran (eds.)

LNAI vol 8143, pp. 307–324, La Coruña, Spain (In press)

In this contribution, we present dialogues for decentralized planning in
t-DeLP. The task of a central planner assumed in [107] is split into a set of
autonomous planner-executor agents which share the same set of goals, but oth-
erwise can have different beliefs or abilities. We propose a distributed algorithm
for these agents, which basically instantiates a dialogue for the construction of
a joint plan, which is seen as a solution from the point of view of each of these
agents. These dialogues consist in an exchange of plan proposals and their eval-
uations, and can be seen as instantiating a Breadth First Search algorithm of
[107]. The main contributions is again a proof of the soundness and complete-
ness of this dialogue-based algorithm, which is done by comparing it to a central
planner endowed with all the information

[110] Pere Pardo, Sergio Pajares, Eva Onaindia, Llúıs Godo and Pilar Dellunde
Multi-agent argumentation for cooperative planning in DeLP-POP
Proceedings of the 10th Int. Conf. on Autonomous Agents and Multiagent
Systems AAMAS 2011, Tumer, Yolum, Sonenberg and Stone (eds.)

pp. 971–978 IFAAMAS, Taipei, Taiwan (2011)

This contribution is part of a series of papers on the study of dialogue-based
algorithms for DeLP-POP [62]. This is a flexible planning system, based on
partial order planning for Defeasible Logic Programming [61]. In this paper,
dialogues for cooperative problems in DeLP-POP are proposed and shown to
preserve the properties of the centralized planning methods from [62].

xxi

[111] Pere Pardo, Sergio Pajares, Eva Onaindia, Llúıs Godo and Pilar Dellunde
Cooperative Dialogues for Defeasible Argumentation-based Planning
Proceedings of the Argumentation in Multi-Agent Systems workshop
ArgMAS 2011, McBurney et al. (eds.) LNCS 7543, pp. 185–204
Taipei, Taiwan (2011)

This paper is a revised version of [110], with several technical changes upon
the definition of planning actions. These result in a greatly simplified DeLP-
POP planning system. The dialogue-based planning algorithms for this new
planning system, and the main results are similar to those of [110].

[113] Pere Pardo and Mehrnoosh Sadrzadeh
Planning in the Logics of Communication and Change
Proceedings of Autonomous Agents and Multiagent Systems AAMAS 2012
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), pp 1231–1232, València,
Spain (2012)

This paper contains a first study of planning algorithms, based on Breadth
First Search, for a backward planning system built on the Logics of Communica-
tion and Change LCC [139]. This algorithm is shown to be sound and complete
for the base epistemic language E·PDL without common knowledge. The proof
techniques for this results consists in the generation of generalized frame axioms
that compute (in a backward fashion) issues of persistence or change for open
goals.

[112] Pere Pardo and Mehrnoosh Sadrzadeh
Backward Planning in the Logics of Communication and Change
Proc. of 1st International Conference on Agreement Technologies AT 2012
Ossowski, Toni and Vouros (eds.), pp. 231-245, Dubrovnik, Croatia (2012)

In this contribution, the previous results are extended to the class of planning
domains whose goals and knowledge base are formulas in the full language of
E·PDL. A simple form of non-deterministic planning is also considered, based
on an extension of the dynamic modalities in the language, with composition
and choice. Chapter 5 is based on this work.

[114] Pere Pardo and Mehrnoosh Sadrzadeh
Strong Planning in the Logics of Communication and Change
Post-Proceedings of Declarative Agents, Languages and Technologies DALT
2012 Baldoni, Dennis, Mascardi and Vasconcelos (eds.), pp. 37–56, València,
Spain (2012)

This paper describes the logics, planning systems and plan search algorithms
considered in Chapters 5, 6 and 7 of this thesis. Its main novelty is a more
expressive planning system for LCC with non-deterministic actions. The main

xxii

contributions are again the soundness and completeness of plan search algorithms
for both deterministic and strong non-deterministic planning. The latter non-
deterministic planning is shown to reduce to a series of problems in deterministic
planning, which can be solved with Breadth First Search. A longer version of
this paper is under preparation.

xxiii

Terminology and notation.

There are several terms and formal symbols that have different meanings among
related areas where they occur. For example, the term program has different
meanings in logic programming (a knowledge base P), in dynamic or epistemic
logics (a modality π).

p, q, r, . . . atomic variables e, f, . . . actions

Var set of atomic var. action an action

t transl. function U an action model

t temp. parameter [U, e] action modality

〈`, t〉 temp. literal ϕ,ψ, . . . a formula

∼p strong negation ¬p classical negation

→ classical implication pre(e) preconditions of e

← strict arrow post(e) effects of e

−� defeasible arrow A set of avail. actions

Ag the set of agents A′ a set of actions

P a t-DeLP program M planning domain

M a mutex family M epistemic model

π a plan π a PDL modality

π∅ the empty plan

π;π′ composition in PDL π ∪ π′ choice in PDL

e⊗ f comp. of actions e ∪ f choice for actions

P a t-DeLP program X ∪ Y set-theoretic union

P � e update of P by e M ◦ U product update

P⊕ e expansion of P by e (w, e) update of w by e

[ϕ]
M

interpr. of ϕ in M TP(·) v TP′(·) extension of trees

πM interpr. of plan π in M M v M′ ext. of plan. dom.

π(A) or π(e) refinement of plan π with argument A or action e

π∅(x1, . . . ,xn) a plan as a sequence of refinements

(x, y, . . .) a tuple, e.g. in M = (init. state, actions, goals)

(x, . . . , x′)∩(y, . . . , y′) concatenation of sequences (x, . . . , x′, y, . . . , y′)

[A,B, . . .] a tuple of arguments or an argumentation line

xxiv

Part I

Planning in t-DeLP
Temporal Defeasible Logic

Programming

Introduction

In this first part of the thesis, we introduce and study in Chapter 1 a temporal
defeasible logic programming framework, called t-DeLP. This t-DeLP framework
is later used to define different t-DeLP planning systems in Chapters 2 and 3.

The t-DeLP system from Chapter 1 is an argumention-based non-monotonic
temporal logic programming framework. Its expressivity is restricted to the
Horn-fragment of a rule-based language built on a set of temporal literals. Tem-
poral literals are represented as pairs of the form 〈literal, time〉, expressing that
some type of fact literal is true at some time.

The main novelty of t-DeLP is the combination of defeasible and temporal
reasoning of this kind. Defeasible logics consider two types of expressions strict
and defeasible. Strict information behaves monotonically, while defeasible infor-
mation draws presumable (but possibly unsound) conclusions. These conclusions
can be challenged by other constructible arguments. An argumentation-based
procedure decides which conclusions are to be held.

A logical program in t-DeLP can naturally be seen as the knowledge base of
an agent at an initial state (e.g. the current state). A t-DeLP reasoning agent
can thus answer whether a fact will occur at a given (future) time, using the
available knowledge in her knowledge base.

This t-DeLP logic programming framework is used in Chapters 2 and 3 as the
logical foundation for a multi-agent planning system. Indeed, a natural extension
of t-DeLP towards (temporal) practical reasoning simply consists in adding a
set of temporal actions, and a set of agents which can execute these actions.
This extension is considered in Chapter 2. The interactions between t-DeLP
reasoning and action update define a t-DeLP notion of state transition systems,
where the defeasible effects of executing actions can be computed. Moreover, if
we add a set of goals to a t-DeLP state transition system, the result is a t-DeLP
(centralized) planning problem. That is, a central planner must find a joint plan
to be executed by the executing agents. The central planner will try to build a
plan for these goals from her knowledge base (a t-DeLP logic program) and the
abilities of the agents. The idea is that the execution of this joint plan by the
agents will lead to a state where the temporal goals are satisfied. In Chapter
2, we will focus on the Breadth First Search algorithm (BFS), although other
search algorithms might be used instead. In particular, we show that BFS is
sound and complete, for both forward and backward t-DeLP planning systems.

Finally, Chapter 3 studies a planning system for t-DeLP that does not assume
the existence of a central planner. In this case, each agent is endowed with its
own knowledge and abilities. We study in particular the sub-class of problems
in cooperative planning, where the agents share a set of goals, and they wish to
reach an agreement upon a joint plan, whose execution would benefit them all.
This class of problems can be solved with the help of dialogue-based planning
algorithms. In particular, the agents start a dialogue to find a correct plan, by
proposing plans and discussing them. These algorithms are also shown to be
sound and complete, so after this dialogue, the agents either agree upon a joint
plan or they acknowledge that no solution exists for their goals.

3

Chapter 1

t-DeLP Temporal
Defeasible Logic
Programming

1.1 Introduction

In this chapter we present a temporal defeasible logic programming system,
called t-DeLP. This system of logic programming is based on logical argumen-
tation tools, along the line of DeLP by Garćıa and Simari [61], but with a
specific focus on temporal causal reasoning. As with other logic programming
systems in the family of DeLP, the present chapter combines tools from abstract
argumentation [52] and its extension with logic-based arguments [121] with a
formal relation of preference, specially designed for temporal reasoning. Also
as in most logic programming systems, we define (an algorithm for) a notion of
logical consequence in, roughly, the Horn fragment of a propositional language.
The algorithm takes as inputs a logical program and a query, and returns a
yes/no answer to the query.

The main motivation for a temporal extension of DeLP is to define a non-
monotonic method to solve queries of the form: when will a process cease
(or start)? A defeasible argumentation approach to temporal reasoning seems
specifically useful when the “discussion” is precisely between the different con-
jectures about the time a proposition (representing some aspect of the process)
will cease to be true. Questions of this type, in particular, require us to modify
DeLP in order to address several existing genuinely temporal aspects of reason-
ing, like persistence. Finally, these goals are to be pursued while keeping the
conceptual simplicity of defeasible argumentation intact.

Defeasible reasoning (and, more generally, non-monotonic reasoning) tries to
capture common-sense inferences, based on normal expectations. This provides a
simple form of reasoning when exceptions are not known to apply; at its turn, the

5

possibility that exceptions apply is accommodated by the defeasible character
of inference. The problem with many of the initial proposals in non-monotonic
reasoning is that they are based on difficult and unnatural concepts, while on the
other hand, they demand the end-user to define a complex preference relation
in addition to the usual task of representing a knowledge base with a set of
expressions in the language of the logic.

In argumentation-based logics, the arguments can roughly be seen as minimal
consistent derivations. While argumentation based on classical logic program-
ming has a unique symbol ← for Horn clauses [91], defeasible argumentation
considers a rule-based language with two types of rules: strict ← and defeasible
−�. The idea is that if a derivation makes use of defeasible information at some
point, then from this point onwards all the intermediate consequences are de-
feasible; in contrast, when the derivation entirely consists of strict information,
then the defeasible consequence relation behaves as in the classical case.

Temporal reasoning has also been studied in the area of temporal logic pro-
gramming [20], [1]. These works include expressive extensions of classical logic
programming, e.g. with temporal operators next, always-in-future, and so on.
Despite the expressivity of these languages, their notion of logical consequence
is monotonic, and hence these models for reasoning with persistence or with
time in general are somewhat simplistic. In practice, this forces an end-user
to represent domain-specific rules (the clauses in the logical program modeling
a knowledge base) either in a casual non-modular way, or using cumbersome
representations for highly-detailed knowledge bases. The former is problematic
since further introductions of more precise rules demand to rewrite many parts
of the logical program. The latter demands a huge number of domain-specific
rules accounting for each single possible scenario.

The advantages of the present approach based on defeasible argumentation
are precisely along the lines mentioned above. On the one hand, argumentation-
theoretic tools allow for some conceptual simplicity in the design of non-
monotonic logics, as these tools and concepts are naturally inspired by pro-
cesses of deliberation or discussion among humans. Another advantage is that
t-DeLP dispenses end-users with the further task of encoding a notion of pref-
erence (among possible inferences), so only the usual task of encoding facts and
domain-specific rules is required, as in classical logic programming. This latter
advantage is made possible by the definition of a general-purpose relation of
preference among arguments. This notion of preference aims to capture tempo-
ral causal reasoning among common-sense users or agents. Let us remark that
defining a non-monotonic logic with such a unique, formal notion of preference
brings this logic closer to the traditional view of mathematical logic; that is, the
view that logic is the study of the formal aspects of sound reasoning. In the
present case, the purely formal notion of preference is based, as usual, on the
logical syntax, but also on some structural aspects of arguments.

In summary, the t-DeLP framework is as follows. The logical language is
defined by a set of temporal literals -representing facts occurring at some time-,
and (strict or defeasible) durative rules. A temporal logic program consists of

6

temporal facts and rules, which combine into arguments for further derivable
facts. The main motivation for t-DeLP is to reason about interacting processes
(modeled as arguments), and then decide which arguments (conclusions) are to
prevail. An argument expresses some delay between each premise (cause) and
the conclusion (causal effect), thus suggesting how a process might evolve. Since
different arguments (process descriptions) might conflict, a dialectical procedure
is proposed that decides which arguments prevail. This procedure classifies the
arguments (constructible in a logical program) into ‘defeated’ or ‘undefeated’.
Finally, the t-DeLP notion of warrant, or defeasible logical consequence, in a
given logical program, is defined as the set of conclusions of undefeated argu-
ments that are constructible in this program. The literals which are conclusions
of some such undefeated argument are called warranted in the t-DeLP logical
program. Warranted literals can be read as a partial description of the future
temporal states that will turn up, according to the available information con-
tained in the logical program. A t-DeLP theorem prover can thus be seen as a
decision method for queries of the form: does p holds at time t, with possible
answers: yes, no, undecided.

Here we do not address, though, the technical details for an implementation of
a logic programming algorithm for t-DeLP. The reader is referred to [20], where
a resolution-based proof method is studied for temporal logic programming [1].
Since temporal literals can be expressed with the operator next, the proposed
algorithms for refutation proofs can be used in t-DeLP to build arguments.
The remaining argumentation-theoretic machinery to evaluate these arguments
in a logical program (that is, the definitions of attack, defeat, argumentation
line, dialectical tree, warrant) can simply be built on top of these unification
algorithms.

After this brief review, let us expand on the motivations for a defeasible
argumentative approach to temporal reasoning. Among the reasons that can be
given for the adoption of a defeasible (more generally, non-monotonic) approach
is the descriptive parsimony it allows for knowledge bases. This parsimony is in
accordance with everyday causal reasoning, where it is standard practice to list
only those causes that are uncommon or just specific to the process: e.g. a spark
caused a fire. Causes that usually hold, like oxygen, are not mentioned in the
explanation (or rules) unless they are false and this explains the non-occurrence
of the effect: the spark did not start a fire because no-oxygen. With the help of
temporal information, the queries that can be asked are of the form will p occur
at time t? or more generally about the duration of temporal processes when will
p start/cease to be true?.

A well-known contribution among argumentation-based defeasible logics is
that of Garćıa and Simari’s [61]. The authors present DeLP, a logic programming
formalism based on defeasible argumentation. The question of how to define
the defeat or preference relation between arguments is also discussed at length
in this work. Inspired by Poole [120], the authors of [134] focus on a formal
criteria called generalized specificity, which gives preference to arguments with

7

more premises or more direct rules.1 But the latter seems at odds with causal
reasoning in a temporal setting: we would rather prefer less direct rules, i.e. more
detailed temporal inferences. 2 Thus, we adapt this and other aspects of DeLP
to the temporal case in order to intuitively meet basic intuitions about causal
explanations. Some of these differences arise from the temporal asymmetry (past
vs. future) of causation: persistence, the attack relation and defeat deserve
special attention for the temporal case. As a consequence, the notion of warrant
for (temporal) literals is slightly different from that of DeLP as presented in [61].

Structure of the chapter

The chapter is structured as follows. Some preliminaries on notation and knowl-
edge representation are presented in Section 1.2. Then, we present in Section
1.3 a general framework for t-DeLP logic programming. In Section 1.4, we focus
first on the study of t-DeLP for simple programs (programs without strict rules),
and show that under this restriction t-DeLP satisfies the basic argumentation-
theoretic properties, called rationality postulates. Then, in Section 1.5, we ex-
tend these results to t-DeLP mutex programs, simple programs which admit
strict rules if induced by mutex constraints. The chapter ends with Section 1.6,
where t-DeLP is compared with Dung semantics [52]; with the defeat criteria
from DeLP (other elements are compared throughout the chapter); and finally
with the closely related logic programming framework TDR [14]. After the Con-
clusions and Related Work sections, an Appendix section contains the proofs of
auxiliary results presented in this chapter. The remaining results and proofs,
containing illustrative tools in defeasible argumentative logic programming, are
presented throughout the text.

1.2 Representing Temporal Change in t-DeLP

Concerning notation, throughout the present and the next chapters in Part I
we make use of the following conventions. The set Var = {p, q, . . . , } denotes a
set of propositional variables; strong negation is denoted ∼p, for a propositional
variable p ∈ Var. Given two sets X,Y we denote the set-theoretic difference
as X r Y and the Cartesian product of X and Y as X × Y . Sequences are
denoted 〈x0, . . . , xn〉 or [x0, . . . , xn]. Given a sequence ~x = 〈x0, . . . , xn〉 and an
element x, we denote by ~x ∩〈x〉 the concatenation of ~x with x, i.e. the sequence
〈x0, . . . , xn, x〉 or [x0, . . . , xn, x]. If f is a function f : X → Y and X ′ ⊆ X, we
define f [X ′] = {f(a) ∈ Y | a ∈ X ′}. Given a family of sets M, its union is
denoted

⋃
M.

1This criterion captures the preference for e.g. {penguins do not fly} over {penguins are
birds, birds fly} in evidence-based reasoning, not considered here.

2More direct rules can fail to detect interactions. Consider, for instance, two moving objects
that are directed against each other. Under non-detailed rules, these objects would magically
not collide but reach their destinations untroubled.

8

After fixing the basic notation used henceforth, let us describe with more
detail the language of t-DeLP and some representational issues relevant to the
study of argumentation-theoretic properties [35] in later sections.

The language of t-DeLP builds upon a set of temporal literals, consisting
of a pair 〈literal, time〉. Literals are expressions of the form p or ∼p from the
set of variables p ∈ Var. Strong negation ∼ cannot be nested, so we will use
the following notation over literals: if ` = p then ∼` will denote ∼p, and if
` = ∼p then ∼` will denote p. More generally, we also use ∼〈p, t〉 to denote
〈∼p, t〉; the set of negations of literals in a set X is denoted ∼X = {∼` | ` ∈ X}.
Although we will only refer to propositional variables and literals throughout
the next chapters, these might rather be seen as ground predicates, e.g. of
the form literal = property(object) or literal = parameter(object , value). In the
same direction, we will later introduce general rules (or rule schemas) as in logic
programming.

Temporal parameters in t-DeLP will take discrete values in N and will be
denoted with t or expressions ti with subindexes. Thus, a temporal literal is of
the form 〈`, t〉. Time is relevant to determine whether a pair of temporal literals
contradict each other: for such a contradiction to exist, the literals expressed
must be the negation of each otherand they must be claimed to hold at the same
time: 〈`, t〉 and 〈∼`, t〉 are contradictory. A (domain-specific) temporal or causal
rule is an expression of the form

a temporal literal a set of temporal literals

head(δ) body(δ)

〈`, t〉 ← 〈`1, t1〉, . . . , 〈`n, tn〉 strict rule

〈`, t〉 −� 〈`1, t1〉, . . . , 〈`n, tn〉 defeasible rule

A strict rule represents a sound inference step, while a defeasible rule captures
a reasonable but possibly unsound inference step. In t-DeLP, these can be read
as follows:

(strict) if the body is true, then the head is true

(defeasible) if the body is true, then the head is true,
unless good enough reasons exist to the contrary

Different types of such rules deserve explicit mentioning.

• temporal facts 〈`, t〉 ← are strict rules with an empty body, although for
simplicity they are represented just by the temporal literal 〈`, t〉. (Not
to be confused with a strictly or defeasibly derived temporal literal, also
denoted 〈`, t〉; only the former can occur in the base of an argument.)

• persistence rules 〈`, t+1〉−�〈`, t〉 are defeasible rules stating that the truth
of a literal ` is preserved from time t to the next time point t+ 1

• static rules 〈`, t〉 ← 〈`1, t〉, . . . , 〈`n, t〉, or similarly with −�, are about a
unique time point t, and hence represent constraints within this time point;
mutex rules (see below) are a particular case of strict static rules.

9

In the next Section 1.3, we present a general notion of t-DeLP logical con-
sequence, a relation between arbitrary logical programs (sets of facts and rules)
and temporal literals (queries). In later Sections 1.4 we study this logical conse-
quence for two sub-classes of t-DeLP programs, called simple and mutex. Simple
programs contain no strict rules, so they just consist of a set of strict temporal
facts and a set of defeasible rules. Thus, the only static “strict” constraints in
simple programs are those of the form 〈p, t〉 and 〈∼p, t〉.

This might prove insufficient when reasoning with expressions of the form

〈parameter(object , value), time〉 represented as

〈p(o, v), t〉,
or also 〈pv(o), t〉
or even 〈v(o), t〉.

For example, an object cannot have different values of a given parameter at
a given time, so a strict incompatibility should exist between red(apple) and
green(apple), and more generally for any pair 〈p(o, v), t〉 and 〈p(o, v′), t〉 of ex-
pressions as above if v 6= v′. In other cases, two objects o 6= o′ cannot share the
same value at the same time, e.g. for spatial location.

These kinds of constraints have also been studied in the planning tradition,
where they are called mutex, for mutual exclusion. A mutex constraint between
pairs of the form 〈p(o, v), t〉 and 〈p(o, v′), t〉 (with t arbitrary) is expressed, in
planning, by a joint membership in some set X = {p(o, v), p(o, v′), . . .}, the latter
called a mutex set.

In t-DeLP, though, mutex constraints are represented by strict rules, e.g.
〈∼p(o, v′), t〉 ← 〈p(o, v)〉. The logic and planning representations of mutex con-
straints can easily be induced from each other.

Example 1.2.1. Let O and L be the sets of objects o and locations l; and let
@(o, l) ∈ Var denote: object o is at location l;

• the at most one location per object policy is defined by a mutex set Xo =
{o} × L, for each o ∈ O; this set Xo corresponds to the set of rules of the
form

〈∼@(o, l), t〉 ← 〈@(o, l′), t〉 for each l, l′ ∈ L with l 6= l′

• the at most one object per location policy is defined by a mutex set Xl =
O × {l}, for each l ∈ L; this set Xl corresponds to the set of rules

〈∼@(o, l), t〉 ← 〈@(o′, l), t〉 for each o, o′ ∈ O with o 6= o′

1.3 A general t-DeLP framework

In a sketch, argumentation-based logic programming formalisms work as follows:
we start with a knowledge base, a logical program (Π,∆) with temporal facts
and rules, and a query 〈`, t〉; we combine facts and rules in (Π,∆) into an

10

argument A for the query, i.e. an argument whose conclusion is the query. This
argument is a set A ⊆ Π∪∆ that entails the (presumable) fact 〈`, t〉 by applying
modus ponens; this set A must be ⊆-minimal with this property. Once some
such argument A for 〈`, t〉 is fixed, an argumentative process in (Π,∆) generates
counter-arguments B that defeat A; that is, arguments B whose conclusions
contradict some non-basic element of literals(A) –i.e. arguments B attacking A–
and satisfying some extra conditions for defeat. Then arguments C defending
A by way of attacking some such B are considered too, and so on, until all
the relevant arguments for and against are generated. These arguments can
be arranged in the form of a tree that has A as its root, and its arcs are the
defeat relation, and so terminal nodes are arguments for which no defeaters exist.
At this point, A is assigned a label (undefeated, or defeated), according to a
recursive labeling procedure in this tree of arguments. The procedure determines
whether A is undefeated, i.e. whether it constitutes a solid justification or
explanation for the truth of 〈`, t〉. In case it is, we say 〈`, t〉 is warranted in
the knowledge base (Π,∆).

For the temporal component, we take the set of natural numbers N as our
working set of discrete time points. The logic t-DeLP is based on temporal
literals 〈`, t〉, where ` is a literal and t ∈ N, denoting ` holds at time t. In order
to solve conflicts between arguments, the preference (or defeat) relation between
arguments will be based on: a preference for arguments with more premises and
more recent information. The latter criterion denotes a preference for arguments
claiming a change (say from 〈∼`, t〉 to 〈∼`, t+ 1〉) over arguments based on the
persistence of ` from t to t+1, if the sub-arguments for 〈`, t〉 contained in A and
B are the identical. In addition, since arguments must be consistent with strict
information, strict arguments cannot be attacked.

Definition 1.3.1 (Literal, Rule). Given a finite set of propositional variables
Var, we define Lit = Var ∪ {∼p | p ∈ Var}. The set of temporal literals is defined
as TLit = {〈`, t〉 | ` ∈ Lit, t ∈ N}. A temporal defeasible (resp. strict) rule is an
expression δ relating temporal literals of the form

〈`, t〉 −� 〈`0, t0〉, . . . , 〈`n, tn〉 (resp. 〈`, t〉 ← 〈`0, t0〉, . . . , 〈`n, tn〉),

where t ≥ max{t0, . . . tn}. We write body(δ) = {〈`0, t0〉, . . . , 〈`n, tn〉}, head(δ) =
〈`, t〉 and literals(δ) = {head(δ)} ∪ body(δ).

As we mentioned, a strict rule with an empty body 〈`, t〉 ← represents a basic
fact that holds at time t. As in most of the DeLP literature basic defeasible facts
of the form 〈`, t〉−�, also called presumptions in [36], are not considered. The set
of (defeasible) persistence rules 〈`, t+1〉−�〈`, t〉 will be denoted ∆p. In contrast,
strict persistence rules and –more generally– strict durative rules carry such a
strong commitment on the preservation of a fact or its future occurrence, that
they will not be considered.

Definition 1.3.2 (Derivability, Consistent Set). Given a set of rules and strict
facts Γ, we say a literal 〈`, t〉 derives from Γ, denoted Γ ` 〈`, t〉 or also 〈`, t〉 ∈
Cn(Γ) iff

11

• 〈`, t〉 ∈ Γ, or

• there exists δ ∈ Γ with head(δ) = 〈`, t〉, and such that body(δ) is a set of
literals that derive from Γ.

We say Γ is consistent iff the set Cn(Γ) contains no pair of literals of the form
〈`, t〉 and 〈∼`, t〉. In particular, a set of literals is consistent iff it does not contain
such a contradictory pair of literals 〈`, t〉, 〈∼`, t〉.

Note that derivability is monotonic: Cn(Γ) ⊆ Cn(Γ′) whenever Γ ⊆ Γ′.

Definition 1.3.3 (Program). A t-DeLP program is a pair (Π,∆) where Π =
Πf ∪ Πr is a consistent set of temporal strict facts Πf and rules Πr, and ∆ is a
set of temporal defeasible rules.

Temporal rules as above can be seen as instances of general rules δ∗ of the
form

` −� (`0, d0), . . . , (`n, dn)

–and similarly for strict rules with the ← symbol–, where each di expresses how
much time in advance must `i hold for the rule to apply and produce a derivation
of `. Such a general rule δ∗ is to be understood as a shorthand for the set of
rules

{〈`, t〉 −� 〈`0, t− d0〉, . . . , 〈`n, t− dn〉 | t ∈ N, t ≥ max{d0, . . . , dn}}.

For example, the rule

〈p, 4〉 −� 〈q, 3〉 would be an instance of p −� (q, 1).

Persistence rules can therefore be expressed as general rules of the form `−�(`, 1);
this defeasible general persistence rule for ` will be denoted δ`, and an instance
〈`, t+1〉−�〈`, t〉 of δ` will also be denoted by δ`(t); similarly, the set of δ`-instances
in the interval [t, . . . , t+ k] will be denoted by {δ`(t′)}t≤t′≤t+k.

Though the notation for general rules becomes handy in some examples,
the formal definitions below do make use only of instantiated temporal rules.
Unless stated otherwise, in the remaining of the chapter we will mean by rule
an expression as in Definition 1.3.1 that has not a non-empty body.

Example 1.3.4 (Snake Bite). Consider the situation described next and for-
malized in Figure 1.3.4. Lars, a tourist visiting the Snake Forest, has just been
bitten by a venomous snake. These two facts are denoted @forest(Lars) and resp.
bitten∗(Lars). 3 The poison of this type of snake does kill a person in 3 hours
(δ1). But since our subject, Lars, is experienced (it has been bitten and cured
a few times before), denoted exp(Lars), he may resist up to 5 hours (δ2, δ3). We
decide to take him to the nearest hospital. In normal conditions this would take

3We use two literals bitten∗(·) and bitten(·). The literal with an asterisk is used to track
the (unique) time where the snake bite occurred, and hence will not be allowed to persist (i.e.
no persistence rules for this literal will exist in the program). The second literal bitten(·) just
denotes the fact of having been (recently) bitten and persistence rules for it are assumed.

12

2 hours (δ4), but since today is sunday, the traffic jam (δ7) makes it impossible
to reach the hospital in less than 4 hours (δ5, δ6). The antidote takes less than
an hour to become effective (δ8), and is given to persons that are at the hospital,
have been recently bitten (denoted bitten(·)) and are alive (denoted ∼dead(·)).
We prove below in t-DeLP that Lars survives the snake attack.

Π{
〈@forest(Lars), 0〉, 〈bitten∗(Lars), 0〉, 〈exp(Lars), 0〉,
〈∼dead(Lars), 0〉, 〈sunday, 0〉

}

∆

bitten(Lars) −� 〈bitten∗(Lars), 0〉 δ0
dead(Lars) −� (bitten∗(Lars), 3) δ1
∼dead(Lars) −� (bitten∗(Lars), 3), (exp(Lars), 3), (∼dead(Lars), 3) δ2

dead(Lars) −� (bitten∗(Lars), 5), (exp(Lars), 5), (∼dead(Lars), 5) δ3
@hospital(Lars) −� (bitten∗(Lars), 2), (@forest(Lars), 2), (∼dead(Lars), 2) δ4

∼@hospital(Lars) −�
{

(traffic.jam, 2), (bitten∗(Lars), 2),
(∼dead(Lars), 2), (@forest(Lars), 2)

}
δ5

@hospital(Lars) −�
{

(traffic.jam, 4), (bitten∗(Lars), 4),
(∼dead(Lars), 4), (@forest(Lars), 4)

}
δ6

traffic.jam −� (sunday, 0) δ7
∼dead(Lars) −� (@hospital(Lars), 1), (bitten(Lars), 1), (∼dead(Lars), 1) δ8

plus δ` ∈ ∆p for each ` /∈ {bitten∗(Lars),∼@loc(Lars)} δ`

Figure 1.1: The list of strict facts, defeasible rules δ1-δ8 and persistence rules δ`
for Example 1.3.4.

As it happens in DeLP, the set of derivable literals in (Π,∆) will not in
general be consistent. The first step to recover consistency is to focus on those
derivations that have the form of an argument.

Definition 1.3.5 (Argument). Given a t-DeLP program (Π,∆), an argument
for 〈`, t〉 is a set A = AΠ ∪ A∆, with AΠ ⊆ Π and A∆ ⊆ ∆, such that:

(1) A∆ ∪Π ` 〈`, t〉,
(2) Π ∪ A∆ (i.e. its logical closure) is consistent,
(3) A∆ is ⊆-minimal satisfying (1) and (2).
(4) AΠ is ⊆-minimal satisfying A∆ ∪ AΠ ` 〈`, t〉

Thus, arguments are non-redundant derivations, consistent with the strict
part of the program, and which make use of defeasible information only when
strict information is not available. In particular, if a strict argument exists for
some literal, then no defeasible derivation for the same literal constitutes an
argument.

13

In Example 1.3.4, each possible argument consists of facts in Πf and rules
in ∆. Observe that, although Π and ∆ may be infinite (due to the coding of
general rules as an infinite set of temporal rules), an argument for a program
(Π,∆) will always be a finite subset of Π ∪∆. Given an argument A for 〈`, t〉,
we also define:

concl(A) = 〈`, t〉
base(A) = body[A]r head[ArΠf]

literals(A) = (
⋃

body[A]) ∪ head[A]

Note the definition of base(·) applies to arbitrary sets of facts and rules
A ⊆ Π∪∆, not only arguments. For the particular case of arguments, a simpler
characterization is possible.

Fact 1.3.6. If A is an argument in (Π,∆), then base(A) = A ∩Πf .

Similarly, the conclusion of an argument A can also be characterized as the
only head of a rule in A which is not used by other rules in A to infer further
literals, i.e. concl(A) /∈ body[A].

Proposition 1.3.7. Let (Π,∆) be a t-DeLP program, and let A be an argument
for some 〈`, t〉 = concl(A). Then {〈`, t〉} = head[A]r

⋃
body[A].

Figure 1.2: Facts from Π are represented as rectangles; and defeasible rules as
triangles. The total duration of an argument A is the maximum sum of the
durations of rules among paths from the conclusion to the base. In the Figure,
this path consists of δ1, δ2, δ3 with a total duration of t− t0.

Remark 1.3.8. In DeLP, arguments are defined as sets of defeasible rules A ⊆
∆, leaving open how these are to be completed by Π to obtain a (minimal,
consistent) derivation of some literal `; since different completions in particular
allow for different conclusions, one must make explicit which is the intended
conclusion in the form (argument, conclusion). Thus, the DeLP notation for an
argument is 〈A, `〉. In contrast, we explicitly fix the strict rules in the definition

14

of an argument A, so the conclusion concl(A) is uniquely determined by A.
The latter definition simplifies the detection of inconsistencies with intermediate
steps in the strict part of A. With more detail, there can be several ways to
complete defeasible rules in A into a derivation for concl(A), and each of them
can be attacked by different arguments. For example, the sets〈p, 4〉 ← 〈q, 2〉〈q, 2〉 ← 〈r, 1〉

〈r′, 0〉

 and

〈p, 4〉 ← 〈s, 3〉〈s, 3〉 ← 〈r, 1〉
〈r′, 0〉

may both complete the set of defeasible rules {〈p′, 5〉−�〈p, 4〉, 〈r, 1〉−�〈r′, 0〉} ⊆ ∆
into an argument (derivation) for 〈p′, 5〉, but only the completion on the right is
attacked by an argument concluding 〈∼s, 3〉.

Now we proceed to define a sub-argument of an argumentA. A sub-argument
will be the actual target of an attack by another argument.

Definition 1.3.9 (Sub-argument). Let (Π,∆) be a t-de.l.p. and let A be an
argument for 〈`, t〉 in (Π,∆). Given some 〈`0, t0〉 ∈ literals(A), a sub-argument
for 〈`0, t0〉 is a subset B ⊆ A such that B is an argument for 〈`0, t0〉.

For example, in Figure 1.2, A(head(δ2)) = {δ2, δ3, δ4, 〈`′, t′〉, . . .}. The in-
ductive definition for computing the sub-argument induced by some literal is
straightforward (see Appendix 1.8).

Proposition 1.3.10. Given some argument A and a literal 〈`, t〉 ∈ literals(A),
then the sub-argument of A for 〈`, t〉 is unique.

From here on, this unique sub-argument of A induced by 〈`0, t0〉 will be
denoted A(〈`0, t0〉).

Definition 1.3.11 (Attack). Given a t-DeLP program (Π,∆), let A0 and A1

be arguments. We say A1 attacks A0 iff ∼concl(A1) ∈ literals(A0). In this case,
we also say that A1 attacks A0 at the sub-argument A0(∼concl(A1)).

Notice that an argument A1 cannot attack another A0 at a sub-argument
consisting of strict information only (i.e. if A0(∼concl(A1)) ⊆ Π), since in this
case A1 would not be consistent with Π, and hence A1 would not even be an
argument.

As in DeLP, one refines the relation of attack relation into a defeat relation
to decide which argument prevails in case of an attack. This relation could be
in principle specified by the user4, but in this and the next chapter we adopt a
new formal criterion meeting the intuitive preferences exemplified next.

Example 1.3.12 (Snake Bite; cont’d). See Figure 1.3 for an illustration of
Example 1.3.4. The arguments are defined by the following rules (facts are not
listed here):

4See [61] for an alternative procedure based on a preference relation between rules.

15

Figure 1.3: The Snake Bite scenario. Arguments are depicted as triangles, with
arrows denoting conflicts among them. Arguments for which defeaters exist are
depicted in grey. (In this example, the arguments in grey are also defeated
arguments.)

A ⊇ {δ1(0)} B0 ⊇ {δ2(0)} B1 ⊇ {δ3(0)} C0 ⊇ {δ4(0)}
C1 ⊇ {δ4(0), δ8(2)} ∪ {δ0(t), δbitten(Lars)(t), δ∼dead(Lars)(t)}0≤t<2

D0 ⊇ {δ7(0), δ5(0)}
D1 ⊇ B0 ∪ {δ∼dead(Lars)(3), δ7(0), δ6(0)}
D2 ⊇ D1 ∪ {δ0(0), δ8(4)} ∪ {δbitten(Lars)(t)}0≤t≤3

The arguments related by an arrow attack each other: C1, B0 attack A and
viceversa. But there are asymmetries in the quantity of information supporting
each argument. Intuitively, in this example we have that

B0 should prevail over A since it is based on more strict facts (the premises
of A are a proper subset of those in B0); such an asymmetry between B0

and A makes the latter not to count as a reason against B0. (See also
Figure 1.3.)

To illustrate another kind of asymmetry in the quality of information between
arguments, consider a new example:

Example 1.3.13 (Falling object). Suppose you hold an object o at some
distance d0 from the floor, and drop it at t = 0. It is expected to crash
into the floor at, say, t = 3. This is modeled by an argument A having
base(A) = {〈@(o, d0), 0〉}, intermediate steps 〈@(o, d1), 1〉 and 〈@(o, d2), 2〉 (i.e.
both in literals(A) derived using appropriate rules), and conclusion concl(A) =
〈@(o, 0), 3〉; this latter literal @(o, 0) denotes o is at the floor. Now, admitting
(as we do) persistence rules for positive facts like @(o, ·), an argument B can be
constructed for the conclusion that the object will remain floating over the floor

16

at d1. Namely, let B = A(〈@(o, d1), 1〉)∪{δ(t)@(o,d1)}1≤t<3. Note that while the
asymmetry from Ex. 1.3.12 above is missing, since now base(B) = base(A),

the argument B should not be a defeater forA; the idea is that the existence
of some reason for a change (like gravity, for heavy objects not on the
ground) should override the use of persistence.

Otherwise, when o lies at the floor, the persistence of this fact seems a reasonable
inference as long as no further changes are known of.

Finally, to illustrate blocking defeaters let us consider a rephrasing of the
Snake Bite scenario in Example 1.3.4-1.3.12.

Example 1.3.14 (Snake Bite; cont’d). Let us rewrite Example 1.3.4 with these
rules: black-spotted snakes are generally poisonous, while green snakes are gen-
erally harmless.

If a green black-spotted snake bites Lars, we are not able to decide whether
he has been poisoned, since reasons for and against do not dominate each
other.

The preferences from Examples 1.3.12-1.3.14 are formally captured by the
general definition of defeat given next. These examples suggest two ways in
which an argument A1 should defeat another argument A0, always comparing
the former A1 with the sub-argument B ⊆ A0 of the latter attacked by A1.

The first possibility is that the defeater argument A1 is based on more strict
facts than the defeated B; this is done with a set-theoretic comparison of the
bases of each argument. The second possibility is based on a hierarchy of rules
in terms of relative strength (denoted >):

strict rules >
non-persistence
defeasible rules

> persistence rules

Πr > ∆r∆p > ∆p

As later shown, this second criteria aims to require the defeater A1 to make
less use of persistence rules than the defeated B. This criterion is formalized as
follows: first, we identify the maximal sub-argument (if unique) that occurs in
both arguments A1∩B; then, the remaining part of the defeater A1 must consist
of some non-persistence rules, while the remaining of the defeated B must consist
of persistence rules (plus possibly some strict rules).

Definition 1.3.15 (Defeat). Let (Π,∆) be a t-DeLP program, and A0,A1 ar-
guments such that A1 attacks A0 at B; say concl(B) = 〈`, t〉 and concl(A1) =
〈∼`, t〉. We say A1 is a proper defeater for A0, denoted A1 � A0, iff

• base(A1) ! base(B), or

• first, A1 ∩B is an argument for some 〈`∗, t′〉 with t′ < t; second, BrA1 ⊆
∆p ∪Π; third, (B rA1) ∩∆p 6= ∅; fourth, (A1 r B) ∩ (∆r∆p) 6= ∅; and
fifth, base(A1) ⊆ base(B) implies base(A1) = base(B).

17

We say A1 is a blocking defeater for A0 when A1 attacks A0 but A1 6� A0 and
A0 6� A1. Blocking defeat relations are denoted A1 ≺� A0. Finally, a defeater
is a proper or a blocking defeater.

Figure 1.4: (Left) An illustration of the first criteria for proper and blocking
defeat, based on a comparison between bases. (Right) A simple example of the
second criteria for proper defeat, based on the use of persistence rules, e.g. δq.

In case an argumentA1 attackingA0 is preferred to the latter after comparing
their use of persistence rules (i.e. the second criterion in Def. 1.3.15), we will say
that A1 is (informationally) longer than A0, since the attacked sub-argument
of A0 is a fragment of A1 merely extended with persistence (and possibly strict
rules).

Note that in the general case of t-DeLP programs, Definition 1.3.15 might
be too restrictive: it will not apply to the case when the intersection A1 ∩ B,
rather than being an argument, consists of two or more sub-arguments. The
above Definition 1.3.15, adopted for the sake of simplicity, easily generalizes to
the case where multiple sub-arguments are shared between A1 and B. The above
general definition of defeat is well-defined, is shown as follows.

Proposition 1.3.16. The following hold for any t-DeLP program:

(1) If A1 is a proper defeater for A0 at B, then B is not a defeater for A1.

(2) If A,B attack each other, and B is not a proper defeater for A, then A is
a defeater for B.

For the particular cases of simple and mutex programs studied in the next
sections, the general defeat relation in Definition 1.3.15 can be greatly simplified.
For example, we will drop the fifth condition, which now is necessary to prove
Proposition 1.3.16 (1). The next counter-example shows that this condition is
necessary for this claim.

Example 1.3.17. Let us define the program (Π,∆) as follows, where Π =
Πf ∪Πr.

18

Πf = {〈p, t0〉, 〈q, t0〉}
Πr = {〈∼s, t〉 ← 〈q, t〉, 〈r, t〉} (= δ0)

∆ = ∆p ∪

{
〈r, t1〉 −� 〈p, t0〉
〈s, t2〉 −� 〈r, t1〉

}
(= δ1)
(= δ2)

∆p = {δq(t0), δq(t1), δr(t1)}

The arguments A1 and B defined next are constructible in this program.

A1 = {〈p, t0〉, δ1, δ2} and B = {〈p, t0〉, 〈q, t0〉, δ1, δq(t0), δq(t1), δ0(t2)}

These arguments attack each other, since concl(A1) = 〈s, t〉 = ∼concl(B). Now,
without the fifth condition from Def. 1.3.15, we might conclude both thatA1 � B
(due to the second criterion) and that B � A1 due to base(B) ! base(A1).

The two criteria for proper defeat in Definition 1.3.15 suit the informal re-
quirements presented above in Examples 1.3.12 and 1.3.13. Example 1.3.14 is
also captured by the definition of blocking defeater in Def. 1.3.15.

The general defeat relation considered for t-DeLP is slightly different from
that originally proposed for DeLP. We refer the reader to Section 1.6.2 for a
detailed comparison of the DeLP and t-DeLP criteria for defeat.

As we said, an argument B defeating A can at its turn have its own de-
featers C, . . . and so on. (This is the case of A,B0, C0 in Figure 1.3.) This gives
rise to argumentation lines where each argument defeats its predecessor. Argu-
mentation lines, though, are not simply the composition of the defeat relation:
again we refine this composition by imposing some further constraints. These
constraints are needed to enforce desirable properties: finite length, acyclicity,
and intuitive defense relations (counterattacks). For instance, in an argumen-
tation line [. . . ,A,B, C, . . .] we exclude the case where C is a blocking defeater
for B, provided that B is already blocking defeater for A. This prevents the case
[. . . ,A,B,A, . . .]. Other forms of cyclic defeats [. . . ,A,B, . . . ,A,B, . . .] are also
excluded in the definition. The following definition is adapted from [61] to the
present framework.

Definition 1.3.18 (Argumentation Line, Dialectical Tree). Let A1 be an argu-
ment in (Π,∆). An argumentation line for A1 is a sequence Λ = [A1,A2, . . .]
where

(i) supporting arguments, i.e. those in odd positions A2i+1 ∈ Λ are jointly
consistent with Π, and similarly for interfering arguments A2i ∈ Λ

(ii) a supporting (interfering) argument is different from the attacked sub-
arguments of previous supporting (interfering) arguments: Ai+2k 6=
Ai(∼concl(Ai+1)).

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1

An argumentation line [A1, . . . ,An] for A1 is maximal if there is no other argu-
ment An+1 such that [A1, . . . ,An,An+1] is an arg. line for A1.

19

Figure 1.5: (Right) An argumentation line Λ = [A1, . . . ,A4], with defeated sub-
arguments depicted in grey. Notice that the time of these attacks is decreasing,
and that condition (iii) from Def. 1.3.18 is satisfied. (Left) The same argumen-
tation line Λ is depicted as part of the dialectical tree T(Π,∆)(A1).

The set of argumentation lines for A1 can be arranged in the form of a tree,
where all paths from the root A1 to the leaf nodes exactly correspond to all
the possible maximal argumentation lines for A1. This tree is called dialectical
tree for A1, and is denoted T(Π,∆)(A1). We will also express that a sequence of
arguments Λ = [A1, . . .] is a (non-necessarily maximal) argumentation line for
A1 by Λ ∈ T(Π,∆)(A1).

Remark 1.3.19. While (i) and (iii) are exactly as in DeLP, the above condition
(ii) is less restrictive than its counterpart in [61]. In this work, a sub-argument
of Ai cannot (indirectly) defend this argument. That is, a sub-argument of Ai
cannot occur as Ai+2j in the same argumentation line. In our temporal case,
we adopt a more liberal view concerning defenses based on sub-arguments: for
instance, a sub-argument talking about a previous time might offer legitimate
reasons to the defense of Ai. If its only available defense was in this sense a
proper part of the attacked argument, then it should be admitted. (See the next
example.)

Example 1.3.20 (Falling object, cont’d). We expand the scenario from Exam-
ple 1.3.13 as follows: suppose as before that an object o will fall from height
or distance d0 into the floor, denoted by distance 0. That is, a transition from
〈@(o, d0), ·〉 to 〈@(o, 0), ·〉 will happen. Moreover, assume that o is an egg, and
also that a boiling pot of water is awaiting at the floor. The temperature at d1

is cold (i.e. not hot). Thus, we have

Πf = {〈@(o, d0), 0〉, 〈hot(0), 0〉, 〈∼hot(d1), 0〉, 〈∼boils(o), 0〉}

20

The set ∆ is as before in Example 1.3.12 (2), plus persistence rules for local heat
or coldness: δhot(0), δ∼hot(d1), and also the heat-transfer rules

δ1(t): 〈boils(o), t+ 1〉 −� 〈hot(0), t〉, 〈@(o, 0), t〉
δ2(t): 〈∼boils(o), t+ 1〉 −� 〈∼hot(d1), t〉, 〈@(o, d1), t〉

The arguments to conclude that the egg will (A+) or will not (B+, among others)
boil at t = 4 are defined as

A+ = A ∪ {〈hot(0), 0〉} ∪ {δ(t)hot(0)}0≤t<3 ∪ {δ1(3)}
B+ = B ∪ {〈∼hot(d1), 0〉} ∪ {δ(t)∼hot(d1)}0≤t<3 ∪ {δ2(3)}

where A and B are as in Example 1.3.12 (2). We have concl(A+) = 〈boils(o), 4〉
and concl(B+) = 〈∼boils(o), 4〉, so A+ and B+ attack each other, just like A
and B. But now, A+ represents as expected the fall-and-boiling of the egg while
B+ states that the egg keeps floating in air and stays unboiled. The problem is
that now A+ is not longer than B+ (in contrast to the previous arguments A
and B). In fact, we need A to defeat B+ at B. Thus, Definition 1.3.18 allows
for [A+,B+,A] to be an arg. line, so A can defend A+. If these defending sub-
arguments were not allowed (see Definition 1.3.22 below), we could not conclude
that the egg boils at t = 4 is a warranted conclusion.

Lemma 1.3.21. For any t-DeLP program (Π,∆),

(1) If [A1, . . . ,Am, . . . ,An] is an argumentation line for A1, then [Am, . . . ,An]
is an argumentation line for Am.

(2) Each argumentation line Λ = [A1, . . .] ∈ T(Π,∆)(A1) is finite. The dialec-
tical tree T(Π,∆)(A1) is finite.

The following definitions of the marking procedure of dialectical trees and
the notion of warrant follow exactly those of DeLP.

Definition 1.3.22 (Marking). Let T = T(Π,∆)(A1) be the dialectical tree for
A1 in a given program (Π,∆). Then,

(1) mark all terminal nodes of T with a U (for undefeated);

(2) mark a node B with a D (for defeated) if it has a children node marked
U ;

(3) mark B with U if all its children nodes are marked D .

Initially all the arguments in the dialectical tree T(Π,∆)(A1) are unmarked
(grey) as in Figure 1.5 (Left). To illustrate the marking procedure, see Figure
1.6, where arguments marked U are represented white, and those marked D are
represented black.

Note that in a dialectical tree T(Π,∆)(A1), an argument A can occur in differ-
ent positions of several (maximal) argumentation lines in Λ,Λ′, . . . ∈ T(Π,∆)(A1).
In this case, the marking of A in Λ can be different from the marking of A in
Λ′. Given an argumentation line Λ = [A1,A2,A3, . . . ,An] ∈ T(Π,∆)(A1), we
will express the evaluation of its arguments along Λ according to the marking
procedure by a corresponding sequence of D’s and U ’s , e.g. [D,D,U, . . . , U].

21

Figure 1.6: From left to right, the different steps for the marking procedure
of arguments (triangles) in the dialectical tree for an argument A1: unmarked
arguments are depicted in grey; arguments marked undefeated are depicted in
white, and those marked defeated are depicted in black. In this case, the root
argument is undefeated, so its conclusion is warranted.

Definition 1.3.23 (Warrant). Given a t-DeLP program (Π,∆), we say 〈`, t〉 is
warranted in (Π,∆) iff there exists an argument A1 for 〈`, t〉 in (Π,∆) such that
A1 is undefeated, i.e. marked U , in T(Π,∆)(A1). We will denote by warr(Π,∆)
the set of warranted literals in (Π,∆).

In the particular case of strict arguments A ⊆ Π, we will have that T(Π,∆)(A)
only contains the argumentation line [A], so each strictly derivable fact is war-
ranted. For any other argument B, the strict argument A cannot occur in any
argumentation line in T(Π,∆)(B), since this would mean that the argument pre-
ceding (i.e. defeated by) A is actually not an argument.

Example 1.3.24 (Snake Bite; cont’d). Recall Examples 1.3.4 and 1.3.12. The
arguments in Fig. 1.3 related by an arrow stand in the relation of proper defeat,
e.g. A ← B0 denotes B0 is a proper defeater for A. Thus we have the dialectical
trees for each argument consist of the following argumentation lines (with the
corresponding evaluations):

T(Π,∆)(A) =

{
[A,B0],
[A, C1,D0]

}
[D,U],
[D,D,U]

T(Π,∆)(B0) = {[B0]} [U]

T(Π,∆)(B1) = {[B1,D2]} [D,U]

T(Π,∆)(Ci) = {[Ci,D0]} [D,U], for each i ∈ {0, 1}
T(Π,∆)(Dj) = {[Dj]} [U], for each j ∈ {0, 1, 2}

Since D2 is undefeated, we (defeasibly) conclude that Lars will be alive at t = 5.

22

Example 1.3.25 (Falling object; cont’d). Let us now solve Example 1.3.13.
Recall the argument A concluding that dropping the object will indeed cause it
to crash into the floor (distance 0) at t = 3. Now, A is a proper defeater for the
rival arguments stating that the object will keep floating in the air once it reaches
distance d0, d1 or d2. Call these arguments B0,B1 and B2, resp. (Incidentally,
note that B1 properly defeats B0 and so does B2 with B0,B1.) If these arguments
capture all the relevant phenomena in this scenario, then T(Π,∆)(A) = [A] so A
is undefeated; on the other hand, for any 0 ≤ i < 3 the dialectical tree T(Π,∆)(Bi)
contains a maximal argumentation line Λ = [Bi,A], among possibly others. This
can only be evaluated as [D,U], so each Bi is defeated.

1.4 A study of t-DeLP for simple programs

After presenting the procedure for computing warrant in t-DeLP, we proceed
to the logical study of t-DeLP, for certain sub-classes of programs. First we
review the logical or argumentation-theoretical properties, called Rationality
Postulates, studied in the present and the next chapter. Then we define the
sub-class of simple programs and show that the restriction of t-DeLP to this
class of programs implies that the rationality postulates are satisfied.

The Rationality Postulates were proposed by Caminada and Amgoud in [35]
(see also [121]) to grant that certain types of counter-intuitive results do not
occur in a given argumentation framework. (Compare the next definition with
Def. ??.)

Definition 1.4.1 (Rationality Postulates). The Rationality Postulates,
adapted to t-DeLP programs (Π,∆), are as follows:

Sub-arguments: if A is undefeated in T(Π,∆)(A), then any sub-argument
A′ of A is also undefeated in T(Π,∆)(A′).

Direct Consistency : warr(Π,∆) is consistent.

Indirect Cons.: warr(Π,∆) ∪Π (i.e. its logical closure) is consistent.

Closure: Cn(warr(Π,∆) ∪Π) ⊆ warr(Π,∆)
(strict consequences of warranted literals are warranted).

These postulates were discussed in [35] for some argumentation frameworks
based on defeasible rule-based systems, and using any of the acceptability se-
mantics proposed by Dung for abstract argumentation systems [52] (see Chapter
C). We proceed to prove the Sub-arguments and Direct Consistency postulates
in t-DeLP for simple programs. Neither Indirect Consistency nor Closure hold in
general for arbitrary t-DeLP programs, as it happens in DeLP. However, these
two postulates also hold for simple programs (they are trivial consequences of
Direct Consistency for this class of programs). In the next section we will show
that these four postulates are also satisfied by the sub-class of mutex programs.

Definition 1.4.2 (Simple program). A t-DeLP simple program is a program
(Π,∆) containing no strict rules: Πr = ∅. In other words, Π = Πf .

23

For simple programs, lacking any strict rule, the relation of defeat instantiates
as follows.

Definition 1.4.3 (Defeat for simple programs). Let (Π,∆) be a simple program,
and A0,A1,B arguments such that A1 attacks A0 at B and concl(A1) = 〈∼`, t〉.
We say A1 is a proper defeater for A0 iff

• base(A1) ! base(B), or

• B = A1(〈`, t′〉) ∪ {δ`(t′′)}t′≤t′′<t, for some t′ < t.

We say A1 is a blocking defeater for A0 when A1 attacks A0 but A1 6� A0 and
A0 6� A1.

In other words, the second criterion for proper defeat (a less use of persis-
tence) applies when the remaining (not shared) part of defeated argument is a
set of persistence rules. Note that all the Examples in the previous Section 1.3
were expressed using simple programs. The first result states that the defeat
relation is well-defined for simple programs.

Lemma 1.4.4. For any simple program (Π,∆), Definitions 1.3.15 and 1.4.2 are
equivalent.

As a consequence from Proposition 1.3.16 and Lemma 1.4.4, we obtain that
Definition 1.4.3 is well-defined.

Corollary 1.4.5. The following hold for any simple t-DeLP program (under
Def. 1.4.3 for defeat):

(1) If A1 is a proper defeater for an argument A0 at B, then B is not a defeater
for A1.

(2) If A,B attack each other, and B is not a proper defeater for A, then A is
a defeater for B.

After these preliminaries, we proceed to prove the Rationality Postulates for
simple programs. The next two results hold for t-DeLP programs in general,
not just for simple programs. First we observe that “being marked defeated in
a dialectical tree” can be expressed in the following more convenient form.

Remark 1.4.6. Let (Π,∆) be a t-DeLP program, and let A,B, C, . . . denote ar-
guments in (Π,∆). An argument B is marked defeated in an argumentation
line [A, . . . ,B] ∈ T(Π,∆)(A) iff there is an argument C marked undefeated in the
argumentation line [A, . . . ,B, C] ∈ T(Π,∆)(A).

Lemma 1.4.7. Given a t-DeLP program (Π,∆), let A1,A2 be two arguments
such that A2 is a defeater for A1. If A2 is marked defeated along the argumenta-
tion line [A1,A2] in the dialectical tree T(Π,∆)(A1), then A2 is marked defeated
in the dialectical tree T(Π,∆)(A2).

24

Proof. LetA2 be a defeater forA1 atA1 and assumeA2 is defeated in T(Π,∆)(A1)
and that A2 is undefeated in T(Π,∆)(A2). (This is depicted in the left part of
Figure 1.7. The construction given next is illustrated by the right part of the
figure.) Clearly [A1,A2] is an argumentation line in T(Π,∆)(A1), hence there is
A3 such that [A1,A2,A3] is an argumentation line T(Π,∆)(A1) with A3 marked
undefeated.

Now, since A2 is undefeated in T(Π,∆)(A2), [A2,A3] is an argumentation
line in T(Π,∆)(A2) and A3 is marked defeated. Therefore, there is A4 such that
[A2,A3,A4] is an argumentation line in T(Π,∆)(A2) with A4 marked undefeated.

It is easy to check that if some condition (i)-(iii) from Def. 1.3.18 fails at
the sequence [A1,A2,A3,A4], then the same condition already fails either at
[A1,A2,A3] or at [A2,A3,A4], contradicting that these two are argumentation
line. Thus we have that [A1,A2,A3,A4] is an argumentation line in T(Π,∆)(A1),
with A4 necessarily marked defeated, and hence there must exist A5 such that
[A1,A2,A3,A4,A5] is an argumentation line in the dialectical tree T(Π,∆)(A1)
with A5 necessarily marked undefeated.

Figure 1.7: Constructing argumentation lines of arbitrary finite length: white
and black triangles represent, respectively, undefeated and defeated arguments
in some position. Grey arguments can be either.

Iterating this process, one can construct argumentation lines of any finite
length [A1,A2,A3, . . . ,An,An+1] in T(Π,∆)(A1), in contradiction with Lemma
1.3.21 (2).

Theorem 1.4.8 (Direct Cons. for Simple Programs). Given a simple program
(Π,∆), the set of literals warr(Π,∆) is consistent: this set contains no pair of
the form 〈p, t〉, 〈∼p, t〉.
Proof. Let 〈`, t〉 ∈ warr(Π,∆). Thus, some argument A for 〈`, t〉 in (Π,∆) exists
that is undefeated in T(Π,∆)(A). Let then B be an arbitrary argument for 〈∼`, t〉
in (Π,∆). Assume, towards a contradiction, that B is undefeated in T(Π,∆)(B).

25

(Case: A is a proper defeater for B) Consider the argumentation line
[B,A] ∈ T(Π,∆)(B). Since A is undefeated in T(Π,∆)(A), by Lemma 1.4.7,
we have A is undefeated in T(Π,∆)(B). Hence B is marked defeated in
T(Π,∆)(B). Since B was arbitrary, 〈∼`, t〉 /∈ warr(Π,∆).

(Case: A is not a proper defeater for B). By Proposition 1.4.5 (ii), B is a
defeater for A, so [A,B] is an arg. line in T(Π,∆)(A). Since A is undefeated
in this tree, B must be defeated in this tree. Then again by Lemma 1.4.7,
we have B is also defeated in T(Π,∆)(B). Since B was arbitrary, 〈∼`, t〉 /∈
warr(Π,∆).

Similar results to those of Lemma 1.4.7 and Theorem 1.4.8 are made for the
case of DeLP in [136, Props. 1 and 2]. Also, the later results in Section 1.5 are
in line with [35] for defeasible logics. However, t-DeLP does not seem to reduce
to the logical frameworks considered in these two contributions.

In Lemma 1.4.7, we showed the property of being defeated for A2 is down-
ward preserved from [A1,A2] to [A2]. (Or, conversely, being undefeated is upward
preserved from [A2] to any existing line of the form [A1,A2].) This downward
property can be generalized to defeated arguments in arbitrary interfering po-
sitions. Another upward preservation result holds for undefeated arguments in
supporting positions.

Corollary 1.4.9. Let Λ = [A1,A2, . . . ,A] be an argumentation line in
T(Π,∆)(A1). Then

(1) if A = A2n+1 is undefeated in Λ, then in the corresponding arg. line
[A2, . . . ,A] the (now interfering) argument A is undefeated;

(2) if A = A2n is defeated in Λ, then in the corresponding arg. line [A2, . . . ,A]
the (now supporting) A is defeated.

Finally, we address the postulate of Sub-arguments for simple t-DeLP pro-
grams. The next Lemma, though, also holds for t-DeLP programs in general.

Lemma 1.4.10. Let (Π,∆) be a t-DeLP program, and Λ = [A1,A2, . . . ,An] an
argumentation line in T(Π,∆)(A1). If A′1 is an argument satisfying

A1 ⊇ A′1 ⊇ A1(∼concl(A2))

then Λ′ = [A′1,A2, . . . ,An] is an argumentation line in T(Π,∆)(A′1).
Conversely, if such an argumentation line Λ′ is in T(Π,∆)(A′1) and A1 ⊇ A′1

is an argument such that Π∪A1∪
⋃

1≤iA2i+1 is consistent, then Λ = [A1,A2, . . .]
is in T(Π,∆)(A′1).

Proof. For the first claim, we check that Λ′ satisfies conditions (i)-(iii) from
Definition 1.3.18. Condition (i) holds for supporting arguments, since if A′1 ∪
A3∪. . .∪Π is inconsistent so will be A1∪A3∪. . .∪Π, provided that A′1 ⊆ A1; the

26

same condition trivially holds for interfering arguments, since these are exactly
the same between the two argumentation lines Λ and Λ′.

For condition (ii), we first consider A1 and A′1. Let A2k+1 be an arbitrary de-
fending argument. Note that by assumption, we have A2k+1 6= A1(∼concl(A2)),
which combined with the fact A′1(∼concl(A2)) = A1(∼concl(A2)) implies
A2k+1 6= A′1(∼concl(A2)). For each remaining defending argument A3, . . . and
the subsequent defending arguments A2i+1, condition (ii) is obviously preserved
since these arguments are exactly the same between Λ and Λ′. The same can
be said about each interfering argument A2, . . . and its subsequent interfering
arguments A2i+2.

Finally, for condition (iii), the only interesting case is the triple [A′1,A2,A3]
since the remaining triples [. . . ,An,An+1,An+2, . . .] are the same between the
two argumentation lines. Now, note that the properties of being a proper
or blocking defeater only depend on the attacked sub-arguments, which for
the triple [A′1,A2,A3], are A′1(∼concl(A2)) and A2(∼concl(A3)). But these
two sub-arguments are the same between the two argumentation lines: this
is obvious for the latter [·,A2,A3]; and for the former pair [A1,A2, ·] be-
cause we have that A′1(∼concl(A2)) = A1(∼concl(A2)), given the assumption
A′1 ⊇ A1(∼concl(A2)), so we are done.

The proof of the converse claim for Λ is analogous, except for condition (i),
which is obvious given the extra assumption that A1∪A3∪ . . .∪Π is consistent.

Corollary 1.4.11 (Sub-arguments for Simple Programs). Given a t-DeLP pro-
gram (Π,∆), if A1 is undefeated in T(Π,∆)(A1) and A′1 ⊆ A1 is an argument,
then A′1 is undefeated in T(Π,∆)(A′1).

Proof. Let A′1 ⊆ A1 be an argument. It suffices to show that for each argument
A2 such that [A′1,A2, . . .] is an argumentation line in T(Π,∆)(A′1), this argument
A2 is defeated. So let A2 be an arbitrary defeater for A′1, i.e. let [A′1,A2] be
arbitrary in T(Π,∆)(A′1). We show that such A2 is defeated.

(Case A′1 ⊇ A1(∼concl(A2)).) Assume, towards a contradiction, that A2

is undefeated in Λ′2 = [A′1,A2]. As in Lemma 1.4.7, the proof consists in the
construction of argumentation lines of arbitrary finite length. Since being a
defeater only depends on the defeater and the sub-argument attacked by it,
the case assumption implies that Λ2 = [A1,A2] is also an argumentation line.
Since A1 is undefeated, A2 must be defeated so there exists an argumentation
line Λ3 = [A1,A2,A3] evaluated as [U,D,U]. We check that Λ′3 = [A′1,A2,A3]
is an argumentation line. Condition (i) is obvious from the fact that A1 ⊇
A′1. Condition (ii) is preserved from Λ3 to Λ′3, since the case assumption and
condition (ii) for Λ3 jointly imply

A′1(∼concl(A2)) = A1(∼concl(A2)) 6= A3

Finally, condition (iii) for Λ′3 also follows from the identity A′1(∼concl(A2)) =
A1(∼concl(A2)) and the fact that Λ3 satisfies (iii). Thus, Λ′3 = [A′1,A2,A3] is
in T(Π,∆)(A′1). Since A2 is undefeated in Λ′3, we have A3 must be defeaeted, so

27

an argumentation line Λ′4 = [A′1,A2,A3,A4] exists with A4 undefeated. This
concludes the proof of the Base Case, where from Λ′2 we built Λ′4. The proof for
the Inductive Case Λ′2k 7→ Λ′2k+2 proceeds analogously and will not be repeated.

(Case A′1 6⊇ A1(∼concl(A2)).) Consider first the Sub-Case ∼concl(A2)) /∈
literals(A′1). Then, [A′1,A2] is not an argumentation line, so we are done. For
the other Sub-Case, namely ∼concl(A2) ∈ literals(A′1), we show that this sub-
case is impossible. The present sub-case, together with the case assumption,
implies that two derivations for ∼concl(A2) exist within A1: one is the sub-
argument of A1 defeated by A2. The other one is the sub-argument of A′1
attacked by A2. These two sub-arguments, say A,A′, must be different since
one satisfies A′ (A′1 and the other satisfies A = A1(∼concl(A2)) 6⊆ A′1. From
the existence of A,A′ we conclude that A1 is not an argument: indeed, A1

cannot satisfy the ⊆-minimality conditions (3)-(4) from Def. 1.3.5; the reason
for this is that A 6= A′ implies that either A r A′ is non-empty or A′ r A is
non-empty. Suppose the former is the case. Then, (A1 r A′) ∪ A is a proper
subset of A1 and moreover it satisfies the properties (1)-(2) from Def. 1.3.5.
Hence, A1 is not an argument (contradiction). Otherwise, suppose that A′ rA
is non-empty. Now, (A′1 r A) ∪ A′ is a proper subset of A′1 satisfying (1)-(2),
again contradicting the assumption that A′1 is an argument.

Given the two Postulates shown above for simple programs in t-DeLP, the
remaining Rationality Postulates (Indirect Consistency, Closure) are trivial con-
sequences, since the set of strict rules in simple programs is empty.

Corollary 1.4.12 (Rationality Postulates for Simple Programs). The rational-
ity postulates hold in t-DeLP for simple programs.

1.5 A study of t-DeLP for mutex programs

The results from the previous section showed the rationality postulates for sim-
ple programs. The results for Indirect Consistency and Closure are not only
non-trivial in the general case; they do not seem to hold for arbitrary t-DeLP
programs (that is, programs with arbitrary strict rules). Fortunately, as noted
in Section 1.2, many interesting examples can be captured using only a sub-
class of such strict rules, namely those induced by a family of mutex constraints
M = {X, . . .}.

Recall from Section 1.2 that certain logical or conceptual constraints can
be represented by such a family M of mutex sets. A mutex set X is a set of
positive literals X = {p, q, r, . . .} ⊆ Var expressing that these literals are pairwise
incompatible. Hence each mutex set X induces a set of non-durative strict rules

X 7−→ ΠX = {〈∼pi, t〉 ← 〈pj , t〉 | pi, pj ∈ X}

Finally, given a family of mutex sets M we denote by ΠM the union of the sets
of strict rules ΠX for each X ∈M.

Let us observe that mutex sets, as presently defined, consisting of rules of the
form 〈∼q, t〉 ← 〈p, t〉, require that the body contains a positive literal p and the

28

head a negative literal ∼q, for some pair p, q ∈ X ∈M. These restrictions on the
negation in the body and the head of a mutex rule originate in the definition of a
mutex set X as a set of variables. Generalizing this definition to a set of literals
would give mutex sets of the form X = {p,∼q, r, . . .}; the latter mutex sets, at its
turn, might induce rules of the form 〈q, t〉 ← 〈p, t〉 or any other combination of
positive or negative literals at the body and head of the induced rules. We adopt
the former, simpler definition for the sake of simplicity. Indeed, one can always
normalize a set of literals X = {p,∼q, r, . . .} into a set of variables {p, q′, r, . . .}
in a new language.

In this section we show that the rationality postulates still hold for t-DeLP
programs whose set of strict rules Πr are precisely induced by some such mutex
family M.

Definition 1.5.1 (Mutex Program). A mutex program (Π,∆) with Π = Πf ∪Πr

is a t-DeLP program whose set of strict rules Πr is induced by some family M
of mutex sets:

Πr = ΠM =
⋃
X∈M

ΠX

In order to distinguish mutex rules from persistence rules δ` in the set ∆p, we
introduce the following notation. A mutex rule in Πr of the form 〈∼q, t〉 ← 〈p, t〉
will be denoted δMn (for some numeric subindex) or also δMp .

For the present case of mutex programs, the definition of defeat instantiates
as follows.

Definition 1.5.2 (Defeat for mutex programs). Let (Π,∆) be a mutex program,
with Π = Πf ∪ ΠM for some mutex family M. Let A0,A1 be two arguments
in (Π,∆) such that A1 attacks A0 at B; that is, with concl(B) = 〈`, t〉 and
concl(A1) = 〈∼`, t〉. We say A1 is a proper defeater for A0 iff

• base(A1) ! base(B), or

• A1∩B is an argument for some 〈`∗, t′〉 with t′ < t and BrA1 ⊆ ∆p∪ΠM.

Blocking defeat, denoted A0 ≺� A1, is defined by the conditions A1 6≺ A0 and
A0 6≺ A1.

Lemma 1.5.3. Let A,B be two arguments in some mutex program (Π,∆). Let
A,B be arguments attacking each other (resp. with conclusions 〈`, t〉 and 〈∼`, t〉),
and such that A ∩ B is an argument and B rA ⊆ ∆p ∪ΠM. Then,

(1) Ar B 6⊆ ∆p ∪ΠM

(2) base(A) = base(B)

Lemma 1.5.4. Definitions 1.3.15 and 1.5.2 are equivalent for mutex programs.

Again, from Proposition 1.3.16 and Lemma 1.5.4, it is immediate that the
defeat relation for mutex programs is well-defined.

Corollary 1.5.5. The following hold for any mutex program (Π,∆).

29

(1) If A1 is a proper defeater for A0 at B, then B is not a defeater for A1.

(2) If A,B attack each other and B is not a proper defeater for A, then A is
a defeater for B.

Example 1.5.6. Let (Π,∆) be a mutex program with Π = Πf ∪ ΠM, defined
next. Its defeasible rules essentially describe (in rule δ) that a fact ∼p fades
away after 100 time units of being true. The literals p and q are mutex.

Πf = {〈q, 0〉}

∆ =

{
〈p, t+ 100〉 −� 〈∼p, t〉,
〈q, t+ 1〉 −� 〈q, t〉

}
= δ(t)
= δq(t)

M = { {p, q} }

ΠM =

{
〈∼p, t〉 ← 〈q, t〉,

〈∼q, t〉 ← 〈p, t〉

}
= δMp (t)

= δMq (t)

Then consider the next arguments in (Πf ∪ΠM,∆)

A = {〈q, 0〉, δMq (0), δ(0)} A+ = A ∪ {δMp (100)}
concl(A) = 〈p, 100〉 concl(A+) = 〈∼q, 100〉

B = {〈q, 0〉} ∪ {δq(t)}1≤t<100 B+ = B ∪ {δMq (100)}
concl(B) = 〈q, 100〉 concl(B+) = 〈∼p, 100〉

The new Definition 1.5.2 allows for the intuitive result that the literals 〈p, 100〉
and 〈∼q, 100〉 are warranted. This results from the dialectical trees using Defi-
nition 1.5.2 for these arguments being:

T(Π∪ΠM,∆)(A) = {[A]}
T(Π∪ΠM,∆)(A+) = {[A+]}
T(Π∪ΠM,∆)(B) = {[B,A+]}

T(Π∪ΠM,∆)(B+) =

{
[B+,A+],
[B+,A]

}
In contrast, if we use for example the definition of defeat for simple programs

Def. 1.4.3, this would result in the following dialectical trees

T(Π∪ΠM,∆)(A) = {[A,B+,A+]}
T(Π∪ΠM,∆)(A+) = {[A+,B+]}
T(Π∪ΠM,∆)(B) = {[B,A+]}
T(Π∪ΠM,∆)(B+) = {[B+,A+]}

In summary, using Definition 1.4.3 would only allow us to conclude that
〈p, 100〉 ∈ warr(Πf ∪ΠM,∆). The literal 〈∼q, 100〉, which follows from the latter
using a strict rule would not be warranted.

30

Lemma 1.5.7. Let A,B be arguments in some mutex program (Π,∆), with
{concl(A), concl(B)} ⊆ X ∈M. Define

A+ = A ∪ {∼concl(B)← concl(A)}
B = B ∪ {∼concl(A)← concl(B)}

Assume that A+ and B+ are arguments in (Π,∆). Then the following equiva-
lences hold:

A+ � B iff A � B+ and A+ ≺� B iff A ≺� B+

Theorem 1.5.8 (Rationality Postulates for Mutex Programs). Let (Π,∆) be a
mutex program with Π = Πf ∪ΠM, for some mutex family M. Then warr(Π,∆)
satisfies the Rationality Postulates.

Proof. The proof for Direct Consistency is exactly the same than for Theorem
1.4.8 (except that we use Corollary 1.5.5 instead of Corollary 1.4.5). The proof
for sub-arguments is the same than in Corollary 1.4.11. It only remains to be
shown the postulates of Indirect Consistency and Closure.

(Indirect Consistency) The proof is similar to Lemma 1.4.7 since we
assume the contrary of the postulate and show how to build argumentation
lines of arbitrary finite length. Assume then, towards a contradiction, that
Cn(warr(Π,∆) ∪ Π) is inconsistent, so this set contains a pair, say, 〈p, t〉 and
〈∼p, t〉. Because of Direct Consistency, one of these two literals is not in
warr(Π,∆). Since the only rules in Π are those in the set ΠM, and all these
rules δ ∈ ΠM have a positive literal in body(δ) and a negative literal in head(δ),
no pair rules δ, δ′ in ΠM can be chained: head(δ) /∈ body(δ′). Thus, the previous
conflicting literal 〈∼p, t〉 must be derived using a (single) rule in ΠM and using a
single “strict fact” from warr(Π,∆), say 〈q, t〉, for some {p, q} ⊆ X ∈M. Using
Direct Consistency, the other conflicting literal 〈p, t〉 is the one in warr(Π,∆).

Existence of A. From 〈p, t〉 ∈ warr(Π,∆) it can be inferred that an argument
A for 〈p, t〉 exists in (Π,∆), and moreover, that it is undefeated in T(Π,∆)(A).

Construction of A+. This undefeated argument A can be expanded into an
argument A+ for 〈∼q, t〉 simply by adding the rule 〈∼q, t〉 ← 〈p, t〉 ∈ ΠM. To
see that it is indeed an argument we check the conditions (1)-(4) of Def. 1.3.5.

(1) the derivability of 〈∼q, t〉 is obvious.

(2) assume the contrary, so the closure of A+ ∪ Π is inconsistent; then, a
strict argument for some literal 〈`, t′〉 exists, whose negation 〈∼`, t′〉 is in
literals(A+); this literal 〈∼`, t′〉 cannot be in A, since this is an argument,
so it only remains the possibility that 〈∼`, t′〉 = 〈∼q, t〉, and so a strict
argument Π′ ⊆ Π for 〈q, t〉 exists. But this can be expanded into a strict
argument Π′′ = Π′ ∪ {〈∼p, t〉 ← 〈q, t〉} for 〈∼p, t〉, thus contradicting the
fact that A is an argument.

(3) the ⊆-minimality of A+ ∩∆ derives from the ⊆-minimality of A∩∆ plus
the fact that the new rule in A+ is strict

31

(4) the ⊆-minimality of A+ ∩Π also derives from that of A.

Existence of B. On the other hand, 〈∼p, t〉 ∈ Cn(warr(Π,∆)∪Π) implies the
existence of a derivation Γ using premises from warr(Π,∆) and rules from ΠM.
As we mentioned above, a ⊆-minimal such derivation can only be of the form
Γ = {〈q, t〉} ∪ {〈∼p, t〉 ← 〈q, t〉} for some literal 〈q, t〉 ∈ warr(Π,∆). Hence, we
can use the fact that 〈q, t〉 ∈ warr(Π,∆) to conclude the existence an argument
B for 〈q, t〉 which is undefeated in T(Π,∆)(B).

Construction of B+. The previous derivation for 〈∼p, t〉 plus the argument
B can also be merged into a derivation, say B+ = B ∪ {〈∼q, t〉 ← 〈p, t〉} for
〈∼p, t〉. This derivation B+ is again an argument (the proof for this is analogous
to the proof above that A+ is an argument).

In summary, there exist two arguments A,B undefeated in the respective
dialectical trees T(Π,∆)(A), T(Π,∆)(B); and an arguments A+ attacking B, and
finally an argument B+ attacking A.

Now, the proof by induction proceeds by cases. We only show the Base Case.
The rest of the proof just follows the same steps. From here on, conditions (i)-
(iii) will refer to those conditions from Def. 1.3.18.

Figure 1.8: An illustration of the proof for Indirect Consistency: case B+ defeats
A; i.e. B+ � A or B+ ≺� A.

(Case B+ � A or B+ ≺� A) See Figure 1.8 for an illustration of the con-
struction shown next. Initially we define the argumentation line Λ1 = [A] in
T(Π,∆)(A1); by the case assumption, Λ2 = [A,B+] is obviously an argumen-
tation line. But since A is undefeated, an undefeated argument C exists with
Λ3 = [A,B+, C] in T(Π,∆)(A). We proceed to show that this C is or induces a
defeater for B, i.e. some argumentation line [B, ·] in T(Π,∆)(B). (Sub-Case C
defeats B+ at B+) Then concl(C) = 〈p, t〉, so defining C+ = C ∪{〈∼q, t〉 ← 〈p, t〉}
is an argument (shown as above for A+). Moreover, by Lemma 1.5.7 C+ defeats
B so, [B, C+] is in T(Π,∆)(B). We will rename such C+ again as C. (Sub-Case

32

C defeats B+ at some sub-argument of B) By Lemma 1.3.21 (1), [B+, C] is in
T(Π,∆)(B+) and then by Lemma 1.4.10 [B, C] is in T(Π,∆)(B).

In either Sub-Case, we found an argumentation line [B, C]. But since this B is
undefeated, some argumentation line of the form [B, C,D] must exist. We check
that [B+, C,D] is also an argumentation line, i.e. conditions (i)-(iii) hold. For
condition (i), assume otherwise that B+∪D∪Π is inconsistent. Since B∪D∪Π is
consistent, the previous inconsistency can only be with 〈∼p, t〉 = concl(B+). So
〈p, t〉 ∈ Cn(B∪D∪Π). Moreover, since B+ is an argument, we know that 〈p, t〉 ∈
Cn(B ∪ D ∪ Πr). Finally, since 〈p, t〉 is a positive literal (and B,D are already
arguments), we must have 〈p, t〉 ∈ Cn(B ∪ D); and since B+ is an argument for
〈∼p, t〉, it must happen that 〈p, t〉 ∈ Cn(D), so 〈p, t〉 ∈ literals(D). But now,
recall that [B, C,D] is an argumentation line so B ∪ D ∪ Π is consistent. But
this is impossible since concl(B) = 〈q, t〉, 〈p, t〉 ∈ literals(D) and 〈∼q, t〉 ← 〈p, t〉
is a rule in Π. This shows that [B+, C,D] satisfies condition (i). Conditions
(ii) and (iii) are obvious for [B+, C,D] since they only depend on the attacked
sub-argument of B, which is also an attacked sub-argument of B+.

Finally, it only remains to check that Λ4 = [A,B+, C,D] is an argumentation
line. For this, note that conditions (i), (ii) and (iii) are piecewise satisfied by
[A,B+, C] and [B+, C,D]. It is immediate that these facts jointly imply that
conditions (i)-(iii) are satisfied by [A,B+, C,D].

Due to Lemma 1.5.5, the only remaining case to be checked is the following.

(Case A � B+) For this case, it suffices to note that Lemma 1.5.7 implies
that A+ � B. But then the proof for this case is symmetric w.r.t. the former
case, just switching the roles of A and B.

For the Inductive Case, we would assume some argumentation line Λ2k =
[A,B+, . . . , C′,D′] and extend it to some Λ2k+2 = [A,B+, . . . , C′,D′, C′′,D′′].
The proof is analogous to the previous Base Case Λ2 7→ Λ4 and will not be
repeated.

(Closure) The proof is similar to that of Indirect Consistency, see Figure
1.9 for an illustration of the different possible cases in the proof. Towards a
contradiction, assume that some literal 〈∼p, t〉 is in Cn(warr(Π,∆)∪Π) but not
in warr(Π,∆). As above, any derivation for 〈∼p, t〉 can only consist essentially
of an argument of the form {〈q, t〉} ∪ {〈∼p, t〉 ← 〈q, t〉}, where the literal is in
warr(Π,∆) and the rule is in ΠM for some some {p, q} ⊆ X ∈M. Also, let A be
an argument for 〈q, t〉 in (Π,∆) such that A is undefeated in T(Π,∆)(A). As in
the proof of Ind. Consistency, A+ = A ∪ {〈∼p, t〉 ← 〈q, t〉} can be shown to be
an argument in (Π,∆). It only remains to be shown that A+ is undefeated in
T(Π,∆)(A+). For this, assume the contrary. We proceed to build argumentation
lines of any finite length of the form: [A+, . . .] and [A, . . .].

Since A+ is defeated in T(Π,∆)(A+), we have some defeater B for it exists
which is undefeated, that is, in the argumentation line [A+,B]. These initial
arguments are depicted in Fig. 1.9 within the dotted rectangle. We distinguish
the next two cases, in order to show the existence of an argumentation line
[A+,B, C].

(Case B defeatsA+ at some sub-argument ofA). This will lead to the top line

33

Figure 1.9: An illustration of the proof for Closure. The dotted rectangle rep-
resents the initial assumptions. The auxiliary constructions in each of the two
cases considered are represented resp. by the top and bottom argumentation
lines.

construction in Fig. 1.9. By the Case assumption and Lemma 1.4.10, [A,B] is
also an argument, but since A is undefeated, B must be defeated, so an argument
C exists undefeated in [A,B, C]. We check conditions (i)-(iii) are preserved from
this argumentation line to [A+,B, C]. For condition (i), as in the proof of Ind.
Cons., we have that the assumption that A+ ∪C ∪Π is inconsistent implies that
〈q, t〉 ∈ literals(C), in which case [A,B, C] would also violate condition (i) since
〈∼p, t〉 ← 〈q, t〉 is in Π. Conditions (ii) and (iii) are obviously preserved, as they
only depend on the attacked sub-argument of A and A+, which is the same
among the two argumentation lines.

(Case B defeatsA+ at A+.) We denote this argument by B, so again we have
an argumentation line [A+,B]. This case leads to the bottom line construction
of Fig. 1.9. Note this argument’s conclusion can only be concl(B) = 〈p, t〉. Thus,
we can extend it into an argument B+ = B ∪ {〈∼p, t〉 ← 〈q, t〉} which attacks
A at A. Moreover, by Lemma 1.5.7 [A,B+] is an argumentation line, but here
B+ is defeated, so an argument C exists which is a defeater for B+; that is,
[A,B+, C] is in T(Π,∆)(A). Again we distinguish two sub-cases. (Sub-Case C
defeats B+ at a sub-argument of B.) In this case, by Lemma 1.3.21 (1), we have
that [B+, C] is an argumentation line, and by Lemma 1.4.10, so is [B, C]. Now
we check that [A+,B, C] is in T(Π,∆)(A+). Condition (i) is shown as usual, if
A+∪C∪Π is inconsistent, again this can only be because 〈q, t〉 ∈ literals(C). But
then A ∪ C ∪ Π would already be inconsistent, contradicting that [A,B+, C] is
an argumentation line. For condition (ii), assume towards a contradiction that
C = A+(= A+(∼concl(C))). Then, either we have that A ≺ B+, in which case by
Lemma 1.5.7 [A,B+, C] cannot be in T(Π,∆)(A) because C = A+ is not a defeater
for B+; or A ≺� B+, and again by Lemma 1.5.7 [A,B+, C] = [A,B+,A+] does

34

not satisfy condition (iii). In either case we reach a contradiction, so condition
(ii) is satisfied by [A+,B, C]. Finally, condition (iii) is preserved from [A,B+, C]
to [A+,B, C] due to Lemma 1.5.7.

In either case, we showed how to expand the argumentation line [A+,B] into
[A+,B, C]. Now, since [A+,B] is evaluated as [U,D], we must have that [A+,B, C]
is evaluated as [U,D,U] and hence an argumentation line [A+,B, C,D] exists.

The proof for the inductive case is analogous and will not be repeated.

1.6 A comparison of t-DeLP with Dung seman-
tics, DeLP and TDR

We conclude this chapter with a detailed comparison of t-DeLP and related
frameworks. First we discuss the relationship between the dialectical tree based-
semantics of t-DeLP and Dung acceptability semantics for abstract argumenta-
tion frameworks. Then we report on the comparison of some particular aspects
of t-DeLP with DeLP [61] and also with another temporal extension of DeLP in
the literature called Temporal Defeasible Reasoning (TDR) [14].

1.6.1 t-DeLP and Dung acceptability semantics

Let us briefly review the abstract argumentation frameworks proposed by [52]
(see also Appendix C). The latter simply consisting of a relation R, called attack,
in set of (unstructured) elements A = {A, . . .}, called arguments, i.e. a pair
(A, R). The so-called acceptability semantics try to capture different intuitions
about which subsets E ⊆ A are collectively acceptable (called extensions), given
the attack relation. For example,

E is conflict-free iff no A,B ∈ E exist with R(A,B).

Other intuitive conditions upon extensions are defined from the notion of defense:
a subset E defends A iff

for each B attacking A, there exists C ∈ E that attacks B.

These two conditions define the set of admissible extensions or admissible seman-
tics. Further conditions have been proposed in the literature to define different
semantics based on this notion of admissibility, see Section C.1. For each se-
mantics X = {admissible, . . . }, the (skeptical) justified conclusions according
to X are defined as the conclusions of arguments in the intersection of all the
X -extensions:

⋂
{E | E is an X−extension}.

If we directly rephrase the acceptability semantics from [52] and the related
definitions above, there is still a mismatch between Dung’s acceptability and
acceptability in t-DeLP (i.e. undefeated arguments). To see this, first note that
the abstract notion of attack R would correspond to our notion of defeat. But
argumentation lines in t-DeLP are not simply chains of the defeat relations, since
we imposed further conditions upon the former. They are relative to some di-
alectical tree T(Π,∆)(A). Correspondingly, the (relevant) defense of an argument

35

A will take place only in its own dialectical tree T(Π,∆)(A), so the F function
would be expressed by

F(E) = {A | ∀B ∈ A ∃C ∈ E ([A,B] ∈ T(Π,∆)(A) ⇒ [A,B, C] ∈ T(Π,∆)(A)}

Also, note that in a t-DeLP program (Π,∆) there is a unique notion of extension,
or set of “acceptable” arguments; namely, those argumentsA that are undefeated
in T(Π,∆)(A). That the t-DeLP procedure for undefeated arguments can define
a non-admissible extension E * F(E) is shown next.

Example 1.6.1. Let A,B, C be the arguments for, resp., 〈s, 1〉, 〈∼s, 1〉 and 〈s, 1〉
consisting of: (1) a single rule each 〈s, 1〉 −� 〈p, 0〉 and 〈∼s, 1〉 −� 〈p, 0〉, 〈q, 0〉 and
〈s, 1〉 −� 〈r, 0〉, resp., and (2) the facts given by the body of the corresponding
rule. Moreover, let (Π,∆) be the program defined just by these strict facts and
defeasible rules from (1) and (2). Then,

T(Π,∆)(A) = {[A,B, C]} T(Π,∆)(B) = {[B, C]} T(Π,∆)(C) = {[C,B]}
so A is undefeated and B, C are defeated; but there is only C to defend A (from
B). As a result, E = {A} * ∅ = F(E), and thus extension E is not admissible.

Since complete extensions are defined by strengthening the condition for
admissible extensions, namely E = F(E), this counter-example also shows that
the t-DeLP extensions do not correspond to any of the semantics, since they are
all based on complete extensions. This includes the remaining four semantics:
complete, grounded, preferred and stable.

1.6.2 Defeat criteria in DeLP and t-DeLP.

Both DeLP and t-DeLP are defeasible argumentation-based logic programming
frameworks. The former is defined by criteria of defeasibility expressing a prefer-
ence for arguments with more direct inference steps. This captures the preference
for {penguins do not fly} over {penguins are birds, birds fly}. In [61], the au-
thors use the so-called generalized specificity to formalize this idea of defeat as
described next. Briefly, the language of DeLP is a set of literals ` ∈ Var ∪ ∼Var
and arguments in [61] are of the form 〈A, `〉 for some conclusion `. Recall that,
in this work, arguments are identified only in terms of the defeasible information
they make use of, while abstracting from strict information.

Definition 1.6.2 (DeLP-specificity). Let (Π,∆) be a DeLP program, and let
Πr be the set of all strict rules from Π (i.e. not including facts.) Let F be the
set of all literals that are derivable from (Π,∆). Let 〈A1, `1〉 and 〈A2, `2〉 be two
arguments obtained from (Π,∆). 〈A1, `1〉 is strictly more specific than 〈A2, `2〉
if the following conditions hold:

1. for all H ⊆ F : if Πr ∪H ∪ A1 ` `1 and
Πr ∪H 0 `1,

then Πr ∪H ∪ A2 ` `2, and

2. there exists H ′ ⊆ F such that: Πr ∪H ′ ∪ A2 ` `2 and
Πr ∪H ′ 0 `2 and
Πr ∪H ′ ∪ A1 0 `1.

36

When the conditions for 1 are met, i.e. Πr ∪H ∪ A ` ` and Πr ∪H 0 `1, we
say H is an activation set for 〈A, `〉. The idea of DeLP-specificity is to prefer
arguments with fewer activation sets (in the sense of inclusion). In other words,
to prefer the existence of less combinations of intermediate steps sufficing for the
conclusion.

Turning back to the language of t-DeLP, if we redefine the activation sets
of A by the set {base(A)}, (i.e. by the unique set of strict facts A ∩ Πf), this
specificity criterion in Definition 1.3.15 turns into our first criterion for t-DeLP
defeat, namely the ⊆-comparison between base(A1) and base(A2). On the other
hand, the second criterion in Def. 1.3.15, based on the use of persistence rules,
can also be expressed using activation sets activ(A) of an argument A. The
difference is that now the preference is for more activation sets. For example,
we have the following equivalence for simple programs

A1 � A2

(2nd crit. of Def. 1.4.3)
iff

there is ∆′p ⊆ ∆p s.t. that in (Π,∆r∆′p)

activ(A1) ! activ(A2)

1.6.3 t-DeLP and Temporal Defeasible Reasoning (TDR)

In the TDR framework [14], literals (hence conclusions) of arguments are primi-
tively associated with both discrete intervals and time-points. For instance, (us-
ing our own notation) head(δ) = 〈`, [t+ 1, t+ 3]〉 expresses that if δ ∈ ∆ applies
we defeasibly conclude that ` holds from t+1 to t+3. In TDR, conflicts between
two interval-valued arguments, e.g. (A, 〈`, [t+1, t+4]〉) and (B, 〈∼`, [t+2, t+5]〉)
attacking each other do so at the intersection of these intervals [t+ 2, t+ 4].

Another significant difference between TDR and t-DeLP lies again in the
defeat criteria. In particular, when persistence rules are involved in the compar-
ison between two contending arguments. In TDR, an argument that contains
persistence rules is less preferred than an argument which does not. In contrast,
in t-DeLP (Def. 1.3.15 above) the comparison is made in terms of set-theoretic
inclusion, thus providing us with a more fine-grained comparison of persistence
than the criterion proposed in TDR. Thus, in t-DeLP an argument A using
persistence need not be properly defeated when attacked by a persistence-free
argument B. For example, if the persistent literals 〈`, t〉, . . . , 〈`, t + k〉 in A are
not directly attacked by the other argument, both arguments will be blocking
defeaters for each other.

Figure 1.10 summarizes the differences between DeLP, t-DeLP and TDR. In
contrast to the TDR system in (as well as other temporal argumentation systems
[95] [43]), in t-DeLP we let the notion of an interval where some conclusion holds
to be a notion deriving from the set of time-points for which this conclusion holds.
In this sense, TDR is more expressive than t-DeLP, though for most applications,
it seems possible to translate a TDR-proof for the warrant of 〈`, [t, t′]〉 in a given
TDR program, into a t-DeLP-proof for the warrant of each 〈`, t0〉 with t ≤ t0 ≤ t′
in a corresponding t-DeLP program.

37

DeLP t-DeLP TDR

literals p or ∼p 〈p, t〉 or 〈∼p, t〉 (¬)Holdsat(p, t)
(¬)Holdsin(p, [t, t′])

derivability modus ponens modus ponens modus ponens

argument A A ⊆ ∆ A ⊆ Π ∪∆ A ⊆ ∆
A ∪Π ` ` A ` 〈`, t〉 A ∪Π ` literal

〈A, `〉 attacks 〈B, `′〉 ∼concl(A) ∈ Holdsin(p, I) vs.
A attacks B iff {`, `′} ∪Π literals[B] ¬Holdsin(p, I ′),

is inconsistent with I ∩ I ′ 6= ∅
specificity generalized spec. Definition 1.3.15 pointwise gen. spec.

(activation sets) (base = act. set, (pointwise
less persistence) activation sets)

more direct rules by specificity no by specificity

more premises if more specific always if more specific

persistence n/a comparison comparison
Ar B vs. B rA A vs B

warrant dialectical tree dialectical tree algorithm in [14]

Figure 1.10: A comparison of DeLP, t-DeLP and TDR.

1.7 Conclusions and Related Work

In this chapter we defined t-DeLP, a temporal version of DeLP where logic pro-
grams contain temporal literals and rules with duration. The proposed frame-
work modifies features of DeLP in order to deal with specific issues related to
temporal reasoning, like persistence and the past/future asymmetry in causal
statements. Besides this differences at the definition of defeat, t-DeLP is essen-
tially based on the same argumentation-based procedure that defines the notion
of defeasible logical consequence, or warrant. This notion of the set of war-
ranted literals of a program has been shown to satisfy the postulates of Direct
Consistency and Sub-arguments (the other postulates are trivial). In addition,
we have extended the basic framework to deal with programs defined by a family
of mutex constraints, and we have shown the rationality postulates hold as well
(but less trivially) for this class of mutex programs.

There is a vast literature on logics for reasoning about causality and time,
roughly dividing into two areas: temporal logics, and causal or conditional log-
ics. These focus respectively on the temporal aspects of change, and the causal
relationships between state conditions. This is sometimes done by focusing on
states and leaving events (transitions between states) without an explicit repre-
sentation in the object language, as in the planning tradition.

Modal logic [40], [26] is one of the most central areas within logic in computer
science, and has been used in particular for the study of time, events or actions
(among many other topics). For example, studies in applied modal logic include
modalities for time in linear time LTL [71], or branching time CTL, CTL∗ [55]
[56]; or modalities for the execution of programs PDL [74].

38

In practice, though, the early discovery of some knowledge engineering prob-
lems motivated the study of non-monotonic reasoning. For example, the recog-
nition of the frame problem can be singled out as one of the major challenges
in early studies on knowledge representation. In the broad sense, this denotes a
family of problems related to the description of actions: their effects, non-effects,
or preconditions. Among them, we find:

• the frame problem -in the narrow sense- is the problem of finding (effi-
cient) representations for the persistence of facts through time or action
executions. Since an action will only change a small part of a scenario, it
is unpractical to make an explicit list of which facts persist under which
actions, to be used during inference.

• the ramification problem is the problem of efficiently deriving the indirect
effects of an action in a given context. (See Section 2.2).

• the qualification problem is that of finding efficient representations for the
preconditions of an action. We would also like to prune many of the
preconditions that one would not bother to check before the action (unless
one positively knows about their failure). Among the three problems in
this list, only this one seems to demand a non-monotonic approach [38].

The original frame problem plagued the initial classical logic based ap-
proaches [97], etc. and it also affects many (monotonic) temporal logics, like
temporal logic programming [20]. Some efforts have been devoted to solve the
frame problem within monotonic modal logics. For example, some of the issues
related to the frame problem in PDL have been successfully dealt with in [123],
[67], [152], [38]. Other research areas, instead, have found natural ways to avoid
the frame problem or address it in natural ways. Planning systems, for example,
avoid the frame problem by severely restricting logical inference. Non-monotonic
logics (see below). These logics have found more or less natural ways to capture
common sense reasoning and avoid the former representation issues.

We hope that the examples in Chapters 1 and 2 suffice to give an idea of how
these problems can be addressed in t-DeLP (with actions). In summary, the
(narrow) frame problem can be solved by means of persistence rules; the ram-
ification problem can be addressed by appropriate defeasible rules (see Section
2.2; and the qualification problem can be solved by the argumentation procedure
(arguments against the precondition of an action can qualify its executability).

The present work broadly belongs to the area of non-monotonic temporal
logics, where non-monotonicity here is built upon the recent area of computa-
tional argumentation [52], [121], [126] and more specifically under the form of
logic programming [35], [61].

Let us then briefly survey different non-monotonic logical frameworks (see
[32]), and more specifically those modeling events, action or time. Inspired by
common sense reasoning, non-monotonic logics are based on the existence of
priorities between inferences [122], [8], [99]. Thus, while all inferences separately
make sense, some of them might be preferred to (and cancel) others. Non-
monotonic logics, though, have evolved into a rather disperse variety of logical

39

approaches, including some modal approaches [83], [68]. Some correspondences
or reductions are known among non-monotonic logical systems, among which:
default logics into autoepistemic logics [83], or into DeLP [50]; DeLP into ASP
[136]; the correspondence between DeLP and normal logic programing [100],
defeasible logic and definite logic programming [59]. Among non-monotonic
modal approaches, we find [68],[33]. Other logics of action and causation include
C/C+ [69], [47], A [63], event calculus [88] and others. These have been studied
from the standpoint of PDL in [152].

Further motivations for the present, argumentation-based approach are pre-
cisely questions on these priorities between conflicting inferences [130], [61]: how
are they defined, but also how can they be automatically generated, etc. In most
approaches in the literature on abstract argumentation [52], [7] this question
is left unanswered. This issue becomes specially important when the internal
structure of arguments is considered, e.g. in default logics [129] or in logic-based
argumentation [35], [121].

The present approach was inspired by the notion of specificity [120], [134],
and its application to DeLP [61]. Besides this work, other rule-based systems
were initially proposed [25], [102] in the area of defeasible logic. These were
recently extended with temporal reasoning [72]. Indeed, our language is mainly
inspired by this latter work, although we opted for an argumentation-based ap-
proach. The reasons for this choice are two: first, the tools of rules and defeaters
(resp., to promote and prevent derivations) is conceptually less natural than the
use of arguments. than consist of rules, in a way that mirrors a deliberating
human agent pondering reasons for and against candidate conclusions. Second,
argumentation-based logics are more powerful than rule-based systems since pri-
ority relations can apply at a global level (the logical structure of arguments)
rather than at a local level (comparisons between rules). This applies to other
frameworks for temporal temporal reasoning like Hunter [80], [81].

Finally, several frameworks have been proposed in the more recent area of
logical models of argumentation, following the seminal work [52]. This work has
been extended by associating time intervals to arguments (applicable in these
intervals) [42], [43], or at the level of rules [14], [95]. Our approach differs from
these latter works in that the interval where the conclusion of an argument holds,
rather than being a primitive notion, obtains from different arguments (one for
each time-point).

The present chapter is closely related to other logical systems in the family
of DeLP, namely ODeLP [36], PDeLP [3], RP-DeLP [4], TDR [14], pt-DeLP
[70]. Each of this is based on different formal definitions of defeat (preference),
modeling defeasible reasoning with uncertainty or time.

1.8 Appendix: proofs

The proofs for the auxiliary results mentioned in the previous sections are pre-
sented here.

40

Proposition. 1.3.7 Let (Π,∆) be a t-DeLP program, and let A be an argument
for some 〈`, t〉 = concl(A). Then {〈`, t〉} = head[A]r

⋃
body[A].

Proof. For the first claim, clearly if A is an argument for 〈`, t〉 then 〈`, t〉 is
derivable from A. By definition of derivability, some rule (possibly a strict fact)
δ exists with head(δ) = 〈`, t〉. By the ⊆-minimality conditions, no other rule δ′

exists in A with 〈`, t〉 ∈ body(δ′). This shows {〈`, t〉} ⊆ head[A]r
⋃

body[A].
On the other hand, let δ′′ be an arbitrary rule in A with head(δ′′) /∈ body[A].

(Case head(δ′′) = 〈`, t〉.) Then, by ⊆-minimality of A w.r.t. the derivability of
〈`, t〉 from A, we have δ′′ = δ. (Case head(δ′′) 6=≤ `, t〉.) That is, δ′′ 6= δ. By
definition of derivability head(δ′′) /∈ body[A] implies that A r {δ′′} ` 〈`, t〉. So
either we have δ′′ ∈ ∆, in which case A∆ is not ⊆-minimal with the property
A∆ ∪ Π ` 〈`, t〉. Or, δ′′ ∈ Π, in which case AΠ is not ⊆-minimal with A∆ ∪
AΠ ` 〈`, t〉. In either sub-case, we reach a contradiction. This shows that
head[A]r

⋃
body[A] ⊆ {〈`, t〉}.

For the next result, we start with an inductive definition for the notion of
sub-argument (Def. 1.3.9). Given an argument A in some t-DeLP program
(Π,∆) and a literal 〈`, t〉 ∈ literals(A), the sub-argument of A for 〈`, t〉, denoted
A(〈`, t〉), is the set obtained by the following inductive construction:

if δ ∈ A exists with head(δ) = 〈`, t〉, then δ ∈ A(〈`, t〉)
if δ ∈ A(〈`, t〉) and δ′ ∈ A exists with head(δ′) ∈ body(δ), then δ′ ∈ A(〈`, t〉)

Proposition. 1.3.10 Given some argument A and a literal 〈`, t〉 ∈ literals(A),
then A(〈`, t〉) is unique.

Proof. By induction on the complexity of A.
(Base Case) Suppose that A is a strict fact A = {〈`, t〉} ⊆ Πf . Then,

literals(A) = A so A(〈`, t〉) = A and it is the only sub-argument of A deriv-
ing 〈`, t〉. Hence it is unique.

(Ind. Case) Assume (Ind. Hyp.) that for any argument A with some δ ∈ A
such that head(δ) = concl(A)(= 〈`, t〉), we have A(〈`′, t′〉) is unique for each
〈`′, t′〉 ∈ literals(A). We check the unicity of the remaining caseA(concl(A)) = A.
Suppose another sub-argument B ⊆ A exists for 〈`, t〉. From B ⊆ A and B 6= A,
we infer the existence of some rule or literal δ′ ∈ A r B. (Case δ′ ∈ Π) If
this δ′ is a literal or a strict rule, then such δ′ ∈ AΠ shows that A does not
satisfy, in a ⊆-minimal way, that A∆ ∪ AΠ ` 〈`, t〉; hence A violates condition
(4) from Def. 1.3.5, so A is not an argument (contradiction). (Case δ′ ∈ ∆)
Then δ′ shows that A∆ does not satisfy Π∪A∆ ` 〈`, t〉 in a ⊆-minimal way; so A
does not satisfy condition (3) from Def.1.3.5. Again, A cannot be an argument
(contradiction).

Proposition. 1.3.16 The following hold for any t-DeLP program:

(1) If A1 is a proper defeater for A0 at B, then B is not a defeater for A1.

(2) If A,B attack each other, and B is not a proper defeater for A, then A is
a defeater for B.

41

Proof. Claim (1). We show first that A1 and B cannot be proper defeaters
for each other. First, note that we cannot have A1 � B and B � A1 due to
the first criterion in both cases; the reason is that otherwise one would obtain
base(A1) ! base(B) ! base(A1). Second, neither it can be that A1 � B and
B � A1 due to the second criterion. In this case, we would obtain a contradiction:

B rA1 ⊆ ∆p ∪Π (2nd cond. from A1 � B)
B rA1 ∩ (∆r∆p) 6= ∅ (4th cond. from B � A1)

Finally, we can also rule out that, e.g. A1 � B is due to the first criterion
while B � A1 is due to the second (or viceversa). In this case, the former A1 � B
would imply base(A1) ! base(B) while the latter B � A1 (using the fifth cond.)
would require that either base(B) 6⊆ A1 or base(B) = base(A). Either of these
two cases is inconsistent with the former assumption.

This shows that the relation of proper defeat (between mutually attacking
arguments A1,B) is asymmetric. Moreover, using the definition of blocking
defeat ≺�, it is obvious that if A1 is a proper defeater for B, these two arguments
can neither be blocking defeaters for each other.

Claim (2) is straightforward: assume that B 6� A. Then either A � B, in
which case A is a proper defeater for B, or A 6� B, in which case A is a blocking
defeater for B.

Lemma. 1.3.21 For any t-DeLP program (Π,∆),

(1) If [A1, . . . ,Ak, . . . ,An] is an argumentation line for A1, then [Am, . . . ,An]
is an argumentation line for Am.

(2) Each argumentation line Λ = [A1, . . .] ∈ T(Π,∆)(A1) is finite. The dialecti-
cal tree T(Π,∆)(A1) is finite.

Proof. For (1), let Λ1 = [A1, . . . ,Am, . . . ,An] be an argumentation line for A1.
Notice that the first element of Λm is Am. We check that each condition (i)-(iii)
from Definition 1.3.18 holds for the sequence Λm = [Am, . . . ,An].

(i) The joint consistency of supporting (resp. interfering) arguments is satis-
fied by Λm, since otherwise if Am ∪ . . . ∪ An ∪ Π was inconsistent, then
so would be A1 ∪ . . . ∪An ∪Π, contradicting that Λ1 is an argumentation
line.

(ii) If this condition failed for Λm at the pair Am+k =
Am+k+2j(∼concl(Am+k+2j+1)), then it would already fail for Λ1 at
the same pair.

(iii) The condition that Ai+1 is a proper defeater for Ai if Ai is a blocking
defeater for Ai−1 must hold for Λk since otherwise it would also fail for Λ1

at the same triple Ai−1,Ai,Ai+1.

For (2), let concl(A1) = 〈`, t〉. Recall that t < ω and the set Lit is also finite,
so the set of literals 〈`′, t′〉 with t′ ≤ t is finite. In consequence, the set of rules δ
whose head is some 〈`′, t′〉 is also finite. Since arguments are finite sets of rules

42

and literals, the set of arguments A2n+1 whose conclusion is some 〈`′, t′〉 with
t′ ≤ t is also finite. Hence each argumentation line for A1 is finite. Finally, there
are a finite number of argumentation lines for A1 (again because the number of
arguments for t′ ≤ t are finite). The latter two facts imply that the dialectical
tree T(Π,∆)(A1) is finite.

Lemma. 1.4.4 For any simple program (Π,∆), Definitions 1.3.15 and 1.4.2 are
equivalent.

Proof. We only need to check the equivalence between the second (persistence-
based) criterion from the two definitions.

(⇒) We have the following:

B rA1 ⊆ ∆p ∪Π (by 2nd condition in Def. 1.3.15)

B rA1 ⊆ ∆p ∪Πf (since Πr = ∅)

B rA1 ⊆ ∆p (shown next)

To obtain the last step, assume the contrary and let 〈`0, t0〉 ∈ Πf∩B be such that
〈`0, t0〉 /∈ A1. Since A1 ∩ B is an argument (the 1st condition in Def. 1.3.15),
we have the next two cases. (Sub-Case: 〈`0, t0〉 = concl(A1 ∩ B).) Then, by ⊆-
minimality, A1 = {〈`0, t0〉}, contradiction. (Sub-Case: 〈`0, t0〉 6= concl(A1 ∩B).)
Since Πr = ∅, the latter implies some rule δ ∈ ∆p ∩ B exists with body(δ) ⊇
{〈`0, t0〉, concl(A1 ∩ B)}. Since these two elements are different, this contradicts
the fact that |body(δ)| = 1, given by the assumption δ ∈ ∆p.

So we obtain B rA1 ⊆ ∆p. Since the rules in B rA1 ⊆ ∆p satisfy the con-
dition |body(δ)| = 1, the fact that B is an argument (with a unique conclusion)
requires that B rA1 is of the form {δ`∗(t′′)}t∗≤t′′<t.

On the other hand, that A1 ∩ B is an argument implies that it is a sub-
argument of A1, hence of the form A1(〈`?, t?〉). Using this and the claim just
shown above, we reason as follows:

B = (A1 ∩ B) ∪ (B rA1) (disjoint union)

B = A1(〈`?, t?〉) ∪ {δ`∗(t′′)}t∗≤t′′<t (using the last two claims)

B = A1(〈`∗, t∗〉) ∪ {δ`∗(t′′)}t∗≤t′′<t (t∗ = t? because this union is disjoint

and B is ⊆-minimal w.r.t. B ` 〈`∗, t〉)

Finally, the 3rd condition (BrA1)∩∆p 6= ∅ implies that t∗ < t. This concludes
the proof of Def. 1.4.3.

(⇐) We first show the 4th condition from Def. 1.3.15. From the assumption
B = A1(〈`, t′〉) ∪ {δ`(t′′)}t′≤t′′<t, we can assume without loss of generality that
this t′ is minimal with this property, so some δ? ∈ (A1 r B) r ∆p exists with
〈`, t′〉 ∈ body(δ?). Since, for simple programs, δ? /∈ ∆p implies δ? ∈ ∆r∆p, this
shows the 4rth condition (A1rB)∩(∆r∆p). Moreover, the above minimality of
t′ implies that {δ`(t′′)}t′≤t′′<t ∩A1 = ∅. Indeed, some t′ < t with this property

43

exists since concl(A1) 6= concl(B). We use these latter properties of t′ to reason
as follows

B = A1(〈`, t′〉) ∪ {δ`(t′′)}t′≤t′′<t (Def. 1.4.3)

A1 ∩ B = A1 ∩ (A1(〈`, t′〉) ∪ {δ`(t′′)}t′≤t′′<t)
A1 ∩ B = (A1 ∩ A1(〈`, t′〉)) ∪ (A1 ∩ {δ`(t′′)}t′≤t′′<t)
A1 ∩ B = A1(〈`, t′〉) ∪ (A1 ∩ {δ`(t′′)}t′≤t′′<t) since A1(〈`, t′〉) ⊆ A1

A1 ∩ B = A1(〈`, t′〉) since A1 ∩ {δ`(t′′)}t′≤t′′<t = ∅

Now, since A1(〈`, t′〉) is an argument for 〈`, t′〉 with t′ < t, so is A1 ∩ B.
This shows the 1st condition from Def. 1.3.15. The 2nd condition is obvious
BrA1 ⊆ ∆p ⊆ ∆p∪Π. The 3rd condition (BrA1)∩∆p 6= ∅ follows from t′ < t.
Finally, for the 5th condition, it is straightforward that the second criterion from
Def. 1.4.3 implies base(B) = base(A1) for simple programs.

Corollary. 1.4.9 Let Λ = [A1,A2, . . . ,A] be an argumentation line in
T(Π,∆)(A1). Then

(1) if A = A2n+1 is undefeated in Λ, then in the corresponding arg. line
[A2, . . . ,A] the (now interfering) argument A is undefeated;

(2) if A = A2n is defeated in Λ, then in the corresponding arg. line [A2, . . . ,A]
the (now supporting) A defeated.

Proof. (1) Given Λ2n+1 = [A1,A2, . . . ,A2n+1], by Lemma 1.3.21 (1) we have
Λ′2n+1 = [A2, . . . ,A2n+1] is an arg. line. If A2n+1 is undefeated in Λ′ we are
done. Otherwise some A2n+2 exists with Λ′2n+2 = [A2, . . . ,A2n+1,A2n+2] and
A2n+2 evaluated as undefeated in Λ′2n+2. Then Λ2n+2 = Λ2n+1

∩[A2n+2] is an
arg. line, and A2n+2 must be defeated there, since A2n+1 is undefeated. So
some A2n+3 exists such that Λ2n+3 = Λ2n+2

∩[A2n+3] is an arg. line and A2n+3

is undefeated there. This procedure can be repeated, as before generating an
infinite sequence of increasing argumentation lines, which is impossible.

(2) The proof is analogous: let Λ2n = [A1, . . . ,A2n] be an arg. line with
A2n defeated. Then some A2n+1 exists with Λ2n+1 = Λ2n

∩[A2n+1] and A2n+1

undefeated there. On the other hand, clearly Λ′2n = [A2, . . . ,A2n] is an arg.
line, so if A2n is defeated there we are done. Otherwise, some A2n+1 exists
with Λ′2n+1 = Λ′2n

∩[A2n+1] and A2n+1 defeated there. Then some A2n+2 exists
with Λ′2n+2 = Λ′2n+1

∩[A2n+2] and A2n+2 undefeated there. Then, A2n+2 =
Λ2n+1

∩[A2n+2] is an arg. line. Since we had A2n+1 is undefeated, A2n+2 is
defeated. This procedure can be repeated, again giving an infinite sequence of
increasing arg. lines, which was shown to be impossible.

Lemma. 1.5.3 Let A,B be two arguments in some mutex program (Π,∆).
Let A,B be arguments attacking each other (resp. with conclusions 〈`, t〉 and
〈∼`, t〉), and such that A ∩ B is an argument and B rA ⊆ ∆p ∪ΠM. Then,

(1) Ar B 6⊆ ∆p ∪ΠM

(2) base(A) = base(B)

44

Proof. For claim (1): on the one hand, since A ∩ B is an argument, it has a
unique conclusion concl(A∩ B). Moreover, each rule δ in B rA is in ∆p ∪ΠM,
so δ has a unique literal in body(δ). Thus, B rA consists of a sequence of rules
〈δB1 , . . . , δBk 〉 from ∆p ∪ ΠM; that is, with body(δi+1) = {head(δBi)}. Assume
now the contrary of claim (1), so we obtain a similar fact for A r B, i.e. a
sequence 〈δA1 , . . . , δAm〉 from ∆p ∪ ΠM. Now, it is obvious that using the literal
concl(A ∩ B) shared by A,B and arbitrary rules from ∆p and ΠM one cannot
built a conflict. To see this, let concl(A∩ B) = 〈`, t〉. If this is a negative literal
〈∼p, t〉, then the rules δAi , δ

B
j can only be persistence rules δ∼p(t

′) ∈ ∆p. In this
case, concl(A) = 〈∼p, ·〉 = concl(B). If 〈`, t〉 is a positive literal, say 〈p, t〉, then
each sequence 〈δAi 〉1≤i≤m and 〈δBj 〉1≤j≤k contains at most a rule δAi , δ

B
j from ΠM.

The reason is that after such a rule the literal is negative (even after applying
persistence) and so no other rule from ΠM will apply. Thus, the presumed
“conflict” between concl(A) and concl(B) will be of the form: 〈p, ·〉 vs 〈p, ·〉, or
〈p, ·〉 vs 〈∼q, ·〉 (for p, q ∈ X ∈M) or 〈∼r, ·〉 vs 〈∼q, ·〉 (for q, r ∈ X ∈M). In no
such case, the arguments A and B can attack each other (contradiction).

For claim (2), since A∩B is an argument and both ArB and BrA consist
of a sequence of rules with one literal in their body, these rules 〈δAi 〉1≤i≤m and
〈δBj 〉1≤j≤k must ultimately be based on concl(A ∩ B). It is straightforward to
conclude from this that base(A) = base(A ∩ B) = base(B).

Lemma. 1.5.4 Definitions 1.3.15 and 1.5.2 are equivalent for mutex programs.

Proof. Only the equivalence between each version of the second criterion needs
to be checked.

(⇒) The 1st condition from Def. 1.3.15 is exactly the same than the 1st
condition of Def. 1.5.2, so we are done. On the other hand, the 2nd condition
from Def. 1.3.15 states that B r A1 ⊆ ∆p ∪ Π. In order to show the 2nd
condition from Def. 1.5.2, namely B r A1 ⊆ ∆p ∪ ΠM, assume the contrary.
Let then 〈`0, t0〉 ∈ Πf be a strict fact in B r A1. Since A1 ∩ B is non-empty
(it is an argument), concl(B) 6= 〈`0, t0〉. Moreover, by the ⊆-minimality of B,
the existence of 〈`0, t0〉 implies concl(A1 ∩ B) 6= concl(B). Again by the ⊆-
minimaility of B, the latter fact implies that eacg concl(A1 ∩ B) and 〈`0, t0〉 is
in the body of some corresponding rule in B r A1. But by assumption, these
rules from ∆p ∪ ΠM only take one literal at each body, so either these rules in
B rA1 are ultimately based on concl(A1 ∩ B) or on 〈`0, t0〉. In either case B is
not ⊆-minimal.

(⇐) For this direction, notice that the 1st and 2nd conditions from Def.
1.3.15 are satisfied. In order to check the 3rd condition (B r A1) ∩ ∆p 6= ∅,
assume instead that BrA1 ⊆ ΠM. Then, BrA1 must consist of a single mutex
rule δM = 〈∼q, t〉 ← 〈p, t〉. This implies that concl(A1 ∩ B) = 〈p, t〉. But this
contradicts the fact that this conclusion must be of the form 〈·, t′〉 with t′ < t.
The 4rth condition simply follows from Lemma 1.5.3 (1). And the 5th condition
is Lemma 1.5.3 (b).

Lemma. 1.5.7 Let A,B be arguments in some mutex program (Π,∆), with
{concl(A), concl(B)} ⊆ X ∈M. Define

45

A+ = A ∪ {δA+} with δA+ = ∼concl(B)← concl(A)

B+ = B ∪ {δB+} with δB+ = ∼concl(A)← concl(B)

Assume that A+ and B+ are arguments in (Π,∆). Then the following equiva-
lences hold:

A+ � B iffA � B+ and A+ ≺� B iffA ≺� B+

Proof. For the first equivalence, we only show the ⇒ direction, the other direc-
tion being analogous. Recall that A+ � B is defined by the disjunction: either
base(A+) ! base(B) or A+ ∩ B is an argument and B rA+ ⊆ ∆p ∪ΠM.

(Case base(A+) ! base(B).) Then, since obviously base(A) = base(A+) and
base(B+) = base(B), we have that this case is equivalent to base(A) ! base(B+),
which implies A � B+ so we are done.

(Case A+ ∩ B is an argument and B r A+ ⊆ ∆p ∪ ΠM.) On the one hand,
A ∩ B+ is an argument as well. The reason is that δB+ /∈ A, since otherwise
the fact that A is an argument (⊆-minimal w.r.t. derivation) would imply that
concl(A), concl(B+) ∈ literals(A); but this pair is concl(A),∼concl(A), thus mak-
ing A inconsistent (in itself, and so with Π), contradicting that A is an argument.
Thus, we conclude δB+ /∈ A and hence A ∩ B+ = A ∩ B. Reasoning similarly,
we obtain that δA+ /∈ B, so A+ ∩B = A∩B. Combining the last two identities,
we conclude that A ∩ B+ = A+ ∩ B. Since the former is an argument, so is the
latter.

On the other hand, we have

B rA+ ⊆ ∆p ∪ΠM

(B rA+) ∪ (A+ ∩ B) ⊆ (A+ ∩ B) ∪∆p ∪ΠM

B ⊆ (A+ ∩ B) ∪∆p ∪ΠM

B ⊆ (A ∩ B) ∪∆p ∪ΠM since δA+ ∈ ΠM

B+ ⊆ (A ∩ B) ∪∆p ∪ΠM since δB+ ∈ ΠM

B+ ⊆ (A ∩ B+) ∪∆p ∪ΠM since B ⊆ B+

(B+ rA) ∪ (A ∩ B+) ⊆ (A ∩ B+) ∪∆p ∪ΠM

B+ rA ⊆ ∆p ∪ΠM since B+ rA and

A ∩ B+ are disjoint

This completes the proof that A+ � B ⇒ A � B+.
The second equivalence in the Lemma claim follows from the previous proof:

A+ � B ⇔ A+ 6≺ B and A+ 6� B
⇔ A 6≺ B+ and A 6� B+ ⇔ A ≺� B

46

Chapter 2

A Planning System based
on t-DeLP for centralized
planning

2.1 Introduction

In the present chapter, we study a temporal planning system built on the t-DeLP
logic programming framework from Chapter 1. The present focus is on cen-
tralized planning, leaving distributed algorithms for collaborative planning for
Chapter 3.

A centralized approach to planning assumes a unique planner (algorithm),
who is assigned the task of finding a joint plan for a set of executing agents at
her disposal. This planner is endowed with some goals and some knowledge of
(at least) the current state and the agents’ possible actions. The planner makes
use of this knowledge both to build plans in a stepwise fashion and to evaluate
them (by computing the consequences of adding a new action to some plan under
consideration).

Although this chapter is focused on Breadth First Search (BFS) as the search
method for the space of states, the results easily generalize to other search meth-
ods in the literature. The BFS algorithm is studied for both directions of incre-
mental plan search: a forward approach (a search from the initial state to some
goal state), and a backward approach (a search from the goals to the initial
state). After studying the basic properties of BFS for the relatively simple case
of forward planning, we devote the remaining of the chapter to the more complex
case of backward planning. In either case –a forward or backward approach–,
the BFS algorithm is shown to be sound and complete for the t-DeLP planning
system.

The resulting planning system, as can be expected, inherits the defeasible
reasoning abilities of t-DeLP, and combines it with dynamic reasoning about the

47

execution of actions. All this is formally studied as a t-DeLP notion of a state
transition system. Before proceeding with the motivation for a t-DeLP based
approach to temporal planning, let us informally outline these states transition
systems. Essentially, a state transition system is a function on states and actions
(or events)

states × actions −→ states

This function computes the new state that results after executing an action in
a given state. In temporal planning, a state usually refers to a world-line, i.e. a
set of descriptions of the scenario at different instants.

Actions, for the sake of simplicity, are represented here by a simple model
of temporal actions from the literature on temporal planning [66]. 1 As usual,
temporal actions in t-DeLP are sets of preconditions and (direct) effects; what
makes them temporal is the fact that these sets consist of temporal literals.
Thus, a t-DeLP temporal action in a plan is automatically scheduled for the
time interval defined by its preconditions and its effects.

In the case of states, a natural candidate in t-DeLP logic programming for
this notion of world-line is the output warr(Π,∆) of a logical program (Π,∆). For
technical reasons, though, an action will be seen as a map from logical programs
to logical programs.

(Π,∆) × action 7−→ (Π′,∆)

⇓ ⇓
warr(Π,∆) warr(Π′,∆)

The updated program (Π′,∆) will incorporate the direct effects of the (exe-
cutable) action as new strict facts. The indirect effects of the action in this
state, at its turn, are simply the warranted literals in this program which were
not warranted in the former program. Recall that for a mutex program (Π,∆),
its defeasible logical closure warr(Π,∆) is a consistent set of literals, viz. The-
orem 1.5.8. But for most of these programs, the corresponding sets of literals
warr(Π,∆) will be incomplete, e.g. 〈`, t〉, 〈∼`, t〉 /∈ warr(Π,∆). Thus, this defini-
tion of states as sets of the form warr(Π,∆) in the t-DeLP planning system makes
them partial states, at best. Indeed, given the results of the previous chapter,
we will require in the remaining of Part I that any logical program considered
during the planning phase is a mutex program. In other words, that the space
of plans is the set of mutex programs in a given t-DeLP language.

The advantages of the t-DeLP planning system over (classical or) temporal
planning are exactly the same that t-DeLP has over temporal logic program-
ming and other non-monotonic logics for temporal reasoning: a non-monotonic
approach to deal with the classical representation problems; and the use of argu-
mentation tools leading to a non-monotonic approach based on natural concepts.
The use of t-DeLP as the underlying logic for a planning system, in particular,
is useful for reasoning or planning with:

1Although the t-DeLP planning system (and its formal properties) seem to extend to richer
representations of temporal actions, formal proofs for this must be left for future work.

48

• the indirect effects of actions: whether a literal ` is caused at t by an
action, or not caused at all by it (i.e. the ramification problem; compare
with temporal planners in the literature [66])

• the exact time an action effect will really occur, when this time partly
depends on the environment (again compare with temporal planners [66]
and also with synchronous argumentation systems [95], [50])

• qualifications on the preconditions of actions (the qualification problem)

• a formal notion of persistence of facts through time (compare with [14])

• a user-friendly causal modeling system, in the sense of naturally repre-
senting naive descriptions of causal domains (compare with e.g. defeasible
temporal logics [72])

Structure of the Chapter.

This chapter is structured as follows. First in Section2.2, we motivate the present
approach with a comparison with standard (classical or temporal) planning sys-
tems in terms of reasoning power. Second, in Section 2.2.1, we briefly list some
simplifying assumptions on the representation of temporal actions and agents
in t-DeLP; these allow for more compact definitions and proofs for the present
task, while sufficing to illustrate the proposed common-sense notions of action,
causation and persistence. Then, in Section 2.3 we define the update function
for a state transition system based on t-DeLP. After this, we briefly study in
Section 2.4 the easy case for forward planning using Breadth First Search. This
algorithm is shown to be sound and complete. Finally, in Section2.5, we define
the space of states for backward planning, and the Breadth First Search algo-
rithm for centralized multi-agent planning in t-DeLP. We also prove that this
planning algorithm is correct and complete.

2.2 Representing actions and indirect effects in
planning.

In order to motivate the present approach, we briefly review some how actions
are modeled in standard planning systems, and try to illustrate the relative
limits of these models in terms of reasoning about actions. As Chapter 1 might
suggest, these limitations originate in the use of simple monotonic logics and
are inherited by planners based on them. The comparison is made in terms of
classical planning actions, since the (quantitative) temporal aspects of actions
in temporal planning do not make a difference for the present discussion.

A general assumption on the representation of actions in most planning sys-
tems (be it for actions with deterministic, conditional or disjunctive effects)
is that the action encapsulates all the possible effects of its execution. This

49

makes the resulting state transition systems simple enough to prevent the frame
problem to occur. For example, the execution of an action without conditional
effects simply is simply the state defined by the actions effects and the previous
state facts which are not the negation of some action effect are automatically
preserved.

This simple model of actions, of course, cannot model that some propositions
jointly imply a proposition. This is modeled by considering conditional effects,
similar to the domain-specific rules used by t-DeLP

fact1 , . . . , factn I fact

conditions effect

which impose further conditions on the preservation of previous facts: it must
neither contradict any action effect nor any conditional effect whose conditions
hold.

Example 2.2.1 (Door Opening). Suppose one is to give a formal representation
of different actions for opening a door. Say a simple door might just be opened
by pushing it. A complex door, at its turn, can only be opened by pushing it while
turning the doorknob (in particular, by pushing and turning the doorknob).

The problem of classical planning is that it cannot model concurrent actions
(push and turn) in a modular way. The only possibility is to introduce a new
action in the planning domain for each combination of actions which can be
concurrently executed.

Example 2.2.2 (Door Opening; Classical Planning). For the previous example,
let us abstract from some obvious preconditions (that the door is closed, the
agent is in front of it, and so on). Classical planning would model the previous
door-opening actions as follows:

action preconditions effects

push simple(door) open(door)

push&turn – open(door)

As mentioned in [66], an explicit representation of concurrency like that of
Example 2.2.2 is less expressive than one in which joint effects of concurrent or
interfering actions, like temporal planning. In temporal planners, two actions
are concurrent if they are scheduled for the same time. Concurrent actions might
have non-additive effects, i.e. effects which are not in the description of either
action. The exclusive effects of the joint action can be represented by conditional
effects, e.g. (ce2) below.

Example 2.2.3 (Door Opening; Temporal Planning). The same example 2.2.1
can be modeled in the language of a temporal planner as follows:

50

action preconditions effects

push – pushed(door)

turn – turned(doorknob)

cond. effect conditions effect

(ce1)

{
pushed(door),
simple(door)

}
I open(door)

(ce2)

{
pushed(door),

turned(doorknob)

}
I open(door)

Now, suppose we want to model an exception to the success of these actions,
e.g. that the door is obstructed. One might simply redefine these actions by
adding as a precondition that the exception does not occur. Or, following the
previous example, one can (non-modularly) be modeled by rewriting the former
conditional effects into (ce1∗)-(ce2∗) and adding a new set (ce3)-(ce4)

Example 2.2.4 (Door Opening; Temporal Planning, cont’d). The handling of
exceptions, e.g. the door is obstructed, can be done as follows.

(ce1∗) (ce3)
pushed(door),
simple(door),

∼obstructed(door)

 I open(door)

pushed(door),
simple(door),

obstructed(door)

 I ∼open(door)

(ce2∗) (ce4)
pushed(door),

turned(doorknob),
∼obstructed(door)

 I open(door)

pushed(door),

turned(doorknob),
obstructed(door)

 I ∼open(door)

Second- or higher-order exceptions (i.e. exceptions to exceptions, and so on)
add a new level of increase in the size of the planning domain. For example,
assume that strong agents can open both obstructed and unobstructed doors.
Then Example 2.2.3 would need eight rules to take this into account. Each
additional exception to be incorporated seems to require: (a) rewriting of the
relevant rules (with an additional condition that the exception does not occur);
and (b) the addition of a new set of the same size (for the case where the excep-
tion occurs and then the effect fails). In contrast, in t-DeLP the incorporation
of new exceptions need not affect the previous representations.

Example 2.2.5 (Door Opening; t-DeLP planning). Following Example 2.2.1,
the addition below of δ4, δ5 to the set {δ1, δ2, δ3} is done without modifying
the elements of this set. (Note we follow the previous examples with a left-to-
right representation of defeasible rules. Again, time or temporal literals are not
explicitly represented. The set of actions is the same than in Example 2.2.4.)

51

defeasible rule body head

δ1
{
pushed(door)

}
�− open(door)

δ2

{
pushed(door),
complex (door)

}
�− ∼open(door)

δ3

pushed(door),

turned(doorknob),
complex (door)

 �− open(door)

δ4
{
obstructed(door)

}
�− ∼open(door)

δ5

obstructed(door),
strong(agent),
pushed(door)

 �− open(door)

Using the tools from the previous Chapter 1 and Section 2.3 it can be shown
that t-DeLP warrant captures the expected effects in each possible combination
of the above described exceptions.

In summary, the main difference between defeasible rules in t-DeLP and
conditional effects in classical or temporal planners is that the latter cannot
work with

• an “inconsistent” set of conditional effects is not allowed, i.e. one cannot
consider {p, . . . , p′} I q and {r, . . . , r′} I ∼q as conditional effects for a
given action e, when p, . . . , p′, r, . . . , r′ are jointly consistent

• (for many planners) indirect effects derivable in a finite number of steps,
i.e. nested conditional effects.

Non-monotonic reasoning, and defeasible argumentation in particular, offers a
solution to these issues. The general idea, as seen in Example 2.2.1 then to
represent a real-world action by splitting it into: (i) a temporal planning action,
encapsulating its direct, putative and incontestable effect(s); and (ii) a set of
temporal defeasible rules, which combine with these direct effects and other
external facts into arguments. Although the above example illustrates the use
of indirect effects, qualifying the preconditions of an action with the help of
defeasible rules is also possible using similar ideas.

2.2.1 A simple model for temporal actions in t-DeLP

In the present and the next chapter, we will assume certain simplified model of
temporal action. These assumptions can be informally presented as follows. An
action e has a unique effect, denoted µe (or 〈µe, te〉). The effect µe is exclusive to
action e (not found in nature, or other actions) and cannot be contradicted once
it is made true (not even by strict facts or mutex rules). The effect µe can be
simply read as action e was just executed in te. Thus we use a special symbol µe

to denote the effect of an action e, even if these µ symbols are just propositional
variables in Var.

52

A detailed list of these assumptions for actions, and additional assumptions
on executing agents, is given in Fig. 2.1. The purpose of all these assumptions
is to simplify the definitions and the proofs of the Chapter 2. Many of them can
actually be dropped, allowing for more general notions of actions, as found in
the temporal planning literature. In most cases, the current proofs can easily be
adapted to these more expressive representations.

For any actions e, f and each rule or fact δ ∈ Π ∪∆,

(Exclusivity) µe 6= µf ,∼µf and µe,∼µe /∈
⋃

M

µe 6= head(δ) and ∼µe /∈ body(δ) ∪ {head(δ)}
(Simple prec.) preconditions pre(e) need only be true at the start

of the execution of e (not during part or all of it).

(Simple effect) the effect post(e) is only strictly true (i.e. in Π)

just after the execution of e, not during this execution.

(Simult. prec.) the preconditions in pre(e) are about a single time-

point t, where these must simultaneously hold:

pre(e) = {〈`, t〉, . . . , 〈`′, t〉}
(Future effects) for any action e, we assume 〈µe, te〉 is to occur later

than these preconditions (i.e. t < te).

(Simple duration) the duration of any action e is set to 1 time unit;

that is, if the preconditions are pre(e) = {〈·, t〉, . . . 〈·, t〉},
the effect will be of the form 〈µe, t+ 1〉.

(Single-task agents) the execution action e makes the executing agent or

actuator a busy, e.g. during the interval [t, t+ 1]

(Enough agents) the set of available agents is finite but sufficiently large

for the planning problem at hand:

if a solution with n agents simultaneously acting exists,

then we were assuming from start that n agents exist

Figure 2.1: A list of assumptions on the multi-agent planning system in t-DeLP.

53

2.3 Basic concepts in t-DeLP multi-agent plan-
ning

We proceed with the basic definitions for centralized multi-agent planning sys-
tems based on t-DeLP. These are the notions of action, planning domain, for-
ward plan, and the update or progression function.

In the particular case of actions, the same comments that we made when
introducing defeasible rules in Ch. 1 apply here. Thus, in principle we would
introduce actions e = (pre(e), post(e)) as action schemas et, that is, with non-
instantiated temporal literals: pre(et) = {〈`, t〉, 〈`′, t〉, . . . , } and post(et) =
{〈µe, t + 1〉}. And then consider particular instantiations, where t can take
any value in ω; for example e10 would have as effect post(e10) = {〈µe, 11〉}. But
in practice, since the goals in the planning domain are bounded, say, at t, we will
define the set of actions A as the set of instantiations of actions et with t rang-
ing between 0 and t. Since a planning domain would only consider finitely-many
action schemas, our set of (instantiated) actions A will be finite as well.

Definition 2.3.1 (Action. Executability.). Let a language TLit of temporal
literals be given. An action in TLit is a pair e = (pre(e), post(e)) ⊆ TLit× TLit,
where pre(e) = {〈`, t〉, . . . , 〈`′, t〉} is a consistent set of temporal literals and
post(e) = {〈µe, te〉}, with t < te = t+1. The set pre(e) and the literal post(e) are
called, resp., the preconditions and the (direct) effect of e. We will sometimes
forget about the set post(e) and will identify post(e) = 〈µe, te〉 directly. We say
an action e is executable in a t-DeLP program (Π,∆) (also in the same language
TLit) iff pre(e) ⊆ warr(Π,∆).

Given a set of agents (or actuators) Ag = {a, b, . . .}, we denote an action
available to agent a by ea.

Thus, in case several actions are executed simultaneously at t it does not
matter the order in which we compute their update. The only requirement for
plans is that concurrent actions are executed by a different agent (or actuator)
each.

Definition 2.3.2 (Non-overlapping Actions). We say a set of actions A′ ⊆ A is
non-overlapping for each agent a ∈ Ag iff for any two actions of an agent in A′,
say ea, fa ∈ Aa ∩ A′ the effect of ea is to occur strictly before the preconditions
of f, or viceversa.

An action ea available to agent a can obviously require something from a as
a precondition (e.g. that the agent is in some location). In order to simplify the
notation for actions ea, we will usually drop the sub-index a and leave it implicit
which is the executing agent.

Definition 2.3.3 (Planning Domain). For a fixed set of agents Ag and a lan-
guage TLit of temporal literals, we define a planning domain as any triple of the
form

M = ((Π,∆), A,G)

54

where (Π,∆) is a t-DeLP mutex program, with Π = Πf∪Πr as usual. The sets of
temporal literals Πf , G ⊆ TLit, denote, resp., the strict facts in the initial state
and the goals considered by the planner; A is a set of actions for agents in Ag.
The sets Π,∆ are assumed to satisfy the constraints about 〈µe, ·〉 and 〈∼µe, ·〉
literals from Fig. 2.1.

In contrast to classical planning, our update function will be applied to
t-DeLP programs (Π,∆) rather than to states s. Indeed, a t-DeLP program
(Π,∆) can be identified with the partial state given by warr(Π,∆), which -in
contrast to the classical notion- needs not be a maximally consistent sets of lit-
erals. After an action e is executed in a t-DeLP program (Π,∆), we expand the
set of strict facts in Π by adding each effect of e as a new strict fact. Let us
remark two aspects:

(a) it does not make a difference whether the preconditions of e were warranted
using strict information from Π alone, or using some defeasible undefeated
argument: once we accept them as warranted, the effects become equally
established as (future) facts;

(b) the orientation towards the future of actions and rules prevents undesired
circularities, that might be read as time paradoxes: the execution of an
action e might enforce an argument A whose conclusion contradicted the
preconditions for e, making this executed action non-executable.

Definition 2.3.4 (Action Update). Let (Π,∆) be a t-DeLP program in some
language TLit and e an action in the same language. We define the update
function as a mapping between a pair (program, action) and a program:

(Π,∆) � e =

{
(Π ∪ post(e),∆) if pre(e) ⊆ warr(Π,∆)

(Π,∆) otherwise

Since each action e is defined with its own schedule (the temporal parame-
ters 〈·, t〉 in preconditions and effects), plans need not be explicitly defined as
sequences of actions. Indeed, we will use a more flexible representation of a plan,
namely a set of actions. Let us formally justify the claim that both the sequence-
and the set-based representations are equivalent. For this, a first auxiliary result
states that adding a new strict fact 〈·, t′〉 to some t-DeLP program (Π,∆) does
not change the warrant status of previous literals 〈`, t〉, i.e. with t < t′.

Lemma 2.3.5. Let (Π,∆) be a t-DeLP program and let 〈`, t〉, 〈`′, t′〉 be arbitrary
literals consistent with Π. Then, t < t′ implies

〈`, t〉 ∈ warr(Π,∆) ⇔ 〈`, t〉 ∈ warr(Π ∪ {〈`′, t′〉},∆)

Proof. The assumption t < t′ implies that any argument D for some literal
〈·, t〉 with t < t′ in (Π ∪ {〈`′, t′〉},∆) is also an argument in (Π,∆), since by
definition of ∆, the argument D cannot be based on 〈`′, t′〉. And viceversa, each
argument D in (Π,∆) for 〈·, t〉 is clearly an argument in (Π∪ {〈`′, t′〉},∆), since

55

the consistency of literals(D) ∪Π will be preserved into literals(D) ∪Π ∪ post(f).
Thus, the arguments for such literals 〈·, t〉 with t < t′ are exactly the same
between these two t-DeLP programs.

Now, let A be an arbitrary argument for 〈`, t〉. Since t < t′, the latter claim
implies that T(Π∪{〈`′,t′〉},∆)(A) is identical to T(Π,∆)(A). Hence, the undefeated
status of A is exactly the same in these two trees. Since A was arbitrary, this
implies that the 〈`, t〉 is in warr((Π ∪ {〈`′, t′〉},∆) iff it is in warr(Π,∆).

Using this Lemma, we show next that for any two actions planned to be
simultaneously executed, it does not matter the particular order in which their
effects are computed.

Lemma 2.3.6. Let (Π,∆) be a t-DeLP program and e, f a pair of actions. If
these actions are simultaneous: pre(e) = {〈`, t〉, . . .} and pre(f) = {〈`′, t〉, . . .},
then

((Π,∆) � e) � f = ((Π,∆) � f) � e

Proof. Since post(e) = 〈µe, t+ 1〉 and post(f) = 〈µf , t+ 1〉, we can apply Lemma
2.3.5 to the case t′ = t+ 1(= te = tf) to obtain

(?) pre(e) ⊆ warr(Π ∪ post(f),∆) ⇔ pre(e) ⊆ warr(Π,∆)

(?2) pre(f) ⊆ warr(Π ∪ post(e),∆) ⇔ pre(f) ⊆ warr(Π,∆)

We will use these facts in the following proof by cases.

(Case (Π,∆) � e = (Π,∆) = (Π,∆) � f)

((Π,∆) � e) � f = (Π,∆) � f

= (Π,∆)

= (Π,∆) � e

= ((Π,∆) � f) � e

(Case (Π,∆) � e = (Π,∆) and (Π,∆) � f = (Π ∪ post(f),∆).)

((Π,∆) � f) � e

= (Π ∪ post(f),∆) � e (Case assumption)

=

{
(Π ∪ post(f),∆) if pre(e) * warr(Π ∪ post(f),∆)

(Π ∪ post(f) ∪ post(e),∆) if pre(e) ⊆ warr(Π ∪ post(f),∆)

=

{
(Π ∪ post(f),∆) if pre(e) * warr(Π,∆)

(Π ∪ post(f) ∪ post(e),∆) if pre(e) ⊆ warr(Π,∆)
(by ?)

= (Π ∪ post(f),∆) (Case assumption)

= (Π,∆) � f (Case assumption)

= ((Π,∆) � e) � f) (Case assumption)

56

(Case (Π,∆) � e = (Π ∪ post(e),∆) and (Π,∆) � f = (Π,∆))

The proof is analogous to the previous case, just replace e and f by each other
and use (?2) instead of (?).

(Case (Π,∆) � e = (Π ∪ post(e),∆) and (Π,∆) � f = (Π ∪ post(f),∆))

We denote each assumption in this case by

(i) (Π,∆) � e = (Π ∪ post(e),∆)

(ii) (Π,∆) � f = (Π ∪ post(f),∆)

Then we reason as follows:

((Π,∆) � e) � f

= ((Π ∪ post(e),∆) � f (Case Assumption (i))

= ((Π ∪ post(e) ∪ post(f),∆) (by (ii) and (?2))

= ((Π ∪ post(f),∆) � e (by (i) and (?))

= ((Π,∆) � f) � e (by (ii))

Thus, in case several actions are executed simultaneously at t, it does not
matter the order in which we compute their update. Using Lemmas 2.3.5 and
2.3.6, we can define an update by a set of scheduled actions, rather than, say,
requiring these actions to be ordered in a sequence according to the schedule.

Definition 2.3.7 (Plan update). Let (Π,∆) be a t-DeLP program and
{e1, . . . , en} a set of temporal actions with pre(ei) = {〈`, ti〉, . . .}. We define
the update of a t-DeLP program by a set of actions as follows:

(Π,∆) �∅ = (Π,∆)
(Π,∆) � {e1, . . . , en} = ((Π,∆) � ei) � {e1, . . . , ei−1, ei+1, . . . , en}

where ti ≤ tj for any 1 ≤ j ≤ n

Finally, let us define what a solution to some planning domain is. A solution
is just a plan that makes the goals true after the execution.

Definition 2.3.8 (Solution). We say a set of actions A′ ⊆ A is a solution for
M = ((Π,∆), A,G) iff

G ⊆ warr((Π,∆) �A′)

and A′ is non-overlapping for each agent a ∈ Ag. In the general case where a
plan need not be defined as a set of actions, we will also say that a plan π is a
solution for M iff its set of actions A(π) is a solution for M.

Let us illustrate these concepts in the next Example 2.3.9 and Figure 2.2.
(Unlike Example 2.2.5, all the temporal elements are made explicit here).

57

Figure 2.2: (Left) A representation of defeated arguments (dark triangles), cap-
turing the effects of either single lifting action. The central argument, represent-
ing the simultaneous lifting of both sides of the table at time t, defeats each of
those. The rightmost argument step A1 is unattacked. (Right) A representation
of a non-simultaneous lifting of both sides of the table (at t, and resp. at t+ 1).

Example 2.3.9 (Table Lifting). Let us suppose that the planner, endowed with
two agents Ag = {a1, a2}, wants some table to be lifted, without breaking a vase
which lies on the table. The table has two sides (north and south), which can
be lifted by either action, say lift.N ∈ Aa1 and lift.S ∈ Aa2 . Particular instances
of these actions at some time t are denoted lift.Nt, lift.St. This t denotes that the
preconditions are of the form 〈·, t〉. Consider the next abbreviations for facts:

b = broken(vase) h = horizontal(table)

f = falls.off (vase) o = on(vase, table)

µN = µlift.N lN = liftedN

µS = µlift.S lS = liftedS

Next, we define the following goals G = {〈lN, 10〉, 〈lS, 10〉, 〈∼b, 10〉}, the ini-
tial facts Πa1 = Πa2 = {〈∼b, 0〉, 〈h, 0〉 〈∼lN, 0〉 〈∼lS, 0〉, 〈o, 0〉}, and the set of
defeasible rules ∆:

δ1 : 〈∼h, t〉 −� 〈lN, t〉 δ2 : 〈∼h, t〉 −� 〈lS, t〉
δ3 : 〈h, t〉 −� 〈lN, t〉, 〈lS, t〉 δ4 : 〈lN, t〉 −� 〈µN, t〉
δ5 : 〈lS, t〉 −� 〈µS, t〉 δ6 : 〈b, t〉 −� 〈f, t〉
δ7 : 〈f, t+ 1〉 −� 〈∼h, t〉, 〈o, t〉 δ8 : 〈∼o, t〉 −� 〈f, t〉

δ`(t) : persistence rules for each literal ` ∈ {∼b, o, lN, lS,∼lN,∼lS} and t < 10

Assume that the two lifting actions are to be executed at the same time interval
[t − 1, t], with 0 ≤ t − 1 and t ≤ 10, as in Figure 2.2 (Left). The arguments
generated in this plan execution are the following.

58

A1 = {δ∼b(t′)}0≤t′<10 ∪ {〈∼b, 0〉} A3 = {δ3, δ4, δ5, 〈µN, t〉, 〈µS, t〉}
B−1 = {δ1, δ4} ∪ {〈µN, t〉} B−2 = {δ2, δ5} ∪ {〈µS, t〉}
B1 = B−1 ∪ {δo(t′)}0≤t′<t ∪ {δ6, δ7} B2 = B−2 ∪ {δo(t′)}0≤t′<t ∪ {δ6, δ7}
A4 = {δlN(t′)}t≤t′<10 ∪ {δ4, 〈µN, t〉} A5 = {δlS(t′)}t≤t′<10 ∪ {δ5, 〈µS, t〉}

2.4 A brief look at Forward Planning in t-DeLP

As with other planning frameworks that lie beyond classical planning, forward
planning algorithms tend to be much simpler than their counterparts in back-
ward planning. This is clearly the case of t-DeLP, where a plan in forward
planning is simple set of actions, and the algorithm just requires the update
function given by Definitions 2.3.4 and 2.3.7.

Definition 2.4.1 (Forward Plan. Solution). Given a planning domain M =
((Π,∆), A,G) for some set of agents Ag, a plan for M is any subset A′ which
is non-overlapping for each agent in Ag. A plan A′ ⊆ A is a solution iff G ⊆
warr((Π,∆) �A′)

Example 2.4.2. Following Example 2.3.9, we can illustrate how the solution
both agents lift the table at t is generated in a stepwise fashion. This is simply
the sequence of plans

∅ 7−→ {lift.Nt−1} 7−→ {lift.Nt−1, lift.St−1}

If the latter plan is generated by the planner, the BFS algorithm for forward
search will check that the terminating condition G ⊆ warr((Π,∆) �A′) holds.

The proofs that a forward planning algorithm based on Breadth First Search
is sound and complete is straightforward. Let us briefly present the search space
and a BFS algorithm for it. For the search space,

(1) the set of nodes in the search space is P(A), so a state π is a set of actions
A′ ⊆ A. Each set of actions A′ ⊆ A is identified with the updated t-DeLP
program (Π,∆) �A′ –in accordance with the previous account of states as
t-DeLP programs.

(2) the arcs in the search space are simply given by the (refinement) relation
between pairs of sets of the form A′ and A′ ∪ {e}, for some e /∈ A′.

For simplicity, only the single-agent case is presented in Algorithm 1. For the
multi-agent case, simply add the condition “and π ∪ {e} is non-overlapping in
Ag” to the set described in the line for Plans.

59

Data: M = ((Π,∆), A,G)
Result: π; or fail

initialization: π = ∅ and Plans = 〈π〉;
while goals(π) 6⊆ warr((Π,∆) � π) do

delete π from Plans;
set Plans = Plans ∩〈 π ∪ {e} | e ∈ A and pre(e) ⊆ warr((Π,∆) � π)〉;
if Plans = ∅ then

set π = fail
else

set π = the first element of Plans
end

end

Algorithm 1: Breadth First Search for t-DeLP forward planning.

What makes this algorithm an example of forward planning is the condition
pre(e) ⊆ warr((Π,∆) � π) requiring the new action e to be executable, according
to the present plan π. In consequence, the effects of π ∪ {e} will never be the
same than those of π.

Theorem 2.4.3. The BFS method of Algorithm 1 for t-DeLP forward planning
is sound and complete.

Proof. (Soundness) Let A′ ⊆ A be the output of the planning algorithm in
Algorithm 1 for some M = ((Π,∆), A,G). That is, we set A′ = π, the output
for M. On the one hand A′ is non-overlapping for A′, since this condition is
satisfied by the last refinement step (each refinement step, in general). Observe
that G ⊆ warr((Π,∆) �A′) since this is just the Terminating Condition, so A′ is
a solution.

(Completeness) Let A′ ⊆ A be a solution to M = ((Π,∆), A,G). Without loss
of generality, we can assume that this solution A′ is ⊆-minimal. Let then A′ =
{e1, . . . , en}. Let us assume that these actions are ordered in terms of increasing
execution time; that is, tei ≤ tei+1

. Define πk = {e1, . . . , ek}. Since A′ is a
⊆-minimal solution, e1 must be executable in (Π,∆) (i.e. pre(e1) ⊆ warr(Π,∆)).
Hence, {e1} is a valid refinement of ∅. By an easy inductive proof, the same can
be said w.r.t. each action ek+1 and plan πk. Since, clearly, the set of refinements
of each plan is finite (namely |A|) the plan π = A′ is eventually generated at
most at turn |A| + |A|2 + · · · + |A|n, and hence it will be the output of the
algorithm, since being a solution it will satisfy the Terminating Condition. (All
this, provided no other plan satisfying the Terminating Condition has already
been found, in which case we would also be done.)

Remark 2.4.4. Let us note that Algorithm 1 need not output ⊆-minimal solu-
tions. That is, the output π might properly contain a subset of actions π′ π,
such that π′ is already a solution: G ⊆ warr((Π,∆) � π′). The reason is that
an action introduced earlier in the plan, when it was executable, stops being so
after some other action is introduced. If the planner is interested in ⊆- minimal

60

solutions, she can either: (1) introduce this notion of threat and prune those
generated plans which contain a threat; or (2) she can add an additional re-
quirement to Algorithm 1, namely that plans are refined in a time-increasing
way, that is, for π ∪ {e} to be a plan, it must also satisfy that tf ≤ te, for each
f ∈ π.

2.5 A t-DeLP planning system for backward
search

The initial idea for t-DeLP backward planning is to start enforcing the goals
as the conclusions of action-supported arguments and iteratively enforce the
preconditions of those actions with more arguments. This will only work, though,
if the undefeated status of these arguments is ultimately enforced as well. In
the remaining of Part I, we will use plan to denote a plan built backwards, i.e.
along these lines, in some planning domain.

In both forward- and backward-oriented planning systems, the notion of a
(partial) state is given by a set of t-DeLP programs. A first difference between
the two approaches, though, lies precisely in which states (t-DeLP programs)
are actually considered by the planner. In the forward case, (partial) states are
real possibilities, in the sense that executing the plan will lead to some “true”
state (more or less close to the goal states). In the present backward approach,
in contrast, all the actions makes sense w.r.t. the goals, but the planner does not
know if these actions can ultimately be made executable (in further refinements
of the plan). For this reason, we will refer to these states, and the dialectical
trees they give rise to, as “provisional” states or trees. Another consequence
of backward search, in t-DeLP planning, is the practical need to keep track of
the dialectical trees for the planned arguments. (In comparison, forward plans
were simply defined by their sets of actions). Although the topic of heuristic
search for t-DeLP planning lies out of the present scope, it is noteworthy that
this rich representation of backward plans might serve as well to study heuristics
in t-DeLP planning. Thus, an estimation of the cost of solutions extending the
current plan can be given in terms of the provisional dialectical trees for planned
arguments.

Informally, a plan π for a given planning domain M = ((Π,∆), A,G) will be
defined as a 3-tuple (actions, trees, goals) containing:

• a set of temporal actions A(π) ⊆ A,

• a set of dialectical trees Trees(π), one for each goal-enforcing argument,
and

• a set of open goals goals(π) ⊆ TLit.

In practice, we will be only interested in those tuples (actions, trees, goals)
that are generated by a node in the search space. In the search space, a plan
(action, trees, goals) is identified with the node that generates it. Each nodes

61

in the search space is given by a sequence of plan steps (a succession of plan
refinements). With more detail, the set of plans is the set of tuples that can be
obtained from the empty plan (Def. 2.5.1) using a finite number of plan steps:
either argument steps (Def. 2.5.3) to solve goals, or threat resolution moves (Def.
2.5.5) to defend arguments steps. For the sake of simplicity, we will assume that
G ∩ Πf = ∅. This permits to define next the open goals of the empty plan as
the set of goals G, rather than the less elegant form GrΠf .

Definition 2.5.1 (Empty plan). The initial empty plan for a given planning
domain M = ((Π,∆), A,G) is simply the triple

π∅ = (∅,∅, G)

As we mentioned above, a plan can be specified as a sequence of n plan steps
Λi (for 1 ≤ i ≤ n), where each plan step Λi is either an argument step Λi = [A],
or a threat resolution move Λi = [A, . . . ,B, Ci]. Since such a sequence Λ1, . . . ,Λn
is always applied to the empty plan, the resulting plan will be denoted

π∅(Λ1, . . . ,Λi, . . . ,Λn)

If no confusion exists, this notation will be simplified by denoting the argument
steps Λi = [Ai] or the threat resolution moves Λi = [Aj , . . . ,B,Ai] as follows:

π∅(A1, . . . ,Ai, . . . ,An)

Recall that in backward classical planning, a plan is built by adding one plan
step at a time (e.g an action), and the resulting plan simply replaces the goals
enforced by this step (the effects) by new goals (the preconditions for the action
to be executable). Analogously, if an argument A is used to enforce an open
goal 〈`, t〉 in a plan π (〈`, t〉 being the conclusion of A), the set of open goals
of the refined plan π(A) will replace this 〈`, t〉 by the preconditions of actions
supporting this argument. See Figure 2.3 (2) for an example of an argument
step, addressing a previous goal in (1), and replacing it by new goals pre(e) in
(2). That is, the set of literals base(A) consists of actions’ effects and initial
strict facts.

Such a rewriting of goals, though, does not suffice in general. We also need to
make sure that the argument A will be undefeated in its own dialectical tree (so
its conclusion is warranted). Thus, except for the case where A is a strict argu-
ment (so its undefeated status can be taken for granted), defeasible arguments A
require the planner to maintain a list of (fragments of) provisional trees, denoted
Trees(π). These trees keep track of existing defeaters for some such argument
A, enabled by actions already in the plan. These defeaters, called threats, are
interfering arguments B in argumentation lines [A,B] in the provisional tree for
A, see Fig. 2.3 (3). According to the t-DeLP marking procedure Def.1.3.22, the
planner must defeat all of them, so at least a new defeater C for each threat B
must be planned for, see Fig. 2.3 (4). (For practical reasons, this “at least”
will turn rather into “exactly one” defeater C for each threat B). At its turn,

62

Figure 2.3: An argument step A introduces an action e which triggers an ar-
gument threat B to A itself. This threat is addressed by a further plan step
C.

these planned defeaters C, called threat resolution moves, might be threatened
by further arguments D in some argumentation line [A,B, C,D] , and so on.

To understand how these dialectical trees are computed during the plan con-
struction, recall first that each set of actions A′ ⊆ A applied to a t-DeLP program
(Π,∆) generates a unique t-DeLP program (Π,∆)�A′. This unique t-DeLP pro-
gram will be referred to as the “true” state, i.e. the state that results after the
execution of A′ on (Π,∆). In backward search, though, one initially abstracts
from the executability of planned actions. Thus, rather than the “true” state,
a t-DeLP backward planner has to work with a “provisional” state, a t-DeLP
program generated by A′ under the assumption that each action in A′ will ulti-
mately be executable (in some further plan refinement).

Definition 2.5.2 (Action Expansion). For a given planning domain M =
((Π,∆), A,G), and a set of actions A′ ⊆ A, we define the (provisional) state
given by an expansion with A′, denoted (Π⊕A′,∆), as follows

(Π⊕A′,∆) = (Π ∪ post[A′],∆)

In particular, for a set of actions A(π) of a plan π, we will use the notation
(Π ⊕ π,∆) = (Π ⊕ A(π),∆) = (Π ∪ post[A(π)],∆). In order to prevent this
notation from becoming too cumbersome, we suggest the following notation for
t-DeLP programs:

P denotes (Π,∆) P⊕A′ denotes (Π⊕A′,∆)

P � π denotes (Π,∆) �A(π) P⊕ π denotes (Π⊕A(π),∆)

In this notation, a set of planned actions A(π) induces a “true” state P � π,
and a “provisional” state P⊕ π. Let us return to these provisional states. Each

63

provisional state P⊕π, being a t-DeLP program, will as usual generate a unique
(full) dialectical tree TP⊕π(A) for each existing argument. The planner, though,
will not be interested in the dialectical trees for planned arguments, but rather
on an initial fragment, or sub-tree, of each such dialectical tree. Thus, the
sub-tree of a provisional program considered by the planner, is denoted with
a ∗ super-index T ∗P⊕π(A), and it will be called (again) a provisional tree (or
provisional dialectical tree). In addition, the planner will not pay attention to
arbitrary arguments that might exist, but only to those arguments A that have
been planned for as argument steps in the plan.

As more and more actions are added to the plan, the provisional and full di-
alectical trees will grow accordingly: a maximal argumentation line [A1, . . . ,Ak]
in a plan π ceases to be maximal, because in the refined plan π′, an extended ar-
gumentation line [A1, . . . ,Ak,Ak+1] exists, due to Ak+1 being activated by the
newer actions in π′. We will denote by v the relation is an initial sub-tree of ,
and also refer to this relation simply by is a sub-tree of . Using this notation,
Figure 2.4 illustrates the fact that any provisional tree is a sub-tree of the full
dialectical tree (for the same program) as well as a sub-tree of the provisional
tree in a refined plan.

T ∗P⊕π(A) v . . . v T ∗P⊕π′(A)
v v v

TP⊕π(A) v . . . v TP⊕π′(A) = TP�π′(A)

Figure 2.4: An illustration of the sub-tree relation v among dialectical trees in
the planning phase. The top line consists of provisional dialectical trees, while
the bottom line consists of their full counterparts. The v relation holds between
these pairs, and also between the dialectical trees of a plan and any of its plan
refinements. The identity on the bottom-right corner states that the –planned
for– undefeated status of A will actually be the case. If this holds for each
argument step, this means that the plan π′ is fully-executable; hence, if this π′

is a solution, it is ⊆-minimal.

A plan π, of course, need not always be refinable into a plan π′, in which case
π will be a terminal node in the search space. This will happen in particular
when no goal-concluding or threat-resolving argument exists for any of the open
goals or unsolved threats of the plan π. Four reasons can exist for this:

• first, no useful derivation exists: no combination of strict facts Πf , rules
Πr∪∆ and action effects post[A] suffices to derive a goal 〈`, t〉, or to attack
a threat;

• second, such derivations exist but they are not arguments: all of them are
inconsistent with the strict fragment Cn(Π⊕A(π)));

64

• third (for threat-resolution only), some of these derivations are arguments
C that attack a threat B, but they do not generate an extended argumen-
tation line [A, . . . ,B, C]; this can be due to C not being a (proper) defeater
for B, or any other condition from Def. 1.3.18 not being satisfied; and

• fourth, that the actions required violate the non-overlapping condition.

The open goals after a refinement with an argument step for some goal are
defined analogously as in temporal planning (the old plan’s goals minus the
conclusion plus the preconditions of the actions supporting the new plan step),
and similarly for threat resolution moves. In particular, if a new plan step
requires a goal already solved by a previous argument step, this latter demand
for the same goal can be safely ignored.

In the following we will denote an initial segment of a plan, π∅(A1, . . . ,An)
up to its k-th element as πk, i.e. πk = π∅(A1, . . . ,Ak). In particular π0 denotes
the empty plan π∅. Also notice that we forbid argument steps A to directly
support (the base of) other argument steps A′, already in the plan. Instead, the
planner will have to consider a single argument step A∪A′. This is another way
of saying that the planned arguments must be fully based upon action effects
and strict facts. 2

Definition 2.5.3 (Argument Step Refinement). Let M = (P, A,G) be a planning
domain for some set of agents Ag, where P = (Πf ∪ Πr,∆). Let π = πn =
π∅(A1, . . . ,An) be a plan for M. Define first

OldGoals(πn) =
⋃

1≤k≤n

(goals(πk)r
⋃

k<k′≤n

goals(πk′))

Then, let 〈`, t〉 ∈ goals(π) be an open goal in π. Let A∗ ⊆ A and A− ⊆ Πr∪∆
be sets of actions and rules satisfying:

(i) A(π) ∪A∗ is non-overlapping

(ii) (P⊕ π)⊕A∗ is a t-DeLP program

(iii) A = A− ∪ base(A−) is an argument for 〈`, t〉 in this program (P⊕ π)⊕A∗
(so base(A) = base(A−) ⊆ Πf ∪ post[A(π) ∪A∗])

(iv) A∗ is ⊆-minimal with the last property

(v) pre[A∗]∪literals(A)∪
⋃
Ak arg. step inπn

literals(Ak)∪
⋃

0≤k≤n goals(πk) is con-
sistent

Then we denote the refinement of π by A, as the new plan π∅(A1, . . . ,An,A),
also denoted π(A), defined by the components:

2Recall that base(A) is generally defined base(A) = body[A]rhead[ArΠf]. In the following,
we extend this definition to arbitrary sets of rules and facts, not only arguments.

65

A(π(A)) = A(π) ∪A∗

goals(π(A)) = (goals(π) ∪ pre[A∗])r ({〈`, t〉} ∪Πf ∪ OldGoals(π))

Trees(π(A)) = {T ∗P⊕π(A)(Ak) : 1 ≤ k ≤ n} ∪ {T ∗P⊕π(A)(A)}
where these trees are defined as follows

T ∗P⊕π(A)(Ak) = T ∗P⊕π(Ak) ∪ {Λ∩[B] ∈ TP⊕π(A)(Ak) | Λ is a plan step in π}
T ∗P⊕π(A)(A) = {[A]} ∪ {[A,B] | [A,B] ∈ TP⊕π(A)(A)}

Each maximal argumentation line Λ ∈ T ∗P⊕π(A)(·) ∈ Trees(π(A)) with an even

number of elements is called a threat in π(A), and denoted Λ ∈ threats(π(A)).

Notice that a threat Λ in a sub-tree need not be a maximal argumentation
line in the corresponding full dialectical tree. For example, in Fig. 2.5, the threat
[A1,D2] is not maximal in TP⊕π(·)(A1), since [A1,D2,D3,D4] exists in this tree.

Figure 2.5: An illustration of the dialectical trees involved in in the refinement
of a plan π with an argument step A5. The dark area represents the provisional
tree for an argument step A1 in the plan π. Some defending arguments exist, e.g.
D3, which are not planned for as threat resolution moves, and hence not part
of this tree TP⊕π(A1). After a refining π with A5, new threats are generated,
namely A6,B6, C′4.

Example 2.5.4. See Figure 2.5 for an illustration of the sub-tree T ∗P⊕π(A1) ∈
Trees(π) that corresponds to some plan π. This tree consists of part of the full
tree TP⊕π(A1): some argumentation lines, e.g. [A1,D2], are considered; while
others, e.g. [A1,D2,D3], are not. This means that D3 could still be used as a
plan step against the threat [A1,D2] for free, since it will be activated anyway
by the plan. Whether it is used or not depends on its being explicitly considered
as a threat resolution moves in in further refinements.

66

When a new step, e.g. the threat resolution move A5 is considered, the
provisional trees in Trees(π) must be updated accordingly into Trees(π(A5)).
For instance, A5 will bring about the new argumentation line [A1,A2, . . . ,A5].
But when we expand the old actions in π with the new actions required to
support base(A5), the joint effects can trigger new threats: to A5 itself, e.g.
[A1, . . . ,A5,A6]; or to other defending arguments in this sub-tree, e.g. C′4 as
a threat to [A1, C2, C3], or B6 as a threat to [A1,B2, . . . ,B5]. Finally, the new
actions incorporated in the plan refinement with A5 can even bring about a new
threat to the provisional tree of other argument steps (6= A1) in the plan.

As we said, a planner will deal with a threat [A1, . . . ,A2n+2] by planning for
some defeater C for A2n+2. The joint effort of all these threat resolution moves
in the provisional tree T ∗P⊕π(A1) must ultimately grant that the argument step
A1 is undefeated. Note that the argument C can occur several times in a plan,
e.g. abusing notation we can have π = π∅(. . . , C, . . . , C, . . .). This argument C
can occur only once as an argument step, and several times as different threat
resolution moves.

Definition 2.5.5 (Threat resolution). Let π = πn = π∅(A1, . . . ,An) be a plan
for M = (P, A,G), with P = (Πf ∪ Πr,∆). And let Λ = [A, . . . ,B] be a threat
Λ ∈ T ∗P⊕π(A) ∈ Trees(π) for some argument step A = Aj with 1 ≤ j ≤ n .
Finally, let A∗ ⊆ A and C− ⊆ Πr ∪∆ be sets satisfying:

(i) A(π) ∪A∗ is non-overlapping

(ii) (P⊕ π)⊕A∗ is a t-DeLP program

(iii) C = C− ∪ base(C−) is an argument in (P ⊕ π) ⊕ A∗ and, moreover, Λ∩[C]
is an argumentation line for A in (P⊕ π)⊕A∗

(iv) A∗ is ⊆-minimal with the last property

Then we say that π∅(A1, . . . ,An,Λ∩[C]), also be denoted π(Λ∩[C]) or simply
π(C), is the refinement of π by C, defined by the components

A(π(C)) = A(π) ∪A∗,
goals(π(C)) = (goals(π) ∪ pre[A∗])r (Πf ∪ OldGoals(π))

Trees(π(C)) = {T ∗P⊕π(C)(Ak) | 1 ≤ k ≤ n}
where each T ∗P⊕π(C)(Ak) is defined as follows

T ∗P⊕π(C)(Ai) = T ∗P⊕π(Ai) ∪
{Λ′∩[B′] ∈ TP⊕π(C)(Ai) | Λ′ is a plan step in π}, and

T ∗P⊕π(C)(A) = T ∗P⊕π(A) ∪
{Λ∩[C]} ∪ {Λ∩[C,B′] | Λ∩[C,B′] ∈ TP⊕π(C)(A)}

The threats of π(C) are defined as in Def. 2.5.3.

67

Definitions 2.5.3 and 2.5.5 describe all the possible ways a plan π can be
refined. Indeed, the space of plans for M is precisely the set of plans that can be
obtained by a finite number of applications of these refinements upon the empty
plan π∅ for M.

Definition 2.5.6 (Plan. Solution). Given a planning domain M =
((Π,∆), A,G), we say π is a plan for M iff it is either the empty plan π∅ =
(∅,∅, G), or it obtains from π∅ after a finite number of applications of Defini-
tions 2.5.3 and 2.5.5. We say a plan π is a solution for M iff G ⊆ warr((Π,∆)�π).

Also notice that the order in which actions are added to the plan need not
be the reverse of the execution ordering for these actions. For example, a new
threat resolution move might require to schedule a new action between two
actions already in the plan.

Let us conclude this section by describing Example 2.3.9 in full detail.

Example 2.5.7 (Table Lifting; cont’d). Following Example 2.3.9, we illustrate
a planning task with a sequence of plan steps which lead to a solution plan.
The central planner can find that the plan both agents lift the table at t is a
solution by the following sequence of plan refinements:

π∅ open goals G; no threats
π∅(A1) solves goal 〈∼b, 10〉; adds no goals
π∅(A1,A4) solves 〈lS, 10〉; new threat [A1,B1]
π∅(A1,A4,A5) solves 〈lN, 10〉; new threat [A1,B2]
π∅(A1,A4,A5, [A1,B1,A3]) solves [A1,B1]
π∅(A1,A4,A5, [A1,B1,A3], [A1,B2,A3]) solves [A1,B2]; this is a solution

Figure 2.2(right), in contrast, contains a threat B1 which cannot be solved once
it occurs in plans based on a non-simultaneous lifting of the two sides of the
table. These plans do not end up in solution plans.

In summary, the (action-based) arguments make 〈∼b, t〉, 〈lN, t〉 and 〈lS, t〉
warranted iff agents lift both sides simultaneously, see Fig. 2.2 (Left).

This concludes the description of the planning system. In the remaining of
the chapter, we introduce and study several search algorithms for the present
space of plans.

2.6 Algorithms for t-DeLP backward planning

We will consider the space of plans for a planning domain M, defined as the
graph given by the following sets of nodes and arcs:

• (nodes) the set of plans π that can be obtained by a finite number of
applications of Defs. 2.5.3 and 2.5.5, starting from the root node π∅ and

• (arcs) the relation π′ is a refinement of π, i.e. the set of pairs (π, π′)
satisfying this condition.

68

Let us present the Breadth First Search algorithm for multi-agent t-DeLP
planning domains.

Data: M = ((Π,∆), A,G)
Result: π; or fail
initialization: Plans = 〈π∅〉 and π = π∅;
while goals(π) 6= ∅ or threats(π) 6= ∅ do

delete π from Plans;
set Plans = Plans ∩〈 π(A) | π(A) is a refinement of π〉;
if Plans = ∅ then

set π = fail
else

set π = the first element of Plans
end

end

Algorithm 2: Breadth First Search for backward planning in the t-DeLP
planning system.

Since G is a finite set of temporal literals 〈`, t〉, these goals are bounded
by some maximum value t∗, and so plan steps simply consist of arguments (and
arguments) whose conclusions (resp. effects) are about some t ≤ t∗. This implies
that there are only finitely-many plan step refinements of any plan, that can be
obtained from ∆ and A. In other words, not only the space of plans is a finitely
branching tree (since P(∆) and A are finite), but moreover this space is finite.

As a consequence, the usual search methods BFS, DFS, etc are terminating,
so the following proofs for BFS can be easily adapted to other well-known search
algorithms besides BFS.

For example, for DFS we would simply order newly generated plans before
the plans generated previously, so Algorithm 2 can be adapted as follows for
DFS:

replace set Plans = Plans ∩〈 π(A) | π(A) is a refinement of π 〉
by set Plans = 〈 π(A) | π(A) is a refinement of π 〉 ∩ Plans

2.7 Soundness of BFS search for backward
t-DeLP planning

In this section, we proceed to show that the BFS algorithm for the t-DeLP
backward planning system is sound: so if this algorithm outputs some plan
π for a planning domain M given as input, then π is a solution for M. A first
instrumental result for this says that the existing arguments are preserved under
plan refinements.

Lemma 2.7.1. Let M = (P, A,G) be a planning domain, π a plan for M and
π(A) a plan refinement of π. Then, for any argument A′ in P⊕π, we have that

69

A′ is also an argument in P⊕ π(A).

Proof. Let P = (Π,∆) as usual with Π = Πf ∪ Πr. We check the conditions
(1)-(4) from Def. 1.3.5.

(1) Since we have Π⊕ πk ⊆ Π⊕ πk+1, all the derivations from P⊕ πk exist as
well in P⊕ πk+1.

(2) Assume towards a contradiction that Π⊕π(A) is inconsistent with A′∩∆.
Say 〈`, t〉, 〈∼`, t〉 are both derivable from all these facts and rules. Since Π ⊕ π
is consistent with A′, one of these two literals, say 〈∼`, t〉, is not derivable from
(Π ⊕ π) ∪ A′∆. Thus, the derivation for 〈∼`, t〉 in P ⊕ π(A) must make use of
the new information in the latter set of strict facts and rules. Without loss of
generality, assume that the derivation for 〈∼`, t〉 is ⊆-minimal. The previous
claim on the need for some new strict information, together with the fact that

P⊕ π(A) = (P⊕ π)⊕A∗, for some set of actions A∗

implies that the derivation for 〈∼`, t〉 contains some literal 〈µe, te〉 as a premise.
Since 〈∼`, t〉 6= 〈∼µe, te〉 6= 〈`, t〉 (by def. of µe, its negation cannot occur in a
program), the ⊆-minimality of this derivation implies that some rule δ exists
in this derivation with 〈µe, te〉 ∈ body(δ). We show this is impossible. (Case
δ ∈ ∆) That is, δ ∈ A′ ∩∆. Since A′ is a ⊆-minimal argument in P ⊕ πk, this
implies that 〈µe, te〉 ∈ P ⊕ πk, contradicting the assumption on 〈µe, te〉. (Case
δ ∈ Πr) Since Πr = ΠM, this rule δ must be a mutex rule, but this contradicts
the assumptions on the µe-effects.

(3) First, assume towards a contradiction that A′ ∩ ∆ is not ⊆-minimal
w.r.t. condition (1). Then some ⊆-minimal A′′∆ A′∆ exists with
A′′∆ ∪ P ⊕ πk+1 ` concl(A). Then, as before we can reason that, since A′
is an argument in P ⊕ πk, we must have some 〈µe, te〉 ∈ base(A′′). And from
the minimality of A′′, some rule δ exists with 〈µe, te〉. In either case δ ∈ Πr or
δ ∈ ∆ we reach a similar contradiction than we did in (2). Thus, A′ ∩ ∆ is
⊆-minimal w.r.t. (1). On the other hand, it is obvious, given (2), that A′ ∩∆
is ⊆-minimal w.r.t. (2) also in P⊕ πk+1.

(4) Assume towards a contradiction, that some ⊆-mimimal A′′Π A′Π exists
with the property A′′Π ∪ A′∆ ` concl(A′). But this is impossible, since then
A′′Π ∪ A′∆ ⊆ A′ implies that A′′Π ∪ A′∆ exists in P ⊕ πk, so A′ does not satisfy
condition (4) in P⊕ πk.

Lemma 2.7.2. Let M be a planning domain and πk some plan for M. If πk+1

is a refinement of π, then, for each argumentat step A in πk, we have that

TP⊕πk(A) v TP⊕πk+1
(A)

Proof. For this, assume the contrary towards a contradiction. That is, assume
that some argumentation line [A, . . . ,A′] ∈ TP⊕πk(A) is not an argumentation
line in TP⊕πk+1

(A). We check each case where some condition from Def. 1.3.18

70

might fail. By Lemma 2.7.1, all these A, . . . ,A′ are arguments in P ⊕ πk+1

as well, and each of them is a defeater for its predecessor in Λ. Thus, it only
remains to consider a failure of some condition (i)-(iii) from Def. 1.3.18.

(i) Assume condition (i) fails, e.g. Π ⊕ πk+1 is inconsistent with the
defending arguments of Λ. Then, let 〈`, t〉, 〈∼`, t〉 be the inconsistent pair
derivable from Π plus the rules used in defending arguments. By assumption,
this inconsistency does not exist in P ⊕ πk, so one of the two literals, say
〈∼`, t〉, is not derivable from this strict information and the rules from the
defending arguments. Thus, a derivation for it using P ⊕ πk+1 must make use
of some new strict fact in post[A∗] where A(πk+1) = A(πk) ∪ A∗. Assume
this derivation is ⊆-minimal. Say 〈µe, te〉 is a premise in this derivation for
〈∼`, t〉, for some e ∈ A∗. By the ⊆-minimality of A∗ (condition (iv) from
Def. 2.5.3), 〈µe, te〉 cannot occur in the defending arguments, all based on
P ⊕ πk. Thus, some rule δ is needed in the derivation with the property
〈µe, te〉 ∈ body(δ). (Case δ ∈ ∆) This is impossible, again because this would
imply that δ occurs in some defending argument A′′, so by the ⊆-minimality of
the argument A′′, it contains 〈µe, te〉 ∈ base(A′′) ⊆ Π ⊕ πk. This would violate
the ⊆-minimality of A∗. (Case δ ∈ Πr) This is impossible, since by definition
no effect 〈µe, te〉 occurs in a mutex rule in ΠM, and the assumption on mutex
programs ΠM = Πr. This shows condition (i) for the defending arguments. The
proof for the consistency of the interfering arguments with Π⊕πk+1 is analogous.

(ii) Clearly, condition (ii) holds because the attacked sub-arguments in Λ are
the same in either t-DeLP program P⊕ πk and P⊕ πk+1.

(iii) The arguments in the sequence [A, . . . ,A′] stands in the same � or ≺�
defeat relations (w.r.t their predecessors) in either program P⊕ πk and πk+1, so
condition (iii) is satisfied.

Another result concerns the (provisional) sub-trees used during the plan con-
struction. Each of these sub-trees is equivalent, in terms of the marking pro-
cedure of Def. 1.3.22, to the full dialectical tree for the same argument. As a
consequence, the undefeated status of arguments and the warrant status of their
conclusions (goals) is the same between these trees.

Lemma 2.7.3. Let P = (Π,∆) be an arbitrary t-DeLP program, and let TP(A1)
be the dialectical tree for some argument A1 in P. Finally, let T ∗P (A1) be an
arbitrary sub-tree of TP(A1) with the following properties:

(i) the argumentation line [A1] is in T ∗P (A1)

(ii) for any an arg. line Λ = [A1, . . . ,A2n] in T ∗P (A1),
if some Λ+ = [A1, . . . ,A2n,A2n+1] exists in TP(A1) with A2n+1 undefeated
then Λ+ is also in T ∗P (A1) for a unique such Λ+

(iii) for any arg. line Λ = [A1, . . . ,A2n+1] in T ∗P (A1) and
any Λ+ = [A1, . . . ,A2n+1,A2n+2] in TP(A1)
we have that Λ+ is also in T ∗P (A1)

71

Then, for any argumentation line [A1, . . . ,Ak] in T ∗P (A1),

Ak is undefeated in T ∗P (A1) iff Ak is undefeated in TP(A1)

Moreover, if in such a sub-tree T ∗P (A1), each interfering argument has a
defeater, then A1 is undefeated in this tree. The same holds for TP(A1).

Proof. The proof of the first claim is by induction on the (sub-)tree structure.
(Base CaseAk is terminal in T ∗P (A1).) By the marking procedure Def. 1.3.22,

we have on the one hand that Ak is undefeated in [A1, . . . ,Ak] ∈ T ∗P (A1). To
show this Ak is also undefeated in TP(A1), consider the two cases. (Case k
is odd.) Then, applying condition (iii) from the Lemma we conclude that no
defeater [A1, . . . ,Ak,B] ∈ TP(A1), so Ak is terminal in this tree as well, and
hence it is undefeated. (Case k is even.) Then, by condition (ii), no defeater
for Ak in [A1, . . . ,Ak] exists in TP(A1). Again, this argument Ak is terminal in
TP(A1) and so undefeated in this tree.

(Inductive Case) Assume (Ind. Hyp.) that the equivalence in the unde-
feated status holds for each argument B in any argumentation line of the form
[A1, . . . ,Ak, . . . ,B, . . .] ∈ T ∗P (A1). We have that

Ak is undefeated in T ∗P (A1)

iff for each [A1, . . . ,Ak,B] ∈ T ∗P (A1), B is defeated

iff for each [A1, . . . ,Ak,B] ∈ TP(A1), B is defeated

We proceed to show the latter equivalence. The (⇑) direction follows from the
fact that T ∗P (A1) v TP(A1) and the Ind. Hyp. For the (⇓) direction, let
[A1, . . . ,Ak,B] be arbitrary in TP(A1). Consider the two cases. (Case k is
odd.) Then, by condition (iii), [A1, . . . ,Ak,B] is also in T ∗P (A1), and by the Ind.
Hyp. B must also be defeated in [A1, . . . ,Ak,B] ∈ TP(A1). (Case k is even.)
If B was undefeated in [A1, . . . ,Ak,B] ∈ TP(A1), by condition (ii) some B′ also
undefeated in [A1, . . . ,Ak,B] would exist in T ∗P (A1). By the Ind. Hyp., this B
would be undefeated in T ∗P (A1), contradicting the assumption.

Finally, we can resume the above line of reasoning as follows

for each [A1, . . . ,Ak,B] ∈ TP(A1), B is defeated

iff Ak is undefeated in TP(A1)

which concludes the proof of the Ind. Case.
For the second claim, assume towards a contradiction that each interfer-

ing argument (in any arg. line) has a defeater but that A1 is defeated. The
latter implies the existence of some defeater A2 which is undefeated. By the
former assumption, some defeater A3 for A2 must exist, which is defeated.
This reasoning can be repeated indefinitely, so as to give argumentation lines
[A1,A2,A3, . . . ,A2k,A2k+1] of arbitrary length k. But this contradicts the fact
that the dialectical tree TP(A1) is finite, so we are done.

Before proceeding with the soundness theorem, we prove that the previous
Lemma 2.7.3 can be applied if no threats exist in a plan π. That is, we show

72

that in this case the trees T ∗P�π(·) satisfy the conditions in the previous Lemma
2.7.3.

Lemma 2.7.4. Let M be a planning domain and π = πn = π∅(A1, . . . ,An) an
arbitrary plan for M with the property threats(π) = ∅. Then for any argument
step A in π, the tree T ∗(P⊕π)(A) (computed using by Definitions 2.5.1, 2.5.3 and

2.5.5) is a subtree of TP⊕π(A) that satisfies conditions (i)-(iii) from Lemma
2.7.3.

Proof. First, we prove by induction that any tree T ∗P⊕π(A) obtained using
Definitions 2.5.1, 2.5.3 and 2.5.5 is a sub-tree of TP⊕π(A).

(Base Case π∅) This is obvious, since no argument step exists in π∅.

(Ind. Case πk ⇒ πk+1.) Assume (Ind. Hyp.), that T ∗P⊕πk(A) v TP⊕πk(A) for
any argument step A. We consider the next two cases.

(Case Ak+1 is an argument step.) First consider the case A = Ak+1. Since
Ak+1 is an argument in P ⊕ πk+1, Definition 2.5.3 gives that T ∗P⊕πk+1

(Ak+1) is

defined as a sub-tree of TP⊕πk+1
(Ak+1). Second, for any other argument step

A 6= Ak+1, Def. 2.5.3 defines

T ∗P⊕πk+1
(A) = T ∗P⊕πk(A) ∪ {Λ∩[B] ∈ TP⊕πk+1

(A) | Λ is a plan step in πk}

Now, since being a plan step Λ in plan πk implies Λ ∈ T ∗P⊕πk(A) (by Def. 2.5.3
or Def. 2.5.5), the latter set in the union is a set of paths in TP⊕πk+1

(A). At its
turn, the former set in the union satisfies T ∗P⊕πk(A) v TP⊕πk(A) (by the Ind.
Hyp.); moreover, by Lemma 2.7.2 we have that TP⊕πk(A) v TP⊕πk+1

(A), so
combining the last two v-claims, we conclude that the former set in the union
is also a sub-tree of TP⊕πk+1

(A). Thus, all the paths in the above union are also
in TP⊕πk+1

(A). This and the obvious fact that this union is closed under initial
fragments of its paths (argumentation lines) jointly imply that the above union
is a sub-tree of TP⊕πk+1

(A). If we replace this union by the set it defines, we
obtain T ∗P⊕πk+1

(A) v TP⊕πk+1
(A), as desired.

(Case Ak+1 is a threat resolution move [. . . ,Ak+1]) The proof for this case is
analogous, using Definition 2.5.5 instead of Definition2.5.3.

This concludes the proof for T ∗P⊕πk+1
(A) v TP⊕πk+1

(A).

We proceed to show conditions (i)-(iii) from Lemma 2.7.3 for the t-DeLP
program P ⊕ π induced by π, and arbitrary argument steps A. Let then A be
an argument step in π.

(i) Since A is an argument step, say A = Ak, then [A] ∈ T ∗P⊕πk(A). A look
into Definitions 2.5.3 and 2.5.5 (for πk+1, . . . , πn) should suffice to convince one-
self that [A] is also in the sub-tree T ∗P⊕(·)(A) corresponding to each of these plans.

(ii) Let Λ = [A, . . . ,B] be an even-length argumentation line in T ∗P⊕πn(A).
Let k ≤ n be minimal with the property [A, . . . ,B] ∈ T ∗P⊕πk(A). Note that
we cannot have k = n, since in this case threats(πn) 6= ∅. Thus, this Λ is a

73

threat in πk for some k < n. Since threats(πn) = ∅, let k′ with k < k′ ≤ n be
minimal with the property Λ /∈ threats(πk′). By Defintions 2.5.3 and 2.5.5, this
can only mean that [A, . . . ,B,Ak′] is a threat resolution move. Let us redefine
C = Ak′ , so this argumentation line becomes [A, . . . ,B, C]. Again by Def.2.5.5,
this argumentation line is in T ∗P⊕πk′ (A). Moreover, by the first claim shown

in this Lemma, [A, . . . ,B, C] ∈ TP⊕πk′ (A). And using (n − k′) applications of
Lemma 2.7.2, we conclude that [A, . . . ,B, C] ∈ TP⊕πn(A). Thus for the present
condition (ii), it only remains to prove that this C is undefeated in TP⊕πn(A).

Assume the contrary, towards a contradiction, i.e that C is defeated in
[A, . . . ,B, C] ∈ TP⊕πn(A). We show that this gives rise to threat resolution
moves of arbitrary length extending [A, . . . ,B, C]. Define Λ1 = Λ = [A, . . . ,B]
and Λ2 = [A, . . . ,B, C]. Since C is defeated, some defeater Λ3 = [A, . . . ,B, C,D]
exists in T ∗P⊕πn(A) (with such D undefeated). Say that Λ3 occurs in TP⊕πk′′ (A)
for some k′′ with k′ ≤ k′′ ≤ n minimal with this property. By Def. 2.5.3 or
Def. 2.5.5 (depending on the type of Ak′′), we will have that Λ3 ∈ TP⊕πk′′ (A).
Thus, Λ3 is in threats(πk′′). The assumption threats(πn) = ∅ again implies
that some k′′′ with k′′ < k′′′ ≤ n exists which is minimal with the property
Λ3 /∈ threats(πk′′′). Thus, if we define E = Ak′′′ , then this Ak′′′ denotes a
threat resolution move Λ4 = [A, . . . ,B, C,D, E]. We cannot have that this E is
undefeated in Λ4 ∈ TP⊕πn(A), since this would contradict that D is undefeated.
In consequence some defeater F exists for it. From this point onwards, the
previous reasoning can be arbitrarily repeated. But this is impossible, since
πn has at most n threat resolution moves. From this we conclude that C is
undefeated in [A, . . . ,B, C] ∈ TP⊕πn(A).

(iii) Let [A, . . . , C] be an arbitrary argumentation line of odd length in
T ∗P⊕πn(A), and let [A, . . . , C,D] exist in TP⊕πn(A). Moreover, let k < n
be minimal with the property [A, . . . , C] ∈ T ∗P⊕πk(A). In addition, some
k′ with k ≤ k′ < n will also exist which is minimal with the property
[A, . . . , C], [A, . . . , C,D] ∈ T ∗P⊕πk′ (A). An easy induction proof using Definitions

2.5.3 and 2.5.5 shows that [A, . . . , C] and [A, . . . , C,D] are also in T ∗P⊕πn .

Let us remark that using these proofs, we can justify the v-relations from
Figure 2.4 (repeated below). Indeed, Lemma 2.7.2 shows the horizontal v-
relations in the bottom line. The first claim of Lemma 2.7.4 shows the vertical
v-relations. Finally, each v-relation in the top line is easily seen by an inductive
proof using Definitions 2.5.3 and 2.5.5.

T ∗P⊕π(A) v . . . v T ∗P⊕π′(A)

v v v

TP⊕π(A) v . . . v TP⊕π′(A)

74

Theorem 2.7.5 (Soundness of t-DeLP plan search.). Let π be the output of the
BFS algorithm in the space of plans for M. Then π is a solution for M.

Proof. Let π = π∅(A1, . . . ,An) be the output of the plan search algorithm in
the space of plans for M. Thus, we have that threats(π) = ∅ and goals(π) = ∅.
Using the πk-notation, πn will denote π; and π0 will denote π∅. Then, to prove
the claim that G ⊆ warr((Π,∆) �A(π)) it suffices to show the (stronger) claim⋃

0≤k≤n

goals(πk) ⊆ warr((Π,∆) �A(π))

since G = goals(π0) ⊆
⋃

0≤k≤n

goals(πk)

Moreover, by Lemma 2.3.5, we only need to check that, for any literal 〈`, t〉 and
plan πk

(?) if 〈`, t〉 ∈ goals(πk), then 〈`, t〉 ∈ warr((Π,∆) �A(t))

where A(t) = { e ∈ A(π) | te ≤ t} denotes the actions in the plan whose
effects will occur before or at t (recall post(e) = 〈µe, te〉). The reason is that
(finitely-many applications of) Lemma 2.3.5 imply the equivalence

〈`, t〉 ∈ warr((Π,∆) �A(t)) iff 〈`, t〉 ∈ warr((Π,∆) �A(π))

We proceed to prove the above claim (?) for goals 〈`, t〉 by induction on t;
this is proved together with the auxiliary claim (?2) that each action in A(t) is
executable:

(?2) (Π⊕A(t),∆) = (Π,∆) �A(t)

(Base Case t = 0) Since actions are durative, we have that A(0) = ∅. Using
this identity, claim (?2) can be seen as follows:

(Π⊕A(0),∆) = (Π ∪ post[∅],∆) =
= (Π ∪∅,∆) = (Π,∆) =
= (Π,∆) �∅ = (Π,∆) �A(0)

For (?), the proof of the present Base Case for the goal is analogous to that
for the Ind. Case, just replacing 〈`, 0〉 (and A(0)) by 〈`, t+1〉 (and A(t+1)),
and using the latter claim (?2) for the Base Case.

(Ind. Case t⇒ t+1) Assume (Ind. Hyp.) that for each t′ ≤ t, and each goal of
the form 〈`′, t′〉 ∈

⋃
0≤k≤n goals(πk) with t′ ≤ t, we have

(?) 〈`′, t′〉 ∈ warr((Π,∆) �A(t)),

(?2) (Π⊕A(t′),∆) = (Π,∆) �A(t′)

We prove that (?) and (?2) hold for t+1 as well. Let us show claim (?2)
first. Let Et+1 be the set of actions in A(π) with an effect of the form 〈·, t+ 1〉,
so we have A(t+ 1) = A(t) ∪ Et+1.

75

(Π⊕A(t+1),∆)

= (Π⊕ (A(t) ∪ Et+1),∆)

= (Π ∪ post[A(t) ∪ Et+1],∆)

= (Π ∪ post[A(t)] ∪ post[Et+1],∆)

= ((Π⊕A(t))⊕ Et+1,∆)

= ((Π⊕A(t)),∆) � Et+1 since pre[Et+1] ⊆ warr((Π,∆) �A(t))

= warr(Π⊕A(t),∆)

= ((Π,∆) �A(t)) � Et+1 by the (Ind. Hyp.)

= (Π,∆) � (A(t) ∪ Et+1) Lemma 2.3.5, since A(t) precedes Et+1

= (Π,∆) �A(t+1)

For the (?) claim, let 〈`, t+1〉 be an arbitrary goal in
⋃

1≤k≤n goals(πk). Since
goals(πn) = ∅, let k ≤ n be minimal with the property 〈`, t+1〉 ∈ goals(πk).
Since 〈`, t + 1〉 /∈ goals(πn) = ∅, some k′ with k < k′ ≤ n exists with
the property 〈`, t+ 1〉 /∈ goals(πk′). Again, let k′ be minimal with this prop-
erty, so 〈`, t+1〉 ∈ goals(πk)∩goals(πk+1)∩ . . .∩goals(πk′−1). Consider the cases:

(Case Ak′ is a threat resolution move [. . . ,Ak′].) We show that this case is
impossible: by definition, threat resolution moves are not regarded as goal-
resolving arguments (even in the case where the threat resolving argument has
a goal as its conclusion). To see this, note first that Definition 2.5.5 gives:

goals(πk′) = goals(πk′−1(Ak′)) = (goals(πk′−1)∪pre[A∗])r(Πf∪OldGoals(πk′−1))

By the minimality of k′, we have both 〈`, t + 1〉 ∈ goals(πk′−1) and
〈`, t + 1〉 /∈ goals(πk′), so the above Definition 2.5.5 for goals(πk′) implies
that 〈`, t + 1〉 ∈ Πf ∪ OldGoals(πk′−1). Let us separately consider each
set in this union. First, 〈`, t + 1〉 cannot be an old goal in πk′−1, by the
minimality of k w.r.t. 〈`, t + 1〉 ∈ goals(πk) and the minimality of k′ > k
w.r.t. 〈`, t + 1〉 /∈ goals(πk′−1). On the other hand 〈`, t + 1〉 cannot be
in Πf either. The reason is that in this case, Def.2.5.5 for goals(πk) would
give 〈`, t+1〉 /∈ goals(πk), contradicting the assumption that 〈`, t+1〉 ∈ goals(πk).

(Case Ak′ is an argument step.) From the minimality of k′ w.r.t. 〈`, t+1〉 /∈
goals(πk′), we have both this property and 〈`, t+1〉 ∈ goals(πk′−1). Combining
these facts with the identities (from Definition 2.5.3)

goals(πk′) = goals(πk′−1(Ak′))
= (goals(πk′−1) ∪ pre[A∗])r ({concl(Ak′)} ∪Πf ∪ OldGoals(πk′−1))

we conclude that either 〈`, t+1〉 = concl(Ak′) or 〈`, t+1〉 ∈ Πf or finally 〈`, t+1〉 ∈
OldGoals(πk′−1). A reason against the latter possibility is, as in the previous
case, given by the minimality of oth k and k′. The same can be said against the
second possibility 〈`, t+1〉 ∈ Πf , since this would again contradict the assumption

76

〈`, t+1〉 ∈ goals(πk). So it remains to check claim (?) for the former possibility.
That is, it remains to prove that

Ak′ is an argument for 〈`, t+1〉 ⇒ 〈`, t+1〉 ∈ warr(P �A(t+1))

For this, first we use the assumption threats(πn) = ∅ and Lemma 2.7.4, to
obtain that

(a) T ∗P⊕π(Ak′) satisfies the conditions for Lemma 2.7.3

Second, the same assumption threats(πn) = ∅ implies that for each threat
in πn there is some threat resolution move in πn. The latter implies, by Def.
2.5.5, that each interfering argument in TP⊕πn(Ak′) has a defeater. This and the
previous claim (a) implies that we can apply the second claim of Lemma 2.7.3,
to conclude that

(b) A′k is undefeated in T ∗P⊕πn(Ak′)

Finally, (a) implies the main claim in Lemma 2.7.3 (in particular for the argu-
mentation line [Ak′]) from which we obtain the equivalence

(c) Ak′ is undefeated in T ∗P⊕πn(Ak′) iff Ak′ is undefeated in TP⊕πn(Ak′)

Now we reason as follows

Ak′ is undefeated in TP⊕πn(Ak′) (combining (b) and (c))

〈`, t+1〉 ∈ warr(P⊕ πn) (def. of warrant)

〈`, t+1〉 ∈ warr(P⊕A(t+1)) (by Lemma 2.3.5)

〈`, t+1〉 ∈ warr(P �A(t+1)) (be the above claim (?2) for t+1)

This concludes the proof of the Ind. Case. As we mentioned the proof of this
Theorem can be completed as follows:

〈`, t〉 ∈ G ⇒ 〈`, t〉 ∈ warr(P �A(t)) (the above ind. proof)

〈`, t〉 ∈ warr(P �A(t)) ⇒ 〈`, t〉 ∈ warr(P � πn) (by Lemma 2.3.5)

〈`, t〉 ∈ G ⇒ 〈`, t〉 ∈ warr(P � πn) (by transitivity)

G ⊆ warr(P � πn) (since 〈`, t〉 is arbitrary)

2.8 Completeness of BFS search for backward
t-DeLP planning

Theorem 2.8.1 (Completeness of t-DeLP BFS plan search). Let M = (P, A,G)
be a planning domain and assume some solution A′ ⊆ A exists. Then, the BFS
search in the space of plans terminates with an output π.

77

Proof. Let A′ ⊆ A be a solution for a given planning domain M = (P, A,G), so
G ⊆ warr(P � A′). Without loss of generality, we assume that this set A′ is a
⊆-minimal solution: for any proper subset A′′ A′, we have G 6⊆ warr(P �A′′).
We proceed to define by induction a plan of the form πn = π∅(Λ1, . . . ,Λn). This
will be proved to be a plan in the search space that satisfies the Terminating
Conditions and whose set of actions is A(πn) = A′. This is enough, since if
the planning algorithm terminates with some other output 6= πn before πn is
generated, we are done.

In order to generate πn, we first define G+ = G∪pre[A′]. Notice that not only
we have G ⊆ warr(P�A′), but also pre[A′] ⊆ warr(P�A′), the latter because A′ is
a ⊆-minimal solution. Thus, for each 〈`, t〉 ∈ G+, there exists an argument A〈`,t〉
for 〈`, t〉 undefeated in TP⊕A′(A〈`,t〉. Define ArgSteps = {A〈`,t〉 | 〈`, t〉 ∈ G+}.

Now, a consequence of the ⊆-minimality of A′ is that P�A′ = P⊕A′. This can
be seen by the following induction on t. Define A(t) = {e ∈ A′ | te ≤ t}. (Base
Case t = 0.) Since actions in A are durative, we have A(0) = ∅, which implies
P�A(0) = P = P⊕A(0). (Ind. Case t⇒ t+1.) Assume that P�A(t) = P⊕A(t),
so warr(P � A(t)) = warr(P ⊕ A(t)). In case A(t+1) r A(t) = ∅, we are done
since then P ⊕ A(t+1) = P � A(t+1) reduces to the Ind. Hyp.; hence, we can
assume that A(t+1) r A(t) = {f1, . . . , fr}. Define Et+1 = A(t+1) r A(t), and
select an arbitrary element e ∈ Et+1. This implies that its set of preconditions
is of the form pre(e) = {〈`, t〉, . . . , 〈`′, t〉}. So by the Ind. Hyp.,

pre(e) ⊆ warr(P �A(t)) ⇔ pre(e) ⊆ warr(P⊕A(t))

On the other hand, the ⊆-minimality of A′ implies that pre(e) ⊆ warr(P � A(t))
–the reason is that otherwise A′ ∪ {e} would be a solution. The last two facts
imply that pre(e) ⊆ warr(P⊕A(t)). From all this, we conclude

(∗) 〈µe, te〉 ∈ (P �A(t)) � {e} ⇐⇒ 〈µe, te〉 ∈ (P⊕A(t)) � {e}
(∗2) 〈µe, te〉 ∈ (P⊕A(t)) � {e} ⇐⇒ 〈µe, te〉 ∈ (P⊕A(t))⊕ {e}

Since e was an arbitrary element of Et+1, we can reason as follows (note that
we redefine . . .⊕ {f} as . . .⊕ f)

P �A(t+1)

= (P �A(t)) � Et+1 since A(t) precedes Et+1

= (P⊕A(t)) � Et+1 (by the Ind. Hyp.)

= (((P⊕A(t))⊕ f1) � f2) · · · � fr (by facts (∗), (∗2) with e = f1)

= (((P⊕A(t))⊕ f1)⊕ f2) · · · � fr (by fact (∗2) with e = f2;

and Lemma 2.3.5)

...
...

= (((P⊕A(t))⊕ f1)⊕ f2) · · · ⊕ fr (by fact (∗2) with e = fr;

and Lemma 2.3.5)

= (P⊕A(t))⊕ Et+1

= P⊕A(t+1)

78

Since A′ is a finite union of A(t) sets, this concludes the proof of the claim

(?) P⊕A′ = P �A′.

We proceed to define the set of plan steps in the desired plan. By simulta-
neous induction, define first a pair of sets Steps and Threats as the ⊆-minimal
sets containing:

{[A〈`,t〉]}A〈`,t〉∈ArgSteps ⊆ Steps

[A〈`,t〉, . . . ,A,B] ∈ Threats for any pair [A〈`,t〉, . . . ,A] ∈ Steps

and [A〈`,t〉, . . . ,A′,B] ∈ TP⊕A′(A〈`,t〉)
[A〈`,t〉, . . . ,B, C] ∈ Steps for any [A〈`,t〉, . . . ,B] ∈ Threats and a

unique [A〈`,t〉, . . . ,B, C] ∈ TP⊕A′(A〈`,t〉)
such that C is undefeated in this line

Note first that this definition will give a finite set |Steps|, since
Steps ⊆

⋃
〈`,t〉∈G+ TP�A′(A〈`,t〉 is included in the union of finitely-many

sets (exactly, |G+|), each of which is a finite set TP�A′(A〈`,t〉). Now, that this
construction can be done is obvious for the former two conditions. For the
third, we must show that at least an undefeated defeater C exists for each
interfering argument [A〈`,t〉, . . . ,B]. This is shown by induction, together with
the auxiliary claim that each defending argument is undefeated.

(Base Case [A〈`,t〉,B] ∈ TP�A′(A〈`,t〉).) On the one hand, A〈`,t〉 is undefeated
by assumption. This and the case assumption imply that this B is defeated in
[A〈`,t〉,B] ∈, so an undefeated defeater C must exist in some argumentation line
[A〈`,t〉,B, C].

(Ind. Case [A〈`,t〉, . . . ,A,B] ∈ TP�A′(A〈`,t〉).) Assume (Ind. Hyp.) that this
A is undefeated in TP�A′(A〈`,t〉). In consequence, B must be defeated in
[A〈`,t〉, . . . ,A,B] ∈ TP�A′(A〈`,t〉), and so some [A〈`,t〉, . . . ,A,B, C] must exist in
TP�A′(A〈`,t〉) where C is undefeated.

Now, we define T ∗(A〈`,t〉) = {Λ ∈ Steps ∪ Threats | Λ = [A〈`,t〉, . . .]}.
The above construction should make it clear that T ∗(A〈`,t〉) v TP�A′(A〈`,t〉).
Moreover, the above shown claim (?), namely P � A′ = P ⊕ A′, implies that
A〈`,t〉 is an argument in P ⊕ A′, so TP⊕A′(A〈`,t〉) is defined. On the other
hand, (?) and the previous fact T ∗(A〈`,t〉) v TP�A′(A〈`,t〉) jointly imply that
T ∗(A〈`,t〉) v TP⊕A′(A〈`,t〉) as well.

Finally, we proceed with the inductive definition of a plan of the form

πn = π∅(Λ1, . . . ,Λn)

satisfying
{Λ1, . . . ,Λn} = Steps

A(πn) = A′
goals(πn) = ∅

threats(πn) = ∅

79

(Base Case π0).
Clearly, π0 = π∅ is a plan for M.

(Ind. Case m⇒ m+ 1)
Let πm = π∅(Λ1, . . . ,Λm) be a plan for M with Λ1, . . . ,Λm ∈ Steps. The proof
is by cases.

(Sub-case threats(πm) 6= ∅) Let then Λ = Λ2k+2 = [A1, . . . ,A2k+1,A2k+2] be a
threat in πm, where A1 is some argument step A1 = A〈`,t〉 ∈ ArgSteps. Let us
denote the initial fragments of this threat Λ as Λi = [A1, . . . ,Ai].

Now, by definition of the sub-tree T ∗(A1), some defending argument C exists
in some Λ2k+3 = Λ∩[C] ∈ Steps. Let A∗ ⊆ A′ be the (unique) ⊆-minimal set
with the property base(C) ⊆ Π∪post[A(πm)∪A∗]; and also let C− = Crbase(C).
We check conditions (i)-(v) from Def. 2.5.5 for those C− and A∗:

(i) A(πm)∪A∗ is non-overlapping ; the claim holds because this set is a subset
of A′, which by assumption is non-overlapping.

(ii) (Π ⊕ (A(πm) ∪ A∗),∆) is a t-DeLP program; this is a direct consequence
from the fact that (Π⊕A′,∆) is a t-DeLP program and A(πm)∪A∗ ⊆ A′.

(iii) C− ∪ base(C−)(= C) is an argument in this program; this follows from: (1)
C− ⊆ Πr ∪ ∆, (2) base(C−) ⊆ Πf ⊕ (A(πm) ∪ A∗) and (3) that C is an
argument in P⊕A′; these facts imply that the conditions (1)-(4) from Def.
1.3.5 are preserved from P⊕A′ to (P⊕A(πm))⊕A∗. Also the second claim
that Λ∩[C] is an argumentation line for A1 in P ⊕ (A(πm) ∪ A∗) holds.
The facts (1) Λ is an arg. line in this program, (2) C is an argument in this
program, and (3) Λ∩[C] is an argumentation line in the extended program
P⊕A′ imply the preservation of the claim from P⊕A′ to (P⊕A(πm))⊕A∗.

(iv) A∗ is ⊆-minimal with (iii); this follows from the above definition of A∗.

(Sub-case threats(πm) = ∅ and goals(πm) 6= ∅) Let 〈`, t〉 ∈ goals(πm). In
case 〈`, t, 〉 ∈ G, some argument step [A〈`,t〉] ∈ ArgSteps ⊆ Steps exists for
〈`, t〉. On the other hand, if 〈`, t〉 /∈ G, then by the definition of goals(·) in
Defs. 2.5.3 and 2.5.5, we must have 〈`, t〉 ∈ pre(e) for some e ∈ A(πm) ⊆ A′,
in which case by definition we have [A〈`,t〉] ∈ Steps. Let us denote by A this
argumentA〈`,t〉, and also let A∗ be the unique ⊆-minimal set of actions satisfying
base(A) ⊆ Π ∪ post[A(πm) ∪ A∗]. Conditions (i), (ii) and (iv) from Def. 2.5.3
are proved as in the previous case. We check the remaining conditions (iii) and
(v).

(iii) A is an argument in (P⊕A(πm)⊕A∗; this follows from: A ⊆ (Π⊕(A(πm)∪
A∗))∪∆ and that A is an argument in (Π⊕A′,∆); as in the previous case
the latter fact preserves conditions (1)-(4) from Def. 1.3.5.

(v) that pre[A∗] ∪ literals(A) is consistent with previous plans’ goals and the
literals of argument steps; for this, note that by construction, ArgSteps is

80

a set of argument steps A〈`,t〉 undefeated in TP�A′(A〈`,t〉). Thus, by the
Sub-Arguments postulate, the sub-arguments for arbitrary literals in these
arguments are also undefeated. Hence, all these literals are warranted in
P⊕A′. The literals from goals(πk) with k ≤ n or pre[A∗] are also warranted
in P⊕A′, since they are in G ∪ pre[A′]. Hence, by the Direct Consistency
postulate all these are consistent.

(Sub-case threats(πm) = ∅ and goals(πm) = ∅) In this case, we want to show
that A(πm) = A′. We have

• πm is a plan for M (by the Ind. Hyp.)

• πm satisfies the Terminating Condition (by the Sub-Case assumption),

Thus, we can apply the soundness theorem 2.7.5, and conclude that πm is a
solution for M. Clearly, by construction of A(πm) from Steps (i.e. from A′), we
have that A(πm) ⊆ A′. This, together with the facts that A(πm) is a solution
and that A′ is a ⊆-minimal solution implies that A(πm) = A′.

2.9 Conclusions and Related Work

In the present chapter, we adapted the notion of state transition systems to the
case where t-DeLP is used as the underlying logic. A state, in a t-DeLP state
transition system, is a partial description of a world-line. This state is identified
as the t-DeLP logical closure of a mutex logical program (as defined in Chapter
1).

The planning problems that can be expressed in this framework consist of
a logical program (representing the planner’s beliefs), temporal actions which
the executing agents might try, and temporal goals. Two planning systems were
considered: a rather simple planning system for forward planning; and a more
complex planning system for a backward approach to the generation of plans.
The main contribution is the study of Breadth First Search as an algorithm for
centralized planning. This is shown to be sound and complete in each of the two
t-DeLP planning systems proposed, for forward and backward search.

The advantages of a t-DeLP based planner, in comparison to temporal logics
about actions or temporal planners in the literature, are mainly those inherited
from t-DeLP logic programming (Chapter 1). These advantages consist in natu-
ral representations for common-sense reasoning; and a powerful inference system
for temporal reasoning of this kind.

The combination of t-DeLP logic programming with planning techniques is
largely inspired by the DeLP-based partial order planning (POP) system in [62].
While this planning system is more flexible, due to the use of partially ordered
plans, the underlying logic is less expressive, given the implicit time approach
and hence the absence of temporal reasoning. In addition, we suggest some
natural simplifications on the representation of actions used in [62], which are

81

partly inspired by those in [111]. The resulting actions greatly simplify the
different types of plan threats that can occur and, correspondingly, the types of
threat resolution moves to be defined against them.

In a broader context, the literature on temporal planning is quite rich, though
most proposals are based on a monotonic (and often simple) logical inferences.
As a consequence, the resulting planning systems are unable to address the
ramification problem in full generality. In this category, a number of tempo-
ral planning system have been proposed (see [66], Ch. 14). Among them, some
planners combine can plan space planning (for temporal actions) with CSP tech-
niques for constraint satisfaction of the temporal constraints. See also Chapter
B in the Appendix.

In the literature on logic, [96] shows that planning with linear temporal logic
LTL can be reduced to SAT problems. Some other powerful temporal logics
exist, like CTL∗ [56], which do not address practical reasoning on their own.

The present chapter is also related to logics of actions and logics of time,
provided the t-DeLP planning system includes a state transition system which
can be used for the purpose of reasoning about actions. In this case, similar
remarks as those above for temporal planners can be made for these logics. For
the particular case of the Propositional Dynamic Logic PDL, see for example
[152] for a solution of the frame problem in the expressive PDL formalism.

In contrast, there is not much literature on planning systems whose under-
lying logic is non-monotonic. To our knowledge, the present contribution is the
first proposal combining temporal defeasible logic with planning.

82

Chapter 3

Multi-planner Dialogues for
cooperative planning in
t-DeLP

3.1 Introduction

In this chapter we study a decentralized version of the backward planning al-
gorithm from Chapter 2. Informally, the new algorithm takes the form of a
dialogue among executing agents who wish to find a joint plan for a fixed set of
goals. Moreover, this joint plan should be agreed upon by all the agents. These
dialogues will consist of a set of rounds, with agents taking turns at each round;
at the corresponding turn, the agent will send data to the agent next in line.
See Figure 3.1 for an illustration of these dialogues. Without a central planner
(as it was assumed in Chapter 2), these executing agents must also take the the
role of planners (as well as communicative agents). Being planners themselves,
the agents can contribute to the dialogue by generating their own proposals for
plans and evaluating those from other agents. In the present chapter, we will
study a dialogue protocol for this kind of distributed planning problems.

The present focus, in particular, is on cooperative scenarios where these
planner-executing agents share the same set of goals. In contrast, the agents’
abilities (actions) and knowledge (of the initial state or rules) can differ signif-
icantly among them, at least at the start of the discussion. In the proposed
framework, then, each planner-executing agent is initially endowed with a plan-
ning domain, so a distributed planning problem will be defined by a collection
of these planning domains.

The formal study of the proposed dialogue-based planning algorithm will be
done in comparison with the centralized method from Chapter 2. To this end,
a distributed planning problem (a tuple of planning domains) is translated to a
centralized planning problem (a planning domain) simply by gathering all the

83

Figure 3.1: A representation of the cyclic dialogues for cooperative planning
among a set of agents Ag = {1, . . . , 10}, starting with initial planning domains
〈M0

a〉a∈Ag at turn 0. Here, agent 1 communicates to agent 2, 2 to 3, etc. and
agent 10 to agent 1. Note, for example, that agent 2 speaks at turns 2, 12, 22, . . .,
each time causing an expansion in the planning domains of agent 3.

information of the agents into a unique planning domain for a central planner.
Ideally, solutions agreed upon in a distributed algorithm should be as good as
those obtained from a centralized planning domain.

Briefly, the motivations for a decentralized approach multi-agent t-DeLP
planning is to enable a set of agents Ag with the same interests to

propose, discuss and
reach agreements
upon joint plans

(1) without a central planner

(2) by sharing relevant information only

(3) within the planning phase, (rather than

by merging agents’ individual plans)

Thus, the main motivation for a decentralized approach to t-DeLP (back-
ward) planning, lies beyond (or besides) the usual reasons for decentralized
algorithms, namely, computational efficiency. Agents are now assumed to be
autonomous entities: they reason and act for internal reasons (or towards their
own goals); and in case these abilities prove insufficient or too costly, these agents
can make use of some social abilities to better promote these goals.

Second, centralized methods for autonomous agents might initially involve
massive communication costs, depending on the size of agents’ planning domains;
moreover, most of the communicated data might simply be not relevant for the
planning problem at hand.

Finally, we consider the discussion about plans to occur during the planning
phase. This is not the only approach in the literature, post-planning dialogues

84

for the merging of different agents’ plans have also been studied. The reason
for this is mainly technical: the logical interdependencies between actions and
arguments suggest to discuss a plan after each refinement during its construction
of a plan.

Before offering an informal introduction to the technical aspects of the pro-
posed dialogues, let us expand on the cooperative reading of distributed planning
problems. The practical autonomy of agents assumed above can be considered
with or without a similar autonomy at the level of goals; that is, whether an agent
decides which goals to pursue. The proposed framework is informally presented
under this stronger notion of autonomy, so distributed planning is interpreted as
cooperative planning. Alternatively, the agents might not be autonomous w.r.t.
goals, but simply promote the goals of some external user. Under this alternative
reading, distributed planning can be understood as problems in collaboration.

In a sketch, the proposed dialogue-based algorithm for plan search is as
follows. Each agent is initially endowed with a planning domain Ma =
((Πa,∆a), Aa, G), containing the believed facts and rules (Πa,∆a); a list Aa of
actions available to this agent a; and a set of common goals G. The dialogue is
essentially an exchange of proposals for plan refinements or threats upon a plan.
These proposals are possibly incomplete plan steps or threats, to be completed
or challenged by other agents.

Rather than considering a (turn-based) public discussion, at each turn, the
corresponding agent sends a message only to the next agent in line. This does
not prevent that, during the dialogue, the agents keep continuously expanding
their planning domains with new facts, rules and actions contributed by any
other agent, e.g. in the latter’s own plan proposals. In addition to threats,
irrevocable arguments against a plan step must be communicated separately.
Many potential pre-arguments in these proposals, thus, will not lead to any
real or interesting plan step or threat. But this exchange of (only) potentially
relevant information is the price to pay for the completeness of search algorithms
under the present distributed approach to t-DeLP planning.

Finally, let us remark that only a decentralized approach for backward
t-DeLP planning will be considered. Again, a forward approach is rather trivial
in comparison, in the sense that a dialogue for forward planning (based on Algo-
rithm 1) would essentially decompose into a set of dialogues for query-answering
in t-DeLP, one for each generated plan. (The latter problems were studied in
[135]; see also the related work in Section 3.5.)

Structure of the Chapter

First, a formal description of the problem of distributed plan search is introduced
in Section 3.2. Then, in Section 3.3, we present the type of dialogue proposed to
solve the present problem and show it is well-defined. Finally, in Section 3.4 we
provide soundness and completeness theorems for a planning algorithm based on
such dialogues. Section 3.5 contains a summary of conclusions and a description
of the Related Work.

85

3.2 Distributed and centralized planning do-
mains

In this section we introduce multiple-planner versions of the definitions found in
the previous chapter. For example, each agent a ∈ Ag is now endowed with an
initial planning domain Ma. As we said, we will compare the present distributed
methods with centralized planning, the latter implemented using the single-
planner techniques from Chapter 2.

Definition 3.2.1 (Multi-planner domain; Union of planning domains; Cen-
tralized planning). Given a language TLit and a set of planner agents Ag =
{1, . . . ,m}, let Ma = ((Πa,∆a), Aa, G) be a planning domain in TLit for each
agent a ∈ Ag. Then, we say 〈Ma〉a∈Ag is a multi-planner domain, if

⋃
a Πa is

a consistent set of literals. We also define the component-wise union of two
planning domains, say M1,M2, as follows

M1 t M2 = ((Π1 ∪Π2,∆1 ∪∆2), A1 ∪A2, G)

More generally, we define the centralized planning domain induced by
〈Ma〉a∈Ag, denoted MAg, as the n-ary union of this multi-planner domain:

MAg =
⊔
a∈Ag

Ma = M1 t . . . t M|Ag|

The present focus on collaborative planning can be generalized to altruistic
cooperation, if other agents’ goals are added to each one’s list of goals (if jointly
consistent). For example, we would define M1 t M2 = ((·, ·), ·, G1 ∪ G2), thus
making Definition 3.2.1 a particular case of it with G1 = G2. The techniques
presented in this chapter suffice for altruistic planning. (For a comparison with
the most general case of self-interested multiple-agent planning, see the related
work in Section 3.5.)

Definition 3.2.2 (Expansion). Let M = ((Π,∆), A,G) and M′ =
((Π′,∆′), A′, G′) be planning domains. We say M′ is an expansion of M, de-
noted M v M′, iff for each component Y ∈ {Π,∆, A,G} of M, its counterpart Y ′

extends Y , i.e. Y ⊆ Y ′.

Notice in particular that for any pair M1,M2 we have that M1,M2 v M1 tM2.
The initial differences among agents’ planning domains constitute a new

problem with respect to the single-planner case of Chapter 2. The problem
is that agents need not agree upon the following questions:

(1) whether a given plan step A exists,

(2) whether a sequence π = π∅(A1, . . . ,An) actually defines a plan, or

(3) which plan does this π define (which threats exist, or open goals remain)

86

Disagreements of these kinds are caused, respectively, by: (1) agents ignoring
some of the elements of A (its rules, and the initial facts or actions supporting
its base); (2) by agents ignoring strict information which either can (and should)
replace this plan step, or which contradicts it; and (3) by ignoring some elements
for an existing threat to some step Ak in π; or by ignoring that some open goal
is actually a strict fact as well (hence, a solved goal). Even worse, all the agents
might simultaneously believe that a newly made proposal π is a plan, and be
wrong; and similarly, whether a newly generated plan π has no threats. Only
after enough discussion turns on this question, the agents can decide about these
questions.

A disagreement about an acknowledged plan π = π∅(A1, . . . ,An) stems from
the fact that π gives rise to different triples (actions, trees, goals) when inter-
preted by different planning domains (e.g. by different agents, or by an agent
at different turns). For this reason, from here on we introduce a superscript
notation for interpreted plans πM and distinguish between:

• a plan π, simply denoting a sequence of plan steps

π = π∅(A1, . . . ,An)

i.e., abstracting from any particular M for which π is actually a plan, and

• an interpreted plan πM (or, simply, a plan), denoting the particular result
of computing π in some planning domain M using Definitions 2.5.1, 2.5.3
and 2.5.5

πM = (A(πM),Trees(πM), goals(πM))

Later we will add to these concepts from Chapter 2 a new kind of interpretations
of plans π, namely

• a freely interpreted plan π(M)+ ; this is similar to πM but with dialectical
trees also containing potential threats and a claim on which goals remain
open; again it is a tuple

π(M)+ = (A(π(M)+),Trees(π(M)+), goals(π(M)+))

3.3 Turn-based Dialogues for Cooperative Plan-
ning in t-DeLP

The dialogues will consist in a series of rounds among a set of agents Ag =
{1, . . . , r}. Each agent speaks once in each round, and always to the same agent.
After an initial empty turn 0, the dialogue starts at turn 1 with agent 1 ∈ Ag;
the next agent to speak is simply computed as

f(m+ 1) =

{
f(m) + 1 if f(m) < |Ag|
1 if f(m) = |Ag|

87

At the current turn m + 1, then, the speaking agent is f(m + 1) ∈ Ag, who
communicates a tuple turn(m) to the next agent f(m + 1). The tuple turn(m)
has the following elements:

(Preplansm, Plansm, Trueplansm, Datam)

For a given planning domain Mm = (Pm, Am, G), these components represent
the following sets

• Preplansm = the set of incomplete uninterpreted plans, also denoted
π∅(A1, . . . ,An,A) or π(A); this A is an incomplete argument in the pro-
gram (Pm ⊕ πn)⊕A∗

• Plansm = a set of pairs (π, π(Mm)+), where π is an uninterpreted plan

π∅(A1, . . . ,An); and π(Mm)+ is the free interpretation of π in Mm

• Trueplansm = an interpreted plan πM
m

in a planning domain Mm, that is,
a tuple (actions, trees, goals) computed using Definitions 2.5.3 and 2.5.5;
this interpretation of π in Mm is presumed to be the correct one.

• Datam = a set of auxiliary information: strict facts showing that some
“open goals” are actually solved; or the actions supporting plan steps in
pre-plans

Figure 3.2: A representation of the phases in the turn-based construction of a
plan: Preplansm → Plansm+k → Trueplansm+k+l → Preplansm+k+l+1 and so on.
The labels on the corresponding arrows, e.g. Preplansm → Plansm+k, describe
the conditions for such a transition to occur, e.g. that a pre-plan ha been
completed into a plan. In case this condition fails, following the example, π(A)
will stay as a pre-plan Preplansm+k−1 → Preplansm+k, and agent f(m+ k) will
try to expand A into a plan step.

88

The free interpretation of a plan in some planning domain Mm does include
the (usual) interpretation πM

m

plus existing pre-threats (according to Mm). The
single-planner notion of interpreted plan we considered in Chapter 2 corresponds
to the elements sets of the form Trueplansm.

Definition 3.3.1 (Pre-plan). Given a planning domain M = ((Π,∆), A,G), and
a plan π for M, let A ⊆ Π ∪ ∆ ∪ post[A] be arbitrary and define A∗ = {e ∈
A r A(π) | 〈µe, te〉 ∈ base(A)}. Then, we say that π(A) is a pre-plan for M iff
conditions (i)-(v) from the Def. 2.5.3 hold for A− = Ar base(A) and A∗, when
(ii)-(iii) are replaced by:

(ii) ((((Π⊕ π)⊕A∗) ∪ (base(A)r post[A]),∆) is a t-DeLP program

(iii) A is an argument in this program

We also say that π([Ak, . . . ,Am,B,A]) is a pre-plan for M iff [Ak, . . . ,Am,B] is
a threat, and conditions (i)-(iv) from Def. 2.5.5 hold if we replace (ii) and (iii)
as follows:

(ii) (((Π⊕ π)⊕A∗) ∪ (base(A)r post[A]),∆) is a t-DeLP program

(iii) A is an argument in this program and ∼concl(A) ∈ literals(B)

The tuples (actions, trees, goals) as defined in Defs. 2.5.3 and 2.5.5 are left
undefined for pre-plans.

In this sense, pre-plans are terminal fragments of conceivable plan steps,
which might be completed by other agents into plans.

When a pre-plan π(A) is completed (at turn m) into an apparent plan, say,
π(A+) for some A+ ! A, the resulting plan π(A+) is communicated as an
element in the set Plansm. At this stage, agents communicate interpreted plans,
that is, tuples (actions, trees, goals). The evaluation of such a plan is done
by communicating its pre-threats and solved goals. Pre-threats, similarly to
pre-plans, are terminal fragments of possible threats. They are only required to
attack the corresponding plan step, rather than be a defeater for it, or constitute
with it an argumentation line.

Definition 3.3.2 (Pre-threat). Let a plan π = π∅(A1, . . . ,An) for some plan-
ning domain M = (P, A,G) be given. We say that B ⊆ P⊕ π is a pre-threat for
the plan step [An] or [Ak, . . . ,An] iff

(i) (P⊕ π) ∪ (base(B)r post[A]) is a t-DeLP program, and

(ii) B ∪ base(B) is an argument in this program and ∼concl(B) ∈ literals(An)r
base(An)

This pre-threat will be denoted [An,B] ∈ T +
P⊕π(An) or [Ak, . . . ,An,B] ∈

T +
P⊕π(Ak).

89

In particular, a pre-threat can eventually become a threat for Ak, in which
case it will be included in the usual sub-tree T ∗P⊕π(Ak). In addition to the
above pre-threats, we specifically consider strict pre-threats. These are incom-
plete strict arguments D which, if completed with strict information, prove that
some presumed argument is not so. There are two types of strict pre-threats,
depending on which argument is challenged.

Definition 3.3.3 (Strict threat; Strict pre-threat). Let π∅(. . . , [. . . ,An]) be a
plan for M, and let A be either the last step A = An or a threat to it, i.e.
[Ak, . . . ,An,A] is a threat in M. Let M v M′ = ((Π′,∆), A′, G) be such that
either of the following holds:

(A is not minimal) (literals(A)r base(A)) ∩Π′ = {〈`, t〉, . . .} 6= ∅
(A is not consistent) (literals(A)r base(A)) ∩ {∼〈`, t〉}〈`,t〉∈Π′ 6= ∅
(A is not defeasibly min.) there is B ⊆ Π′ ∪A(π) s.t. (Π′ ∪A(π) ∪ base(B),∆′)

is a program, and B is an argument in it with concl(B) ∈ literals(A)r base(A),

and finally B is not a sub-argument of A

Then we resp. say that B = {〈`, t〉} is a strict threat or that B is a strict pre-
threat (in M′). In the latter case, if moreover B is an argument in the program
P′ ⊕ π, then we also say that B is a strict threat. These strict (pre-)threats will
be denoted [. . . ,A,B] ∈ T +

P⊕π(A) and, resp., [Ak, . . . ,An,A,B] ∈ T +
P⊕π(Ak).

Definition 3.3.4 (Free interpretation). Let Mm+1 = (Pm+1, Am+1, G) be the
planning domain of agent f(m+1) at turn m+1. Assume either that an element

π ∈ Preplansm is a plan for Mm+1, or that (π, π(Mm)+) ∈ Plansm. We define the
free interpretation of π in Mm+1, as the triple

π(Mm+1)+ = (A(π(Mm+1)+), Trees(π(Mm+1)+), goals(π(Mm+1)+)), where

A(π(Mm+1)+) = A(πM
m+1

)

Trees(π(Mm+1)+) = {T +
Pm+1⊕π(Ak) | Ak is an arg. step in π}, with

T +
Pm+1⊕π(Ak) = T ∗Pm+1⊕π(Ak)∪

∪
{

Λ∩[B] is a (strict)
pre-threat for π

:
Λ ∈ T ∗Pm+1⊕π(Ak)

for some Ak

}
∪
{

Λ∩[B,D] is a
(strict) pre-threat

:
Λ∩[B] is a pre-

threat for π

}
goals(π(Mm+1)+) = goals(πM

m+1

)

90

Now we can formally define the messages communicated at each turn m ≥ 0,

turn(m) = (Preplansm,Plansm,Trueplansm,Datam)

from an initially given multi-planner domain 〈M0
a〉a∈Ag. As above, we let Mm

denote the planning domain Mmf(m). These communications are defined by si-
multaneous induction with the updated planning domains Mma of the agents.
Finally, let us remark that if some set or tuple, say of the form Xm, is unde-
fined, it must be read as the empty set Xm = ∅.

turn(0) = (∅, ∅, {π∅}, ∅)

turn(m+ 1) = (Preplansm+1, Plansm+1, Trueplansm+1, Datam+1)

Preplansm+1 = (Preplansm r Preplansm−|Ag|) ∪
∪ {π(A) is a pre-plan for Mm+1

f(m+1) | π ∈ Trueplansm}

Plansm+1 =

(π, π
(Mm+1
f(m+1)

)+

) :

(π, π
(Mmf(m))

+

) ∈ Plansm, or

π ∈ Preplansm+1

and π is a plan for Mm+1
f(m+1)

Trueplansm+1 = Trueplansm ∪

∪

{
π ∈ Plansm+1 is a
plan for Mm+1

f(m+1)

:
(π, π(Mm)+) ∈ Plansm and

π(Mm+1)+ = π(Mm+1−|Ag|)+

}

Datam+1 = Datam ∪ (Πm+1 ∩ goals(π(Mm)+)) ∪

∪

{
e ∈ Am+1 :

〈µe, te〉 ∈ base(A), for some

π(A) ∈ Preplansm+1 r Preplansm

}

M
m+1
a =

{
M
m
a if a 6= f(m+ 2)

(Pm+1
f(m+2), A

m+1
f(m+2), G) if a = f(m+ 2)

where

Am+1
f(m+2) = Amf(m+2) ∪ {e ∈ Datam+1 | e is an action }

Πm+1
f(m+2) ∪∆m+1

f(m+2) = Πm
f(m+2) ∪ ∆m

f(m+2) ∪ {〈`, t〉 | 〈`, t〉 ∈ Datam+1} ∪

Note:

if δ has ←,

δ ∈ Πm+1
f(m+2);

and if δ has −�,

δ ∈ ∆m+1
f(m+2)

δ ∈

Πm+1
f(m+1)

∪
∆m+1
f(m+1)

:

δ ∈ Ar base(A),

for some π(A) ∈ Preplansm+1,

or some Λ∩[A] ∈ T +

P
m+1
f(m+1)

⊕π
(Ak)

in a plan π = π∅(. . . ,Ak, . . .)

with (π, π
(Mmf(m+1))

+

) ∈ Plansm+1

In summary, pre-plans π are generated within the sets Preplans(···). Even-
tually some of them, say at turn m + 1, are seen as plans according to agent

91

f(m+ 1), who moves them to the set Plansm+1 together with her free interpre-

tation of these plans, denoted by pairs (π, π(Mm+1)+). Afterwards, agents search
for threats against their plan steps or against the claim that this π actually de-
fines a plan. If the latter fails to be shown, the plan (including all the threats
detected) is communicated as a true plan, from where it can be further refined.

Data: M0
a;

Result: π; or fail;

initialization: m = 0 and flag = false and turn(0) = (∅,∅, {π∅},∅)
and turn(a− |Ag|) = ∅ and, for a = 1, M1

1 = M0
1;

while turn(m) 6= turn(m− |Ag|) and flag = false do

while f(m+ 1) 6= a do
set Mm+1

a = Mma ;
set m = m+ 1;

end
wait for message turn(m) from agent f(a− 1);
set ToTest = Trueplansm;
while ToTest 6= ∅ and flag = false do

select π from ToTest;
if goals(πM

m
a) = ∅ and threats(πM

m
a) = ∅ then

set flag = true
else

delete π from ToTest
end

end
if flag = false then

set π = undefined
end
compute Mm+1

a ;
compute turn(m+ 1);
send turn(m+ 1) to agent f(a+ 1);

end

Algorithm 3: The algorithm for agent a in the dialogue-based planning
method for t-DeLP backward planning.

In Example 3.3.5 (see below), a decentralized version of Example 2.3.9 is
considered. In this new version, none of the agents start with full knowledge of
the scenario, unlike the central planner from Example 2.3.9. See also Figure 3.3
for an illustration of the two-agent dialogue to solve Example 3.3.5. The plan
steps and threats discussed in this dialogue are the same than in the previous
Example 2.3.9. Below we repeat Figure 3.4 where these elements are depicted.

Example 3.3.5 (Table Lifting; cont’d). We rewrite Example 2.3.9 in the form
of a multi-planner problem with two agents Ag = {a1, a2}. Now the agents also
wish to lift the table without breaking the vase, but they ignore that the other
agent can lift the other side of the table, and more importantly a2 ignores the

92

rule δ7 stating that objects lying in non-horizontal surfaces tend to fall off. The
initial planning domain of each agent Ma = ((Πa,∆a, Aa, G) are defined in terms
of that for the central planner from Ex. 2.3.9.

Πa1 = ΠAg Πa2 = ΠAg

∆a1 = ∆Ag ∆a2 = ∆Ag r {δ7}
Aa1 = {lift.Nt}0≤t<10 Aa2 = {lift.St}0≤t<10

G = {〈lN, 10〉, 〈lS, 10〉, 〈∼b, 10〉}

3.4 Soundness and Completeness of the
Dialogue-based Plan Search algorithm

Before proceeding with the proof for soundness and completeness of the dialogue-
based algorithm, we observe some auxiliary results. First, it can be easily seen
by induction that planning domains keep expanding during the dialogues, always
with elements from other agents, hence from elements in the centralized planning
domain MAg.

Fact 3.4.1. For each turn m and each a ∈ Ag, we have Mma v Mm+1
a and Mma v

MAg.

Lemma 3.4.2. Let π = πn be a plan for two planning domains M′,M, both of
the form ((·, ·), ·, G) and with M′ v M, and moreover satisfying πM

′

k = πMk , for
each k ≤ n. Then, if π(A) is again a plan for both M′,M, we have

A(π(A)M
′
) = A(π(A)M) and goals(π(A)M) = goals(π(A)M

′
)rΠ

Proof. For the identity on actions, let A∗ ⊆ A′ ⊆ A be a ⊆-minimal set of
actions supporting A in M′, that is, satisfying

post[A(πM
′
) ∪A∗] ∪Π′ ⊇ base(A)

Then, notice that

(1) A∗ also supports A in M, that is, post[A(πM) ∪ A∗] ∪ Π ⊇ base(A). The
reason is that A(πM

′
) = A(πM) and Π ⊇ Π′.

(2) A∗ is also ⊆-minimal w.r.t. (1), since Π r Π′ does not contain literals of
the form 〈µe, te〉, in particular, those occurring in base(A).

For the identity claim on goals, consider first the case where A is an argument
step. If we let π = πk = π∅(A1, . . . ,Ak), then note that the assumption πM

′
=

πM implies the identity between previous goals occurring in initial fragments πi.
Then, we have

93

goals(π(A)M)

= (goals(πM) ∪ pre[A∗])r ({〈`, t〉} ∪Π ∪ OldGoals(πM))) (by Def. 2.5.3)

= (goals(πM
′
) ∪ pre[A∗])r ({〈`, t〉} ∪Π ∪ OldGoals(πM)))

(since πM = πM
′

implies goals(πM) = goals(πM
′
))

= (goals(πM
′
) ∪ pre[A∗])r ({〈`, t〉} ∪Π ∪ OldGoals(πM

′
)))

(since π0
M = π0

M′ , . . . , πn
M = πn

M′ implies OldGoals(πM) = OldGoals(πM
′
))

= (goals(πM
′
) ∪ pre[A∗])r ({〈`, t〉} ∪Π′ ∪Π ∪ OldGoals(πM

′
)))

(since Π′ ⊆ Π implies Π′ ∪Π = Π)

= ((goals(πM
′
) ∪ pre[A∗])r ({〈`, t〉} ∪Π′ ∪ OldGoals(πM

′
)))rΠ

= goals(π(A)M
′
)rΠ (by Def. 2.5.3)

For the case where A is a threat resolution move, the proof analogous: just
delete the set {〈`, t〉} ∪ . . . everywhere, and replace Def. 2.5.3 by Def. 2.5.5.

Theorem 3.4.3 (Soundness). Let π be the output of the dialogue-based plan
search algorithm for some given multi-planner domain 〈Ma〉a∈Ag. Then π is a
solution for MAg

Proof. Let πn denote the output sequence πn = π∅(A1, . . . ,An) and as usual
let πk denote its initial fragment πk = π∅(A1, . . . ,Ak). Moreover, let m0 <
. . . < mn be a sequence of turns satisfying πk ∈ Trueplansmk , and with each
mk minimal with this property. These turns mk clearly exist for each πk with
0 ≤ k ≤ n, as can be seen by inspection of the definitions for Trueplans(·) and
the other sets Plans(·),Preplans(·).

The proof is by induction on the length k (of the initial fragments πk). For
each planning domain M satisfying Mmk v M v MAg we show the next claims:

(1) πk is a plan for M (2) πk
Mmk = πk

M = πk
MAg

(Base Case k = 0) Note that m0 = 0. Now, claim (1) is obvious, since
π0 = π∅

M = (∅,∅, G) is a plan for any planning domain M of the form
M = ((·, ·), ·, G); this includes all the planning domains generated in the dialogue
and more generally any of the planning domains M satisfying M0

a v M v MAg.
Claim (2), follows from the fact that each interpretation of plan π0 is (∅,∅, G)
among all these planning domains.

(Ind. Case k ⇒ k+ 1) Assume (Ind. Hyp.) that (1) and (2) hold for π0, . . . , πk,
and arbitrary domains M such that Mmk v M v MAg. We show that (1)
and (2) hold for the plan πk+1 ∈ Trueplansmk+1

and any planning domain
M satisfying Mmk+1 v M v MAg. Let then M be an arbitrary planning of this form.

Claim (1). Note that mk < mk+1 implies Mmk v Mmk+1 , so by the Ind. Hyp.
we have in particular that πk is a plan for M. The proof that πk+1 is also a plan
for M is by cases, depending on which type of plan step Ak+1 is. In fact, we
only show the case where Ak+1 is an argument step, since the proof for the case

94

of a threat resolution move Λ = [Ai, . . . ,B,Ak+1] is entirely similar. (Below we
point out the necessary adjustments for the latter proof.)

(Case Ak+1 is an argument step) We check that πk(Ak+1) and M satisfy Def-
inition 2.5.3. Let m′ with mk < m′ < mk+1 be the turn where πk+1 first
occurs in Plansm′ (clearly, this m′ exists by definition of Trueplansm+1, etc.).

Moreover, πk+1 is a plan for Mm
′

(i.e. it satisfies Def. 2.5.3), given by the ele-
ments: A−k+1 = Ak+1 r base(Ak+1) ⊆ Πm′

f(m′) ∪ ∆m′

f(m′); and some appropriate

set A∗ ⊆ Am′ .
First, we need to check that concl(Ak+1) is an open goal in the plan πMk . By

the Ind. Hyp. on claim (2), we have that the goal 〈`, t〉 = concl(Ak+1) ∈
goals(πk)M

mk is also in goals(πk)M
mk+1

. To check that this goal is also in
goals(πk)M, assume the contrary: 〈`, t〉 /∈ goals(πk)M. Using Lemma 3.4.2, the
last two claims imply that 〈`, t〉 ∈ Π. But since Π ⊆ ΠAg =

⋃
a∈Ag Π0

a, we obtain

that 〈`, t〉 ∈ Π0
a for some a ∈ Ag. Now, the assumption πk+1 ∈ Trueplansm+1

implies that

π
(Mmk+1−|Ag|)+

k+1 is defined, so

(πk+1, π

(Mmk+1−|Ag|)+

k+1) ∈ Plansmk+1−|Ag|

...

(πk+1, π
(Mmk+1)+

k+1) ∈ Plansmk+1

In particular, (πk+1, π
(Mm

′′
)+

k+1) ∈ Plansm′′ for some such mk+1 − |Ag| ≤ m′′ ≤
mk+1 satisfying f(m′′) = a. The latter implies that Datam′′ , 〈`, t〉 ∈ Datam′′ ⊆
Datamk+1−1, so finally {〈`, t〉 | 〈`, t〉 ∈ Datamk+1−1} ⊆ Πmk+1 , contradiction.

Second, not only πk is a plan for M, but also the above elements A−k+1 and

A∗ exist in M. The latter is seen by Mm
′ v Mmk+1 v M.

Finally, it only remains to check that conditions (i)-(v) from Def. 2.5.3 also
hold for the planning domain Mmk+1 and the same elements πk, A−k+1 and A∗.

(i) A(πk
M) ∪A∗ is non-overlapping, since by the Ind. Hyp. on (2), this set is

identical to A(πk
Mm
′

f(m′)) ∪A∗, which is non-overlapping for each a ∈ Ag.

(ii) (P⊕πk)⊕A∗ is a t-DeLP program; this follows from the fact that Π ⊆ ΠAg

and the latter is consistent, so Π must be consistent as well. The addition
of arbitrary elements 〈µe, te〉 from actions preserves this consistency.

(iii) Ak+1 is an argument for 〈`, t〉 in this program; that Ak+1 ⊆ ((Π ⊕ πk) ⊕
A∗)∪∆ was essentially shown above. We check the conditions (1)-(4) from
Def. 1.3.5:

(1) (Ak+1 ∩∆) ∪ (Π ⊕ πk) ` 〈`, t〉; this is preserved from Mm
′
, where it

holds by assumption, and the fact Mm
′ v M;

(2) Π ∪ (Ak+1 ∩ ∆) is consistent ; for this, assume the contrary, that
is, some 〈`′, t′〉 exists in ∼literals(Ak+1) ∩ Cn(Π). Let then B be a

95

strict argument for this 〈`′, t′〉. Clearly, B must consist of a strict
fact 〈`0, t0〉, and possibly a unique mutex rule δ. Consider the former
case. Since 〈`0, t0〉 ∈ Π ⊆ ΠAg, let j < |Ag| be minimal with the
property 〈`0, t0〉 ∈ Πf(m′+j). Then [Ak+1,B] ∈ T +

Pm′+j⊕πk+1
(Ak+1).

Clearly, m′ + j < mk+1, so B is a strict argument in Pmk+1 ⊕ πk+1,
and hence πk+1 is not a plan for Mk+1, contradicting the assumption
πk+1 ∈ Trueplansmk+1

. The proof for the case B = {〈`0,t0〉, δ} for

some mutex rule δ is similar, now Pm
′+j containing δ, and defining

some j′ with j ≤ j′′ ≤ |Ag| such that B is an argument in Pm
′+j′ .

(3) Ak+1 ∩ ∆ is ⊆-minimal w.r.t. (1)-(2); for (1), the proof is similar
to the previous of (2), but instead of building a strict argument for
the negation of some (defeasibly derived) literal in Ak+1 we build the
strict argument for one of these literals. For (2), the ⊆-minimality of
Ak+1 is obvious.

(4) Ak+1 ∩ Π is ⊆-minimal satisfying (Ak+1 ∩ ∆) ∪ (Ak+1 ∩ Π); Again
the proof is similar, the strict argument now is an argument for some
of the strictly derived literals within Ak+1.

(iv) A∗ is ⊆-minimal w.r.t. (iii). By definition of A∗ in Mm
′
.

(v) this consistency condition from Def. 2.5.3 is the exactly the same between
Mm

′
(where it holds by assumption) and the arbitrarily selected M (note

that the two sets of previous goals are the same because of the Ind. Hyp.
for (2)).

Claim (2). The identity πk+1
Mmk+1

= πk+1
M = πk+1

MAg for an arbitrary planning
domain M with Mmk+1 v M v MAg is shown at the level of their components:
actions, sub-trees and open goals.

For actions, note that the Ind. Hyp. for (2) implies A(πk
Mk) = A(πk

Mk+1

) =
A(πk

M) = A(πk
MAg), since Mk v Mk+1 v M v MAg. On the other hand, by

the previous claim (1) in the inductive case, we know that πk+1 is a plan for
arbitrary M with Mmk+1 v M v MAg. The latter two facts jointly permit to apply
Lemma 3.4.2 and conclude that A(πk+1

Mmk+1
) = A(πk+1

M) = A(πk+1
MAg), for

arbitrary M with Mmk+1 v M v MAg.
For goals, we again apply Lemma 3.4.2 to first obtain that goals(πk+1

M) =
goals(πk+1

M)rΠ, so if this set is not the same that goals(πk+1
Mmk+1

), then the
latter contains some 〈`′, t〉 ∈ ΠrΠmk+1 . Using Π ⊆ ΠAg, we can reason similarly
to the above proof that concl(Ak+1) ∈ goals(πk+1

M) in claim (1), and reach a
contradiction: 〈`′, t′〉 ∈ Datamk+1−1 ⊆ Πmk+1 .

For sub-trees T ∗P⊕πk+1
(A). Note first that the set of arguments A

for which these sub-trees are defined are the same than those existing in

Trees(πk+1
Mm
′

). And the latter trees are defined for the same than those sub-
trees T +

Pm′+j⊕πk+1
(A), for any j ≤ mk+1 − m′. Let then A be an arbitrary

argument step.
(Sub-Case Ak+1 6= A) Note first that the argumentation lines of the

form [A, . . . ,B] are the same between the full trees T
Pmk+1⊕πk+1

M
mk+1 (A) and

96

TP⊕πk+1
M(A), for any M with Mmk+1 v M v MAg. To see this, assume the con-

trary.
First, suppose that some threat [A, . . . ,B] exists in πk+1

Mmk+1
but not in

πk+1
M. Clearly, this B is not a strict argument, since A exists in Pmk+1 . The

absence of this threat [A,B] in πk+1
M can only mean that B is not an argument

in P⊕ πk+1. Since Pmk+1 is piecewise included in P, and the derivability of B is
obviously preserved, one of the conditions (2)-(4) from Def. 1.3.5 must fail. This
can only mean that a strict argument C exists either with ∼concl(C) ∈ literals(B),
or with concl(C) ∈ literals(B). In either case, this C is a strict pre-threat for B.
Moreover, it can be shown as usual that B will have been built before mk+1, so
[A,B, C]T +

Pm′+j
(A), for some m′ + j < mk+1, so by def. of Mmk+1 , C must exist

in Pmk+1 ⊕ πk+1, thus contradiction the assumption that [A,B] is a threat in
πk+1

Mmk+1
.

Second, suppose that a threat [A,B] exists in πk+1
M but not in πk+1

Mmk+1
.

We show the latter is impossible. Define Ba = B ∩ ((Π0
a ⊕ πk+1) ∪∆0

a), and for
each 0 ≤ j < mk+1 −m′ inductively define

Bj = the largest terminal fragment of B with Bj ⊆ Bf(m′+j) ∪
⋃
j′<j Bj

′

It is routine to check, for each such j, that Bj ⊆ (Πm′+j ⊕ πk+1) ∪ ∆m′+j ,
so [Ak+1,Bj] ∈ T +

Pm′+j⊕πk+1
(Ak+1); in addition, it can be seen that

πk+1
(Mm

′+j)+ 6= πk+1
(Mm

′+j−|Ag|) –using an argument similar to the above
for the claim concl(Ak+1) ∈ goals(πk

M). Thus, B is a strict argument in
Pmk+1 ⊕ πk+1, and hence πk+1 is not a plan for Mk+1, contradicting the
assumption that πk+1 ∈ Trueplansmk+1

.

(Sub-Case Ak+1 = A.) This case is the same as above, except that threats
are now of the form [A,B]. In addition, though, we must also rule out the
existence of a strict pre-threat B against A itself. But again, the proof of this is
as usual, showing that such B would have been built before the turn mk+1, in
the corresponding T +-trees.

(Case Ak+1 is a threat resolution move) As we mentioned, the proof for
this case is analogous to the former case, but now with a plan step of the form
[Ai, . . . ,B,Ak+1]. The major change is that we use the Ind. Hyp. for the identity
Trees(πk

Mmk+1
) = Trees(πk

M), rather than for goals(πk
Mmk+1

) = goals(πk
M), to

show that [Ai, . . . ,B] exists, so [Ai, . . . ,B,Ak+1] is a plan step for πk.
This concludes the inductive proof for claims (1) and (2). We complete the

proof for the theorem using these claims.
As a particular case of (1)-(2), πn is a plan for MAg. To see that this plan π

is a solution for MAg, recall that π satisfies the Terminating Condition for Mmn .
Hence, on the one hand we have that goals(πM

mn
) = ∅. This, together with

Lemma 3.4.2 implies that

goals(πMAg) = goals(πMn)r MAg = ∅r MAg = ∅

On the other hand,

97

threats(πMAg)

= {Λ ∈ T ∗PAg⊕πn(Ak) | 1 ≤ k ≤ n and Ak is an arg. step}
= {Λ ∈ T ∗Pmn⊕πn(Ak) | 1 ≤ k ≤ n and Ak is an arg. step}

(by the above claim (2))

= threats(πM
mn

)

= ∅ (since π satisfies the Terminating Condition in Mmn)

Hence we conclude that πn is a plan for the planning domain MAg, and moreover
that it satisfies the Terminating Condition. Now, using the proof of the Sound-
ness Theorem 2.7.5 we conclude that the output π is a solution for MAg.

From the previous Soundness Theorem, it can also be seen that the output
is a solution for the resulting planning domain of each agent a ∈ Ag.

Corollary 3.4.4. Let 〈Ma〉a∈Ag be a multi-planner domain, and let πn be the
output of the dialogue-based algorithm for this 〈Ma〉a∈Ag. Assume that πn ∈
Trueplansmn with mn minimal with this property. Then

• πn ∈ Trueplansmn ∩ . . . ∩ Trueplansmn+|Ag|−1, and

• πn is a solution for any Mmn+j
f(mn+j) with 0 ≤ j < |Ag|

Finally, we conclude the study of the dialogue-based algorithm by showing
that it is complete.

Theorem 3.4.5 (Completeness). Let 〈Ma〉a∈Ag be a multi-planner domain. If a
solution A′ exists for the centralized domain MAg, then the dialogue-based algo-
rithm terminates with an output.

Proof. From the assumption that a ⊆-minimal solution A′ exists, i.e. G ⊆
warr(PAg � A′), we first proceed as in the proof of the Completeness Theo-
rem 2.8.1 (now for MAg). Thus, from the set of actions A?, we obtain the
sets Lines,Steps,Threats, and also a sequence π∅(A1, . . . ,An) where Steps =
{A1, . . . ,An}. Using Theorem 2.8.1, we know that A(πn

MAg) = A′ and
goals(πnMAg) = ∅ and threats(πn

MAg) = ∅.
From this point, and the base fact π∅ ∈ Trueplans0, the next two claims can

be shown by induction on k:

(1) for each k < n and turn mk such that πk ∈ Trueplansmk , there exists a
finite m′ > mk such that πk(Ak+1) ∈ Plansm′

(2) for each k ≤ n and turn m′ > mk such that πk+1 ∈ Plansm′ , there exists a
finite mk+1 > m′ such that πk+1 ∈ Trueplansmk+1

.

Claim (1) can be shown analogously to the proof for the construction of pre-
threats in Theorem 3.4.3. Claim (2) is a combination of proofs similar to those
for the construction of pre-threats and open goals in Theorem 3.4.3.

98

It only remains to check that πn satisfies the Terminating Condition for Mmn ,

but this follows from the above claims goals(π
MAg
n) = ∅ and threats(π

MAg
n) = ∅

and the facts that

goals(πn
Mmn) = goals(π

MAg
n) threats(πn

Mmn) = threats(π
MAg
n)

These two facts are shown as in Theorem 3.4.3.

3.5 Conclusions and Related Work

In this chapter, we extended the centralized planning algorithms for multiple
agents from Chapter 2 to planning by multiple agents. The soundness and com-
pleteness theorems for the proposed dialogue-based planning algorithm show,
informally, that the dialogue terminates with agents agreeing upon some joint
solution plan. In summary, the novelty of the present approach is the combina-
tion of: temporal reasoning, temporal planning, and decentralized planning for
multi-agent systems.

Notice that these results involved informal notions of group or common
knowledge, which cannot be formally studied within t-DeLP. These concepts,
in contrast, have been systematically studied in the area of dynamic epistemic
logic. In particular, in Part II of this thesis some of these studies are extended
to planning problems involving these epistemic notions.

Multi-agent collaborative planning has been a topic of recent interest within
the areas of planning, multi-agent systems and argumentation. The literature
on planning (and more generally search) has been studying distributed versions
of the corresponding algorithms for standard planning systems, e.g. [82].

All these distributed versions assume a collaborative approach, as we did for
the present chapter. Most proposals divide into those addressing the problem
of coordination after planning and those addressing coordination during the
planning phase (see also [34] for the problem of coordination before planning).
The present approach belongs to the second class where coordination of agents’
actions, beliefs and plans takes place during the construction of plans.

Multi-agent argumentation is also related to the present framework. Among
the argumentation tools used to solve single-agent planning or practical reason-
ing problems, some are based Dung’s abstract argumentation [52].This has been
used for reasoning about conflicting plans and generate consistent sets of goals
[5, 79]. Further extensions of these works distinguish between belief arguments
and goals arguments and include methods for comparing arguments based on
the worth of goals and the cost of resources [124]. In any case, none of these
works apply to a multi-agent environment. The work in [21] presents a dialogue
based on an argumentation process to reach agreements on plan proposals. Un-
like our focus on an argumentation-based construction of plans, this latter work
is aimed at handling the interdependencies between agents’ plans. Also related
to the present work are the studies in multi-agent argumentation based on dia-
logues. See [126] for a complete review, and [135]for the particular case of DeLP.

99

This paper studies dialogues for distributed query answering problems in DeLP.
Let us remark that in general multi-agent argumentation is a particular case of
multi-agent planning (based on argumentation). The t-DeLP version of prob-
lems in dialogue-based query-answering in a logic program [135], for example,
can be seen as problems of distributed planning where the initial state is the
logic program, the query is the goal and the set of actions is empty.

In addition, logical approaches to the problem of multi-agent planning and
communication can also be found in the literature. Among them, [73] addresses
the present problem in a belief-desire-intention modal logic. On the other hand,
theories in first-order logic have also been suggested to model scenarios with
collaborative planning [48]; this work models the actions of communication and
planning in the style of the Situation Calculus.

Finally, several related proposals, instead, address the most general case
of multi-agent planning, where conflicting interests might exist. For this class
of problems, called adversarial planning, the tools presented here are clearly
insufficient: dialogues might in the general case involve strategically-minded
agents, which need not be fully cooperative in communication (they might lie or
simply not share relevant information). Most of the contributions addressing this
kind of multi-agent planning problems adopt a game-theoretic approach. This
is the case, for example, for multi-agent classical planning [89], and multi-agent
STRIPS [29].

The present work is closely related to [110], [111] and [104].

100

Table 2. Dialogue corresponding to Example 3.3.5.
turn informal dialogue formal dialogue
0, – The empty plan π∅ is available. π∅ ∈ Trueplans0

1, a1 Lets say the vase does not break. π1 ∈ Preplans1

But if the table is non-horizontal, and (π1, π
(M1

1)+

1) ∈ Plans1 with

the vase is on it, the vase will break! [A1, {δ6, δ7}] ∈ T +
P1
1⊕π1

(A1)

(a2 now learns δ7)

I might lift.N at t = 9. π4 ∈ Preplans1

2, a2 I might lift.S at t = 9. π5 ∈ Preplans2

3, a1 We agree that π1, π4 are plans. π1, π4 ∈ Trueplans3

4, a2 We agree that π5 is a plan. π5 ∈ Trueplans4

You might lift.N at t = 9 on π1. π14 ∈ Preplans4

Or I might lift.S at t = 9 on π1 or π4. π15, π45 ∈ Preplans4

In π14 the vase will break! [A1,B1] ∈ T +
P5
1⊕π14

(A1)

In π15 the vase will break! [A1,B2] ∈ T +
P5
1⊕π15

(A1)

5, a1 I might lift.N at t = 9 on π5. π54 ∈ Preplans5

6, a2 We agree that π15, π45 are plans. π15, π45 ∈ Trueplans6

7, a1 You might lift.N at t = 9 on π15 π154 ∈ Preplans7

In π154, the vase will break! [A1,B1], . . . ∈ T +
P7
1⊕π154

(A1)

We agree that π54 is a plan. π54 ∈ Trueplans7

...
...

...
9, a1 We agree that π154 is a plan. π154 ∈ Trueplans9

10, a2 [A1,B1,A3] solves threat in π154. π1543 ∈ Preplans10

{δr} (r ∈ {1, 2}) is a pre-threat for A3. [A1,B1,A3, {δr}],
[A1,B2] in π1543 is not yet solved. [A1,B2] ∈ T +

P10
2 ⊕π1543

(A1)

...
...

...
12, a2 We agree that π1543 is a plan. π1543 ∈ Trueplans12

13, a1 [A1,B2,A3] solves threat in π1543. π15433 ∈ Preplans13

{δr} (r ∈ {1, 2}) is a pre-threat for A3. [. . . ,A3, {δr}] ∈ T +
P10
2 ⊕π15433

(A1)

...
...

...
15, a1 We see that π15433 is a plan. π15433 ∈ Trueplans15

(And I think π15433 is a solution.) Terminating Cond. in M15
1 .

16, a2 (I think that π15433 is a solution.) Terminating Cond. in M16
2 .

Figure 3.3: Dialogue for a decentralized version of Example 2.3.9. The notation
used for (pre-)plans is, e.g., as follows: πmnk denotes a plan π∅(Am,An,Ak).

101

Figure 3.4: A representation of Example 2.3.9. (Left) A solution plan based on
two simultaneous lifting actions at the interval [t − 1, t]. (Right) A failed plan
where agents non-simultaneously lift the table.

102

Part II

Planning in Dynamic
Epistemic Logics

Introduction

The second part of this thesis is devoted to the study of backward planning in
Dynamic Epistemic Logics, and in particular to a family of these logics, called
Logics of Communication and Change (LCC). These logics contain dynamic
modalities for agents’ actions and epistemic modalities for agents’ beliefs. The
combination of these two types of modalities permits to reason about the effects
of actions both upon the world and the minds of the agents. For example, a
physical action like closing a door has physical effects the door is closed and
epistemic effects this agent knows that the door is closed. The latter effects de-
pend on the epistemic opportunities of the agents and their sensing capacities.
This epistemic dimension is even more important in purely epistemic actions,
traditionally not considered in the literature on planning. Purely epistemic ac-
tions include communicative actions between agents, or these agents’ sensing
actions. These actions have in common that, while their physical effects are
negligible, they can have important consequences upon the behavior of self-
motivated agents through changes in their belief systems.

In contrast to Part I, then, the present logics already contain all the elements
of the (corresponding) state transition systems. Precisely, the Kripke semantics
of any of these logics is indeed such an (epistemic) state transition system. It is
also noteworthy that each such logic axiomatically characterizes the behavior of
all the actions existing in the language of this logic.

For this reason, it seems natural to extend the study of dynamic epistemic
logics into that of planning systems based on these logics. In these planning
systems, the planner agent can pursue epistemic goals, e.g. to learn something
that another agent might know, or she can pursue traditional physical goals, e.g.
to obtain someone’s wallet but in a way that takes agents’ beliefs seriously, e.g.
to obtain someone’s wallet without their knowledge. In any case, the planner
agent is able to decide what to say, where to look upon, and what to do in order
to satisfy these goals. The scenarios that can be addressed by such a planner
agent can be considerably complex in terms of social interactions.

Chapter 4 briefly reviews some dynamic epistemic logics in the literature, and
presents the Logics of Communication and Change [139] with some detail. Then
in Chapter 5, we study first algorithms for a planning system based on the Logics
of Communication and Change. The planning system that immediately results
from an LCC logic is deterministic, since so are the atomic actions definable in
this family of logics. A Breadth First Search algorithm for plan search is studied
and shown to be sound and complete.

In order to obtain a non-deterministic planning system, in Chapter 6 we
study first an extension of LCC logics with choice and composition of actions.
Finally, a Breadth First Search algorithm for strong non-deterministic planning
is proposed in Chapter 7. This algorithm is shown to be sound and complete.

105

Chapter 4

Logics of Communication
and Change

Dynamic Epistemic Logic is a recent area of interest in logics of multi-agent sys-
tems, focusing on the notions of action and belief, and the interactions between
these two notions. Logics for agents with epistemic and communicative abili-
ties have been developed in the last decades, ranging from epistemic logic (for
individual, group or common belief or knowledge), to logics of announcements
(public or private, truthful or lying), and finally incorporating ontic actions (i.e.
physical or world-changing actions). All these logics have been unified within
the single framework of Logics for Communication and Change [139].

After reviewing examples in epistemic logic and the logic of public announce-
ments, the chapter describes the Logics of Communication and Change LCC,
introduced by van Benthem, van Eijck and Kooi in [139]. This is a family of
expressive dynamic epistemic logics capturing most of the previous work under a
general model for actions. The action model for any such LCC logic can describe
how the actual execution of an action is perceived by the agents, much like epis-
temic logics describe how the actual world is perceived by the different agents.
The present chapter describes in detail the semantics and also the syntactic
tools for the logics LCC. These tools will be later used in Chapter 6 to extend
the LCC logics with program constructors, and in Chapters 5 and 7 to define
plan search algorithms for planning. In this work, a general (translation-based)
method provides a complete axiomatization.

Structure of the Chapter

In Section 4.1 we motivate this chapter by informally reviewing some semantics
and examples from the literature on Epistemic Logic and Dynamic Epistemic
Logic. After this, we proceed with a brief description of the Logics of Commu-
nication and Change from [139], including the definitions and basic results used
in later chapters. This includes Section 4.2, where an epistemic reading of PDL

107

is considered, later used as the static base for LCC logics. Then, action models
are introduced in Section 4.3. Finally, in Section 4.4, we present the syntactic
tools and the reduction axioms that show the soundness and completeness of
the LCC logics. We conclude this chapter with a list of some related work in
dynamic epistemic logic, in Section 4.5. Except for the introduction in Section
4.1 and Lemma 4.4.3, this chapter entirely based on [139].

4.1 Introduction

Logic can be described as the study of valid inference in a language of propo-
sitions. Or, put negatively, a logic studies what propositions are compatible
with some set of propositions in the language, e.g. a knowledge base of some
agent. In the case of (multi-agent) epistemic Logic EL, both the agent and its
knowledge base are made explicit and distinguished from (an external perspec-
tive on) the scenario or world. The above negative description of logic in terms
of compatible propositions or possibilities, represents the agents’ ignorance on
the corresponding issues. Thus, one can reason about the epistemic possibilities
still open to an agent, about other agents (their own epistemic possibilities) or
about the world facts.

Epistemic Logic

Epistemic logic EL [76] is a formal study of the notions of knowledge and belief.
A standard framework in the study of epistemic (or doxastic) logics is that of
modal logic [40].

In (dynamic) epistemic logic, the language contains terms for each agent a
in a finite set Ag, in addition to the usual set of atoms Var. These terms are
used, in epistemic logic, as modalities [a]ϕ expressing that agent a knows that ϕ,
(again, one modal operator [a] exists for each agent a ∈ Ag). These logics can
be extended with modalities for common knowledge [C] or relativized common
knowledge [Cϕ], though we will introduce them later.

Epistemic logics are used to model snapshots of epistemic notions (knowl-
edge, belief) at a given moment; see Fig. 4.1 (a)–(c) for examples of epistemic
snapshots.

Example 4.1.1. An illustration of the epistemic scenarios from Figure 4.1. (a)
A single agent Ag = {a} is considered; and also a single atom p ∈ Var. Two
worlds in W suffice for this example, which are labeled with the formula p or ¬p
true at each world. The actual world is represented with an underlined formula,
i.e. p. In the actual world, p holds but the agent wrongly believes that ¬p
(the horizontal arrow); moreover, a pictures himself as knowing that ¬p in this
world (the reflexive arrow). For example, let p = the agent is poor, and let
agent a ignore that some change took place, e.g. his bank has gone bankrupt.
(b) A similar scenario, with two agents a, b. Agent b, the bank accountant,
(knows that he) is the only one to know that p. (c) Rumors about the bank
have been circulating, that would imply p. Agent b knows that p and that a

108

has some opinion about it; whatever this opinion is, a is assumed to take his
own opinion as being common knowledge. Actually, a has not heard about the
rumors and still believes that ¬p. (d) Finally, agent a learns about the rumors;
he now ignores whether p, but knows that b knows the answer (top); after a
(trusted) truthful public announcement that p, it becomes common knowledge
that p (bottom). This announcement, denoted p! in the figure, corresponds to
the dynamic operator [p] in PAL-RC

Figure 4.1: An illustration of some scenarios in (dynamic) epistemic logics. (a)
single-agent EL; (b)-(c) multi-agent EL; (d) public announcement logic PAL.

Definition 4.1.2 (Epistemic Language; Model; Semantics). The language of
epistemic logic EL is a set of formulas defined by

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [a]ϕ

An epistemic model is a tuple 〈W, 〈Ra〉a∈Ag, V 〉 containing a set of worlds W 6=
∅, accessibility relations Ra ∈ W ×W for each agent a ∈ Ag, and a valuation
map V : VarW → {0, 1}. The semantics M,w |= ϕ for a given model M and
formula ϕ are the usual for p, ∧ and ¬. For [a]ϕ,

M,w |= [a]ϕ iff for all w′ ∈W , Ra(w,w′) ⇒ M,w′ |= ϕ

The set {w ∈W |M,w |= ϕ} is also denoted [ϕ]
M

.

The expression 〈a〉ϕ denotes ¬[a]¬ϕ. The symbols→,∨,↔,>,⊥ are defined
as usual from {¬,∧}. See Figure 4.2 for a list of axioms for the logics of knowledge
S5 and belief KD45.

The axiom system for knowledge (S5) corresponds to models where each Ra
is an equivalence relation. The logic of belief (KD45) corresponds to models

109

Taut propositional tautologies

(K) ` [a](ϕ→ ψ)→ ([a]ϕ→ [a]ψ) distribution of [a] w.r.t. →
(T) ` [a]ϕ→ ϕ truth

(D) ` [a]ϕ→ 〈a〉ϕ seriality

(5) ` [a]ϕ→ [a][a]ϕ positive introspection

(4) ` ¬[a]ϕ→ [a]¬[a]ϕ negative introspection

(Nec) From ` ϕ infer ` [a]ϕ necessitation

(S5) = Taut + K + T + 5 + 4 + Nec logic of knowledge

(KD45) = Taut + K + D + 5 + 4 + Nec logic of belief

Figure 4.2: (Top) Axioms for epistemic logics. (Bottom) Axiom systems for the
logics of knowledge and belief.

where Ra is transitive, serial and Euclidean. Thus, knowledge requires truth T,
while belief requires consistency D (which is equivalent to ¬[a]⊥).

Note that epistemic logic describes agents who are ideal reasoners (in this
logic), in the sense that they always know what is the logical closure of their
beliefs (or, at least, that they can instantly know if a proposition follows from
the explicit beliefs).

Group or common notions of knowledge and belief are natural concepts in
certain scenarios (conventions, or commonly held beliefs in some community).
Group knowledge that ϕ occurs when each agent in Ag knows the same proposi-
tion ϕ. They can of course wrongly fear that the others do not believe so. Or, in
contrast, ϕ can be publicly assumed, in which case there is common knowledge
that ϕ. These notions also occur in the models of epistemic logic.

Example 4.1.3. In Fig. 4.1 (b), the agents depicted in the non-actual ¬p-
world have common knowledge that ¬p. Since the actual world is p, though,
this common knowledge can at most be belief. Moreover, b does not believe it,
so it is not even common belief. In summary, there is only a wrong belief by a
that ¬p is common knowledge.

The above language of multi-agent epistemic logic EL does not contain modal
operators for group or common knowledge (or belief) among all or some sub-
group of agents in Ag. In these logics, group knowledge that ϕ can be expressed
with a conjunction

∧
a∈Ag[a]ϕ but common knowledge that ϕ can only be ex-

pressed by an infinite conjunction or set of sentences:

common knowledge that p = {p, [a]p, [b]p, [a][b]p, [b][a]p, . . .}

Epistemic logic EL has been extended with modal operators for common knowl-
edge and, more generally, relativized common knowledge (see below).

110

Dynamic Epistemic Logic

In some scenarios, one might also be interested in modeling information change,
rather than just an information state given by some EL-model.

Example 4.1.4. In the top line of Fig. 4.1(d), agent a ignores whether p or
¬p. This state of ignorance turns into a state of common knowledge that p after
an announcement that p, denoted p! (or [p] in the PAL-RC logic below). The
new state is depicted at the bottom of Fig. 4.1(d). The same epistemic state
results if agent a publicly observes that p. In either case, b does not learn any
new world fact. This agent only updates her knowledge of the epistemic facts.

Since agents are ideal reasoners, information change can only be caused by an
external action (or event). In dynamic epistemic logic, the transitions between
any two epistemic states caused by a given action are captured with a dynamic
modality.

The kind of communicative or sensing actions modeled in dynamic epistemic
logics, e.g. PAL, are typically those that correspond to an expansion of the
agents’ knowledge or beliefs,1 rather than, say, a revision of this information
(like a transition between (b) and (d) from Fig. 4.1). Epistemic actions that
cause such expansions in the information of agents are simply represented by
world-elimination techniques, as in Fig. 4.1(d).

In the logics of (true) public announcements PAL [117, 65], for example,
all agents publicly receive and accept some (true) announcement that ϕ. An
announcement made during a meeting is public if all the agents in Ag attend
this meeting. An extension of PAL with a relativized form of common knowledge,
called PAL-RC is studied in [139].

Definition 4.1.5 (Language of PAL-RC; Semantics). The language of public
announcements with relativized common knowledge, PAL-RC consists in

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [a]ϕ | [Cϕ]ψ | [ϕ]ψ

The semantics of EL extends to that of PAL-RC with the new cases:

M,w |= [Cϕ]ψ iff each [ϕ]
M

-path from w ends in [ψ]
M

M,w |= [ϕ]ψ iff M,w |= ϕ implies M|ϕ, w |= ψ

where M|ϕ = (W ′, 〈R′a〉a∈Ag, V ′) is defined by

W ′ = W ∩ [ϕ]M , R′a = Ra ∩ (W ′ ×W ′), V ′(p) = V (p) ∩W

Common knowledge that ϕ is defined as the formula [C>]ϕ.

In Figure 4.1 (d), after this announcement that p, all ¬p-worlds in the top
model M are eliminated so as to obtain a new model M|ϕ that only contains the
p-worlds from M .

1From this chapter on, we will use epistemic to refer indistinctly to knowledge and belief.

111

The logic PAL is defined only by the modalities for knowledge [a] and an-
nouncements [ϕ]. The extensions of the logics EL and PAL with common knowl-
edge [C>] are called EL-C and PAL-C. See [139] for the axioms of PAL-RC
(generalized in those of LCC below), and for a classification of all these logics
between EL and PAL-RC in terms of expressivity.

Announcements are partial in the sense that they cannot be executed in ar-
bitrary states. For example, truthful announcements that ϕ can only be made
in those worlds where the content ϕ holds. As a result 〈ϕ〉> is not valid. More-
over, announcements are functional, in the sense that |= 〈ϕ〉ψ → [ϕ]ψ. As a
consequence, they can be seen as deterministic actions (in terms of epistemic
effects).

Logics of announcements PAL, PAL-RC, LCC, etc. ([17, 145, 85, 139])
are in general not closed under uniform substitution, see [77]. That is, some
valid formulas for truthful public announcements, like [p]p, are not schemat-
ically valid. The so-called Moore sentences like ϕ = p ∧ ¬[a]p are exam-
ples of this. (This sentence reads, e.g. p is true but I do not believe it or
p is true and you do not know it.) The formula p ∧ ¬[a]p can be true, but it
cannot be truthfully announced without changing their truth-value by it. Thus,
if in [p]p, we replace p by this Moore sentence, we obtain [p ∧ ¬[a]p]p ∧ ¬[a]p,
which is invalid, so this announcement is unsuccessful. (Moreover, it is
[p∧¬[a]p]¬(p∧¬[a]p) which is valid.) In [77], it is shown that the set of schematic
validities in PAL-RC is decidable.

Most proposals in the literature [18], [145], [117] focus on purely epistemic or
fact-preserving actions (announcements, sensing). In the literature on planning,
in contrast, typical actions are physical and defined by preconditions and post-
conditions (or effects). From this point of view, purely epistemic actions can be
described as actions with preconditions and trivial post-conditions. For example,
p is a in fact precondition for a truthful (public) announcement that p, according
to the axiom [p!]ϕ↔ (p→ ϕ). Announcements or observations, though, do not
change the truth-value of atoms in Var. Different extensions with actions having
physical and epistemic effects have been considered, e.g. [142]. The LCC family
of Logics of Communication and Change, based on a general notion of action
models, has been recently proposed in the literature [139]. The LCC logics are
reviewed in Section 4.4. Since these logics are built on top of (an epistemic
reading of) propositional dynamic logic PDL, we recall the latter first.

4.2 Epistemic PDL

Propositional dynamic logic PDL was proposed to model reasoning about pro-
grams (built from basic actions), though, as suggested in [139], PDL programs
also admit an epistemic reading if we interpret the basic “program” [a] as the
modality for agent a’s knowledge; that is, [a]ϕ reads: a knows ϕ, or a believes ϕ.
The axioms of epistemic PDL do not distinguish between belief and knowledge,
as usually understood through the modal logics (S5) and (KD45), respectively.
Thus, at the abstract level of PDL we will indistinctly refer to [a] as knowledge

112

or belief. Within a particular model, though, we can properly refer to one or
the other depending on the semantic properties, e.g. whether [a]ϕ → ϕ holds,
etc. Following [139], we refer to PDL under this epistemic reading as E·PDL, in
order to avoid confusion.

The syntax of PDL, denoted LE·PDL, is as follows:

Definition 4.2.1 (E·PDL language). The language of E·PDL, denoted by
LE·PDL, for a given sets of atoms p ∈ Var and agents a ∈ Ag is the following

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ
π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

The usual abbreviations apply:

⊥ = ¬> ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)
〈π〉ϕ = ¬[π]¬ϕ ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

The PDL program constructors: composition “;”, choice “∪” and the Kleene
star “∗” (for the reflexive transitive closure of a relation) allow us to model,
among other “epistemic programs”,

[a; b] nested beliefs: agent a believes that b believes that
[B], or [a ∪ b] group belief: agents in B(= {a, b}) believe that

[B∗], or [(a ∪ b)∗] it is common knowledge among agents in B.

(Thus, the common knowledge operator [C>] from Section 4.1 here is denoted
[Ag∗].)

Definition 4.2.2 (Epistemic model). An E·PDL or epistemic model M =
(W, 〈Ra〉a∈Ag, V) contains a set of worlds W , a relation Ra in W for each agent
a, and an evaluation V : Var→ P(W)).

While in the usual reading of epistemic logic as S5, the relations Ra are
equivalence relations, this restriction is not imposed in the above definition,
which uses ‘knowledge’ in a more general way, including knowledge or belief. The
corresponding conditions can be imposed to enforce a particular interpretation,
so as to obtain e.g. the original S5 notion of knowledge. The words knowledge
and belief are thus used informally and in an interchangeable way.

Definition 4.2.3 (Semantics E·PDL). The semantics of E·PDL for a model

M = (W, 〈Ra〉a∈Ag, V), is given by extending the map V into a map [ϕ]
M

for
each formula ϕ in LE·PDL:

[>]M = W [a]
M

= R(a)

[p]
M

= V (p) [?ϕ]
M

= Id[ϕ]
[¬ϕ]M = W r [ϕ]

M
[π1;π2]

M
= [π1]

M ◦ [π2]
M

[ϕ1∧ϕ2]
M

= [ϕ1]
M∩ [ϕ2]

M
[π1∪π2]

M
= [π1]

M ∪ [π2]
M

[π∗]
M

= ([π]
M

)∗

[[π]ϕ]
M

= {w ∈W | ∀v((w, v) ∈ [π]M ⇒ v ∈ [ϕ]M}

113

where ◦ is the composition of relations, and ([π]
M

)∗ is the reflexive transitive

closure of the binary relation [π]
M

.

Notice in particular that [?⊥]M = ∅ and [?>]M = IdW . We recall the axioms
and rules that provide a sound and complete axiomatization for E·PDL.

(K) [π](ϕ→ ψ)→ ([π]ϕ→ [π]ψ)
(test) [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) [π1;π2]ϕ↔ [π1][π2]ϕ
(choice) [π1 ∪ π2]ϕ↔ [π1]ϕ ∧ [π2]ϕ

(mix) [π∗]ϕ↔ ϕ ∧ [π][π∗]ϕ, and
(induction) ϕ ∧ [π∗](ϕ→ [π]ϕ))→ [π∗]ϕ.

(Modus ponens) From ` ϕ1 and ` ϕ1 → ϕ2, infer ` ϕ2,
(Necessitation) From ` ϕ, infer ` [π]ϕ.

Figure 4.3: Axioms and rules for E·PDL

4.3 Action models U, e

The LCC logic adds to an E·PDL language a set of modalities [U, e] for each
pointed action model U, e with distinguished (actual) action e. These new oper-
ators [U, e] read after the execution of action e, it is the case that.

Definition 4.3.1 (Action model). For a given set of variables Var and agents
Ag, an action model is a tuple U = (E,R, pre, post) containing

• E = {e0, . . . , en−1}, a set of actions

• R : Ag→ (E× E), a map assigning a relation Ra to each agent a ∈ Ag

• pre : E→ LE·PDL, a map assigning a precondition pre(e) to each action e

• post : E × Var → LE·PDL, a map assigning a post-condition post(e)(p), or
ppost(e), to each e ∈ E and p ∈ Var

Let us fix the above enumeration e0, . . . , en−1 for the set of actions E, which
will be used throughout the next chapters, unless stated otherwise. In particular,
this enumeration will fix as well the order of plan search in the next chapter.

Note that the above accessibility relations Ra describe how the execution of
an action e ∈ E would appear to a: eRaf means that if e is executed, agent a
will believe it possible that the actual action was f. In that case, post(f)(p) will
contribute to the truth-value of [U, e][a]p.

The logic of communication and change, or LCC logic, is simply the logic of
finite action models U. For the purpose of this thesis, though, we will fix a single
action model U, whose logic will be denoted LU. This model U can be seen as
the disjoint union of all the action models needed to model a given scenario.

114

Definition 4.3.2 (LCC language). The language Lof the logic for a given action
model U extends that of E·PDL (for the same set of variables Var and agents
Ag) with modalities for each pointed action model U, e (i.e. for each e ∈ E):

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ | [U, e]ϕ
π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

The new modalities [U, e]ϕ represent “after the execution of e, ϕ holds”. The
semantics of LCC consists in computing M,w |= [U, e]p in terms of the product
update of M,w and U, e, defined next.

Definition 4.3.3 (Product Update). Given an E·PDL pointed model M,w and
a pointed action model U, e defined for the same sets Var and Ag, we say that
M ◦U, (w, e) is their product update, where the model M ◦U = (W ′, 〈R′a〉a∈Ag, V ′)
is defined as follows:

W ′ = { (w, e) ∈W × E | M,w |= pre(e)}
(w, e)R′a(v, f) iff wRav and eRaf

V ′(p) = {(w, e) ∈W ′ |M,w |= post(e)(p)}
The elements of the updated model (W ′, 〈R′a〉a∈Ag, V ′) will also be denoted as
(W ⊗ E, 〈RM◦Ua 〉a∈Ag, VM◦U).

Thus, the new states (w, e) capture executions of actions e executable in
the previous states w; the truth-value of post(e)(p) in the latter states w also
determines that of p in the new states (w, e).

Definition 4.3.4 (Announcements; Skip action). We define the skip or null
action skip as follows:

pre(skip) = > post(skip)(p) = p and defined by skipRbe iff e = skip(anyb ∈ Ag)

We say that a (successful) announcement that ϕ made by agent a to some audi-
ence B (denoted with a superindex for a and a subindex for B) is:

• truthful, denoted ϕ!aB , iff pre(ϕ!aB) = ϕ

• lying, denoted ϕ†aB , iff pre(ϕ†aB) = ¬ϕ

• public iff B = Ag and ϕ!aAgRbe iff e = ϕ!aAg, for each b ∈ Ag (analogously
for ϕ†aAg)

• secret among B, denoted U, ϕ!aB (similarly for ϕ†aB), iff

ϕ!aBRbe iff e =

{
ϕ!aB if b ∈ B ∪ {a}
skip otherwise

All these announcements f are purely epistemic actions or fact-preserving, in
the sense that post(f)(p) = p, for any p ∈ Var.

These mappings post(e)(p), also called substitutions and written ppost(e), from
post : Var → LE·PDL extend to a map post : LE·PDL → LE·PDL. A substitution
post(e) = σ, that is the map σ : Var → L distributes over all symbols. That is,
if we define

115

>σ = > aσ = a
pσ = σ(p) (?ϕ)σ =?ϕσ

(¬ϕ)σ = ¬(ϕσ) (π1;π2)σ = πσ1 ;πσ2
(ϕ1 ∧ ϕ2)σ = ϕσ1 ∧ ϕσ2 (π1 ∪ π2)σ = πσ1 ∪ πσ2
([π]ϕ)σ = [πσ]ϕσ (π∗)σ = (πσ)∗

then we have

M,w |= ϕσ iffMσ, w |= ϕ and (w,w′) ∈ [πσ]M iff (w,w′) ∈ [π]M
σ

where the model under substitution Mσ = (W,R, V σ) is defined by V σ(p) =
{w ∈W |M,w |= σ(p)}.

The semantics of LCC logics are defined by extending the PDL semantics [·]
for E·PDL-formulas from Section4.2, with the following case:

[[U, e]ϕ]
M

= {w ∈W | if M,w |= pre(e) then (w, e) ∈ [ϕ]M◦U}

Remark 4.3.5 (Restricted post-conditions). While in Definition 4.3.1, the post-
conditions post(e)(p) can be assigned any E·PDL-formula, from here on, we will
assume that each post-condition post(e)(p) is restricted to the elements {p,>,⊥}.

This restriction was studied in [142] for logics similar to LCC, with epistemic
modalities for agents [a] and group common knowledge [B∗] for B ⊆ Ag. The
authors show that the logic resulting after this restriction on post-conditions is
as expressive as the original where post-conditions are arbitrary formulas.

Later, we will moreover extend this expressivity by introducing a non-
deterministic choice operator for actions. Indeed, choice is more general than
arbitrary post-conditions ϕ, since for example it can model random non-
determinism, like the toss of a coin. This cannot be done with arbitrary postcon-
ditions alone, since we cannot specify necessary and sufficient conditions ϕ that
would result in the coin landing heads. This restriction makes the truth-value
of p after e to be either of the following:

post(e)(p) = . . . the truth-value of p after e is . . .
> true (since > is always true, hence true before e)
p the truth-value of p before the execution of e
⊥ false (since ⊥ is always false)

4.4 Axiom system

In [139], the authors define program transformers TU
ij(π) that provide a mapping

between E·PDL programs (see Def. 4.4.1). Given any combination of ontic or
epistemic actions (e.g. public and private announcements) the transformers
provide a complete set of reduction axioms, reducing LCC to E·PDL (see Fig.
6.1).

Definition 4.4.1 (Program transformer). Let an action model U with E =
{e0, . . . , en−1} be given. The program transformer function TU

ij on the set of
E·PDL programs is defined by:

116

TU
ij(a) =

{
?pre(ei); a if eiR(a)ej ,

?⊥ otherwise

TU
ij(?ϕ) =

{
?(pre(ei) ∧ [U, ei]ϕ), if i = j

?⊥ otherwise

TU
ij(π1;π2) =

⋃n−1
k=0(TU

ik(π1);TU
kj(π2))

TU
ij(π1 ∪ π2) = TU

ij(π1) ∪ TU
ij(π2)

TU
ij(π

∗) = KU
ijn(π).

where KU
ijn is inductively defined as follows:

KU
ij0(π) =

{
?> ∪ TU

ij(π) if i = j

TU
ij(π) otherwise

KU
ij(k+1)(π) =

(KU

kkk(π))∗ if i = k = j

(KU
kkk(π))∗;KU

kjk(π) if i = k 6= j

KU
ikk(π); (KU

kkk(π))∗ if i 6= k = j

KU
ijk(π) ∪ (KU

ikk(π); (KU
kkk(π))∗;KU

kjk(π)) if i 6= k 6= j

In a sketch, the new reduction axioms for LCC push the [U, e]-modalities
inside the formula, until the case [U, e]p is reached which reduces to the E·PDL
formula pre(e)→ post(e)(p).

the axioms and rules for E·PDL

[U, e]> ↔ > (top)

[U, e]p↔ (pre(e)→ post(e)(p)) (atoms)

[U, e]¬ϕ↔ (pre(e)→ ¬[U, e]ϕ) (negation)

[U, e](ϕ1 ∧ ϕ2)↔ ([U, e]ϕ1 ∧ [U, e]ϕ2) (conjunction)

[U, ei][π]ϕ↔
∧n−1
j=0 [TU

ij(π)][U, ej]ϕ (E·PDL-programs)

if ` ϕ then ` [U, e]ϕ (Necessitation)

Figure 4.4: A calculus for the LCC logic of finite action models.

Theorem 4.4.2. [139] The LCC logic is sound and complete w.r.t. the axioms
of Fig. 6.1.

117

The completeness for this calculus is shown by reducing LCC to E·PDL. The
translation, simultaneously defined for formulas t(·) and programs r(·) is

t(>) = > r(a) = a

t(p) = p r(B) = B

t(¬ϕ) = ¬t(ϕ) r(?ϕ) =?t(ϕ)

t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2) r(π1;π2) = r(π1); r(π2)

t([π]ϕ) = [r(π)]t(ϕ) r(π1 ∪ π2) = r(π1) ∪ r(π2)

t([U, e]>) = > r(π∗) = (r(π))∗

t([U, e]p) = t(pre(e))→ ppost(e)

t([U, e]¬ϕ) = t(pre(e))→ ¬t([U, e]ϕ)

t([U, e](ϕ1 ∧ ϕ2)) = t([U, e]ϕ) ∧ t([U, e]ϕ2)

t([U, ei][π]ϕ) =
∧n−1
j=0 [TU

ij(r(π))]t([U, ej]ϕ)

t([U, e][U′, e′]ϕ) = t([U, e]t([U′, e′]ϕ))

These translation functions t and r will be part of the backward planning algo-
rithms presented in the next sections.

Some basic properties of LCC needed in later results are stated next, e.g.
that the actions e are deterministic. Most claims in the next lemma seem to be
folklore among the community.

Lemma 4.4.3. Let U be an action model. The following hold in LCC for any
e ∈ E:

(a) |= [U, e]
∨
k≤n ϕk ↔

∨
k≤n [U, e]ϕk for any ϕ ∈ LLCC

(b) |= [U, e]ϕ ↔ (pre(e)→ [U, e]ϕ) for any ϕ ∈ LE·PDL

(c) |= [U, e]ϕ→ (pre(e)→ 〈U, e〉ϕ) for any ϕ ∈ LLCC

(c’) |= pre(e)↔ 〈U, e〉>
(d) |= [U, e]θ ↔ (pre(e)→ θpost(e)) for any propositional θ
(e) |= 〈U, e〉ϕ↔ 〈U, e〉> ∧ [U, e]ϕ for any ϕ ∈ LLCC

(f) |= [U, e](ϕ→ ψ) ↔ ([U, e]ϕ→ [U, e]ψ) (axiom K)

Proof. For the claim 4.4.3(a), we only show the case n = 2. The general case is
completely analogous.

M,w |= [U, e]ϕ1 ∨ ϕ2

iff M,w |= [U, e]¬(¬ϕ1 ∧ ¬ϕ2)
iff M,w |= pre(e)→ ¬[U, e](¬ϕ1 ∧ ¬ϕ2)
iff M,w |= pre(e)→ ¬([U, e]¬ϕ1 ∧ [U, e]¬ϕ2)
iff M,w |= ¬pre(e) ∨ ¬[U, e]¬ϕ1 ∨ ¬[U, e]¬ϕ2

iff M,w |= ¬pre(e) ∨ ¬[U, e]¬ϕ1 ∨ ¬pre(e) ∨ ¬[U, e]¬ϕ2

iff M,w |= (pre(e)→ ¬[U, e]¬ϕ1) ∨ (pre(e)→ ¬[U, e]¬ϕ2)
iff M,w |= [U, e]¬¬ϕ1 ∨ [U, e]¬¬ϕ2)
iff M,w |= [U, e]ϕ1 ∨ [U, e]ϕ2

118

4.4.3(b) This is immediate:

M,w |= pre(e)→ [U, e]ϕ
iff M,w |= pre(e) implies M,w |= [U, e]ϕ

iff M,w |= pre(e) implies w ∈ [[U, e]ϕ]
M

(Def. [·])
iff M,w |= pre(e) implies

(M,w |= pre(e) implies (w, e) ∈ [ϕ]M◦U) (Def. 39 of [139])

iff M,w |= pre(e) implies (w, e) ∈ [ϕ]M◦U

iff w ∈ [[U, e]ϕ]
M

(Def. [·])
iff M,w |= [U, e]ϕ

4.4.3(c) Let M,w be arbitrary.

M,w |= [U, e]ϕ
iff M,w |= (pre(e)→ pre(e)) ∧ [U, e]ϕ
iff M,w |= (pre(e)→ pre(e)) ∧ (pre(e)→ [U, e]ϕ)
iff M,w |= pre(e)→ (pre(e) ∧ [U, e]ϕ)
iff M,w 6|= pre(e) or M,w |= pre(e) ∧ [U, e]ϕ
iff M,w 6|= pre(e) or M,w |= ¬(¬pre(e) ∨ ¬[U, e]ϕ)
iff M,w 6|= pre(e) or M,w 6|= ¬pre(e) ∨ ¬[U, e]ϕ
iff M,w 6|= pre(e) or M,w 6|= pre(e)→ ¬[U, e]ϕ
iff M,w 6|= pre(e) or M,w 6|= [U, e]¬ϕ
iff M,w 6|= pre(e) or M,w |= ¬[U, e]¬ϕ
iff M,w |= pre(e)→ ¬[U, e]¬ϕ
iff M,w |= pre(e)→ 〈U, e〉ϕ

4.4.3(c’) For the particular case of ϕ = >, we just add the validity |= [U, e]>, and
thus obtain from (c) that |= pre(e) → 〈U, e〉>. For the other direction, towards
a contradiction, let

M,w |= 〈U, e〉> ∧ ¬pre(e)
so M,w |= 〈U, e〉> ∧ (pre(e)→ [U, e]⊥)
iff M,w |= 〈U, e〉> ∧ [U, e]⊥ (Lemma 4.4.3(a))
iff M,w |= 〈U, e〉> ∧ ¬〈U, e〉¬⊥
iff M,w |= 〈U, e〉> ∧ ¬〈U, e〉> (contradiction)

Thus, for arbitrary M and w ∈W , we have M,w |= pre(e)→ 〈U, e〉>.

4.4.3(d) By induction. We denote by σ the postcondition of e: σ = post(e).
(Case p) The reduction axiom for p just gives: |= [U, e]p↔ (pre(e)→ pσ). (Case
¬ϕ) Assume (Ind. Hyp.) that M,w |= [U, e]θ iff M,w |= (pre(e) → θσ). Then,
we have

119

M,w |= [U, e]¬θ
iff M,w |= pre(e)→ ¬([U, e]θ) (LCC axiom for ¬)
iff M,w |= pre(e)→ ¬(pre(e)→ θσ) (Ind. Hyp.)
iff M,w |= pre(e)→ (pre(e) ∧ ¬θσ)
iff M,w |= pre(e)→ ¬θσ
iff M,w |= pre(e)→ (¬θ)σ .

(Case θ1 ∧ θ2) Assume (Ind. Hyp.) that the claim holds for θ1 and for θ2.
Then

M,w |= [U, e]θ1 ∧ θ2

iff M,w |= [U, e]θ1 ∧ [U, e]θ2

iff M,w |= [U, e]θ1 and M,w |= [U, e]θ2 (LCC axiom for ∧)
iff M,w |= pre(e)→ θσ1 and M,w |= pre(e)→ θσ2 (Ind. Hyp.)
iff M,w |= pre(e)→ (θσ1 ∧ θσ2)
iff M,w |= pre(e)→ (θ1 ∧ θ2)σ.

This case concludes the inductive proof for the equivalence between [U, e]θ and
pre(e)→ θpost(e).

4.4.3(e) We have the following equivalences:

|= 〈U, e〉ϕ ↔ ¬[U, e]¬ϕ (Def. 〈U, e〉)
|= 〈U, e〉ϕ ↔ ¬(pre(e)→ ¬[U, e]ϕ (Red. axiom ¬)
|= 〈U, e〉ϕ ↔ pre(e) ∧ ¬¬[U, e]ϕ
|= 〈U, e〉ϕ ↔ pre(e) ∧ [U, e]ϕ
|= 〈U, e〉ϕ ↔ 〈U, e〉> ∧ [U, e]ϕ (Lemma 4.4.3(c’))

4.4.3(f) Consider the following equivalences

[U, e]ϕ→ ψ
⇔ [U, e]¬ϕ ∨ ψ
⇔ [U, e]¬ϕ ∨ [U, e]ψ Lemma 4.4.3(a)
⇔ (pre(e)→ ¬[U, e]ϕ) ∨ [U, e]ψ Axiom for ¬
⇔ ¬pre(e) ∨ ¬[U, e]ϕ ∨ [U, e]ψ
⇔ [U, e]ϕ→ (¬pre(e) ∨ [U, e]ψ)
⇔ [U, e]ϕ→ (pre(e)→ [U, e]ψ)
⇔ [U, e]ϕ→ [U, e]ψ Lemma 4.4.3(b)

4.5 Other Approaches

The standard approaches for epistemic logic were started by [76], for the (S5)
and (KD45) logics, and [57] for an interpreted systems approach, based on tem-
poral rather than dynamic operators. The first contributions in dynamic epis-
temic logics include [117], [65], [18]. Recent presentations with different kinds
of purely epistemic actions can be found in [145], and in the general action

120

models of [17]. Action models for actions with epistemic and physical effects
have also been studied in [144] and [85]. The epistemic modalities considered
in these papers (atomic and common knowledge) have been generalized in the
LCC framework [139], based instead on an epistemic reading of propositional
dynamic logic PDL. As we mentioned, the update semantics in this chapter is
based on world-elimination [117, 18]. A different presentation, along the line of
[65], considers to defined update semantics for DEL in terms of arrow-elimination
instead, see [86, 87]. Several extensions of dynamic epistemic logics DEL are not
captured in the LCC family exist as well. See the related work on Chapter 6 for
more general classes of action programs.

Also related to the next chapter on planning, quantified versions of the logics
of public announcements PAL have been studied in [58]. These logics contain
modalities �ϕ expressing the existence of a truthful announcement that would
establish the truth of the epistemic formula ϕ, for example [ψ]ϕ. A formula �ϕ
can be seen as expressing the existence of a plan solution for an epistemic goal
ϕ.

The assignments in LCC for the description of actions’ physical effects
post(e), are defined on the set of atomic propositions Var only. A generaliza-
tion on this aspect (with assignments to formulas ϕ) has been considered by the
so-called STIT logics [22], which include modalities [stit:ϕ]ϕ′ for after the agent
sees to it that ϕ, it holds that ϕ′.

An algebraic approach to dynamic epistemic logics can be found in different
contributions [105], [16].

In addition, extensions of DEL or LCC logics with uncertainty have also
been studied. These extensions replace the traditional “two-valued” modalities
for belief (i.e. belief [a] or disbelief ¬[a]) with different kinds of uncertain belief
operators. Dynamic epistemic logics with probabilistic epistemic modalities are
considered in [84], [138]. Possibilistic extensions of the epistemic modalities are
presented in [93].

Some works on combining game-theoretic concepts with dynamic epistemic
logics exist in the literature [64], [2]. These mainly deal with the strategic power
of some coalition B ⊆ Ag, in the sense of which propositions can they enforce
by some suitable strategy. These logics contain modalities 〈B〉ϕ expressing that
some strategy exists for the group B that forces ϕ.

121

Chapter 5

Deterministic Planning in
LCC

5.1 Introduction

In this chapter, we introduce planning systems for the fragment of the logic LCC
given by an arbitrary action model U = (E,R, pre, post); the logic will be denoted
LU. The main difference with classical planning is that the planning algorithms

(initial state, available actions, goals)

now can consist of E·PDL epistemic formulas (for the goals and the initial state),
and pointed action models U, e (for the actions).

In this chapter, we drop the usual distinction between a planner and the
executing agents. Thus, the (unique) executing agent is the planner agent itself.
The actions available to this planner-executioner agent are only a subset A ⊆ E
of the actions in the action model U. Unless stated otherwise, in this chapter we
will understand an action as an available action in A. Note that non-available
actions in E r A might still play a role for plans, but only by way of available
actions.

Example 5.1.1. Assume the planner agent is a magician, and her goal is that
a child believes that the coin vanished into a parallel universe, as promised. The
available action is to hide the coin fast enough, but its execution will be seen by
the child as an execution of sending the coin into a parallel universe, thereby
causing the desired belief.

After presenting a planning system for LCC logics, we will study search
algorithms for these planning domains. Since the actions e ∈ E in the action
model U are deterministic, the planning systems in this chapter are systems for
deterministic planning. A deterministic plan is, as usual, an executable sequence
of actions in A that necessarily leads from the (any) initial state to some goal
state.

123

Definition 5.1.2 (Planning domain). Given some LCC logic LU defined by an
action model U, we define a planning domain for deterministic planning in LU

as any triple of the form
M = (ϕT , A, ϕG)

where ϕT , ϕG are consistent E·PDL formulas describing, resp., the initial and
goal states; and A ⊆ E is the subset of a actions available to the agent.

Remark 5.1.3. In this Chapter (and also in Chapter 7), we assume that the
planner agent, say a, is one of the agents represented in the language of the
corresponding LCC logic; that is, –abusing notation– we assume a ∈ Ag.

The assumption that the logic modeler –in our case: the planner– represents
itself in the object language has been a topic of study in [57] and [11] in the
context of (dynamic) epistemic logic. The latter work distinguishes from the
external perspective (usually assumed in logical modeling) and the internal per-
spective of an agent (being modeled in the language). For the sake of simplicity,
our planner agent, say a, will assume the usual external perspective. Since in the
present case the planner a models itself in her own language a ∈ Ag, he cannot
distinguish between his represented facts and beliefs. In some examples, this can
be represented by closing the initial state and/or goals under an [a]-modality.
(E.g., for any world fact θ or epistemic fact [b]θ, contained among a’s goals or
initial state, the formulas [a]θ and [a][b]θ are also explicitly represented.)

Thus, our planner depicts itself as believing (and only believing) true facts.
From the perspective of this planner a, the other agents might entertain false
beliefs, as well as ignorance or correct beliefs like he does. Similarly, the planner’s
goals are represented epistemically [a]θ or [a][b]θ, rather than as external facts
(resp. θ and [b]θ).

5.2 Planning systems for deterministic back-
ward LCC planning

As usual in backward iterative planning, a planner agent considers some open
goal and refines its current plan with an action for this goal. As usual, given a
goal formula ϕ (e.g. ϕ = ϕG), the planner needs to compute the minimal con-
ditions ψ (upon arbitrary states) that would make ϕ to hold after an execution
of e. Thus, after refinement of a plan π with e, this minimal condition ψ will
be the new goal replacing ϕ. More formally, we say ψ ∈ LPDL is the weakest
precondition for a formula [U, e]ϕ, iff (in LCC)

|= ψ ↔ [U, e]ϕ.

In the planning system proposed in this chapter, computing the weakest precon-
dition is done with the help of the translation function t used in the reduction
of LCC into E·PDL from Chapter 4.

This notion generalizes the definition of the open goals after some refinement,
from e.g. classical planning (see Chapter B). Recall that in classical planning

124

(without conditional actions), the different variables p, q are logically indepen-
dent. The logical interactions between propositions in an action model make
some such generalization necessary for the purpose of LCC planning.

The weakest precondition for e to cause an arbitrary formula ϕ is thus iden-
tified with the formula:

t([U, e]ϕ ∧ 〈U, e〉>)

Indeed, the correctness of the translation based on t, r makes

|= t([U, e]ϕ ∧ 〈U, e〉>)↔ [U, e]ϕ ∧ 〈U, e〉>

These functions t, r can then be seen as goal-transforming functions: a current
goal ϕ is mapped into t([U, e]ϕ∧ 〈U, e〉>), which becomes the new goal after we
refine the plan with e.

Definition 5.2.1 (Solution). Given some LCC logic for an action model U, and
a planning domain M = (ϕT , A, ϕG), we define a solution for M as a sequence
(f1, . . . , fm) ∈ A<ω of actions in A, such that

|= ϕT → [U, f1] . . . [U, fm]ϕG and |= ϕT → 〈U, f1〉 . . . 〈U, fm〉>
The subset A ⊆ E denotes those actions that are actually available to our

planner-executor agent a. Following Example 5.1.1, the reason to distinguish
A from E is that some other agent b ∈ Ag might attribute our agent a some
abilities which a does not actually possess, or that b might fail to attribute a
some of her actual abilities. Thus, on the one hand, we want to compute the
beliefs of b after an execution of some action e as depending on how b interprets
this action e. On the other, we want to make explicit which abilities does our
agent possess, in order to build realistic plans.

From here on, π will denote a deterministic plan, i.e. a sequence of actions e in
decreasing order of execution (rather than an arbitrary epistemic PDL program
as before). Plans are denoted by a pair (action sequence, open goals).

Definition 5.2.2 (Empty plan; Refinement; Plan; Leaf). Given some planning
domain M = (ϕT , A, ϕG), the empty plan is the pair π∅ = (∅, ϕG). If π =
((f ′, . . . , f), ϕgoals(π)) is a plan, then

π(e) = ((f ′, . . . , f, e), ϕgoals(π(e)))

is also a plan, defined by the goal ϕgoals(π(e)) = t([U, e]ϕgoals(π) ∧ 〈U, e〉>). This
plan, called the refinement of π with e, is also denoted π∅(f ′, . . . , f, e). Finally,
a plan π is a leaf iff ϕgoals(π(e)) is inconsistent, or |= ϕgoals(π(e)) → ϕgoals(π).

Leafs are plans not worth considering, either because (a) when we add the
last action refinement e, the resulting plan demands an inconsistent precondition
ϕgoals(π(e)) (and hence the plan cannot be executed) or (b) because e does not
contribute to delete part of the previous goals ϕgoals(π). The search space for
the proposed planning algorithm (see below) is the set sequences (f1, . . . , fm) ∈
A<ω. (These sequences are read in decreasing order of execution, i.e. as the
sequence of operators U, fm, . . . ,U, f1.) Then, the planning algorithm explores
just a fragment of this space, since it will not bother to generate/evaluate further
refinements of leaf plans.

125

5.3 A planning algorithm for deterministic plan-
ning in LCC.

A Breadth First Search algorithm for deterministic plans in some LCC logic is
defined as follows.

Data: M = (ϕT , A, ϕG)
Result: π; or fail

initialization: π = π∅ and Plans = 〈π〉;
while 6|= ϕT → ϕgoals(π) do

delete π from Plans;
set Plans = Plans ∩〈 π(e) | e ∈ A and π(e) is not a leaf 〉;
if Plans = ∅ then

set π = fail
else

set π = the first element of Plans
end

end

Algorithm 4: Breadth First Search for backward deterministic planning
in LCC.

Recall that the actions e ∈ E -as defined above- are deterministic, in the
sense that |= [U, e]ϕ∨ψ ↔ ([U, e]ϕ∨ [U, e]ψ). Thus, deterministic plans consists
of actions e ∈ A ⊆ E in our current action models U. (Later we will extend LCC
with composition ⊗ and choice ∪ to study the non-deterministic case. There we
will fully recover the expressivity of actions defined by arbitrary post-conditions
ppost(e) = ϕ of [139], i.e. actions with conditional effects: if ϕ then (after e) p.)

Theorem 5.3.1. BFS is sound and complete for LCC backward planning: the
output π of the algorithm in Fig. 4 is a solution for (ϕT , A, ϕG); conversely, if
a solution exists, then the algorithm terminates (with a solution output).

Proof. For Soundness, let us re-enumerate the output πn = π∅(f1, . . . , fm) as
πn = π∅(fm, . . . , f1), so it induces the sequence [U, f1] . . . [U, fm]. We check that
the latter is a solution for the input planning domain M. Let us also denote
πk = π∅(fm, . . . , fk).

We check by induction on the length of the plan that π has these two prop-
erties:

(S1) |= ϕT → [U, f1] . . . [U, fk]ϕgoals(πk+1) (S2) |= ϕT → 〈U, f1〉 . . . 〈U, fk〉>

We show (S1)-(S2) by simultaneous induction on the length of the plan.
(Base Case)

(S1) The base case |= ϕT → [U1]ϕgoals(π2) follows from

|= ϕT → ϕgoals(π1) (def. of output)
|= ϕgoals(π1) → [U, f1]ϕgoals(π2) (def. of refinement).

126

These jointly imply our claim.
(S2) The base case |= ϕT → 〈U, f1〉>, reduces to

(i) |= ϕT → ϕgoals(π1), and
(ii) |= ϕgoals(π1) → 〈U, e〉>.

But (i) holds by def. of output for π, and (ii) holds since

ϕgoals(π1) = t([U, f1]ϕ ∧ 〈U, f1〉>) implies 〈U, f1〉>.

(Inductive Case)

(S1) For the claim |= ϕT → [U, f1][U, f2] . . . [U, fk+1]ϕgoals(πk+2), consider

(1) |= ϕgoals(πk+1) → [U, fk+1]ϕgoals(πk+2) (Def. 5.2.1),
(2) |= [U, fk](ϕgoals(πk+1) → [U, fk+1]ϕgoals(πk+2)) (1) + Nec.
(3) |= [U, fk]ϕgoals(πk+1) → [U, fk][U, fk+1]ϕgoals(πk+2) (2) + K
(4) |= [U, fk−1]([U, fk]ϕgoals(πk+1) → [U, fk][U, fk+1]ϕgoals(πk+2)) (3) + Nec.

...
...

...

(2k+1) |= [U, f1]([U, f2] . . . [U, fk]ϕgoals(πk+1) → [U, f2] . . . [U, fk+1]ϕgoals(πk+2))
(2k+2) |= [U, f1][U, f2] . . . [U, fk]ϕgoals(πk+1) → [U, f1][U, f2] . . . [U, fk+1]ϕgoals(πk+2)

Finally, combine the latter with the Ind. Hyp. (S1) for k

|= ϕT → [U, f1][U, f2] . . . [U, fk]ϕgoals(πk+1)

to obtain the above claim (S1) for k + 1.

(S2) Consider the previous proof for (S1) but replacing [U, fk+1]ϕgoals(πk+2)

by 〈U, fk+1〉>. The result is a valid proof for claim (1) below. The proof is
completed as follows:

(1) |= ϕT → [U, f1] . . . [U, fk]〈U, fk+1〉>
(2) |= ϕT → 〈U, f1〉 . . . 〈U, fk〉> (Ind. Hyp. (S2) for k)
(3) |= ϕT → 〈U, f1〉 . . . 〈U, fk〉〈U, fk+1]〉> (1), (2)

The induction proof concludes with the case for m, which is itself a proof
that π is a solution, so the algorithm is sound.

For Completeness, let a solution exist for a given planning domain
(ϕT , A, ϕG). Let [U, ei1], . . . , [U, eim] be the solution with ei1 , . . . , eim in A<ω.
Without loss of generality, we can assume this solution: (a) has minimal
length and (b) the inverse order (im, . . . , i1) is lexicographically minimum
among other solutions in A<ω of the same (minimal) length m − 1. (That
is, for each other solution (ej0 , . . . , ej′m) we have m′ > m, or m′ = m and
(im, . . . , ik+1) = (j′m, . . . , jk+1) and ik < jk, for some k ≤ m). Let π denote this
solution: π = π∅(eim , . . . , ei1). And moreover, redefine each action eij as fj so
π becomes π = π∅(fm, . . . , f1).

We proceed to show that π is indeed in the search space and that the BFS
algorithm terminates with this solution node π. For this, one must show that

127

(a) the node π is generated (i.e. each intermediate node πk = (fm, . . . , fk) is
generated)

(b) for no other node π′ with length at most that of π and with π′ <lex π,
the plan π′ satisfies the Terminating Condition, i.e. 6|= ϕT → ϕgoals(π′) for
each such π′

Assuming (a), claim (b) is straightforward from the above assumptions on π:
assume, towards a contradiction, the contrary of (b). If some other plan π′ exists
with length at most that of π, with with π′ <lex π, and satisfying the Terminating
Condition, then by Soundness π′ is a solution, so the above assumption on π
fails.

Hence it only remains to show claim (a). This is done by induction.
(Base Case) That π∅ is generated is obvious by Def. 5.2.2. (Inductive Case)
We must show that each refinement πk = (fm, . . . , fk+1, fk) is generated if
πk+1 = (fm, . . . , fk+1) is. To see the inductive case, it suffices to check that
the following four claims hold for each k ≤ m:

(C1) |= ϕgoals(πk) → [U, fk]ϕgoals(πk+1) (C2) |= ϕgoals(πk) → 〈U, fk+1〉>
(C3) ϕgoals(πk) is consistent, (C4) 6|= ϕgoals(πk+1(fk)) → ϕgoals(πk+1)

(C1) and (C2) follow from the definition of ϕgoals(πk) and the correctness of the
translation defined by t, r.

For (C3), we need the next auxiliary result:

ϕgoals(πk) ≡ [U, fk] . . . [U, fm]ϕG ∧ 〈U, fk〉 . . . 〈U, fm〉>

This is shown by induction. (Base Case m) The RHS is simply [U, fm]ϕG ∧
〈U, fm〉>, which is equivalent to t([U, fm]ϕG∧〈U, fm〉>). But the latter is simply
the LHS ϕgoals(πm), so we are done. (Ind. Case k+ 1→ k.) Assume (Ind. Hyp.)
that

ϕgoals(πk+1) ≡ [U, fk+1] . . . [U, fm]ϕG ∧ 〈U, fk+1〉 . . . 〈U, fm〉>
Then,

ϕgoals(πk) = t([U, fk]ϕgoals(πk+1) ∧ 〈U, fk〉>)
≡ [U, fk]ϕgoals(πk+1) ∧ 〈U, fk〉>) (correctness of t)
≡ [U, fk]([U, fk+1] . . . [U, fm]ϕG∧

∧〈U, fk+1〉 . . . 〈U, fm〉>)∧
∧〈U, fk〉> (ind. hyp.)

≡ [U, fk][U, fk+1] . . . [U, fm]ϕG∧
∧[U, fk]〈U, fk+1〉 . . . 〈U, fm〉>∧
∧〈U, fk〉> (Red. Axiom ∧)

≡ [U, fk][U, fk+1] . . . [U, fm]ϕG∧
∧〈U, fk〉〈U, fk+1〉 . . . 〈U, fm〉> (Lemma 4.4.3(e))

Now, rather than showing that ϕgoals(πk) is consistent, we show by induction
that for each 1 ≤ k ≤ m there exists a model, say M,w, such that M,w |=

128

ϕT and also M,w |= 〈U, f1〉 . . . 〈U, fk−1〉ϕgoals(πk). From this, the claim on the
consistency of ϕgoals(πk) is straightforward.

(Base Case 1) Since ϕT is consistent (by def. of planning domain), let M,w |=
ϕT . Since π = π1 is a solution, by def. of solution and the previous fact, we
obtain that

M,w |= [U, f1] . . . [U, fm]ϕG ∧ 〈U, f1〉 . . . 〈U, fm〉>, and then
M,w |= ϕgoals(π1) (Aux. result above)

(Ind. Case k → k + 1) Assume (Ind. Hyp.) that M,w |= ϕT and that

M,w |= 〈U, f1〉 . . . 〈U, fk−1〉ϕgoals(πk) (Ind. Hyp.)
M,w |= 〈U, f1〉 . . . 〈U, fk−1〉([U, fk][U, fk+1] . . . [U, fm]ϕG∧

∧〈U, fk〉〈U, fk+1〉 . . . 〈U, fm〉>) (Aux. result)
M,w |= 〈U, f1〉 . . . 〈U, fk−1〉([U, fk][U, fk+1] . . . [U, fm]ϕG∧

∧[U, fk]〈U, fk+1〉 . . . 〈U, fm〉>∧
∧〈U, fk〉>) (Lemma 4.4.3(e))

M,w |= 〈U, f1〉 . . . 〈U, fk−1〉([U, fk]([U, fk+1] . . . [U, fm]ϕG∧
∧〈U, fk+1 . . . 〈U, fm〉>)∧

∧〈U, fk〉>) (Red. Axiom ∧)
M,w |= 〈U, f1〉 . . . 〈U, fk−1〉([U, fk]ϕgoals(πk+1) ∧ 〈U, fk〉>) (Aux. result)
M,w |= 〈U, f1〉 . . . 〈U, fk−1〉〈U, fk〉ϕgoals(πk+1) (Lemma 4.4.3(e))

(C4) We finally show the second condition for any refinement in the con-
struction of π not to be a leaf plan. For this, suppose the contrary, i.e.
|= ϕgoals(πk+1(fk)) → ϕgoals(πk+1), for some 0 ≤ k. We show that the solution
cannot then be minimal, contradicting the initial assumption.

|= ϕT → [U, f1] . . . [U, fk−1]ϕgoals(πk+1(fk)) ((S1) Soundness)

|= [U, f1] . . . [U, fk−1](ϕgoals(πk+1(fk)) → ϕgoals(πk+1)) (Nec. on Assumption)

|= ϕT → [U, f1] . . . [U, fk−1]ϕgoals(πk+1) (K)

|= [U, f1] . . . [U, fk−1](ϕgoals(πk+1) → [U, fk+1] . . . [U, fm]ϕG) (Nec. on (C3))

|= ϕT → [U, f1] . . . [U, fk−1][U, fk+1] . . . [U, fm]ϕG) (K)

|= ϕT → [U, f1] . . . [U, fk−1]ϕgoals(πk+1) (as above)

|= [U, f1] . . . [U, fk−1](ϕgoals(πk+1) → 〈U, fk+1〉 . . . 〈U, fm〉>) (Nec. on (C3))

|= ϕT → [U, f1] . . . [U, fk−1]〈U, fk+1〉 . . . 〈U, fm〉> (K)

|= ϕT → 〈U, f1〉 . . . 〈U, fk−1〉> ((S2) Soundness)
|= ϕT → 〈U, f1〉 . . . 〈U, fk−1〉〈U, fk+1〉 . . . 〈U, fm〉> (by last two claims)

Thus, (C1)-(C4) hold for π and so we are done.

129

An example in multi-agent planning in LCC.

An advantage of the multi-agent versions of epistemic and dynamic epistemic
logic of having in the use of multi-agent dynamic epistemic logics, for both
planning problems in cooperative and non-cooperative scenarios. Following the
scenarios considered in Chapter 3, some collaborative agents might share some
goals, but not the same information. Or, an agent might want to help another
agent to reach its own goal.

Example 5.3.2. Suppose agent a wants to help agent b to reach its own goal
ϕGb ; e.g. agent a temporally adopts ϕGb as its own goal and adds the set Ab
of actions available to b to its own set of available actions Aa. Say, moreover,
that for economic or pedagogical reasons, this help is to be limited to actions
A′a ⊆ Aa with roughly no cost, e.g. the communication of information. Agent a
can search for a plan for ϕGb using both A′a ∪Ab. The actions of agent a in the
resulting plan would provide all the necessary information for b to satisfy her
own goals.

The use of dynamic epistemic logics as a foundation for planning systems can
also shed some light into some linguistic aspects of communication. We present
next an example in pragmatics, the area of linguistics related to the intentions of
speakers, and the communication of these intentions using speech acts [15, 133],
utterances that aim to change the beliefs or goals of agents, and hence their
behavior, in a particular direction. For example, descriptive utterances can
rather mean, in some contexts, commands (e.g. the music you play is annoying)
or questions (e.g. I do not know what are you talking about), and so on.

Explaining the pragmatic meaning of such communicative actions has been
tried with the help of planning tools [31, 45, 46]. In the present case of dynamic
epistemic logics, a planner agent can, towards some goal, generate a plan involv-
ing some of her communicative actions, and possibly other agents’ actions as
well. The fact that the goal is not a belief expansion, but e.g. a physical effect,
accounts for the fact that the (descriptive) communicative action has not the
usual descriptive meaning. Indeed, the planner’s goals reveal the actual com-
municative intention. To illustrate this, consider the following example, where
a statement of a true fact can be seen as a demand or an order.

Example 5.3.3 (Coffee and sugar). Suppose our agent a, in the role of a cus-
tomer, orders agent b some coffee c with sugar s. Agent b expects to get some
money m from this service. The conjunction of their individual goals is

ϕG = [{a, b}∗]c ∧ s ∧m)

(or, if the agents trusted each other, ϕG = [a](c ∧ s) ∧ [b]m).

Agent b absent-mindedly serves the coffee, executing giveba(c), but say he
forgets about the sugar by executing instead the available action skipba(s). All
the relevant physical actions are particular instances of the following.

130

action e givexy(p) skipxy(p)

pre(e) [x]¬p [x]¬p for x, y ∈ {a, b}
post(e)(p) > p for x, y ∈ {a, b}

Rz(e, f) iff f = givexy(p) iff f = givexy(p) for x, y, z ∈ {a, b}

In the case of action giveab (m), we can rather let agent a to consider its precon-
dition to be [a](¬m ∧ c ∧ s), rather than just [a]¬m, if the agent can only pay
for some service she received.

At this point of the story, after only the coffee has been served, the initial
state becomes

ϕT = ¬s ∧ [{a, b}∗]c ∧ ¬m

The planning domain for our planner agent a is (ϕT , A, ϕG), where

A = {giveab (m), giveba(s)} ∪ {ϕ!ab}ϕ∈Φ for some finite set Φ

A solution for Ma is given by the joint plan

[U, (¬s)!ab][U, giveba(s)][U, giveab (m)]

built according to the following plan steps refinements (i.e. in inverse execu-
tion ordering)

plan refinement open goals

∅ ϕG = [{a, b}∗]c ∧ s ∧m)

t([U, giveab (m)]ϕG ∧ 〈U, giveab (m)〉>)

giveab (m) ≡ pre(giveab (m)) ∧ [{a, b}∗]c ∧ s
≡ [a]¬m ∧ [{a, b}∗]c ∧ s

= pre(giveba(s)) ∧ [a]¬m ∧ [{a, b}∗]c
giveba(s)

= [b]¬s ∧ [a]¬m ∧ [{a, b}∗]c

(¬s)!ab ¬s ∧ [a]¬m ∧ [{a, b}∗]c

term. cond. since ϕT implies these open goals

In summary, the announcement ¬s!ab that there is no sugar, is not made by
a with the intention to state a true fact ¬s, but in order to get some sugar from
b. If agent b is moreover endowed with goal recognition tools(see e.g. [12]), he
can grasp that the intention is indeed this one.

131

5.4 Conclusions and Related Work

In this chapter we studied Breadth First Search as a planning algorithm for
problems expressible in some LCC logic. From an abstract point of view, most
of the definitions and all the results in this Chapter would not be necessary to
show the claim that planning in LCC reduces to logical inference or validity tasks.
These tasks can be directly induced by the planning domain M = (ϕT , A, ϕG) as
follows:

1. select an arbitrary sequence [U, e] . . . [U, f] with e, . . . , f ∈ A
2. check whether |= ϕT → [U, e] . . . [U, f]ϕG;{

output [U, e] . . . [U, f] if yes

repeat 1 otherwise

From the point of view of planning, though, this unprincipled search method is
not satisfactory, for at least two reasons. First, it does not allow for heuristic
search. Second, it is inefficient because this search method needs to compute
once and again the same logical (sub-)steps.

In comparison, a backward (or forward) stepwise construction of the solu-
tion plan will only compute each basic step once (in terms of weakest precon-
ditions). For example, the step π∅ 7→ [U, e], or the step [U, e] . . . [U, f] 7−→
[U, f ′][U, e] . . . [U, f] is computed once and used in further plan refinements of
these plans. This would permit the study of heuristic functions specific to the
language of the LCC logics.

In a series of papers by Bolander et al. [28], [13], the authors study Breadth
First Search for forward planning in a dynamic epistemic setting. The authors fo-
cus on (un)decidability results for planning in different fragments of DEL logics,
by distinguishing between the base epistemic logic (for states), and the product
update semantics (for state transitions). This permits to see DEL-planning as
an epistemic extension of classical logic. Another approach is that of [12], where
the different problems of deduction, planning and abduction are studied in a
single framework for DEL logics. Finally, see also [141] for an approach based
on model checking, and [94] for several semantic results on DEL-planning.

Most of these approaches are based on forward planning. The epistemic
character of many actions studied in DEL logics, though, suggests that a back-
ward approach seems better suited for the purpose of planning in these logics.
This is mainly due to the weak or non-existing preconditions for many epistemic
actions, specially, some communicative and sensing actions can always be per-
formed. Thus, if the set of available (truthful and lying) communicative actions
is huge, as in the case of humans, so will be the space of executable actions.
Of course, from a backward approach, many communicative actions will cause a
given epistemic goal, e.g. [b]p (the actions p!, (p ∧ q)!, . . .) but this can be reme-
died with natural notions of cost (e.g. the length of the announcement). See
Chapter 7.5. On the other hand, except for [28], these works are mostly based on
DEL logics [145]. Thus, they have less general action models for communicative
actions, than those considered in the LCC logics. In [28], a semantic approach to

132

forward multi-agent planning is built on the action models of [142]. This paper
also considers non-deterministic actions, which is the topic of Chapter 7.

A paper dealing with the three related problems of: progression, plan recog-
nition, and regression (or backward epistemic planning) is Aucher [12] for the
logics of Baltag and Moss [17]. The issue of progression has also been studied
from an algebraic point of view in Baltag et al. [16].

In a different line of research, we find the logics for intentions or motivational
attitudes. Inspired by means-ends reasoning [30] (from desires and beliefs to in-
tentions), several logics of intentions have been studied in the literature. Building
on the work of Cohen and Levesque [44], Rao and Georgeff [127], [128] devel-
oped the BDI formalism for practical reasoning. BDI logics are multi-modal
logics with three families of normal modal operators for beliefs Ba, desires or
goals Da and intentions Ia, for each agent a ∈ Ag. BDI logics extend the branch-
ing time logic CTL∗ [56] with the above modalities. This expressivity would
allow in principle for higher-order reasoning, or nested belief-desired modalities.

Different issues have been identified in the alternative semantics (and inter-
action axioms) studied for these modalities. For example, in [44], if an agent
a believes a proposition it will also have the intention towards this proposition.
In [127], agent intentions are closed under tautologies and belief implications
(side-effect problem). In contrast, a planning-style treatment of goals (e.g. this
chapter) does not take into consideration the logical consequences of these goals,
except if they are relevant to the plan. Also, in [103], it is argued that reasoning
about intentions has a defeasible or non-monotonic nature, which makes normal
modal logics not to be well suited, in principle, to reason about intentions. An
extension with defeasible logic [102] (see Section 1.7) is suggested to this end. A
STIT-based approach to BDI logics can also be found in [22, 150].

Finally, a work related to BDI, is the KARO formalism, with an emphasis in
actions rather than time. This framework also contains (or defines) modalities for
possible intentions, abilities, opportunities. In [75], an epistemic dynamic logic
EDL is proposed to reason about interactions between action and knowledge,
with a focus on planning under partial observability.

While in general these logical languages are more expressive than those of the
present approach, an advantage of the latter lies in the interaction semantics for
purely epistemic actions, and its use of action models, which naturally capture
the (multi-agent) epistemic dimension of epistemic and physical actions.

133

Chapter 6

LCC with composition and
choice

6.1 Introduction

In this chapter we propose an extension of LCC logics LU with bounded compo-
sition and choice, denoted LCC∪⊗n. Both operations map two actions e, f to a
new action denoted e⊗ f (composition) and e∪ f (choice). The resulting actions
have the interpretation defined next:

• e⊗ f models an execution of e followed by an execution of f, and

• e ∪ f models non-deterministic actions: each execution of e ∪ f either in-
stantiates as an execution of e or as an execution of f.

Even if all the actions constructible from an action model U using product and
choice are already captured in some action model U′ (hence in the original LCC
logic), it is not obvious at all which are those actions and action models. In
order to make these constructions explicit, we present a detailed account of
these constructions from a basic action model. The extension of a logic LU will
be latter used in the next chapter for the purpose of planning.

Structure of the chapter

In Section 6.2, we first expand any LCC logic with the composition of exactly
n actions. This includes the product action models Un, and the corresponding
languages , denoted LCC⊗n, for these product action models. Then, in Section
6.3 we expand the latter models and logics with the composition of at most n
actions, resp. denoted U≤n and LCC⊗n. Finally, in Section 6.5 we add choice
into these logics to obtain the class of logics LCC∪⊗n for non-deterministic ac-
tions, used in the next chapter. The semantics for non-deterministic actions e∪ f
is presented in terms of multi-pointed models, e.g. (w, e) and (w, f), one for each
possible realization of the action e ∪ f upon a state M,w.

135

A summary of the results for all these logics (in this chapter) is as follows.
For the composition of actions, the product action models Un and U≤n are shown
equivalent to (the corresponding number of) product updates U ◦ · · · ◦ U of the
original action model U. This permits to reduce any logic LUn or LU≤n to the
corresponding LCC base logic LU (and hence it permits to reduce these logics
to E·PDL). These LCC⊗n logics, say LU≤n , then, have the same expressivity
than the corresponding LCC logics, e.g. LU. After dealing with product, we
introduce the operation of choice ∪ into the product action models U≤n. The
resulting class of logics, called LCC∪⊗n, reduce again to LCC and E·PDL.

6.2 Update with the product of n actions in Un.

To define the composition of actions, we simply consider the product of action
models U1 ⊗ · · · ⊗Uk, for each k ≤ n, where n denotes the maximum number of
compositions allowed in the resulting logic LCC⊗n. An obvious requirement is
that these action models are defined for the same set of variables Var and agents
Ag.

We define first action models of the form Un = U1⊗· · ·⊗Un and study them
from a semantic point of view. This action model Un just contains the product
of exactly n actions, denoted f1 ⊗ · · · ⊗ fn, that can be executed one after the
other.

Note that, in the next definition, the pre′ functions of the product action
model Un are defined in terms of the corresponding functions pre from U, and
pre′ from U2, . . . ,Un−1. From here on, we let~f denote some sequence f1⊗· · ·⊗fk,
also written f1, . . . , fk, for an appropriate k.

Definition 6.2.1 (Product Action Model). Let U = (E,R, pre, post) be an action
model. We define the product action model

Un = (E′,R′, pre′, post′)

inductively as follows:

E′ =

{
f1 ⊗ · · · ⊗ fn |

f1, . . . , fn ∈ E and
pre′(f1 ⊗ · · · ⊗ fn) is consistent

}
R′a = {〈(e, . . . , e′), (f, . . . , f ′)〉 | eRaf and . . . and e′Raf ′}

pre′(e⊗ f) = pre(e) ∧ [U, e]pre(f) for the case n = 2

pre′(f1 ⊗~f) = pre(e) ∧ [U, e]pre(~f)

post′(f1 ⊗ · · · ⊗ fn) =

post(fk)(p) if post(fk)(p) 6= p =

= post(fk+1)(p) = . . . = post(fn)(p)

post(f1)(p) if post(f1)(p) = . . . = post(fn)(p) = p

The components of the resulting action model Un are also denoted Un =
(En,R

n, pren, postn).

136

Remark 6.2.2. More formally, Definition 6.2.1 should rather make use of the
translation function t to define the precondition of a product action

pre′(e⊗ f) = pre(e) ∧ t([U, e]pre(f))

pre′(e⊗~f) = pre(e) ∧ t([U, e]pre′(~f))

The reason is that the above definition of pre′ in Def. 6.2.1 would not satisfy the
condition pre : E → LE·PDL for action models in Definition 4.3.1. For the sake
of simplicity, we will keep the above notation and use

pre(e) ∧ t([U, e]pre′(~f)) and pre(e) ∧ [U, e]pre′(~f)

interchangeably, when referring to these preconditions.

Note from Def. 6.2.1 that the action f ⊗ · · · ⊗ f ′ treats p just as the latest
action in this tuple satisfying post(·)(p) 6= p, i.e. as the latest action that might
change the truth-value of p. Finally, observe that some tuples, e.g. of the form
〈e, f〉 ∈ E′ ∈ U2 are not defined.

Example 6.2.3. Assume the light switch of the dormitory is next to the door,
and the bed is on the other side. Also assume that the room is (always) so untidy
that it can only be crossed with the light on. Let p denote this condition: p =
the light is on; and define the actions get.to.bed and sleep in an action model U
as follows:

e pre post(e)(p) Ra(e, f)

get.to.bed p p f = get.to.bed

sleep ¬p p f = sleep

Then the product action model U2 does not contain the action get.to.bed⊗sleep.
If we denote this “product action” as e⊗ f, the reason that it does not exist in
U2 is that its precondition pre′(e⊗ f) would have to be

p ∧ [U, e]pre(f) ≡ p ∧ [U, e]¬p ≡ p ∧ (¬p)post(e) ≡ p ∧ ¬p ≡ ⊥

Since this precondition is inconsistent, the action get.to.bed⊗ sleep is not in the
action model. (In other words, the agent cannot sleep in this dormitory.)

For the sake of simplicity, we will sometimes assume these impossible actions
are formally defined, although they of course will never be executable. For the
present logical purposes or the latter purpose of planning, it makes no difference
that such product actions e ⊗ f are not defined in U2, or that they are actions
in U2 defined by impossible preconditions.

Fact 6.2.4. It can be seen by direct inspection that the product action model
Un is indeed an action model, provided U is.

Moreover, we proceed to show that the update of an E·PDL model M by
a product action model, say U ⊗ U, reduces to a sequence of updates with the
simpler action model, e.g. (M ◦ U) ◦ U. With more detail, updating a world w
with an action e ⊗ f is semantically equivalent to updating w with e first, and
then updating again with f. We first check this is the case for U2 = U⊗ U.

137

Lemma 6.2.5. Let U be an action model defined for some set of atoms Var and
agents Ag. Let M be an model of a logic E·PDL whose language is defined from
the same sets Var and Ag. We have the following isomorphism

M ◦ (U⊗ U) ∼= (M ◦ U) ◦ U.

Proof. Let f : W × (E× E)→ (W × E)× E be the function defined by

f : (w, (e, e′)) 7−→ ((w, e), e′)

(States: WM◦U2 ∼= W (M◦U)◦U)

Let us check that f is a bijection between WM◦U2

and W (M◦U)◦U:

(w, e⊗ f) ∈M ◦ (E⊗ E)

iff M,w |= pre′(e⊗ f)

iff M,w |= pre(e) ∧ [U, e]pre(f)

iff M,w |= pre(e) and (M,w |= pre(e) implies M ◦ U, (w, e) |= pre(f))

iff M,w |= pre(e) and M ◦ U, (w, e) |= pre(f)

iff (w, e) ∈WM◦U and ((w, e), f) ∈W (M◦U)◦U

iff ((w, e), f) ∈W (M◦U)◦U

(Accessibility relations: R
M◦(U⊗U)
a

∼= R
(M◦U)◦U
a)

(w1, (e, f))R
M◦(U⊗U)
a (w2, (e′, f ′))

iff w1R
M
a w2 and (e, f)R′a(e′, f ′) (by Def. RM◦(U⊗U))

iff w1R
M
a w2 and (eRae′ and fRaf ′) (by Def. R′)

iff (w1R
M
a w2 and eRae′) and fRaf ′ (re-bracketing)

iff (w1, e)RM◦Ua (w2, e
′) and fRaf ′ (by Def. RM◦U)

iff ((w1, e), f)R
(M◦U)◦U
a ((w2, e

′), f ′) (by Def. R(M◦U)◦U′)

(Valuations: VM◦(U⊗U)(p) ∼= V (M◦U)◦U(p))

((w, e), f) ∈ VM◦(U⊗U)(p)

iff ((w, e), f) ∈ (W × E)× E and M,w |= pre(e) and M ◦ U, (w, e) |= pre(f)

and (M ◦ U) ◦ U, ((w, e), f) |= p

iff ((w, e), f) ∈ (W × E)× E and M,w |= pre(e) ∧ [U, e]pre(f)

and (M ◦ U), (w, e) |= ppost(f)

iff ((w, e), f) ∈ (W × E)× E and M,w |= pre(e⊗ f)

and (M ◦ U), (w, e) |=

{
ppost(f) if post(f)(p) 6= p

p if post(f)(p) = p

138

iff ((w, e), f) ∈ (W × E)× E and M,w |= pre(e⊗ f)

and

{
M,w |= ppost(f) if post(f)(p) 6= p

(M ◦ U), (w, e) |= p if post(f)(p) = p

iff (w, (e⊗ f)) ∈W × (E× E) and M,w |= pre(e⊗ f) and M,w |= ppost(e⊗f)

iff (w, (e⊗ f)) ∈W × (E× E) and M,w |= [U2, e⊗ f]p

iff (w, (e⊗ f)) ∈ VM◦(U⊗U)(p)

This isomorphism extends to the valuations of arbitrary formulas and pro-
grams.

Corollary 6.2.6. For each formula ϕ in the language of U⊗ U:

(w, (e, f)) ∈ [ϕ]M◦U
2

⇔ ((w, e), f) ∈ [ϕ](M◦U)◦U

Proof. As mentioned above, the language of LCC logic for U2 does not contain
the formula pre(e ⊗ f), this formula being in the language for the action model
U. Still, we can make use of the translation function t from [139] to obtain a
formula equivalent to it, in the language of E·PDL (included in the language for
U2).

The proof is by simultaneous induction on programs and formulas. The basic

cases were just considered in Lemma 6.2.5, i.e. [p]
(·)

= V (·)(p) and [a]
(·)

= R
(·)
a .

From here on, the proof relies upon the established bijection between WM◦U2

and W (M◦U)U also from Lemma 6.2.5.
For programs, the correspondence for [?ϕ] is immediate from the Ind. Hyp.

on [ϕ]. The same occurs for [π1;π2] and [π1 ∪ π2] from the Ind. Hyp. on [π1]
and [π2]. Finally, the case [π∗] is also straightforward from the Ind. Hyp. on
[π].

The same holds for formulas, the identity between M ◦ U2 and (M ◦ U) ◦ U

of the corresponding sets [>](·), [¬ϕ](·) and [ϕ1 ∧ ϕ2]
(·)

is clear using the Ind.

Hyp., resp., on none, on [ϕ]
(·)

and on [ϕ1]
(·)

and [ϕ2]
(·)

. The case for [[π]ϕ]
(·)

,

making use of the Ind. Hyp. for [π]
(·)

and [ϕ]
(·)

, is as follows:

[[π]ϕ]
M◦U2

=

(w, (e, f)) ∈WM◦U2 |
∀(v, (e′, f ′)) ∈WM◦U2

if ((w, (e, f)), (v, (e′, f ′))) ∈ [π]M◦U
2

then (v, (e′, f ′)) ∈ [ϕ]M◦U
2

=

((w, e), f) ∈W (M◦U)◦U |
∀((v, e′), f ′) ∈W (M◦U)◦U

if (((w, e), f), ((v, e′), f ′)) ∈ [π](M◦U)◦U

then ((v, e′), f ′) ∈ [ϕ](M◦U)◦U

= [[π]ϕ]

(M◦U)◦U

139

Finally, consider the case of formulas of the form [U2, f1 ⊗ f2]ϕ.

[[U, f1 ⊗ f2]ϕ]
M◦U2

=

{
(w, (e1, e2)) ∈WM◦U2

:
M ◦ U2, (w, (e1, e2)) |= pre(f1 ⊗ f2) implies

((w, (e1, e2)), (f1, f2)) ∈ [ϕ](M◦U
2)◦U2

}
=

{
(w, (e1, e2)) ∈WM◦U2

:
M ◦ U2, (w, (e1, e2)) |= pre(f1 ⊗ f2) implies

(((w, (e1, e2)), f1), f2) ∈ [ϕ]((M◦U
2)◦U)◦U

}
=

{
((w, e1), e2)
∈W (M◦U)◦U :

(M ◦ U) ◦ U, ((w, e1), e2) |= pre(f1) ∧ [U, f1]pre(f2)
implies (((w, (e1, e2)), f1), f2) ∈ [ϕ](((M◦U)◦U)◦U)◦U

}

=

 ((w, e1), e2)
∈W (M◦U)◦U :

(M ◦ U) ◦ U, ((w, e1), e2) |= pre(f1) and
((M ◦ U) ◦ U) ◦ U, (((w, e1), e2), f1) |= pre(f2)

imply (((w, (e1, e2)), f1), f2) ∈ [ϕ](((M◦U)◦U)◦U)◦U

=

((w, e1), e2) ∈W (M◦U)◦U :
(M ◦ U) ◦ U, ((w, e1), e2) |= pre(f1) implies

(if ((M ◦ U) ◦ U) ◦ U, (((w, e1), e2), f1) |= pre(f2)
then (((w, (e1, e2)), f1), f2) ∈ [ϕ](((M◦U)◦U)◦U)◦U)

=

{
((w, e1), e2) ∈W (M◦U)◦U :

(M ◦ U) ◦ U, ((w, e1), e2) |= pre(f1) implies
((M ◦ U) ◦ U) ◦ U, (((w, e1), e2), f1) |= [U, f2]ϕ

}
= [[U, f1][U, f2]ϕ]

(M◦U)◦U

Observe that the proofs of Lemma 6.2.5 and Corollary 6.2.6 do not depend
upon the assumption that the two action models are the same. Thus, we can
extend this Lemma to the more general case of the product of two action models
U,U′.

Corollary 6.2.7. Let U,U′ be action models defined on the same sets of variables
Var and agents Ag. Then, M ◦ (U⊗ U′) ∼= (M ◦ U) ◦ U′. Hence,

[ϕ]
M◦(U⊗U′) ∼= [ϕ]

(M◦U)◦U′
for each ϕ in the language of U⊗ U′

Before proceeding to the generalization of this Corollary 6.2.7 to any finite
number of action models U, . . . ,U′, we need the claim that the update with an
action model U preserves isomorphisms.

Lemma 6.2.8. If M ∼= M ′ are isomorphic epistemic models, and U is an action
model, then M ◦ U ∼= M ′ ◦ U.

Proof. Let M = (W,R, V) and M ′ = (W ′, R′, V ′) be isomorphic models. Let
then f : W 7→ W ′ be a bijection satisfying RMa (w, v) ⇔ RM

′

a (f(w), f(v)) and
w ∈ VM (p)⇔ f(w) ∈ VM ′(p). Define the map f+ : W ×E→W ′×E simply as
f+(w, e) = (f(w), e). This is clearly a bijection and moreover

140

RM◦Ua ((w, e), (v, f)) ⇔ RMa (w, v) and RU
a (e, f)

⇔ RM
′

a (f(w), f(v)) and RU
a (e, f) ⇔ RM

′◦U
a ((f(w), e), (f(v), f))

⇔ RM
′

a (f+(w, e), f+(v, f))

and

(w, e) ∈ VM◦U(p) ⇔ M,w |= pre(e) ∧ ppost(e)

⇔ M ′, f(w) |= pre(e) ∧ ppost(e) ⇔ (f(w), e) ∈ VM ′◦U(p)

⇔ f+(w, e) ∈ VM ′◦U(p)

The previous Corollary 6.2.7 for the basic case n = 2 extends to an arbitrary
finite number n ≥ 2 of actions f1, . . . , fn. That is, it extends to updates with
products of arbitrary n actions taken from a given action model U, or n different
action models U1, . . . ,Un.

Corollary 6.2.9. Let M be an E·PDL model for a given set of atoms Var and
agents Ag, and let U1, . . . ,Un be action models defined for the same sets Var,Ag.
We have that

M ◦ (U1 ⊗ · · · ⊗ Un) ∼= (M ◦ U1) · · · ◦ Un

Proof. Consider the mapping (w, f1 ⊗ · · · ⊗ fn) 7−→ ((w, f1), . . . , fn). This is
clearly a bijection between M ◦ Un and (M ◦ U) · · · ◦ U. The rest of the proof is
by induction. (Base Case n = 2) This is simply Lemma 6.2.5. (Inductive Case
n 7→ n+1) Assume (Ind. Hyp.) the claim M ◦(U1⊗· · ·⊗Un) ∼= (M ◦U1) · · ·◦Un.
Then,

((M ◦ U1) · · · ◦ Un) ◦ Un+1

∼= (M ◦ (U1 ⊗ · · · ⊗ Un)) ◦ Un+1 (Ind. Hyp. and Lemma 6.2.8)
∼= M ◦ (U1 ⊗ · · · ⊗ Un ⊗ Un+1) (Corollary 6.2.7)

As a particular case, we conclude that M ◦ Un ∼= (M ◦ U) · · · ◦ U (n times).

6.3 Update with the product of at most n ac-
tions in U≤n.

Finally, we can define the action model U≤n for the product of at most n actions
(from a fixed action model U) in terms of the product action models U,U2, . . . ,Un

previously defined. In order to avoid confusion with the previous notation the
accessibility relation Ra for agent a is now written as R(a).

Definition 6.3.1 (Composite Action Model). Let U be an action model and let
U1 = . . . = Un(= U) be n different copies of U, denoted Uk = (Ek,Rk, prek, postk)
for each 1 ≤ k ≤ n. We define U≤n = (E≤n,R≤n, pre≤n, post≤n) as follows

E≤n =
⋃
k≤n Ek pre≤n =

⋃
k≤n prek

R≤n(a) =
⋃
k≤n Rk(a) post≤n =

⋃
k≤n postk

141

The sequence of at most n updates on a model M , denoted

(M ◦ U1) · · · ◦ U≤n = (W (M◦U1)···◦U≤n , R(M◦U1)···◦U≤n , V (M◦U1)···◦U≤n)

can be defined in a straightforward way from each (M ◦ U1) · · · ◦ Uk product
action model.

W (M◦U1)···◦U≤n =
⋃
k≤nW

(M◦U1)···◦Uk

R(M◦U1)···◦U≤n(a) =
⋃
k≤nR

(M◦U1)···◦Uk(a)

V (M◦U1)···◦U≤n =
⋃
k≤n V

(M◦U1)···◦Uk

It can be observed that U≤n is an action model; and also that (M ◦U1) · · · ◦
U≤n is an E·PDL model. Moreover, Corollary 6.2.9 for the product of n actions
extends to the present case for the product of ≤ n actions.

Corollary 6.3.2. Let U(= U1 = · · · = Un) be an action model defined for the
sets of atoms Var and agents Ag, and let M be an model for the E·PDL logic
defined by the same Var and Ag. Then

M ◦ U≤n ∼= (M ◦ U1) · · · ◦ U≤n

Proof. Consider the mapping (w, (f1, . . . , fk)) 7−→ (((w, f1), . . .), fk) between W×
E≤n and ((W ×E) · · ·×E). Note this mapping is the union of mappings between
M ◦ Uk and (M ◦ U1) · · · ◦ Uk from Corollary 6.2.9.

Since the sets W ×Ek,W ×Ek
′

are disjoint for each 1 ≤ k, k′ ≤ n with k 6= k′,
Corollary 6.2.9 implies that the current mapping is a bijection between

W ×
⋃

1≤k≤n Ek and
⋃

1≤k≤nW
((M◦U1)···◦Uk)

and so between

WM◦U≤n and W (M◦U1)···◦U≤n

The rest of the proof, for the relations R≤n(a) and R(M◦U1)···◦U≤n , and the
valuations V ≤n(p) and V (M◦U1)···◦U≤n proceeds by induction.
(Base Case n = 2) For the accessibility relations, we have that

RM◦U
≤2

(a)

= {〈(w, e), (w′, f)〉 ∈ (W × (E ∪ E2))2 | (w,w′) ∈ RM (a) and (e, f) ∈ R≤2(a)}
= {〈(w, e), (w′, f)〉 ∈ (W × E)2 | (w,w′) ∈ RM (a) and (e, f) ∈ R(a)}

∪
{
〈(w, e1 ⊗ e2), (w′, f1 ⊗ f2)〉 ∈ (W × E2)2 | (w,w′) ∈ RM (a) and

〈(e1, e2), (f1, f2)〉 ∈ R2(a)

}
= RM◦U(a) ∪RM◦U2

(a)

∼= RM◦U(a) ∪R(M◦U)◦U(a) (by Lemma 6.2.5)

= R(M◦U1)···◦U≤2

For the valuations, we also apply Def. 6.3.1 and Lemma 6.2.5 to reason as
follows:

142

VM◦U
≤2(p)

= {(w, e) ∈W × (E ∪ E2) | M,w |= pre(e) ∧ ppost(e)}
= {(w, e) ∈W × E | M,w |= pre(e) ∧ ppost(e)}
∪{(w, e) ∈W × E2 | M,w |= pre(e) ∧ ppost(e)}

= VM◦U(p) ∪ VM◦U
2

(p)

= VM◦U(p) ∪ V (M◦U)◦U(p)

= V (M◦U1)···◦U≤2(p)

(Ind. Case n 7→ n+ 1) Assume (Ind. Hyp.) that M ◦U≤n ∼= (M ◦U1) · · · ◦U≤n.

For the relations RM◦U
≤n

(a) ∼= R(M◦U1)···◦U≤n(a), the proof is analogous to that
of the Base Case, with the following replacements

U2 by Un+1

U≤2 by U≤n+1

(M ◦ U) ◦ U by (M ◦ U1) · · · ◦ Un+1

M by M ◦ U≤n

and using the Ind. Hyp. instead of Lemma 6.2.5. For the valuations

VM◦U
≤n

(p) = V (M◦U1)···◦U≤n(p), the proof proceeds similarly by showing that

VM◦U
≤n+1

(p) = VM◦U
≤n

(p) ∪ VM◦U
n+1

(p)

∼= VM◦U
≤n

(p) ∪ V (M◦U1)···◦Un+1(p) = V (M◦U1)···◦U≤n+1(p)

6.4 The logic LCC⊗n of the action model U≤n.

A logic of (bounded) product action models U≤n, also called an LCC⊗n logic,
will be denoted as the logic LU≤n . The language of LU≤n adds a product action
modality for each element f1 ⊗ · · · fk of E≤n. Without loss of generality, we can
assume that these new modal operators are only introduced for those product
actions whose preconditions, according to Definition 6.2.1, are consistent E·PDL-
formulas.

Definition 6.4.1. Let U be an action model defined for two sets of atoms Var
and agents Ag. Let U≤n denote the corresponding product action model for
some finite n. We define the language LU≤n as follows:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ | [U≤n, f1 ⊗ · · · ⊗ fk]ϕ
π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

The semantics of updates with a modality [U≤n, e] for some e ∈ E in the
original action model U is as in LCC. For the product of 2 ≤ k ≤ n actions, the
semantics is a particular case of the product update with the action model Uk.
That is,

143

M,w |= [U≤n, e]ϕ iff M,w |= [U, e]ϕ

M,w |= [U≤n, f1 ⊗ · · · ⊗ fk]ϕ iff M,w |= pre(f1 ⊗ · · · ⊗ fk) implies

M ◦ Uk, (w, f1 ⊗ · · · ⊗ fk) |= ϕ

The fact that any LCC⊗n logic, say LU≤n , is also an LCC logic follows from
the observation that U≤n is an action model. The logic LU≤n is thus an LCC
logic defined by a set of modalities of the form

E≤n = {e1, . . . , em, e1 ⊗ e2, . . . , e1 ⊗ · · · ⊗ ek, . . .}

The only difference is that the new accessibility relations and valuations are ap-
propriately defined from the basic action model U, rather than being arbitrarily
given, as in the action models U.

Thus, a complete axiom system for an LCC⊗n logic LU≤n is simply given by
the axioms of LCC, now applied to the new modalities [U≤n, e ⊗ · · · ⊗ f]. Let
us fix an enumeration of the new set of actions (abusing notation, we will use
m again) E≤n = {e1, . . . , em}. In the following, we denote arbitrary elements in
E≤n by the expressions e and ei.

the axioms and rules for E·PDL

[U≤n, e]> ↔ > (top)

[U≤n, e]p↔ (pre(e)→ post(e)(p)) (atoms)

[U≤n, e]¬ϕ↔ (pre(e)→ ¬[U≤n, e]ϕ) (negation)

[U≤n, e](ϕ1 ∧ ϕ2)↔ ([U≤n, e]ϕ1 ∧ [U≤n, e]ϕ2) (conjunction)

[U≤n, ei][π]ϕ↔
∧m
j=1[TU≤n

ij (π)][U≤n, ej]ϕ (E·PDL-programs)

[U≤n, f1 ⊗ f2 ⊗ · · · ⊗ fk]ϕ↔ [U≤n, f1][U≤n, f2 ⊗ · · · ⊗ fn]ϕ (product)

if ` ϕ then ` [U≤n, e]ϕ (Necessitation)

Figure 6.1: A calculus for the LCC⊗n logic LU≤n . This is the logic of a product
action model U≤n given by an arbitrary action model U.

The proof of the next result, then, is essentially that of [139].

Theorem 6.4.2. [139] For any action model U, the LCC⊗n logic LU≤n is sound
and complete w.r.t. the axioms of Fig. 6.1.

The translation function to reduce LCC⊗n formulas to E·PDL formulas is the
same than for LCC. We show that the reduction axiom for product ⊗, namely,

[U≤n, f1 ⊗ f2 ⊗ · · · ⊗ fk]ϕ ↔ [U≤n, f1][U≤n, f2 ⊗ · · · ⊗ fn]ϕ

is valid in the LCC⊗n logics.

144

Proposition 6.4.3. The product axiom is sound:

|= [U≤n, f1 ⊗ f2 ⊗ · · · ⊗ fk]ϕ ↔ [U≤n, f1][U≤n, f2 ⊗ · · · ⊗ fn]ϕ

Proof. Let M,w be an arbitrary pointed model of LCC. Using Corollary 6.3.2,
we obtain the following equivalences:

M,w |= [U≤n, (f1 ⊗ f2 ⊗ · · · ⊗ fk)]ϕ

M,w |= pre(f1 ⊗ f2 ⊗ · · · ⊗ fk) implies M ◦ U≤n, (w, (f1 ⊗ · · · ⊗ fk)) |= ϕ

M,w |= pre(f1) ∧ [U≤n, f1]pre(f2 ⊗ · · · ⊗ fk)

implies (M ◦ U) · · · ◦ U≤n, ((w, f1), . . . , fk) |= ϕ

M,w |= pre(f1) and M,w |= [U≤n, f1]pre(f2 ⊗ · · · ⊗ fk)

imply that (M ◦ U) · · · ◦ U≤n, ((w, f1), . . . , fk) |= ϕ

M,w |= pre(f1) and

(M,w |= pre(f1) implies M ◦ U≤n, (w, f1) |= pre(f2 ⊗ · · · ⊗ fk))

imply (M ◦ U) · · · ◦ U≤n, ((w, f1), . . . , fk) |= ϕ

M,w |= pre(f1) and M ◦ U≤n, (w, f1) |= pre(f2 ⊗ · · · ⊗ fk)
imply (M ◦ U) · · · ◦ U≤n, ((w, f1), . . . , fk) |= ϕ

M,w |= pre(f1) and (M ◦ U) · · · ◦ U≤n, (w, f1) |= pre(f2 ⊗ · · · ⊗ fk)
imply (M ◦ U) · · · ◦ U≤n, ((w, f1), . . . , fk) |= ϕ

M,w |= pre(f1) implies

(
if (M ◦ U) · · · ◦ U≤n, (w, f1) |= pre(f2 ⊗ · · · ⊗ fk)

then (M ◦ U) · · · ◦ U≤n, ((w, f1), . . . , fk) |= ϕ

)
M,w |= pre(f1) implies (M ◦ U) · · · ◦ U≤n, (w, f1) |= [U≤n, f2 ⊗ · · · ⊗ fk]ϕ

M,w |= [U≤n, f1][U≤n, f2 ⊗ · · · ⊗ fk]ϕ

6.5 LCC∪⊗n: choice and non-deterministic ac-
tions.

In this section we extend the LCC⊗n logics of bounded composition with an
operator for non-deterministic choice, denoted ∪. For a given action model U
or U≤n, this operation maps a pair of actions e, f into a new action e ∪ f. The
latter expression denotes an action with indeterminate effects: an execution of
e ∪ f will turn either as an execution of e or as an execution of f.

These actions e ∪ f read as follows: after an agent (e.g. our planner) decides
to execute e ∪ f, it is another external “agent”, e.g. the environment or nature
in principle, who chooses an actual deterministic action between e and f, thus
determining the outcome after a given execution of e ∪ f.

Example 6.5.1. A coin toss action is defined by the choice between the actions
of tossing heads and tossing tails, denoted tossh and toss¬h. Some unknown

145

mechanism in nature randomly selects whether the coin lands heads or tails.
Thus, each execution of tossh∪ toss¬h by the agent becomes an instance of tossh
or an instance of toss¬h.

The action of unconditionally switching a light button (i.e. no matter its
state), is also modeled as a choice between two deterministic actions, switch it
on or switch it off. In this case, it is the environment –including the actual state
of the light switch– which decides whether we will switch the light on or off.

This kind of non-determinism is called demonic in the literature [140], in
opposition to the so-called angelic non-determinism; in the latter kind it is the
executing agent itself who freely selects between an action e or the other f, thus
assuming that both actions are individually available and executable. This is
not the case for either of the two non-deterministic actions in the example above
(button switch, coin toss).

Definition 6.5.2. The language L∪
U≤n

of a logic LU≤n with choice is defined
(for given sets of atoms Var and agents Ag) as follows,

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ | [U≤n,Ed]ϕ
π ::= a | ?ϕ | π1;π2 | π1 ∪ π2 | π∗

where Ed is an arbitrary non-empty subset of E≤n.

For a given set of actions Ed = {e, . . . , f}, choice will be indistinctly repre-
sented using any of the following notations: Ed, or {e, . . . , f} or e ∪ . . . ∪ f.

The presence of different post-conditions (factual change) in LCC actions
prevents us to model the choice of actions e ∪ f as full-fledged actions in the
action model, in contrast to the previous case of product actions e⊗ f ∈ E≤n.

Example 6.5.3 (Cont’d). Consider an action like tossing a coin = tossh∪toss¬h,
and the atom h = the coin lands heads. It is not possible to define a correct
post-condition in post(tossh ∪ toss¬h)(h). This post-condition formula should
behave as > = post(tossh) in some cases, and ⊥ = post(toss¬h) in the other
cases. Thus, the desired post-condition for h cannot be expressed as a unique
formula. For example,

post
(
tossh ∪ toss¬h

)
)(h) 6=

> since it would always collapse to tossh

⊥ since it would always collapse to toss¬h

p since it would always collapse to skip

In summary, if a non-deterministic action is in the action model, then
post cannot be a map Var −→ LE·PDL. For this reason, we do not let non-
deterministic actions e ∪ f to be actions, but model the semantics of their ex-
ecutions as a multi-pointed semantics (a pointed model for each deterministic
component e and f). Let us observe, though, that there are non-deterministic
actions which can effectively be modeled as actions in an action model.

146

Example 6.5.4. In contrast, to the coin toss action from Examples 6.5.1 and
6.5.3, some non-deterministic actions could be considered as elements of the
action model. Consider for example, the action of (unconditionally) switching the
light. Define this as a new action, also denoted on∪off, defined in terms of the two
deterministic actions; e.g. on is defined by pre(on) = ¬on and post(on)(on) = >;
and define off with the opposite precondition on and effect post(off)(on) = ⊥.
Then, if the post-conditions for an atom p are arbitrary E·PDL formulas (rather
than restricted to {>,⊥, p}), we can correctly capture this non-deterministic
switching action as the following action:

pre(on ∪ off) = pre(on) ∨ pre(off) ≡ > and post(on ∪ off)(on) = ¬on

As Example 6.5.3 shows, though, in general non-deterministic actions cannot
be modeled as actions in the action model. In consequence when extending LCC
(or LCC⊗n) with choice, there will be no exact coincidence between the actions
e in the action model U and the dynamic modalities [U, e] in the language of this
logic. (The language will contain more actions than the action model.) This
contrasts with logics of purely epistemic actions [18, 17], and also with LCC⊗n
(or LCC) where there is a correspondence (a bijection) between the actions e
in the action model U and the dynamic modalities [U, e] in the language of the
logic LU.

As suggested in [139], non-deterministic actions are introduced with the help
of multi-pointed semantics.

Definition 6.5.5 (Multi-pointed models; Semantics). Given an epistemic model
M and an action model U, let Wd ⊆W and Ed = {f1, . . . , fk} ⊆ E. Then M,Wd

and U,Ed are multi-pointed models. We define

M,Wd |= ϕ iff M,w |= ϕ for each w ∈Wd

M,w |= [U,Ed]ϕ iff M ◦ U, {(w, f), . . . , (w, f ′)} |= ϕ

for each (w, f), . . . , (w, f ′) ∈WM◦U with f, . . . , f ′ ∈ Ed

In other words, this semantics for [U,Ed] modalities simply amounts to the
semantics of the operators [U, f] for each f ∈ Ed. That is,

M,w |= [U,Ed]ϕ iff
M,w |= pre(f) implies M ◦ U, (w, f) |= ϕ

for each f ∈ Ed

Note also that this extends the previous semantics for deterministic actions e ∈ E
or e⊗· · ·⊗ f ∈ E≤n. These are taken as a particular case of the above semantics
with Ed = {e} or Ed = {e⊗ · · · ⊗ f}.

The logics extending some LCC logic with bounded product action and
choice, will be denoted L∪

U≤n
, where U≤n = (E≤n, . . .) is the product action

model from which modalities are defined, i.e. Ed ⊆ E≤n. The class of these
logics with choice and the product of at most n actions is denoted LCC∪⊗n.

An axiom system a given LCC∪⊗n logic can be given in terms of the previous
axioms for LCC⊗n and the next reduction axiom for choice, suggested in [139].

147

the axioms of LCC⊗n for the U≤n-modalities

plus

[U≤n,Ed]ϕ ↔
∧

e∈Ed [U≤n, e]ϕ (choice)

Figure 6.2: The axioms and rules for LCC∪⊗n.

Proposition 6.5.6. For any LCC∪⊗n logic of some action model U≤n, the re-
duction axiom for choice is sound. The necessitation rule for the choice modal-
ities ` ϕ implies ` [U≤n,Ed]ϕ is valid.

Proof. The proof for the necessitation rule is straightforward

` ϕ ⇒ ` [U≤n, e]ϕ, for each e ∈ Ed; (by the Nec. rule in LCC)

⇒ `
∧

e∈Ed [U≤n, e]ϕ modus ponens with taut.

The proof of the validity of the reduction axiom choice for [U,Ed]ϕ is also
straightforward:

M,w |= [U≤n,Ed]ϕ

iff for each (w, e) ∈WM◦U≤n , M ◦ U≤n, (w, e) |= ϕ

iff for each e ∈ Ed, M,w |= pre(e) implies M ◦ U≤n, (w, e) |= ϕ

iff for each e ∈ Ed, M,w |= [U≤n, e]ϕ

iff M,w |=
∧

e∈Ed [U≤n, e]ϕ

A first consequence of Proposition 6.5.6 is the following.

Corollary 6.5.7. The axioms of LCC⊗n for a given action model U≤n are valid
when ϕ ranges over the language L∪

U≤n
(of this action model) with choice.

The translation function t : LLCC −→ LE·PDL can thus be extended into a
mapping t : LLCC∪⊗n −→ LE·PDL if we add the following clause

t([U≤n,Ed]ϕ) =
∧
e∈Ed

t([U≤n, e]ϕ)

By Proposition 6.5.6 and Corollary 6.5.7, this extended mapping preserves
the correctness of the former translation function from LCC.

Corollary 6.5.8 (Completeness of LCC∪⊗n). For any LCC∪⊗n logic L∪
U≤n

, the
corresponding axiom system from Fig. 6.2 is sound and complete.

Proof. Soundness follows from the correctness of the translation function f .
Completeness follows from the fact that each LCC∪⊗n-formula is equivalent to
some E·PDL-formula.

148

The fact that no modality [U≤n,Ed] is defined from an action Ed in the
action model implies that the preconditions of Ed are not formally defined by
the action model. Despite this, the following Lemma shows that a precondition
can be naturally associated to each of these Ed modalities.

Lemma 6.5.9. The following holds: |= 〈U≤n,Ed〉> ↔
∨

e∈Ed pre(e).

Proof. We show the simple case Ed = {e, f} ⊆ E≤n. The proof for the general
case is analogous.

M,w |= 〈U≤n, e ∪ f〉>
M,w |= ¬[U≤n, e ∪ f]¬>
M,w |= ¬([U≤n, e]¬> ∧ [U≤n, f]¬>)

M,w |= ¬[U≤n, e]¬> ∨ ¬[U≤n, f]¬>)

M,w |= 〈U≤n, e〉> ∨ 〈U≤n, f〉>
M,w |= pre(e) ∨ pre(f)

Thus, the executability of a non-deterministic action e∪ f only demands that
at least one of its deterministic components e or f is executable. Notice a general
notion of executability of an action e in a world w is given by the condition
M,w |= 〈U, e〉>. Thus, a general notion of precondition is given by the formula
〈U, e〉>. Note that in the logics LCC, we have indeed that pre(e) ≡ 〈U, e〉>.
Thus, as a result of this Lemma, we can extend this general precondition to
non-deterministic actions Ed and identify pre(Ed) =

∨
e∈Ed pre(e).

Moreover, if we apply a similar maneuver with the notion of post-condition,
we can identify

post(Ed)(p) =
∨
e∈Ed

post(e)(p)

Under these natural readings of pre(Ed) and post(Ed)(p), the axioms of LCC
somehow “extend” to the present logics. For example, observe that one of the
directions of the LCC reduction axiom for atoms is preserved

Fact 6.5.10. Under these definitions of pre(Ed) and post(Ed),

[U≤n,Ed]p → pre(Ed)→ ppost(Ed)

If, moreover, for each e, f ∈ Ed the preconditions are the same pre(e) = pre(f),
then axiom LCC becomes valid under this reading:

[U≤n,Ed]p ↔ pre(Ed)→ ppost(Ed)

149

6.6 Conclusions and Related Work

In this chapter, we extended an arbitrary LCC logic of an action model U
with the so-called program constructors of composition ⊗ and non-deterministic
choice ∪. A study of non-deterministic actions with composition and choice
can be found in [142]. The pointed action models are defined on top of epis-
temic logic with common knowledge EL-C. The multi-pointed semantics for
non-deterministic actions was suggested in [131] and [139]. The present defini-
tions of composition and choice are taken from these papers [142, 131, 139].

Dynamic epistemic logics with the Kleene star or iteration operator ∗ program
constructor have also been studied in the literature. An important result in
[98] shows the undecidability of the logics of public announcements PAL with
program iteration. In light of these results, it seems that the present class of
LCC∪⊗n logics are, roughly, the most expressive ones in terms of the usual
program constructors. (See [9] for another approach, and the discussion in 7.5.)

Still, there is room for extensions of LCC. In addition to these existing
extensions of DEL logics listed in Section 4.5, we might consider extending LCC
with further program constructors. Some of these constructors have already
been considered in the literature. For example, extensions of DEL logics with
concurrent actions have been studied in [143] and [53]. These extensions permit
to model scenarios where one or different agents can execute actions in parallel,
as we did in Part I of this thesis. The planning systems presented in Chapters
5 and 7 assume, on the contrary, that actions are executed one at a time. This
is a fair assumption for many epistemic actions, like communicative actions, but
less realistic for physical actions.

On the other hand, different works on the literature have also considered
non-determinism in dynamic epistemic logics. See for example [51] for a study
of demonic non-determinism in PDL. See also [140] for a study on these topics
in a dynamic logic for agents with abilities, and [132] for a similar study in the
logic ADL. The present treatment of choice for basic non-deterministic actions
is along the line suggested in [139] for LCC.

150

Chapter 7

Non-Deterministic Planning
in LCC

7.1 Introduction

In this chapter, we propose and study a non-deterministic planning system based
on an arbitrary logic in the LCC∪⊗n family. The set A of actions in the planning
domain M will now contain actions Ed with disjunctive effects, e.g. p ∨ q, where
neither disjunct p nor q is a necessary effect. More formally,

|= [U≤n, e ∪ f] p ∨ q, but with 6|= [U≤n, e ∪ f]p and 6|= [U≤n, e ∪ f]q

Compare, e.g. with Lemma 4.4.3 for the treatment of (valid) disjunctive effects
in LCC logics.

Following Chapter 6, non-deterministic actions Ed are constructed from de-
terministic actions using choice, e.g. Ed = {e, f} also denoted e ∪ f. A non-
deterministic action with effect p∨ q can be seen as built with an action f0 for p
and an action f1 for q. (See Section 7.2 below, though, for different types of non-
determinism.) We will also make use of the convention pre(Ed) =

∨
e∈Rd pre(e),

introduced in Chapter 6.

Example 7.1.1 (Breaking a window). Consider the action of throwing a stone
against a window. Suppose the window is composed of two windowpanes made
of crystal (left and right). Define p = the left crystal breaks, and q = the
right crystal breaks. If the agent throws the stone against the window, this
will instantiate either as e = throwing the stone against the left crystal or
f = throwing it against the right crystal. Simplifying a bit, these deterministic
actions can be defined as follows

pre(e) = > pre(f) = >
post(e)(p) = > post(f)(p) = p

post(e)(q) = q post(f)(q) = >
Ra(e, f ′) iff f ′ = e Ra(f, e′) iff e′ = f

151

The Ra relation is the identity relation because agent a can tell which window-
pane has been or is going to be hit by the stone, during (or at the end of) the
execution of this action. The action e∪ f behaves as above w.r.t. the effects p∨q
and p and q. Note that one of the two crystals remains as it was before the stone
was thrown: either the truth-value of p or the truth-value of q is preserved.

The focus of the present chapter is on strong non-deterministic planning.
A strong solution (resp. weak solution) for a given planning domain M =
(ϕT , A, ϕG) is a plan such that all (resp. some) of its possible executions at
the initial state ϕT lead to a goal state satisfying ϕG. Thus, in Example 7.1.1,
throwing the stone, i.e. e ∪ f, is a strong solution for the planning domain
M = (>, {e ∪ f}, ϕG), if the goal is to break some windowpane ϕG = p ∨ q; and
e ∪ f is a weak solution if the goal is to break the left windowpane ϕG = p.

For the sake of simplicity, in the present chapter we consider only non-
deterministic actions Ed consisting of two deterministic actions Ed = {e, f} also
denoted with choice as e∪ f. A generalization of the the present definitions and
proofs to the finite case |Ed| ≥ 2 can be easily obtained.

Structure of the chapter

In Section 7.2, we first consider a classification of actions in terms of their epis-
temic properties, related to a similar proposal studied in Bolander et al. [28].
Then in Section 7.3, we propose a planning system for the logics LCC∪⊗n. The
different refinement steps existing in this planning system are described in Sec-
tion 7.4, together with a plan search algorithm for the proposed planning system.
This section concludes with results for the soundness and completeness of this
planning algorithm. Section 7.5 contains the conclusions a description of the
related work in the literature.

7.2 Non-determinism and distinguishability

Before proceeding with the introduction of a planning system for LCC∪⊗n logics,
let us devote this section to a classification of non-deterministic actions from the
point of view of the executing or planner agent. Unless stated otherwise, we will
assume in this chapter that these two agents are the same.

For the purpose of planning, the relevant epistemic properties of a non-
deterministic action e ∪ f concern this agent’s ability to learn how does e ∪ f
instantiate in the present context: as an instance of e or as an instance of f. In
the literature, this has been called run-time distinguishability in [28], when the
distinction is made during the execution of e ∪ f, as in Example 7.1.1. If the
distinction can be made during the planning phase (before executing the plan),
this action is called plan-time distinguishable. In this section, we study a related
classification of non-deterministic actions.

Definition 7.2.1 (Post-action distinguishability). Let Ed = {e, f} ⊆ E≤n be a
non-deterministic action in some action model U≤n = (E≤n,R, pre, post) and let

152

a ∈ Ag be the planner or the executing agent of Ed. We say that Ed is post-action
distinguishable iff for any pair ϕ,ψ with |= [U≤n, e]ϕ∧¬ψ and |= [U≤n, f]ψ∧¬ϕ
we have that

|= [U≤n,Ed]
(
[a]ϕ ∨ [a]ψ

)
We say that Ed is post-action distinguished at M,w iff M,w |=
[U≤n,Ed]

(
[a]ϕ ∨ [a]ψ

)
.

Thus, an agent can distinguish how Ed = e ∪ f is being instantiated if and
only ifimmediately after the execution of Ed, the agent is aware of the exclusive
effects of either e or f. This definition can be trivially satisfied if no such pair
ϕ,ψ exists, as in the action from Example 7.1.1.1 But for the purpose of the
classification, Definition 7.2.1 will suffice.

Below we consider more definitions of distinguishability. Note that,
for the sake of simplicity, the definitions below consider ideal notions of
(in)distinguishability: some intermediate cases between ideal distinguishability
and ideal indistinguishability of the same type are not considered.

Indeed, a natural assumption on the representation of non-deterministic ac-
tions Ed, is that the set Ed is closed under the accessibility relation Ra, where a
is the executing or planner agent. Moreover, in [28] this relation Ra is assumed
to be an equivalence relation. (This is used in [28] to define each action Ed as an
equivalence class under Ra.) In this chapter we will also assume this, but (only)
with the purpose of obtaining a simple definition of distinguishability during the
execution of a non-deterministic action.

Definition 7.2.2 (In-action distinguishability). Let an agent a ∈ Ag, an action
Ed ⊆ E≤n and an action model U≤n be as above. We say that Ed is in-action
distinguishable2 iff the relation Ra is the identity relation in this set

for each e ∈ Ed and f ∈ E≤n eRaf ⇔ f = e

We say that Ed is in-action indistinguishable iff Ra is the total relation in this
set Ed × Ed ⊆ Ra.

Example 7.2.3 (Tossing a coin). Consider the action of tossing a coin (by some
agent a), which can result in heads h or tails ¬h. The physical part of this action
can be modeled with the help of two deterministic actions: toss heads and toss
tails, resp. denoted tossh toss¬h and defined as follows

pre(tossh) = > pre(toss¬h) = >
post(tossh) : h 7−→ > post(toss¬h) : h 7−→ ⊥
(tossh, tossh) ∈ Ra (toss¬h, toss¬h) ∈ Ra

The actions of an unobservable coin toss and a public coin toss are modeled by

extending tossh into the actions toss
〈Ag〉
h and toss

[Ag]
h (and similarly for toss¬h). As

1In this example, the action e of breaking the left crystal says nothing about the status of
the right crystal q; and viceversa.

2This notion is called run-time distinguishability in [28].

153

the superindex 〈Ag〉 or [Ag] suggests, in the former case no agent can distinguish
tossing heads from tossing tails. These new actions, then, are defined by the
above conditions on pre, post and Ra together with new conditions upon the
latter Ra relation.

unobs. coin toss public coin toss

toss
〈Ag〉
h ∪ toss

〈Ag〉
¬h toss

[Ag]
h ∪ toss

[Ag]
¬h

(toss
〈Ag〉
h , toss

〈Ag〉
¬h) ∈ Ra (toss

[Ag]
h , toss

[Ag]
¬h) /∈ Ra

(toss
〈Ag〉
¬h , toss

〈Ag〉
h) ∈ Ra (toss

[Ag]
¬h , toss

[Ag]
h) /∈ Ra

Note that the deterministic action tossh (and the same for toss¬h), although
existing in the action model, is not individually available to the agent.

Proposition 7.2.4. Let Ed = e0 ∪ e1 ⊆ E≤n be an arbitrary non-deterministic
action in some action model U≤n. If Ed is in-action distinguishable, then Ed is
post-action distinguishable.

Proof. For e0 and ϕ, we reason as follows:

|= [U≤n, e0]ϕ

⇒ |= [a][U≤n, e0]ϕ (by Nec.)

⇔ |= [a]
∧

eRaf
[U≤n, f]ϕ (reduction ax.)

⇔ |= [a][U≤n, e]ϕ (since eRaf ⇒ f = e)

From this and a similar reasoning for e1 and ψ, we conclude that

|= [U≤n, e0]([a]ϕ ∨ [a]ψ) and |= [U≤n, e1]([a]ϕ ∨ [a]ψ)

By the reduction axiom for choice, we conclude |= [U≤n, e0∪e1]([a]ϕ∨ [a]ψ).

The random character of the tossing action in Example 7.2.3 is not an es-
sential feature of non-deterministic actions, as the next example shows. This
example also illustrates another notion of (in)distinguishability different from
Def.7.2.2.

Remark 7.2.5. In the following we add to ∪ a new notation] for non-
deterministic actions. In terms of the product update semantics, e] f is simply
a notational variant of e ∪ f. From here on, the expressions ∪ and] will just
assume different epistemic relations Ra between their components e and f.

In the following example, a truthful conditional announcement about p, has
an epistemic precondition [a]p∨[a]¬p. If this precondition is true, then intuitively
the agent can distinguish, before executing the (planned) action, whether it is
an announcement that p or an announcement that ¬p.

Example 7.2.6. Different announcements that p or about p can be classified
in terms of the agent’s knowledge of their (actual) properties. In contrast, a
truthful public announcement p!aAg really denotes a public announcement that p

154

which happens to be truthful, since we merely have pre(p!aAg) = p. A consciously
(resp. sincerely) truthful announcement that p requires the agent to know (resp.

believe) that p. Let us denote this as p!
[a]
Ag; and analogously for conscious (resp.

intentional) lies, denoted p†[a]
Ag. Their preconditions are

pre(p!
[a]
Ag) = [a]pre(p!aAg) = [a]p pre(p†[a]

Ag) = [a]pre(p†aAg) = [a]¬p

As usual, their postconditions are trivial: post(·)(q) = q, for any q ∈ Var. From
these deterministic actions, the following actions can be defined as well.

• a careless announcement that p, made irregardless of its truth-value or the
agent’s knowledge about it, denoted p!aAg ∪ p†

a
Ag

• a possibly lying announcement that p, denoted p!
[a]
Ag ∪ p†

[a]
Ag

• a sincere announcement about p, denoted p!
[a]
Ag] ¬p!

[a]
Ag

• a consciously ignorant announcement that p, denoted p!
〈a〉
Ag ∪ p†

〈a〉
Ag

These actions are assigned the preconditions according to the convention pre(e∪
f) = pre(e)∨pre(f) = pre(e]f). The relations Ra for all these actions are reflexive,
and moreover, we assign

(e, f), (f, e) ∈ Ra(e ∪ f),Ra(e∪f) and (e, f), (f, e) /∈ Ra(e] f)

As some of these examples show, the preconditions of a planned non-
deterministic action can also contribute to the distinguishability between its
components. In this case, the distinction is made just before the execution of
this action, not during it.

Definition 7.2.7 (Pre-action distinguishability). Let an agent a ∈ Ag, an action
Ed ⊆ E≤n and an action model U≤n be as above. We say that Ed is pre-action
distinguishable iff the preconditions are logically independent, in the following
sense

6|= pre(e)→ pre(f) and 6|= pre(f)→ pre(e)

We say that Ed is pre-action indistinguishable iff pre(e) ≡ pre(f).

In practice, that the actions e, f ∈ Ed can be (pre-action) distinguished in
the context M,w where Ed is to be executed will depend on the information the
agent has about this particular context.

Proposition 7.2.8. Let Ed = e0 ∪ e1 ⊆ E≤n be an arbitrary non-deterministic
action in some action model U≤n. Assume that Ed is pre-action distinguishable.
If M,w |= [a](pre(e0) ∧ ¬pre(e1)) then Ed is post-action distinguished at M,w.

Proof. We reason as follows:

155

M,w |= [a](pre(e0) ∧ ¬pre(e1))

M,w |= [a]pre(e0) ∧ [a]¬pre(e1)

M,w |= [a]pre(e0) ∧ [a]pre(e1)→ [U≤n, e1]ϕ

M,w |= [a]pre(e0) ∧ [a][U≤n, e1]ϕ (by Lemma 4.4.3)

M,w |= [a][U, e0]ϕ ∧ [a][U≤n, e1]ϕ (by Nec. on assumption)

M,w |= [a]
∧

e0Raf
[U≤n, f]ϕ ∧

[a]
∧

e1Raf
[U≤n, f]ϕ (by def. Ra)

M,w |= [U≤n, e0][a]ϕ ∧ [U≤n, e1][a]ϕ (by Reduction Axiom for [a])

M,w |= [U≤n,Ed][a]ϕ (by Reduction Axiom for ∪)

M,w |= [U≤n,Ed]([a]ϕ ∨ [a]ψ)

Propositions 7.2.4 and 7.2.8 show two ways for an execution of e ∪ f to be
(post-action) distinguished as e or as f. Moreover, it can be shown that these
two are the only possible ways for this agent to distinguish between e and f.

Proposition 7.2.9. Assume M,w |= 〈a〉pre(Ed). Then, if Ed is pre-action
indistinguishable and in-action indistinguishable, then Ed is not post-action dis-
tinguished at M,w.

Proof. Let Ed = e0 ∪ e1, and let ϕ,ψ be arbitrary formulas satisfying |=
[U≤n, e0]ϕ ∧ ¬ψ and |= [U≤n, e1]¬ϕ ∧ ψ. Note that, by (Nec), it is also valid
that |= [a][U≤n, e0]ϕ ∧ ¬ψ, and so on. Now we can reason according to the
following equivalences. On the one hand,

M,w |= 〈a〉pre(Ed)

M,w |= 〈a〉(pre(e0) ∨ pre(e1)) by def. of pre(Ed)

M,w |= 〈a〉pre(e1) by assumption pre(e0) ≡ pre(e1)

M,w |= 〈a〉(〈U≤n, e1〉> ∧ [U≤n, e]¬ϕ) by Lemma 4.4.3; and (Nec)

M,w |= 〈a〉〈U≤n, e1〉¬ϕ by Lemma 4.4.3

M,w 6|= [a][U≤n, e1]ϕ

M,w 6|= [a]
∧

e0Raf
[U≤n, f]ϕ since e0Rae1

M,w 6|= [U≤n, e0][a]ϕ

On the other hand, we also have that M,w 6|= [U≤n, e0][a]ψ. To show this,
assume the contrary towards a contradiction

M,w |= [U≤n, e0][a]ψ assumption

M,w |= [a]
∧

e0Raf
[U≤n, f]ψ reduction axiom for π = a

M,w |= [a][U≤n, e0]ψ since e0Rae0

M,w |= [a][U≤n, e0]¬ψ applying (Nec) to |= [U≤n, e0]¬ψ
M,w |= [a][U≤n, e0]⊥ by the last two claims

M,w |= [a]¬pre(e0) by Lemma 4.4.3

156

pre-action indist. pre-action dist.

in-action

indist.
∪

unobs. coin toss,

ignorant ann. that p
∪

ignorant switch,

careless ann. that p

in-action

dist.
] public coin toss]

conscious switch,

conscious ann. about p

The last claim contradicts the fact that M,w |= 〈a〉pre(e0), which obtains from
the initial assumptions M,w |= 〈a〉(pre(e0) ∨ pre(e1)) and pre(e0) ≡ pre(e1).
Thus, we conclude that M,w 6|= [U≤n, e0][a]ψ.

From this and the previous claim shown above, we conclude that

M,w 6|= [U≤n, e0]([a]ϕ ∨ [a]ψ)

Finally, by the reduction axiom for choice, this suffices to show that M,w 6|=
[U≤n, e0 ∪ e1]([a]ϕ ∨ [a]ψ), so we are done.

For an example of a pre-action distinguishable action which is not purely
epistemic (in contrast to Example 7.2.6), consider the following.

Example 7.2.10 (Switching the light). Pressing a button can switch the light
on or off, causing it to be resp. in state on or ¬on. Let us denote these as
actions on and off. Their (physical) preconditions and effects are

pre(on) = ¬on post(on)(on) = > pre(off) = on post(off)(on) = ⊥

Similarly to Example 7.2.6, one can define the actions of a conscious or an
ignorant switching, e.g. by an agent who is able to see, or resp., who enters the
room blindfolded agent.

Propositions 7.2.4–7.2.9 suggest to classify non-deterministic actions accord-
ing to their in-action or pre-action (in)distinguishability. See the next table for
examples of the different types of actions. This table also contains the notation
for each type of non-deterministic action, namely ∪,∪,], to be used in the next
section.

The different notation ∪,],∪ are notational variants just used to classify
the actions Ed during a planning task. The semantics of [U, e ∪ f], [U, e] f]
and [U, e ∪ f] are exactly the same as defined in the previous chapter for choice
[U, e ∪ f].

We can proceed to the study of planning in the LCC∪⊗n logics. As the
examples in this section show, the notions of available action, plan and solution
from Chapter 5 must be redefined to the present non-deterministic case.

157

7.3 A non-deterministic planning system for
LCC∪⊗n logics.

As mentioned before, from here on, we will abstract from any particular bound
n upon the length of composite actions in plans, so in the following we will just
write the action model as U rather than as a fixed action model U≤n. With this
remark in mind, recall that the courses of actions definable in some LCC∪⊗n
logic, for a given action model U, are sequences of the form

[U,E1] . . . [U,Ek]

where each Ei = (e0⊗ · · · ⊗ ek)∪ (f0⊗ · · · ⊗ fk′). Sequences of this form will also
be written as (E0, . . . ,Ek) during the planning phase.

Not all of these sequences of modalities in the language, though, represent
executable plans, in the sense that some combinations demand unrealistic con-
ditions upon the knowledge of the executing agent.

Example 7.3.1 (Tossing a coin; Cont’d). A coin toss with unobserved result,
followed by a conscious truthful announcement of this result is in practice not
executable; that is, the action

[U, tossh ∪ toss¬h][U, h!
[a]
Ag ∪ ¬h!

[a]
Ag]

The reason is that after the coin toss, the agent or nature cannot randomly choose
between announcements h! and ¬h!, if these are to be truthful. Combinations
like these, then, should not be allowed in the construction of plans. From a
more formal point of view, the problem with this example can be grasped as
follows. Set our goal to be the precondition of the announcement action, i.e.
ϕgoals(h!∪¬h!) = pre(h!aAg ∪ ¬h!aAg) = [a]h ∨ [a]¬h. Now, computing this goal as
we did in Chapter 5 (but using the translation function t for LCC∪⊕n) gives
ϕgoals(h!∪¬h!,toss) = 〈a〉⊥, so this (non-sense) plan requires that the agent starts
with inconsistent beliefs.

The space of plans, then, must be a proper subset of the set of sequences, due
to these examples and again to the fact that the available deterministic actions
AE is not the whole set E. The first step is to define the planning domains
that add non-deterministic actions to the deterministic planning domains of
Definition 5.2.1.

Definition 7.3.2 (Planning domain). For a given action model U, a triple

M = (ϕT , A, ϕG)

is a non-deterministic planning domain for agent a in U iff ϕT , ϕG are consistent
LU-formulas without action modalities, and A = AE ∪ A∪ ∪ A] ∪ A∪ is the set
of actions available to some agent a, where

• AE ⊆ E is a set of deterministic actions,

158

• A∪ ⊆ E× E is a set of non-deterministic actions Ed = e∪ f, such that e∪ f
is in-action indistinguishable and pre-action indistinguishable

• A] ⊆ E× E is a set of in-action distinguishable actions

• A∪ ⊆ E × E is a set of pre-action distinguishable actions, which are not
in-action distinguishable

Example 7.3.3. [Tossing a coin, Cont’d] Recall the unobserved coin toss action
from Example7.2.3. Let us read this action tossh ∪ toss¬h as a coin toss that
ends with the coin in the palm of agent a’s hand, where it remains unobserved.
Assume this agent can execute a sensing action, feeling whether the coin in one’s
hand landed heads; and a (conscious) flip into heads action, defined as follows:

feelh feel¬h flip
[a]
h

pre(feelh) = h pre(feel¬h) = ¬h pre(flip
[a]
h) = [a]¬h

post(feelh)(q) = q post(feel¬h)(q) = q post(flip
[a]
h)(h) = >

post(flip
[a]
h)(q) = q, ∀q 6= h

(feelh, feelh) ∈ Ra (feel¬h, feel¬h) ∈ Ra (flip
[a]
h , flip

[a]
h) ∈ Ra

(feelh, feel¬h) /∈ Ra (feel¬h, feelh) /∈ Ra (flip
[a]
h , f) /∈ Ra

Using these elements, the previous actions would be represented by the following
sets:

E = {toss
〈Ag〉
h , toss

〈Ag〉
¬h , feelh, feelh, fliph}

AE = {flip
[a]
h } A∪ = {toss

〈Ag〉
h ∪ toss

〈Ag〉
¬h }

A] = {feelh] feel¬h} A∪ = ∅

A planning domain M = (ϕT , A, ϕG) determines which combinations of ac-
tions from A, called M-actions, are considered as executable by the planner agent.
Each of these M-actions include arbitrary composite actions and a single choice
operator, and are inductively defined as follows.

Definition 7.3.4 (M-action; M-sequence). We say [U, e] and [U, e ∪ f] are M-
sequences whenever e ∈ AE and e ∪ f in A∪. Moreover, if e′ ⊗ · · · ⊗ e′′ and
f ′⊗ · · · ⊗ f ′′ are elements of A<ωE and e∪ f is of the form e] f ∈ A] or e∪f ∈ A∪,
then

[U, (e⊗ e′ ⊗ · · · ⊗ e′′) ∪ (f ⊗ f ′ ⊗ · · · ⊗ f ′′)] is an M-action

Finally, any finite sequence [U,Ek] . . . [U,E1] of M-actions is called an M-sequence.

Example 7.3.5. [Tossing a coin; Cont’d] Using the actions defined in Example
7.3.3, the following is an M-sequence

159

[U, toss
〈Ag〉
h ∪ toss

〈Ag〉
¬h] [U, (feelh] (feel¬h ⊗ fliph)]

tossing the coin, sensing it, and if tails flip it to heads

Definition 7.3.6 (Strong solution). We say that an M-sequence
[U,E1], . . . , [U,Er] is a strong solution for a planning domain M = (ϕT , A, ϕG) iff

|= ϕT → [U,E1] . . . [U,Er]ϕG (success)

|= ϕT → 〈U,E1〉 . . . 〈U,Er〉> (executability)

From here on, we will refer to strong solutions simply as solutions. It can
be shown that the M-sequence from Example 7.3.5 is a solution for the planning
domain

M = (>, { toss
〈Ag〉
h ∪ toss

〈Ag〉
¬h , feelh] feel¬h, flip

[a]
h }, [a]h)

7.4 A Search Algorithm for Non-deterministic
Plans

As in Chapter 5, we study a Breadth First Search algorithm for planning in
LCC∪⊗n logics. As usual, the planning algorithm will search within the space of
plans for some construction satisfying the Terminating Condition. In contrast
to the algorithm for the deterministic case, though, not only the plans, but also
some of the actions [U,Ed] are built (during the plan construction) in a stepwise
fashion. The actions under construction are called partial actions.

Definition 7.4.1. [Partial action] Given an action model U, a partial action in
U is an expression of the form e ∪ f where

f = (f0 ⊗ x⊗ f1) or f = (f0 ⊗ x)

and satisfying e0] f0 ∈ A] or e0∪f0 ∈ A∪.

As a consequence of this, not all plans considered during search correspond
to M-sequence of modalities in the logic of some U≤n action model.

The structure of a plan is again a pair consisting of: a formula for the open
goals, and a (possibly empty) M-sequence πk = [U,Ek] . . . [U,E1] prefixed by a
(possibly empty) partial action.

plan = (partial act. + M-sequence, open goals)

π = ([U, e ∪ f]πk, ϕgoals(π))

Note we will abuse notation: when a plan πk simply consists of an M-sequence
[U,Ek], . . . , [U,E1] we will refer to this M-sequence again as πk. See also Figure
7.1 for an illustration of Definitions 7.4.2–7.4.4.

Definition 7.4.2 (Empty plan; Refinement with A∪). Let M = (ϕT , A, ϕG) be
a planning domain. We define the empty plan as the pair

π∅ = (∅, ϕG)

160

Let πk = [U,Ek] . . . [U,E1] be an M-sequence, and let e0 ∪ f0 ∈ A∪. We define
the refinement πk(e0 ∪ f0) as the pair

([U, e0 ∪ f0]πk, ϕgoals(πk(e0∪f0)))

where ϕgoals(πk(e0∪f0))) = t([U, e0 ∪ f0]goals(πk) ∧ 〈U, e0 ∪ f0〉>).

Definition 7.4.3 (Refinement with A] or A∪). Let M be a planning domain
and πk = [U,Ek][U,Ek−1] . . . [U,E1] an arbitrary M-sequence, with Ek ∈ A<ωE

deterministic. For any action e0 ∪ f0 ∈ A] ∪A∪, i.e. with ∪ ∈ {],∪}, we define
the refinement πk(e0] f0) as either of the following pairs, also denoted resp.
π∅(. . . , e0 ∪ f) and π∅(. . . , e0 ∪ f0;),

([U, (e0 ⊗ Ek) ∪ (f0 ⊗ x)]πk−1, ϕgoals(πk−1))

([U, (e0 ⊗ Ek) ∪ f0]πk−1, t([U, (e0 ⊗ Ek) ∪ f0]ϕgoals(πk−1) ∧ 〈U, (e0 ⊗ Ek) ∪ f0〉>))

Definition 7.4.4 (Refinement with AE). Let M be a planning domain and
let πk = [U,Ek][U,Ek−1] . . . [U,E1] be a plan where [U,Ek is an M-action and
or a partial action and [U,Ek−1] . . . [U,E1] is an arbitrary M-sequence. Let
e ∈ AE be a deterministic action. Define ϕ∗goals(πk(e)) = t([U, e]ϕgoals(πk)∧〈U, e〉>).

Let Ek ∈ A<ωE be a deterministic M-action. Define the refinement πk(e) as

([U, e⊗ Ek]πk−1, ϕ
∗
goals(πk(e)))

Let Ek /∈ A<ωE be a non-deterministic M-action. We define πk(e) as

([U, e]πk, ϕ
∗
goals(πk(e)))

Let Ek be a partial action Ek = e′∪(f0⊗x⊗f1) with ∪ ∈ {],∪} and e′ = (e′0⊗· · ·).
We define the refinement π∅(. . . , e), denoted πk(e), as

([U, e′ ∪ (f0 ⊗ x⊗ e⊗ f1)], ϕ∗goals(πk(e)))

We also define the refinement π∅(. . . , e;), also denoted πk(e), as

([U, e′ ∪ (f0 ⊗ e⊗ f1)], ϕgoals(πk(e)))

where ϕgoals(πk(e)) =
t
(

[U, e′ ∪ (f0 ⊗ e⊗ f1)]ϕgoals(πk−1) ∧ 〈U, e′ ∪ (f0 ⊗ e⊗ f1)〉>
)

if ∪ =](
[a](pre(e′0) ∧ ¬pre(f0)) ∨ [a](¬pre(e′0) ∧ pre(f0))

)
∧

t
(

[U, e′ ∪ (f0 ⊗ e⊗ f1)]ϕgoals(πk−1) ∧ 〈U, e′ ∪ (f0 ⊗ e⊗ f1)〉>
)

if ∪ = ∪

The refinements with e of plans containing partial actions of the form Ek =
e′∪(f0⊗x) are analogously defined for ∪ ∈ {],∪}, as e′∪(f0⊗x⊗e) or e′∪(f0⊗e)
and the corresponding goals ϕgoals(πk(e)) defined as above.

161

Figure 7.1: This figure represents refinements (black circles) used for the con-
struction of actions (Top) Some types of actions built during the construction
of a non-deterministic plan. (Bottom) Partial actions built introducing a pre-
or in-action dist. action; or by refining the latter with a deterministic action
(right).

Thus, a plan can be denoted as an M-sequence, or as a sequence of plan
refinements from the empty plan

[U,Ek] . . . [U,E1] or π∅(f, . . . , e0 ∪ f0, . . . , f
′)

Definition 7.4.5 (Plan. Leaf plan). For a given planning domain M, a plan
for M is any pair (π, ϕgoals(π)) obtained after a finite number of applications of
Definitions 7.4.2-7.4.4 upon the empty plan π∅ for M.

Given a plan π for M and a refinement π(e) of π with a deterministic action
e ∈ AE, we say that π(e) is a leaf iff ϕgoals(π(e)) is inconsistent or |= ϕgoals(π(e)) →
ϕgoals(π).

Given a non-deterministic M-action Ek, we say πk = [U,Ek] . . . [U,E1] is a leaf
iff ϕgoals(πk) is inconsistent.

Definition 7.4.6 (Terminating Condition). The Terminating Condition for a
plan π for M to be the output of a planning algorithm is |= ϕT → ϕgoals(π).

As usual, the construction of plans will stop if the current plan’s open goals
follow from the initial state ϕT .

162

Data: M = (ϕT , A, ϕG)
Result: π; or fail

initialization: π = π∅ and Plans = 〈π〉;
while 6|= ϕT → ϕgoals(π) do

delete π from Plans;
set Plans = Plans ∩〈 π′ | π′ is a refinement of π and π′ is not a leaf 〉;
if Plans = ∅ then

set π = fail
else

set π = the first element of Plans
end

end

Algorithm 5: Breadth First Search for backward non-deterministic plan-
ning in LCC∪⊗n.

Let us finally address the properties of this algorithm for non-deterministic
planning based on Breadth First Search in the space of plans.

Theorem 7.4.7 (Soundness). Let π be the output of the BFS algorithm in Fig.
5 for an arbitrary planning domain M. Then, π is a solution for M.

Proof. Clearly, π is an expression of the form π∅(. . .) for some sequence of
actions . . . in A<ω. First we show by induction that π is an M-sequence, say of
the form [U,E1] . . . [U,Em].

(Base Case m) We show that some [U,Em] is defined by an initial fragment
of the output π = π∅(. . .) as an M-action. Let then π = π∅(. . . , e0 ∪ f0, . . .)
be such that e0 ∪ f0 is the first action occurring in π that is not in AE, i.e.
π = π∅(ei, . . . , ei′ , e0 ∪ f0, . . .), for ei, . . . , ei′ ∈ AE. Consider the following cases:
(Sub-Case e0 ∪ f0 ∈ A∪.) Then, in either of the next two possibilities, [U,Em] is
defined as an M-action:

[U,Em] =

{
[U, ei′ ⊗ · · · ⊗ ei] if π 6= π∅(e0 ∪ f0, . . .)

[U, e0 ∪ f0] otherwise

(Sub-Case e0 ∪ f0 ∈ A].) Let π = π∅(. . . , e0 ∪ f0, fj , . . . , e
′
0 ∪ f ′0, . . .), where,

e′0 ∪ f ′0 is the next action not in AE after e0 ∪ f0. Then, in either of the next two
possibilities, we obtain the same M-action, that is

[U,Em] =

[U, (e0 ⊗ ei′ ⊗ · · · ⊗ ei) ∪ (f0 ⊗ fj′ ⊗ · · · ⊗ fj)]

if π = π∅(. . . , e0 ∪ f0, fj , . . . , fj′ ; . . . , e
′
0 ∪ f ′0, . . .)

[U, (e0 ⊗ ei′ ⊗ · · · ⊗ ei) ∪ (f0 ⊗ fj′ ⊗ · · · ⊗ fj)]

if π = π∅(. . . , e0 ∪ f0, fj , . . . , fj′ ; e′0 ∪ f ′0, . . .)

Note that by Definition 7.4.4, these two are the only possibilities. First, observe
that such action fj′ must exist, since π is a finite sequence of refinements on the

163

empty plan π∅. Second, if π is of the form π∅(. . . , ej′ , e
′
0 ∪ f ′0), the refinement

with e′0 ∪ f ′0 would not be valid, since it would apply to a partial action Em.

(Sub-Case e0 ∪ f0 ∈ A∪.) The proof is analogous to the previous sub-case.

(Sub-Case no action e0∪ f0 exists in π.) Then π = [U,Em] = [U, ei′⊗· · ·⊗ [U, ei],
and we are done.

(Ind. case k + 1 → k) Assume that πk+1 = [U,Ek+1] . . . [U,Em] is a sequence
of M-actions. And let π = π∅(. . . , e?, . . .) be such that e? is the first action
in π not used in the definition of πk+1. By replacing ϕG by ϕgoals(πk+1), we
can repeat the same reasoning as in the base case from e? onwards to generate
some M-action Ek. Again, if all the actions from e? onwards are in AE, we also
conclude π = [U,Ek], . . . , [U,Em].

Finally, since the actions in π are finite, there exists a finite number of actions
e∗ in this plan which are not in AE, say m′. Then this process ends up with a
finite sequence of M-actions [U,E1] . . . [U,Em] where m′ ≤ m ≤ m′ + 1. Thus, π
is a M-sequence.

Note first, that now we can fix a particular LCC∪⊗n logic, given by the action
model U used by M, and a bound n defined as the maximum length r of the M-
actions Ek in the output π. (Where the length of Ek = e ∪ f is the maximum of
lengths of e and f.) For simplicity, though, we simply keep the previous notation
[U, ·], rather than using [U≤r, ·].

Let us re-enumerate the M-sequence given by the output π now as
[U,Em] . . . [U,E1]. Let also πk denote the plan corresponding to the M-sequence
[U,Ek] . . . [U,E1]. The proof that [U,Em] . . . [U,E1] is a solution for M is by induc-
tion on the length k of initial sub-sequences [U,Em] . . . [U,Ek+1]. Let πk denote
the M-sequence [U,Ek] . . . [U,E1]. First we show the claim

|= ϕgoals(πk+1) → ([U,Ek+1]ϕgoals(πk) ∧ 〈U,Ek+1〉>)

(Sub-Case Ek+1 ∈ AE
<ω.) Let Ek+1 = ei ⊗ · · · ⊗ ei′ . Observe that in

this case, the construction of the M-action Ek+1 proceeds as in the case of
deterministic planning (Def. 5.2.2) with a deterministic planning domain
Mk+1 = (ϕgoals(πk+1), AE

≤r, ϕgoals(πk)) (except that now we explicitly composite

actions in A = AE
≤r). Hence, the proof of the claim can be obtained by the

soundness result Theorem 5.3.1, together with the fact that [U, ei] . . . [U, ei′] can
equivalently be replaced by [U, ei ⊗ · · · ⊗ ei′], that is by [U,Ek+1]; and similarly
for 〈U, ei〉 . . . 〈U, ei′〉 and 〈U,Ek+1〉. It can be observed, then, that the fact that
Ek+1 is a deterministic solution for Mk+1 is equivalent to the desired claim above.

(Sub-Case Ek+1 ∈ A∪.) Let Ek+1 = e0 ∪ f0. Then we simply have that

ϕgoals(πk+1) = t([U, e0 ∪ f0]ϕgoals(πk) ∧ 〈U, e0 ∪ f0〉>) (Def. 7.4.2)

≡ [U, e0 ∪ f0]ϕgoals(πk) ∧ 〈U, e0 ∪ f0〉> (correctness of t)

164

(Sub-Case Ek = (e0 ⊗ ei′ ⊗ · · · ⊗ ei)] (f0 ⊗ fj′ ⊗ · · · ⊗ fj).) The reasoning is
similar to the previous case, now using the definition of ϕgoals(π∅(...,fj′ ;))

.

(Sub-Case Ek = (e0 ⊗ ei′ ⊗ · · · ⊗ ei)∪(f0 ⊗ fj′ ⊗ · · · ⊗ fj).) The proof is
again similar. The only difference is that in addition now we have that
|= ϕgoals(πk+1) → [a](pre(e0) ∧ ¬pre(f0)) ∨ [a](¬pre(e0) ∧ pre(f0)).

Finally, we can show the soundness of the output plan π. The proof is by
induction on the claims that

|= ϕT → [U,Em] . . . [U,Ek+1]ϕgoals(πk) and |= ϕT → 〈U,Em〉 . . . 〈U,Ek+1〉>

This will suffice, since for the particular case of 0, we have, ϕgoals(π0) =
ϕgoals(π∅) = ϕG, so the claim shows that π is a solution for M.

(Base Case m) We show that |= ϕT → [U,Em]ϕgoals(πm−1) and
|= ϕT → 〈U,Em〉>. Since the Terminating Condition is satisfied by the
output π = πm we have |= ϕT → ϕgoals(πm). By the above proof, we also have
|= ϕgoals(πm) → [U,Em]ϕgoals(πm−1) and |= ϕgoals(πm) → 〈U,Em〉>. From these
and the previous fact, the above claims immediately follow.

(Ind. Case k + 1 ⇒ k) Assume (Ind. Hyp.) that the claim holds for the initial
fragment [U,Em] . . . [U,Ek+1]; that is, |= ϕT → [U,Em] . . . [U,Ek+1]ϕgoals(πk) and
|= ϕT → 〈U,Em〉 . . . 〈U,Ek+1〉>. We proceed to show the two claims:

|= ϕT → [U,Em] . . . [U,Ek+1]ϕgoals(πk) (Ind. Hyp.)

|= ϕgoals(πk) → [U,Ek]ϕgoals(πk−1) (shown above)

|= [U,Em] . . . [U,Ek+1]
(
ϕgoals(πk) → [U,Ek]ϕgoals(πk−1)

)
(Nec.)

|= ϕT → [U,Em] . . . [U,Ek+1][U,Ek]ϕgoals(πk−1) (K)

|= ϕT → 〈U,Em〉 . . . 〈U,Ek+1〉> (Ind. Hyp.)

|= ϕT → [U,Em] . . . [U,Ek+1]ϕgoals(πk) (Ind. Hyp.)

|= ϕT → [U,Em] . . . [U,Ek+1]〈U,Ek〉> (shown above)

|= ϕT → 〈U,Em〉 . . . 〈U,Ek+1〉〈U,Ek〉> (1st and 3rd claims))

Theorem 7.4.8 (Completeness). For a given planning domain M, if some M-
sequence exists that is a solution to M, then the BFS method from Algorithm 5
terminates (with a solution).

Proof. Without loss of generality, in this proof we will assume that pre(e) is
consistent for each e ∈ E and that pre(e⊗ · · · ⊗ e′) is consistent for each existing
e⊗ · · · ⊗ e′ ∈ AE

<ω.
The search space is a finitely-branching tree (with root π∅ and child nodes in

A), and thus the algorithm terminates provided some plan π exists that satisfies

165

the Terminating Condition. Assuming a solution exists, let us check that some
plan π exists that is an M-sequence satisfying the Terminating Condition.

Let [U,Em] . . . [U,E1] be a M-sequence which is a solution for M. Without
loss of generality, we can assume that this M-sequence has minimal total length,
where the length of (ei1 , . . . , eir) is r, and the length of Ej = (e0 ⊗ ei1 ⊗ · · · ⊗
eir) ∪ (f0 ⊗ ej1 ⊗ · · · ⊗ ej′r) is 1 + r + r′. Moreover, we can assume that the
solution [U,Em] . . . [U,E1] is a M-sequence satisfying Ej ∈ AE

<ω iff j = 1 or
Ej+1 ∈ A∪. To see this can be assumed, we can first equivalently replace all the
[U, e] . . . [U, f] modalities with e, . . . , f ∈ AE as a single modality [U, e ⊗ · · · ⊗ f].
Moreover, suppose that [U,Ej+1][U,Ej] is of the form

Ej ∈ AE
<ω and Ej+1 = (e0 ⊗ ei ⊗ · · · ⊗ ei′) ∪ (f0 ⊗ fj ⊗ · · · ⊗ fj′)

with ∪ ∈ {],∪}. Then, by iteratively replacing all these pairs [U,Ej+1][U,Ej]
with the corresponding modality

[U, (e0 ⊗ ei ⊗ · · · ⊗ ei′ ⊗ Ek) ∪ (f0 ⊗ fj ⊗ · · · ⊗ fj′ ⊗ Ek)]

the resulting expression is an M-sequence of the desired form.

We show that [U,Em] . . . [U,E1] is generated by the BFS algorithm and sat-
isfies the Terminating Condition –if no other plan is generated first, in which
case we would also be done. As usual we will refer by πk to the M-sequence (or
plan) [U,Ek] . . . [U,E1]. In addition, without loss of generality, we also assume
that the solution [U,Em] . . . [U,E1] is minimal in the sense that no actions from
A can be deleted from it while preserving success and executability.

The proof of the present Theorem is by induction on the construction
of the solution. Since, though, the Base Case for [U,E1] and the Ind. Case
[U,Ek] . . . [U,E1] ⇒ [U,Ek+1][U,Ek] . . . [U,E1] are similar, we only prove the
former. For the inductive case, one can simply replace ϕG by ϕgoals(πk).

(Case E1 ∈ AE
<ω.) The proof is similar to that of the Completeness Theorem

5.3.1 for deterministic planning in the domain (ϕgoals(π1), AE, ϕG), except that
the plan π∅(ei′ , . . . , ei) now defines an M-action [U,E1] = [U, ei⊗· · ·⊗ ei′] rather
than as a sequence [U, ei] . . . [U, ei′]. Theorem 5.3.1 also shows that no action
e ∈ {ei, . . . , ei′} makes the corresponding plan π∅(. . . , e) a leaf.

(Case E1 ∈ A∪) It is obvious that [U,E1] is constructible since E1 ∈ A∪. Let
E1 = e0 ∪ f1. To see that π∅(e0 ∪ f0) is not a leaf, we reason as follows. By
definition of planning domain ϕT is consistent, so let M,w be a model for ϕT .
Then,

166

M,w |= ϕT

M,w |= ϕT → [U,Em] . . . [U,E2]
(
[U,E1]ϕG ∧ 〈U,E1〉>

)
(by def. of solution)

M,w |= ϕT → [U,Em] . . . [U,E2]t
(
[U,E1]ϕG ∧ 〈U,E1〉>

)
(correctness of t)

M,w |= ϕT → [U,Em] . . . [U,E2]ϕgoals(π∅(e0∪f0)) (Def. 7.4.2)

((M ◦ U) . . . ◦ U), ((w,−→em), . . . ,−→e2) |= ϕgoals(π∅(e0∪f0))

for any −→em ∈ Em, . . . , −→e2 ∈ E2

so we conclude that ϕgoals(π∅(e0∪f0)) is consistent.

(Case E1 contains a] or ∪ modality.) Let E1 = (e0⊗ei⊗· · ·⊗ei′)∪(f0⊗ej⊗
· · · ⊗ ej′), with ∪ ∈ {],∪}. A simple proof by induction with Definitions 7.4.4
and 7.4.3 shows that π∅(ei′ , . . . , ei, e0∪ f0, ej′ , . . . , ej ;) is constructible, since the
deterministic refinements are not leafs. Using this, the proof that E1 is not a
leaf, for the case ∪ =], is analogous to the previous case with ∪. Finally, the
same holds for the case where ∪ = ∪: the proof is analogous to that for],
together with the immediate fact that if ϕgoals(π∅(...,e0]f0,...,e;) is consistent, then
so is the formula(

[a](pre(e0) ∧ ¬pre(f0)) ∨ [a](pre(f0) ∧ ¬pre(e0))
)
∧ ϕgoals(π∅(...,e0]f0,...,e;)

But the latter is precisely identical to ϕgoals(π∅(...,e0]f0,...,e;), so we are done.
This, the plan π∅(. . . , e0 ∪ f0, . . . , e;) corresponds to the M-action [U,E1].

As we said, the proof of the inductive case is analogous. Thus, we conclude
that a plan π is constructible. The proof concludes by observing that after
constructing πm = [U,Em] . . . [U,E1], the Terminating Condition is satisfied. The
claim |= ϕT → ϕgoals(πm) follows from inspection of the definition in each case:
Ek ∈ AE; Ek ∈ A∪; and finally Ek of the form [U, (e0 ⊗ · · · ⊗ e′)∪ (f0 ⊗ · · · ⊗ f ′)],
with ∪ ∈ {],∪}.

Example 7.4.9 (Coin toss announcement). For a problem involving the use of
M-actions containing ∪, consider the following: a coin was tossed into the agent
a’s hand, where it remains unobserved. The agent a wants to know whether
it landed heads or tails, and a also wants that the (gullible) agent b believes it
landed heads. Let the planning domain M = (ϕT , A, ϕG) defined by

ϕT = >, A = { h!
[a]
b ∪h†

[a]
b , feelh] feel¬h }, ϕG = ([a]h ∨ [a]¬h) ∧ [b]h

.
Then [U, feelh] feel¬h][U, h!

[a]
b ∪h†

[a]
b] is a solution to M. Note that in this

example,

ϕ
goals(π∅(h!

[a]
b ∪h†

[a]
b))

= ([a]h ∨ [a]¬h) ∧ ([a]([a]h ∧ 〈a〉h) ∨ [a]([a]¬h ∧ 〈a〉¬h))

Since these goals are satisfied by the sensing action, which has no preconditions,
the resulting plan has as open goals >, and hence it is executable and it satisfies
the Terminating Condition.

167

In some planning scenarios, one can only build plans which might lead to
a goal state, also called weak solutions. In this cases, the study of weak non-
deterministic planning is also of interest; that is, the study of systematic search
algorithms for this kind of plans. The previous definitions and results easily
adapt to the case of plan search for weak solutions.

Definition 7.4.10 (Weak solution). We say that an M-sequence
[U,E1], . . . , [U,Er] is a weak solution for a planning domain M = (ϕT , A, ϕG) iff
we replace the (success) condition in Def7.3.6 by

|= ϕT → 〈U,E1〉 . . . 〈U,Er〉ϕG (poss. success)

The definitions of plan refinement Def. 7.4.2–7.4.3 are analogously defined
except that now we replace in the definition of ϕgoals(π(·)) the condition

t
(
[U,Ek]ϕk+1 ∧ . . .

)
by t

(
〈U,Ek〉ϕk+1 ∧ . . .

)
The results of soundness and completeness are analogously proved for the

same Breadth First Search based Algorithm 5 (except that now this algorithm is
based in the new definitions of plan refinement). In other words, if the algorithm
terminates given some non-deterministic planning domain M, it outputs a weak
solution for M. And if a weak solution for M exists, then Algorithm 5 terminates
with such a solution.

Theorem 7.4.11 (Soundness and Completeness for Weak Planning). The Algo-
rithm 5 is sound and complete for weak non-deterministic planning in LCC∪⊗n.

7.5 Conclusions and Related Work

We presented backward planning algorithms for a planner-executioner agent
with LCC-reasoning abilities. These algorithm enables the agent to find de-
terministic or (non-deterministic) strong plans in multi-agent scenarios. The
logics considered here are dynamic epistemic logics with ontic or physical ac-
tions. This permits that plans contain communicative actions, sensing or the
usual fact-changing actions. Hopefully, the proposed methods might be used for
practical reasoning in communicative agents, and in particular provide a logical
foundation for the modeling (and computing) of agreements among motivated
agents.

In the literature on planning, a study of strong non-deterministic plan search
can be found in [41] for classical planning. This work also deals with non-
deterministic iteration ∗, or cyclic planning. In relation to this, as commented
in 6.6, there are computational issues preventing similar results in the corre-
sponding extensions of LCC with non-deterministic iteration. For a study of
strong planning under partial observability, see [23]. The main difference be-
tween this and the approaches based on dynamic epistemic logic, is that in the
former, classical planning is extended with new components, e.g. an observation
function is added to the structure of a planning domain. In the present approach,

168

in contrast, one rather extends the language and logic underlying classical plan-
ning. As a consequence, the traditional structure of planning domains, i.e. as
triples (initial state, actions, goals), is preserved in the resulting planning sys-
tems. See Section B.2 for a more detailed comparison between standard planning
approaches and the present work based on the LCC dynamic epistemic logics.

In the area of logic, a backward approach to planning is considered in [49],
for the case of public actions (i.e. announcements and assignments). More in
line with the present approach, one can find in the literature several works by
Bolander et al. In [28] an approach to forward planning is considered based
on the DEL logics from [142]. This approach semantically defines the space of
states and the available actions. Thus, the planning states are multi-pointed
epistemic models M, {w, . . . , w′} that obtain after update with arbitrary plans
π (analogous to the semantics of the present planning states [ϕgoals(π)] in back-
ward planning); similarly, the planning actions are pointed action models U,Ed,
rather than the corresponding modalities [U,Ed] in a language L∪U. This pa-
per studies the (semi-)decidability of single- and multi-agent planning based on
Breadth First Search for forward plan search. The main differences between the
planning system from [28] and the present approach are: the use of semantic
or proof-theoretic tools; a different base epistemic logic with: single-agent and
common knowledge modalities for groups, [a] and [B∗], or the E·PDL-modalities
of LCC. In [9], the authors study single-agent conditional planning in the DEL
logic [142]. This work combines the epistemic modalities [a], [B∗] and the dy-
namic modalities U, e from [142], with composition ⊗ and a conditional action
constructor

if [a]ϕ then do π else do π′

where a denotes the planner agent a. This proposal for non-deterministic plan-
ning system is based on forward search on AND/OR trees, in contrast to the
present framework. Besides this difference and the present multi-agent approach,
none of the two planning systems seems to extend the other one in terms of ex-
pressivity; on the one hand, our notion of conditional plan is limited to a sequence
of conditional actions, while in [9] conditional actions can be nested: the above
π and π′ can again contain conditional constructors. On the other hand, in this
chapter we did not assume that the non-deterministic actions are distinguishable
immediately before execution, and for example the actions defined by ∪ and]
need not be so.

169

Conclusions and Open
Problems

In the two Parts of this thesis, we have proposed methods to solve problems of
practical reasoning using techniques from the area of planning. The motivation
for the proposed methods was to combine the expressivity and tools from the two
areas of logic and planning into logic-based planning systems. This resulted in
flexible planning algorithms for the construction of plans that can be expressed
in the corresponding logics.

The main contributions of this dissertation are soundness and completeness
theorems of these planning algorithms, as well as the study of the logical proper-
ties of the t-DeLP logic programming system, and soundness and completeness
of the LCC logics extended with composition and choice. The contributions of
this thesis can be summarized as follows:

• the procedure for t-DeLP warrant in the classes of simple and mutex pro-
grams satisfies the properties of consistency and closure called Rationality
Postulates.

• Breadth First Search for backward planning is sound and complete for
the class of planning domains expressible in some simple or mutex t-DeLP
logical program.

• a dialogue-based Breadth First Search planning algorithm for multiple col-
laborative planner agents is sound and complete w.r.t centralized planning.

• Breadth First Search is sound and complete for deterministic backward
planning in the planning system defined by any LCC logic.

• the logics extending LCC with composition and choice are sound and com-
plete w.r.t. a natural extension of their axioms and semantics.

• Breadth First Search is sound and complete for strong non-deterministic
(backward) planning in any LCC logic extended with composition and
choice.

As a comparative summary of the concepts and methods used in the two
Parts of this dissertation, see the next table.

173

in Part I in Part II
select a decidable argumentation-based a dynamic logic
logical system: logic programming (i.e. with action

(without logical modalities)
symbols for action)

Model a truth-assighment a static model M
(or state, in logic) on Var (i.e. an epistemic model)
State description a set of literals a formula in

(init. state and goals) the static fragment
State (in planning) a logical program, or the a set of models for

partial truth-assignment the open goal ϕ,

induced by it i.e. [ϕ]
M

Determ. Actions definable pairs atomic action
of an agent (preconditions, effects) modalities

(or attributed to it) each a set of literals
Available actions all actions some subset of actions

Planning domains (log. prog., actions, goals) (init., actions, goal)
Dynamic as in state-transition product update

transitions systems
Action Update syntactic replacement, semantically defined,

if preconditions are true if preconditions are true
Plans given by the programs constructible

planning system from atomic actions
Search space (planning) states (planning) states

Search methods BFS, DFS, etc. BFS
Refinement steps action-supported actions

proofs (or arguments)
Plan Threats logical inconsistencies (none in linear planners

or counter-arguments for monotonic logics)
Threat maneuvers manually adapting those

of the planning system
Open goals as in planning: syntactic reduction

after refinement unsolved goals plus into the static fragment
new actions’ preconditions of the language

Terminating initial state includes initial state implies
condition for open goals; open goals

the search algorithm no threats exist

Next we summarize each Part, and list some interesting question from each
chapter that remain as open problems.

Part I In this part, we proposed a logic programming system t-DeLP for
temporal defeasible reasoning, and studied its argumentation-theoretical prop-
erties. We also proposed a planning system based on this logic and studied
different planning algorithms for solving the corresponding problems of practi-

174

cal reasoning. From this first part of the thesis, we would like to emphasize the
advantages in terms of knowledge representation and, more specifically, of the
dynamics of knowledge representation. Hopefully, this was shown throughout
the Examples from Chapter 1.3.3 for t-DeLP logic programming. In these ex-
amples, the expansion of a knowledge base with more precise information (rules
with new atoms) is straightforward and can be done without modifying the pre-
vious representations. A bit more surprising are the examples in Section 2.2
about the introduction of actions. In these examples, a simple action descrip-
tion was expanded with more refined actions, in a monotonic way. In contrast,
the same maneuver in classical planning (based on monotonic logic) would re-
quire a totally new action description from scratch. In general, the dynamics of
knowledge representation in monotonic logics typically exhibit a non-monotonic
character: when more precise information must be introduced into a knowledge
base, this knowledge base needs first a full revision.

This advantage is most important in the study of multi-agent argumentation
[135], and decentralized planning systems as in Chapter 3. The reason is that the
initial knowledge bases of these agents might be the result of heterogenous expe-
riences from previous interactions with the environment. That is, these agents
might have learnt by induction different lessons from the different context they
have previously experienced (defeasible rules). This allows that the unique con-
dition in decentralized argumentation or planning is that of a global consistency
on the strict information. For the case of mutex programs, this consistency re-
quirement affects both the hard facts of agents’ experience (strict facts), and the
conceptual constraints (mutex rules). This makes the consistency requirement
to be reasonably weak for the tasks of multi-agent argumentation and planning
in the class of t-DeLP mutex programs.

Chapter 1 A first question left unanswered in this thesis is the computa-
tional complexity of the warrant procedure for t-DeLP. A conjecture would be
that the complexity is the same than in the DeLP case; according to [39], the
question whether a literal is warranted in a program is in some class NPC , where
C is some parametrized class given by the particular defeat criteria.

From the point of view of the language, t-DeLP is still far from the expres-
sivity of temporal logic programming systems [1], [20]. On the one hand, one
might like to extend the t-DeLP framework in order to accept arbitrary queries,
that is, whether some general strict or defeasible rule is warranted given a logical
program. (For strict queries, at least, the application of the techniques from [20]
should be straightforward.) On the other hand, it is hard to guess how difficult
might it be to expand the t-DeLP language of Chapter 1 with temporal modal-
ities like until, although this would also be an interesting question to pursue.
Finally, past temporal operators might be introduced to address post-diction
questions, or (evidence-based temporal) reasoning from the presently observable
effects to its presumable causes in the past. In the same line, the t-DeLP state
transition system from Chapter 2 could be extended with such past operators
for counterfactual reasoning about the past (with alternative plans that were
not executed).

175

More immediate open questions, also related to Chapter 1, include the exten-
sion of the consistency and closure postulates to more general classes of t-DeLP
logic programs, e.g. programs containing arbitrary strict rules without delay.
It can be conjectured that the closure under transposition for strict rules might
suffice for this. (see Section C.2).

Finally, extensions or revisions of the current defeat relation(s) for t-DeLP
are also conceivable. For example, a preference for more precise temporal infor-
mation might be considered in addition to (or in place of) the current preference
criteria based on a preference for more facts and less persistence.

Chapter 2 As mentioned in this chapter, severe restrictions were imposed
on the temporal actions in t-DeLP planning, since most of the responsibility
was left to the set of defeasible rules. Along this line, it would be interesting to
consider more expressive representations of temporal actions, like those usual in
temporal planners: actions with preconditions at different times, with arbitrary
durations, with preconditions that must hold during all the execution, and so on.
Another line of research, closer to least-commitment policies, would be to replace
linear plans with more flexible plan representations like those of GraphPlan and
POP, in line with [62] for DeLP.

Other interesting topics for future research are comparative studies in the
computational complexity of forward and backward t-DeLP plan search. Finally,
the study of heuristics might provide some clues to reasonably good implemen-
tations of the algorithms proposed. Due to the defeasible character of t-DeLP,
though, traditional heuristics for planning do not seem to work.

Chapter 3 In this last chapter of Part I, some open problems have been left
for future work. First, it would be interesting to perform experimental tests for
a comparison between the centralized and distributed algorithms from Chapters
2 and 3. These would reveal some parameters and values for which one or
the other approach is better suited in terms of computational costs. Among
these parameters, one might consider the number of dialoguing agents, or the
size of the planning domain(s). The use of more flexible planners for t-DeLP
could also be extended to the present multi-agent planner approach, in line with
[111]. Finally, in the literature on multi-agent planning, the merging of plans by
different agents (or groups) into a single consistent joint plan has also become
a focus of interest. This might be done as well in t-DeLP planning by adapting
the proposed dialogues to this task.

Part II In the second part of this thesis, we focus on the extension of dynamic
epistemic logic with composition and choice, and studied search algorithms for
the resulting planning systems. This permitted to address the issues of partial
observability and non-determinism. The main conclusion of this second part is
an increase in the kind of epistemic scenarios that can be addressed by plan-
ning algorithms. This is not only due to the existence of (nested) epistemic
modalities, but also to the existence of a rich class of epistemic actions, includ-
ing communicative and sensing actions. Needless to say, the advantages the
proposed planning systems are inherited from the base logics LCC [139] (and

176

LCC⊗∪n), and are due to the expressive power of these logics.

In comparison, in view of the technical issues existing in the logics of inten-
tions (see Section 5.4) it seems altogether more practical to drop the intention
modalities and instead adopt methods based on plan search. The present ap-
proach might be applied as well to other dynamic logics (without intentions), to
obtain practical reasoning systems.

Chapters 4 and 6 The field of dynamic epistemic logic is currently a very
active area, and an ever-growing number of extensions of basic DEL logics can
be found in the literature. For example, the introduction of concurrency of
actions, considered in [143], would permit more general planning systems, where
agents execute actions at the same time. This is interesting provided that time is
implicitly represented in dynamic epistemic logic. Similarly, the introduction of
dynamic operators for belief revision has been much studied, e.g. [146, 147, 137].
An extension of the present planning techniques into LCC logics with belief
revision operators would increase the flexibility of the communicative abilities
of the present LCC planners.

Chapters 5 and 7 Following the comparison with [9] in Section 7.5, a
natural question is whether one can combine the concept of conditional plan in
this work with the present notion of non-deterministic actions (as well as with
a backward approach to multi-agent planning). Some of the technical issues
that would arise were discussed during the introduction of non-deterministic
modalities in Chapters 6 and 7.

Another question related to [28] is the study of the decidability and com-
plexity of the proposed planning algorithms. The results in these parts show
that multi-agent (strong) planning is at least semi-decidable, so the results for
backward planning are not worse than those from a forward approach. The
decidability of single-agent planning in the present case is an open problem.

At the level of applications, the study of heuristic criteria for particular
languages of LCC or LCC∪⊗n logics seem also of interest. This topic seems
to demand a brand new approach for DEL logics w.r.t. well-known heuristic
criteria from classical planning. The reason would be the delicate epistemic
issues involved in logical proofs (for the construction of correct plans) within
dynamic epistemic logics.

An extension of the language of goals would also be of interest in order to
distinguish between implication goals ϕ → ψ (the agent goal is that ϕ → ψ is
true) and conditional goals (e.g. (whenever the agent believes that ϕ is true,
then her set of goals is expanded with ψ). An action making ϕ false or ψ true
would solve the implication goal; but only the latter would solve the conditional
goal.

More general problems related to the results in these chapters are described
below, together with possible lines of research for those problems.

Parts I and II Let us conclude this section with further important issues and
questions that remain open for the logics and the planning systems considered
in either Part I or Part II of this dissertation.

177

A first issue, already commented in the above paragraphs is the computa-
tional complexity of the different algorithms used in the proposed logics and
planning systems, as well as empirical comparisons between the different algo-
rithms considered.

A second important topic in the literature on planning, which we did not
mention, is that of optimal planning or the search of solutions which are optimal
in terms of some notion of cost, see Appendix A. Often, planning actions are
associated with some cost, expressing the cost of a single application of an action.
This cost function is considered additive, so the cost of a (deterministic) plan is
the sum of the costs of its actions. Natural notions of cost exist for physical or
epistemic actions, in terms of energy consumption or brevity of communicative
actions. In relation to optimal planning, the Breadth First Search planning
methods proposed, easily extend to Best First Search, e.g. uniform search.
The same can be said about the proofs of soundness and completeness of these
planning methods, which can be extended without much effort towards optimal
planning. Thus, the cost of a plan in the framework of LCC (deterministic)
planning is the sum of its actions. For t-DeLP planning the cost of a plan
step A in t-DeLP planning is the sum of costs of the actions supporting A not
already in the plan. These extensions might find applications in several fields of
research oriented to optimization that share interests with t-DeLP (optimization
in industry or robotics applications based on temporal reasoning) or with LCC
logics (some areas of linguistics and cognitive science).

As we mentioned, the methods proposed in Parts I and II might as well
apply to other temporal or dynamic logics with similar properties to those of
t-DeLP and, respectively, LCC. That is, logics without actions, or logics with
axiomatically characterized actions. Certainly, there still exists a full spectrum
of intermediate cases lying between these two extreme positions considered in
this thesis. These intermediate cases include those logics that contain symbols
for actions, but characterize them in the knowledge base, rather than through
the axioms of the logic. Among them, we can list several logics with dynamic
modalities (like PDL or different logics for actions) as well as logics which rep-
resent (the actual execution of) an action simply as a new atomic variable. It
remains open what stance is most promising in order to define planning systems
for these logics.

Another important open problem along the proposed lines of research is
whether the present results on planning extend to strategic reasoning. On the
one hand, the literature on planning suggests that appropriate search methods
in OR-graphs can solve planning problems in most of the existing planning
domains, and these are also the methods used in this thesis. On the other
hand, certain classes of game-theoretic problems can be solved with the existing
methods for search in AND/OR-graphs. Whether these methods can be shown
to be sound or even complete for the planning systems inspired by t-DeLP or
LCC must be left as future work.

Finally, there remains the difficult problem of higher-order practical reason-
ing (e.g. I believe that you intend that I believe that you intend that ψ.) Surely

178

this kind of reasoning was one of the motivations for the logics of intentions;
certainly, this also became the source of the problems associated with its high
expressive power. It is hard to imagine how the combined logic and planning
methods, for example, could be embedded again for some logic for second- or
higher-order practical reasoning. A more traditional approach, in the line of
the logics of intention, might consist in combining dynamic epistemic logics with
some modal logics of preference, in order to capture mechanism for plan selection
within the logic.

In summary, this thesis leaves a considerable number important questions as
open problems. Some of these can be pursued with the help of the techniques
proposed in this thesis, while others might demand new approaches and points
of view.

179

Part III

Appendixes

This Appendix contains an overview of some of the areas related to this
dissertation, with an emphasis on those parts used in the previous Chapters.
These areas are the following:

• Automated Search is the study of algorithms (and their properties) that
explore arbitrary graphs in a class in order to find some designated nodes.
A graph-based representation has proved successful as a general-purpose
problem solving technique. The idea is to view problem solving as an
incremental process of solution construction (or exploration) that takes
place in the corresponding graph representation. In this sense, different
types of graphs seem to capture natural classes of problems, whenever
these are appropriately represented. Many problems in planning, logic,
decision and game theory can be expressed within this representation, and
hence can be solved by the corresponding algorithms.

• Planning studies the representation and generation of plans for some
class of practical problems, given by propositional representation of states,
goals and the components of actions (preconditions, effects). The class
of problems addressed by the algorithms proposed for a planning system
mainly depends on the expressivity of the latter. We present the traditional
paradigms in planning as an introduction to this area, and also to motivate
the proposed extensions of standard planners with richer underlying logical
frameworks from Chapter 1 and Chapter 4. Comparison with traditional
planners, corresponding to each part of the thesis, are also proposed.

• Argumentation is a recent area for the study of inference methods based
on argumentative processes (i.e. how arguments attack each other). It
aims to formalize the deliberative aspects of dialogues that aim to resolve
the truth-value of a claim in dispute. Following its historical development,
this area is divided into two parts: an abstract study of the semantics based
on the attack relation; followed by some logical foundations for these ele-
ments, that make the internal logical structure of arguments explicit, and
naturally induce the relation of attack between such structured arguments.

183

Appendix A

Search

Automated search [115] (or simply Search) is the general study of problem solv-
ing techniques for problems admitting graph-theoretic representations. A graph
can represent a space of partial solutions, which are built according to some
procedure in an incremental way. Two partial solutions (or nodes) are related
by an arc if one of them obtains from the other by refinement with some fur-
ther condition imposed upon the simpler node. A solution is a partial solution
meeting all the requirements specified by the problem.

Different types of search problems can be identified, for example

• search: find a solution

• optimal search: find a solution which is at least as good as any other
existing solution,

• near-optimal search: find a solution that approximates the value of the
best existing solution

In this chapter, we review some search algorithms for the first or second kind
of problems. In the first case, one is particularly interested in techniques that
are sound and complete for a given class of graphs. These mean, respectively,
that the search algorithm only terminates with solutions, and that a solution is
found if some solution exists. This problems addressed in Chapters 2, 3, 5 and
7 are of this kind.

In optimal search, the goal is moreover to find some solution that minimizes
some notion of solution cost. In simple cases, this notion of solution cost is
additive, i.e. the cost of a solution is the sum of the costs of each condition
added to it during its construction. It is not difficult to adapt certain search
algorithms like Breadth First Search for tasks of optimal search e.g. Best First
Search.

The different techniques studied in the literature perform better or worse
on different classes of graphs, depending on their size and branching factor.
The literature restricts its attention to locally finite graphs (countable, finitely

185

branching). Though some of the studied search methods can be used as well
in (recursively) enumerable graphs or trees, the class of locally finite graphs
does suffice for the present purposes: the logics from Parts I and II only admit
finitely-many actions.

In addition to these results, the literature has devoted considerable efforts
on the question of heuristic search. These are functions for the estimation of
the extra cost needed yet to reach a solution from the partial solution under
consideration. This estimation can be defined for example in terms of the dif-
ference between the current partial solution and the requirements for solutions
in the present problem. The topic of heuristic search falls out of the scope of
this dissertation, though. Considerable efforts are devoted in the area of plan-
ning to finding heuristic functions for given planning domains. For a full-length
treatment of these topics, the reader is referred to the textbook [115].

A.1 Problems represented in graphs and trees.

For many worldly problems, understanding a problem seems to imply having a
definite idea of all its candidate solutions (or how to generate them), and also
knowing how a solution would look like.

Example A.1.1 (TSP). Consider, for example, the Travel Salesman Problem
(TSP) problem of finding the shortest route through a set C of n cities. Anyone
understanding this formulation must understand as well what an arbitrary route
in this set of cities is, e.g. a circular list c1 → . . . → cn → c1, here represented
as a sequence (c1, . . . , cn). Also, a notion of cost can be naturally assigned to
the possible routes, e.g. in terms of length (or expected energy consumption).
Let us assume in addition that the solver knows (how to compute) the length
of any route. E.g the solver might know the distances d(i, j) between each pair
of cities i, j, so the length of route (c1, . . . , cn) is d(c1, c2) + · · · + d(cn, c1). To
test whether (c1, . . . , cn) is an optimal solution, one can compare it to the rest
of solutions in terms of such length.

In general, if (1) all solutions (whichever they are) are known to be in a given
well-defined set, and moreover (2) a solution test exists for arbitrary elements of
this set, then solving such a problem would just reduce to look (and test) into
these elements according to, say, some well-ordering of this set. If the (finite) set
of nodes is big enough, though, it will be unpractical to make this set explicit.

In practice, then, it is better to have a constructive representation for the set
of solutions, so each solution candidates can be obtained as the result of a series
of decisions made during the construction process. These decisions are imposed
one by one until no other decisions need to be added (a solution was just built)
or can be added.

Example A.1.2 (TSP; cont’d). Following the description of the TSP problem
in Example A.1.1, any route (c1, . . . , cn) obtains from (consistently) selecting
pairs (i, j) ∈ (C ×C) (with i 6= j) expressing the condition after visiting i, visit

186

j. Note that (i, j) is inconsistent with pairs (i, j′), with (j, i), and (i′, j), for any
j′ 6= j and i′ 6= i.

Indeed, in TSP any route (c1, . . . , cn) obtains as a (maximally) consistent
subset of decisions, i.e. {(c1, c2), . . . , (cn−1, cn)}. Let us remark that, for TSP
and many other problems, the order in which these decisions are taken does not
matter: the same partial solution is ultimately built from the same elements in
any order of refinement. This suggests a graph representation, where a node
can be reached from different paths: an expansion of {(c1, c2)} with condition
(c2, c3) results in the same node that an expansion of {(c2, c3)} with (c1, c2).
Namely, the partial solution {(c1, c2), (c2, c3)}. In general, though, this order-
independence cannot be assumed, in which case the problem is represented as a
tree. See Figure A.2 below.

Definition A.1.3 (Graph; Path). A graph is a pair (N,R), where N is a set
and R a relation on N ; i.e. R ⊆ N ×N . These two elements are called nodes N
and arcs R. A path is any sequence of nodes (ν0, . . . , νk) such that R(ni, ni+1)
for each 0 ≤ i < k. If R is asymmetric (N,R) is called a directed graph.

The graphs studied in search are assumed to have a unique start node ν0,
which informally represents the (unique) empty partial solution.

Definition A.1.4 (Successor and parent nodes). For a given graph (N,R), we
define the set of successors of some ν ∈ N , denoted R(ν) or R(ν, ·), as follows

R(ν) = {ν′ ∈ N | R(ν, ν′)}

The set of parent nodes of some n ∈ N , represented as R−1(ν), is analogously
defined as R−1(ν) = {ν′ ∈ N | R(ν′, ν).

Definition A.1.5 (Tree). A tree is a graph (N,R) such that all nodes, except
for the start node, have a single parent node, i.e. |R−1(ν)| = 1.

Assume that the above requirements (1)-(2) are met for a given problem,
and moreover that all of the solutions of this problem can be represented as the
result of a series of decisions on their construction. In this case, the problem can
be captured as a graph or tree (N,R). Its set of nodes N = {ν, . . .} will contain
the empty node ν0, partial solutions and solutions.

These partial solutions are given by a series of choices on some finite set of
decisions A = {e1, . . . , en}.1 For example, in the TSP problem, the set A is the
set of pairs of cities (ci, cj). The set of partial solutions is either the product
A≤ω or some bounded set A≤n or simply some Cartesian product An. The TSP
problem is in the latter class, since a solution route must consist of n pairs (ci, cj)
where n = |C| is the number of cities in the problem.

Thus, the arc relation R in the graph representation of a problem (N,R) can
be obtained by means of a refinement operator ⊕ which maps a partial solution

1This notation A and ei reflects the notation for planning in Chapters 5 and 7. For planning
problems, the set of decisions A = {e, . . .} corresponds to the set of actions e available to the
agent.

187

ν and a decision e into a more constrained partial solution ν⊕ e. The set of arcs
in the graph can thus be represented as well as follows

R(ν, ν′) ⇔ ν′ = ν ⊕ e, for some decision e ∈ A

The graphs defined above are called OR-graph in the literature, in order to
distinguish them from AND/OR graphs (see below). An OR-graph models the
structure of partial solutions ν with OR-nodes, since the refinement of such a
partial solution ν takes place by choosing either of the decisions e1 or . . . or en
in the set A.2

The representations based on OR-graphs are useful for finding solutions to
problems that depend upon these decisions (controlled by our solver agent), and
possibly other “decisions” from some unintentional external cause, like nature.
With more generality, a scenario might include an external agent (or agents) with
an influence upon the outcome of this construction, e.g. modifying it with their
own decisions. If these decisions are known as well by our solver, the resulting
structure of partial solutions give rise to an AND/OR graph. An AND/OR graph
is an hypergraph with two types of nodes: OR-nodes (as before, representing our
solver decisions) and AND-nodes (representing the decisions from an external
agent).

Figure A.1: (Left) An OR-graph; (Right) An AND/OR-graph, or hypergraph,
where a related set of solid nodes denote an external agent’s choice.

Automated search is the study of algorithms that explore (or unfold) graphs
of either form. The differences between search algorithms consist in the different
control strategies that are used to decide which parts of the graph are to be

2All of the planning systems considered in the previous chapters are represented by OR-
graphs: in Part I, the set of decisions is the set of plan steps (argument steps or threat
resolution moves), though only those that are applicable to the present node ν will give rise
to refined nodes. In Part II, the set of decisions is the set of available actions, also denoted A.

188

generated and explored first (or next). The desirable theoretical properties of
these algorithms are listed next:

• Soundness: if the search algorithm terminates with a partial solution ν,
this is a solution

• Completeness: if a solution exists, the algorithm outputs a solution

• Admissibility: the output of the algorithm is optimal among the other
solutions

In the simple example of the TSP problem with n = |C| cities, the soundness
and completeness properties are quite trivial, since solutions have a specific form,
i.e. as elements of A|C|. (This is not in general the case, though.) The TSP
problem is interesting when the solver tries to find an optimal solution.

In the following, we describe some of the best known techniques for tentative
search. Tentative here denotes those search methods that maintain a list of rival
partial candidates yet to be explored (open nodes), rather than considering at
each step a single partial candidate, to be increasingly refined up to a unique
terminal node. Search methods of the latter kind (e.g. hill-climbing) are called
irrevocable search, because one always commits to explore a single partial can-
didate, and forgets about its previous refinement history. In irrevocable search
one can only start again from scratch, if a dead end (a non-solution terminal
node), is ultimately found.

When search is restricted to combining actions into a plan, as in the chapters
of this dissertation, one can simplify the search space into a tree (rather than
a graph, see Figure A.2). That is, we can assume that the order in which we
add the conditions from A is essential to the resulting node. This is the case for
deterministic plans as in Chapter 5, where the order in which actions are added
is the reverse of their execution order according to the plan. This assumption is
natural under planning with implicit time, since the actions in this kind of plans
are not in general order-independent, e.g. consider the actions turn on the light
and climb down the ladder.

See Figure A.2, for an illustration of the graph- and tree-representations of
a problem. The corresponding sets of N contain, resp., sets and sequences of
elements in A. The set of solutions is denoted Sol.

N = { ∅, a, b, c, a⊕b, . . . , c⊕b }
Sol = { a⊕b, b⊕a, a⊕c, c⊕a}

In the case of a graph, where nodes are sets, we have |N | = 7 and |Sol| = 2.
In the tree representation of the same problem, where nodes are sequences, we
have |N | = 10 and |Sol| = 4.

A distinction already mentioned above is that between uninformed and in-
formed search algorithms. In the step-wise, incremental construction of possible
solutions, uninformed search methods define a control strategy on how to pri-
oritize the set of refinements {ν ⊕ e1, . . . , ν ⊕ en} of the current node ν, w.r.t.
the previously generated nodes ν′ still pending of evaluation. Informed search

189

Figure A.2: Two similar search problems, in graph (left) and tree form (right)
given by, resp., commutative and non-commutative refinement operators �.

defines, in addition, a priority ordering within the set of open nodes, including
both the old and the newly generated nodes in {ν⊕ e1, . . . , ν⊕ en}. To this end,
an heuristic method can make use of the information upon the current node ν,
e.g. its cost cost(ν), as well as using a heuristic function f(ν) that estimates
the additional cost of obtaining a solution node ν∗ from the current ν. Heuris-
tic methods require that these estimations are optimistic, that is, that the real
cost of a solution ν∗ extending ν is at least the estimated cost for ν, namely
cost(ν) + f(ν) ≥ cost(ν∗). The heuristic information cost(ν) + f(ν) describes
how much promising the current node ν is. This information is used to prioritize
search by exploring the more promising nodes first.

In the (tsp) optimization problem, the distance between two cities d(ci, cj) in
a partial route ν containing (ci, cj) is an example of factual information. The sum
of the distances of the conditions e ∈ ν in this node, f(ν) = Σ(ci,cj)∈νd(ci, cj)
indeed gives a lower bound for the cost of any solution extending ν. An heuristic
estimation h(ν) for this node, for instance, can be given by a random completion
ν∗ of this route ν. The estimation in terms of ν∗ can give a (possibly misleading)
estimation of the cost of arbitrarily extending the node ν to a solution.

A.2 Uninformed search in OR-graphs (trees):
BFS, DFS.

One of the well-known exhaustive uninformed search algorithms is that of
Breadth First Search (BFS), see Figure A.3(Right). Define the depth of a partial
solution ν is given by the number of refinement steps e ∈ A needed to define ν.
The idea of BFS is perform a (potentially complete) exploration of the search
space by considering partial solutions with increasing depth. Breadth-first is a

190

FIFO (first in first out) based search algorithm, since latest (more refined) nodes
are explored later. The BFS method for a search spaces in tree form is described
next in Algorithm 7.

Data: A tree (N,R); a root note ν0 ∈ N
a refinement oper. ⊕; a test function test(·) : N → {>,⊥}.
Result: ν; or fail

initialization: ν = ν0 and Open = 〈ν0〉;
while test(ν) = ⊥ do

delete ν from Open;
set Open = Open ∩〈 ν ⊕ e | e ∈ A〉;
set ν = the first element of Open;

end

Algorithm 6: Breadth First Search in some search space in tree form.

Figure A.3: An illustration of the ordering of node exploration in finite graphs:
(Left) Depth First Search; (Right) Breadth First Search.

It is instructive to compare BFS with its LIFO counterpart, called Depth-
First Search (DFS); see Figure A.3(Left). In the DFS method, the newly gener-
ated refinements ν ⊕ e of a node ν are explored before the previously generated
nodes still pending of evaluation. DFS can be defined from BFS by prefixing
the set Open with the latest generated nodes, rather than suffixing it with latest
nodes. More formally, DFS is defined by replacing in the above BFS method,
the condition

set Open = Open∩〈 ν ⊕ e | e ∈ A〉
by the condition

set Open = 〈 ν ⊕ e | e ∈ A〉∩Open

191

After we expand a node into its immediate refinements, one of those is further
selected, whenever possible, and otherwise it proceeds with some unexplored
node that was generated earlier. DFS is based on ideas similar to those after
irrevocable search methods, despite DFS is revocable itself.

DFS is not complete for countable trees nor, in particular, for those locally
finite trees having infinite paths. The reason is that it may keep expanding
further and further a node in a forever useless way. This makes a depth-bound on
depth-first search is usually added to plain DFS in order to regain completeness.
See below for a summary of the basic properties of these algorithms.

A.3 Informed search in OR-graphs: Best First
Search

The above uninformed search algorithms BFS, DFS, etc. have counterparts
in informed search, when some heuristic estimation of nodes is introduced. A
heuristic estimation cost(ν) + f(ν) can be used to sort the set of remaining or
open nodes, in an increasing way w.r.t. this cost estimation. Thus

Data: A tree (N,R); a root note ν0 ∈ N
a refinement oper. ⊕; a test function test(·) : N → {>,⊥}
a cost function cost : N → R; a heuristic function f : N → R
Result: ν; or fail

initialization: ν = ν0 and Open = 〈ν0〉;
while test(ν) = ⊥ do

delete ν from Open;
set Open = 〈ν′ ∈ Open ∪ {ν ⊕ e}e∈A〉;

(where ν′ occurs before ν′′ if cost(ν′) + f(ν′) ≤ cost(ν′′) + f(ν′′));
set ν = the first element of Open;

end

Algorithm 7: Best First Search in some search space in tree form.

Note that an optimistic heuristic function is always definable, namely as the
trivial function f(ν) = 0. The resulting method is called uniform search.

Theorem A.3.1. [115] BFS is complete in locally-finite trees. DFS is complete
in finite trees. Best-First Search is admissible under any optimistic heuristic
function f .

192

Appendix B

Planning

Planning is the task of generating plans for given practical problems. The latter,
called planning domains, are at least described by a triple

initial state s0 describing (partial knowledge upon) the current state
upon which the plan executioner is to act

avail. actions A, from which the planner can freely choose to build the
plan, and

goal states Sg describing a set of states (or the conditions that make
them desirable)

Automated planning is the study of general algorithms for a class of planning
domains. The latter is given by some propositional-based language, used to
describe states and actions, e.g. as a pair of sets of propositions (preconditions,
effects). An action is executable in some state if the preconditions hold, and in
case this action is executable, the resulting, the effects of the action hold in the
resulting state.

A plan is some some structure (e.g. a sequence) of actions, prescribing what
is to be done at each step during its execution. A plan must specify the next
step in an unambiguous way, though possibly depending on observations made
during this execution. For the plan to be a solution for a given planning domain,
the execution of the plan must lead to some goal state in Sg, when this plan
execution takes place in the initial state s0.

Structure of the chapter.

In this chapter, we review some standard planning systems from the literature
in Section B.1 (classical planning) and in Section B.2. The latter in particular
briefly describes some extensions of classical planning, closely related to the
planning systems from Part I and Part II. These are temporal planning systems
and non-deterministic partially-observable planning.

In Section B.2, a comparison is made between some of these planning systems
and those proposed of in Chapters 2, 5 and 7.

193

B.1 Classical Planning.

Classical planning [66], offers a simple conceptual model to formalize the previous
basic elements. It is based on a discrete model for events, called (restricted) state
transition systems.

Definition B.1.1 (State transition system). A restricted state transition system
is a tuple Σ = 〈S,A,R〉, where

• S is a finite (or recursively enumerable) set of states,

• A is a finite set of actions, and

• R : S×A→ S is a computable transition function. This transition function
associates is partial, and for any (s, e) ∈ S ×A, either R(s, e) is undefined
or an element R(s, e) ∈ S.

A planning problem, called planning domain, can be defined by designated
initial and goal states in given state transition systems.

Definition B.1.2 (Classical planning domain.). A classical planning domainis
a triple (Σ, s0, Sg), where

• Σ is a restricted state transition system

• s0 ∈ S is the initial state

• Sg ⊆ S is the set of goal states

In this simple state-based approach, plans are finite sequences of actions.
Plans of this kind are also called linear or totally ordered plans.

Definition B.1.3 (Plan. Solution.). A plan in a given classical planning prob-
lem (Σ, s0, Sg) is a finite sequence of actions π = 〈e1, e2, . . . , em〉. A solution to
(Σ, s0, Sg) is some plan such that

R(R(. . . R(R(s0, e1), e2), . . . , en−1), en) ∈ Sg.

Since the set of actions is finite, any classical planning problem (Σ, s0, Sg) is
at least semi-decidable: a planner algorithm can explore (using a breadth-first
method) the space of states reachable from s0, while testing whether any of these
is an element of Sg. In case a solution exists, some solution will eventually be
found.

In the set-theoretic representation of classical planning, it is assumed a (fi-
nite) propositional representation of states by means of a set of atomic variables
Var = {p, q, . . .}, i.e. the corresponding set of literals Lit = Var ∪ {¬p | p ∈ Var}.
A state can be represented either as a mapping from Var to {0, 1} (a model), a
subset of Var, or a consistent and complete collection of literals ` ∈ {p,¬p} for
each p ∈ Var.

Actions in planning also follow this propositional encoding of states. Thus,
the map between states R(·, e) : S → S that encodes action e, is induced by a
pair of preconditions and effects. In the following, for a given literal ` ∈ {p,¬p}
and set of literals X, we define

194

¬` =

{
¬p if ` = p

p if ` = ¬p

¬X = {¬` | ` ∈ X}

Definition B.1.4 (Action). An action is a pair e = (pre(e), post(e)) of consistent
sets of literals, where

• pre(e) ⊆ Lit denotes the preconditions for action e to be executable in state
s:

R(s, e) ∈ S iff pre(e) ⊆ s

• post(e) ⊆ Lit denotes the effects of actions e upon a state s (where e is
executable in s):

` ∈ R(s, e) iff ` ∈ post(e) or (`,¬` /∈ post(e) and ` ∈ s)

Thus, in planning, a state-transition function is induced by the so-called
update or progression function.

Definition B.1.5 (Update function). Assume a set of propositional states S =
{s : Var → {0, 1}} and a set A of actions e = (pre(e), post(e)) are given. The
induced update function, resp. defined for actions a and plans π = 〈e1, . . . , em〉)
is

R(s, e) =

{
(sr ¬post(e)) ∪ post(e) if pre(e) ⊆ s
undefined otherwise

R(s, 〈e1, . . . , em〉) =

s if m = 0 (i.e. π = ∅)

R(R(s, e1), 〈e2, . . . , em〉) if m > 0 and pre(e1) ⊆ s
undefined otherwise

Any such triple Σ = (S,A,R) of states, actions and update function is a
state-transition system.

Finally, for backward planning, one computes the regression of the open goals
(current goals) by an action. This step provides the new goals to be achieved.
That is, it gives the minimal conditions (propositions) required for an arbitrary
state to make e executable in a way that leads to the former open goals. In this
approach, a planner only needs to consider relevant actions that can contribute
to the ultimate goals, expressed by Sg.

Definition B.1.6 (Relevance. Regression.). Given a planning domain
(Σ, s0, Sg), a goal state s ∈ S (initially s ∈ Sg) and an action e ∈ A, we say e is
relevant for s iff s ∩ post(e) 6= ∅ and s ∩ ¬post(e) = ∅. In case e is relevant for
s, we define the regression of goal s by e as follows

R−1(s, e) = (sr post(e)) ∪ pre(e)

195

A search method like BFS or DFS, see Chapter A can be applied to forward
or backward state-based planning using, resp., the above notions of executable
action e in a state s and relevant action e for a state s. Classical planning has
also been encoded into satisfiability problems (SAT), by encoding each possible
action execution as a formula. A planning problem is captured by a formula
expressing initial state ∧ all possible actions ∧ goal. A SAT-solver aims to find
a model for it, encoding a solution plan. This plan consists in those action
executions whose formulas are assigned true in the model.

Different languages for planning systems have been considered. First,
STRIPS listed only the positive literals in states (based on the closed world as-
sumption that unlisted literals are false); the action description language ADL
expanded the language of states with negative facts and a built-in equality, as
well as quantifiers and disjunction for goals, and finally conditional effects for ac-
tions. These languages are included in standard contemporary languages called
PDDL.

B.2 Beyond Classical Planning: lifting assump-
tions.

In summary, classical planning [66] addresses planning domains that are defin-
able in state-transition systems Σ satisfying the following conditions:

A1 finite Σ: the set of states S is finite, and so is the set of actions A. This
assumption is enforced by taking the set of atoms Var to be finite itself.

A2 fully observable Σ: the planner always knows exactly which is the actual
state. i.e. the truth-value of each variable p in the current state is always
known.

A3 deterministic Σ: each action in the state-transition system is defined by a
function R(·, a) assigning each state s a single state.

A4 static Σ: no other events take place besides those actions planned and
executed by the agent.

A5 restricted goals: goals are conditions. defining a set of ultimately desired
states; in particular, the way the plan is to reach some such state is of no
concern.

A6 sequential plans: plans are sequences of actions.

A7 implicit time: the representation of state transitions does not make any
quantitative notion of time explicit; i.e., the timing and duration of ac-
tions is not considered. Time is qualitatively partitioned by the actions
according to the sequential plan.

A8 offline planning: planning algorithms solve a planning domain, and then
the resulting plan is executed.

196

The study of planning systems that drop some of the assumptions A1-A8 has
been an important aim among the contemporary literature on planning.

Dropping A6 has received much attention. Besides the state-based planning
approach for linear planners, that order the plan steps (as sequences) during the
construction of the plan, more flexible representations of plans have been pro-
posed in planning. For example, GraphPlan [27] groups plan steps that do not
interfere with each other (and can be ordered arbitrarily); Partial Order Plan-
ning (POP) [116] manages a list of ordering constraints between actions, only
expanded when deemed necessary. These approaches, which search for groups
of equivalent linear plans, are inspired by least-commitment principles. This has
been done in parallel to the study of heuristics for planning. Heuristic search has
mainly been studied in two main directions: search on relaxed planning prob-
lems, that abstract from the preconditions of actions or their negative effects; or
by assuming a logical independence among sub-goals.

Dropping some of these assumptions A1-A8 is also the aim in the present
logic-based approach. For example, the planning systems in PartI based on
t-DeLP defeasible temporal logic programming in Part I drop the assumptions
A2, A4 and A7. The planning systems in Part II based on dynamic epistemic
logic LCC drop the A2 and A3 assumptions. In the literature, lifting subsets
of the assumptions A1-A8 has been accomplished through different planning
systems. In the following section, we describe non-deterministic planning in
partially-observable domains.

Temporal planning.

An in-depth study of the relation of the t-DeLP planning system with temporal
planners falls out of the scope of this chapter, since it involves technical details
related to binding constraints (in planning) and unification in temporal logic
programming. In Chapters 2 and 3, we skipped these technical issues, and
presented the planning system with temporal constants and instantiated rules
and actions. As in much of the literature on planning, most temporal planners
build flexible plans based on least-commitment principles. (This is useful when
the executing agents are homogeneous w.r.t. their abilities, and can replace each
other for most tasks.)

Let us point out that the basic elements, e.g. in a chronicle-based approach,
can be understood in t-DeLP as general defeasible rules and schemas of temporal
literals. We briefly comment upon some relations between a t-DeLP and a
chronicle-based approach to temporal planning.

Definition B.2.1 (Temporal assertion). A temporal assertion on a state vari-
able p(x) is either of the following

• an event p@t : (v1, v2), specifying an instantaneous change at t, from p(v1)
to p(v2)

• a persistence condition p@[t1, t2) : v, specifying the persistence of p(v)
during the interval [t1, t2).

197

This approach consists in extending classical planning with state variables,
e.g. p(x) (or more generally, p(x1, . . . , xn)) which are functions of time. This
time-oriented approach, in contrast with state-oriented views, does not require
axioms such as an object is at a single place at one time, because of the use of
state variables.

Definition B.2.2 (Chronicle). A chronicle for a given set of variables {p, . . . , q}
is a pair Φ = (F , C) where F is a set of temporal assertions about {p, . . . , q} and
C is a set of object constraints and temporal constraints (on the corresponding
object or temporal variables).

Chronicles are used to specify temporal actions, without distinguishing be-
tween preconditions and effects. For example, the event p@t : (v, v′) describes,
in terms of t-DeLP, both a precondition 〈p(v), t − 1〉 and an effect 〈p(v′), t〉.
These temporal assertions are also used to specify the initial state and goals. A
temporal operator can be applied to a chronicle, and so on.

Comparison with t-DeLP.

The previous elements can be translated into the t-DeLP planning from Chapter
2. For example, temporal assertions can be expressed as temporal facts and rules

• an event p@t : (v1, v2) can be expressed as a set {〈p(v1), t− 1〉, 〈p(v2), t〉},

• a persistence condition p@[t1, t2) : v can be seen a set of general persistence
rules {δp(v)(t)}t1≤t<t2−2,

where v, v1, v2 are object variables and t, t1, t2 are temporal variable. The use of
state-variables can be expressed with the corresponding set of mutex constraints.

Our conjecture is that the t-DeLP planning system can encode an arbitrary
temporal planning domain (in the chronicle-based approach) as a sub-class of
the t-DeLP planning domains based on mutex programs. With more detail, as
a planning domain M = ((Π,∆), A,G) where Π = Πf ∪ΠM,

• Πf is a set of temporal literals encoding the initial state’s events (i.e. temp.
assertions)

• ΠM is a set of mutes rules encoding the state-variable representation

• ∆p encodes the persistence conditions in the plan construction

• ∆ r ∆p encodes the (direct) effects of temporal operators Φe, e.g. in
p@t : (v1, v2) as an indirect effect rule 〈p(v2), t〉 −� 〈µe, t− 1〉

• A encodes the instantiations of temporal operators

Note that the use of ∆ rules to encode the direct effects can be generalized
to any instantiated temporal operator of an arbitrary finite duration, say from
t to t + n. This can easily be encoded with a tuple of temporal actions e =
e1; . . . ; en defined by: (1) pre(e1) = pre(e), (2) post(en) = post(e), and (3) for the

198

remaining preconditions and effects, new set of variables µek are introduced into
the language, each exclusive to the corresponding pair ek, ek+1 of consecutive
actions: post(ek) = 〈µek , t + k〉 = pre(ek+1). We also conjecture that other
temporal aspects in the rich descriptions of temporal operators can be, with
more considerable effort, encoded in the t-DeLP planning framework as well.

Planning in non-deterministic partially-observable domains

Dropping A3 is done by taking the transition function R(·, a) to be a relation,
rather than a map, so R(s, a) ⊆ S. Dropping A2 is traditionally made in terms
of observation functions. State-transition systems that do not assume A2-A3
have been defined with the help of the following concepts [23].

Definition B.2.3 (Non-deterministic state transition system). A non-
deterministic state transition system is a tuple Σ = 〈S,A,R〉, where S is a
finite set of states, A is a finite set of actions, and R : S × A → P(S) is the
transition function.

Dropping the A2 assumption is usually done by adding some observation
function.

Definition B.2.4 (Observation function). [23] Let Σ = 〈S,A,R〉 be a state
transition system. Let O be a finite set of observations. An observation function
over S and O is a function X : S → 2Or∅, which associates to each state s the
nonempty set of possible observations X(s) ⊆ O.

Definition B.2.5 (Non-det. partially-observable Planning domain). A planning
domain M is a tuple 〈Σ,O,X〉, where: Σ = 〈S,A,R〉 is a non-deterministic
planning domain, O is a finite set of observations, and X is an observation
function over S and O.

See [23] for a study of strong planning under partial observability, based on
conditional plans.

Definition B.2.6 (Conditional Plan). The set of conditional plans Plans for a
domain 〈Σ,O,X〉 is the minimal set such that:

• ∅ ∈ Plans,

• if e ∈ A and π ∈ Plans, then π∩(e) ∈ Plans, and

• if o ∈ O and π1, π2 ∈ Plans, then

ifo then π1, else π2 is in Plans

Comparison with LCC planning systems.

We conclude this Chapter B by relating the LCC planning system from Chapter
5 to the deterministic planning systems from the previous Section B.1, and how

199

does B.2 relate to the planning system from Chapter 7. We denote classical
planning systems using the notation Σ = (S,A,R) to avoid confusion.

First, note that a deterministic state transition system Σ = (S,A,R) can
be represented by a pair (U,M), where U = (E, pre, post,Ra) is an action model
and M = (W,Ra, V) is an epistemic model for the single-agent case Ag = {a}.

Definition B.2.7 (Translation to LCC). Let Σ = 〈S,A,R〉 be a state transition
system, with S = {s1, . . . , sn}. Let Var = {p1, . . . , pn}. We define the translation
of Σ into LCC as a pair, a model M = (W,Ra, V) and an action model U =
(E, . . .) defined by

W = {w1, . . . , wn} E = {e′}e∈A
Ra = IdW pre(e) =

∨
{pi | ∃j(wiRwj)}

V (pi) = {wi} post(e)(pj) =
∨
{pi | wiRwj)}

R(e, f) iff f = e

Proposition B.2.8. Let M = (Σ, s0, Sg) be a classical planning domain, with
{s0} ∪ Sg ⊆ S and let (e1, . . . , en) be plan for M. Then, if we let M′ denote the
LCC planning domain M′ = (p0, A,

∧
si∈Sg pi), we have

(e1, . . . , en) is a solution for M ⇒ (e′1, . . . , e
′
n) is a solution for M′

Proof. Redefine S as S = {s0, s
′
1, . . . , s

′
n} and now let s0, s1, s2, . . . , sm be a tuple

of S-states such that R(sk, ek+1) = sk+1 for each 0 ≤ k < m. The proof is by
induction on k for the claim

ek+1 is executable in sk ⇔ e′k is executable in wk.

(Base Case) Clearly, e′1 is executable in w0, since pre(e′1) = p0∨ . . . and M,w0 |=
p0 so M,w |= pre(e′1). Thus M ◦ U, (w, e′1) exists and moreover satisfies M ◦
U, (w, e′1) |= p1. Since post(e′1)(p1) = p0 ∨ . . ., we have that M ◦ U, (w, e′1) |=
pre(e′2).
(Ind. Case) The proof is similar, using the (Ind. Hyp.) that

((M ◦ U) · · ·) ◦ U, ((w, e′1), . . . , e′k) |= pk

and hence this is a model for pre(e′k+1) as well.
The proof concludes with the observation that post(em) = pm, where sm ∈ Sg

is a goal state.

See [28] for a similar translation of state transition systems in the set-theoretic
representation of classical planning, i.e. with a set of states initially defined as
S = P(Var). The translation in [28] is made in the terms of their epistemic
planning domains, where the planning actions are semantically modeled as in
the action model.

Finally, the non-deterministic partially-observable planning domains Σ =
(S,A,R) of Definition B.2.5 can be translated as well into planning domains
of LCC∪⊗n. Given a propositional representation of states S = P(Var) one can

200

naturally identify the possible observations with states: O = S, so an observation
that p in state s can be modeled as X (s) = [p]

M
, for a single-agent epistemic

model M = (W,Ra, V). With more detail, this model M can be defined as
follows: W and V are as above, and Ra(wi, wj)⇔ sj ∈ X (si). Non-deterministic
actions e ∈ A (i.e. with |R(s, e)| > 1) can again be encoded as deterministic
actions in some action model U. For the case |R(s, e)| = 2, for a fixed e and
arbitrary states s, this can be done with two deterministic actions e′0, e

′
1 ∈ E.

The notion of conditional plan in Definition B.2.6 is more expressive than the
the M-sequences considered in Chapter 7. See also [9] for a (forward) conditional
planning system, again based on action models U, represented in a way closer
to the non-deterministic partially-observable planning domains from [23].

201

Appendix C

Argumentation Systems

The present chapter contains an introduction to the recent area of formal and
computational models of argument. It describes the relevant areas established
since the publication of Dung [52]. This work proposed an abstract notion of
justification or acceptability of arguments, simply represented as a set of points
(or unstructured elements), possibly related to each other by a binary relation
of attack.

Abstract argumentation has a natural interpretation in logic, among other
areas. The concept of arguments can in particular be naturally related to that of
proof, i.e. a proof in a logic, from a given set of premises or knowledge base. This
logic-based interpretation provides the arguments from abstract argumentation
with an internal structure, consisting of premises and inference steps (e.g. modus
ponens). Following this logic-based interpretation, an attack is naturally read
as involving a logical conflict between the two proofs or internal structures, e.g.
some logical contradiction existing between them.

Indeed, the natural interpretation of this work [52] in terms of logic started
a series of contributions in the so-called area of logic-based argumentation. See
[126] for a handbook presentation of the different topics on abstract and logic-
based argumentation. These logic-based approaches to argumentation, in addi-
tion, permit to focus on the acceptability of propositions, i.e. as the conclusions
of acceptable arguments.

Structure of the Chapter

Section C.1, reviews the Dung acceptability semantics that define the field of
abstract argumentation. In Section C.2, we briefly review the literature on logic-
based argumentation, and focus on defeasible argumentation due to its relation
with t-DeLP from Chapter 1. We present with some detail some of its topics,
e.g. the rationality postulates, using the particular ASPIC framework.

203

C.1 Abstract Argumentation Frameworks

In [52], Dung introduced some formal notions of (collective) acceptability of
arguments. The proposed approach is abstract in the sense that arguments are
simply points a, b in a set, possibly related to each other by a binary attack
relation, denoted a→ b, read as a is an argument against b. An argumentation
system, defined by such a pair of a set of arguments and the attack relation.
This abstract relation of attack can represent any form in which an argument
can counter-argue another argument.

Definition C.1.1 (Argumentation system). An abstract argumentation frame-
work (AF) is a pair 〈A,→〉. A is a set arguments and→ ⊆A×A is a binary relation
of attack. We say that an argument a attacks an argument b iff (a, b) ∈→.

Dung semantics decide, on the sole basis of this relation, whether a partic-
ular argument is acceptable, given the attacks from other arguments, attacks
on the these arguments, and so on. The different Dung-style semantics in the
literature are defined in terms of properties of sets of arguments, which make
them (collectively) acceptable, in the sense of: not attacking each other, and
defending from external attacks –among other properties. Those sets of argu-
ments satisfying the conditions of a given semantics are called the extensions of
the semantics. Since different extensions might exist, one might consider their
intersection, called the skeptical output in this semantics. These semantics are
presented below. Different methods for computing these extensions have also
been proposed in the literature [126].

Definition C.1.2 (Conflict-free, Defense). Let B ⊆ A be a set of arguments.

• the set B is conflict-free iff there are no a, a′ in B such that a attacks a′.

• the set B defends an argument a0 iff for each a1 ∈ A, if a1 attacks a0, then
there is some a2 ∈ B such that a2 attacks a1.

A semantics for an argumentation system is a formal method for the eval-
uation of arguments in an AF. Different semantics can be defined for abstract
argumentation systems, in terms of the basic concept of extension [19, 126].

Definition C.1.3 (Extensions.Acceptability Semantics.). For a given AF
(A,→), let B ⊆ A be a conflict-free set and let F : P(A)→ P(A) be the function
F(B) = {a ∈ A | B defendsa}. We say

• B is admissible iff B ⊆ F(B)

• B is a complete extension iff B = F(B)

• B is a grounded extension iff it is the ⊆-smallest complete extension

• B is a preferred extension iff it is a ⊆-maximal complete extension

• B is a stable extension iff it is a preferred extension that attacks all argu-
ments in Ar B

204

The set of extensions in some AF (A,→) under any of these semantics S ∈
{ complete, grounded, . . . ,} is denoted by ES(A,→).

See Figure C.1 for an illustration of these semantics. They are also called
admissibility semantics, since they are all based on the property of admissible
(extensions), which essentially demands internal consistency and the ability of
defending from, or counter-attacking, external attacks. An extension in any
of these semantics S can be seen as a set of collectively acceptable arguments
according to S. The different semantics describe different notions of collective
acceptability. Some basic results about these semantics are the following:

• each arg. system has a grounded extension,

• each arg. system has at least one preferred extension, and one complete
extension

• some arg. systems exist without stable extensions

In [52] the grounded semantics has been shown to correspond to the well-founded
semantics of logic programs [148].

Figure C.1: (Left) An example of an argumentation framework, with arguments
{a, . . . , d} and the attack relation represented by arrows. (Right) Lists of extensions
under the different semantics.

Different extensions of abstract argumentation systems have been considered
with further notions, also at an abstract level, see [126]. Among these, one can
include: preferences, values, probabilities, supports between arguments, as well
as sets of attacks [101].

205

C.2 Logic-based argumentation

As explained above, the abstract argumentation systems neither do account for
the nature or origin of arguments nor for the attack relation assumed to hold
between them. From the point of view of a given logic (with negation), in
contrast, these notions have (at least) a natural interpretation:

A is an argument iff
A is a consistent logical derivation

(from a set of premises or non-logical axioms)

A attacks B iff
the conclusion (or any sub-conclusion) of A

contradicts some step used by B

Different logics have been studied as providing a logical foundation for ar-
gumentation systems. For instance, arguments expressible in classical logic [24],
general logical languages [121] (including [149, 118, 119]), rule-based systems
[35, 122, 36] and logic programming [60, 61].

The above natural reading of attack in a given logic (only) captures the exis-
tence of a symmetric conflict. This has led to more refined notions, called defeat,
in order to account for some asymmetries between two conflicting arguments.
Using the notation from Chapter 1, from here on we write instead an argument
system as a pair (A,�) rather than (A,→).

A first decision in the design of a framework for logic-based argumentation
in a selected logic is to define which are the specific targets of attacks within
attacked or defeated arguments. This is partly determined by the base logic,
though. For example, in argumentation based on classical logic, the premises
are natural objects of attack by arguments concluding facts contradicting these
premises. In rule-based systems, the defeasible rules can be considered as the
objects of the attacks in the corresponding argumentation systems.

In the following, we illustrate some basic concepts and topics in logic-based
argumentation using a particular rule-based system ASPIC.1 Some technical
details on the construction of arguments, though, are not provided, for the sake
of simplicity; see [6] and [35] for details. These arguments are defined with the
help of the strict and defeasible rules of a defeasible theory.

Definition C.2.1 (Defeasible theory). For a given language of literals, a defea-
sible theory is a pair 〈S,D〉 where S is a set of strict rules (denoted with →),
and D is a set of defeasible rules (denoted with ⇒).

Definition C.2.2 (Closure; Consistency). Let 〈S,D〉 be a defeasible theory.
The closure under S of some set of literals P is defined as usual as the closure
under modus ponens with rules from S. The set resulting from this closure is
denoted CnS(P), or simply Cn(P). If we denote strong negation as ∼, a set P
is consistent iff no pair of the form `,∼` exists in P.

As usual, it its assumed that the set S is such that CnS(∅) consistent. For
defeasible theories, the constructible arguments are minimal consistent proofs

1We present the version studied in [35] for illustrative purposes; newer versions of this
system have been later adopted.

206

built from S ∪D by successive applications of modus ponens. The set of argu-
ments A constructible from a defeasible theory is again denoted A. The set of
sub-arguments of an argument A is denoted Sub(A). We use of the notation
concl(·) for the conclusion of an argument.

Besides the above constraints imposed by a logic upon the objects of attack
in the corresponding logic-based argumentation system, an attack (later called
defeat) can consist in either of the two types

• a logical conflict or inconsistency, called rebuttal ; or

• an argument concluding the inapplicability of one of the rules used by the
attacked argument; this is called undercut

Example C.2.3. [35] Consider an argument A = “The object is red because
John says it looks red”. A rebutter of A can be B1 = “The object is not red
because Suzy says it looks blue”. An undercutter of A can be B2 = “The object
is merely illuminated by a red light.” The latter argument B2 is not a reason
against the claim that the object is red, only against the fact that A is a good
argument for this claim: that it looks red is no longer a reason for its being
actually red.

Undercuts are defined by extending the language with new literals. Thus,
if δ is a defeasible rule in D, the language is assumed to contain a new literal
pδq. This is the possible target of an undercutting argument, whose conclusion
is ∼ pδq.

Definition C.2.4 (Rebut; Undercut; Defeat). Given two arguments con-
structible from a defeasible theory 〈S,D〉, we say that

• A rebuts B, if there exist A′ ∈ Sub(A) and B′ ∈ Sub(B) such that
concl(A) = ∼concl(B) and the rule for concl(B′) is in D;

• A undercuts B, if concl(A) = ∼ pδq for some δ ∈ B ∩D.

We say A defeats B, denoted A � B iff A rebuts or undercuts B.

The above notion of rebut is called restricted rebut in [35]. The above Dung
semantics from SectionC.1 can be applied to argumentation systems (A,�) in-
duced by a given defeasible theory 〈S,D〉. Since these semantics are only defined
for sets of arguments (extensions), the set of collectively acceptable conclusions
from a defeasible theory or argumentation system must also be defined.

Definition C.2.5 (Conclusions; Output). Let 〈A,�〉 be an argumentation sys-
tem, and let {E1, . . . , En} be its set of extensions under one of the semantics S
from Def. C.1.3. We define:

• Concs(Ei) = {concl(A) | A ∈ Ei}, for each 1 ≤ i ≤ n.

• Output =
⋂

1≤i≤n Concs(Ei)

207

This kind of outputs are called skeptical. Credible outputs simply consist in
picking the conclusions of some particular extension(s).

In [35], Caminada and Amgoud proposed a list of desirable properties that
argumentation systems should satisfy. See also [121]. These properties, called
Rationality Postulates, are defined as follows.

Definition C.2.6 (Rationality Postulates). Let 〈A,�〉 be the argumentation
system induced by some defeasible theory. And let {E1, . . . , En} be the set of
its extensions under S. We define the rationality postulates as the following
conditions:

(Sub-arguments) We say that (A,�) satisfies closure under sub-arguments iff

• Sub[Ei] ⊆ Ei

(Closure) We say that (A,�) satisfies closure iff

• Concs(Ei) = CnS(Concs(Ei)), for each 1 ≤ i ≤ n

• Output = CnS(Output)

(Direct Consistency) We say that (A,�) satisfies direct consistency iff

• Concs(Ei) is consistent, for each 1 ≤ i ≤ n

• Output is consistent

(Indirect Consistency) We say that (A,�) satisfies indirect consistency iff

• CnS(Concs(Ei)) is consistent, for each 1 ≤ i ≤ n

• CnS(Output) is consistent

Basic relations among these postulates are the following: indirect consistency
implies direct consistency; and direct consistency and closure imply indirect
consistency.

Counter-examples to the postulates of closure and indirect consistency have
been found in argumentation systems from the literature on logic-based argu-
mentation. These systems include the ASPIC and DeLP systems, as well as
others [6, 61, 10, 122]. The authors of [35] propose a condition that suffices to
prevent these kinds of counter-examples in ASPIC, and suggest this condition
should suffice as well for the other systems.

Definition C.2.7 (Transposition). A transposition of a strict rule δ is defined
as any replacement of the form

`1, . . . , `i, . . . `n → `
⇓

`1, . . . , `, . . . `n → `i

for an arbitrary 1 ≤ i ≤ n. The set of transpositions of δ is denoted tp(δ). We
say S is closed under transpositions if tp[S] ⊆ S.

208

The condition that S is closed under transpositions suffices for the satisfaction
of the rationality postulates in the argumentation system defined in this section.

Theorem C.2.8. [35] For any 〈S,D〉 is a defeasible theory with a consistent
set of strict rules CnS(∅), and any of the semantics S from Def. C.1.3, it holds
that

if S ⊆ tp(S), then 〈A,�〉 satisfies the rationality postulates

209

210

Bibliography

[1] M. Abadi and Z. Manna. Temporal logic programming. In Proc. of In-
ternational Symposium on Logic Programming, pages 4–16, 1987. 6, 7,
175

[2] T. Ågotnes and H. van Ditmarsch. What will they say?public announce-
ment games. Synthese, 179:57–85, 2011. 121

[3] T. Alsinet, R. Béjar, and L. Godo. A characterization of collective conflict
for defeasible argumentation. In Proceedings of 3rd Computational Models
of Argument COMMA 2010, pages 27–38, 2010. 40

[4] T. Alsinet, R. Béjar, L. Godo, and F. Guitart. Maximal ideal recursive se-
mantics for defeasible argumentation. In Proc. of 5th Scalable Uncertainty
Management SUM 2011, pages 96–109. LNAI 6929 Springer, 2011. 40

[5] L. Amgoud. A formal framework for handling conflicting desires. In Pro-
ceedings of Symbolic and Quantitative Approaches to Reasoning and Uncer-
tainty, 7th European Conference, ECSQARU 2003, pages 552–563. LNAI
2711 Springer, 2003. 99

[6] L. Amgoud, M. Caminada, C. Cayrol, M. Lagasquie, and H. Prakken.
Towards a consensual formal model: inference part (technical report) de-
liverable d2.2. 2004. 206, 208

[7] L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based
argumentation frameworks. International Journal of Automated Reason-
ing, 29(2):125–169, 2002. 40

[8] L. Amgoud and C. Cayrol. A reasoning model based on the production of
acceptable arguments. Annals of Mathematics and Artificial Intelligence,
34:197–215, 2002. 39

[9] M. Andersen, T. Bolander, and M. Jensen. Conditional epistemic plan-
ning. In Proceedings of 13th European Conference on Logics in Artificial
Intelligence JELIA 2012, pages 94–106. LNAI 7519 Springer, 2012. 150,
169, 177, 201

211

[10] G. Antoniou, D. Billington, G. Governatori, and M. Maher. A flexible
framework for defeasible logics. In Proceedings of the 17th National Con-
ference on Artificial Intelligence AAAI 2000, pages 401–405. AAAI/MIT
Press, 2000. xvi, 208

[11] G. Aucher. An internal version of epistemic logic. Studia Logica, 94:1–22,
2010. 124

[12] G. Aucher. Del-sequents for progression. Journal of Applied Non-Classical
Logics, 21(3-4):289–321, 2011. 131, 132, 133

[13] G. Aucher and T. Bolander. Undecidability in epistemic planning. In
Proceedings of 23rd Int. Joint Conference on Artificial Intelligence IJCAI
2013. IJCAI/AAAI, 2013. 132

[14] J. Augusto and G. Simari. Temporal defeasible reasoning. Knowledge and
Information Systems, 3:287–318, 2001. 8, 35, 37, 38, 40, 49

[15] J. Austin. How To Do Things with Words. Oxford University Press, 1962.
130

[16] A. Baltag, B. Coecke, and M. Sadrzadeh. Epistemic actions as resources.
Journal of Logic and Computation, 17:555–585, 2007. 121, 133

[17] A. Baltag and L. Moss. Logic for epistemic programs. Synthese, 139:165–
224, 2004. 112, 121, 133, 147

[18] A. Baltag, L. Moss, and S. Solecki. The logic of public announcements,
common knowledge and private suspicions. In Proceedings of 7th Theoret-
ical Aspects of Rationality and Knowledge TARK 98, pages 43–56, 1998.
112, 120, 121, 147

[19] P. Baroni and M. Giacomin. On principle-based evaluation of extension-
based argumentation semantics. Artificial Intelligence, 171(10,15):675–
700, 2007. 204

[20] M. Baudinet. On the expressiveness of temporal logic programming. In-
formation and Computation, 117(2):157–180, 1995. 6, 7, 39, 175

[21] A. Belesiotis, M. Rovatsos, and I. Rahwan. Agreeing on plans through
iterated disputes. In Proceedings of 9th Conference on Autonomous Agents
and MultiAgent Systems AAMAS 2010, pages 765–772, 2010. 99

[22] N. Belnap, M. Perloff, and M. Xu. Facing the future. Agents and Choices
in Our Indeterminst World. Oxford University Press, 2001. 121, 133

[23] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Strong planning under
partial observability. Artificial Intelligence, 170:337–384, 2006. 168, 199,
201

212

[24] P. Besnard and A. Hunter. Argumentation based on classical logic. In Rah-
wan and Simari, editors, Argumentation in Artificial Intelligence, chap-
ter 7. Springer, 2009. 206

[25] D. Billington. Defeasible logic is stable. Journal of Logic and Computation,
3:379–400, 2993. 40

[26] P. Blackburn, J. van Benthem, and F. Wolter (eds.). Handbook of Modal
Logic. Elsevier, 2006. 38

[27] A. Blum and M. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997. 197

[28] T. Bolander and M. Andersen. Epistemic planning for single- and multi-
agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34, 2011.
xvi, 132, 152, 153, 169, 177, 200

[29] R. Brafman, C. Domshlak, Y. Engel, and M. Tennenholtz. Planning games.
In Proceedings of International Joint Conference on Artificial Intelligence
IJCAI 2009, pages 73–78, 2009. 100

[30] M. Bratman. Intentions, Plans and Practical Reason. Harvard University
Press, 1987. 133

[31] P. Bretier and D. Sadek. A rational agent as the kernel of a cooperative
spoken dialogue system: Implementing a logical theory of interaction. In
Intelligent Agents III, pages 189–204. Springer, 1997. 130

[32] G. Brewka, I. Niemelä, and M. Truszczyński. Nonmonotonic reasoning.
In van Harmelen, Lifschitz, and Porter, editors, Handbook of Knowledge
Representation, chapter 6. Elsevier, 2007. 39

[33] J. Broersen, R. Wieringa, and J.-J. Meyer. A semantics for persistency in
propositional dynamic logic. In Proceedings of 1st Conference on Compu-
tation Logic CL 2000, pages 912–925. Springer, 2000. 40

[34] P. Buzing, A. ter Mors, J. Valk, and C. Witteveen. Coordinating self-
interested planning agents. Autonomous Agent and Multi-Agent Systems,
12:199–218, 2006. 99

[35] M. Caminada and L. Amgoud. On the evaluation of argumentation for-
malisms. Artificial Intelligence, 171:286–310, 2007. 9, 23, 26, 39, 40, 206,
207, 208, 209

[36] M. Capobianco, C. Ches nevar, and G. Simari. Argumentation and the
dynamics of warranted beliefs in changing environments. Autonomous
Agents and Multi-Agent Systems, 11(2):127–151, 2005. 11, 40, 206

[37] A. Casali, L. Godo, and C. Sierra. A graded bdi agent model to represent
and reason about preferences. Artificial Intelligence, 175(7-8):1468–1478,
2011. xvi

213

[38] M. Castilho, O. Gasquet, and A. Herzig. Formalizing action and change
in modal logic i: the frame problem. Journal of Logic and Computation,
9(5):701–735, 1999. 39

[39] L. Cecchi, P. Fillottrani, and G. Simari. On the complexity of delp through
game semantics. In Proceedings of Non-Monotonic Reasoning 2006, pages
386–394, 2006. 175

[40] B. Chellas. Modal logic, an introduction. Cambridge University Press,
1980. 38, 108

[41] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Artificial Intelligence,
147:35–84, 2003. 168

[42] L. Cobo, D. Mart́ınez, and G. Simari. Acceptability in timed frameworks
with intermittent arguments. In Proceedings of Artificial Intelligence Ap-
plications and Innovations AIAI 2011, Part II, pages 202–211. Springer,
2011. 40

[43] L. Cobo, D. Mart́ınez, and G. Simari. Stable extensions in timed argumen-
tation frameworks. In Proceedings of Theories and Applications of Formal
Argumentation TAFA 2011, pages 181–196. Springer, 2011. 37, 40

[44] P. Cohen and H. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(3):213–261, 1990. 133

[45] P. Cohen and H. Levesque. Rational interaction as the basis for communi-
cation. In Intentions in Communication, pages 221–255. MIT Press, 1990.
130

[46] P. Cohen and C. Perrault. Elements of a plan-based theory of speech acts.
Cognitive Science, 3:177–212, 1979. 130

[47] R. Craven and M. Sergot. Distant causation in C+. Studia Logica, 79:73–
96, 2005. 40

[48] E. Davis and L. Morgenstern. A first-order theory of communication and
multi-agent plans. Journal of Logic and Computation, 15(5):701–749, 2005.
100

[49] T. de Lima. Optimal Methods for Reasoning about Actions and Plans in
Multi-Agents Systems. Ph.D. thesis. IRIT, University of Toulouse 3, 2007.
169

[50] T. Delladio and G. Simari. Relating delp and default logic. Inteligencia
Artificial, 35:101–109, 2007. 40, 49

[51] S. Demri and E. Or lowska. Logical analysis of demonic nondeterministic
programs. Theoretical Computer Science, 166:173–202, 1996. 150

214

[52] P. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games 1. Arti-
ficial Intelligence, 77(2):321–357, 1995. 5, 8, 23, 35, 39, 40, 99, 203, 204,
205

[53] P. Economou. Sharing beliefs about actions: A parallel composition op-
erator for epistemic programs. In Proceedings of the ESSLLI 2005 Belief
Revision and Dynamic Logic workshop, 2005. 150

[54] G. Weiss (ed.). Multiagent Systems. A Modern Approach to Distributed
Artificial Intelligence. MIT Press, 1999. xiv

[55] E. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Se-
matics, pages 996–1072. Elsevier, 1990. 38

[56] E. Emerson and J. Srinivasan. Branching time temporal Logic. Springer,
1989. 38, 82, 133

[57] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge.
MIT Press, 1995. 120, 124

[58] T. French and H. van Ditmarsch. Undecidability for arbitrary public an-
nouncement logic. In Advances in Modal Logic AiML 2008, pages 3–42,
2008. 121

[59] M. Maher G. Antoniou and D. Billington. Defeasible logic versus logic
programming without negation as failure. Journal of Logic Programming,
42(1):47–57, 2000. 40

[60] A. Garćıa, J. Dix, and G. Simari. Argument-based logic programming.
In Rahwan and Simari, editors, Argumentation in Artificial Intelligence,
chapter 8. Springer, 2011. 206

[61] A. Garćıa and G. Simari. Defeasible logic programming: An argumentative
approach. Theory and Practice of Logic Programming, 4(1+2):95–138,
2004. xvi, xxi, 5, 7, 8, 15, 19, 20, 35, 36, 39, 40, 206, 208

[62] D. Garćıa, A. Garćıa, and G. Simari. Defeasible reasoning and partial order
planning. In Proceedings of the 5th Foundations of Information and Knowl-
edge Systems FoIKS 2008, pages 311–328. LNCS 4932 Springer, 2008. xxi,
81, 176

[63] M. Gelfond and V. Lifschitz. Representing action and change by logic
programs. Journal of Logic Programming, 17(2,3&4):301–321, 1993. 40

[64] J. Gerbrandy. Logics of propositional control. In Proceedings of Au-
tonomous Agents and Multiagent Systems AAMAS 2006, pages 193–200.
IFAAMAS, 2006. 121

215

[65] J. Gerbrandy and W. Groenevelt. Reasoning about information change.
Journal of Logic, Language and Information, 6(2):147–169, 1997. 111, 120,
121

[66] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Morgan Kaufmann, 2004. 48, 49, 50, 82, 194, 196

[67] G. De Giacomo and M. Lenzerini. Pdl-based framework for reasoning
about actions. In Proceedings of the 4th Congress of the Italian Association
for Artificial Intelligence IA*AI95, pages 103–114. LNAI 992 Springer,
1995. 39

[68] L. Giordano, A. Martelli, and C. Schwind. Ramification and causality in
a modal action logic. Journal of Logic and Computation, 10(5):625–662,
2000. 40

[69] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Non-
monotonic causal theories. Artificial Intelligence, 153:49–104, 2004. 40

[70] L. Godo, E. Marchioni, and P. Pardo. Extending a temporal defeasi-
ble argumentation framework with possibilistic weights. In Proceedings of
13th European Conference on Logics in Artificial Intelligence JELIA 2012,
pages 242–254. LNAI 7519 Springer, 2012. xvii, xx, 40

[71] R. Goldblatt. Logics of time and computation. CSLI, 1992. 38

[72] G. Governatori and P. Terenziani. Temporal extensions to defeasible logic.
In Proceedings of 20th Australian Joint Conference on Artificial Intelli-
gence AI 2007, pages 1–10. Springer, 2007. 40, 49

[73] B. Grosz and S. Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86(269–357), 1996. 100

[74] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000. 38

[75] A. Herzig, J. Lang, D. Longin, and T. Polacsek. A logic for planning under
partial observability. In Proceedings of the 17th National Conference on
Artificial Intelligence AAAI 2000, pages 768–773. AAAI/MIT Press, 2000.
133

[76] J. Hintikka. Knowledge and Belief. Cornell University Press, 1962. 108,
120

[77] W. Holliday, T. Hoshi, and T. Icard. Schematic validity in dynamic epis-
temic logic: Decidability. In Proceedings of Logics of Rational Interaction
LORI 2011, pages 87–96. LNAI 6953 Springer, 2011. 112

[78] J. Hughes, P. Kroes, and S. Zwart. A semantics for means-end relations.
Synthese, 158:207–231, 2007. xiv

216

[79] J. Hulstijn and L. van der Torre. Combining goal generation and planning
in an argumentation framework. In Proceedings of Non-Monotonic Rea-
soning NMR 2004 Workshop on Argument, Dialogue and Decision, pages
212–218, 2004. 99

[80] A. Hunter. Execution of defeasible temporal clauses for building preferred
models. In Proceedings of Fundamentals of Artificial Intelligence Research
FAIR ’91, pages 84–98. Springer, 1991. 40

[81] A. Hunter. Merging structured text using temporal knowledge. Data
Knowledge Engineering, 41(1):29–66, 2002. 40

[82] A. Jonsson and M. Rovatsos. Scaling up multiagent planning: A best-
response approach. In Proceedings of 21st Automated Planning and
Scheduling ICAPS 2011. AAAI 2011, 2011. 99

[83] K. Konolige. On the relation between default and autoepistemic logic.
Artificial Intelligence, 35:342–382, 1988. 40

[84] B. Kooi. Probabilistic dynamic epistemic logic. Journal of Logic, Language
and Information, 12:381–408, 2003. 121

[85] B. Kooi. Expressivity and completeness for public update logics via re-
duction axioms. Journal of Applied Non-Classical Logics, 17(2):231–253,
2007. 112, 121

[86] B. Kooi and B. Renne. Arrow update logic. Review of symbolic logic,
4(4):536–559, 2011. 121

[87] B. Kooi and B. Renne. Generalized arrow update logic. In Proceedings of
Theoretical Aspects of Rationality and Knowledge, pages 205–211. ACM,
2011. 121

[88] R. Kowalski and M. Sergot. A logic-based calculus of events. New Gener-
ation Computing, 4:67–95, 1986. 40

[89] R. Ben Larbi, S. Konieczny, and P. Marquis. Extending classical plan-
ning to the multi-agent case: A game-theoretic approach. In Proceedings
of Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
9th European Conference, ECSQARU 2007, pages 731–742. LNAI 4724
Springer, 2007. 100

[90] B. Van Linder. Modal Logic for Rational Agents. Ph.D. thesis. Utrecht
University, 1996. xvi

[91] J. Lloyd. Foundations of Logic Programming. Springer, 1993. 6

[92] A. Lomuscio. Information Sharing Among Ideal Agents. Ph.D. thesis. Uni-
versity of Birmingham, 1999. xvi

217

[93] E. Lorini. A dynamic logic of knowledge, graded beliefs and graded goals
and its application to emotion modeling. In Proceedings of the Workshop
on Logic, Rationality and Interaction LORI 2011, pages 165–178. LNAI
6953 Springer, 2011. 121

[94] B. Löwe, E. Pacuit, and A. Witzel. Del planning and some tractable
cases. In Proceedings of Logics of Rational Interaction LORI 2011, pages
179–192. LNAI 6953 Springer, 2010. 132

[95] N. Mann and A. Hunter. Argumentation using temporal knowledge. In
Proc. of Computer Models of Argumentation COMMA 2008, pages 204–
215. IOS Press, 2008. 37, 40, 49

[96] R. Mattmüller and J. Rintanen. Planning for temporally extended goals as
propositional satisfiability. In International Joint Conference on Artificial
Intelligence IJCAI 2007, pages 1966–1972, 2007. 82

[97] J. McCarthy and P. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. Machine Intelligence, 4:463–502, 1969. 39

[98] J. Miller and L. Moss. The undecidability of iterated modal relativization.
Studia Logica, 79:373–407, 2005. 150

[99] S. Modgil. Reasoning about preferences in argumentation frameworks.
Artificial Intelligence, 173:901–934, 2009. 39

[100] C. Ches nevar, J. Dix, F. Stolzenburg, and G. Simari. Relating defea-
sible and normal logic programming through transformation properties.
Theoretical Computer Science, 290:499–529, 2003. 40

[101] S.H. Nielsen and S. Parsons. A generalization of dung’s abstract frame-
work for argumentation: Arguing with sets of attacking arguments. In
Proceedings of ArgMAS 2006, pages 54–73, 2006. 205

[102] D. Nute. Defeasible logic. In Gabbay, Hogger, and Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, chap-
ter 3, pages 353–395. Oxford University Press, 1994. xvi, 40, 133

[103] V. Padmanabhan. On Extending BDI Logics. Ph.D. thesis. Griffith Uni-
versity, 2003. xv, xvi, 133

[104] S. Pajares-Ferrando and E. Onaindia. Defeasible argumentation for multi-
agent planning in ambient intelligence applications. In Proceedings of 11th
International Conference on Autonomous Agents and Multiagent Systems
AAMAS 2012, pages 509–516, 2012. 100

[105] P. Panangaden and M. Sadrzadeh. Learning in a changing world via alge-
braic modal logic. In Proceedings of Algebraic Methodology and Software
Technology AMAST 2010, pages 128–141, 2010. 121

218

[106] P. Pardo and L. Godo. t-delp: a temporal extension of the defeasible logic
programming argumentative framework. In Proc. of Scalable Uncertainty
Management SUM 2011, pages 489–503. LNAI 6929 Springer, 2011. xvii,
xx

[107] P. Pardo and L. Godo. An argumentation-based multi-agent temporal
planning system built on t-delp. In Proceedings of the Spanish Conference
on Artificial Intelligence CAEPIA 2013, (In Press). xviii, xxi

[108] P. Pardo and L. Godo. t-delp: an argumentation-based temporal defeasi-
ble logic programming framework. Annals of Mathematics and Artificial
Intelligence, (In press). xvii, xx

[109] P. Pardo and L. Godo. A temporal argumentation approach to cooperative
planning using dialogues. In Proceedings of the 14th Workshop on Com-
putational Logic in Multi-Agent Systems CLIMA 2013, (In Press). xviii,
xxi

[110] P. Pardo, S. Pajares, E. Onaindia, L. Godo, and P. Dellunde. Multia-
gent argumentation for cooperative planning in delp-pop. In Proc. of Au-
tonomous Agents and Multi-Agent Systems AAMAS 2011, pages 971–978.
IFAAMAS, 2011. xviii, xxi, xxii, 100

[111] P. Pardo, S. Pajares, E. Onaindia, L. Godo, and P. Dellunde. Coopera-
tive dialogues for defeasible argumentation-based planning. In Proceedings
of Argumentation in Multi-Agent Systems ArgMAS 2011, pages 174–193.
LNAI 7543 Springer, 2012. xviii, xxii, 82, 100, 176

[112] P. Pardo and M. Sadrzadeh. Backward planning in the logics of commu-
nication and change. In Proceedings of 1st International Conference on
Agreement Technologies AT 2012, pages 231–245. CEUR, 2012. xix, xxii

[113] P. Pardo and M. Sadrzadeh. Planning in the logics of communication and
change. In Proceedings of Autonomous Agents and Multi-Agent Systems
AAMAS 2012, pages 1231–1232. IFAAMAS, 2012. xviii, xxii

[114] P. Pardo and M. Sadrzadeh. Strong planning in the logics of communi-
cation and change. In Post-Proceedings of Declarative Agents, Languages
and Technologies DALT 2012, pages 37–56. Springer, 2012. xix, xxii

[115] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984. 185, 186, 192

[116] J. Penberthy and D. Weld. Ucpop: A sound, complete, partial order
planner for adl. In Proc. of 3rd Int. Conf. on Knowledge Representation
and Reasoning KR’92, pages 103–114, 1992. 197

[117] J. Plaza. Logics of public communications. In Proceedings of 4th Interna-
tional Symposium on Methodologies for Intelligent Systems, pages 201–216,
1989. 111, 112, 120, 121

219

[118] J. Pollock. Defeasible reasoning. Cognitive Science, 11:481–518, 1987. 206

[119] J. Pollock. Justification and defeat. Artificial Intelligence, 67:377–408,
1994. 206

[120] D. Poole. On the comparison of theories: Preferring the most specific
explanation. In Proceedings of 9th International Joint Conference in Ar-
tificial Intelligence IJCAI’85, pages 144–147. Morgan-Kaufmann, 1985. 7,
40

[121] H. Prakken. An abstract framework for argumentation with structured
arguments. Argument & Computation, 1(2):93–124, 2010. 5, 23, 39, 40,
206, 208

[122] H. Prakken and G. Sartor. Argument-based extended logic programming
with defeasible priorities. Journal of Applied Non-classical Logics, 7:25–75,
1997. 39, 206, 208

[123] H. Prendinger and G. Schurz. Reasoning about action and change: a
dynamic logic approach. Journal of Logic, Language, and Information,
5:209–245, 1996. 39

[124] I. Rahwan and L. Amgoud. An argumentation-based approach for practical
reasoning. In Proceedings of 5th Conference on Autonomous Agents and
Multi-Agent Systems AAMAS 2006, pages 347–354, 2006. 99

[125] I. Rahwan and L. Amgoud. An argumentationbased approach for practical
reasoning. In Proceedings of Autonomous Agents and Multi-Agent Systems
AAMAS 2006, pages 347–354. IFAAMAS, 2006. xvi

[126] I. Rahwan and G. Simari (eds.). Argumentation in Artificial Intelligence.
Springer, 2011. 39, 99, 203, 204, 205

[127] A. Rao and M. Georgeff. Modelling rational agents within a bdi-
architecture. In Proceedings of Principles of Knowledge Representation
and Reasoning KR91, pages 473–484. Morgan Kaufmann, 1991. 133

[128] A. Rao and M. Georgeff. Decision procedures for bdi logics. Journal of
Logic and Computation, 8:293–342, 1998. 133

[129] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980. 40

[130] J. Rintanten. On specificity in default logic. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence IJCAI 95, pages
1474–1479. Morgan-Kaufmann, 1995. 40

[131] T. Sadzik. Exploring the iterated update universe (technical report). ILLC,
University of Amsterdam, 2006. 150

220

[132] R. Schmidt, D. Tishkovsky, and U. Hustadt. Interactions between knowl-
edge, action and commitment within agent dynamic logic. Studia Logica,
78:381–415, 2004. 150

[133] J. Searle. Speech Acts: An Essay in the Philosophy of Language. Cam-
bridge University Press, 1969. 130

[134] F. Stolzenburg, A. Garćıa, C. Ches nevar, and G. Simari. Computing
generalized specificity. Journal of Applied Non-Classical Logics, 12(1):1–
27, 2002. 7, 40

[135] M. Thimm. Realizing argumentation in multi-agent systems using de-
feasible logic. In Proceedings of Argumentation in Multi-Agent Systems
ArgMAS 2009, pages 175–194. LNAI 6057 Springer, 2010. 85, 99, 100, 175

[136] M. Thimm and G. Kern-Isberner. On the relationship of defeasible ar-
gumentation and answer set programming. In Proceedings of Computer
Models of Argumentation COMMA’08, pages 393–404. IOS Press, 2008.
26, 40

[137] J. van Benthem. Dynamic logic for belief revision. Journal of Applied
Non-Classical Logics, 17(2):129–155, 2007. 177

[138] J. van Benthem, J. Gerbrandy, and B. Kooi. Dynamic update with prob-
abilities. Studia Logica, 93(1):67–96, 2009. 121

[139] J. van Benthem, J. van Eijck, and B. Kooi. Logics of communication and
change. Information and Computation, 204:1620–1662, 2006. xvii, xviii,
xix, xxii, 105, 107, 108, 111, 112, 113, 116, 117, 119, 121, 126, 139, 144,
147, 150, 176

[140] W. van der Hoek, B. van Linder, and J.-J. Meyer. On agents that have
the ability to choose. Studia Logica, 65:79–119, 2000. 146, 150

[141] W. van der Hoek and M. Wooldridge. Tractable multiagent planning for
epistemic goals. In Proc. of Autonomous Agents and Multi-Agent Systems
AAMAS 2002, pages 1167–1174. IFAAMAS, 2002. xvi, 132

[142] H. van Ditmarsch and B. Kooi. Semantic results for ontic and epistemic
change. In Proceedings of Logic and the Foundations of Game and Decision
Theory LOFT, pages 87–117. Amsterdam University Press, 2008. 112, 116,
133, 150, 169

[143] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Concurrent dynamic
epistemic logic for mas. In Proceedings of Autonomous Agents and Multi-
Agent Systems AAMAS 2003, pages 201–208. ACM Press, 2003. 150, 177

[144] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic epistemic logic
with assignment. In Proc. of Autonomous Agents and Multiagent Systems
AAMAS 2005, pages 955–960. ACM, 2005. 121

221

[145] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic. Springer, 2008. 112, 120, 132

[146] J. van Eijck and F. Sietsma. Multi-agent belief revision with linked prefer-
ences. In Proceedings of Logic and the Foundations of Game and Decision
Theory LOFT, pages 174–189. Springer, 2008. 177

[147] J. van Eijck and Y. Wang. Propositional dynamic logic as a logic of belief
revision. In Proceedings of Workshop on Logic Language Information and
Computation WoLLIC 2008, pages 136–148. LNAI 5110 Springer, 2008.
177

[148] A. van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM Association for Computing
Machinery, 38(3):620–650, 1991. 205

[149] G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence,
90:225–279, 1997. 206

[150] H. Wansing. Tableaux for multi-agent deliberative-stit logic. In Advances
in Modal Logic AiML 2006, pages 503–520, 2006. 133

[151] M. Wooldridge and N. Jennings (eds.). Intelligent Agents. Springer, 1995.
xiv, xvi

[152] D. Zhang and N. Foo. Frame problem in dynamic logic. Journal of Applied
Non-Classical Logics, 15(2):215–239, 2005. 39, 40, 82

222

	Acknowledgments
	Preface
	I Planning in t-DeLP Temporal Defeasible Logic Programming
	t-DeLP Temporal Defeasible Logic Programming
	Introduction
	Representing Temporal Change in t-DeLP
	A general t-DeLP framework
	A study of t-DeLP for simple programs
	A study of t-DeLP for mutex programs
	A comparison of t-DeLP with Dung semantics, DeLP and TDR
	 t-DeLP and Dung acceptability semantics
	Defeat criteria in DeLP and t-DeLP.
	t-DeLP and Temporal Defeasible Reasoning (TDR)

	Conclusions and Related Work
	Appendix: proofs

	A Planning System based on t-DeLP for centralized planning
	Introduction
	Representing actions and indirect effects in planning.
	A simple model for temporal actions in t-DeLP

	Basic concepts in t-DeLP multi-agent planning
	A brief look at Forward Planning in t-DeLP
	A t-DeLP planning system for backward search
	Algorithms for t-DeLP backward planning
	Soundness of BFS search for backward t-DeLP planning
	Completeness of BFS search for backward t-DeLP planning
	Conclusions and Related Work

	Multi-planner Dialogues for cooperative planning in t-DeLP
	Introduction
	Distributed and centralized planning domains
	Turn-based Dialogues for Cooperative Planning in t-DeLP
	Soundness and Completeness of the Dialogue-based Plan Search algorithm
	Conclusions and Related Work

	II Planning in Dynamic Epistemic Logics
	Logics of Communication and Change
	Introduction
	Epistemic PDL
	Action models U,e
	Axiom system
	Other Approaches

	Deterministic Planning in LCC
	Introduction
	Planning systems for deterministic backward LCC planning
	A planning algorithm for deterministic planning in LCC.
	Conclusions and Related Work

	LCC with composition and choice
	Introduction
	Update with the product of n actions in Un.
	Update with the product of at most n actions in Un.
	The logic LCCn of the action model Un.
	LCCn: choice and non-deterministic actions.
	Conclusions and Related Work

	Non-Deterministic Planning in LCC
	Introduction
	Non-determinism and distinguishability
	A non-deterministic planning system for LCCn logics.
	A Search Algorithm for Non-deterministic Plans
	Conclusions and Related Work

	Conclusions and Open Problems

	III Appendixes
	Search
	Problems represented in graphs and trees.
	Uninformed search in OR-graphs (trees): BFS, DFS.
	Informed search in OR-graphs: Best First Search

	Planning
	Classical Planning.
	Beyond Classical Planning: lifting assumptions.

	Argumentation Systems
	Abstract Argumentation Frameworks
	Logic-based argumentation

	Bibliography

