

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 33

Institut d’Investigacío
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cientı́fiques

Action Selection in
Cooperative Robot Soccer

using Case-Based Reasoning

Raquel Ros Espinoza

Foreword by Ramon Ĺopez de Ḿantaras

2008 Consell Superior d’Investigacions Cientı́fiques
Institut d’Investigacío en Intel·ligència Artificial

Bellaterra, Catalonan Countries, Spain.

Series Editor
Institut d’Investigacío en Intel·ligència Artificial
Consell Superior d’Investigacions Cientı́fiques

Foreword by
Ramon Ĺopez de Ḿantaras Badia
Institut d’Investigacío en Intel·ligència Artificial
Consell Superior d’Investigacions Cientı́fiques

Volume Author
Raquel Ros Espinoza
Institut d’Investigacío en Intel·ligència Artificial
Consell Superior d’Investigacions Cientı́fiques

Institut d’Investigacío
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cientı́fiques

c© 2008 by Raquel Ros Espinoza
NIPO: 653-08-086-4
ISBN: 978-84-00-08667-1
Dip. Legal: B-30359-2008

All rights reserved. No part of this book may be reproduced inany form or by any elec-
tronic or mechanical means (including photocopying, recording, or information storage
and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the IIIA,
Institut d’Investigacío en Intel·ligència Artificial, Campus de la Universitat Autònoma
de Barcelona, 08193 Bellaterra, Catalonia, Spain.

al Pepe y a la Mazo

v

Contents

Foreword xv

1 Introduction 1
1.1 Motivation and Overview . 3
1.2 Problem Domain . 7
1.3 Contributions . 10
1.4 Publications . 11
1.5 Outline of the Thesis . 11

2 CBR Preliminaries and Related Work 13
2.1 Case Based Reasoning . 13
2.2 CBR Applied to RoboCup . 16

2.2.1 Karol et al. 16
2.2.2 Lin, Chen and Liu . 16
2.2.3 Berger and L̈ammel . 17
2.2.4 Wendler et. al . 17
2.2.5 Marling et al. 18
2.2.6 Ahmadi et al. 19
2.2.7 Steffens . 19

2.3 Other Models Applied to RoboCup . 20
2.3.1 Learning from Observation or Imitation 20
2.3.2 Reinforcement Learning . 21
2.3.3 Pattern Recognition . 22
2.3.4 Fuzzy Theory . 23
2.3.5 Planning . 24
2.3.6 Neural Networks . 25
2.3.7 Evolutionary Algorithms . 25
2.3.8 Other Approaches . 26

2.4 CBR Applied to Other Robotic-Related Domains 27
2.5 Summary . 29

vii

3 The Retrieval Step 33
3.1 Case Definition . 33

3.1.1 Problem Description . 33
3.1.2 Solution Description . 35
3.1.3 Case Scope Representation . 37
3.1.4 Case Example . 38

3.2 Case Base Description . 39
3.3 Case Retrieval . 40

3.3.1 Similarity Measure . 41
3.3.2 Cost Measure . 45
3.3.3 Case Applicability Measure 48
3.3.4 Case Filtering . 51
3.3.5 Experiments . 54

3.4 Conclusions and Future Work . 60

4 Case Reuse through a Multi-Robot System 63
4.1 Robot Architecture . 63

4.1.1 Deliberative System . 65
4.1.2 Executive System . 66

4.2 Multi-Robot System and Case Reuse67
4.3 Conclusions and Future Work . 71

5 Learning the Scopes of Cases 73
5.1 Scope Adaptation Algorithm . 74

5.1.1 When to Adjust the Values . 75
5.1.2 How to Adjust the Values . 76
5.1.3 Example . 79

5.2 Acquiring New Cases . 80
5.3 Experiments . 80

5.3.1 Simulation Experiments . 81
5.3.2 Real World Experiments . 83

5.4 Conclusions and Future Work . 90

6 Experimentation 93
6.1 CBR System Settings . 94
6.2 Experiments Setup . 99

6.2.1 Robot’s Behaviors . 99
6.2.2 The Scenarios . 100
6.2.3 Evaluation Measures . 102

6.3 Simulation Experiments . 102
6.3.1 The Simulator . 102
6.3.2 Simulation Results . 103

6.4 Real Robot Experiments . 108
6.4.1 The Robots . 108
6.4.2 Results . 110

6.5 A Trial Example . 117

viii

6.6 Discussion and Future Work . 129

7 Conclusions and Future Work 131
7.1 Summary of the Contributions . 131
7.2 Future Directions . 133

Bibliography 137

ix

List of Figures

1.1 Snapshot of the Four-Legged League field 8

2.1 The Case-Based Reasoning cycle .15

3.1 Example of a problem description .35
3.2 Example of the scope of a case . 37
3.3 Example of a case . 38
3.4 Example of symmetric cases . 41
3.5 2D Gaussian function . 42
3.6 Strategy function combining time and score difference 43
3.7 Adapted positions example . 45
3.8 Trapezoid layout of two matching pairs 47
3.9 Correspondence examples. 47
3.10 Ball’s trajectory representation 49
3.11 Example of the ball’s path and the opponents similaritycomputation . . 50
3.12 Sorting experimentation scenarios 55
3.13 Trials sorted by frequency of cases retrieved 56
3.14 Case frequency for each scenario 58

4.1 Robot architecture. 64
4.2 Multi-robot system . 67
4.3 FSM for retrievers and executors .. 68
4.4 FSM for the case execution . 69
4.5 Kick adaptation during the case reuse 70

5.1 Scope of a case: security region and risk region 75
5.2 Increasing policies for the scope learning process 77
5.3 Case scope evolution. 79
5.4 Learning the scopes parameters in simulation 82
5.5 Learning evolution of the scope in simulation. 84
5.6 Convergence of the average value ofτ 85
5.7 Comparing strategies with real robots. 86
5.8 Training a case base with real robots 89

6.1 Case Base: single cases. 95

xi

6.2 Case Base: multiple cases. 96
6.3 Case examples . 98
6.4 Action region for the defender and the goalie 100
6.5 Scenarios used during the experimentation 101
6.6 Snapshot of the robot soccer simulator PuppySim 2 103
6.7 Ball classification outcome: scenario 1 and 2 105
6.8 Ball classification outcome: scenario 3 and 4 106
6.9 Sony AIBO ERS-7(M2-M3) robot description. 109
6.10 The robots . 110
6.11 Images extracted from the robot vision system 111
6.12 CBR approach sketch performance in scenario 3 112
6.13 Reactive approach sketch performance in scenario 3 113
6.14 CBR approach sketch performance in scenario 4 115
6.15 Reactive approach sketch performance in scenario 4 116
6.16 Trial example: first case .119
6.17 Trial example: first case (sequence 1 and 2) 120
6.18 Trial example: first case (sequence 3 and 4) 121
6.19 Trial example: second case .123
6.20 Trial example: second case (sequence 1 and 2) 124
6.21 Trial example: second case (sequence 3 and 4) 125
6.22 Trial example: third case .126
6.23 Trial example: third case (sequence 1 and 2) 127
6.24 Trial example: third case (sequence 3 and 4) 128

xii

List of Tables

2.1 Table of abbreviations. 30
2.2 Related work classification. .. 31

3.1 List of available actions and their parameters. 36
3.2 List of spatial transformations. 40
3.3 Number of cases and average time per experiment 57

5.1 Strategies for the real world experiments. 87

6.1 Ball outcome classification (simulation). 104
6.2 Defender’s ball possesion (simulation). 104
6.3 Backing up results . 107
6.4 Single vs. multiple cases results 108
6.5 Ball outcome classification (real robots). 114
6.6 Defender’s ball possesion (real robots). 114

xiii

Foreword

Designing intelligent behavior of robots in imprecise, uncertain, dynamic, and unpre-
dictable domains that, furthermore, require fast real-time response is a very complex
task. If an adversarial component, that tries to avoid accomplishing the goals of the
task, is present the design is even more challenging. An example of such domain is
robot soccer. In this thesis Raquel proposes the use of Case-Based Reasoning to handle
this challenging design. More concretely, this thesis addresses the problem of action
selection and coordination by a team of robots playing soccer with the aim of achiev-
ing a collaborative behavior among teammates in order to increase the ball possession
and therefore increase the chances of beating the opponent team. Thus, the main as-
pect of the work has been to include appropriate explicit passes between teammates in
those situations where a pass makes sense. The approach has been tested in several
scenarios where two attackers playing collaboratively, using the Case-Based Reasoning
approach, have been compared to two attackers playing reactively, that is not collabora-
tively. In both cases playing against a goalie and a defender. The results show that the
collaborative Case-Based Reasoning approach outperformsthe reactive one not only
by having more opportunities to score but also by reducing the number of balls going
out of the field. Moreover, because of the use of passes, the defender had less opportu-
nities to steal or intercept the ball when the attackers wereplaying collaboratively. In
summary, the results clearly show that acting collaboratively is a good strategy in ad-
versarial situations. Furthermore, to the best of my knowledge, this is the first work that
has successfully implemented passing strategies in the four-legged robot soccer league.

Working with real robots is a very challenging and difficult task for any PhD student
because it requires a significant additional effort compared to dealing with simulated
environments. Raquel has successfully achieved the challenging goals of this thesis
with a high dose of patience, imagination and solid scientific and technical background.
All these qualities are the ones needed by anyone involved inscientific research. I
have enjoyed and learned a lot working with her and I have beenvery lucky having her
as PhD student. I hope the readers will enjoy and appreciate the quality of the work
described in this book.

Bellaterra, June 2008.

Ramon Ĺopez de Ḿantaras Badia
Institut d’Investigacío en Intel·ligència Artificial

Consell Superior d’Investigacions Cientı́fiques

xv

Abstract

Designing the decision-making engine of a team of robots is achallenging task, not
only due to the complexity of the environment where the robots usually perform their
task, which include uncertainty, dynamism and imprecision, but also because the coor-
dination of the team must be included in this design. The robots must be aware of other
robots’ actions to cooperate and to successfully achieve their common goal. Besides,
decisions must be made in real-time and with limited computational resources.

This thesis contributes a novel case-based approach for action selection and coordi-
nation in joint multi-robot tasks in real environments. This approach has been applied
and evaluated in the representative domain of robot soccer,although the ideas presented
are applicable to domains such as disaster rescue operations, exploration of unknown
environments and underwater surveillance, among others.

The retrieval process proposes a case to reuse, evaluating the candidate cases
through different measures to overcome the real world characteristics, including the
adversarial component which is a key ingredient in the robotsoccer domain. Unlike
classical case-based reasoning engines, the case reuse consists in the execution of a set
of actions through a team of robots. Therefore, from the multi-robot perspective, the
system has to include a mechanism for deciding who does what and how. In this thesis,
we propose a multi-robot architecture along with a coordination mechanism to address
these issues.

We have validated the approach experimentally both in a simulated environment
and with real robots. The results showed that our approach achieves the expected goals
of the thesis, i.e. designing the behavior of a cooperative team of robots. Moreover, the
experimentation also showed the advantages of using collaborative strategies in contrast
to individualistic ones, where the adversarial component plays an important role.

xvii

Acknowledgments

Como se suele hacer en estos casos, tendrı́a que comenzar agradeciendo a mi director de
tesis, a Ramon. Y de hecho, lo haré. Pero no solo por haberme guiado y dado consejo
en mi investigacíon durante estośultimos cuatro ãnos, sino también por consentirme y
permitirme el cambio de tema tesis el dı́a que se lo propuse, lo cual además supońıa la
adquisicíon de nuevos robots. Todo hay que decirlo, y para suerte mı́a, aél tambíen le
haćıan gracia estos juguetes, y no fue difı́cil convencerlo de este cambio, que finalmente
se presenta hoy en esta tesis. Junto aél, y aunque a efectos burocráticos no figura
formalmente, Josep Lluı́s ha sido mi segundo director. Sin duda alguna las discusiones
y reuniones cońel han sido de gran utilidad a la hora de desarrollar esta tesis, y es por
ello que parte de este trabajo se lo debo aél. Continuaŕe agradeciendo el apoyo de
otro “jefe”, aunque un poco ḿas lejano a la tesis, que me abrió las puertas del instituto
cuando yo empezaba a descubrir elárea de la inteligencia artificial. Carles, mi primer
director en el mundo de la investigación, con quien tengo garantizado pasar buenos
momentos charlando, riendo... y comiendo en la ması́a!

I sincerely thank Manuela Veloso, without whom this thesis wouldn’t have even be-
gun. She not only accepted to work with me proposing new investigation trends in my
career, but always enthusiastically received me in her lab in several occasions giving
me the oppotunity of living new experiencies out of the IIIA.Also thanks to the CM-
Dash team, specially Sonia, Doug and Colin, with whom I’m happy to say that besides
sharing research interests, we also share a close friendship. And before flying back to
Spain to continue with the acknowledgments, I would like to thank Cindy Marling, for
reviewing this dissertation, as well as for her helpful comments and suggestions.

Agradezco a la gente del IIIA en general, por los buenos momentos compartidos
a la hora del caf́e, las comidas, los viajes y congresos. Especialmente a amigos ḿas
cercanos, Eva, Maarten, Dani y Jordi, quienes me han ayudadode una manera u otra
y gracias a quienes incluso los dı́as ḿas duros han sido ḿas f́aciles de superar. A mis
amigos de la uni, Enric, Miquel y Pep, a “les nenes”, Cris, Meri i Glor, a mi familia,
Saray, D́ıdac (petit), Beto y Asun, y a todos los amigos que a pesar de noentender muy
bien mi trabajo, han estado apoyándome en todo momento e intentando comprender lo
que hago con unos perritos futboleros!

Evidentemente dejo al final a los “más importantes”! A D́ıdac, por acompãnarme
desde el primer d́ıa (nunca mejor dicho!) en este proyecto, no sólo a nivel profesional
discutiendo ideas, programando y escribiendo papers, perosobretodo apoýandome a
nivel personal, en los buenos momentos y en los de frustración, siempre con optimismo

xix

y confiando en mi capacidad para salir adelante. Finalmente,a los protagonistas de esta
tesis, a mis robots: Nata, Boira, Fang y Terra, sin quienes, definitivamente, esta tesis no
hubiera podido ser completada!

Raquel Ros holds a scholarship from the Generalitat de Catalunya Government.
This work has been partially funded by the Spanish Ministry of Education and Science
project MID-CBR (TIN2006-15140-C03-01) and by the Generalitat de Catalunya under
the grant 2005-SGR-00093.

xx

Chapter 1

Introduction

He turned once more to the robot. “Get up!”
The robot towered upward slowly and Donovan’s head craned and his puckered
lips whistled.
Powell said: “Can you go out upon the surface? In the light?”
There was consideration while the robot’s slow brain worked. Then, “Yes, Master.”
“Good. Do you know what a mile is?”
Another consideration, and another slow answer. “Yes, Master.”
“We will take you up to the surface then, and indicate a direction. You will go
about seventeen miles, and somewhere in that general regionyou will meet another
robot, smaller than yourself. You understand so far?”
“Yes, Master.”
“You will find this robot and order him to return. If he does notwish to, you are to
bring him back by force.”

Extracted from the short storyRunaround,
in Asimov’s I, Robot[7].

“Now on four occasions recently,” Powell said, “your boss deviated from brain-
scheme. Do you remember those occasions?”[...]
Powell turned back to the robot, “What were you doing each time... I mean the
whole group.”[...]
He said [the robot], “The first time we were at work on a difficult outcropping
in Tunnel 17, Level B. The second time we were buttressing theroof against a
possible cave-in. The third time we were preparing accurateblasts in order to
tunnel farther without breaking into a subterranean fissure. The fourth time was
just after a minor cave-in.”
“What happened at these times?”
“It is difficult to describe. An order would be issued, but before we could receive
and interpret it, a new order came to march in queer formation.”

Extracted from the short storyCatch that Rabbit,
in Asimov’s I, Robot[7].

1

Perhaps the excerpts shown previously describe simple and irrelevant scenes that
usually would not attract much of our attention. Moreover, probably the only curious
event that would even draw a slight smile in the reader’s faceis the fact that a human
communicates with a robot through natural language, i.e. talking, while the robot not
only understands the conversation, but also replies in the same way. However, this is
not our focus of interest, although it is in indeed a very challenging task that researchers
in artificial intelligence (AI) are still working on.

The short story from where the first text is extracted (Runaround) takes place in
Mercury and is about a robot, SPD-13 (“Speedy”), that is sentto bring selenium from
the nearest selenium pool, 17 miles away from the base station. However, after five
hours of having departed, Speedy has not returned yet. Therefore, Donovan and Powell
decide to send another robot to get him and to analyze what happened. At this point,
the conversation shown in the text takes place. Powell orders the robot what seems a
simple task. Although the story actually continues withoutthe robot having to execute
the task, we are interested in analyzing the consequences ofthis “simple” task. Let us
first assume that somehow the robot understands what the taskcommanded by Powell
is about. Some of the abilities the robot must have to performthis “simple” task are:
ability to perceiveits environment in order to create its internal world model;ability to
build a map (if the robot does not have it a priori) of the environment andlocalize itself
and the place it has to go within the map; ability toplan a route to the goal location
and then to come back; ability tonavigatethrough the environment, probably avoiding
obstacles, conflicting paths, etc.; ability torecognizeanother robot; ability todecide
how to perform the task, i.e. which actions to execute; ability to react and recover
upon possible conflicts it could encounter during the execution of the task. Hence, what
seemed a simple task turned out to be a more complex one, requiring a set of abilities
where each of them leads to a broad range of challenging problems that different fields
in AI have addressed since their origins in the 1950’s.

Besides the above mentioned abilities we expect a robot to beprogrammed with,
we can find a last interesting component within the second text. In this occasion (Catch
that Rabbit), Powell and Donovan have to discover why the robot DV-5 (Dave) fails
executing the task it is commanded to perform. The robot’s peculiarity is that it is
a robot with six subsidiary robots which are controlled through positronic fields. In
other words, Dave can be seen as a coordinator robot with six “worker” robots under
its responsability which perform the tasks commanded by thecoordinator. Back to the
story, Powell and Donovan decide to spy while the robots workto discover why the task
is not being correctly fulfilled. They discover that in general the robots are working the
right way until something unexpected happens and they startmarching and dancing
leaving the task aside. To understand why they behave that way, Powell asks one of
the subsidiary robots what is going on (extracted text). At this point the robot relates
the tasks they were assigned to do. Two ingredients in this story draw our attention.
First, the story is related to ateam of robots, and second, the tasks to perform cannot
be accomplished individually, but throughteamwork. In order to fulfill the tasks, a
coordinator is in charge of the team, sending the commands tothe team and supervising
the task execution. When dealing withcooperative taskswhere a group of robots have
to achieve a joint task, some of the challenges, besides the ones mentioned before of

2

course, consist in answering the following questions: who decides what to do?, i.e. a
single robot decides which actions to perform (centralizedsystem) or all robots discuss
the selected actions (distributed system); who does what?,i.e. one robot is selected to
perform the complete task (single task execution) or each robot may perform part of
the task or subtasks (distributed task execution); who monitors the task execution?, i.e.
one robot receives all the information from the rest of the robots and decides by itself
(single monitoring) or each robot has its own beliefs of the world and reacts accordingly
(distributed monitoring); and finally, whichcoordination mechanism to employ in
order to synchronize the robots’ actions?

Thus, from what seemed to be two independent excerpts of not much interest, we
have remarked a set of problems that probably, from our humanpoint of view, have
obvious solutions (we face them in our daily life without even noticing their difficulty).
However, from an AI researcher perspective, when designingthe robot behavior, these
problems are not trivial at all, and in fact, result in big challenges for AI nowadays.

1.1 Motivation and Overview

The dissertation presented in this work is addressed to two of the presented challenges.
First, the decision-making for the action selection problem and second, the incorpo-
ration of a coordination mechanism to achieve cooperative tasks within a multi-robot
system. We next overview the main problems which we have to deal with and how we
propose to solve them.

An important aspect to consider when designing the reasoning engine is the type
of environment where the robot performs its task. The difficulties that arise within
deterministic environments (controlled environments) are far much easier to deal with
that when dealing with stochastic environments (uncontrolled). Clearly the latter is
much more interesting, and is the one this dissertation addresses. In such environments,
where the world continuously changes out of our control, thereasoning engine must
include mechanisms to overcome imprecision and dynamism ofthe environment. More
precisely, it has to be able to react and recover from unexpected situations that may
occur during the performance of the task where a real-time response is fundamental.

The behavior of a robot results from the execution of actionsfor different states, if
we define acting as the execution of a policyπ : s→ a (wheres is the current state and
a, the action to execute in the given state) [44]. Defining eachpossible state and the
actions to perform at each state, i.e. defining the policy, ischallenging and tedious to
be done completely manually. This policy is one of the fundamental parts of the robot’s
reasoning engine. Therefore, it is crucial to find a way for automatically and efficiently
acquiring it. As we review further on, several machine learning techniques have been
proposed during the past years.

Besides the difficulties emerged due to the nature of the environment, we must also
take into account the limitations of the robot performing the task. Thus, the uncer-
tainty of the robot’s internal beliefs of the world depends on the accuracy of the robot’s
sensors. The reasoning engine must be able to handle uncertainty so the behavior of
the robot does not result degraded. A last important aspect to consider are the robot’s
computational resources. The processor determines the type of algorithms (in terms of

3

complexity) that the reasoning engine may use.
From a multi-agent perspective, the problem we address in this work is related to co-

operation or collaboration1 among agents. Collaboration is desired in several domains
where a group of robots (also seen as agents) work together toachieve a common goal.
It is not only important to have the agents collaborate, but also to do it in a coordinated
manner so the task can be organized to obtain effective results. Providing the agents
with capacities to collaborate and to coordinate is complex, as it is not just a matter of
dividing the tasks and assigning roles to each agent. Instead, it is also a matter of be-
liefs and commitments of all robots to fulfill a common task. Drogoul and Collinot [14]
distinguish three levels of behaviors when designing a multi-agent system:

• elementary behaviors, actions or functions that the agentsindividually perform
(what to do);

• relational behaviors, how agents interact with other agents and the influences of
their elementary actions on the other agents (what to do in presence of other
agents); and,

• organizational behaviors, how the agents can manage their interactions to stay
organized (what to do with these agents).

Similarly, Grosz and Kraus [19] argue that collaborating agents must

• establish mutual beliefs on what actions they will perform to complete the task
(relational level);

• agree on who does what (organizational level); and,

• establish mutual beliefs of their individual intentions toact (relational level).

Communication among agents is essential to achieve these requirements.
The robot soccer domain is a very challenging test-bed that incorporates most of

the problems enumerated so far. Hence, we deal with a highly dynamic environment
that requires real-time response. Robots’ sensors are not very accurate and therefore,
we must model uncertainty within the reasoning engine to actaccordingly. Robots’
actions performances are imprecise and recovery mechanisms should be considered.
Finally, computational resources are very limited, and thus, simple processes have to be
taken into account. In this dissertation we contribute withan approach for action selec-
tion and coordination for joint multi-robot tasks. More precisely, we apply Case-Based
Reasoning (CBR) techniques to model the reasoning engine and its application in the
robot soccer domain. Case-based reasoning is an approach toproblem solving that em-
phasizes the role of prior experience during future problems solving [39]. It has been
inspired by the way humans reason and use their memory of previous experiences to
solve new problems. An example directly related with the work presented in this disser-
tation can be found in team sports. During training the coachstudies with the players
different game situations and the according movements (gameplays) that the players

1Through the dissertation we will refer to both concepts, cooperation or collaboration, as synonyms,
although the latter can also be related to “working with the enemy”, including a traitorous sense.

4

should perform. Theplaybookcorresponds to the case base in the CBR system. During
a game, when the players detect a similar configuration between the current situation
in the field and the ones in the playbook (CBR’s retrieval step), they automatically re-
produce the gameplays reviewed during the training, performing certain adaptations if
necessary (CBR’s reuse step).

The approach models the state of the game at a given time as a problem description,
which is compared to a set of predefined situations, called cases. A case describes
the state of the environment (problem description) and the actions to perform in that
state (solution description). The retrieval process consists in obtaining the most similar
case. Next, the solution of the retrieved case is reused after some adaptation process,
as required. We model the case solution as a set of sequences of actions,gameplays,
which indicate what actions should each robot perform. Finally, we specify a multi-
robot architecture and a coordination mechanism based on messages exchanged among
the robots in order to achieve a cooperative behavior.

Why Case-Based Reasoning?

The first question that can arise when reading this work iswhy CBR?As we review in
Chapter 2, different approaches to solve the action selection problem have been pre-
sented through the past years (Reinforcement Learning, Fuzzy Theory, Decision Trees,
Neural Networks, etc.) obtaining successful results. However, we believe that Case-
Based Reasoning integrates fundamental properties that not only help the designer in
building a reasoning engine, but also result very intuitivefor humans since it is tightly
related to the way humans reason.

From the implementation point of view, we can classify the design of a robot behav-
ior from a procedural implementation, where the behavior iscomposed of a sequence
of subroutines and evaluating conditions (low level approach), to a model-based im-
plementation, where the knowledge representation is done through state-action models
and the task to learn is the mapping function between states and actions (high level ap-
proach). Although the high level approaches have several advantages over procedural
implementations, low level approaches are still being widely used for designing robot
behaviors, specially in very specific scenarios or in competition in the case of robot
soccer (RoboCup). A common approach used within RoboCup to describe behaviors
are hierarchical finite state machines (FSMs) [60, 67, 53] toprovide a certain degree of
abstraction level. The advantage of using this approach is probably due to its high reac-
tivity. The robot is able to rapidly switch from one behaviorto another when required.
However, programming individual or complex behaviors is still tedious and slow. As
argued in [46, 57] changes are complicated due to interdependencies and large amount
of parameters to consider when programming the behaviors. Aminor modification in
the code of a behavior can have a big impact on other behaviors. Another important
drawback within reactive approaches is that from a strategic point of view we can clas-
sify them as “short-sighted”, meaning that their decision-making is usually driven by a
partial state of the environment where the actions take place, without having a broader
view of the world state. Thus, an action can be suitable for a given moment in time,
but probably another action would have been a better choice if the whole world state or
possible future states could have been considered or predicted.

5

Regarding model-based approaches, we can classify them according to the policy
readability, i.e. how understandable for a human reader the learned policy is. Tech-
niques as reinforcement learning (RL), neural networks (NN) or evolutionary algo-
rithms (EA) have proved to be useful in many domains, including action selection in
robotics. However, their main drawback is that the learned policy cannot be manually
followed by an expert, and thus, analyzing why a certain action has been selected is not
feasible. As other researchers have previously remarked [18, 46, 31, 10, 38, 15], we
believe that this is an important property to consider when choosing among the avail-
able approaches, specially within complex domains, where some kind of justification is
necessary for evaluating the appropriateness of the selected actions. On the other hand,
the advantage of other approaches such as decision trees, expert systems, fuzzy rules
(rule-based approaches in general) or case-base reasoning(instance-based approaches)
is that their knowledge representation is readable from theexpert perspective, not only
facilitating the comprehension of the policy, but also providing easy access to modify
the current knowledge of the reasoning engine.

Another important component to consider is the time required for learning the policy
and the amount of training data to achieve an acceptable accuracy level. From the above
mentioned approaches, RL, NN, EA and decision trees either require a large amount of
training data or time or both, which are usually not available within the robotics field.

Finally, and not less important, a on-line learning abilityis desired for this kind of
domains where the robot may encounter unexpected situations that where not consid-
ered during the design stage. With this last component, the adaptability of the robot’s
behavior is guaranteed, allowing it to acquire new knowledge as it performs the tasks.
Rule-based approaches lack of this last component. The onlyway for introducing new
knowledge is manually modifying the rule set. Other approaches, such as NN, EA or
decision trees need to repeat the training process before using the new learned policy.
Modifying the current knowledge of the system is time consuming and requires new
training data.

After reviewing the desired properties of the approach usedfor the action selection
problem, we conclude that Case-Based Reasoning (an instance-based approach) fulfills
the requirements described. The case base contains the knowledge representation of
the reasoning engine, which in fact, corresponds to a set of situations (cases) the robot
encounters through the task execution. Each case may represent a complete or partial
description of the state of the environment and the corresponding solution to that state,
i.e. the actions to execute. Cases can either be generalizedor specialized allowing the
expert to gradually introduce knowledge as needed. The knowledge of the system is
“transparent” and the expert can easily modify or insert newknowledge without spend-
ing time training the reasoning engine again.

Regarding cooperation and teamwork, several works have been presented so far,
either using more formal methodologies as thejoint intention theory introduced by
Cohen and Levesque [11] in Tambe’sflexible team work[62], or simpler mecha-
nisms such as role assignment where cooperation usually results as an emerging prop-
erty [57, 65, 74, 35, 15], or including explicit coordination mechanisms through com-
munication to enforce commitment among the involved agents(request-acknowledge
type) [66, 3, 18]. Interestingly, in our work the use of casesalso allows us to easily

6

model cooperative tasks. As mentioned before, in order to have agents performing joint
tasks it is fundamental that: first, all agents agree on the task to perform; second, the
implied agents commit to execute the task as planned; and third, these agents must be
aware of the actions each of them performs to synchronize. Inthis work we specify a
coordination mechanism that takes place during both the retrieval and the reuse steps
based on messages exchanged among the robots about their internal states (beliefs and
intentions). Hence, reviewing the requirements by Grosz and Kraus mentioned be-
fore, the combination of the case structure and the coordination mechanism we propose
ensures that: the solution description indicates the actions the robots should perform
(requirementi); the retrieval process allocates robots to actions (requirementii); and
finally, with the coordination mechanism, the robots share their individual intentions to
act (requirementiii).

In conclusion, we believe that using CBR techniques is appropriate, not only due
to the close relation with the way humans reason, but also because it provides a high
level abstraction of the problem to solve through a modular methodology. This latter
allows the expert to easily modify the robots’ behavior as required, either introducing
or replacing cases in the case base (knowledge of the system), defining new similar-
ity functions, altering the retrieval process, etc. CBR is avery flexible and intuitive
framework and thus, is suitable for the problem domain this dissertation is focused on.

1.2 Problem Domain

The problem domain where this thesis is applied to is robot soccer. RoboCup is a well
known competition [69] whose ultimate goal is to develop a team of humanoid robots
to play soccer against the human world champion team by 2050.Of course this is long
term goal, but in fact, the main objective of designing this test-bed is to foster AI and
robotics within a very complex domain and to motivate researchers of different fields
to work together in order to achieve a common goal.

To this end RoboCup offers several leagues where, altough the goal is the same, the
challenges differ. Currently we can find the following leagues: Simulation, Small size,
Middle size, Standard Platform and Humanoid. The Standard Platform League is a
new league that will start next year (2008) replacing the Four-Legged League2. Within
this league all teams use the same robot, so the challenge is focused on developing the
software for the robots, and not the physical robot contrarily to other leagues.

Within the The Four-Legged League teams consist of four SonyAIBO robots which
operate fully autonomously, i.e. there is no external control, neither by humans nor by
computers. Communication among robots of the same team is allowed through wireless
or speakers and microphones (although the last ones are not usually used). There are
two teams in a game: a red team and a blue team. The field dimensions are 6m long
and 4m wide and represents a Cartesian plane as shown in Figure 1.1. There are two
goals (cyan and yellow) and four colored markers the robots use to localize themselves
on the field. A game consists of three parts, i. e. the first half, a half-time break, and the
second half. Each half is 10 minutes. The teams change the goal defended and color

2The robots for this league were the AIBO robots from Sony. Since Sony stopped manufacturing the
robots, the RoboCup organizers had to switch to another model, the humanoid Aldebaran Nao.

7

y

x

yellow goal

cyan goal

markers

Figure 1.1: Snapshot of the Four-Legged League field (image extracted from the IIIA
lab).

of the team markers during the half-time break. At any point of the game, if the score
difference is greater than 10 points the game ends. There is also an external controller,
theGameController, which sends messages to the robots in order to stop or resumethe
game after a goal, to notify penalized robots, to start or endthe game, etc. For more
details on the official rules of the game refer the RoboCup Four-Legged League Rule
Book [12].

A Brief History of RoboCup

Extracted from the RoboCup Official website (Overview) [1].

In the history of artificial intelligence and robotics, the year 1997 will be remem-
bered as a turning point. In May 1997, IBM Deep Blue defeated the human world
champion in chess. Forty years of challenge in the AI community came to a successful
conclusion. On July 4, 1997, NASA’s pathfinder mission made asuccessful landing
and the first autonomous robotics system, Sojourner, was deployed on the surface of
Mars. Together with these accomplishments, RoboCup made its first steps toward the
development of robotic soccer players which can beat a humanWorld Cup champion
team.

The idea of robots playing soccer was first mentioned by Professor Alan Mack-
worth (University of British Columbia, Canada) in a paper entitled “On Seeing Robots”
presented at VI-92, 1992 and later published in a bookComputer Vision: System, The-
ory, and Applications, pages 1-13, World Scientific Press, Singapore, 1993. A series of
papers on the Dynamo robot soccer project was published by his group.

8

Independently, a group of Japanese researchers organized aWorkshop on Grand
Challenges in Artificial Intelligence in October, 1992 in Tokyo, discussing possible
grand challenge problems. This workshop led to a serious discussions of using the game
of soccer for promoting science and technology. A series of investigations were carried
out, including a technology feasibility study, a social impact assessment, and a finan-
cial feasibility study. In addition, rules were drafted, aswell as prototype development
of soccer robots and simulator systems. As a result of these studies, they concluded
that the project is feasible and desirable. In June 1993, a group of researchers, includ-
ing Minoru Asada, Yasuo Kuniyoshi, and Hiroaki Kitano, decided to launch a robotic
competition, tentatively named the Robot J-League (J-League is the name of the newly
established Japanese Professional soccer league). Withina month, however, they re-
ceived overwhelming reactions from researchers outside ofJapan, requesting that the
initiative be extended as an international joint project. Accordingly, they renamed the
project as the Robot World Cup Initiative, “RoboCup” for short.

Concurrent to this discussion, several researchers were already using the game of
soccer as a domain for their research. For example, Itsuki Noda, at ElectroTechnical
Laboratory (ETL), a government research center in Japan, was conducting multi-agent
research using soccer, and started the development of a dedicated simulator for soccer
games. This simulator later became the official soccer server of RoboCup. Indepen-
dently, Professor Minoru Asada’s Lab. at Osaka University,and Professor Manuela
Veloso and her student Peter Stone at Carnegie Mellon University had been working
on soccer playing robots. Without the participation of these early pioneers of the field,
RoboCup could not have taken off.

In September 1993, the first public announcement of the initiative was made, and
specific regulations were drafted. Accordingly, discussions on organizations and tech-
nical issues were held at numerous conferences and workshops, including AAAI-94,
JSAI Symposium, and at various robotics society meetings.

Meanwhile, Noda’s team at ETL announced the Soccer Server version 0 (LISP
version), the first open system simulator for the soccer domain enabling multi-agent
systems research, followed by version 1.0 of Soccer Server (C++ Version) which was
distributed via the web. The first public demonstration of this simulator was made at
IJCAI-95.

During the International Joint Conference on Artificial Intelligence (IJCAI-95) held
at Montreal, Canada, August, 1995, the announcement was made to organize the
First Robot World Cup Soccer Games and Conferences in conjunction with IJCAI-97
Nagoya. At the same time, the decision was made to organize Pre-RoboCup-96, in or-
der to identify potential problems associated with organizing RoboCup at a large scale.
The decision was made to provide two years of preparation anddevelopment time, so
that initial groups of researchers could start robot and simulation team development, as
well as giving lead time for their funding schedules.

Pre-RoboCup-96 was held during the International Conference on Intelligence
Robotics and Systems (IROS-96), Osaka, from November 4–8, 1996, with eight teams
competing in a simulation league and demonstration of real robot for the middle size
league. While limited in scale, this competition was the firstcompetition using soccer
games for promotion of research and education.

9

The first official RoboCup games and conference was held in 1997 with great suc-
cess. Over 40 teams participated (real and simulation combined), and over 5,000 spec-
tators attended.

1.3 Contributions

This thesis contributes a novel case-based approach for action selection and coordina-
tion in joint multi-robot tasks. This approach is applied and evaluated in the represen-
tative domain of robot soccer.

The main characteristics of the approach can be summarized as follows:

• The case definition corresponds to a complete description ofthe environment, in-
cluding the actions to perform by a team of robots and generaldomain knowledge
to handle uncertainty in the incoming information from perception.

• Two types of features are introduced: controllable and non-controlable features.
The former ones are related to those features whose values can be directly modi-
fied in order to increase the similarity between the evaluated case and the current
problem; while the latter ones, correspond to those features that the system can-
not modify.

• The retrieval step is composed of three measures: the aggregation of domain-
dependent similarity measures; the cost of adapting the current problem to a case;
and the applicability evaluation of a case combining domainknowledge rules and
similarity measures. The retrieval step applies a filteringmechanism to reduce the
search space as fast as possible due to the real-time response requirements.

• The internal robot architecture is defined as a three-layer hybrid architecture: the
deliberative system, i.e. the case-based reasoning engine; the reactive system, i.e.
a set of behaviors corresponding to skills the robot performs; and the low level,
which includes the sensors and executors of the robot.

• The multi-robot architecture includes a set of robots called retrieversthat incor-
porate the reasoning engine and therefore are in charge of deciding the cases to
reuse, and theexecutors, who only perform the actions indicated by the retrievers
(or default actions). However, any robot has the ability to abort the execution of
a task when required.

• A coordination mechanism that enables the case reuse not through a single user,
but through a team of users (in this case, the robots).

• A supervised learning process to acquire the scope of a case automatically.

Finally, in this dissertation we present empirical evaluation both in a simulated en-
vironment and in a real one with robots to prove the effectiveness of the proposed
approach. Moreover, we argue that a collaborative behavioris advantageous to achieve
the goal of the task, specially because of the adversarial component. It is well known

10

that a good strategy to avoid an opponent during a game is to have passes between team-
mates. In contrast, using an individual strategy, where only one robot moves with the
ball without taking into account its teammates, increases the chances for the opponent
to block the attack, unless the robot is much faster than the opponent. Therefore, we
have successfully included the pass action in our approach,which is not common, as
far as we know, in this domain (Four-Legged League).

1.4 Publications

The following publications have been derived from this thesis:

• R. Ros, M. Veloso, R. Ĺopez de M̀antaras, C. Sierra and J.L. Arcos (2006), Re-
trieving and Reusing Game Plays for Robot Soccer. 8th European Conference on
Case-Based Reasoning.Advances in Case-Based Reasoningof Lecture Notes in
Computer Science, Volume 4106, pp. 47–61. Springer.Best paper award.

• R. Ros, J.L. Arcos (2007). Acquiring a Robust Case Base for the Robot Soccer
Domain. InProceedings of the 20th International Joint Conference on Artificial
Intelligence, pp. 1029–1034. AAAI Press.

• R. Ros, M. Veloso (2007). Executing Multi-Robot Cases through a Single Co-
ordinator. InProceedings of the 6th International Conference on Autonomous
Agents and Multiagent Systems, E. H. Durfee, M. Yokoo eds., pp. 1264–1266.

• R. Ros, R. Ĺopez de M̀antaras, J.L. Arcos and M. Veloso (2007). Team Playing
Behavior in Robot Soccer: A Case-Based Approach. InProceedings of the 7th
International Conference on Case-Based Reasoning. Case-Based Reasoning Re-
search and Development of Lecture Notes in Computer Science, Volume 4626,
pp. 46–60, Springer.

• R. Ros, M. Veloso, R. Ĺopez de M̀antaras, C. Sierra and J.L. Arcos (2007). Be-
yond Individualism: Modeling Team Playing Behavior in Robot Soccer through
Case-Based Reasoning. InProceedings of the 22nd AAAI Conference on Artifi-
cial Intelligence, pp. 1671–1674. AAAI Press.

1.5 Outline of the Thesis

Next, we summarize the contents of Chapters 2 to 7. The core ofthe research work is
described in Chapters 3 to 6.

Chapter 2: CBR Preliminaries and Related Work.

In this chapter we first review basic ideas of Case-Based Reasoning to familiar-
ize the reader with the concepts used through the dissertation. Next, we present
related work that describes the different techniques (including CBR) used by re-
searchers in the past years within the robot soccer domain. Abrief section is
addressed to other robotic domains where CBR has been successfully applied.

11

Finally, the chapter concludes with a summary of the relatedwork through a
comparative table and where our work is located with respectto previous work.

Chapter 3: Modeling the CBR Approach: The Retrieval Step

This chapter corresponds to the first step of the CBR cycle, i.e. the Retrieval
Step. Thus, we present the different components of the proposed CBR system,
including: the case description, the case base structure, the similarity measures
and the retrieval process itself. We also present experimental results in simulation
to test the introduced process.

Chapter 4: Case Reuse through a Multi-Robot System

In this work the case reuse is fulfilled through a team of robots, instead of an in-
dividual robot. Hence, we not only have to define the internalrobot architecture,
but also the multi-robot architecture. In this chapter, we describe how the robots
interact to perform the task, i.e. how to reuse the case in a coordinated way.

Chapter 5: Learning the Scopes of Cases

A first attempt towards the learning stage of the CBR cycle is presented in this
chapter. More precisely, it is focused on automatically acquiring the scope of
a case through a supervised learning algorithm. Different functions used in the
algorithm are proposed to this end. The learning mechanism is evaluated both in
simulation and with real robots.

Chapter 6: Experimentation

This chapter is devoted to the experimentation stage. To evaluate the overall
system, we have performed experiments in simulation and with the real robots.
The scenarios consist of two vs. two games, where two attackers play against a
defender and a goalie. The CBR approach is compared with respect to a region-
based approach. While the attackers use both approaches for evaluation, the op-
ponents use a fixed behavior. Results are discussed and a trial example with real
robots is described in detail.

Chapter 7: Conclusions and Future Work

In this last chapter, we summarize the conclusions addressed in each separate
chapter. We also discuss future research lines and open challenges to improve the
proposed approach.

12

Chapter 2

CBR Preliminaries and Related
Work

In this chapter we review related work to the one presented inthis thesis. First we
briefly overview the Case-Based Reasoning methodology so the reader is familiar with
the concepts referred to afterwards. Next we describe applications of CBR systems
within the robot soccer domain and other machine learning approaches that address the
action-selection problem as well. Finally, a short review to other CBR systems applied
to related domains and a summary of the reviewed work are presented.

2.1 Case Based Reasoning

Inspired by the cognitive science research in human reasoning and the use of mem-
ory [56], Case-Based Reasoning is the process of problem solving based on the exploita-
tion of past experiences, calledcases, to propose solutions for present problems [39].
The essence of Case-Based Reasoning is based on the assumption that “similar prob-
lems have similar solutions”.

This lazy learning technique consists in comparing the new problem to solve with
respect to past cases in the case library through a similarity measure. The most similar
case (or set of similar cases) is retrieved in order to reproduce the solution proposed in
the past, probably adapting it to the current problem to solve. The outcome of the solu-
tion is then evaluated and the new solved problem may be stored as a new case. Many
applications have been proposed since the birth of this methodology, ranging from clas-
sical systems such as CHEF, CASEY, JULIA, HYPO, etc. [30] to contemporary systems
dealing with more complex domains as we review in the following sections. Although
initially case-based reasoning could probably be seen as a supervised learning tech-
nique for classification, through the past years it has shownits evolution towards new
paradigms and directions increasing the utility of CBR systems [16].

The knowledge representation of a CBR system is the case library (or case base).
In contrast to general knowledge (such as rule-based methods), cases represent specific
knowledge related to specific situations. Hence, a case is usually represented by the

13

pair problem-solution, where the problem corresponds to the description of the task to
solve, and the solution describes how this task was carried out. A third component can
be attached to a case: the outcome. It corresponds to the resulting state of the world
once the solution has been applied. This latter component isusually used to guide the
reasoner system the next time the case is retrieved.

The simplest and most commonly used problem representationis a set of attribute-
value pairs, although more complex representations can be used. The solution descrip-
tion may include the solution itself (values of features), aset of reasoning steps, jus-
tifications for decisions made during problem solving, etc.Finally, the outcome may
be whether the applied solution was a success or a failure when solving the problem,
whether it fulfilled the expectations or not, explanations of the failure, pointer to next
attempt solution, etc.

Although different modifications of the CBR methodology canbe found in the lit-
erature, their differences are basically based on the namesor labels and possible ex-
tensions of the different steps of the process. However, themain concepts remain un-
altered. One of the most accepted problem solving process isthe one introduced by
Aamodt and Plaza [2], the well know “4 RE’s” cycle. The four main steps of the cycle
are (Figure 2.1):

• Retrieve: search the case library for cases that are similarto the current problem,
based on a similarity measure and obtain candidate solutions.

• Reuse: construct a solution for the current problem based onthe solutions pro-
posed by the retrieved cases (usually adapting or merging solutions).

• Revise: evaluate the outcome of applying the reused solution and repair the solu-
tion constructed above, if necessary.

• Retain: decide whether the reused case should be incorporated into the case li-
brary or not.

Given a new problem to solve, the system applies a similaritymeasure to obtain
the most similar cases. The similarity measure depends on the problem description.
Thus, the simplest metric usually corresponds to the distance between two features. In
this case, the retrieval corresponds to ak-nearest neighboralgorithm. More complex
measures can be defined, depending on the domain and on designpreferences. Filter-
ing mechanisms can be used, as well as aggregations of different measures, static or
dynamic procedures, comparing complete cases or partial descriptions, and so on.

The reuse step consists in building the solution of the current problem to solve using
the solution description(s) of the retrieved case(s). Based on the domain requirements,
the solution can be straightforward, i.e. reusing the same solution without previous pro-
cessing, or through some adaptation process. Typical adaptation methods are parameter
adjustment, local search, substitution and merging processes, among others [30]. As
within the retrieval step, the adaptation can be addressed to the whole solution descrip-
tion, or part of it.

After the solution is carried out, the next step is to evaluate the effectiveness of
the proposed solution. In most systems this step is usually driven by the user of the

14

Figure 2.1: The Case-Based Reasoning cycle (Aamodt and Plaza [2]).

system (analogous to supervised learning technique) who indicates the outcome of the
task execution. As mentioned before, not only success or failure can be indicated, but
also the reasons of failure or whatever additional useful information for improving the
quality of the proposed solution in future situations. Clearly, it would be much more
desirable that the system could automatically generate theevaluation of the solution.
However, in most domains, this is still a pending task that researchers have to address
and which remains as an open challenge so far.

Finally, the new solved problem can be stored in the case library. This latter step
is responsible for the learning aspect of the CBR methodology. Thus, a new case is
created including the initial problem to solve, the solution proposed and the outcome
(if available). Deciding whether a case should be stored or not basically depends on
how useful the new case will be in the future. Two aspects mustbe considered when
opting for case retention: case indexing and case base maintenance. If new cases are
introduced, the size of the case base will increase through time. As a consequence,
the search space during retrieval is also increased. Therefore, case indexing techniques
must be considered to speed up the retrieve step. The second aspect, case maintenance,
is related to analyzing the case base in order to determine which cases can be removed,
due to case redundancy or inconsistency.

15

The minimal components of a case-based reasoning system arethe retrieve and the
reuse steps, i.e. generating a solution for a given problem.The two remaining ones
are related to the learning process of the system, and therefore, are the most difficult to
introduce.

2.2 CBR Applied to RoboCup

In this section we review the research done so far using Case-Based Reasoning tech-
niques within the RoboCup domain. For each author we briefly detail the purpose of
the CBR approach, the league in which it is applied to and a general description of the
features of the system.

2.2.1 Karol et al.

Very close to our work, Karol et al. [25] presented an initialattempt for including a
CBR system in the action selection of a team of robots in the Four-Legged League. The
problem description includes the robots’ positions and thedegree of ball possession
(qualitative measure). They also proposed the use of meta-level features to guide the
retrieval process, such as score, time and opponent strategy (if known). As within
our work, the solution corresponds to the gameplay. They proposed three possible
similarity measures, all based on comparing the robots positions on the field. Two
of them are quantitative (based on the distances the robots would have to travel to be
positioned as in the case) and one qualitative. This latter divides the field in uniform
rectangular regions, and the measure counts the number of steps the robots would have
to move towards the positions indicated in the case. The remaining features of the
problem description were not taken into account yet. Since the work was only a first
introduction of the model, no experiments were reported.

2.2.2 Lin, Chen and Liu

The work presented by Lin et al. [38] and Chen and Liu [10] was applied in the Simu-
lation League, where they presented a hybrid architecture for soccer players (as in our
work). The deliberative layer corresponds to the CBR systemand the reactive layer cor-
responds to fuzzy behaviors (motor schemas introduced by Arkin [6]). The knowledge
acquisition was done through first order predicate logic (FOPL), which they claimed is
easy for an expert to transmit knowledge.

The problem description of a case consists of fuzzy featuresdescribing distances
and directions between robots and objects on the field (such as ball, goal, etc.). The
solution description corresponds to a set of gain values of the motor schemas. Similar
to our work, they introduced the concept ofescape conditions: a new case is retrieved
only if the escape conditions are satisfied. This way, the deliberative system monitors
the current execution and the retrieval process only takes place when necessary. The
similarity measures for the features are trapezoid membership functions initially given
by an expert and modified afterwards according to the robot’sperformance. The overall
similarity is based on the Max-Min composition of individual similarities. They also

16

introduced an adaptation process through case merging, andthe revision step, based on
the number of states executed.

They compared their system with other teams obtaining successful results. Their
main argument for the success of their approach was the flexibility of the system since
modifying cases results in modifying the performance of thesoccer players. The claim
is that knowledge representation based on first order logic is readable by humans, and
therefore, incorporating expert’s knowledge is fast and easy.

2.2.3 Berger and L̈ammel

Recent work has been initiated by Berger and Lämmel [8] where they propose the use
of a CBR system to decide whether a “wall-pass” should be performed or not. A “wall-
pass” consists in passing the ball to a teammate, to immediately receive a pass again
from the latter. The idea is to distract the opponent so the first player can move to a
better position. Their work is applied to the Simulation League. A case represents the
positions of the most relevant players on both teams in a given situation. They intro-
duce a procedure to extract these relevant features and showthat mostly three or four
players are sufficient to describe the case. The solution of the case indicates if a “wall-
pass” is possible or not. The similarity is based on Euclidean distances between players
positions. Case Retrieval Nets (CRN, introduced in [36]) are used for the retrieval pro-
cess in order to speed up the search. In order to build the casebase, they analyze log
files of previous games to extract all potential “wall-pass”situations automatically and
manually classify them afterwards.

2.2.4 Wendler et. al

Since the initiation of RoboCup, Wendler et al. have addressed different problems
within this domain. The first one, and more related to our workis presented in [72]. In
this work, they proposed to learn about the opponents and, based on the observations,
adapt the actions of the players within the Simulation League. More precisely, the sys-
tems indicates the positions where the players should move according to the opponents
actions. Thus, the features of the problem description are:state of the pitch by means of
segments of all players (in our work we propose the use of ellipses of different sizes for
each opponent player), time steps until a player controls the ball, preference directions
of a player, available power resources and distance to ball and players. Two similarity
measures were defined based on the domain of the features: forthe state of the pitch,
two regions are considered to be similar if they are neighbors; and for the remaining
features, since they are represented by numerical values, distance functions were pro-
posed. In contrast to our work, the overall similarity is computed as the average of
individual similarities (we propose the harmonic mean instead). Similar to the work
presented by Berger, the retrieval process is done through Case Retrieval Nets. They
proposed an off-line learning which would correspond to a training stage to build up
the case base, and an on-line learning, to adapt cases to the opponents in the game.

Continuing with the ideas of studying the opponent team to improve the perfor-
mance of the team players, in [70] they addressed the behavior recognition and pre-
diction problem based on external observation. The CBR system models the function

17

that maps the situations of a game (represented by trigger patterns) and the behaviors
of the players (behavior patterns). Triggers and behaviorsconsist of different attributes,
such as player initialization for pass, vector from passer to receiver, distances between
players, ball speed, direction of ball movement, etc. The similarity measures for triggers
and behaviors are defined as weighted sums of local similarities (attributes similarities).
The weights are determined either manually by the expert, orautomatically. During a
game, when a trigger is identified, the case base is searched for similar triggers. The
retrieved case is then adapted and the resulting behavior iscompared with the actual be-
havior observed. If the similarity between the predicted behavior and the observed one
is below a given threshold (not similar enough), a new case case is retained having the
triggers as the problem description and the observed behaviors as the solution descrip-
tion. The results obtained through experimentation showedthat although the system
performs quite well, the prediction model is team-dependent, i.e. it is specific for each
team. Therefore, when switching opponent teams, behavior predictions are degraded.

Finally, in [71] a fault-tolerant self localization approach was proposed by means
of CBR techniques. In this occasion the work was applied to the Four-Legged League.
A case is defined as follows: the problem description represents an omnidirectional
picture from the robot point of view, where the features correspond to size and positions
of the landmarks in the image and the angles between pairs of landmarks; the solution
description corresponds to the position of the robot on the field. Cases are gathered
through a two-step semiautomatic process. First, a table relating the landmark distances
and their perceived sizes is manually created. Next, the distances and angles between
markers and goals are automatically derived. The similarity measure results from the
composition of the individual similarities through a weighted sum. Once again, CRNs
are used for the retrieval process, where a set of neighboring cases from the most similar
case are retrieved. A case is considered as a neighbor of another case if the distance
between the landmarks of both cases is no more than 50cm. The solution proposed by
the system corresponds to the weighted sum of all solutions,i.e. the position of the
robot.

2.2.5 Marling et al.

Three CBR reasoner prototypes were presented in [41]: the first one focused on po-
sitioning the goalie, the second one on selecting team formations, and the last one on
recognizing game states. The prototypes were applied to theSmall-Size League, al-
though the experiments were validated in simulation only. For all prototypes, the case
description represents a snapshot of the field. The featuresin the problem description
and the solution of the case differ from one prototype to another based on the task to
learn. Next, we briefly describe each prototype.

The case structure of the first prototype, positioning the goalie, consists of: a snap-
shot of the goalie’s half field, where the features correspond to the positions and orien-
tations of the players, as well as the ball’s position. The solution indicates the success or
failure of the goalie’s move and the position of the ball after the attempted block. Cases
in the case library are organized based on the ball’s position to speed up the search.
Hence, the library is divided in three categories: near, middle and far. The similarity
measure corresponds to the distance between the current ball’s position and the one in-

18

dicated in the case. After experimentation, they found out that the new prototype was
not improving the current reactive one, and therefore, decided to try with high level
decision, as team formations and game state recognition.

The second prototype, team formations selection, is aimed at being used by a meta-
agent, and not the players themselves. The problem description is composed of a snap-
shot of the field (the players’ and ball’s positions); derived features from the previous
features; state description such as offensive, defensive,transitional situation; and short-
term goals and subgoals. The solution description indicates the team formation, i.e. a
set of roles for each player. The role indicates where the robot should move and the
task to perform. Similar to the above prototype, cases are grouped based on the state
description (defensive, offensive and transitional).

Finally, in the third prototype, game state recognition, cases represent a whole snap-
shot of the field, indicating the positions of the robots and the ball including symbolic
features derived from the spatial features such as number ofdefenders in defensive zone,
attackers in offensive zone, a boolean variable indicatingwhether the ball is near the
goal or not, etc. The solution of the case corresponds to a characterization of the state
of a game. Some examples areMan Onor Two on One. The retrieval process consists
in a standard nearest neighbor algorithm. They planned to extend the case description
to more vision frames, instead of only considering a single snapshot to capture robot
and ball motion as well.

As mentioned in the beginning, the work presented was not yetfinished and there-
fore, experiments with real robots were not reported. Future improvements as well as
new open trends for CBR in this domain were broadly discussed.

2.2.6 Ahmadi et al.

A common drawback of CBR systems usually discussed among researchers is the dif-
ficulties for fast retrieval in large case bases. Focusing onthis issue, Ahmadi et al. [4]
presented a two-layered CBR system for prediction in the Simulation League. A case is
evaluated based on low level features, i.e. ball’s velocity, players’ positions and veloc-
ities and some predefined recent events. However, the importance of a player position
varies based on its relation with the ball location. Thus, a player close to the ball has
more importance compared to another one that is far away. This importance is modeled
through weights that are assigned to the players based on thedifferent situations. The
upper CBR layer is in charge of assigning these weights. Thus, every lower layer case
must be adapted to propose different solutions based on the areas of the field where the
situation is taking place. The solution of a case indicates the next ball’s and players’
positions. The similarity measure compares the positions of the ball and the players
through a weighted sum. The initial case base was manually created, and afterwards,
new cases were introduced during the system’s performance.Positive and negative
cases are retained.

2.2.7 Steffens

The last work reviewed in this section corresponds to the work presented by Stef-
fens [58] addressed to opponent modeling in the Simulation League. Similarly to

19

the work presented by Ahmadi above, he argues that the similarity measure should
be adapted to the situation and role of the agent whose actionis to be predicted. While
Ahmadi modifies the weights of the positions of players takeninto account, Steffens
proposes a similarity measure that considers more or less features when comparing the
current problem to solve with the cases. The relevance of theattributes is based on
the positions and roles of the agents and it is obtained from agoal dependency network
(GDN [59]) which represents general knowledge. The high-level actions to be predicted
arehold ball, dribble, intercept ball, passandshoot on goal.

2.3 Other Models Applied to RoboCup

Besides CBR techniques, other approaches have been studiedto solve the action selec-
tion problem. In this section we review first those fields where most researchers have
focused their efforts on, such as Reinforcement Learning, to finally review a set of less
common approaches used within the RoboCup domain.

2.3.1 Learning from Observation or Imitation

Although not much work related to RoboCup has been done, we are interested in re-
marking it due to its similarity with Case-Based Reasoning techniques. The aim of this
technique is to model agents that learn from observing otheragents and imitating their
behavior. As in CBR, the learning agent selects the most similar past observed situation
with respect to the current problem and then reproduces the solution performed at that
time. The main difference between these approaches is that the learning agent is not
able to improve the observed agent since there is no feedbackin the model.

Lam et al. [33] focused their research on action selection based on scene recognition
in the Simulation League. A scene is described by the positions of objects on the field,
i.e. robots and ball, with respect to a single player. Two representations are proposed:
continuous (distance and angle from the player to the objects) or discrete (fixed regions
on the field). Similar to our work, a matching process is defined in order to map the
objects in the current scene with the ones indicated in previous scenes. Finally, the dis-
tance between two scenes is computed as a weighted sum of the individual similarities.
A k-nearest neighbor algorithm is used to obtain the most similar scenes. Each scene
is associated to an action. If more than one scene is retrieved, the most common action
(majority voted) is selected.

This work is closely related to ours. However, the main differences are: the num-
ber of agents implied in the scenes (we include teammates which interact among them,
while they only include one teamate); the objects locations(robots and ball are within
fixed regions of field in [33], whereas we deal with variable regions); modeling un-
certainty (in our work we include fuzzy functions to this end); and the solution of the
problem (we deal with a sequence of actions for each teammateinstead of a single
action in [33]).

20

2.3.2 Reinforcement Learning

Reinforcement Learning (RL) [61] is a classical machine learning technique that has
been frequently used in the RoboCup domain. Although the obtained results are usu-
ally successful, the main drawback of this technique is the large state space that most
problems present. As a consequence, a large amount of learning steps are required to
find the policy that matches states and actions. Hence, most of the times this tech-
nique is not feasible when dealing with real robots. Nevertheless, researchers have tried
different approaches to overcome these drawbacks as we review next.

Riedmiller et al. [52] focused their work on learning two different skill levels: mov-
ing level (low level) and tactical level (high level). The former refers to learning a
specific move, for example, learning to kick, while the latter refers to learning which
move should be applied at a certain point, aspass the ball. The work is restricted to the
Simulation League, and they only used the moving level during a competition. With
respect to the tactical level, they experimented with two attackers against one or two
defenders. The attackers used the approach presented, while the defenders used a fixed
policy.

Similarly, Kleiner et al. [28] applied a hierarchical RL in aSemi Markov Decision
Process (SMDP) framework. In their approach they showed that learning skills and
the selection of these simultaneously (not separately as in[52]) is advantageous with
respect to focusing only on one level at a time. They applied their work to the Middle-
Size League, but the learned policy was obtained through simulation. Results with the
real robots showed that more than an hour would be necessary to improve the hand-
coded action selection mechanism.

Ahmadi and Stone [5] introduce a Markov Decision Process (MDP) for action se-
lection between two types of kicks in the Four-Legged League. In their approach they
compute off-line the value functionV for the MDP without considering opponents and
assuming a static environment. During the robot’s performance, they distinguish two
phases: planning, where the robot selects a kick based on theoff-line learned policy,
and replanning, when opponents appear in scene. The replanning stage consists in re-
calculating the Q values of the MDP for those states where an opponent is likely to be
located. Thus, they reduce the computational complexity ofmanaging the MDP updat-
ing the policy the minimum number of times (only when an opponent appears). Their
experiments with real robots in controlled scenarios show that the replanning algorithm
improves a policy without on-line update.

Modular Q-learning was proposed by Park et al. [48] within the Small Size League.
In their work, the default behavior of each robot is to move around the field using a
navigation mechanism (uni-vector field navigation, similar to a potential field). When
a robot is within a boundary of the ball, the action selectionlayer switches the robot
behavior to the shoot action. Each robot has its own learningmodule which is in charge
of determining when a shoot action should be taken. Robots’ roles are fixed covering
different regions of the field. Conflicts regarding which robot should move to shoot
the ball in overlapping regions are solved through a mediator. Hence, when two robots
select theshoot the ballaction, the mediator intervenes to indicate which of the robots
is the one to perform the action, probably switching roles for short periods. Examples
with real robots were presented.

21

We can also find in the literature combined approaches such asthe one presented
by Duan et al. [15]. In their work they propose a hierarchicallearning module that
combines fuzzy neural networks (FNN) and reinforcement learning (RL). The learning
task includes dynamic role assignment, action selection and action implementation (low
level skills). The hierarchical system allows flexibility and independence to modify a
certain layer without modifying the remaining ones. Based on the assigned role, the
robot may select among a set of actions: the attacker may shoot, pass, dribble and
swing, while the defender may intercept, mark, clear and defend (go back to its home
position). For the offensive player action selection, besides considering the distances
between the robot and opponent goal and the robot and the ball, two parameters that
indicate the chances of the opponent to intercept the ball after a shoot or a pass are
computed. Regarding the defensive robot, the postures of the opponent attacker and
the ball are relevant variables to take into account when selecting the action to perform.
Experiments in a simulated environment were performed to evaluated the proposed
approach.

2.3.3 Pattern Recognition

Recognizing and learning from other teams is a desired ability in order to improve the
strategy of a team, and thus, the action selection strategy of the players. Therefore,
some researchers address the opponent modeling problem through pattern recognition
of sequences. The work reviewed in this section is all applied in the Simulation League,
which is the league that can provide most reliable data for the problem tackled here.

Huang et al. [23] presented a mechanism to recognize and retrieve teams’ plans.
A plan includes the agents that take part of the plan, the starting conditions, the goal
state and the agents’ behaviors. In order to recognize plans, the first step is to translate
observations into agents’ sequential behaviors. These sequences are gathered following
a set of rules and transformed into trie structures (a multi-way tree structure [29]).
They define several events that activate the recognition functions (for instance, when
a robot gets the ball, the algorithm starts recording). Plans are obtained retrieving the
most significant subsequences of behaviors within a trie structure through statistical
dependency test.

Lattner, Miene et al. [34, 43] presented an approach that applies unsupervised sym-
bolic off-line learning to a qualitative abstraction in order to create frequent patterns
in dynamic scenes. The quantitative data is represented by time series. In a first ab-
straction step, each time series is segmented into time intervals which satisfy certain
monotonicity or threshold conditions. In the second step the attribute values describ-
ing the intervals are mapped into qualitative classes for direction, speed or distance.
The idea then is to create patterns based on the qualitative information of the environ-
ment (input). The result of learning is a set of prediction rules that give information
about what (future) actions or situations might occur with some probability if certain
preconditions satisfy. Patterns can be generalized, as well as specialized.

22

2.3.4 Fuzzy Theory

Fuzzy Theory is another selected approach [55] since it naturally handles imprecision
and uncertainty, which are highly present in the real world.The advantages of fuzzy
theory is that it models imprecise or vague concepts, usually used by humans in their
daily reasoning. Using fuzzy rules is more intuitive for an expert, rather than trying
to find functions that model the problem to solve. However, the difficulty here is to
determine the fuzzy membership functions that represent the variables to use in the
problem to solve.

Within this context, a fuzzy logic based strategy for dynamic role assignment was
introduced by Sng et al. [57]. Role assignment is related to action selection, since
each role determines the actions the robots should perform.Hence, the selection of
a role indirectly implies the action selection for a player.Their work was applied in
the Small-Size League (with only 3 robots), where a centralized coordinator (the fuzzy
role selector) assigns the roles to the players. The algorithm first selects the “attack
ball” role (the robot moving after the ball), and then assigns the remaining roles to
support the main role. Four fuzzy variables describe each robot situation (distance to
ball, orientation, shoot angle, and path obstacle). The fuzzy rules determine the output
fuzzy membership value for every robot. The robot with the highest value is assigned
as the robot going after the ball. The formation of the other two robots is then derived
similarly (using fuzzy rules), positioning themselves near to the robot going after the
ball.

Lee et al. [35] presented similar work where a fuzzy logic system is used as a me-
diator to handle situations where more than one robot may be responsible for an area.
Each robot has a role based on its home area. However, when theball is positioned in
overlapping areas the robots should switch their roles to achieve a cooperative strategy,
i.e. one robot should go for the ball, while the other one should assist it. To this end,
fuzzy rules for each overlapping region (three predefined regions) are introduced where
the input variables are the distance between the robot and the ball, angle between the
robot and the ball, and the angle between the robot and the goal. The output indicates
the role of the evaluated robot, i.e. support, shoot, changerole with the other robot, etc.
Their work was applied in the Middle-Size League, although experiments were only
shown in a simulated environment.

Related to the action selection problem, Wu and Lee [73] focused their research on
the selection of five action categories:intercept, shoot, block, sweepandstand bywithin
the vision-based soccer system (as in the Small-Size League). The input variables are
the defense factor (distance of the robot to the home and opponent goal), the compe-
tition factor (distances and angles of all robots to the ball) and the angle factor (ball
accessibility from the robot point of view). The output of the rules indicate the action to
perform by the robot. The experiments consisted of one-to-one games. Although this
work is more related to ours, in the sense that explicit actions are chosen, the approach
only considers a single player and therefore, no cooperation can be considered.

23

2.3.5 Planning

Although a traditional technique within Artificial Intelligence, planning is not gener-
ally applied in complex domains where uncertainty, incomplete knowledge, real time
response, etc. are present. However, we can find some work within the robot soccer
domain, since planning can also be seen as a decision making layer for selecting the
appropriate actions to perform.

Fraser and Wotawa [18] proposed a framework based on STRIPS [17] where op-
timizing the plan is not the main purpose, but monitoring theplan execution instead.
Knowledge representation was done using first order logic and uncertainty was not
considered on purpose. Given the initial stateI observed by an agent, a planp is calcu-
lated to achieve the goalG using the domain theory. They extend the classical planning
problem definition by plan invariants. A plan invariant is a manually defined logical
sentence that has to remain satisfied in the initial and all subsequent states (similar to
our work and the escape conditions proposed by Lin and Chen).Possible reasons to in-
validate a plan are: inexecutable actions (a precondition is not fulfilled), failed actions
(due to imprecision in the robots actions), unreachable goal (due to external events)
and unfeasible goal (changes in the environment). Hence, plan invariants are monitored
at all times during plan execution. They also introduced a mechanism for achieving
cooperative planning through role allocation. Once again preconditions and invariants
assign roles to players. Since the framework was applied in the Middle-Size League, all
robots may not share the same world state at a given point. In order to avoid conflicts
in the role assignment, once a robot selects its role, the robot broadcasts it with an asso-
ciated utility value. Hence, the robot with higher utility value keeps its role, while the
conflicting robots must pick some other role. Explicit communication is used among
robots to achieve interaction. For instance, a robot may request a pass to another robot.
Invariants are used to monitor the interaction and to make sure that both robots agree
on the cooperative task.

Hierarchical Task Network (HTN) planners have been proposed by Obst and
Boedecher [46] to achieve coordinated behavior while agents follow the strategy sug-
gested by a human expert. HTN planning makes use of domain knowledge to speed
up the planning process. Tasks may be complex or primitive. The HTN planners use
methods to expand complex tasks into primitive tasks that can be then executed using
planning operators. Their planner generates what they callplan stub, a task network
with a primitive task as the first task. As soon as a plan stub isfound, the agent can start
executing the task. To handle non-determinism, a plan is treated as a stack. The tasks
in the stack are marked as pending or expanded. The former ones are tasks waiting
for execution if they are primitive tasks, or waiting for expansion, if they are complex
tasks. When a subtask fails, all remaining subtasks of the complex task are removed
from the stack and it is checked if the complex task can be tried again. Once a task is
successfully finished, it is removed from the stack. The lazyevaluation in the subtask
expansion ensures that the planning process is fast enough for the requirements of the
working domain (Simulation League 3D) and at the same time, maintains its reactive-
ness property to handle changes in the environment.

24

2.3.6 Neural Networks

Neural Networks (NN) [54] have been proved to efficiently perform in many domains,
including robot control. However one of their main drawbacks, as in decision trees
algorithms, is the large amount of data needed for the training, which is not always
feasible to provide. Another drawback is that the knowledgeof the system cannot be
evaluated or directly modified by a human expert.

Initial work was presented by Kim et al. [26]. They proposed an action selection
mechanism (ASM) based on the role of the player. The ASM is composed of four mod-
ules: the action set module computes run-time parameters and feasibility for executing
the available actions; the internal module selects an action given the current situation
without considering opponents; the supervisor module may alter the actions attributes
or enforce certain actions; and finally, the intervention module calculates the level of
disturbance of opponents, i.e. how the existence of an opponent interferes in the cur-
rent situation. This latter contribution is similar to the work presented by Ahmadi and
Stone, where the Q values of the states where opponents mightpossibly be located are
modified on-line. In order to compute the level of disturbance a multi-layer perceptron
is proposed. The training set was manually obtained: an expert observes a game and
labels those situations where the opponents should be takeninto account, and therefore,
their disturbance level is high. The MLP is a two layer feed-forward neural network.
The approach was tested with real robots in a one-to-one scenario.

Jolly et al. [24] present a more complete work, where a two-stage approach using
neural networks for action selection in the Small-Size League is proposed. The first
attempt is focused on deciding which of the two robots near the ball must go after it
while the other remains as a supporter. Hence, the input variables to the NN correspond
to the distances and angles to the ball. They also introduce aforward boolean variable,
which indicates if there is a teammate ahead of the ball. Thisway they enhance the ac-
curacy of the decision-making with the global strategy of moving forwards, i.e. moving
towards the attacking goal. The actions of the robots are based on the region where the
ball is located. Thus, if the ball is within the attack zone, the robot going after the ball
should kick to goal; within the defense zone, the action is tointercept the ball and pass
it to the teammate; and finally, within the pass zone, the robot should pass the ball to a
teammate if this is a forward teammate. Otherwise, a kick to goal is performed. The NN
is a three layer feed-forward network, with five inputs and two outputs. The first stage
of the learning process consists in using an evolutionary approach to roughly acquire
the neural network weight matrices. Next, the NN is used to fine-tune the weights. The
training data is obtained randomly generating field configurations and the correspond-
ing robots’ actions are obtained through rules. They also extend their NN to compound
networks in order to handle larger teams (5 vs. 5). They show results for the learning
curves of experiments in simulation for 3 vs. 3, 4 vs. 4 and 5 vs. 5 scenarios.

2.3.7 Evolutionary Algorithms

Evolutionary computation is based on the mechanics of natural selection and the process
of evolution [22]. Chromosomes encode the potential solutions of the problem to solve.
During the search, chromosomes are combined and mutated in order to find the best

25

solution (although it is not guaranteed to find the optimal one).
Nakashime et al. [45] proposed an evolutionary method for acquiring team strate-

gies in the Simulation League. The algorithm evolves rules (called action rules) for
determining the actions of the players. The actions are of the type: ifagenti in areaA
and nearest opponent isBi then action isC. The chromosome corresponds to a concate-
nation of the ten players’ possible actions in the differentpredefined regions of the field
(48 regions). There are ten possible actions, such as dribble toward the opponent side,
pass the ball to nearest teammate, clear the ball towards opponent side, etc. Once the
rules are evolved, during a game the players follow the rulesexcept for those situations
where a player is in possession of the ball within the penaltyarea. In these cases, the
player first evaluates a shoot to the goal. If the evaluation results in success, the player
kicks the ball directly. Otherwise, it follows the rule. This way they ensure reactiveness
in the player’s behavior.

Related to evolving rules, but in this occasion fuzzy rules,Park et al. [47] proposed
the use of evolutionary algorithms to determine the appropriate fuzzy control rules for
the path planning problem in robot soccer. More precisely, they proposed some mod-
ifications in the classical evolutionary algorithm in orderto automatically detect the
sensitivity of various genes in contributing to the fitness solution. This way they ensure
that the evolved chromosomes are goal-oriented, in the sense that their performance is
tested against a specific goal for which they are good at, and not for general purposes.
The proposed modifications for the parent selection processassist in the evolution of
optimal solutions for multi-objective path planning problems. Experiments with a real
robot proved that the proposed approach generates paths that have shorter elapsed times
with significantly reduced variation.

Luke et al. [40] proposed to learn the robots behaviors through Genetic Program-
ming instead of hand-coding them. Their main goal was not to obtain finely-tuned
players, but to study the feasibility of evolving a fair teamin the Simulation League.
The individuals are represented as program-trees and crossover and mutation are the
operators used to evolve them. Two trees were to be learned: one for making kicks,
and the other, for moving the player. They also proposed two types of teams: homo-
geneous, where each player would follow the same learned trees, or heterogeneous,
where each player would develop its own trees. Teams’ fitnesswere assessed based on
the game score of competitions (each team evolving its own behaviors). They expected
that the heterogeneous team would outperform the homogeneous team. However, the
evaluation showed the contrary. They believe that more training time would permit
the heterogeneous team to improve the players strategy, andtherefore, outperform the
homogeneous team.

2.3.8 Other Approaches

Konur et al. [31] focused their work on learning decision trees for action selection
for a whole team (defenders, attackers and midfields) in the Simulated League. They
restricted the learning to the players in ball possession. They defined a set of meta-level
actions which are to be selected by the decision tree (C4.5 introduced by Quinlan [49]).
Some of the 35 features used for the attribute set are type of player, playing region,
closest teammate to ball, distance and angle to ball, etc. The advantages of decision

26

trees are that the encoded rules are “readable” for humans inthe sense that they are
easy to understand and inspect by an expert. However, in Konur’s approach because
of the large number of features used during the learning, theresulting rules are not so
understandable nor easy to follow. Instead, we believe thatthe use of cases is closer to
how humans reason. Moreover, the drawback for using decision trees is the need of a
large set of training examples, which in the case of real robots, is not feasible. Instead,
the Simulation League provides enough data to gather the required information.

Bayesian classification methods are very common to use when dealing with uncer-
tainty because they are based on probability theory [13]. Hence, within the Simulation
League 3D, Bustamante et al. [9] present their work addressed to the action selection
using Naive Bayesian Networks. The input variables of a Naive Bayesian classifier
should be discrete, and therefore, they use a fuzzy extension: a Fuzzy Naive Bayes
Classifier. The task of the agent is to evaluate the success probability of a pass. To
this end, the features of the classifier are fuzzy distances and angles to ball and players
(teammates and opponents). In their experiment, the playerin possession of the ball
has to select the most adequate teammate to pass the ball, given their positions on the
field. Hence, for each teammate and each opponent, the agent computes the probability
of success. The teammate with higher probability is chosen to perform the pass.

2.4 CBR Applied to Other Robotic-Related Domains

Next we review some work done in the past years within the robotics field where CBR
techniques have proved to successfully perform. Similar tothe RoboCup domain, real-
time response (although probably not as restricted as within robot soccer), uncertainty,
imprecision and dynamism are some of the features that describe the environments
where the work we review next is addressed to.

Ram and Santamarı́a [51] and Likhachev and Arkin [37] proposed the use of CBR
in the robot navigation domain: the SINS system and the MissionLab system respec-
tively. The goal of the CBR system is to set the gain parameters for the motor schemas
of the robot’s navigational layer. In both approaches the case description is represented
by feature vectors. During retrieval, while SINS evaluatesthe current problem with
respect to the case base in one round, MissionLab first compares the spatial feature
vectors of the cases filtering those with low similarity. Theselected cases are then com-
pared using the temporal feature vectors. Once a case is retrieved, SINS reuses the new
retrieved case. MissionLab instead includes a case switching tree to decide whether the
currently applied case should still be applied or should be switched to the new retrieved
case. Next, the gain parameters of the case solution are adapted and reused. Another
difference between both approaches is the learning process. SINS receives feedback to
evaluate whether the retrieved case should be modified basedon the adapted solution
currently reused, or a new case should be created instead. Regarding MissionLab, Kira
and Arkin presented in [27] an extension of the system where alearning module decides
which cases to remove if a new case has to be created and the case library is full.

A global navigation strategy in large-scale dynamic environments by means of CBR
techniques is presented by Kruusmaa [32]. The problem is to find the path between
a starting point and a given goal. The system uses a grid-based path planning and

27

therefore, at least the shape and size of the environment must be indicated. However,
the presence and location of obstacles is unknown and changes over time. Hence, the
main goal of the CBR system is to minimize collision risk, globally choosing routes
where few obstacles are encountered. Given a new task (goingfrom point A to point
B), the system chooses between planing a new path through a probabilistic planner or
using the description of an old path from the case base (either opting for exploration
or exploitation). The solution description corresponds tothe path. The outcome of
the solution is the cost, which reflects how easy the path was to follow. The cost is
updated every time the path is reused indicating the averagecharacteristics of that path.
Choosing the path with lower cost leads the robot to chose safer paths and minimize
time travel. Similar to the approach presented by Kiran [27], a case forgetting process
was included to prevent the case base from growing to much. Thus, an old case is
forgotten and the new one is stored if the cost of the new case is lower. If no similar
case is found for the current problem solved, it is incorporated in the case library as
well.

Similar work addressed to the path-planning problem was proposed by Haigh
and Veloso [21]. They presented a path planner for the city ofPittsburgh using the
PRODIGY planner and its analogical reasoning [68]. The general knowledge cor-
responds to the map of the city represented as a planar graph whose edges indicate
street segments and the nodes, intersections. A case corresponds to a trace of the
plan generated by PRODIGY including search decisions to be avoided at reuse, situ-
ations encountered at execution time as explanation of errors and the replanning done
to overcome those errors. A case is also approximated by straight line segments in a
two-dimensional graph, which acts as an indexing feature for facilitating the retrieval
process. As in [32] a compromise between finding new routes orusing old ones is
taken into account. Therefore each case is assigned an efficiency value that indicates
the “quality” of a case considering traffic conditions, roadquality and time of the day.
This factor is also considered during retrieval. The retrieval process returns a set of
cases ordered according to the sequence in which the metric (geometric similarity met-
ric introduced in [20]) believes they should be retrieved. The retrieved cases are then
merged to obtain the solution route. During reuse, extra planning can be performed if
needed (e.g. a closed road). In this situations, the failed retrieved case is not altered,
and instead, the efficiency value is modified.

The problem of indoor navigation using sonar maps was addressed by Micarelli et
al. in [42]. The goal of the system is to classify the sonar-based maps into a set of
predefined categories that represent structured environments within a building, such as
corridor, corner, crossing, end corridor and open space. A case is defined as a tuple
where the problem description corresponds to a digital sonar map (reprented by an
array of 360 real numbers between 0 and 1), and the solution description corresponds
to a topological feature, i.e. one of the categories. There is a first training stage to
build the case base where a human expert indicates the solution of the map detected.
As the system acquires more cases, the number of queries to the expert decreases. The
similarity measure corresponds to a cross-correlation factor metric.

Urdiales et al. [64] presented a sonar-based reactive navigation approach. The work
was addressed to local obstacle-avoidance of an autonomousrobot. They included a

28

CBR system to determine the direction the robot should follow to safely avoid colliding
with close obstacles. The deliberative layer determines the robot path and takes into
account static or know obstacles, but does not deal with unexpected obstacles found
during navigation. Thus, once the goal is set, the robot changes its heading to reach it
in a straight way. The reactive layer is only triggered when the robot detects obstacles
through the sonar. The sonar readings are part of the problemdescription of a case, as
well as the goal of the task, i.e. the point that the robot should reach. Since no global
model of the environment is used, the goal is represented by the direction vector from
the current position of the robot to the goal. A nearest neighbor algorithm is used for
the retrieval step. A first training stage is performed to acquire the case base. The robot
is manually guided through different paths in order to create new cases. A new case is
included each time a significant sensor configuration is detected. This process is also
used during the autonomous robot performance after the training stage.

2.5 Summary

We summarize the work reviewed within the RoboCup domain in Table 2.2. The clas-
sification is based on the problem the work is addressed to andthe league where it is
applied to, indicating for each work the used technique. Thenomenclature used corre-
sponds to the abbreviations presented in Table 2.1. The problems we have focused our
attention to are:action selection, opponent modelingor state recognition(team forma-
tion recognition),role assignment, positioning(locations on the field where the robots
should move),localization(computing the position of the robot on the field by itself)
andskills (learning low level actions such as kick the ball, walk, etc.).

We must remark that we only list a summary based on the work presented in this
thesis and therefore, with direct relation with the thesis topic. We do not intend to
summarize a complete survey of the work done so far within RoboCup.

We can observe that in general most of the work is applied to the Simulation League.
Besides being the earliest league, the advantage of this league is that researchers do not
have to deal with much of the problems that arise with real robots. Hence, they can eas-
ily focus their efforts on developing skilled soccer players using different techniques ad-
dressed to high level decision-making without consideringlower level problems. More-
over, and as mentioned before, this league also provides much more information about
the state of the world during a game as well as afterwards (logfiles produced during a
game), which can be later on widely explored using machine learning techniques.

The Middle-Size League has also produced an important amount of work. Probably
the appeal of this league with respect to the other leagues isthat on the one hand it deals
with real robots (robots are rather small and quite precise)but on the other hand, it main-
tains a centralized system where most of the processing routines, as well as the robot
control, take place. Hence, although having to deal with both hardware and software
problems, the decision-making is done on an off-field PC. Thestate of the environment
is usually obtained through an overhead camera and the imageprocessing is done by the
off-field PC. Thus, robust computer vision algorithms can beapplied, minimizing the
uncertainty in the incoming information. As we can observe from the summary table,
several different approaches have been applied to this league, attempting to solve most

29

Abbreviation Technique

CBR Case-Based Reasoning
RL Reinforcement Learning
LO Learning from Observation
EA Evolutionary Algorithms
DT Decision Trees
FT Fuzzy Theory
PF Potential Fields
PR Pattern Recognition
NN Neural Networks
A Auctions
P Planning
BN Bayesian Networks

Abbreviation League

SM Simulation League
SSL Small Size League
MSL Middle Size League
4LL Four-Legged League

Table 2.1: Table of abbreviations.

of the problems remarked here.
The two latter leagues correspond to the most challenging ones, since robots are

completely autonomous and all the decision-making and computational processes have
to be done on-board. The advantage of the Four-Legged Leaguewith respect to the
Middle-Size League is that researchers do not have to deal with hardware design. The
robots used in this league are commercial robots and cannot be modified. However, the
drawback is that the robot processor is limited and therefore, simple algorithms must
be designed. On the contrary, the Middle-Size robots can be adjusted as required, and
more powerful PC’s can be used. The work presented so far in these leagues is much
more limited compared to the other two leagues.

Regarding the experimentation within the leagues with realrobots (SSL, MSL and
4LL) we can observe that, in general, simplifications of a real game are considered.
Thus, simulated environments are used to test the proposed approaches, or if experi-
menting with the real robots, opponents are either omitted,static or performing random
movements. These assumptions clearly show the difficultiesthat researchers have to
face when dealing with real robots performing tasks in a realenvironment.

Our work can be classified within the action selection, role assignment and position-
ing problem domains applied to the Four-Legged League. As wewill explain through
this dissertation, the CBR system retrieves and adapts a case specifying the actions the
robots must perform (action selection problem). Moreover,it indicates which actions
should perform each robot and their initial positions. Hence, the role assignment and
positioning problems are solved through the case reuse. Although two works have been
presented in the action selection domain within this league[25, 5], in this dissertation

30

SL SSL MSL 4LL

Action
Selection

CBR: [10], [38], [8]1

RL: [52]
LO: [33]
EA: [45]
DT: [31]
P: [46]
BN: [9]2

RL: [48], [15]4

FT: [73]3

NN: [26]3, [24]4

RL: [28]5

P: [18]4
CBR: [25]6

RL: [5]7,10

Opp Mod/
State Recog.

CBR: [70], [4], [58]
PR: [23], [43]

CBR: [41]4

Role
Assignment

CBR: [41]4

RL: [15]4

FT: [57], [35]4,8

A: [65]8

Positioning CBR: [72]
CBR: [41]4

EA: [47]9

PF: [48], [63]5
PF: [65]8

Localization CBR: [71]9

Skills RL: [52] RL: [15]4 RL: [28]5

Table 2.2: Related work classification.

(1): The decision making mechanism only indicates whether apass is feasible or not.

(2): Selects which teammate is the most appropriate to receive a pass.

(3): 1 vs 1 experiments.

(4): Experiments in simulated environment only.

(5): Experiments with a static opponent(s).

(6): No experimentation reported.

(7): The decision making mechanism chooses the type of kick to perform between
two types of kicks.

(8): Experimentation without opponents.

(9): Experimentation with one robot.

(10): Random movements for opponents.

31

we present a complete framework addressed to thedecision-makingof a multi-robot
system, where a set of actions for each robot is selected (notonly two possible actions
as in [5]), and the subsequentexecutionof these actions (the work presented in [25] is
preliminary and only refers to the first stage, the decision-making). Furthermore, we
have included thecooperativeaspect in the task execution through explicit passes be-
tween robots. To this end, a multi-robot architecture and a coordination mechanism are
introduced. To evaluate our approach, we have performed experiments consisting of
two vs. two scenarios both in simulation and with real robots, where the two attackers
play against a defender and a goalie (non-random opponents).

32

Chapter 3

Modeling the CBR Approach:
The Retrieval Step

In this chapter we introduce the first step of the CBR cycle: the retrieval step. Although
most of the formulation is domain-oriented, the ideas presented can be easily translated
to other domains where a team of robots must perform a joint task, such as moving
objects in dynamic environment. First we describe the case definition and the case base
structure. Next we present the retrieval process itself, defining the similarity measures
and a filtering mechanism to select a set of candidate cases. Finally, experiments in
simulation are presented to evaluate the retrieval process.

3.1 Case Definition

A case represents a snapshot of the environment at a given time from a single robot
point of view. We call this robot thereferencerobot, since the information in the case is
based on its perception and internal state (its beliefs). The case definition is composed
of three parts: the problem description, which correspondsto the state of the game;
the solution description, which indicates the sequence of actions the robots should per-
form to solve the problem; and finally, the case scope representation, which contains
additional information used to retrieve the case. We formally define a case as a 3-tuple:

case = (P,A,K)

whereP is the problem description,A, the solution description, andK, the case scope
representation.

3.1.1 Problem Description

The problem description corresponds to a set of features that describe the current state of
the game from thereferencerobot perspective. In the robot soccer domain we consider

33

the following features as the most relevant for describing the state of the game:

P = (RG, R,B,G, TmG, Tm,OppG, Opp, t, S)

where:

1. RG: reference robot’s global position(xR, yR)

xR ∈ [−2700..2700]mm, xR ∈ Z yR ∈ [−1800..1800]mm, yR ∈ Z

2. R: reference robot’s position(xR, yR) with respect to the ball.

3. B: ball’s global position(xB , yB)

xB ∈ [−2700..2700]mm, xB ∈ Z yB ∈ [−1800..1800]mm, yB ∈ Z

4. G: defending goal
G ∈ {cyan, yellow}

5. TmG: teammates’ global positions

TmG = {tm1 : (xR1
, yR1

), ..., tmn : (xRn
, yRn

)}

wheretmi is the robot identifier andn ∈ [1, 3] for teams of 4 robots. This set
could be empty for cases where no teammates are implied in thecase solution.

6. Tm: teammates’ relative positions with respect to the ball

Tm = {tm1 : (xR1
, yR1

), ..., tmn : (xRn
, yRn

)}

7. OppG: opponents’ global positions

OppG = {opp1 : (xR1
, yR1

), ..., oppm : (xRm
, yRm

)}

whereoppi is the opponent identifier andm ∈ [1, 4] for teams of 4 robots. This
set could be empty for cases where no opponents are describedin the case.

8. Opp: opponents’ relative positions with respect to the ball

Opp = {opp1 : (xR1
, yR1

), ..., oppm : (xRm
, yRm

)}

9. t: timing of the match. Two halves parts of 10 min

t ∈ [0, 20]min, t ∈ N

10. S: difference between the goals scored by our team and the opponent’s team.
The maximum difference allowed is 10. The sign indicates if the team is losing
(negative) or winning (positive).

S ∈ [−10, 10], S ∈ Z

34

opp1

R

tm1

Figure 3.1: Graphical example of the description of a problem. The black circle rep-
resents the ball, while the rectangles correspond to the teammates and an opponent
(gray).

We include both global and relative coordinates for the robots positions in the prob-
lem description because, as we will see through the chapter,for some calculation pro-
cesses it is advantageous to use one representation or the other. Due to the limited com-
putational resource of the robots it is not feasible to compute the relative representation
every time it is needed. Thus, cases are actually stored using the global representation
only, while the relative coordinates are derived automatically when loading the case
base. Figure 3.1 illustrates a graphical example of the following problem description:

P =

































RG = (517,−506),
R = (−402, 0),
B = (919,−506),
G = yellow,
TmG = {tm1 : (919, 337)},
Tm = {tm1 : (0, 843)},
OppG = {opp1 : (1350,−506)},
Opp = {opp1 : (431, 0)},
t = 5,
S = 1

































3.1.2 Solution Description

The solution of a case corresponds to the sequences of actions each robot performs. We
call themgameplays. In this work, a gameplay must also satisfy two conditions: (i) at
least one robot has as its first action to get the ball; and (ii) only one robot can control
the ball at a time. Formally, we define a gameplay as:

A =





tm0 : [a01, a02, . . . , a0p0
],

. . .
tmn : [an1, an2, . . . , anpn

]





35

Action Parameters Description
NONE - no action

GET NEAR BALL - move close to the ball

APPROACHGRAB - approach the ball and grab it

GO TO POINT (x, y) move to point(x, y)

TURN [θ|(x, y)|tmi] turn until the robot’s global head-
ing is θ or until facing either point
(x, y) or robottmi

TURN WITH BALL [θ|(x, y)|tmi] turn while grabbing the ball until
the robot’s global heading isθ or
until facing either point(x, y) or
robottmi

WAIT BALL tmi wait until robottmi kicks the ball

DODGE [side|(x, y)] dodge to the left or right side, or to-
wards point(x, y)

PICK BALL - get ball

SUPPORT (x, y) move towards point(x, y) facing
the ball

KICK TO POINT (x, y) kick the ball towards point(x, y)

KICK kick kick the ball with kick type (e.g.
forward, side, bump, etc.)

Table 3.1: List of available actions and their parameters.

wheren ∈ [0, 3] is the robot identifier, andpi the number of actions teammatetmi

performs (tm0 corresponds to the reference robot). Actions are either individual ac-
tions, such as “get the ball” or “kick”, or joint actions, such as “pass the ball to robot
tmi”. The actions may have parameters that indicate additionalinformation to execute
them. For instance, in the turn action we can either specify the global heading the robot
should have or a point to face; in the kick action we indicate which type of kick to
perform (forward, left, ...), etc. Table 3.1 details the list of available actions and their
parameters.

During the execution of the solution, all robots on the team start performing their
sequences of actions at the same time. The duration of each action is implicitly given
by the action type and its initiation depends on the action preconditions. Consider
the following situation: robotrA must pass the ball to robotrB , and robotrC has to
move to a pointp. Without explicitly indicating the timestep of each action, the timing
of the overall performance will be: robotrA starts moving towards the ball to get it,
while robotrB waits for robotrA to make the pass. Once robotrA has done the pass,
rB receives the ball and kicks it forwards. In the meantime, since robotrC has no
preconditions, it starts moving to pointp independently from the state in which the

36

(a) (b)

Figure 3.2: (a) Example of the scope of a case. The black circle represents the ball and
the gray rectangle represents the opponent. The ellipses correspond to the ball’s scope
(solid ellipse) and the opponent’s scope (dashed ellipse).(b) Example of a simplified
problem description. The opponent’s scope is translated with respect to the ball.

other robots are. For this example, the solution would be:

A =





rA : [get near ball, approach grab, turn with ball(rB), kick(bump)],
rB : [wait ball(rA), pick ball, kick(forward)],
rC : [go to point(p)]





3.1.3 Case Scope Representation

Because of the high degree of uncertainty in the incoming information about the state
of the world, the reasoning engine cannot rely on precise values of the positions of the
objects (robots and ball) on the field to make decisions. Therefore, we model these
positions as regions of the field calledscopes. The scopes are elliptic regions centered
in the object’s position with radiusτx andτy. The case scope is defined as:

K = (ball : (τB
x , τB

y), opp1 : (τ1
x , τ1

y), . . . , oppm : (τm
x , τm

y))

whereτB
x and τB

y correspond to thex and y radius of the ball’s scope,oppi is the
opponent identifier, andτ i

x andτ i
y, to the radius of opponentoppi’s scope (i ∈ [1,m]).

If there are no opponents in the case, then we do not include any opponent pairopp =
(τx, τy). Notice that we only consider the robots that are opponents,and not the ones
belonging to the team, i.e. reference robot and teammates (R, tmi). As we will explain
during the retrieval process, we define two different measures for each type of robots.
While one requires the use of scopes, the other does not. Therefore, we do not need to
include this information for all robots in the case description.

We must also anticipate that the ball’s scope is fundamentalfor the retrieval process
as we will explain in Section 3.3. A case might be considered apotential solution only
if the position of the ball described in the problem to solve is within the ball’s scope of
the case. Otherwise, the case is dissmissed.

37

Regarding the opponents features,Opp, as defined in the problem description it
corresponds to the relative positions of the opponents withrespect to the ball. The
advantage of representing the opponents combining their relative coordinates and their
scopes is that we can easily define qualitative locations of the opponents on the field
with respect to the ball. Reasoning with qualitative information is advantageous in
this kind of domains, specially, as we have said, because of the high uncertainty in the
incoming information, and moreover, because it facilitates the generalization of similar
situations. For instance, it is more general to reason aboutan opponent being in front
of the ball, rather than the opponent being in position(x, y).

Figure 3.2a shows a simple example of this situation. The interpretation of this case
is that if we want to consider it as a potential solution for a given problem, then the
ball should be located within the ball’s scope and an opponent should be positioned in
front of it. Figure 3.2b depicts a problem example where the opponent is considered to
be in front of the ball because it is located within the opponent’s scope. Note that the
opponent’s scope has been translated with respect to the current position of the ball in
the problem. This is due to the relative representation of the opponents with respect to
the ball. Since the ball is also situated within the ball’s scope of the case, we can state
that the case in Figure 3.2a is a potential solution to the problem in Figure 3.2b.

3.1.4 Case Example

tm1

R

Figure 3.3: Graphical example of the description of a case.

Following the example shown before for the problem description, Figure 3.3 com-
pletes the case representation including the solution description and the case scope. We
represent the scopes of the ball and the opponent with solid and dashed ellipses respec-
tively. The arrows show the sequence of actions the robots should perform to solve
the problem. RobotR takes the ball first and passes it to robottm1 with a left head
kick. Next tm1 receives the pass, turns until facing point(2700, 200) (the pointed lo-
cation indicated by the arrow in the figure) and kicks with a forward kick. The formal
description of this case example is notated as:

38

case =





































































































RG = (517,−506),
R = (−402, 0),
B = (919,−506),
G = yellow,
TmG = {tm1 : (919, 337)},
Tm = {tm1 : (0, 843)},
OppG = {opp1 : (1350,−506)},
Opp = {opp1 : (431, 0)},
t = 5,
S = 1

































,













tm0 :

[

get ball,
pass ball(tm1, kick(head left)

]

tm1 :

[

wait, receive ball(tm0),
turn(2700, 200), kick(forward)

]













,

(

ball : (860, 480),
opp1 : (315, 200)

)





































































3.2 Case Base Description

Because of the spatial nature of the features in the case description, interestingly a
particular case can be mapped into multiple ones through spatial transformations. Thus,
from a small set of cases, we can automatically generate a larger set reducing the human
effort when building the initial case base.

From the set of features of the problem description, the ball’s and robots’ global
positions and the defending goal have three symmetric properties:

1. with respect to thex axis,

2. with respect to they axis and the defending goal, and

3. with respect to both axis,x andy, and the defending goal.

Hence, given a description of a problem, we can easily generate three more problems
applying spatial transformations based on the symmetric properties shown above. We
must point out that the spatial transformations have to be done using the global coor-
dinates of the features instead of using the relative ones. Thus, when loading the case
base, we first generate the symmetric cases and then we derivethe relative positions of
the features for each case.

Similarly, we also compute the symmetric description of thecase solution. More
precisely, we must transform only the parameters of some of the actions that are related
to spatial features, such as right, target point, turn angle, etc. Regarding the case scope,
no spatial transformations are needed since they only represent the radius of the scopes.
Table 3.2 summarizes the spatial transformations defined above for the different types
of features or parameters used in the case description. Figure 3.4 illustrates an example

39

symmetry with respect to
x y & defending goal xy & defending goal

(x, y) (x,−y) (−x, y) (−x,−y)
g g {cyan, yellow} \ {g} {cyan, yellow} \ {g}
α −α π − α π + α

side {right, left} \ {side} {right, left} \ {side} side

Table 3.2: Spatial transformations of the different features and parameters used in a
case, where(x, y) corresponds to a point on the field,g is the defending goal,α is an
angle indicating the global heading of the robot, andside is a direction parameter of a
given action.

of a simplified case description and its three symmetric descriptions (we omit the scopes
and actions for clarity purposes).

Since we are working in a real time domain and because of computational limi-
tations in the robots, it is essential to minimize the time invested during the retrieval
process. To speed up the search we use an indexed list to storethe cases in memory
once they have been loaded. Thus, we separate the cases basedon the defending goal
feature (yellow or cyan). When a new problem has to be solved, we only look for sim-
ilar cases in one of the subsets. Searching in the rest of the case base is useless since
those cases will not match the current problem at all.

Summarizing, the case base is composed of a set of cases manually created, where
only the basic information is stored (global positions). When the case base is loaded,
for each case we first compute its symmetric cases and then therelative coordinates
of the features in each case. Therefore, we enlarge the original case base four times
its original size, covering the whole field. We use an indexedlist to classify the cases
based on the defending goal feature to speed up the search, i.e. we only have to explore
half of the case base instead of the complete one.

3.3 Case Retrieval

After having described the case definition and the description of the case base used in
this work, in the remaining of this chapter we focus our attention in the retrieval step of
the Case-Based Reasoning approach proposed.

Case retrieval is in general driven by a similarity measure between the new problem
and the solved problems in the case base. We introduce a novelcase retrieval method.
We evaluate similarity along three important aspects: the similarity between the prob-
lem and the case, the cost of adapting the problem to the case,and the applicability of
the solution of the case. Before explaining in more detail the similarity computation we
first define two types of features describing the problem:

• controllablefeatures, i.e. position of the reference robot and the teammates. (the
robots can move to more appropriate positions if needed).

• non-controllablefeatures, i.e. the ball’s and opponents’ positions, the defending
goal, time and score (which we cannot directly modify).

40

tm1

R

R

tm1

(a) (b)

tm1

R

R

tm1

(c) (d)

Figure 3.4: Example of the spatial transformations of a case: (a) original case; symmet-
ric cases with respect to (b) thex axis, (c) they axis and defending goal, and (d) thex
andy axis and the defending goal.

The idea of separating the features into controllable and non-controllable is that a
case can be retrieved if we can modify part of the current problem description in order
to adapt it to the description of that case. Given the domain we are dealing with, the
modification of the controllable features leads to a planning process where the system
has to define how to reach the positions of the robots indicated in the retrieved case in
order to reuse its solution.

3.3.1 Similarity Measure

Since the nature of the features’ domain differs from one to another, we introduce dif-
ferent similarity functions to compare the features of a problemp and a casec. We first
compute the similarities along each feature (assuming feature independence) and then
we use an aggregation function to compute the overall similarity between the prob-
lem and the case. More precisely, for this measure we comparea subset of the non-
controllable features (ball’s position, time, score difference) leaving the opponents’ po-
sitions for the applicability measure. The defending goal is not taken into account here
since, as already mentioned in the case base description, wehave pruned the search
of cases from the case base in advance by only considering those with defending goal

41

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-600
-300

 0
 300

 600 -600
-300

 0
 300

 600

 0

 0.2

 0.4

 0.6

 0.8

 1

similarity

X

Y

similarity

Figure 3.5: 2D Gaussian centered in the origin withτx = 450 andτy = 250. The solid
ellipse on the planeXY corresponds toG(x, y) = 0.367.

equal to the one described in problemp.

Similarity of Spatial Features

We are interested in defining a continuous function that given two points in a Cartesian
Plane indicates the degree of similarity based on the distance between the points. As
larger the distance between two points is, the lower the similarity degree between them.
We propose to use a Gaussian function, which besides fullfilling these properties, it is
parametrized by its variance. We can use this parameter to model the maximum distance
allowed to consider two points to have some degree of similarity. Since we are working
in a two-dimensional space, we use a 2D Gaussian function,G(x, y), to compute the
degree of similarity between two points.

Hence, in the robot soccer domain, we define the similarity function for the ball
feature as:

simB(xp, yp, xc, yc) = G(xp−xc, yp−yc) = exp

(

−

[

(xp − xc

τB
x

)2

+
(yp − yc

τB
y

)2
])

where(xp, yp) corresponds to the ball’s position in problemp, (xc, yc), to the ball’s
position in casec, andτB

x andτB
y the ball’s scope indicated in the case as defined in

Section 3.1.3. Figure 3.5 draws a 2D Gaussian function and its projection on theXY
plane (sequence of ellipses with increasing radius as the similarity decreases). As we
can observe, the Gaussian’s projection with radiusτB

x andτB
y represents the scope of

the ball, i.e. the region within which we consider two pointsto be similar enough, and
corresponds toG(x, y) = 0.367.

42

-0.2

-0.1

 0

 0.1

 0.2

-10 -8 -6 -4 -2 0 2 4 6 8 10

st
ra

te
gy

score difference

 0 2 4 6 8 10 12 14 16 18 20
-8

-4
 0

 4
 8

-1

-0.5

 0

 0.5

 1

strategy

time

score difference

strategy

(a) (b)

Figure 3.6: (a) Strategy function for timet = 5. (b) Strategy function over time.

Similarity of Game Strategic Features

Defining a function that combines time and score is essentialsince they are closely re-
lated. As time passes, depending on the score of the game, we expect a more offensive
or defensive behavior. We consider as critical situations those where the score differ-
enceS is minimum, i.e. when the chances for any of the two teams of winning or losing
the game are still high, and thus the strategy (or behavior) of the team might be decisive.
We model the strategy for a 20 minutes game as:

strat(t, S) =







t
20(S−1) if S < 0 (losing the game)
t
20 if S = 0 (tie game)

t
20(S+1) if S > 0 (winning the game)

wherestrat(t, S) ∈ [−1..1], with -1 meaning a very offensive strategy and 1 meaning
a very defensive strategy.

Figure 3.6a depicts the behavior of the team at timet. Positive and negative scoring
differences mean that the team is winning or losing respectively. The higher the absolute
value ofS is, the lower the opportunity of changing the current score and the behavior
of the team. For extreme values ofS (in the interval[−10..10], close to−10 or 10) the
outcome of the function approaches zero. Otherwise, the function value indicates the
degree of intensity, either for a defensive or an offensive behavior. Figure 3.6b shows
the behavior of the function combining both variables. As time passes, the intensity
of the strategy increases until reaching maximum values of 1and -1, (defensive and
offensive, respectively). These features are beyond robotsoccer and are applicable to
other games.

We define the similarity function for time and score difference as:

simtS(tp, Sp, tc, Sc) = 1− |strat(tp, Sp)− strat(tc, Sc)|

43

wheretp andSp corresponds to the time and score difference features in problemp and
tc andSc, the features in casec.

Aggregation Function

After describing the similarity measures for the differentfeatures, we must define an
aggregation function in order to compute the overall similarity between the problem and
the case. To this end, we tested four different functions: the mean, the weighted mean,
the minimum and the harmonic mean. After evaluating their behavior, we concluded
that:

• The minimum function results in a very restrictive aggregation function since the
overall outcome is based only on the lowest value. Hence, lowvalues penalize
high values rapidly.

• Regarding the harmonic mean, for similar values, its behavior is closer to the
mean function. While for disparate values, the lower values are highly consid-
ered and the outcome decreases (although not as much as with the minimum
function) as more lower values are taken into account. On thecontrary, the mean
function rapidly increases the outcome for high values, anddoes not give enough
importance to low values.

• Finally, the weighted mean does not differentiate between low and high values
either, since the importance of each value is given by their weights. If a low
value has a low weight and the rest of the values are all high, the outcome is
slightly affected and results high anyway.

We are interested in obtaining an aggregation function thatconsiders all values as
much as possible but highlighting the lower ones. This is an important property as
the values we are considering are similarities. Hence, if one of the features has a low
similarity, the overall similarity has to reflect this fact decreasing its value. Based on
the properties of the different functions, we finally opt forthe harmonic mean as the
aggregation function:

h(x1, ..., xn) =
n

∑n
i=1

1
xi

wherexi corresponds to the individual similarity values of the features.
Therefore, within the domain we are working on, we define the similarity function

between problemp and casec as:

sim(p, c) =
2

1
simB

+ 1
simtS

=
2simBsimtS

simB + simtS

wheresimB andsimtS are the similarity functions for the ball and time-score differ-
ence features respectively.

44

tmc
1

Rc Bc

Rp

tm
p
1

Bp

Figure 3.7: Case description (Rc, Bc, tmc
1), and current problem description

(Rp, Bp, tmp
1). The dashed rectangles represent the adapted positions ofthe robots

with respect to the ball’s position described in the problem.

3.3.2 Cost Measure

This measure computes the cost of modifying the controllable features, i.e. the cost of
adapting the current problem to the case. It is computed as a function of the distances
between the positions of the reference robot and the teammates in the problem and the
adapted positions specified in the case after obtaining their correspondences. Next we
separately present the new concepts introduced with this measure.

Adapted Positions

We refer to the adapted positions as those global locations where the robots should
position in order to execute the solution of the case. In general, to compute them we
transform the robots’ relative coordinates to global coordinates, having the position of
the ball in the problem as the reference point. But in fact, the adapted position of the first
robot taking the ball in the gameplay is computed differently. It actually corresponds
to the closest point to the ball within the straight line between the current robot’s and
ball’s position. As we defined in the solution description, there is exclusively one robot
whose first action is going after the ball. Hence, its first position on the field will be next
to the ball. Figure 3.7 illustrates a simple adaptation example with two robots. Robot
R is the one that controls the ball first, whiletm1 waits to receive the pass.

Robots’ Correspondence

In order to compute the cost of adapting a problem to a case we must first determine the
correspondence between the robots described in the problemand the ones described in
the case, i.e. which robotri from the problem description corresponds to which robot
rj in the case description. Moreover, we must find the best match, i.e. the one that
minimizes the cost, including one restriction: the distance between two points must be
shorter than a given threshold,thrc. Due to the domain’s dynamism, the distances the
robots have to travel must be limited since we cannot allow the robots to move from

45

one point to another for long periods of time because in the meantime, the state of the
world may have significantly changed and thus, the case may not be useful anymore.

In this work, since the maximum number of robots is small and fixed (n = 3, the
goalie is always the same robot, so we only have to find the bestmatch for the remaining
three players of the team) we can easily compute all possiblematches (3! = 6) without
the need of an efficient search algorithm. However, as the number of robots becomes
larger, the number of combinations increases exponentially. Thus, we require a search
algorithm to optimize the search as we present later.

Cost Computation

We have studied two alternative functions to compute the cost: the sum of distances the
robots have to travel and the maximum distance. The sum of distances aggregates all
available distances in order to compute the outcome, while the max function is based
only on one distance (the maximum), without considering theremaining ones. There-
fore, we could define the sum as a more informed measure, whereall values affect
the outcome. Moreover, interestingly, the maximum distance function has a drawback
when considering trapezoid (not necessarily having two parallel sides) configurations.
Consider the layout depicted in Figure 3.8, where we have to find the optimal match
between points{1, 2} and{A,B}. We have depicted in solid lines the distances the
robots would have to travel using the sum function, and in dashed lines, the distances
using the max function. As we can observe, using the latter function the robots’ paths
intersect. This situation will happen whenever both trapezoid diagonals,D1 andD2,
are shorter than the trapezoid larger side,b, and the matching points correspond to the
end points of the middle sides,c andd. Figure 3.9 illustrates two more examples com-
paring the correspondence outcome when using both functions. It is clearly shown that
we prefer to use the sum function instead of the max function.

Hence, in this domain we define the adaptation cost as the sum of distances the
robots have to travel from their current locations to their adapted positions:

cost(p, c) =

n
∑

i=1

dist(ri, adaptPosi)

wheren is the number of robots that take part of the case solution,dist is the Euclidian
distance,ri is the current position of roboti andadaptPosi, the adapted position for
roboti.

Optimizing the search

As mentioned previously, finding the robots’ correspondence for a large number of
robots requires an optimization algorithm to reduce the search complexity. Therefore,
we propose aBranch&Bound(B&B) search algorithm in a binary tree for finding the
best match between two robot configurations (the robots’ layout in the problem and the
layout in the case). Each node of the tree represents either the fact of considering a
match between the pair(ri, rj), or the fact of not considering the match between this
pair. In order to apply the algorithm we need to define a heuristic function to estimate

46

2 B

1
A

a + b < D1 + D2

max(D1, D2) < max(a, b)

a

d

D1

c

D2

b

Figure 3.8: Trapezoid layout of the matching between pairs{1, 2} and{A,B}. The
correspondence based on the sum function is represented by solid lines, while the max
function is represented by the dashed ones.

Figure 3.9: Two different layouts (top and bottom) showing the advantage of the sum
function (solid lines) compared to the max function (dashedlines).

47

the lower bound and to set the constraints that restrict the configurations in the nodes of
the B&B algorithm (in our case just one constraint):

• heuristic: the cost of all possible matches will always be larger or equal to the
actual cost of a concrete mapping.

h(Rp, Rc) =
∑

j

min
i

(dist(ri, rj))

whereRp andRc correspond to the set of robots positions in the problem (ri)
and the case (rj) respectively,i ∈ [1, n] for n robots in the problem description,
j ∈ [1,m] for m robots in the case description (m ≤ n), anddist is a function
that returns the Euclidean distance between two points.

• constraint: the distance between two points must be shorterthan a given thresh-
old, thrc.

Hence, we reduce the complexity of the search forn robots fromO(n!), all possible
combinations, toO(2n), the complexity of the search in a binary tree.

3.3.3 Case Applicability Measure

From the set of features included in the problem descriptionof a case, there is one that
we have not yet included in any of the metrics described so far: the opponents feature.
This last feature is precisely the one we focus on next, whichis used to compute the
applicability of a case.

Defining all possible configurations of opponents during a game, i.e. opponents’
positions on the field, is impossible. Hence, achieving a complete case base composed
of all possible situations would be not be feasible at all. For this reason we believe that a
certain degree of generalization must be included in the reasoning engine when dealing
with this feature. Thus, we propose to combine two functionsas follows:

• free path function: the trajectory of the ball indicated in the case must be freeof
opponents to consider the evaluated case to be applicable.

• opponent similarity: the more opponents locations described in the problem
match with the opponents locations described in the case, the higher the simi-
larity between the problem and the case.

Free Path

Given a case, thefree pathcorresponds to a function that indicates whether the trajec-
tories the ball follows during the execution of the case solution is free of opponents or
not.

Because of the ball’s movement imprecision after a kick (either due to the robot’s
motion or the field’s unevenness), the ball could end in different locations. Hence, we
represent a trajectory by means of a fuzzy set whose membership functionµ indicates
the degree of membership of a point to the trajectory such that the closer the point to

48

rmin

rmax

l

ρ

y

x

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-800 -600 -400 -200 0 200 400 600 800
 100

 200
 300

 400
 500

 0

 0.2

 0.4

 0.6

 0.8

 1

membership

Y

X

membership

(a) (b)

Figure 3.10: (a) Ball’s trajectory represented by an isosceles trapezoid defined by the
minimum and maximum radius, and the trajectory length. (b) Membership functionµ
corresponding to the fuzzy trajectory withrmin = 100, rmax = 300 andl = 500. The
solid lines on the planeXY correspond toµ(x, y) = 0.367

the center of the trajectory, the higher the membership. More precisely, this function
is defined as a sequence of unidimensional Gaussians along a central axis, where the
width of each Gaussian increases from a minimum radius (forx = 0) to a maximum
one (forx = l) defined in the trajectory. The projection of theµ function on theXY
plane results in a trapezoid (Figure 3.10a). This trapezoidcovers the area of the field
where the ball could most likely go through according to the experimentation we have
performed. We formally define the membership function for a trajectorytj as:

µtj
(x, y) = exp

(

−

[

y

ρ(x, rmin, rmax, l)

]2)

wherermin andrmax correspond to the minimum and maximum radius respectively,
and l, to the length of trajectorytj . Finally, ρ is a linear function that indicates the
radius of the Gaussian as a function ofx. Figure 3.10b draws the membership function
described.

We callball paththe sequence of trajectories the ball travels through in thesolution
of casec. Hence, we must verify that there are no opponents in the current state of
the game (problemp to solve) located within any of the trajectories of the ball path.
Figure 3.11a depicts an example. The initial position of theball corresponds toB1.
After the first trajectory,t1, the ball stops atB2 and continues the second trajectory,t2.
Each trajectory results from a robot’s kick. Formally, we define the free path function
as:

free path(p, c) = 1−max
tj∈T

(φtj
(Opp))

φtj
(Opp) =

{

1, ∃oppi ∈ Opp (µtj
(oppi) > thrt)

0, otherwise

49

attacking goal

t1
B2

t2

reg2

reg1
B1

a2

a1

(a) (b)

Figure 3.11: (a) Example of the ball’s path performed by a pass between two players
(robots are not depicted for simplicity). The dashed ellipses represent the opponents
regions described in the case, and the gray rectangles, the opponents described in the
problem to solve. (b) Opponent similarity as a justificationof the action to perform.
Action a1 represents kicking towards the goal, while actiona2, kicking towards the
robot’s right side.

whereT is the sequence of fuzzy trajectories (t1 andt2 in Figure 3.11a) described in
casec, Opp is the set of opponents (each opponentoppi is represented by the coordi-
nates(x, y) of its position) in problemp, andµtj

∈ [0..1] is the membership function.
We consider that a point(x, y) is within a trajectorytj if µtj

(x, y) > thrt, where
thrt = 0.367. The free path function could indicate the degree of path freedom using
µ directly, instead ofφ. In other words, we could define it as a fuzzy function as well.

Opponent’s Similarity

Opponents on the field are modeled by means of elliptical regions as defined in Sec-
tion 3.1. The opponent’s similarity measure indicates the number of these regions that
are occupied by at least one opponent described in the problem to solve. We call them
restrictions. As more restrictions are satisfied, the more similar the state of the game
and the case description are. Figure 3.11a shows an example where only one restriction
is fulfilled, since only one region (reg1) is occupied by at least one opponent. We define
the opponent similarity function between a problemp and a casec as:

simopp(p, c) = |{regj | regj ∈ Reg, ∃oppi ∈ Opp (Ωregj
(oppi) > thropp)}|

Ωregj
(oppi) = G(xi − xj , yi − yj) = exp

(

−

[

(xi − xj

τ j
x

)2

+
(yi − yj

τ j
y

)2
])

whereReg is the set of elliptic regions in casec (reg1 andreg2 in Figure 3.11a) and
Opp is the set of opponents (oppi is represented by the coordinates(xi, yi) of its po-
sition) described in problemp. Each regionregj is defined by an ellipse with radius
τ j
x andτ j

y centered in(xj , yj) (the opponent’s scope indicated in the case as defined in
Section 3.1.3). We defineΩ as a 2D Gaussian function, where the projection on theXY
plane forΩ(x, y) = 0.367 corresponds to an elliptical region on the field with radiusτ j

x

andτ j
y . Thus, to consider that an opponent is within a given region we set the threshold

50

thropp to 0.367. Once again, in this work we only consider if an opponent is within a
region or not, but we could use the degree of occupation of a given region instead.

We must notice that although this measure is not crucial for the selection of a case
as a candidate (as we describe in the next section), its importance lies in the candidate
cases sorting process in order to select the best one. While the free path function is
fundamental when deciding whether a solution can be applicable or not, the opponent
similarity measure can be seen as a justification of the actions defined in the case so-
lution. Consider the example shown in Figure 3.11b. The robot in front of the ball
can either kick towards the goal (actiona1), or kick towards its right (actiona2). The
selection of one action or the other is basically given by theexistence of an opponent in
between the ball and the goal. Hence, if there is no opponent,it is clear that the most
appropriate action to achieve the robot’s objective is to kick towards the goal. But if
an opponent (a goalie) is right in front, it makes more sense to try to move to a better
position where the robot can then try some other action. Therefore, we can view the
existence of an opponent as a justification for the selected action, in this example, kick
towards the right.

3.3.4 Case Filtering

After describing the different measures, we now have to combine them to retrieve a
case to solve the current state of the game (the new problemp). Because of the real
time response requirements and the limited computational resources of the robots, we
need to reduce as much as possible the search space. Therefore, for the retrieval process,
we use a filtering mechanism. Each casec is evaluated using the measures explained
in the previous sections. A case is rejected as soon as one of the conditions is not
fulfilled, and we proceed with the next case. If a case fulfillsall the conditions, then
it becomes a candidate case. The filtering mechanism is shownin Algorithm 1. We
first verify the ball similarity between the problem and the evaluated case (line 1), i.e.
whether the current ball position is within the ball’s scopeindicated in the case (thrb =
0.367). Next, from lines 2 to 6 we check that every distance betweenthe current robots’
positions and their adapted positions (obtained after the correspondence computation
as explained in Section 3.3.2) is below the cost threshold (thrc = 1500mm). Finally,
if the ball’s path is free of opponents (line 7) then we consider the evaluated case as a
valid candidate (line 8).

After evaluating all possible cases, we obtain a set of candidates. From this set we
select only one using a sorting mechanism. The mechanism orders the candidate cases
based on a set of criterion. Thus, given a set of candidates and the problem to solvep,
each criterion orders the cases as follows:

ordered list = [ci, cj , ..., ck]

whereci, cj , ck are candidate cases, and the criteria are:

1. number of fulfilled restrictions(according to the opponent similarity): the more
restrictions satisfied, the better.

simopp(p, ci) ≥ simopp(p, cj) ≥ . . . ≥ simopp(p, ck)

51

Algorithm 1 IsCandidate(p, c)
1: if simB(Bp, Bc) > thrb then
2: for all (robotp, robotc) ∈ correspondence(p, c) do
3: if dist(robotp, robotc) > thrc then
4: return False
5: end if
6: end for
7: if free path(p, c) then
8: return True
9: else

10: return False
11: end if
12: else
13: return False
14: end if

2. number of teammates that take part in the solution of the case: we are interested
in using cases with multiple robots implied in the solution so we can obtain a co-
operative team behavior instead of an individualistic team, where only one robot
takes part in the execution of actions. Therefore, the more teammates implied in
the gameplay, the better.

numtm(ci) ≥ numtm(cj) ≥ . . . ≥ numtm(ck)

wherenumtm returns the number of teammates that take part in the case.

3. adaptation cost: the lower the cost, the better.

cost(p, ci) ≤ cost(p, cj) ≤ . . . ≤ cost(p, ck)

4. similarity: the higher the similarity, the better.

sim(p, ci) ≥ sim(p, cj) ≥ . . . ≥ sim(p, ck)

5. similarity intervals: case classification in different subsets based on their similar-
ity. In this work we classify the cases in four similarity intervals (the intervals can
be easily modified based on the requirements of the domain where the approach
is applied):

• very high similarity:H = [0.8, 1.0],

• high similarity:h = [0.6, 0.8),

• low similarity: l = [0.4, 0.6), and

• very low similarity:L = (0.0, 0.4).

52

A further sorting process within each interval based on someother criterion must
be then performed. For this work we chose the adaptation costcriterion. The
goal of the similarity intervals is to have a trade-off between the similarity and
the adaptation cost. Having a case with high similarity is asimportant as having
cases with low cost. Therefore, even if the similarity is very high, if its cost is
also too high, it is more interesting to select a less similarcase within the same
interval, but with lower cost.

Finally we obtain a flat1 list:

ordered list = flat([intH , inth, intl, intL]) = [ci, cj , ..., ck]

whereints = [ci, cj , ...] is an ordered list of cases based on the cost criterion,
s ∈ {H,h, l, L} stands for the similarity interval, and flat is a function that returns
a flat list.

Although we have presented five criteria to sort the candidates, the designer may
freely create any other alternative criterion that fits better to the domain the approach
is focused on. The next decision point is whether the candidates ranking is based on a
single criterion or based on a set of criteria. In the latter case, the designer not only has
to select which criteria to use, but also the order in which each criterion will be applied.

Finally, after sorting the candidates, either based on a single criterion or using mul-
tiple criteria, the most adequate case to retrieve corresponds to the first element of the
ordered list:

ret case = first(ordered list)

The overall retrieval process is presented in Algorithm 2. Its inputs are the problem to
solve,p, and the case base,CB.

Algorithm 2 Retrieve(p,CB)
1: for c in CB do
2: if IsCandidate(p, c) then
3: candidates← append(c, candidates)
4: end if
5: end for
6: ordered list← sort(candidates)
7: ret case← first(ordered list)
8: return ret case

In this work we opted to employ the combination of the five criteria previously
described in the sorting process. Hence, we must decide which combination is the most
appropriate to use in this domain, i.e. in which order to apply each individual criterion.
In the next section we study different candidate sorting functions varying the order of
the criteria used to rank the cases.

1We define a flat list as a list with one single level, i.e. no nested lists.

53

3.3.5 Experiments

The goal of the experimentation is to determine the most suitable criteria sequence
to employ when sorting the candidate cases obtained after the filtering process. To
this end, we defined three sequences that apply the differentcriteria described in the
previous section in the following order:

• sorting function 1:

1. number of teammates

2. similarity intervals

3. number of fulfilled restrictions

4. adaptation cost

5. similarity

• sorting function 2:

1. number of fulfilled restrictions

2. number of teammates

3. similarity intervals

4. adaptation cost

5. similarity

• sorting function 3:

1. number of teammates

2. number of fulfilled restrictions

3. similarity intervals

4. adaptation cost

5. similarity

The experiments are performed in simulation only. The case base is composed of
33 hand coded cases (hence, 132 cases in total after the generation of their symmetric
cases). The cases can be classified as single or multiple. Theformer refers to those cases
where only one robot takes part of the case, while the latter,cases where two robots take
part of the case. Furthermore, cases can also be grouped based on the regions of the
field they cover and the purpose of the case. Hence, we organize the cases as follows:

• back of the field (with or without opponents)

• middle of the field (with or without opponents)

• side of the field (with or without opponents)

• corner of the field (with or without opponents)

• in front of the goal (with or without goalie)

54

(a) (b) (c)

Figure 3.12: From left to right scenarios 1, 2 and 3 used during the experimentation.

• in diagonal of the goal (with or without goalie)

A trial starts positioning the robots (two robots from one team, and a goalie as an
opponent) and the ball in a fixed location. Next, the robots from the same team start
playing using the CBR approach, i.e. retrieving cases and executing their solutions (we
detail the reuse step in Chapter 4), while the goalie randomly moves within its penalty
box. The aim of the robots performing the CBR approach is to score a goal. A trial
ends when either the ball goes out of the field or the goalie touches it.

Each experiment consists of 500 trials using the same sorting function and the same
layout, i.e. initial positions of robots and ball. Figure 3.12 depicts the three scenarios
we designed for the experimentation. Each experiment is repeated for every scenario
and every sorting function defined previously. In this experimentation stage we are
not interested in evaluating the outcome of the trial in terms of goals scored, goals
stopped, etc., but in observing the behavior of the sorting criteria defined above based
on the cases they propose as solutions to the different states of the game. Therefore,
we computed two measures: number of different retrieved cases during a complete
experiment (500 trials), and the average time for a trial to finish. Table 3.3 summarizes
the results obtained for each configuration. We have also computed the number of cases
retrieved per trial and then ordered them based on this measure. Figure 3.13 plots the
outcome for the three scenarios.

We can immediately observe that the second sorting functionperforms the fastest
compared to the other two, and at the same time, makes use of less cases during the
experimentation (shown both in the table and in the figures).These two facts are directly
related since the reason why it takes less time for a trial to end and uses less cases is
because the cases retrieved with the second sorting function were more appropriate than
those retrieved by the other functions. To confirm this statement we studied the number

55

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500

fr
eq

ue
nc

y

trial

sort1
sort2
sort3

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500

fr
eq

ue
nc

y

trial

sort1
sort2
sort3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

fr
eq

ue
nc

y

trial

sort1
sort2
sort3

Figure 3.13: Trials sorted by frequency of cases retrieved in each scenario. From top to
down, scenario 1, 2 and 3.

56

scenario sort func #diff cases time (sec)

1
1 40 15.90
2 16 7.51
3 24 8.56

2
1 44 30.01
2 31 22.63
3 41 28.78

3
1 44 32.22
2 40 24.44
3 46 28.85

Table 3.3: Number of different cases reused in the experiments and average time per
trial.

of times each different case was completely executed2 by each function. Figure 3.14
depicts the most relevant outcomes for all three scenarios (for visibility reasons we
cannot show all the retrieved cases; we omitted those with very low frequency). Each
letter corresponds to a different case. After analyzing theresults in detail we conclude
that:

• In general, cases B, C, D, E, V and W are retrieved by the three functions in
every scenario. These cases correspond to situations wherea robot is in front or
at one side of the goal with or witout the goalie. It is easy to see that whenever
the robots get near the goal they would need at some point to use any of these
cases to try to score avoiding the goalie in case it was blocking the goal. Case A
is often retrieved as well in the different scenarios. This case represents a robot in
the middle front of the field having a short kick to the front. It is a very common
situation that can take place in any of the scenarios at any moment.

• Scenarios 2 and 3 present a layout where the robots are initially positioned in
the middle back of the field. Hence, it is necessary to consider cases located in
this region, as cases G, H, I, J, K and L are. As we can notice, case I has a very
high frequency in scenario 2. This is due to the fact that it isalways the first case
retrieved given the initial configuration. Thus, all trialsalways start retrieving
this case to move the ball to the front region of the field.

• Case N is noticeably frequent in scenario 3. In this situation the ball is positioned
in an edge of the field (side of the field). Once again, since it perfectly matches
the initial configuration of the scenario, this case is always retrieved when the trial
starts. The gameplay consists in passing the ball to the other robot (teammate)
and this latter kicks the ball towards the middle of the field.From that point on,
middle cases as G, H, I, J, K and L are most likely to be retrieved depending on
the location where the ball ends after the last kick.

2We do not consider cases that were aborted during their execution. The execution of a case may be
aborted when the state of the environment does not match anymorethe case retrieved, i.e. the case is no
longer applicable.

57

Figure 3.14: Case frequency for each scenario. From top to down, scenario 1, 2 and 3.

58

• In scenario 1 case O is regularly retrieved by all three functions. It corresponds to
a situation where both robots are near the goal, one near to the ball and having the
goalie in front of it blocking the ball, and the other robot onone side with a free
path to score. Hence, a pass towards the free robot is the mostsuitable action, so
it can then try to score.

• Cases P, Q, R, S, T and U are specially retrieved by functionssort1andsort3 in
all three scenarios. They correspond to cases with two robots in the middle of
the field with an opponent in front of the ball and another one to one side of it.
Therefore, the solution corresponds to a side pass (the sidefree of opponents) to
the other teammate.

Both sorting functions give the highest priority to cases with more than one robot
(criterion 2). Therefore, although a short kick could be enough to get closer to
the goal, it is not preferred because that would imply havingonly one robot in the
gameplay (individualistic behavior), instead of having a pass between teammates
(cooperative behavior). Although for many adversarial situations cooperation
among teammates is desired, in this situation is not needed since the robots are
alone in the middle of the field without any opponents near (the only opponent
is the goalie, but it remains in its penalty box). Having passes in these situations
can even be disadvantageous because the pass could fail moving the ball further
from the goal, instead of getting closer to it.

On the contrary, functionsort2first considers the number of restrictions fulfilled
(criterion 1), and then the number of players (criterion 2).Therefore, a case with
simple kick to move the ball forward and no opponents would beranked first,
while the cases mentioned above would be ranked lower because they do not
fulfill any of the restrictions, i.e. regions occupied by opponents.

• We pay special attention to the first scenario, where function sort1often retrieves
case F, while functionssort2andsort3, retrieve case X instead. In both cases the
ball is diagonally located with respect to the goal, but in the first case, there is a
goalie, while in the latter, there is not (Figure 3.11b drawsthis situation). Hence,
the main difference between both cases is the fact of having or not an opponent,
i.e. the number of fulfilled restrictions (criterion 1). As an example, consider the
situation where there is no goalie in between the ball and thegoal and that the
similarity of case F is much higher than the similarity of case X. Since function
sort1considers the restrictions fulfilled (criterion 1) after the similarity intervals
(criterion 5), it is more likely that it would retrieve case Finstead of case X. On
the contrary, the other two functions consider criterion 1 before criterion 5, and
therefore, they first maximize the number of fulfilled restrictions, and then the
similarity. Since in this example there are no opponents, retrieving case X is the
most adequate.

Summarizing, in general all three functions worked well, achieving the goal of the
experiments and retrieving the appropriate cases to move the robots in a reasonable
and expected way (first four points of the previous analysis). However, after evaluating
the experiments in more detail we can deduce that criterion 1, i.e. number of fulfilled

59

restrictions, is fundamental for ranking the cases and considering it in first place is
indispensable (mainly for the last two points discussed). Moreover, the right selection
of the case to reuse has direct impact on the time invested in successfully achieving the
goal. Therefore, we conclude that functionsort2 is the most suitable one to use in the
retrieval process for the remaining experiments of this work.

3.4 Conclusions and Future Work

In this chapter we have described the first step of the CBR cycle, i.e. the retrieval
step. To this end, we have introduced the case structure, which corresponds to features
that describe the environment, as well as derived features used during the different
computational processes of the case retrieval. We have alsoclassified the features in
two sets: controllable and non-controllable features. Thedistinction between both types
lies in the capability of the system to modify the values of the features in the problem
to solve, in order to increase their similarity with the evaluated case.

The initial case base is composed of a set of hand-coded cases. Once the case
library is loaded, it is automatically enlarged exploitingthe symmetric properties of
the case description through spatial transformations. Thecase base is divided in two
sets of cases depending on the defending goal feature, reducing the search space during
retrieval.

A case is considered as a candidate solution based on three measures: the similar-
ity measure, which corresponds to the aggregation of individual similarities; the cost
measure, which indicates the cost of modifying the controllable features; and the appli-
cability measure, which verifies if the case is applicable ornot based on the opponents’
positions in the problem to solve. This latter measure is, inturn, composed of two
different functions: the free path function that indicateswhether the ball’s trajectories
are free of opponents or not, and the opponent similarity, which is used to reinforce the
similarity between the problem and the case.

A filtering mechanism is applied to obtain a set of candidate cases to speed up the
search. These candidates are sorted based on different criteria and the first case of the
list corresponds to the retrieved case to use afterwards in the reuse step. We have shown
empirical experiments in simulation to test the efficiency of the retrieval process.

As future work, several improvements to the current model that could be addressed
are the following (although not limited to them):

• The cost function should also reflect the existence of obstacles in the robots’
paths (in this domain, obstacles correspond to opponents) to reach the adapted
positions. Thus, the cost could increase depending on the obstacles found in
the planned trajectory. However, we must not forget that in this domain we are
dealing with dynamic obstacles, and therefore, the cost at retrieval time can differ
from the cost at reuse time. In other words, while the robot moves to a given point,
the opponents also modify their locations either moving from/to the robot’s path,
altering the initial computed cost. As proposed in [57] other features that could
be considered in the cost computation are the orientation ofthe robots, velocities,
etc.

60

• As already mentioned in Section 3.3.3 we could make use of thefuzzy represen-
tations of the free path function and the opponent similarity function instead of
the boolean function used in the current model. Hence, the retrieval step would
be more flexible when considering the applicability of a case.

• Cases may only differ in their solution description. The retrieval process pre-
sented in this chapter only evaluates cases based on their problem description.
Therefore, two cases may result with the same ranking score.In order to dis-
criminate between similar cases, probably the outcome evaluation of the reused
solution should be introduced in the case description. The problem here is how to
evaluate the outcome of the reused case, i.e. how well the execution of the case
was performed? Is the outcome altered due to external factors (because of the
world dynamics) or not?

• Through time, cases are retrieved and reused one after another. After the exe-
cution of a given case, there is a correlation between the last reused case and
the candidate cases of the following retrieval step. Thus, if the last reused case
corresponded to a given region of the field, it is most likely that cases within or
near that region will be considered as candidate cases in thenext retrieval step.
On the contrary, cases describing situations in further locations, are less probably
to have any similarity with the current state. We believe, then, that it would be
interesting to include these relations in the case description. A simple way is to
maintain for each caseci, a list of cases that were retrieved after its execution
(of caseci). Those cases in the list with higher frequency correspond to the most
likely cases to retrieve in the next CBR cycle. With this information we could re-
duce the search space, and instead of looking in the whole case base, the retrieval
step could first center the search to a subset of cases. If no case were found, then
it should search in the remaining of the case base. Moreover,we could obtain
sequences of linked cases, where given a case indicates the most probable next
case to retrieve, and in turn, this latter indicates its nextprobable case to retrieve,
and so on. Thus, patterns of cases can be obtained and analyzed afterwards for
instance to evaluate the overall behavior of the team, or used as predictions of
future states.

61

Chapter 4

Case Reuse through a
Multi-Robot System

We focus this chapter on the second step of the Case-Based Reasoning approach: the
reuse step. In the previous chapter we described the retrieval step, including the case
definition, the different measures used for computing the case similarity, and the re-
trieval process itself. Hence, after obtaining the retrieved case, we must center our
attention on how to reuse this case.

In most case-based applications the reuse step consist in proposing a solution (or
adapted solution) to the user who would then make use of this information as she re-
quires it. In this work, the user querying the case-based system is not a single user, but
a team of robots. The solution proposed by the system consists of a set of sequences
of actions that each robot of the team should reuse (execute). Moreover, the execution
must be done in a coordinated manner.

The first part of the chapter is devoted to the internal robot’s architecture, while the
second one is focused on the multi-robot system, the coordination mechanism and the
case reuse. More precisely, we describe how we have integrated the retrieval and reuse
steps of the CBR approach within a team of robots.

4.1 Robot Architecture

We define our robot architecture as a hybrid architecture with three layers (Figure 4.1):

• deliberative system, in charge of making the high level decisions. Two modules
coexist in this layer: the case-based reasoning engine (CBRmodule), and the
region-based algorithm (RBA module).

• executive system, responsible for the execution of plans or actions indicated by
the deliberative system. The system is composed of the behaviors module and
the perception module.

63

motors

perception

state
world

RBA

no ca
se

RTM

CB

RUM

camera
w

or
ld

 s
ta

te

co
m

m
an

ds

behaviors

CBR

A
C

T
U

A
T

O
R

S
/

S
E

N
S

O
R

S
S

Y
S

T
E

M
D

E
LI

B
E

R
A

T
IV

E
E

X
E

C
U

T
IV

E
S

Y
S

T
E

M

im
ag

es

msg

msg

w
ire

le
ss

 la
n

behi

behj

behk

be
h

i

be
h

i

Figure 4.1: Robot architecture.

• actuators/sensors: they correspond to the physical components of the robot.
Thus, the motors (legs, head and neck) correspond to the actuators, and the cam-
era correspond to the sensors. The actuators receive the lowlevel commands
from the executive system, i.e. from the behaviors, while the camera sends the
images to the perception module.

We also include the communication channel between the internal robot architecture
and the rest of the robots, i.e. the wireless lan. Robots are constantly exchanging
messages among them. Two main types of messages are transmitted:

• periodical messages, which contain information about the robot’s beliefs and
state, such as teammate’s Id, teammate’s position, distance to the ball, etc.

• explicit messages, which are used to transmit specific information, such as an
ABORT message.

The periodical information is included in the current robot’s world model, while the
specific information is queried by the specific modules that are expecting it. The mod-
ules are also able to send messages to the remaining robots.

Most part of the implementation of this architecture has been realized using the
Carnegie Mellon’s team code, CMDash’06. More precisely, wehave used the executive

64

system and the RBA module. We have extended their implementation to include the
CBR module and its relation with the rest of the architecture.

4.1.1 Deliberative System

As many other robot architectures, the deliberative systemis in charge of making the
high level decisions in order to achieve a given goal. Moreover, in our work the system
is composed of two hierarchical modules: the CBR module and the RBA module.

CBR Module

The CBR module contains the Case-Based Reasoning system. Itis in charge of propos-
ing a solution for the current state of the game and monitoring its execution afterwards,
i.e. it is responsible for the case retrieval and the case reuse. Hence, this module is com-
posed of two components: the retrieve module (RTM) and the reuse module (RUM).
Since both components need access to the case base, we also include it in the module.

The retrieval process defined in Section 3.3 takes place in the retrieve module
(RTM). Hence, given the current state of the game (the world model obtained through
the perception module), the RTM proposes a case as a solutionto that problem. It not
only indicates the case identifier to the reuse module, but also the matching between
robots (so each robot knows which sequence of actions indicated in the case to per-
form).

The reuse module (RUM) is triggered when it receives the information about the
retrieved case: the case identifier and the robots’ correspondence. It is in charge of
first moving the robot towards its adapted position, and next, executing and monitoring
the sequence of actions indicated in the retrieved case. If at any point, the case is
not applicable anymore (we must recall that we are working ina dynamic domain and
therefore, the state changes constantly), then the execution of the case is aborted. We
will go through the reuse step in more detail in the next section since it implies the
multi-robot system and we first need to define some new concepts before continuing
with the reuse description.

RBA Module

The region-based algorithm (RBA) is a general behavior-based algorithm that activates
different behaviors based on the region of the field where theball is located at a given
time. It could be seen as a rule-based approach combined witha decision tree algorithm.
Each rule corresponds to a region of the field. Thus, it definesa small set of rules of
type: if ball in region regi, then apply behaviorbehi. Each behavior is defined as a
procedural process where typically the robot will first approach the ball, and then based
on a decision tree, it will try either to get closer to the attacking goal or to score if it is
close enough to the goal.

The RBA also includes an implicit coordination mechanism toavoid having the
robots go after the ball at the same time. Thus, when a robot possesses the ball, it
informs the others so they move away from its path. In general, the robots back up
from their current positions on the field. The algorithm alsoincludes a set of roles that

65

are assigned to each robot so they cover different regions ofthe field. For instance, a
defender stays at the back of the field, while a striker remains in the front of the field
waiting for an opportunity to attack when the ball gets within its region.

Combining the Modules

As we can see, the region-based approach describes a generalplayer’s behavior taking
into account only local information for fast and reactive response to the current state
of the world. In other words, although it has some degree of deliberation, it still lacks
a broader view of the state of the game to try to achieve more ambitious strategies
including collective actions with teammates. It is mainly focused on taking the ball and
moving towards the attacking goal in an individualistic way, which of course, is also
beneficial for certain situations where a fast attack is fundamental.

On the contrary, the case-based approach uses a more complete model of the state
of the world considering, not only the ball’s position, but also other aspects such as
the positions of all the robots and evaluating the appropriateness of executing a set of
actions.

Hence, in the proposed deliberative system we combine both strategies, a more
deliberative one (the CBR approach) with a more general and reactive one (the RBA
approach), in a way that the latter one is triggered only whenthe former does not find
an appropriate solution for the current problem, i.e. thereis no case that matches the
current problem well enough to be of use.

4.1.2 Executive System

This system is responsible for the execution of the actions indicated by the deliberative
system (in this case the actions correspond to behaviors), and the world model genera-
tion.

A behavior is a sequence of actions that a robot executes to perform a task. There
is a wide range of behaviors, varying from very simple tasks,such as “walk forward”,
to very complex ones, such as “move away from ball”. Usually complex behaviors
are compositions of simpler behaviors, or make use of them for specific substasks, i.e.
they have a hierarchical structure. For instance, in the “move away from ball” behavior,
the high level behavior must constantly know the position ofthe ball. Hence, it makes
use of the “track ball” low level behavior. In general all behaviors, except for the very
simple ones, make use of the world model to know where the robots and the ball are
located on the field.

The perception module is in charge of building the world model of the robot, i.e.
the robot’s beliefs of the state of the world (its position, the ball’s position, etc.). Al-
though the perception system is much more complex than the one we show here, for
the purpose of this work we note two main sources of incoming information from the
outside world: the images from the camera and the messages sent by other robots. The
module processes the images sent by the camera and infers thestate of the world (ob-
jects positions). It also incorporates the incoming information from the teammates, i.e.
the messages sent through the wireless network. Hence, the world model of the robot
not only considers its own perception, but the teammates’ perceptions as well.

66

CB

perception action

CB

perception action

CB

actionperception

MSG
MSG

MSG

retriever2

retriever1 robot3

Figure 4.2: Multi-robot system forn = 3 robots andk = 2 retrievers. Each robot has
a library of cases (CB).

4.2 Multi-Robot System and Case Reuse

After detailing the internal robots’ architecture, we nextdescribe the architecture for
our multi-robot system integrating the retrieval and reusesteps of the CBR approach.

The multi-robot system is composed ofn robots. All robots interact with the en-
vironment and with each other, i.e. they perceive the world,they perform actions and
they send messages (MSG) to each other to coordinate (e.g. retrieved case, match, abort
execution,...) and to exchange information about their internal state (e.g. retrieving,
adapting, reusing,...). There is no external system observing the complete environment
where the robots execute their tasks, nor a centralized system to collect the incoming
information from the robots to make decisions and to organize the task. Therefore,
the team as a whole must decide how to fulfill the task collaborating with each other,
or even exchanging useful information that some of the robots of the team may not
perceive. This characteristic is common in those domains where human access is not
feasible, and therefore, installing a centralized system is impracticable. Some examples
of such systems are planetary explorations or disaster rescue operations.

We distinguish a subset ofk (1 ≤ k ≤ n) robots, calledretrievers. These robots are
capable of retrieving cases as new problems arise. We refer as executorsto the rest of
the robots, i.e. those that are not retrieves and are only capable of reusing the solution
of cases. All robots, retrievers and executors, have a copy of the same case base so they
can gather the information needed during the case reuse. Figure 4.2 shows the described
multi-robot system.

Given a new problem to solve, the first step of the process is todecide which of the
retriever robots is going to actually retrieve a case to solve it (since only one case can
be reused at a time). The most appropriate robot to perform this task should be the one
that has the most accurate information about the environment. From the set of features
described in a case, the only feature that might have different values from one robot
to another is the ball’s position. Moreover, this is the mostimportant feature in order
to retrieve the correct case and we must ensure as less uncertainty as possible. The
remaining features are either common to all the robots, i.e.robots’ positions, or given
by an external system, i.e. defending goal, the score and time of the game. Therefore,

67

coordinator
select

retrieve case

wait
(beh)

reuse case

coord id
MSG

MSG

ret_case

ret_case

me

not
me start

start

coord id

end/abort case
RTM RUM

(a)

wait
(beh)

reuse case

ret_case

start

end/abort case

MSG

MSG

RTM RUM

(b)

Figure 4.3: Finite state machine for (a) theretriever robots and (b) theexecutorrobots.
Solid arrows indicate transitions, while dashed ones correspond to messages sent be-
tween robots.

we propose that the robot retrieving the case should be the closest to the ball, since
its information will be the most accurate (the further a robot is from an object, the
higher the uncertainty about the object’s information). From now on, we will refer to
this robot as thecoordinator. While the selected coordinator is retrieving a case, the
remaining robots wait (either remaining in their current positions or performing some
other behavior). Figure 4.3 depicts the finite state machines for the retriever robots and
for the executor robots.

Since we are working with a distributed system, the robots may have different in-
formation about each other at a given time. Their beliefs about the state of the world
are constantly updated. They are also constantly sending messages about their current
internal beliefs (robot’s Id, position, ball’s position, etc.) to the rest of the robots. As
a consequence, we cannot ensure that all robots agree on who is the one closest to the
ball at a given time. To solve this issue, only one robot is responsible for selecting the
coordinator. In order to have a robust system (robots may crash, or be removed due
to a penalty), the robot performing this task is always the one with lower Id among
those present in the game (since each robot has a unique fixed Id). Once it selects the
coordinator, it sends a message to all the robots indicatingthe Id of the new coordinator.

68

ADAPT EXECUTEWAIT AT POS

WAIT END
(beh)

M
S

G
_A

B
O

R
T

at pos

M
S

G
_A

B
O

R
T

all
ready**

timeout/aborttimeout/abort
end execution

M
S

G
_A

B
O

R
T

ab
or

t

ready*

not in case

Figure 4.4: Finite state machine for the case execution (*independent positioning strat-
egy, **dependent positioning strategy).

After the coordinator is selected, it retrieves a case according to the process de-
scribed in Section 3.3.4 and informs the rest of the team the case to reuse. It also
informs the correspondences between the robots in the current problem and the robots
in the retrieved case (so they know what actions to execute accessing their case bases.
The correspondences are obtained following the procedure detailed in Section 3.3.2).
This process takes place in the RTM module of the robot’s internal architecture.

Then the case execution begins. Figure 4.4 describes the finite state machine for the
case reuse process (corresponding to the RUM module within the robot’s architecture).
First, all robots that take part of the solution of the case start moving to their adapted
positions (ADAPT state). As explained in Section 3.3.2 these positions correspond
to relative positions indicated in the case with respect to the current ball’s position.
Hence, a robot can easily derive the location where it shouldmove using the matching
information transmitted by the coordinator. The robots that do not take part of the case
reuse remain in the WAIT END state (either waiting at their positions or performing an
alternative behavior) until the execution ends. At this point we can choose between two
strategies:

• independent positioning: the robots move towards their adapted positions inde-
pendently from each other until reaching it. Once they reachtheir adapted po-
sitions, they send a message to the coordinator. In this case, the coordinator is
in charge of receiving the messages from the robots indicating they are at their
adapted positions, and then sending a message to all the robots to start executing
the gameplay. Hence, the case reuse only starts when all robots arrive to their
initial positions.

In Figure 4.4 this strategy would correspond to the WAIT AT POS state and
switching to the EXECUTE state when all robots are ready waiting at their
adapted positions.

• dependent positioning: the robots do not have to wait for all robots to reach their
adapted positions. As we described in Section 3.1.2, there is always a robot that
goes first to get the ball. All robots know who this robot is andalso know in

69

A B

Figure 4.5: Kick adaptation during the case reuse. The arrowrepresents the ball direc-
tion indicated in the case. Thus, robot A should perform a left kick, while robot B, a
right kick.

which state all robots are (adapting, reusing, waiting, etc.). Hence, they only wait
for this robot to arrive to its adapted position and immediately start executing the
gameplay, even if they have not reached their own adapted positions yet. In other
words, the robots’ positioning depends on a given robot (i.e. the one going first
to the ball).

In the finite state machine depicted in Figure 4.4 the robot can either transit from
the ADAPT state or the WAIT AT POS state to the EXECUTE state when the
robot getting the ball first has already reached its adapted position. In the former
situation, switching from the ADAPT state, the robot is still moving towards its
adapted position when the transition takes place. In the latter situation, switching
from the WAIT AT POS state, the robot has reached its adapted position but the
robot getting the ball first has not yet.

In an adversarial game domain, as the one this work is focusedon, we realized
that it is more advantageous to use the dependent strategy than the independent one.
Otherwise, while the robots are all moving to their adapted positions, the opponents
may steal the ball. An independent strategy is more convenient to use in other domains
where reaching the initial positions of all robots is crucial to successfully fulfill the task.

Either using the independent or the dependent positioning strategy, the execution of
the solution of a case starts (state EXECUTE in Figure 4.4) and all robots perform their
sequences of actions. Each action corresponds to a behaviorin the executive system
(Figure 4.1). A last adaptation process takes place when theaction corresponds to a
kick. In this case, depending on the direction from where therobot reaches the ball,
the robot might perform the symmetric of the kick indicated in the case solution to
move the ball towards the expected direction. Figure 4.5 shows an example. As we can
observe, the kick varies if the robot is coming from the front(situation described by
robot A in the figure) or from the back (robot B representationin the figure) of the ball.
The execution continues until all robots finish their sequences of actions.

Finally, they report to the coordinator that they finished the execution and wait for
the rest of the robots to end (WAIT END state in Figure 4.4). Inthis state the robots may
perform some other behavior while waiting for the other robots to end the execution.

70

When the coordinator receives all messages, it informs the robots so they all go back
to the initial state of the process, i.e. selecting a new coordinator, retrieving a case and
executing its solution.

The execution of a case may be aborted at any moment when any ofthe following
situations occur:

• Any of the robots detects that the retrieved case is not applicable anymore. Once
the execution of a case has started, we consider a case to be applicable if the re-
maining ball’s path is still free, i.e. there are no opponents within the trajectories
the ball is about to follow.

• A robot receives an unexpected message. Because of the noisein the wireless
network, a message can be delayed or even get lost. Hence, when a message
arrives and it is not coherent with the current case reuse state, we opt for aborting
the current case execution. Although we are aware that it is adrastic solution,
due to the domain requirements (real time response and limited computational
capacities), we believe that it is more suitable since it is asimple and fast tactic.

• A timeout occurs. We include timeouts for the states ADAPT and EXECUTE
since we want to make sure that the case reuse is not going to take too long. In
general this situation occurs when a robot does not receive all necessary messages
or its perception fails. The former situation could cause the robot to remain in
a state infinitely, while the latter could lead the robot to search for the ball in a
wrong location, lengthening the behavior execution.

In any case, the robot detecting the exceptional situation sends an aborting message
to the rest of the robots so that they all stop executing theiractions. Then, they once
again go back to the initial state in order to restart the process, i.e. select a coordina-
tor, retrieve a case and reuse it. We must remark that most of the aborting situations
occur due to the first situation (case applicability), whilethe remaining ones are mainly
defined to ensure robustness in case of system failure and arenot so common.

4.3 Conclusions and Future Work

This chapter has been addressed to the internal architecture of a robot, as well as the
multi-robot architecture of the team. Regarding the robot’s internal architecture we
have proposed a hybrid architecture, where the deliberative layer is responsible for
the high level decision-making, i.e. the combination of theCBR reasoning system
and a region-based algorithm, while the executive layer controls the execution of the
behaviors proposed by the deliberative layer.

Within the multi-robot architecture we define two types of robots: the retrievers,
who include the CBR system and therefore are in charge of proposing cases, and the
executors, who only execute the cases indicated by the retrievers, i.e. cannot propose
solutions to the current state of the world. In order to determine the next case to reuse,
a coordinator is selected among the retrievers based on their distances to the ball. After
the coordinator is chosen, it retrieves a case and informs the rest of the team (retrievers

71

and executors). At this point the reuse step of the case starts. Two positioning strategies
have been proposed to start the execution of the actions indicated in the case. During
the case reuse, any robot (retriever or executor) may abort the case reuse if it considers
that the case is not applicable anymore.

As future work we propose to improve the case selection for reuse. Each retriever
may propose a different case based on its internal beliefs ofthe state of the world.
Hence, a negotiation protocol could be included to decide which is the most suitable
retrieved case to reuse. This way we provide the team with a more cooperative mecha-
nism where all robots participate in the global decision-making and the achievement of
the goals of the team.

72

Chapter 5

Learning the Scopes of Cases

The case base is the most fundamental component of a case-based reasoning system
since it provides the domain knowledge of the reasoner, and therefore, determines the
system’s accuracy performance. As Ram states in [50], a reasoner program may fail
on finding the right solution, if any, due to incomplete knowledge in the system. More
precisely, he detects three sources for gaps in the system’sknowledge: (i) novel situa-
tions, there is no case to solve the new problem, (ii) mis-indexed cases, although there
might be a case in the case library to solve the new problem, the system is not able to
retrieve it because of mistaken case indexation, and (iii) incorrect or incomplete case,
the situation represented by the case may not be completely understood, and thus, the
case is incorrect or incomplete. The work we present in this chapter is mainly addressed
to knowledge adaptation, i.e. incorrect or incomplete cases (sourceiii), and initial steps
for knowledge acquisition, i.e. novel situations (sourcei):

• knowledge adaptation: the perception of the expert providing the initial knowl-
edge to the reasoner may largely vary from the perception of the reasoner. This
a very common situation when the reasoning system is appliedin the real world
and depends on the system’s sensors accuracy. Hence, although the knowledge
provided to the reasoner might be “correct”, from its point of view it is not. For
this reason, an adaptation of the knowledge, in this case thecase base, is neces-
sary to achieve a correct performance of the reasoning system.

A second reason for including a mechanism for adapting the reasoner’s knowl-
edge is that the environment may change (either gradually evolving or being sud-
denly altered) through time. Hence, the initial knowledge may become useless
degrading the performance of the system.

• knowledge acquisition: although the expert may try to provide the necessary
knowledge to the reasoner, she may miss some situations, andtherefore, gen-
erate gaps in the system’s knowledge. Besides, again related to the changes in
the environment through time mentioned above, it is most likely that the expert
cannot predict all future situations the reasoning system will have to deal with.
Thus, to overcome these situations, it is fundamental for the system to automati-
cally incorporate knowledge to cover these gaps.

73

In this chapter we present a first attempt to automate the adaptation and acquisition
of the case-based reasoning system’s knowledge with respect to the scope of a case, i.e.
the case coverage. The motivations for studying an algorithm that allows the automation
of this process in the working domain are:

1. because of the nature of the domain this work is focused on (real robots with high
uncertainty in its perception), we believe that it is fundamental that the knowledge
of the reasoner system corresponds to its actual perception, and not only to the
expert’s one;

2. the opponents of a game are part of the environment the reasoner system is deal-
ing with. If we consider the opponent’s strategy as part of the environment, it
is easy to see that the environment may radically vary based on the strategy the
opponents apply during a game, i.e. a change in the opponent’s strategy (even
more, changing opponents) implies a modification on the environment. Hence,
it is essential to provide the reasoning system with an engine to alter its current
knowledge through adaptation. This adaptation may lead to gaps in the knowl-
edge, and therefore, introducing new cases to cover these gaps is crucial.

Thus, we propose a supervised learning algorithm for the adaptation of the knowledge
of the reasoning system. More precisely, we focus the algorithm on learning the ball’s
scope of a case (which matches with the case scope), althoughthe concepts and mech-
anisms presented here can be equally applied to the opponents’ scopes.

The idea is to provide the robot with a set of cases which must be adapted to its
actual perception. The expert knows several generic situations (prototypical cases) and
their corresponding solutions, but cannot predict the realscope of the cases from the
robot’s point of view. The learning starts with a classification task, where the robot
classifies the problems proposed by the expert with respect to the available cases in the
case library (every case corresponds to a different class).If a class is returned, i.e. a
case, then the robot adjusts the case scope based on the feedback classification. Ideally,
this feedback could be automatically inferred by the robot itself after observing the
outcome of its actions, but this is a far more complex task that we do not address in this
work. On the contrary, if no class is returned, then it means that there is a gap in the
case library. Thus, an automatic mechanism for creating newcases should be included
in the system. Once a case is created, the system must determine the case coverage, i.e.
the case scope. At this point, the adaptation process presented in this chapter can be
applied.

The chapter is organized as follows. We first introduce the learning algorithm for
adapting the case scope, i.e. when and how to modify the scope. Next, we present a
simple mechanism to introduce new cases when no solution is found. Experiments to
show the effectiveness of the leanring algorithm follow next, and finally, conclusions
and future work conclude the chapter.

5.1 Scope Adaptation Algorithm

The adaptation mechanism is addressed to existing cases, and does not deal with gaps
in the case library. As we have described in Section 3.1.3, the ball’s scope is defined

74

p1

τx

τyp3

p2

b
τx

τy

1
2
τx

3
4
τy

p3

p2

p1

b

(a) (b)

Figure 5.1: Case scope representation. The center of the ellipse,b, corresponds to the
ball’s position indicated in the case, while problemsp1, p2 andp3 are the problems to
classify. (a) Graphical similarity evaluation of three problem examples. (b) Example of
the security region (gray region) and the risk region (whiteregion) of a case defined by
γx = 0.5 andγy = 0.75.

by an ellipse with radiusτB
x andτB

y . Since we are focusing this section on learning the
ball’s scope, for simplicity we will generalize the conceptof ball’s scope to the scope
of the case and omit the superindexB in the τ parameters. Moreover, henceforward
we will refer to the scope of the case, either as the scope or the ellipse. The algorithm
consists in updating the size of the cases scopes varying their τ parameters, i.e. the radii
of the ellipse. To this end, we must define a policy to determine when and how these
parameters should be adjusted given the expert’s feedback.

The center of the ellipse represents the position of the ball(b) on the field specified
in that case. As we move towards the boundary of the ellipse, the uncertainty about
whether the points belong to the scope of the case increases.The points next to the
boundary of the ellipse represent higher degree of uncertainty. Figure 5.1a depicts the
scope of a caseci and three problems to classify. Problemsp1 andp2 are similar to the
case, i.e. they belong to the classci, since they are within its scope, althoughp1 with
higher similarity degree compared top2 (since it is closer to the center of the scope).
In contrast,p3 is out of the scope, and therefore we do not consider it similar to the
case, i.e. it does not belong to classci. If two cases overlap their scopes, a problem
may belong to one or more classes, i.e. the problem to classify has some similarity
degree with both cases. Thus, the outcome of the classification corresponds to the class
with higher similarity. The similarity is computed with thegaussian function presented
in 3.3.1.

5.1.1 When to Adjust the Values

The goal of increasing or decreasing the size of the ellipse is to reach the expected
region that a case should cover. The expected region corresponds to the region that the
expert believes the case should cover. We callsecurity regionthe set of points next
to the center of the ellipse, andrisk regionthose near the boundary of the ellipse. We
defineγx andγy as the proportion of radiusτx andτy that corresponds to the security

75

region (whereγx ∈ [0, 1] andγy ∈ [0, 1]). Figure 5.1b shows an example of these two
regions. Problemp1 is within the security region, while problemp2 is within the risk
region of the case scope.

When the system classifies a new problem, i.e. returns a casec to which the prob-
lem belongs with higher similarity degree, we use the expert’s feedback for tuning the
scope’s parametersτx andτy of that case. If the proposed case is correct, the scope of
the case is increased. Otherwise, it is decreased.

• Increasing the scope: If the problem is located within the security region (i.e. the
position of the ball is in this region) the system cannot introduce new knowledge
to casec. Its current information is robust enough to determine thatthe problem
corresponds to the scope of that case. On the contrary, if theproblem is inside the
risk region the system can confirm that the current scope of the case is correct.
Thus, we increase the size of the ellipse modifying the scope’s parameters to (i)
enlarge the security region and (ii) to evaluate a bigger scope of the case. Since
the security region is computed as a proportion of the ellipse size, expanding the
ellipse results in expanding this region as well.

• Decreasing the scope: A problem is incorrectly classified using casec because
of its scope overestimation. Hence, we have to reduce the size of the ellipse. If
the ball is inside the security region, we do not decrease theparameters since
it corresponds to a robust region. If the problem is within this region and the
feedback is negative, we assume that the error is originatedby other reasons
(wrong localization) and not because of wrong information of the case. Suppose
the following situation: the robot is not well localized andas a consequence, it
perceives the ball in a wrong position. It could happen that it correctly classifies
the problem given its own perception. But from the external observer perception,
the returned case that classifies that problem is not the right one. Therefore,
the feedback given to the robot is negative. If the system reduces the ellipse, it
could radically reduce the scope of the case, not because it was overestimated,
but because of the high uncertainty in the robot’s perception. However, when the
problem is inside the risk region, the system does reduce thescope of the case,
since the scope overestimation might be the cause of the negative feedback.

In summary, the adaptation algorithm enlarges or reduces the scope of a case when
the problem to solve is correctly or incorrectly solved and it is within the case’s risk
region.

5.1.2 How to Adjust the Values

After describing when to enlarge or reduce the scope of a case, we will now detail how
to update theτ parameters, or in other words, how much to increase or decrease them.
First we introduce some notation. Given a new problemp to classify, and given the case
(class)c that classifies that problem at timet, we define:

• δ̂x, δ̂y: the maximum increasing values forτx andτy respectively. These values
are assigned by the expert.

76

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1
 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

(a) (b) (c)

Figure 5.2: Increasing policy functions,finc, with δ̂ = 10 and γ = 0.5: (a) step
function, (b) linear function, and (c) polynomial function.

• δt
x, δt

y: the actual increasing values forτ t
x and τ t

y respectively. These are the
values to compute.

• △t
x,△t

y: the relative distances between problemp and the center of the case
scopec, i.e. the ball’s position described in the case:

△t
x = px − bx △t

y = py − by

wherepx andpy correspond to the ball’s coordinates in the problem andbx and
by, the ball’s coordinates in the case.

In order to compute theδt
x, δt

y values for adjusting theτ t values at timet we pro-
pose three increasing policy functions,finc (henceforward we will refer to them as the
policies):

• fixed: the increasing amount is a fixed value. Thus, we define a step function
(Figure 5.2a):

δt
x =

{

δ̂x if γxτ t
x ≤ △

t
x ≤ τ t

x

0 otherwise
δt
y =

{

δ̂y if γyτ t
y ≤ △

t
y ≤ τ t

y

0 otherwise

• linear: we compute the increasing value based on a linear function (Figure 5.2b):

δt
x =

{

△
t
x−γxτt

x

τt
x−γxτt

x
· δ̂x if γxτ t

x ≤ △
t
x ≤ τ t

x

0 otherwise

δy =

{

△
t
y−γyτt

y

τt
y−γyτt

y
· δ̂y if γyτ t

y ≤ △
t
y ≤ τ t

y

0 otherwise

• polynomial: we compute the increasing value based on a polynomial function
(Figure 5.2c):

δt
x =

{

(△t
x−γxτt

x)5

(τt
x−γxτt

x)5 · δ̂x if γxτ t
x ≤ △

t
x ≤ τ t

x

0 otherwise

77

δt
y =

{

(△t
y−γyτt

y)5

(τt
y−γyτt

y)5 · δ̂x if γyτ t
y ≤ △

t
y ≤ τ t

y

0 otherwise

Once we compute the increasing values, we update the case scope:

τ t+1
x = τ t

x + δt
x τ t+1

y = τ t
y + δt

y

whereτ t+1
x andτ t+1

y represent the updated radius of the case scope.
The goal of reducing the scope of a case is to resize the ellipse so that the incorrectly

solved problem is not considered similar to the case anymore, i.e. the problem remains
outside the ellipse. We compute the new values as follows:

τ t+1
x =

{

△t
x if γxτ t

x ≤ △
t
x ≤ τ t

x

τ t
x otherwise

τ t
y + 1 =

{

△t
y if γyτ t

y ≤ △
t
y ≤ τ t

y

τ t
y otherwise

Note that we only update theτx value if the problemx component (△x) is within
the risk region. Similarly, we modify theτy if the y component (△y) is within the risk
region. Updating both values separately prevents from radically reducing the scope of
the case.

Algorithm 3 UpdateScope(p, c, feedback,finc, γx, γy, δ̂x, δ̂y)

1: if p∈ risk region(c)then
2: △x ← px − bx

3: △y ← py − by

4: if feedback is TRUEthen
5: δx ← finc(△x, γx, δ̂x, τx)

6: δy ← finc(△y, γy, δ̂y, τy)
7: τx ← τx + δx

8: τy ← τy + δy

9: else
10: if △x ≥ γxτx then
11: τx ←△x

12: end if
13: if △y ≥ γyτy then
14: τy ←△y

15: end if
16: end if
17: end if

Algorithm 3 describes the overall adaptation algorithm. Given a problemp, the
casec that classifiesp, the expert’s feedback and the parameters presented above (the
increasing policy functionfinc, δ̂, andγ), the algorithm updates theτ values for re-
sizing the case scope if the problem is within the scope’s risk region (line 1). When
the feedback is positive (line 4), the algorithm increases the current size of the scope
(lines 5 to 8). Otherwise, the scope is reduced (lines 10 to 14). The process is repeated
until the expert determines that the expected scope has beenreached, i.e.the new in-
coming problems are classified with little error. Next we describe a simple example for
illustrating the algorithm.

78

(a) (b)

(d)(
)

τ 0
y

τ 0
x

τ i
y

τ i
x

τ t−1
x

τ t−1
y τ t

y

τ t
x

Figure 5.3: Case scope evolution. The dashed ellipse represents the “ideal” scope. In
gray, the security region withγx = γy = 0.8.

5.1.3 Example

Figure 5.3 depicts four steps of the adaptation process. Thegray region represents the
security region, while the dashed ellipse corresponds to the expected scope of the case
(defined by the human trainer) we attempt to reach. Any problem located within this
ideal area produces a positive feedback by the expert. The black dot represents a new
solved problem (ball position with respect to the case). Figure 5.3a shows the initial
stage at time0, where the scope of the case is minimum (τ0

x , τ0
y). Since the new solved

problem is within the risk region and the feedback is positive, we proceed to enlarge the
size of the ellipse using one of the policies defined.

At time i, Figure 5.3b, we can observe that the ellipse has increased,but still has
not reached the expected size. Hence, we keep on enlarging the scope by solving new
problems as long as the expert feedback is still positive.

Figure 5.3c, timet− 1, depicts a situation where the updated ellipse is bigger than
the expected size. From now on, the feedback may be positive or negative. If a new
problem is within the risk region and the feedback is positive, then we would proceed
to increase the ellipse. But, if the feedback is negative, then the decreasing process is
used to reduce the ellipse. The figure shows an example of thissituation. As we can
see, the new problem is located within the risk region, but out of the ideal scope. Thus,
the current scope is reduced, but only updatingτx since△y < γyτy.

Figure 5.3d shows the updated scope, where the problem remains outside the scope
of the case. As more problems are solved, the scope of the casewill converge to the
ideal scope.

In conclusion, we distinguish two phases in the adaptation process: growing the

79

scope of the case, and converging to the ideal scope. During the first phase, the feedback
is always positive and the scope is always being expanded. The second phase occurs
once the expected scope is exceeded. Then, the feedback could either be positive or
negative. The goal of the first one is to enlarge the scope, while the second one, is to
converge to the ideal scope the human trainer expects.

5.2 Acquiring New Cases

After the adaptation step, the knowledge of the system mightpresent some gaps, i.e. the
scope of the cases may not cover the whole field. The coverage depends on the number
of cases used during the first learning stage. However, as we previously mentioned, the
expert cannot a priori define all possible cases. Hence, we present the first step towards
a learning mechanism to acquire new knowledge when novel situations occur and the
system does not have any case to solve them. Although with this mechanism we create
simplified cases, it is useful to guide the expert in completing the knowledge of the
system, providing support on the manual generation of the case base.

A new case is created using the description of the environment (problem description,
i.e. robot’s and ball’s position), and a generated gameplay(solution of the new case). To
create a gameplay, we provide the system a set of possible actions the robot can perform.
Hence, given a new problem to solve, if the system does not retrieve any case, i.e. the
problem does not belong to any of the classes (either due to imprecision problems or
because the problem is actually in a gap) the system randomlyselects a gameplay.
The robot executes the suggested action and the expert evaluates the correctness of the
solution proposed. Only if it succeeds, the new case is created. We are aware that
this procedure is too simplistic. But as mentioned before, at least the process provides
information to the expert regarding the coverage of the current system’s knowledge, the
case library, allowing her to afterwards improve the case description with more suitable
information.

When a new case is inserted into the system, it is created with aminimum scope
(a small ellipse). From that moment on, the evolution of the new case depends on how
often the robot reuses it, enlarging or reducing its scope using the adaptation mechanism
presented previously. The idea is that at the beginning, thenew case could seem to be a
good solution for that concrete situation, but its actual effectiveness has to be evaluated
when the robot reuses it. As time passes, if the scope of the case does not increase,
and instead, it is reduced, we can deduce that the case is not useful for the robot’s
performance. On the contrary, if its scope increases, or at least, it remains stable, then
we consider that the case contributes to the system’s knowledge.

5.3 Experiments

This section describes the experiments performed in order to test the learning algorithm
introduced above. We divide the experimentation in two stages: simulation and real
robots.

80

5.3.1 Simulation Experiments

The goal of this first phase is to determine the behavior of thepolicies using different
values for the parameters presented in Section 5.1.2. Sincewe had to test different
combinations of values, simulation was the fastest way to obtain orientative results.
The most relevant were selected for the experimentation with real robots.

We based the experiments on the adaptation of a single case toobserve how the
different values (τx,τy) computed through the learning process affect the evolution of
its scope, i.e. the resulting size of the ellipse in mm. The initial case was defined with
a small scope,τx = 100 andτy = 100. The expected outcome (“ground-truth”) was
τx = 450 andτy = 250. A trial consists of 5000 random problems which are iterated
as the input for the learning algorithm. For each trial we fix the increasing policy and
the parametersγ and δ̂. The outcome of the trial are the new learnedτ values, i.e.
the radius of the scope. An experiment consists of 10 trials with the same parameters
per trial. Since the problems are randomly generated, each trial generates a different
outcome. For every experiment we combined each policy with the following set of
values per parameter:

• security region proportion size:

γx = γy = {0.5, 0.6, 0.7, 0.8, 0.9}

• maximum increasing parameter (expressed in mm):

δ̂x = δ̂y = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

Figure 5.4 shows the average of the results obtained for the experiments performed.
Thex axis corresponds to the maximum increasing parameter,δ̂, while they axis in-
dicates the averageτ computed for each experiment. Each curve is obtained varying
the values of the security region parameter,γ. On the one hand,̂δ defines how much
the ellipse may increase at each time. Hence, the higher their values, the bigger the
resulting scope of the case. On the other hand,γ determines the size of the security
region and the risk region (low values represent small security regions and large risk
regions). The risk region determines when the scope of the case has to be modified.
As this region increases, there are more chances of modifying the scope as well. Thus,
for all three policies, the curves tend to increase from leftto right, i.e. obtaining larger
scopes (higherτ values) on the right side of the figure.

With respect to the evaluation of the policies behavior, thefixed policy obtains the
highestτ values, while the polynomial, obtains the lowest ones. The former function
has a more aggressive behavior, radically increasing the size of the ellipse always with
the maximum increment allowed. The latter function has a more conservative behavior,
computing small increments (δ’s) for problems near the boundary between the security
and the risk region, and enlarging them as the problems to solve reach the boundary of
the ellipse. We can easily observe the behavior differencesbetween all three policies
and their influence on the outcome,τx andτy, in Figure 5.5. We depict the evolution
of the learned values for a single trial witĥδ = 10 andγ = 0.5. During the converging
step of the adaptation process (region marked with a dashed rectangle) the variations of

81

 450

 500

 550

 600

 650

 700

 750

 10 20 30 40 50 60 70 80 90 100

τ x

maximum δ

0.5
0.6
0.7
0.8
0.9

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

τ y

maximum δ

0.5
0.6
0.7
0.8
0.9

(a) (b)

 450

 500

 550

 600

 650

 700

 750

 10 20 30 40 50 60 70 80 90 100

τ x

maximum δ

0.5
0.6
0.7
0.8
0.9

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

τ y

maximum δ

0.5
0.6
0.7
0.8
0.9

(c) (d)

 450

 500

 550

 600

 650

 700

 750

 10 20 30 40 50 60 70 80 90 100

τ x

maximum δ

0.5
0.6
0.7
0.8
0.9

 250

 300

 350

 400

 450

 10 20 30 40 50 60 70 80 90 100

τ y

maximum δ

0.5
0.6
0.7
0.8
0.9

(e) (f)

Figure 5.4: Resultingτx (left column) andτy (right column) using the following poli-
cies: fixed (a) and (b); linear (c) and (d); and polynomial (e)and (f). Ground truth
represented with a dashed line.

82

the radius using the fixed policy are much larger (the oscillation of theτx ranges from
450 to 760, and theτy, from 250 to 469) than the ones obtained with the polynomial
policy (theτx varies from 450 to 552, and theτy, from 250 to 326).

As a consequence of the influence of the two factors mentionedabove (i.e. the be-
havior of the policy itself and the values of theδ̂ andγ parameters used in the learning
process), the distance between the curves in Figure 5.4 using the fixed policy is signif-
icantly larger than the ones using the polynomial policy. For instance, in Figure 5.4a
the averageτx computed with the fixed policy varies on the left side (lowδ̂) from 475
to 565, and on the right side (higĥδ) from 593 to 721. On the contrary, the curves
computed with the polynomial functions (Figure 5.4e) vary on the left side from 471 to
488, and on the right side, from 515 to 534. Regarding the linear policy, we can observe
that it has an intermediate behavior between the other two (tending to behave more as
the fixed policy). Furthermore, the differences between thecurves obtained with the
fixed policy and the ground-truth (τx = 450) are much larger than the ones obtained
with the polynomial policy. As expected, we can state that the polynomial policy has a
more stable behavior compared to the fixed one, besides of achieving similar results to
the ground-truth. Figure 5.6 shows the average value ofτx andτy computed after each
problem has been classified for a specific trial (withδ̂ = 10 andγ = 0.5). It is clear
that the polynomial policy obtains the closest values to theground-truth.

The configuration that obtained the closest values to the “ideal” ones,τx = 450
andτy = 250, was: polynomial policy,γ = 0.9 andδ̂ = 10. Hence, after the experi-
mentation we can confirm that a more conservative strategy, i.e. low increasing values
and small risk regions, is the most appropriate combinationto obtain the desired scope
of the cases. This conclusion is clear when performing the experiments in a simulated
environment. But two problems arise when extending the experiments to the real world:
time and uncertainty. First, the number of iterations needed to reach the expected result
is not feasible when working with real robots; and second, a noise-free environment
is only available under simulation. Although we have observed different behaviors in
the graphics obtained when gradually modifying the parameters, these differences are
not so obvious in a real environment because other issues modify the expected result.
Therefore, the next stage is to experiment with the robot in the real world evaluating the
most relevant parameters (understanding relevant as the ones that show more contrast-
ing behaviors) to determine the effectiveness of the presented learning algorithm.

5.3.2 Real World Experiments

Two types of experiments were performed in a real environment. The first one is aimed
at finding out the most appropriate parameters and policy to use during the learning
process. The second one consists in evaluating the convergence of the cases in a given
case base, and the acquisition of a new case.

Testing the Parameters and Policies

As mentioned in the example of the learning algorithm (Section 5.1.3), we can divide
the training process in two steps: growing the scope of the case and converging to
the expected scope. We are interested in rapidly enlarging the size of the ellipse until

83

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000

τ y

Problems

(a) (b)

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000

τ y

Problems

(c) (d)

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000

τ y

Problems

(e) (f)

Figure 5.5: Single trial example of the evolution of theτx (left column) andτy (right
column) scope parameters using the following policies: fixed (a) and (b); linear (c) and
(d); and polynomial (e) and (f). The dashed rectangles contain the convergence steps
for each curve.

84

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000

τ x

Problems

fixed
linear

poly

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000

τ y

Problems

fixed
linear

poly

(a) (b)

Figure 5.6: Convergence of the average value of (a)τx and (b)τy of a specific trial.
Ground-truth in dashed line.

almost reaching the expected one (i.e. use as less problem examples as possible since
in the real world we cannot afford to generate and classify a large set of problems),
and then opt for a more conservative behavior to adjust it. The growing step finalizes
when a negative feedback is given by the expert’s for the firsttime. As we mentioned in
the explanation of the algorithm, a negative feedback meansthat the scope of the case
is overestimated, and therefore it has to be reduced to converge to the expected one.
Thus, we modify the algorithm such that it switches from one policy to the other when
the convergence step starts, i.e. the size of the ellipse is decreased for the first time.
Moreover, besides alternating the policies used for determining the growing size of the
ellipse, we can also vary the parameters that define the size of the security region (γ),
and the maximum increment for enlarging the scope (δ̂) as observed in the simulation
evaluation.

We have defined a set of strategies to study their resulting behavior and thus, select
the most appropriate one to use in the second part of the experimentation. Table 5.1
summarizes the set of strategies. We differentiate betweenthe two steps of the learning
algorithm, growing and converging the scope, indicating the policy used at each step,
as well as the values of the parametersγ andδ̂ (the same values for bothx andy axis).
The experimentation is similar to the simulation stage, where the experiments are based
on a single case with initial scopeτx = τy = 100. The expected scope of the case
is τx = 900 andτy = 600. A single trial consists in positioning the robot in a fixed
location on the field and randomly generating 100 problems that the robot detects as
inputs for the learning algorithm. We manually move the ballfrom one position to
another within the field of view of the robot since for this experiments the robot only
moves its head to search for the ball. The learning algorithmis tested with one of the
strategy configurations shown in Table 5.1. An experiment consists of 10 trials for each
strategy.

Figure 5.7 illustrates the average size of the learned scopefor each experiment.
Comparing the results obtained with respect to the expectedscope (ground truth in both
figures) we conclude that:

85

 0

 200

 400

 600

 800

 1000

 1200

 1400

γx = 0.5/0.7;δx = 100/50γx = 0.7;δx = 50γx = 0.5;δx = 100

τ x

fixed
linear

polynomial
fixed-poly

linear-poly

(a)

 0

 200

 400

 600

 800

 1000

γy = 0.5/0.7;δy = 100/50γy = 0.7;δy = 50γy = 0.5;δy = 100

τ y

fixed
linear

polynomial
fixed-poly

linear-poly

(b)

Figure 5.7: Average outcomes and deviations for the different strategies. The dashed
line represents the ground truth. (a)τx average and ground truthτx = 900. (b) τy

average and ground truthτy = 600..

86

growing step convergence step
policy γ δ̂ policy γ δ̂
fixed 0.5 100 fixed 0.5 100
fixed 0.7 50 fixed 0.7 50
fixed 0.5 100 fixed 0.7 50
linear 0.5 100 linear 0.5 100
linear 0.7 50 linear 0.7 50
linear 0.5 100 linear 0.7 50

polynomial 0.5 100 polynomial 0.5 100
polynomial 0.7 50 polynomial 0.7 50
polynomial 0.5 100 polynomial 0.7 50

fixed 0.5 100 polynomial 0.5 100
fixed 0.7 50 polynomial 0.7 50
fixed 0.5 100 polynomial 0.7 50
linear 0.5 100 polynomial 0.5 100
linear 0.7 50 polynomial 0.7 50
linear 0.5 100 polynomial 0.7 50

Table 5.1: Strategies defined in the real world experiments varying the policies and the
scope parametersγ andδ̂.

• the strategies using only the fixed and linear policies for both learning steps gen-
erate the highestτ values, while the strategy using only the polynomial policy
obtains the lowest. As concluded in the simulation experiments, the former poli-
cies have a more aggressive behavior compared to the latter.

• the strategy defined with only the polynomial policy does noteven reach the ex-
pected scope most of the times due to its low increasing speedduring the growing
stage. At every time step the increment is not as high as the one computed with
the other policies and therefore, reaching the expected scope requires a larger
amount of problems to solve until starting the convergence stage.

• the strategies combining two types of policies (fixed/polynomial and lin-
ear/polynomial) as well as the values for the scope parameters (γ = 0.5/0.7

andδ̂ = 100/50) obtain the closest scopes to the expected ones, since they com-
bine the advantages of both policies and the parameters increasing properties, i.e.
first large risk regions and high increments for the growing step, and then small
risk regions and low increments for the converging step.

• comparing the results for thex and they axis with respect to their ground truths
(horizontal lines in the figures) we can observe that the onesobtained for they
axis reach and exceed the ground truth most of the times. During the experi-
ments, the robot is positioned parallel to thex axis. Therefore, variations in the
x component of the ball’s position are harder to identify by the robot, compared
to they component. For instance, moving the ball 10cm closer to the robot is
not as easy to distinguish as moving the ball 10cm to the left.Hence, the number

87

of problems needed to rapidly fulfill the growing process forthex axis is higher
than for they axis. Since the problems were randomly generated without taking
into account this issue, we can estimate that 50% of the problems were used for
each axis, and therefore, not enough problems remained for the converging step
in thex axis.

We conclude that the best strategy within the real world is tohave aggressive strate-
gies for the growing step in order to reach as fast as possiblethe ideal scope, and then
progressively adjust it to the robot’s perception using a more stable strategy.

Adapting the Case Base

The final experiment consists in training a small case base inorder to evaluate if the
robot is able to learn the expected scopes. We created a simple case base of four cases
(Figure 5.8a) that covered a quarter of a field:

• center: midfield.

• side: left edge.

• corner: left corner.

• front: between thecentercase and the goal.

All cases were initiated with the same scope (τx = τy = 100) as depicted in Fig-
ure 5.8b. A trial consists of 50 random problems manually positioning the ball in a
quarter of the field and let the robot move searching for the ball until facing it. During
the growing step we used the fixed policy with large risk region and high increment
parameters (γ = 0.5 andδ̂ = 100) to rapidly reach the expected scopes. For the con-
verging step the algorithm switched to the polynomial policy with small risk region and
low increment values (γ = 0.7 andδ̂ = 50). We performed 25 trials in total.

The outcome of a trial example of the adaptation algorithm isdrawn in Figure 5.8c.
The classified problems are represented with crosses (×) for thecentercase, circles (◦)
for thesidecase, plus (+) for thecornercase and squares (�) for front case. As we can
observe, the modified scopes approximate with high accuracythe expected outcome.
Figure 5.8d shows the final steps of a trial where the size of the ellipses are converg-
ing towards the final outcome. Finally, Figure 5.8e shows theaverage of the 25 trials
outcomes. As we can see, the robot successfully acquired theestimated scopes for the
cases in the case base designed by the expert (Figure 5.8a). Moreover, in spite of the
high uncertainty in the robot’s perception, we can deduce that it is still close enough to
the expert’s own perception.

Acquiring Knowledge

After the adaptation process of the case base, the robot is ready to acquire new cases.
The goal is to verify that the robot is able to fill in the gaps ofthe adapted knowledge.
We focused the experiment on learning a single case located between the four cases.
The expected action was to get near the ball facing the goal and bump it (the intention

88

x

y

(a) (b)

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

(c) (d)

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

0

500

1000

1500

Y

0 500 1000 1500 2000 2500

X

(e) (f)

Figure 5.8: (a) Case base designed by the expert. (b) Initialcase base for the learning
process. (c) Trail example outcome. (d) Converging step of the learning process. (e)
Final case base obtained after the adaptation process (average of the 25 trials). (f)
Acquiring a new case (average of 20 trials).

89

is to bring the ball closer to the goal not with a forward kick since it is too strong and
would push it outside the field).

We performed 20 trials, each composed of 50 random problems.Through all the
trials the new case was at some point created and adapted to cover the empty region,
while the other cases’ scopes stayed stable even though the adaptation algorithm was
being used. This confirms that the conservative policy used during the converging step
(polynomial policy, small risk region and low increment values) ensures stability of the
learned parameters. Figure 5.8f shows the scope (average ofthe 20 trials) of the new
case after expanding it. We can observe a slight modificationof the remaining scopes’
size with respect to Figure 5.8e (the initial case base for this last experiment). As we
can see, the gap is almost completely covered with the expected case.

5.4 Conclusions and Future Work

We have presented the first steps towards developing an automated mechanism to adapt
and acquire the knowledge of a reasoner engine. More precisely, the mechanism fo-
cusses on learning the scope of a case. The algorithm consists in a two-step process:
growing the scope, and converging the scope. We have presented different policies to
determine how to increase the size of the scope, and when to doit. We have also intro-
duced a simple mechanism to create new cases. To analyze the learning algorithm, we
have performed experiments both in simulation and with the real robot.

The experiments we have presented confirm that the proposed algorithm is able
to successfully evolve the cases scopes based on the robot’sperception. Moreover, it
also confirms that the resulting scopes are similar to the ones expected by the expert’s
perception. Hence, although the adaptation is not necessary for the initial cases created
by the expert, it is indeed useful to guide her through the acquisition of new cases and
the coverage of the existing ones.

The introduced knowledge acquisition algorithm is not really meant for the reason-
ing system to successfully acquire new knowledge, but to help the expert on detecting
possible gaps in the system’s knowledge. As future work we would like to develop a
more complete process for knowledge acquisition, so that not only serves as a support
engine for the expert, but in fact, automatically creates new cases with complete de-
scriptions, i.e. including teammates, opponents, and morecomplex solutions. Once a
case has been introduced, the adaptation algorithm presented in this chapter can be used
to generate its coverage.

We believe that the learning approach should observe the robot’s own performance
and automatically detect new interesting situations to reproduce in the future. This
is a very challenging task since the main difficulties are: (i) when to consider that a
potential case has started, i.e. the initial situation, (ii) when does it finish, i.e. which
are the actions to store as part of the solution of a case, and (iii) how to evaluate the
outcome of the performed actions to determine if the case is useful or not for achieving
the robot’s goals (i.e. positive or negative feedback). While the challenges of the first
two questions are easy to see, the latter one may seem less complex because it consists
in judging whether the actions were successful or not. But ingeneral, and specially
in these kind of domains, this judgement is not so simple because the consequences of

90

the actions taken at a given time cannot be analyzed in a shortterm, but in the long
term. Thus the robot is faced with thecredit assignment problem, i.e. which actions
contributed to the success or failure of the execution? The problem can become even
more difficult if there are more robots involved in the execution, i.e. who did well? This
is a very ambitious and complex research area which would complete the cycle of the
case-based reasoning process presented in this thesis.

91

Chapter 6

Experimentation

We focus this chapter on the evaluation of the approach presented in the previous chap-
ters. The goal of the experimentation is to empirically demonstrate, not only that the
robots successfully perform the task, but also that the performance results in a coop-
erative behavior where the team works together to achieve a common goal, a desired
property in this kind of domain. The approach allows the robots to apply a more delib-
erative strategy, where they can reason about the state of the game in a more global way,
as well as to have special consideration of the opponents. Thus, they try to avoid the
opponents by passing the ball between them, which should increase the possession of
the ball, and therefore, the team should have more chances toreach the attacking goal.

We compare our approach with respect to the approach implemented in the Carnegie
Mellon’s CMDash’06 team, i.e. the region-based algorithm (RBA) described in Sec-
tion 4.1.1. As we already mentioned, the approach includes an implicit coordination
mechanism to avoid having two robots “fighting” for the ball at the same time. The
robot in possession of the ball notifies it to the rest of the team, and then the rest of the
robots move towards different directions to avoid collisions. The robots also have roles
which force them to remain within certain regions of the field(for instance, defender,
striker, etc.). The resulting behavior of this approach is more individualistic and reac-
tive in the sense that the robots always try to go after the ball as fast as possible and
move alone towards the attacking goal. Although they try to avoid opponents (turning
before kicking, or dribbling), they do not perform explicitpasses between teammates
and, in general, they move with the ball individually. Passes only occur by chance and
therefore are not previously planned. Henceforward we willrefer to this approach as
thereactiveapproach.

The experiments presented in this chapter are focused on verifying the following
hypotheses:

Hypothesis 1. Action selection in multi-robot domains is feasible applying
Case-Based Reasoning techniques, since it facilitates thedesign of the robots
behaviors, it is close to what humans do, and it provides a clear model for
defining the situations to solve and their corresponding solutions.

93

Hypothesis 2. The approach proposed is robust enough to deal with uncer-
tainty in the incoming information (perception) and to recover from impreci-
sion in the outcome solution (robot’s action execution).

Hypothesis 3. Due to the adversarial component in the working domain,
a team of robots using a cooperative strategy that includes passes between
robots outperforms an individualistic strategy where the robots do not plan
joint actions to achieve the common goal.

The first part of the chapter corresponds to the Case-Based Reasoning system set-
tings, mainly the case base description. Then we detail the experiments setup including
the evaluation measures used to assess the experimentationresults, as well as the dif-
ferent scenarios used. Finally, we present and analyze the outcome of the experiments
performed, both in simulation and with real robots.

6.1 CBR System Settings

The case base used for the experimentation is composed of 136cases. From this set,
34 cases are hand-coded, while the remaining ones are automatically generated using
spatial transformations exploiting the symmetries of the soccer field as described in 3.2.
After some experimental tests we concluded that this set of cases was large enough, at
least for the purpose of the evaluation presented in this work. As we describe later,
in the experiments we have designed, the robots always attack the same goal. Hence,
during the retrieval process only half of the case base (68 cases) is actually processed in
the search due to the indexed list used to store the cases whenthey are loaded, i.e. we
only consider those cases with attacking goal equal to the one of the current problem to
solve.

In general we can classify the cases along the following components:

1. strategiccomponent: based on the region of the field that the case covers, it can
vary from offensive to defensive. Regions close to the defending goal correspond
to a more defensive strategy, while regions close to the attacking goal imply a
more offensive strategy. Regions in the middle represent a neutral strategy.

2. teamworkcomponent: the number of robots (teammates) described in the case
indicates the degree of teamwork, ranging from individualistic to cooperative,
i.e. ranging from one robot ton robots. The largern is, the more cooperative is
the team behavior.

3. adversarialcomponent: the number of opponents in the case description ranks a
case from highly adversarial to non-adversarial (no opponents at all).

In this work the case base is composed of cases which combine the components
defined above in different degrees. Figures 6.1 and 6.2 depict half of the case base (the
68 cases with yellow defending goal). For simplicity we onlyshow the ball’s scope,
which is useful to evaluate the region of the field where the case is triggered. We define
the following types of cases for our experimentation:

94

(a)

(b)

Figure 6.1: Case Base: cases with one teammate and (a) no opponents or (b) one or two
opponents.

95

(a)

(b)

Figure 6.2: Case Base: cases with two teammates and (a) no opponents or (b) one or
two opponents.

96

1. neutral to offensive cases: most of the cases are situatedon the half of the
field containing the attacking goal, although we also include some cases for the
middle-back of the field in case the ball moves towards that region. In the figures
we identify the following regions: front (f), corner (c), diagonal (d or D), middle
(m), side (s) and back (b).

2. individualistic and cooperative cases: mainly two typesof cases, either consider-
ing one teammate (single cases, Figure 6.1) or two (multiplecases, Figure 6.2).
Although we are interested in achieving a high degree of collaboration among
robots, there are situations where having passes between teammates is not the
best choice. More precisely, this happens in those situations where the ball is in
front of the attacking goal. In this case, trying to score individually may yield
better results, rather than planning a pass with other teammate. As we can ob-
serve in Figure 6.2 there are no cases in front of the goal. Another reason for
including single cases is to cover situations where the robots are too distant from
each other. In these situations the resulting adaptation cost could be too high,
and therefore, the filtering mechanism would reject all possible multiple cases as
candidate solutions, considering only single cases as feasible solutions.

3. non-adversarial and adversarial cases: we include caseswithout opponents (Fig-
ures 6.1a and 6.2a) and with one or two opponents (Figures 6.1b and 6.2b). Since
the opponents in the experiments are moving robots, it can often happen that
there are no opponents near the ball. Hence, a case with no opponents can be
then reused.

Thus, the case identifier is defined by the regular expression:

case id = (s|m)[G?O∗](region)[R|L][H|N|S]

where, s and m indicate the teamwork degree (single or multiple); G and O correspond
to the optional adversarial component (G stands for goalie and O, for opponent; the
number of O’s matches the number of opponents). Omitting this expression would
correspond to a non-adversarial case, i.e. no opponents;region corresponds to the
strategic component represented by either the complete name region or its first letter;
and finally, the optional reduced solution description, represented by two parameters
that indicate the side of the attacking goal to point the kick(right side or left side) and
the strength of the kick (hard, soft, or normal if no parameter is set).

Thus, for instance, the encoded identifiermMiddle(R/L)(H/N/S) in Fig-
ure 6.2a corresponds to cases in the middle of the field with two teammates (multiple)
without opponents, performing a hard, normal or soft kick (H/N/S) towards either the
right side or the left side of the attacking goal (L/R). Figure 6.3 illustrates four case
examples.

We do not include the time and score difference features of the problem description
of a case to simplify the experiments. Hence, we set both indices in the cases and the
problems to solve to default values, i.e.t = 0 andS = 0, so their resulting similarity is
equal to 1 (simtS(tp, Sp, tc, Sc) = 1.0). Regarding the thresholds for the ball similarity
(thrb) and the adaptation cost (thrc) used in the filtering mechanism (Section 3.3.4,

97

ID: sBack
#tm: 1
#opp: 0
region: back
sol: normal front kick

ID: sGf
#tm: 1
#opp: 1 (goalie)
region: front
sol: turn to free goal and kick

(a) (b)

ID: mSideS
#tm: 2
#opp: 0
region: side
sol: left pass and soft kick

to goal

ID: mOOmRH
#tm: 2
#opp: 2 (defenders)
region: middle
sol: right pass and hard kick

to right side of the goal

(c) (d)

Figure 6.3: Case examples: (a) sBack, (b) sGf, (c) mSideS, and (d) mOOmRH. The
small circle is the ball. The big circles A and B correspond tothe teammates, and the
squares D and E, to the opponents. The ellipses represent thecase scope, both for the
ball and the opponents, while the trapezoids correspond to the ball’s path.

98

Algorithm 1) we set them to the following values:thrb = 0.367 (which corresponds
to the Gaussian projection on theXY plane) andthrc = 1500mm (obtained through
empirical experimentation). The sorting function for ranking the candidate cases is
set tosort2 as we discussed in Section 3.3.5. Finally, with respect to the multi-robot
system, since we are dealing with only two robots, they both are retrievers(k = 2),
i.e. both are able to reason and to propose solutions to the problems presented in the
experimentation stage.

6.2 Experiments Setup

Two types of experiments were performed: experiments with simulated robots and ex-
periments with real robots. As in most robotic domains, the first experiments are per-
formed in a simulated environment in order to easily detect problems and therefore,
correct and improve the evaluated approach until obtainingsatisfactory results. Once
this stage is achieved, the next step is to experiment with the real environment, i.e. the
robots, and thus, prove that the approach works as expected.

For both experiments we initialize a trial positioning the robots (two attackers vs. a
defender and a goalie) and the ball in a fixed location. A trialends either when the ball
goes out of the field, enters the goal, or the goalie touches it.

6.2.1 Robot’s Behaviors

The attackers are the players to be evaluated, i.e. they use either the CBR approach
or the reactive approach. We must recall that within the CBR approach the robots may
perform the region-based algorithm, i.e. the reactive approach, when no case is retrieved
as explained in Section 4.1.1. However, these situations usually occur when the cost of
any of the available cases is over the cost threshold, and notbecause there are no cases
defined. Hence, while the attackers move towards the ball performing the region-based
algorithm, they reduce their distances with respect to the ball. At some point, any of
the available cases that was previously filtered out due to cost issues, may now become
a candidate solution.

Both approaches also share a behavior, which we will refer toas thedefaultbehav-
ior. This behavior consist in moving next to the ball, far enough to not interfere in its
movements, but close enough to easily approach it and take it(around a meter away).
Within the CBR approach the robots performing this behaviorare those robots that do
not take part of the case reuse, or that finished their gameplays while the case reuse
continues (i.e. when the robots are in the WAIT END state detailed in Section 4.2).
Regarding the reactive approach, the robots perform the default behavior when a robot
indicates that it has the ball, and therefore, the remainingones have to move away from
the ball’s path.

With respect to the opponents, we have implemented a simple behavior for the
defender and the goalie. Both perform the same behavior whenplaying against any
of the two evaluated approaches (reactive and CBR).

We define theaction regionas the region of the field where the robot can freely
move, go after the ball and perform any action with it. The robot cannot move outside

99

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

line of action

action region

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

action region

line of action

(a) (b)

Figure 6.4: Action region for (a) the defender and (b) the goalie. The robots are facing
the ball since it is out of their action region.

its action region. Thus, when the ball is within the robot’s action region, the robot grabs
it and kicks it towards the center of field to prevent the attackers from trying to score.
We callline of actionthe imaginary line parallel to they axis where the robot waits until
the ball enters its action region. Hence, if the ball is out ofthe robot’s action region,
then the robot remains on itsline of actionfacing the ball, perpendicular to the ball’s
position.

Figures 6.4a and 6.4b depict the action region for the defender and the goalie respec-
tively, defined for the experiments. As we can observe, the defender’s action region is
also limited by the penalty area, since the rules of the robotsoccer forbid any robot to
enter its own penalty area, except for the goalie, of course.Regarding the goalie, its
action region corresponds to the penalty area (although in areal game it can indeed
walk out of this region). We have set the defender’s line of action tox = 900, i.e. 90cm
away from the midfield line, while the goalie’s tox = 2400, close to the middle of the
penalty area.

6.2.2 The Scenarios

We have defined four scenarios for the experimentation stage. We can classify them in
two sets:

• Scenarios 1 and 2 (Figures 6.5a and 6.5b): the ball (small circle) and the attackers
(A and B) are positioned in the middle-back of the field, whilethe defender (D)
remains in its line of action facing the center of the field without blocking the ball,
and the goalie (G) is situated within the penalty area. Thesescenarios correspond
to general situations where the attackers are coming from the back of the field
towards the attacking goal, while the defender is waiting atits position.

• Scenarios 3 and 4 (Figures 6.5c and 6.5d): the ball and attackers are located in
the middle-front of the field, the goalie remains within the penalty area facing
the ball and the defender is right in front of the ball. These type of scenarios are
more interesting from a strategic point of view, since the first decision (action) the

100

(a) (b)

(c) (d)

Figure 6.5: Scenarios used during the experimentation. Teammates are represented
with circles, while opponents, with squares. (a) Scenario 1, (b) scenario 2, (c) scenario
3 and (d) scenario 4.

attackers make (execute) is critical in their aim to reach the goal while avoiding
the defender whose main task is either to intercept or to steal the ball.

We believe that these two sets of scenarios are general enough to represent the
most important and qualitatively different situations therobots can encounter in a game.
Initiating the trials on the left or right side of the field does not make much difference
on the actions the robots might perform in any of the two evaluated approaches, since
they would perform their symmetric actions instead.

We have neither defined any scenario with the ball near the attacking goal because
the defender would not be able to do much since it cannot enterthe penalty area, as
mentioned in the previous section. Instead, we are interested in having the defender as
an active opponent complicating the attackers’ task.

Finally, regarding the corners, although they are also interesting areas to evaluate,
we have not included any specific scenario with this initial layout because the big chal-
lenge within the corners is not really focused on the strategy to use, but on improving
the localization of the robots. Computing the position of the robot with a minimum de-
gree of accuracy when it is located in a corner is a very difficult localization task. The

101

visible objects the robot can detect from that position are not enough to ensure a robust
localization. Hence, we preferred to omit these initial situations because there are high
chances for both approaches to perform poorly. Nevertheless, during the experiments
the ball can end up in a corner situation, and the approaches must somehow overcome
these situations for the robots to achieve their goal.

6.2.3 Evaluation Measures

We have defined two main measures to assess the performance ofthe approaches. The
first one is based on the final outcome of a trial, while the second one is based on
the opponent’s (more precisely, the defender) possession of the ball during the trial (a
similar evaluation is performed in [15]).

As mentioned before, a trial ends when either the ball goes out of the field, enters
the goal, or the goalie blocks it. In order to evaluate each trial we classify the possible
outcomes as:

• goal: the ball enters the goal.

• close: the ball goes out of the field but passes near one of the goalposts. More
precisely, at most 25cm to the left (right) of the left (right) goalpost.

• block: the goalie stops or kicks the ball.

• out: the ball goes out the field without being a goal or close to goal.

We also consider theto goal balls, which correspond to balls that are eithergoalsor
closeto goal. This measure indicates the degree of goal intentionof the kicks. Thus,
although the balls might not enter the goal, at least they were intended to do so.

Regarding the defender ball’s possession, for every trial we count the number of
times that the defender touched or kicked the ball away to clear it. This measure shows
the effectiveness of a cooperative behavior. We can intuitively state that having a pass
when a defender is in front reduces the chances of the defender to get the ball, if the pass
does not fail. Therefore, the likelihood of successfully completing the task increases.

6.3 Simulation Experiments

In this section we evaluate and discuss the experiments performed in simulation using
the four scenarios described before. The goal of this experimentation stage is mainly to
verify hypotheses 1 and 3.

6.3.1 The Simulator

The simulator used for this part of the experiments is an extended version ofPup-
pySim 2, created by the Carnegie Mellon’s team. We had to implement some additional
features for our experiments, such as managing team messages, robots walking while
grabbing the ball, etc. The final version of the simulator is asimplified version of the
real world. The robots’ perception is noiseless, i.e. the ball’s position and the location

102

Figure 6.6: Snapshot of the robot soccer simulator PuppySim2. Robots 1 and 2 corre-
spond to the attackers (A and B), while robots 3 and 4, to the goalie and the defender
respectively.

of all robots on the field is accurate. However the outcome of the actions the robots
perform have a certain degree of randomness. The kicks are not perfect and the ball
can end in different points within its trajectory (defined inSection 3.3.3). In addition,
when the robot tries to get the ball, it does not always succeed, simulating a “grabbing”
failure (a very common situation with the real robots). The ball’s movement is modeled
taking into account the friction with the field, starting with a high speed and decreasing
through time and gradually ceasing (if no one intercepts it before). A snapshot of the
simulator is presented in Figure 6.6.

When a trial ends, the simulator stores the ball outcome (based on the ball classifi-
cation stated before), the position where the ball ended andthe duration of the trial in
seconds. Then it restarts a new trial. This information is afterwards used to compute
the statistics shown in the next section.

6.3.2 Simulation Results

We performed 500 trials for each approach and each scenario,i.e. a total of 4000 trials.
Table 6.1 summarizes the ball classification outcome obtained for all four scenarios
(results in percentage). We also computed theto goalmeasure, which results from the
sum of thegoal balls andcloseballs.

As we can see the percentage of ballsto goalwith the CBR approach is higher in
all four scenarios compared to the reactive approach. Moreover, the percentage of balls

103

scenario approach
ball classification (%)

goal close out block to goal

1
cbr 25 9 28 38 34

reactive 25 3 37 35 28

2
cbr 26 8 28 38 34

reactive 25 6 41 28 31

3
cbr 25 6 40 29 31

reactive 13 4 59 24 17

4
cbr 36 8 11 45 44

reactive 22 4 25 49 26

Table 6.1: Ball outcome classification (simulation).

scenario approach
ball possession
average stdev

1
cbr 1.34 1.37

reactive 1.91 1.39

2
cbr 1.38 1.29

reactive 2.13 1.82

3
cbr 1.35 1.23

reactive 2.20 1.33

4
cbr 0.43 0.94

reactive 0.85 1.42

Table 6.2: Defender’s ball possesion (simulation).

out are lower when using the CBR, indicating that the defender had less opportunities
to take the ball and kick it out of the field. The differences are specially significant
in scenarios 3 and 4, where the initial position of the defender is right in front of the
ball. In these situations, it is difficult for a robot to move with the ball without losing
it, which is what the reactive approach would do. Thus, the chances for the opponent to
steal the ball increase. On the contrary, performing a pass between teammates is more
useful, since the team keeps the possession of the ball, decreasing the opportunities
for the defender to take it. Moreover, we believe that using passes in situations where
it is not clear which is the best strategy (i.e. perform a passor act individually) does
not degrade the overall performance either. This is the aimed strategy using the CBR
approach.

Figures 6.7 and 6.8 graphically compare the ball classification outcome between
both approaches (the CBR approach outcome on the right column and the reactive
approach results on the left). We can easily observe that thedensity of points corre-
sponding toout balls is higher for the reactive approach, as the percentagein Table 6.1
shows. More interestingly, with the CBR approach these points are mainly located on
the half of the attacking field (i.e. the right half side of thefield), while with the reactive
approach, they are dispersed along the width of the field (specially in the third scenario,
Figure 6.8b, where the points are even more concentrated on the left half of the field,

104

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

(a) (b)

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

(c) (d)

Figure 6.7: Ball classification outcome (simulation): (a) and (b) correspond to Sce-
nario 1, while (c) and (d), to scenario 2. Left figures result from the CBR approach
performance, and right figures, from the reactive approach performance. Red crosses
(+) representout balls; green x’s (×), goal balls; blue stars (∗), to goalballs; and pink
boxes (⊡), blockedballs. 105

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

(a) (b)

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

-2
00

0

-1
50

0

-1
00

0

-5
00 0

 5
00

 1
00

0

 1
50

0

 2
00

0

-2
00

0
-1

00
0

 0
 1

00
0

 2
00

0

Y

X

(c) (d)

Figure 6.8: Ball classification outcome (simulation): (a) and (b) correspond to scenario
3, while (c) and (d), to scenario 4. Left figures result from the CBR approach perfor-
mance, while right figures, from the reactive approach performance. Red crosses (+)
representout balls; green x’s (×), goal balls; blue stars (∗), to goal balls; and pink
boxes (⊡), blockedballs. 106

scenario 1 scenario 2 scenario 3 scenario 4
robot A B A B A B A B
AV 3.3 16.0 7.2 26.2 2.8 18.6 16.5 21.6
% 17 83 21 79 13 87 43 57

Table 6.3: Average and percentage of the backing up times perrobot (A or B) and
scenario.

rather than on the right half). This occurs because the defender had more opportunities
to steal the ball close to the middle of the field before the attackers managed to reach
the middle-front of the field (right side of the field closer tothe attacking goal). The
defender then clears the ball sending it towards the back of the field, and easily kicking
it out of the field. We can also notice that, in general, the density of outballs next to the
attacking goal (i.e. points withy coordinate within the interval [-1500..1500]) is higher
for the CBR approach. Thus, we can deduce that at least the attackers were definitely
aiming at scoring more times that the attackers with the reactive approach.

Table 6.2 summarizes the defender’s performance during theexperimention. It
shows the average and the standard deviation of the number oftimes the defender either
touched the ball or kicked it per trial. We can see that in general the defender play-
ing against the reactive approach had more chances for reaching or taking the ball than
when playing against the CBR approach. Furthermore, in the last scenario, it even dou-
bled the average. The higher average values for both approaches correspond to the first
three scenarios since in these scenarios the ball is locatedfurther from the goal com-
pared to the fourth scenario. Hence, the chances for the defender to steal the ball are
higher since the distance the attacking robots have to travel to reach the goal is longer.

In order to show the degree of collaboration among robots we computed two more
measures in this experimentation set. As we described in Section 6.2.1, the reactive
approach provides the robots with a simple coordination mechanism: while a robot
possesses the ball, the second robot performs a default behavior to avoid interfering
with the first one. Thus, in general, during a trial the robot starting the first action (e.g.
get the ball and kick it) moves with the ball while the second one is backing up. Once
the action ends, both robots will try to get near to the ball, but the chances for the second
robot to arrive first are lower since it had previously moved away from the ball. The
first robot instead, has more chances to get the ball first, while the second robot will
have to back up again and again. For each trial, we counted thenumber of times each
robot backed up. Table 6.3 shows the average and percentage of the number of times the
robots backed up per trial. As we can see, except for the last scenario, the percentage
of times that robot A backs up is significantly lower comparedto robot B. Hence, we
can conclude that in general, because of the strategy used, robot A (the robot that gets
the ball first) acts individually without involving robot B in the task.

Since the reactive and CBR approaches are very different, wecannot apply the
“number of backing ups” measure to the latter one. Therefore, to demonstrate collabo-
rative behavior with the CBR approach, we compared the number of reused cases that
implied a single robot in the solution, “single” cases, withrespect to cases with more
than one robot “multiple” cases (in this work two robots). The percentage of the type

107

scenario 1 scenario 2 scenario 3 scenario 4
case single mult single mult single mult single mult
AV 3.9 5.0 4.1 6.0 3.6 5.3 2.4 2.5
% 44 56 41 59 40 60 49 51

Table 6.4: Average and percentage of “single” and “multiple” cases used during the
experimentations.

of cases used and the average per trial is detailed in Table 6.4. As we can observe, in
general, half of the time (or even slightly more) the robots retrieve multiple cases, i.e.
cases where an explicit pass between two robots takes place.This is due to the fact
that the robots start their performance in the middle of the field and with a defender in
between them and the goal. In this situation a cooperative strategy (multiple cases) is
more useful since the robots can work together to get closer to the goal. Once they get
near the penalty area, it makes more sense to try to score individually (single cases),
and not to have passes between teammates.

6.4 Real Robot Experiments

After the successfull results in simulation, the next step is to test similar experiments,
but this time with the real robots. We must keep in mind the difficulties that arise when
dealing in a real environment, increasing the complexity ofthe problem to solve. More
precisely, the uncertainty in the incoming information (robots’ perception), which has
not been taken into account in the simulated environment. Hence, with this second
experimentation stage we aim to verify hypothesis 2, i.e. the ability of the approach
presented in this work to handle uncertainty, as well as to reinforce hypotheses 1 and 3,
already supported in the previous experimentation stage.

6.4.1 The Robots

The robots we have used in this experimentation are four SonyAIBO ERS-7 robots
(one M2 robot, and three M3 robot). The AIBO robot is a four-legged robot with
a dog shape (Figure 6.9). The dimensions of the robot are 180×28×319 (in mm,
width×height×length). A camera is located in its nose with a field of view of 56.9◦

wide and 45.2◦ high. It has 18 PID joints, each with force sensing: 3 joints per leg
(elevate, rotate, knee), 3 joints on the neck (tilt, pan, nod), 2 joints on the tail (tilt, pan)
and 1 joint on the mouth. Its internal CPU is a 576MHz processor with 64MB RAM.
As we can see, it is a very limited processor and therefore requires the implementation
of fast and computational simple algorithms. The programs are copied to a Memory
Stick that is inserted in the robot. When the robot is turned on, it loads all the informa-
tion from the Memory Stick and starts moving autonomously. The robots communicate
through a standard wireless network card (802.11b wirelessethernet). The robot has 26
independent leds on its face which are useful for debugging the robot’s behavior. It also
has four pressure sensors (three on its back and one on its head) employed to modify

108

pressure sensors

mouth

camera

leds

tail

memory stick slot/battery slot

Figure 6.9: Sony AIBO ERS-7(M2-M3) robot description.

the robot’s behavior (pause, resume, reset, etc.). Pictures of our four robots are shown
in Figure 6.10.

Vision Issues

The vision system of the robots is in charge of identifying and localizing the objects
in the environment, i.e. ball, markers, goals, lines and other robots. Hence, a robot is
capable of knowing its own position on the field (its localization is based on the ob-
served markers positioned along the field) and deriving the locations of the objects in
its field of view accordingly. Because of computational limitations the vision processes
must be fast and simple. Therefore, the robustness of the vision system is not guaran-
teed. The main efforts of the designers are focused on rapidly detecting the ball and
markers on the field, which are the most important objects forthe robot to perform its
task, i.e. move the ball towards the goal. Hence, although there is an attempt to also
identify and localize opponents, in fact, the robots can hardly know where the oppo-
nents are with a minimum degree of accuracy. Figure 6.11 illustrates some examples of
images extracted from the robot vision system, both original images (RGB) and after
the segmentation process.

The purpose of this research is to study the performance of the approaches, and not
to improve robustness to the perception system. Since the opponents locations are fun-
damental for the experimentation we present in this work, toevaluate both approaches
independently from vision issues, the robots from the opponent team report their posi-
tions to all the robots on the field through the network (the same way the robots from
the same team do so).

We must also mention that during the experimentation with the CBR approach, after
every cycle (i.e. retrieving and executing the case) all robots stop for 5 seconds in order
to update their localization on the field with lower uncertainty and thus, increase the
accuracy of the case retrieval. Otherwise, the performanceof the CBR approach would
be degraded due to visual issues, misleading the overall evaluation of the system.

109

(a) (b)

(c) (d)

Figure 6.10: The robots: (a) Fang (Mud), (b) Boira (Mist), (c) Terra (Soil) and (d) Nata
(Cream).

6.4.2 Results

Since working with real robots is harder than in simulation (it is unfeasible to reproduce
with the real robots the volume of experimentation done in simulation), for this second
part of the evaluation we only used the third and fourth scenarios. As mentioned before,
we believe these are more interesting than the first two scenarios because the defender
is located in front of the ball, blocking the first movement the attacker could perform.
Hence, the attacker needs to apply some strategy to avoid thedefender and not to lose
the ball.

We performed 30 trials per approach and per scenario, 120 trials in total. Next we
evaluate both scenarios separately discussing for both approaches: first, the approach
performance; second, the ball classification outcome; and finally, the defender’s perfor-
mance.

Scenario 3

• CBR approach performance
After analyzing the results of the 30 trials performed by therobots, we sketch the

110

(a) (b) (c)

Figure 6.11: Top: original images (RGB), and bottom: segmented images. (a) Cyan
goal and a robot. (b) Marker and ball. (c) Yellow goal and ballin the center of the field.

general behavior of the CBR approach in Figure 6.12. As we canobserve, given
the initial positions of the robots, the first action is to perform a pass to avoid
the defender (Figure 6.12a). Hence, robot A moves towards the ball to start the
pass, while robot B moves towards the front to receive the ball. Meanwhile, the
defender (robot D) remains on its line of action facing the ball. As the pass
takes place, the defender moves to a better position to continue blocking the
ball. Since robot A has ended its sequence of actions (gameplay) it performs
the default behavior, maintaining a close distance to the ball, but without going
after it. When robot B receives the ball, it performs a kick towards the middle
line (Figure 6.12b). The first case reuse ends. The next retrieved case consists in
moving the ball forward in order to place it closer to the attacking goal. Hence, as
robot A is closer to the ball, it is in charge of reusing alone the second case, while
robot B moves next to the ball towards a better position executing the default
behavior. Meanwhile the defender tries to reach the ball as well (Figures 6.12c
and 6.12d). Finally, the last case is retrieved, which once again consists in having
a pass between robots A and B to avoid the goalie (robot G). Hence, robot A
moves to take the ball, while robot B waits for the pass (Figure 6.12e). Once it
receives the ball, it kicks it towards the goal (Figure 6.12e).

The sequence detailed above is a perfect execution, where the attackers manage
to score and the trial ends. Unfortunately, because of the high imprecision of the
action executions, the performances of the trials varied from one to another re-
trieving different cases (thus, executing different actions) to overcome the altered
sequence. The critical points where a modification of the ideal execution occurs
are:

– during a pass (Figures 6.12b and 6.12f): the pass could fail because (i) the
ball is sent to the wrong direction (usually due to wrong localization of the
robots), (ii) the receiver does not succeed in grabbing the ball, or (iii) the

111

D GA

B

A

D GB

(a) (b)

A

G

D

B
G

B

D

A

(c) (d)

G

B

A

D

GA

B

D

(e) (f)

Figure 6.12: Sketch performance of the attackers using the CBR approach in scenario
3. Solid arrows represent the robots movements, dashed arrows, the default behaviors
(moving next to the ball), and pointed arrows, the ball’s movement.

112

D GA

B B

D GA

(a) (b)

Figure 6.13: Sketch performance of the attackers using the reactive approach in scenario
3.

defender intercepts the pass.

– during the adaptation of the case (Figures 6.12c and 6.12e):while the robot
is moving towards the ball, the defender may reach the ball first, clearing
the ball or kicking it out of the field.

• Reactive approach performance
This approach only takes into account the position of the opponent for making
decisions when the opponent is very close to the ball (approximately 40 cm away
at most), blocking it from a forward kick. Hence, in the initial trial layout, the
defender is too far from the ball to be considered during the decision making
and therefore, robot A first performs a forward kick (Figure 6.13a). In the next
timestep, the ball is close enough to the defender and thus, the reactive approach
includes it as an obstacle that must be avoided. Since explicit passes are not
modeled in this approach, the only chance for avoiding the opponent is to dodge
it, moving in diagonal (either to the right or to the left) while grabbing the ball
as shown in Figure 6.13b. The opponent, in this case the defender, also moves
towards the ball and both robots collide fighting for the ball. The outcome is
either a success for the attacker, getting rid of the defender and kicking the ball
forward, or a success for the defender, stealing the ball andclearing it.

The overall performance of the reactive approach is the samein general, trying
to move the ball close to the attacking goal, and dodging the opponent when it
gets near the ball approaching from the front. At some point,the attacker reaches
the attacking goal and tries to score avoiding the goalie either turning or dodging
side to side.

• Ball classification
The CBR approach outperforms the reactive approach. As summarized in Ta-
ble 6.5 the percentage of ballsto goal is higher in the CBR approach (30%) than
in the reactive one (17%), as well as the percentage ofblockedballs, i.e. 43%
for the CBR approach, and 30% for the reactive approach. Hence, the chances

113

scenario approach
ball classification (%)

goal close out block to goal

3
cbr 20 10 27 43 30

reactive 10 7 53 30 17

4
cbr 20 3 17 60 23

reactive 30 7 30 33 37

Table 6.5: Ball outcome classification (real robots).

scenario approach
ball possession out balls
average stdev def att total

3
cbr 1.40 1.16 6 2 8

reactive 2.27 1.93 11 5 16

4
cbr 0.60 0.72 2 3 5

reactive 1.07 0.87 5 4 9

Table 6.6: Defender’s ball possesion (real robots).

for scoring with the CBR approach are higher, because the attackers reached the
attacking goal more times, ending the trial either scoring or trying to score. This
fact is also derived from the percentage of ballsout, where we can observe that
the percentage for the reactive approach (53%) even doublesthe percentage for
the CBR approach (27%). More precisely, as listed in Table 6.6, the number of
balls out due to the defender’s actions is higher for the reactive approach (11)
with respect to the CBR approach (6).

• Defender’s ball possession
The chances for the defender to steal the ball are higher whenthe attackers use
the reactive approach. Table 6.6 lists the average and standard deviation of the
number of times the defender possessed the ball, i.e. eithertouched or kicked
the ball. The average of the defender’s ball possession is 2.27 in contrast to the
average of 1.40 when playing against the attackers with the CBR approach. This
means that in average, at least two times per trial the defender had the opportu-
nity to either block the ball or even worst, to clear the ball from its defending
zone (the half side of the field it defends). Thus, we can statethat the teamwork
playing strategy in the CBR approach, more precisely the passes between team-
mates, is indispensable for reducing the opponent’s chances to intercept the ball.
This fact is also confirmed by the number of ballsout mentioned above, where
the defender kicks the ball out of the field more times when playing against the
reactive approach.

Scenario 4

• CBR approach performance
Similarly to the previous scenario, the first action the attackers perform is a pass

114

A D

B
G B

A

G

D

(a) (b)

A
D

G
B B

D

A

G

(c) (d)

Figure 6.14: Sketch performance of the attackers using the CBR approach in scenario
4.

between them to avoid the defender, while the latter tries totake the ball (Fig-
ure 6.14a and Figure 6.14b). After the first case reuse, the ball ends close to the
penalty area, where the goalie is expecting it as shown in Figure 6.14c. Since the
goalie is on the right side of its penalty area, it is not only blocking the ball from
a front kick, but also incapacitating robot A from scoring. Hence, the only option
for robot B is to individually try to score dodging the goalie(Figure 6.14d), while
the defender comes from the back trying to take the ball on time. Once again, fail-
ures during the execution can occur due to the reasons already mentioned in the
previous scenario (errors during passes or defender reaching the ball first).

• Reactive approach performance
In contrast to the third scenario, in this occasion the opponent is positioned close
enough to the ball, so the attacker can detect it. Hence, using the dodging tac-
tic robot A tries to avoid the defender, moving diagonally towards the left and
kicking the ball forward (Figure 6.15a). Meanwhile, robot Bmoves towards the
attacking goal, avoiding to intercept the ball. Once robot Ahas kicked the ball,
robot B can immediately go after it (Figure 6.15b). This action could be inter-
preted as a pass, although it was not really meant to be. Next,robot B is close

115

B
G

A D D
A

G

B

(a) (b)

A

B

G

D

(c)

Figure 6.15: Sketch performance of the attackers using the reactive approach in scenario
4.

enough to the attacking goal and alone with the goalie, and therefore, tries to
score (Figure 6.15c).

We must once again recall that the above described scenario corresponds to an
ideal execution. As the results we have obtained show, most of the times the
defender prevented the attackers from reaching the goal or at least, greatly com-
plicated their task.

• Ball classification
The CBR approach is not as efficient as the reactive approach.As we can observe
in Table 6.5 the percentage of ballsto goalusing the reactive approach (37%) is
higher than using the CBR approach (23%). However, we must also take special
attention to the fact that the percentage ofblockedballs by the goalie is much
higher for the CBR approach (60%, it doubles the reactive approach). Therefore,
we confirm that altough the attackers with the CBR approach did not manage to
score as many goals as the attackers with the reactive approach, most of the times
they reached the attacking goal and aimed at scoring. This isalso reinforced
by the fact that the percentage ofout balls in the reactive approach (30%) almost
doubles the percentage in the CBR one (17%). Moreover, as detailed in Table 6.6,
the defender playing against the reactive robots had more opportunities to kick
the ball out of the field (5 times vs. 2 against the CBR approach), preventing the

116

attackers from reaching the attacking goal.

• Defender’s ball possession
Similarly to scenario 3, as Table 6.6 summarizes, the average number of times the
defender intercepted the ball when playing against the reactive approach (1.07)
is higher than when playing against the CBR approach (0.60).As mentioned in
the approach performance, the first attacker’s action usingthe reactive approach
is to dodge the defender moving forward with the ball, instead of performing a
pass, as the CBR approach does. Hence, although the attackermight try to avoid
the defender, most of the times, the defender manages to block its movements,
forcing the attacker to lose the ball. Therefore, in average, at least once per trial
the defender blocks the ball, complicating the task of the attacker to finally move
the ball towards the attacking goal, whereas with the CBR approach, it happened
about once every two trials in average.

Further discussion on the overall performance of the approaches comparing the sim-
ulation and the real robots results is presented in the last section of this chapter.

6.5 A Trial Example

In order to complete the experimentation stage, we next detail a complete trial with the
real robots, starting with the coordinator selection of themulti-robot system, continuing
with the retrieval process, and finally, showing the execution of a case, i.e. the case
reuse.

Figures 6.16 through 6.24 show the evolution of a trial usingthe fourth scenario.
For each case reuse we first show the retrieved case and the paths followed by the robot.
The subsequent figures show the execution sequence of the case, composed of four
series of snapshots. The general description of each image is the following:

• retrieved case: similar to the figures shown in the beginningof this chapter (Sec-
tion 6.1), the green circles correspond to teammates (A and B), while squares
correspond to opponents, the defender (D) and the goalie (G). The ball and op-
ponents’ scopes are depicted with ellipses, and the ball’s path with trapezoids.

• path image: it illustrates the path of the robots and the ballduring the case execu-
tion. As shown in the legend, green crosses correspond to robot A and blue stars,
to robot B (the attackers). The defender and the goalie (D andG) are represented
with a yellow and a pink square respectively. Finally, the ball is denoted by the
red circle. The data is obtained from the internal beliefs ofthe robots, i.e. where
they believe they are located on the field and what is the ball’s position.

• execution sequence: each step of the case reuse is composed of three images:

– a snapshot of the video of the trial. The brown robots correspond to the
attackers, while the white ones, to the opponents.

117

– the robot’s internal beliefs, also called world model1 corresponding to any
of the two attackers.

– an image extracted from one of the robots vision system (segmented im-
ages). The robots id’s in the world model are 1 and 2 for the attackers, 3 for
the goalie, and 4 for the defender (white or gray filled squares).

In this trial example, three cases were reused to fulfill the task. We next detail each
of the steps:

1. Case 1 (Figures 6.16, 6.17 and 6.18): as observed in the first snapshot of the
field, Figure 6.17 (1), the robots are located as in the initial layout of the fourth
scenario. The selected coordinator corresponds to robot A,the closest robot to
the ball. The world model and the segmented image were obtained from robot
A. A reduced description of the problem to solve correspondsto (from robot A’s
perspective):

id position (x,y)
A 182 -1288
B 756 -79
defender 1458 -1273
goalie 2359 -163
ball 682 -1263

The retrieved case corresponds to the case mSide (multiple-side), Figure 6.16a,
which consists in a pass between both robots to avoid the defender positioned in
front of the ball.

The second row, Figure 6.17 (2), shows the robots starting the execution of the
case, i.e. the case reuse. In the picture we can see that robotA is performing the
pass, while robot B is waiting to receive the ball. Meanwhile, the defender has
moved to intercept the pass. Next, robot B takes the ball, Figure 6.18 (3), and
turns to kick the ball towards the attacking goal, Figure 6.18 (4). The segmented
image in this last row is taken from robot A, and illustrates the kick performed by
its teammate (robot B) finalizing the execution of the case. The ball ends close to
the attacking penalty area as shown in red in the path’s image(Figure 6.16b).

1To obtain this information we used Chokechain2, a debugging tool implemented by the CMU team. The
symbols and graphics shown correspond to features used to debug the robot’s behavior. We only detail those
relevant for this example.

118

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

-1000 -500 0 500 1000 1500 2000 2500

Y

X

ball
A
B
G
D

(b)

Figure 6.16: Trial example: first case. (a) Retrieved case, (b) robots’ paths.

119

(1
)

(2
)

F
ig

ur
e

6.
17

:
T

ria
le

xa
m

pl
e:

fir
st

ca
se

(s
eq

ue
nc

e
1

an
d

2)
.

S
na

ps
ho

t,
w

or
ld

m
od

el
an

d
se

gm
en

te
d

im
ag

e.

120

(3
)

(4
)

F
ig

ur
e

6.
18

:
T

ria
le

xa
m

pl
e:

fir
st

ca
se

(s
eq

ue
nc

e
3

an
d

4)
.

S
na

ps
ho

t,
w

or
ld

m
od

el
an

d
se

gm
en

te
d

im
ag

e.

121

2. Case 2 (Figures 6.19, 6.20 and 6.21): after the execution of the previous case,
robot B is selected as the new coordinator. Robot A is furtherin the back blocked
by the defender, while the goalie starts moving perpendicular to the ball to pre-
vent a goal. The problem description corresponds to (this time from robot B’s
perspective):

id position (x,y)
A 952 -1288
B 685 -371
defender 908 -1006
goalie 2369 -140
ball 1595 -4

Since robot B is alone in front of the goalie, Figure 6.20 (1),case sGf (single-
goalie-front) is retrieved, Figure 6.19a. Thus, the robot should take the ball and
try to score alone avoiding the goalie (either turning to face an empty spot in the
goal or dodging the goalie).

In the second row, Figure 6.20 (2), we can observe that robot Bapproaches the
ball and the defender starts traveling towards that point aswell. The segmented
image is taken from robot A’s point of view, where we can observe robot B getting
closer to the ball. In the next row, Figure 6.21 (3), robot B kicks the ball while the
defender tries to steal it. The defender does not manage to get the ball, although
the goalie moves to block it and succeeds (segmented image inFigure 6.21 (4)).
However, the trial in this occasion is not stopped, since thegoalie has not kicked
the ball out i.e. it just blocked the ball.

3. Case 3 (Figures 6.22, 6.23 and 6.24): in this final step, robot B is selected as the
coordinator once again, although as we see next, the case is reused only by robot
A. Thus, given the current state of the world:

id position (x,y)
A 1656 -363
B 1522 114
defender 1630 -328
goalie 2374 0
ball 1952 -42

The retrieved case corresponds to case sFront (single-front), Figure 6.22a, where
no opponent is considered. Although from our perspective (human) we can
clearly see in the first picture, Figures 6.23 (1), that the goalie is in front of robot
A and therefore, the case sGf (as above) would be more appropriate, we must
recall that a high degree of uncertainty is present within the robots’ beliefs. In
fact, if we observe the picture in the Figure 6.23 (2), it turns out that the goalie
moves too much towards its left, leaving the goal free for a short period of time
(the segmented image illustrates a free gap in the attackinggoal). Thus, the case
execution continues, Figure 6.24 (3) and (4), and in spite ofthe opponents’ efforts
to prevent the goal, finally robot A manages to score.

122

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

-1000 -500 0 500 1000 1500 2000 2500

Y

X

ball
A
B
G
D

(b)

Figure 6.19: Trial example: second case. (a) Retrieved case, (b) robots’ paths.

123

(1
)

(2
)

F
ig

ur
e

6.
20

:
T

ria
le

xa
m

pl
e:

se
co

nd
ca

se
(s

eq
ue

nc
e

1
an

d
2)

.
S

na
ps

ho
t,

w
or

ld
m

od
el

an
d

se
gm

en
te

d
im

ag
e.

124

(3
)

(4
)

F
ig

ur
e

6.
21

:
T

ria
le

xa
m

pl
e:

se
co

nd
ca

se
(s

eq
ue

nc
e

3
an

d
4)

.
S

na
ps

ho
t,

w
or

ld
m

od
el

an
d

se
gm

en
te

d
im

ag
e.

125

(a)

-1500

-1000

-500

 0

 500

 1000

 1500

-1000 -500 0 500 1000 1500 2000 2500

Y

X

ball
A
B
G
D

(b)

Figure 6.22: Trial example: third case. (a) Retrieved case,(b) robots’ paths.

126

(1
)

(2
)

F
ig

ur
e

6.
23

:
T

ria
le

xa
m

pl
e:

th
ird

ca
se

(s
eq

ue
nc

e
1

an
d

2)
.

S
n

ap
sh

ot
,w

or
ld

m
od

el
an

d
se

gm
en

te
d

im
ag

e.

127

(3
)

(4
)

F
ig

ur
e

6.
24

:
T

ria
le

xa
m

pl
e:

th
ird

ca
se

(s
eq

ue
nc

e
3

an
d

4)
.

S
n

ap
sh

ot
,w

or
ld

m
od

el
an

d
se

gm
en

te
d

im
ag

e.

128

6.6 Discussion and Future Work

In general, analyzing both, the results obtained in simulation and the ones obtained
with the real robots, we can confirm that the Case-Based Reasoning approach indeed
improves upon the region-based approach, not only on placing a higher percentage of
balls close to the opponent’s goal, but also, achieving a lower percentage ofout balls.
More precisely, the results of the third scenario with the real robots confirms the results
obtained in simulation. In the fourth scenario, once again the average of ballsout is
higher for the reactive approach, which confirms that the defender had more chances to
take the ball.

However, in the last scenario, the reactive approach achieved a higher percentage
of balls to goalcompared to the CBR approach. We must point out that comparing the
ideal executions of both approaches (Figures 6.14 and 6.15)we can easily observe that
the reactive approach is more efficient on faster moving the ball towards the attacking
goal, i.e. with two kicks the robots can score. On the contrary, the attackers with CBR
approach need at least three kicks to complete the same task.Hence, the chances for
the goalie to move towards a better position to block the ballalso increase, as confirmed
in the percentage ofblockedballs by the goalie (60% for the CBR approach vs. 33%
for the reactive approach). These results also support thatat least the CBR approach
had more chances to get closer to the attacking goal, i.e. succeeded on avoiding the
defender in the first step (Figure 6.14b), while with the reactive approach, the attacker’s
first action was blocked most of the times (Figure 6.15a). Otherwise, as the ideal se-
quences shows, the attackers would have had even more opportunities to try scoring,
considerably increasing the percentage ofto goalballs.

We must analyze a last issue. Comparing the results obtainedfor the fourth scenario
in simulation and with the real robots, we can see that in simulation, the CBR approach
outperformed the reactive approach. Hence, no matter that the number of kicks to goal
is higher, the CBR can still improve the reactive approach. However, we must always
have in mind that the high uncertainty in the perception for the robots is not present in
the simulated environment. If we take a look back to Figure 6.14c, we can observe that
after reusing the first case, the ball stops near the penalty area. Although the goalie is
not allowed to leave its action region (the penalty area), due to the high uncertainty in
the robot’s world model, the goalie may believe that the ballis within its action region,
and therefore, try to grab it. In the simulated environment this situation never takes
place, unless the ball is actually within the penalty area. Hence, while in the real world
the trial could end with the goalie clearing the ball, i.e.block ball in the statistics, in
simulation the attacker would probably be able to score, i.e. a to goalball.

This fourth scenario situation, where the attackers are in front of the opponent’s
goal, verifies that in this kind of domains (high uncertainty, highly dynamic and real
time response requirements) to solve critical situations it is useful to have a reactive
strategy rather than a deliberative strategy. When the players are in front of the goal,
there is no need of reasoning about interesting plays. Instead, being focused on trying to
score as fast as possible is the best strategy. We must also remember that the defenders
are forbidden to enter the penalty area, and thus, the opponent team has less opportuni-
ties to take the ball. The goalie is the last obstacle to scorea goal. Thus, acting fast is
crucial. However, a deliberative strategy outperforms a reactive one for the remaining

129

situations, i.e. in the middle, back, sides and corners of the field where the opponents
have more chances of stealing the ball.

Regarding the defender’s performance, we have confirmed that using the CBR ap-
proach is a better strategy to avoid the defender stealing the ball because of the explicit
passes between teammates. The reactive strategy almost doubles the chances for the
defender to steal the ball compared to the CBR approach.

In conclusion, we believe we have indeed verified all three hypotheses presented in
the beginning of the chapter. First, both experiments in simulation and with the real
robots confirm that applying Case-Based Reasoning techniques is a feasible alternative
to procedural programming; second, the real robots experiments reinforce the ability
of the CBR approach to handle uncertainty; and third, again,both experiments encour-
age the advantages of performing a cooperative strategy forjoint tasks within dynamic
adversarial domains, as the robot soccer presented in this work.

As future work, we are interested in studying in depth a combined strategy integrat-
ing both approaches, i.e. a pure deliberative strategy witha reactive one. We believe
that because of the domain features, the reactive componentmust always be part of the
overall strategy to solve critical situations. Hence, by combining both approaches we
can benefit from their advantages.

130

Chapter 7

Conclusions and Future Work

In this chapter we review the contributions presented in this dissertation. We also sum-
marize future research lines to improve the presented approach.

7.1 Summary of the Contributions

Designing the decision-making engine of a team of robots is achallenging task, not
only due to the complexity of the environment where the robots usually perform their
task, which include uncertainty, dynamism and imprecision, but also because the coor-
dination of a team must be included in this design. The robotsmust be aware of other
robots’ actions to cooperate and to successfully achieve their common goal. Besides,
decisions must be made in real-time and with limited computational resources. In this
thesis we have proposed a Case-Based Reasoning system for action selection in a team
of robots within the robot soccer domain.

We next go through the contributions presented in this dissertation and briefly sum-
marize the conclusions drawn from each chapter:

Case definition and Case Base description

A case represents a snapshot of a game, i.e. the description of the environment,
the actions the robots should perform, i.e. the solution description, and the case
scope, i.e. general domain knowledge. An initial set of cases has been manually
created. When the system loads the case base, a larger set of cases is automati-
cally derived through spatial transformations. The complete case base is divided
in two sets to reduce the search space during retrieval.

Assessing case similarity

When comparing the current problem to solve with the cases in the case base, we
first compute their similarity based on what we call thenon-controllablefeatures.
The values of these features cannot be directly modified by the system. Differ-
ent similarity functions have been proposed depending on the features domains.
The overall similarity results from the aggregation of the individual similarities.

131

Next, we compute the cost of adapting the current problem to the case using the
controllablefeatures. The idea underlying this measure is that the robots of the
team (not the opponents of course) can move to better positions in order to in-
crease the similarity between the state of the world and the evaluated case. The
last measures to compute involve the positions of the opponents. The aim is to
evaluate whether the case is applicable or not even though the problem to solve
and the case have been considered similar enough. Thus, a case is applicable if
the trajectories the ball follows when applying the actionsindicated in the solu-
tion of the case are free of opponents. Finally, the opponentsimilarity measure
reinforces the similarity degree. All this process is conducted through a filtering
mechanism. Hence, whenever a case fails in any of the filtering stages, it is im-
mediately withdrawn and the procedure evaluates the next case in the case base,
thus reducing the time invested in the search.

Filtering mechanism

After the filtering process takes place, a set of candidate cases are obtained. A
sorting algorithm ranks the candidates based on several criteria. In this work
we have presented five criteria and three different sorting algorithms. We have
performed empirical evaluation in simulation to verify that the retrieval process
is suitable for the work presented here, and also to determine the most efficient
sorting algorithm among the three proposed.

Multi-robot architecture, coordination and case reuse

After a case is retrieved, the next step is to reuse it. Hence,we have introduced
a multi-robot architecture and a coordination mechanism toexecute the actions
indicated by the retrieved case in a cooperative way. The multi-robot system is
composed of two types of robots: theretrieversand theexecutors. As their names
indicate, the retrievers are capable of retrieving cases, i.e. they incorporate a CBR
module in their internal architecture. The executors instead, wait for the retrievers
to indicate the case to reuse. Only one case can be executed ata time. Therefore,
a coordinator is selected to retrieve the next case to reuse.

Once the coordinator informs the rest of the team (retrievers and executors) about
the retrieved case, they all first move towards their adaptedpositions to start the
execution of the case. During the case reuse, any of the robots may abort the
execution if, based on its beliefs, it finds out that the case is not applicable any-
more. When the case reuse ends, the process starts again, selecting a coordinator,
retrieving a case, reusing it, and so on.

Supervised learning for acquiring the scope of cases

In this thesis we have also included a first attempt to automate the adaptation and
acquisition of the case-based reasoning system’s knowledge with respect to the
scope of a case, i.e. the case coverage. To this end, a two-steps algorithm has been
presented. The first step grows the initial scope of a case until approximating the
expected one (based on the expert’s knowledge), while the second one, makes
it converge. We have presented three different function policies to this end, and

132

evaluated them through simulation and with a real robot. We have also included
a simple mechanism to create new cases when no case is found.

Empirical evaluation of the approach

Finally, we have evaluated the retrieval and the reuse step both in simulation
and with real robots comparing the proposed approach (CBR approach) with
the region-based approach (reactive approach) presented by the Carnegie Mel-
lon team, CMDash. The scenarios consisted of two vs. two games, where the
attackers played using either the CBR or the reactive approach. We have imple-
mented the behaviors for the defender and the goalie, which were used against
both types of attackers.

The results showed that the CBR approach not only outperformed the reactive
approach in general, scoring more goals, throwing fewer balls out of the field
and decreasing the defender’s ball possession, but also encouraged the team to
behave in a cooperative way, having passes between the attackers when possible.
The experiments also demonstrated that in this kind of domains (high uncertainty,
highly dynamic and real time response requirements) to solve critical situations
it is sometimes useful to have a reactive strategy rather than a deliberative strat-
egy where acting fast is crucial. Thus, we believe that the combination of both
strategies is essential to obtain an effective robot behavior.

7.2 Future Directions

The presented work introduces a complete framework for the action selection problem
in a team of robots, starting from the decision-making untilthe coordinated execution of
the selected actions. As concluded in the previous section,and observing the successful
results obtained through the experimentation, we can claimthat the goals of the thesis
have been achieved, while the proposed hypotheses have alsobeen verified. However,
and as expected, improvements and open issues are still pending. We next review the
open challenges proposed through this dissertation.

Retrieval Step

The cost function should model not only the distance the robots have to travel
to reach their adapted positions, but also the possible obstacles the robots may
encounter in their paths. However, it must be taken into account that the cost may
vary from decision time, i.e. during retrieval, to execution time, i.e. during reuse,
since the obstacles are other robots that are constantly moving. Other parameters
such as robot’s orientation or velocities can also be considered when defining the
cost function.

In order to increase flexibility in the applicability measure, we could make use of
the fuzzy representation of the free path and the opponent similarity functions.

The evaluation of the candidate cases could be extended, including not only the
problem description, but also an analysis of the solution description. This way we
could discriminate between similar cases whose problem descriptions are equal,

133

but with different actions. To this end, the outcome of the reused case should be
included in the case description so that different solutions can be compared.

It would be also interesting to include for each case description, a list of most
likely cases to be retrieved in the next cycle of the CBR. Thisway patterns of
case executions can be obtained for further analysis, such as the evaluation of the
team behavior or prediction of future states.

Reuse Step

The selection of the case to reuse could be improved considering the proposals
of each retriever robot. Thus, a negotiation mechanism should be introduced so
the robots could bargain for selecting the most suitable case to reuse among the
retrieved ones.

Some of the available negotiation mechanisms we can find in the literature,
among others, and that should be studied to determine their viability, are:

• voting mechanisms, where the retrievers would vote for a case or a set of
candidate cases, and the most voted case would be selected;

• bidding mechanisms, where each retriever indicates along with the proposed
case, a bid representing the confidence on how suitable the retrieved case
is given its current internal beliefs (we must recall that uncertainty in the
robot’s beliefs is always present in different degrees); or

• argumentation mechanisms, which are far more complex, since the robots
(agents) must exchange arguments for or against the proposals submitted
for discussion. However, this approach might not be feasible in domains
where acting fast is crucial.

Revise Step

Including this step in the current approach is fundamental if we expect the sys-
tem to automatically improve its performance as well as to adapt and to learn
new situations encountered through time. However, becauseof the nature of the
domain, and more precisely, the continuous property of the domain, the design of
this latter step is very challenging. In order to revise the reused case, at least the
following questions should be analyzed:

• when to consider that a potential case hasstarted, i.e. identify the initial
situation;

• when does itfinish, i.e. which are the actions to store as part of the solution
of a case; and,

• how to evaluate theoutcomeof the performed actions to determine if the
case is useful or not for achieving the robot’s goals (i.e. positive or negative
feedback).

Some previous works have been already presented in the past addressing these
issues [51, 37, 27], and should be studied in detail in order to adapt their ideas to
the robot soccer domain.

134

As discussed in the experimentation chapter, we should alsostudy in more detail the
combination of the two types of strategies, deliberative and reactive, in order to benefit
from the advantages of both. Having a deliberative strategyis fundamental for making
decisions from a high level point of view, considering the complete state of the world,
as well as past history or future predictions of the state evolution. However, a reactive
strategy is also essential when fast response is required tosolve critical situations.

Finally, the parameters used in the approach, such as thresholds, could be modified
on-line in order to alter the behavior of the retrieval and the reuse step. Thus, differ-
ent cases would be retrieved modifying the team strategy. Moreover, these parameters
could vary based on the time and score of the game. For instance, consider a situation
where few minutes remain for ending the game and the team is losing. It would be then
desirable that the team switched to an offensive strategy. We could achieve this through
two means: we could design a specific set of cases for each typeof strategy, and let
the retrieval step to select the most suitable type of case aspresented in this disserta-
tion; or we could vary the parameters of the approach such that cases that would be
initially withdrawn, would now be candidates because the measures’ thresholds have
been altered. In the case of the free path function for instance, a case is discarded if an
opponent is within the ball’s trajectory(whose width is parametrized by a given thresh-
old). If we alter the value of this latter parameter, we couldreduce the width of the
trajectory. Hence, the opponent that initially occupied part of the path, would not be
considered within it anymore, and therefore, the case wouldbe a next candidate. Sim-
ilarly, the ball’s scope and the opponents’ scope can be alsomodified on-line, and as
a consequence, the retrieval process of the CBR system is modified as well, which in
turn, alters the robots’ behavior.

135

136

Bibliography

[1] A brief history of robocup, http://www.robocup.org/overview/23.html.

[2] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches.AI Communications, 7(1):39
– 59, 1994.

[3] Giovanni Adorni, Stefano Cagnoni, Monica Mordonini, and Maurizio Piaggio.
Team/goal-keeper coordination in the robocup mid-size league. In Peter Stone,
Tucker R. Balch, and Gerhard K. Kraetzschmar, editors,RoboCup 2000: Robot
Soccer World Cup IV, volume 2019 ofLecture Notes in Computer Science, pages
279–284. Springer, 2001.

[4] Mazda Ahmadi, Abolfazl Keighobadi Lamjiri, Mayssam M. Nevisi, Jafar Habibi,
and Kambiz Badie. Using a two-layered case-based reasoningfor prediction in
soccer coach. In Hamid R. Arabnia and Elena B. Kozerenko, editors,Proceedings
of the International Conference on Machine Learning; Models, Technologies and
Applications, pages 181–185. CSREA Press, 2003.

[5] Mazda Ahmadi and Peter Stone. Instance-based action models for fast action
planning. In Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and Frank Dellaert,
editors,RoboCup 2007: Robot Soccer World Cup XI. Springer Verlag, Berlin,
2008. To appear.

[6] Ronald C. Arkin. Motor schema-based mobile robot navigation. International
Journal of Robotics Research, 8(4):92–112, 1989.

[7] Isaac Asimov.I, robot. Gnome Press, USA, 1950.

[8] Ralf Berger and Gregor L̈ammel. Exploiting past experience - case-based decision
support for soccer agents. InKI 2007: Advances in Artificial Intelligence, volume
4667 ofLecture Notes in Computer Science, pages 440–443. Springer, 2007.

[9] Carlos Bustamante, Leonardo Garrido, and Rogelio Soto.Fuzzy naive bayesian
classification in robosoccer 3d: A hybrid approach to decision making. In
RoboCup 2006: Robot Soccer World Cup X, volume 4434 ofLecture Notes in
Computer Science, pages 507–515. Springer, 2007.

137

[10] Kuan-Yu Chen and Alan Liu. A design method for incorporating multidisciplinary
requirements for developing a robot soccer player. InProceedings of the Fourth
IEEE International Symposium on Multimedia Software Engineering, pages 25–
32. IEEE Computer Society, 2002.

[11] P. R. Cohen and H. J. Levesque. Teamwork.Nous, 25(4):487–512, 1991.

[12] RoboCup Technical Committee.Sony Four Legged Robot Football League Rule
Book, December 2004.

[13] M. H. DeGroot and Mark J. Schervish.Probability and Statistics. Addison-
Wesley, 2001. 3rd. Edition.

[14] Alexis Drogoul and Anne Collinot. Applying an agent-oriented methodology to
the design of artificial organizations: A case study in robotic soccer.Autonomous
Agents and Multi-Agent Systems, 1(1):113–129, 1998.

[15] Yong Duan, Qiang Liu, and XinHe Xu. Application of reinforcement learning in
robot soccer.Engineering Applications of Artificial Intelligence, 20(7):936–950,
2007.

[16] Soumitra Dutta, Berend Wierenga, and Arco Dalebout. Case-based reasoning
systems: From automation to decision-aiding and stimulation. IEEE Transactions
on Knowledge and Data Engineering, 9(6):911–922, 1997.

[17] R. Fikes and N. Nilsson. Strips: a new approach to the application of theorem
proving to problem solving.Artificial Intelligence, 2:189–208, 1971.

[18] Gordon Fraser and Franz Wotawa. Cooperative planning and plan execution in
partially observable dynamic domains. InRoboCup 2004: Robot Soccer World
Cup VIII, volume 3276 ofLecture Notes in Computer Science, pages 524–531.
Springer, 2005.

[19] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86(2):269–357, 1996.

[20] K. Haigh and J. Shewchuk. Geometric similarity metricsfor case-based reasoning.
In Case-Based Reasoning: Working Notes from the AAAI-94 Workshop, pages
182–187. AAAI Press, 1994.

[21] K. Haigh and M. Veloso. Route planning by analogy. In M. Veloso and A. Aamodt,
editors,Case-Based Reasoning Research and Development, volume 1010 ofLec-
ture Notes in Computer Science, pages 169–180. Springer-Verlag, 1995.

[22] J. H. Holland.Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, 1975.

[23] Zhanxiang Huang, Yang Yang, and Xiaoping Chen. An approach to plan recogni-
tion and retrieval for multi-agent systems. InWorkshop on Adaptability in Multi-
Agent Systems (AORC 2003), 2003.

138

[24] K. G. Jolly, K. P. Ravindran, R. Vijayakumar, and R. Sreerama Kumar. Intelligent
decision making in multi-agent robot soccer system throughcompounded artificial
neural networks.Robotics and Autonomous Systems, 55(7):589–596, 2007.

[25] Alankar Karol, Bernhard Nebel, Christopher Stanton, and Mary-Anne Williams.
Case based game play in the robocup four-legged league part ithe theoretical
model. In Daniel Polani, Brett Browning, Andrea Bonarini, and Kazuo Yoshida,
editors,RoboCup 2003: Robot Soccer World Cup VII, volume 3020 ofLecture
Notes in Computer Science, pages 739–747. Springer, 2004.

[26] Heung-Soo Kim, Hyun-Sik Shim, Myung-Jin Jung, and Jong-Hwan Kim. Action
selection mechanism for soccer robot. InProceedings of the 1997 IEEE Inter-
national Symposium on Computational Intelligence in Robotics and Automation,
page 390. IEEE Computer Society, 1997.

[27] Z. Kira and R. C. Arkin. Forgetting bad behavior: Memorymanagement for case-
based navigation. InInternational Conference on Intelligent Robots and Systems,
volume 4, pages 3145–3152, 2004.

[28] Alexander Kleiner, Markus Dietl, and Bernhard Nebel. Towards a life-long learn-
ing soccer agent. In Gal A. Kaminka, Pedro U. Lima, and Ral Rojas, editors,
RoboCup 2002: Robot Soccer World Cup VI, volume 2752 ofLecture Notes in
Computer Science, pages 126–134. Springer, 2003.

[29] Donald Ervin Knuth.The Art of Computer Programming: Sorting and Searching,
volume 3. Addison Wesley, 1973.

[30] Janet Kolodner.Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA,
USA, 1993.

[31] S. Konur, A. Ferrein, and G. Lakemeyer. Learning decision trees for action selec-
tion in soccer agents. InECAI-04 Workshop on Agents in dynamic and real-time
environments, 2004.

[32] Maarja Kruusmaa. Global navigation in dynamic environments using case-based
reasoning.Autonomous Robots, 14(1):71–91, 2003.

[33] Kevin Lam, Babak Esfandiari, and David Tudino. A scene-based imitation frame-
work for robocup clients. InWorkshop on Modeling Others from Observations
(AAAI 2006), 2006.

[34] Andreas D. Lattner, Andrea Miene, Ubbo Visser, and Otthein Herzog. Sequential
pattern mining for situation and behavior prediction in simulated robotic soccer. In
Ansgar Bredenfeld, Adam Jacoff, Itsuki Noda, and Yasutake Takahashi, editors,
RoboCup 2005: Robot Soccer World Cup IX, volume 4020 ofLecture Notes in
Computer Science, pages 118–129. Springer, 2006.

[35] Jeongjun Lee, Dongmin Ji, Wonchang Lee, Geuntaek Kang,and Moon G. Joo. A
tactics for robot soccer with fuzzy logic mediator. InComputational Intelligence
and Security, volume 3801 ofLecture Notes in Computer Science, pages 127–132.
Springer, 2005.

139

[36] Mario Lenz and Hans-Dieter Burkhard. Case retrieval nets: Basic ideas and ex-
tensions. In G. Gorz and S. Holldobler, editors,KI-96: Advances in Artificial
Intelligence, volume 1137 ofLecture Notes in Computer Science, pages 227–239.
Springer Verlag, 1996.

[37] Maxim Likhachev and Ronald C. Arkin. Spatio-temporal case-based reasoning for
behavioral selection. InInternational Conference on Robotics and Automation,
volume 2, pages 1627–1634. IEEE, 2001.

[38] Yi-Sheng Lin, A. Liu, and Kuan-Yu Chen. A hybrid architecture of case-based
reasoning and fuzzy behavioral control applied to robot soccer. InWorkshop on
Artificial Intelligence, 2002 International Computer Symposium (ICS2002), 2002.

[39] Ramon Ĺopez de M̀antaras, David McSherry, Derek Bridge, David Leake, Barry
Smyth, Susan Craw, Boi Faltings, Mary Lou Maher, Michael T. Cox, Kenneth For-
bus, Mark Keane, Agnar Aamodt, and Ian Watson. Retrieval, reuse, revision and
retention in case-based reasoning.Knowledge Engineering Review, 20(3):215–
240, 2005.

[40] Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler.
Co-evolving soccer softbot team coordination with geneticprogramming. In
RoboCup-97: Robot Soccer World Cup I, volume 1395 ofLecture Notes in Com-
puter Science, pages 398–411. Springer, 1998.

[41] Cynthia Marling, Mark Tomko, Matthew Gillen, David Alexander, and David
Chelberg. Case-based reasoning for planning and world modeling in the robocup
small size league. InIJCAI-03 Workshop on Issues in Designing Physical Agents
for Dynamic Real-Time Environments: World Modeling, Planning, Learning, and
Communicating, 2003.

[42] A. Micarelli, A. Neri, S. Panzieri, and G. Sansonetti. Acase-based approach to
indoor navigation using sonar maps. InInternational IFAC Symposium On Robot
Control SYROCO, 2000.

[43] Andrea Miene, Ubbo Visser, and Otthein Herzog. Recognition and prediction of
motion situations based on a qualitative motion description. In Daniel Polani,
Brett Browning, Andrea Bonarini, and Kazuo Yoshida, editors, RoboCup 2003:
Robot Soccer World Cup VII, volume 3020 ofLecture Notes in Computer Science,
pages 77–88. Springer, 2004.

[44] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[45] Tomoharu Nakashima, Masahiro Takatani, Masayo Udo, Hisao Ishibuchi, and
Manabu Nii. Performance evaluation of an evolutionary method for robocup soc-
cer strategies. InRoboCup 2005: Robot Soccer World Cup IX, volume 4020 of
Lecture Notes in Computer Science, pages 616–623. Springer, 2006.

[46] Oliver Obst and Joschka Boedecker. Flexible coordination of multiagent team
behavior using htn planning. InRoboCup 2005: Robot Soccer World Cup IX,

140

volume 4020 ofLecture Notes in Computer Science, pages 521–528. Springer,
2006.

[47] Jong-Hwan Park, Daniel Stonier, Jong-Hwan Kim, Byung-Ha Ahn, and Moon-Gu
Jeon. Recombinant rule selection in evolutionary algorithm for fuzzy path planner
of robot soccer. In Christian Freksa, Michael Kohlhase, andKerstin Schill, editors,
KI 2006: Advances in Artificial Intelligence, volume 4314 ofLecture Notes in
Computer Science, pages 317–330. Springer, 2006.

[48] Kui-Hong Park, Yong-Jae Kim, and Jong-Hwan Kim. Modular q-learning based
multi-agent cooperation for robot soccer.Robotics and Autonomous Systems,
35(2):109–122, 2001.

[49] J. Ross Quinlan.C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

[50] Ashwin Ram. Indexing elaboration and refinement: Incremental learning of ex-
planatory cases.Machine Learning, 10(3):201–248, 1993.

[51] Ashwin Ram and J. C. Santamarı́a. Continuous case-based reasoning.Artificial
Intelligence, 90(1-2):25–77, 1997.

[52] Martin A. Riedmiller, Artur Merke, David Meier, Andreas Hoffmann, Alex Sin-
ner, Ortwin Thate, and R. Ehrmann. Karlsruhe brainstormers- a reinforcement
learning approach to robotic soccer. In Peter Stone, TuckerR. Balch, and Ger-
hard K. Kraetzschmar, editors,RoboCup 2000: Robot Soccer World Cup IV, vol-
ume 2019 ofLecture Notes in Computer Science, pages 367–372. Springer, 2001.

[53] Thomas Rofer, Tim Laue, and Michael Weber et al. Germanteam robocup 2005.
Technical report, Universitat Bremen, Humboldt-Universitat zu Berlin, Technis-
che Universitat Darmstadt, Dortmund University, 2005.

[54] David E. Rumelhart and James L. McClelland.Parallel Distributed Processing.
MIT Press, Cambridge, MA, 1986.

[55] Alessandro Saffiotti. The uses of fuzzy logic in autonomous robot navigation.Soft
Computing, 1(4):180–197, 1997.

[56] Roger C. Schank.Dynamic Memory: A Theory of Reminding and Learning in
Computers and People. Cambridge University Press, New York, NY, USA, 1983.

[57] H. L. Sng, Gourab Sen Gupta, and Chris H. Messom. Strategy for collaboration
in robot soccer. InProceedings of the The First IEEE International Workshop on
Electronic Design, Test and Applications (DELTA), pages 347–354. IEEE Com-
puter Society, 2002.

[58] T. Steffens. Adapting similarity-measures to agenttypes in opponent-modelling.
In Workshop on Modeling Other Agents from Observations at AAMAS 2004, 2004.

141

[59] Robert Stepp and Ryszard S. Michalski. Conceptual clustering: Inventing goal-
oriented classifications of structured objects.Machine Learning: An Artificial
Intelligence Approach, 2:471–498, 1986.

[60] Peter Stone, Mohan Sridharan, Daniel Stronger, Gregory Kuhlmann, Nate Kohl,
Peggy Fidelman, and Nicholas K. Jong. From pixels to multi-robot decision-
making: A study in uncertainty.Robotics and Autonomous Systems, 54(11):933–
943, 2006.

[61] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, 1998.

[62] M. Tambe. Towards flexible teamwork.Journal of Artificial Intelligence Research,
7:83–124, 1997.

[63] Ashley Tews and Gordon Wyeth. Multi-robot coordination in the robot soccer
environment. InProceedings of the Australian Conference on Robotics and Au-
tomation, pages 90–95, 1999.

[64] Cristina Urdiales, Eduardo J. Prez, Javier Vzquez-Salceda, Miquel Snchez-Marr,
and Francisco Sandoval Hernndez. A purely reactive navigation scheme for dy-
namic environments using case-based reasoning.Autonomous Robots, 21(1):65–
78, 2006.

[65] Douglas Vail and Manuela Veloso. Dynamic multi-robot coordination. InMulti-
Robot Systems: From Swarms to Intelligent Automata, volume 2, pages 87–100.
Kluwer, 2003.

[66] Bob van der Vecht and Pedro U. Lima. Formulation and implementation of rela-
tional behaviours for multi-robot cooperative systems. InRoboCup 2004: Robot
Soccer World Cup VIII, volume 3276 ofLecture Notes in Computer Science, pages
516–523. Springer, 2005.

[67] Manuela Veloso, Paul E. Rybski, Sonia Chernova, Colin McMillen, Juan Fasola,
Felix vonHundelshausen, Douglas Vail, Alex Trevor, SabineHauert, and Raquel
Ros. Cmdash05: Team report. Technical report, Carnegie Mellon University,
2005.

[68] Manuela M. Veloso.Planning and Learning by Analogical Reasoning, volume
886 ofLecture Notes in Computer Science. Springer Verlag, 1994.

[69] Ubbo Visser and Hans-Dieter Burkhard. RoboCup: 10 Years of Achievments and
Future Challenges.AI Magazine, 28(2):115–132, Summer 2007.

[70] Jan Wendler and Joscha Bach. Recognizing and predicting agent behavior with
case based reasoning. In Daniel Polani, Brett Browning, Andrea Bonarini, and
Kazuo Yoshida, editors,RoboCup 2003: Robot Soccer World Cup VII, volume
3020 ofLecture Notes in Computer Science, pages 729–738. Springer, 2004.

142

[71] Jan Wendler, Steffen Brggert, Hans-Dieter Burkhard, and Helmut Myritz. Fault-
tolerant self localization by case-based reasoning. In Peter Stone, Tucker R. Balch,
and Gerhard K. Kraetzschmar, editors,RoboCup 2000: Robot Soccer World Cup
IV, volume 2019 ofLecture Notes in Computer Science, pages 259–268. Springer,
2001.

[72] Jan Wendler and Mario Lenz. CBR for Dynamic Situation Assessment in an
Agent-Oriented Setting. InAAAI-98 Workshop on CaseBased Reasoning Integra-
tions, 1998.

[73] Chia-Ju Wu and Tsong-Li Lee. A fuzzy mechanism for action selection of soccer
robots.Journal of Intelligent Robotics Systems, 39(1):57–70, 2004.

[74] Kenichi Yoshimura, Nick Barnes, Ralph Rnnquist, and Liz Sonenberg. Towards
real-time strategic teamwork: A robocup case study. In Gal A. Kaminka, Pe-
dro U. Lima, and Ral Rojas, editors,RoboCup 2002: Robot Soccer World Cup
VI, volume 2752 ofLecture Notes in Computer Science, pages 342–350. Springer,
2003.

143

Monografies de l’Institut d’Investigaci ó en
Intel ·ligència Artificial

Num. 1 J. Puyol,MILORD II: A Language for Knowledge–Based Systems,
(1995).

Num. 2 J. Levy,The Calculus of Refinements, a Formal Specification Model
Based on Inclusions, (1995).

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in Knowledge–
Based Systems, (1995).

Num. 4 M. Domingo,An Expert System Architecture for Identification in Bi-
ology, (1995).

Num. 5 E. Armengol,A Framework for Integrating Learning and Problem
Solving, (1998).

Num. 6 J. Ll. Arcos,The Noos Representation Language, (1998).
Num. 7 J. Larrosa,Algorithms and Heuristics for Total and Partial Constraint

Satisfaction, (1998).
Num. 8 P. Noriega,Agent Mediated Auctions: The Fishmarket Metaphor,

(1999).
Num. 9 F. Manỳa, Proof Procedures for Multiple-Valued Propositional Log-

ics, (1999).
Num. 10 W. M. Schorlemmer,On Specifying and Reasoning with Special Re-

lations, (1999).
Num. 11 M. Ĺopez-Śanchez,Approaches to Map Generation by means of Col-

laborative Autonomous Robots, (2000).
Num. 12 D. Robertson,Pragmatics in the Synthesis of Logic Programs, (2000).
Num. 13 P. Faratin,Automated Service Negotiation between Autonomous Com-

putational Agents, (2003).
Num. 14 J. A. Rodŕıguez,On the Design and Construction of Agent-mediated

Electronis Institutions, (2003).
Num. 15 T. Alsinet,Logic Programming with Fuzzy Unification and Imprecise

Constants: Possibilistic Semantics and Automated Deduction, (2003).
Num. 16 A. Zapico,On Axiomatic Foundations for Qualitative Decision The-

ory - A Possibilistic Approach, (2003).
Num. 17 A. Valls,ClusDM: A multiple criteria decision method for heteroge-

neous data sets, (2003).
Num. 18 D. Busquets,A Multiagent Approach to Qualitative Navigation in

Robotics, (2003).
Num. 19 M. Esteva,Electronic Institutions: from specification to development,

(2003).
Num. 20 J. Sabater,ReGreT, a trust and reputation model for multi-agent sys-

tems, (2003).

Num. 21 J. Cerquides,Improving Algorithms for Learning Bayesian Network
Classifiers, (2005).

Num. 22 M. Villaret,On Some Variants of Second-Order Unification, (2005).
Num. 23 M. Ǵomez,Open, Reusable and Configurable Multi-Agent Systems:

A Knowledge Modelling Approach, (2005).
Num. 24 S. Ramchurn,Multi-Agent Negotiation Using Trust and Persuasion,

(2005).
Num. 25 S. Ontãnon,Ensemble Case-Based Learning for Multi-Agent Systems,

(2006).
Num. 26 M. Śanchez,Contributions to Search and Inference Algorithms for

CSP and Weighted CSP, (2006).
Num. 27 C. Noguera,Algebraic Study of Axiomatic Extensions of Triangular

Norm Based Fuzzy Logics, (2007).
Num. 28 E. Marchioni,Functional Definability Issues in Logics Based on Tri-

angular Norms, (2007).
Num. 29 M. Grachten,Expressivity-Aware Tempo Transformations of Music

Performances Using Case Based Reasoning, (2007).
Num. 30 I. Brito,Distributed Constraint Satisfaction, (2007).
Num. 31 E. Altamirano,On Non-clausal Horn-like Satisfiability Problems,

(2007).
Num. 32 A. Giovannucci,Computationally Manageable Combinatorial Auc-

tions for Supply Chain Automation, (2008).
Num. 33 R. Ros,Action Selection in Cooperative Robot Soccer using Case-

Based Reasoning, (2008).

