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EN INTEL·LIGÈNCIA ARTIFICIAL

Number 36

Institut d’Investigació
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en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

c© 2010 by Arnau Ramisa
NIPO: 472-10-154-0
ISBN: 978-84-00-09150-7
Dip. Legal: B.45998-2010

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
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Foreword

Endowing robots with reasoning capabilities allowing them not to just answer
the question “where am I?” but also giving them the ability to infer, for exam-
ple, the type of room they are in, through semantic recognition of the objects,
persons,... in the room, is an extremely difficult research goal. Arnau Ramisa, in
this PhD thesis, has addressed these issues and the results he has obtained are
a step towards this goal. The thesis has two parts. The first one addresses the
localization problem and the second one addresses the object recognition prob-
lem. The main contribution of the first part is the obtention of a signature to
characterize places relying on a constellation of combinations of different types
of visual feature regions extracted from a panoramic image of the place that is
represented by a node of a topological map graph. The proposed method has
been tested with panoramic images of different rooms in various UAB Campus
buildings. The results show that through the signature obtained the robot can
compute its location even if some changes in the environment have occurred.
The second contribution of the first part of this thesis is the development of a
biologically-inspired and computationally cheap homing method based on the
Average Landmark Vector (ALV). Normally, artificial landmarks had been used
together with the Average Landmark Vector, but this thesis introduces a method
that combines the ALV with the feature regions used for global localization ex-
tracted from the panoramic images mentioned above. Although the localization
method proposed in ths first part of the thesis is able to reliably model and
recognize places, a powerful space representation constructed from semantically
rich elements is needed. To progress towards this goal, the second part of this
thesis presents and evaluation of two state of the art object recognition methods
- SIFT and Vocabulary Tree - and, more importantly, several improvements of
these methods are proposed in order to adapt them to the more strict compu-
tational requirements of mobile robots. Furthermore, since the evaluation has
shown that the suitability of an object recognition method depends on some
specific properties of the acquired images, a Reinforcement Learning based ap-
proach has been proposed to select, on-line, which object recognition method
should be applied in each situation. This learning approach constitutes the last
contribution of this thesis.

Robotic vision is a very challenging and difficult subject. Arnau has successfully
achieved several important contributions towards the resolution of fundamental
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issues in this field, with a high dose of imagination, creativity, autonomy, and
solid scientific and technical background. These are essential qualities to be
successful in scientific research. I have been very lucky having Arnau Ramisa
as my PhD student because I have personally enjoyed and learned very much
working with him. I hope the readers of this monograph will also appreciate the
quality and depth of this work.

Bellaterra, October 2010

Ramon Lopez de Mantaras
Director of the IIIA-CSIC
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Chapter 1

Introduction

If some day robots are to get closer to what science fiction depicts, they will
definitely require a rich perception and representation of the environment. In
the past, robots used sonars as instruments for this task. Navigating with a
sonar is similar to walking in a dark room trying to feel the walls and objects
with the hands. Comprehensibly the first localization algorithms relied almost
completely in the movements of the robot, just using the perception of the
environment to correct the errors in the odometry (Elfes, 1989, 1990; Moravec,
1988). Later, ladars provided more reliable measurements, however, ladars are
still too expensive for most applications, and the 2D range scanners are not
able to provide enough information to qualitatively characterize places, not to
mention objects. Lately, advances in computer vision along with an improvement
in digital cameras have risen an increasing interest within the robotics field
towards a vision-based autonomous robot.
However, extracting meaningful information from images has proven to be an
arduous task. Myriad problems plague visual information, like perspective trans-
formations introduced when the point of view changes, occlusions or motion blur,
just to name a few.
Nevertheless, we humans, as vision-based autonomous navigating agents, get
around these problems and manage to recognize places and objects. Numerous
studies have been dedicated to understand how animals construct their mental
maps of the environment and how they use them to navigate. A notable example
is the work of Tolman (1948) where the author introduces the idea of a cognitive
map based on ethological experiments with rodents. According to this study,
rats construct mental representations of places based on the spatial relation of
environment’s features.
This theory gained strength when O’Keefe and Dostrovsky (1971) identified
place cells in rodent brains. This kind of cells are neurons, mainly located in the
hippocampus, that fire when the rat is located in certain places. These neurons
are activated primarily by visual cues, but also by movements because they show
activity even in the dark.
When published, this study had little impact on the robot navigation research
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community, still in its first stages. However, time has passed and the field of
robot navigation has seen enormous progress. Since then, many interesting robot
navigation models taking inspiration from Tolman’s theory have been proposed,
such as the TOUR model by Kuipers (1978), that is designed as a psychological
model of human common-sense knowledge of large-scale space; the RPLAN by
Kortenkamp (1993), a model of human cognitive mapping adapted to robotics,
and evaluated in an indoor scenario combining inputs from vision and sonar
sensors; or the schematic maps by Freksa et al (2000) that, based on the idea
of cognitive maps, distinguished between different levels of abstraction for map
representation and their applications: representations closer to the geometric
reality of the world are useful for local navigation and obstacle avoidance. On
the other hand, more abstract or schematic representations can help in global
localization and path-planning tasks.
In the beginning, these type of approaches materialized in the form of topological
localization systems such as the ones described by Filliat and Meyer (2003), that
make an extensive survey of internal representations of spatial layout for mobile
robots with a focus on localization, or the more recent topological approach
by Tapus and Siegwart (2006), that propose to use a signature which they call
fingerprint to represent a room. This signature is constituted by a circular
string that encodes the distribution of color blobs and sharp edges –extracted
from omnidirectional images and a pair of 2D laser range scanners pointing in
opposite directions respectively.
Recently, more ambitious approaches in the cognitive sense have been under-
taken, as the one by Vasudevan et al (2007), that proposed a hierarchical prob-
abilistic concept-oriented representation of space, constructed from objects de-
tected in the environment and their spatial relationships. Such representation
allows to endow the robot with a reasoning capacity that transcends the ques-
tion ”where am I?”, typically pursued by the previous localization systems, by
giving it the ability to infer the purpose or category of the room through the
semantically meaningful elements or objects that can be detected.
However, if this type of approaches are to succeed, they will undoubtedly require
much more advanced perception capacities than the ones typically found in a
robot nowadays. Along the way to this ambitious goals in robotics research, this
thesis contains the contributions described in the following section.

1.1 Contributions

The main contribution of the first part of this thesis is a signature to char-
acterize places similar in spirit to the method proposed by Tapus and Siegwart
(2006) in that it uses an omnidirectional vision sensor to perceive the environ-
ment. However, instead of relying also in range information provided by laser
range scanners, the place model proposed here is purely vision based. In this
approach, a place is characterized as a constellation of combinations of different
types of visual feature regions extracted from a panoramic image that can be
used as a node of a topological map graph.
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These types of features are designed to be resistant to viewpoint and illumi-
nation changes and, in consequence, the proposed signature is also resistant to
some extent to these problems. Furthermore, as the signature is composed from
many individual features, it can tolerate some degree of dynamic changes in the
environment while still being capable of recognizing the place. In order to test
the proposed method, we have performed localization tests in various sequences
of panoramas taken in different rooms of various buildings.

Since analyzing the whole map can become a time consuming task, we propose
and evaluate a fast re-ranking method based in the bag of features approach
to speed-up this step. Finally, we show that the presented signature is notably
resistant even in the case of using a conventional perspective camera to perform
localization.

In order to allow the robot to move between the nodes of the topological map,
the second contribution of this first part is a biologically inspired inexpensive vi-
sual homing method based on the Average Landmark Vector (ALV). This homing
method is able to determine the direction home by comparing the distributions of
landmarks corresponding to the home with the current omnidirectional images,
but without having to explicitly put them in correspondence. Typically, artificial
landmarks have been used in experiments with the ALV. However, the method
presented in this work combines the ALV with the feature regions employed ear-
lier for global localization, thus complementing the localization method. First,
a theoretical study is performed to evaluate the applicability of the proposed
method in the domain of the local features and, next, it is evaluated in real
world experiments showing promising results.

Even though the localization method proposed in the first part of this thesis is
able to reliably model and recognize places, still few semantic knowledge about
the world is available to the robot to reason with. As mentioned earlier, Va-
sudevan et al (2007) proposed a powerful space representation constructed from
semantically rich elements of the environment. However, in order for this model
to be applicable, a fast and robust object recognition or classification method is
indispensable.

Indeed, not only localization would benefit from having a robust, generalistic
and easily trainable object recognition system. Also other fields such as robot
manipulation, human robot interaction and, in general, any discipline that ad-
dresses a practical use of robotics in a not highly structured environment would
benefit from such a method. On the other side, computer vision is obtaining
impressive results with recent object recognition and classification methods, but
we are aware of little effort on porting it to the robotics domain. Therefore, a
lightweight object perception method which allows robots to interact with the
environment in a human cognitive level is still lacking.

In order to help reduce a bit this gap, in the second part of the thesis the main
contribution is the evaluation of two successful state of the art object recogni-
tion methods – the SIFT object recognition method from Lowe (2004), and the
Nister and Stewenius (2006) Vocabulary Tree – on a realistic mobile robotics sce-
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nario, that includes many of the typical problems that will be encountered when
roboticists try to use these methods on practical matters. Both methods have
several properties that make them attractive for the problem of mobile robotics:
the SIFT object recognition method detects object hypothesis location up to
an affine transformation and has a low ratio of false positives; the Vocabulary
Tree is a bag of features type method that was designed with the objective of
being fast and scalable. Furthermore, it is suitable for types of objects that
may confuse the SIFT method because of few texture or repetitive patterns.
Additionally, and more importantly, several modifications and improvements of
the original methods are proposed in this thesis in order to adapt them to the
domain of mobile robotics.
The selected algorithms are evaluated under different perspectives, as for exam-
ple:

• Detection: Does the method have the ability to easily and accurately detect
where in the image is located the detected object? In most situations, large
portions of the image are occupied by background texture that introduce
unwanted information which may confuse the object recognition method.

• Classification: A highly desirable capability for an object detection method
is to be able to generalize and recognize previously unseen instances of a
particular class, is this achievable by the method?

• Occlusions: Usually a clear shot of the object to recognize will not be
available to the robot. An object recognition method must be able to deal
with only partial information of the object.

• Image quality: Since we are interested in mobile robots, motion blur needs
to be taken into account.

• Scale: Does the method recognize the objects over a wide range of scales?

• Texture: Objects with a rich texture are typically easier to recognize than
those only defined by its shape and color. However, both types of objects
are equally important and we want to evaluate the behavior of each method
in front of them.

• Repetitive patterns: Some objects, such as a chessboard, present repetitive
patterns which cause problems in methods that have a data association
stage.

• Training set resolution: Large images generate more features at differ-
ent scales that are undoubtedly useful for object recognition. However, if
training images have a resolution much higher than test images descriptor
distributions may become too different.

• Input features: Most modern object recognition methods work with local
features instead of raw image pixels. There are two reasons for this: in the
first place, concentrating on the informative parts of the image the size of

4



the redundant input data is significantly reduced and, on the second place,
the method is insensitive to small pixel intensity variations due to noise in
the pixels, as well as small changes in point of view, scale or illumination.
We evaluate several state of the art visual feature detectors.

• Run-Time: One of the most important limitations of the scenario we are
considering is the computation time. We want to measure the frame-rate
at which comparable implementations of each method can work.

From the obtained results, conclusions on the methods viability for the mobile
robots domain are extracted and some ways to improve them are suggested. The
final aim of this work is to develop or adapt an object recognition method that
is suitable to be incorporated in a mobile robot and used in common indoor
environments.
However, as it was found that none of the evaluated object recognition methods
completely fulfilled the requirements of a robotics application, we proposed, as
a last contribution, a Reinforcement Learning based approach to select on-line
which object recognition schema should be used in a given image. The Rein-
forcement Learning approach is based on low level features computed directly
from the image pixels, such as mean gray-level value or image entropy. It was
evaluated in a challenging dataset and found to have very good performance.
Another possible use of this method –although not directly addressed on this
work because of time constrains– could be speeding up the Nister and Stewenius
Vocabulary Tree by quickly discarding irrelevant areas of an image.

1.2 Robot

All experimentation carried on through this thesis have been done with the help
of a real robot. Figure 1.1 shows pictures of it with the single-camera and the
stereo head modes. The robot is a Pioneer 2AT, and is equipped with a Directed
Perception PTU 46-70 pan tilt unit. On top of the pan tilt unit one or two Sony
DFW-VL500 cameras are mounted. The cameras have a resolution of 640× 480
pixels. The CPU of the robot is an Acer Travelmate C110 laptop (Intel Pentium
M 1000MHz, 799 MHz, 760 MB RAM) placed on top of the robot and running
Microsoft Windows XP. For the object recognition experiments, the platform
that supports the cameras and the laptop was raised in order to gain a more
human-like perspective and be able to see objects on top of the tables.

1.3 Publications

From the work carried on while pursuing this thesis, several publications have
been derived:

• A. Ramisa, A. Tapus, R. Lopez de Mantaras, R. Toledo; ”Mobile Robot
Localization using Panoramic Vision and Combination of Local Feature
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(a)

(b)

Figure 1.1: (a) The Pioneer 2AT robot used in the experiments described in
Chapters 3 and 4. (b) The stereo setup has been used in Chapters 5 and 6 of
the thesis.
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Region Detectors”, In Proceedings of the 2008 IEEE International Confer-
ence on Robotics and Automation, Pasadena, California, May 19-23, 2008,
pp. 538-543.

• R. Bianchi, A. Ramisa, R. Lopez de Mantaras; ”Learning to select Object
Recognition Methods for Autonomous Mobile Robots”, In Proceedings of
the 18th European Conference on Artificial Intelligence, Patras, Greece,
July 21-25, 2008, pp. 927-928.

• R. Bianchi, A. Ramisa, R. Lopez de Mantaras; ”Automatic Selection of
Object Recognition Methods using Reinforcement Learning”, In Recent
Advances in Machine Learning (dedicated to the memory of Prof. Ryszard
S. Michalski). Springer Studies in Computational Inteligence. To appear.

• A. Ramisa, S. Vasudevan, D. Scharamuzza, R. Lopez de Mantaras, R.
Siegwart; ”A Tale of Two Object Recognition Methods for Mobile Robots”,
In Proceedings of the 6th International Conference on Computer Vision
Systems, Lecture Notes in Computer Science 5008, Santorini, Greece, May
12-15, 2008, pp. 353-362.

• A. Ribes, A. Ramisa, R. Toledo, R. Lopez de Mantaras; ”Object-based
Place Recognition for Mobile Robots Using Panoramas”, In Proceedings of
the 11th International Conference of the ACIA, Frontiers in Artificial In-
telligence and Applications, Vol. 184. IOS Press, Sant Marti d’Empuries,
Girona, October 22-24, 2008, pp. 388-397.

• A. Ramisa, R. Lopez de Mantaras, D. Aldavert, R. Toledo; ”Comparing
Combinations of Feature Regions for Panoramic VSLAM”, In Proceedings
of the 4th International Conference on Informatics in Control, Automation
and Robotics, Angers, France, May 2007.

• M. Vinyals , A. Ramisa, R. Toledo; ”An Evaluation of an Object Recog-
nition Schema Using Multiple Region Detectors”, In Proceedings of the
10th International Conference of the ACIA. Frontiers in Artificial Intelli-
gence and Applications, Vol. 163. IOS Press, Sant Julia de Lria, Andorra,
October 2007, pp. 213-222.

• A. Goldhoorn, A. Ramisa, R. Lopez de Mantaras, R. Toledo; ”Using the
Average Landmark Vector Method for Robot Homing”, In Proceedings
of the 10th International Conference of the ACIA. Frontiers in Artificial
Intelligence and Applications, Vol. 163. IOS Press, Sant Julia de Lria,
Andorra, October 2007, pp. 331-338.

• D. Aldavert, A. Ramisa, R. Toledo; ”Wide Baseline Stereo Matching Us-
ing Voting Schemas”, In 1st CVC Research and Development Workshop,
October 2006.

• A. Ramisa, D. Aldavert, R. Toledo; ”A Panorama Based Localization Sys-
tem”, In 1st CVC Research and Development Workshop, October 2006.
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Besides, three more papers have been submitted for publication:

• A. Ramisa, A. Tapus, D. Aldavert, R. Toledo, R. Lopez de Mantaras;
”Robust Vision-Based Localization using Combinations of Local Feature
Regions Detectors”.

• A. Goldhorn, A. Ramisa, D. Aldavert, R. Toledo, R. Lopez de Man-
taras; ”Combining Invariant Features and the ALV Homing Method for
Autonomous Robot Navigation based on Panoramas”.

• D. Aldavert, A. Ramisa, R. Toledo, R. Lopez de Mantaras; ”Visual Regis-
tration Method for a Low Cost Robot”.

1.4 Outline of the Thesis

This thesis contains eight chapters that can be grouped in two parts of closely
related content: chapters three and four describe an approach to visual-based
indoor global localization without any semantic capability, while chapters five to
seven address the issue of object recognition, the main difficulty if a semantically
enhanced approach is to be attempted. Chapters two and eight present the
related work and preliminaries, and the conclusions and future work respectively.
Next is a brief outline of the thesis starting at chapter two.

Chapter 2: Related Work and Preliminaries

In this chapter, we review literature related to both of the robot localiza-
tion and object recognition fields. Approaches to global localization with
similarities to the one proposed are discussed, and interesting methods for
object recognition that have some characteristics relevant for robotic ap-
plications are presented. Finally, some preliminaries on the type of visual
features employed through all this work are reviewed.

Chapter 3: Global Localization Method

In this chapter our proposed topological indoor localization system is pre-
sented and evaluated in a dataset of panorama sequences from various
buildings. Additionally, a re-ranking of the map nodes to speed up the
search of the current location is proposed. Also experiments with conven-
tional perspective images instead of panoramas are performed.

Chapter 4: Appearance-Based Homing with the Average Landmark
Vector

In order to travel between the topological map nodes proposed in the pre-
vious chapter, here we experiment with the ALV homing method using
image features as the ones employed for localization. Simulation experi-
ments, as well as real-world ones, are done to verify the robustness of the
method.
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Chapter 5: SIFT Object Recognition Method

In this chapter the SIFT object recognition method, as well as the pro-
posed modifications, are described and evaluated. First we review the
effects of varying the different parameters of the algorithm and, next,
the most successful configurations are further evaluated on the whole test
data.

Chapter 6: Vocabulary Tree Method

Similarly to the previous chapter, here different choices of parameters
for the Vocabulary Tree method, and the proposed adaptations to de-
tect objects in unsegmented images, are compared. The best performing
combination is again evaluated on the whole test data.

Chapter 7: Object Recognition Method Selection with Reinforcement
Learning

In our experiments, we found that both methods have advantages and
drawbacks and therefore, in this chapter, we propose a Reinforcement
Learning approach for selecting the best performing method for a given
input image.

Chapter 8: Conclusions and Future Work

Finally, in this chapter, the conclusions of the thesis and future research
directions are presented.
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Chapter 2

Related Work and
Preliminaries

Since the beginning of the 90’s one of the best solutions to the robot navigation
problem has been Simultaneous Localization And Mapping (or simply SLAM)
techniques. These techniques consist of a statistical framework to simultaneously
resolve the problems of localization and map building combining the information
from the odometry and the sensors of the robot. SLAM was proposed in a series
of seminal papers by Smith and Cheeseman (1986) and Smith et al (1990).

Traditionally there are two main approaches to SLAM: metrical and topologi-
cal. In short, metrical SLAM builds a geometric map of the environmentis and
recovers the exact position of the robot, while topological SLAM methods build
qualitative maps which contain the connectivity between fuzzy-defined places
and are particularly useful in path-planning tasks. Between this two main ap-
proaches, there is a range of hybrid approaches that combine some characteristics
of both paradigms to compensate for the defects of each single approach (Toma-
tis et al, 2002). Next we give a brief explanation of both paradigms, with their
advantages and limitations, and some examples.

Metrical SLAM techniques build maps that reflect the real geometric proper-
ties of the environment and are the more frequent SLAM methods. The earliest
approach to SLAM used occupancy grid maps, first proposed by Elfes (1990,
1989) and Moravec (1988) in the late 80s, a short time before the introduction
of SLAM by Smith, Self and Cheeseman. The map representations divide the
environment in a high-resolution grid, in which each cell contains the probability
of being occupied by obstacles or not. These methods allow the use of raw sensor
data without any feature extraction process, but they require a lot of memory.
The original motivation for this kind of maps is that the predominant sensor at
the time of its development was the sonar, a short-range and mostly imprecise
detector.

The main advantages of metric SLAM are that it is simple to reuse a map in
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different robots, its construction is straightforward (grid maps consist only of
occupied/free cells, and in feature-based maps features are located at their es-
timated position) and that the map is close to a CAD model (Thrun, 1998).
In addition, metric SLAM methods facilitate tasks such as local navigation and
obstacle avoidance. However, the most important drawbacks of metric SLAM
methods is that they are very space-consuming, no efficient path-planning strate-
gies can be carried on metric maps, a very precise and reliable sensor is required
and, in spite of the robustness introduced, there is still a significant dependence
on the odometry of the robot.

Kalman filters are the base of the classical SLAM method. The maps in this
approach are usually represented by the Cartesian coordinates of sets of features,
which can be shapes or distinctive objects in the environment. Using these fea-
tures and the estimated position and orientation of the robot arranged in a state
vector, posteriors are computed with the Kalman filter, along with uncertainties
in the landmarks and the robot positions.

The basic assumption taken in Kalman filter mapping is that the motion and
perception models are linear with added Gaussian noise. To overcome the non-
linearities inherent in the real world, Taylor expansions are used. This modified
approach is known as extended Kalman filters. The principal advantage of SLAM
based on Kalman filters is that a full posterior probabilities map is estimated in
real-time, and its most important drawback is the Gaussian noise assumption,
which implies that it can not handle the correspondence problem (Thrun, 2002).

An extension of the Kalman filters paradigm is the algorithm by Lu and Milios
(1997) which combines a first phase where a posterior map is computed using
Kalman filters with an iterative maximum likelihood data association step. The
main advantage of this modification over the original method is that it can cope
with the correspondence problem as long as the posterior map computed in the
first step is accurate enough. Its main drawback is the iterative nature of the
method, which makes it not suitable for real-time.

Another extension of this paradigm which obtained very good results uses a
Rao-Blackwellized particle filter to maintain various Kalman filters with different
hypothesis of the robot position. This way the correspondence problem can be
solved by keeping the most feasible hypothesis (Doucet et al, 2000; Thrun, 2002)

Expectation Maximization algorithms for robot localization are based on the
work in maximum likelihood by Dempster et al (1977). This SLAM technique
performs hill climbing in all the possible maps to find the most coherent one. It
consists of two iterative steps: the E-step where the robot position is estimated
based on the best available map, and the M-step, which estimates a maximum
likelihood map based on the locations computed at the E-step. The principal
advantage of this method is that it solves the correspondence problem by re-
peatedly re-localizing the map relative to the present map at the E-step. With
the multiple hypotheses tested, different correspondences are tried and the most
ones likely are used. The main drawback of the algorithm is that it is iterative,
so it can not be used in real-time and is not incremental. Examples of Expec-
tation Maximization SLAM methods include Burgard et al (1999) and Thrun
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et al (1998).

The sensors used in most of the metric SLAM algorithms are traditionally sonars
and 2D laser range scanners because they directly retrieve depth information.
Therefore the inclusion of a new landmark in its estimated 3D position on the
map is straightforward. In recent years several methods capable of performing
metric SLAM with purely visual information have started to appear. However,
in images the landmark depth information is not directly accessible, so land-
mark map location must be obtained by reconstruction from two or more views
(Hartley and Zisserman, 2004).

One way to classify these visual SLAM methods is by the type of image ac-
quisition hardware used. The MonoSLAM method by Davison et al (2007) is
the first successful approach to SLAM using a single perspective camera. A
map is constructed recovering the position of salient features – computed with
the detector of Shi and Tomasi (1994) – using structure from motion. Another
approach is to use two or more cameras and obtain the depth of the detected
features by means of stereopsis. This approach is the one taken by Se et al
(2001), where the 3D position of SIFT (Scale Invarian Feature Transform) fea-
tures (Lowe, 2004) is estimated with the help of a Tryclops trinocular camera
system. Finally, an approach that has attracted much attention recently consists
in using an omnidirectional camera. With a wider field of view, more features
can be detected and matched to the map, resulting in a more robust estimation
of the robot position (Murillo et al, 2007). Furthermore, having omnidirectional
vision means that potentially every frame acquired with the vision system will
have sufficient features for localization. In opposition, perspective cameras can
easily be pointed towards an area without enough texture (e.g. a white wall)
making localization impossible.

Topological SLAM ignores the geometry of the environment and represents it
by a set of descriptions of significant places. The map is usually represented as a
graph, where the nodes are the places and the accessibility information between
them are the edges. Topological localization methods do not attempt to find the
precise position of the robot (a (x, y) coordinate to some reference frame), but to
qualitatively know where in the map is the robot. Although different strategies
can be used, the most common way for topological localization systems to char-
acterize places is constructing a descriptor based in features of the environment
(Filliat and Meyer, 2003).

The most important advantages of topological navigation are the following: it
does not require a metric sensor, the qualitative representation of the space
can be easily used in high-level tasks (for example path-planning), an objective
representation of the environment is not necessary, it requires less memory than
a metric map and in general has a lower complexity level. The drawbacks are
that most pure topological maps do not suffice for local navigation and that the
decision of when and how to update the nodes of the map and when to add new
ones is not always clear. In addition, if the localization method does not use
odometry at all, then the perceptual aliasing problem gets worse as no movement
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information is available to help in the disambiguation of places, such as when
closing a loop.

The concept of space representation of topological localization has a strong re-
lation to the way animals construct their mental maps of the environment. As
mentioned in Chapter 1, already in the late 40s, E. Tolman, in the light of etho-
logical experiments with rodents, hypothesized the existence of certain parts of
the brain associated with certain places the animal had visited and activated
through sensory information (Tolman, 1948). He called them cognitive maps.

O’Keefe and Dostrovsky (1971) identified the place cells in rodent brains. Place
cells are neurons located mainly in the hippocampus that are activated when the
rat is in a certain place. The cause of activity of this neurons is primarily senso-
rial information –in particular visual features– but also movement information
is used, as they continue activating in the dark. This evidence poses a stimulat-
ing example of a successful topological navigation system. In contrast, Thrun
(2002) states that the main difference between metric and topological SLAM
approaches is the resolution of the map: in metric SLAM it is fine-grained and
in topological SLAM it is coarser. In fact, until recently, most of the topological
SLAM algorithms were hybrid approaches where nodes are given by partition-
ing the free space under some criteria, but no significant qualitative differences
between the nodes are present (Tomatis et al, 2002; Choset and Nagatani, 2001;
Nieto et al, 2004). This lack of pure topological methods is because SLAM algo-
rithms were originally designed for sonars, and later for 2D laser range-finders.
This kind of sensors give a very accurate estimation of depth, but provide none
or very few information about the appearance of the environment and, thus,
most of the time it is not possible to discriminate one place from another, so no
pure topological approaches were possible using that type of sensors.

The situation began to change with the introduction of digital cameras as sensors
for SLAM methods. Cameras offer a much richer source of information about
the environment’s appearance that can be used to characterize places in a dis-
tinctive way. An illustrative example of such type of topological SLAM method
is Tapus and Siegwart (2006). This method describes places using fingerprints.
Fingerprints are circular ordered lists of features extracted from the readings of
an omnidirectional camera and two 2D laser range-finders. The extracted fea-
tures are: color patches and vertical edges from the omnidirectional images and
corners from the laser range-finders. In addition, the features are enriched with
orientation information and long empty spaces are also taken into account. The
list of features is then represented as a string, where each character encodes a
distinct feature. The match between fingerprints is done using a modified string
matching algorithm to cope with the uncertainty introduced by occlusions or
changes in the point of view.

Finally, the simultaneous topological localization and mapping process is per-
formed by a partially observable Markov decision process, that again copes with
uncertainty to find in which place of the map the robot is and know when to add
new information (Tapus and Siegwart, 2006). This approach has been tested in
indoor as well as in outdoor environments, with very good results in both. In
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addition, loop-closing tests were performed, with successful results.

2.1 Localization

SLAM is composed of two main activities: Localization and Mapping. Localiza-
tion takes care of deciding where in the map is the robot located and Mapping is
about when and how the map must be updated. Although both are important
problems, in this work we have addressed primarily the former.
As stated by Thrun et al (2000) three different localization problems are distin-
guished in the literature:

1. Position Tracking. This type of localization consists in correcting small
odometry errors as the robot moves with the help of perceptual informa-
tion. The uncertainty in the robot localization is usually local in this type
of problem, making unimodal state estimators such as Kalman Filters a
good option. A similar concept is visual odometry, where the movement of
the robot is estimated from visual information (Scaramuzza and Siegwart,
2008).

2. Global Localization. In this type of problem the initial position of the
robot is not known, and it can’t be used to constrain the area of the map
where the robot can be located. Consequently the method must be able
to robustly distinguish between the different possible positions.

3. Robot Kidnapping (Engelson, 1994). This problem consists of suddenly
teleporting a well-localized robot to a random position of the map without
letting the robot know. This type of problem simulates a gross localization
error and evaluates the ability of the method to recover from it.

In Chapter 3 a localization method is described that is specially suitable for the
second and third type of localization. Recently, other robot global localization
methods similar to the one proposed in this work have been presented.
Murillo et al (2007) propose a hierarchical method for localization using om-
nidirectional images. This method uses vertical lines (radial in the omnidirec-
tional image) characterized using color descriptors. The hierarchical nature of
the method can deal with large databases by applying three filters of increasing
complexity (from linear to quadratic in the number of features) to reject unlikely
images. When at least five correct line matches have been computed between the
query image and two related images from the dataset, metric localization can be
performed using the 1D radial trifocal tensor and a robust model fitting method
such as RANSAC. The method has been evaluated in two image datasets both
for topological and metric localization with very good results.
Cummins and Newman (2007) propose an appearance-only SLAM system that
learns generative models of places to compute the probability that two visu-
ally similar images were generated in the same location. The approach is based
on the bag of visual features type of method proposed by Sivic and Zisserman
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(2003). Another example is the approach proposed also by Cummins and New-
man (2008), that uses a probabilistic bail-out condition based on concentration
inequalities. They have applied the bail-out test to the appearance-only SLAM
system and extensively tested their method in outdoor environments.
Furthermore, the work presented by Angeli et al (2008) describes a new approach
for global localization and loop detection based on the bag of words method.
Booij et al (2007) build first an appearance graph from a set of training om-
nidirectional images recorded during exploration. The Differences of Gaussians
(DoG) feature detector and the SIFT descriptor are used to find matches be-
tween images in the same manner as described in (Lowe, 2004), and the essential
matrix relating every two images is computed with the 4-point algorithm (with
planar motion assumption) and RANSAC. The similarity measure between each
pair of nodes of the map is the ratio between the inliers according to the essential
matrix and the lowest number of features found in the two images. Appearance
based navigation is performed by first localizing the robot in the map with a
newly acquired image and then using Dijkstra’s algorithm to find a path to the
destination. Several navigation runs are successfully completed in an indoor
environment even with occlusions caused by people walking close to the robot.
Valgren and Lilienthal (2008) evaluate an approach focusing on visual outdoor
localization over seasons using spherical images taken with a high resolution
omnidirectional camera. Then, Upright Speeded Up Robust Features (U-SURF)
(Bay et al, 2008), that are not invariant to rotation, are used to find matches
between the images and the 4-point algorithm is used to compute the essential
matrix. In a previous experiment, the authors found that the performance using
these feature regions was similar to the DoG regions described with SIFT (Lowe,
2004) but much more efficient to compute. In order to reduce the unaffordable
computational cost of comparing a novel view with every single image stored
in the memory of the robot, incremental spectral clustering is used to group
together images from a room, or area, that share a similar appearance and find
a group representative. Then the matching has a first phase where the novel
image is compared to the cluster representatives and, if there is no clear winner,
the query image is compared to all images belonging to the putative clusters.

2.2 Towards Semantic SLAM

With the aforementioned techniques impressive achievements have been ob-
tained. However, these purely navigational approaches are not useful for the
high-level reasoning we expect from robots that have to assist us in our every-
day life. For example inferring the type of room the robot is in, or where should
it start looking for a milk bottle are tasks that can be only accomplished with a
more semantically rich representation of space.
To address this problem, a straightforward solution could be enhance an ex-
isting metric map with detected objects and other semantic information. The
work of Galindo et al (2005) takes this approach and represents space as a oc-
cupancy grid from which a hierarchical topological map is constructed to ease
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path-planning and reasoning tasks. Semantic concepts are represented in a par-
allel hierarchy inferred from the objects detected and anchored to nodes of the
hierarchical spatial map. Alternatively, Vasudevan (2008) proposed a more in-
tegrated approach where the higher-level features with semantic content are the
building blocks from which a hierarchical probabilistic concept oriented repre-
sentation of space is created and grown. This approach brings together the two
previously described SLAM types (as in an hybrid approach) and incorporates a
new semantic layer on top of them. This semantic layer is built from high-level
features with semantic content detected in the environment, such as objects or
doors instead of corners and lines. The detected objects are inserted in metric
object graph maps that constitute the lower level of the space representation.
These object graph maps can be used in a similar way as a conventional feature-
based metric map. However, its true power is that they can be generalized in
a hierarchical way to high-level concepts that represent particular categories of
rooms or areas. Several approaches of increasing complexity for the generaliza-
tion of place categories are presented. The tests included data acquired from 19
living and working environments. Furthermore, experiments on a real plataform
with real sensor data where also conducted using a version of the SIFT Object
Recognition method presented by Lowe (2004).

2.3 Visual Object Recognition

As can be seen in the recently published literature, currently there is a big push
towards semantics and higher level cognitive capabilities in robotics research.
One central requirement towards these capabilities is being able to identify higher
level features like objects, doors etc. in perceptual data. These high-level features
can be perceived using a variety of sensing devices.
Using pure range data for object recognition seems attractive. However 2D laser
range scanners, the most typically used sensor for robot mapping and navigation,
provides an amount of information that is definitely not sufficient to identify
objects, furthermore it is restricted to a single plane. 3D lidars provide a richer
source of information. However, its price and working conditions make them
still difficult to use in mobile robots.
Recently, a novel type of range cameras that uses infrared light time-of-flight has
appeared in the market. These cameras are a convenient way to acquire a 3D
image in an indoor scenario. Furthermore, they are compact (in the order of a
few centimeters per side) and have a good frame-rate. However this technology
is still at early stages, and current models of this type of cameras can only obtain
images with a resolution of less than two hundred pixels per side of scenes with
a maximum depth of five meters. In spite of the novelty of this technology,
research for object recognition with these devices is already being conducted
(Gächter et al, 2008).
To date, the most common approaches to object recognition are done using con-
ventional visible spectrum camera images. The major drawback of this type of
sensors is that depth is not directly accessible and, if required, it must be esti-
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mated using stereopsis, structure from motion or a similar technique. However
cameras have a wealth of other advantages, such as much more resolution or
an affordable price. Although impressive results are obtained by modern ob-
ject recognition and classification methods, still a lightweight object perception
method which allows them to interact with the environment in a human cogni-
tive level is lacking. Furthermore, the system should be able to learn new objects
in an easy, and preferably automatic, way.
Recently methods have been proposed that are quite successful in particular
instances of the general object classification problem, such as detecting frontal
faces or cars (Viola and Jones, 2001) , or in datasets that concentrate on a
particular issue (e.g. classification in the scale-normalized Caltech-101 dataset).
However in more challenging datasets, like the detection competition of the Pas-
cal VOC 2007, the methods presented achieved a lower average precision1. This
low performance is not surprising, since object recognition in real scenes is one
of the most challenging problems in computer vision (Pinto et al, 2008). The
visual appearance of objects can change enormously due to viewpoint variation,
occlusions, illumination changes or sensor noise. Furthermore, objects are not
presented alone to the vision system, but they are immersed in an environment
with other elements, which clutter the scene and make recognition more com-
plicated. In a mobile robotics scenario a new challenge is added to the list:
computational complexity. In a dynamic world, information about the objects
in the scene can become obsolete even before it is ready to be used if the recog-
nition algorithm is not fast enough.
Next we review some of the most relevant state-of-the-art object detection and
classification methods. Also, we discuss which sources of information can be
exploited in the mobile robotics domain in order to have a fast and robust object
recognition method, and which of the existing techniques could be applied in such
domain.
For clarity, in the following we will refer to classification as the task of assigning
previously unseen object instances to given general class label (is this a mug?),
recognition as the task of identifying a particular object instance (is this my
mug?) and detection as (roughly) deciding which area of the image is occupied
by our object of interest (where is the mug?).

Recently, significant work has been done in visual object classification, with
many methods making analogies to document retrieval literature. Visual vo-
cabularies (see Section 2.4 for the basics to understand the following related
work) have been extensively used to relate local feature regions to visual words
by clustering its descriptors with algorithms like k-means (Sivic and Zisserman,
2003; Csurka et al, 2004) or hierarchical k-means (Nister and Stewenius, 2006)
among others. This reduces its dimensionality to a fixed number, so visual-word
statistics can be used to classify the input image.
Sivic and Zisserman (2003) use k-means to cluster local feature descriptors into a
vocabulary of visual words and the TF-IDF (Term Frequency - Inverse Document

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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Frequency) scheme to prioritize distinctive visual words. Local features are
detected in an image with an affine-invariant adaptation of Harris corner detector
(Mikolajczyk and Schmid, 2002) and the MSER detector (Matas et al, 2004)
and a histogram is built from visual-word counts. Experiments are done in
scene matching - where query descriptor vectors are compared to the ones in
database - and object retrieval throughout a movie, where a user-specified query
region is used to re-rank the results using spatial consistency, accomplished by
matching the region visual-words to the retrieved frames. However, creating and
using large linear visual vocabularies (millions of visual words) can become an
intractable problem. Nister and Stewenius (2006) use the same TF-IDF scoring
scheme but this time the vocabulary is constructed using a hierarchical k-means.
This allows an efficient lookup of visual words in logarithmic time, enabling
the use of larger vocabularies. The results show how well the system scales to
large databases of images in terms of search speed, and the larger vocabulary
describes much better the images so, in contrast with (Sivic and Zisserman,
2003), geometric information is not really needed to obtain good performance.
New query vocabulary trees are compared to the training set contents using
k-Nearest Neighbors, therefore the training set is organized in an inverted files
structure to speed-up the comparison. Jegou et al (2007) highlight that although
the inverted files structure speeds up the search, it is still linear in the number
of training images, and propose to organize the database images in a two-level
structure. The first level consists in an inverted files structure of medoids (the
most central element of a cluster used as its representative) computed with the k-
medoids algorithm (Kaufman and Rousseeuw, 1990) over the visual vocabulary
vectors. The second level contains an inverted file for the vectors assigned to
each of the k medoids. This two level structure allows to search only the inverted
files for the medoids closer to a query vector. Another contribution of the work
of Jegou et al (2007) is a contextual dissimilarity measure to iteratively modify
the neighborhood structure to reduce the impact of too-often-selected images.

This concept of bag of words approach has been maturing in recent years, with
works such as the one by Zhang et al (2007), where multiple approaches (e.g. dif-
ferent alternatives to construct the image signature, various distance measures,
etc.) as well as a wide range of parameters are rigorously tested in multiple
object and texture datasets. The classifier used in this work is a SVM, using
both the Earth Distance Measure and the χ2 distance.

Nowak et al (2006) evaluate different parameter settings for a bag of features
approach and propose to use descriptors computed randomly in a dense grid
over the image rather than only at positions returned by an invariant feature
detector. Even though performance is lower when using few descriptors (feature
detectors find more informative image regions) when the number of sampled
regions is high enough, their brute force approach can improve the results of
feature detectors.

A somewhat related approach is the one by Agarwal and Triggs (2008). They
propose a novel representation, which call hyperfeature (see Figure 2.1), that
is optimized for capturing and coding local descriptors and their co-occurrence
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Figure 2.1: Hyperfeature stack. The base level is constructed from descriptors
calculated in a dense grid over the image. Subsequent levels are generated from
local histograms of codebook memberships from the previous level. This image
has been taken from (Agarwal and Triggs, 2008).

statistics. It consists of a hierarchy of bag of features representations. For the
first level bag of features, local region descriptors computed over a dense grid
are used, as done by Nowak et al (2006). The input of the next level are local
histograms of visual word counts from the previous level, treated as if they were
local feature descriptors in a standard bag of features approach. Each level of
the pyramid is also constructed over scale space to capture objects at different
scales. Finally, Latent Dirichlet Allocation is used to reduce the dimensionality
and reduce fragmentation of the codebooks.
Serre et al (2007) propose a feedforward approach for object classification, deeply
inspired in psychological and biological research, that mimics the primate visual
pathway. It has been designed following evidence collected in numerous studies
done with monkeys. The model consists of four layers of computational units,
alternating simple cells (called computational units) layers with complex cells.
In short:

• S1: The first layer computes the response of the image pixels to a bank of
Gabor filters at different orientations and scales.

• C1: The second layer performs a local MAX operation at each position of
a grid defined over the results of the first layer.

• S2: The third layer compares the results of the previous layer with a vocab-
ulary of approximately 1000 patches in C1 format on local neighborhoods,
acting as Gaussian RBFs.

• C2: Finally, the last layer takes the maximum over all S2 associated with
each patch, resulting on a vector of the same size of the vocabulary. This
vector is then used in a conventional classifier such as SVM or boosting.
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The proposed approach is tested on a handful of datasets and for different tasks
such as classification, presence/absence detection in unsegmented images or de-
tection with sliding windows. Furthermore, the proposed feature detector is
shown to outperform several other detectors/descriptors – such as DoG/SIFT
(Lowe, 2004) – and object classification methods like the Implicit Shape Model
from Leibe et al (2004). One of the interesting points of this approach is its
biological plausibility, another is the fact that being a feedforward model it is
easily parallelizable, and therefore with the appropriate hardware can possibly
be used in real-time scenarios. However, in its current state the approach stands
only for the primary visual cortex –the what in the what/where ventral/dorsal
visual pathways dichotomy (Zeki, 2001)–, and the rest of the visual system of
the brain is emulated by a simple linear classifier. Adding the top-down capa-
bilities and feedback connections of the rest of the visual system constitutes an
extremely interesting, yet challenging, line of research that aims to yield a vision
system similar to biological ones. In (Serre et al, 2006) the system is shown to
be comparable to human performance in rapid animal-non animal categorization
task. In this task humans are asked to decide if an animal is present in a picture
exposed from 30 to 60 ms. This short exposition gives time only to the primary
visual cortex to process the information.

The work of Opelt et al (2006a) proposes combining multiple feature types in
a single model making use of boosting to form each classifier. This enables
each category to choose the best features, regardless of type, that describes
it. Local features used are both discontinuity and homogeneity regions. The
former are appearance features detected and described with various methods that
capture local intensity changes and the later are regions extracted with wavelets
or segmentation that contain repetitive textures or stable intensity distributions
respectively. Results show that different feature types perform much better in
some classes than others, so combining them in a single model greatly improves
classification results.

Although good results have been obtained using bag of words type methods,
when a signifficant ammount of clutter is present in the image or detection and
pose estimation is necessary, information on the relative position between object
features is essential. This is usually a requirement when dealing with real world
images, and several methods have been developed in order to take advantage of
this positional information.

Fergus et al (2003) present a generative model to learn object classes as a flexible
constellation of parts. The parts are found using the local scale invariant feature
detector proposed by Kadir et al (2004), that concentrates on high entropy
regions of the image. The different parameters of the objects (appearance, shape,
relative scale and occlusions and statistics of the feature finder) are learn jointly
in a Bayesian framework. One of the main drawbacks of this approach is the
complexity of this combined estimated step which restricts the method to use
only approximately 10 parts per object.
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Leibe et al (2004) present the Implicit Shape Model (ISM), a method that com-
bines detection and segmentation in a probabilistic framework. First a codebook
is built using agglomerative clustering over a set of 25x25 pixel patches computed
around Harris corner points. For every resulting cluster center, the Normalized
Grey-scale Correlation distance is computed to all the training patches and,
for those that are over a certain threshold, the relative object center position
is stored. For detection, a 2D Generalized Hough Transform (with continuous
space to avoid discretization) is used to cluster probabilistic votes for object cen-
ters. Finally, the image is segmented assigning to each pixel the most probable
object class with respect to the matched patches that include it. A Minimal
Description Length procedure is used to reject overlapping hypotheses based on
segmentation results. Tests have been done with the UIUC car database and
with the individual frames of a walking cows video database, reporting very good
performance. However, results show that the method is able only to deal with
very small scale changes (10% to 15%). To avoid this, authors suggest using
scale-invariant interest point detectors or rescaled versions of the codebook.

Opelt et al (2006b) present the Boundary-Fragment Model (BFM). This strat-
egy is similar to the one of Leibe et al (2004), but instead of local patches, it uses
boundary fragments. A codebook of fragments for detecting a particular class is
built by first computing Canny edges of the training images and finding edge seg-
ments that match well in a validation set (and bad in the negative examples set)
using an optimization procedure. Next the candidate edge segments are clus-
tered using agglomerative clustering on medoids to reduce redundancy, storing
also the centroid of the object. Groups of two or three segments that estimate
well the centroid of the object are used as weak detectors in a boosting frame-
work. A strong detector is trained selecting weak detectors with good centroid
prediction capabilities in positive images and that do not fire in negative images.
For detection, weak detectors are matched to image Canny edges, with each one
voting for one or various centroid positions in a 2D Hough voting space. Votes
are accumulated on a circular window around candidate points, taking those
above a threshold as object instances. Finally approximate segmentation can
be obtained backprojecting the segments that voted for a centroid back into
the image. In order to make the method robust to scale and in-plane rotation,
different scaled and rotated of the codebook are used simultaneously.

The authors extended this method for multi-class object detection (Opelt et al,
2006c) using a shared codebook. The method can be trained both jointly or in-
crementally. Yu et al (2007) propose a shape-based method for object detection.
The method builds on the ISM and uses k-Adjacent Segments (Ferrari et al,
2008) with k=3, called Three Adjacent Segments (TAS) as shape-based feature
detector. A codebook of TAS is generated by first building a fully connected
graph of all the TAS in the training set with distance in the edges between every
pair of TAS and then applying Normalized Graph Cuts to obtain the cluster cen-
ters. Similarly to the ISM model, probabilistic votes are casted in a 2D Hough
Transform, and Parzen Windows are used to find the most plausible object cen-
ters. Finally Gradient Vector Flow is used to find an approximate segmentation
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of the objects. The proposed method is interesting and has a similar perfor-
mance to BFM in the cows and motorbikes datasets used by Opelt et al (2006b)
although using simpler features, specially in the case of few training images and
small codebooks (∼ 200 features).

Lowe (1999, 2004) proposes a single-view object recognition method along with
the well known SIFT features. First SIFT features of the training images are
compared using Euclidean distance to the set of descriptors from the test image
using a K-D tree and the Best Bin First algorithm to speed up the matching
process. Matches in which the distance ratio between the first and second nearest
neighbors is greater than 0.8 are rejected. This eliminates 90% of the false
matches while discarding less than 5% of the correct matches. Matches remaining
after this pruning stage are clustered using its geometrical information in a
4D Generalized Hough Transformation with broad bin sizes, which gives the
initial set of object hypotheses. To avoid the problem of boundary effects in bin
assignment, each keypoint match votes for the 2 closest bins in each dimension.
Although imprecise, this step generates a number of initial coherent hypotheses
and removes a notable portion of the outliers that could potentially confuse more
precise but also more sensitive methods. Bins of the Hough Transform containing
three or more matches constitute an object location hypothesis. Finally a least-
squares method is used to estimate the affine transformation of the detected
object.

The SIFT object recognition method has been also extended to handle 3D ob-
jects. Lowe (2001) proposes to create a model from a set of training images
taken at different points of the view sphere to gain robustness to viewpoint
changes. The model is constructed in an unsupervised manner by clustering
together similar training images and establishing links between different views
of the same feature. When voting in the Hough Transform for a test image,
matches to different adjacent images of the training set are propagated using
these links to ensure that at least one model view accumulates votes for all the
matching features. Brown and Lowe (2005) use a view-centered approach to find
relations between an unordered set of 2D views of an object and, next, all views
are combined in an object-centered model. Gordon and Lowe (2006) go one step
further and use a 3D object model in an augmented reality task. First, a 3D
model of the object is built in an offline stage from a collection of views. Feature
points are extracted and matches between each related pair of views are estab-
lished using camera geometry information to filter false correspondences. Next,
matched SIFT features are added to a 3D object-centered model. During the
online stage, the pose of the object is estimated by first performing a 2D to 3D
feature matching between the query image and the 3D object model, and then
using RANSAC and the Levenberg-Marquardt algorithm (Levenberg, 1944) to
determine the transformation and filter the outliers.

Bag of features type object classification methods that make no use of geometric
information can still be used for detection by taking a sliding window approach.
Fulkerson et al (2008) propose several ideas in this direction: to accelerate the
evaluation of the windows they use integral images defined over the feature dic-
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tionary space. This would still not be sufficient to achieve frame-rate speed in
classification if a large dictionary is used, which has repeatedly been shown to
improve the performance in recent work (Nister and Stewenius, 2006; Philbin
et al, 2007). In order to improve the ratio between dictionary size and clas-
sification accuracy, agglomerative information bottleneck (AIB) is used: First
large dictionaries are created with hierarchical k-means and next AIB is used
to build an agglomerative tree from the leaf nodes creating a coarse-to-fine-to-
coarse architecture. This reduces the dictionary size and overcomes the problem
of excessively large dictionaries while retaining the performance. The method is
tested in the Graz-02 dataset achieving results comparable to those of Marszalek
and Schmid (2007) and with an execution time of around 2 seconds. Lampert
et al (2008) propose, as a much faster alternative to sliding windows, a branch
and bound scheme to rapidly explore the space of all possible bounding boxes for
the object of interest in the image. The bounding box parameter space is defined
by intervals of rectangles of interest coordinates. Namely, [T,B,L,R] (top, bot-
tom, left and right respectively) defines a rectangle interval with T = [tmax, tlow],
etc. Consequently, the parameter space is defined as a tuple of such intervals.
The key element that makes it possible to use branch and bound in this schema
is the definition of a quality bound (i.e. maximum score that can be obtained
for a given bounding box parameter interval). Using this quality bound, search
can be prioritized to sets of parameter intervals that attain the best maximum
score. Lampert et al. apply the proposed approach to optimize localization with
a simple bag of features approach, with spatial pyramid kernels and even with
multi-image search.

Context has been argued to provide very relevant information in computer
vision. In Opelt et al (2006a), weak classifiers are selected with a boosting
method to form the final classifiers; it was found in the experimental results
that a high percentage of weak classifiers with higher weights selected local
features corresponding to background. This can be interpreted as that context
in some classes is more discriminative than foreground parts, although it greatly
depends on the training set used. Also, context can be introduced in an ontology-
based manner between objects as it is done in Rabinovich et al (2007), where
object co-occurrence probability is computed by extracting related terms to each
class from Google Sets or directly computing it from the ground truth. The
system first segments query images into regions, which are in turn classified in
a bag of features fashion and results obtained are re-ranked based in object co-
occurrences. In Torralba et al (2003) context is provided using global features.
These are computed from local features extracted with a collection of steerable
filters applied over the image, then taking the average magnitude of the responses
over a coarse spatial grid in order to obtain a global descriptor of 384 dimensions,
which is finally projected to its 80 principal components. Knowing that video
frames captured in the same place have a strong correlation, the authors use a
Hidden Markov Model to compute the probabilities of being in a specific place
given global features from some frames ago. Place recognition results are also
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proven to provide a strong prior for object detection.

We are aware of few works that consider the case of general object recognition
in the domain of mobile robots. In Ekvall et al (2006) the authors integrate
object recognition and SLAM. The proposed object recognition method works
with few training images, and consists of two stages: Hypotheses generation and
verification. Active vision is used to focus on interesting parts of the image.
The first stage uses Receptive Field Coocurrence Histograms (RFCH) and, in
the verification stage, an area of interest that contains a maximal number of
hypotheses is zoomed in using the optical zoom of the camera. Again RFCH
are used to verify each hypothesis and finally SIFT features are extracted and
matched to the model image. No further geometrical constraints are aplied
to discard outliers and, if an object dependent number of SIFT features are
matched, the object is considered detected. Background substraction is used
during the training stage to precisely segment the objects. In Murphy-Chutorian
et al (2005) the authors present a system that learns and recognizes objects
in a semi-autonomous fashion. Their system acquires learning samples of new
objects by analyzing a video sequence of a teacher showing an object in a variety
of poses and scales. Then it automatically segments and builds an internal
representation with a shared vocabulary of visual features. The vocabulary is
made using k-means over features based on Gabor-jets and hue-saturation values
extracted at Harris corner points. Each visual word stores the relative position
of the objects where it appears. Recognition is done by accumulating votes on
a Hough Transform in a similar way as in the work of Leibe et al (2004). In the
experiments, the system runs at about 1-2Hz, recognizing objects from a 100
object database with 78% of mean accuracy Additionally, the database included
difficult objects, like untextured, flexible and very similar objects (wires, cans,
water bottles). Pose and scale invariance is obtained by superimposing multiple
learning samples, so it is only invariant in the range that the object was learned.
Wersing et al (2008) propose a biologically motivated object recognition that
runs at 1-2Hz in a 2.4 GHz QuadCore Intel processor. Furthermore, an online
learning framework is proposed that uses stereo depth map segmentation to
determine interest regions corresponding to the object to train in frames of a
video sequence and collects sufficiently dissimilar exemplars for training in a
short time memory. These cropped images are used to train View-Tuned Units
(VTU) linear discriminating units that respond on a receptive field of shape
features and coarse color input. VTUs are trained at three different resolutions
to attain good activation levels at the whole size range at which the object may
appear in future images. A complete map of VTUs for all objects and scales
is then defined covering the whole input image. From this map of responses a
model can be created to determine object positions and scale. The model is
trained from the responses of the VTUs map over the training images for which
the ROI of the object is known thanks to the depth cues. A linear model is learn
that finds the most likely position and size for the object by gradient descent
starting at the global maximum of the VTUs map. The method is evaluated both
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in synthetic imagery and in real online learning experiments. It is also compared
to other methods in the UIUC cars (side view) database. It was found to perform
slightly worse (approx. 3%) when compared to the methods of Leibe et al (2004)
and Mutch and Lowe (2006). However it has to be taken into account that the
Wersing et al approach use a codebook of 50 shape features instead of up to
1000 features as in Mutch and Lowe and Leibe et al. methods, making online
learning and detection possible. The system has been demonstrated running in
real time in an Honda Asimo robot.

2.4 Local Features

As we have seen in the previous section, the majority of recent successful object
recognition algorithms make use of interest regions to select relevant and infor-
mative features of the objects to learn. In this section we will explain the most
relevant feature detectors and descriptors.
Extracting and describing these features is a computationally demanding task,
that can be prohibitive for applications that must run close to real-time. For-
tunately, work is being devoted to achieve faster methods and to develop im-
plementations of the algorithms ready to run in special hardware. For example
in Heymann et al (2007), the authors designed a version of the SIFT feature
detector and descriptor (Lowe, 2004) that can run at twenty 640x480 frames per
second on a GPU unit. Even a FPGA that can be used to detect affine-covariant
features at camera frame-rate (Cabani and MacLean, 2006) is being developed.
These and further advances in these techniques will enable these features to be
used in real-time applications.

2.4.1 Detectors

The Differences of Gaussians (DoG), proposed by Lowe (2004) together
with the SIFT descriptor, is a similarity-invariant feature detector. In order to
obtain scale invariance, points are detected at multiple scales in a scale-space
constructed convolving the image with Gaussian kernels of different scale.
Then, features are found at the extrema of Difference of Gaussians function
convolved with the image, D(x, y, σ), computed by subtracting two nearby scales
of the scale-space separated by a constant multiplicative factor k (see Figure 2.2):

D(x, y, σ) = (G(x, y, kσ)−G(x, y, kσ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ)

The Difference of Gaussians is known to provide a good approximation of the
Laplacian of the Gaussian:

LoG(x, σ) = σ2∇2G

that has been shown to detect stable image features (Mikolajczyk, 2002). Can-
didate points are then adjusted to sub-pixel and sub-scale resolution by fitting
a 3D quadratic funtion to determine the interpolated location of the maximum.
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Figure 2.2: Schema of the Differences of Gaussians computation. At the left the
initial image is incrementally convolved with Gaussians. The adjacent image
scales are subtracted to produce the Differences of Gaussians, which are shown
at the right. This figure has been taken from (Lowe, 2004).

Further computations for each feature are done at the Gaussian smoothed image
with the closest scale, to ensure scale-invariance. Unstable extrema (i.e. with
low contrast) and edge responses are rejected in order to increase robustness
of the detected features to small amounts of noise. Next, canonical orientation
of the detected feature is determined by clustering in a 36-bin histogram the
orientation of the gradient of sample points within a region around the feature
point.

The Harris Affine, proposed by Mikolajczyk and Schmid (2004) is a scale and
affine covariant version of the corner detector proposed by Harris and Stephens
(1988). A short explanation of the original algorithm follows.
The Harris Corner Detector is an improvement of the interest point detector
by Moravec (1980) and locates the corners in the image. A corner can be de-
scribed in terms of image intensities as a region where the intensity gradient
changes fast in two nearly-orthogonal directions. The second moment matrix
or auto-correlation matrix describes the distribution of the gradient in a local
neighborhood. The two eigenvalues of this matrix (α and β in the equations)
represent the magnitude of the two principal signal changes.

M =

[
I2
x IxIy

IyIx I2
y

]
(2.1)

Where Ix and Iy are the first derivatives of the image in the x and y directions
averaged with a Gaussian window to prevent a noisy output. Depending on the
eigenvalues of the matrix three situations may arise: both eigenvalues are low,
which means that we are in a region of constant intensity (a flat region); one of
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Figure 2.3: This figure, taken from the Harris and Stephens (1988) original
article, shows the relation between the eigenvalues of the autocorrelation matrix
(α and β) and the geometry of the image and the response of the Harris function.

the eigenvalues is high and the other low, this corresponds to an edge and, finally,
when both eigenvalues are high we have a corner. The eigenvalue decomposition
is, however, time-consuming. A faster way to compute the relation between the
eigenvalues uses Tr(M) and Det(M):

Tr(M) = α+ β (2.2)

Det(M) = αβ (2.3)

The corner response can then be formulated as:

R = Det(M)− kTr(M)2 (2.4)

where k is a constant parameter which tunes the response of the function usually
put to 0.04. Figure 2.3 shows the response of this cornerness function for different
values of α and β. An alternative way to compute the relation between the
eigenvalues is

R =
Det(M)

Tr(M) + ε
(2.5)

where ε is a small value to avoid divisions by zero. This second method does
not depend on any threshold. Applying this function to the whole image gives
us the curvature of every pixel. Then, the corners can be detected as the local
maxima of this response. Local features detected with this method demonstrated
to be robust to changes in lightning and noise. However, as mentioned before,
an affine covariant region must be defined around the point in order to reliably
match corresponding corners.
The scale invariance Harris Laplace detector is obtained using the multi-scale
approach proposed by Lindeberg and G̊arding (1997). In this approach the
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Figure 2.4: Example of the response of the Harris Affine. a) Original image.
b) Response of the Harris corner detector (darker means higher response). c)
Detected Harris-Affine regions.

Harris points are selected at their characteristic scales with the Laplacian of
the Gaussian. The characteristic scale of a feature is the scale at which it is
best represented. To select corners at their characteristic scales, first a scale-
space representation of the Harris corner detector output must be constructed.
That is why the second moment matrix is adapted to scale changes, to make it
independent of the image resolution:

M = µ(x, σI , σD) =

[
µ11 µ12

µ21 µ22

]
= σ2

Dg(σI) ∗
[

I2
x(x, σD) IxIy(x, σD)

IyIx(x, σD) I2
y (x, σD)

]
(2.6)

The local image derivatives are calculated with Gaussian kernels of scale σD
(differentiation scale). The derivatives are then averaged by smoothing with a
Gaussian of scale σI (integration scale). The scale at which corners are detected
is determined by σD and, as in the Harris corner detector, the objective of the
integration is reducing the sensitivity to noise. The scale-space is built with
the Harris function for pre-selected scales σn = ξnσ0 where ξ is a scale factor
between successive levels, set to 1.4 by Lindeberg and G̊arding (1997) and Lowe
(1999) and to 1.2 in the computationally efficient version of the Harris Laplace
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Figure 2.5: The response to the Laplacian of the Gaussian across scales for the
feature detected in the images attains a maximum at its characteristic scale.
This image has been taken from (Mikolajczyk et al, 2005)

algorithm (Mikolajczyk and Schmid, 2004). Then the matrix µ(x, σI , σD) is
computed picking σI = σn and σD = sσn where s is a constant factor set to 0.7.
Finally corners are detected at every scale by extracting the local maxima. Once
the scale-space is constructed, the characteristic scale of each detected corner is
automatically selected using the Laplacian-of-Gaussian:

|LoG(x, σn)| = σ2
n|Ixx(x, σn) + Iyy(x, σn)| (2.7)

The Laplacian-of-Gaussian detects blob-like structures in the output of the Har-
ris detector, when the size of the blob (produced by a corner) and the size of
the LoG kernel over scales are equal, a maximum is attained. The characteris-
tic scale is relatively independent of image resolution, it is related to the scale
of the structure and not the resolution at which the structure is represented.
The points where the LoG attains no extremum or the LoG response is below a
threshold are rejected. Finally, Harris-Affine Detector aims to obtain the same
set of pixels for every occurrence of a local structure. With this in mind, a pro-
cedure to undo the deformations introduced by changes in the point of view is
needed. The solution proposed by Mikolajczyk and Schmid (2004) is based on
estimating the affine shape of the local structure. Harris-Laplace automatically
selects the scale of a feature, but can only deal with similarity transformations.
However, when the scale changes in orthogonal directions are different (for ex-
ample in a 3D rotation, when the object is slanted), it fails. At this point the
shape of the region detector changes from a circle to an ellipse, to account for
the different scaling in orthogonal directions. This effect can be appreciated in
figure 2.6. To estimate the parameters of the ellipse that encloses the selected
region, the second moment matrix is used. Lindeberg (1998) and Baumberg
(2000) explored the properties of this matrix as an isotropy measure to find the
affine deformation of an isotropic structure. Whitout loss of generality, a local
anisotropic structure is assumed to be an affine transformed isotropic structure.
Then, finding the transformation that projects the anisotropic pattern to an
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Figure 2.6: In this image we can appreciate the different scaling in the orthog-
onal directions produced by 3D rotations (image taken from (Mikolajczyk et al,
2005)).

isotropic one, the parameters of the affine transformation can be recovered up
to a rotation factor. This rotation can later be recovered using methods based
on the gradient orientation (Lowe, 2004). The relation between the eigenval-
ues of the second moment matrix reveal the anisotropy of the region: if both
eigenvalues are equal, the region is isotropic.
A really brief outline of the iterative algorithm is presented next. It must be
taken only as a way to intuitively understand the behavior of the method, not
as exact instructions for its implementation.

1. The initial points are selected using the scale-adapted Harris corner detec-
tor. These points are not detected in an affine invariant way, but its scale
and location serve as initial values for further search.

2. At each iteration of the detection process, the integration scale of a corner
is selected at the maximums of the normalized Laplacian of the Gaussian
across scales.

3. The differentiation scale is selected at the maximum of normalized isotropy
using the value of the integration scale σI and the relation between the
eigenvalues of the second moment matrix. Different values of the differ-
entiation scale σD are generated using σD = sσI for values of s in the
range [0.5, .., 0.75]. The value of s that produces the isotropy measure

Q = λmin(µ)
λmax(µ) closer to 1 is selected.

4. Once the scales are selected, the spatial localization of an interest point
is refined in the affine-transformed domain and a displacement vector be-
tween the original point and the precise localization is back-projected to
the original image domain. This vector is then used to correct the spatial
localization of the point.

5. The shape adaptation matrix is estimated with the second moment matrix
computed in the preceding steps. The transformations are computed as
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µ(k) = µ
−1
2 (x(k), σ

(k)
I , σD)(k) for step k of the iterative process. This trans-

formation is then concatenated with the previous transformations using:

U = Πk(µ
−1
2 )(k)U (0) (2.8)

The second moment matrix is determined by the values of σI and σD at
each step, which are automatically selected at each iteration. Thus, the
resulting µmatrix is independent of the initial values of scale and resolution
of the image.

6. The convergence criterion can be based either on the U or the µ matrix. If
it is set to µ, the algorithm stops when the relation between the eigenvalues
is close enough to 1. In practice a small error of εC = 0.05 is allowed:

1− λmin(µ)

λmax(µ)
< εC (2.9)

The second stopping criterion consists in decomposing U = RTDR and
compare the consecutive U-transformations. If consecutive R and D trans-
formations are similar enough, the iterative algorithm is stopped. Both
termination criteria produce the same final results. In case of divergence

a stopping criterion must be also set. If the eigenvalue ratio λmax(µ)
λmin(µ) > εC

for εC = 6, the point should be rejected as it leads to unstable elongated
structures.

7. If termination criteria is not satisfied, go to step 2.

When the parameters of the ellipse are calculated, the affine covariant region
is extracted and remapped to a circle. This circle is the normalized view from
where the local descriptors will be computed.

The Hessian Affine covariant region detector (Mikolajczyk et al, 2005) works
in the same way as the Harris Affine but, in this case, the feature regions detected
are blobs and ridges instead of corners. The rest of the algorithm is the same
as the Harris Affine: a scale-space selection to detect the characteristic scale of
each point using the Laplacian of the Gaussian, and an elliptical affine region
estimation using the relation between the eigenvalues of the second moment
matrix. The difference between the Hessian Affine and the Harris Affine comes
from the selected initial points. In this case the Hessian matrix is used:

H = H(x, σI , σD) =

[
µ11 µ12

µ[21] µ22

]
= σ2

Dg(σI) ∗
[
Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) I[yy](x, σD)

]
(2.10)

The second derivatives of the image give a strong response on blobs and ridges.
The local maximums of the determinant of this matrix correspond to a blob-like
structure. In addition, a function based on the determinant of the Hessian matrix
penalizes very long structures for which the second derivative in a particular
direction is very small. This type of structures are commonly unstable and
difficult to locate precisely.
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Figure 2.7: Some regions detected by the Hessian Affine covariant region detec-
tor.

MSER or the Maximally Stable Extremal Region detector proposed by Matas
et al (2002) detects connected components at all the possible thresholding levels
of an image. The concept of extremal region defines a set of pixels with a value
either higher or lower than all the neighboring pixels, which can be seen as a local
maximum or minimum (an extremum) of the surface defined by pixel intensities.
Finally, maximally stable refers to extremal regions where the intensity values
of the pixels of the region is several levels higher (or lower) compared to the
neighbors. This type of local features has some desirable properties:

• Affine changes in illumination preserve the regions since they only depend
on the ordering of the pixels and not on the intensity values.

• Geometric changes that can be locally approximated by an affine trans-
formation, an homography or even a continuous non-linear warping will
preserve the topology. This means that pixels from a single connected
component will also be in a connected component in the transformed im-
age.

• The maximally stable requisite ensures that noise or acquisition problems
will not alter the regions significantly.

• Since no smoothing is involved in the process, both very fine and very large
structures are selected.

• An efficient, near linear complexity, detection algorithm exists for this type
of local feature. The complexity for detecting all the regions in an image
is O(n log log n) where n is the number of pixels in the image.
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Figure 2.8: An image binarized at different threshold levels: a) 51 b) 77 and c)
102. The MSER regions are those that do not change (no pixel of its boundaries
switches color) during several successive threshold levels.

The structure of the proposed algorithm is the following: First, all the pixels are
sorted by its intensity value. Next, all pixels are marked in the image (either in
increasing or decreasing order) and the union-find algorithm is used to maintain
the growing and merging between the connected components as in the water-
shed algorithm. During the enumeration process, the area of each connected
component as a function of the intensity is stored. Then, the maximally stable
extremal regions are found by looking at the parts of these functions where no
changes in the area of a connected component occur during a long range of in-
tensity thresholds. This procedure is done twice, one for positive MSER regions
(increasing order) and one for negative MSER regions (decreasing order).

Once each MSER region is detected, a measurement region is defined around
it. These region can be of arbitrary size as long as it is constructed in an
affine-invariant way. The purpose of this measurement regions is to define the
area that will be used to construct the descriptors for the MSER regions. The
size of the measurement region is a tradeoff between the risk of crossing a deep
discontinuity or a non-planar region and distinctiveness. Smaller measurement
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Figure 2.9: Some regions detected by the MSER affine covariant region detector.

regions are more likely to be planar, but in the same way they are much less
likely to be unique or, at least, discriminative enough. To work out this problem,
Matas et al (2002) propose the use of various measurement regions at different
scales for every MSER region: The region itself, and the convex hull scaled 1.5,
2 and 3 times. The MSER regions are normalized to a circle using the second
order moments of the ellipse that encloses the region.

The Speeded Up Robust Features (SURF) detector (Bay et al, 2008) is a
hessian-based feature detector that, thanks to several optimizations like using an
integral image to compute feature locations, can run at fast rates. Even though
SURF includes both a detector and a descriptor, here we have only used the
detector part, and evaluation of the SURF descriptor in our experiments is left
as future work.

This detector finds similar regions to the Hessian Laplace, as is also based in
the Hessian matrix. However, in the SURF approach, second derivatives of the
Gaussian used to compute the Hessian matrix are replaced by box filters equal to
Haar features (Haar features can be seen in Figure 2.10), that are straightforward
to compute with an integral image as done by Viola and Jones (2001).

The approximated determinant of the Hessian matrix, computed with the box
filters replacing the Gaussian second derivatives, is used to compute the response
to blob-like structures at multiple scales. This structures will be later detected
as the local maxima after a 3× 3× 3 neighborhood non-maxima suppression.
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Figure 2.10: Haar features.

2.4.2 Descriptors

Local features are of little use if they can not be compared and matched with
regions from other images. The vast majority of applications that employ lo-
cal features such as wide baseline matching, object recognition, image retrieval,
recognition of object categories or robot localization involve a matching step
where features of two or more different images must be compared and put in
correspondence. This step implicitly involves the use of a local descriptor. The
objective of these descriptors is to provide a compact and distinctive represen-
tation of the local feature to simplify the matching stage and, at the same time,
induce robustness to the remaining variations in the measurement regions. These
variations can be illumination changes, noise and changes in the measurement
region introduced by deep discontinuities or non-flat surfaces.

Abundant types of local descriptors are present in the literature with different
degrees of complexity and robustness to error in the measurement region. The
simplest possible descriptor is the region pixels alone, but this descriptor is
very sensitive to noise and illumination changes. Other descriptors make use
of histograms, image derivatives or information from the frequential domain to
increase the robustness.

Recently, Mikolajczyk and Schmid (2005) published a performance evaluation
of various local descriptors. In this review more than ten different descriptors
are compared for affine transformations, rotation, scale changes, jpeg compres-
sion, illumination changes and blur. The conclusions of this analysis observe an
advantage in performance of the Scale Invariant Feature Transform (SIFT) intro-
duced by Lowe (2004) and its variant Gradient Location Orientation Histogram
(GLOH) (Mikolajczyk and Schmid, 2005) and, at a certain distance, PCA-SIFT
(Ke and Sukthankar, 2004). Follows a description of the SIFT algorithm. After
the local feature detection, a set of pixels from the image (the measurement
region) is extracted and normalized to a common representation. Then, from
this normalized image patch, the descriptor is computed.

The SIFT descriptor is based on a model proposed by Edelman et al (1997)
where biological vision is imitated. Complex neurons in the primary visual cortex
are activated by a gradient in a particular orientation if it appears within a small
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Figure 2.11: The SIFT algorithm divides the local patch in sub-regions with
image gradients and histogram construction.

range of positions in the retina. The hypothesis presented by Edelamn et al is
that this complex neurons function is to allow object recognition under small 3D
rotations, which would introduce small displacements in the gradients position.
Experiments performed using a computational model inspired by these ideas
show an improvement in performance of more than 55% over direct correlation
of the gradients.

Although based on the idea proposed by Edelman et al, the SIFT descriptor
has a different computational model. In the algorithm proposed by Lowe, the
image patch is divided into 16 sub-regions and an histogram of the orientations
of the gradient is computed for every sub-region. A gradient can move within a
sub-region and still produce the same descriptor, in this way the shift in position
allowed by the complex neurons is emulated. The orientations are quantized by
the magnitude of the gradient to lower the contribution of instable orientations
from sample points in flat zones of the image. The histograms have eight bins,
each of 45 degrees. In order to avoid sudden changes in the descriptor with
small changes in the image position, and to give more importance to gradients
on the center of the measurement region, a Gaussian weighting function with
sigma one half the width of the measurement region is used to weigh the sample
points. The reason to give more relevance to the central gradients is because
these points are less likely to suffer registration errors introduced by non-planar
surfaces and depth discontinuities. A trilinear interpolation is used to distribute
gradient samples across adjacent bins of a histogram, to avoid boundary effects
in the gradient orientation. In this way, a small change in the orientation will
not change the descriptor abruptly.

Once all the histograms are constructed, the values of all bins are arranged as a
vector. Sixteen histograms of eight bins each yield a vector of 128 dimensions.
This vector is the descriptor used to identify every local feature. To achieve
illumination invariance, the vector is normalized to unit length, this normaliza-
tion will make the descriptor invariant to affine changes in the intensity of the
measurement region. However, non-affine illumination changes such as camera
saturation or different reflectance from 3D surfaces with different orientations
can cause changes in the magnitude of some gradients, but it will rarely affect
the orientation of the gradient. To reduce the influence of these variations, each
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value of the normalized feature vector is thresholded to 0.2. The value of 0.2 was
determined experimentally using images containing 3D objects under different
illumination conditions.

Gradient Location Orientation Histogram (GLOH) proposed by Mikola-
jczyk and Schmid (2005) is an extension of the SIFT descriptor. The algorithm
to compute the descriptor is the same except for the distribution of the sub-
regions. Here a log-polar location grid is used, with three sub-regions in radial
direction, each divided into 8 sub-regions in angular direction except the central
sub-region. This results in 17 sub-regions. Instead of 8 orientation bins for each
histogram, 16 bins are used. The resulting feature vector has 272 values, which
are reduced to 128 with PCA.
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Chapter 3

Global Localization Method

In this chapter we propose a topological vision-based localization approach for
a mobile robot evolving in dynamic indoor environments. Robot visual local-
ization and place recognition are not easy tasks, and this is mainly due to the
perceptive ambiguity of acquired data and the sensibility to noise and illumina-
tion variations of real world environments. We propose to approach this problem
by using a combination of affine covariant detectors so as to extract a robust
spatial signature of the environment.
The global localization system proposed is similar in spirit to the one proposed
by Tapus et al (2004); Tapus and Siegwart (2006). In their work a fingerprint
is defined as a generic descriptor of a room. This descriptor is a circular string,
composed by a character coding each occurrence of a determined feature. They
propose color blobs and vertical lines, extracted from an omnidirectional im-
age, and edges, extracted from a laser range-scanner reading, as features. The
advantage of our method is that we only use an omnidirectional vision sensor,
and therefore the cost of expensive sensors (two laser range-scanners) is elimi-
nated. In addition, the information extracted from the images to characterize
the rooms can be used by other high-level processes such as object recognition,
thus reducing the computational load of the robot.
The proposed representation to characterize a place is a constellation of fea-
ture regions extracted from a panoramic image of the room. The local nature
of this representation makes it robust against partial changes in the image due
to occlusions, change in point of view or dynamic changes in the environment.
We decided to use combinations of the following three feature region detectors:
MSER (Maximally Stable Extremal Regions) (Matas et al, 2002), Harris-Affine
(Lindeberg, 1998), and Hessian-Affine (Mikolajczyk and Schmid, 2004), that
have been explained in Section 2.4. These region detectors have shown to per-
form better when compared to others.
When a new signature is acquired, it is compared to the stored panoramas
from the a priori map. The panorama with the highest number of matches is
selected. To improve the results and discard false matches, the essential matrix
is computed and used to filter the outliers. Finally, the panorama with the
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highest number of inliers is selected as the best match.
In our approach images are acquired using a rotating conventional perspective
camera. When a set of images covering 360 degrees is acquired, they are pro-
jected to cylindrical coordinates and the feature regions are extracted and de-
scribed. The descriptors constellation is next constructed automatically. Hence,
by using feature regions to construct the signature of a location, our approach
is much more robust to occlusions and partial changes in the image than the
approaches using global descriptors. This robustness is obtained because many
individual regions are used for every signature of a location and, thus, if some
of them disappear the constellation can still be recognized.
Nevertheless, combining different region detectors increases the computational
time and memory requirements. For this reason we show that a re-ranking
mechanism based on a global appearance-based similarity measure can be used
to prioritize the most similar map nodes. This approach is compatible with
techniques such as the incremental spectral clustering, proposed by Valgren and
Lilienthal (2008) to reduce the number of stored panoramas and construct a
topological map from the raw visual data.
This framework gives us an interesting solution to the perceptual aliasing prob-
lem (one of the main difficulties when dealing with qualitative navigation and
localization). Our approach is validated in real world experiments and is com-
pared to other vision-based localization methods.

3.1 Panoramic Image Acquisition

Instead of using an omnidirectional camera, the panoramas have been con-
structed by stitching together multiple views taken from a Sony DFW-VL500
camera mounted on a Directed Perception PTU-46-70 pan-tilt unit. The camera
and pan-tilt unit can be seen in Figure 1.1.
In order to build a panorama using a rotating camera, it had to be taken into
consideration that the image sequence employed must have a fixed optical center.
Translations of the optical center would introduce motion parallax, making the
image sequence inconsistent. However, if the objects in the scene are sufficiently
far from the camera, small translations can be tolerated. The steps to stitch all
the images in a panorama are the following:

1. The first step consists of projecting all the images of the sequence to a
cylindrical surface. The points are mapped using the transformation from
Cartesian to cylindrical coordinates:

θ = tan−1(
x

f
), v =

y√
x2 + f2

(3.1)

where x and y are the position of the pixel, f is the focal distance measured
in pixels and θ and v are respectively the angular position and the height
of the point in the cylinder. The cylinder radius is the focal length of the
camera used to acquire the images, as in this way the aspect ratio of the
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image is optimized (Shum and Szeliski, 1997). Taking this into account,
the size of the panoramas acquired by our system have a size of 5058x500
pixels.

2. Once all the images have been projected to cylindrical coordinates, the
rotation between each pair of images must be estimated. In principle, only
panning angles need to be recovered but, in practice, to correct vertical
misalignment and camera twist, small vertical translations are allowed.
Therefore, a displacement vector ∆t = (tx, ty) is estimated for every pair
of input images. The implemented method to compute ∆t distinguishes
between three situations:

i If sufficient feature points are found in the shared part of the images,
∆t is computed by means of matches between pairs of feature points.
To find the translation with most support among matches, and to
exclude false matches and outliers, RANSAC is used.

ii In those cases where there is not enough texture in the images to
extract sufficient feature points, ∆t is computed looking for a peak in
the normalized correlation between the edges detected by the Canny
edge detector (Canny, 1986) of the two images. This method has the
advantage over other correlation-based approaches of being indepen-
dent of the illumination conditions and the vignetting effect (intensity
decreases towards the edge of the image). In addition, as all the im-
age is used, even with small amounts of texture a reliable translation
can be estimated. However, this technique is computationally more
expensive than feature matching and is not invariant to rotations or
other deformations in the image.

iii If no texture exists at all and the above procedure fails, the only re-
maining solution is to compute the expected translation if the angular
displacement ϕ (in radians) between the images is known: tx = fϕ
and ty = 0

3. Due to automatic camera gain, vignetting or radial distortion, an intensity
jump may appear between two images as can be seen in Figure 3.1. In this
work the most straightforward solution is taken, that consists in blending
linearly every two consecutive images. This method produces results good
enough for visualization purposes and is suitable for static scenes. How-
ever techniques such as multi-band blending and deghosting as the ones
proposed by Shum and Szeliski (1997), Brown and Lowe (2003), Szeliski
and Shum (1997) or Uyttendaele et al (2001) can be used to improve the
result by eliminating stitching artifacts and dynamic objects that created
ghosts in the panorama.

Although the panoramic images were constructed for validation purposes, the
constellations of feature region descriptors were not extracted from them. In-
stead, the features from the original images projected to cylindrical coordinates
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Figure 3.1: Intensity jumps between successive images caused by automatic
camera gain. Applying linear blending solves the problem.

were used. The reason for this is to avoid false regions introduced by possible
new artifacts created during the stitching process. The panoramas built with
the stitching method were all correctly constructed, even in the case of changes
in lightning, reflections, multiple instances of objects or lack of texture.

3.2 Panorama Matching

The region detectors and descriptors provided by Mikolajczyk and Schmid
(2005)1 were used to extract the affine-covariant regions from the images and
compute the SIFT descriptor vectors.

The procedure to compare two panoramas is relatively straightforward. First,
matches are established as nearest neighbors between the feature descriptors of
both panoramas using the Euclidean distance as similarity measure. Potentially
false matches are rejected comparing the distance of the first and the second
nearest neighbor in the same way as proposed by Lowe (2004). Additionally,
reciprocal matching is used to filter even more false matches: if feature fa from
the first panorama matches feature fb of the second panorama, but feature fb
does not match feature fa, the match is discarded.

Next, the epipolar constraint between the panoramas is enforced by computing
the essential matrix. The most straightforward way to automatically compute
the essential matrix is using the normalized 8-point algorithm (Hartley and Zis-
serman, 2004). However, assuming that the robot will only move through flat
surfaces, it is possible to use a simplified version where only 4 correspondences
are necessary.

E =

 0 e12 0
e21 0 e23

0 e32 0

 (3.2)

1http://www.robots.ox.ac.uk/~vgg/research/affine/
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Therefore, with a set of at least four correspondences of points of the form

p = [x, y, z] = [sin(2πx̃), ỹ, cos(2πx̃)] (3.3)

where x̃ and ỹ are the normalized point coordinates in the planar panorama
image, the following equations can be written: y′1x1 x′1y1 z′1y1 y′1z1

...
...

...
...

y′nxn x′nyn z′nyn y′nzn



e12

e21

e23

e32

 = 0 (3.4)

where (xi, yi, zi) and (x′i, y
′
i, z
′
i) is the ith pair of corresponding points. As outliers

may still be present among the matches, RANSAC is used to automatically
compute the essential matrix with most support. Finally, the set of inlier feature
matches that agree with the epipolar constraint is used as the evidence of the
relation between the two panoramas.

Given the high dimensionality of the feature descriptors, matching is expensive
in terms of computational cost even for a small set of nodes. An alternative
to exhaustive matching is to use a global similarity measure to re-rank the map
nodes and estimate the essential matrix only for the k top map nodes or, applying
an any-time algorithm approach, until a node with a certain ratio of inliers
is met. The global similarity measure should be fast to compute and exploit
the differences between the map nodes to improve the re-ranking. We have
applied the Vocabulary Tree proposed in Nister and Stewenius (2006) for object
categorization to re-rank the map nodes for a new query image as it fulfilled
both requirements. In short, this method constructs a visual vocabulary tree of
feature descriptors applying hierarchical k -means on a training dataset. Next,
images are described as a normalized histogram of visual word counts. To give
more emphasis to discriminative visual words, they are weighted using a Term
Frequency-Inverse Document Frequency (TF-IDF) approach. This method is
also used for object recognition in this work, and therefore is explained in greater
detail in Chapter 6. Finally, the images in the training set can be re-ranked
according to its Euclidean distance to the new image visual word histogram.

Although the presented method has a very good performance in our experiments,
it is time-consuming to acquire a panorama rotating a pan-tilt unit every time
a localization has to be performed. Instead, we evaluated the decrease in per-
formance using uniquely a normal planar perspective image of 45◦ field of view
to localize the robot.

The simplest way to decide the corresponding node is by the maximum number
of matches after computing the essential matrix (Ramisa, 2006; Ramisa et al,
2008a; Valgren and Lilienthal, 2008). An alternative we tried was to use the
ratio between the number of matches and the lowest number of keypoints of the
two images (Booij et al, 2007). Experimentally, we did not find much difference
between both approaches in our dataset and therefore we have retained the first
one.
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3.3 Experimental Design

The objective of the present chapter is twofold: On the one hand, we want to
validate the proposed method for indoor global localization and, on the other
hand, we target to experimentally determine if using different region detectors
simultaneously improves significantly the localization results. Although succes-
sive images acquired by the robot while moving in the room could be used to
incrementally refine the localization, in our experiments, we wanted to evalu-
ate if combining different region detectors improves the robustness to viewpoint
change for the presented global localization method and, therefore, we have only
considered the worst case scenario, where only one image per room is available
to localize the robot.

3.3.1 Dataset description

The test-bed data used in this work consists of 17 sequences of panoramas from
rooms in various buildings2. Each sequence consists of several panoramas ac-
quired every 20 cm following a straight line predefined path. This type of se-
quences are useful to check the maximum distance at which a correct localization
can be performed. The sequences have been acquired in uncontrolled environ-
ments. In order to make the data set as general as possible, rooms with a wide
range of characteristics have been selected (e.g., some sequences correspond to
long and narrow corridors, while others have been taken in big hallways, large
laboratories with repetitive patterns and others in smaller rooms such as indi-
vidual offices). Panoramic images of the environment are shown in Figure 3.2.
A short description of each sequence is given below:

• iiia01 consists of 11 panoramas, and the sequence has been taken in a
large robotics laboratory type of space.

• iiia02 and iiia03 contain 14 panoramas each, and have been taken at the
conference room of the IIIA. In our experiments only the map node of
iiia02 is used.

• iiia04 is 19 panoramas long, and has been acquired in a long and narrow
corridor.

• iiia05 and iiia06 have 25 and 21 panoramas, respectively. They have been
taken in the library of the IIIA, the first one is from the library entrance
and librarian desk, while the second is from a narrow corridor with book
shelves. Both share the first panorama of iiia05 as map node.

• iiia07 is 19 panoramas long. This represents another section of the robotics
laboratory, and corresponds to a small cubicle.

• iiia08 is 10 panoramas long, and has been acquired in a small machinery
room.

2The data-set can be downloaded from http://www.iiia.csic.es/~aramisa.
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• iiia09 has 21 panoramas that have been taken at the back entrance hall.
This sequence has been taken in a tilted floor, which is a challange for the
4-point algorithm, because of the flat world assumption.

• iiia10 is 19 panoramas long and has been taken in the coffee room.

• iiia11 has 21 panoramas and has been acquired in the entrance hall of the
IIIA.

• cvc01 is 21 panoramas long and corresponds to a long corridor of the CVC
research center. As one of the corridor walls is made out of glass, the view
field is wider than a normal corridor. However, direct sunlight affects the
white balance of the images.

• cvc02 is 21 panoramas long, and has been acquired in a large office with
many desks.

• cvc03 has 14 panoramas taken in a small office with just one working desk.

• cvc04 has 22 panoramas and has been taken in a wide corridor with
posters.

• etse01 is the main hall of the engineering building and is 20 panoramas
long.

• etse02 has 21 panoramas and has been taken in a very wide corridor of
the engineering building.
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3.4 Results

In order to test the proposed method, we evaluated all possible combinations of
the three selected region detectors with two different descriptors.
Table 3.1, shows the average percentage of correctly classified test panoramas for
each combination. Results are provided using the 8-point algorithm, the 4-point
algorithm and also the later with reciprocal matches. From the results illustrated
in the table, it can be seen that by reducing the number of false matches with the
reciprocal matches technique, improves substantially the performance. Therefore
from now on, we only show the results obtained with this technique.
Standard deviation is also provided in order to assess the stability of combina-
tions along the different sequences. Not much difference is observed among the
descriptors GLOH and SIFT, which performed similarly in all cases. Looking at
the feature detectors individually, the best results have been obtained by Harris
Affine, while Hessian Affine and MSER had a similar performance. Overall, the

8 points 4 points 4 points and
Combination algorithm algorithm recipr. match

acl std acl std acl std
HA+S 74% 23% 69% 23% 82% 22%
HA+G 70% 21% 73% 24% 81% 21%
HE+S 58% 24% 73% 26% 75% 25%
HE+G 63% 26% 65% 27% 74% 26%
M+S 62% 28% 78% 18% 76% 23%
M+G 61% 29% 69% 23% 74% 26%

HA+HE+S 64% 15% 78% 19% 86% 14%
HA+HE+G 67% 14% 79% 21% 87% 16%
M+HE+S 56% 23% 75% 23% 87% 15%
M+HE+G 60% 23% 78% 18% 88% 14%
M+HA+S 65% 21% 79% 19% 86% 14%
M+HA+G 70% 25% 79% 19% 88% 11%

M+HA+HE+S 62% 16% 82% 19% 89% 11%
M+HA+HE+G 64% 20% 82% 19% 90% 11%

Table 3.1: Average percentage of correctly localized panoramas (acl) across all
sequences and standard deviation (std). For convenience we have labeled M:
MSER, HA: Harris-Affine, HE: Hessian-Affine, S: SIFT, G: GLOH.

combinations of detectors outperformed the individual detectors. The best per-
formance in the localization test has been achieved by the combination of the
three detectors, which classified correctly 90% of the panoramas. This perfor-
mance is mainly due to their good complementarity. Furthermore, in Figure 3.3
the average performance of two selected combinations is compared to the stan-
dalone detectors as a function of the distance to the map node. As can be seen,
combinations cope better with changes in point of view than individual detec-
tors. Sequences acquired in large rooms typically achieved a good performance
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no matter the combination used. However, small rooms and specially long and
narrow corridors seem to be more difficult environments, even if they are well
textured. This can be explained because the distance between the robot and the
perceived objects is short and, therefore, the objects’ appearance changes rapidly
resulting in an unreliable matching in the lateral regions of the panorama.
Some particularly difficult sequences have been cvc01, iiia04, iiia06 and iiia09.
Table 3.2 shows the results with these sequences. As we can see, the performance
is notably increased by combining different detectors. On average, standalone
detectors achieved around 55%, while combinations increased to around 81% in
these environments. The sequence iiia04 is a specially long and narrow corridor
with very few texture; it is interesting to notice that in this case the combina-
tion of all feature types achieved 100% correct classification. Another notable
finding is the extremely good performance of MSER on cvc01 when compared
to the other detectors. Most of the similar approaches to global localization,

Combination cvc01 iiia04 iiia06 iiia09
HA+S 35% 42% 75% 75%
HA+G 35% 47% 70% 70%
HE+S 20% 47% 75% 45%
HE+G 20% 53% 80% 30%
M+S 85% 42% 30% 65%
M+G 95% 53% 35% 35%

HA+HE+S 80% 84% 70% 95%
HA+HE+G 45% 89% 75% 85%
M+HE+S 90% 84% 80% 65%
M+HE+G 90% 84% 90% 60%
M+HA+S 90% 79% 70% 85%
M+HA+G 90% 89% 65% 80%

M+HA+HE+S 80% 95% 75% 80%
M+HA+HE+G 75% 100% 90% 75%

Table 3.2: Average percentage of correctly localized panoramas for some inter-
esting sequences. The naming convention is the same as in Table 3.1.

like (Booij et al, 2007), use feature detectors only invariant to scale but not
affine covariant, mainly because of its more expensive computational cost. For
comparability, we have evaluated the performance of the Difference of Gaussians
detector with the SIFT descriptor (Lowe, 2004). For our tests we used the im-
plementation provided by Lowe3. It must be noted that the SIFT descriptor of
this implementation is more robust than the one used for the remaining feature
detectors used in this chapter, as can be seen in Figure 5.3 in Chapter 5. The
performance of the DoG detector with the same descriptor used for the other
feature detectors should be tested in future work. On average, using points de-
tected with the DoG and SIFT, the correct location was selected in 72% of the

3http://www.cs.ubc.ca/~lowe/keypoints/
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cases. However, it had an irregular performance depending on the environment
type (27% standard deviation), with perfect results in large rooms, but very poor
results in narrow corridors and small rooms. This was an expected outcome as
this detector is less resistant to viewpoint changes.

In terms of computational complexity, the most expensive step of the approach is
clearly the bidirectional descriptor matching as can be seen in Table 3.4. These
computational times have been obtained with a C++ implementation of the
method running in a Linux Pentium 4 at 3.0 GHz computer with 2Gb of RAM.

Combination Matching RANSAC
(seconds) (milliseconds)

HA+S 4,31 3,046
HA+G 4,29 2,597
HE+S 2,87 3,016
HE+G 2,88 2,631
M+S 1,24 2,920
M+G 1,24 2,310

HA+HE+S 7,16 6,625
HA+HE+G 7,16 5,401
M+HE+S 4,11 5,827
M+HE+G 4,11 5,361
M+HA+S 5,51 6,682
M+HA+G 5,51 5,382

M+HA+HE+S 8,44 1,3941
M+HA+HE+G 8,47 1,0815

Table 3.3: Average feature matching and RANSAC time for each map node. It
is important to notice the difference in time scale.

3.4.1 Re-ranking of map nodes

As explained in Section 3.2, the global appearance based image similarity mea-
sure from Nister and Stewenius has been used to re-rank the map nodes and
prioritize those that appear more similar. We have build the vocabulary tree
with Harris Affine features.

When used for object classification, this type of approach requires at least tens
of training images in order to correctly determine the class of a novel object
instance. However, we only used the map nodes to train both the vocabulary tree
and the classifier. This gives only one training instance for each class. Despite
so limited training data, the approach achieved the notable overall result of re-
ranking the correct node in the first position for 62% of the query panoramas, and
among the top five nodes 85% of times as can be seen in Figure 3.4. More detailed
results of this re-ranking experiment are in Figure 3.6, where the performance
is shown for each individual sequence.
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As expected, the percentage of times the correct map node is re-ranked at the
top position decreases as distance to the query panorama increases (see Figure
3.5).

3.4.2 Localization with 45◦ FOV images

Constructing a panoramic image with a rotating camera on a pan-tilt unit is a
time-consuming step that requires the robot to stay in a fixed position during
the acquisition. In order to assess the decrease in performance that would cause
using just a single conventional image to localize the robot we have done the
following experiment: For every test panorama, a random area that spans 45◦

and has at least 100 features is extracted and matched to the map nodes. This
procedure is repeated for every test panorama. After a 10 repetitions experiment
with all test panoramas, the average number of correct localizations was 73%
using Harris Affine combined with MSER and the GLOH descriptor. This result
is good considering how limited the field of view is. In addition to the time
saved in image acquisition, the matching time is reduced almost one order of
magnitude on average.
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Figure 3.2: Panorama nodes in the same order as described in the text.
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Figure 3.3: Percentage of incorrectly classified test panoramas as a function of
the distance to the map node. The exponential regression of the data points is
also provided for clarity.
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Figure 3.4: Position of the correct map node after re-ranking using the vocabu-
lary tree.
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Figure 3.5: Ratio of query images with the correct node re-ranked at the top
position against distance to first panorama of the sequence. The logarithmic
regression curve is also shown.
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Figure 3.6: Position of the correct map node after re-ranking using the vocabu-
lary tree per sequence.
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Chapter 4

Appearance-Based Homing
with the Average Landmark
Vector

In order to navigate from one to the next node of the ones proposed in Chapter
3, one could factorize the essential matrix as done in works such as (Booij et al,
2006) to obtain the direction of movement to the next node. However this forces
the robot to compute the essential matrix at every step, even if it is already
correctly localized.
To complement the global localization method proposed in this work, we have
investigated a biologically inspired homing method, the Average Landmark Vec-
tor (ALV), that can be used to travel between the nodes of the map graph.
Lambrinos et al (1998, 2000) suggest the Average Landmark Vector as a way to
model the navigation techniques of bees. This model assumes that the animal
stores an average landmark vector instead of a snapshot image, as previous mod-
els by Carwright and Collet (1983) suggested. The advantages of this model are
its simplicity, that only the orientation and the ALV at the home location have
to be stored instead of a whole image. A third advantage is that no matching of
the landmarks has to be done.
In robot homing research artificial landmarks are often used. This is a strong
limitation as it requires setting up the environment beforehand. Instead, in this
work the goal is to create a simple homing method that can be used without
having to rely on artificial landmarks. For this we propose the combination of
the ALV homing technique with visual invariant feature detectors, like the ones
described by (Mikolajczyk et al, 2005), in panoramic images.
Experiments with the ALV homing method were first done in simulation (Gold-
hoorn et al, 2007a,b) and because the results were promising, experiments were
also done with real robots (Goldhoorn, 2008) in an office environment. Addi-
tionally, experiments with artificial landmarks were also done for comparison
purposes.
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4.1 Average Landmark Vector (ALV)

In this section we describe the biologically inspired homing technique Average
Landmark Vector by Lambrinos et al (1998, 2000). The ALV is defined as the
average of the landmark (or feature) position vectors:

ALV(F,−→x ) =
1

n

n∑
i=0

−→
fi (4.1)

Where F = {−→f1,
−→
f2, . . . ,

−→
fn} is the collection of features that define the signature

taken at the current position −→x and fi are the coordinates of the ith landmark
position vector. In this equation F contains the global feature positions to
explain and proof the homing technique. This is the robot centred version, but
it is made world centred by subtracting the current position −→x to easily proof
that the homing technique works :

ALV(F,−→x ) =
1

n

i=n∑
i=0

−→
fi −−→x (4.2)

To differentiate between the world coordinate system and the (self centred) co-
ordinate system of the robot, the home vector is defined as follows:

homing(F,−→x ,−→d ) = ALV(F,−→x )−ALV(F,
−→
d ) (4.3)

Where −→x is the current location of the robot and
−→
d the destination. When

the ALV functions are substituted by Equation 4.2 then
−→
d −−→x remains, which

is exactly the home vector. Figure 4.1 shows an example of the calculation
of the home vector. To simplify, the image only the average landmark (the
gray square) is shown. In this example it is also assumed that the depth of the
landmarks is known. The ALVs are calculated for the current (C) and the Home
position, these are A1 and A2 respectively. The home vector (H) is calculated
by subtracting the ALV at the destination position (A2) from the ALV at the
current position (A1). This results in the home vector H which points to the
destination location.
One important prerequisite of the ALV is that it is necessary to have the
panoramic images aligned to an external compass reference before computing
the homing direction. The Sahara ant Cataglyphis, for example, uses the po-
larization patterns of the blue sky to obtain the compass direction (Wehner,
1994).
ALV homing does not work when the ALV at the current location and at the
goal location are the same (after correction for orientation differences), because
this results in a zero vector. An exceptional theoretical case in which this could
happen is when the ALV point, the current location and the goal location are
aligned, in practice however this is very unlikely. To let the robot move anyway
in such situations a random vector could be used to move the robot a small
distance, and then continue the homing procedure.
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Figure 4.1: The calculation of the home vector. Both ALVs (A1 and A2) point
to the average feature position, which is drawn as a gray block. The home vector
(H) is calculated by subtracting the ALV at the destination location (A2) from
the ALV at the current location (A1). This subtraction is shown, by the addition
of the reverse vector, A′2, to A1. The robots are aligned in this example.

In this work we propose to use the ALV method with natural feature points
automatically extracted form images acquired with the mobile robot camera,
without the need of artificial landmarks in the environment.
The feature points evaluated are the Differences of Gaussians from Lowe (2004)
and the Maximally Stable Extremal Regions from Matas et al (2002). Only the
x and z coordinates of the feature points are used to compute the ALV because
of the flat world assumption. These local feature points possess qualities which
make them interesting for the ALV. In the first place they are fast to compute
(and even faster hardware-based approaches are being built), the second is that
many higher-level processes are based on information from these interesting re-
gions. Examples could be global localization (Ramisa et al, 2008a; Valgren and
Lilienthal, 2008) or object recognition (Lowe, 2004; Csurka et al, 2004). There-
fore there is no overhead in reusing them for the ALV. As a way to solve the
constant orientation prerequisite, in our work all test panoramic images have
been acquired with the robot facing a constant direction as is common practice
in similar works (Möller et al, 2001; Hafner and Moller, 2001). In order to apply
the ALV method in a navigation experiment a magnetic compass, or another
system to acquire the global orientation, is required to align the panoramas.

4.2 Related Work

To the best of our knowledge no other work has addressed the combination of
the ALV homing method with invariant feature points such as the MSER or the
DoG.
So far, in most works that studied the ALV homing method, artificial landmarks
have been used. For example Lambrinos et al (2000) used as landmarks four
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black vertical cylinders, and in (Möller, 2000) experiments were done inside of a
white box with several wide black vertical stripes on the walls. Möller et al (2001)
did extensive experiments in a desert type outdoor scenario with four black
cylinders as landmarks. In this same work an experiment was attempted in an
indoor scenario. Natural landmarks were found by vertically averaging a certain
area of the image and finding edges (i.e. intensity jumps) in the unidimensional
graylevel profile.

Hafner and Moller (2001) investigated if a Multi-Layer Perceptron with back-
propagation and a Perceptron with Delta Rule were able to learn a homing
strategy both in simulation and in real world experiments. For the real-world
experiments panoramic images acquired by the robot camera were reduced to
a single line by vertically averaging (similarly to what Möller et al (2001) did),
thus the input of the neural networks is a unidimensional image. Both neural
networks successfully learned a homing strategy with the same characteristics
as ALV.

Usher et al (2003) used a version of ALV augmented with depth information
to guide a car-like vehicle in an outdoor experiment. Landmarks were salient
color blobs and the depth information was acquired directly from the distance
of the landmark to the center of the omnidirectional image (no unwrapping is
performed) using a flat-world assumption. The authors performed real-world
experiments using red traffic cones (witch hat model) as landmarks.

Vardy (2005) did an extensive study for a variety of biologically plausible visual
homing methods in his PhD thesis, both for local and associative methods, in a
real office environment. Among the methods evaluated in his work, there is the
one proposed in Hafner and Moller (2001), referred to as Center of Mass ALV. In
the experiments it performed similarly to other local homing methods, although
it was found that an extra learning phase was necessary to determine which area
of the panoramic image should be used to generate the unidimensional image in
certain environments.

4.3 Experiments Performed and Results Ob-
tained

4.3.1 Simulation

To evaluate how well the ALV homing method works with our type of visual
features, a series of simulation experiments were performed first. Here we report
the most important findings of these experiments. A more detailed explanation
and discussion of the simulation experiments can be found in (Goldhoorn et al,
2007b; Goldhoorn, 2008).

The experiments were done in a simulated environment (see Figure 4.2) with
different distributions of feature points. The environment is a room composed of
a flat floor, in which the robot moves, and four walls. We have done experiments
in this room changing the number of visible walls. The simulated robot was
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Figure 4.2: a) The simulated environment with uniformly randomly spread fea-
ture points. b) Panoramic projection of the world used as input for the robot
homing system.

said to be successful if it found the destination point within the following three
limitations:

1. The robot is not allowed to use more than 2000 steps (iterations)

2. The projection of the world should not be empty more than five times in a
row (in that case either the previous home vector or a vector with random
orientation and length was used)

3. The robot should travel at most a distance ten times the Euclidean distance
between the start and destination position.

Although the feature points used are robust to most image variations, there are
almost always changes due to noise in the localization or occlusions.
Adding Gaussian noise to the positions of the feature points with a standard
deviation of 0.001 m or less resulted in a 90% successful runs. However a standard
deviation of 0.05 m or more resulted in only 5% or less of successful runs.
Occlusions were simulated by removing randomly chosen feature points before
every projection. Removing 50% of the feature points resulted in a mean success
rate of 85%. The method was also robust to adding randomly placed feature
points, which can be thought of as reappearing previously occluded objects.
Having more reliable feature points present in the world increases the perfor-
mance of the robot (higher success rate, less iterations and a smaller difference
with the ideal distance). For the simulation the range for the number of feature
points is between 500 and 1000 for a success rate of 100%. Although having
only 20 feature points in the world still resulted in 50% to 80% successful runs.
However it has to be taken into account that these runs were without any noise
and without any other disturbances.
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Because no depth is used, the ALV method implies an equal distance assump-
tion of the landmarks. Franz et al (1998) also mentions the isotropic feature
distribution, which can explain why results in a world with only one wall were
worse than in the other configurations. The robot used more iterations when
more feature points were removed, but this was expected since the ALV every
time has a different error.
From these experiments can be concluded that using the ALV for visual homing
with visual feature points is a robust method. Therefore the next step was to
try this method on a real robot.

4.3.2 IIIA Panoramas Database

This section first explains the experimental setup, then the results are presented
and discussed.

Experimental Setup

In these experiments several panorama were acquired at a grid of known points
in the rooms. The orientation of the robot was kept constant for each panorama
so no alignment step is necessary between the panoramas.
The experiments were done in three rooms of different sizes: the robot laboratory
, the square room and the corridor. A scaled map of the rooms can be seen in
Figures 4.5, 4.7 and 4.8. Three types of landmarks/feature points were used: 1)
DoG feature points; 2) MSER feature points; and, only in the robot laboratory,
3) artificial landmarks.
The locations where the panoramas were created are marked as circles with its
identifying number and a line starting at the center of the circle and pointing
to the direction of the estimated home vector. The home location is shown as a
red circle without line and is also indicated in the figure captions. The biggest
objects in the rooms, such as desks, are also shown in the maps to give a rough
idea of the environment. Finally, the squares in Figure 4.5 show the landmarks
positions and its ID number.
Like in the simulation, only the direction of a feature is known and not its
distance, therefore the home vector will not contain distance information either.
The home angle calculated by the homing method is compared to the ground
truth home angle which is calculated by geometry.

θdiff(hh, hc) = min (|hc − hh|; 360− |hc − hh|) (4.4)

All angles are in degrees and counter-clockwise; hc is the correct homing direction
calculated by using the positions (geometry), and hh is computed by the homing
method. To find out how well the method works for each room and each type
of feature, all the panorama positions per data set are used. For each data set
(the square room, the robot laboratory and the corridor) all the locations where
a panorama was created are used to calculate the home vector to each of the
other locations. From the error calculated with Equation 4.4 for each possible
panorama pairings in one room, the mean, median, standard deviation and a
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Figure 4.3: Part of a panorama image created by stitching several images to-
gether. The image is made in the robot laboratory.

score are calculated. The score is calculated by using the proportion of the
maximum error and ranges between 0 and 1 being 1 best. Namely:

s = 1−
∑n
i=1

∑n
j=1;i 6=j θdiff(hh(Pi, Pj), hc(Pi, Pj))

180n(n− 1)
(4.5)

where n is the number of panoramas in the set and P the set of panoramas.
The numerator is the sum of the difference of the home angle calculated by the
ALV homing method and by geometry. This difference, i.e. error, is calculated
for each panorama pair, which in total are n(n− 1) pairs. The sum of errors is
divided by that factor to get an average and, to normalise the score between 0
and 1, it is also divided by 180◦, the maximum possible error. The experiments
were done in three mentioned different areas in the IIIA research center. The
room in which most experiments were done is the robotics laboratory. The
panorama in Figure 4.3 shows this room as seen from the robot and in Figure
4.5 a map can be seen. As can be observed in the figure, artificial landmarks
are present in the room. These landmarks were used in a set of experiments for
comparison purposes with the local feature based approach.

Landmarks

In order to compare our proposed approach to an artificial landmark based
one, extra experiments were done using six artificial landmarks in the robotics
laboratory (see Figure 4.4) available from previous experiments (Busquets, 2003;
Busquets et al, 2003).
The landmarks contain a bar code from which an ID number can be extracted.
Since the size of the bars is known, the distance to the landmark can be cal-
culated. In order to make the artificial landmark approach comparable to the
feature based one, neither the landmark number (for matching) nor the distance
information was used in our experiments.

Results

When calculating the home vector between two points, for example a and b,
the home vector from a to b will obviously always point in opposite direction of
the home vector from b to a. This means that these are dependent values and
therefore only one of them was used in the analysis. Next we discuss the results
for the three different areas.
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Figure 4.4: An example of a landmark in the robotics laboratory.

DoG MSER Landmarks
Mean error 35.60◦ 27.84◦ 14.88◦

Median error 22.85◦ 16.03◦ 10.17◦

Standard deviation 36.67◦ 35.51◦ 14.86◦

Score 0.8022 0.8454 0.9173
Best home 117 117 110

Table 4.1: The homing error using the panoramas from the robotics laboratory.
The best home field shows the number of the panorama (see Figure 4.5 for the
numbers in the robotics laboratory), which when chosen as home, resulted in the
lowest average error.

Robotics laboratory: Most panoramas, 38 in total, were acquired in the
robotics laboratory, a room of 10.5 m × 11.2 m. Only the half of the room
is really used for this experiment because the other part is filled with working
places and the robot soccer field as can be seen in Figure 4.5.

The home vectors have an error equal to or lower than 90◦ in 89.3% of the cases
when the DoG detector was used, 92.6% for the MSER detector and 99.6%
when the landmarks were used. An error of 10◦ or less was obtained in 22.6%
of the cases for the DoG detector, 32.7% for the MSER detector and 64.3% for
landmarks. Table 4.1 shows the results for each type of detector used. The
homing errors for the three methods are all significantly different (p < 0.001)
according to the rank sum test, and the t-test after bootstrapping (n = 1000).
From this can be concluded that the homing method worked best with the
artificial landmarks, as expected, and worst with the DoG detector.
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Figure 4.5: Homing to panorama 110 in the robotics laboratory using DoG feature
points (a), MSER feature points (b) and the landmarks (c). All measures are in
cm.
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Figure 4.6: Panorama 137 from the square room.
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Figure 4.7: Homing to panorama 137 in the square room (a) using DoG points
and (b) MSER points. All measures are in cm.

Square room: The square room is 4.0 m × 3.4 m big. Figure 4.6 shows a
panorama made in this room. Figure 4.7 shows the map of the room and the
home vectors to panorama 137. Table 4.2 shows the statistics of the homing
method using both feature types. MSER feature points achieved lower error
rates than DoG feature points, but this is not significant (confirmed by the rank
sum test and the t-test) and it must be noted that only three panoramas were
created in this room.

Corridor: Although the simulation showed that the ALV homing method
works better in square rooms, we wanted to find out what the impact of a very

DoG MSER
Mean error 13.78◦ 9.65◦

Median error 12.00◦ 12.03◦

Standard deviation 11.31◦ 7.84◦

Score 0.9234 0.9464
Best home 138 138

Table 4.2: The error of the homing method using the panoramas which were
made in the square room.
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Figure 4.8: Homing to panorama 203 in the corridor using (a) DoG feature
points and (b) MSER feature points. All measures are in cm.

DoG MSER
Mean error 56.26◦ 52.67◦

Median error 44.58◦ 35.71◦

Standard deviation 43.64◦ 44.90◦

Score 0.6874 0.7074
Best home 203 200

Table 4.3: The average error of the homing method in the corridor for the
different feature types.

long and very narrow room in a real environment would have on the method. A
corridor was chosen for that reason as last experiment room. The part of the
corridor in which the robot moved is 2.2 m wide and about 22.5 m long. In
Figure 4.8 the map of the corridor can be seen. Additionally, Figure 4.9 shows
the panoramas acquired in the corridor.
In Figure 4.8 the home vectors to panorama 203 are shown. An error of 90◦ or
less was obtained in 73.3% of the cases for both feature types, an error of 10◦ or
less was only obtained in one case (6.7%). Table 4.3 shows the average error of
this data set; the differences between the results with DoG and MSER are not
statistically significant.

From the results at the different rooms, it can be seen that the ALV hom-
ing method worked better in both the square room and the robotics laboratory
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Figure 4.9: All the panoramas made in the corridor. The dots are MSER feature
points.

than in the corridor. This difference might be explained by the previously found
conclusion, in the simulated experiment (Section 4.3.1), that the method works
better in approximately square rooms. This is due to the equal distance assump-
tion. In what follows we provide additional details regarding the analysis of the
results.

Corridor results: The panoramas acquired in the corridor (Figure 4.9) show
that there are several disturbing factors on which numerous MSER feature points
were found. Panorama 198 is the only panorama taken at a corridor intersection,
and therefore the MSER detector finds considerable more feature points than in
the other panoramas. In panoramas 200 and 201 a door with blinds is visible,
and the MSER detector also found a great amount of feature points on these
blinds; in panoramas 199 and 200 the robotics laboratory is visible through an
open door which again has many feature points. Figures 4.8.a and 4.8.b confirm
this, because here the home direction from panoramas 199, 200 and 202 to 203
were good, but from panoramas 198 and 201 really bad. The reason for this is
that in panoramas 198 and 201 the most MSER feature points are located on one
side only (as commented earlier in this paragraph), while in the other panoramas
(199, 200, 202 and the home panorama 203) the feature points are more or less
equally distributed. Although only the MSER detector was mentioned here, the
DoG detector generated even more feature points, but with a more or less similar
distribution.
In Table 4.4 can be seen that the best corridor of the IIIA data sets is at rank
25, but this is below the best of the data sets robot lab and square room.

Upper and lower part: In an attempt to improve the results, the view of the
image was limited to only the lower half of the panorama. This part contains
objects which are closer to the robot and therefore decrease the size of the visible
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world, for this reason a room may look more square.
In the robotics laboratory using only the lower half of the panorama resulted in
a lower error than using all feature points of the panorama (p < 0.001 with the
t-test and the rank sum test for both DoG and MSER). For the other rooms
there was no significant difference in performance. Also here the best results
were when the MSER detector was used (p < 0.005 for the robotics laboratory
and corridor) except for the square room where DoG was the best detector
(p < 0.001, rank sum test).
Also the use of only the upper half part of the panorama was tested, but these
results were significantly worse than using the whole panorama for the robotics
laboratory (p < 0.001, t-test and rank sum test). There was again no significant
difference in the square room and corridor.

Depth: When only the position of the feature points on the panorama are
used then only the direction of the home vector can be found. However, when
the distance to the feature points is available, a more precise estimation of the
distance to home can be calculated.

4.3.3 Vardy’s Panorama Database

As an additional test, we used the image database of Vardy (2005)1 which he
discussed and used to test several homing techniques in his thesis.
Vardy’s image database consists of panoramic images acquired over a grid of
equally separated points from the hall and the robotics laboratory of Bielefeld
University. He created six data sets of the laboratory and two of the hall, all
under slightly different conditions, such as the amount of light and added objects.
In the robotic laboratory the data set consisted of a 10 × 17 image grid with
30 cm separation between each image (horizontally and vertically); in the hall
10 × 21 images in a grid were created per data set with 50 cm separation between
images. In contrast to the IIIA database, Vardy’s database was acquired with
an ImagingSource DFK 4303 camera pointing towards an hyperbolic mirror.
This system directly acquires omnidirectional images, and therefore spares the
panorama creation step. However it suffers from a much lower resolution. Figure
4.10 shows a panorama from the hall1 data set. In our experiments, first all the
feature points are extracted from the images. As can be seen in Figure 4.10, the
image also contains non relevant parts which lay outside the mirror. To focus
on the informative area of the image, the field of view is reduced to a limited
number of degrees above and below the horizon, which is the line between the
centre of the spherical mirror and the outer circle of the mirror. Only feature
points which fall in this area are used for the homing method.
The vector of a feature has its origin in the image centre (shown as the red
dot in Figure 4.10) and points to the feature point. These vectors have to be
normalised to 1 before calculating the ALV, because the length of the vectors

1Vardy’s Panoramic Image Database is available at
http://www.ti.uni-bielefeld.de/html/research/avardy/index.html.
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Figure 4.10: A panorama from Vardy’s image database. The outer red circle
shows the border of the parabolic mirror, the two inner yellow circles show the
20◦ line above and below the horizon. The points show the location of the MSER
feature points; the filtered feature points are the ones between the yellow circles
(best viewed in color).

only show the distance in pixels on the image. After this, the ALVs and the
home vector can be calculated as described in section 4.1.
Table 4.4 shows the results with all data sets sorted by score.

Results

As can be seen from the Table 4.4, the scores for Vardy data set vary from 0.85
to 0.3 and the home angle error from 28.2◦ ± 27.6 to 126.0◦ ± 43.3. The results
are worse than the results with the previously discussed data sets, but it must
be noticed that Vardy’s data sets contain more samples.
It can be seen that a wider vertical view angle gives better results. When MSER
feature points were used, a view angle of 15◦ (above and below the horizon)
worked significantly better than a lower angle (p < 0.001, t-test and rank sum
test). For all data sets except for doorlit and hall1 the best view angle was 20◦.
This is also the case when DoG feature points were used, except for the data
sets day, hall2 and screen. In the data set day the difference was not significant
enough; using a view angle of 5◦ had the best results in the sets hall2 (p < 0.001,
rank sum test) and screen (p < 0.05, rank sum test) when DoG feature points
were used.
It is also clear from Table 4.4 that the performance is better when using the
MSER detector than the DoG detector. This difference is significant for all data
sets with a view of more than 5◦ above and below the horizon (using the t-test
and rank sum test; p < 0.001). It also can be seen from the table that the
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Figure 4.11: The position where points are projected in different panoramas
varies less (and therefore are less informative) if the points are far away. This is
a problem for narrow and long corridors with most texture at the extremes.

best of the IIIA sets are all above the data sets of Vardy, however this is only
significant for the robotics laboratory. Comparing the results of Vardy’s data set
with the results of the IIIA data set is difficult because of several reasons. First
of all there are two big differences between them: the environments and the way
the panoramas are made. The rooms could be assumed to be quite similar since
they both are flat ”office like” with several desks, chairs and computers, but the
landmarks present in the robotics laboratory are not present in Vardy’s rooms
for example.

4.4 Overall Discussion of Experimental Results

As has been seen, with the real robot experiments the ALV homing method gave
very positive results. The best results were obtained with the panoramas from
the square room. The results from the corridor were worst, as expected. In
the simulation already was found that the performance of the homing method is
better in square rooms than in rooms with big differences in width and length.
The problem with long rooms such as a corridor is that the projections of the
feature points onto a panorama are closer to each other the further away they
are from the robot (see Figure 4.11).

Looking at the difference in performance using DoG and MSER feature points it
can be concluded that the use of MSER feature points significantly outperforms
the use of DoG feature points. The artificial landmarks in the robotics laboratory
were used to find out how well the method worked in comparison with invariant
feature points. The results with the artificial landmarks were significantly better
than using invariant feature points, the error was about 7◦ less than using MSER
feature points (with only the lower half of the panorama).

Normally one should expect the homing method to work worse when the distance
between the current location and the home is lower, but this relation could not be
found. This might be because the room is too small or because objects occlude
a big part of the field. Further work would be needed to find out if there is any
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relation between the distance and error.
An attempt to improve the results was done by trying to make the rooms, such as
the corridor, more square by only using the lower half of the panorama, because
then the closer objects are more prominent. This however had no significant
improvement in the corridor, and neither in the square room. Only in the robotics
laboratory there was a significant lower error (p < 0.001).
The images of Vardy (2005) data sets were also used to test the ALV homing
method. Although the different panorama acquisition system, in practice the
performance of these sets was not much worse than the results of the IIIA ones.
From these images also SIFT and MSER feature points were extracted and used
to calculate the ALV. It was found that using almost the whole image (20◦ above
and below the horizon) resulted in the best performance.
The scores (with 1 being best and 0 begin worst) of the IIIA data sets varied
from 0.67 to 0.96, whereas the results of Vardy’s data sets varied from 0.30 to
0.85 (see Table 4.4). Looking at the best parameters however, such as using the
lower half of the panorama for the IIIA data sets and using a view angle of 20◦

above and below the horizon of Vardy’s data, the scores of the IIIA data sets
vary from 0.73 to 0.96 and the scores of Vardy’s data sets from 0.67 to 0.85.
This shows that the method performs almost as well in the different rooms and
with the different types of panoramas, and thereby confirms the robustness of
the method.
Finally some comparison to other work can be made, however in most works
other error measurements are used such as the distance at which it stops from
home. In this work however no such experiments have been done yet. Hafner
(2001) also did experiments in an office environment in a grid. After off-line
learning the average error was smaller than 90◦ in 92% of the cases and smaller
than 45◦ in more than 69%. This is comparable to the results in the robotics
laboratory for the DoG feature points, and our results for using MSER feature
points were even better. The experiments by Franz et al (1998) were done in a
118 cm× 110 cm environment but the catchment area was relatively smaller than
the catchment area of the IIIA data sets. Their algorithm performed robustly
up to an average distance of 15 cm. They also mention experiments done in an
office environment in which the algorithm performed robustly until about 2 m.
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# dataset type detector mean median std.dev. score bh n
1 square

room
upper
half

MSER 6,83 4,10 5,33 0,9621 138 3

2 square
room

not fil-
tered

MSER 9,65 12,03 7,84 0,9464 138 3

3 square
room

not fil-
tered

DoG 13,78 12,00 11,31 0,9234 138 3

4 robot
lab

not fil-
tered

Land-
marks

14,88 10,16 14,86 0,9173 110 38

5 square
room

lower
half

DoG 14,94 14,52 10,75 0,9170 138 3

6 square
room

lower
half

MSER 20,62 25,27 8,49 0,8855 138 3

7 square
room

upper
half

DoG 20,91 18,96 6,64 0,8838 138 3

8 robot
lab

lower
half

MSER 21,96 11,09 30,05 0,8780 117 38

9 day 20 MSER 26,18 18,73 27,62 0,8545 17 170
10 robot

lab
lower
half

DoG 26,90 13,05 34,74 0,8506 117 38

11 robot
lab

not fil-
tered

MSER 27,84 16,03 35,51 0,8454 117 38

12 screen 20 MSER 28,64 18,42 31,04 0,8409 95 170
13 doorlit 15 MSER 30,69 19,35 33,38 0,8295 15 170
14 arboreal 20 MSER 34,89 23,39 35,49 0,8061 50 170
15 doorlit 20 MSER 35,41 21,27 38,52 0,8033 50 170
16 robot

lab
not fil-
tered

DoG 35,60 22,85 38,67 0,8022 117 38

17 arboreal 15 MSER 37,83 25,31 37,20 0,7898 17 170
18 day 15 MSER 39,78 29,30 36,49 0,7790 17 170
19 hall1 15 MSER 42,61 31,55 38,32 0,7633 159 200
20 original 20 MSER 43,18 32,23 38,49 0,7601 50 170
21 screen 15 MSER 45,71 33,75 40,43 0,7461 0 170
22 hall1 10 MSER 45,81 35,12 39,05 0,7455 41 200
23 twilight 20 MSER 46,21 34,90 39,72 0,7433 50 170
24 doorlit 10 MSER 48,45 33,95 43,90 0,7308 14 170
25 corridor lower

half
MSER 48,83 39,02 41,63 0,7287 203 6

26 arboreal 10 MSER 49,97 35,14 44,80 0,7224 153 170
27 robot

lab
upper
half

MSER 50,62 39,33 42,47 0,7188 117 38

28 winlit 20 MSER 52,39 39,58 44,07 0,7089 50 170
29 corridor not fil-

tered
MSER 52,66 35,71 44,89 0,7074 200 6

30 robot
lab

upper
half

DoG 56,14 45,77 43,84 0,6881 117 38

31 corridor not fil-
tered

DoG 56,26 44,58 43,64 0,6874 203 6

32 corridor lower
half

DoG 56,45 49,69 42,39 0,6864 203 6

33 corridor upper
half

DoG 57,08 38,19 45,65 0,6829 203 6

34 twilight 15 MSER 57,63 44,59 46,70 0,6798 153 170
35 hall1 20 MSER 58,49 48,71 44,53 0,6751 99 200
36 original 15 MSER 58,53 45,11 47,56 0,6748 17 170
37 chairs 20 MSER 58,92 45,23 47,55 0,6726 84 170
38 corridor upper

half
MSER 59,15 42,56 46,02 0,6714 199 6

39 hall2 20 MSER 59,51 49,20 43,09 0,6694 18 200
40 hall2 15 MSER 61,00 50,90 45,30 0,6611 18 200

Continued
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# dataset type detector mean median std.dev. score bh n
41 day 10 MSER 62,50 51,30 47,17 0,6528 17 170
42 hall1 5 MSER 62,69 53,82 44,78 0,6517 39 200
43 screen 10 MSER 63,43 54,30 45,02 0,6476 153 170
44 screen 5 MSER 66,71 52,61 50,03 0,6294 102 170
45 hall2 5 MSER 68,57 57,22 49,19 0,6190 19 200
46 original 10 MSER 72,09 62,67 50,85 0,5995 14 170
47 winlit 15 MSER 72,39 63,58 50,84 0,5978 50 170
48 day 5 MSER 72,67 62,94 50,31 0,5963 169 170
49 hall2 10 MSER 72,72 62,01 50,68 0,5960 19 200
50 twilight 10 MSER 73,55 65,58 51,23 0,5914 18 170
51 hall1 20 DoG 77,16 71,90 45,43 0,5713 0 200
52 winlit 10 MSER 78,69 72,12 51,96 0,5628 16 170
53 chairs 15 MSER 79,61 72,79 51,91 0,5577 16 170
54 doorlit 5 DoG 80,15 75,59 52,15 0,5547 169 170
55 doorlit 20 DoG 83,07 80,38 49,17 0,5385 151 170
56 doorlit 10 DoG 83,79 81,13 50,27 0,5345 169 170
57 chairs 10 MSER 84,42 82,22 50,74 0,5310 14 170
58 doorlit 15 DoG 84,44 81,34 49,75 0,5309 152 170
59 chairs 20 DoG 86,15 82,29 49,48 0,5214 3 170
60 screen 5 DoG 86,87 85,63 51,82 0,5174 135 170
61 screen 15 DoG 88,42 85,67 51,75 0,5088 135 170
62 screen 10 DoG 88,76 88,36 52,02 0,5069 135 170
63 screen 20 DoG 89,25 86,89 51,88 0,5041 3 170
64 hall1 15 DoG 89,27 85,64 45,78 0,5041 0 200
65 chairs 15 DoG 90,33 87,09 51,16 0,4981 4 170
66 arboreal 20 DoG 90,33 88,88 50,27 0,4981 4 170
67 original 20 DoG 91,36 88,78 49,70 0,4924 3 170
68 twilight 20 DoG 91,66 89,34 49,59 0,4908 5 170
69 day 10 DoG 92,99 94,81 51,31 0,4834 152 170
70 day 15 DoG 93,00 94,20 50,95 0,4833 135 170
71 day 20 DoG 93,05 93,13 50,42 0,4830 135 170
72 day 5 DoG 93,10 94,15 51,72 0,4828 152 170
73 chairs 10 DoG 93,46 92,24 51,88 0,4808 4 170
74 chairs 5 DoG 93,51 92,00 50,99 0,4805 5 170
75 arboreal 15 DoG 95,20 95,05 51,65 0,4711 4 170
76 twilight 15 DoG 96,44 96,35 50,29 0,4642 5 170
77 winlit 5 MSER 97,11 103,58 54,36 0,4605 136 170
78 original 15 DoG 97,93 97,66 49,81 0,4559 4 170
79 winlit 20 DoG 98,86 99,65 44,11 0,4508 0 170
80 arboreal 10 DoG 99,07 101,86 51,64 0,4496 135 170
81 arboreal 5 DoG 100,55 104,77 51,59 0,4414 135 170
82 twilight 10 DoG 101,25 102,97 50,17 0,4375 6 170
83 hall1 10 DoG 101,86 99,59 44,55 0,4341 40 200
84 original 10 DoG 101,98 105,32 50,19 0,4335 4 170
85 twilight 5 DoG 102,16 105,37 49,95 0,4324 6 170
86 doorlit 5 MSER 102,79 110,41 51,90 0,4290 14 170
87 winlit 5 DoG 103,01 109,13 46,78 0,4277 134 170
88 original 5 DoG 103,19 108,47 50,36 0,4267 50 170
89 winlit 15 DoG 103,28 105,54 45,33 0,4262 34 170
90 winlit 10 DoG 104,93 109,14 46,08 0,4171 135 170
91 hall1 5 DoG 108,85 109,20 46,09 0,3953 80 200
92 arboreal 5 MSER 112,73 122,76 48,51 0,3737 14 170
93 chairs 5 MSER 116,47 126,06 46,16 0,3529 14 170
94 hall2 5 DoG 116,47 130,14 49,96 0,3529 198 200
95 original 5 MSER 118,50 128,27 44,93 0,3416 153 170
96 hall2 20 DoG 122,09 132,21 44,38 0,3217 20 200
97 twilight 5 MSER 122,21 133,26 44,17 0,3211 136 170
98 hall2 10 DoG 124,42 137,90 45,31 0,3088 199 200
99 hall2 15 DoG 125,99 137,57 43,33 0,3000 61 200

Continued
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# dataset type detector mean median std.dev. score bh n

Table 4.4: This table shows the results of all real world experiments (IIIA in
white and Vardy in light gray) sorted by score. For the IIIA dataset, the type
column shows which part of the panorama has been used: all feature points
(not filtered), only the feature points at the lower half of the panorama or only
at the upper half (see Section 4.3.2). For Vardy data set, the type column
shows the number of degrees above and below the horizon of the image which
were used. The detector column shows which feature detector has been used to
perform homing: DoG, MSER or artificial landmarks which were only available
in the robot laboratory. The next three columns: mean, median and std. dev.
(standard deviation) show information about the direction error of the home
vector in degrees. The calculation of the score is shown in Equation 4.5; 1 being
best and 0 being worst. The best home (bh) column shows the ID of the location
of the home where to the mean error is smallest. Finally the n column shows
the number of samples, i.e. different panoramas, for the data set.
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Chapter 5

SIFT Object Recognition
Method

Lowe’s SIFT object recognition approach is a view-centered object detection and
recognition system with some interesting characteristics for mobile robots, most
significant of which is the ability to detect and recognize objects at the same
time in an unsegmented image. Another interesting feature is the Best-Bin-First
algorithm used for approximated fast matching, which reduces the search time
by two orders of magnitude for a database of 100,000 keypoints for a 5% loss in
the number of correct matches (Lowe, 2004).

The first stage of the approach consists on matching individually the SIFT de-
scriptors of the features detected in a test image to the ones stored in the object
database using the Euclidean distance. False matches are rejected if the distance
of the first nearest neighbor is not distinctive enough when compared with that
of the second. In Figure 5.1.b, the matching features between a test and model
images can be seen. The presence of some outliers can also be observed. Once
a set of matches is found, the generalized Hough Transform is used to cluster
each match of every database image depending on its particular transformation
(translation, rotation and scale change). Although imprecise, this step gener-
ates a number of initial coherent hypotheses and removes a notable portion of
the outliers that could potentially confuse more precise but also more sensitive
methods. All clusters with at least three matches for a particular training ob-
ject are accepted, and fed to the next stage: the Least Squares method, used to
improve the estimation of the affine transformation between the model and the
test images.

This approach has been modified in several ways in our experiments. The break-
down point (i.e. ratio of outliers in the input data were the model fitting method
fails) for the least squares method is at 0% of outliers, which is a rather unfeasi-
ble restriction since we have found it is normal to still have some false matches in
a given hypothesis after the Hough Transform. To alleviate this, instead of the
least squares, we have used the Iteratively Reweighted Least Squares (IRLS).
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(a) (b)

Figure 5.1: (a) Diagram of the modified SIFT object recognition method. (b)
Matching stage in the SIFT object recognition method.

Furthermore we have added the RANdom SAmple Consensus (RANSAC), an-
other well-known model fitting algorithm that iteratively tests the support of
models estimated using minimal subsets of points randomly sampled from the
input data. Finally, we have manually defined a set of heuristic rules on the
parameters of the estimated affine transformation to reject those clearly beyond
plausibility. Namely:

• Hypotheses for repeated objects with too close centers.

• Hypotheses that have a ratio between the x and y scales below a threshold.

Figure 5.1.a shows an overview of our implementation of the SIFT object recog-
nition algorithm steps.

5.1 IIIA30 Database

In order to evaluate the methods in a realistic mobile robots setting, we have
created the IIIA30 database1, that consists of three sequences of different length
acquired by our mobile robot while navigating in a laboratory type environ-
ment. Image size is 640x480 pixels. The environment has not been modified in
any way and the object instances in the test images are affected by lightning
changes, blur caused by the motion of the robot, occlusion and large scale and
viewpoint changes. We have considered a total of 30 categories (29 objects and
background) that appear in the sequences. The objects have been selected to
cover a wide range of characteristics: some are textured and flat, like the posters,
while others are textureless and only defined by its shape. Figure 5.2.a shows
the training images for all the object categories, and 5.2.b shows some cropped
object instances from the test images. Each occurrence of an object in the video

1http://www.iiia.csic.es/~aramisa/iiia30.html
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(a)

(b)

Figure 5.2: (a) Training images for the IIIA30 dataset. (b) Cropped instances
of objects from the test images.
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sequences has been manually annotated in each frame to construct the ground
truth, along with its particular image characteristics (e.g. blurred, occluded...).

5.2 Parameter Tuning

In order to find the best set of parameters for the SIFT object recognition system,
a series of experiments were done with the IIIA30 dataset. Each experiment aims
to evaluate a particular aspect of the method. In most cases, the f-measure has
been used to compare the performance of each parameter combination.

f −measure =
2 · Precision ·Recall
Precision+Recall

(5.1)

This measure weights equally precision and recall and is also known as f1 −
measure or balanced f − score. The general f-measure is defined as:

fg −measure =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(5.2)

Where the β parameter can be used to adjust sensitivity to precision and recall
of the measure.
Although the f-measure is not the most standard error measure in object recogni-
tion, we have used it here since it allows to assign a clear score to each parameter
combination in a principled way. Nevertheless, as not all situations tolerate both
error types equally, we also discuss precision and recall individually where possi-
ble. Detailed results are additionally provided online for the interested reader2.
Nonetheless, speed is probably the most relevant performance measure in our
setting, and therefore we search for the parameter combinations that perform as
close as possible to real-time while retaining a good precision and recall.
To consider an object as a true positive, the bounding boxes of the ground truth
and the detected instance must have a ratio of overlap equal or greater than 50%
according to the following equation:

BBgt ∩BBdetected
BBgt ∪BBdetected

≥ 0.5 (5.3)

where BBgt and BBdetected stand for the ground truth and detected object
bounding box respectively. For objects marked as occluded only the visible part
will be annotated in the ground truth, while the SIFT object recognition method
will still try to adjust the detection bounding box for the whole object based in
the visible part. For the case of occluded objects, we have therefore modified
the above formula in the following way:

BBgt ∩BBdetected
BBgt

≥ 0.5 (5.4)

As can be seen in the previous equation, it is only required that the detected ob-
ject bounding box overlaps 50% of the ground truth bounding box. What follows
is a detailed discussion of the results obtained for every parameter dimension.

2http://www.iiia.csic.es/~aramisa/iiia30.html
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Feature Detectors and Descriptor: A handful of feature detectors have
been proposed in the literature that find different structures in images. These
feature detectors vary in number of detected regions and robustness to image
variations and, a priori, it is difficult to chose one or a combination of vari-
ous among the available options. We have evaluated seven feature detectors:
Harris Affine, Hessian Affine, Harris Laplace, Hessian Laplace, MSER3, SURF4

and DoG5. We have used the Oxford SIFT implementation6 to compute the
descriptor of feature regions detected with the first six feature detectors, while
the descriptors for the DoG regions have been computed with Lowe’s original
implementation of SIFT that comes with the DoG detector. It is important
to understand that both implementations give significantly different results as
can be appreciated in Figure 5.3. As our objective is to obtain the best results
and compare the object recognition methods, we have used the best performing
implementation with the DoG features and, as it was not possible to use it with
other detectors, the Oxford implementation with the rest.

As can be seen in Figure 5.4.a, Hessian based detectors (Hessian Affine and Hes-
sian Laplace) obtained the highest recall but also suffered from a low precision.
Harris-based detectors obtained results on the line of the Hessian-based ones,
but with a slightly lower recall and precision. Overall, the best f-measure has
been obtained by the DoG detector followed by SURF. Finally, the MSER de-
tector had a very low recall. The explanation for these results seems to be in the
number of features found by each detector (see Figure 5.4.b). Harris and Hessian
based detectors find enough features to achieve high recall rates, but without
additional filtering of hypotheses, precision drops below 10%. Furthermore, the
computational cost of matching the features and processing the hypotheses in-
creases notably. On the other hand, the MSER detector finds very discriminative

3http://www.robots.ox.ac.uk/ vgg/research/affine/detectors.html
4http://www.vision.ee.ethz.ch/~surf/
5http://www.cs.ubc.ca/~lowe/keypoints/
6http://www.robots.ox.ac.uk/~vgg/research/affine/descriptors.html
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Figure 5.3: Results obtained with the two SIFT descriptor implementations
using the DoG feature detector.
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Figure 5.4: (a) Precision and recall depending on feature type (640x480 pixels
training images). (b) Average detected feature regions per image in testing data.

features but not sufficient to recognize most of the object instances. The best
compromise is achieved by DoG and SURF. Additionally to feature detectors,
we have considered the Shape Context descriptor (Mori et al, 2005), but results
were not competitive and therefore are not displayed.

Training Image Size: The original SIFT object recognition is designed to be
a one shot object recognition method, which makes the choice of the training
image an important decision. In our experiments we have considered both:
images extracted from a sequence acquired with the robot cameras –to enhance
the similarity between the training and the test data– and good quality images of
the objects acquired with a conventional digital camera to maximize the number
of detected regions. Training images selected from a different sequence acquired
with the robot did not have a competitive result, so they were discarded. For
the good quality images, we have considered four different image sizes: 320x240,
640x480, 800x600 and 1024x768 pixels.

Figure 5.5.b shows that the time spent in the matching process increases signifi-
cantly with the training image size, that was expected as the number of detected
features also increases. Contrarily, the f-measure did not improve significantly
with the increase of training image size. The cause of the erratic behavior of the
f-measure is that, although more true positives were found with bigger training
images, the number of false positives increased as well.

As no clear advantage was observed in using larger training images, we fixed
the 640 × 480 size for the remaining experiments. This image size is a good
compromise between speed and results and, as can be seen in Figure 5.4.b,
320×240 was not sufficient for MSER, as it was not able to find enough features.
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Figure 5.5: (a) F-Measure depending on the training image size. (b) Time per
image depending on training image size with exact nearest neighbor matching.

Matching Method: Various approximate nearest neighbors alternatives have
been proposed in the literature (Lowe, 2004; Muja and Lowe, 2009; Lepetit et al,
2004) in order to accelerate the matching process between feature descriptors.
As mentioned before, in the original article of the SIFT object recognition algo-
rithm a K-D tree was used with the Best-Bin-First algorithm. Later Muja and
Lowe (2009) proposed an improved approach, coined FLANN, which we com-
pare with exact nearest neighbor matching. As can be seen in Figure 5.6, the
approximate nearest neighbors method drastically improves the time per image
without affecting significantly the performance.

Distance Ratio: The distance ratio between the first and the second near-
est neighbor required to accept a match is a critical choice, as it will directly
influence the amount of false positive hypotheses generated (and consequently
processing time) if too permissive, and the recall if too restrictive. In the original
SIFT object recognition approach, the distance ratio between the first and the
second nearest neighbor was required to be inferior to 0.8 in order to accept a
match. However, as can be seen in Figure 5.7.a we found that different feature
types have different optimal values for this threshold: for the Hessian and Harris
based detectors, the best value for f-measure is 0.6, while DoG attains the best
results at 0.7 and SURF at 0.8. As can be seen in Figure 5.7.b, time spent in the
Hough Transform and IRLS stages increases rapidly as more potentially false
matches are accepted. Keeping in mind that our aim is producing good enough
results within tight time constraints, the choice of a restrictive distance ratio
seems attractive.

Hough Transform: As in Lowe’s SIFT object recognition method each match
votes for 16 bins in the Hough Transform, multiple neighboring bins can easily
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Figure 5.6: (a) F-Measure depending on the matching method. (b) Time per
image depending on matching method.

DoG Hessian Affine DoG2
HT IRLS Pre HT IRLS Pre HT RIH Pre

Standard 14 ms 11 ms 0.14 27 ms 229 ms 0.02 16 ms 84 ms 0.82
NMS 56 ms 5 ms 0.40 89 ms 68 ms 0.08 73 ms 48 ms 0.87

Table 5.1: Three experiments with the two different Hough Transform ap-
proaches: Standard and with non-maxima suppression. The first two columns
of each experiment show the time spent in the Hough clustering and in the
hypotheses refinement stages respectively, and the third column shows the pre-
cision achieved (recall varies at most 0.01 between both HT approaches). In
the third parameter combination, RIH stands for the combination of RANSAC,
IRLS and Heuristics filtering stages.

be activated for the same object, leading to false or shadow hypotheses that
consume processing time in successive stages to end up being finally rejected or,
even worse, generating false positives. To alleviate this we evaluated the effect
of introducing a non-maxima suppression (NMS) step to the Hough Transform.
Table 5.1 shows the results of three different experiments with both the standard
and the NMS approaches. In the standard configuration with DoG features, the
NMS step does not pay off in terms of computational complexity, but increases
significantly the precision. However, if the number of false matches is high such
as in the case of Hessian Affine with a 0.8 distance ratio, the time savings of
the IRLS step are considerable. In the last experiment, additional hypothesis
filtering steps are added in order to raise the precision of the standard approach
to a value similar to that of the NMS. However, this extra steps increase the
time to a similar value also.
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Figure 5.7: (a) F-Measure depending on the distance ratio. (b) Time spent in
the Hough Transform and IRLS depending on the distance ratio.

Minimum number of votes in the Hough Transform bins: Although
three matches are sufficient to estimate the pose of an object up to an affine
transformation, often this number of points is low enough to be a product of
chance and the introduced hypotheses will have to be discarded in subsequent
steps. In spite of the theoretical justification, empirically we did not find much
advantage on increasing the minimum number of feature points regarding per-
formance as can be seen in Figures 5.8.a and 5.8.c. Precision did not increase
significantly and recall degraded after losing hypotheses with few support. How-
ever, regarding computational cost, increasing the minimum number of features
decreased time spent in both Hough clustering (there were less putative bins
to perform non-maxima suppression) and hypotheses refinement stages (less hy-
potheses to verify) as shown in Figures 5.8.b and 5.8.d.

Hypotheses Verification and Refinement: After the clustering of the
found matches in the Hough Transform bins, the candidate object hypothe-
ses are subject to a pose estimation up to an affine transformation with an
iterative least squares method. This step also reduces the number of false pos-
itives by discarding those whose support falls below the minimum number of
matches specified (three by default). We evaluated the impact of introducing
other robust model fitting and filtering methods to discard a higher number
of false positives. Specifically we used, in addition to the Iterative Reweighted
Least Squares (IRLS), the RANdom SAmple Consensus (RANSAC) and a set
of manually defined heuristics on the detected object bounding box to eliminate
repetitions and hypotheses which described unrealistic transformations. As can
be seen in Figure 5.9.a, the f-measure increases as more strict filtering methods
are applied. The best result is obtained combining all the filtering methods with
the Hessian-based feature detectors. This is not surprising as these detectors ob-
tained the best recall but suffered from a high number of false positives. Adding
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Figure 5.8: Performance depending on minimum number of votes in a Hough
Transform bin to accept an hypothesis. (a-b) Shows results for the DoG and
SURF detectors with only IRLS hypothesis filtering stage. (c-d) Shows results
for DoG and Hessian Laplace detectors with all hypothesis filtering methods
proposed (IRLS, RANSAC and Heuristics).

better hypotheses verification methods the precision and therefore the f-measure
are improved. The false positives that IRLS alone is not able to filter are mainly
due to untextured or repetitively textured objects. The major drawback of these
extra methods is an increase of the processing time in the hypotheses verification
stages, especially in the case of RANSAC due to its Monte Carlo nature.

5.2.1 Discussion and Selected Configurations

In this section the results of sequence 1 of the IIIA30 dataset (IIIA30-1) with the
different parameter combinations considered are evaluated. Taking into account
all combinations, the best recall obtained has been 0.45 with the Hessian Laplace
detector and the less restrictive settings possible. However this configuration
suffered from a really low precision, just 0.03.

The best precision score has been 0.94, and has been obtained also with the
Hessian Laplace detector, with a restrictive distance ratio to accept matches:
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Figure 5.9: (a) F-Measure depending on the hypotheses filtering methods and
(b) time spent in the filtering stage per image. i stands for IRLS, r for RANSAC
and h for heuristics.
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Config 1 0.8 SURF 5 NMS No Yes Yes No
Config 2 0.8 SURF 3 NMS Yes Yes Yes Yes
Config 3 0.8 DoG 10 NMS No Yes Yes No
Config 4 0.8 DoG 10 NMS Yes Yes Yes Yes
Config 5 0.8 DoG 5 NMS Yes Yes Yes Yes
Config 6 0.8 HesLap 10 NMS Yes Yes Yes Yes

Table 5.2: Detailed configuration parameters for the six chosen configurations
in increasing time order.

0.5. The recall of this combination was 0.14. The same precision value but with
lower recall has been obtained with the SURF and Hessian Affine detectors.

Looking at the combinations that had a best balance between recall and precision
(best f-measure), the top performing combinations obtained 0.4 and 0.39 also
with the Hessian Laplace detector (0.29 recall and 0.63 precision). However,
even though approximate nearest neighbors is used, each image takes around 2
seconds to be processed.

Another way to analyze the results consists in prioritizing the time and select
the fastest ones. Those combinations that improved the f-measure with respect
to faster combinations for those below 1 second for image have been selected
as interesting. Table 5.2 shows the parameters of the chosen combinations and
Table 5.3 detailed performance results.
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Method Time (sec) Recall Precision F-Measure
Config 1 0.3689 0.15 0.51 0.23
Config 2 0.4206 0.14 0.87 0.24
Config 3 0.5240 0.17 0.47 0.25
Config 4 0.5471 0.17 0.9 0.28
Config 5 0.5987 0.19 0.87 0.31
Config 6 2.0335 0.28 0.64 0.39

Table 5.3: Detailed results for the chosen configurations in increasing time order.

Object Config 1 Config 2 Config 3 Config 4 Config 5 Config 6
Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre

Grey bat-
tery

0 0 0 0 0 0 0 0 0 0 0 0

Red bat-
tery

0 0 0 0 0.02 0.05 0 0 0 0 0 0

Bicicle 0.54 0.52 0.52 1.00 0.33 0.52 0.36 0.89 0.38 0.90 0.33 0.62

Ponce book 0.67 0.75 0.69 0.93 0.79 0.87 0.78 0.94 0.83 0.91 0.72 0.84

Hartley
book

0.58 0.93 0.58 0.93 0.86 0.77 0.88 0.88 0.95 0.85 0.81 0.73

Calendar 0.44 0.65 0.35 0.86 0.56 0.66 0.56 0.79 0.56 0.79 0.79 0.71

Chair 1 0.03 0.08 0.02 0.33 0 0 0 0 0.01 1.00 0.54 1.00

Chair 2 0 0 0 0 0 0 0 0 0 0 0 0

Chair 3 0 0 0 0 0.01 0.25 0 0 0 0 0.05 0.50

Charger 0.03 0.20 0.03 0.50 0 0 0 0 0 0 0.18 0.14

Cube 1 0.11 0.05 0.18 0.50 0.11 0.08 0.07 0.40 0.18 0.50 0.32 0.28

Cube 2 0.62 0.28 0.67 0.67 0.71 0.11 0.76 0.59 0.76 0.55 0.52 0.38

Cube 3 0.53 0.22 0.31 0.50 0.50 0.25 0.59 1.00 0.66 1.00 0.66 0.45

Extingisher 0 0 0 0 0 0 0 0 0 0 0 0

Monitor 1 0 0 0 0 0.01 0.05 0.01 1.00 0.04 0.75 0.15 0.63

Monitor 2 0 0 0 0 0 0 0 0 0 0 0 0

Monitor 3 0 0 0 0 0 0 0 0 0 0 0.02 0.33

Orbit box 0 0 0 0 0 0 0 0 0 0 0 0

Dentifrice 0 0 0 0 0 0 0 0 0 0 0 0

Poster
CMPI

0.18 0.44 0.26 1.00 0.31 0.63 0.41 1.00 0.46 0.95 0.23 0.82

Phone 0 0 0 0 0 0 0 0 0 0 0 0

Poster
Mystrands

0.20 0.56 0.20 0.71 0.40 0.43 0.36 0.75 0.44 0.65 0.36 0.60

Poster
spices

0.38 0.77 0.42 0.94 0.54 0.79 0.53 0.87 0.58 0.87 0.56 0.92

Rack 0.26 0.59 0.26 1.00 0.10 0.80 0.10 1.00 0.23 1.00 0.77 0.79

Red cup 0 0 0 0 0 0 0 0 0 0 0.22 0.29

Stapler 0 0 0 0 0 0 0 0 0 0 0.03 0.33

Umbrella 0 0 0 0 0 0 0 0 0 0 0 0

Window 0.10 0.53 0.04 0.90 0.08 0.28 0.02 0.67 0.02 0.71 0.27 0.42

Wine bot-
tle

0 0 0 0 0 0 0 0 0 0 0 0

Table 5.4: Recall and precision of each object for all combinations

5.3 Evaluation of Selected Configurations

This section presents the results obtained applying the parameter combinations
previously selected to all the sequences in the dataset.
In general all possible combintions of parameters performed better in well tex-
tured and flat objects, like the books or posters. For example the Hartley book
or the calendar had an average recall across the six configurations (see Table
5.2 for the configuration parameters) of 0.78 and 0.54 respectively. This is not
surprising as the SIFT descriptor assumes local planarity, and depth disconti-
nuities can severely degrade descriptor similarity. On average, textured objects
achieved a recall of 0.53 and a precision 0.79 across all sequences. Objects only
defined by shape and color were in general harder or even impossible to detect,
as can be seen in Table 5.4. Recall for this type of objects was only 0.05 on
average. Configuration 6, that used the Hessian Laplace detector, exhibited a
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Object Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

Normal 0.26 0.25 0.26 0.28 0.3 0.33
Blur 0.1 0.1 0.16 0.15 0.18 0.25
Occluded 0.16 0.14 0.14 0.12 0.14 0.34
Illumination 0 0 0.06 0.06 0.06 0.06
Blur+Occl 0.06 0.04 0.08 0.06 0.09 0.14
Occl+Illum 0.08 0.08 0.08 0.08 0.08 0.06
Blur+Illum 0 0 0 0 0 0

Table 5.5: Recall depending on image characteristics. Normal stands for object
instances with good image quality and blur for blurred images due to motion,
illumination indicates that the object instance is in a highlight or shadow and
therefore has low contrast. Finally the last three rows indicate that the object
instance suffers from two different problems at the same time.

notably better performance for some objects of this type, for example the chair,
obtained a recall of 0.54, or the rack that obtained a 0.77 recall. Finally, and
somewhat surprisingly, objects with a repetitive texture such as the landmark
cubes had a quite good recall of 0.46 on average. Furthermore, the result be-
comes even better if we take into consideration that besides the self-similarity,
all three landmark cubes were also similar to one another.

Regarding the image quality parameters (see Table 5.5), all combinations be-
haved in a similar manner: the best recall, as expected, was obtained by images
not affected by blur, occlusions or strong illumination changes. From the differ-
ent disturbances, what was tolerated best was occlusion, followed by blur and
then by illumination. Combinations of problems also had a demolishing effect
in the method performance as seen in the last three rows of Table 5.5, being the
worst case the combination of blur and illumination that had 0 recall. Object
instance size (for objects with a bounding box defining an area bigger than 5000
pixels) did not seem to have such an impact in performance as image quality
has. However this has not yet been rigorously analyzed and is left for future
work.

As predicted in Section 5.2, RANSAC and the heuristics significantly improved
precision without affecting recall.

Finally, we have evaluated the exactitude in the detection of the objects by
the ratio of overlap between the ground truth bounding box and the detected
object instance as calculated in Equation 5.3. As can be seen in Figure 5.10,
on average 70% of true positives have a ratio of overlap superior to 80% with
the SIFT object recognition method regardless of the parameter combination.
Furthermore, we found no appreciable advantage on overlap for any object type
or instance viewing conditions, although a more in-depth analysis of this should
be addressed in future work.

In order to put into context the results obtained with the selected configurations,
we have also evaluated the four configurations that obtained the overall best
recall and the four that obtained the overall best precision. As can be seen
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Figure 5.10: Accumulated frequencies for ratio of overlap between the ground
truth bounding box and the detected bounding box for correctly found objects
(true positives). An object is considered correctly detected if the ratio of overlap
between the bounding boxes computed with equation 5.3 is 50% or more.

in Table 5.6, the attained recall in the selected configurations was 20% lower
than the maximum obtained, independently of the type of objects. Precision is
more affected by the amount of texture, and differences with respect to the top
performing configurations ranged from 17% to 38%.

5.4 Discussion

Experiments show that, using the SIFT object recognition approach with the
proposed modifications, it is possible to precisely detect, considering all image
degradations, around 60% of well-textured object instances with a precision close
to 0.9 in our challenging dataset. Even detectors known to sacrifice repeatabil-
ity (probability of finding the same feature region in slightly different viewing
conditions) for speed such as the SURF obtain reasonable results. Performance
degrades for objects with repetitive textures or no texture at all. Regarding
image disturbances, the approach resisted well occlusions, since the SIFT object
recognition method is able to estimate a reliable transformation as long as the
visible part of the object contains enough texture (and a minimum number of
correct matches, three by default) but not so well blur due to motion or deficient
illumination.
As can be seen in Table 5.3, all but one of the selected methods had a running
time lower to one second, which makes them suitable for robotic applications.
The step of the algorithm that takes most of the processing time is the descriptor
matching, as it has a complexity of O(N ·M ·D) comparisons, where N is the
number of features in the new test image, M is the number of features in the
training dataset and D is the dimension of the descriptor vector. Approximate
matching strategies, such as the one by Muja and Lowe (2009) used in this work,
are able to reduce this cost. In our experiments we experienced only a 0.01 loss in
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Best Recall Best Precision Selected Config.
mean std mean std mean std

Repetitively textured objects
Recall 0.65 0.09 0.16 0.01 0.46 0.05
Precision 0.02 0.01 0.75 0.15 0.43 0.24

Textured objects
Recall 0.70 0.03 0.28 0.03 0.53 0.10
Precision 0.05 0.02 0.96 0.02 0.79 0.09

Not textured objects
Recall 0.21 0.01 0.01 0.01 0.05 0.04
Precision 0.03 0.01 0.62 0.32 0.24 0.21

Table 5.6: Average recall and precision of the configurations that where selected
for having the best values according to these two measures in the last section.
Also average results among the six selected configurations are shown for compar-
ison. Standard deviation is provided to illustrate scatter between the selected
configurations. Objects are grouped in the three “level of texture” categories in
the following way: the three cubes form the repetitively textured category, the
two books, the calendar and the three posters form the textured category, and
the rest fall into the non textured category.

the f-measure for an up to 35 times speed-up. Furthermore, an implementation
tailored to performance should be able to achieve even faster rates. A drawback
of the SIFT object recognition method is that it is not robust to viewpoint
change. It would be interesting to evaluate how enhancing the method with
3D view clustering as described in Lowe (2001) affects the results, as it should
introduce robustness to this type of transformation.
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Chapter 6

Vocabulary Tree Method

The Nister and Stewenius (2006) Vocabulary Tree approach to object classifica-
tion is based on the bag of words document retrieval methods, that represent the
subject of a document by the frequency in which certain words appear in text.
This technique has been adapted to visual object classification substituting the
words with local descriptors such as SIFT computed on image features (Csurka
et al, 2004; Sivic and Zisserman, 2003).
Although recently many approaches have been proposed following the bag of
words model, we have selected this particular one because scalability to large
numbers of objects in a computationally efficient way is addressed, which is a
key feature in mobile robotics.
A hierarchical vocabulary tree is used instead of a linear dictionary, as it allows
to code a larger number of visual features and simultaneously reduce the look-up
time to logarithmic in the number of leaves. The vocabulary tree is built using
hierarchical k-means clustering, where the parameter k defines the branch factor
of the tree instead of the final number of clusters like in other approaches. On
the negative side, using such hierarchical dictionaries causes aliasing in cluster
space (see Figure 6.8.b ), that can reduce the performance of the approach.
The nodes of the vocabulary tree are weighted in accordance to its discrimi-
native power with the Term Frequency-Inverse Document Frequency (TF-IDF)
scheme to improve retrieval performance. Let ni be the number of descriptors
corresponding to the codeword i found in the query image and mi the number
of descriptors corresponding to the same codeword for a given training image.
If q and d are the histogram signatures of the query and database images, then
the histogram bins qi and di can be defined as:

qi = niωi

di = miωi (6.1)

where ωi is the weight assigned to node i. A measure based in entropy is used
to define the weights:

ωi = ln(
N

Ni
), (6.2)
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where N is the number of images in the database, and Ni is the number of
images in the database with at least one descriptor vector path through node i.
Since signatures will be normalized before comparison, the resulting schema is
the term frequency-inverse document frequency.
To compare a new query image with a database image, the following score func-
tion is used:

s(q, d) = ‖ q

‖q‖
− d

‖d‖
‖ (6.3)

The normalization can be in any desired norm, but the L1-norm (also known
as the ”Manhattan” distance) was found to perform better both by Nister and
Stewenius (2006) and in our experiments. The class of the object in the query
image is determined as the dominant one in the k nearest neighbors from the
database.

The second speed-up proposed by Nister and Stewenius consists on using
inverted files to organize the database of training images. In an inverted files
structure each leaf node contains the ID number of the images whose signature
value for this particular leaf is not zero. To take advantage of this representation,
and assuming that the signatures have been previously normalized, equation 6.3
can be simplified in the following way:

||q − d||pp =

n∑
i=1

|qi − di|p (6.4)

=
∑
i|di=0

|qi|p +
∑
i|qi=0

|di|p +
∑

i|qi 6=0,di 6=0

|qi − di|p

= ||q||pp + ||d||pp +
∑

i|qi 6=0,di 6=0

(|qi − di|p − |qi|p − |di|p)

= 2 +
∑

i|qi 6=0,di 6=0

(|qi − di|p − |qi|p − |di|p)

with this distance formulation one can use the inverted files and, for each node,
accumulate to the sum only for the training signatures that have non-zero value.
If signatures are normalized using the L2 norm (i.e. the Euclidean distance),
Equation 6.4 simplifies further to:

||q − d||22 = 2− 2
∑

i|qi 6=0,di 6=0

qidi (6.5)

and since we are primarily interested in the ranking of the distances, we can
simply accumulate the products and sort the results of the different images in
descending order. Furthermore, as the scalar product is linear in di, it can be
easily partitioned. Since we have used primarily the L1 normalization in this
work we have still not taken advantage of this, but it is of major importance
to reduce the computational cost of the algorithm and we plan to address it in
future work. Figure 6.1 shows the main steps of the Nister and Stewenius (2006)
algorithm.
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Figure 6.1: Schema of the Vocabulary Tree object recognition algorithm.

The main drawback of the Vocabulary Tree method is that it needs at least a
rough segmentation of the object to be recognized. To overcome this limitation
two alternatives may be used: divide the input image using a grid of fixed
overlaping regions and process each region independently, or use a segmentation
algorithm to yield meaningful regions to be recognized.
The first option has the advantage of simplicity and universality: Results do not
depend on a particular method or set of segmentation parameters, but just on the
positions and shapes of the windows evaluated. However a square or rectangular
window usually does not fit correctly the shape of the object we want to detect
and, in consequence, background information is introduced. Furthermore, if
we want to exhaustively search the image, in the order of O(n4) overlapping
windows will have to be defined, where n is the number of pixels of the image.
This will we extremely time-consuming, and also fusing the classification output
of the different windows into meaningful hypotheses is a non-trivial task. One
way that could theoretically speed-up the sliding window process is using integral
images (Viola and Jones, 2001). This strategy consists on first computing an
integral image (i.e. accumulated frequencies of visual word occurrences starting
from an image corner, usually top-left) for every visual word in the vocabulary
tree visual word. Having the integral image precomputed for all visual words, the
histogram of visual word counts for an arbitrary sub-window can be computed
with four histogram operations. Let Ii be the integral image of a query image
for node i of the vocabulary tree, then the histogram H of visual words counts
for a given sub-window W can be computed in the following way:

Hi = Ii(Wbr) + Ii(Wtl)− Ii(Wtr)− Ii(Wbl) (6.6)

for all i, where Wbr, Wtl, Wtr and Wbl are respectively the bottom right, top
left, top right and bottom left coordinates of W .
The computational complexity of determining the visual word counts for an
arbitrary sub-window is therefore O(4 · ϕ) operations, where δ is the size of the
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Figure 6.2: Results of the segmentation process using the floodcanny method.
The first column shows the original images and the second column the seg-
mented regions. Each color represents a different region, and Canny edges are
superimposed for clarity.

vocabulary. Doing the same without integral images has a complexity of O(5 ·η),
where η is the number of visual words found in the test image. From this, it is
clear that integral images are an speed up as long as ϕ is significantly smaller
than η.

The second alternative is using a segmentation method to divide the image into a
set of regions that must be recognized. Various options exist for this task which
can be broadly classified as intensity based and, if stereo pairs of images are
available, depth based. In this work we have evaluated an intensity based method
and a depth based one. The intensity based method we propose, that we called
floodcanny, consists on first applying the Canny edge detector to the image, and
use the resulting edges as hard boundaries in a flood filling segmentation process.
For each candidate region of an acceptable size (in our experiments, having an
area bigger than 900 pixels), a set of five sub-windows of different size centered in
the segmented area are defined and evaluated. In general, it is intuitive to think
that, the more accurate the segmentation of the image passed to the classifier is,
the better will be the results of the object recognition method. More specifically,
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methods that can overcome highlights, shadows or weak reflections as the one
proposed by Vazquez et al (2008) have a potential to provide more meaningful
regions for the classifier, and the combination of such type of methods with
appearance-based classifiers is an area of great interest, that we are willing to
address in future work.
For the present work however, we have used only our proposed floodcanny
method, which, despite of its simplicity, achieved a good segmentation results
as can be seen in Figure 6.2. Furthermore, it is fast to apply (less than 30
milliseconds per image), which is very convenient given our objectives.

The second segmentation alternative proposed consisted of directly matching
features between the left and right image to detect areas of constant depth.
Since the geometry of the stereo cameras is known a priori, epipolar geometry
constraints can be used together with the scale and orientation of a given feature
to reduce the set of possible matches. To determine the possible location of
the objects in the environment, a grid of 3D cells of different sizes is used.
Reprojected features cast a vote for a cell of a grid if it lies within the 3D cell
coordinates. Cells that have a minimum number of votes are reprojected to
the image and added as a candidate window. It seems tempting to directly
use the matched features to construct the histogram of feature word counts,
as it would reduce the amount of background introduced in the visual word
counts histogram. However, there is no guarantee that all features of the object
have been detected in both images and matched, and the effects of missing
important object features are potentially worse than introducing a small amount
of background. Therefore we considered more adequate to accept all visual words
close to a set of valid matches.
In future work we want to address the alternative described in the previous
paragraph, and also evaluate the Vocabulary Tree method with regions gener-
ated from a dense disparity map. This latter approach would generate coherent
regions of constant depth that could be used to select a dense set of image fea-
tures without having to introduce background elements. Furthermore, features
would only have to be computed in one image.

6.1 Databases used

In order to test and adjust the parameters of the Vocabulary Tree object recog-
nition method, we have used two image databases in addition to the IIIA30,
which we have divided in recognition and classification. These databases are
detailed here:

• ASL: The ASL recognition dataset consists of nine household objects from
the Autonomous Systems Lab of the ETHZ (Ramisa et al, 2008b). It
consists of around 20 training images per object from several viewpoints
and 36 unsegmented test images with several instances of the objects,
some of them with illumination changes or partial occlusions. The train-
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ing images have been taken with a standard digital camera at a resolution
of 2 megapixels, while the test images have been acquired with a STH-
MDCS2VAR/C stereo head by Videre design at the maximum possible
resolution (1.2 megapixels). A segmented version of the training object
instances has also been used in some experiments, and is referred as seg-
mented ASL. Some images of the segmented version can be seen in Figure
6.1. As in the SIFT object recognition evaluation, equation 5.3 is used to
determine if a object has been correctly detected.

(a)

(b)

Figure 6.3: Segmented ASL dataset images. (a) Training. (b) Testing.

• Caltech10: This is a subset of the Caltech 101 dataset1, widely used in
computer vision literature. We have taken 100 random images of the ten
most populated object categories, namely: planes (lateral), bonsais, chan-
deliers, faces (frontal), pianos, tortoises, sails, leopards, motorbikes and
clocks as seen in Figure 6.4. Training and testing subsets are determined
randomly in each test. Experiments with dataset have been done following
Grauman and Darrell (2005) setup: 30 random training images and the
rest for testing.

6.2 Parameter Tuning

With the above described datasets we have done the following experiments in
order to adjust the different parameters of the method. The experiments in
this section that require no segmentation or sliding windows were done 30-fold
to ensure statistical invariance when creating the tree or in the test/train data
split. Similarly, unless stated otherwise in the text, the DoG feature detector

1The Caltech 101 dataset can be found at http://www.vision.caltech.edu/Image_

Datasets/Caltech101/
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Figure 6.4: Images from Caltech10 dataset.

and SIFT descriptor were used in all experiments, and the vocabulary tree had
branch factor of ten and a depth of four.

Data Type: We wanted to evaluate the impact of using the data type unsigned
char (uchar) instead of double to represent the signature histograms, that is, 1
byte versus 8 bytes precision. For this we have tested the base method (without
inverted files) with the segmented ASL and the Caltech10 datasets. As can
be seen in Table 6.1, time per image –probably also thanks to a better use
of the cache memory– and specially memory usage improve substantially with
the unsigned char data type at the cost of some precision in the case of the
segmented ASL dataset. As our aim is to obtain a fast and scalable method, we
used unsigned char data type in the following experiments.

ASL Caltech10
Data Type uchar double uchar double
Recall 75.48% 80.11% 54.35% 54.60%
Speed 12.39 imas/s 10.54 imas/s 7.63 imas/s 5.76 imas/s
Memory Size 1.09MB 8.74MB 1.4MB 11.23MB

Table 6.1: Results of the comparison between uchar i double

Norm: Our objective with this second experiment is to assess which normal-
ization method achieved best performance and speed. Again we have used the
segmented ASL and the Caltech10 datasets, with the same parameter settings
but only with the unsigned char data type. In concordance with the observa-
tions of Nister and Stewenius (2006), the L1 norm obtained better results in our
experiments. One explanation could be the loss in precision of the more complex
operations, and the discretization of the data to unsigned char.
In the case of the segmented ASL dataset, the difference is only 4.63% less in
the case of L2 norm. However, in the case of Caltech10 the difference increases
notably, and goes from 54.35% in the case of L1 norm to 36.43% with the L2.
Even though L2 norm is slightly faster than L1, it does not compensate the drop
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ASL Caltech10
Norm L1-norm L2-norm L1-norm L2-norm
Recall 75.48% 70.85% 54,35% 36.43%
Speed 12.39 imas/s 13.72 imas/s 7.63 imas/s 8.25 imas/s

Table 6.2: Results of the comparison between L1-norm and L2-norm

ASL Caltech10
Inverted Files No Yes No Yes
Recall 75.48% 75.48% 54.35% 54.35%
Speed 12.39 imas/s 30.32 imas/s 7.63 imas/s 13.37 imas/s

Table 6.3: Results of the speed-up experiments with and without inverted files.

in performance. Consequently we will be using the L1 norm in the remaining
experiments.

Speed-up by Inverted Files: In this experiment we wanted to asses the
processing time reduction introduced by using inverted files. Again the same
datasets as in the two previous experiments will be used. In table 6.3 the results
of the experiments for both databases are shown. As can be seen, speed has
approximately doubled for both datasets. Furthermore, memory usage is lower
with the inverted files structure.

Training Images: We have evaluated the Vocabulary Tree approach with
three types of training image sets: twenty images taken from the testing se-
quences (i.e. of bad quality), the same training set as the SIFT Object recog-
nition (i.e. just one training image of good quality for each category), and with
twenty training images of good quality with different sizes and viewpoints. From
these three training sets, the only one that obtained acceptable results has been
the last one, and therefore all further experiments have been performed using it.

Detection with Sliding Windows: As explained above, the most straight-
forward approach to detecting objects in unsegmented images with the Vocab-
ulary Tree method is using sliding windows. However it is time-consuming to
evaluate every sub-window. As a means to accelerate this we have evaluated
the integral images concept from Viola and Jones (2001). With the objective
of adjusting the size of the windows to the objects we want to detect, we have
studied the distribution of sizes of objects in the ASL and IIIA30 datasets. As
can be seen in Figure 6.5, roughly 80% of the bounding box sides have under 220
pixels per side. Therefore, in order to minimize processing time, we considered
a step of 20 pixels and rectangular windows with sides that ranged from 140 to
220 pixels. The total number of windows evaluated at each test image is 8625.
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Figure 6.5: Accumulated frequencies of the ground truth bounding box side size
for the objects annotated in the test sequences of the unsegmented ASL and
IIIA30 datasets.

Although moving to lower values the window size span may seem attractive as
more objects would fit precisely, it must be taken into account that windows
are evaluated at every 20 pixels and object instances are not aligned to the
sub-windows grid and, as a consequence, an offset must be expected and accom-
modated by the window. Furthermore the Nister and Stewenius Vocabulary tree
method is able to tolerate some amount of background. For these reasons, we
aimed to maximize performance with respect to number of evaluated windows
with the chosen window side size span.

In our experiments, with the sliding windows approach we were able to evaluate
in the order of 33 windows every second on average. However, given the high
number of windows that must be evaluated, it is far from enough for real robotic
applications. As discussed earlier, the speed-up provided by integral images
depends on the relation between the number of features found in the image and
the size of the vocabulary. However, as seen in Figure 5.4.b, Harris and Hessian
based detectors find, on average, between 1500 and 2000 features for image,
SIFT and SURF in the order of 500 and finally MSER only around 100 features
for image.

Possible solutions to this problem have been recently proposed by different au-
thors: Fulkerson et al (2008) suggest using agglomerative information bottleneck
to reduce the size of the vocabulary tree and consequently speed up the sliding
windows process, Moosmann et al (2008) use extremely randomized clustering
forests of K-D trees to speed up the classification of visual words; Lampert et al
(2008) disregard sliding windows and use a branch-and-bound schema over the
sub-windows parameter space to direct the search to the most promising area of
the image.

Figure 6.6.a shows the results obtained with the Vocabulary Tree and the sliding
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windows approach in the unsegmented ASL dataset.
As seen in the figure, the number of false positives is overwhelming to say the
least. To filter out as many false positives as possible, in addition to rejecting
windows with less than a determined minimum number of features, we have
evaluated the effect of requiring a ratio between the first and the second classes
in the k -NN voting. Namely the following restriction had to be satisfied:

V2 < δ · V1 | δ ∈ [0, 1] (6.7)

where V1 is the score of the most voted class, and V2 that of the second, and δ is a
threshold to reject windows without a clear winner in the k -NN voting. In Figure
6.6.b and 6.6.c results for the previous experiment applying this filtering schema
with δ = 0.8 and δ = 0.5 are shown. As can be seen, it reduced the number
of false positives in around 500 per image on average at the price of reducing
also the recall by 5% in the case of setting δ = 0.8 and 1500 false positives for a
reduction of 11% recall when δ = 0.5. In spite of this improvement, the number
of false positives is still too high for the method to be usable.
In Chapter 7 we propose a method based on Reinforcement Learning that de-
cides if a given window should be directly rejected or not by evaluating image
characteristics simple to compute. This method is also able to predict which
object recognition method is best (between the SIFT and the Vocabulary Tree)
to recognize an hypothetic object located in the test image. This could be ap-
plied to each sub-window as a way to directly reject background without further
processing.
We have also done some experiments increasing the resolution of the grid of
windows in an attempt to increase recall. Figure 6.7.a shows the results of an
experiment with a grid every 10 pixels instead of every 20. It must be taken
into account that the change in resolution affects both the number of central
points for the windows and the step of side increments. As can be seen in the
table, recall improves around 5%, but also the number of false positives for
image has increased by a factor of 25. In contrast with the case of 20 pixels step,
applying the filtering schema proposed in the previous paragraph did not result
in a significant decrease of recall, but proportionally reduced the false positives.

Detection with Segmentation: The alternative to sliding windows is using a
segmentation technique to find only a few reasonable areas to search for objects.
We have proposed and evaluated the floodcanny intensity based segmentation
algorithm described earlier, and a depth based segmentation approach.
We applied the floodcanny to the first sequence of the IIIA30 dataset with very
good results. For each region of sufficient size, a set of five windows of different
sizes centered at the detected region is defined. Besides increasing recall, as
can be seen in Figure 6.7.b, the number of false positives has decreased from
thousands to only tens.
Despite the presented results, the segmentation scheme we have applied is not
optimum, as is usually works better for large and textureless objects, that can
be segmented as a big single region. Contrarily, small and textured objects pose
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Figure 6.6: (a) Recall against average number of false positives per image found
applying the Vocabulary Tree to the unsegmented ASL dataset. The other
figures show results for the same experiment, but discarding windows where the
second most voted class in the k -NN voting is not bigger than (b) 0.8 times
and (c) 0.5 times the first. (d) Average time per image using integral images
depending on feature type on the unsegmented ASL dataset.
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Figure 6.7: (a) Comparison of using a step of 20 pixels and a step of 10 pixels for
the windows grid and sizes in the unsegmented ASL. The detector used is the
Harris Affine in a tree with branch factor 10 and depth 4. (b) Results of applying
Intensity Segmentation (the floodcanny algorithm), Stereo Segmentation and
Sliding Windows to generate the sub-windows to evaluate at the first sequence
of the IIIA30 dataset. For the three experiments the DoG detector and a tree
with branch factor 10 and depth 4 have been used.

a problem to the floodcanny method, as no single large enough region can be
found. Future work must include evaluating the floodcanny approach with more
window sizes and shapes for each putative region. Also we want to evaluate the
use of windows trained by the shape and scale of objects in the training set.

Regarding the depth segmentation, Figure 6.7.b also shows the results for this
experiment. Although the maximum attained recall is slightly lower than that of
sliding windows, it must be noted that, at a similar level of recall, false positives
are much lower.

Vocabulary Tree Width and Depth: Here we evaluated different widths
and depths for the vocabulary tree. Even though the computational cost of
classifying a descriptor vector is much lower (see theoretical study in Figure
6.8.a), a low branch factor has the risk of introducing aliasing in the cluster
space, as can be seen in Figure 6.8.b.

We wanted to empirically assess the effects of aliasing in our schema. Therefore,
we created six vocabulary trees with the same number of leaf nodes but different
branch factor and depth. Namely, the trees have branch factors: 2, 4, 8, 64,
4096 and depths: 12, 6, 4, 2, 1 respectively. Therefore we have 212 = 46 = 84 =
642 = 40961 leaf nodes.

Tables 6.4 and 6.5 show the results for the segmented ASL and Caltech 10
datasets. As can be seen, recall increases with branch factor due to a decrease of
the aliasing effect. However classification time increases notably. For example,
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(a) (b)

Figure 6.8: (a) Estimated cost of classifying a descriptor vector given branch
factor and depth of a vocabulary tree. (b) Hierarchical clustering of the data
with a low branch factor can split natural groups.

Recall Speed Comparisons
V. Tree 2-12 61.44 % 29.08 imas/s 24
V. Tree 4-6 61.11 % 29.05 imas/s 24
V. Tree 8-4 63.33 % 26.47 imas/s 32
V. Tree 64-2 68.89 % 11.65 imas/s 128
V. Tree 4096-1 81.11 % 0.47 imas/s 4096

Table 6.4: Results of the vocabulary tree shape for the segmented ASL dataset.

in the segmented ASL dataset and the vocabulary tree with 8-4, recall reduces
only 5% with respect to 64-2. However classification speed increases more than
twice. The flat tree has no aliasing, and therefore gave the best classification
results.

We have also evaluated how increasing the size of the vocabulary affects clas-
sification in unsegmented images. Figure 6.9 shows the results obtained with
trees of different sizes and shapes. As found by Nister and Stewenius (2006),
usually larger dictionaries help increase recall, although this only holds as long
as enough training features are available. In our experiments we obtained the
highest recall with a dictionary of branch factor 9 and depth 4. This is dependent
on the amount of features found by the detector and the redundancy between
them, but in the case presented in the figure it represents approximately a ratio
of one leaf node for every 2 features.

We also found that using large dictionaries makes it more difficult to effectively
model the background, and therefore more false positives were found with them.
A possible solution for the background modeling problem could be, for exam-

101



Recall Speed Comparisons
V. Tree 2-12 56.57 % 13.03 imas/s 24
V. Tree 4-6 54.29 % 14.33 imas/s 24
V. Tree 8-4 52.29 % 13.56 imas/s 32
V. Tree 64-2 58.14 % 5.24 imas/s 128
V. Tree 4096-1 60.29 % 0.05 imas/s 4096

Table 6.5: Results of the vocabulary tree shape for the Caltech10 dataset.

ple, adding samples to the background class from sub-windows that contain no
object, either coming from ground truth data or on-line, in a supervised way
or automatically when a confusing hypothesis is finally rejected with high con-
fidence (e.g. by moving the robot closer to the object).
An early rejection method for unpromising windows as the one proposed in
Chapter 7 has the potential to keep the improvement in recall while discarding
windows that could later generate false positives because of poor background
category modeling.

Number of Nearest Neighbors: In order to find a good k value for the
k -NN classifier, here we experimentally evaluated the classification performance
with respect to this parameter.
When applying the Vocabulary tree method to the segmented datasets, and
in accordance with Duda et al (2001), the first nearest neighbor gave a good
classification rate. This was especially true in the case of recognition with few
training images, as in the segmented ASL dataset. We have also evaluated the
effect of weighting the votes by its distance to the most voted. This helps reduce
the effect of distant wrong neighbors when k is increased. Results of these
experiments can be seen in Figure 6.10 for the segmented ASL dataset, and in
6.11 for the Calthech 10. In general, weighting the votes slightly decreased the
recall but had more stable results as the number of nearest neighbors considered
was increased.
Regarding the recognition in unsegmented images, the choice of the first nearest
neighbor yielded the best recall for the filtered results as well, but also a very low
precision. Overall, four or five nearest neighbors had the best balance between
recall and false positives.

Feature Detectors: We have tested the seven feature detectors (i.e. Harris
Affine, Hessian Affine, Harris Laplace, Hessian Laplace, MSER, SURF) using
sliding windows, in the unsegmented ASL dataset. In Figure 6.6.a the recall
against average number of false positives per image can be seen when varying
the minimum number of features to accept a window. As in the case of the SIFT
object recognition, Hessian based detectors achieved the highest recall. In this
case, however, Harris detectors achieved a comparable recall for a much higher
number of false positives (around 1000 more for test image). One possible expla-
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Figure 6.9: Recall against average number of false positives per image in the
unsegmented ASL dataset with trees of different sizes and shapes. The detector
used has been the DoG. The shape of the tree is indicated in the legend, where
bf stands for branch factor and d for depth.

nation for this difference could be that corners are closer to depth discontinuities
more often than blobs. Depth discontinuities violate the planarity assumption
of the feature detector and introduce variations to the descriptor, which in turn
will increase the probability of a failed match or a classification in an erroneous
visual word. Aiming to minimize the false positives, the best results were ob-
tained by the SURF detector (also Hessian based). However, for higher recall
levels, it performed worse than all the other detectors except MSER.
Regarding computational time, differences between each detector are due to
more areas skipped because of insufficient features as, once the integral image
is constructed, it takes a constant time to evaluate every sub-window. In fact,
various authors argue that with integral images it is more convenient to use
dense features, as recall is improved with such high numbers of features while
computational time is not affected using integral images (Fulkerson et al, 2008;
Nowak et al, 2006).

Manually segmented images from IIIA30 dataset: As a final tuning
experiment, we wanted to evaluate the achievable performance with the IIIA30
dataset if we omit the detection step. Therefore we taken one hundred segmented
images (twenty for object) of five objects from the sequences dataset: Ponce book,
charger, orbit box, Spices poster and stapler. Also six standard digital camera
quality training images were taken. We called it the segmented IIIA5 dataset,
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(a) (b)

Figure 6.10: (a) Results of unweighted votes for the segmented ASL dataset. (b)
Results of votes weighted by distance for the segmented ASL dataset.

and Figure 6.13 shows some train and test images. Results of the experiment
with the DoG detector and a tree with branch factor 10 and depth 4 are shown
in Table 6.6.

Object Recall Precision

Ponce book 50,00% 71,43%

Charger 30,00% 50,00%

Orbit box 100,00% 47,62%

Poster spices 100,00% 90,91%

Stapler 30,00% 60,00%

Average 63,99% 62,00%

Table 6.6: Recall and precision for the segmented IIIA5 dataset.

6.2.1 Discussion and Selected Configuration

Except for recall, which is better for the Vocabulary Tree method, the SIFT
object recognition has better results in all other aspects related to robotics.
Regarding the different alternatives considered in the experiments, the use of
inverted files is the one that most clearly improves the method without negatively
affecting it in any way. The use of integral images is only sensible in the case
of small dictionaries and high number of features, otherwise it becomes more
computationally expensive. In addition, it must be also taken into account
the time employed in building the integral images structure. Contrarily, we
found that large dictionaries improved recall. Experiments done considering
larger window spans than the one proposed in this work did not show much
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Figure 6.11: (a) Results of unweighted votes for Caltech 10. (b) Results of votes
weighted by distance for Caltech 10.

improvement, but this should be better analyzed in future work. Increasing the
sampling resolution to construct the integral image (i.e. the jump in pixels from
one bin of the integral image to the next) from every 20 pixels to every 10 pixels
did increase the recall, but at the cost of 25 times more false positives.

To get rid of false positives we evaluated a filtering schema to reject windows
with dubious classification results. This approach did indeed reduce around
500 to 1500 false positives for image, which is approximately 25% of total false
positives generated at the cost of 5% to 11% drop in recall. However, in order
to be practically usable, much more false positives should be rejected without
significantly affecting the recall.

Among the feature detectors used, best results were obtained by the Hessian
based ones, while the Harris based detectors attained similar recall levels but at
the cost of more false positives.

We have, therefore, selected for the comparison the sub-windows generated by
the floodcanny segmentation technique, given that a sliding windows approach
with a large vocabulary tree is too computationally expensive for a robotics
scenario, and the Hessian Affine feature detector and a tree with branch factor
nine and depth four. This represents a ratio of approximately 12 features per
leaf node of the tree. Although this ratio is higher than the one found for the
DoG detector in the size and shape of the tree tuning experiment, our intuition is
that the used implementation of the Hessian Affine usually finds more redundant
regions than the DoG. We did indeed test the same experiment with a vocabulary
tree of branch factor ten and depth four and performance was slightly worse.
Results of this comparison can be seen in Figure 6.14.

It would have been interesting to consider also the depth segmentation, but
unfortunately stereo pairs of images were only available for one sequence of the
IIIA30 dataset.

It must be noted that, although the results obtained may seem not very good

105



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Recal l

(fi l tered)

Recal l

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Average
Num of FP
for Image
(fi l tered)

Average
Num of FP
for Image

(b)

Figure 6.12: Results of different numbers of nearest neighbor choices for the
unsegmented ASL dataset. (a) Recall (b) Average number of false positives per
image

because of the high number of false positives, they are much better than random.
In the segmented ASL dataset, each sub-window represents a 10 class classifi-
cation problem, with a 0.10 probability of randomly picking the right answer.
As 8625 sub-windows are evaluated at every image, the number of expected cor-
rect random classifications per image is of 862.5 (including true negatives) and,
therefore, the number of expected false positives is 7762.5. However, according
to the result shown in Figure 6.6.c, only approximately 1200 false positives per
image were found in the sliding windows experiment. In the case of the IIIA30
dataset, the difference in the number of false positives of the method and random
selection is worse, probably because of poor background modeling.

In addition, it has to be taken into account that Equation 5.3 does penalize a
sliding windows based approach, as it does not enforce finding the right bounding
box for the object. Therefore, such sliding windows that do not fit the object
precisely enough will be discarded regardless of correctly selecting the class.
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Figure 6.13: Training (up) and testing (down) images from the segmented IIIA5
dataset.
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Figure 6.14: Comparison between a vocabulary tree with branch factor 10 and
depth 4 and another with branch factor 9 and depth 4. The feature detector is
the Hessian Affine and the test sequence is the IIIA30-1.

6.3 Evaluation of Selected Configurations

As can be seen in Table 6.3, with the segmentation schema adopted in this final
experiment, we have obtained a recall better than with the SIFT method for un-
textured objects. Unfortunately small and textured objects are harder to detect
with the current segmentation schema, as they usually do not generate a large
enough uniform region. However this is not a weakness of the Vocabulary Tree
method but of the segmentation approach, if it were improved, the classification
results would possibly meliorate.

Objects like the computer monitors, the chairs or the umbrella had a recall
comparable to that of textured objects. As can be seen in Table 6.8, a similar
recall was obtained for the objects of types textured and not textured. A slightly
worse recall was obtained for the repetitively textured objects, but we believe it
is mostly because of the segmentation method.

Regarding the image quality parameters (see Table 6.9), the occluded objects
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Objects 10nn 10nn with fil-
tering δ = 0.8

5nn 1nn 10nn with re-
laxed overlap

Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec

Grey battery 0.36 0.01 0.32 0.02 0.32 0.01 0.36 0.01 0.60 0.02

Red battery 0.13 0.01 0.03 0 0.18 0.01 0.17 0.01 0.15 0.01

Bicicle 0.67 0 0.59 0 0.58 0.01 0.49 0.01 0.70 0

Ponce book 0.38 0.01 0.38 0.02 0.41 0.01 0.41 0.01 0.69 0.02

Hartley book 0.21 0 0.21 0 0.19 0 0.21 0 0.81 0.01

Calendar 0.18 0 0.09 0 0.15 0 0.12 0 0.53 0.01

Chair 1 0.70 0.05 0.69 0.06 0.72 0.05 0.78 0.06 0.71 0.06

Chair 2 0.14 0.04 0.09 0.04 0.15 0.05 0.11 0.03 0.19 0.06

Chair 3 0.01 0.04 0 0 0.04 0.10 0.02 0.05 0.01 0.04

Charger 0.11 0 0 0 0 0 0 0 0.11 0

Cube 1 0.36 0 0.36 0 0.5 0 0.43 0.01 0.43 0

Cube 2 0.11 0 0.11 0 0.11 0 0.17 0 0.28 0.01

Cube 3 0.06 0 0.06 0 0.03 0 0.09 0 0.15 0.01

Extingisher 0 0 0 0 0 0 0 0 0 0

Monitor 1 0.13 0.01 0.12 0.02 0.10 0.01 0.15 0.02 0.22 0.02

Monitor 2 0.45 0.11 0.42 0.13 0.51 0.11 0.57 0.08 0.58 0.15

Monitor 3 0.77 0.16 0.77 0.17 0.66 0.14 0.71 0.09 0.93 0.21

Orbit box 0.14 0 0.14 0 0.14 0 0.14 0 0.71 0

Dentifrice 0 0 0 0 0 0 0.13 0 0 0

Poster CMPI 0.26 0.02 0.23 0.02 0.26 0.03 0.26 0.02 0.26 0.02

Phone 0.06 0.01 0.06 0.01 0.03 0 0.04 0 0.06 0.01

Poster Mys-
trands

0.28 0.03 0.28 0.03 0.24 0.04 0.24 0.03 0.28 0.03

Poster spices 0.46 0.02 0.46 0.02 0.35 0.02 0.46 0.03 0.59 0.03

Rack 0.60 0.06 0.58 0.07 0.60 0.07 0.58 0.06 0.82 0.09

Red cup 0 0 0 0 0 0 0 0 0 0

Stapler 0.18 0.02 0.18 0.02 0.13 0.02 0.24 0.01 0.21 0.02

Umbrella 0.02 0.01 0.02 0.01 0.01 0 0 0 0.02 0.01

Window 1.00 0.07 1.00 0.07 1.00 0.07 1.00 0.07 1.00 0.07

Wine bottle 0 0 0 0 0 0 0 0 0.40 0.01

Table 6.7: Precision and recall for all the objects of the IIIA30 dataset in the
final Vocabulary Tree experiment (i.e. tree with branch factor 9 and depth 4, and
features found with the Hessian Affine detector). Different choices of parameters
for the classifier are displayed. Also, the last column, shows the results obtained
using Equation 5.4 instead of Equation 5.3 to measure overlap.

obtained a higher recall level, but this was because, as mentioned in the previ-
ous discussion, the sliding windows approach taken in this experiment does not
enforce a precise detection and, therefore, Equation 5.3 discards hypotheses cor-
rectly detecting object instances. When Equation 5.4 was used for all objects,
instead of restricting it only to the occluded ones, recall for objects with normal
and blurred viewing conditions is increased. Also, as can be seen in Figure 6.15,
the percentage of detected objects with a degree of overlap from 90% to 100%
between the found and the ground truth bounding box was increased by 14%,
showing that, although not precisely, the considered windows did overlap almost
the whole object region.

6.4 Discussion

With the selected configuration we obtained an average recall of 30%. More
importantly, this approach has been able to detect objects that the SIFT could
not find because of its restrictive matching stage. However, also 60 false posi-
tives per image on average were detected with the selected configuration, which
represents a precision of 2% on average.

In the light of the performed experiments, it seems clear that the Vocabulary
Tree method cannot be directly applied to a mobile robotics scenario, but some
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10nn 10nn-0.8 5nn 1nn 10nn-
relaxed

Repetitively textured objects
Recall 0.18 0.18 0.21 0.23 0.29
Prec 0 0 0 0 0.01

Textured objects
Recall 0.29 0.27 0.26 0.28 0.53
Prec 0.02 0.02 0.02 0.02 0.02

Not textured objects
Recall 0.29 0.26 0.27 0.29 0.39
Prec 0.03 0.03 0.03 0.03 0.04

Table 6.8: Precision and recall depending on texture level of the objects in the
final experiment with the Nister and Stewenius (2006) Vocabulary Tree. The
objects are grouped in the same way as in Table 5.6. The title 10nn-0.8 stands
for 10nn with filtering δ = 0.8, and 10nn-relaxed for 10nn with relaxed overlap.

strategy to drastically reduce the number of false positives is necessary. In
addition to reduce false positives to acceptable levels, it will be necessary to
accelerate a bit the detection step in order to process images coming from the
robot cameras at an acceptable rate. Improving the segmentation strategy, or
using a technique such as the one presented in Chapter 7 will surely help improve
the accuracy.
Nevertheless, we found that the Vocabulary Tree method was able to detect
objects that were inevitably missed by the SIFT Object Recognition method.
Furthermore, as it is a hot research topic, new and promising bag of features type
approaches are currently being proposed, such as the aforementioned Fulkerson
et al (2008) approach, the one by Moosmann et al (2008) and specially the one
by Lampert et al (2008). Although we would have liked to evaluate all these
new strategies here as well, time constraints make it impossible to address it
now and we must leave it for future work.
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10nn 10nn-0.8 5nn 1nn 10nn-
relaxed

Normal 0.24 0.23 0.24 0.25 0.45
Blur 0.29 0.28 0.28 0.3 0.46
Occluded 0.64 0.61 0.62 0.62 0.64
Illumination 0.06 0.06 0.06 0.11 0.11
Blur+Occl 0.43 0.41 0.43 0.46 0.43
Occl+Illum 0.11 0.11 0.08 0.08 0.11
Blur+Illum 0.14 0 0 0 0.14

Table 6.9: Recall depending on image characteristics. Normal stands for object
instances with good image quality and blur for blurred images due to motion,
illumination indicates that the object instance is in a highlight or shadow and
therefore has low contrast. Finally the last three rows indicate that the object
instance suffers from two different problems at the same time.
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Figure 6.15: Accumulated frequencies for the ratio of overlap between the ground
truth bounding box and the detected bounding box for correctly found objects
(true positives). For the “Normal” category (corresponds to the 10nn of previous
results) Equation 5.3 is used to determine the ratio, while for the “Relaxed”
category, Equation 5.4 is used. In both cases an object is only accepted if the
ratio found is higher than 50%.
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Chapter 7

Object Recognition Method
Selection with
Reinforcement Learning

7.1 Introduction

After reviewing the two chosen object recognition methods with their advantages
and drawbacks in a mobile robotics scenario, with the variety of conditions that
they will face, one can conclude that choosing, a priori, which object recognition
method a robot should have, is not the best design option. In this kind of
application, the robot should be able to decide by itself which object recognition
method should be used, depending on the current conditions of the world.

In this chapter we propose the use of Reinforcement Learning to decide on line
which method should be used to identify objects in an image, aiming also to
minimize computing time. To evaluate this idea we implemented a system that
is able to choose between the two object recognition algorithms used in this
work based on simple attributes extracted on-line from the images, such as mean
intensity and intensity deviation. In addition, it is also capable of deciding that
an image is not suitable for analysis, and thus discard it.

7.2 Reinforcement Learning and its applications
in Computer Vision

Reinforcement Learning (Sutton and Barto, 1998) is concerned with the problem
of learning from interaction to achieve a goal, for example, an autonomous agent
interacting with its environment via perception and action. On each interaction
step the agent senses the current state s of the environment, and chooses an
action a to perform. The action a alters the state s of the environment, and a
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scalar reinforcement signal r (a reward or penalty) is provided to the agent to
indicate the desirability of the resulting state. In this way, “The RL problem is
meant to be a straightforward framing of the problem of learning from interaction
to achieve a goal” (Sutton and Barto, 1998).
Formally, the RL problem can be formulated as a discrete time, finite state,
finite action Markov Decision Process (MDP) (Mitchell, 1997). Given:

• finite set of states s ∈ S that the agent can achieve;

• A finite set of possible actions a ∈ A that the agent can perform;

• A state transition function T : S ×A → Π(S), where Π(S) is a probability
distribution over S;

• A finite set of bounded reinforcements (payoffs) R : S ×A → <,

the task of a RL agent is to find out a stationary policy of actions π∗ : S → A
that maps the current state s into an optimal action(s) a to be performed in s,
maximizing the expected long term sum of values of the reinforcement signal,
from any starting state.
The policy π is some function that tells the agent which actions should be cho-
sen, and is learned through trial-and-error interactions of the agent with its
environment. Several algorithms were proposed as a strategy to learn an opti-
mal policy π∗ when the model (T and R) is not known in advance, for example,
the Q–learning (Watkins, 1989) and the SARSA (Rummery and Niranjan, 1994)
algorithms.
The Q–learning algorithm was proposed by Watkins (1989) as a strategy to learn
an optimal policy π∗ when the model (T and R) is not known in advance. Let
Q∗(s, a) be the reward received upon performing action a in state s, plus the
discounted value of following the optimal policy thereafter:

Q∗(s, a) ≡ R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′). (7.1)

The optimal policy π∗ is π∗ ≡ arg maxaQ
∗(s, a). Rewriting Q∗(s, a) in a recur-

sive form:

Q∗(s, a) ≡ R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′

Q∗(s′, a′). (7.2)

Let Q̂ be the learner’s estimate of Q∗(s, a). The Q–learning algorithm iteratively
approximates Q∗, i.e., the Q̂ values will converge with probability 1 to Q∗,
provided the system can be modeled as a MDP, the reward function is bounded
(∃c ∈ R; (∀s, a), |R(s, a)| < c), and actions are chosen so that every state-action
pair is visited an infinite number of times. The Q learning update rule is:

Q̂(s, a)← Q̂(s, a) + α
[
r + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

]
, (7.3)
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where s is the current state; a is the action performed in s; r is the reward
received; s′ is the new state; γ is the discount factor (0 ≤ γ < 1); α = 1/(1 +
visits(s, a)), where visits(s, a) is the total number of times this state-action pair
has been visited up to, and including, the current iteration.

Several researchers have been using RL as a technique to optimize active vision,
image segmentation and object recognition algorithms. The area of Computer
Vision on which RL was first applied was in Active Vision. Whitehead and Bal-
lard (1991) proposed an adaptive control architecture to integrate active sensory-
motor systems with RL based decision systems. Although the work is theoretical
and did not make use of real sensors, they were able to describe a system that
learns to focus its attention on the relevant aspects of the domain as well as con-
trol its behavior, in a simple block manipulation task. Several researchers have
been applying RL to active vision since then, for example Minut and Mahade-
van (2001) have applied RL for visual attention control, proposing a model of
selective attention for visual search tasks, such as deciding where to fixate next
in order to reach the region where an object is most likely to be found. Darrell
and Pentland (1996a,b) also address visual attention problem: they proposed a
gesture recognition system that guides an active camera to foveate salient fea-
tures based on a Reinforcement Learning paradigm. An attention module selects
targets to foveate based on the goal of successful recognition, learning where to
foveate to maximally discriminate a particular gesture. Finally, in Darrell (1998)
is shown how a concise representation of active recognition behavior can be de-
rived from hidden-state Reinforcement Learning techniques.

Paletta and Pinz (2000) have applied RL in an active object recognition sys-
tem, to learn how to move the camera to informative viewpoints, defining the
recognition process as a sequential decision problem with the objective of disam-
biguating initial object hypotheses. For these authors, ”Reinforcement Learning
provides then an efficient method to autonomously develop near-optimal decision
strategies in terms of sensorimotor mappings” (Paletta et al, 1998). Borotschnig
et al (1999) continued in the same line of work, building a system that learns to
reposition the camera to capture additional views to improve the image classi-
fication result obtained from a single view. More recently, Paletta et al (2005)
proposed the use of Q-learning to associate shift of attention actions to cumu-
lative reward with respect to object recognition. In this way, the agent learns
sequences of shifts of attentions that lead to scan paths that are highly discrim-
inative with respect to object recognition.

Less work has been done on the use of RL for image segmentation and object
recognition. Peng and Bhanu (1998a) used RL to learn, from input images, to
adapt the image segmentation parameters of a specific algorithm to the changing
environmental conditions, in a closed-loop manner. In this case, the RL creates
a mapping from input images to corresponding segmentation parameters. This
contrasts with great part of the current computer vision systems whose method-
ology is open-loop, using image segmentation followed by object recognition
algorithms. Peng and Bhanu (1998b) improve the recognition results over time
by using the output at the highest level as feedback for the learning system, and
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has been used to learn the parameters of image segmentation and feature ex-
traction and thereby recognizing 2-D objects, systematically controlling feedback
in a multilevel vision system. The same authors presented a general approach
to image segmentation and object recognition that can adapt the image seg-
mentation algorithm parameters to the changing environmental conditions, in
which segmentation parameters are represented by a team of generalized stochas-
tic learning automata and learned using connectionist Reinforcement Learning
techniques. Results were presented for both indoor and outdoor color images,
showing a performance improvement over time for both image segmentation and
object recognition using RL (Bhanu and Peng, 2000).

Taylor (2004) also followed this line of research, applying RL algorithms to
learn parameters of an existing image segmentation algorithm. Using the Fuzzy
ARTMAP artificial neural network, he was able to optimize ten parameters of
Wolf and Jolion (2003) algorithm for text detection in still images. The pa-
rameters learned by RL were shown to be superior to the parameters previously
recommended. Other applications of RL to learn parameters of image segmenta-
tion algorithms include: contrast adaptation (Tizhoosh and Taylor, 2006), find-
ing the appropriate threshold in order to convert an image to a binary one (Yin,
2002; Shokri and Tizhoosh, 2003, 2004, 2008; Sahba et al, 2008) and detection
of patterns in satellite images (Hossain et al, 1999).

Finally, Draper et al (1999) modeled the object recognition problem as a Markov
Decision Problem, and proposed a theoretically sound method for constructing
object recognition strategies by combining Computer Vision algorithms to per-
form segmentation. The authors tested their method in a real system, learning
sequences of image processing operators for detecting houses in aerial images.

In summary, Reinforcement Learning has been widely used in the Computer
Vision field in particular cases, mainly: to optimize the performance of active
vision systems; to decide where the focus of attention should be in order to
accomplish a certain task; to learn how to move a camera to more informative
viewpoints and to optimize parameters of existing and new computer vision
algorithms, such as thresholds, contrast and internal parameters. In these cases,
the resulting systems and algorithms have been very successful ones.

RL has also been used for constructing object segmentation and recognition
strategies by combining computer vision algorithms. However, results in this
area have not been as good as those of RL applied to active vision or parameter
optimization: it usually has been limited to a very specific image domain, such
as the one in Draper et al (1999).

The main limitations which arise when using Reinforcement Learning are, first,
that the reward value associated with a situation is usually not directly available,
and thus rewards are results of indirect definitions. RL requires that a certain
amount of knowledge about the world is available in the form of a training set,
which is not the case in many vision tasks. Second, the large state space difficults
convergence of RL algorithms raises performance issues, as the learning phase
can take a long time.
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Figure 7.1: The two stage decision problem.

7.3 Learning to Select Object Recognition
Methods

In order to decide which algorithm should be used by the learning agent, the
RL problem was defined as a 2 stage decision problem, with 2 possible actions
in each stage: In the first one, the agent must decide if the image contains an
object, and thus must be recognized, or if the image does not contain objects,
and can be discarded, saving processing time. In the second stage, the agent
must decide which object recognition algorithm should be used: Lowe’s SIFT
Object Recognition method or the Nister and Stewenius Vocabulary Tree (VT)
algorithm (see Figure 7.1).

To learn how to select the object recognition method appropriate for one image at
one stage we propose to use Reinforcement Learning as a classification method.
In this approach the state space is defined as a combination attributes extracted
from the images plus the possible classification of the image. For example, for
the first stage, the state can be defined as a combination of mean image intensity
and standard deviation and a value defining if the image is a background and
can be discarded or if contains objects.

We also define a new type of action, called “update action”. Update actions
are not real actions happening in the world, but actions that update the value
of a state-action pair Q(s, a) at one state using the value of a neighbor pair.
For example, if the state space is composed of image intensity and standard
deviation, the Q(s, a) table would be represented as two dimensional matrix
containing the possible values of intensity (0 to 255) and standard deviation (0
to 255), and update actions are done between one state and his 4-neighbours
located above, below, at left and at right. In a 3-dimensional state space, update
actions can be made using 8-neighbours (two in each direction of the space) and
so on.

The rewards used during the learning phase are computed using a set of training
images. If, during the exploration, the learning agent reaches a state where
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a training image exists and the state corresponds to the correct classification
of the image, the agent receives a reward. Otherwise the reward is zero. For
example, in the first stage of the decision, if we have a training image that does
not contain an object, with mean intensity value of 50 and standard deviation of
10, a reward is given when the agent moves to the state (mean = 50, std = 10,
classification = discard). An interesting propriety of this approach is that the
rewards can be pre-computed, creating a reinforcement table that can be used
during the learning phase.
Formally, a MDP can be defined for each stage as:

• The set of update actions a ∈ A that the agent can perform, defined as
update the Q value using the value of a neighbor.

• The finite set of states s ∈ S in this case is the n-dimensional space of
values of the attributes extracted from the images plus its classification;

• The state transition function allows updates to be made between any pair
of neighbors in the set of states.

• The reinforcements R : S × A → < are defined using a set of training
images.

In this approach, a RL method is used as a classifier, and must have two pro-
cessing phases: the training phase, where Reinforcement Learning is performed
over a set of pre-classified images, i.e., images to which we know what the best
algorithm to use is, and the execution phase, where the results from the learning
are used to decide which algorithms to apply to other images.
During the training phase, learning an optimal policy to solve the MDP means
to learn a mapping from images (or more specifically image attributes) to image
classes (or algorithms classes). Although several RL algorithms can be used to do
this, the RL algorithm used in this implementation is the Q-learning (Watkins,
1989), because it directly approximates the optimal policy independently of the
policy being followed (it is an off-policy method), allowing the state and the
action to be executed by the agent to be selected randomly. Using the Q-
Learning, at each stage the agent chooses a system state s. Then, it selects
an update action to be executed, computes the reward and updates the value
function.
The learning algorithm used is as follows:

Initialize Q(s,a).

Choose a start state s, randomly.

do {

Choose an action, randomly.

Execute a, observe s’, compute the reward.

Update the Q value.

s = s’.

} until the Q values converge.
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Figure 7.2: Example of how the classification works: the reinforcements used
(left) and the resulting classification table (right).

To better understand what is happening during the learning phase, we can com-
pare our approach to a robot moving in a two-dimensional grid. Every time
the robot finds a “goal” state and receives a reward, the state-action pair where
the robot was before reaching the goal state is updated. Every time the robot
moves, it iteratively updates the origin state-action pair. By doing this a large
number of times, the reward is spread over the Q-table, and a robot will know
what to do to reach the goal state (will have learned the optimal policy).
In the learning phase, every time the “robot” reaches a state where there is
an image from the training set, it receives a reward, and the state-action pair
where the “robot” was before is updated. Every time a new state action pair
is randomly chosen, it is iteratively updated. By doing this a large number of
times, the reward is spread over the Q-table, and every state-action pair will
contain information about what to do with an image with those characteristics
(will have learned a mapping from image to actions).
Figure 7.2 shows an example of the use of RL as an image classification method:
in each figure the rows and columns represents two values of the attributes
extracted from the images (for example, mean image intensity are rows and
standard deviation of the image intensity are the columns), the value represents
what is the classification of an image, where zero means that there is not an
example with that characteristics, and “1” and “2” are two possible classes.
The table of the left in figure 7.2 presents the reinforcement table, created before
the training phase using the training images and their classification, which con-
sists of what is the algorithm that was able to classify them. The table on the
right in the same figure shows the results of applying the RL algorithm during
the learning phase: a table where the classification was spread over to states
where there are no prior examples, and that allows the classification of other
images.
To show the applicability of this porposal, experiments and results obtained with
this method are presented in the next section.
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Figure 7.3: Objects segmented from test images of the dataset.

7.4 Experiments and Results

Several experiments were executed using the ASL dataset. Each experiment
consists of two processing phases: the training of the RL and the execution
phase, where the training quality can be verified. To train the RL, we used
36 test images, from which approximately 160 images containing objects were
segmented (using the floodcanny algorithm in Chapter 6) and previously classi-
fied. Samples of the segmented images are presented in Figure 7.3. Furthermore,
360 background images, also resulting from the segmentation process, were used.
The training was performed according to the algorithm described in the previous
section.
To evaluate the result of the learning process, the Leave-One-Out method was
used. Using this method, the RL selection module was trained with all the test
images but one, and then the image left out (that can contain several regions of
interest (ROIs) with objects and background) is used to test the result of the
learning. This test phase corresponds to the execution phase, which can be used
on the real robot during on-line exploration of the environment, and its working
diagram is presented in Figure 7.4.
Six different experiments were conducted, using three different combinations of
image attributes as state space descriptors and two different image sizes (the
image original size and a 10 by 10 pixels reduced size image). The combinations
of image attributes used as state space are: mean and standard deviation of
the image intensity (MS); mean and standard deviation of the image intensity
plus entropy of the image (MSE); and mean and standard deviation of the im-
age intensity plus the number of interest points detected by the Difference of
Gaussians operator (DoG).
The rewards used during the learning phase were computed using a set of training
images. Figure 7.5 shows part of the reward table built for the first stage of the
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Figure 7.4: Execution Phase of the system.

first experiment (MS). It is a 100 x 130 figure, where the rows represent the
possible values of mean intensity of the image, and the columns represents 100
possible values in standard deviation of the image intensity (the MS space).
There are three kinds of states, marked in the image by: “X”, which indicates
that in the training set exists an image with this combination of mean and std
dev values, “·”, which corresponds to points that represent images that do not
contain objects (backgrounds) and the rest of the space, which is left without any
marking and corresponds to points in the MS state where there is no information
about it. As it can be seen, this is a sparse image.

During the learning phase (described in Section 7.3), if the learning agent reaches
a state labeled as “X”, it receives the value +10 and if it reaches a state labeled
as “·”, it receives a reward of -10. Otherwise the reward is zero.

Figure 7.6 shows the results of applying the RL algorithm during the learning
phase. As it can be seen, the classification was spread over to states where there
are no prior examples, allowing the classification of other images. This table is
the one used during the execution phase.

Tables 7.1 and 7.2 present the results obtained for the six experiments. The
first row of Table 7.1 shows the percentage of times that the agent correctly
chose to discard a background image, and the second row shows the percentage
of times the agent correctly chose to use the Lowe algorithm, instead of the
Vocabulary Tree one. The columns in this table present the results for the six
experiments, the first three using the original image and, from the fourth to sixth
column, showing the results for the reduced size image. The last column shows
the percentage of times a human expert takes the correct action. Table 7.2 is
similar to Table 7.1, but shows the classification error. The first row shows the
percentage of images discarded as background, when they should be analyzed,
and the second row presents the number of times the Lowe algorithm is chosen,
when the correct one is the Vocabulary Tree.

The results show that the use of Reinforcement Learning to decide which algo-
rithm should be applied to recognize objects yields good results, for all different
combinations of image attributes used. Furthermore, in some cases, Reinforce-
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Figure 7.5: Image of the reward table built for the first experiment (Mean and
Standard deviation of image intensity space).
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Figure 7.6: Classification table learned in the first experiment.
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Table 7.1: Correctly classified images (percentage)
Full Img Small Img Expert

MS MSE DoG MS MSE DoG

Back 91.9 100.0 98.0 92.6 100.0 98.9 100.0
Lowe 84.5 100.0 44.4 76.0 98.4 38.1 93.2

Table 7.2: Incorrect classification (percentage)
Full Img Small Img Expert

MS MSE DoG MS MSE DoG

Back 12.8 1.8 14.2 20.4 2.4 25.3 8.2
Lowe 11.6 1.9 7.9 15.8 1.9 9.9 10.8

ment Learning performed better than a human expert.
These tables also show that the best combination of attributes was mean and
standard deviation of the image intensity plus entropy of the image (MSE),
which presented very good results for original size images as well as reduced size
ones. On the other hand, the use of the number of interest points detected by
the Difference of Gaussians operator as state space did not produce good results,
failing to choose Lowe’s algorithm more than half of the time.
Reinforcement Learning algorithms were implemented in C and experiments
were executed on a Pentium 4 Computer running Ubuntu Linux and a PowerMac
G4 running Mac OS X. The Reinforcement Learning parameters used in the
experiments were: the learning rate α = 0.1 and the discount factor γ = 0.9.
Values in the Q table were randomly initiated.
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Chapter 8

Conclusion and Future
Work

In this thesis we have addressed the issues of robot global localization and ob-
ject recognition. Our contributions are described in chapters 3 to 7 and are
summarized in this chapter.

In Chapter 3 we have proposed and evaluated a signature to characterize places
that can be used for global localization. This signature consists of a constellation
of feature descriptors, computed from affine-covariant regions, extracted from a
panoramic image that has been acquired in the place we want to add to the
map. Later, these signatures are compared to the constellation extracted from
a new panoramic image using geometric constraints, and the most similar sig-
nature is selected as the current location. To compare the different signatures,
the 4-point algorithm with RANSAC to reject false matches is used. Combi-
nations of feature detectors have been shown to perform best if combined with
adequate mechanisms, such as reciprocal matching or distance to the second
nearest neighbor, to reject incorrect pairings of features before computing the
essential matrix.

Regarding the validation of the global localization schema, the results obtained
show that by using the combination of different feature detectors, a room can
be reliably recognized in indoor environments from a distance of up to 4 meters
from the point where the reference panorama was obtained. The best results
(90% correct localizations) were achieved by combining all the three evaluated
detectors.

Moreover, we have also compared the results of our proposed affine-covariant
region detectors approach with the scale-invariant region detectors methodology
proposed in Lowe (2004), widely used in robot navigation, and we have shown
that the affine-covariant regions outperformed Lowe’s scale-invariant method.

In order to speed-up the otherwise very expensive descriptor matching phase,
a global similarity technique usually employed for object recognition, the Vo-
cabulary Tree from Nister and Stewenius (2006), has been effectively applied
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to re-rank the map nodes for a given query panorama and save most of the
computation time.

Furthermore, we tested how the performance degrades if only a conventional
perspective image is used instead of an omnidirectional image. Results of a 10
repetitions experiment with random 45◦ sections (with a minimum amount of
texture) from all the test panoramas show a surprisingly good performance.

To complement the proposed global localization system, in Chapter 4 we in-
vestigated the applicability of a homing method to travel from one map node to
another. Also, when the robot has several likely hypotheses about its current
location (i.e. room) homing can be used to return to the position where the
most likely panorama from the database was made. If the hypothesis with the
highest probability was correct, then the panorama at that location should be
more similar to the panorama from the database, making it the significantly
best hypothesis. In the case where an incorrect panorama was chosen from the
database, then the same steps should be taken as before in order to find out in
which room the robot is.

Although there are several methods to do homing, such as the 1D method of
Hong et al (1991), warping (Franz et al, 1998) or snapshots (Lambrinos et al,
2000), the ALV homing method (Lambrinos et al, 1998, 2000) has been used
mainly because of its simplicity and low computational complexity.

In order to evaluate the proposed method, initial experiments using a simulated
environment were conducted and later it was tested in a real world scenario. The
real world experiments were done with panoramas acquired in three different
rooms at the IIIA research center.

The locations at which the robot acquired the panoramas were measured man-
ually and used to calculate the ground truth homing directions, which were
then used to verify the homing method results. Features were extracted from
panoramic images to be used by the homing method. Two invariant feature de-
tectors were tested: Difference of Gaussians extrema (DoG) by Lowe (2004) and
the Maximally Stable Extremal Regions (MSER) by Matas et al (2002). Only
the horizontal location of the features was used, i.e. the cylindrical angle, and
not height, nor scale, because it is not necessary for the method.

The ALV homing was found to be a good working method, however it per-
formed worse in rooms where the width and length differ greatly. This has been
explained by the way the features are projected on the panorama and by the
equal distance assumption (Franz et al, 1998).

Vardy (2005) discusses biologically based homing methods in his thesis and also
did experiments with several of them. In his work he used panoramas that were
made with a camera pointed to a parabolic mirror. The advantage of acquiring
a panorama like this is the speed of acquisition, whereas with our method first
images from several angles had to be retrieved and then stitched to create a high
resolution panorama. In order to compare both methods of panorama acquisition
additional experiments using Vardy’s data sets were performed using the SIFT
and MSER features.
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When comparing the results of IIIA data sets and Vardy’s data sets we can see
that the ALV homing method performs slightly better on the IIIA data sets, but
the difference is not significant. There might be several reasons to explain this,
such as the difference in resolution, the camera or the environment. For these
reasons it cannot be concluded that having a panorama with a higher resolution
made by rotating a camera or a camera ring is much better for our proposed
ALV homing approach than using a camera and a parabolic mirror. On the
other hand, the faster acquisition of the parabolic panoramas might be more
important than the slightly better performance.

Regarding the feature types, in our experiments MSER significantly outper-
formed SIFT. Also Mikolajczyk et al (2005) confirmed that MSER is one of the
most robust feature detectors. The artificial landmarks in the robotics labora-
tory were used to compare the local feature approach with the more traditional
artificial landmarks. The results with the artificial landmarks were significantly
better than with the invariant features, the error was about 7◦ less than using
the MSER detector (in only the lower half of the panorama). However, this
difference seems low enough to justify the applicability of the presented homing
method, because does not require setting up the environment by placing artificial
landmarks.

Although equipping a robot with robust methods to extract semantic infor-
mation from perceptual data is of utmost importance in order to have truly
cognitive robots capable of realizing complex tasks in complex environments, we
are aware of few works addressing this. Consequently, Chapters 5 and 6 of this
thesis address this gap by comparing and improving two state of the art object
recognition methods with a focus on making them useful for mobile robotics.

In order to test the object recognition method we have created a challenging
dataset of video sequences with our mobile robot while moving in an office type
environment. These sequences have been acquired at a resolution of 640 × 480
pixels with the robot cameras, and are full of blurred images due to motion,
large viewpoint and scale changes and object occlusions.

In Chapter 5 we have evaluated the SIFT object recognition method, proposed
by Lowe (2004). Issues such as training image quality, approximate local de-
scriptor matching or false hypotheses filtering methods are evaluated in a subset
of the proposed dataset. Furthermore, we propose and evaluate several modifi-
cations to the original schema to increase the detected objects and reduce the
computational time. The parameter settings that attained best overall results
are subsequently tested in the rest of the dataset and carefully evaluated to have
a clear picture of the response that can be expected from the method with re-
spect to untextured objects or image degradations. Next, a similar evaluation is
carried on for the second method, the Vocabulary Tree proposed by Nister and
Stewenius (2006).

From the results obtained, it can be seen that with the present implementation
of the methods, the SIFT object recognition method adapts better to the perfor-
mance requirements of a robotics application. Furthermore, it is easy to train,
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since a single good quality image sufficed to attain good recall and precision
levels. However, although this method is resistant to occlusion and reasonable
levels of motion blur, its usage is mostly restricted to flat well textured objects.
Also, classification (generalizing to unseen object instances of the same class) is
not possible with this approach.

On the other hand, the Vocabulary Tree method has obtained good recognition
rates both for textured and untextured objects, but too many false positives per
image were found.

Since the two evaluated object recognition methods showed complementary
properties, in Chapter 7 we have proposed a Reinforcement Learning approach
to select the most appropriate method for a new image or sub-window. Based
on simple attributes extracted on-line from the images, such as mean intensity
and intensity deviation, the method is able to decide which object recognition
system has the best probability of reliably detecting an object in the new image,
or if the image has no interesting information and should be discarded.

The results obtained show that the use Reinforcement Learning to decide which
algorithm should be used to recognize objects yields good results, performing
better than a human expert in some cases. To the best of our knowledge, there
is no similar approach using automatic selection of algorithms for object recog-
nition.

Future Work

There are many lines in which the work done in this thesis can be continued,
especially the second part deserves much more research effort.

The global localization method proposed in Chapter 3 must be tested with larger
scale databases to further assess its robustness. Also detectors that concentrate
on other types of features should be evaluated, like the Maximally Stable Color
Regions by Forssén (2007) or the Stable Symmetry Features by Huebner and
Zhang (2006). Regarding the feature-based approach to homing presented in
Chapter 4, the next step is to evaluate it in real navigation tasks. For this, the
robot will have to be equipped with a compass, because an external orientation
reference to align the panoramas is required by the method. The next step would
be testing the whole system in indoor navigation experiments.

For the object recognition experiments, only the SIFT and the Shape Context
descriptors have been evaluated, future work should include testing other image
descriptors, especially color-based ones. Chromatic information is usually dis-
regarded in computer vision research, but it is obvious that including it in the
object representation would help improve the recognition results.

Although we have evaluated the proposed object recognition methods in a wide
range of dimensions, one that is lacking is a more in-depth study of how the
composition and size of the training set affects the overall results. For example,
having similar objects, as the different monitors or chairs in the IIIA30 dataset,

126



can cause confusion to the methods. Therefore future work should address the
evaluation of different sub-sets of target objects.

The main limitation of the SIFT object recognition method is that only the
first nearest neighbor of each test image feature is considered in the subsequent
stages. This restriction makes the SIFT method very fast, but at the same time
makes it unable to detect objects with repetitive textures. Other approaches
with direct matching, like that of Leibe et al (2008), overcome this by allowing
every feature to vote for all feasible object hypotheses given the feature position
and orientation. Evaluating this type of methods, or modifying the SIFT to
accept several hypotheses for each test image feature, would be an interesting
line of continuation.

The heuristics proposed in this work to improve the SIFT object recognition
method have been manually designed. Nevertheless, it would be much better if
the system itself was able to learn and generalize which bounding boxes param-
eters constitute valid hypotheses, for instance using Reinforcement Learning.
This constitutes a research line on its own that we are very interested in follow-
ing.

The sliding windows approach could be improved by allowing windows with a
good probability of a correct detection to inhibit neighboring and/or overlapping
windows, or simply keeping the best window for a given object would clearly
reduce the number of false positives.

Regarding the segmentation schema, we believe that results can be improved
by adopting more reliable techniques, able to resists highlights and shadows.
Besides, textured areas pose a problem to the segmentation algorithm as, with
the current technique, no windows will be casted in scattered areas. using a
Monte Carlo approach to fuse neighboring regions may help alleviate the problem
without significantly affecting the computational time. Also a voting mechanism
to detect areas with a high number of small regions can be attempted.

In each candidate region detected by the segmentation method, a set of windows
is evaluated. However, we used only square windows, and the results of the
different windows of the set were not combined or used in a voting process to
decide the most probable object hypothesis.

Furthermore, combining the intensity and disparity segmentations could help
improve the accuracy of the detected regions. Also it would allow fusing the
multiple small regions found in areas with high information content, where the
intensity segmentation method fails to find a large enough region. Future work
towards evaluating these alternatives should therefore be undertaken.

Despite the drawbacks found with the Vocabulary Tree approach, bag of fea-
tures techniques are a current topic of research, and improved approaches are
constantly being presented. An example is the one proposed by Lampert et al
(2008), that seems able to overcome the problems encountered in this work.
Therefore, evaluating this method with the IIIA30 sequence is a natural contin-
uation line of this thesis.

Using the Reinforcement Learning method developed in Chapter 7 to discard
areas of the image that are likely to contain no objects is also a clear continuation
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line of this thesis. The evaluation of sub-windows with this technique is much
faster than the Vocabulary Tree, and could therefore lead to a speed-up of the
overall method and a reduction of false positives.
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A tale of two object recognition methods for mobile robots. In: Gasteratos
A, Vincze M, Tsotsos JK (eds) ICVS, Springer, Lecture Notes in Computer
Science, vol 5008, pp 353–362

Rummery GA, Niranjan M (1994) On-line Q-learning using connectionist sys-
tems. Tech. Rep. CUED/F-INFENG/TR 166, Cambridge University Engi-
neering Department

Sahba F, Tizhoosh HR, Salama MMMA (2008) A reinforcement agent for object
segmentation in ultrasound images. Expert Syst Appl 35(3):772–780, DOI
http://dx.doi.org/10.1016/j.eswa.2007.07.057

Scaramuzza D, Siegwart R (2008) Appearance guided monocular omnidirectional
visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics,
Special Issue on Visual SLAM. In press. Guest editors: Jose’ Neira, Andrew
Davison, John J. Leonard, Publication date: October 2008

137



Se S, Lowe D, Little J (2001) Vision-based mobile robot localization and map-
ping using scale-invariant features. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Seoul, Korea, pp 2051–2058

Serre T, of Brain D, Sciences C, of Technology MI (2006) Learning a dictionary
of shape-components in visual cortex: Comparison with neurons, humans and
machines. Massachusetts Institute of Technology, Dept. of Brain and Cognitive
Sciences

Serre T, Wolf L, Bileschi SM, Riesenhuber M, Poggio T (2007) Robust object
recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach In-
tell 29(3):411–426

Shi J, Tomasi C (1994) Good features to track. In: Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society
Conference on, pp 593–600

Shokri M, Tizhoosh HR (2003) Using reinforcement learning for image threshold-
ing. Electrical and Computer Engineering, 2003 IEEE CCECE 2003 Canadian
Conference on 2:1231–1234 vol.2, DOI 10.1109/CCECE.2003.1226121

Shokri M, Tizhoosh HR (2004) Q(lambda)-based image thresholding. In: CRV
’04: Proceedings of the 1st Canadian Conference on Computer and Robot
Vision, IEEE Computer Society, Los Alamitos, CA, USA, pp 504–508

Shokri M, Tizhoosh HR (2008) A reinforcement agent for threshold fusion. Appl
Soft Comput 8(1):174–181, DOI http://dx.doi.org/10.1016/j.asoc.2006.12.003

Shum H, Szeliski R (1997) Panoramic image mosaics. Tech. Rep. MSR-TR-97-23,
Microsoft Research

Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object
matching in videos. Computer Vision, 2003 Proceedings Ninth IEEE Interna-
tional Conference on pp 1470–1477

Smith R, Self M, Cheeseman P (1990) Estimating uncertain spatial relationships
in robotics. Autonomous robot vehicles pp 167–193

Smith RC, Cheeseman P (1986) On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research 5(4):56–68

Sutton R, Barto AG (1998) Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA

Szeliski R, Shum HY (1997) Creating full view panoramic image mosaics and en-
vironment maps. In: SIGGRAPH ’97: Proceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, vol 31, pp 251–258

138



Tapus A, Siegwart R (2006) A cognitive modeling of space using fingerprints of
places for mobile robot navigation. In: Proceedings the IEEE International
Conference on Robotics and Automation (ICRA), Orlando, U.S.A., May 2006,
pp 1188–1193

Tapus A, Heinzer S, Siegwart R (2004) Bayesian programming for topological
global localization with fingerprints. In: IEEE International Conference on
Robotics and Automation (ICRA), New Orleans, USA, vol 1, pp 598–603

Taylor GW (2004) Reinforcement Learning for Parameter Control of Image-
Based Applications. MSc Thesis, University of Waterloo, Ontario, Canada

Thrun S (1998) Learning metric-topological maps for indoor mobile robot navi-
gation. Artificial Intelligence 99(1):21–71

Thrun S (2002) Robotic mapping: A survey. In: Lakemeyer G, Nebel B (eds)
Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann

Thrun S, Burgard W, Fox D (1998) A probabilistic approach to concurrent
mapping and localization for mobile robots. Machine Learning 5(3-4):253–271

Thrun S, Beetz M, Bennewitz M, Burgard W, Creemers A, Dellaert F, Fox D,
Hahnel D, Rosenberg C, Roy N, Schulte J, Schulz D (2000) Probabilistic al-
gorithms and the interactive museum tour-guide robot minerva. International
Journal of Robotics Research 19(11):972–999

Tizhoosh H, Taylor G (2006) Reinforced contrast adaptation. International Jour-
nal of Image and Graphics 6(3):377–392

Tolman EC (1948) Cognitive maps in rats and men. Psychological Review
55(4):198–208

Tomatis N, Nourbakhsh I, Siegwart R (2002) Hybrid simultaneous localization
and map building: Closing the loop with multi-hypotheses tracking. In: Pro-
ceedings of the 2002 IEEE International Conference on Robotics and Automa-
tion, ICRA, IEEE Computer Society, Washington, DC, USA, pp 2749–2754

Torralba A, Murphy K, Freeman W, Rubin M (2003) Context-based vision sys-
tem for place and object recognition. Computer Vision, 2003 Proceedings
Ninth IEEE International Conference on pp 273–280

Usher K, Ridley P, Corke P (2003) Visual servoing of a car-like vehicle-an ap-
plication of omnidirectional vision. In: Robotics and Automation, 2003. Pro-
ceedings. ICRA’03. IEEE International Conference on, vol 3, pp 4288–4293

Uyttendaele M, Eden A, Szeliski R (2001) Eliminating ghosting and exposure ar-
tifacts in image mosaics. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, IEEE Computer Society, vol 2, pp 509–516

139



Valgren C, Lilienthal AJ (2008) Incremental spectral clustering and seasons:
Appearance-based localization in outdoor environments. In: Proc. IEEE Int.
Conf. on Robotics and Automation, pp 1856–1861

Vardy A (2005) Biologically plausible methods for robot visual homing. PhD
dissertation, Carleton University

Vasudevan S (2008) Spatial cognition for mobile robots: A hierarchical prob-
abilistic concept-oriented representation of space. PhD thesis, Autonomous
Systems Lab (ETHZ)
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Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Sys-
tems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology

Num. 5 E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

Num. 6 J. Ll. Arcos, The Noos Representation Language
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial

Constraint Satisfaction
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket

Metaphor
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Num. 11 M. López-Sánchez, Approaches to Map Generation by means of

Collaborative Autonomous Robots
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents
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