
MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ

EN INTEL·LIGÈNCIA ARTIFICIAL

Number 26

Institut d’Investigació

en Intel·ligència Artificial

Consell Superior

d’Investigacions Cient́ıfiques

Monografies de l’Institut d’Investigació en
Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Sys-
tems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology

Num. 5 E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

Num. 6 J. Ll. Arcos, The Noos Representation Language

Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Con-
straint Satisfaction

Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket
Metaphor

Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional
Logics

Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special
Relations

Num. 11 M. López-Sánchez, Approaches to Map Generation by means of
Collaborative Autonomous Robots

Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs

Num. 13 P. Faratin, Automated Service Negotiation between Autonomous
Computational Agents

Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-
mediated Electronis Institutions

Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Im-
precise Constants: Possibilistic Semantics and Automated De-
duction

Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory - A Possibilistic Approach

Num. 17 A. Valls, ClusDM: A multiple criteria decision method for het-
erogeneous data sets

Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics

Num. 19 M. Esteva, Electronic Institutions: from specification to devel-
opment

Num. 20 J. Sabater, Trust and Reputation for Agent Societies

Num. 21 J. Cerquides, Improving Algorithms for Learning Bayesian Net-
work Classifiers

Num. 22 M. Villaret, On Some Variants of Second-Order Unification

Num. 23 M. Gómez, Open, Reusable and Configurable Multi-Agent Sys-
tems: A Knowledge Modelling Approach

Num. 24 S. Ramchurn Multi-Agent Negotiation Using Trust and Persua-
sion

Num. 25 S. Ontañón Ensemble Case Based Learning for Multi-Agent Sys-
tems

Num. 26 M. Sánchez Contributions to Search and Inference Algorithms
for CSP and Weighted CSP

Contributions to

Search and Inference Algorithms

for CSP and Weighted CSP

Mart́ı Sánchez Fibla

Foreword by

Javier Larrosa Bondia and Pedro Meseguer González

2006 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by

Javier Larrosa Bondia
Associate Professor at Universitat Politècnica de Catalunya

Pedro Meseguer González
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Mart́ı Sánchez Fibla
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Institut d’Investigació

en Intel·ligència Artificial

Consell Superior

d’Investigacions Cient́ıfiques

c© 2006 by Mart́ı Sánchez Fibla
NIPO: 653-06-043-1
ISBN: 84-00-08433-0
Dip. Legal: B.36352-2006

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Contents

Foreword xiii

1 Introduction 5
1.1 Motivation . 8
1.2 Scope and Orientation . 9
1.3 Contributions . 10
1.4 Overview . 12

2 Preliminaries 15
2.1 CSP . 15
2.2 CSP Solving Methods . 18

2.2.1 Search . 18
2.2.2 Inference . 20

2.3 WCSP . 26
2.4 WCSP Solving Methods . 27

2.4.1 Search . 27
2.4.2 Inference . 31

I Systematic Search 35

3 Russian Doll Search 37
3.1 Preliminaries . 38

3.1.1 Russian Doll Search . 40
3.2 Specialized RDS . 41

3.2.1 A new lower bound . 43
3.2.2 Future Value Pruning . 45
3.2.3 SRDS upper bound . 46
3.2.4 The algorithm . 47

3.3 Full SRDS . 50
3.3.1 A new lower bound . 51
3.3.2 Future Value Pruning . 52
3.3.3 The algorithm . 53
3.3.4 FSRDS upper bound . 54

v

3.4 Opportunistic RDS . 55
3.5 Experimental Evaluation . 57

3.5.1 Random Problems . 58
3.5.2 Frequency assignment problems (FAP) 64
3.5.3 Combinatorial Auctions 66
3.5.4 Earth Observation Satellite Management, Spot 66

3.6 Related Work . 69
3.7 Perspectives of future work . 69

3.7.1 An exact RDS . 69
3.7.2 RDS with two parallel searches 70
3.7.3 Combining Soft Arc Consistency and RDS 70
3.7.4 Generalizing RDS to arbitrary relaxations 71

3.8 Conclusions . 71

4 Pseudo-Tree Search 73
4.1 Pseudo-tree . 74
4.2 CSP pseudo-tree search . 74

4.2.1 The CSP pseudo-tree algorithm 76
4.3 WCSP pseudo-tree search . 77

4.3.1 The basic pseudo-tree search algorithm 77
4.3.2 Refinement of pseudo-tree search algorithm 78

4.4 Combining Pseudo-Tree and Russian Doll Search 81
4.4.1 Specializing Pseudo-Tree RDS Search 83

4.5 Experimentation . 83
4.5.1 Random Problems . 84
4.5.2 Combinatorial Auctions 87
4.5.3 Earth Observation Satellite Management, Spot 87

4.6 Related Work . 89
4.6.1 AND/OR trees . 89
4.6.2 Other decomposition methods 90
4.6.3 Backjumping . 92

4.7 Perspectives of future work . 92
4.8 Conclusions . 92

II Complete Inference 95

5 ADC with factorized constraints 97
5.1 ADC with negative constraints 98
5.2 Factoring negative constraints . 99

5.2.1 ADC with negative factorized constraints 103
5.2.2 Variable Elimination of binary domain variables 106

5.3 Experimental Evaluation . 109
5.3.1 Random, SAT and n-queens problems 109
5.3.2 Discussion . 112

5.4 Related Work . 113

vi

5.5 Perspectives of future work . 113

5.6 Conclusions . 114

6 Constraint Filtering 115

6.1 ADC and Delayed Variable Elimination 116

6.2 ADC and Constraint Filtering for CSP 119

6.2.1 Constraint Filtering . 119
6.2.2 Adding Filtering into ADC-DVE 121

6.2.3 Filtering and negative factorized constraints 123

6.3 Experimental Evaluation . 124

6.3.1 N-Queens . 124
6.3.2 Schur’s Lemma . 125

6.3.3 Discussion . 125

6.4 Conclusions . 125

7 Function Filtering 129

7.1 From Constraint to Function Filtering 129

7.1.1 Function filtering . 130

7.1.2 Bucket Elimination with Function Filtering 132

7.2 Tree Decomposition Methods: CTE and MCTE 133
7.2.1 Tree decomposition . 133

7.2.2 Cluster Tree Elimination 135

7.2.3 Mini Cluster-Tree Elimination 136

7.3 Tree Decomposition with Function Filtering 137
7.3.1 Iterative MCTE with filtering 140

7.4 Experimental Evaluation . 141

7.5 Related Work . 144

7.6 Perspectives of future work . 145

7.7 Conclusions . 145

8 Conclusions 147

8.1 Conclusions . 147

8.2 Future Work . 148

III Appendixes 151

A Benchmarks 153
A.1 CSP benchmarks . 153

A.1.1 Random Binary CSP . 153

A.1.2 SAT . 153

A.1.3 Schur’s Lemma . 154
A.2 WCSP benchmarks . 154

A.2.1 Random Problems . 154

A.2.2 Earth Observation Satellite Management 155

vii

A.2.3 Radio Link frequency assignment problems (FAP) of
CELAR) . 156

A.2.4 Combinatorial Auctions 158
A.2.5 Weighted Max-SAT . 158

B Search and nary constraints 161
B.1 The binary case . 161
B.2 The non-binary case . 162

B.2.1 Partial Forward Checking 163

viii

List of Figures

2.1 Top: The search tree for the 4-Queens problem. Bottom: The BT

traversal of this search tree. 19

2.2 Left: Backtracking algorithm. Right: a representation of the tree search. 20

2.3 Forward Checking algorithm. 20

2.4 Adaptive Consistency pseudo-code. 24

2.5 Left: Branch and Bound algorithm. Right: a representation of the tree

search. 28

2.6 Partial Forward Checking algorithm. 30

2.7 Bucket Elimination algorithm. 33

3.1 Left: Consider a problem instance with 6 variables, this is the sequence

of subproblems that RDS solves from the smallest one (with one vari-

able) to the complete one with 6 variables. Right: Analogy with the

real Russian dolls. 38

3.2 Russian Doll Search algorithm. 42

3.3 Left: Sequence of subproblems solved by SRDS. Right: In columns

variables and their domains. We show for some SRDS subproblems

which variables and values include. 42

3.4 Specialized Russian Doll Search algorithm. 48

3.5 Limited Specialized Russian Doll Search algorithm. 49

3.6 Sequence of subproblems solved by FSRDS. 50

3.7 The filled area includes all values of variables of the FSRDS subproblem

Wn
2,a22

which was not previously consider by RDS neither SRDS. . . . 50

3.8 Full Specialized Russian Doll Search algorithm. 53

3.9 Opportunistic Specialization function. 57

3.10 Average cpu time of algorithms RDS (left) and LSRDS (right)
for random problem class 〈n = 20,m = 5, p1 = 0.9〉 with varying
tightness p2 (horizontal axis). Error bars show the variance in the
CPU time. 59

3.11 Average cpu time of algorithms SRDS(lim = n/2) (left) and
SRDS (right) for random problem class 〈n = 20,m = 5, p1 = 0.9〉
with varying tightness p2 (horizontal axis). Error bars show the
variance in the CPU time. 60

ix

3.12 Average cpu time of algorithms FSRDS(lim = n/2) (left) and
FSRDS (right) for random problem class 〈n = 20,m = 5, p1 =
0.9〉 with varying tightness p2 (horizontal axis). Error bars show
the variance in the CPU time. 61

3.13 Average cpu time of algorithms ORDS(lim = n/2) (left) and
ORDS (right) for random problem class 〈n = 20,m = 5, p1 = 0.9〉
with varying tightness p2 (horizontal axis). Error bars show the
variance in the CPU time. We show in an additional curve the
number of specialized values. 62

3.14 Average number of visited nodes (left) and average number of
constraint checks of algorithms RDS, LSRDS, SRDS(lim = n/2),
FSRDS(lim = n/2), ORDS(lim = n/2) executed in random prob-
lem class〈n = 20,m = 5, p1 = 0.9〉 with varying tightness p2
(horizontal axis). 63

3.15 Results on CELAR-6 subinstances for the hybrid version, limited SRDS

and limited ORDS. The CPU time corresponds to a Pentium at 2.8GHZ

machine with 1G of RAM. 64

3.16 Results on FAP subinstance SUB4. 66

3.17 On the horizontal axis we show the sequence of subproblems Wi. We

compare SRDS(lim=17) and the hybrid strategy on SUB4 subinstance 67

3.18 Solving time (vertical axis on the right) versus bandwidth (vertical
axis on the left) of RDS executions for all possible orderings of an
8 variable problem extracted from CELAR subinstance SUB4. . 68

3.19 Results on combinatorial auctions instances. Columns: instance, num-

ber of variables, number of constraints, maximum domain size, time

for RDS solving, LSRDS, SRDS(lim = n/2), SRDS and the optimal

cost. 68

3.20 Results on spot instances. Columns: instance, number of variables,

number of constraints, domain size, time for RDS solving, time for

LSRDS solving, time for SRDS and the optimal cost. 68

4.1 Left: a constraint graph. Middle: a possible pseudo-tree for it. Right:

a pseudo-tree arrangement of the original constraint graph. 74

4.2 A problem instance arranged as a pseudo-tree. When xi is assigned it

can be divided into two subproblems 〈Xj ,Dj , Cj〉 and 〈Xk,Dk, Ck〉. 75

4.3 Pseudo-Tree Forward Checking algorithm for CSP. 76

4.4 Basic Pseudo-Tree Partial Forward Checking algorithm. 78

4.5 A problem instance arranged as a pseudo-tree. When xi is assigned it

can be divided into two subproblems 〈Xj ,Dj , Cj〉 and 〈Xk,Dk, Ck〉. 79

4.6 Pseudo-Tree Partial Forward Checking algorithm. 80

4.7 Top left: a constraint graph. Top right: the n resolutions that RDS

performs. Bottom left: a possible pseudo-tree arrangement. Bottom

right: the n resolutions that PT-RDS performs. 82

4.8 Pseudo-Tree Russian Doll Search algorithm. 83

4.9 Pseudo-tree Specialized Russian Doll Search algorithm. 84

x

4.10 Average CPU time for two classes of random problems. The tested

algorithms are SRDS and PT-SRDS and in the first plot also PT-PFC 86

4.11 Average CPU time for two classes of random problems. The tested

algorithms are SRDS and PT-SRDS and in the first plot also PT-PFC 87

4.12 Results on combinatorial auctions instances. Columns: instance, num-

ber of variables, number of constraints, maximum domain size, con-

nectivity, pseudo-tree height, SRDS cpu time, PT-SRDS cpu time and

optimal cost. 88

4.13 Results on spot instances. Columns: instance, number of variables,

number of constraints, maximum domain size. 88

4.14 Decomposition parameters dominance diagram. 90

5.1 Negative Adaptive Consistency pseudo-code. 99

5.2 Negative Adaptive Consistency with Factorization. 103

5.3 Variable Elimination with negative factorized constraints for binary

domain variables. 108

5.4 Results for the random binary class 〈n = 7,m = 5, p1 = 1〉. 110

5.5 Results for 5-SAT instances. 110

5.6 Number of tuples spent by ADC (on top) and ADC−
factor (bottom)

when solving different instances of the n-queens problem. 111

5.7 CPU time spent by ADC (on top) and ADC−
factor (bottom) when solv-

ing different instances of the n-queens problem. 112

6.1 Adaptive consistency delaying variable elimination algorithm. 116

6.2 Join with filters algorithm. 120

6.3 Adaptive consistency with delayed variable elimination and filtering. . 122

6.4 Plots on the left are number of stored tuples in the actual join (log

scale and we assume a maximum value 2,000,000). Plots on the right

are cpu time. X axis is the number of performed joins. Top: ADC.

Middle: ADC-DVE. Bottom: ADC-DVE-F. Plotted lines are instances

that could be solved . 127

6.5 Plots on the left are number of stored tuples in the actual join (log

scale and we assume a maximum value 2,000,000). Plots on the right

are cpu time. X axes is the number of performed joins. Top: ADC

executions. Middle: ADC-DVE. Bottom: ADC-DVE-F. Plotted lines

are instances that could be solved. 128

7.1 Sum with filters algorithm. 130

7.2 Bucket Elimination with filtering algorithm. 133

7.3 The CTE algorithm. 135

7.4 IMCTE algorithm. 140

7.5 Left column: visualization of the SPOT404 and wp2250 instances

where small dots represent ternary constraints. Right column: corre-

sponding tree decomposition where each node is drawn proportionally

to the number of variables |χ(v)| which is plotted inside the node. . . 142

xi

7.6 IMCTEf execution in Borchers instance wp2250. On the left, y-axis

is the total number of computed tuples and time respectively. On the

right, y-axis is the lower bound achieved for each arity r. 144

A.1 Spot 503 instance. Small dots represent ternary constraints. 155
A.2 On the left celar6 instance. On the top right celar6 subinstance 0, and

celar 6 subinstance 4 below. 157

B.1 Lower bounds for non-binary WCSPs. 164
B.2 Partial Forward Checking for non-binary constraints. 164

xii

Foreword

Many important problems can be modelled in terms of constraints and solved
reasoning about them. This book deals with CSP and Weighted CSP, which
are the satisfaction and the optimization frameworks of constraint reasoning,
respectively.

This work presents contributions to search and inference, the two main solv-
ing approaches. Search methods traverse the space of possible configurations and
their efficiency depends on their ability to make right guesses and to identify and
scape from mistakes. Inference methods -in their complete version- perform a
sequence of solution-preserving simplifications until obtaining a trivially solvable
problem.

Conventional wisdom in constraint reasoning says that the efficiency of search
algorithms greatly depends on their ability to perform the right amount of look-
ahead after each assignment. Similarly, the efficiency of inference algorithms
depends on their ability to exploit the problem structure. The novelty of this
thesis is to break such a hard dichotomy: it introduces efficient search algorithms
that exploit the problem structure and efficient inference algorithms that perform
some sort of look-ahead.

The proposed methods are completely generic, in the sense that they do not
assume any particular graph topology and they do not consider any particular
constraint type. Since the considered problems are computationally intractable,
algorithm evaluation has been done empirically, on random problems and on
different benchmarks coming from the real world, such as earth observation
satellite management and radio link frequency assignment.

Bellaterra, July 26 2006

Javier Larrosa Bondia
Associate Professor, UPC

Pedro Meseguer González
Researcher of IIIA-CSIC

xiii

Acknowledgements

Agradezco tanto al IIIA y a toda su gente que me ha soportado y dado soporte.
Me siento incapaz de nombrarlos a todos, con lo que mando un abrazo y una
sonrisa enorme a todos los que se sientan identificados. Estar en un despacho
solo y encerrado es muy duro y todos ellos lo saben. Agradezco, eso śı, a Pedro
la enorme paciencia que ha tenido conmigo y que ha hecho posible que algu-
nas de muchas ideas y más ideas (muy malas, mejores, complicadas o falsas),
algunas pocas, se pudieran traducir al papel y ser explicadas paso a paso con
la formalidad que requeŕıan. Agradezco a la gente del LSI que me conoce, su
soporte con igual ı́mpetu. Especialmente, doy las gracias a Javier por su siempre
preciosa visión global y porque siempre estuvo alĺı. Agradezco tant́ısimo a mi
familia su apoyo. En las cenas que hacemos cada martes, mi estado de ánimo
ha estado estrechamente ligado a las aventuras y desventuras de la investigación
llevada a cabo, incréıble, pero gracias. A todos mis amigos del alma, por aguan-
tar lo que nadie de nosotros debeŕıa tener, cualquier cosa que pudiera parecerse
a un monotema: es insoportable. Entre cotas inferiores y cotas superiores, de
las cuales esta tesis está llena, alĺı estuvo en un momento muy importante la
única Cota superior a todos y a todas. Y ya desviándome un poco del tronco
principal que ha levantado este trabajo agradezco al pasatiempos Sudoku ser
capaz de arrancar una sonrisa a la gente cuando uno explica de que va esta
tesis. Agradecimientos totalmente insuficientes. Me siento en deuda con todos
y todas, un beso a todos, a ti también Dani. Y me recuerdo a mı́ mismo antes
de despedirme que la ciencia, y muchas otras cosas, son tan sólo una minúscula
parte, seguramente imprescindible, de todo lo demás, o eso creo. Hasta pronto!

1

Abstract

This thesis presents a collection of new algorithms for solving Constraint
Satisfaction Problems (CSP) and Weighted Constraint Satisfaction Problems
(WCSP). We pursue two main objectives: enhancing solving methods for WCSP,
which are of recent development, and narrowing the gap between search and in-
ference methods. The first part of the thesis is devoted to search methods for
solving WCSP. In a branch-and-bound context, the lower bound computation in
each node of the search is of great importance and has a serious impact in the
practical efficiency of algorithms. We start from an algorithm called Russian Doll
Search (RDS) that has a costly, yet very powerful lower bound and we develop
three enhancements of it: Specialized RDS (SRDS), Full SRDS and Opportunis-
tic SRDS [Meseguer and Sanchez, 2001] [Meseguer et al., 2002]. We then tackle
the problem of exploiting the global structure of the problem inside search.
An algorithm exists for CSP that is able to exploit what is called pseudo-tree
structure extend it to WCSP, obtaining algorithm Pseudo Tree Partial Forward
Checking (PT-PFC). This algorithm has a source of inefficiency mainly related
to bad quality local lower and upper bounds. We suggest a solution to this
problem by combining pseudo-tree search for WCSP with the RDS techniques
that we previously developed obtaining algorithms PT-RDS and PT-SRDS [?]
[Larrosa et al., 2002]. In all this first part the aim is enhancing the practical
efficiency of existing search algorithms with respect to the time spent in solv-
ing several benchmarks. The second part of the thesis is devoted to complete
inference methods for solving CSP and WCSP. Complete inference solves the
problem by a sequence of transformations that obtain an equivalent problem. In
these transformations variable elimination plays an important role. We present
some new inference operations that permit us to factorize a constraint into a
set of smaller size constraints. We then introduce factorization into variable
elimination. The result is algorithm Adaptive Consistency with negative factor-
ized constraints (ADC−

factor) [Sanchez et al., 2004b]. With these operations we
define also an alternative method to eliminate a binary domain variable. Next,
we introduce the idea of Filtering which consists in anticipating tuples of con-
straints that will become inconsistent when joined with other constraints of the
problem. One could say that we are doing the equivalent to look-ahead during
search but the goal is to reduce memory storage instead of pruning branches
and reduce time. We introduce filtering in the main complete inference algo-

3

rithms for CSP and WCSP producing Delayed Variable Elimination with Fil-
tering ADC (ADC-DVE-F) [Sanchez et al., 2004a] [Sanchez et al., 2005a] and
Bucket Elimination-DVE-F algorithms. Still in the complete inference context,
we generalize filtering to tree decomposition methods that yield us to Cluster
Tree Elimination CTE-F algorithm. We also present an iterative pure infer-
ence algorithm that performs a sequence of more accurate approximations to
solve the problem, we call it Iterative Mini Cluster Tree Elimination (IMCTE)
[Sanchez et al., 2005b]. All contributions to the complete inference part of the
thesis are devoted to enhance the memory spent by these methods.

4

Chapter 1

Introduction

This thesis deals with algorithms for constraint satisfaction and weighted con-
straint satisfaction problems. Many problems arising in Artificial Intelligence
and other areas of Computer Science can be naturally expressed as one of these
models. As a consequence research in their solving methods is gaining impor-
tance as it has great impact in many areas.

A Constraint Satisfaction Problem (CSP) [Mackworth, 1977] consists of a
set of variables, each one taking values in a finite domain. Variables are re-
lated by constraints which impose restrictions to the values that variables can
simultaneously take. A constraint involves a certain number of variables and has
information on which combinations of values of its variables are permitted and
which ones are forbidden. Solutions are assignments of values to variables that
satisfy all constraints. A constraint may be represented by different means:

• mathematical expressions (e.g. x1 < x2).

• computing procedures (e.g. isPrime?(x1)).

• a specific semantic (e.g. the all-different constraint, all-diff(x1, x2, ...)
which is equivalent to saying that variables it involves must take different
values).

In all these cases a constraint is defined implicitly. A constraint can
also be defined explicitly, by giving the set of permitted combinations ({yes
if 〈x1, x2〉 ∈ {〈a, a〉, 〈a, b〉, 〈b, a〉}, no in any other case}). CSP prob-
lems are classified under the NP-complete category (for more details see
[R.M.Haralick and L.G.Shapiro, 1979]).

Often it happens that a CSP instance has no solution. In that case, the ques-
tion of which assignment best respects all constraints arises. The CSP model is
not sufficient to answer this question and it has to be augmented by the so called
soft constraint framework ([Schiex et al., 1995, Bistarelli et al., 1995]). Soft con-
straints are constraints that give a degree of acceptability of a combination of
values of its variables, so they can be seen as cost functions that assign a cost

5

to the combinations of values of the variables they relate. Permitted tuples are
assigned a zero cost, forbidden tuples are assigned an unacceptable cost and par-
tially permitted tuples are assigned an intermediate cost. To maintain coherence
with the CSP model, constraints are called hard when they assign an unaccept-
able cost to forbidden tuples and a zero cost to permitted ones. Therefore, hard
constraints must be mandatorily satisfied. We have chosen as representant of this
class of problems the Weighted CSP model (WCSP) [Larrosa and Schiex, 2003].
In WCSP the cost of an assignment of values to variables is computed as the sum
of the costs of constraints that have all their variables assigned. A solution to a
WCSP is an assignment that satisfies all hard constraints. The optimal solution
is the solution with minimum cost. WCSP problems are classified under the
NP-hard category.

Typical (W)CSP problems can be found in many areas: machine vi-
sion, belief maintenance, scheduling [Minton et al., 1992], propositional reason-
ing [Selman et al., 1992], temporal reasoning, VLSI circuit design, combinatorial
problems. Specific well-known examples of (W)CSPs are: n-Queens problem,
crossword puzzles, sudoku puzzles, timetabling [Schaerf, 1999], car sequencing,
configuration, frequency assignment [Cabon et al., 1999], combinatorial auctions
[Sandholm, 1999] [Cramton et al., 2006], graph coloring, etc. Consider as exam-
ple the graph coloring problem. The aim is to color (from a finite set of colors)
each region of a map such that no adjacent regions have the same color. A possi-
ble CSP modeling of this problem has a variable per region. The domain of each
variable is the set of possible colors. Constraints involve all pairs of adjacent
regions and force them to take a different color. Consider now that we have
an instance with no solution. We can convert the graph coloring problem to an
optimization problem and model it as a WCSP in the following way. Constraints
are now cost functions that assign a cost of one when two regions share the same
color and zero otherwise. The objective is now to minimize the total cost which
is equivalent to minimize the number of adjacent regions that share the same
color.

(W)CSP are in close relation to other models that have important research
communities. For instance a problem formulation in integer linear programming
(ILP), propositional logic (SAT) and bayesian inference can be trivially trans-
lated to (W)CSP and vice versa. The advantage of (W)CSP it is commonly
assumed to be its compact constraint representation. The generality of the defi-
nition of a constraint gives to the (W)CSP models a great deal of expressiveness.
But this fact has also its drawbacks, its solving methods are less specific and
sometimes less powerful than specialized ones for particular domains.

There exist two families of solving methods for (W)CSP: Search and Infer-
ence. In between these two classes we find hybrids procedures combining both
approaches.

Search consists in searching in a space of states. The search space can be
represented by a depth-bounded tree that is a representation of all possible
combinations of values that variables can take. Search is called complete if the

6

exploration of the search space is systematic and it is conducted until a solu-
tion is found or it is proven not to exist (CSP). For the WCSP case complete
search is able to prove the optimality of a solution. In both cases search ex-
plores this search space exploiting the fact that parts of the unexplored search
space can be avoided if it can be proven that it contain no solution (CSP) or
no optimal solution (WCSP). To do this, a fruitful strategy is to propagate
previous decisions in the current branch. Search has an exponential time com-
plexity in the number of variables of the problem, but it is usually the preferred
option as some specific types of search have polynomial space complexity. Ex-
amples of search algorithms among the different mentioned models are Back-
track (CSP), Branch and Bound (ILP [Doig and Land, 1960] and WCSP) and
Backtrack-based Davis-Putnam-Logemann-Loveland [Davis et al., 1962] (SAT).
A survey on WCSP search methods can be found at [Meseguer et al., 2003].
Search can also be incomplete also called local. Local search partially explores
the search space and cannot prove the non existence of a solution (CSP) and
neither its optimality (WCSP). Examples of local search algorithms are tabu
search, simulated annealing, hill climbing, genetic algorithms, ...

Inference consists in transforming the problem into an equivalent one that
is supposed to be easier to solve. A transformation operates with constraints
to deduce new explicit constraints (that were implicit in the original problem
formulation) and reduce the size or the complexity of the problem. Inference is
called complete when it can solve the problem without the use of search. We call
incomplete inference (also named local) when it cannot find by itself solutions
and has to be combined with search.

Given a particular (W)CSP instance, the global interaction of its variables
and constraints is commonly represented by the graph that variables and con-
straints define. The structure refers to the kind of constraint graph that the
problem has. There exist parameters in graph theory that measure the cyclicity
of the constraint graph (that measure how far from being acyclic is the graph).
An example of such a parameter is the induced width. A problem has a low
induced width structure if it is close to being acyclic. Complete inference al-
gorithms have exponential space and time complexities in the induced width of
the constraint graph. Examples of Complete Inference algorithms among the
different mentioned models are Adaptive Consistency [Dechter and Pearl, 1987]
(CSP), Bucket Elimination [Dechter, 1999] (Bayesian Inference and WCSP) and
Directional Resolution [Davis and Putnam, 1960] (SAT).

The objective of this thesis is to contribute in both CSP and WCSP solv-
ing methods. Both models have common features that can be exploited for
algorithmic development. Moreover recent advances in WCSP make the effort
of maintaining the coherence with CSP, that is intend to be the logic exten-
sion from CSP to WCSP. Also the fact that we present contributions in both,
search and inference solving methods is not casual. There is in all this work the
objective of narrowing the gap between both families of methods, bringing to
search the advantages of inference and vice versa. A well known way of combin-
ing search and inference is by using a form of local incomplete inference inside

7

search. In this direction arc consistency, which is a form of incomplete inference,
is of main importance. Soft Arc Consistency (SAC) [Larrosa and Schiex, 2004]
is the recent extension of arc consistency to the WCSP model and is of recent
development. SAC has appeared in parallel to our work. We found SAC of ma-
jor importance but we followed another line of research. On the search side we
focus on Russian Doll Search [Verfaillie et al., 1996] another method for lower
bound computation and on the inference side we focus on complete inference.
Ways of combing SAC with our contributions are sketched.

1.1 Motivation

As CSP is classified NP-complete and WCSP NP-hard, all algorithms for these
problems will present an exponential worst case behavior. In this situation,
and considering the practical importance of constraint satisfaction, developing
algorithms able to solve in practice the considered problems, using a reasonable
amount of resources on average, is of obvious interest. As better algorithms
are developed, larger and more difficult problems instances can be successfully
considered. As (W)CSP can model problems in many areas, developments in
the applicability of its solving methods have widespread repercussion.

Algorithms for the Soft CSP framework are of recent development
[Shapiro and Haralick, 1981, Rosenfeld et al., 1976]. The latter reference it is
often considered to be the seminal paper on the topic of fuzzy constraints. Par-
tial Forward Checking (PFC) [Freuder and Wallace, 1992] can be considered the
first algorithm for Soft CSP. PFC is an extension of a CSP algorithm and since
then the effort of extending CSP methods to WCSP and also producing new ef-
ficient algorithms continues. The first motivation of the thesis was to contribute
in this new area and started within an European project of the same subject
called ECSPLAIN.

The other big motivation was born in the relation between the two families
of solving methods: search and inference. What we call the structure of the
problem plays an important role in this relation. All the search algorithms that
have been developed in the state-of-the-art are in fact a combination of search
and a form of local inference that is performed in each node of the search. This
particular hybridization of both methods has a weakness that is its blindness to
the global structure of the problem. They are not able to exploit low induced
width problems. The only guide these algorithms can use to be aware of the
global structure is heuristics, that is, rules of thumb to help in the selection of
the next variable to assign or the next value to select. There is experimental
evidence that search algorithms can perform badly on large problems with low
induced width. For example [Givry et al., 2003] show a bad performance on
MAX-SAT dubois instances that have a low induced width. Complete Inference
methods on the other hand, make use of the structure of the problem as a
main step and perform efficiently in low induced width problems but usually
are not considered of practical use in problems that have a high induced width.

8

Thus a motivation was born from this observation and it was to explore ways of
exploiting the global structure in search algorithms, and vice versa, to explore
how could complete inference make use of the search advantages.

1.2 Scope and Orientation

In this section we state the decisions that we have taken in our research that
define the limits of our approach.

• Practical Constraint Solving. All work is devoted to improve the practical
applicability of (W)CSP algorithms. Our contributions are new algorithms
that have been implemented and that we prove to be more efficient that
existing state of the art algorithms, at least in specific kind of problems.
The final aim is to apply these algorithms to real problems.

• General Constraint Solving. CSP and WCSP solving are computationally
untractable due to the fact that they belong to NP-complete and NP-hard
classes, respectively. One way to circumvent this intrinsic drawback is to
characterize subclasses of (W)CSP that can be efficiently solved (either
we suppose an specific semantic of constraints, or we suppose a specific
problem structure). A lot of effort has been recently devoted to increase
the library of implicit constraints and to enhance its specific algorithms to
prune variable domains during search. However, our research does not fall
into this line of work. We do not make any assumption about the problems
that we attempt to solve. In practice, it means that our algorithms consider
a (W)CSP in its explicit form, where constraints are given explicitly and
we do not assume any specific constraint semantics.

• Exact constraint solving. Another approach to circumvent the compu-
tational intractability of constraint solving is to use approximation ap-
proaches: incomplete for CSP and suboptimal for WCSP. These ap-
proaches typically try to solve the problem using local optimization or
making some relaxation of the problem statement. However in our work
we are concerned with algorithms that can find all solutions (for CSP)
and all optimal solutions (for WCSP). In Section 7.3.1 we make use of an
approximate inference method but it is only used to help in finding all
optimal solutions.

• Empirical evaluation. Because of the practical orientation of our work
and the recognized exponential worst-case behavior of our algorithms, the
assessment of our contributions is mainly supported by empirical methods.
In our experimental evaluation we use a variety of benchmarks widely used
in the CSP community. These benchmarks are described in Appendix A.

9

Search

All algorithms developed in the search part are for WCSP. We are concerned
with backtrack based algorithms. These algorithms do a depth-first traversal
of the search tree such that each level corresponds to a different variable and
tree nodes correspond to the different values that the variable of each level can
take. We restrict ourselves to systematic search algorithms, meaning that the
optimal solution (WCSP) has to be found. The search tree has to be completely
explored and if a subtree is skipped the algorithm has to be able to prove that
it contains no optimal solution. Search algorithms for WCSP keep track of the
cost of the best solution found so far (called upper bound) and compute at
each node an underestimation of the cost of the unexplored subtree underneath
the node (called lower bound). The process of computing the lower bound and
pruning future domain values that cannot belong to an optimal solution is called
look-ahead. The efficiency of algorithms largely depends on this lower bound
computation.

Inference

In the inference part we are concerned with complete inference. Complete infer-
ence methods are able by itself to find all the solutions of the problem without
doing any subsequent search. They perform a sequence of transformations of the
problem. At each transformation they operate with constraints and eliminate
variables when possible to obtain a smaller equivalent subproblem. When no
variables are left the solution can be trivially obtained.

1.3 Contributions

Search

• In the new framework of soft constraints we started from an algorithm that
has a powerful lower bound computation. It is called Russian Doll Search
(RDS, [Verfaillie et al., 1996]) and its principle is to solve the problem by
several searches, adding one variable at each time, and reusing the obtained
optimal cost at each resolution for improving the lower bound computation
in latter searches. One could say that RDS solves the problem by first
solving a simplified version of it and then reuses this resolution to solve
the whole problem. In this sense it reminds of Dynamic Programming
techniques. We developed several extensions of RDS following the principle
of obtaining more information of each resolution for improving the lower
bound computation of latter searches. The developed algorithms are more
efficient in certain kinds of problems. These ideas were published in

– ”Specializing Russian Doll Search” by Pedro Meseguer, Marti
Sanchez. In Proceedings of Principles and Practice of Constraint Pro-
gramming, CP 2001. LNCS 2239.

10

– ”Opportunistic Specialization in Russian Doll Search” by Pedro
Meseguer, Marti Sanchez and Gerard Verfaillie. In Proceedings of
Principles and Practice of Constraint Programming, CP 2002. LNCS
2470.

• How can we make use of the global structure of the problem to
improve search? An algorithm exists for CSP that first decom-
poses the problem, identifies independent subproblems during search,
as it assigns variables, and solves the subproblems independently.
This algorithm is called Pseudo-tree search [Freuder and Quinn, 1985,
Bayardo and Miranker, 1995]. Our starting point was this algorithm. We
develop several extensions of it to WCSP. The main advantage is that the
theoretical complexity of the new algorithms is exponentially bounded by
the decomposition parameter, so it theoretically improves the time and
space complexities of all other search algorithms for WCSP up to the mo-
ment. We observed a major difficulty of the extension to WCSP that
caused the algorithm to be inefficient in certain cases. We developed a
solution to this problem by extending the RDS techniques developed to
the WCSP pseudo-tree search. These ideas are gathered in,

– ”A tree-based Russian Doll Search” by Pedro Meseguer and Marti
Sanchez in Workshop on Soft Constraints held in CP 2000.

– ”Pseudo-tree search with soft constraints” by Javier Larrosa, Pedro
Meseguer and Marti Sanchez. In European Conference on Artificial
Intelligence ECAI 2002.

Inference

• Complete inference main drawback is that it has an exponential space com-
plexity with respect to the induced width. As we mentioned the induced
width is a measure of the cyclicity of the constraint graph so captures
the global interaction of variables and constraints. If the constraint graph
does not have a low induced width, complete inference can quickly ex-
haust memory resources. The second part of the thesis presents several
algorithms for CSP and WCSP complete inference methods that decrease
the memory consumption of the existing algorithms. The first idea consists
in factorizing a constraint into an equivalent set of smaller constraints. We
introduce a new formalism to deal with factorization. Incorporating this
idea into complete inference algorithms we are capable of reducing signifi-
cantly the total memory used in its execution. Using this same formalism
we introduce a new complete inference operation that is able to eliminate
a binary domain variable from the problem. These ideas can be found in,

– ”Using constraints with memory to implement variable elimination”
by Marti Sanchez, Pedro Meseguer and Javier Larrosa. In Proceedings
of the European Conference on Artificial Intelligence , ECAI 2004.

11

• Another idea is to take advantage of the whole problem when operating
with constraints, to detect that a combination of values will not be allowed
when extended to other parts of the problem. These combinations can then
be deleted from constraints which reduces memory usage. In a sense we are
making use of a kind of look-ahead in a complete inference context. The
developed techniques are proven to be very powerful and greatly reduce the
memory spent on average. We finally present an iterative algorithm that
performs successive approximations of the problem and reuses previous
iterations to reduce the memory spent on subsequent iterations. Three
publications develop these ideas,

– ”Improving the Applicability of Adaptive Consistency: Preliminary
Results” by Marti Sanchez, Pedro Meseguer and Javier Larrosa.
Poster in Principles and Practice of Constraint Programming CP
2004.

– ”Improving Tree Decomposition Methods With Function Filtering”
by Marti Sanchez, Javier Larrosa and Pedro Meseguer. Poster in
International Join Conference on Artificial Intelligence IJCAI 2005.

– ”Tree Decomposition with Function Filtering” by Marti Sanchez,
Javier Larrosa and Pedro Meseguer. In Principles and Practice of
Constraint Programming CP 2005.

• Two publications accompany these contributions: one is the participation
in a survey of Soft CSP techniques, the other one is the extension of the
PFC algorithm to non binary constraints.

– ”Current approaches for solving overconstrained problems” by Pedro
Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, Marti Sanchez.
In Constraints Journal 2003.

– ”Lower Bounds for Non-binary Constraint Optimization” by Pedro
Meseguer, Javier Larrosa and Marti Sanchez. In Proceedings of Prin-
ciples and Practice of Constraint Programming, CP 2001. LNCS
2239.

1.4 Overview

The thesis contains eight Chapters and two Appendix. The work is divided in
two parts: Search and Inference. Both collect the contributions made in each
family of solving methods. Chapter 2 contains all the necessary terminology
and the algorithms needed to understand the subsequent Chapters. It is not
intended to be an exhaustive state-of-the-art. It introduces some basic concepts
for CSP and WCSP. Regarding CSP, it covers depth-first backtrack forward
checking in the search side and adaptive consistency in the complete inference

12

side. Regarding WCSP, it covers branch and bound, partial forward checking in
the search side and bucket elimination in the complete inference side. When more
specific concepts are used, they are introduced in the corresponding Chapters.

Chapter 3 is devoted to enhance lower bound computation in branch and
bound WCSP search. We take as starting point an existing algorithm called
Russian Doll Search (RDS) that has a powerful lower bound computation. We
then develop three enhancements of it that we call Specialized RDS, Full Spe-
cialized RDS and Opportunistic RDS. We finally prove their performance using
Random Problems and Frequency Assignment benchmarks. The Chapter ends
by putting RDS techniques in the context of other recent algorithms of the kind
and by sketching some possible wider applications that RDS may have.

Chapter 4 is about exploiting the global structure of the problem (the inter-
action among variables and constraints) in WSCP search. We extend an existing
algorithm called pseudo-tree search to the WCSP framework. We first present
a basic extension of it and an enhanced one that still has a source of ineffi-
ciency. To tackle this problem we combine pseudo-tree search for WCSP with
the RDS algorithms of previous Chapter and obtain algorithm PT-PFC-SRDS.
Then, experimentation of the obtained algorithms in random problems is done.
We introduce at the end of the Chapter recent similar and alternative decompo-
sition algorithms (AND/OR search, BTD) which we found of main importance.
We end by describing some prospects of future work.

We then enter in the inference part. Chapter 5 first introduces the basic algo-
rithm for complete inference, Adaptive Consistency (ADC) which is modified to
work with negative information. Then, a formalism for factorizing constraints in
negative smaller constraints is developed. Factorization is then included in ADC
working with negative information. The produced algorithm is called ADC−

factor.
Additionally an operation that is able to eliminate binary domain variables by
factorization is explained. We end by putting factorization in context with the
state-of-the-art and we suggest some lines of further development of the work
done in the Chapter.

Chapter 6 introduces the filtering operation for CSP. It first starts introduc-
ing an idea that lead us to filtering and is it called delayed variable elimination
(DVE). It then defines the filtering operation: it is a way of using constraints of
some parts of the problem to reduce the size of other constraints. Then filtering
is used inside ADC, producing a new algorithm ADC-DVE-F. An experimental
evaluation on the N-Queens problem and the Shur-lemma is done.

Chapter 7 is devoted to the extension of filtering into various complete infer-
ence algorithms for WCSP. We first extend filtering to Bucket Elimination (which
is the direct extension of ADC to WCSP). We then introduce CTE an algorithm
which is a generalization of the explained complete inference algorithms. We add
filtering to CTE and develop an iterative algorithm called IMCTE. Experimen-
tal evaluation is done on MAX-SAT instances and earth satellite management
benchmark. The Chapter ends introducing related work and prospects of future
work.

In the first Appendix we show how search algorithms using propagation, like

13

Partial Forward Checking, can be extended to non-binary constraints. In the
second Appendix we describe the set of benchmarks used in the experimental
sections of every chapter.

14

Chapter 2

Preliminaries

2.1 CSP

Many combinatorial problems can be naturally expressed as a Constraint Satis-
faction Problem (CSP). A CSP involves a set of variables, each one taking values
in a finite domain. Variables are related by constraints which impose restrictions
on the values that variables can take simultaneously. A solution to a CSP is a
selection of one value per variable such that all constraints of the problem are
satisfied. Formally,

Definition 2.1 [CSP] A CSP is a triple ℘ = 〈X,D,C〉 where:

• X = {x1, ..., xn} is a set of n variables,

• D = {D1, ..., Dn} is a collection of finite domains such that each variable
xi takes values in Di,

• C is the set of constraints. Each constraint c ∈ C relates (involves) some
variables var(c) = {xi1 , ..., xir

} and specifies those combinations of values
that the variables can simultaneously take. We call var(c) the scope of c
and |var(c)| its arity. There are two usual ways to define constraints: as
a relation, c is defined as a subset of the cartesian product of the domains
of the variables in its scope Di1 × ... × Dir

. As a function c maps each
combination in the cartesian to true or false depending on wether it is
permitted by the constraint or not. Both forms are equivalent and in this
thesis we will use them indistinctly. Thus abusing notation, t ∈ c will be
equivalent to c(t) = true

An assignment t (we will call it also a tuple) is a set of pairs 〈variable, value〉
in which variables are assigned a value of its domain. The variables assigned by t
are noted var(t). Projecting tuple t over variables {xi1 ...xik

}, noted t[xi1 ...xik
],

returns the tuple where only the pairs of these variables are kept. We define
the concatenation of two tuples t and t′ noted t · t′ as the union of its pairs of

15

assignments and it is only defined if common variables have the same assigned
value.

For clarity, we assume that c(t) with var(c) ⊆ var(t) always means
c(t[var(c)]) so that we select from tuple t the assignments that mention vari-
ables of c and ignore the others.

We denote by cij a constraint involving variables xi and xj (namely
var(cij) = {xi, xj}). Similarly ci denotes the unary constraint on variable xi. A
constraint c that, independently of its arity, does not permit any tuple is denoted
by the empty set c = ø. c = ø cannot be satisfied.

An assignment is complete if it involves all the variables of the problem,
otherwise it is partial. An assignment is consistent if satisfies all the constraints
such that all of their variables are assigned, otherwise it is inconsistent.

Definition 2.2 [consistent assignment] Consider a CSP ℘ = 〈X,D,C〉 and
an assignment t. We say that t is consistent if and only if it is permitted by all
constraints c ∈ C such that var(c) ⊆ var(t), that is:

consistent(t) =
∧

∀c∈C s.t. var(c)⊆var(t)

c(t)

A solution to a CSP is a complete consistent assignment. The problem of
finding a solution is NP-complete.

Definition 2.3 [primal constraint graph] Given a CSP, its constraint graph
is the undirected graph having as set of nodes the variables of the problem. Two
nodes are connected if they belong to the scope of at least one constraint of the
problem.

Example 2.1 A classic example of CSP is the 4-Queens problem. The goal is
to place 4 queens in a 4 by 4 chessboard in such a way that they do not attack
each other.

x 4 x 3 x 2 x 1

a

b

c

d

The n−Queens has many CSP modelings. One possibility is to associate
a variable per column as we know that each queen must be placed in a dif-
ferent column, X = {x1, x2, x3, x4}. Each queen has to be placed in a row
so each variable takes values in the domain Di = {a, b, c, d}. The tuple
t = {〈x1, b〉, 〈x2, d〉, 〈x3, a〉, 〈x4, c〉} is a feasible solution. There is a constraint
on each pair of variables to express that two queens must not share a row or a
diagonal. C = {c12, c13, c14, c23, c24, c34} is the set of binary constraints. Find
below the constraint graph and the set of constraints associated to the 4-Queens
problem,

16

1x

3x

2x

4x

13 24c c

12 23 34c c c { , ,

, , , }

ac ad

bd ca da db

14c { , , , , ,

, , , , }

ab ac ba bc bd

ca cb cd db dc

{ , , , ,

, , , }

ab ad ba bc

cb cd da dc

Definition 2.4 [constraint hypergraph] Given a CSP, its constraint hyper-
graph is the hypergraph having as set of nodes the variables of the problem. There
is an hyperedge for every constraint of the CSP and connects all nodes that be-
long to the scope of the constraint. In binary problems the constraint hypergraph
is equivalent to the primal constraint graph.

Example 2.2 Let us consider an example of CSP inspired in crossword puzzles.
Find below the grid of cells and the goal is to assign to each vertical and horizontal
slot a word that is a correct written number. The problem can be modeled as
a CSP with a variable per cell (X = {x0, ..., x9}) and a constraint per each
horizontal and vertical slot (C = {u1, u2, v1, v2}).

x0

v1 ↓

x1

u1 →

x2 x3 x4

v2 ↓

x5 x6

x7

u2 →

x8 x9

Each variable takes values in all possible letters so each variable xi has
|Di| = 26 values. Constraints impose slots to take values in valid written num-
bers. The constraint hyper-graph associated to this problem is shown below. Tri-
angles represent n-ary constraints and are the hyperedges of the hypergraph. For
instance, hyperedge u1 is associated with the first horizontal slot and links vari-
ables var(u1) = {x1, x2, x3, x4}.

u1

u2

v1
v2

x0

x6

x9

x1 x3 x4

x7

x5

x2

x8

4

4

3

3

17

2.2 CSP Solving Methods

There are two main algorithmic approaches for solving CSP: search and infer-
ence.

2.2.1 Search

Search explores the search space defined by all possible assignments looking for
a complete consistent assignment. The search space is developed as a tree, called
the search tree. In Fig. 2.1 we show the search tree of the 4-Queens problem.
Each node of the search tree represents an assignment defined by the path from
this node to the root. The search tree can be generated with the following pro-
cedure assuming a fixed ordering among variables and domain values. Consider
the first variable and its d possible values; for each value consider the second
variable and its d possible values (it produces d2 possibilities); if we proceed
with the third variable we produce d3 possibilities; and so on. If we continue
this process for the n variables it generates a tree such that its leaves are the set
of all possible complete assignments. Clearly the size of the tree is exponential
O(dn)).

The search tree can be traversed in many ways. The usual choice is depth-
first because it has polynomial space complexity and also because the depth of
the tree is bounded by the number of variables.

Backtracking

The simplest algorithm to traverse the search tree is Backtracking (BT). BT
performs a depth-first traversal of the search tree. At each node, BT checks
whether the assignment associated with the current node is consistent or not. If
it is, BT takes the next variable and sequentially assigns its domain values and
the same process is recursively applied. If the current assignment is inconsistent,
the detected inconsistency invalidates any assignment in the subtree rooted at
the current node and BT backtracks. This step is called backtracking because
it involves reconsidering assignments made in previous levels of the tree. In Fig.
2.1 we show a BT tree traversal.

BT algorithm is presented in Fig. 2.2. It has two input parameters: the
current assignment t, and the set of the remaining unassigned variables F (called
future variables). The different components of the CSP instance 〈X,D,C〉 are
accessible as global variables. The algorithm is called initially BT({}, X). BT
returns true if a consistent complete assignment exists, false otherwise. Every
time BT reaches a leaf of the search tree, the current assignment is a complete
assignment (line 1). At an internal node of the search tree, BT chooses a variable
and iterates over all its possible values (lines 2,3). The consistency of t is tested
(line 4). If t is consistent then we assign another variable calling recursively BT
(line 5). If one of the recursive calls finds a solution the current call returns true
(line 6). If no value for the variable leads to a solution, it returns false (line
7). In the worst case BT has to traverse all the nodes of the tree, thus it has

18

1x

2x

3x

a b cd a b cd a b cd a b cd a b cd a b cd a b cd a b cd4x

a b c d a b c d

a b cd a b cd a b cd a b cd a b cd a b cd a b cd a b cd

a b c d a b c d

a b c d

a b c d

… … …

partial assignment:

complete assignments

1 2 3, , , , , t x b x d x d

Figure 2.1: Top: The search tree for the 4-Queens problem. Bottom: The BT traversal

of this search tree.

exponential time complexity O(dn), being d the maximum domain of a variable,
and n the number of variables. The space complexity of BT is polynomial.

Forward Checking

BT algorithm traverses the search tree checking the consistency of the current
assignment. Forward Checking (FC) [Harlick, 1980] algorithm adds look-ahead
to BT. Look-ahead is the process of removing values of the domains of future
variables that are not consistent with the current assignment. In a way look-
ahead anticipates the detection of branches of the search tree with no solution.
Fig. 2.3 presents FC. It has three input parameters: the current assignment t,
the set of future variables F and the collection of current domains. It chooses
a variable and iterates over its values. After selecting a value it performs look-
ahead (line 4). Look-ahead function iterates over all future domains deleting the
values that are inconsistent when added to the current assignment and returns
the new domains. Now an assigned value can be skipped if after look-ahead
an empty domain is detected (line 5). If there is not an empty domain, FC is
called recursively with the updated collection of domains (line 6). As BT, FC
has to traverse all the nodes of the tree in the worst case, it has exponential time
complexity O(dn) and polynomial space complexity.

19

function BT(t, F)
1 if F = ø then return true
2 xi ← choose-variable(F)
3 for each a ∈ Di do

4 if consistent(t · 〈xi, a〉) then

5 sol← BT(t · 〈xi, a〉, F − {xi})
6 if sol then return true
7 return false complete

assignment

var(t)

F

consistent(t)
1

1 1

2 1

, ,

, ,

, ,

...,

...

i

i

i

x a

x b

x c

current

node

= t

Figure 2.2: Left: Backtracking algorithm. Right: a representation of the tree search.

There are more sophisticated forms of look-ahead. FC look-ahead is only
taking into account constraints that link past to future variables. It is possible
to prune domains of future variables also taking into account constraints that
link exclusively future variables. This is the case of Maintaining Arc Consistency
(MAC) algorithm [Sabin and Freuder, 1994]. To do so, MAC has an extra com-
putational effort. However MAC is considered the most efficient algorithm on
hard problems. There are also more sophisticated ways of backtracking. Instead
of reconsidering the last assignment made when an inconsistency is found, it is
possible to jump to the last variable that caused the conflict. This strategy is
called Backjumping (BJ) [Gaschnig, 1978]. Graph Based BJ [Dechter, 1990] com-
putes the level of the search where to backtrack based on the constraint graph.
Conflict directed BJ improves BJ by following a more sophisticated jumping
strategy that is based on the conflicts between variables [Prosser, 1993].

2.2.2 Inference

Inference algorithms deduce new constraints from original constraints. These
new constraints were implicit in the original problem and are made explicit.
When inference can, by itself, obtain all the solutions of the problem it is called
Complete Inference. Inference can also be incomplete, meaning that it deduces

function FC(t, F, D)
1 if F = ø then return true

2 xi ← choose-variable(F)
3 for each a ∈ Di do

4 D′ ← look-ahead(t · 〈xi, a〉, F − {xi}, D)
5 if ø 6∈ D′

then

6 sol← FC(t · 〈xi, a〉, F − {xi}, D′)
7 if sol then return true

8 return false

function look-ahead(t, F, D)
1 for each xj ∈ F do

2 for each b ∈ Dj do

3 if not consistent(t · 〈xj , b〉) then

4 Dj ← Dj − {b}
5 return D

Figure 2.3: Forward Checking algorithm.

20

implicit constraints but deductions are not sufficient to obtain solutions. In this
case it must be combined with search. We define two operations on constraints,

Definition 2.5 [Project Out] Given a constraint c such that xi ∈ var(c),
projecting out a variable xi from c, noted c ⇓ xi, is a new constraint with scope
var(c) − {xi} whose permitted tuples are

c ⇓ xi = {t | t · 〈xi, a〉 ∈ c}

Consider a constraint c and a set of variables X . We denote by c ⇓ X the
operation that projects out all variables in X from c one after the other. The
result of projecting out a variable from a unary constraint, ci ⇓ xi, is a 0-arity
constraint. If the original constraint ci permitted at least one tuple we must
be able to express that the resulting 0-arity constraint is not empty. For this
purpose we introduce the empty tuple that we denote λ.

Example 2.3 Consider constraint c12 of the 4-Queens problem,

c12(x1, x2) = {ac, ad, bd, ca, da, db}

If we project out variable x1 from c12 we obtain a unary constraint c2 that
permits all the values of the domain,

c12 ⇓ x1 = c2 = {a, b, c, d}

If we then project out x2 we obtain,

c2 ⇓ x2 = {λ}

Definition 2.6 [Join] Given two constraints c and c′, their join c 1 c′ is a new
relation with scope var(c) ∪ var(c′) containing all the possible tuples permitted
by both constraints,

c 1 c′ = {t · t′ | t ∈ c, t′ ∈ c′}

Example 2.4 Find on the left of the drawing below constraints c12 and c13 of
the 4-Queens problem. On the right we show the constraint resulting of their
join c123 = c12 1 c13.

12 , , ,
 , ,

{
}

ac ad bd
ca da db

c

13 , , ,
 , , ,
 ,

{

}

ab ad ba
bc cb cd
da dc

c
123 , , , ,

 , , , ,

 , , ,

{

}

acb acd adb add

bda bdc cab cad

daa dac dba dbc

c

21

Joining all the constraints of the problem (1c∈C c) we obtain a constraint
with the whole set of solutions as permitted tuples. Computing this global
constraint as a sequence of joins of all the constraints is a brute force approach
exponential in time and space with respect to the number of variables of the
problem.

Definition 2.7 [stronger than] Consider two constraints c and c′. Let V =
var(c′) ∩ var(c) be their set of common variables. Then c is stronger than
constraint c′, denoted c′ 4 c, if

{t[V] | t ∈ c′} ⊇ {t[V] | t ∈ c}

In words a constraint c is stronger than another constraint c′ if, projecting all
tuples in its common set of variables, c′ permits all the tuples of c and possibly
more. We say that a set of constraints C is stronger than a set of constraints
C′ iff (1c′∈C′ c′) 4 (1c∈C c). Note that for any constraint c and a variable
xi ∈ var(c), (c ⇓ xi) 4 c and also c 4 (c ⇓ xi).

Definition 2.8 [equivalence in the common set of variables] Consider
two sets of constraints C and C′. C and C′ are said to be equivalent in their
common set of variables, noted C ≈ C′ if

C 4 C′ and C′
4 C

In words two sets of constraints are equivalent if they have the same set
of solutions in their common set of variables. Two CSPs ℘ = 〈X,D,C〉 and
℘′ = 〈X ′, D′, C′〉 are said to be equivalent, noted ℘ = ℘′ if their respective
sets of constraints are equivalent in their common set of variables. An inference
operation transforms the problem ℘ into ℘′ by operating with constraints while
preserving its equivalence. ℘′ it is presumably easier to solve than ℘ as more
constraints are made explicit. Replacing two constraints c and c′ from a CSP
℘ = 〈X,D,C〉 by its join c 1 c′ is an inference transformation, thus preserves
equivalence. It is possible to eliminate a variable from a CSP and obtain an
equivalent CSP in the remaining set of variables. This process is called Variable
Elimination [Bertele and Brioschi, 1972, Dechter, 1999].

Definition 2.9 [variable elimination] The elimination of variable xi from the
set of constraints C is an inference operation that obtains a set of constraints C′

that does not mention xi and is equivalent to C. The new C′ can be computed
as follows,

C′ ← C − {c ∈ C | xi ∈ var(c)} ∪ {(1
c∈C s.t. xi∈var(c)

c) ⇓ xi}

In Fig. 2.4 we show the algorithm associated to variable elimination (function
Var-Elim). It receives as input a variable and a set of constraints. The process
of eliminating variable xi from this set of constraint C can be described in three
elementary operations : i) gathering of the constraints in which xi participates

22

(line 1). This set of constraints is often called bucket of the variable. ii) join
all these constraints and project out xi (line 2). iii) Finally, it substitutes the
initial bucket of constraints by the new obtained constraint in the set C (line
3). The obtained set of constraints does not mention xi and is equivalent to the
initial set.

Graph concepts

Consider a CSP instance and its constraint graph. Let O = {xi1 , ..., xin
} be an

ordering of its variables X . The induced ordered graph associated to the con-
straint graph and the ordering O is obtained as follows: variables are processed
from last to first; when variable xi is processed, all its preceding neighbors are
connected.

The width of a variable is the number of neighbors that precede the variable
in the ordering. The width of an ordering O, denoted w(O), is the maximum
width over all variables. The induced width of a graph and an ordering O, is the
width of the induced ordered graph.

Definition 2.10 [induced width] The induced width, noted wopt, of a con-
straint graph is the minimal induced width over all its orderings.

Computing the induced width of a graph is NP-complete. Heuristics exist to
compute orders with low induced width.

Example 2.5 Find below the constraint graph of a CSP and the same constraint
graph arranged in the order imposed by its variable indexes.

x1 x2 x3

x5x4 x6 x7

x1 x2 x3 x5x4 x6 x7

Let’s now build the induced graph with respect to this order. With respect
to the original graph a connection between variables x2 and x5 has to be added
because they are both preceding neighbors of x6. x5 has three preceding neighbors
x4, x3 and x1. They have all three to be connected. The corresponding induced
graph is shown below. Strong lines are the new added connections in this process.

23

x1 x2 x3 x5x4 x6 x7

The induced width of this ordering is 4 as variable x5 has 4 preceding neigh-
bors.

Adaptive Consistency

Adaptive Consistency (ADC) [Dechter and Pearl, 1987] is the basic Complete
Inference algorithm for solving CSP. ADC performs a sequence of problem trans-
formations eliminating one variable at each step and obtaining an equivalent CSP
on the remaining set of variables. When there are no variables left, the solution
can be trivially obtained. ADC appears in Fig. 2.4. It receives as input a CSP
and it returns true if it has solution and false otherwise. It first computes an
elimination order (line 1). It then performs a sequence of variable eliminations
(lines 2 and 3 of ADC). After calling variable elimination ADC checks if there
is an empty constraint in the returned set C (line 4). If it is the case it returns
false as no solution exists. After eliminating all variables, the empty tuple is
the only present in the set of constraints C = {λ} and we can then return true.

If we store all the generated constraints c′, before projecting out each variable
(line 2), the set of all solutions can be trivially obtained. One possibility is to
join all c′ constraints in the inverse order of how they where obtained, joining
the c′ obtained in the first elimination at the end. The resulting constraint of
this join is the set of all solutions (see example 2.6). For the sake of clarity we
skip in the algorithms this step needed to retrieve the set of all solutions. The
interested reader may address [Dechter, 2003].

function Var-Elim(xi, C)
1 B ← {c ∈ C | xi ∈ var(c)}
2 c′ ← (1c∈B c) ⇓ xi

3 C ← C ∪ {c′} −B
4 return C

function ADC(℘)
1 X ← compute-order(X)
2 for each xi ∈ X do

3 C ← Var-Elim(xi, C)
4 if ø ∈ C then return false
5 return true

Figure 2.4: Adaptive Consistency pseudo-code.

Example 2.6 Consider the 4-Queens problem of example 2.1. Its constraint
graph is a clique thus its induced width is wopt = n − 1 = 3. We eliminate
variables in the ordering imposed by variable indexes. ADC starts with the
elimination of variable x1. It first joins all constraints linked to x1, which are
B = {c12, c13, c14}. Let’s recall that ,

24

c12 = {ac, ad, bd, ca, da, db}

c13 = {ab, ad, ba, bc, cb, cd, da, dc}

c14 = {ab, ac, ba, bc, bd, ca, cb, cd, db, dc}

Joining all constraints in bucket, we obtain (line 2 of Var-Elim in Fig. 2.4),

c′′1234 =
{acbb, acbc, acdb, acdc, adbb, adbc, addb, addc, bdaa, bdac,
bdad, bdca, bdcc, bdcd, caba, cabb, cabd, cada, cadb, cadd,
daab, daac, dacb, dacc, dbab, dbac, dbcb, dbcc}

Find below on the left the original constraint graph with x1 on top. The
second constraint graph shows the result after joining all constraints linked to
x1, that is c′′1234. ADC finally projects out x1 from c′′1234 ⇓ x1 = c′234 (last
constraint graph) and the variable is eliminated.

x1

x2 x3 x4

x1

4

x2 x3 x4

3

x2 x3 x4

ADC continues with the elimination of variable x2 by joining all the con-
straints it is linked to; B = {c′234, c23, c24}. It obtains,

c′′234 =
{dbc, daa, dac,
adb, add, acb}

Find on the drawing below the last constraint graph rearranged with x2 on
top. The second constraint graph shows c′′234. ADC then projects out x2 and
obtains c′34 (shown in the third constraint graph below). For the x3 elimination
we join the two binary constraints B = {c′34, c34} and obtain c′′34 = {ac, db}.
When projecting out x3 we obtain c′4 = {c, b}.

x2

3

x3 x4

x3

3

x3 x4

2

x3 x4 x3 x4 x4

Only one variable is left. Now B = {c′4}. Then x4 is projected out and ADC
obtains the empty tuple c′4 ⇓ x4 = {λ}, meaning that a solution exists.

To recover all possible solutions ADC proceeds backwards joining the obtained
c′′ constraints on each elimination: c′′4 1 c′′34 = {ac, db} = c′′, then c′′ 1 c′′234 =
{dac, adb} = c′′′ and finally c′′′ 1 c′′1234 = {bdac, cadb} which is the set of all
possible solutions.

ADC has exponential time and space complexity with respect to the induced
width O(exp(w)) of the elimination order.

25

2.3 WCSP

Some CSP instances do not have any solution. In this case we may want to
find the best assignment close to a solution among all assignments with respect
to some preference criterion. A CSP instance may also have many solutions.
Similarly it would be also useful in this case to look for the best solution with
respect to a preference criteria. In both cases the CSP model is not sufficient
because a CSP constraint completely accepts or forbids a tuple, constraints
are then called hard for this reason. The CSP model is augmented with the
introduction of the so called soft constraints. The introduction of soft constraints
has originated different class of models, see for example [Bistarelli et al., 1995],
[Schiex et al., 1995]. For our purposes we choose as representive of this class of
models the Weighted CSP framework (WCSP) [Larrosa and Schiex, 2004]. In
WCSP a constraint assigns a cost to each tuple. To maintain coherence with
CSP model we consider inconsistent an assignment with cost ∞. Constraints
are now functions which assign a cost in N ∪∞ to every tuple. Formally,

Definition 2.11 [WCSP] A WCSP is triple ℘ = 〈X,D,C〉 where X and D
are variables and domains as in CSP. Constraints in the set C are now cost
functions. Each function f ∈ C involves a number of variables var(f) =
{xi1 , . . . , xir

} and assigns costs to tuples in the cartesian product
∏

i∈var(f)Di.

Assigned costs are non negative integers in the interval [0..∞]. The meaning of
costs is:

f(t) =

0 if t is completely allowed

u ∈ N+ if t is partially allowed

∞ if t is totally forbidden

A solution to a WCSP is a complete consistent assignment with cost<∞. An
optimal solution is a solution with minimum cost. Finding an optimal solution
to a WCSP is NP-hard. As a consequence of this fact, if the optimal cost is
unknown, given a complete assignment t it is not possible to test if it is an
optimal solution or not in polynomial time.

Example 2.7 We convert the 4-Queens problem into an optimization problem
that we call the 4-WQueens. The task is to place one queen per column in a
board in such a way that the number of mutual attacks is minimized. Some cells
are forbidden. Find on the drawing below the board where black cells denote
forbidden cells and a solution of cost 1 is shown. An arrow indicates the only
attack.

x 4 x 3 x 2 x 1

a

b

c

d

26

Black cells are forbidden so functions assign cost ∞ to tuples that contain
them. Find below the constraint graph and the set of functions associated to the
4-WQueens problem.

1x

3x

2x

4x

12 13

0 0 ,
1 , , 1 , , ,

 , , , , ,

ad ad cd
ab cb cd aa ac cc ca
b d a c b d b

f f

23 24

0 , 0 ,
1 , , , 1 , , ,

 , , , ,

bd da bc dc
ba bc dc dd bb bd db dd
a c b a c a

f f

34

0 , ,
1 , , ,
 ,

 ,

ac ad db
ab cb cc cd
dc dd
b a

f
14

0 , , ,
1 ,

 , ,

ab ac cb cd
ad cc
b d a

f

A mutual attack has cost one. The tuple t = {〈x1, a〉, 〈x2, d〉, 〈x3, a〉, 〈x4, c〉}
is an optimal solution of cost 1.

2.4 WCSP Solving Methods

Analogously to CSP there exist two main algorithmic approaches for solving
WCSP: search and inference.

2.4.1 Search

For clarity reasons, search algorithms for WCSP usually make the assumption
of dealing exclusively with binary functions, that is, functions that only have
two variables in their scope [Freuder and Wallace, 1992, Larrosa et al., 1999,
Larrosa and Schiex, 2004]. Generalization of certain WCSP search algo-
rithms to n-ary functions have been studied, see for example [Meseguer, 2000,
Meseguer et al., 2001]. The latter is summarized in Appendix B. The binary
assumption is a consequence of the difficulty of dealing with explicit higher arity
functions, as the number of tuples to store grows exponentially with the arity
of the function. However other approaches exist that deal with implicit func-
tions. [Regin et al., 2000a] explores the idea of introducing meta-constraints for
counting the number of unsatisfied hard constraints. The idea of implicit soft
constraints first appears in [Petit et al., 2001]. It deals with implicit constraints
and the cost of each tuple is obtained via a computing procedure. Our choice
in all this thesis is to work exclusively with explicit constraints and functions,
the reason being its generality and abstraction. The counterpart of this choice
is that we loose the possibility of exploiting the semantics of the constraint.
The semantic of every specific pre-defined type of constraint can be exploited to
derive filtering algorithms that can be used during search to prune the domain
of the variables involved in the constraint. Filtering algorithms that have been
studied for exploiting the semantics of the all-different constraint are one of the
most famous examples of this kind [Régin, 1994].

27

Branch and Bound

The Branch and Bound (BB) algorithm traverses the search tree depth-first. At
a node of the tree, the current assignment is t and var(t) is the set of assigned
variables, we call them past variables. Unassigned variables are called future and
noted F .

BB computes at every node of the search tree an underestimation of the cost
of any leaf node descendent from the current node, the lower bound at that node
(lb). The upper bound (ub) is the cost of the best complete assignment found so
far. When lb ≥ ub we know that the current best solution cannot be improved
below the current node, so we prune the subtree rooted at the current node.
Thus lb ≥ ub is the pruning condition. In that case, BB performs backtracking
as in classical CSP. In its simplest version BB computes as lower bound the sum
of costs returned by completely instantiated constraints, that is all constraints
that link past variables. It is the cheapest lower bound one can compute.

In Fig. 2.5 we show the search tree with some additional concepts from BB.
The BB lower bound expression, LBBB(t), is also called cost(t).

Definition 2.12 [BB lower bound] Consider a search state such that t is the
current assignment (namely var(t) is the set of past variables) the lower bound
that BB computes is:

LBBB(t) = cost(t) =
∑

f∈C,var(f)⊆var(t)

f(t)

function BB(t, F, ub)
1 if F = ø then return cost(t)
2 xi ← choose-variable(F)
3 for each a ∈ Di do

4 if LBBB(t ∪ 〈xi, a〉) < ub then

5 ub
′ ← BB(t ∪ 〈xi, a〉, F − {xi}, ub)

6 if ub
′ < ub then ub← ub

′

7 return ub

function LB
BB(t)

1 return
P

f∈C,var(f)⊆var(t)

f(t)

complete

assignment

cost(t)

current

nodeF

var(t)

1

1 1

2 1

, ,

, ,

, ,

...,

...

i

i

i

x a

x b

x c

= t

Figure 2.5: Left: Branch and Bound algorithm. Right: a representation of the tree

search.

BB is presented in Fig. 2.5. It has three input parameters: the current
assignment t, the set of future variables F , and the upper bound ub. The
different components of the WCSP instance 〈X,D,C〉 are accessible as global
variables. The algorithm is called initially BB({}, X,∞). BB returns the optimal
cost of the problem if it was initially called with an upper bound greater than

28

the optimal cost. If the initial upper bound ub cannot be improved the same
value of ub is returned, meaning that it is a lower bound of the cost of solving the
problem. Every time BB reaches a leaf of the search tree, the current assignment
is a complete assignment (line 1) and its cost is returned 1. At an internal node
of the search tree, BB chooses a variable and iterates over all its possible values
(lines 2,3). The corresponding lower bound is computed after each assignment
and the pruning condition is tested (line 4). If the cost of past variables does not
reach the upper bound it assign another variable calling recursively BB (line 5).
After a BB call returns, it tests if the solution has been improved in the nodes
below (line 6). Finally the best ub found is returned.

Partial Forward Checking

The Partial Forward Checking (PFC) [Freuder and Wallace, 1992] enhances BB
lower bound by taking into account the costs that will certainly occur because
of constraints that link past variables with future variables. The cost of these
constraints can be handled with the so-called inconsistency costs.

Definition 2.13 [inconsistency cost] Given a WCSP W = 〈X,D,C〉, the
current assignment t and the set of future variables F , the inconsistency cost of
future variable xj and value b is:

icjb =
∑

fij∈C | 〈xi,a〉∈t

fij(a, b)

In words, the inconsistency cost icjb contains the cost of assigning value b
caused by constraints that link variable xj with past variables. Observe that
minb∈Dj

{icjb} is the cost that at least will be payed when assigning future vari-
able xj independently of the value that it will be assigned to xj . Then, the sum
∑

xj∈F minb∈Dj
{icjb} is a lower bound of cost that will necessarily occur if the

current partial assignment is extended into a total one. This term can be added
to the cost of past variables to compute the lower bound of the current partial
assignment, because both terms record different costs from different constraints.
The PFC lower bound is defined as follows,

Definition 2.14 [PFC lower bound] Consider a search state such that t is
the current assignment. The lower bound that PFC computes is:

LBPFC(t, F) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb}

This lower bound can be specialized to a certain value to test if it can not
belong to the optimal solution. In that case it can be pruned. The specialization
for value b of variable xj is done by substituting the minimum icjb of variable
xj by the particular icjb as follows,

1At this point the current assignment t should be stored as the best solution found so far
although we omit it for the sake of code simplicity.

29

LBPFC
jb (t, F) = cost(t) + icjb +

∑

xk∈F,k 6=j

min
c∈Dk

{ickc}

PFC appears in Fig. 2.6. With respect to BB we add the function look-ahead
which is in charge of updating the inconsistency costs and function prune which
deletes values of future variables that have a PFC lower bound greater than the
current upper bound. Prune returns the new collection of domains. As values
can be deleted PFC also has as input parameter the current domains D. The
algorithm is called initially PFC({}, X,D,∞). In line 4 of PFC look-ahead is
called. Function look-ahead updates inconsistency costs icjb of every value b of
future variable j by adding the cost of the binary constraint fij to it. Function
prune calls the specialized PFC lower bound for every value of every future
variable. Prune may produce an empty domain. The ics have to be restored to
its previous values. This operation is called context restoration and it is omitted
for simplicity.

function PFC(t, F,D, ub)
1 if F = ø then return cost(t)
2 xi ← choose-variable(F)
3 for each a ∈ Di do

4 look-ahead(i, a, t, F,D, ub)
5 if LBPFC(t · 〈xi, a〉, F,D

′) < ub then

6 D′ ← prune(i, a, t, F,D, ub)
7 if ø 6∈ D′ then

8 ub′ ← PFC(t · 〈xi, a〉, F − {xi}, D
′, ub)

9 if ub
′ < ub then ub← ub

′

10return ub

function prune(i, a, t, F,D, ub)
1 for each xj ∈ F − {xi} do

2 for each b ∈ Dj do

3 if LB
PFC

jb (t · 〈xi, a〉, F,D) ≥ ub then

4 Dj ← Dj − {b}
5 return D

function LBPFC(t, F,D)

1 return cost(t) +
P

xj∈F

min
b∈Dj

{icjb}

function LBPFCjb (t, F,D)

1 return cost(t) + icjb +
P

xk∈F,k 6=j

min
c∈Dk

{ickc}

function look-ahead(i, a, t, F,D, ub)
1 for each xj ∈ F − {xi} do

2 for each b ∈ Dj do icjb ← icjb + fij(a, b)

Figure 2.6: Partial Forward Checking algorithm.

There are forms of more sophisticated look-ahead for WCSP algorithms.
Analogously to FC (see Section 2.2.1), PFC only takes into account the func-
tions that link past to future variables. Chapter 3 presents more advanced tech-
niques to take into account constraints that link exclusively future variables.

30

Alternative ways of doing so are also pointed out in Section 3.6 and also Section
B.1.

2.4.2 Inference

Inference CSP algorithms (see section 2.2.2) can be generalized to WCSP. The
generalization is obtained by substituting project out and join operations from
CSP with their generalization to WCSP.

Definition 2.15 [Project out by minimization]. Given a function f , pro-
jecting out variable xi ∈ var(f), denoted f ⇓ xi, is a new function with scope
var(f) − {xi} such that,

(f ⇓ x)(t) = min
a∈Di

{f(〈xi, a〉 · t)}

In words the cost of a tuple in f ⇓ xi is the minimum among the costs of
all possible extensions of xi. Projecting out the variable of a unary function
produces a constant. Any constant can be considered an empty scope function.

Definition 2.16 [Sum] Given two functions f and g, its sum f + g is a new
function with scope var(f) ∪ var(g) such that,

(f + g)(t) = f(t) + g(t)

Example 2.8 Find on the left of the drawing below functions f12 and f13 of
the 4-WQueens. On the right we show the constraint resulting of its sum f123 =
f12 + f13.

13

0 ,
1 , , ,

 , ,

ad cd
aa ac cc ca
b d b

f

12

0
1 , ,

 , , ,

ad
ab cb cd
b d a c

f

+ 123

0
1 , ,
2 , , , ,
 , , ,

 , , , ,

add
abd ada cbd
adc cda cdd aba
cba abc cdc cbc
b d a c

f

b

Summing all functions of the problem,
∑

f∈C f , we obtain a function involv-
ing all variables of the problem with the whole set of solutions as consistent
tuples with their associated cost.

We now extend the relation stronger than defined for CSP in Def. 2.7 to
WCSP. In this context we call it lower bound function.

Definition 2.17 [lower bound function] Consider two functions g and f .
Let V = var(g)∩var(f) be their set of common variables. Let g′ = g ⇓ (var(g)−
V) a functions where we have projected out all variables that don’t appear in the
scope of f . Let f ′ = f ⇓ (var(f)− V). Then g is a lower bound functions of f ,
denoted g � f , if

31

g′(t) ≤ f ′(t) ∀t ∈
∏

i|xi∈V

Di

We say that a set of functions G is a lower bound of a set of functions F if
(
∑

g∈G g) � (
∑

f∈F f). Note that for any function f and a variable xi ∈ var(f)
, (f ⇓ xi) � f ,

∑

f∈F (f ⇓ xi) � (
∑

f∈F f) ⇓ xi holds.
Analogously to CSP, two sets of functions C and C′ are equivalent in their

common set of variables, noted C ≈ C′ if C � C′ and C′ � C. Two WCSP are
equivalent if they have the same set of solutions with equal cost in their common
set of variables. Two WCSPs W = 〈X,D,C〉 and W ′ = 〈X ′, D′, C′〉 are said to
be equivalent, noted W =W ′, if C ≈ C′. Variable elimination can be extended
to WCSP.

Definition 2.18 [variable elimination] Let W = 〈X,D,C〉 be a WCSP. The
elimination of variable xi from the set of functions C is an inference operation
that obtains a set of functions C′ that does not mention xi and is equivalent to
C. The new C′ can be computed as follows,

C′ ← C − {f ∈ C | xi ∈ var(f)} ∪ {(
∑

f∈C s.t. xi∈var(f)

f) ⇓ xi}

In Fig. 2.7 we show the algorithm associated to variable elimination (function
Var-Elim) for WCSP. It receives as input a variable and a set of constraints. The
process of eliminating variable xi from this set of constraint C can be depicted
in three elementary operations: (i) gathering of the constraints in which xi

participates, also called the bucket of xi (line 1). (ii) sum of all constraints in
the bucket and projection out of xi from the obtained constraint (line 2). (iii)
then the constraint in the original bucket must be replaced with thew obtained
constraint in C (line 3).

Bucket Elimination

Bucket Elimination (BE) [Dechter, 1999] is the basic Complete Inference algo-
rithm for solving WCSP. BE appears in Fig. 2.7. Similarly to ADC BE first
computes an elimination order which is intended to have low induced width
(line 1). Then BE performs a sequence of problem transformations eliminating
a variable at each step and obtaining an equivalent WCSP (line 2,3). When all
variables have been eliminated if the remaining set of constraints contains the
infinite cost constant means the the problem has no solution. Thus it returns
C 6= {∞} (line 4).

Example 2.9 Consider the 4-WQueens problem introduced in example 2.7. Its
constraint graph is a clique so its induced width is wopt = 3 We eliminate vari-
ables in the order O = {x1, x2, x3, x4}. BE starts with the elimination of variable
x1. It first sums all functions linked to x1, which are B = {f12, f13, f14} and
projects out variable x1. It obtains,

32

function Var-Elim(xi, C)
1 B ← {f ∈ C | xi ∈ var(f)}
2 f ′ ← (

P

f∈B f) ⇓ xi

3 C ← C ∪ {f ′} −B
4 return C

function BE(W)
1 X ← compute-order(X)
2 for each xi ∈ X do

3 C ← Var-Elim(xi, C)
4 return C 6= {∞}

Figure 2.7: Bucket Elimination algorithm.

f ′
234 =

0 ddb, ddc

1 bdb, bdc, bdd, dab, dac, dcb, dcc, ddd

2 bab, bac, bad, bcb, bcc, bcd, dad, dcd

∞ a , c , b , a

BE then proceeds eliminating x2. Now B = {f ′
234, f23, f24}. It sums functions

in B (left function shown below) and projects out x2 (right function shown below).
Obtains,

f ′
234 =

1 ddc, bdc, dac,

2 ddb, bdb, bdd, dab, dcc,

3 dcb, ddd, bac, bcc, dad

4 bab, bad, bcb, bcd, dcd

∞ a , c , b , a

f ′
234 ⇓ x2 = f ′

34 =

1 dc, ac

2 db, dd, ab, cc

3 cb, ad

4 cd

∞ b , a

It continues with the elimination of x3. Now B = {f ′
34, f34}. It sums func-

tions in B (left function shown below) and projects out x3 (right function shown
below).

f ′
34 =

1 ac

2 db, dc

3 dd, ab, cc, ad

4 cb

5 cd

∞ b , a

f ′
34 ⇓ x3 = f ′′

4 =

1 c

2 b

3 d

∞ a

There is one variable left. Now B = {f ′
4}. The final projection returns a

constant that is the optimal cost of the problem, f ′
4 ⇓ x4 = 1.

To recover the solutions one must join all the obtained f ′ functions starting
by the last obtained. From f ′

4 we only keep tuples with cost one which is the
optimal cost, then f ′

4 + f ′
34 = {ac} = f ′′. We continue by summing f ′′ + f ′

234 =
{dac} = f ′′′. And finally f ′′′ + f ′

1234 = {adac}, the single optimal solution.

33

Part I

Systematic Search

Chapter 3

Russian Doll Search

Depth First Branch and Bound (BB) is the basic search algorithm for solving
combinatorial optimization problems such as WCSP. BB assigns variables one
after the other until it detects that it cannot improve the best solution found
so far. Then it backtracks reconsidering systematically all the previous variable
assignments. BB has an exponential time complexity because, in the worst case,
has to visit all the nodes of the search tree. It has a polynomial space complexity
because only explores one particular branch of the tree at the same time. An
assignment can be discarded in a particular moment of the search if its under
estimated solution cost (we call it lower bound) reaches the cost of the best solu-
tion found so far (we call it upper bound). In its simplest version BB computes
the simplest lower bound: the sum of costs returned by the constraints that all
its variables are assigned so far. We call past variables those variables already
assigned. So the lower bound that BB computes only takes into account the con-
tribution of past variables. The practical applicability of BB methods mainly
relies on discarding assignments as soon as possible and this happens when the
lower bound reaches the upper bound. So the lower bound computation made
at each node of the search is a fundamental issue. BB has been enhanced with
more accurate lower bounds, which improve solving time on average by pruning
branches earlier. As the lower bound is an approximation of the unknown opti-
mal, by accurate we mean a better approximation, closest to the optimum. A
lower bound should be as accurate and as cheap to compute as possible.

Partial Forward Checking (PFC) [Freuder and Wallace, 1992], improves BB
lower bound by taking into account the costs that will certainly occur because of
the constraints that link past variables with variables that haven’t been assigned
yet, we call them future variables. So PFC lower bound also takes into account
the contribution of constraints that link past with future variables.

Russian Doll Search (RDS) [Verfaillie et al., 1996] enhances PFC lower
bound by adding also a contribution of the constraints that link only future
variables. RDS decomposes the resolution in a sequence of resolutions of sub-
problems starting from the subproblem containing one single variable and adding

37

a variable at each time until the whole problem is solved. Each subproblem is
solved using information from the smaller subproblems and its optimal cost is
reused for larger subproblems resolutions. The main idea is that at an arbitrary
search state of an arbitrary subproblem the optimal cost of subproblems that
we already solved can be added to the lower bound as a contribution of future
variables. This idea recalls Dynamic Programming in the sense that it reuses
previous computed information for successive resolutions.

RDS only uses the optimal cost of each subproblem in the resolution of
larger subproblems. In this Chapter we show that it is possible to extract more
information of each subproblem. First, we compute the optimal cost of including
every value of the new included variable and reuse it in other larger subproblems
(we call the resulting algorithm Specialized RDS, SRDS). As subproblems size
grow, we loose information of values of the first included variables, so we decide
to compute the optimal cost of every value for every subproblem. We call this
novel idea Full Specialized RDS (FSRDS). FSRDS may spend too much time
solving subproblems so we propose a version called Opportunistic RDS (ORDS)
that optimally solves the problem for every included value only if it is found
promising (namely, when there is a possibility of increasing the lower bound).
[Meseguer and Sanchez, 2001, Meseguer et al., 2002]

x6 x5 x4 x3 x2 x1

Figure 3.1: Left: Consider a problem instance with 6 variables, this is the sequence of

subproblems that RDS solves from the smallest one (with one variable) to the complete

one with 6 variables. Right: Analogy with the real Russian dolls.

3.1 Preliminaries

Branch and Bound

Branch and Bound (BB) was presented in Section 2.4.1. BB computes at every
node of the search tree an underestimation of the cost of any leaf node descendent
form the current node, the lower bound at that node (lb).

Definition 3.1 [BB lower bound] Consider a search state such that t is the
current assignment (namely var(t) is the set of past variables) the lower bound
that BB computes is:

LBBB(t) = cost(t) =
∑

f∈C,var(f)⊆var(t)

f(t)

38

Partial Forward Checking

The Partial Forward Checking (PFC) was presented in Section 2.4.1. PFC en-
hances BB lower bound by taking into account the costs that will certainly occur
because of constraints that link past variables with future variables. The cost of
these constraints can be handled with the inconsistency costs.

The PFC lower bound 2.14 adds the sum of minimum inconsistency cost of
every variable to the cost of past variables to compute the under estimated cost
of the current partial assignment, see Definition 2.14.

This lower bound can be specialized to a certain value to test if it does not
belong to the optimal solution and can be pruned. The specialization for value
b of variable xj is done by substituting the minimum icjb of variable xj by the
particular icjb as follows,

LBPFC
jb (t, F) = cost(t) + icjb +

∑

xk∈F,k 6=j

min
c∈Dk

{ickc}

Example 3.1 Consider the 6-WQueens problem introduced in example 2.7 with
two more variables of domain Di = {a, b, c, d}. Find below three tables of
inconsistency costs that PFC computes after three assignments. In each cell
〈xi, a〉 we show the inconsistency cost for that value icia. Below each table we
show the minimum ic for each column. PFC lower bound is the sum of the
minimum of all columns. First table: LBPFC({〈x6, a〉}, {x5, x4, x3, x2, x1}) =
0. Second table: LBPFC({〈x6, a〉 〈x5, d〉}, {x4, x3, x2, x1}) = 0. Third table:
LBPFC({〈x6, a〉 〈x5, d〉, 〈x4, b〉}, {x3, x2, x1}) = 2.

0 + 0 + 0 + 00 + 0 + 0 + 0 + 0

1 1

0

2 1

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

0

0

1

2

0

1 1

0

1 0

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

0

0

0

1

01

1

0

0

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

1 + 1 + 0

1

2

1

1

0

2 2

var(t)

F

cost(t)

current

node

Past to

Futuremin
j

j

ja
a D

x F

ic

+

6
x

5x

4
x

3x 1x

2x

ic’s

3 2 1, ,x x x

Past

6

5

4

, ,

, ,

,

x a

x d

x c = t

Above we show the situation after these three assignments x6, x5, x4. Dashed
constraints in the constraint graph are the ones that have been propagated as
inconsistency costs. The current assignment t is shown in the middle and PFC
lower bound is depicted in two: the past (cost(t)) and past to future (the sum of
minimum ic’s) contributions.

39

3.1.1 Russian Doll Search

Russian Doll Search (RDS) enhances PFC by adding to the lower bound some
cost that will certainly occur in constraints that link future variables. The
idea consists in performing n subproblem resolutions (n is the total number of
variables).

Definition 3.2 [subproblem] Let W = 〈X,D,C〉 be a WCSP and
{x1, x2, ..., xn} a static variable ordering of its variables. Wi = 〈X i, Di, Ci〉
is the subproblem having X i = {xi, ..., x1} as set of variables, Di = {Di, ..., D1}
as set of domains and Ci = {f |f ∈ C, var(f) ⊆ X i} as set of constraints.

RDS solves the sequence of subproblems W1,W2, ...,Wn. Each subproblem
is equal to the previous one plus one more variable. Each resolution returns the
optimal cost of the corresponding subproblem.

Definition 3.3 The optimal cost of subproblem Wi is noted rdsi.

When RDS solves subproblem Wi+1 all {rds1, ..., rdsi} are known. RDS
assigns variables in the inverse order of their inclusion. Then, if we just assigned
xj , rdsj−1 can be added to the lower bound. Remember that PFC lower bound
sums the cost coming from constraints that link past variables with constraints
that link past and future variables. The rdsj−1 cost comes exclusively from
constraints that link future variables, so no cost is counted twice.

Definition 3.4 [RDS lower bound] Consider a search state such that t is
the current assignment and var(t) = {xn, ..., xi+1}. The lower bound that RDS
computes is:

LBRDS(t, F = {xi, ..., x1}) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb}+ rdsi

RDS lower bound can be specialized for a particular value b of variable xj in
the same way as we did for PFC:

LBRDS
jb (t, F = {xi, ..., x1}) = cost(t) + icjb +

∑

xk∈F,k 6=j

min
c∈Dk

{ickc}+ rdsi

Property 3.1 rdsi increases monotonically, that is rdsi+1 ≥ rdsi.

Proof. The subproblem Wi+1 may have more constraints than Wi because the

constraints linking xi+1 and variables in xi, ..., x1 have been added. Constraints only

assign positive costs. Thus the optimal cost of solving Wi+1 is the same or greater. 2

Example 3.2 Find in the drawing below the three tables of inconsistency
costs of example 3.1. Subproblems W1, ...,W5 have been already solved ob-
taining the corresponding rds1, ..., rds5 sequence shown on top of the tables.

40

We are currently in the last resolution of W6. The RDS lower bounds com-
puted after the three consecutive assignments are: LB({〈x6, a〉}, {x5, ..., x1}) =
0 + 0 + 2 = 2, LB({〈x6, a〉, 〈x5, d〉}, {x4, ..., x1}) = 0 + 0 + 1 = 1,
LB({〈x6, a〉, 〈x5, d〉, 〈x4, b〉}, {x3, x2, x1}) = 0 + 2 + 1 = 3.

1 1

0

1 0

5min 0 + 2
j

j

ja
a D

x F

ic rds

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

2 1 1 0 0

0

0

0

1

01

1

0

0

rdsi :

1 1

0

2 1

cost(t) = 0

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

rdsi :

0

0

1

2

0

1 1 0 0

40 + 1rds

1

2

1

1

0

2 21

cost(t) = 0
32 3rds

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

rdsi : 1 0 0

cost(t)

Past to

Future
min

j
j

ja
a D

x F

ic

+

6
x

5x

4
x

3x 1x

2x

ic’s

+

rds3 rds3
Future

Past

=1

var(t)

F 3 2 1, ,x x x

6

5

4

, ,

, ,

,

x a

x d

x b = t

rds3

Above in the constraint graph constraints belonging to W3 are shown thick
and dashed. In the middle RDS lower bound is depicted in three parts: the
past (cost(t)), the past to future (sum of minimum ic’s) and the future (rds3)
contributions.

In Fig. 3.2 we presents the RDS algorithm. The main function RDS is in
charge of performing the n − 1 successive resolutions. For this purpose it calls
PFC-RDS which is essentially equivalent to PFC presented in previous Section
2.4.1. The only difference is that in order to obtain PFC-RDS one must substitute
the call to function LBPFC in pseudo-code of PFC (Fig. 2.6) with the new lower
bound computation LBRDS .

3.2 Specialized RDS

In this and the following Sections we present improvements of the RDS lower
bound. The idea is to solve more subproblems in order to obtain their optimal
costs and include them in the lower bound computation of subsequent resolu-
tions. In Specialized RDS (SRDS) every subproblem including a single value of
the new variable is solved. So SRDS disposes of an optimal cost for every value
of the new included variable. An SRDS subproblem is defined as follows,

Definition 3.5 [SRDS subproblem] Let W = 〈X,D,C〉 be a WCSP and
{x1, x2, ..., xn} a static variable ordering of its variables. Wia is the subproblem
Wi where the domain of variable xi has been reduced to the singleton {a}.

41

function PFC-RDS(t, F,D, ub)
1 if F = ø then return cost(t)
2 xi ← get-var(F)
3 for each a ∈ Di do

4 look-ahead(i, a, t, F − {xi}, D
i−1, ub)

5 if LB
RDS(t · 〈xi, a〉, F − {xi}, D

i−1) < ub then

6 nDi−1 ← prune(i, a, t, F − {xi},D
i−1, ub)

7 if ø 6∈ nDi−1 then

8 ub
′ ← PFC-RDS(t · 〈xi, a〉, F − {xi}, nD

i−1, ub)
9 if ub

′ < ub then ub← ub
′

10return ub

function RDS(W)
1 rds1 ← 0
2 for each i = 2 to n do

3 rdsi ← PFC-RDS(ø, Xi,Di,∞)
4 return rdsn

function look-ahead(i, a, t, F,D, ub)
1 for each xj ∈ F do

2 for each b ∈ Dj do

3 icjb ← icjb + fij(a, b)

function prune(i, a, t, F,D, ub)
1 for each xj ∈ F do

2 for each b ∈ Dj do

3 if LB
RDS

jb (t ∪ 〈xi, a〉, F,D) ≥ ub then

4 Dj ← Dj − {b}
5 return D

function LBRDS(t, F,Di−1) return cost(t) + rdsi−1 +
P

xj∈F

min
b∈Dj

{icjb}

function LB
RDS

jb (t, F,Di−1) return cost(t) + icjb + rdsi−1 +
P

xk∈F,k 6=j

min
c∈Dk

{ickc}

Figure 3.2: Russian Doll Search algorithm.

We enumerate domains Di = {ai1 , ..., aid
}. SRDS solves the sequence of

subproblems in Fig. 3.3. Subproblems are solved from beginning in the right
column from top to bottom and from right to left. SRDS solves optimally every
subproblem for every value of the new included variable and the cost of including
each value is stored. Thus solves n× d subproblems.

Wn,an1 ... W2,a21 W1,a11

Wn,an2 ... W2,a22 W1,a12

...

Wn,and ... W2,a2d W1,a1d

Figure 3.3: Left: Sequence of subproblems solved by SRDS. Right: In columns vari-

ables and their domains. We show for some SRDS subproblems which variables and

values include.

Definition 3.6 The optimal cost of subproblem Wia is rdsia.

Property 3.2 rdsi = min
a∈Di

{rdsia}

42

Proof. Variable i has at least one value that belongs to the optimal solution of Wi.

This value has the minimum rdsia which is equal to rdsi. All values of Di that do not

belong to one optimal solution have a cost greater than or equal to rdsi. 2

Property 3.3 rdsia increases monotonically. That is, ∀ardsia ≥ rdsi−1.

Proof. All the values a of the new included variable i have a cost greater than or

equal to the optimal cost of solving subproblem Wi−1 which is rdsi−1. 2

One motivation for solving subproblems for every value comes from the fact
that a variable domain can be very heterogeneous: a variable can have values
with low cost and values with high cost. As subproblems grow in size, SRDS
computes the optimal cost for every value of the new added variable. In subse-
quent resolutions SRDS may delete values earlier than RDS.

Example 3.3 SRDS obtains this table
of rdsia when solving the 6-WQueens.
We can observe the heterogeneity of op-
timal costs in the different values of
each variable. RDS only computes the
minimum optimal cost per column. 3

3

3

2

0

1

1

2

1

2

1

34

4

4

3

x6 x5 x4 x3 x2 x1

a

b

c

d

0

0

3d
rds

3.2.1 A new lower bound

SRDS combines rdsia with inconsistency costs. We have that mina∈Di
{icia +

rdsia} is the cost that will certainly occur when assigning future variable xi.
This combination can only be done in one future variable because we are only
allowed to use the rdsia cost once as we could repeat costs coming from the same
constraints. For the rest of future variables we can take its ic’s contribution.

Definition 3.7 [SRDS lower bound] Consider a search state such that t is
the current assignment. F is the set of future variables and xj an arbitrary
future variable. The lower bound that SRDS computes is:

LBSRDS(t, F, j) = cost(t) + min
a∈Dj

{icja + rdsja}+
∑

xk∈F,k 6=j

min
b∈Dj

{icjb}

Since every future variable produces a valid lower bound, SRDS takes the best
one.

LBSRDS(t, F) = max
xj∈F

{LBSRDS(t, F, j)}

Property 3.4 LBSRDS(t, F, j) is a lower bound.

43

Proof. cost(t) comes from the cost of constraints that link past assigned variables.

The rdsja contribution comes from the cost of constraints between future variables.

The icja contribution comes from a cost of constraints that link past with future

variables. Both contributions rdsja and icja come from different constraints so we can

safely add them taking the minimum of the sum of both in only one variable xj , which

is the minimum cost of extending the partial assignment to that variable no matter

which value is assigned. Finally we can safely add the sum of minimum inconsistency

costs for the rest of the variables different form xj . 2

The following property shows that SRDS lower bound is never worse than the
RDS lower bound,

Property 3.5 Consider a search state such that t is the current assignment.
Let F = {xi, ..., x1}. For all rds1a, ..., rdsia that have been computed, we have:

LBSRDS(t, F) ≥ LBRDS(t, F)

Proof.

LBSRDS(t, F) = max
xj∈F

{LBSRDS(t, F, j)}

≥ LBSRDS(t, F, i)

= cost(t) + min
a∈Di

{icia + rdsia}+
X

xk∈F,k 6=i

min
a∈Dk

{icka}

≥ cost(t) + min
a∈Di

{icia}+ min
a∈Di

{rdsia}+
X

xk∈F,k 6=i

min
a∈Dk

{icka}

= cost(t) +
X

xk∈F

min
a∈Dk

{icka}+ min
a∈Di

{rdsia}

= cost(t) +
X

xk∈F

min
a∈Dk

{icka}+ rdsi

= LBRDS(t, F)

Realizing that mina∈Di
{rdsia} is referred to the first variable in F , it is clear that

mina∈Di
{rdsia} = rdsi. 2

Example 3.4 Consider a search state when solving the 6-WQueens where t =
{〈x6, a〉, 〈x5, b〉} and all subproblems W4 , ...,W1 have been solved for all values
(all rds4 have been solved, where a value is noted by an under dash). In the
drawing that follows next we show the lower bounds that RDS (first column) and
SRDS (second column) compute.

44

0

1 1

0

2

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

4rds

4 _rds
a

b

c

d

2

1 1

1

1 1

x 4 x 3 x 2 x 1

12

1

3

2

0

1 1

0

0

1 1

0

2

x 6 x 5 x 4 x 3 x 2 x 1

2

0

1 1

0

_i
ic _i

ic

2+

1+

3+

1 0
RDS

LB + + 1 3 0
SRDS

LB + +

+ rds in one columnrdsi : 1 1 0 0

The table in the first column contains the ic’s distribution after the assign-
ment t. In the second column we have the lower bound table that SRDS has and
we show superposed with the ic’s distribution how the rds4 can be combined with
it. In the bottom of both columns we show the lower bounds computed by RDS
(rds4 = 1 so LBRDS = 2) and SRDS (LBSRDS = 4).

3.2.2 Future Value Pruning

Computing a specialized RDS cost for every value is very powerful for pruning
values. A value b of a future variable xj can be pruned when the lower bound
specialized for that value is greater than or equal to the current ub. In SRDS
there is a family of lower bounds, LB(t, F, k), which can be specialized for value
b of future variable j as follows,

LBSRDS
jb (t, F, k) =

8

>

>

<

>

>

:

cost(t) + icjb + min
a∈Dk

{icka + rdska}+
X

xl∈F,l6=j,k

min
a∈Dk

{icka} k 6= j

cost(t) + icjb + rdsjb +
X

xl∈F,l6=j

min
a∈Dl

{icla} k = j

The SRDS lower bound specialized for value b of future variable xj is,

LBSRDS
jb (t, F) = max

xk∈F
{LBSRDS

jb (t, F, k)}

which is always better than the specialized lower bound of RDS as we proof in
the following property,

Property 3.6 Consider a search state such that t is the current assignment.
Let the set of future variables be F = {xi, ..., x1}. Therefore, all rds1a, ..., rdsia

have been computed. We have: LBSRDS
jb (t, F) ≥ LBRDS

jb (t, F).

45

Proof.

If j 6= i, we have

LBSRDS
jb (t, F) = max

k∈F
{LBSRDS

jb (t, F, k)}

≥ LBSRDS
jb (t, F, i)

= cost(t) + icjb + min
a∈Di

{icia + rdsia}+
X

xl∈F,l6=i,j

min
a∈Dl

{icla}

≥ cost(t) + icjb + min
a∈Di

{icia}+ min
a∈Di

{rdsia}+
X

xl∈F,l6=i,j

min
a
{icla}

= cost(t) + icjb +
X

xl∈F,l6=j

min
a∈Dl

{icla}+ min
a∈Di

{rdsia}

= LBRDS
jb (t, F)

If j = i, we have

LBSRDS
jb (t, F) = max

k
LBSRDS

jb (t, F, k)

≥ LBSRDS
jb (t, F, i)

= cost(t) + icjb + rdsjb +
X

xl∈F,l6=j

min
a∈Dl

{icla}

≥ cost(t) + icjb +
X

xl∈F,l6=j

min
a∈Dl

{icla}+ min
a∈Dj

{rdsja}

= LBRDS
jb (t, F)

2

3.2.3 SRDS upper bound

As any other branch-and-bound based algorithm, SRDS has an upper and a
lower bound at every search node. When SRDS solves subproblemWia, it takes
advantage of previously solved Wjb, (j < i). In the previous Section we showed
how it uses the resolution of Wjb to improve its lower bound. Next, we show
how it can also use it to improve the upper bound. SRDS maintains during the
solving process a table of upper bounds. Each subproblemWia has an associated
entry ubia. Before SRDS starts, all ubia entries are set to infinity. When SRDS
solves subproblemWia, every time it finds an improving solution t, it updates its
upper bound ubia. Besides, the solution t may also be a good starting solution
for the next subproblem. So it also checks if t∪〈xi+1, b〉 is an improving solution
for each b of subproblemWi+1,b. If so, it also updates ubi+1,b. As a result, when
it is the time for solvingWi+1,b, we will presumably have an initially good upper
bound that will enhance the pruning. The solution t may also be a good solution
for subproblem Wib. So it checks also if (t − 〈xi, a〉) ∪ 〈xi, b〉 is an improving
solution of Wib. If so it updates ubi,b. SRDS algorithm of Fig. 3.4 incorporates

46

these upper bound adjustments inside function adjustUB()which is called every
time a solution is improved.

A particularly advantageous situation occurs when, at the time of solving
Wia, we have that ubia = minb∈Di−1{rdsi−1,b}. In that case, SRDS can skip
Wia resolution as it is proved that it is already the optimal cost, the addition of
value a of variable xi does not increment the optimal cost of subproblem Wi.

The upper bounding techniques of this section can also be applied to RDS.
The main difference is that instead of storing a lower bound for every value,
RDS will only keep the minimal of all values.

3.2.4 The algorithm

Fig. 3.4 shows the pseudo-code of SRDS. Function SRDS is in charge of doing
the sequence of nested subproblem resolutions. For this purpose PFC-SRDS
is called for each value a of every variable xi. At each resolution PFC-SRDS
has four parameters: the current assignment t, the set of future variable F , the
collection of domains D and the upper bound ub. PFC-SRDS is essentially the
same algorithm than PFC-RDS replacing the lower bound functions with the
new SRDS ones. When the set of future variables is empty we also apply the
upper bounding techniques explained in previous Section 3.2.3. Line 7 PFC-
SRDS checks a pruning condition that is valid before propagating ic’s. Before
propagating the effect of the current selected value a of variable xi (that is before
propagating its inconsistency cost done in function look-ahead) we can sum the
specialized rds cost as a valid lower bound to the PFC lower bound. After
look-ahead (that is the propagation of inconsistency cost of the current value in
line 8 of PFC-SRDS) the previous pruning condition cannot be applied because
inconsistencies coming from the same constraints could be counted twice.

In line 9 a safe approximation of the lower bound LBSRDS is computed.
Instead of computing the variable xj ∈ F that provides the highest contribu-
tion, xi−1 the first variable of F is taken. Something similar occurs in function
LBSRDS

jb , where no complete maximization is performed on the set F . Instead,
the best specialized lower bound for xjb is selected from two candidates, which
differ in the variable that provides the rds contribution, xi−1 or xj . These
approximations have been done to reduce overhead without causing a serious
decrement in the lower bound.

Limited SRDS

Consider a state of the search where RDS begins the resolution of subproblem
Wi with ub as initial upper bound. At the end it obtains rdsi. At the same state,
SRDS solves instead Wi,a1 , ...,Wi,ad and at each subproblem Wi,aj resolution
uses ubi,aj

as initial upper bound. Consider now that we start solving Wi,a1 .
When the resolution finishes the optimal cost rdsi,a1 , is known. Now we can
start solvingWi,a2 , but instead of using ubi,a2 as initial upper bound we use the
previous computed optimal cost ub ← rdsi,a1 . This is exactly what RDS does.
RDS explores all the values of the first variable and as the search progresses the

47

function PFC-SRDS(t, F,D, ub)
1 if F = ø then

2 adjustUB(t)
3 return cost(t)
4 xi ← get-var(F)
5 for each a ∈ Di do

7 if LB
PFC(t · 〈xi, a〉, F,D) + rdsia < ub then

8 look-ahead(i, a, t, F − {xi}, D
i−1, ub)

9 if LB
SRDS(t · 〈xi, a〉, F − {xi},D

i−1) < ub then

10 nDi−1 ← prune(i, a, t, F − {xi},D
i−1, ub)

11 if ø 6∈ nDi−1 then

12 ub′ ← PFC-SRDS(t · 〈xi, a〉, F − {xi}, nD
i−1, ub)

13 if ub
′ < ub then ub← ub

′

14 return ub

function SRDS(W)
1 for each i = 1 to n do

2 for each a ∈ Di do

3 rdsia ← PFC-SRDS(ø, Xi, {a} ∪Di−1, ubia)
4 return mina∈Dn{rdsna}

function LBSRDS(t, F,Di−1)

1 return cost(t ∪ 〈xi, a〉) + min
b∈Di−1

{ici−1,b + rdsi−1,b}+
P

xj∈F,j 6=i−1

min
b∈Dj

{icjb}

function LB
SRDS

jb (t, F,Di−1)

1 lb1 ← cost(t) + icjb + + min
c∈Di−1

{ici−1,c + rdsi−1,c}+
P

xk∈F,k 6=j,i−1

minc{ickc}

2 lb2 ← cost(t) + icjb + rdsjb +
P

xk∈F,k 6=j

min
c∈Dk

{ickc}

3 if (lb1 > lb2) return lb1 else return lb2

function adjustUB(t = {..., 〈xi, a〉})
1 ∀b∈Di

ubi,b ← min{ubi,b, cost(t− 〈xi, a〉 ∪ 〈xi, b〉)}
2 ∀b∈Di+1ubi+1,b ← min{ubi+1,b, cost(t〉 ∪ 〈xi+1, b〉)}

Figure 3.4: Specialized Russian Doll Search algorithm.

ub decreases monotonically. We call this algorithm Limited SRDS (LSRDS) and
its pseudo-code is shown in Fig. 3.5. The LSRDS function is essentially equal
to SRDS but when the PFC-SRDS call finishes, we set the upper bound to the
just obtained optimal cost (line 5).

Property 3.7 LSRDS has the same computational effort than RDS but has a
better pruning capacity.

48

function LSRDS(W)
1 ub←∞
2 for each i = 1 to n do

3 for each a ∈ Di do

4 rdsia ← PFC-SRDS(ø, Xi, {a} ∪Di−1, ub)
5 ub← rdsia

6 return ub

Figure 3.5: Limited Specialized Russian Doll Search algorithm.

Proof. LSRDS starts with ub ← ∞ and then passes to each resolution of Wia the

best known upper bound up to the moment (line 5). So it still computes the rdsia

contribution until it finds the minimum for that variable. This minimum is stored as the

rdsia contribution for the values which were not still processed when that minimum was

found. LSRDS requires exactly the same search effort as RDS (and both compute the

minimum rdsia contribution of a subproblem), LBSRDS(t, F,D) combines ic and rds

counters in one future variable, while LBRDS(t, F,D) always takes the rds contribution

in isolation. Because of that, LSRDS has a higher pruning capacity than RDS with

the same effort. 2

In cases where SRDS is too costly one can think of switching to LSRDS. For
example one can think of specializing the first included variables and switch to
LSRDS for including the other variables. In this case, we say that we restrict
SRDS up to a certain subproblem. After this subproblem we use LSRDS. We
take into account that after limiting SRDS the costs stored in the lower bound
tables may not be optimal any more. For that reason we use an alternative name
for the rds tables:

Definition 3.8 Let lbia be a lower bound on the optimal cost of including value
a of variable i in subproblem Wi−1, that is lbia ≤ rdsia.

One way of knowing if rds tables entries are optimal is to check if ubia = lbia

which is a sufficient condition for optimality.

Example 3.5 LSRDS obtains this ta-
ble of lbia costs when solving the 6-
WQueens. Values are assigned from
top to bottom. Observe that once the
optimal cost is found the remaining val-
ues get this optimal rdsia. First in-
cluded values may have a higher cost
than rdsi = mina∈Di

{rdsia}.

2

3

2

2

0

1

1

1

1

2

1

13

4

3

3

x6 x5 x4 x3 x2 x1

a

b

c

d

0

0

49

3.3 Full SRDS

When we solve eachWia subproblem we observe that optimal costs for values of
the first included variables are low. The reason being that optimal costs increase
as more variables and constraints are included. Because of this fact, the lower
bound that we compute when we are in a deep level of the search tree, or when
we want to prune values of the first included variables is poor. To improve the
lower bound in these cases we propose to some more resolutions than SRDS by
also specializing the values of the first included variables. We call this new RDS
lower bound Full Specialized RDS (FSRDS).

Definition 3.9 [FSRDS subproblem] Let W = 〈X,D,C〉 be a WCSP and
{x1, x2, ..., xn} a static variable ordering of its variables. Wi

ja is the subproblem

Wi where the domain of variable xj has been reduced to the singleton a.

We enumerate domains Di = {ai1 , ..., aid
}. FSRDS solves the sequence of

subproblems that appears in Fig. 3.6. Problems are solved column by column
from left to right.

W1
1,a11

W2
1,a11
W2

2,a21
W3

1,a11
W3

2,a21
W3

3,a31
Wn

1,a11
...Wn

n,an1

W1
1,a12

W2
1,a12
W2

2,a22
W3

1,a11
W3

2,a21
W3

3,a31
Wn

1,a12
...Wn

n,an2

...

W1
1,a1d

W2
1,a1d

W2
2,a2d

W3
1,a11
W3

2,a21
W3

3,a31
Wn

1,a1d
...Wn

n,and

Figure 3.6: Sequence of subproblems solved by FSRDS.

Figure 3.7: The filled area includes all values of variables of the FSRDS subproblem

Wn
2,a22

which was not previously consider by RDS neither SRDS.

Definition 3.10 The optimal cost of solving Wj
ia is rdsj

ia.

The essential difference between SRDS and FSRDS is that the latter computes
the cost of including every value of all variables in the current subproblem.
Consequently FSRDS solves n× n× d subproblems. SRDS computes rdsi

ia the
optimal cost of including every value of the i highest variable. FSRDS also

50

computes rdsi−1
ia , ..., rds1ia. By doing so, the smallest subproblems also have

good lower bounds for every value. It is worth noting that the specialized lower
bound for a particular value a of variable i increases monotonically as we solve
more subproblems Wj , that is:

Property 3.8 ∀i,a(rdsj+1
ia ≥ rdsj

ia).

Proof. The optimal cost of including value a of variable xi in subproblem Wj−1 is

the same or higher than when this value of xi was included in Wj . 2

Example 3.6 Consider the four initial FSRDS resolutions when solving the 6-
WQueens. Find below the four lower bound tables that this algorithm computes
solving subproblems W2

ia, ...,W
5
ia.

x2 x1

 0

 1

 1

 0

x3 x2 x1

 1 1

 1

 2 1

 1 1

x4 x3 x2 x1

 1 1

 2 2

 1 3 2

 3 2 123

3

3

2

2 2

2

2 4

3

3 3

3

3
5

5drds 4

3crds

2

3

4

5

x5 x4 x3 x2 x1

3.3.1 A new lower bound

Definition 3.11 [FSRDS lower bound] Consider a search state such that t
is the current assignment. F is the set of future variables and k an arbitrary
future variable. The lower bound that FSRDS computes is:

LBFSRDS(t, F = {xi, ..., x1}, k) = cost(t)+min
a∈Dk

{icka+rds
i
ka}+

∑

xl∈F,l 6=k

min
a∈Dl

{icla} ∀xk ∈ F

The best lower bound of this family is:

LBFSRDS(t, F) = max
xk∈F

{LBFSRDS(t, F, k)}

Property 3.9 ∀xk ∈ F , LBFSRDS(t, F, k) is a lower bound.

Proof. Similar to the proof of property 3.4. 2

Property 3.10 All values a of all variables xi of subproblem Wj that have an
equal minimal rdsj

ia belong to an optimal solution of this subproblem.

51

Proof. If values are optimally specialized the minimal cost of including all values a of

variable xi in subproblem Wj−1 is the optimal cost of solving Wj . If there are several

minimal rdsj
ia then these values belong to different optimal solutions. 2

Property 3.11 The values of every variable that have a minimal rds, that is
mina∈Di

{rdsj
ia} represent a super set of all the optimal solutions of the subprob-

lem Wj.

Proof. A value a with minimal cost in variable i belongs for sure to an optimal

solution if all the values have been optimally specialized. It may happen that two

minimal values of different variables belong to different optimal solutions, so its in fact

a super set. 2

Example 3.7 Consider a search state where t = {〈x6, d〉, 〈x5, a〉} and all sub-
problems W4

ia, ...,W
1
ia, i = 1..4 have been solved for all a values. The tables in

the first column of the drawing below correspond respectively to the SRDS lower
bound and the inconsistency cost distribution after the assignment t.

0

2 1

0

1

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

a

b

c

d

_i
rds 4

_i
rds

2

1 1

1

1 1

x 4 x 3 x 2 x 1

12

1

3

a

b

c

d

3

1 1

2

2 1

x 4 x 3 x 2 x 1

22

1

3

0

1

2

1

2

0

2 1

0

1

x 6 x 5 x 4 x 3 x 2 x 1

0

1

2

1

2

_i
ic

_i
ic

3+

1+

2+

2+

1+

1+

0 3
FSRDS

LB
SRDS

LB +0 2+

The second column correspond to the same tables for FSRDS. The combination
of ic’s and rdsj

ia is done in variable x3.

3.3.2 Future Value Pruning

A value b of a future variable xj can be pruned when the lower bound specialized
for that value is greater than or equal to the current ub. In FSRDS there is a
family of lower bounds, LBFSRDS(t, F, k), which can be specialized for each
value b of each future variable xj as follows,

LBF SRDS
jb (t, F, k) =

8

>

>

<

>

>

:

cost(t) + icjb + min
a∈Dk

{icka + rdsi
ka}+

X

xl∈F,l6=k,j

min
a
{icla} j 6= k

cost(t) + icjb + rdsi
jb +

X

xl∈F,l6=j

min
a∈Dl

{icla} j = k

52

function FSRDS(W)
1 for each i = 1 to n do

2 for each j = i down to 1 do

3 for each a ∈ Dj do

4 rdsi
ja ← PFC-FSRDS(ø, Xi, {D1, ..., Dj−1, {a},Dj+1, ..., Di}, ub

i
ja)

5 return mina∈Dn{rds
n
na}

function LBFSRDS(t, F,Di−1)

1 return max
xk∈F

{cost(t) + min
a∈Dk

{icka + rdsi−1
ka }+

P

xl∈F,l6=k

min
a∈Dl

{icla}}

function LB
FSRDS

jb (t, F,Di−1)

1 return cost(t) + rdsi−1
jb +

P

xk∈F,k 6=j

min
c∈Dk

{ickc}

Figure 3.8: Full Specialized Russian Doll Search algorithm.

The FSRDS lower bound specialized for value b of future variable xj is,

LBFSRDS
jb (t, F) = max

xk∈F
{LBFSRDS

jb (t, F, k)}

which is always better than the specialized lower bound of SRDS.

Property 3.12 Using the same static variable ordering LBFSRDS
jb (t, F) ≥

LBSRDS
jb (t, F).

Proof. Similar to the proof of property 3.5. 2

3.3.3 The algorithm

FSRDS has to specialize values of variables that are not necessarily the last
included variable. The strategy to specialize a value will be to fix the domain of
the variable to this particular value. Doing so FSRDS obtains the optimal cost
of including that value a of variable xj in the subproblem Wi−1.

The pseudo code of FSRDS is shown in Fig. 3.8. The main function FSRDS
is in charge of doing all subproblems resolutions. It includes variables one by
one (line 1) and all values of every variable of the current subproblem (lines 2
and 3). When solving Wi

ja FSRDS starts with the best known upper bound
for it and fixes the domain of variable xj to value a (line 4). PFC-FSRDS is
essentially the same as PFC-SRDS substituting the corresponding lower bound
functions with the new functions appearing in Fig. 3.8.

53

3.3.4 FSRDS upper bound

The upper bounding techniques of Section 3.2.3 can also be applied to FSRDS.
FSRDS maintains during the solving process a table of upper bounds ubi

ja. Be-

fore FSRDS starts, all ubi
ja entries are set to infinity. When FSRDS solves sub-

problem Wi
ja, every time it finds a better solution t = {〈x1, a1〉, ..., 〈xi−2, ai−2〉,

〈xi−1, ai−1〉, 〈xi, ai〉}, it can update ubi
i,ai

but also ubi
i,ai−1

, ..., ubi
1,a1

. FSRDS
can update all upper bounds of the values of the found solution. The solution t
found may also be a good solution for the next subproblem. So it also checks if
t ∪ 〈xi+1, b〉 is an improving solution for each b of subproblem Wi+1

i+1,b. If so, it

also updates ubi+1,b.

Limited FSRDS

As for SRDS (3.2.4) we describe a limited version of FSRDS. The idea is to allow
skipping resolutions of subproblems but still using the FSRDS lower bound which
is better than its predecessor SRDS. Thus the cost stored in the lower bound
tables may not be optimal any more.

Definition 3.12 Let lbj
ia be a lower bound of rdsj

i,a, that is lb
j
ia ≤ rds

j
i,a

lb
j
ia are used instead of rdsj

ia when the obtained lower bound is not proven
to be optimal but is instead an underestimation.

Consider we just solved subproblem Wi−1.

1) We can update the table of the next subproblem: ∀j∈Xi−1∀a∈Dj
lbi

ja ← lbi−1
ja .

2) We can set all the values of the new included variable xi to the optimal cost
rdsi−1: ∀a∈Dj

lbi
ja ← rdsi−1. Now we need to find the optimal cost ofWi. This

implies specialization of one variable xk of Wi, in two possible ways:

1. Specialize all values of variable xk.

2. Specialize the values of variable xk until the minimum cost of solving sub-
problem i has been found.

Any variable k is suitable for this. The following example illustrates this.

Example 3.8 Consider we have already solved W4, ...,W1 of the 6-WQueens
using RDS and obtained rds4 = 1. Before start solving W5 we can set all values
of table lbj to 1 (table 1 in the drawing that follows next).

54

x 5 x 4 x 3 x 2 x 1

1

1

1

1

1

1

1

1

1

1

11

1 1

3

3

2

2

2

2

2

2

2

2

23

2 2

a

b

c

d

2

2

2

2

2

2

3

2

2

2

22

4 2

x 5 x 4 x 3 x 2 x 1

2

2

2

2

2

2

2

2

2

2

23

2 2

2

2

2

2

2

2

2

2

2

2

22

2 2

x 5 x 4 x 3 x 2 x 1

3

3

2

2

3

2

3

3

2

3

23

4 3

x 5 x 4 x 3 x 2 x 1

(1)

(2)

(3)

(4)

(5)

(6)

Then we can specialize all values of the first variable x5 as SRDS does, we
obtain table 2. Optimal values are indicated in bold. In table 2 we have set
all values of the other variables to the optimal cost of subproblem W5 which is
known after the specialization of one variable. We can also specialize all values
of variable x3, we then obtain table 3. We can also use LSRDS to specialize
all values of variable x5 (table 4). If we use LSRDS starting in variable x3 we
obtain table 5. We can also specialize all values obtaining table 6.

3.4 Opportunistic RDS

In the previous Section we showed that it is not necessary to specialize all val-
ues, we can dispose of a table of underestimations of rds costs. We loose time
specializing a value, but in turn we then have a high lower bound for it. In this
section we are going to study the possibility of skipping value specializations
and identifying a posteriori which of the skipped specializations is promising to
increment the lower bound.

In a particular node of the search, only one variable xj and one value b (the
one with minimum sum of ic’s plus rdsi

kc) is chosen to contribute to the lower
bound. In general, unless all rdsi

kc are computed, it is impossible to determine
the pair 〈xj , b〉 that offers the best combination between ic and rds in a given
tree branch when solving subproblem Wi+1. However, once variable xi+1 has
been assigned and its ic’s have been propagated, it is possible to identify some
〈variable, value〉 pairs which look promising to increase the lower bound on the
basis of the current ic distribution.

We propose a new algorithm that we call Opportunistic RDS (ORDS). The
main idea consists in first solving subproblemWi using RDS (or the LSRDS ver-
sion which has the same computational effort) and then start solving subproblem
Wi+1 identifying advantageous specializations. After assigning variable xi+1 and
ic’s have been propagated we look for the values that, if they are removed, the
lower bound is increased. For doing so we compute,

w = max
xj∈F

{min
b∈Dj

{icjb + lbi
jb}+

∑

xk∈F,k 6=j

min
a∈Dk

{icka}}

w is the maximum lower bound that we can obtain. To compute w, the sum

55

of ic’s and rds is combined in variable xj summing the contributions of value
b. If the next minimum is different from w we have found a unique minimum
〈variable, value〉 pair. If this pair could be specialized and its optimal cost raised,
the lower bound will be increased for sure.
All pairs 〈xj , b〉 such that,

1. w = min
b∈Dj

{icjb + lbi
jb}+

∑

xk∈F,k 6=j

min
a∈Dk

{icka}

2. w < icja + lbi
ja +

∑

xk∈F,k 6=j

min
a∈Dk

{icka}, ∀a ∈ Dj − {b}

3. lbi
jb < ubi

jb

are the candidates to increase the lower bound if their exact rdsi
jb costs where

known. In words, condition 1) states that the pair 〈xj , b〉 is the one with mini-
mum combination of ic’s plus rds. Condition 2) states that if we remove value
b of variable xj the lower bound increases. Condition 3) assures that the value
is not already optimal.

Example 3.9 Consider we have already solved W5, ...,W1 of the 6-WQueens
using RDS. We start solving W6 with ORDS. x6 has been assigned value a. The
tables that follow next illustrate an example of specialization of values.

1 1

1

x 6 x 5 x 4 x 3 x 2 x 1

a

b

c

d

1

1

1

2

2

2

2

2

2

2

2

2

2

22

candidates

2 2

2

2

2

2

2

2

2

2

2

2

22

3 3

Opportunistic

Specialization

5

1lb
a

a

b

c

d
_i

ic

The top table in the first column shows the unspecialized lower bounds lb5
ia.

The table of inconsistency costs is shown above (an ic is shown if it is greater
than 0). The possible candidates for specialization are higlighted. These are
the unique minimums icjc + lbi

jc in every variable. ∆ associated to variable x3

is equal to 1, which is the maximum increment that we can get. ∆ associated
to variable x1 is also 1. On the right we show the resulting lower bound table
after the specialization of both candidates. After this operation the lower bound
increases one unit.

Consider that 〈xj , b〉 is a candidate for specialization which satisfies all three
conditions. How much can we improve the lower bound by specializing 〈xj , b〉?
After specialization lbi

jc hopefully increases and becomes optimal. But is it

56

necessary to compute the optimal. The lower bound is now determined now by
the next minimum icjc + lbi

jc in variable xj . Let c ∈ Dj be the value with the
next minimum combination of ic’s and rds. The maximum increment that we
can get by specializing 〈xj , b〉 is the difference with the lower bound computed
with the next minimum. This difference is ∆ = icjc +lbi

jc− icjb−lbi
jb. ∆ is the

maximum increment we can get no matter how high rdsi
jb could be. Therefore,

when a value is specialized opportunistically, we do not ask for the optimum
value of the subproblem Wi with value 〈xj , b〉. Instead, we pass to FSRDS the
maximum achievable increment of the lower bound as a parameter, and as soon
as this increment has been achieved, the specialization process stops. This is
done by calling FSRDS with a fake upper bound ub = ∆ + lbi

jb. If no solution
is found then this upper bound becomes automatically a lower bound.

When solving subproblem Wi+1 and pair 〈xj , b〉 has to be specialized, it
is not mandatory to do it in the previous subproblem Wi. Pair 〈xj , b〉 can
be specialized in any previous subproblem Wk including xj with i ≤ k ≤ j.
Obviously, subproblem Wk has to allow enough room for improvement, that is,
ubk

jb ≥ ∆ + lbi
jb.

In Fig. 3.9 we show the opportunistic specialization function. OSpecialize

must be called after look-ahead in PFC-RDS function of Fig. 3.2. The set of
candidates is computed following the previous specifications (line 1). Then we
specialize them one by one. First we compute the next minimum (line 3), it
exists by construction of the candidates set. Then ∆ cost is computed (line 4).
OSpecialize looks for a subproblem Wk candidate for the specialization (line
5). It checks if rds is not already optimal (line 6). If it is not it finally specializes
the pair 〈xj , b〉 by calling PFC-FSRDS and updating the rds cost (line 7).

function OSpecialize(i,D)
1 candidates← {〈xj , b〉 | satisfy conditions 1,2 and 3}
2 for each 〈xj , b〉 ∈ candidates do

3 c← mina∈Dj−{b}{icja + lb
i
ja}

4 ∆← icjc + lb
i
jc − icjb − lb

i
jb

5 find k such that ub
k
jb ≥ ∆ + lb

k
jb, j ≥ k

6 if lb
k
jb < ub

k
jb then

7 lbk
jb ← PFC-FSRDS({}, {xk, ..., x1}, {Dk, ..., Dj = {b}, ..., D1},∆ + lbk

jb)

Figure 3.9: Opportunistic Specialization function.

3.5 Experimental Evaluation

We have tested RDS, LSRDS, SRDS, FSRDS and ORDS in four benchmarks:
random problems, frequency assignment problems (FAP), earth satellite man-
agement (Spot) and combinatorial auctions.

57

All specialized versions can be limited to a certain number of variables, mean-
ing that the specialization (independently of being SRDS, FSRDS, or ORDS) is
only done up to a certain number of variables. So for example ORDS(lim=15)
means that we use the opportunistic specialization but only specialize the cost
of a value when we reach a subproblem of size less than 15 variables. If the
subproblem is bigger than that we proceed as LSRDS. If the limited parameter
is not indicated, it is assumed that algorithms are executed with no limitation.
This fact allows for many variants of the tested algorithms.

3.5.1 Random Problems

In the Appendix A.2.1 we describe the weighted version of random problems
benchmark. Random problems do not show the entire advantages of special-
izing RDS: all values of a variable have a similar expected cost because of the
homogeneity of the constraint tightness in the whole problem. Nevertheless, we
use this benchmark to evaluate in detail all the variants of the algorithms in
addition to its limited versions, because random problems are easier to manip-
ulate. We extract from the results general conclusions. We focus in two main
points:

• We quantify how better LSRDS is with respect to RDS.

• We evaluate SRDS, FSRDS and ORDS w.r.t. their limited versions.

In Section 3.2.3 we described some upper bounding techniques that can be
applied in RDS and all specialized versions. In our implementation all versions
have this option enabled. We have observed that turning off the upper bound
adjustment decreases the performance of all algorithms by a factor of 2 approx-
imately. So from now on we suppose that all algorithms always use it.

LSRDS versus RDS

LSRDS is SRDS limited to problems of size 0, meaning that we never specialize
a value, but we record its cost even if it is not optimal. As it was proven in
Section 3.2.4, LSRDS has the same computational effort as RDS but it has a
more powerful lower bound. The advantage of LSRDS is that the ic’s can be
combined with the rds contribution and also it has of a better pruning lower
bounds for every value. When LSRDS has finished assigning a value of the first
included variable of the subproblem, it stores its cost even if it is not optimal.
RDS discards this information as it only records the minimal cost. So for example
if, during search, values with high cost are selected first, LSRDS is able to use
its cost in the lower bound computation. LSRDS may be more advantageous
when there are few solutions of minimal cost and many values with cost higher
than the optimal. In Fig. 3.10 we show comparative results of RDS and LSRDS
on the random problem class 〈n = 20,m = 5, p1 = 0.9〉. LSRDS is clearly more
competitive than RDS. For tightness around 0.85 is 3 times faster than RDS.
Another important fact is that the variance in the CPU time is highly reduced.

58

-5

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(in

 s
ec

.)

p2: tightness

CPU Time n=20 m=5 p1=0.9

RDS

-5

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(in

 s
ec

.)

p2: tightness

CPU Time n=20 m=5 p1=0.9

LSRDS

Figure 3.10: Average cpu time of algorithms RDS (left) and LSRDS (right)
for random problem class 〈n = 20,m = 5, p1 = 0.9〉 with varying tightness p2
(horizontal axis). Error bars show the variance in the CPU time.

SRDS

In Fig. 3.10 we show comparative results of SRDS(lim = n/2) and SRDS on
the random problem class 〈n = 20,m = 5, p1 = 0.9〉. Both executions have
very similar results. This may be due to the fact that for SRDS, the time
spent specializing more values compensates and at the end the pay-off is the
same. Of course it is always better to have the lower bound tables that SRDS
computes. This is because even if it is only the first included variable the one
that is specialized, the combination of ic’s and rds contribution can be done
in any future variable. With respect to implementation issues, it is possible to
compute the variable that has a maximal combination of ic’s and rds during the
look-ahead with no extra overhead.

59

-5

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(in

 s
ec

.)

p2: tightness

CPU Time n=20 m=5 p1=0.9

SRDS(n/2)

-5

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(in

 s
ec

.)

p2: tightness

CPU Time n=20 m=5 p1=0.9

SRDS

Figure 3.11: Average cpu time of algorithms SRDS(lim = n/2) (left) and SRDS
(right) for random problem class 〈n = 20,m = 5, p1 = 0.9〉with varying tightness
p2 (horizontal axis). Error bars show the variance in the CPU time.

FSRDS

In Fig. 3.12 we show comparative results of FSRDS(lim = n/2) and FSRDS on
the random problem class 〈n = 20,m = 5, p1 = 0.9〉. The full specialization of
FSRDS is more costly than FSRDS(lim = n/2).

We have observed a degenerated behavior when the size of subproblems to
be full specialized increases. The variance in both cases is very high. FSRDS is
the worst performing algorithm in average. The specialization in FSRDS does
not pay-off. This fact does not discard its use in practice as we show in the
FAP benchmark Section 3.5.2. The table of lower bounds that offers FSRDS is
superior to SRDS. FSRDS can be useful to be combined with SRDS and LSRDS
to dispose of more accurate lower bounds of the first small subproblems.

60

-5

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(in

 s
ec

.)

p2: tightness

CPU Time n=20 m=5 p1=0.9

FSRDS(n/2)

-5

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
(in

 s
ec

.)

p2: tightness

CPU Time n=20 m=5 p1=0.9

FSRDS

Figure 3.12: Average cpu time of algorithms FSRDS(lim = n/2) (left) and
FSRDS (right) for random problem class 〈n = 20,m = 5, p1 = 0.9〉 with varying
tightness p2 (horizontal axis). Error bars show the variance in the CPU time.

ORDS

In Fig. 3.13 we show comparative results of ORDS(lim = n/2) and ORDS on the
random problem class 〈n = 20,m = 5, p1 = 0.9〉. ORDS can in theory specialize
the same subproblems as FSRDS but the specialization is guided by the ic’s
distribution and by the fact that any specialization must be able to increase
the lower bound. So the expected behavior is that only those values that seem
promising to increase the lower bound are specialized. This fact is observed in
Fig. 3.13. The limited version ORDS(lim = n/2) has a behavior that is similar
to LSRDS. The algorithm is stable with low variance and a low number of values
is specialized. ORDS, on the contrary, specializes a higher number of values and
we start to observe a degenerated behavior just as in FSRDS.

61

-5

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

T
im

e
(in

 s
ec

.)

n”
 s

pe
ci

al
iz

ed
 v

al
ue

s

p2: tightness

CPU Time n=20 m=5 p1=0.9

ORDS(n/2)
n” specialized values

-5

 0

 5

 10

 15

 20

 25

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

T
im

e
(in

 s
ec

.)

n”
 s

pe
ci

al
iz

ed
 v

al
ue

s
p2: tightness

CPU Time n=20 m=5 p1=0.9

ORDS
n” specialized values

Figure 3.13: Average cpu time of algorithms ORDS(lim = n/2) (left) and ORDS
(right) for random problem class 〈n = 20,m = 5, p1 = 0.9〉with varying tightness
p2 (horizontal axis). Error bars show the variance in the CPU time. We show
in an additional curve the number of specialized values.

Integrating RDS versions

In the previous experiments we observed that: in two cases, FSRDS and ORDS,
the execution of the algorithms with no limitation can led to a degenerated
behavior. SRDS seem to be more robust than the rest of algorithms.

In Fig. 3.14 we show average number of nodes and constraint checks for all
the limited versions of the algorithms of the previous sections for the same class of
random problem. The more efficient algorithm in terms of number of checks and
nodes is ORDS(lim = n/2) followed by LSRDS then SRDS(lim = n/2) RDS
and FSRDS. Random problems instances have values with very homogenous
costs. In this case a conservative strategy which only specialize those that seem
promising is very advantageous. Moreover it can be seen by the best performance
of ORDS in terms of number of nodes that it often occurs that the specializations

62

are productive in increasing the lower bound.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

no
de

s

p2: tightness

Nodes n=20 m=5 p1=0.9

RDS
LSRDS

SRDS(l)
FSRDS(l)
ORDS(l)

 0

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

 8e+006

 9e+006

 1e+007

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

ch
ec

ks

p2: tightness

Checks n=20 m=5 p1=0.9

RDS
LSRDS

SRDS(l)
FSRDS(l)
ORDS(l)

Figure 3.14: Average number of visited nodes (left) and average number of
constraint checks of algorithms RDS, LSRDS, SRDS(lim = n/2), FSRDS(lim =
n/2), ORDS(lim = n/2) executed in random problem class〈n = 20,m = 5, p1 =
0.9〉 with varying tightness p2 (horizontal axis).

All the implementations of the specialized algorithms can share the same
data structures for storing the lower bounds of each value. Then each algorithm
performs its specific specializations but the lower bound is computed using all
the information tables. This fact makes it possible to combine all the algo-
rithms easily. FSRDS performs more searches than SRDS and SRDS performs
more searches than LSRDS, so FSRDS is computationally more expensive than
SRDS and SRDS is computationally more expensive than LSRDS. One could
think of an hybrid strategy that would apply FSRDS in the first subproblems,
when they are small, then continue with SRDS and finally apply LSRDS. The
advantage that we have with this strategy is that the last executions of LSRDS
have a tighter lower bounds for values of the first subproblems. This fact will

63

presumably increase its pruning capabilities.

3.5.2 Frequency assignment problems (FAP)

In Appendix A.2.3 we present the FAP benchmark . We have solved the five
subinstances of CELAR instance 6 with the following hybrid strategy: we start
solving subproblems with FSRDS. When we reach the subproblem of size 13
variables we switch to SRDS. When we reach the subproblem of size 17 variables
we switch to LSRDS. Results are given in Table 3.15. Comparing with the same
instances solved by SRDS, we observe an speed up of one order of magnitude in
CPU time.

instance variables connectivity optimal cost Hybrid SRDS(lim) ORDS(lim)

SUB0 16 0.47 159 60.9s 20.7s 9.8s

SUB1 14 0.82 2669 1.2× 103s 8.3 × 102s 3.1× 102s

SUB2 16 0.74 2746 5.6× 103s 4.5 × 103s 5.5× 102s

SUB3 18 0.69 3079 7.6× 103s 7.6 × 103s 1.2× 104s

SUB4 22 0.56 3230 1.6× 104s 1.5 × 105s -

Figure 3.15: Results on CELAR-6 subinstances for the hybrid version, limited SRDS

and limited ORDS. The CPU time corresponds to a Pentium at 2.8GHZ machine with

1G of RAM.

Our results show a substantial decrement in CPU time, with respect to re-
sults reported in [Givry et al., 1997] and [Larrosa et al., 1999]. With respect to
[Jégou and Terrioux, 2004] the comparison is machine dependent but we solved
the biggest subinstance in one order of magnitude less time. The most compet-
itive approach is [Koster et al., 1999] but we must say that it is not a search
approach.

In Fig. 3.16 we show in detail the resolution of FAP subinstance SUB4

with three algorithms: the mentioned hybrid strategy, SRDS(lim=17) and
ORDS(lim=17). First column contains the number of variables of the current
subproblem. The second and third columns correspond to solving time and type
of specialization performed for the hybrid strategy. The fourth and fifth columns
correspond to solving time and specialization performed by SRDS(lim=17). The
sixth and seventh columns correspond to solving time and specialization per-
formed by ORDS(lim=17). Then the three final columns are optimal cost of the
subproblem, the maximum mean of the costs of the values for all future variables
(that is maxxj∈F meana∈Dj

rdsi
ja), the mean of the costs of the values of the top

future variable (that is meana∈Dj
rdsi

ja being xj the first future variable). From
these table we extract two conclusions that motivate (1) the use of SRDS and
(2) the used hybrid strategy:

1. The mean specialized cost of the first future variable is much higher than
the optimal cost of the subproblem, that is meana∈Dj

rdsi
ja >> rdsi. This

64

observation motivates the use of SRDS with respect to RDS, because the
combination with ic′s will probably give as result a higher lower bound.
In addition the specialized cost of every value will permit to prune them
sooner.

2. When using FSRDS it can happen that the maximum mean of the spe-
cialized cost in one future variable is much higher than the mean cost of a
the first future variable. In the execution this happens after the inclusion
of variable 9 for example (observe the difference of max mean and mean
top columns). This fact motivates the use of FSRDS as in SRDS the com-
bination of ic’s and rds is most probably done in the first future variable.
In addition FSRDS has a better prunning capacity.

Those facts are corroborated in Fig. 3.17. FSRDS is more time costly at the
first subproblem resolutions, but then it is rewarded with exponential savings in
the resolution of latter subproblems. What intuitively happens is that FSRDS,
as it specializes all values for all subproblems, computes more information of
each subproblem so in latter resolutions has more accurate lower bounds for
prunning values. We have observed that in this instance ORDS has a similar
behavior than RDS. It solves the first 17 variables quicker than both the hybrid
strategy and SRDS(lim) but after that is unable to solve the whole instance.
The reason is that the lower bound table computed by ORDS is of less quality.
In the CELAR instances the lower bound cost of a value can vary from 0 to 6000.
This variability is the reason why a full specialized approach is more competitive
because the combination of ic’s and rds is more powerful and values are pruned
in an early stage of the search. Random problems, for example, have a very low
variability of costs.

Variable Ordering Sensitivity

The fact that RDS imposes a static/fixed variable ordering disables the possi-
bility of using heuristics for dynamic variable ordering (DVO). This fact causes
RDS algorithms to be extremely sensitive to the variable ordering. We have
evaluated this fact by extracting a subinstance of 8 variables from a frequency
assignment problem. We have then executed RDS for all possible 8! orderings.
The result of this experiment is shown in Fig. 3.18. Time resolutions range
from 0.001 to 170 seconds. In [Verfaillie et al., 1996] it is shown that best orders
are the ones with minimum bandwidth (that is the maximum distance in terms
of number of variables between two connected variables). We corroborate this
fact as we see that the orders that spend more time have all a greater band-
width. Nevertheless this measure is not sufficient as many instances with high
bandwidth have also a low solving time.

There is a special case when we can enable DVO and that is at some deep
parts of the search tree where the rdsi contribution is 0. In this case the order
of the variables doesn’t affect the rdsi contribution because it will be zero from
all remaining future variables. To evaluate the importance of this feature we
have executed RDS with DVO enabled and without it in random problems with

65

Hybrid SRDS(lim) ORDS(lim) cost

vars cpu time algorithm cpu time algorithm cpu time algorithm optimal max mean mean top

2..5 0.05s FSRDS 0.01s SRDS 0.00s ORDS 0 0.00 0.00

6 0.07s FSRDS 0.01s SRDS 0.00s ORDS 0 47.32 47.32

7 0.12s FSRDS 0.01s SRDS 0.00s ORDS 100 147.39 102.82

8 0.26s FSRDS 0.02s SRDS 0.01s ORDS 202 302.22 237.55

9 2.04s FSRDS 0.09s SRDS 0.02s ORDS 323 2294.68 2294.68

10 2.98s FSRDS 0.13s SRDS 0.03s ORDS 347 2324.81 619.56

11 57.11s FSRDS 3.78s SRDS 0.12s ORDS 350 2391.68 469.05

12 250.2s FSRDS 8.46s SRDS 0.56s ORDS 435 2557.10 849.68

13 2812.4s FSRDS 36.41s SRDS 11.3s ORDS 1115 2982.77 1362.00

14 2868.4s SRDS 137.37s SRDS 72.3s ORDS 1632 2982.77 1871.09

15 3056.4s SRDS 477.03s SRDS 273.3s ORDS 2271 2982.77 2698.14

16 5616.7s SRDS 4533.8s SRDS 559.3s ORDS 2746 3277.23 3277.23

17 6671.1s SRDS 6425.4s SRDS 3639s ORDS 2858 3339.32 3339.32

18 7696.5s LSRDS 7698.5s LSRDS 12240s LSRDS 3079 3565.52 3565.52

19 9335.5s LSRDS 11015.5s LSRDS 79718.0s LSRDS 3109 3565.52 3109.00

20 9335.5s LSRDS 11029.9s LSRDS 79732.5s LSRDS 3109 3565.52 3109.00

21 16860.0s LSRDS 105223.4s LSRDS - LSRDS 3230 3565.52 3240.00

22 16860.0s LSRDS 105223.4s LSRDS - LSRDS 3230 3565.52 3230.00

Figure 3.16: Results on FAP subinstance SUB4.

low connectivity to increase the number of included variables with no RDS con-
tribution. We didn’t find much relevance in incorporating DVO, although the
solving time was slightly reduced.

3.5.3 Combinatorial Auctions

In Appendix A.2.4 we describe the Combinatorial Auctions benchmark and how
instances can be formulated as WCSPs. We have generated instances that have
around 100 variables that represent bids. Our methods are not competitive
with the current solving methods that have been applied to these instances,
but our objective here was to test the relative performance of RDS, LSRDS,
SRDS(lim=n/2) and SRDS. In Fig. 3.19 we show a table of the solved instances.
Results show that an specialization with no limitation can be advantageous.
LSRDS is always better than RDS, SRDS(lim = n/2) is always better than
LSRDS and SRDS with no limitation is always better than SRDS(lim = n/2).
SRDS is 10 times faster than RDS. The instances have unary constraints that
assign very heterogenous costs. The domains are binary and one value it is
assigned cost 0 and the other a cost that ranges from 400 to 1400. This is
possibly the reason why SRDS with no limitation is so advantageous.

3.5.4 Earth Observation Satellite Management, Spot

In Appendix A.2.2 we describe the Spot instances. We have tested RDS, LSRDS
and SRDS(lim=n/2) algorithms. We discard the use of FSRDS because spot
instances have more than 100 variables and during search deep levels of the

66

 1

 10

 100

 1000

 10000

 100000

 10 12 14 16 18 20 22

cp
u

tim
e

inclusion of a new variable

Celar SubInstance n”4

SRDS(lim=17)
Hybrid

Figure 3.17: On the horizontal axis we show the sequence of subproblems Wi. We

compare SRDS(lim=17) and the hybrid strategy on SUB4 subinstance

tree are never reached, so using FSRDS in the first subproblems would be of no
advantage. ORDS has also a degenerate behavior when applied to big problem
sizes, so for the same reason as FSRDS we discard its use.

The variable ordering used for the resolution is the same as the specified
in the input file which corresponds to the photographic order (as suggested in
[Verfaillie et al., 1996]). In Fig. 3.20 we show a table of the solved instances.
LSRDS spends a factor of 0.4 less time than SRDS in the instances that were
more costly to solve. Spot instances have unary soft constraints that assign
very homogenous costs to all values (that ranges between 0 and 2) and in rare
occasions a higher cost of 1000. These small variability on costs may be the
reason why a SRDS(lim) does not show any advantage.

We extract the following conclusions from the experimental results. Versions
that specialize all values for all subproblems (FSRDS and ORDS) can have a
degenerate behavior when the problems increase in size, that’s why we use its
limited versions. LSRDS is always better than RDS. Random problems have
values with homogenous costs and experiments show that a conservative strat-
egy like ORDS is more efficient in this case. Only values that seem promising
to increase the lower bound are specialized, and it happens often that the spe-
cializations are productive. The advantages of specializing values show up in
problems where values have a high variability of costs, that is, when values are
very heterogenous. So for example a full specialized approach like FSRDS com-

67

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 3 4 5 6 7

cp
u

tim
e

bandwidth

Orders n=8 m=44 p2=0.5

bandwidth

Figure 3.18: Solving time (vertical axis on the right) versus bandwidth (vertical
axis on the left) of RDS executions for all possible orderings of an 8 variable
problem extracted from CELAR subinstance SUB4.

|X| |C| d RDS LSRDS SRDS(lim) SRDS UB

auction01 102 1094 2 470.3 105.9 86.8 54.9 57431

auction02 101 742 2 >2000 1170.6 1155.3 867.3 60274

auction03 100 1184 2 1293.0 176.6 168.5 142.2 51968

auction04 100 937 2 427.2 92.7 86.4 69.3 69059

auction05 100 1033 2 523.2 84.2 77.65 47.5 66609

auction06 100 705 2 800.4 229.2 216.0 161.4 48848

auction07 103 1001 2 >2000 775.7 741.9 600.7 70929

auction08 100 746 2 1706.0 305.4 272.6 188.4 58167

auction09 100 999 2 343.3 59.2 55.2 37.9 64459

Figure 3.19: Results on combinatorial auctions instances. Columns: instance, number

of variables, number of constraints, maximum domain size, time for RDS solving,

LSRDS, SRDS(lim = n/2), SRDS and the optimal cost.

|X| |C| d RDS LSRDS SRDS(lim) UB

spot1502 209 203 2..4 0.015 0.18 0.063 28042

spot404 100 610 2..4 2.40 2.28 1.84 114

spot503 143 492 2..4 11.59 12.89 13.71 11113

spot408 200 2032 2..4 604.0 75.156 83.421 6228

spot505 240 2002 2..4 660.6 520.4 520.4 21253

spot412 300 4048 2..4 1187.9 239.5 265.0 32381

spot507 311 5421 2..4 >2000 1389 1802 27390

spot414 364 9744 2..4 >2000 >2000 >2000

spot509 348 8276 2..4 >2000 >2000 >2000

Figure 3.20: Results on spot instances. Columns: instance, number of variables,

number of constraints, domain size, time for RDS solving, time for LSRDS solving,

time for SRDS and the optimal cost.

bined with SRDS and LSRDS is very advantageous for the frequency assignment
problems (FAP). The actions benchmark has also very heterogenous costs and

68

SRDS with no limitation has the best performance. The Spot benchmark con-
firms this hypothesis. Spot has more heterogenous costs and in this case LSRDS
has a much better performance than RDS but SRDS does not pay-off.

3.6 Related Work

Russian Doll Search is an original and effective technique to take into ac-
count the cost that will certainly occur because of functions that link fu-
ture variables during search. Other approaches exist for this purpose. PFC
evolved to Directed Arc consistency Counts PFC-DAC [Wallace, 1995]. PFC-
DAC adds dac cost counters that are similar to ic’s but they refer to con-
straints that link exclusively future variables. Analogously to ic’s, the mini-
mum sum of dac’s for every variable can be taken into account in the lower
bound. Maintaining Reversible DAC [Larrosa et al., 1999] updates and main-
tains dac counters during search (see Section B.1). Soft Arc Consistency tech-
niques are a generalization of these techniques and are under recent develop-
ment [Schiex, 2000, Larrosa and Schiex, 2004]. The interesting thing that we
point out in the next section is that RDS and these techniques might not be
exclusive. Russian Doll Search has a close relation to dynamic programming al-
gorithms, like for example Bucket Elimination (BE) [Dechter, 1999]. BE solves
the problem without search but as a counterpart it needs exponential memory
space. The main difference between dynamic programming algorithms and RDS
is that the latter computes a certain information of the current subproblem that
is not sufficient to guarantee that the next subproblem will be solved without
search. Even with the whole table of optimal costs that FSRDS computes we
cannot guarantee that search is not needed. The advantage is that RDS remains
a search algorithm and it has linear space complexity.

3.7 Perspectives of future work

3.7.1 An exact RDS

RDS-like algorithms have the flavor of dynamic programming, but are not dy-
namic programming algorithms. In fact, they can be seen as degraded versions
of dynamic programming, due to the fact that they compute a limited amount of
information of every solved subproblem. In the case of RDS a 0 arity constraint,
SRDS a unary constraint and FSRDS a unary constraint for every variable.
In all cases this information is not sufficient to solve the next subproblems in
polynomial time and exponential search is needed again.

In a complete version of dynamic programming, following the behavior of
RDS, it would be necessary to compute the optimal cost of including each com-
bination of values for the variables ofWi that are connected to variables outside
Wi (that is xn, ..., xi+1). So would imply in fact to compute constraints of arity
greater than one as the described versions of RDS do. Depending on how vari-
ables may be connected this fact obliges to perform an exponential number of

69

searches. This is closer to a complete inference algorithm like Bucket Elimina-
tion than to a search algorithm. This is one of the reasons why the second part
of this thesis is devoted to such algorithms.

3.7.2 RDS with two parallel searches

One of the main RDS drawbacks is the existence of unproductive searches that
obliges us to optimally solve every subproblem, even if the addition of a variable
didn’t increase the optimal cost. It is clear that solving more subproblems can
be disadvantageous if subproblems are easy and it would have been faster to
directly solve the whole problem. This is proven by the experimental results
where low connected problems are solved faster with simple PFC. To tackle this
issue, some work has been done to explore variations on the number of variables
being included in every subproblem at one time [Tounsi and David, 2002]. This
problem is even more important when we increase the number of searches as we
do in SRDS and FSRDS. In Section 3.4 we addressed the problem performing
the resolutions that where found promising, that could be able to increment the
lower bound. We describe in the following an alternative idea. We could launch
two collaborative searches:

• One process would be devoted to solve all the problem assigning variables
in the RDS static order. We call this process global.

• Another process would proceed as usual RDS solving sequences of increas-
ing subproblems.

Both process can share the rds computations: a vector in the case of RDS
and tables for SRDS and FSRDS. Then if the RDS process improves a lower
bound that can be useful to the global process because it is assigning variables
in a deeper level of the search they can send to each other a message notifying
this fact. Then the global process could check if the pruning condition is satisfied
with this new lower bound. If the global process finishes the search it can stop
the other collaborative process. It seems that this is a significant characteristic
that doesn’t simply mean dividing by two the resolution process, but gets rid
of one of the main drawbacks of RDS and can lead to exponential gains. This
approach can also be very helpful for performing what we call opportunistic
specialization in the sense that extra specialization can be done in parallel.

3.7.3 Combining Soft Arc Consistency and RDS

RDS is not the only way of adding the contribution of future variables
into the lower bound computation; directed arc consistency counts (DAC,
[Larrosa et al., 1999]) and more recently developments in soft arc consistency
(SoftAC, [Schiex, 2000] which generalizes DAC) are other ways of doing so. The
first feeling that one has is that they are exclusive with RDS as they may refer
to the same constraints, the same cost would be counted twice and so leading
to an incorrect lower bound. Both DAC and SoftAC contribute to the lower

70

bound recording the costs that will certainly occur because of the future binary
constraints. To detect costs coming from higher implicit dependencies one would
be obliged to enforce more powerful forms of soft consistency as soft path con-
sistency or soft 3-consistency. These stronger forms of soft arc consistency are
not used in practice mainly because of its high temporal complexity. When a
problem is made Soft Arc Consistent, some costs are propagated down to unary
constraints (usually called ci) and others down to a zero arity constraint (usually
called cø) which is in fact a lower bound of the problem. So RDS techniques
may be useful to consider costs coming from non binary arity constraints to con-
tribute to the lower bound. This idea is only sketched here but seems promising
for further development in the future.

3.7.4 Generalizing RDS to arbitrary relaxations

Any type of simplification of a problem can be used to extract lower bound
information of it. For this reason it is reasonable to think that any type of
simplification can potentially be used to build up a RDS type of algorithm. By
RDS type of algorithm we mean that previous resolutions are reused latter in
other resolutions to contribute to the lower bound.

Methods for simplifying the problem (also called relaxing in many con-
texts) and obtaining lower bounds on the total cost have been explored in
[Cabon et al., 1998, Givry et al., 1997] mostly from a search point of view. In
the latter the most successful combination to obtain anytime lower bounds was
found to be an iterative deepening RDS.

Two lower bounding methods that seem promising to be used in conjunction
with RDS based algorithms: removing constraints of the problem, merging values
into a single value. 1) One can think of instead of adding one variable, at each
time adding a function at each time. 2) In addition to the RDS way of solving
subproblems, we could add more resolutions starting from merged values. An
advantage of doing so is that we would dispose of global upper bounds sooner
than RDS. These ideas need to be explored carefully in both cases because the
inclusion of a variable at each resolution remains the main step of RDS as it is
oriented to search and in search main step is to assign a variable.

3.8 Conclusions

Two enhancements of the RDS lower bound have produced algorithms Spe-
cialized RDS (SRDS), Full Specialized RDS (FSRDS) and Opportunistic RDS
(ORDS). A special case of SRDS the limited version LSRDS has the same com-
putational effort than RDS but it has always an equal or superior lower bound.
The other specialized versions SRDS, FSRDS and ORDS have proven to be more
efficient than RDS if a good combination of them is used and specialization is
applied to certain problem sizes. The main idea of specialization consists in
computing not only the optimal cost of a subproblem but the optimal cost of
certain values of the variables of the subproblem. In that way the RDS special-

71

ized contribution can be combined with the inconsistency costs and in general
provides a superior lower bound than RDS. For RDS-based approaches, the cost
of solving a subproblem increases exponentially with the problem size. RDS is
able to solve quickly small subproblems, but it slows down dramatically when
subproblems increase to a reasonable size. All specialized versions can perform
worst than RDS in small subproblems but its superior lower bound allows for a
better performance with increasing size.

72

Chapter 4

Pseudo-Tree Search

In CSP and WCSP, constraints specify interaction among variables. Such inter-
action is usually represented by means of the so-called constraint graph (see Def.
2.3). It is well known that the structure of the constraint graph can be exploited.
For instance, if the constraint graph is formed by independent connected com-
ponents, each component can be solved independently. If the constraint graph
is acyclic, there are specific efficient algorithms to solve it.

All the search algorithms presented so far do not take advantage of the struc-
ture. Thus, their worst case complexity is exponential on the number of variables
no matter how the graph is structured. In this Chapter, we show how search
algorithms can be adapted to exploit the structure. In particular, we extend
the idea of pseudo-tree to WCSP. Such idea, already used in the CSP context
[Freuder and Quinn, 1985, Bayardo and Miranker, 1995], allows to dynamically
detect independent subproblems as search is conducted. As we show, the com-
plexity of algorithms based on pseudo-trees is exponential on the tree height h, so
it is bounded by this structural parameter. The space complexity is polynomial.

Our contribution is the extension of pseudo-tree search to WCSP. We show
that the same general principles apply in this context. However, the use of
pseudo-trees for WCSP has a source of inefficiency: in each independent sub-
problem the distance between the upper and the lower bound increases which has
an adverse effect on pruning. We show that one way to overcome such problem
is to introduce local subproblem lower and upper bounds. We combine pseudo-
tree search with RDS techniques explained in Chapter 3 which adapt nicely. We
obtain then high quality local lower and upper bounds [Larrosa et al., 2002].

Complete Inference algorithms have time and space complexities exponential
in a problem structural parameter. With respect to search, they have the disad-
vantage that space is also exponential and algorithms quickly exhaust memory
resources if a tractable decomposition is not found. Pseudo-tree search is a first
step on getting closer to the nice properties of Complete Inference algorithms
with respect to the structure, while preserving the polynomial space complexity
of search algorithms.

73

4.1 Pseudo-tree

Definition 4.1 [pseudo-tree] A pseudo-tree arrangement of a constraint graph
is a rooted tree having as nodes the set of variables. It satisfies the property that
adjacent vertices from the graph belong to the same branch of the tree.

1x

2x

5x

3x

4x
1x

2x
4x

3x

5x

1x

2x 4x

3x

5x

Figure 4.1: Left: a constraint graph. Middle: a possible pseudo-tree for it. Right: a

pseudo-tree arrangement of the original constraint graph.

In Fig. 4.1 we show a constraint graph, a pseudo-tree and a pseudo-tree
arrangement of the original constraint graph. We call h the height of the tree.
In Chapter 3 we defined subproblems with respect to an order of variables (see
Def. 3.9). In this Chapter we define a subproblem rooted at one variable of the
pseudo-tree arrangement.

Definition 4.2 [subproblem rooted at] Let ℘ = 〈X,D,C〉 be a CSP ar-
ranged as a pseudo-tree. The subproblem rooted at xi denoted ℘i = 〈X i, Di, Ci〉
is the one induced by all variables in the subtree rooted at xi. The set of variables
X i is ordered depth-first starting in the root X i = {xi, ...}.

Consider the CSP and its pseudo-tree arrangement of Fig. 4.1. The subprob-
lem rooted at x2, that is ℘2, has X2 = {x2, x1}, D2 = {D2, D1} and C2 = {c21}.

The induced width of a constraint graph (see 2.2.2) is in relation width
the pseudo-tree height. If a graph has induced width wopt then, we can find
a pseudo-tree of height less than wopt log(n), being n the number of variables
[Darwiche, 2001, Bayardo and Miranker, 1995].

4.2 CSP pseudo-tree search

Consider a CSP ℘ = 〈X,D,C〉 whose variables can be partitioned in three sets
X = {xi} ∪Xj ∪Xk and no constraint connects variables of Xj and Xk. The
CSP can be arranged as a pseudo-tree where xj and xk are children of xi. This
arrangement appears in Fig. 4.2.

We assign variables from top to down in depth-first order. We first assign
xi and then the subproblems ℘j and ℘k become independent as no constraint
connects them. We can then solve the subproblems independently. The same
idea can be applied recursively to each subproblem.

74

j
x

k
x

ix

… …

, ,j j j
X D C , ,k k k

X D C

Figure 4.2: A problem instance arranged as a pseudo-tree. When xi is assigned it

can be divided into two subproblems 〈Xj ,Dj , Cj〉 and 〈Xk,Dk, Ck〉.

Example 4.1 Consider the CSP in Fig. 4.1 whose variables can be partitioned
in three sets X = {x5} ∪X2 ∪X4. After assigning variable x5 the set of future
variables is F = X2 ∪ X4. ℘ is now separable into two subproblems: ℘2 and
℘4. Now it is sufficient to find a consistent extension of the current assignment
in ℘2 and ℘4. If there is no consistent extension into ℘2, we can backtrack to
the following assignment of x5 independently of ℘4, because it is a necessary
condition to have a consistent assignment in every independent subproblem.

Solving the subproblems independently we get rid of the multiplicative effect
of solving them as if they were a single problem. This fact can be formalized
comparing the size of the associated search trees in both cases. If we don’t
exploit subproblem independence, the size of the search tree is exponential in
the number of variables. If we exploit subproblem independence, the search tree
is exponential with respect to the height of the pseudo-tree. We have now rather
an additive effect that sums the sizes of the search trees associated to different
subproblems instead of multiplying them. See the following example.

Example 4.2 Find below on the left side a CSP instance arranged as a pseudo-
tree. The domain of x5 is {b}, all other domains are {a, b}.

3x a ba ba ba ba ba ba ba b

4x

1x

2x

1x

2x

3x

4x

5x

5x

a

b

b b

b a b
a b a b

a b

a b a b a b a b

a b a b a b a b

b

5x

a

b

2x
a

b

4x

3xa

b
1x a

b

5x

In the middle a search tree developed without exploiting subproblem inde-
pendence. When we traverse this search tree we will visit in the worst case
1 + 2 + 22 + 23 + 24 = 31 nodes. On the right, the two expanded search trees by
the two independent resolutions of ℘2 and ℘4. The total number of nodes that
we will visit in the worst case are the ones from the ℘2 resolution 1+2+22 = 7.
The same for subproblem ℘4, so the total number of nodes is now 7 + 7 = 14.

75

The algorithm that we present in the next Section applies the previous ideas
recursively in a pseudo-tree arrangement and is also a generalization to an arbi-
trary number of subproblems.

4.2.1 The CSP pseudo-tree algorithm

In Fig. 4.3 we present Pseudo-tree Forward Checking (PT-FC). It is the adap-
tation of FC (see Section 2.2.1) to the pseudo-tree idea. It differs from the al-
gorithm presented in [Bayardo and Miranker, 1995] in that it incorporates look-
ahead. It has three input parameters: the current assignment t, the set of future
variables F and the collection of domains D. The algorithm is called initially
PT-FC({}, X,D). PT-FC returns true if there exists a consistent assignment of
variables in X .

PT-FC assigns variables in depth-first order according to a pseudo-tree ar-
rangement. It starts from the pseudo-tree root (line 2). PT-FC iterates over all
possible values of the current variable. If the current variable xi has children
in the pseudo-tree (succ(xi) returns the children of xi), the current problem
can be divided into |succ(xi)| independent subproblems, which are solved inde-
pendently. The problem has a solution iff every independent subproblem has a
solution. PT-FC first performs look-ahead in the subproblem rooted at xi (line
4). If no empty domain is found, sol gets the value true, and false otherwise.
Then we iterate over all the subproblems (line 6). A solution must exists in
all subproblems. PT-FC is called to solve each subproblem if a solution exists
(line 7). If a solution was found for every subproblem then it returns true and
abandons search (line 8). In other case it tries another value for xi. Every time
PT-FC reaches a search state where the set of future variables is empty then the
current assignment t assigns all variables in a branch of the arrangement (line
1), true is returned.

function PT-FC(t, F,D)
1 if F = ø then return true
2 xi ← get-var(F)
3 for each a ∈ Di do

4 D′ ← look-ahead(xi, a, t,X
i,Di)

5 sol← (ø 6∈ D′)
6 for each xj ∈ succ(xi) do

7 if sol then sol← PT-FC(t · 〈xi, a〉,X
j ,D′)

8 if sol then return true
9 return false

Figure 4.3: Pseudo-Tree Forward Checking algorithm for CSP.

Pseudo-tree search has time complexity O(l exp(h)), where l and h are the
number of leaves and the height of the pseudo-tree, respectively. Pseudo-tree
search is polynomial in space.

76

4.3 WCSP pseudo-tree search

The same subproblem definition 4.2 applies to WCSP as it is defined with respect
to the constraint graph. The only difference between CSP and WCSP is that
constraints are cost functions. Accordingly, we denote Wi = 〈X i, Di, Ci〉 the
subproblem rooted at xi.

Again consider the WCSP in Fig. 4.2 whose set of variables can be parti-
tioned into three sets X = {xi}∪Xj ∪Xk and succ(xi) = {xj , xk} such that no
constraint connects variables from Xj and Xk. Consider a search state where t
is the current assignment and var(t) = {xi}.

The following strategy can be applied to a pseudo-tree arrangement. In
WCSP, an assignment t has an associated cost(t) which is the sum of costs
assigned by constraints that all of its variables are assigned. The consistency of
an assignment is defined with respect to an upper bound. After the assignment
of t, W is separable into two subproblems: Wj and Wk that can be solved
independently. After solving them, the optimal cost of extending t to both
subproblems can be trivially computed. Suppose we first solve Wj and we
obtain cost ubj and after we solveWk and obtain ubk. Then the optimal cost of
extending t to variables Xj and Xk is: ubj + ubk − cost(t). Since Wj and Wk

have no constraints between them, the optimal cost of Wi after the assignment
of t is the optimal cost of extending t to Wj plus the optimal cost of extending
t to Wk, and cost(t) needs to be subtracted because it has been counted twice.

4.3.1 The basic pseudo-tree search algorithm

In Fig. 4.4 we present the simplest version of Pseudo-Tree Partial Forward
Checking (PT-PFC-basic). It is the adaptation of PFC algorithm (see Section
2.4.1) to pseudo-tree search. It has four input parameters: the current assign-
ment t, the set of future variables F , the collection of domains D and the upper
bound ub. It is initially called PT-PFC-basic({}, X,D, ub). If the set F is empty,
the result is trivially computed (line 1). PT-PFC-basic assumes that variables
are selected depth-first according to a pseudo-tree arrangement (line 2). PT-
PFC-basic selects a variable xi and iterates over its values (lines 3). When value
a is assigned we do look-ahead in the subtree below (line 4). Then the global
current lower bound can be computed (line 5). If it is less than the upper bound
we can prune values and check if the empty domain is found (lines 6 and 7). If
not, for all xj ∈ succ(xi) each Wj is solved (line 10). succ(xi) returns the set
of variables that are direct children of xi. For each resolution an optimal cost
is obtained that is summed to the total optimal cost lb (line 10). cost(t) must
be subtracted because it is initially included in line 8. If this total cost is better
than the current upper bound we update it (line 11).

With respect to CSP pseudo-tree search, PT-PFC-basic incorporates lower
and upper bounds. The search tree has to be explored completely in the worst
case so the time complexity of PT-PFC-basic remains O(l exp(h)), where l and
h are the number of leaves and the height of the pseudo-tree, respectively. PT-
PFC-basic is polynomial in space.

77

function PT-PFC-basic(t, F,D, ub)
1 if F = ø then return min{ub, cost(t)}
2 xi ← get-var(F)
3 for each a ∈ Di do

4 look-ahead(i, a, t,Xi, Di, ub)
5 if LB

PFC(t · 〈xi, a〉, F,D) < ub then

6 D′ ←prune(i, a, t,Xi,Di, ub)
7 if ø 6∈ D′ then

8 lb← cost(t)
9 for each xj ∈ succ(xi) do

10 lb← lb+ PT-PFC-basic(t · 〈xi, a〉,X
j ,D′, ub) - cost(t)

11 if lb < ub then ub← lb

12 return ub

Figure 4.4: Basic Pseudo-Tree Partial Forward Checking algorithm.

Although PT-PFC-basic has an exponential time complexity bounded by
the height of the pseudo-tree and PFC is exponential in the number of variables,
PT-PFC-basic has a source of inefficiency. The reason is that PT-PFC-basic
disposes of bad quality upper bounds when starting solving subproblems. Each
independent resolution (each recursive call to PT-PFC-basic) is started with the
upper bound of the whole problem. The local task of solving one subproblem
is a simpler task but we use the upper bound of the whole problem to solve it.
This fact increases the distance between its lower bound and the used upper
bound. As a consequence, pruning becomes unlikely. To overcome this problem
we introduce local upper and lower bounds.

4.3.2 Refinement of pseudo-tree search algorithm

Definition 4.3 [local lb, ub] LetW be a WCSP. Consider a pseudo-tree search
state where t = {..., 〈xi, a〉} is the current assignment and xi the last assigned
variable. We denote lbi a lower bound of the cost of extending t to variables
in Wi. We denote ubi an upper bound of the optimal cost of extending t to
variables in Wi.

After the resolution of the subproblemWi, ubi and lbi coincide and are the
optimal cost of extending t into the subproblem below. In this case, we use he
suffix opt to indicate its optimality. We detail three uses of local lower and upper
bounds that enhance PT-PFC-basic performance.

Again consider the WCSP arranged as a pseudo-tree in Fig. 4.5 whose vari-
ables can be partitioned in three sets X = {xi} ∪ Xj ∪ Xk and no constraint
connects variables of Xj and Xk. The current assignment is t = {〈xi, a〉} and
succ(xi) = {xj , xk}.

1) We start solvingWj. Aiming at efficiency, we want ubj as low as possible,
in order to decrease the difference with the lower bound which is essential for

78

j
x

k
x

ix

… …

j k

Figure 4.5: A problem instance arranged as a pseudo-tree. When xi is assigned it

can be divided into two subproblems 〈Xj ,Dj , Cj〉 and 〈Xk,Dk, Ck〉.

pruning. The simplest idea is to use ubj = ub, the maximum acceptable cost for
the whole problem. A better approach is to compute lbk, a lower bound of the
cost of solving Wk. Then we set ubj = ub− (lb− lbk). lbk can be subtracted
because it refers to subproblem Wk.

2) This approach may still be too weak when lbk is a bad lower bound.
One way to overcome this problem is to compute a lower local upper bound
of the cost solution of Wj using for example local search. Let’s consider that
UBlocal(t,Xj) computes an upper bound of extending t to Xj variables then we
can use ubj = min{ubj , UBlocal(t,Xj)} when solving Wj. We will describe in
Section 4.4 an alternative way to compute a local upper bound.

3) After solving subproblem Wj , lbj
opt is the optimal cost of extending t to

this subproblem. Then, lbj is replaced by lb
j
opt in all computations. So, when

we start solvingWk we can set ubk = ub− (lb− lb
j
opt). Again, we can compute

a local upper bound and take the minimum between the two upper bounds, but
now that we have the optimal solution of Wj , it is more unlikely that we can
improve over ubk.

These local upper and lower bound computations can be easily generalized to
an arbitrary number of subproblems and we incorporate them into algorithm PT-
PFC-basic (see 4.4). We produce algorithm Pseudo-tree Partial Forward Check-
ing (PT-PFC) which appears in Fig. 4.6. PT-PFC computes lb a lower bound of
all subproblems (line 6). Then it starts solving each subproblem independently.
A local lower bound lbj is computed (line 10) for each subproblem. Then a
local upper bound is computed for the current subproblem ubj = ub−(lb−lbj)
(line 11). We can subtract from ub all the lower bounds of other subproblems
except the lower bound of the current subproblem Wj , that is lb − lbj . The
local upper bound may be enhanced in line 12 with local search or with the Rus-
sian Doll Search algorithms explained in next section. A backtrack condition is
tested for local lower bounds and upper bound (line 13). If the lower bound lbj

of the subproblem is greater than or equal to ubj , the current subproblem does
not need to be solved because either ubj is the solution, or there is no solution
improving over ubj thus ub. If any of the tests has failed we can exit the loop
and backtrack. If not we can proceed solving recursively assigning depth-first
the next variable of the current subproblem. The cost that the recursive call
returns may be better than the estimated lower bound that we computed for

79

function PT-PFC(t, F,D, ub)
1 if F = ø then return min{ub, cost(t)}
2 xi ← get-first(F)
3 for each a ∈ Di do

4 look-ahead(i, a, t,Xi,Di, ub)
5 D′ ←prune(i, a, t,Xi,Di, ub)
6 lb← LBPFC(t · 〈xi, a〉, F,D

′)
7 if lb < ub and ø 6∈ D′ then

8 for each xj ∈ succ(xi) do

9 if lb < ub then

10 lbj ← LBPFC(t · 〈xi, a〉,X
j ,Dj)

11 ub
j ← ub− (lb− lb

j)
12 ub

j ← min{ubj , UBlocal(t,Xj)}
13 if lb

j < ub
j then

14 lb← lb− lb
j+ PT-PFC(t · 〈xi, a〉,X

j , D′, ubj)
15 if lb < ub then ub← lb

16 return ub

Figure 4.6: Pseudo-Tree Partial Forward Checking algorithm.

that subproblem so it can directly be interchanged in the global lower bound
(line 14). Once all independent subproblems have been solved, if lb is smaller
than the global upper bound ub, a better solution has been found so ub is up-
dated (line 13). After trying all feasible values of variable xi, the cost of the
best solution remains in ub, which is returned (line 14).

Example 4.3 Find on the left side of the drawing that follows next a WCSP
instance in which an arc appears when a combination of values has a cost greater
than 0. Next to each value we show its inconsistency cost icia. On the right,
variable x5 is assigned value b and its inconsistency costs propagated.

3

b

a

b

a

b

a

b
a

b

3

1

2
2

3

b

a

b

a

b

a

b
a

b

1

2 22

5x

2x 4x

3x1x

1 12

2 4

1

3

1
1

1

After the assignment, both PT-PFC-basic and PT-PFC compute a global
lower bound using the PFC lower bound function to underestimate the cost of
extending the current assignment t = {〈x5, b〉} to both subproblems W2 and W4.
The computed lower bound is lb = 0 + 0 + 1 + 0 = 1, the sum of minimum
inconsistency costs in every variable. Consider the global upper bound is ub = 2.
PT-PFC-basic solves both subproblems using this global upper bound ub = 2.

80

PT-PFC computes the lower bound lb = 0 + 1 (line 5). Then it solves each
independent subproblem separately. First of all it checks the global condition
lb < ub (1 < 2). As it is satisfied computes the local lower and upper bounds
lb2 = 0 and ub2 = 2− (1− 0) = 1. The local upper bound can then be improved
by local search (line 10). It then checks the local condition lb2 < ub2 (0 < 1)
which is also satisfied. When W2 resolution finishes (lb2

opt = 1 is optimal) PT-
PFC updates the current lower bound lb = lb− lb2 + lb2

opt = 1− 0 + 1 = 2. At
this point PT-PFC skips the resolution of W4 because the current lower bound
has reached the upper bound.

4.4 Combining Pseudo-Tree and Russian Doll

Search

As outlined before, PT-PFC has still a source of inefficiency due to the fact
that when we start a subproblem resolution we drag the uncertainty of the
other subproblems that we leave behind. We showed that performance can be
improved with good local lower and upper bounds but no particular method
for improving them was developed. In this section we show how Russian Doll
Search (Chapter 3) can be adapted to work with pseudo-trees and may provide
effective local bounds.

The main source of inefficiency of PT-PFC may come from what we call the
uncertainty gap. At a search state where some subproblems become independent,
some may be already solved by a PT-PFC call, other are still unsolved, we
associate an uncertainty gap to every unsolved subproblem. Let Wj and Wk

be two unsolved subproblems. The only information that we dispose of Wk is
its local lower bound lbk. lbk is lower than the optimal lbk

opt. When solving

subproblem Wj we drag this difference lbk
opt − lbk in the upper bound. The

uncertainty gap is the necessary cost that our local upper bound will include
when start solving a subproblem. The uncertainty gap cannot be known in
advance because we would have to solve all subproblems first. As we solve
subproblems depth-first uncertainty gaps are summed at each level.

Example 4.4 Consider the WCSP in example 4.3 after the assignment t =
{〈x5, b〉} (left of the drawing). lb4 = 1 because the sum of minimum inconsis-
tency costs. But the optimal cost of solving W4 is in fact lb4

opt = 3. So when
we solve W2 we drag an uncertainty gap of lb4

opt − lb4 = 3− 1.

We now combine the pseudo-tree approach with Russian Doll Search (Chap-
ter 3) with the aim of reducing the uncertainty gap caused by a bad quality
upper bound when we start solving a particular independent subproblem. RDS
provides two advantageous features to pseudo-tree search:

1. Good quality lower bounds of all independent subproblems. That is, RDS
computes a better lbk to get closer to the optimal lbk

opt.

81

2. Good quality local upper bounds of all independent subproblems. RDS
allows to compute a better ubj to get closer to the optimal ubj

opt.

RDS nicely adapts to pseudo-tree search. Let’s recall that the idea of RDS is
to replace one resolution by n successive resolutions on nested subproblems. So
when solving a particular subproblem we can suppose that previous subproblems
below have already been solved and reuse its optimal solving cost.

In the pseudo-tree context, nested subproblems are associated to the different
subtrees of the pseudo-tree arrangement. For instance in Fig. 4.7 we have on
top a constraint graph and on the right the nested resolutions that RDS does.
On bottom the constraint graph is arranged as a pseudo-tree and on the right
we have the resolutions that a pseudo-tree RDS does.

2x

3x

1x 6x

5x

4x

7x x7 x6 x5 x4 x3 x2 x1

x7 x3 x2 x1 x6 x5 x4

2x

1x

3x
6x

4x
5x

7x

3 6

3

6

Figure 4.7: Top left: a constraint graph. Top right: the n resolutions that RDS

performs. Bottom left: a possible pseudo-tree arrangement. Bottom right: the n

resolutions that PT-RDS performs.

Now the optimal cost of solving subproblem Wi, is rdsi. In Fig. 4.7 rds6
would be the optimal cost of solving the problem including variables X6 =
{x6, x5, x4}. We solve subproblems from bottom to top. In Fig. 4.7 this means
that we first compute rds1, rds4 and rds5. Then rds2 and rds6. Then rds3.
Finally rds7, the whole problem.

When solving a subproblem rooted at xi all subproblems below in the tree
have been previously solved. This means that for all nodes below xi in the
pseudo-tree arrangement we know its optimal cost rdsi and we know also its op-
timal solution Sol(Wi). The optimal costs rdsi provides us good lower bounds
of subproblems. Sol(Wi) is likely to be a good extension of any current assign-
ment containing variables up to the parent variable of Xi, so we can use it to
compute a local upper bound. Therefore, pseudo-tree RDS provides local lower
and upper bounds.

Again consider the WCSP in Fig. 4.2 where the current assignment is t =
{〈xi, a〉} and succ(xi) = {xj , xk}. When we start assigning variables in Xj we

82

function PT-RDS(Wi)
1 if |Xi| = 1 then rdsi ← 0
2 else

3 for each xj ∈ succ(xi) do PT-RDS(Wj)
4 rdsi ← PT-PFC-RDS(ø, Xi,Di, ubi)
5 return rdsi

function LBPT−RDS(t, F)

1 return cost(t) +
P

xj∈F,j 6=i

min
b∈Dj

{icjb}+
P

xj∈succ(xi)

rdsj

function UBPT−RDS(t,Xi)
1 return cost(t ∪ Sol(Wi))

Figure 4.8: Pseudo-Tree Russian Doll Search algorithm.

can subtract the lower bound of Wk that now includes the RDS contribution
to the upper bound. Additionally we can check if Sol(Wj) is a good extension
of the current assignment that improves the local upper bound. We call this
algorithm Pseudo-Tree RDS (PT-RDS) and appears in Fig. 4.8. PT-PFC-RDS
is obtained from PT-PFC (Fig. 4.6) replacing lower and upper bound functions
by the corresponding ones appearing in Fig. 4.8. PT-RDS calls recursively
PT-PFC-RDS for every node of the pseudo-tree from bottom to top.

4.4.1 Specializing Pseudo-Tree RDS Search

The concepts of SRDS (see Section 3.2) can be extended to the pseudo-tree
context. Consider W = 〈X,D,C〉 a WCSP and a pseudo-tree arrangement.
Wia is the subproblem rooted at xi with respect to this pseudo-tree where the
domain of variable xi has been reduced to the singleton {a}. The optimal cost
of solving subproblem Wia is rdsia.

Pseudo-Tree Specialized RDS (PT-SRDS) appears in Fig. 4.9. Lower bound
functions have been modified because now if the current variable is xi we can
sum the ic’s plus rds contribution at every variable belonging to succ(xi).

4.5 Experimentation

We have tested two algorithms SRDS and PT-SRDS to asses the effect of pseudo-
tree search in three benchmarks: random problems, combinatorial auctions and
spot instances.

83

function PT-SRDS(Wi)
1 ∀i∈X∀a∈Di

rdsia ← 0
2 for each xj ∈ children(xi) do

3 PT-SRDS(Xj ,Di)
4 for each a ∈ Di do

5 rdsia ← PT-PFC-RDS({}, xi ∪X
j , {a} ∪Dj , ubia)

function PT-PFC-SRDS(t, F,D, ub)
1 if F = ø then return min{ub, cost(t)}
2 xi ← get-first(F)
3 for each a ∈ Di do

4 if LB
PFC(t · 〈xi, a〉, F,D) + rdsia < ub then

5 D′ ← look-ahead(xi, a, t,X
i,Di, ub)

6 lb← LB
PT−SRDS(t · 〈xi, a〉, F,D

′)
7 for each xj ∈ succ(xi) do

8 lbj ← LBPT−SRDS(t · 〈xi, a〉,X
j ,D′)

9 ub
j ← ub− (lb− lb

j)
10 ub

j ← min{ubj , UBPT−RDS(t · 〈xi, a〉,X
j)}

11 if lb < ub or lb
j < ub

j then

12 lb← lb− lb
j + PT− PFC− SRDS(t · 〈xi, a〉,X

j ,D′, ubj)
13 if lb < ub then ub← lb

14 return ub

function LB
PT−SRDS(t = {..., 〈xi, a〉}, F,D)

1 return cost(t) +
P

xj∈succ(xi)∩F

min
b∈Dj

{rdsjb + icjb}+
P

xj∈F−succ(xi)−{xi}

min
b∈Dj

{icjb}

Figure 4.9: Pseudo-tree Specialized Russian Doll Search algorithm.

4.5.1 Random Problems

Random problems are described in detail in Appendix A.2.1. As we can generate
problems with increasing connectivities they seem an adequate benchmark for
this case study.

Pseudo-trees are computed using the maximum cardinality search (MCS)
heuristic [R.E.Tarjan and M.Yannakakis, 1984]. We have used the implementa-
tion of Toolbar library [Toolbar, 2003] for computing a tree-decomposition and
directly transforming it into a pseudo-tree. The transformation is direct. We
first choose a root node for the tree decomposition which minimizes the height
of the tree. Then we go from the root to the leaves eliminating any variable
that has already appeared. Since the temporal complexity is exponential in the
pseudo-tree height, we have recorded the average height of pseudo-trees used in
the experiments.

84

Integrating RDS versions into pseudo-tree search

We discard the use of FSRDS (Section 3.3) and ORDS (Section 3.4) inside
pseudo-tree search the main reason being its degenerate behavior for increasing
problem sizes (see Section 3.5). SRDS seems a good approach for using in
conjunction with pseudo-tree search. There is an implementation issue that
can be incorporated to PT-SRDS (Section 4.4.1) that corroborates this fact.
Consider that we are including a variable xi that has several children. If we
solve this variable for every value and for every subproblem we can skip the
whole resolution of the subproblemWi because its optimal cost can be computed
by taking the minimum of the sum of the costs of including each value in every
subproblem. This cannot be done with RDS nor LSRDS because they only
store the minimum of each cost. Therefore, the sum of the minimums would
only be a lower bound and not the optimal cost. So for the experiments we use
always PT-SRDS. Comparisons are done by solving each problem with SRDS
and PT-SRDS. SRDS uses a static variable ordering that heuristically combines
degree and locality, to produce low bandwidth orderings. PT-SRDS follows the
variable ordering existing in the pseudo-tree. All the variables that are placed
in the same branch in between two nodes that have children, or in between a
leaf and a node that has children are interchangeable in the pseudo-tree. This
means that we can apply a min bandwidth heuristic to order the variables of the
pseudo-tree by these groups of variables.

We have tested four classes of random problems: 〈n = 20,m = 5, p2 = 0.7〉,
〈n = 30,m = 3, p2 = 0.7〉, 〈n = 45,m = 2, p2 = 0.7〉 and 〈n = 52,m = 2, p2 =
0.7〉. Each class has an increasing number of variables. All classes were tested
with increasing connectivity which is the fundamental parameter that directly
influences the pseudo-tree height. In Fig. 4.10 and 4.11 we show the cpu time for
all these classes of random problems. We also show the ratio between pseudo-
tree height and total number of variables. When this ratio is equal to one
means that the pseudo-tree has a single branch, so the techniques developed
in this Chapter have no effect. With an increasing number of variables better
pseudo-trees (less height) can be constructed, this fact is observed in the different
plots. In the first class of random problems we have also tested algorithm PT-
PFC which does not exploit the RDS lower bound. PT-PFC has a clear worst
performance suggesting that is a good idea to combine PT-PFC and RDS. In
the following random classes we skip the execution of PT-PFC. We observe also
that PT-SRDS is better than SRDS below a connectivity of p1 = 0.5. Above
this connectivity PT-SRDS shows in some cases a worst performance that may
be due to overhead reasons or also because a different variable ordering is used.
It can happen that the pseudo-tree has few branches and this fact forces the
algorithm to use a different static order. With random problems of less than 20
variables, we observed a moderated advantage of PT-SRDS.

In Section 3.2.3 of previous Chapter we explained some upper bounding
techniques that we used in RDS algorithms and turned out to be very effective
reducing the cpu time in about half the time. PT-SRDS can also exploit the

85

 0

 1

 2

 3

 4

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

 0.6

 0.8

 1

T
im

e
(in

 s
ec

.)

ps
eu

do
-t

re
e

he
ig

ht
 r

at
io

p1: connectivity

CPU Time n=20 m=5 p2=0.7

SRDS
PT-SRDS
pt-height
PT-PFC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

 0.6

 0.8

 1

T
im

e
(in

 s
ec

.)

ps
eu

do
-t

re
e

he
ig

ht
 r

at
io

p1: connectivity

CPU Time n=30 m=3 p2=0.7

SRDS
PT-SRDS
pt-height

Figure 4.10: Average CPU time for two classes of random problems. The tested

algorithms are SRDS and PT-SRDS and in the first plot also PT-PFC

explained upper bound adjustment but only in restricted occasions. We recall
that the described upper bounding techniques try to improve the upper bounds
of the values of the next variable that we will include every time that a better
solution is found for the current subproblem. PT-SRDS can only adjust the
upper bounds when it is assigning the last branch of the pseudo-tree so it is less
effective.

We also have explored the relevance of local upper bounds in our implementa-
tion, by substituting line 10 of Fig. 4.9 by, ubk ←∞. In this case, experimental
results show that PT-SRDS looses performance. This result confirms that, al-
though solving independent subproblems independently is an attractive strategy,
working with the global upper bound is not cost-effective and the presence of
local upper bounds is essential. Local upper bounds are of much importance in
the first levels of the search.

86

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

 0.6

 0.8

 1

T
im

e
(in

 s
ec

.)

ps
eu

do
-t

re
e

he
ig

ht
 r

at
io

p1: connectivity

CPU Time n=45 m=2 p2=0.7

SRDS
PT-SRDS
pt-height

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

 0.6

 0.8

 1

T
im

e
(in

 s
ec

.)

ps
eu

do
-t

re
e

he
ig

ht
 r

at
io

p1: connectivity

CPU Time n=52 m=2 p2=0.7

SRDS
PT-SRDS
pt-height

Figure 4.11: Average CPU time for two classes of random problems. The tested

algorithms are SRDS and PT-SRDS and in the first plot also PT-PFC

4.5.2 Combinatorial Auctions

In Appendix A.2.4 we describe the Combinatorial Auctions benchmark and how
instances can be formulated as WCSPs. In Section 3.19 we present results con-
cerning Russian Doll Search algorithms. We compare here these results with
algorithm PT-SRDS. In Fig. 4.12 we show the table of results. We have added
connectivity and pseudo-tree height of every instance (columns fifth and sixth).
All connectivities are very homogenous and low. Pseudo-tree height is nearly
half the number of variables of the problem. PT-SRDS is always advantageous
and, in some instances, it spends two orders of magnitude less time.

4.5.3 Earth Observation Satellite Management, Spot

In Appendix A.2.2 we describe the Spot instances. In Section 3.20 we present re-
sults concerning Russian Doll Search algorithms. We compare here these results
with algorithm PT-SRDS. As in [Verfaillie et al., 1996] we choose the photo-

87

|X| |C| d p1 h SRDS PT-SRDS UB

auction01 102 1094 2 0.21 61 54.0 15.58 57431

auction02 101 742 2 0.14 52 867.9 9.97 60274

auction03 100 1184 2 0.23 61 142.2 2.89 51968

auction04 100 937 2 0.18 62 69.3 15.6 69059

auction05 100 1033 2 0.20 62 47.5 30.0 66609

auction06 100 705 2 0.14 56 161.4 8.5 48848

auction07 103 1001 2 0.19 63 600.7 13.37 70929

auction08 100 746 2 0.15 53 188.4 20.23 58167

auction09 100 999 2 0.18 61 37.9 28.0 64459

Figure 4.12: Results on combinatorial auctions instances. Columns: instance, number

of variables, number of constraints, maximum domain size, connectivity, pseudo-tree

height, SRDS cpu time, PT-SRDS cpu time and optimal cost.

|X| |C| d p1 h SRDS PT-SRDS UB

spot1502 209 203 3 0.007 18 0.18 0.09 28042

spot404 100 610 3 0.11 50 2.28 0.33 114

spot503 143 492 3 0.03 29 12.89 1.69 11113

spot408 200 2032 3 0.08 62 75.15 21.5 6228

spot505 240 2002 3 0.05 79 520.4 135.4 21253

spot412 300 4048 3 0.08 108 239.5 71.2 32381

spot507 311 5421 3 0.06 105 1389 301.3 27390

spot414 364 9744 3 0.07 145 >2000 1550.1 38478

spot509 348 8276 3 0.07 137 >2000 1297.7 36446

Figure 4.13: Results on spot instances. Columns: instance, number of variables,

number of constraints, maximum domain size.

graphic order of variables, which corresponds to the same order in which vari-
ables appear in the input file. The photographic order is applied in each cluster
of variables of a branch that has no bifurcations. Local upper bounds are com-
puted from previous solutions of smaller subproblems that PT-SRDS has already
computed. In the spot instances for every variable there is a value that indicates
that the corresponding photo is not selected. When this value belongs to the
optimal solution of a subproblem we also try the value with lowest weight for
the local upper bound computation (also suggested in [Verfaillie et al., 1996]).
In Fig. 4.13 we show the table of results. We have added connectivity and
pseudo-tree height of every instance (columns fifth and sixth). All connectiv-
ities are very homogenous and extremely low. Pseudo-tree height is around 4
times less the number of variables. PT-SRDS is advantageous in all the tested
instances. The gains in time are very heterogenous. Sometime we divide the
CPU time by two, in other cases we reach gains of two orders of magnitude.

88

4.6 Related Work

4.6.1 AND/OR trees

Recently pseudo-tree search methods have been reformulated in terms of the so
called AND/OR Search spaces for the CSP case [Dechter and Mateescu, 2004]
and WCSP [Marinescu and Dechter, 2005]. To our knowledge this approach is
essentially equivalent to pseudo-tree search and has been developed indepen-
dently to our work.

The usual search tree is also called OR search tree and does not capture any
structure of the problem. Exploiting a pseudo-tree arrangement and identifying
subproblems that can be solved independently during search compacts the usual
search tree (see example 4.2). We associate an AND/OR tree to a pseudo tree
arrangement. Independent subproblems are represented by AND nodes. So OR
nodes represent alternative ways of solving the problem.

AND nodes states which usually represent problem decomposition into inde-
pendent subproblems, all of which need to be solved. To build an AND/OR tree
we label variables xi as OR nodes and individual assignments 〈xi, a〉 as AND
nodes following a pseudo-tree.

Example 4.5 Find on the left of drawing below a constraint graph arranged as
a pseudo-tree. On the right the AND/OR search tree is expanded following the
pseudo-tree. Variables are labeled OR nodes because a solution must exist in
one of the branches below. Value assignment are labeled AND nodes because a
solution must exist in every branch.

b

5x

a

b

2x
a

b

4x

3xa

b
1x a

b

OR

AND

5x

2x

1x 1x 3x 3x

4x

AND

OR

a b a b a b a b

a b a b

b

OR

AND/OR search traverses the AND/OR search tree depth-first. In CSP
context when we reach an AND node a solution must exist in every branch below
it. This is equivalent as saying that a solution must exists in every subproblem.
OR nodes indicate that a solution must exist in at least one branch below. In
WCSP context the same principle can be applied performing a sum of costs
obtained in every branch in AND nodes and a minimum of all costs in OR
nodes.

Recently in [Marinescu and Dechter, 2005] the AND/OR search tree is trans-
formed into a graph. Nodes that are identified to be unifiable are fusioned. Thus

89

treewidth

pathwidth

bandwidth

induced width

pseudo-tree height

cycle cutset number

=

Figure 4.14: Decomposition parameters dominance diagram.

some nodes may have various parents, converting the tree into a graph. Then
searching into an AND/OR graph can exploit what is called caching, a similar
idea to good and nogood recording. Unifiable nodes can store the result of the
first computation and then reuse it when the same node is reached again. This
idea is also exploited in the belief networks [Darwiche, 2001, Pearl, 1988]. It is
also similar to the idea of pseudo-tree adapted with Russian Doll Search tech-
niques presented in Section 4.4, where we reuse the optimal cost of the subtree
below inside the lower bound computation. The idea of caching has also been
used in BTD algorithm [Jégou and Terrioux, 2004]. BTD exploits another type
of decomposition called tree decomposition and it is outlined in the next section.

4.6.2 Other decomposition methods

Other decomposition methods exist based on different decomposition parame-
ters. The cycle cutset number for example is the minimum number of vertices
that must be eliminated from a constraint graph to convert it into a tree. When
the constraint graph is a tree it can be solved in polynomial time and space. Cy-
cle cutset is exploited inside MAC in [Sabin and Freuder, 1997]. Induced width
was explained in Chapter 2 Section 2.2.2 and it is exploited to bound the com-
plexity of Complete inference methods. The tree width is the decomposition
parameter associated to a tree decomposition and it will be explained formally
in Chapter 7 Section 7.2. A tree decomposition is a clustering of functions of
a constraint graph in such a way that clusters from a tree. We call the sep-
arator of two clusters the common variables that they share. The tree width
is the maximal number of variables in a cluster. The complexity of solving a
problem instance using a tree decomposition is exponential with respect to the
tree width. The tree width is equivalent to the induced width [Schiex, 1999]. It
has been proven that tree-decomposition theoretically dominates all the other
methods [Gottlob et al., 2000]. In Fig. 4.14 we show a dominance diagram of
different parameters.

90

BTD algorithm

Recently tree decomposition has originated its corresponding search method
[Jégou and Terrioux, 2004]. Branch and Bound Tree Decomposition search
(BTD) assigns variables depth-first following a rooted tree decomposition. From
a tree decomposition a pseudo-tree can be constructed directly. The main differ-
ence between such a pseudo-tree and a usual one is that variables that belong to
clusters that are not adjacent in the tree decomposition aren’t connected by any
constraint if there is one variable that does not belong to the separator. This
may not happen in a usual constructed pseudo-tree as variables from the top
can be connected to bottom variables as long as variables in different branches
aren’t connected. BTD takes advantage of this fact. Consider a rooted tree de-
composition where we assign variables in depth-first order. At some point of our
assignments the problem may be divided into several subproblems (in example
4.6 after assigning variables of the root cluster), just like in pseudo-tree search.
The difference is that now the only variables that can influence the subproblems
are the ones in the separator of the two clusters. So the optimal cost of solv-
ing a subproblem given a particular instantiation of the separator is always the
same. The idea instead of computing it several times is to store it after the first
resolution. If a particular instantiation of the separator was already computed
we don’t need to enter that subproblem with that particular instantiation, it’s
optimal cost is already stored in a data structure.

Example 4.6 Find on the drawing below a rooted tree decomposition, where
functions belong to one single cluster and variables can be in several clusters.

In this particular decomposition variables from the root cluster are not con-
nected with variables of the cluster p. BTD assigns variables in the root cluster
then continues depth-first assigning variables in cluster u that haven’t been as-
signed yet. The assignment of variables x1, x4 in cluster r (variables that do not
belong to the separator sep(r, u) = {x2, x5}) does not affect the cost of extending
the current assignment to cluster u. Thus, when BTD returns from assigning
cluster u, the obtained cost of extending the assignment can be stored for the
assignment of variables in the separator. When BTD will solve again cluster u

91

with the same instantiation of variables in the separator, the resolution can be
skipped and the cost retrieved from a data structure.

4.6.3 Backjumping

The introduced decomposition methods analyze the structure of the problem ”a
priori”, as a preprocess. The different algorithms are able to exploit the struc-
ture during search after the preprocess. There is another way of exploiting the
structure of the problem that can be considered as ”a posteriori”, during search.
We are thinking of Backjumping (BJ) [Gaschnig, 1978]. When a dead-end is
encountered during search, or when all the values of a variable have been ex-
hausted, backjumping looks for the higher variable in the levels of the search tree
where it can jump to. Usual backtracking algorithm always backtracks to the
previous level of the search. Graph Based BJ [Dechter, 1990], for example, com-
putes the variable where to backtrack based on the constraint graph. Conflict
directed BJ improves BJ by following a more sophisticated jumping strategy that
is based on the conflicts between variables [Prosser, 1993]. The relation between
backjumping and decomposition methods has not been studied to our knowledge
and seems a very interesting line of research.

4.7 Perspectives of future work

We propose two ways of extending our current work on WCSP pseudo-tree
search.

We reach a state of the search where the problem can be divided in sev-
eral subproblems. Up to now, the strategy that we have applied is to solve
subproblems sequentially. Solving the subproblems sequentially has always one
disadvantage: we have to chose a problem to solve in the first place. Another
possibility would be to solve the different subproblems at the same time. The
only advantageous way of solving subproblems simultaneously in WCSP is to
compute increasing lower bounds of every subproblem. Doing so process can
share a cost as soon as a better lower bound is discovered. A way of computing
increasing lower bounds is to use iterative deepening.

The presented ideas, more precisely the introduction of local upper bounds
and the adaptation with the RDS schema, can be extended to any other Branch
and Bound based schema that works with other decomposition methods. One
possible extension of the present work would be to enhance BTD algorithm (see
Section 4.6.2) with the presented techniques. In this direction we found very
promising the work in [de Givry et al., 2006] which mixes soft arc consistency
techniques with tree decomposition methods.

4.8 Conclusions

It is a fundamental issue that search algorithms exploit the structure of the
constraint graph to improve its solving efficiency. Pseudo-tree search is a well

92

known algorithm that exploits pseudo-tree decomposition for CSP with two nice
properties: i) its time complexity is bounded by a structural parameter and ii)
its space complexity is polynomial. In this Chapter we have extended Pseudo-
tree search to WCSP, producing an algorithm that we call PT-PFC. We have
identified that this algorithm has a source of inefficiency which is due to bad
quality local lower and upper bounds of subproblems, an issue that we name
uncertainty gap. Even if the theoretical time complexity is bounded by the
pseudo height, in some cases usual PFC may perform better. To tackle this
problem we extend PT-PFC to the Russian Doll Techniques presented in Chapter
3 and provide an elegant solution to the uncertainty gap problem. As result of
this extension we produce two algorithms PT-RDS and PT-SRDS which we
prove to have substantial advantages over PT-PFC.

93

Part II

Complete Inference

Chapter 5

ADC with factorized
constraints

Complete Inference solves a CSP by performing a sequence of problem trans-
formations, until the problem can be trivially solved and the set of solutions is
obtained. An inference operation transforms the problem into an equivalent one
(in the remaining set of variables), deducing implicit constraints (constraints
that where implicit in the original problem formulation). The obtained problem
is supposed to be smaller or easier to solve.

Adaptive Consistency (ADC) is the basic Complete Inference algorithm for
solving CSP (see Section 2.2.2 of Chapter 2). ADC main operation is variable
elimination. The idea is constructing a constraint that is the join of all con-
straints in which the eliminated variable participates. Then the new constraint
can be added to the problem and the variable removed. ADC performs a se-
quence of variable eliminations until there is no variable left and the solution can
be trivially obtained. ADC has time and space complexity exponential on the
problem induced width (see Def. 2.10). When the induced width is not small,
ADC cannot be used because it exhausts the available memory. In this Chapter
we introduce a novel implementation of ADC that, in some cases is more efficient
in space. Our algorithm is based on two ideas:

(i) Negative constraints: ADC stores constraints as sets of permitted tuples.
However sometimes it may be more advantageous to store constraints as sets
of forbidden tuples. Forbidden tuples are called nogoods. When a constraint is
represented by a set of nogoods we call it negative constraint.

(ii) Factorized constraints: Sometimes constraints can be factorized (i.e. de-
composed) into a set of smaller arity constraints.

We incorporate both ideas inside ADC. We first experiment with ADC work-
ing exclusively with negative constraints. We show that it is rarely more efficient
than usual ADC. We then incorporate factorization. To factorize we propose an
alternative way of eliminating a variable. Instead of generating a constraint
that captures the join effect of the eliminated variable, we generate a set of con-

97

straints that have the same effect (forbids the same combinations) and does not
mention the eliminated variable. This is done by generating a set of constraints
expressed as sets of forbidden tuples. The new variable elimination process is
particulary advantageous if the eliminated variable is linked to many but very
loose constraints. The intuition is that, with the usual procedure, we generate
a large constraint expressing all the permitted assignments. It may be a better
option to record in that part of the problem the forbidden tuples instead of the
permitted ones. So in that case it may be a better option to eliminate a vari-
able building a set of negative constraints. [Sanchez et al., 2004b] We also show
that this procedure of variable elimination can be specialized for binary domain
variables to eliminate them in polynomial space.

5.1 ADC with negative constraints

ADC was explained in Chapter 2 Section 2.2.2. ADC performs a sequence of
variable eliminations. A variable is eliminated joining the constraints where it
appears and then projecting the variable out of the constraint. We consider
how constraints are implemented and how it affects its join and projection out
operations.

Constraint storage

A constraint c can be stored as a set containing all permitted tuples. The size
of a constraint c, denoted |c|, is its number of permitted tuples. If the set
is implemented as a hash table, c(t) can be retrieved in constant time. In the
following, we assume that constraints are stored as sets. Then, computing c ⇓ xi

has time complexity O(|c|). Regarding the join of two constraints c 1 v, there
are two basic ways to compute it: (i) iterate over all t ∈ c and t′ ∈ v and see
if they match, which has complexity O(|c||v|), and (ii) compute every tuple t
over var(c) ∪ var(v) and retrieve the c(t) and v(t) values, which has complexity
O(exp(|var(c)∪ var(v)|)). Since one can choose the best option beforehand, the
cost is O(min{|c||v|, exp(|var(c) ∪ var(v)|)}). Observe that the cost of previous
operations depends on the size of constraints.

Negative constraints

Usually, it is assumed that ADC stores constraints in positive form, that is, it
stores the set of permitted tuples. However, when constraints are very loose this
is not the best option. An alternative idea is to use constraints in negative form,
that is, storing the set of forbidden tuples. We note c− a constraint c stored in
negative form: if t ∈ c−, t is forbidden by the constraint. A positive constraint
can be negated ¬c = c− = {t | t /∈ c}. Double negation produces the original
set of tuples. Join and projection definitions can be easily extended to deal with
negative constraints:

c− 1 r− = {t · t′ | t ∈ c− ∨ t′ ∈ r−}

98

c− ⇓xi
= {t | ∀a ∈ Di, t · 〈xi, a〉 ∈ c

−}

Consequently, ADC can be redefined to work exclusively with negative con-
straints. Fig. 5.1 presents this new version, called ADC−. C− denotes a set of
constraints in negative form. ADC− is like standard ADC but original as well as
intermediate constraints are assumed to be negative. The only difference with
respect to ADC is that negative form join and projection is used.

function Var-Elim
−(xi, C

−)
1 B− ← {s− ∈ C−|xi ∈ var(s

−)}
2 c− ← (1s−∈B− s−) ⇓ xi

3 C− ← C− ∪ {c−} −B−

4 return C−

function ADC
−(℘)

1 X ← elimination-order(X)
2 for each xi ∈ X do

3 C− ← Var-Elim
−(xi, C

−)
4 return C−

Figure 5.1: Negative Adaptive Consistency pseudo-code.

ADC− has also space and time complexity exponential with respect to the
induced width of the problem. Although both ADC and ADC− have the same
complexities, the question is which one is more efficient in practice. We have
observed that it depends on the problem to be solved. Problems with loose
constraints are better solved with ADC− because ADC generates large positive
constraints. The opposite occurs for problems with tight constraints. This can
be observed in Fig. ?? (left), which shows the relative performance of ADC and
ADC− with respect to the number of tuples generated, for the random binary
class 〈n = 7,m = 5, p1 = 1〉 and varying tightness.

5.2 Factoring negative constraints

Definition 5.1 [factorize] A constraint c is factorized (also called decomposed)
into a set of constraint C if ∪s∈Cvar(s) = var(c) and,

c = 1
s∈C

s

In words we say that a constraint c is decomposed into a set of constraints C
if the join of all constraints in C has the same scope as c and permits the same
tuples as c. Using the stronger relation introduced in Chapter 2 we could say
that a constraint c is decomposed into a set of constraints C, if {c} 4 C and
C 4 {c}, thus in fact if {c} ≈ C. In addition, as the stronger relation is defined
for the common set of variables of both sides we must impose that the union of
scopes of constraints in C is the same as c.

Both, positive and negative constraints can be factorized in theory. However
in this Chapter we consider only factorization of negative constraints.

Next we introduce a new implementation of negative variable elimination,
Var-Elim−, which works in practice more efficiently than both ADC and ADC−.

99

It exploits the fact that nogoods can be factorized and small arity nogoods are
very powerful because they forbid many assignments. As a preliminary step, we
propose two new operations on constraints. The first operation is projecting out
a variable with memory.

Definition 5.2 [projecting out with memory]. Given a positive constraint
c and xi ∈ var(c), the result of projecting out xi from c with memory, denoted
ci = c ⇓m

xi
, is a set of pairs 〈S, T 〉 where S is a non-empty subset of Di and T is

a non-empty subset of tuples of c ⇓ xi. If t ∈ T , S is said to be its support set.
By definition, if t ∈ T then the support set S is,

S = {a ∈ Di | t · 〈xi, a〉 ∈ c}

In words, the union of all sets T are the tuples of the usual projection. Tuples
are grouped by their supporting set of values in the eliminated variable. Observe
that sets T are mutually disjoint, although this is not necessarily the case for
sets S.

Projecting out a variable with memory differs from standard projection in
that it remembers for each tuple those supporting values in Di. For convenience
in subsequent computations tuples with the same support set are grouped to-
gether. Note that ci is a constraint with memory about xi. Constraints with
memory are always in positive form. var(ci) returns the scope of ci which does
not include xi.

Example 5.1 Find at the top of the drawing below constraint c12 from the 5-
Queens problem. The valid tuple {〈x1, a〉, 〈x2, c〉} is shown in the 5-Queens board
on the right.

x1 x2

a

b

c

d

e

12 , , ,
 , , ,
 , , ,
 , ,

{

}

ac ad ae
bd be ca
ce da db
ea eb ec

c

112

m
xc 1 2: :

, ,
,
,
,
, ,

S x T x

c d e a
d e b
a e c
a b d
a b c e

x1 x2

a

b

c

d

e

The projection with memory c12 ⇓m
x1

= c112 is shown above. Each row of the
table is a pair 〈S, T 〉. The tuple {〈x2, a〉} and its support set S in x1 are indicated
on the 5-Queens board.

100

The second operation is inferring nogoods from constraints with memory.
Inferring nogoods can be applied to a single constraint with memory ci, noted
⊘ci, or to a pair of constraints with memory, noted ci ⊘ vi. In both cases it
returns a negative constraint. When applied to a single constraint it returns the
tuples that do not appear in ci. It returns the set of tuples t of c that have no
support in xi. See the following example,

Example 5.2 Find at the top of the drawing below constraint c12 from the 3-
Queens problem. The valid tuple {〈x1, a〉, 〈x2, c〉} is shown in the 3-Queens board
on the right.

x1 x2

a

b

c

12 ,{ }ac cac

1

2c 1 2: : S x T x

c a
a c

1

2 bc

The projection with memory c12 ⇓m
x1

= c12 and its inferred nogoods ⊘c12 are
shown above. The tuple {〈x2, b〉} is a nogood discovered by inferred nogoods
operation as it has no supporting value in domain of x1.

Definition 5.3 [inferred nogoods] Given two constraints with memory of xi,
ci and vi, their inferred nogoods, denoted ci ⊘ vi, is a set of tuples with scope
var(ci) ∪ var(vi) defined as,

{t · t′ | ∃〈S,T 〉∈ci ∃〈S′,T ′〉∈vi t ∈ T, t′ ∈ T ′, S ∩ S′ = ø}

In words, the inferred nogoods are those tuples that were permitted by either
ci and vi but are not permitted by their join. Observe that the operation ⊘
produces a negative constraint.

Example 5.3 Consider c12 and c15 two constraints of the 5-Queens CSP prob-
lem. See in the first column of the drawing below their projections with memory
of x1. On the right we show the result of applying inferred nogoods operation to
the two projections with memory, c112 ⊘ c

1
15.

51: :

, , ,
, , ,
, , ,
, , ,

S x T x

b c d a e
a c d e b
a b d e c
a b c e d

1 2: :

, ,
,
,
,
, ,

S x T x

c d e a
d e b
a e c
a b d
a b c e

112

m
xc

115

m
xc

1 2 5

 ,

: :

ce ca

S x T x x

 x1 x2 x5

a

b

c

d

e

101

The discovered nogoods are {〈x2, c〉, 〈x5, e〉} and {〈x2, c〉, 〈x5, a〉} (shown in
the 5-Queens board). This is because there are only two support sets that have an
empty intersection: {a, e} of c112 and {b, c, d} of c115 (highlighted in the drawing).

The join operation can be extended to constraints with memory. Joining two
constraints consists in combining the tuples which have non empty support sets
intersections:

Definition 5.4 [join with memory] Given two constraints with memory of
xi, c

i and vi, their join with memory, denoted ci 1 vi, is another projection
with memory defined as,

{〈S, T 〉 | ∃〈S′,T ′〉∈ci ∃〈S′′,T ′′〉∈vi S = S′ ∩ S′′ 6= ø, T = T ′
1 T ′′}

Example 5.4 Consider c12 and c15 two constraints of the 5-Queens CSP prob-
lem. See in the in the first column of the drawing below their projections with
memory of x1. On the right the result of joining with memory both constraints,
that is c125 = c112 1 c115.

112

m
xc 1 2: :

, ,
,
,
,
, ,

S x T x

c d e a
d e b
a e c
a b d
a b c e

115

m
xc 51: :

, , ,
, , ,
, , ,
, , ,

S x T x

b c d a e
a c d e b
a b d e c
a b c e d

1 2 5: :

, , ,

, ,
, , ,

,

,
, ,
, ,
,
, ,

,
, , ,

S x T x x

a db
a b dc dd ec

eb
a b c ed
a e cb cc cd

a c

b da de
b c ea ee
c d aa ae
c e ad
c d e ab
d ba be
d e ac bb bc

bde

x1 x2 x5

a

b

c

d

e

In the 5-Queens board on the right we show one tuple {〈x2, b〉, 〈x5, d〉} and
its support set of x1 {e}.

Property 5.1 (c 1 c′) ⇓m
x = c ⇓m

x 1 c′ ⇓m
x .

Proof. Notation: c ⇓m
x = {..., 〈Si, Ti〉, ...}, c

′ ⇓m
x = {..., 〈S′

j , T
′
j〉, ...}

c ⇓m
x 1 c′ ⇓m

x = {..., 〈S′′
k , T

′′
k 〉, ...}, (c 1 c′) ⇓m

x = {..., 〈Sl, Tl〉, ...}

⇒) If τ ∈ Tl and a ∈ Sl, then τ · 〈x, a〉 ∈ c 1 c′. We can write τ = t · t′, where
t = τ [var(c)−{x}] and t′ = τ [var(c′)−{x}]. Then, t ∈ Ti, t

′ ∈ T ′
j , and a ∈ Si∩S

′
j = S′′

k .
So, τ = t · t′ ∈ T ′′

k and a ∈ S′′
k .

⇐) If t′′ ∈ T ′′
k and a ∈ S′′

k , then t′′ = t · t′, with t ∈ Ti, t
′ ∈ T ′

j , a ∈ Si ∩ S
′
j . Then,

t′′ · 〈x, a〉 ∈ c 1 c′, so t′′ ∈ Tl and a ∈ Sl. 2

102

5.2.1 ADC with negative factorized constraints

We present now a new implementation of ADC− which factorizes negative con-
straints. The first step is to redefine the variable elimination using inferred
nogoods and projections with memory operations. We describe a new vari-
able elimination that instead of building a single negative constraint returns an
equivalent set of negative constraints that factorize it. Let us remember that
the motivation of such a new variable elimination is to reduce the memory con-
sumption, measured as total number of generated tuples.

In Fig. 5.2 we show the new algorithm that works with negative constraints
and performs factoring. Function Var-Elim−

factor receives as input a variable and

a set of negative constraints C−. First the bucket of constraints mentioning xi

is constructed (line 1) and its projections with memory computed in (line 2).
As the operation ⊘ discovers only new nogoods when applied to two constraints
projected with memory, initial nogoods of all functions have to be extracted
(line 3). Then, it joins constraints two by two (line 5,6) and extracts nogoods
(line 7). In practice joining and extracting nogoods (lines 6,7) can be done at
the same time. The negative constraint generated with the inferred nogoods is
added to set N− (line 7).

Property 5.2 The set of constraints returned by Var-Elim−factor(i, C
−) is

equivalent to (forbids the same tuples as) standard variable elimination.

Proof. Consider that we eliminate variable xi. The set of constraints in which

xi appears is B. The constraint that usual variable elimination Var-Elim returns is

g = (1c∈B c) ⇓ xi. The set of negative constraints that Var-Elim−factor returns is N−.

Applying property 5.1 we see that the unique constraint that remains in P when the

while finishes (line 4) is gi, with memory about xi. At each point that two constraints

ci and vi are joined, we extract in ci ⊘ vi those tuples which cannot belong to the join

because there is no common support in the eliminated variable. Therefore, the set N−

already contains the tuples that are forbidden by the initial constraints, and contains

the tuples that are discovered forbidden in the join process. So its union forbids the

same tuples as g. 2

function Var-Elim
−
factor(xi, C

−)

1 B− ← {c−|c− ∈ C−, xi ∈ var(c
−)}

2 P ← {(¬c−) ⇓m
xi
|c− ∈ C−, xi ∈ var(c

−)}
3 N− ← {⊘c|c ∈ P}
4 while |P | > 1 do

5 {ci, vi} ← extract-two(P)
6 P ← P ∪ (ci 1 vi)
7 N− ← N− ∪ (ci ⊘ vi)
8 return C− ∪N− −B−

function ADC
−
factor(℘)

1 X ← elimination-order(X)
2 for each xi ∈ X do

3 C− ← Var-Elim
−
factor(xi, C

−)

4 return C−

Figure 5.2: Negative Adaptive Consistency with Factorization.

103

Example 5.5 Let us consider the 3-Queens problem with the usual formulation.
It has three constraints with the following permitted tuples,

c12(x1, x2) = {ac, ca}, c13(x1, x3) = {ab, ba, bc, cb}, c23(x2, x3) = {ac, ca}.

Standard variable elimination of x1 first joins the positive constraint c12 and
c13, c12 1 c13 = {acb, cab}, and then projecting out x1 obtaining, (c12 1 c13) ⇓
x1 = {cb, ab}.

Next we proceed eliminating x1 with Var-Elim−factor(x1, {c
−
12, c

−
13, c

−
23}) Pro-

jecting out x1 with memory we get,

S : x1 T : x2

c12 = c12 ⇓m
x1

(x2) = {a} c

{c} a

S : x1 T : x3

c13 = c13 ⇓m
x1

(x3) = {a, c} b

{b} a, c

Then the projections with memory that have to be joined are P = {c12, c
1
3}. As

there are only two, only one iteration is needed to perform the variable elimi-
nation (line 4 of the algorithm). The join of both projections with memory is
actually not needed. Inferred nogoods operation suffices. Original and inferred
nogoods are,

n−
2 = ⊘c12 = {b} ⊘c13 = {} n−

23 = c12 ⊘ c13 =
{ca, cc,

aa, ac}

These three negative constraints are equivalent to the generated positive con-
straint by usual variable elimination.

Fig. 5.2 presents ADC−
factor. ADC−

factor receives as input a constraint

network 〈X,D,C−〉, where C− is a set of negative constraints. We substi-
tute the variable elimination operation that generates a positive constraint by
Var-Elim−factor. Variables are eliminated one by one. In ADC−

factor the bucket
of a variable is formed by negative constraints only, and the result of variable
elimination is a new set of negative constraints. When processing a bucket,
some of these constraints are turned positive (when projecting out the variable
to eliminate).

Example 5.6 Let us see in detail how the process works in the 4-Queens prob-
lem, with the usual formulation: columns are variables and rows are values
a, b, c, d. The initial constraints of the problem are:

c12(x1, x2) =
{ac, ad, bd,

ca, da, db}

c13(x1, x3) =
{ab, ad, ba, bc,

cb, cd, da, dc}

c14(x1, x4) =
{ab, ac, ba, bc, bd,

ca, cb, cd, db, dc}

c23(x2, x3) =
{ac, ad, bd,

ca, da, db}

c24(x2, x4) =
{ab, ad, ba, bc,

cb, cd, da, dc}

c34(x3, x4) =
{ac, ad, bd,

ca, da, db}

None of them generates original nogoods (⊘c1ij = ∅). Elimination of x1:

104

S : x1 T : x2

{a} c

c12 = {a, b} d

{c, d} a

{d} b

S : x1 T : x3

c13 = {a, c} b, d

{b, d} a, c

S : x1 T : x4

{a, b, d} c

c14 = {a, c, d} b

{b, c} a, d

S : x1 T : x2x3

{a} cb, cd, db, dd

p1
23 = c12 1 c13 = {b} da, dc

{c} ab, ad

{d} aa, ac, ba, bc

n−
23 = c12 ⊘ c13 =

{bb, bd, ca, cc}

n−
2,3,4 = p1

23 ⊘ c14 =

{aaa, aad, abc, aca,

acd, adc, baa, bad,

bca, bcd, cba, cbd,

cda, cdd, dab, dba,

dbd, dcb, dda, ddd}

Bucket B2 = {c−23, c
−
24, n

−
23, n

−
234}. Two constraints have the same scope, c−23 and

n−
23, so we perform its join and leave the result in c−23. Now, B2 = {c−23, c

−
24, n

−
234}.

Elimination of x2:

S : x2 T : x3

p2
3 = {a} c, d

{d} a, b

S : x2 T : x4

c24 = {a, c} b, d

{b, d} a, c

S : x2 T : x3x4

{a, b} ba, da, bd, dd

q2
34 = {a, b, c} ab, cb

{b, c, d} bc, dc

{c, d} aa, ca, ad, cd

S : x2 T : x3x4

p2
34 = p2

3 1 c24 = {a} cb, cd, db, dd

{d} aa, ac, ba, bc

n−
34 = p2

3 ⊘ c224 =
{ab, ad, bb, bd,

ca, cc, da, dc}

m−
34 = q2

34 ⊘ p2
34 = {ba, cd}

Bucket B3 = {c−34, n
−
34,m

−
34}. The three constraints have the same scope, so we

perform its join as their union, producing n−
34. Now, B3 = {n−

34}. Elimination
of x3:

S : x3 T : x4

p3
34 = {a} c

{d} b

The x4 variable is trivially eliminated. The problem has solution which can be
obtained assigning variables in reverse order.

105

Example 5.7 Find on top of the drawing below the constraint graph of the 5-
Queens problem. Underneath we show the effect of eliminating variable x1 with
algorithms ADC, ADC− and ADC−

factor.

x
1

x
5

x
4 x

3

x
5 x

2

x
4 x

3

x
2

x
5

x
2

x
3

x
4

| | 33c

| | 120c

ADC ADC

| | 340c

factor

x
5

x
2

x
4 x

3

| | 285c

ADC

44 4

3

On the left ADC constructs a constraint c with |c| = 340 tuples. In the middle
we show the constraint c− obtained by ADC− which has |c−| = 285 tuples. If
we sum positive tuples generated ADC plus negative tuples of ADC− we obtain
the total number of tuples 54 = 625. The constraint obtained by the elimination
of the first variable is quite loose in the n-Queens problem. It can be seen as n
grows that the number of generated negative constraints decreases with respect
to positive ones. Finally on the right ADC−

factor eliminates x1 and obtains two

negative constraints |c−| = 120 and |c−| = 33.

5.2.2 Variable Elimination of binary domain variables

When a variable has binary domain and it is exclusively linked by binary con-
straints, it can be eliminated in polynomial time and space. It can be seen that
this fact is analogous to what has been observed in the SAT field to applying a
resolution rule when a variable only appears in binary clauses. In [Bacchus, 2002]
the usual search algorithm for SAT, Davis and Putnam is enhanced with this
rule. Observe that disjunctive clauses are like negative constraints as they for-
bid a particular combination of values: so for example xi ∨ xj is saying that the
assignment xi ← false, xj ← false is forbidden. Our result may be stronger
than SAT as the eliminated variable can be linked by variables of arbitrary do-
main. In fact the procedure that we describe can also be generalized to a binary
domain variable linked by constraints of any arity, but then the polynomial time
and space is not guaranteed.

With the techniques developed in the previous section we can extend the
resolution rule used for SAT into CSP. Suppose a variable xi with a binary
domain Di = {a, b} is only involved in binary constraints cij . If we express the
effect of eliminating xi with one positive constraint c (as ADC would do) it will
contain large arity tuples. Similarly, if we express the effect of eliminating xi

with one negative constraint c− (as ADC− would do) it will contain large arity

106

nogoods. However, these nogoods can always be factorized into nogoods of size
less than or equal to two.

Property 5.3 Consider variable xi with domain Di = {a, b} linked only by
binary constraints cij. xi can be eliminated with a collection of nogoods of size
at most 2 because larger arity nogoods can always be factorized by smaller ones.

Proof. Let us suppose that there can exist a nogood of size three that cannot be

factorized with smaller nogoods. This means that three variables linked to xi by a

binary constraint are the cause of a nogood that cannot be factorized by a nogood

between any two of them or by any nogood of size one. As the variable xi has a binary

domain Di = {a, b} all projections with memory of these three binary constraints

cij ⇓
m
xi

are of the form 〈{a}, T 〉, 〈{b}, T 〉 〈{a, b}, T 〉; either one value supports a tuple

either the other one, or both. Let us remember that a nogood is generated when an

empty intersection of support sets is present. Tuples supported by both values can be

discarded as they cannot generate an empty intersection, so are always factorized by

smaller ones. We observe that if a ternary nogood exists then a ternary intersection

of support sets must exist. So three support sets must generate an empty intersection.

Support sets are of the form either {a} or {b}. Thus at this point we have encountered

a contradiction as it is not possible to generate an empty intersection of three support

sets of this form. For example: {a} ∩ {b} ∩ {a} = ø but {a} ∩ {b} is also empty.

Thus we conclude that our first supposition is false. It is not possible to generate a

ternary nogood that is not factorized by a binary or unary one because all ternary

empty intersections of supports sets have a smaller binary empty intersection or where

already forbidden by a unary nogood. 2

When domains are binary all nogoods can be factored into binary and unary
no-goods. It is sufficient to compute all possible binary generated nogoods be-
tween every pair of projections with memory and we are done; the resulting set
of negative constraints forbids exactly the same tuples as eliminating the vari-
able with a usual procedure. When domains are ternary Di = {a, b, c} this does
not happen as we can generate nogoods of arity 3. When domains are ternary
supports sets can be of the form {ab}, {ac}, {bc}, {a}, {b} and {c}. For example,
{ab} ∩ {ac} ∩ {bc} = ø and has no smaller empty intersection.

Now, we aim at eliminating variable xi producing an equivalent problem.
The idea is that when a variable has a binary domain and it is linked only to
binary constraints we can replace its effect generating all possible nogoods of
size 1 and 2 of the variables it is linked to (all xj such that cij ∈ C). All the
generated unary and binary negative constraints, when joined together forbid
the same tuples as the positive constraint that would generate a usual variable
elimination.

An algorithm to implement such an elimination is shown in Fig. 5.3. It is
based on the operations projection with memory and inferred nogoods defined
in previous sections. It first generates all projections with memory mentioning
variable xi (set P i of line 2). After generating all possible nogoods of size 1 (line
3) proceeds generating all new nogoods of size 2, that is all possible combinations
two by two between the projections with memory in P i and adding them to the

107

set N− (line 6). At this point N− forbids the same tuples as the constraint that
a usual variable elimination would generate.

function Bin-Var-Elim
−
factor(xi, C

−)

1 B− ← {c−|c− ∈ C−, xi ∈ var(c
−)}

2 P ← {c− ⇓m
xi
|c− ∈ C−, xi ∈ var(c

−)}
3 N− ← {⊘c|c ∈ P i}
4 for each ci ∈ P do

5 for each vi ∈ P, vi 6= ci do

6 N− ← N− ∪ (ci ⊘ vi)
7 return C− ∪N− −B−

Figure 5.3: Variable Elimination with negative factorized constraints for binary

domain variables.

Algorithm Bin-Var-Elim−factor has polynomial time and space complexities

O(n2d2). A variable is linked to a maximum of n− 1 binary constraints. Loops
in lines 4,5 take the projections with memory of these constraints two by two, so
perform a maximum of

(

n−1
2

)

iterations. Every negative constraint generated by
the nogoods extraction operation has a maximum size d2, being d the maximum
domain size.

Example 5.8 Consider the 4-Queens problem below where the the domain of x2

is D2 = {b, c}. Find in the the drawing below the board, its associated constraint
graph and the set of constraints,

1x

3x

2x

4x

x 4 x 3 x 2 x 1

a

b

c

d

b

c

c24(x2, x4) =

{ba, bc, cb, cd}

c12(x1, x2) =

{ac, db}

c23(x2, x3) =

{bd, ca}

We eliminate x2 using Bin-Var-Elim−factor. We compute the projections with
memory of constraints involving x2:

S : x2 T : x1

c21 = {c} a

{b} d

S : x2 T : x3

c23 = {c} a

{b} d

S : x2 T : x4

c24 = {b} a, c

{c} b, d

If we generate all possible inferred nogoods we obtain the problem on the left,
if we proceed usually summing all constraints and projecting, we obtain problem
on the right:

108

1x

3x

4x

c21 ⊘ c23 = {ad, da}

c21 ⊘ c24 = {aa, ac, db, dd}

c23 ⊘ c24 = {aa, ac, db, dd}

⊘c21 = {b, c}

⊘c23 = {b, c}

1x

3x

4x

c24 1 c23 1 c12 =
c4321 = {adbd, cdbd,

baca, daca}
c4321 ⇓ x2 = {add, cdd,

baa, daa}

If we join all generated negative constraints after the inferred nogood it can
be seen that is the exact negation of the constraint c4321 generated in a usual
variable elimination.

Property 5.4 Eliminating a binary domain variable with Bin-Var-Elim−factor

operation can have exponential saving in space with respect to Var-Elim.

Proof. Imagine a binary variable x0 with domain D0 = {a, b} linked to n variables of
domain size d by n binary inequality constraints c0j where j = 1..n. A usual variable
elimination would join all the n constrains and then project x0. Joining all constraints
has as result a n arity positive constraint of size 2(d − 1)n that has exponential size.
Let’s look now at Bin-Var-Elim

−
factor . The unary inferred nogoods ⊘c0j produce no

nogoods as we can always find a support for all values xj . The projections with memory
is of the form:

S : x0 T : xj

c
j
0 = {a} b, c, d, ...

{b} a, c, d, ...

The intersection between support sets {a} ∩ {b} produce an empty intersection,

so the tuples {ba, bc, bd, ..., ca, cc, cd, ...} are added as nogoods between any pair of

variables xj . The total size of these constraints is
`

n

2

´

d2 which is polynomial. 2

5.3 Experimental Evaluation

In the experiments we compare ADC, ADC− and ADC−
factor. We focus in

evaluating the memory that the algorithms spend by the successive variable
eliminations. Time is also reported to justify that in any case the improvements
in memory are substituted by an unacceptable amount of CPU time.

5.3.1 Random, SAT and n-queens problems

When eliminating a variable ADC−
factor adds a linear number of new constraints

with respect to the size of the bucket. So the sequence of joins is an impor-
tant decision. We have worked on several heuristics and two showed to bring
substantial benefits: minimum resulting arity and maximum expected nogoods
generated. The first one selects the two functions of smaller scope. The sec-
ond one selects the two functions that have smaller support sets in its tables
of memory projection, smaller supports are intended to produce more empty
intersections.

109

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

 tu
pl

es
 p

er
 s

ol
vi

ng

p2 (tightness)

random n=7, m=5, p1 = 1

ADC
ADC-

ADC-F

Figure 5.4: Results for the random binary class 〈n = 7, m = 5, p1 = 1〉.

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300

m
ax

 tu
pl

es
 p

er
 s

ol
vi

ng

number of clauses

sat n=15, length of a clause = 5

ADC
ADC-

ADC-F

Figure 5.5: Results for 5-SAT instances.

Random problems are defined in Appendix A.1.1. With random problems
the advantages of ADC−

factor with respect to ADC can be controlled by the

tightness and the connectivity of the generated problems. ADC−
factor has its

greater gain when the tightness is inferior to 0.5 and connectivity is close to
1. In that case, a gain of 3 orders of magnitude in memory consumption is
reached. Connectivity is also an important parameter because combined with
loose constraints can make a variable elimination very expensive for ADC. We
observed in our experiments that no matter the connectivity of the graph, the
positive representation is more advantageous when tightness is greater than 0.5
. This can be seen in Figure 5.4 on the left where ADC and ADC−

factor lines
cross.

Satisfiability benchmark is defined in Appendix A.1.2. An extreme case of
loose constraints is the SAT problem modeled as a CSP using the model of one

110

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 1 2 3 4 5

tu
pl

es

variable eliminations

ADC n-queens (n=4..n=7)

n=4
n=5
n=6
n=7

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7

tu
pl

es

variable eliminations

ADC-F n-queens (n=4..n=8)

n=4
n=5
n=6
n=7
n=8

Figure 5.6: Number of tuples spent by ADC (on top) and ADC−
factor (bottom) when

solving different instances of the n-queens problem.

variable per logical variable, and each clause a constraint with a single negative
tuple (the combination that forbids the clause) [Walsh, 2000]. In Figure 5.5 we
can appreciate a gain of 3 to 1 orders of magnitude as the number of clauses
grows (in this case the connectivity of the graph also grows). It is interesting to
notice that ADC−

factor maintains a constant gain of one order of magnitude even
when the number of clauses grows, that is because there is a single forbidden
tuple in every constraint.

In n-Queens problem (see example 2.1), at each elimination we have to build
a constraint involving all the variables because each variable is related to all
other variables. In this case, the heuristic minimum arity did not produce much
benefits. The heuristic minimum number of expected tuples reduced consider-
ably the number of tuples, a bit less than an order of magnitude. The factoring
does not have any effect for small arity constraints because when n grows, no-
goods also grow in size. For example, the smallest nogoods different from those
contained in the original constraints for 8-queens are of arity 4. Figure 5 reports

111

 0.01

 0.1

 1

 10

 0 1 2 3 4 5

cp
u

variable eliminations

ADC n-queens (n=5..n=7)

n=5
n=6
n=7

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7

cp
u

variable eliminations

ADC-F n-queens (n=5..n=8)

n=5
n=6
n=7
n=8

Figure 5.7: CPU time spent by ADC (on top) and ADC−
factor (bottom) when solving

different instances of the n-queens problem.

the results of this experiment. ADC−
factor generates 6.93 times less tuples and

is about 30 times faster. In the 8-queens the first elimination is the most ex-
pensive. We have tested all the instances until the program ran out of memory.
ADC−

factor could solve one more instance than ADC, that is shown in Fig. ??
as the line execution corresponding to n = 8 does not appear in the ADC plots.

5.3.2 Discussion

Although ADC is inefficient with loose constraints, ADC− offers no improve-
ments in practice. Only when constraints to join are really loose (for example in
random problems when tightness is below 0.1), ADC− improves over ADC. The
intuitive reason is that, when ADC joins two constraints the resulting number
of tuples is bounded by t2. This is not the case for ADC−, where the negative
version of join generates an exponential number of tuples with respect to the
non-common variables.

112

ADC−
factor deals also with negative information. The difference with ADC−

is that at every two by two join it generates a negative constraint filled with
nogoods that will in fact factorize other bigger nogoods that will not appear
lately. ADC−

factor can perform a linear number of those factorizations at every
bucket. This set of factorized negative constraints when joined together are equal
to the negation of the positive constraint that ADC would generate. Imagine
a variable linked by many loose constraints. ADC generates a single constraint
containing all the allowed combinations. Instead, ADC−

factor generates a set of
negative constraints that contain the factorized forbidden combinations. For
example, if a single value is forbidden at any moment it only appears once
inside a unary constraint. Moreover it can be proved that in very special cases,
the elimination of a variable may not generate a constraint of arity equal to
all its neighbors when performing ADC−

factor, but a smaller arity constraint.
This advantage of factoring nogoods raises the power of eliminating a variable
linked by loose constraints and can reach gains of several orders of magnitude
in random problems and SAT, and of one order of magnitude in n-Queens and
Shur’s lemma.

ADC−
factor joins constraints in the bucket and generates constraints of no-

goods at the same time. At the last join, when only two constraints remain,
ADC−

factor only needs to generate nogoods as the positive join is subsumed by
all the generated nogoods. Because of this fact we can always choose a constraint
of the bucket that when computing its projection with memory its completely
permitted tuples (the ones that are supported by every value of the eliminated
variable) will be skipped. This constraint will be the one of largest arity. When
projecting with memory a negative constraint, we can compute at the same time
the ⊘ operation (that is the tuples that are forbidden by all values of the elim-
inated variable) and also the tuples supported by all values of the eliminated
variable.

5.4 Related Work

The idea of factoring a constraint is not new. In other contexts it is called
decomposing a constraint. Certain classes of non-binary constraints are ”de-
composable” as they can be represented by binary constraints on the same set
of variables. In [Gent et al., 1999] some implicit global constraints, like all-diff
are identified as decomposable into smaller binary constraints. Then search
techniques are applied to problems with global and decomposed constraints to
experiment their different behavior. Our approach applies factorization to ex-
plicit constraints and is oriented to complete inference methods.

5.5 Perspectives of future work

In this Chapter we experimented with the advantages of solving a problem deal-
ing with negative information instead of the usual way which uses positive infor-

113

mation. We described a process to factorize constraints into smaller arity con-
straints. It would be interesting to investigate the effect of factorization in other
more complicated implementations of explicit constraints. Binary Decision Dia-
grams BDD [Bryant, 1986] and Algebraic Decision Diagrams ADD [Bahar, 1993]
are examples of other implementations of explicit constraints that could exploit
the advantages of factorization. [Sachenbacher and Williams, 2005] suggests to
use these representations and performs some experiments on the memory savings
that can be obtained.

The idea of factoring constraints lead us in Section 5.2.2 to a new inference
rule, that can eliminate binary domain variables linked by binary constraints in
polynomial time and space. This rule can be generalized to variables linked to n-
ary constraints and to larger variable domains loosing the polynomial complexity.
It would be interesting to experiment in which cases such a generalization would
be applicable. Moreover, it is possible to exploit this fact inside search. In
[Larrosa, 2000] a variable is eliminated during search if it has a degree inferior
to a desired constant. As we assign variables during search variables decrease its
degree, so elimination can be performed dynamically. We can also exploit the
rule of Section 5.2.2 when a variable has binary domain during search.

5.6 Conclusions

The theoretical complexity of ADC is exponential with respect to the width
of the induced graph, which is very sensitive to the arity of constraints and
does not take into account its tightness. In this work, we show how sensitive is
ADC not only to the arity but also to the tightness of constraints. Especially,
very loose constraints and variables linked to many loose constraints can make
the algorithm impractical in many cases. We have described ADC−

factor that
eliminates a variable by returning a set of constraints that does not mention
that variable and that represent a set of factorized nogoods in such a way that
variables are eliminated in a compact way, sometimes with exponential savings.
As general conclusion, when constraints have more permitted than forbidden
tuples, ADC−

factor is the preferred choice. Otherwise, when constraints have
more forbidden that permitted tuples, classical ADC may perform better.

114

Chapter 6

Constraint Filtering

ADC is the basic Complete Inference algorithm for solving CSP. ADC has an
exponential spatial and temporal complexity with respect to the induced width
(see Def. 2.10). The previous Chapter describes an alternative ADC that works
with negative factorized information. It permitted to make savings in the mem-
ory usage of ADC. In this Chapter we continue in that direction, trying to reduce
even further the amount of memory spent by Complete Inference methods. We
introduce the idea of Filtering which consists in anticipating tuples that will be-
come inconsistent when joined with other constraints of the problem, thus they
can be deleted from their initial constraints. Filtering allows us to make use
of parts of the problem to delete tuples of other parts. One could say that we
are doing the equivalent to look-ahead during search but in an inference context
where the goal is to reduce memory storage instead of pruning branches and re-
ducing time. To our knowledge, this idea has never been exploited in Complete
Inference algorithms. As we will see this idea has great impact in the variable
elimination operation. Now when eliminating a variable, apart from the con-
straints that it is linked to, other parts of the problem can play an important
role: they can be used as filters.

We also describe an idea that lead us to filtering. We call it Delaying Variable
Elimination and it consists in relaxing the order in which classical ADC performs
computations. Variable elimination is no longer viewed as an atomic process and
is broken into its smaller steps that are not necessarily executed sequentially.
We perform cheap joins right away, while expensive joins are delayed until the
constraints have decreased their size due to other computations.

We incorporate filtering and delayed variable elimination into ADC and
we prove the effectiveness of the obtained algorithm in various problems
[Sanchez et al., 2004a].

115

function ADC-DVE(X,D,C)
1 while C 6= {λ} do

2 if ∃xi ∈ X s.t. |{c ∈ C | xi ∈ var(c)}| = 1 then

3 X ← X − {xi}; D ← D − {Di}; C ← C ∪ {c ⇓ xi} − {c}
4 else

5 xi ← choose-variable(X)
6 B ← {c ∈ C| xi ∈ var(c)}
7 {p, q} ← extract-two(B)
8 c← p 1 q
9 if c = ø return false
10 else C ← C ∪ {c} − {p, q}
11 return true

Figure 6.1: Adaptive consistency delaying variable elimination algorithm.

6.1 ADC and Delayed Variable Elimination

Let us recall that ADC consists in a sequence of problem transformations. At
each step one variable from the problem is eliminated, while maintaining the
equivalence of the problem. The elimination of a variable (see Def. 2.9) is
described here in four operations i) we compute the constraints that mention the
variable (i.e, its bucket). ii) we join all constraints in the bucket. iii) Then the
variable is projected out of the resulting constraint. iv) The original constraints
of the bucket and the new constraint are replaced in the set of constraints of the
problem. We split here the join and projection in two operations as it will be
convenient for the new presented algorithm. That’s because variable elimination
operation is no longer seen as a indivisible operation. ADC is redefined as a
sequence of two by two joins, and variable eliminations when possible.

We consider (following Section 5.1 of previous Chapter) the assumption that
constraints store the set of permitted tuples. Thus different joins of constraints
may have different complexities (measured in terms of number of generated tu-
ples) depending on the nature of constraints, if their share variables, etc. For
this reason we aim at performing the most restrictive joins first, to keep mem-
ory usage as low as possible. We present the algorithm ADC with delaying
variable elimination (ADC-DVE). This algorithm performs, like ADC, joins of
constraints and eliminates variables. But differently from ADC, joins and vari-
able eliminations are decoupled. One can start joining two constraints in one
bucket, continue joining in another bucket, etc. The only condition it imposes
is that as soon as one variable is mentioned by one constraint only, then that
variable is eliminated. Given that we are allowed to perform joins of constraints
that are not in the current bucket we call this idea delayed variable elimination.
Taking advantage of DVE may produce exponential savings in memory. We
show it with the following example.

Example 6.1 Find on the drawing below a constraint graph with four variables.
Every variable has a domain of d values. x1 is linked to x2, x3 and x4 with

116

inequality constraints. Thus c12, c13 and c14 have d(d− 1) tuples. x2, x3 and x4

are linked with equality constraints. Thus c23, c24 and c34 have d tuples. First
we eliminate x1 as standard ADC would do. We join all constraints in which x1

participates c12 1 c13 1 c14 and obtain a constraint c1234 = {abbb, abbc, ...} with
d(d − 1)3 tuples.

2x 3x

4x

1x

=

==

12 13 14cc c { , ,..., ,

,..., , ,...}

ab ac ba

bc ca cb

23 24 34cc c { , , ,...}aa bb cc

Delaying the elimination of x1 we have the chance of joining the equality
constraints as soon as possible to reduce memory storage. So for example we
join c12 1 c23 = c′123 and obtain a constraint with d(d − 1) tuples. We then
join c′123 1 c13 and obtain the same constraint c′123. If we finally join c34 and
c14 with c′123 we obtain a constraint with the same number of tuples d(d − 1).
Performing cheap joins right away and delaying the elimination of x1 has in
this case exponential memory savings as the needed space to eliminate x1 is
polynomial.

ADC-DVE appears in Fig. 6.1. It receives as parameters the sets of vari-
ables, domains and constraints, and returns true if a solution exists and false
otherwise. ADC-DVE iterates until the set of constraints has been reduced to
the empty tuple λ (line 1). If there exists a variable xi mentioned by a single
constraint c (line 2), this variable is projected out from the constraint and fi-
nally eliminated from the problem. This is done replacing such a constraint c
by c ⇓ xi (line 3). If all variables participate in two or more constraints then
ADC-DVE selects a variable (line 5). Its bucket is computed (line 6) and two
constraints p, q of its bucket are selected and joined (lines 7, 8). If the resulting
constraint c is empty, the problem has no solution and returns the empty set
(line 9). Otherwise, p, q are replaced by c (line 10).

Different heuristics can be used for variable and constraint selection. We first
select the variable that it is linked to less constraints. Then we select for joining
the two constraints that are more tight.

The main difference with respect to standard ADC is that we join constraints
and we project a variable when it only appears in one constraint. Consider a
CSP ℘ = 〈X,D,C〉 such that here is a variable xi ∈ X which only appears in
a single constraint. Consider the CSP ℘′ obtained from ℘ by projecting out
variable xi from this constraint. ℘ and ℘′ are equivalent in the remaining set
of variables. Projecting out a variable from its unique constraint is the simplest
case of variable elimination, the bucket only contains this constraint and no join
is needed it can be directly projected out from the constraint.

ADC-DVE can be seen as an algorithm that performs a sequence of joins and
variable elimination. Given a problem, a join of a subset of its constraints always

117

produces an equivalent problem. For variable elimination, the only requirement
for correctness is that this operation cannot be done if more than one constraint
mentions the variable to be eliminated.

The number of constraints decreases monotonically, and as soon as a variable
is mentioned by a single constraint it is eliminated. Given that the number of
constraints and variables is finite, the algorithm terminates.

Example 6.2 Find on the drawing below a sequence of constraint graphs that
illustrate a possible execution of ADC-DVE on the 5-Queens problem. ADC-
DVE starts choosing variable x1. The initial graph is shown at first place. The
set of functions linked to x1 is B = {c12, c13, c14, c15}. The first two constraints
from B are selected and joined obtaining c123. At this point standard ADC would
continue joining constraints from B but ADC-DVE is able to select variable
x2 and join constraints c123 and c23. The rest of the sequence of joins and
projections is shown below,

c12 1 c13 c123 1 c23 c123 1 c14

c1234 1 c34 c1234 1 c24 c1234 1 c15 c12345 ⇓ x1

c2345 1 c25 c2345 ⇓ x2
c345 1 c35 c345 1 c45

x2

x1 x3

x4

x5

x2

x1 3 x3

x4

x5

x2

x1 3 x3

x4

x5

x2

x1 4 x3

x4

x5

x2

x1 4 x3

x4

x5

x2

x1 4 x3

x4

x5

x2

x1 5 x3

x4

x5

x2

4 x3

x4

x5

x2 4 x3

x4

x5

3 x3

x4

x5

x3 3 x4

x5

x3 3 x4

x5

118

When only one constraint remains, the problem has a solution if this contraint
is non empty.

6.2 ADC and Constraint Filtering for CSP

Delayed variable elimination allows to join tight constraints as soon as possible.
In a way we are using other constraints of the problem that are unreachable
for usual ADC when eliminating a variable. This idea lead us to what we call
constraint filtering which is more powerful than DVE and that permits us to use
groups of constraints of other parts of the problem.

6.2.1 Constraint Filtering

We now introduce the constraint filtering operation, which allows us to reduce
the size of a constraint c before operating with it. The idea is to anticipate
the detection of tuples that will become inconsistent when joined with other
constraints of the problem in order to remove them from the constraint.

Definition 6.1 [constraint filtering] Let c be an arbitrary constraint and H
a set of constraints such that ∀h∈H var(h) ⊆ var(c). The filtering of c with
respect to H is a new constraint cH with the same scope as c that contains all
the tuples of c permitted by every constraint of H. Formally,

cH(t) =

{

true c(t) ∧ ∀h∈H h(t)

false otherwise

We are under the assumption that constraints only store permitted tuples
(following Section 5.1 of previous Chapter), thus filtering a constraint with a set
of filtering constraints may delete tuples of it.

Example 6.3 Find on the drawing below a constraint graph with three variables.
Every variable has a domain Di = {a, b, c}. x1 is linked to x2 and x3, x1 6= x2

and x1 6= x3. x2 and x3 are linked by x2 < x3 (in lexicographic order).

2x 3x

1x

<

12 13c c { , , ,

, , }

ab ac ba

bc ca cb

23c { , , }ab ac bc

We can filter constraint c12 by using c23. Take for example c23 ⇓ x3 = {a, b}. We
then apply filtering c12

{c23⇓x3} and obtain c′12 = {ab, ba, ca, cb}. Tuples {ac, bc}
have been eliminated as value c is not permitted by the filtering function c23 ⇓ x3.

The filtering can also be applied to a join operation. Then the tuples that
are forbidden by the filters are never stored.

119

Definition 6.2 Consider two constraints p, q and a set of filtering constraints
H. We call joining p and q with filters H, noted p 1 qH a new constraint which
is the join of both constraints where tuples forbidden by the filters H have been
deleted.

We present a simple algorithm for joining two constraint with a set of filtering
functions in Fig. 6.2. It receives as input two constraints p and q and the filtering
set H . It returns as result the joined functions. The algorithm iterates over all
tuples in p and all tuples in q. If the concatenation t · t′ is defined then it checks
if the resulting tuple is permitted by all functions in H .

function join-F(p, q,H)
1 c← ø
2 for each t ∈ p do

3 for each t′ ∈ q do

4 if t · t′ is defined then

5 if ∀h∈Hh(t · t
′) then c← c ∪ {t · t′}

6 return c

Figure 6.2: Join with filters algorithm.

Example 6.4 Consider the constraint graph of previous example 6.3. We per-
form the join c12 1 c13 = {abb, abc, acb, acc, baa, bac, bca, bcc, caa, cab, cba, cbb}
and obtain a constraint with 12 tuples. Now if we perform the same join filtering
with constraint c23, c12 1 c13

{c23} = {abc, bac, cab} we obtain a constraint where
all the tuples where x2 is lexicographically greater or equal than x3 have been
eliminated. The eliminated tuples have never been stored in memory.

Filtering permits us to reduce memory storage of certain constraints by using
other constraints of the problem. Suppose that we know that a constraint c
will be eventually joined with constraint v. If there is a tuple t ∈ c such that
t · t′ will not be permitted by the join of both constraints for any t′ ∈ v, we
can safely remove t from c right away. The following Property formalizes the
previous observation. Remember from Def. 2.7 that a constraint stronger than
a set of constraints means that the tuples that the constraint forbids are also
forbidden by the join of all constraints in the set.

Property 6.1 Let c (resp. s) be a constraint and C (resp. S) sets of con-
straints such that c is stronger than C, C 4 {c}, and s is stronger than S,
S 4 {s}. When joining c and s, if we previously filter each constraint the result
is preserved. Namely,

cS 1 sC = c 1 s

Besides, the join is done with constraints of smaller size. Thus, it is presum-
ably done more efficiently.

120

Proof. Suppose that constraints in S when joined together produce the universal

constraint that permits all tuples. Then S 4 {s} and of course cS = c. Now suppose

that constraints in S forbid a number of tuples. These tuples, or any extension of them,

are forbidden by s because S 4 {s}. If we eliminate these tuples from c, cS , we obtain

a constraint with less permitted tuples than c, so |cS | < |c|. Then when joined with s,

cS
1 s, we obtain the same as c 1 s because s forbids all the tuples of constraints S

and possibly more. The same argument applies for the dual case sC . 2

The following property shows that filtering constraints can be safely brought
inside joins, anticipating the detection of nogoods and reducing the size of con-
straints.

Property 6.2 Let c and s be two constraints, and H a set of filtering con-
straints. We have that,

c 1 sH = cH 1 sH
H

Proof. It is correct to filter both constraints with the filtering set of functions because

the eliminated tuples would also be eliminated after the join. Moreover by doing so we

may reduce the size of the join. It is necessary to perform a final filtering join because

they may be some functions h ∈ H that have scope bigger than var(c) and bigger than

var(s). 2

The following property shows that constraints that served as filters can be elim-
inated from the problem.

Property 6.3 If var(h) ⊆ (var(c) ∪ var(s)), then c 1 s{h} = (c 1 s) 1 h.

Proof. Considering c 1 s{h}, when generating every tuple of the join of c and s it is

stored only if it is permitted by constraint h. Considering (c 1 s) 1 h, we first store in

a temporal constraint all the tuples permitted by c 1 s and then delete all the tuples

forbidden by h with a second join. 2

The worst case when joining constraints with filters happens when filters
do not remove any tuple of the standard join. In this case, joining with filters
uses the same space as standard join. Thus, joining two constraints with filters
never uses more space than standard join. Moreover it may produce exponential
savings in space. Let us illustrate it with an example. Let p and q be constraints
such that var(p) ∩ var(q) = ∅ and let h be a filter, var(h) ⊂ (var(p) ∪ var(q)).
Let t ∈ p a tuple. When performing p 1 q, tuple t generates |q| tuples in
the join. If t is not allowed by h, when performing p 1 q{h} saves |q| tuples, a
number that is bounded above by d|var(q)|. Therefore, joining with filters may
save exponential space.

6.2.2 Adding Filtering into ADC-DVE

We include filtering into ADC-DVE. The corresponding algorithm is noted ADC-
DVE-F and appears in Fig. 6.3. It is essentially the same algorithm as ADC-
DVE but when joining two constraints a set H of constraints is used for filtering.

121

function ADC-DVE-F(X,D,C)
1 while C 6= {λ} do

2 if ∃xi ∈ X s.t. |{c ∈ C | x ∈ var(c)}| = 1 then

3 X ← X − {xi}; D ← D − {Dx}; C ← C ∪ {c ⇓ xi} − {c}
4 else

5 xi ← choose-variable(X)
6 B ← {c ∈ C| xi ∈ var(c)}
7 {p, q} ← extract-two(B)
8 H ← {c ∈ C| var(c) ⊆ (var(p)∪ var(q))}

9 c← p 1 qH

10 if c = ø return false
11 else C ← C ∪ {c} − {p, q} −H
12 return true

Figure 6.3: Adaptive consistency with delayed variable elimination and filtering.

H includes all the constraints of the problem that are included in the scope of
the resulting constraint of the join (line 8). Then join is performed with filtering
p 1 qH (line 9). Functions used as filters can be removed from C (line 11)

Example 6.5 Find on the drawing below four constraint graphs that illustrate
the execution of ADC-DVE-F on the 5-Queens problem. Under each constraint
graph the operation to obtained is indicated. Dashed constraints are the ones
used as filters at each step.

c12 1 c13
H

H = {c23}

= {ace, adb,

aeb, bda, bea,

bec, cad, ceb,

dac, dae, dbe,

ead, ebd, eca}

c123 1 c34
H

H = {c14, c24}

= {cadb, dace,

daeb, dbec, ebda,

aceb, ecad, adbe,

bdac, bead, beca,

cebd}

c1234 1 c45
H

H = {c15, c25, c35}

= {bdace, ecadb,

adbec, cebda,

becad, daceb,

cebda, cebda,

acebd, dbeca}

x2

x1 x3

x4

x5

x2

x1 3 x3

x4

x5

x2

x1 4 x3

x4

x5

x2

x1 5 x3

x4

x5

The first constraint graph is the initial problem. ADC-DVE-F first selects
x1 and all the constraints it is linked to, B = {c12, c13, c14, c15}. From this set
it selects c12 and c13 and computes their filtering set H = {c23}. The result
c12 1 c13

{c23} is shown below the second constraint graph. The constraint that

122

has acted as filter disappears. If we had used no filter the resulting constraint
would had |c12 1 c13| = 34 tuples, 20 tuples have been discarded. Let’s see now
the advantages of DVE. Following ADC algorithm now we would be obliged to
join one of these three constraints B = {c123, c14, c15}. As we are in ADC-DVE
we have the freedom to join two constraints of another variable we choose now
x3 which in fact has a constraint more tight than x1 that is c34 because involves
consecutive variables. A filter exists for this join H = {c24, c34}. In the final
step we perform the join with the more tight constraint of x5, c45. A filter exists
for this join H = {c15, c35, c25}. The result is all the solutions without removing
symmetries of the problem. Notice that no elimination (projection) of a variable
was necessary. In fact the algorithm can stop when there is only one constraint
left in the problem.

6.2.3 Filtering and negative factorized constraints

In previous Chapter 5 we described an ADC that works with negative factorized
constraints, we call it ADC−

factor. It is possible to combine the idea of filtering
with negative factorized constraints.

In Section 6.2 we introduced the join with filtering operation c 1 rH that was
able to use other constraints of the problem (constraints in set H) to filter tuples
of the result of joining c and r reducing memory storage. This idea can also be
used in conjunction with negative constraints and also factoring. If we generate
a nogood that is already factorized by a smaller nogoods it can be discarded.

Property 6.4 When used as filters constraints can be either positive or nega-

tive. So p 1 q{c} has the same time and space complexity as p 1 q{c−}.

Proof. The space and time complexity of a join with filtering is dependant only on

the two joined constraints as we can ask in constant time if a certain generated tuple

is forbidden by the filter independently of being positif or negative. 2

This fact suggests that negative and positive constraints can coexist without
the necessity of being joined until negative constraints can serve as filters of a
join of positive constraints. In this sense negative constraints may play the role
of exceptions. There are usually few exceptions, so there is no point in working
with them as positive, but rather use exceptions as filters of positive information
when possible.

Example 6.6 Consider the constraint hypergraph of 4 variables and d values
per variable of the drawing below. All binary constraints are equality constraints.
There is one four arity constraint that forbids only one combination of values.
This four artiy constraint can be considered as an exception, a particular com-
bination that we don’t want to be in the set of solutions.

c
−
1234

= {aaaa}

4

x1 x2 x3 x4

123

ADC is forced to eliminate variable x1 by joining all its positive constraints.
If we want to join c−1234 and r12 and obtain as result a positive constraint we
have to negate the negative constraint ¬c−1234 = c1234. The resulting positive
constraint has |c1234| = d4 − 1 tuples. Let’s compute the join c1234 1 r12. The
resulting constraint has d3 − 1 tuples. The idea that we suggest in this Section
would be to work separately with negative and positive information. We join all
positive constraints and when possible we use negative constraints as filters: first
we join r12 1 r23 = r123 and obtain a constraint with d tuples. We then perform

the join with filters r34 1 r123
c
−
1234 obtaining a constraint with d − 1 tuples. In

this synthetic example we gain an exponential number of tuples because in the
first case we store a maximum of d3 − 1 and in the second case only d.

6.3 Experimental Evaluation

We tested three algorithms: ADC, ADC-DVE (ADC with delayed variable eval-
uation) and ADC-DVE-F (with filtering) in two classes of problems, n-Queens
and Schur’s lemma. Experimenters are focused in evaluating the memory con-
sumption of all algorithms, although time is reported to justify that in any case
the improvements in memory are substituted by an unacceptable amount of CPU
time. The usual cause of non-solvability of an instance was always running out of
memory (we assumed a memory limit of 2,000,000 tuples) for all the algorithms
and the two type of problems. We put the emphasis on the different algorithmic
behavior. No computation of the induced width of the graph is done.

6.3.1 N-Queens

The n-queens problem is described in example 2.1. The constraint graph is a
clique (every variable is connected with all the others) and cliques have induced
width wopt = n−1. ADC time and space complexity is exponentially dependent
on this parameter.

In Fig. 6.4 on the top ADC instances from n = 4 to n = 7 which was the
highest dimension that could be solved. n = 8 runs out of memory in the first
variable elimination. The peak in the plots is the number of tuples just before
the first variable elimination. The first elimination is always the most expensive
in number of tuples and for increasing n it grows exponentially. Time plot in the
right is not very relevant because the lack of memory is reached very quickly.

In the middle we have results for ADC-DVE. The jagged shape in the plot is
due to the storage of joins that afterwards can be filtered by smaller constraints
because we can delay the evaluation of the current variable and perform the
filtering joins of other constraints in the problem. Because of this property we
can solve instances up to n = 11.

At the bottom, we report results for ADC-DVE-F. The plots of tuples get
smoother because the filtering joins are included in each join as filters. Observe
that last point in each line has a number of joins equal to the n − 2. The last

124

point in each line for n-queens also represents the total number of solutions
without removing symmetries. We observe that it grows exponentially as n
grows. Instances up to n = 13 could be solved. We reached a gain of 6 orders of
magnitude with respect to standard ADC, increasing domain size and variable
number.

6.3.2 Schur’s Lemma

The shur lemma problem is described in Appendix A.1.3. In the modelisation a
particular variable appears in few constraints (usually n−1 constraints) of arity
3, but of different scopes. In fact with this modeling each increasing n implies
the addition of three new binary variables.

The Schur’s lemma instances are not cliques, so ADC-DVE-F performs pro-
jections also, that explains the jagged shape in the tuples plot (see Figure 6.5).
Peaks and descends are due to projections. A number of tuples greater than
0 in the last point of every line implies the existence of solutions. When we
have performed projections this number is not necessarily the total number of
solutions. The whole set of solutions can be obtained as in ADC by consistently
extending the consistent tuples found in the last step. When applying filtering
(ADC-DVE-F) as constraints in the filter can disappear, sometimes it is not nec-
essary to project until one variable is left, we can stop when only one constraint
is left in the problem. The tuples in that constraint are all the set of solutions
of that part of the problem. This fact explains why in the tuple plots last points
in the line do not go down as in ADC or ADC-DVE plots. ADC-DVE-F is able
to solve problems 14 dimension bigger than ADC.

6.3.3 Discussion

In the instances on which ADC runs out of memory, it exhausts memory very
quickly, so time plots are superfluous. For both problems, the first unsolved
instance by ADC-DVE also runs out of memory, n-queens doing it more quickly
than Schur-lemma instances. The number of performed joins (x axis) for ADC
and ADC-DVE is equal to the initial number of constraints minus one. ADC-
DVE-F performs much less joins. In a n-clique binary graph ADC-DVE-F per-
forms n − 2 joins with 1 to n − 1 filters each one. The fact that the tuples of
temporal joins are not stored and that all the constraints in the filter can be
deleted from the problem gives a clear advantage in time and memory space
to ADC-DVE-F. In n-queens, ADC-DVE-F could solve problems 6 dimensions
bigger than ADC: In Schur’s lemma ADC-DVE-F could solve problems 14 di-
mensions bigger than ADC.

6.4 Conclusions

The importance of decomposition methods in general, and ADC in particular,
is often considered as purely theoretical, since most constraint satisfaction prob-

125

lems have a high induced width. While this is true in general, we believe that
their true potential is still to be discovered. Some authors have studied how
the limitation of these algorithms can be overcomed by using them in a re-
stricted way (producing hybrid algorithms). In this paper we follow a different
approach, since we think that not enough effort has been made to develop ef-
ficient implementations. We have proposed two modifications to the standard
ADC definition with which its time and space efficiency can be greatly improved.
First, we have shown that computations can be re-arranged and the expensive
ones can be delayed with the hope that the involved relations may have their
size decreased in the mean time. We call this idea delaying variable elimination.
Second, we have shown that joins involving small arity constraints, which can be
efficiently computed, can be anticipated in order to detect and filter out tuples
from large arity constraints, where the exponential cost of the algorithm is more
likely to become apparent. Any of these ideas can bring exponential saving over
ADC. Our preliminary experimental results are very promising: time and space
requirements of ADC may decrease several orders of magnitude. Therefore, the
number of real problems where ADC can be applied may increase.

126

0.1

1

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 tu

pl
es

number of joins

n queens (ADC)

n=4
n=5
n=6
n=7

0.1

1

10

100

1000

0 2 4 6 8 10 12 14 16 18 20

tim
e

in
 s

ec
on

ds

number of joins

n queens (ADC)

n=4
n=5
n=6
n=7

0.1

1

10

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60

nu
m

be
r

of
 tu

pl
es

number of joins

n queens (ADC-DVE)

n=4
n=11

0.1

1

10

100

1000

0 10 20 30 40 50 60

tim
e

in
 s

ec
on

ds

number of joins

n queens (ADC-DVE)

n=4
n=11

0.1

1

10

100

1000

10000

100000

1e+06

0 2 4 6 8 10 12

nu
m

be
r

of
 tu

pl
es

number of joins (with filters)

n queens (ADC-DVE-F)

n=4
n=13

0.1

1

10

100

1000

0 2 4 6 8 10 12

tim
e

in
 s

ec
on

ds

number of joins (with filters)

n queens (ADC-DVE-F)

n=4
n=13

Figure 6.4: Plots on the left are number of stored tuples in the actual join (log

scale and we assume a maximum value 2,000,000). Plots on the right are cpu time.

X axis is the number of performed joins. Top: ADC. Middle: ADC-DVE. Bottom:

ADC-DVE-F. Plotted lines are instances that could be solved

127

0.1

1

10

100

1000

10000

100000

1e+06

0 5 10 15 20 25 30 35

nu
m

be
r

of
 tu

pl
es

number of joins

shur’s lemma, n balls 3 boxes (ADC)

n=4
n=5
n=6
n=7

0.1

1

10

100

1000

0 5 10 15 20 25 30 35

tim
e

in
 s

ec
on

ds

number of joins

shur’s lemma, n balls 3 boxes (ADC)

n=4
n=5
n=6
n=7

0.1

1

10

100

1000

10000

100000

1e+06

0 50 100 150 200 250

nu
m

be
r

of
 tu

pl
es

number of joins

shur’s lemma, n balls 3 boxes (ADC-DVE)

n=4
n=18

0.1

1

10

100

1000

0 50 100 150 200 250

tim
e

in
 s

ec
on

ds

number of joins

shur’s lemma, n balls 3 boxes (ADC-DVE)

n=4
n=18

0.1

1

10

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60

nu
m

be
r

of
 tu

pl
es

number of joins (with filters)

shur’s lemma, n balls 3 boxes (ADC-DVE-F)

n=4
n=21

0.1

1

10

100

1000

0 10 20 30 40 50 60

tim
e

in
 s

ec
on

ds

number of joins (with filters)

shur’s lemma, n balls 3 boxes (ADC-DVE-F)

n=4
n=21

Figure 6.5: Plots on the left are number of stored tuples in the actual join (log scale

and we assume a maximum value 2,000,000). Plots on the right are cpu time. X axes

is the number of performed joins. Top: ADC executions. Middle: ADC-DVE. Bottom:

ADC-DVE-F. Plotted lines are instances that could be solved.

128

Chapter 7

Function Filtering

In this Chapter we extend the idea of filtering (introduced in the previous Chap-
ter 6) from the context of CSP to WCSP. In WCSP, and without loss of gener-
ality, we can assume the existence of an upper bound ub, a maximal acceptable
cost that we are willing to pay. Then the inconsistency of a tuple can be defined
with respect to this upper bound. If the cost of a tuple exceeds ub then it is
inconsistent. As we show ub is used to delete inconsistent tuples (i.e., tuples
that we know for sure that they don’t belong to an optimal solution). Bucket
Elimination (BE) [Dechter, 1999] is the extension of ADC to WCSP and it is
defined in Section 2.4.2. We incorporate delayed variable elimination and a new
definition of filtering using ub to BE.

We also extend the idea of filtering. Apart from functions of the original
problem, manipulations of functions (projected functions or summed functions,
or constant lower bounds) can also be used as filters. We take a new framework to
develop this idea, Cluster Tree Elimination (CTE) [R.Dechter and J.Pearl, 1989]
which is an algorithm that generalizes the Complete Inference algorithms ex-
plained up to the moment. BE for example can be seen as a particular execu-
tion of CTE. We introduce filtering into CTE. In this context, whole parts of the
problem, namely, clusters of functions and manipulations of them, can be used
as filters. We also develop an iterative approximation of CTE which computes
a sequence of iterations of increasing complexity, reusing the previous iterations
as filters [Sanchez et al., 2005a, Sanchez et al., 2005b].

7.1 From Constraint to Function Filtering

The central idea of filtering for CSP was to detect and remove tuples that will
become inconsistent when joined with other constraints of the problem. Follow-
ing [Larrosa and Schiex, 2004] in WCSP we assume without loss of generality a
maximal acceptable cost, an upper bound (ub) of the problem. We suppose this
ub is given to us or can also be obtained with local search techniques. Thus we
can redefine the concept of consistency with respect to this ub. A tuple that has

129

cost greater than ub is inconsistent as we know it cannot belong to an optimal
solution.

We consider now how functions are stored. In Chapters 5 and 6 we made the
assumption that constraints are stored as sets of tuples for the CSP context (see
for example Section 5.1). Analogously to the CSP case its is considered here
that a function f is stored as a set of all its tuples with its associated cost. We
make now the additional assumption that tuples that have cost ub or greater are
not stored in the function. Then, if a tuple is not present in the constraint we
know that it has cost ≥ ub. If a function is implemented as a hash table, f(t)
can be retrieved in constant time. We note |f | the number of tuples of f that
have a cost less than ub.

7.1.1 Function filtering

Function filtering operation is the extension of constraint filtering to WCSP.
Function filtering allows to detect tuples of a function that will reach ub when
summed to other functions of the problem. Thus they can be deleted from the
function.

Definition 7.1 [function filtering] Let f be an arbitrary function and H a
set of functions such that ∀h∈H var(h) ⊆ var(f). The filtering of f with respect

to H is a new constraint f
H

with the same scope as f and where tuples that
have reached cost ub with the addition of the cost assigned by functions in H
have been assigned cost ub. Formally,

f
H

(t) =

f(t)
(

⊕

h∈H

h(t)
)

⊕ f(t) < ub

ub otherwise

Analogously to CSP we give a simple algorithm for summing two functions with
filtersH (see Fig. 7.1). It receives as input two functions f and g and the filtering

setH . It returns as result f + g
H

, the summed functions. The algorithm iterates
over all tuples in f and all tuples in g. If the concatenation t · t′ is defined then
it checks if the resulting tuple does not reach cost ub when its costs is summed
with all the costs returned by functions in H .

function sum-F(f, g,H)
1 for each t ∈ f do

2 for each t′ ∈ g do

3 if t · t′ is defined then

4 lb← f(t) + g(t′) +
P

h∈H
h(t · t′)

5 if lb < ub then f ′(t · t′)← f(t) + g(t′)
6 return f ′

Figure 7.1: Sum with filters algorithm.

130

Properties presented for CSP can be extended to WCSP. Suppose that we
know that f will be eventually summed with g. If there is a tuple t belonging
to f such that for every tuple t′ we have that (f + g)(t · t′) ≥ ub then, we can
safely remove t from f right away. The following property is the extension to
WCSP of property 6.1 and formalizes the previous observation.

Property 7.1 Let f (resp. g) be a function and F (resp. G) a set of functions
that are a lower bound of f (resp. g) (F ≤ f and G ≤ g). When summing
f and g, if previously we filter each function with the lower bound of the other
function, the result is preserved. Namely,

f
G

+ gF = f + g

Besides, the sum is done with functions of smaller size in terms of numbers
of tuples. Thus, it is presumably done more efficiently.

Proof. Analogous to property 6.1. 2

The following property is the extension to WCSP of property 6.2 and shows
that filtering functions can be safely brought inside summations, anticipating
the detection of nogoods and reducing the size of functions.

Property 7.2 Let f and g be two constraints, and H a set of functions. We
have that,

f + g
H

= f
H

+ gH
H

Proof. Let us evaluate tuple t in the left expression: t has cost f(t)+g(t)+
P

h∈H
h(t).

If this cost reaches ub, then the tuple is deleted from the result, if not the resulting

cost is f(t) + g(t). Let us evaluate tuple t in the right expression. We first evaluate

f(t) +
P

h∈H
h(t) and leave the cost of f(t) untouched if it does not reach ub. Same

thing for g(t) +
P

h∈H
h(t). We then finally evaluate f(t) + g(t) +

P

h∈H
h(t). As

before, if this cost reaches ub we delete the tuple but if not the cost remains f(t)+g(t).

So finally only the tuples that finally reached ub where deleted in both sides, but in

the right they may be presumably deleted earlier. Notice that for the filtering to be

applied in a correct way functions f and g must not belong to the set H , if this was

the case, the same cost could be considered twice. 2

Example 7.1 Let us consider en example of WCSP inspired form the crossword
puzzle. Find on the left of drawing below a crossword puzzle that can be modeled
with a variable per cell and a constraint per each vertical and horizontal slot.
Each variable takes values in all possible letters so each variable xi has |Di| = 26
values. Its constraint hyper-graph is shown in the middle. All constraints are
shown in the right. Each tuple is assigned a cost. Tuples that are not present
have cost ub =∞.

131

x0

v1 ↓

x1

u1 →

x2 x3 x4

v2 ↓

x5 x6

x7

u2 →

x8 x9

u1

u2

v1
v2

x0

x6

x9

x1 x3 x4

x7

x5

x2

x8

4

4

3

3

u1 x1 x2 x3 x4

0 z e r o

1 o r e z

4 f o u r

5 r u o f

5 f i v e

6 e v i f

9 n i n e

10 e n i n

u2 x7 x8 x9

1 o n e

2 e n o

2 t w o

3 o w t

6 s i x

7 x i s

10 t e n

11 n e t

v1 x0 x2 x5 x7

0 z e r o

1 o r e z

4 f o u r

5 r u o f

5 f i v e

6 e v i f

9 n i n e

10 e n i n

v2 x4 x6 x9

1 o n e

2 e n o

2 t w o

3 o w t

6 s i x

7 x i s

10 t e n

11 n e t

Function u1 with scope var(u1) = {x1, x2, x3, x4} has 264 potential tuples but
as we only record consistent tuples we have |u1| = |u2| = 8. Functions u1 and
u2 do not share any variable so |u1 + u2| = 64. If we set ub = 5, this causes
that some tuples of u1 and u2 become inconsistent and they can be eliminated.
For instance, this is the case of tuple five of u1. Now |u1| = 3 and |u2| = 4. To
compute |u1 + u2| = 8, we need 3 ∗ 4 = 12 operations. We use Property 7.1, we
take as G the function u2 ⇓ {x7, x8, x9}, that is, G = {u2 ⇓ {x7, x8, x9}} = {1}

(G is a lower bound of u2). Therefore, |u1
G
| = 2. Filtering with G allows us to

detect that tuple ”four” with u1(four) = 4 becomes a nogood with the sum of
G (it reaches ub = 5) and can be eliminated. Therefore, we only need 2 ∗ 4 = 8
operations to compute the sum.

7.1.2 Bucket Elimination with Function Filtering

Bucket Elimination (BE) is the extension of ADC for WCSP. BE is presented in
Chapter 2 in Section 2.4.2. The inclusion of filtering into BE is straightforward.
It is the natural extension to WCSP of ADC-DVE-F (see Fig. 6.3). With respect
to ADC-DVE-F, join is replaced by sum, projecting out is replaced by projecting
out by minimization, the empty tuple is replaced by a constant and constraint
filtering is replaced by function filtering. We obtain BE-DVE-F presented in Fig.
7.2. BE-DVE-F has four input parameters: the set of variables X , the collection
of domains D, the set of constraints C and the upper bound ub. BE-DVE-F
returns true if a solution exists and false otherwise.

Another issue differentiates both algorithms. Property 6.3 of CSP constraint
filtering states that a constraint that is used as filter can be eliminated from the
problem because it is equivalent to joining it. This property is false for WCSP.
In CSP after filtering a join of two constraints with the set of constraints H such

132

that ∀h∈Hvar(c) ⊆ (var(c)∪var(v)), that is, c 1 vH , we can discard constraints
in H . This is not the case for WCSP as filtering operation for WCSP leaves the
cost of the filtered function unmodified. Filtering only deletes tuples that have
reached ub. So the filtering functions have to be summed at some point to take
into account its cost.

BE-DVE-F iterates until the set of functions contains a single 0-arity func-
tion (a constant) (line 1). Then checks if there is variable linked to a single
constraint, if there is it can be projected out (line 3). If not it chooses a vari-
able and computes the set functions in which it appears B (lines 5,6). It selects
two functions from B and computes their filtering set of functions, excluding
functions from B themselves (line 8). This exclusion of functions in B was not
necessary for CSP. BE-DVE-F continues joining the two constraints with filter-
ing (line 9). If it has found an empty function then returns with no solution. In
other case it eliminates both functions from the set of constraints, but the set H
remains on C because it must be summed at some point (differently from CSP).

function BE-DVE-F(X,D,C, ub)
1 while C 6= {cte} do

2 if ∃xi ∈ X s.t. |{c ∈ C | xi ∈ var(c)}| = 1 then

3 X ← X − {xi}; D ← D − {Di}; C ← C ∪ {f ⇓ xi} − {f}
4 else

5 xi ← choose-variable(X)
6 B ← {f ∈ C| xi ∈ var(f)}
7 {g, k} ← take-two(B)
8 H ← {f ∈ C −B | var(f) ⊆ (var(g) ∪ var(k))}

9 h← g + k
H

10 if h = ø then return false
11 else C ← C − {g, k}+ {h}
12 return true

Figure 7.2: Bucket Elimination with filtering algorithm.

7.2 Tree Decomposition Methods: CTE and
MCTE

We introduce now tree decomposition methods, CTE and MCTE, with the aim
of adding function filtering to them. CTE extends BE algorithm in the sense
that BE can be seen as a particular instance of CTE [Kask et al., 2006].

7.2.1 Tree decomposition

A tree decomposition of a CSP and a WCSP is a clustering of functions of C such
that clusters are linked if they share variables and form an acyclic tree network.
In a cluster we keep variables and functions. The maximum number of variables

133

in a cluster is a parameter of the degree of cyclicity of the constraint graph. The
definition slightly differs for the CSP and WCSP case (see the following property
7.3). Formally we have,

Definition 7.2 [tree decomposition] A tree decomposition for a CSP ℘ =
〈X,D,C〉 is a triplet 〈T, χ, ψ〉, where T = 〈V,E〉 is a tree. χ and ψ are labeling
constraints which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and
ψ(v) ⊆ C that satisfy the following conditions:

1. For each constraint c ∈ C, there is at least one vertex v ∈ V such that
f ∈ ψ(v). In addition var(c) ⊆ χ(v).

2. For each variable x ∈ X, the set {v ∈ V |x ∈ χ(v)} induces a connected
subtree of T .

Property 7.3 Tree decompositions for WCSP tighten condition (1) by re-
quiring that any function f ∈ C must appear in exactly one vertex v ∈ V of the
decomposition (see [Dechter, 2003]).

Definition 7.3 [tree-width, separator, eliminator] The tree-width of a tree
decomposition is the maximum number of variables in a vertex minus one tw =
maxv∈V |χ(v)| − 1. Let 〈u, v〉 be an edge of a tree-decomposition, the separator
of u and v is sep(u, v) = χ(u)∩χ(v). We will call s the maximum separator size
s = max〈u,v〉∈E |sep(u, v)|. The eliminator of u and v is defined as elim(u, v) =
χ(u)− sep(u, v).

Example 7.2 Find on the left of the drawing below a clustering of the functions
of the constraint graph of example 7.1. A shaded region represents the cluster-
ing of functions u1 and u2. Another shaded region represents the clustering of
functions v1 and v2. In the right we show the tree decomposition associated with
this clustering. Vertex u of the tree decomposition contains horizontal functions
u1 and u2, and vertex v contains vertical functions v1 and v2.

() 1, 2u u u

1 2 3 4

7 8 9

, , , ,
()

, ,

x x x x
u

x x x

() 1, 2v v v

0 2 5 7

4 6 9

, , , ,
()

, ,

x x x x
v

x x x

u v

134

7.2.2 Cluster Tree Elimination

Cluster-Tree Elimination (CTE) is a generic algorithm that can be used for
CSP and WCSP solving and unifies most complete inference algorithms such as
Bucket Elimination. In the following we focus on the WCSP case. CTE solves
a WCSP by sending messages along the edges of the tree decomposition of the
problem. Concepts presented in this Section are more extensively described in
[Dechter, 2003].

Given a tree decomposition 〈〈V,E〉, χ, ψ〉, every edge 〈u, v〉 ∈ E has associ-
ated two messages that we denote m〈u,v〉, from u to v, and m〈v,u〉, from v to u.
Message m〈u,v〉 is a function computed summing all functions in ψ(v) with all
incoming messages except from m〈v,u〉 and then projecting out the variables in
u not mentioned by v, that is variables in elim(u, v). Consequently, m〈u,v〉 has
scope sep(u, v).

In Fig. 7.3 we present the CTE algorithm. It receives as input a WCSP
instance W , a tree decomposition and the upper bound ub. CTE computes and
sends two messages associated to each edge of the tree decomposition. CTE re-
turns the structure of all computed messages. The solution can be then obtained
from these messages.

CTE iterates over all edges such that all their incoming messages but one
have arrived (line 1). It gathers the set of functions to be summed (line 2)
and performs their sum (line 3). Then before sending the message to node v
all variables that are not mentioned by v (these are the variables in elim(u, v))
have to be projected out from the message (line 3). The algorithm finishes when
all messages have been computed. The algorithm then returns the structure
including all computed messages. Then, the optimal cost of solving the problem
can be computed at every node. It suffices to sum all functions in the node
including all incoming messages and if there are tuples with cost < ub in the
resulting function we know that these tuples can be extended to an optimal
solution. To actually obtain these solutions we can proceed analogously as ADC
or BE. In fact, the sum of all tuples of minimum cost that we can obtain in every
cluster is the set of all optimal solutions.

procedure CTE(W, 〈〈V,E〉, χ, ψ〉, ub)
1 repeat select 〈u, v〉 ∈ E s.t. all incoming m〈i,u〉 but one (m〈v,u〉) have arrived
2 B ← ψ(u) ∪ {m〈i,u〉 | 〈i, u〉 ∈ E, i 6= v}
3 m〈u,v〉 ← (

P

f∈B
f) ⇓ elim(u, v)

4 send m〈u,v〉

5 until all m〈i,u〉 have been computed

Figure 7.3: The CTE algorithm.

The complexity of CTE is time O(edtw+1) and space O(eds) where e is the
number of edges of the tree decomposition, tw is the tree-width, d is the largest
domain size and s is the maximum separator size.

135

Example 7.3 In the drawing below we show the tree decomposition of example
7.2 with the 2 CTE messages associated to edge 〈u, v〉.

u

() 1, 2u u u

1 2 3 4

7 8 9

, , , ,
()

, ,

x x x x
u

x x x

v
1 3 8

 (,)

(1 2) , ,

m u v

u u x x x

0 5 6

 (,)

(1 2) , ,

m v u

v v x x x

() 1, 2v v v

0 2 5 7

4 6 9

, , , ,
()

, ,

x x x x
v

x x x

Once the messages have been sent we can compute the optimal cost of solving
the problem in any of the two nodes. For example, in v the minimum cost of
the sum v1 + v2 +m〈u,v〉 is the optimal cost. To actually obtain the whole set of
solutions we could sum v1 + v2 +m〈u,v〉 and u1 + u2 +m〈v,u〉.

Let us now state a property that will help understanding the approximation
algorithm based on CTE that we describe in the next section. Let T (u, v) (resp.
T (v, u)) denote the subtree of T containing the connected component containing
vertex u (resp. v) after the removal of edge 〈u, v〉.

Property 7.4 m〈u,v〉(t) is equal to the minimum cost of extending tuple t to
the subproblem formed by variables and constraints of clusters in T (u, v).

7.2.3 Mini Cluster-Tree Elimination

Mini-Cluster-Tree Elimination (MCTE(r)) is an approximation algorithm based
on CTE. When the number of variables in a cluster is too high, it is not possible
to compute a single message that captures the joint effect of all functions of
the cluster plus all incoming messages due to memory limitations. In this case,
MCTE(r) computes a lower bound of the problem by limiting by a constant r
the arity of the functions sent in the messages. This is because we cannot afford
to compute one single function that is of high arity and then project it.

A MCTE(r) message, noted M〈u,v〉, is a set of functions that approximate
the corresponding CTE message m〈u,v〉 (namely M〈u,v〉 ≤ m〈u,v〉). It is
computed as m〈u,v〉 but instead of summing all functions of set B (line 2 of
CTE algorithm in Figure 7.3), it computes a partition P = {B1, B2, ..., Bp} of
B such that the sum of the functions in every Bi does not exceed arity r. Then
it computes M〈u,v〉 from P by summing all functions in every partition and
projecting out from each resulting function the variables not mentioned by node
v. The MCTE(r) algorithm is obtained replacing line 3 of the CTE algorithm
by the following lines,

136

3.1 P ← partitioning(B, r)
3.2 M〈u,v〉 ← {(

P

f∈Bi
f) ⇓ elim(u, v) | Bi ∈ P}

MCTE(r) time and space complexity is O(dr).

Example 7.4 In the drawing below we show the tree decomposition of exam-
ple 7.2 with the messages that MCTE(2) sends. The arity of the functions to
compute is limited to 2. All functions in the constraint graph already exceed
this arity thus we set the partition of functions such that each function is in a
different partition. We set P = {{u1}, {u2}} for sending message M〈u,v〉, and
P = {{v1}, {v2}} for sending message M〈v,u〉.

u

() 1, 2u u u

1 2 3 4

7 8 9

, , , ,
()

, ,

x x x x
u

x x x

v

,

1 3 81 , , 2

u v
M

u x x u x

,

0 5 61 , , 2

v u
M

v x x v x
() 1, 2v v v

0 2 5 7

4 6 9

, , , ,
()

, ,

x x x x
v

x x x

Observe that now messages are sets of functions that does not exceed the
specified arity.

7.3 Tree Decomposition with Function Filtering

Now we integrate the idea of filtering into the CTE schema. First, we define a
filtering tree-decomposition which adds a new labeling φ to a tree-decomposition
that is used for filtering purposes.

Definition 7.4 [filtering tree-decomposition] A filtering tree-decomposition
of a WCSP is a tuple 〈T, χ, ψ, φ〉 where:

• 〈T, χ, ψ〉 is a tree-decomposition as in definition 7.2.

• φ is a labeling. φ(u, v) is a set of functions associated to edge 〈u, v〉 ∈ E
with scope included in sep(u, v). φ(u, v) must be a lower bound of the
corresponding m〈u,v〉 CTE message (namely, φ(u, v) ≤ m〈u,v〉).

Example 7.5 In the drawing below we show a tree decomposition of example
7.2 where we have added a possible filtering set of functions φ(v, u).

u

() 1, 2u u u

v

() 1, 2v v v

0 5

6

1 ,

2

v x x

v x
(,)v u

137

The new algorithms CTEf and MCTEf(r) use a filtering tree decomposition.
They are essentially equivalent to CTE and MCTE(r) except in that they use
φ(u, v) as filtering functions before computing the message m〈u,v〉 or M〈u,v〉.
The pseudo-code of CTEf is obtained by replacing line 3 of the algorithm by line,

3 m〈u,v〉 ←
P

f∈B
f

φ(u,v)
⇓ elim(u, v)

Similarly for MCTEf(r) we replace line 3 by two lines,

3.1 P ← partitioning(B, r)

3.2 M〈u,v〉 ← { (
P

f∈Bi
f)

φ(u,v)
⇓ elim(u, v) | Bi ∈ P }

The effectiveness of the new algorithms depends on the ability of finding good
lower bounds φ(u, v) for the messages m〈u,v〉 (resp. M〈u,v〉). If we use dummy
lower bounds (i.e, φ(u, v) = ∅, for all 〈u, v〉 ∈ E), CTEf (resp. MCTEf(r)) is
clearly equivalent to CTE (resp. MCTE(r)). It is important to note that the
algorithms are correct as long as φ(u, v) is a true lower bound which can be com-
puted with either a domain-specific or general technique (see [Givry et al., 1997]
[Cabon et al., 1998] [Dechter et al., 2001] for a collection of general lower bound
techniques). An option is to include in φ(u, v) all the original functions used to
compute m〈v,u〉 properly projected,

φ(u, v) = {f ⇓ S| f ∈ ψ(w), w ∈ T (u, v), S = var(f)− χ(u)}

Our CTEf and MCTEf implementations use this lower bound.

Example 7.6 Consider the WCSP and the filtering tree decomposition of previ-
ous example 7.5. CTE solves the problem by sending message m〈u,v〉. Functions
u1 and u2 of node u have to be added. Functions in φ(v, u) are a lower bound
of m〈v,u〉 and are,

v1 ⇓ {x0, x5} x2 x7

0 e o

1 r z

4 o r

5 u f

5 i e

6 v f

10 n n

v2 ⇓ x6 x4 x9

1 o e

2 e o

2 t o

3 o t

6 s x

7 x s

10 t n

11 n t

First we compute u1 + u2. Since they have no variables in common |u1 +
u2| = 8.8 = 64. Now we use the functions in φ(v, u) as filters. We com-

pute u1 + u2
φ(v,u)

. By property 6.2 we can bring filtering to a deeper level

u1
φ(v,u)

+ u2
φ(v,u)

φ(v,u)

. First consider ub = ∞. Let’s evaluate the result of

u1
φ(v,u)

and u2
φ(v,u)

. Values t, s, x of the domain of variable x7 are not per-
mitted by v1 ⇓ {x0, x5}, so all remaining tuples including them are eliminated.

138

Values z, r, f of the domain of x4 are not permitted by v2 ⇓ x6, so all tuples
including them are eliminated. The result of both filterings is:

u1

62

1
v x

u

u2

0 51 ,

2
v x x

u

Now |u1 + u2
φ(v,u)

| = 16 and additional filtering causes no removals. So the
application of Property 7.2 allows us to save 64− 16 = 48 tuples, a 75% of the
initial memory.
Previous discussion assumes ub =∞. Now consider ub = 6. Lower values of ub
causes further savings. For instance now two more tuples of u1 are eliminated
because they have an associated cost greater or equal 6. Tuple five of u1 is also
eliminated by filtering because the only matching tuple of v2 ⇓ x6 is eo which
has cost 2 (this tuple is shown in the drawing), and 5 + 2 reaches ub. The same
thing happens with other tuples. See in the tables below the result of applying
filtering when ub = 6. Tuples eliminated by filtering are crossed out.

u1

62

1
v x

u

u2

0 51 ,

2
v x x

u

2 e o

5 i e

3 o t

Now, |u1 + u2
φ(v,u)

| = 1 and additional filtering causes no removals. So the
application of Property 7.2 allows us to save 8−1 = 7 tuples, a 87% of the initial
memory.
After the sum of functions in cluster u, we are ready now to send the message
after projecting out the variables that do not belong to the separator: m(u, v) =

|u1 + u2
φ(v,u)

| ⇓ {x1, x3, x8}. We show in the drawing below the message between
clusters u and v that we computed. The sent message is then added into ψ(v).

u

() 1, 2u u u

v
,

 ()

1, 2,
u v

v

v v m

,

(,)

1 3 81 2 , ,

u v

v u

m

u u x x x

0 5

6

1 ,

2

v x x

v x
(,)v u

139

At this point we perform the sum of functions v1 + v2 + m〈u,v〉 an as one
tuple is obtained the problem has a solution.

7.3.1 Iterative MCTE with filtering

The idea of iterative approximation for complete inference methods exists in
the belief propagation framework (e.g. [Dechter and Mateescu, 2003]). Here we
present an iterative version of MCTEf that exploits the advantages of function
filtering for WCSP. MCTEf(r) bounds the arity of the functions it computes
up to r. Higher r are harder to compute. The advantage of filtering is that it
can help to compute a higher arity function with the help of a previous com-
puted approximation of it. We now translate this idea to the defined filtering
tree decomposition. An option is to include in φ(u, v) a message M〈v,u〉 from a
previously computed execution of MCTE(r). We then obtain a recursive algo-
rithm which naturally produces an elegant iterative approximating method that
we call iterative MCTEf (IMCTEf). The idea is to execute MCTEf(r) using as
lower bounds, φ(u, v), the messages M r−1

〈v,u〉 computed by MCTEf(r − 1) which,

recursively, uses the messages M r−2
〈v,u〉 computed by MCTEf(r − 2), an so on. In

Fig. 7.4 we show IMCTEf. It receives as input a WCSP instance, a filtering tree
decomposition 〈〈V,E〉, χ, ψ〉 and the upper bound ub. Starting from dummy
lower bounds (line 1), we execute MCTEf(r) for increasing values of r (line 4).
The lower bounds computed by MCTEf(r) are used to detect and filter nogoods
during the execution of MCTEf(r+1) (line 5). The algorithm follows this process
until the exact solution is computed (namely, MCTEf does not break messages
into smaller functions), or the available resources are exhausted.

procedure IMCTEf(W, 〈〈V,E〉, χ, ψ〉, ub)
1 for each 〈u, v〉 ∈ E do φ(u, v)← {ø}
2 r ← 1
3 repeat

4 MCTEf(r, ub)
5 for each 〈u, v〉 ∈ E do φ(u, v)←M〈u,v〉

6 r ← r + 1
7 until exact solution or exhausted resources

Figure 7.4: IMCTE algorithm.

Example 7.7 In the drawing below we show the two messages M r
〈u,v〉 and M r

〈v,u〉

of a r iteration of IMCTEf. After M r
〈u,v〉 is sent φ(u, v) is updated with it.

Similarly after M r
〈v,u〉 is sent φ(v, u) is updated with it.

140

u v
,

r

u v
M

(,)v u

,

r

v u
M

u v
1

,

r

u v
M

,

r

v u
M

1

,

r

v u
M

1

,

r

u v
M

Then in the next iteration r + 1 the message M r+1
〈u,v〉 is sent and uses the

updated φ(v, u).

7.4 Experimental Evaluation

We have tested CTE, CTEf, MCTEf(r) and IMCTEf on DIMACS dubois
Max-Sat instances, Borchers Weigthed Max-Sat instances (described in Ap-
pendix A.2.5) and SPOT instances (described in Appendix A.2.2). Tree
decompositions where computed using the ToolBar library (available at
[Toolbar, 2003]) which uses a maximum cardinality search (MCS) heuris-
tic [R.E.Tarjan and M.Yannakakis, 1984] for this purpose and visualized with
LEDA library.

Experimenters are focused in evaluating the memory consumption of all al-
gorithms, although time is reported to justify that in any case the improvements
in memory are substituted by an unacceptable amount of CPU time.

We show that CTEf versus state of the art CTE uses less tuples to find the
exact solution. We also show that, inside an approximation schema, MCTEf(r)
exhausts resources at a smaller arity r and finds worst lower bounds than the
iterative version IMCTEf where the previous messages of MCTEf(r) execution
are used as filters.

The efficiency of inference algorithms strongly relies on achieving a good tree
decomposition of the problem, ideally one with small maximum separator size,
the bottleneck of CTE based algorithms. The number of edges of the decompo-
sition is important for IMCTE algorithm because it has to store all the messages
in both directions. Two instances and its corresponding tree decompositions are
drawn in Fig. 7.5.

CTE always assumes that the memory spent by the algorithm is always
equal to the worst case ds for every sent message. So here we assume that we
always use the upper bound of the problem to filter tuples. We want to prove
that assuming that functions only store consistent tuples with the joint effect
of applying filtering techniques to anticipate inconsistent tuples, the memory
stored in the solving process is actually much less than the worst case spa+ce
complexity assumed by CTE. When ds is small usual CTE is feasible. For

141

0

1
2

3

4 567

8 9

1011

12

13

14

15

16

17

1819

20 21

22

23

24

25
26

27

28

29

30

31

32

33

3435

36

37

38

39

40

41

4243

44

45

46

47

48

49 50

51

52

53

54

55

56

57

58

59

60

61 62

63

64

65
66 67

68

69

70

71

72

73

74

75

76

77

78

79

80 81

82

83

84

85

86

87

88 89

90
91 92

93

94

95

96

97

98
99

0

1

2

3

4
5

6

7

8

910

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4041 42

43

44

45

46

47

48

49

Figure 7.5: Left column: visualization of the SPOT404 and wp2250 instances where

small dots represent ternary constraints. Right column: corresponding tree decompo-

sition where each node is drawn proportionally to the number of variables |χ(v)| which

is plotted inside the node.

example in instance dubois100 (which has a maximal separator size of s = 3)
we can hardly see the improvement of CTEf. In instances where both CTE and
CTEf are feasible (see the first Borcher’s and first SPOT instances) the latter
solves the problem with one order of magnitude less tuples. As the separator
size increases CTE becomes at some point infeasible. This happens in wp2200
where s = 19 and however CTEf is still feasible in this instance spending 733k
tuples. In instances wp2250 and wp2300 neither CTE nor CTEf can solve them,
but the iterative version IMCTEf can solve it. In figure 7.6 the execution of the
IMCTEf is plotted for instance wp2250. Each new execution with a bigger arity
uses the previous computed messages as filtering functions. The total number of
tuples for a particular execution is computed summing all the tuples of the sent
messages. We can see that there is a critical arity where a maximum of tuples
is generated. Iterations corresponding to last r’s generate less tuples, this is due
to the good increasing quality of previous messages. On the right of the same
figure the computed lower bound for each arity is plotted.

142

MCTEf(r) IMCTEf

|X| |C| d sep CTE CTEf r LB r LB UB

dubois100 75 200 2 3 3k 2k 1opt

wp2100 50 95 2 9 6k 1k 16opt

wp2150 50 138 2 15 302k 40k 34opt

wp2200 50 186 2 19 - 733k 69opt

wp2250 50 233 2 24 - - 23 71 25 96 96opt

wp2300 50 261 2 26 - - 22 84 26 132 132opt

wp2350 50 302 2 30 - - 21 129 21 159 212

wp2400 50 340 2 30 - - 20 70 20 137 212

wp2450 50 378 2 31 - - 20 130 20 187 257

wp2500 50 418 2 34 - - 20 168 20 251 318

spot54 67 271 4 11 754k 16k 37opt

spot29 82 462 4 14 - 63k 8059opt

spot503 143 635 4 8 - 34k 11113opt

spot404 100 710 4 20 - 306k 115opt

spot505 240 2242 4 22 - - 12 8044 15 19217 21254

spot42 190 1394 4 26 - - 13 116001 15 127050 155051

Table 7.1: Columns: instance, number of variables, number of constraints, maxi-
mum domain size, maximum separator size, tuples consumed by CTE algorithm,
tuples consumed by CTEf algorithm (- denotes exhausted memory), arity r
reached by MCTE(r), LB computed by MCTE(r), arity r reached by IMCTEf,
LB computed by IMCTE (before resources exhausted), optimal UB of the prob-
lem. When marked with (opt) means that the instance is optimally solved by at
least one of the algorithms.

When the separator size increases and instances cannot be optimally solved
by any algorithm (CTE, CTEf, MCTEf, IMCTEf) the latter approximates the
problem with a higher lower bound in all cases and reaches a higher arity in
some of them.

When sending a particular message an important fact is how we sum all the
available functions for that message. The direct way is to sum them two by
two if the arity limit permits, applying filtering at each sum with all possible
available filters. We must be careful with summing first functions with low cost,
because they can quickly exhaust memory since almost no tuple reaches the
level to be detected as inconsistent. So at this point some heuristics have been
tested to select the pairs of functions to be summed. The two giving the best
results are the following ones: (i) minimize mean cost of function tuples and (ii)
minimum arity of the generated function. When minimum arity coincides then
we minimize cost.

143

 1000

 10000

 100000

 1e+006

 1e+007

 5 10 15 20 25

 70

 60

 50

 40

 30

 20

 10

 0

tu
pl

es

tim
e

(i
n

se
c)

r (increasing arity)

instance wp2250 |X|=50, |C|=233, d=2

tuples
time

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25

lo
w

er
 b

ou
nd

r (increasing arity)

instance wp2250 |X|=50, |C|=233, d=2

lb

Figure 7.6: IMCTEf execution in Borchers instance wp2250. On the left, y-axis is

the total number of computed tuples and time respectively. On the right, y-axis is the

lower bound achieved for each arity r.

7.5 Related Work

The trade-off between time and memory has emerged in many areas of prob-
lem solving: [Culberson and Schaeffer, 1996] for example suggests the use of
the so called pattern databases that stores the precomputed exact values of
the heuristic. [Pearl, 1988, Darwiche, 2001] present the idea of caching that
is also a way to store lower bound values in a search context. The algorithm
BTD [Jégou and Terrioux, 2004] (outlined in Section 4.6.2) is another example
of time/space trade-off. All these methods come from search contexts. In a com-
plete inference context it is unusual to find algorithms where we are faced with
a time/space trade-off (like the described IMCTE Section 7.3.1). Nevertheless
similar ideas can be found. For example [Sachenbacher and Williams, 2005] de-
fines a filtering operation called sinking. This operation is used inside a variant
of branch and bound that maintains a set of assignments, instead of a single
current assignment as usual branch and bound. Then the sinking operation is
used to refine the assignments in this set that no longer consistent as they have

144

reached the upper bound. In our opinion the described algorithm has a great
theoretical interest as it can behave as usual branch and bound if only one as-
signment is kept, but also it can behave as complete inference methods if all the
assignments are kept.

In [Koster et al., 1999] a dynamic programming algorithm that exploits a
tree decomposition is used to solve the Frequency Assignment Problem. In each
cluster of the tree decomposition a set of solutions is computed and then refined
with techniques that reminds us of the filtering operation. An iterative process
based on merging values is also described.

Hyper tree decomposition

The tree decomposition for a CSP including n-ary constraints defined like
definition 7.2 is equivalent to the so called hyper-tree decomposition (see
[Gottlob et al., 2002]), called like that for the distinction of graphs (hav-
ing only binary edges) and hyper-graphs (having edges of any arity). In
[Gottlob et al., 2002] the so called hyper tree width is computed in terms of
maximal number of hyperedges in a cluster. Following [Dechter, 2003] we use
the concept of tree decomposition of a CSP referring to an hyper-tree decompo-
sition of the hyper-graph formed by the functions of the CSP. We also extend
this definition for WCSP imposing that every constraint must appear exactly
once in all clusters.

7.6 Perspectives of future work

The iterative algorithm IMCTE exchanges memory consumption for time in a
way that was not explored before as far as we know. In the successive iterations
the algorithm increases the maximal arity up to which it is able to perform
implicit computations reusing previous iterations to spend less memory. Limiting
the arity of the computations is a possible way of approximating the problem,
but as we saw in Chapter 3 when dealing with RDS techniques (see for an sketch
of this idea Section 3.7.4) there exist other ways of approximation that could
be useful to be exploited by this iterative schema. For example one could think
of merging all values of a variable into one single value and at each iteration
perform successive refinements of the domains of variables. In this way IMCTE
would also be able to reuse previous iterations to reduce memory storage.

7.7 Conclusions

We have presented the idea of function filtering for WCSP case, where constraints
are cost functions, inside a complete inference schema. This idea has been nicely
combined with tree decomposition algorithms, producing new algorithms which
experimentally require far less memory than their original counterparts. This
represent an important step forward the practical applicability of complete in-
ference for WCSP solving.

145

So far, the use of upper and lower bounds for WCSP solving was limited to
search methods, namely branch-and-bound search. This is the first time that
are used inside complete inference methods, to speed up their execution and to
reduce their memory consumption. As results show, this combination has been
quite beneficial. Combining other inference methods with bounds usage seems
a promising line of research and deserves further exploration in the future.

146

Chapter 8

Conclusions

8.1 Conclusions

The soft constraints framework is a novel field with great potential because many
problems can be expressed as a WCSP. In the search part of this thesis we have
presented a set of new algorithms which improve the state-of-the-art methods
for WCSP solving. In the inference part we have presented a set of complete
inference algorithms that improve over existing ones for CSP and WCSP. In
both parts a step further into narrowing the gap between these two families of
methods is done. With respect to search, we present an algorithm that takes
into account the global structure of a WCSP problem (the interaction among
variables and constraints) and is able to exploit it and to bound the exponential
complexity of the solving method by a structural parameter. This direction of
work has originated many recent new approaches that seem essential to make
search more efficient in particular structured problems. On the inference side,
the two main contributions are devoted to reduce the memory spent by complete
inference methods. The first idea is to factorize a constraint into smaller size
constraints. The second consisted in anticipating combinations of values that
will become inconsistent when extended to other parts of the problem. One
could say that we are making use of the kind of look-ahead that search does
to prune brunches, but we use it instead to reduce memory storage. Our final
contribution is an iterative algorithm that performs successive approximations
of the problem and reuses previous iterations to reduce the memory storage.
This algorithm raises an interesting compromise between the time spent and the
space used. Summarizing, we increased the applicability of complete inference
methods into various CSP problems, something that was previously considered
of theoretical interest only (although complete inference is the main solving
method in Bayesian inference).

From this thesis we can extract the following conclusions:

• CSP and WCSP have many common features that can be exploited. In
that context, we have extended to WCSP many developed techniques that

147

were originally developed for CSP. Pseudo-tree search for CSP is extended
to WCSP. A new developed complete inference algorithm that includes
what we call filtering is as well extended to WCSP.

• The gap between search and inference is narrowed. Firstly we presented a
search algorithm that can exploit the global structure of the problem. We
found this issue fundamental as it is a major drawback that search algo-
rithms perform badly on problems that have particular global structures.
Secondly we have presented complete inference methods that make use of
a kind of look-ahead. These contributions can help in the understanding
of the intrinsic nature of both families of methods.

• Solving simplifications of a problem to help in the resolution of the whole
one has been proven effective in two contributions. On the search side, we
explored Russian Doll Search (RDS) algorithm that solves the problem by
first solving a simplification of it to help in the whole resolution. We further
developed RDS techniques and proved that if we extract more information
of the sequence of subproblems to solve we can then solve larger problems
because we dispose of more accurate lower bounds. We spent more time
to save time in the resolution of the whole problem. On the inference side,
we presented an iterative algorithm that solves successive approximations
of the problem and reuses previous iterations to delete combinations of
values that do not belong to an optimal solution. This latter contribution
is another example of how to spend more time to save space.

• A constraint can be factorized. Complete inference methods can exploit
this fact to reduce the memory that algorithms spend. A new complete
inference operation that eliminates binary domain variables that follows
from the idea of factorization is presented. Thus the applicably of complete
inference methods is extended.

As general conclusion we can say that we have widen the applicability of
WCSP search with new algorithms that are more efficient than state of the art
ones. We also have widen the applicability of complete inference methods as
we provide some new algorithms that are more efficient in memory consumption
and can be applied to larger problems.

8.2 Future Work

This work raises a number of issues that require further research. At the end
of each Chapter we describe some lines of continuation of each subject of study.
We summarize what we believe are the most important and we relate them in a
more general way:

• The relation between Search and Inference Methods is of major interest.
This thesis contributes in narrowing the gap between them, but still work
remains to be done. We believe that a good direction of doing so is to

148

start from search algorithms that are able to exploit tree decompositions.
In Chapter 4 we developed algorithm PT-PFC that works with a pseudo-
tree decomposition. We show that it has the problem of bad quality local
upper and lower bounds. We call this problem uncertainty gap. In the
same Chapter we talk about BTD [Jégou and Terrioux, 2004], a search
algorithm recently developed that combines search and tree decomposition,
but still inherits the uncertainty gap problem. It could then be possible to
solve this problem with Russian Doll Techniques as we did for pseudo-tree
search in the same Chapter. Moreover BTD has the problem that if a tree
decomposition with low maximal separator size is found it can spend a lot
of memory. We believe at this point that there is a point of connection
with the factorization techniques of Chapter 5 and the tree decomposition
complete inference methods (MCTE and IMCTE) developed in Chapter
7. We believe that the developed techniques for both contributions can
be applied into BTD to reduce the memory spent by the algorithm. This
consideration tackles one of the main issues of this thesis.

• In the work of [Sachenbacher and Williams, 2005] it is defined an operation
somehow similar to filtering (introduced in Chapters 6 and 7). It also
introduces an algorithm that is an hybrid of search and inference but quite
different from PT-PFC (in Chapter 4) and IMCTE (in Chapter 7). It
would be interesting to establish a relation between these algorithms.

• Soft Arc Consistency (SAC) [Larrosa and Schiex, 2004] is a form of local
incomplete inference that is used during search and is of recent develop-
ment. SAC did not finally get in the scope of this thesis. A very interesting
line of research which is the combination of Russian Doll Search Techniques
(Chapter 3) with SAC. It is usually assumed that both techniques cannot
be combined as they both refer to the constraints that link future variables,
and so the same costs could be counted twice leading to an incorrect lower
bounds. But we believe that one could use SAC to detect inconsistencies
coming from binary constraints and RDS techniques to take into account
cost coming from higher arity implicit dependencies. This idea is sketched
in Section 3.7.3

• The fact that RDS is based on solving a simplification of the problem to
be reused in the resolution of the whole problem, makes us think of using
any arbitrary simplification: a constraint oriented RDS, a domain merging
RDS, etc. This line of research could convert RDS in a whole family of
methods.

149

Part III

Appendixes

Appendix A

Benchmarks

A.1 CSP benchmarks

A.1.1 Random Binary CSP

A binary random CSP class is defined by the 4-tuple 〈n,m, p1, p2〉, where

• n is the number of variables.

• m is the number of values in each variable domain.

• p1 is the proportion of pairs of variables which have a constraint between
them, i.e., the constraint density (there are p1n(n−1)/2 constraints/edges
in the graph). Variables involved in a constraint are selected randomly.

• p2 is the proportion of pairs of values which are inconsistent for a pair of
variables if there is a constraint between them, i.e., the constraint tightness
(there are p2m2 incompatible pairs of values in each constraint). The pair
of values forbidden are selected randomly.

The problem generator ensures that all problems are generated with con-
nected constraint graphs, so that the resultant problem cannot be decomposed
into smaller components: disconnected graphs are simply discarded and new
graphs are generated until a connected one is found. This random CSP model
can be easily modifiable to generate problems with constraints of any arity. Ran-
dom CSP are designed to test satisfaction algorithms, where all constraints are
considered hard. Random instances where introduced in [Smith, 1994].

A.1.2 SAT

[Walsh, 2000] describes different SAT formulations into a CSP. The one that is
more convenient to our purpose is the so called non-binary encoding. The CSP
variables xi have domains Di = {t, f}. A non-binary contraint is posted between

153

those variables that occur together in a clause. This constraint has as nogoods
those partial assignments that fail to satisfy the clause. For example, associated
with clause x1 ∨ x2 ∨ ¬x3 is a non-binary constraint on x1, x2 and x3 that has
a single nogood fft.

A.1.3 Schur’s Lemma

The problem is to put n balls labeled from 1 to n into 3 boxes so that for any
triple of balls i1, i2, i3 with i1 + i2 = i3, not all are in the same box. 23 is the
greater number of balls that can be placed into three boxes. The problem can
modeled in the following way: 3n binary variables each one indicating whether
there is a ball in a particular box.

Variables : A variable xij is associated to each ball i = 1, ..., n and each box
j = 1, 2, 3 so we have a total of 3n variables.

Domain: Variables xij have binary domains indicating whether the ball i is in
that box j or not.

Constraints : There are ternary hard constraints that forbid a ball being into
more than one box. There also ternary hard constraints that forbid three balls
i1, i2, i3 that satisfy i1 + i2 = i3 to be in the same box.

A.2 WCSP benchmarks

A.2.1 Random Problems

Binary random WCSP have been used in the context of optimization by many
researchers [Meseguer and Sanchez, 2001, Larrosa and Schiex, 2003] and are the
extension of random CSP [Smith, 1994]. A random WCSP is defined by a tuple
〈n,m, p1, p2, w1, w2〉, where

• n is the number of variables.

• m is the number of values in each variable’s domain.

• p1 is the proportion of tuples of variables which have a constraint among

them, i.e., the constraint density (there are p1∗n(n−1)
2 constraints/edges in

the graph). Variables involved in a constraint are selected randomly.

• p2 is the proportion of tuples of values which are inconsistent for a con-
straint, the constraint tightness (there are p2 ∗m2 incompatible tuples of
values in each constraint). Values involved in a forbidden tuple are selected
randomly. An inconsistent or forbidden tuple t for constraint c is such that
c(t) > 0 (that is, every tuple that does not satisfies completely c).

• The cost of a forbidden tuple is selected randomly in the interval defined
by [w1...w2].

154

A.2.2 Earth Observation Satellite Management

The problem consists on planing a daily management of a satellite to take a
set of images from at least one of three instruments. The problem can be cast
as a satisfaction plus optimization with binary, ternary an one n-ary constraint
[Bensana et al., 1999].

0

1

2

3

4

56

7

8
9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

42 43

44

45

46

47

48 49

50

51

52

53

54

55

56

5758

59

60

61
62

63

64

65

66

67

68 69

70

71

72
73

74
75

76

77

78 79

80

81

82

83

8485
86 87

88
89

90

91

92

93

94

95

96

97

98

99

100

101
102

103

104

105

106107 108 109 110111 112 113114 115 116117

118119

120

121

122

123
124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Figure A.1: Spot 503 instance. Small dots represent ternary constraints.

Problem Formulation

Variables : A variable is associated with each image. A positive integer weights
each variable.

Domain: It is formed by the possible assignment of the different instruments to
take the image: three possible values for a mono image and only one value for a
stereo image.

Constraints : A set of hard binary constraints expresses the non overlapping and
minimum transition time constraints. A set of hard binary or ternary constraints
expresses the limitation of the instantaneous data flow through the satellite
telemetry. An n-ary hard constraint involving all the variables expresses the
limitation of the on-board recording capacity.

Optimization criteria: The weight of a partial assignment is defined as the sum of
the weights of the assigned variables. A partial assignment is said feasible if and
only if it satisfies all the hard constraints (with the n-ary constraint restricted
to the assigned variables). The problem consists in finding a partial feasible
assignment whose weight is maximum.

155

Solving Methods and Results

Systematic methods are able to optimally solve problem instances without any
n-ary recording capacity constraint. However, they fail to do so when this type of
constraint is included. All the proven optimal results have been obtained either
using an ILP problem formalization and the CPLEX commercial software, or
by using a Valued CSP formalization and Russian Doll Search. The original
article of RDS [Verfaillie et al., 1996] implemented in LISP, reports very good
results compared to Depth First Branch and Bound with backward and forward
checking on several instances, and notices the negative influence of increasing
graph bandwidth to the cpu solving time. The ILOG Solver has been tried on
smaller instances [Lemaitre and Verfaillie, 1997]. All the approximating results
have been obtained with Tabu Search algorithms. In an operational context, an
hour is currently considered as a maximum time to decide which images will be
taken the next day and how to take them. Although this constraint cannot be
considered as hard in the context of this benchmark it may be important to be
aware that a program taking more than one day, would not be very useful.

A.2.3 Radio Link frequency assignment problems (FAP)
of CELAR)

The problem consists in assigning frequencies to a set of radio links defined be-
tween pairs of sites in order to avoid interferences. Each radio link is represented
by a variable whose domain is the set of all frequencies that are available for
this link. All the constraints are binary, non linear, and have finite domains.
All problem instances have been built from a unique real instance with 916
links and 5744 constraints, and include both feasible (a solution exists satis-
fying all the constraints) and unfeasible (a solution exists satisfying all hard
constraints and minimizing the cost of violating some of the soft constraints)
[Cabon et al., 1999].

Problem Formulation

Variables : The links i ∈ X .

Domains : The finite set of frequencies available for each link Di.

Constraints :

1. For each link xi ∈ X a frequency fi has to be chosen from Di : fi ∈ Di.

2. Two links can define a duplex link |fi − fj| = dij d stands for distance.

3. Some links may already have a pre-assigned frequency fi = pi. There is a
mobility cost for violating this soft constraint specified by mi.

4. Two links may interfere together |fi − fj | > dij . There is a interference
cost for violating this soft constraint specified by ci.

156

Figure A.2: On the left celar6 instance. On the top right celar6 subinstance 0, and

celar 6 subinstance 4 below.

Constraints (1) and (2) are hard, while (3) and (4) are soft.
Several version of problems to solve can be defined but we focus on the Max-

imum Feasibility problem: if all the constraints cannot be satisfied simultane-
ously, find the assignment that minimizes the sum of all the violation cost. It can
be cast as a WCSP min(

∑

cijviolation(|fi − fj | > dij) +
∑

mijviolation(fi =
pi)).

Solving Methods and Results

There is a simplification pointed out by Thomas Schiex for eliminating all the
hard equality constraints of the problem and reducing the number of variables
by two (because of the bijective property of the equality). From now we will
assume this simplification. We have checked the following solving approaches:

• Anytime Lower Bounds: In [Cabon et al., 1998] combinations of RDS with
some iterative deepening techniques are shown to be very effective in the
calculation of anytime lower bounds.

• Russian Doll Search: In [Givry et al., 1997] RDS was used to solve one of
the hardest FAP instances in 32 days with a Sparc 5 workstation. The
subinstances of Celar6 where optimally solved and the sum of this optimal
costs was equal to best upperbound found at that moment for the global
instance, so it was directly proven optimal. The enhancements of RDS
techniques explained in this thesis solved the four subinstances in an order
of 104 seconds on a Pentium IV computer [Meseguer and Sanchez, 2001,
Meseguer et al., 2002].

• Pure Tree Decomposition Methods: In [Koster et al., 1999] the whole in-
stance 6 is solved to optimality in no more than 3 hours using graph de-

157

composition techniques combined with a dynamic programming algorithm.

• Tree Decomposition plus Search: BTD algorithm was used to optimally
solve subcelar6 instances in 105 seconds with a Pentium IV computer
[Jégou and Terrioux, 2004].

• Search plus local soft consistency: Subinstances are solved using directed
arc-inconsistency techniques in [Larrosa et al., 1999]. The CPU time given
correspond to the time to prove optimality, that means the DAC algorithm
is initialized with the optimal cost as upperbound. Latest developed local
soft consistency techniques have also been tested with celar6 subinstances,
not yet with satisfying results.

A.2.4 Combinatorial Auctions

Combinatorial auctions [Sandholm, 2002] are a special kind of auctions where
bidders can bid on combinations of objects. Determining the winners so as to
maximize the revenue is NP-complete. A generator of combinatorial auctions
instances is described in [Cramton et al., 2006]. The instances can then be easily
translated to WCSP.

Problem Formulation

Variables : A variable xi ∈ X represents a bid.

Domains : Variables have binary domains. If either we select that bid or not,
the variable takes the value 1 or 0, Di = {0, 1}.

Constraints :

• Binary hard constraints: if two bids share some object, they cannot be
taken, they cannot both take value 1.

• Unary soft constraints: Every value 0 of a bid has an associated cost, that
is the one that the auctioneer loses for not taking that bid.

Solving Methods

CATS [Cramton et al., 2006] is a generator of combinatorial auctions instances
that has been used by many researches. The most used and efficient method
seams to be integer linear programming.

A.2.5 Weighted Max-SAT

When a logical formula is unsatisfiable, the MAX-SAT problem tries to find the
assignment that satisfies as many clauses as possible. We can assign a cost to
each clause corresponding to the cost that we pay if we violate that clause. The
objective is then to minimize the total pay-off. A weighted Max-SAT instance

158

is directly expressed as a WCSP as follows. WCSP variables xi are the logical
variables of the Max-SAT instance, with the domainDi = {t, f}. Each clause Ck

of the instance with cost wk, generates a cost function which assigns 0 to those
tuples satisfying Ck and assigns cost wi to the only tuple violating Ck. When
two cost functions involve the same variables, they can be added together. The
WCSP solution, the complete assignment with minimum cost, corresponds to the
solution of the Max-SAT instance. In [Givry et al., 2003] Max-SAT instances
are solved using WCSP techniques. In [Givry et al., 2003] one can find several
generated Weighted Max-SAT instances.

159

Appendix B

Search and nary constraints

Non-binary constraint are fundamental in WCSP formalization and resolution
and they are present in many real-life problems. In this chapter we are con-
cerned in how mentioned algorithms up to the moment can deal with explicit
nary constraints representations. When Partial Forward Checking algorithm
was introduced in Section 2.4.1 the look-ahead procedure that propagates costs
between past and future variables was assumed to work only with binary con-
straints. Russian Doll Search and all its presented extensions of Chapter 3 do
not need to make any assumption of the constraint arity. [Meseguer et al., 2001].

B.1 The binary case

For binary WCSP several lower bound computations have been used:

• PFC (see Definition 2.14, [Freuder and Wallace, 1992])

LBPFC(t, F) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb}

• DAC [Wallace, 1995]

LBDAC(t, F) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb}+
∑

j∈F

min
b
{dacjb}

• PFC-DAC [Larrosa and Messeguer, 1996]

LBPFC−DAC(t, F) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb + dacjb}

• RDS (see Definition 3.4 [Verfaillie et al., 1996])

LBRDS(t, F = {xi, ..., x1}) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb}+ rdsi

161

• Weighted AC [Affane and Bennaceur, 1998]

LBWAC(t, F) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb +
1

2
acjb}

• PFC-MRDAC [Larrosa et al., 1999]

LBPFC−MRDAC(t, F) = cost(t) +
∑

xj∈F

min
b∈Dj

{icjb + dacjb(G
F)}

• SRDS (see Chapter 3 Section 3.2.1)

LBSRDS(t, F, j) = cost(t) + min
a∈Dj

{icja + rdsja}+
∑

xk∈F,k 6=j

min
b∈Dj

{icjb}

• FSRDS (see Chapter 3 Section 3.3.1)

LBFSRDS(t, F = {xi, ..., x1}, k) = cost(t) + min
a∈Dk

{icka + rdsi
ka}

+
∑

xl∈F,l 6=k min
a∈Dl

{icla} ∀xk ∈ F

Note that the only difference between SRDS and FSRDS lower bound is that
in the latter the combination of the ic’s and rds contribution is done in the best
table of lower bounds, the one of subproblem Wi, where xi is the first future
variable.

B.2 The non-binary case

We will call CP completely instantiated constraints, constraints where all his
variables belong to the past variables in P . We will call CF completely instanti-
ated constraints, constraints where all his variables belong to the past variables
F . We will call CPF the constraints that link past and future variables. All
sets obviously change during search. In the binary case, all constraints in CPF

have one future variable in their scope. This is no longer true in the non-binary
case: a constraint f ∈ CPF may have more than one future variable in its scope.
If we propagate the effect of one constraint f because of one assignment in all
future variables, we may repeat costs in the future because the cost of the same
inconsistency could be counted as many times as future variables are involved in
the constraint. To prevent this, costs of inconsistencies of f have to be recorded
in one of its future variables only. The same problem appears when considering a
constraint f ′ ∈ CF : inconsistencies of f ′ have to be recorded in one of its future
variables, in order to allow for a safe lower bound computation as the addition
of contributions of future variables. Therefore, for each f ∈ CPF ∪CF we select
one of its future variables as the only variable recording the costs of f inconsis-
tencies. This variable, denoted as varf , may change during the solving process

162

among the future variables of the constraint. In the Max-CSP context, this idea
was presented in [Meseguer, 2000] (Section 4.2), at the ECAI-00 workshop Mod-
elling and Solving Problems with Constraints. A similar approach was presented
in [Regin et al., 2000b] (Section 4.1), as a poster at the CP-00 conference.

This problem occurs for icia and dacia counters. From a graph point of
view, the constraint hypergraph formed by CPF ∪ CF has to be directed, in
the sense that each hyperedge points towards one of the nodes that it connects.
The hyperedge representing constraint f points towards the node representing
variable varf . Denoting by GPF the directed hypergraph formed by CPF , and
by GF the directed hypergraph formed by CF , we generalize binary icia and
dacia counters as follows.

Definition B.1 [inconsistency cost, Reversible DAC] Given a WCSP
W = 〈X,D,C〉, the current assignment t, the set of future variables F , GPF a
directed hypergraph on CPF , GF a directed hypergraph on CF ,

• Inconsistency costs:

icia(GPF) =
∑

f∈CPF ,i=varf

min
∀t′∈f |t·t

′is defined
f(t′)

• Reversible DAC:

dacia(GF) =
∑

f∈CF ,i=varf

min
∀t′∈f |t·t

′is defined
f(t′)

We maintain the ics and dac names. Observe, however, that in the non-binary
case both counters record costs of directed inconsistencies, otherwise the cost of
the same inconsistency could be recorded more than once. Keeping the meaning
of cost(P), acia and rds as in the binary case all lower bounds presented in
the previous section can be extended to the non-binary case. We show in Fig.
B.1 two examples of their extensions. The main difference is that we have to
take into account the new definition of ic’s. Let’s recall that LBRDS(t, F,GPF)
requires a static variable ordering.

As in the binary case, dacia(GF) counters can be maintained during search.
In that case, we compute the minimum cost over constraints involving variable i
taking into account that the current domains of every variable that can change
during search because of value pruning.

B.2.1 Partial Forward Checking

A PFC algorithm to be used with the proposed non-binary lower bounds is
presented in Fig. B.2, where a generic lower bound is computed by the function
LB. It follows the PFC algorithm of [Larrosa et al., 1999]. First, it checks if no
more future variables exists and returns the cost of the current assignment (lines
1). Otherwise, it selects a future variable xi (line 2) and iterates on its feasible

163

LBPFC(P, F,GPF) = cost(P) +
∑

xi∈F

min
a∈Di

{icia(GPF)}

LBMRDAC(P, F,GPF , GF) = cost(P) +
∑

xi∈F

min
a∈Di

{icia(GPF) + dacia(GF)}

Figure B.1: Lower bounds for non-binary WCSPs.

function PFC(t, F,D,C, ub, GPF , GF)
1 if F = ø return cost(t)
2 i← choose-variable(F)
3 for each a ∈ Di do

4 D′ ← look-ahead(i, a, P, F,D, ub)
5 if LB(i, a, t, F,D′, GPF , GF) < ub

6 newGPF , newGF ← GreedyOpt(GPF , GF)
7 if LB(i, a, P, F,D′, GPF , GF) < ub

8 D′ ← prune(i, a, t, F,D′, ub, newGPF , newGF)
9 if ø 6∈ D′ then

10 ub
′ ← PFC(t · {〈i, a〉}, F,D′, newGPF , newGF)

11 if ub
′ < ub then ub← ub

′

12 return ub

Figure B.2: Partial Forward Checking for non-binary constraints.

values (line 3). It then performs lookahead (line 4) and checks if the lower bound
has reached the upper bound (line 5). Then a greedy optimization procedure is
executed (line 6), redirecting the hypergraphs GPF and GF in order to increase
the lower bound (getting the optimum redirection of hypergraphs is a NP-hard
problem [Schiex, 1998], so we redirect hyperedges aiming at a good contribution
to the lower bound). If the new lower bound does not reach the upper bound
(line 7), it tries to remove value b in future variable j using the pruning value
procedure (line 8). If no empty domain has been produced (line 9), the process
goes on with the recursive call (line 10).

We have evaluated the performance of our PFC algorithm using the pro-
posed lower bounds on random WCSP of arity 5. Results can be found in
[Meseguer et al., 2001].

164

Bibliography

[Affane and Bennaceur, 1998] Affane, M. and Bennaceur, H. (1998). A weighted
arc consistency technique for max-csp. In Proc. 13th ECAI, pages 209–213.

[Bacchus, 2002] Bacchus, F. (2002). Enhancing davis putnam with extended
binary clause reasoning. In AAAI/IAAI, pages 613–619.

[Bahar, 1993] Bahar, R. (1993). Algebraic decision diagrams and their ap-
plications. In Proceedings of the IEEE/ACM international conference on
Computer-aided design, pages 188–191.

[Bayardo and Miranker, 1995] Bayardo, R. and Miranker, D. (1995). On the
space-time trade-off in solving constraint satisfaction problems. In IJCAI,
pages 558–562.

[Bensana et al., 1999] Bensana, E., Lemaitre, M., and Verfaillie, G. (1999).
Earth observation satellite management. Constraints, 4:293–299.

[Bertele and Brioschi, 1972] Bertele, U. and Brioschi, F. (1972). Nonserial Dy-
namic Programming. Academic Press.

[Bistarelli et al., 1995] Bistarelli, S., Montanari, U., and Rossi, F. (1995). Con-
straint solving over semirings. In IJCAI (1), pages 624–630.

[Bryant, 1986] Bryant, R. (1986). Graph-based algorithms for boolean function
manipulation. In IEEE Transactions on Computers, volume c-35 n8.

[Cabon et al., 1999] Cabon, B., Givry, S., Lobjois, L., Schiex, T., and Warners,
J. (1999). Radio link frequency assignment problems. Constraints, 4:79–89.

[Cabon et al., 1998] Cabon, B., Givry, S., and Verfaillie, G. (1998). Anytime
lower bounds for constraint violation minimization problems. In Proceedings
of the 4th Conference on Principles and Practice of Constraint Programming,
volume 1520, pages 117–131.

[Cramton et al., 2006] Cramton, P., Shoham, Y., and Steinberg, R. (2006). A
Test Suite for Combinatorial Auctions, chapter 18. MIT Press.

165

[Culberson and Schaeffer, 1996] Culberson, J. and Schaeffer, J. (1996). Search-
ing with pattern databases. In Proc. CSCSI Canadian AI conference, pages
402–416.

[Darwiche, 2001] Darwiche, A. (2001). Recursive conditioning. Artificial Intel-
ligence, 126(1-2):5–41.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem-proving. Commun. ACM, 5(7):394–397.

[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A computing pro-
cedure for quantification theory. J. ACM, 7(3):201–215.

[de Givry et al., 2006] de Givry, S., Schiex, T., and Verfaillie, G. (2006). Ex-
ploiting tree decomposition and soft local consistency in weighted csp. In
AAAI, Boston (MA) USA, page to appear.

[Dechter, 1990] Dechter, R. (1990). Enhancement schemes for constraint pro-
cessing: Backjumping, learning, and cutset decomposition. Artif. Intell.,
41(3):273–312.

[Dechter, 1999] Dechter, R. (1999). Bucket elimination: A unifying framework
for reasoning. Artifical Intelligence, 113:41–85.

[Dechter, 2003] Dechter, R. (2003). Elsevier Science.

[Dechter et al., 2001] Dechter, R., Kask, K., and Larrosa, J. (2001). A general
scheme for multiple lower bound computation in constraint optimization. In
Proceedings of the 6th Conference on Principles and Practice of Constraint
Programming, pages 346–360.

[Dechter and Mateescu, 2003] Dechter, R. and Mateescu, R. (2003). A simple
insight into iterative belief propagation’s success. In UAI, pages 175–183.

[Dechter and Mateescu, 2004] Dechter, R. and Mateescu, R. (2004). The impact
of and/or search spaces on constraint satisfaction and counting. In Proceed-
ings of the Conference on Principles and Practice of Constraint Programming,
pages 731–736.

[Dechter and Pearl, 1987] Dechter, R. and Pearl, J. (1987). Network-based
heuristics for constraint satisfaction problems. Artificial Intelligence, 34:1–
38.

[Doig and Land, 1960] Doig, A. and Land, A. (1960). An automatic method for
solving discrete programming problems. Econometrica, 28:497.

[Freuder and Quinn, 1985] Freuder, E. and Quinn, M. (1985). Taking advantage
of stable sets of variables in constraint satisfaction problems. IJCAI, pages
1076–1078.

166

[Freuder and Wallace, 1992] Freuder, E. and Wallace, R. (1992). Partial con-
straint satisfaction. Artificial Intelligence, 58:21–70.

[Gaschnig, 1978] Gaschnig, J. (1978). Experimental case studies of backtrack vs.
waltz-type vs. new algorithms for satisfying assignment problems. In Proc.
2nd National Conference of the Canadian Society for Computational Studies
of Intelligence, pages 268–277.

[Gent et al., 1999] Gent, I., Stergiou, K., and Walsh, T. (1999). Decomposable
constraints. In New Trends in Constraints, pages 134–149.

[Givry et al., 2003] Givry, S., Larrosa, J., Meseguer, P., and Schiex, T. (2003).
Solving max-sat as weighted csp. In CP, pages 363–376.

[Givry et al., 1997] Givry, S., Verfaillie, G., and Schiex, T. (1997). Bounding
the optimum of constraint optimization problems. In Proceedings of the 3th
Conference on Principles and Practice of Constraint Programming, pages 405–
419, Schloss Hagenberg, Austria.

[Gottlob et al., 2000] Gottlob, G., Leone, N., and Scarcello, F. (2000). A
comparison of structural csp decomposition methods. Artificial Intelligence,
124(2):243–282.

[Gottlob et al., 2002] Gottlob, G., Leone, N., and Scarcello, F. (2002). Hyper-
tree decompositions and tractable queries. Journal of Computer and System
Sciences, 64(3):579–627.

[Harlick, 1980] Harlick, E. (1980). Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313.

[Jégou and Terrioux, 2004] Jégou, P. and Terrioux, C. (2004). Decomposition
and good recording. In Proceedings of the 16th European Conference on Ar-
tificial Intelligence (ECAI-2004), pages 196–200.

[Kask et al., 2006] Kask, K., Dechter, R., Larrosa, J., and Dechter, A. (2006).
Unifying cluster-tree decompositions for reasoning in graphical models. Artif-
ical Intelligence, page to appear.

[Koster et al., 1999] Koster, A., Hoesel, C., and Kolen, A. (1999). Optimal so-
lutions for a frequency assignment problem via tree-decomposition. In Lecture
Notes in Computer Science, volume 1665, pages 338–349. Springer.

[Larrosa, 2000] Larrosa, J. (2000). Boosting search with variable elimination.
In Proceedings of the Conference on Principles and Practice of Constraint
Programming, pages 291–305.

[Larrosa et al., 2002] Larrosa, J., Meseguer, P., and Sanchez, M. (2002). Pseudo-
tree search with soft constraints. In Proceedings of the 16th European Con-
ference on Artificial Intelligence (ECAI-2002).

167

[Larrosa et al., 1999] Larrosa, J., Meseguer, P., and Schiex, T. (1999). Main-
taining reversible dac for max-csp. Artificial Intelligence, 107:149–163.

[Larrosa and Messeguer, 1996] Larrosa, J. and Messeguer, P. (1996). Exploiting
the use of dac in maxcsp. In Proceedings of the 2th Conference on Principles
and Practice of Constraint Programming, pages 308–322.

[Larrosa and Schiex, 2003] Larrosa, J. and Schiex, T. (2003). In the quest of the
best form of local consistency for weighted csp. In Proc. of the 18h IJCAI.

[Larrosa and Schiex, 2004] Larrosa, J. and Schiex, T. (2004). Solving weighted
csp by maintaining arc consistency. Artificial Intelligence, 159.

[Lemaitre and Verfaillie, 1997] Lemaitre, M. and Verfaillie, G. (1997). Daily
management of an earth observation satellite: comparaison of ilog solver with
dedicated algorithms for valued csp. In Proceedings of the 3rd ILOG Interna-
tional Users Meeting.

[Mackworth, 1977] Mackworth, A. (1977). Consistency in networks of relations.
Artificial Intelligence, 8:99–118.

[Marinescu and Dechter, 2005] Marinescu, R. and Dechter, R. (2005). And/or
branch and bound for graphical models. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI, pages 224–229.

[Meseguer, 2000] Meseguer, P. (2000). Lower bounds for non-binary maxcsp. In
Modelling and Solving Constraint Problems Workshop ECAI-00.

[Meseguer et al., 2003] Meseguer, P., Bouhmala, N., Bouzouba, T., Irgens, M.,
and Sanchez, M. (2003). Current approaches for solving overconstrained prob-
lems. Constraints Journal, 8:9–39.

[Meseguer et al., 2001] Meseguer, P., Larrosa, J., and Sanchez, M. (2001). Lower
bounds for non-binary constraint optimization. In Proceedings of Conference
on Principles and Practice of Constraint Programming, pages 317–331.

[Meseguer and Sanchez, 2001] Meseguer, P. and Sanchez, M. (2001). Special-
izing russian doll search. In Proceedings of Conference on Principles and
Practice of Constraint Programming, pages 464–478.

[Meseguer et al., 2002] Meseguer, P., Sanchez, M., and Verfaillie, G. (2002). Op-
portunistic russian doll search. In Proceedings of the 7th Conference on Prin-
ciples and Practice of Constraint Programming, pages 264–279.

[Minton et al., 1992] Minton, S., Johnston, M., Philips, A., and Laird, P. (1992).
Minimizing conflicts: A heuristic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence, 58(1-3):161–205.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc. San Ma-
teo, California.

168

[Petit et al., 2001] Petit, T., Regin, J., and Bessiere, C. (2001). Specific filtering
algorithms for over-constrained problems. In Proceedings of Conference on
Principles and Practice of Constraint Programming, pages 451–463.

[Prosser, 1993] Prosser, P. (1993). Hybrid algorithms for the constraint satis-
faction problem. Computational Intelligence, 9(3):262–267.

[R.Dechter and J.Pearl, 1989] R.Dechter and J.Pearl (1989). Tree clustering for
constraint networks. Artif. Intell., 38(3):353–366.

[Regin et al., 2000a] Regin, J., Petit, T., Bessiere, C., and Puget, J. (2000a).
An original constraint based approach for solving over constrained problems.
In Proceedings of Conference on Principles and Practice of Constraint Pro-
gramming, pages 543–548.

[Regin et al., 2000b] Regin, J., Petit, T., Bessiere, C., and Puget, J. (2000b). An
original constraint based approach for solving over constrained problems. In
In Proceedings of the 6th Conference on Principles and Practice of Constraint
Programming, pages 543–548.

[Régin, 1994] Régin, J.-C. (1994). A filtering algorithm for constraints of differ-
ence in csps. In AAAI, pages 362–367.

[R.E.Tarjan and M.Yannakakis, 1984] R.E.Tarjan and M.Yannakakis (1984).
Simple linear-time algorithms to test chordality of graphs, test acyclicity of
hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput.,
13(3):566–579.

[R.M.Haralick and L.G.Shapiro, 1979] R.M.Haralick and L.G.Shapiro (1979).
The consistent labeling problem. IEEE Trans. Pattern Anal. Machine In-
tell., PAMI-1:173–203.

[Rosenfeld et al., 1976] Rosenfeld, A., Hummel, R., and Zucker, S. (1976). Scene
labeling by relaxation operations. IEEE Transactions on Systems, Man and
Cybernetics, 6:420–433.

[Sabin and Freuder, 1994] Sabin, D. and Freuder, E. (1994). Contradicting con-
ventional wisdom in consraint satisfaction. In Proc. ECAI, pages 125–129.

[Sabin and Freuder, 1997] Sabin, D. and Freuder, E. (1997). Understanding and
improving the mac algorithm. In CP, pages 167–181.

[Sachenbacher and Williams, 2005] Sachenbacher, M. and Williams, B. (2005).
Bounded search and symbolic inference for constraint optimization. In Pro-
ceedings of the 19th International Joint Conference on Artificial Intelligence,
IJCAI), pages 286–291.

[Sanchez et al., 2005a] Sanchez, M., Larrosa, J., and Meseguer, P. (2005a). Im-
proving tree decomposition methods with function filtering. In International
Join Conference on Artificial Intelligence, IJCAI, pages 1537–1538.

169

[Sanchez et al., 2005b] Sanchez, M., Larrosa, J., and Meseguer, P. (2005b). Tree
decomposition with function filtering. In Proceedings of the 11th Conference
on Principles and Practice of Constraint Programming, Sitges, Spain.

[Sanchez et al., 2004a] Sanchez, M., Meseguer, P., and Larrosa, J. (2004a). Im-
proving the applicability of adaptive consistency. In Proceedings of the 10th
Conference on Principles and Practice of Constraint Programming, Toronto,
Canda.

[Sanchez et al., 2004b] Sanchez, M., Meseguer, P., and Larrosa, J. (2004b). Us-
ing constraints with memory to implement variable elimination. In Proceed-
ings of the 16th European Conference on Artificial Intelligence (ECAI-2004),
Valencia, Spain.

[Sandholm, 1999] Sandholm, T. (1999). An algorithm for optimal winner de-
termination in combinatorial auctions. In Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial Intelligence, IJCAI99, pages 542–547,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Sandholm, 2002] Sandholm, T. (2002). Algorithm for optimal winner determi-
nation in combinatorial auctions. Artif. Intell., 135(1-2):1–54.

[Schaerf, 1999] Schaerf, A. (1999). A survey of automated timetabling. Artif.
Intell. Rev., 13(2):87–127.

[Schiex, 1998] Schiex, T. (1998). Maximizing the reversible dac lower bound in
max-csp is np-hard.

[Schiex, 1999] Schiex, T. (1999). A note on csp graph parameters. Technical
report 1999/03, INRA.

[Schiex, 2000] Schiex, T. (2000). Arc consistency for soft constraints. In Proc.
6th CP, pages 411–424.

[Schiex et al., 1995] Schiex, T., Fargier, H., and Verfaillie, G. (1995). Valued
constraint satisfaction problems: Hard and easy problems. In IJCAI (1),
pages 631–639.

[Selman et al., 1992] Selman, B., Levesque, H., and Mitchell, D. (1992). A
new method for solving hard satisfiability problems. In Rosenbloom, P. and
Szolovits, P., editors, Proceedings of the Tenth National Conference on Arti-
ficial Intelligence, pages 440–446, Menlo Park, California. AAAI Press.

[Shapiro and Haralick, 1981] Shapiro, L. and Haralick, R. (1981). Structural
descriptions and inexact matching. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 3:504–519.

[Smith, 1994] Smith, B. (1994). Phase transition and the mushy region in con-
straint satisfaction problems. In Proc. of ECAI, pages 100–104.

170

[Toolbar, 2003] Toolbar (2003). http://carlit.toulouse.inra.fr/cgi-
bin/awki.cgi/softcsp.

[Tounsi and David, 2002] Tounsi, M. and David, P. (2002). Successive Search
Methods for Solving Constraint and Optimization Problems. International
Journal of Artificial Intelligence Tools, 11(3).

[Verfaillie et al., 1996] Verfaillie, G., Lemâıtre, M., and Schiex., T. (1996). Rus-
sian doll search for solving constraint optimization problems. In Proc. 13th
AAAI, pages 181–187.

[Wallace, 1995] Wallace, R. (1995). Directed arc consistency preprocessing. In
Selected papers from the ECAI-94 Workshop on Constraint Processing, volume
923, pages 121–137. Springer.

[Walsh, 2000] Walsh, T. (2000). Sat vs. csp. In In Proceedings of the 6th Confer-
ence on Principles and Practice of Constraint Programming, pages 441–456.

171

