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Foreword

Designing intelligent behavior of robots in imprecise, erain, dynamic, and unpre-
dictable domains that, furthermore, require fast reaktimsponse is a very complex
task. If an adversarial component, that tries to avoid agtisiting the goals of the
task, is present the design is even more challenging. An pbeaof such domain is
robot soccer. In this thesis Raquel proposes the use of Based Reasoning to handle
this challenging design. More concretely, this thesis eslslts the problem of action
selection and coordination by a team of robots playing sowith the aim of achiev-
ing a collaborative behavior among teammates in order tease the ball possession
and therefore increase the chances of beating the oppaant tThus, the main as-
pect of the work has been to include appropriate explicispadetween teammates in
those situations where a pass makes sense. The approachdmatebted in several
scenarios where two attackers playing collaborativelijngithe Case-Based Reasoning
approach, have been compared to two attackers playingwelsicthat is not collabora-
tively. In both cases playing against a goalie and a deferider results show that the
collaborative Case-Based Reasoning approach outperfibrenseactive one not only
by having more opportunities to score but also by reduciegniiimber of balls going
out of the field. Moreover, because of the use of passes, fhadkr had less opportu-
nities to steal or intercept the ball when the attackers wéaging collaboratively. In
summary, the results clearly show that acting collaboedtiis a good strategy in ad-
versarial situations. Furthermore, to the best of my kndgte this is the first work that
has successfully implemented passing strategies in thddgged robot soccer league.

Working with real robots is a very challenging and difficalsk for any PhD student
because it requires a significant additional effort comgppacedealing with simulated
environments. Raquel has successfully achieved the cgatig goals of this thesis
with a high dose of patience, imagination and solid sciengifid technical background.
All these qualities are the ones needed by anyone involvestientific research. |
have enjoyed and learned a lot working with her and | have begnlucky having her
as PhD student. | hope the readers will enjoy and apprediatguality of the work
described in this book.

Bellaterra, June 2008.

Ramon lopez de Mintaras Badia
Institut d’Investigadd en Intelligencia Artificial
Consell Superior d’Investigacions Cidifjues
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Abstract

Designing the decision-making engine of a team of robotsdhallenging task, not
only due to the complexity of the environment where the rehwually perform their
task, which include uncertainty, dynamism and imprecisbut also because the coor-
dination of the team must be included in this design. Thetobuwst be aware of other
robots’ actions to cooperate and to successfully achiesie tommon goal. Besides,
decisions must be made in real-time and with limited comjrial resources.

This thesis contributes a novel case-based approach fonastlection and coordi-
nation in joint multi-robot tasks in real environments. §happroach has been applied
and evaluated in the representative domain of robot soaitlegugh the ideas presented
are applicable to domains such as disaster rescue operatigoioration of unknown
environments and underwater surveillance, among others.

The retrieval process proposes a case to reuse, evaluatngandidate cases
through different measures to overcome the real world dbariatics, including the
adversarial component which is a key ingredient in the raoater domain. Unlike
classical case-based reasoning engines, the case regsg<onthe execution of a set
of actions through a team of robots. Therefore, from the irnaliot perspective, the
system has to include a mechanism for deciding who does widdt@w. In this thesis,
we propose a multi-robot architecture along with a coortifimamechanism to address
these issues.

We have validated the approach experimentally both in alsi@d environment
and with real robots. The results showed that our approduleass the expected goals
of the thesis, i.e. designing the behavior of a cooperatigentof robots. Moreover, the
experimentation also showed the advantages of using colitibe strategies in contrast
to individualistic ones, where the adversarial compondaygan important role.
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Chapter 1

Introduction

He turned once more to the robot. “Get up!”

The robot towered upward slowly and Donovan’s head cranédhé puckered
lips whistled.

Powell said: “Can you go out upon the surface? In the light?”

There was consideration while the robot’s slow brain worketen, “Yes, Master.”
“Good. Do you know what a mile is?”

Another consideration, and another slow answer. “Yes, &tdst

“We will take you up to the surface then, and indicate a diogct You will go
about seventeen miles, and somewhere in that general nggiiowill meet another
robot, smaller than yourself. You understand so far?”

“Yes, Master.”

“You will find this robot and order him to return. If he does wash to, you are to
bring him back by force.”

Extracted from the short stofgunaround
in Asimov’s |, Robot[7].

“Now on four occasions recently,” Powell said, “your bossideed from brain-
scheme. Do you remember those occasions?...]

Powell turned back to the robot, “What were you doing each timemean the
whole group.”[...]

He said [the robot], “The first time we were at work on a difftcauitcropping
in Tunnel 17, Level B. The second time we were buttressingrdioé against a
possible cave-in. The third time we were preparing accuoédsts in order to
tunnel farther without breaking into a subterranean fissditee fourth time was
just after a minor cave-in.”

“What happened at these times?”

“It is difficult to describe. An order would be issued, but twef we could receive
and interpret it, a new order came to march in queer formdtion

Extracted from the short stoi@atch that Rabhjt
in Asimov’s |, Robot[7].



Perhaps the excerpts shown previously describe simpleregldviant scenes that
usually would not attract much of our attention. Moreoveghably the only curious
event that would even draw a slight smile in the reader’s fadke fact that a human
communicates with a robot through natural language, il&in while the robot not
only understands the conversation, but also replies indheesvay. However, this is
not our focus of interest, although it is in indeed a very lgmaing task that researchers
in artificial intelligence (Al) are still working on.

The short story from where the first text is extracted (Runad) takes place in
Mercury and is about a robot, SPD-13 (“Speedy”), that is sebting selenium from
the nearest selenium pool, 17 miles away from the base statimwever, after five
hours of having departed, Speedy has not returned yet. foiney®onovan and Powell
decide to send another robot to get him and to analyze whatelmaal. At this point,
the conversation shown in the text takes place. Powell srifer robot what seems a
simple task. Although the story actually continues withitnat robot having to execute
the task, we are interested in analyzing the consequendbsdsimple” task. Let us
first assume that somehow the robot understands what thedaskanded by Powell
is about. Some of the abilities the robot must have to perfiiis“simple” task are:
ability to perceiveits environment in order to create its internal world moeaklijity to
build a map (if the robot does not have it a priori) of the eomiment andocalizeitself
and the place it has to go within the map; abilitygian a route to the goal location
and then to come back; ability tavigatethrough the environment, probably avoiding
obstacles, conflicting paths, etc.; ability iecognizeanother robot; ability talecide
how to perform the task, i.e. which actions to execute; gbib react andrecover
upon possible conflicts it could encounter during the exenudf the task. Hence, what
seemed a simple task turned out to be a more complex onerirgpaiset of abilities
where each of them leads to a broad range of challenginggrabihat different fields
in Al have addressed since their origins in the 1950’s.

Besides the above mentioned abilities we expect a robot fardgrammed with,
we can find a last interesting component within the secornd kexhis occasion (Catch
that Rabbit), Powell and Donovan have to discover why thet@/-5 (Dave) fails
executing the task it is commanded to perform. The robot&ujperity is that it is
a robot with six subsidiary robots which are controlled tigb positronic fields. In
other words, Dave can be seen as a coordinator robot withwsixker” robots under
its responsability which perform the tasks commanded bytioedinator. Back to the
story, Powell and Donovan decide to spy while the robots wmdiscover why the task
is not being correctly fulfilled. They discover that in gealehe robots are working the
right way until something unexpected happens and they starthing and dancing
leaving the task aside. To understand why they behave thatReavell asks one of
the subsidiary robots what is going on (extracted text). Mg point the robot relates
the tasks they were assigned to do. Two ingredients in thiy slraw our attention.
First, the story is related toteam of robots and second, the tasks to perform cannot
be accomplished individually, but througeamwork. In order to fulfill the tasks, a
coordinator is in charge of the team, sending the commartth tikam and supervising
the task execution. When dealing withoperative taskswhere a group of robots have
to achieve a joint task, some of the challenges, besidesrbg mentioned before of
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course, consist in answering the following questions: whadides what to do?, i.e. a
single robot decides which actions to perform (centralgstem) or all robots discuss
the selected actions (distributed system); who does what?ne robot is selected to
perform the complete task (single task execution) or eabbtrmay perform part of
the task or subtasks (distributed task execution); who tamthe task execution?, i.e.
one robot receives all the information from the rest of theote and decides by itself
(single monitoring) or each robot has its own beliefs of tteeld/and reacts accordingly
(distributed monitoring); and finally, whichoordination mechanismto employ in
order to synchronize the robots’ actions?

Thus, from what seemed to be two independent excerpts of nohmterest, we
have remarked a set of problems that probably, from our hupaémt of view, have
obvious solutions (we face them in our daily life without Bveticing their difficulty).
However, from an Al researcher perspective, when desigihiegobot behavior, these
problems are not trivial at all, and in fact, result in big idages for Al nowadays.

1.1 Motivation and Overview

The dissertation presented in this work is addressed to twtegresented challenges.
First, the decision-making for the action selection problend second, the incorpo-
ration of a coordination mechanism to achieve cooperasisks within a multi-robot
system. We next overview the main problems which we have abwligh and how we
propose to solve them.

An important aspect to consider when designing the reagagmgine is the type
of environment where the robot performs its task. The dilfies that arise within
deterministic environments (controlled environment®) far much easier to deal with
that when dealing with stochastic environments (uncoletip! Clearly the latter is
much more interesting, and is the one this dissertationesdds. In such environments,
where the world continuously changes out of our control,réesoning engine must
include mechanisms to overcome imprecision and dynamighecnvironment. More
precisely, it has to be able to react and recover from unéggesituations that may
occur during the performance of the task where a real-tirspamse is fundamental.

The behavior of a robot results from the execution of actfonglifferent states, if
we define acting as the execution of a policy s — a (wheres is the current state and
a, the action to execute in the given state) [44]. Defining gaa$sible state and the
actions to perform at each state, i.e. defining the policghalenging and tedious to
be done completely manually. This policy is one of the fundatal parts of the robot’s
reasoning engine. Therefore, it is crucial to find a way fdomatically and efficiently
acquiring it. As we review further on, several machine lgagriechniques have been
proposed during the past years.

Besides the difficulties emerged due to the nature of the@mvient, we must also
take into account the limitations of the robot performing task. Thus, the uncer-
tainty of the robot’s internal beliefs of the world dependstioe accuracy of the robot’s
sensors. The reasoning engine must be able to handle unteda the behavior of
the robot does not result degraded. A last important aspemtirisider are the robot’s
computational resources. The processor determines theofygdgorithms (in terms of

3



complexity) that the reasoning engine may use.

From a multi-agent perspective, the problem we addresssmibrk is related to co-
operation or collaboratidramong agents. Collaboration is desired in several domains
where a group of robots (also seen as agents) work togethehteve a common goal.

It is not only important to have the agents collaborate, kg to do it in a coordinated
manner so the task can be organized to obtain effectivetsedbtoviding the agents
with capacities to collaborate and to coordinate is compsst is not just a matter of
dividing the tasks and assigning roles to each agent. ldsies also a matter of be-
liefs and commitments of all robots to fulfill a common taskofoul and Collinot [14]
distinguish three levels of behaviors when designing airagknt system:

e elementary behaviors, actions or functions that the agadigidually perform
(what to do);

¢ relational behaviors, how agents interact with other agantl the influences of
their elementary actions on the other agents (what to do eéseurce of other
agents); and,

e organizational behaviors, how the agents can manage titeimatctions to stay
organized (what to do with these agents).

Similarly, Grosz and Kraus [19] argue that collaboratingratg must

e establish mutual beliefs on what actions they will perfomcomplete the task
(relational level);

e agree on who does what (organizational level); and,
o establish mutual beliefs of their individual intentionsaict (relational level).

Communication among agents is essential to achieve thgagements.

The robot soccer domain is a very challenging test-bed ttairporates most of
the problems enumerated so far. Hence, we deal with a highigrdic environment
that requires real-time response. Robots’ sensors areemptaccurate and therefore,
we must model uncertainty within the reasoning engine toaacbrdingly. Robots’
actions performances are imprecise and recovery mechsrgbould be considered.
Finally, computational resources are very limited, andtlsimple processes have to be
taken into account. In this dissertation we contribute \@ithapproach for action selec-
tion and coordination for joint multi-robot tasks. More pigely, we apply Case-Based
Reasoning (CBR) technigues to model the reasoning engih@sapplication in the
robot soccer domain. Case-based reasoning is an appropaibtem solving that em-
phasizes the role of prior experience during future problsgiving [39]. It has been
inspired by the way humans reason and use their memory ofopieexperiences to
solve new problems. An example directly related with thekymesented in this disser-
tation can be found in team sports. During training the caaatlies with the players
different game situations and the according movements €gtays) that the players

IThrough the dissertation we will refer to both concepts, pesation or collaboration, as synonyms,
although the latter can also be related to “working with theray”, including a traitorous sense.
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should perform. Thelaybookcorresponds to the case base in the CBR system. During
a game, when the players detect a similar configuration ketwlee current situation

in the field and the ones in the playbook (CBR’s retrieval stépey automatically re-
produce the gameplays reviewed during the training, petiftg certain adaptations if
necessary (CBR’s reuse step).

The approach models the state of the game at a given time ablamprdescription,
which is compared to a set of predefined situations, callsgésa A case describes
the state of the environment (problem description) and dtieres to perform in that
state (solution description). The retrieval process ciasi obtaining the most similar
case. Next, the solution of the retrieved case is reused sftae adaptation process,
as required. We model the case solution as a set of sequehaeoms,gameplays
which indicate what actions should each robot perform. Iineve specify a multi-
robot architecture and a coordination mechanism based ssages exchanged among
the robots in order to achieve a cooperative behavior.

Why Case-Based Reasoning?

The first question that can arise when reading this workdig CBR?As we review in
Chapter 2, different approaches to solve the action selegtioblem have been pre-
sented through the past years (Reinforcement LearningyFtizeory, Decision Trees,
Neural Networks, etc.) obtaining successful results. Heanewe believe that Case-
Based Reasoning integrates fundamental properties thamnhohelp the designer in
building a reasoning engine, but also result very intuifmehumans since it is tightly
related to the way humans reason.

From the implementation point of view, we can classify theige of a robot behav-
ior from a procedural implementation, where the behavia@oisiposed of a sequence
of subroutines and evaluating conditions (low level apph)ato a model-based im-
plementation, where the knowledge representation is dmoegh state-action models
and the task to learn is the mapping function between statkactions (high level ap-
proach). Although the high level approaches have sevexargdges over procedural
implementations, low level approaches are still being Widsed for designing robot
behaviors, specially in very specific scenarios or in coitipatin the case of robot
soccer (RoboCup). A common approach used within RoboCugsoribe behaviors
are hierarchical finite state machines (FSMs) [60, 67, 5Bftwide a certain degree of
abstraction level. The advantage of using this approactolsably due to its high reac-
tivity. The robot is able to rapidly switch from one behavioranother when required.
However, programming individual or complex behaviors i s&tdious and slow. As
argued in [46, 57] changes are complicated due to interdkgreies and large amount
of parameters to consider when programming the behaviomsindr modification in
the code of a behavior can have a big impact on other behaviarether important
drawback within reactive approaches is that from a strategint of view we can clas-
sify them as “short-sighted”, meaning that their decisiaking is usually driven by a
partial state of the environment where the actions takesphlaithout having a broader
view of the world state. Thus, an action can be suitable fowangmoment in time,
but probably another action would have been a better chbibe ivhole world state or
possible future states could have been considered or peddic
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Regarding model-based approaches, we can classify theondag to the policy
readability, i.e. how understandable for a human reader the learnedypsli Tech-
nigues as reinforcement learning (RL), neural networks YNevolutionary algo-
rithms (EA) have proved to be useful in many domains, inclgdaction selection in
robotics. However, their main drawback is that the learnadty cannot be manually
followed by an expert, and thus, analyzing why a certairoadtias been selected is not
feasible. As other researchers have previously remark&dd@, 31, 10, 38, 15], we
believe that this is an important property to consider whemosing among the avail-
able approaches, specially within complex domains, whemeeskind of justification is
necessary for evaluating the appropriateness of the sdlactions. On the other hand,
the advantage of other approaches such as decision trgest exstems, fuzzy rules
(rule-based approaches in general) or case-base reagoratamce-based approaches)
is that their knowledge representation is readable fronexpert perspective, not only
facilitating the comprehension of the policy, but also pding easy access to modify
the current knowledge of the reasoning engine.

Another important component to consider is the time regifioelearning the policy
and the amount of training data to achieve an acceptableamclevel. From the above
mentioned approaches, RL, NN, EA and decision trees eidlupiire a large amount of
training data or time or both, which are usually not avagalslthin the robotics field.

Finally, and not less important, a on-line learning abilgydesired for this kind of
domains where the robot may encounter unexpected sitsatian where not consid-
ered during the design stage. With this last component, daetability of the robot’s
behavior is guaranteed, allowing it to acquire new knowtedg it performs the tasks.
Rule-based approaches lack of this last component. Thevamjyfor introducing new
knowledge is manually modifying the rule set. Other appheac such as NN, EA or
decision trees need to repeat the training process beforg the new learned policy.
Modifying the current knowledge of the system is time consand requires new
training data.

After reviewing the desired properties of the approach disethe action selection
problem, we conclude that Case-Based Reasoning (an iestased approach) fulfills
the requirements described. The case base contains thdeklgmwepresentation of
the reasoning engine, which in fact, corresponds to a sétuat®ns (cases) the robot
encounters through the task execution. Each case may empr@esomplete or partial
description of the state of the environment and the cormdipg solution to that state,
i.e. the actions to execute. Cases can either be generalizgubcialized allowing the
expert to gradually introduce knowledge as needed. The latge of the system is
“transparent” and the expert can easily modify or insert keawledge without spend-
ing time training the reasoning engine again.

Regarding cooperation and teamwork, several works have pessented so far,
either using more formal methodologies as tbimt intention theory introduced by
Cohen and Levesque [11] in Tambdlgxible team worl{62], or simpler mecha-
nisms such as role assignment where cooperation usuallfs@s an emerging prop-
erty [57, 65, 74, 35, 15], or including explicit coordinatimechanisms through com-
munication to enforce commitment among the involved agéetguest-acknowledge
type) [66, 3, 18]. Interestingly, in our work the use of caats® allows us to easily
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model cooperative tasks. As mentioned before, in orderte bhgents performing joint
tasks it is fundamental that: first, all agents agree on thle tia perform; second, the
implied agents commit to execute the task as planned; ardi these agents must be
aware of the actions each of them performs to synchronizéhisnvork we specify a
coordination mechanism that takes place during both thieevat and the reuse steps
based on messages exchanged among the robots about theiairstates (beliefs and
intentions). Hence, reviewing the requirements by Grost Kraus mentioned be-
fore, the combination of the case structure and the coaidmenechanism we propose
ensures that: the solution description indicates the mgtibe robots should perform
(requirement); the retrieval process allocates robots to actions (reqmentii); and
finally, with the coordination mechanism, the robots shaedrtindividual intentions to
act (requiremenii ).

In conclusion, we believe that using CBR techniques is gmpte, not only due
to the close relation with the way humans reason, but alsausecit provides a high
level abstraction of the problem to solve through a modulathmdology. This latter
allows the expert to easily modify the robots’ behavior aguned, either introducing
or replacing cases in the case base (knowledge of the sysefining new similar-
ity functions, altering the retrieval process, etc. CBR igeay flexible and intuitive
framework and thus, is suitable for the problem domain thésettation is focused on.

1.2 Problem Domain

The problem domain where this thesis is applied to is roboteio RoboCup is a well
known competition [69] whose ultimate goal is to developamef humanoid robots
to play soccer against the human world champion team by 2066ourse this is long
term goal, but in fact, the main objective of designing tleisttbed is to foster Al and
robotics within a very complex domain and to motivate reslears of different fields
to work together in order to achieve a common goal.

To this end RoboCup offers several leagues where, altowgdhl is the same, the
challenges differ. Currently we can find the following leaguSimulation, Small size,
Middle size, Standard Platform and Humanoid. The StandéatidPm League is a
new league that will start next year (2008) replacing therffimgged League Within
this league all teams use the same robot, so the challengetised on developing the
software for the robots, and not the physical robot corréwiother leagues.

Within the The Four-Legged League teams consist of four 2dBY) robots which
operate fully autonomously, i.e. there is no external aintreither by humans nor by
computers. Communication among robots of the same teamovssal through wireless
or speakers and microphones (although the last ones aresnallyuused). There are
two teams in a game: a red team and a blue team. The field diomsnaie 6m long
and 4m wide and represents a Cartesian plane as shown ireHidur There are two
goals (cyan and yellow) and four colored markers the robs¢sta localize themselves
on the field. A game consists of three parts, i. e. the first Bdiflf-time break, and the
second half. Each half is 10 minutes. The teams change tHalgfded and color

2The robots for this league were the AIBO robots from Sony.c8iSony stopped manufacturing the
robots, the RoboCup organizers had to switch to another mtbdehumanoid Aldebaran Nao.
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yellow goal

Figure 1.1: Snapshot of the Four-Legged League field (imagaated from the IIIA
lab).

of the team markers during the half-time break. At any pofrthe game, if the score
difference is greater than 10 points the game ends. Theleasa external controller,
the GameControllerwhich sends messages to the robots in order to stop or rehieme
game after a goal, to notify penalized robots, to start ortbedgame, etc. For more
details on the official rules of the game refer the RoboCuprfE@gged League Rule
Book [12].

A Brief History of RoboCup

Extracted from the RoboCup Official website (Overview) [1].

In the history of artificial intelligence and robotics, theay 1997 will be remem-
bered as a turning point. In May 1997, IBM Deep Blue defeateilhtuman world
champion in chess. Forty years of challenge in the Al comitywame to a successful
conclusion. On July 4, 1997, NASA's pathfinder mission madriecessful landing
and the first autonomous robotics system, Sojourner, waleykpon the surface of
Mars. Together with these accomplishments, RoboCup madiest steps toward the
development of robotic soccer players which can beat a huNaid Cup champion
team.

The idea of robots playing soccer was first mentioned by BsofieAlan Mack-
worth (University of British Columbia, Canada) in a papetitted “On Seeing Robots”
presented at VI-92, 1992 and later published in a bGokiputer Vision: System, The-
ory, and Applicationspages 1-13, World Scientific Press, Singapore, 1993. Asefi
papers on the Dynamo robot soccer project was publishedsbyrbup.
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Independently, a group of Japanese researchers organiAémtkahop on Grand
Challenges in Atrtificial Intelligence in October, 1992 inKjo, discussing possible
grand challenge problems. This workshop led to a seriogsiggsons of using the game
of soccer for promoting science and technology. A serieawvistigations were carried
out, including a technology feasibility study, a social empassessment, and a finan-
cial feasibility study. In addition, rules were drafted vesll as prototype development
of soccer robots and simulator systems. As a result of thieskes, they concluded
that the project is feasible and desirable. In June 1993papgof researchers, includ-
ing Minoru Asada, Yasuo Kuniyoshi, and Hiroaki Kitano, d#i to launch a robotic
competition, tentatively named the Robot J-League (J-ueagthe name of the newly
established Japanese Professional soccer league). Withionth, however, they re-
ceived overwhelming reactions from researchers outsidmpén, requesting that the
initiative be extended as an international joint projectcérdingly, they renamed the
project as the Robot World Cup Initiative, “RoboCup” for sho

Concurrent to this discussion, several researchers wexadyl using the game of
soccer as a domain for their research. For example, ItsudiaNat ElectroTechnical
Laboratory (ETL), a government research center in Japas caaducting multi-agent
research using soccer, and started the development of eatiedlisimulator for soccer
games. This simulator later became the official soccer s@fvRoboCup. Indepen-
dently, Professor Minoru Asada’s Lab. at Osaka Universityd Professor Manuela
Veloso and her student Peter Stone at Carnegie Mellon Witydrad been working
on soccer playing robots. Without the participation of thearly pioneers of the field,
RoboCup could not have taken off.

In September 1993, the first public announcement of theatiié was made, and
specific regulations were drafted. Accordingly, discussion organizations and tech-
nical issues were held at numerous conferences and workshaiuding AAAI-94,
JSAI Symposium, and at various robotics society meetings.

Meanwhile, Noda’s team at ETL announced the Soccer Senrsiove0 (LISP
version), the first open system simulator for the soccer dormaabling multi-agent
systems research, followed by version 1.0 of Soccer Se@Grefr (ersion) which was
distributed via the web. The first public demonstration é$ $imulator was made at
IJCAI-95.

During the International Joint Conference on Artificialdhigence (IJCAI-95) held
at Montreal, Canada, August, 1995, the announcement wag neadrganize the
First Robot World Cup Soccer Games and Conferences in coiigunwith 1IJCAI-97
Nagoya. At the same time, the decision was made to organe&&boCup-96, in or-
der to identify potential problems associated with orgaigiRoboCup at a large scale.
The decision was made to provide two years of preparatiordamdlopment time, so
that initial groups of researchers could start robot andikition team development, as
well as giving lead time for their funding schedules.

Pre-RoboCup-96 was held during the International Confaxeon Intelligence
Robotics and Systems (IROS-96), Osaka, from November 895, Wwith eight teams
competing in a simulation league and demonstration of i@adtrfor the middle size
league. While limited in scale, this competition was the fi@hpetition using soccer
games for promotion of research and education.
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The first official RoboCup games and conference was held i@ ¥8t great suc-
cess. Over 40 teams participated (real and simulation awedpj and over 5,000 spec-
tators attended.

1.3

Contributions

This thesis contributes a novel case-based approach fonasslection and coordina-
tion in joint multi-robot tasks. This approach is appliediavaluated in the represen-
tative domain of robot soccer.

The main characteristics of the approach can be summarizfeadlaws:

The case definition corresponds to a complete descriptitdmeainvironment, in-
cluding the actions to perform by a team of robots and gew@rakin knowledge
to handle uncertainty in the incoming information from pagton.

Two types of features are introduced: controllable and camirolable features.
The former ones are related to those features whose valodseadirectly modi-
fied in order to increase the similarity between the evatliatse and the current
problem; while the latter ones, correspond to those featilna the system can-
not modify.

The retrieval step is composed of three measures: the ajgnegf domain-
dependent similarity measures; the cost of adapting theuproblem to a case;
and the applicability evaluation of a case combining dorkaowledge rules and
similarity measures. The retrieval step applies a filtenrgghanism to reduce the
search space as fast as possible due to the real-time resgopusrements.

The internal robot architecture is defined as a three-laylerith architecture: the

deliberative system, i.e. the case-based reasoning enlggeeactive system, i.e.
a set of behaviors corresponding to skills the robot perépramd the low level,

which includes the sensors and executors of the robot.

The multi-robot architecture includes a set of robots calétrieversthat incor-
porate the reasoning engine and therefore are in chargecifinig the cases to
reuse, and thexecutorswho only perform the actions indicated by the retrievers
(or default actions). However, any robot has the abilityltorathe execution of

a task when required.

A coordination mechanism that enables the case reuse oigha single user,
but through a team of users (in this case, the robots).

A supervised learning process to acquire the scope of a casmatically.

Finally, in this dissertation we present empirical evalhraboth in a simulated en-
vironment and in a real one with robots to prove the effectdss of the proposed
approach. Moreover, we argue that a collaborative beh@&veavantageous to achieve
the goal of the task, specially because of the adversamapoaent. It is well known
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that a good strategy to avoid an opponent during a game isvtogesses between team-
mates. In contrast, using an individual strategy, wherg onk robot moves with the
ball without taking into account its teammates, increaBeschances for the opponent
to block the attack, unless the robot is much faster than piperent. Therefore, we
have successfully included the pass action in our approalith is not common, as
far as we know, in this domain (Four-Legged League).

1.4 Publications

The following publications have been derived from this tbes

¢ R. Ros, M. Veloso, R. pez de Mintaras, C. Sierra and J.L. Arcos (2006), Re-
trieving and Reusing Game Plays for Robot Soccer. 8th Earn@®nference on
Case-Based Reasoningdvances in Case-Based Reasorofigecture Notes in
Computer Science, Volume 4106, pp. 47-61. SprinBest paper award.

e R. Ros, J.L. Arcos (2007). Acquiring a Robust Case Base fiRbbot Soccer
Domain. InProceedings of the 20th International Joint Conference difigial
Intelligence pp. 1029-1034. AAAI Press.

e R. Ros, M. Veloso (2007). Executing Multi-Robot Cases tigtoa Single Co-
ordinator. InProceedings of the 6th International Conference on Autamesn
Agents and Multiagent Systenis H. Durfee, M. Yokoo eds., pp. 1264-1266.

¢ R. Ros, R. lbpez de Mintaras, J.L. Arcos and M. Veloso (2007). Team Playing
Behavior in Robot Soccer: A Case-Based ApproachProceedings of the 7th
International Conference on Case-Based Reasor@age-Based Reasoning Re-
search and Development of Lecture Notes in Computer Sciafademe 4626,
pp. 46-60, Springer.

¢ R. Ros, M. Veloso, R. pez de Mintaras, C. Sierra and J.L. Arcos (2007). Be-
yond Individualism: Modeling Team Playing Behavior in RolSmccer through
Case-Based Reasoning. Pnoceedings of the 22nd AAAI Conference on Artifi-
cial Intelligence pp. 1671-1674. AAAI Press.

1.5 Outline of the Thesis

Next, we summarize the contents of Chapters 2 to 7. The caiteeaesearch work is
described in Chapters 3 to 6.

Chapter 2: CBR Preliminaries and Related Work.

In this chapter we first review basic ideas of Case-Baseddré@asto familiar-
ize the reader with the concepts used through the dissertatlext, we present
related work that describes the different techniquesfuidg CBR) used by re-
searchers in the past years within the robot soccer domaibrieh section is
addressed to other robotic domains where CBR has been stidbeapplied.
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Finally, the chapter concludes with a summary of the relatedk through a
comparative table and where our work is located with resjoegtevious work.

Chapter 3: Modeling the CBR Approach: The Retrieval Step

This chapter corresponds to the first step of the CBR cyde, the Retrieval
Step. Thus, we present the different components of the pagp@BR system,
including: the case description, the case base structueesimilarity measures
and the retrieval process itself. We also present expetahessults in simulation
to test the introduced process.

Chapter 4: Case Reuse through a Multi-Robot System

In this work the case reuse is fulfilled through a team of repinistead of an in-
dividual robot. Hence, we not only have to define the interahbt architecture,
but also the multi-robot architecture. In this chapter, wedlibe how the robots
interact to perform the task, i.e. how to reuse the case iroedowated way.

Chapter 5: Learning the Scopes of Cases

A first attempt towards the learning stage of the CBR cyclerés@nted in this
chapter. More precisely, it is focused on automaticallyuirigg the scope of
a case through a supervised learning algorithm. Differenttions used in the
algorithm are proposed to this end. The learning mecharissvaluated both in
simulation and with real robots.

Chapter 6: Experimentation

This chapter is devoted to the experimentation stage. Twateathe overall
system, we have performed experiments in simulation anll thié real robots.
The scenarios consist of two vs. two games, where two attagiay against a
defender and a goalie. The CBR approach is compared witlecespa region-
based approach. While the attackers use both approachesfoaton, the op-
ponents use a fixed behavior. Results are discussed antlexaiaple with real
robots is described in detail.

Chapter 7: Conclusions and Future Work

In this last chapter, we summarize the conclusions addieésseach separate
chapter. We also discuss future research lines and opderges to improve the
proposed approach.
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Chapter 2

CBR Preliminaries and Related
Work

In this chapter we review related work to the one presentetthifthesis. First we
briefly overview the Case-Based Reasoning methodologyestetider is familiar with
the concepts referred to afterwards. Next we describe agijgins of CBR systems
within the robot soccer domain and other machine learnipgagthes that address the
action-selection problem as well. Finally, a short revievother CBR systems applied
to related domains and a summary of the reviewed work arepted.

2.1 Case Based Reasoning

Inspired by the cognitive science research in human reagamd the use of mem-
ory [56], Case-Based Reasoning is the process of problerimgdiased on the exploita-
tion of past experiences, calledsesto propose solutions for present problems [39].
The essence of Case-Based Reasoning is based on the assutigti“similar prob-
lems have similar solutions”.

This lazy learning technique consists in comparing the neslpm to solve with
respect to past cases in the case library through a singilagasure. The most similar
case (or set of similar cases) is retrieved in order to rapredhe solution proposed in
the past, probably adapting it to the current problem toesohhe outcome of the solu-
tion is then evaluated and the new solved problem may bedsesr@ new case. Many
applications have been proposed since the birth of thisodelbgy, ranging from clas-
sical systems such as CHEF, CASEY, JULIA, HYPO, etc. [30ptemporary systems
dealing with more complex domains as we review in the follaysections. Although
initially case-based reasoning could probably be seen apergsed learning tech-
nique for classification, through the past years it has shitsvevolution towards new
paradigms and directions increasing the utility of CBR eyt [16].

The knowledge representation of a CBR system is the casmyilfor case base).
In contrast to general knowledge (such as rule-based me&thcabes represent specific
knowledge related to specific situations. Hence, a caseuisllysepresented by the
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pair problem-solution, where the problem correspondséadéiscription of the task to
solve, and the solution describes how this task was cartiedfothird component can
be attached to a case: the outcome. It corresponds to thénmgsiate of the world

once the solution has been applied. This latter componersually used to guide the
reasoner system the next time the case is retrieved.

The simplest and most commonly used problem representateset of attribute-
value pairs, although more complex representations casdx ('he solution descrip-
tion may include the solution itself (values of featureskeh of reasoning steps, jus-
tifications for decisions made during problem solving, €&mally, the outcome may
be whether the applied solution was a success or a failure wbking the problem,
whether it fulfilled the expectations or not, explanatiofishe failure, pointer to next
attempt solution, etc.

Although different modifications of the CBR methodology dsnfound in the lit-
erature, their differences are basically based on the namkbels and possible ex-
tensions of the different steps of the process. Howevenrihia concepts remain un-
altered. One of the most accepted problem solving procetsgeisne introduced by
Aamodt and Plaza [2], the well know “4 RE’'s” cycle. The fourimateps of the cycle
are (Figure 2.1):

e Retrieve: search the case library for cases that are sitoithe current problem,
based on a similarity measure and obtain candidate sofution

e Reuse: construct a solution for the current problem baseti@solutions pro-
posed by the retrieved cases (usually adapting or merging@as).

e Revise: evaluate the outcome of applying the reused salatid repair the solu-
tion constructed above, if necessary.

e Retain: decide whether the reused case should be incoggdardb the case li-
brary or not.

Given a new problem to solve, the system applies a similan@asure to obtain
the most similar cases. The similarity measure dependsepriiblem description.
Thus, the simplest metric usually corresponds to the distéetween two features. In
this case, the retrieval corresponds tk-aearest neighboalgorithm. More complex
measures can be defined, depending on the domain and on gesigrences. Filter-
ing mechanisms can be used, as well as aggregations ofediffareasures, static or
dynamic procedures, comparing complete cases or parsatigdons, and so on.

The reuse step consists in building the solution of the etipeblem to solve using
the solution description(s) of the retrieved case(s). Basethe domain requirements,
the solution can be straightforward, i.e. reusing the sashgien without previous pro-
cessing, or through some adaptation process. Typical atitapmethods are parameter
adjustment, local search, substitution and merging psasesamong others [30]. As
within the retrieval step, the adaptation can be addresstietwhole solution descrip-
tion, or part of it.

After the solution is carried out, the next step is to evauaie effectiveness of
the proposed solution. In most systems this step is usudlgrd by the user of the
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Figure 2.1: The Case-Based Reasoning cycle (Aamodt and P1hz

system (analogous to supervised learning technique) wdicates the outcome of the
task execution. As mentioned before, not only success lréatan be indicated, but
also the reasons of failure or whatever additional usefarimation for improving the
quality of the proposed solution in future situations. @gat would be much more
desirable that the system could automatically generatethkiation of the solution.
However, in most domains, this is still a pending task thatagchers have to address
and which remains as an open challenge so far.

Finally, the new solved problem can be stored in the casarlibrThis latter step
is responsible for the learning aspect of the CBR methodolddus, a new case is
created including the initial problem to solve, the solnotmroposed and the outcome
(if available). Deciding whether a case should be storedobtasically depends on
how useful the new case will be in the future. Two aspects megstonsidered when
opting for case retention: case indexing and case baseanaimte. If new cases are
introduced, the size of the case base will increase throgh. tAs a consequence,
the search space during retrieval is also increased. Tdrerefase indexing techniques
must be considered to speed up the retrieve step. The sespecdtacase maintenance,
is related to analyzing the case base in order to determinghwehases can be removed,

due to case redundancy or inconsistency.
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The minimal components of a case-based reasoning systetmearetrieve and the
reuse steps, i.e. generating a solution for a given probl€he two remaining ones
are related to the learning process of the system, and trerefre the most difficult to
introduce.

2.2 CBR Applied to RoboCup

In this section we review the research done so far using Based Reasoning tech-
niques within the RoboCup domain. For each author we brieftgitithe purpose of
the CBR approach, the league in which it is applied to and amg¢escription of the
features of the system.

2.2.1 Karoletal.

Very close to our work, Karol et al. [25] presented an iniaglempt for including a
CBR system in the action selection of a team of robots in theHEegged League. The
problem description includes the robots’ positions anddbgree of ball possession
(qualitative measure). They also proposed the use of reet-deatures to guide the
retrieval process, such as score, time and opponent stréfegnown). As within
our work, the solution corresponds to the gameplay. Thepgsed three possible
similarity measures, all based on comparing the robotstiposi on the field. Two
of them are quantitative (based on the distances the robmitdvihave to travel to be
positioned as in the case) and one qualitative. This laftédeks the field in uniform
rectangular regions, and the measure counts the numbepsf thte robots would have
to move towards the positions indicated in the case. The irengafeatures of the
problem description were not taken into account yet. Siheewtork was only a first
introduction of the model, no experiments were reported.

2.2.2 Lin, Chen and Liu

The work presented by Lin et al. [38] and Chen and Liu [10] wagliad in the Simu-
lation League, where they presented a hybrid architecturedccer players (as in our
work). The deliberative layer corresponds to the CBR systedihe reactive layer cor-
responds to fuzzy behaviors (motor schemas introduced kin48]). The knowledge
acquisition was done through first order predicate logicRE) which they claimed is
easy for an expert to transmit knowledge.

The problem description of a case consists of fuzzy featdessribing distances
and directions between robots and objects on the field (ssidialy goal, etc.). The
solution description corresponds to a set of gain valuebefitotor schemas. Similar
to our work, they introduced the conceptexfcape conditionsa new case is retrieved
only if the escape conditions are satisfied. This way, thibeedtive system monitors
the current execution and the retrieval process only talesepvhen necessary. The
similarity measures for the features are trapezoid merhigefgnctions initially given
by an expert and modified afterwards according to the ropetrfrmance. The overall
similarity is based on the Max-Min composition of individsmilarities. They also
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introduced an adaptation process through case merginghamdvision step, based on
the number of states executed.

They compared their system with other teams obtaining ssfageresults. Their
main argument for the success of their approach was the iflexilif the system since
modifying cases results in modifying the performance ofdbecer players. The claim
is that knowledge representation based on first order legieadable by humans, and
therefore, incorporating expert’'s knowledge is fast argyea

2.2.3 Berger and lammel

Recent work has been initiated by Berger ardgirimel [8] where they propose the use
of a CBR system to decide whether a “wall-pass” should beopeéd or not. A “wall-
pass” consists in passing the ball to a teammate, to imnegiegceive a pass again
from the latter. The idea is to distract the opponent so tis¢ filayer can move to a
better position. Their work is applied to the Simulation gea. A case represents the
positions of the most relevant players on both teams in angsiteation. They intro-
duce a procedure to extract these relevant features andtelbwostly three or four
players are sufficient to describe the case. The solutioneofase indicates if a “wall-
pass” is possible or not. The similarity is based on Euclid#iatances between players
positions. Case Retrieval Nets (CRN, introduced in [368)ased for the retrieval pro-
cess in order to speed up the search. In order to build thebzesse they analyze log
files of previous games to extract all potential “wall-passliations automatically and
manually classify them afterwards.

2.2.4 \Wendler et. al

Since the initiation of RoboCup, Wendler et al. have addr@giifferent problems
within this domain. The first one, and more related to our wenlkresented in [72]. In
this work, they proposed to learn about the opponents arscban the observations,
adapt the actions of the players within the Simulation Leadwore precisely, the sys-
tems indicates the positions where the players should mmerding to the opponents
actions. Thus, the features of the problem descriptionsiage of the pitch by means of
segments of all players (in our work we propose the use gfsgls of different sizes for
each opponent player), time steps until a player contr@$#il, preference directions
of a player, available power resources and distance to bdlptayers. Two similarity
measures were defined based on the domain of the featurekefstate of the pitch,
two regions are considered to be similar if they are neigsiband for the remaining
features, since they are represented by numerical valistande functions were pro-
posed. In contrast to our work, the overall similarity is qarted as the average of
individual similarities (we propose the harmonic meaneasf). Similar to the work
presented by Berger, the retrieval process is done throagle Retrieval Nets. They
proposed an off-line learning which would correspond toaintng stage to build up
the case base, and an on-line learning, to adapt cases tppgbaents in the game.
Continuing with the ideas of studying the opponent team tprave the perfor-
mance of the team players, in [70] they addressed the behadognition and pre-
diction problem based on external observation. The CBReayshodels the function
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that maps the situations of a game (represented by triggerps) and the behaviors
of the players (behavior patterns). Triggers and behavcionsist of different attributes,
such as player initialization for pass, vector from passeeteiver, distances between
players, ball speed, direction of ball movement, etc. Timélarity measures for triggers
and behaviors are defined as weighted sums of local singla(attributes similarities).
The weights are determined either manually by the expedutmatically. During a
game, when a trigger is identified, the case base is searoheihfilar triggers. The
retrieved case is then adapted and the resulting behaxdompared with the actual be-
havior observed. If the similarity between the predictedawior and the observed one
is below a given threshold (not similar enough), a new case aretained having the
triggers as the problem description and the observed betsaas the solution descrip-
tion. The results obtained through experimentation shatat although the system
performs quite well, the prediction model is team-depetden it is specific for each
team. Therefore, when switching opponent teams, behaxealigiions are degraded.

Finally, in [71] a fault-tolerant self localization appi@awas proposed by means
of CBR techniques. In this occasion the work was applied edRbur-Legged League.
A case is defined as follows: the problem description remtssan omnidirectional
picture from the robot point of view, where the features espond to size and positions
of the landmarks in the image and the angles between paiediarks; the solution
description corresponds to the position of the robot on thle.fi Cases are gathered
through a two-step semiautomatic process. First, a talaléirg the landmark distances
and their perceived sizes is manually created. Next, thamties and angles between
markers and goals are automatically derived. The simjlani¢asure results from the
composition of the individual similarities through a weigti sum. Once again, CRNs
are used for the retrieval process, where a set of neigtpoases from the most similar
case are retrieved. A case is considered as a neighbor dfeargase if the distance
between the landmarks of both cases is no more than 50cm.olltea proposed by
the system corresponds to the weighted sum of all solutioms,the position of the
robot.

2.2.5 Marling et al.

Three CBR reasoner prototypes were presented in [41]: tbiedire focused on po-
sitioning the goalie, the second one on selecting team filoms and the last one on
recognizing game states. The prototypes were applied t&hal-Size League, al-
though the experiments were validated in simulation ongyr. &l prototypes, the case
description represents a snapshot of the field. The feaitutbe problem description
and the solution of the case differ from one prototype to lagobased on the task to
learn. Next, we briefly describe each prototype.

The case structure of the first prototype, positioning thedigpconsists of: a snap-
shot of the goalie’s half field, where the features corredgorthe positions and orien-
tations of the players, as well as the ball's position. THetgan indicates the success or
failure of the goalie’s move and the position of the ball aftee attempted block. Cases
in the case library are organized based on the ball's positicspeed up the search.
Hence, the library is divided in three categories: near,dieidnd far. The similarity
measure corresponds to the distance between the currésplosition and the one in-
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dicated in the case. After experimentation, they found bat the new prototype was
not improving the current reactive one, and therefore, digtito try with high level
decision, as team formations and game state recognition.

The second prototype, team formations selection, is airhbdiag used by a meta-
agent, and not the players themselves. The problem désariptcomposed of a snap-
shot of the field (the players’ and ball’s positions); dedifeatures from the previous
features; state description such as offensive, defertsugsitional situation; and short-
term goals and subgoals. The solution description indictite team formation, i.e. a
set of roles for each player. The role indicates where thetrshould move and the
task to perform. Similar to the above prototype, cases aveppd based on the state
description (defensive, offensive and transitional).

Finally, in the third prototype, game state recognitiorsesarepresent a whole snap-
shot of the field, indicating the positions of the robots amelthall including symbolic
features derived from the spatial features such as numigefefnders in defensive zone,
attackers in offensive zone, a boolean variable indicatihgther the ball is near the
goal or not, etc. The solution of the case corresponds to iacteization of the state
of a game. Some examples &an Onor Two on One The retrieval process consists
in a standard nearest neighbor algorithm. They plannedtemdxhe case description
to more vision frames, instead of only considering a singlpshot to capture robot
and ball motion as well.

As mentioned in the beginning, the work presented was ndinished and there-
fore, experiments with real robots were not reported. Fulmprovements as well as
new open trends for CBR in this domain were broadly discussed

2.2.6 Ahmadi et al.

A common drawback of CBR systems usually discussed amoegna®ers is the dif-
ficulties for fast retrieval in large case bases. Focusinth@nissue, Ahmadi et al. [4]
presented a two-layered CBR system for prediction in theufsition League. A case is
evaluated based on low level features, i.e. ball's velopigyers’ positions and veloc-
ities and some predefined recent events. However, the ianm@tof a player position
varies based on its relation with the ball location. Thuslaggr close to the ball has
more importance compared to another one that is far awag. iffigiortance is modeled
through weights that are assigned to the players based datiftbeent situations. The
upper CBR layer is in charge of assigning these weights. ,Téuesy lower layer case
must be adapted to propose different solutions based onehs af the field where the
situation is taking place. The solution of a case indicdtesnext ball's and players’
positions. The similarity measure compares the positidrtheball and the players
through a weighted sum. The initial case base was manuaibted, and afterwards,
new cases were introduced during the system’s performaRositive and negative
cases are retained.

2.2.7 Steffens

The last work reviewed in this section corresponds to thekwwesented by Stef-
fens [58] addressed to opponent modeling in the Simulatieague. Similarly to

19



the work presented by Ahmadi above, he argues that the sityilaeasure should

be adapted to the situation and role of the agent whose asttorbe predicted. While

Ahmadi modifies the weights of the positions of players takeo account, Steffens

proposes a similarity measure that considers more or latsrés when comparing the
current problem to solve with the cases. The relevance ofttnibutes is based on
the positions and roles of the agents and it is obtained frgoeddependency network
(GDN [59]) which represents general knowledge. The higiellactions to be predicted
arehold ball, dribble, intercept bal|] passandshoot on goal

2.3 Other Models Applied to RoboCup

Besides CBR techniques, other approaches have been stadielde the action selec-
tion problem. In this section we review first those fields veherost researchers have
focused their efforts on, such as Reinforcement Learnmfinally review a set of less
common approaches used within the RoboCup domain.

2.3.1 Learning from Observation or Imitation

Although not much work related to RoboCup has been done, wénterested in re-
marking it due to its similarity with Case-Based Reasonaahhiques. The aim of this
technique is to model agents that learn from observing @gents and imitating their
behavior. As in CBR, the learning agent selects the mostaipast observed situation
with respect to the current problem and then reproducesalléian performed at that
time. The main difference between these approaches ishitbdearning agent is not
able to improve the observed agent since there is no feedbaio& model.

Lam et al. [33] focused their research on action selectisethan scene recognition
in the Simulation League. A scene is described by the positid objects on the field,
i.e. robots and ball, with respect to a single player. Twaesentations are proposed:
continuous (distance and angle from the player to the abjjectdiscrete (fixed regions
on the field). Similar to our work, a matching process is defimeorder to map the
objects in the current scene with the ones indicated in pusvscenes. Finally, the dis-
tance between two scenes is computed as a weighted sum afittiglual similarities.
A k-nearest neighbor algorithm is used to obtain the mosilairacenes. Each scene
is associated to an action. If more than one scene is retkigve most common action
(majority voted) is selected.

This work is closely related to ours. However, the main défees are: the num-
ber of agents implied in the scenes (we include teammateshvitieract among them,
while they only include one teamate); the objects locatiokots and ball are within
fixed regions of field in [33], whereas we deal with variablgioas); modeling un-
certainty (in our work we include fuzzy functions to this ¢nand the solution of the
problem (we deal with a sequence of actions for each teamimstigad of a single
action in [33]).
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2.3.2 Reinforcement Learning

Reinforcement Learning (RL) [61] is a classical machinerew technique that has
been frequently used in the RoboCup domain. Although theiodt results are usu-
ally successful, the main drawback of this technique is #ingd state space that most
problems present. As a consequence, a large amount ofrigestaps are required to
find the policy that matches states and actions. Hence, nideedimes this tech-
nigue is not feasible when dealing with real robots. Neess, researchers have tried
different approaches to overcome these drawbacks as vwesweext.

Riedmiller et al. [52] focused their work on learning twofdient skill levels: mov-
ing level (low level) and tactical level (high level). Therfioer refers to learning a
specific move, for example, learning to kick, while the lat&fers to learning which
move should be applied at a certain pointpass the ballThe work is restricted to the
Simulation League, and they only used the moving level duarcompetition. With
respect to the tactical level, they experimented with twackiers against one or two
defenders. The attackers used the approach presented tinilefenders used a fixed
policy.

Similarly, Kleiner et al. [28] applied a hierarchical RL inrSemi Markov Decision
Process (SMDP) framework. In their approach they showetdl#aaning skills and
the selection of these simultaneously (not separately &2 is advantageous with
respect to focusing only on one level at a time. They apphedt work to the Middle-
Size League, but the learned policy was obtained throughlation. Results with the
real robots showed that more than an hour would be necessamptove the hand-
coded action selection mechanism.

Ahmadi and Stone [5] introduce a Markov Decision Process Bylfor action se-
lection between two types of kicks in the Four-Legged Leadnéeheir approach they
compute off-line the value functioW for the MDP without considering opponents and
assuming a static environment. During the robot’s perferreathey distinguish two
phases: planning, where the robot selects a kick based arfftlire learned policy,
and replanning, when opponents appear in scene. The rapiestage consists in re-
calculating the Q values of the MDP for those states whereppoment is likely to be
located. Thus, they reduce the computational complexitpafiaging the MDP updat-
ing the policy the minimum number of times (only when an opgrdrappears). Their
experiments with real robots in controlled scenarios sh@tthe replanning algorithm
improves a policy without on-line update.

Modular Q-learning was proposed by Park et al. [48] withia 8mall Size League.
In their work, the default behavior of each robot is to moveuad the field using a
navigation mechanism (uni-vector field navigation, simitaa potential field). When
a robot is within a boundary of the ball, the action selectayer switches the robot
behavior to the shoot action. Each robot has its own leammiadule which is in charge
of determining when a shoot action should be taken. Robolssrare fixed covering
different regions of the field. Conflicts regarding which oblshould move to shoot
the ball in overlapping regions are solved through a medi&tence, when two robots
select theshoot the balkction, the mediator intervenes to indicate which of theotsb
is the one to perform the action, probably switching rolessfwort periods. Examples
with real robots were presented.
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We can also find in the literature combined approaches sutheasne presented
by Duan et al. [15]. In their work they propose a hierarchiearning module that
combines fuzzy neural networks (FNN) and reinforcementieg (RL). The learning
task includes dynamic role assignment, action selectidraation implementation (low
level skills). The hierarchical system allows flexibilitpdindependence to modify a
certain layer without modifying the remaining ones. Basadhe assigned role, the
robot may select among a set of actions: the attacker mayt,spass, dribble and
swing, while the defender may intercept, mark, clear anémtt{go back to its home
position). For the offensive player action selection, 8esiconsidering the distances
between the robot and opponent goal and the robot and thetlallparameters that
indicate the chances of the opponent to intercept the bt afshoot or a pass are
computed. Regarding the defensive robot, the postureseobpiponent attacker and
the ball are relevant variables to take into account whesctiel the action to perform.
Experiments in a simulated environment were performed @uaeted the proposed
approach.

2.3.3 Pattern Recognition

Recognizing and learning from other teams is a desirediahiliorder to improve the
strategy of a team, and thus, the action selection stratétjyeoplayers. Therefore,
some researchers address the opponent modeling probleagthpattern recognition
of sequences. The work reviewed in this section is all agptiehe Simulation League,
which is the league that can provide most reliable data ®ptioblem tackled here.

Huang et al. [23] presented a mechanism to recognize ariduetieams’ plans.
A plan includes the agents that take part of the plan, théirsgaconditions, the goal
state and the agents’ behaviors. In order to recognize pla@dirst step is to translate
observations into agents’ sequential behaviors. Theseesegs are gathered following
a set of rules and transformed into trie structures (a mualj-tree structure [29]).
They define several events that activate the recognitioatifums (for instance, when
a robot gets the ball, the algorithm starts recording). $kme obtained retrieving the
most significant subsequences of behaviors within a trigcgtre through statistical
dependency test.

Lattner, Miene et al. [34, 43] presented an approach thdtesppnsupervised sym-
bolic off-line learning to a qualitative abstraction in erdo create frequent patterns
in dynamic scenes. The quantitative data is representetnyderies. In a first ab-
straction step, each time series is segmented into timevaltewhich satisfy certain
monotonicity or threshold conditions. In the second stepattribute values describ-
ing the intervals are mapped into qualitative classes fagction, speed or distance.
The idea then is to create patterns based on the qualitafivariation of the environ-
ment (input). The result of learning is a set of predictiotesuthat give information
about what (future) actions or situations might occur wibime probability if certain
preconditions satisfy. Patterns can be generalized, dsawepecialized.
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2.3.4 Fuzzy Theory

Fuzzy Theory is another selected approach [55] since itraligthandles imprecision
and uncertainty, which are highly present in the real woillle advantages of fuzzy
theory is that it models imprecise or vague concepts, usuakd by humans in their
daily reasoning. Using fuzzy rules is more intuitive for aqpert, rather than trying
to find functions that model the problem to solve. Howeveg, diifficulty here is to

determine the fuzzy membership functions that represenw#niables to use in the
problem to solve.

Within this context, a fuzzy logic based strategy for dynamole assignment was
introduced by Sng et al. [57]. Role assignment is relatedctmma selection, since
each role determines the actions the robots should perfétence, the selection of
a role indirectly implies the action selection for a play&heir work was applied in
the Small-Size League (with only 3 robots), where a cezigdlicoordinator (the fuzzy
role selector) assigns the roles to the players. The algorfirst selects the “attack
ball” role (the robot moving after the ball), and then assigine remaining roles to
support the main role. Four fuzzy variables describe eabhbtrsituation (distance to
ball, orientation, shoot angle, and path obstacle). Theyfuales determine the output
fuzzy membership value for every robot. The robot with thghleist value is assigned
as the robot going after the ball. The formation of the othker tobots is then derived
similarly (using fuzzy rules), positioning themselves n&athe robot going after the
ball.

Lee et al. [35] presented similar work where a fuzzy logideysis used as a me-
diator to handle situations where more than one robot mag$monsible for an area.
Each robot has a role based on its home area. However, whéaltie positioned in
overlapping areas the robots should switch their rolesiese a cooperative strategy,
i.e. one robot should go for the ball, while the other one &hassist it. To this end,
fuzzy rules for each overlapping region (three predefingobres) are introduced where
the input variables are the distance between the robot anbatlh angle between the
robot and the ball, and the angle between the robot and tHe §a output indicates
the role of the evaluated robot, i.e. support, shoot, chamigawvith the other robot, etc.
Their work was applied in the Middle-Size League, althoughegiments were only
shown in a simulated environment.

Related to the action selection problem, Wu and Lee [73]deduheir research on
the selection of five action categoriéstercept shoot block sweepandstand bywithin
the vision-based soccer system (as in the Small-Size Lg¢agdte input variables are
the defense factor (distance of the robot to the home andrgmpaoal), the compe-
tition factor (distances and angles of all robots to the)telld the angle factor (ball
accessibility from the robot point of view). The output oétlules indicate the action to
perform by the robot. The experiments consisted of onea®games. Although this
work is more related to ours, in the sense that explicit asti@re chosen, the approach
only considers a single player and therefore, no cooperatio be considered.
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2.3.5 Planning

Although a traditional technique within Artificial Intefence, planning is not gener-
ally applied in complex domains where uncertainty, incagtplknowledge, real time
response, etc. are present. However, we can find some wdnlnwtiite robot soccer
domain, since planning can also be seen as a decision maliag for selecting the
appropriate actions to perform.

Fraser and Wotawa [18] proposed a framework based on STRIASvhere op-
timizing the plan is not the main purpose, but monitoring pfen execution instead.
Knowledge representation was done using first order logét wmcertainty was not
considered on purpose. Given the initial statabserved by an agent, a plais calcu-
lated to achieve the goél using the domain theory. They extend the classical planning
problem definition by plan invariants. A plan invariant is amoally defined logical
sentence that has to remain satisfied in the initial and abaguent states (similar to
our work and the escape conditions proposed by Lin and ClRargsible reasons to in-
validate a plan are: inexecutable actions (a precondisarot fulfilled), failed actions
(due to imprecision in the robots actions), unreachable @hee to external events)
and unfeasible goal (changes in the environment). Henag,ipVariants are monitored
at all times during plan execution. They also introduced ahmaism for achieving
cooperative planning through role allocation. Once aga@tg@nditions and invariants
assign roles to players. Since the framework was applidgteiiddle-Size League, all
robots may not share the same world state at a given pointidir ¢o avoid conflicts
in the role assignment, once a robot selects its role, thet tmeadcasts it with an asso-
ciated utility value. Hence, the robot with higher utilitplue keeps its role, while the
conflicting robots must pick some other role. Explicit commuation is used among
robots to achieve interaction. For instance, a robot mayestg pass to another robot.
Invariants are used to monitor the interaction and to make that both robots agree
on the cooperative task.

Hierarchical Task Network (HTN) planners have been progasg Obst and
Boedecher [46] to achieve coordinated behavior while agfiow the strategy sug-
gested by a human expert. HTN planning makes use of domaiwwl&dge to speed
up the planning process. Tasks may be complex or primitifee FITN planners use
methods to expand complex tasks into primitive tasks thatbeathen executed using
planning operators. Their planner generates what theyptadl stuh a task network
with a primitive task as the first task. As soon as a plan stédisd, the agent can start
executing the task. To handle non-determinism, a plan &edeas a stack. The tasks
in the stack are marked as pending or expanded. The formerareetasks waiting
for execution if they are primitive tasks, or waiting for exysion, if they are complex
tasks. When a subtask fails, all remaining subtasks of theplemask are removed
from the stack and it is checked if the complex task can bd &gain. Once a task is
successfully finished, it is removed from the stack. The mluation in the subtask
expansion ensures that the planning process is fast enoudfef requirements of the
working domain (Simulation League 3D) and at the same tingntains its reactive-
ness property to handle changes in the environment.
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2.3.6 Neural Networks

Neural Networks (NN) [54] have been proved to efficientlyfpemn in many domains,
including robot control. However one of their main drawbg&chs in decision trees
algorithms, is the large amount of data needed for the trgjnivhich is not always
feasible to provide. Another drawback is that the knowledfythe system cannot be
evaluated or directly modified by a human expert.

Initial work was presented by Kim et al. [26]. They proposedaation selection
mechanism (ASM) based on the role of the player. The ASM ispmsed of four mod-
ules: the action set module computes run-time parameteréeasibility for executing
the available actions; the internal module selects anmadieen the current situation
without considering opponents; the supervisor module ntigy he actions attributes
or enforce certain actions; and finally, the interventiordode calculates the level of
disturbance of opponents, i.e. how the existence of an apypanterferes in the cur-
rent situation. This latter contribution is similar to therk presented by Ahmadi and
Stone, where the Q values of the states where opponents pagsibly be located are
modified on-line. In order to compute the level of disturtmaanulti-layer perceptron
is proposed. The training set was manually obtained: anreppserves a game and
labels those situations where the opponents should be iatkeaccount, and therefore,
their disturbance level is high. The MLP is a two layer feedafard neural network.
The approach was tested with real robots in a one-to-onesoen

Jolly et al. [24] present a more complete work, where a tvegatapproach using
neural networks for action selection in the Small-Size lueagp proposed. The first
attempt is focused on deciding which of the two robots near#ll must go after it
while the other remains as a supporter. Hence, the inpahlas to the NN correspond
to the distances and angles to the ball. They also introdfmenard boolean variable,
which indicates if there is a teammate ahead of the ball. Whisthey enhance the ac-
curacy of the decision-making with the global strategy of/ing forwards, i.e. moving
towards the attacking goal. The actions of the robots arechas the region where the
ball is located. Thus, if the ball is within the attack zorfes tobot going after the ball
should kick to goal; within the defense zone, the action istercept the ball and pass
it to the teammate; and finally, within the pass zone, thetrsbould pass the ball to a
teammate if this is a forward teammate. Otherwise, a kiclotd i performed. The NN
is a three layer feed-forward network, with five inputs and twatputs. The first stage
of the learning process consists in using an evolutionapyageh to roughly acquire
the neural network weight matrices. Next, the NN is used &@-fime the weights. The
training data is obtained randomly generating field conéijans and the correspond-
ing robots’ actions are obtained through rules. They al$erektheir NN to compound
networks in order to handle larger teams (5 vs. 5). They sleswlts for the learning
curves of experiments in simulation for 3 vs. 3, 4 vs. 4 and.%\w&cenarios.

2.3.7 Evolutionary Algorithms

Evolutionary computation is based on the mechanics of abtetection and the process
of evolution [22]. Chromosomes encode the potential sohgtiof the problem to solve.
During the search, chromosomes are combined and mutatedén  find the best
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solution (although it is not guaranteed to find the optimad)on

Nakashime et al. [45] proposed an evolutionary method fquiing team strate-
gies in the Simulation League. The algorithm evolves rutedléd action rules) for
determining the actions of the players. The actions areefythe: ifagent; in areaA
and nearest opponent/i then action i€”. The chromosome corresponds to a concate-
nation of the ten players’ possible actions in the diffepmetefined regions of the field
(48 regions). There are ten possible actions, such as dribiard the opponent side,
pass the ball to nearest teammate, clear the ball towardmeppside, etc. Once the
rules are evolved, during a game the players follow the redegpt for those situations
where a player is in possession of the ball within the peradga. In these cases, the
player first evaluates a shoot to the goal. If the evalua@slts in success, the player
kicks the ball directly. Otherwise, it follows the rule. Bhway they ensure reactiveness
in the player’s behavior.

Related to evolving rules, but in this occasion fuzzy ruResk et al. [47] proposed
the use of evolutionary algorithms to determine the appat@fuzzy control rules for
the path planning problem in robot soccer. More precisély toroposed some mod-
ifications in the classical evolutionary algorithm in orderautomatically detect the
sensitivity of various genes in contributing to the fitnesisigon. This way they ensure
that the evolved chromosomes are goal-oriented, in theegbas their performance is
tested against a specific goal for which they are good at, ahtbngeneral purposes.
The proposed modifications for the parent selection proassist in the evolution of
optimal solutions for multi-objective path planning pretrls. Experiments with a real
robot proved that the proposed approach generates pathmatheeshorter elapsed times
with significantly reduced variation.

Luke et al. [40] proposed to learn the robots behaviors @inc@enetic Program-
ming instead of hand-coding them. Their main goal was nothtiaia finely-tuned
players, but to study the feasibility of evolving a fair teamthe Simulation League.
The individuals are represented as program-trees andomersand mutation are the
operators used to evolve them. Two trees were to be learmezifoo making kicks,
and the other, for moving the player. They also proposed y#peg of teams: homo-
geneous, where each player would follow the same learned,tx heterogeneous,
where each player would develop its own trees. Teams' fitwess assessed based on
the game score of competitions (each team evolving its owmaviers). They expected
that the heterogeneous team would outperform the homogsrteam. However, the
evaluation showed the contrary. They believe that moraitrgitime would permit
the heterogeneous team to improve the players strategyharefore, outperform the
homogeneous team.

2.3.8 Other Approaches

Konur et al. [31] focused their work on learning decisionesdor action selection
for a whole team (defenders, attackers and midfields) in thil@ted League. They
restricted the learning to the players in ball possessibeyTefined a set of meta-level
actions which are to be selected by the decision tree (Ctrddinced by Quinlan [49]).
Some of the 35 features used for the attribute set are typéapép playing region,
closest teammate to ball, distance and angle to ball, ete. aflvantages of decision
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trees are that the encoded rules are “readable” for humatieisense that they are
easy to understand and inspect by an expert. However, inrf€oapproach because
of the large number of features used during the learningtekelting rules are not so
understandable nor easy to follow. Instead, we believettigatise of cases is closer to
how humans reason. Moreover, the drawback for using decisées is the need of a
large set of training examples, which in the case of realtghs not feasible. Instead,
the Simulation League provides enough data to gather thareghinformation.

Bayesian classification methods are very common to use wisaing with uncer-
tainty because they are based on probability theory [13hddgewithin the Simulation
League 3D, Bustamante et al. [9] present their work adddessthe action selection
using Naive Bayesian Networks. The input variables of a 8ldayesian classifier
should be discrete, and therefore, they use a fuzzy extensid-uzzy Naive Bayes
Classifier. The task of the agent is to evaluate the succedmlpitity of a pass. To
this end, the features of the classifier are fuzzy distancésagles to ball and players
(teammates and opponents). In their experiment, the piaygossession of the ball
has to select the most adequate teammate to pass the baii,th&ir positions on the
field. Hence, for each teammate and each opponent, the agaptites the probability
of success. The teammate with higher probability is chosgetform the pass.

2.4 CBR Applied to Other Robotic-Related Domains

Next we review some work done in the past years within thetiobdield where CBR
techniques have proved to successfully perform. SimiléhédRoboCup domain, real-
time response (although probably not as restricted asmitiiot soccer), uncertainty,
imprecision and dynamism are some of the features that idestire environments
where the work we review next is addressed to.

Ram and Santamiar [51] and Likhachev and Arkin [37] proposed the use of CBR
in the robot navigation domain: the SINS system and the Migsab system respec-
tively. The goal of the CBR system is to set the gain parareéterithe motor schemas
of the robot’s navigational layer. In both approaches tte=a@kescription is represented
by feature vectors. During retrieval, while SINS evaluates current problem with
respect to the case base in one round, MissionLab first casphe spatial feature
vectors of the cases filtering those with low similarity. Hedected cases are then com-
pared using the temporal feature vectors. Once a caseievesgtr SINS reuses the new
retrieved case. MissionLab instead includes a case swigdhee to decide whether the
currently applied case should still be applied or shoulditched to the new retrieved
case. Next, the gain parameters of the case solution areealdapd reused. Another
difference between both approaches is the learning pro8&dS receives feedback to
evaluate whether the retrieved case should be modified maséte adapted solution
currently reused, or a new case should be created instegdrdeg MissionLab, Kira
and Arkin presented in [27] an extension of the system whé&raraing module decides
which cases to remove if a new case has to be created and thitasy is full.

A global navigation strategy in large-scale dynamic envinents by means of CBR
techniques is presented by Kruusmaa [32]. The problem istbtfie path between
a starting point and a given goal. The system uses a griddbga#h planning and
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therefore, at least the shape and size of the environmerttbeuadicated. However,
the presence and location of obstacles is unknown and chanvge time. Hence, the
main goal of the CBR system is to minimize collision risk, lggdly choosing routes
where few obstacles are encountered. Given a new task (f@imgpoint A to point
B), the system chooses between planing a new path througbbalglistic planner or
using the description of an old path from the case base (eifhiing for exploration
or exploitation). The solution description correspondsh®e path. The outcome of
the solution is the cost, which reflects how easy the path wdsliow. The cost is
updated every time the path is reused indicating the avetag@cteristics of that path.
Choosing the path with lower cost leads the robot to choser g&fths and minimize
time travel. Similar to the approach presented by Kiran,[2@dase forgetting process
was included to prevent the case base from growing to muchus,Tén old case is
forgotten and the new one is stored if the cost of the new cakmer. If no similar
case is found for the current problem solved, it is incorpeatan the case library as
well.

Similar work addressed to the path-planning problem wagpgsed by Haigh
and Veloso [21]. They presented a path planner for the citiitiéburgh using the
PRODIGY planner and its analogical reasoning [68]. The gankenowledge cor-
responds to the map of the city represented as a planar grapkewedges indicate
street segments and the nodes, intersections. A case pamssto a trace of the
plan generated by PRODIGY including search decisions tovb&led at reuse, situ-
ations encountered at execution time as explanation ofseard the replanning done
to overcome those errors. A case is also approximated bigistigne segments in a
two-dimensional graph, which acts as an indexing featurdaftilitating the retrieval
process. As in [32] a compromise between finding new routassiorg old ones is
taken into account. Therefore each case is assigned areefficvalue that indicates
the “quality” of a case considering traffic conditions, rapdlity and time of the day.
This factor is also considered during retrieval. The reaigrocess returns a set of
cases ordered according to the sequence in which the mg#aenietric similarity met-
ric introduced in [20]) believes they should be retrievedhe Tetrieved cases are then
merged to obtain the solution route. During reuse, extrarpteg can be performed if
needed (e.g. a closed road). In this situations, the fadétikered case is not altered,
and instead, the efficiency value is modified.

The problem of indoor navigation using sonar maps was adgedeisy Micarelli et
al. in [42]. The goal of the system is to classify the sonageoamaps into a set of
predefined categories that represent structured envinotsnagthin a building, such as
corridor, corner, crossing, end corridor and open spaceask ¢s defined as a tuple
where the problem description corresponds to a digital rsarep (reprented by an
array of 360 real numbers between 0 and 1), and the solutiserigdon corresponds
to a topological feature, i.e. one of the categories. Ther first training stage to
build the case base where a human expert indicates themohitthe map detected.
As the system acquires more cases, the number of queries éxplert decreases. The
similarity measure corresponds to a cross-correlatioifanetric.

Urdiales et al. [64] presented a sonar-based reactive aidgapproach. The work
was addressed to local obstacle-avoidance of an autonorobats They included a

28



CBR system to determine the direction the robot shouldfottmsafely avoid colliding
with close obstacles. The deliberative layer determinesrdbot path and takes into
account static or know obstacles, but does not deal with pgerd obstacles found
during navigation. Thus, once the goal is set, the robot gbsiits heading to reach it
in a straight way. The reactive layer is only triggered whesobot detects obstacles
through the sonar. The sonar readings are part of the pratdsieription of a case, as
well as the goal of the task, i.e. the point that the robot khoeach. Since no global
model of the environment is used, the goal is representetidyitection vector from
the current position of the robot to the goal. A nearest r@glalgorithm is used for
the retrieval step. A first training stage is performed touli@jthe case base. The robot
is manually guided through different paths in order to @eww cases. A new case is
included each time a significant sensor configuration isatietie This process is also
used during the autonomous robot performance after th@nastage.

2.5 Summary

We summarize the work reviewed within the RoboCup domaireipld 2.2. The clas-
sification is based on the problem the work is addressed tdtenttague where it is
applied to, indicating for each work the used technique. fdmenclature used corre-
sponds to the abbreviations presented in Table 2.1. Thégmsbwe have focused our
attention to areaction selectionopponent modelingr state recognitioriteam forma-
tion recognition)role assignmentpositioning(locations on the field where the robots
should move)]ocalization (computing the position of the robot on the field by itself)
andskills (learning low level actions such as kick the ball, walk, )etc.

We must remark that we only list a summary based on the worsepted in this
thesis and therefore, with direct relation with the thesjsic. We do not intend to
summarize a complete survey of the work done so far withind®alp.

We can observe that in general most of the work is appliedg&tmulation League.
Besides being the earliest league, the advantage of tlyjadda that researchers do not
have to deal with much of the problems that arise with reabt®bHence, they can eas-
ily focus their efforts on developing skilled soccer plag/asing different techniques ad-
dressed to high level decision-making without considelomger level problems. More-
over, and as mentioned before, this league also providels moce information about
the state of the world during a game as well as afterwardsfiflegproduced during a
game), which can be later on widely explored using machiamlag techniques.

The Middle-Size League has also produced an important anoéwork. Probably
the appeal of this league with respect to the other leagukati®n the one hand it deals
with real robots (robots are rather small and quite pretisedn the other hand, it main-
tains a centralized system where most of the processinqesjtas well as the robot
control, take place. Hence, although having to deal witth batrdware and software
problems, the decision-making is done on an off-field PC. §ihte of the environment
is usually obtained through an overhead camera and the ipragessing is done by the
off-field PC. Thus, robust computer vision algorithms carapplied, minimizing the
uncertainty in the incoming information. As we can obsemngenf the summary table,
several different approaches have been applied to thiséeagtempting to solve most
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Abbreviation  Technique

CBR Case-Based Reasoning
RL Reinforcement Learning
LO Learning from Observation
EA Evolutionary Algorithms
DT Decision Trees

FT Fuzzy Theory

PF Potential Fields

PR Pattern Recognition

NN Neural Networks

A Auctions

P Planning

BN Bayesian Networks

Abbreviation League

SM Simulation League
SSL Small Size League
MSL Middle Size League
4LL Four-Legged League

Table 2.1: Table of abbreviations.

of the problems remarked here.

The two latter leagues correspond to the most challengimg,osince robots are
completely autonomous and all the decision-making and ctatipnal processes have
to be done on-board. The advantage of the Four-Legged Leaijngespect to the
Middle-Size League is that researchers do not have to défalhardware design. The
robots used in this league are commercial robots and caenmobllified. However, the
drawback is that the robot processor is limited and theegfsimple algorithms must
be designed. On the contrary, the Middle-Size robots cardpsted as required, and
more powerful PC’s can be used. The work presented so faesetkeagues is much
more limited compared to the other two leagues.

Regarding the experimentation within the leagues with relabts (SSL, MSL and
4LL) we can observe that, in general, simplifications of d ggame are considered.
Thus, simulated environments are used to test the propggedaches, or if experi-
menting with the real robots, opponents are either omitttdic or performing random
movements. These assumptions clearly show the difficuttiasresearchers have to
face when dealing with real robots performing tasks in aeealronment.

Our work can be classified within the action selection, rel@gnment and position-
ing problem domains applied to the Four-Legged League. Awill@xplain through
this dissertation, the CBR system retrieves and adaptseespesifying the actions the
robots must perform (action selection problem). Moreoiténdicates which actions
should perform each robot and their initial positions. Hgrtbe role assignment and
positioning problems are solved through the case reuskoidth two works have been
presented in the action selection domain within this led@6e5], in this dissertation
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\ SL \ SSL | mMsL [ 4L |
CBR: [10], [38], [8]

RL: [52] \
Action | LO" Eg{ e [[;1;]5 (57| RL: [2817| cBR: [25F
Selection DT (31] NN: [26], [24]" P:[181' | RL:[5]7:10
P: [46]
BN: [9]2
Opp Mod/ | CBR:[70], [4], [58] .
State Recog.| PR: [23], [43] CBR: [41]
Role CBR: [41}
Assignment RL: [15]* A 165]°
FT:[57], [351*®
CBR: [41]*
Positioning CBR:[72] EA: [47]° PF: [65F
PF: [48], [63]
Localization CBR:[717
Skills RL: [52] RL: [15]* | RL:[28]°

Table 2.2: Related work classification.

(1): The decision making mechanism only indicates whethparss is feasible or not.
(2): Selects which teammate is the most appropriate toveeepass.

(3): 1vs 1 experiments.

(4): Experiments in simulated environment only.

(5): Experiments with a static opponent(s).

(6): No experimentation reported.

(7): The decision making mechanism chooses the type of kighetform between
two types of kicks.

(8): Experimentation without opponents.
(9): Experimentation with one robot.

(10): Random movements for opponents.
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we present a complete framework addressed talduision-makingof a multi-robot
system, where a set of actions for each robot is selected(ptwo possible actions

as in [5]), and the subsequeamtecutionof these actions (the work presented in [25] is
preliminary and only refers to the first stage, the decisiaking). Furthermore, we
have included theooperativeaspect in the task execution through explicit passes be-
tween robots. To this end, a multi-robot architecture andadination mechanism are
introduced. To evaluate our approach, we have performedrimpnts consisting of
two vs. two scenarios both in simulation and with real ropedsere the two attackers
play against a defender and a goalie (non-random opponents)
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Chapter 3

Modeling the CBR Approach:
The Retrieval Step

In this chapter we introduce the first step of the CBR cycle:r#trieval step. Although
most of the formulation is domain-oriented, the ideas pregbcan be easily translated
to other domains where a team of robots must perform a jogh, teuch as moving
objects in dynamic environment. First we describe the cafiaition and the case base
structure. Next we present the retrieval process itseffniohg the similarity measures
and a filtering mechanism to select a set of candidate cadeallyf-experiments in
simulation are presented to evaluate the retrieval process

3.1 Case Definition

A case represents a snapshot of the environment at a givenfitirm a single robot
point of view. We call this robot theeferencerobot, since the information in the case is
based on its perception and internal state (its beliefsg cEse definition is composed
of three parts: the problem description, which correspdond$e state of the game;
the solution description, which indicates the sequencetibas the robots should per-
form to solve the problem; and finally, the case scope reptagen, which contains
additional information used to retrieve the case. We folyrddfine a case as a 3-tuple:

case = (P, A, K)

whereP is the problem descriptiord, the solution description, anll, the case scope
representation.

3.1.1 Problem Description

The problem description corresponds to a set of featur¢désaribe the current state of
the game from theeferencerobot perspective. In the robot soccer domain we consider
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the following features as the most relevant for describirggdtate of the game:

P = (RG7 R7 Bv G7 Tvava OppG7 Opp7 tv S)

where:

1.

10.

Rg: reference robot’s global positiqa g, yr)

xR € [—2700..2700)mm, zi € Z yr € [—1800..1800)mm, yr € Z

R: reference robot's positiofx r, yr ) with respect to the ball.
B: ball's global positionz g, y5)

xp € [—2700..2700mm, 25 € Z yz € [—1800..1800]mm, yp € Z

G- defending goal
G € {cyan, yellow}

Tmg: teammates’ global positions

Tmg = {tm1 : (TR, YR, ), tMn : (TR, , YR, )}

wheretm; is the robot identifier ane € [1, 3] for teams of 4 robots. This set
could be empty for cases where no teammates are implied icageesolution.

T'm: teammates’ relative positions with respect to the ball
Tm = {tmy: (TR, YR, )s -t : (TR, YR, )}
Oppg: opponents’ global positions

Oppc = {opp1 : (TR, YR, )s - OPPm : (TR, YR )}

whereopp; is the opponent identifier and € [1, 4] for teams of 4 robots. This
set could be empty for cases where no opponents are desuritiezicase.

Opp: opponents’ relative positions with respect to the ball
Opp = {opp1 : (TR, YR, ); - 0PPm * (TR, s YR, )}
t: timing of the match. Two halves parts of 10 min

t€[0,20)min, teN

S: difference between the goals scored by our team and thenepgs team.
The maximum difference allowed is 10. The sign indicatekdf team is losing
(negative) or winning (positive).

Se[-10,10], SeZ
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tmy

R[] e N
opp1

Figure 3.1: Graphical example of the description of a pnobl&he black circle rep-
resents the ball, while the rectangles correspond to tharntedes and an opponent

(gray).

We include both global and relative coordinates for the telpositions in the prob-
lem description because, as we will see through the chdptespme calculation pro-
cesses it is advantageous to use one representation ohtreDtie to the limited com-
putational resource of the robots it is not feasible to cot@the relative representation
every time it is needed. Thus, cases are actually stored tisénglobal representation
only, while the relative coordinates are derived autonadlfiovhen loading the case
base. Figure 3.1 illustrates a graphical example of thevatig problem description:

Re = (517,-506),
R = (-402,0),
B =(919,-506),
G = yellow,
p_ Tmeg = {tmy :(919,337)},

| Tm = {tm;:(0,843)},
Oppa = {opp1 : (1350, —506)},
Opp = {opp1 : (431,0)},
¢ =5,
S =1

3.1.2 Solution Description

The solution of a case corresponds to the sequences of aetimh robot performs. We
call themgameplays In this work, a gameplay must also satisfy two conditiomsa(
least one robot has as its first action to get the ball; &paiily one robot can control
the ball at a time. Formally, we define a gameplay as:

tmo : [aot1, @2, - - -, Qopy )
A=

tm,, : [anl, Ap2y ..oy anpn]
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Action Parameters Description

NONE - no action

GET.NEARBALL - move close to the ball
APPROACHGRAB - approach the ball and grab it
GO_TO_POINT (z,v) move to point(z, y)

TURN [0](z,y)|tm;] turn until the robot’s global head-

ing is @ or until facing either point
(z,y) or robottm;
TURNWITH_BALL [6|(x,y)|tm;] turn while grabbing the ball until
the robot’s global heading i8 or
until facing either point(z,y) or

robottm;

WAIT _BALL tm; wait until robottm,; kicks the ball

DODGE [side|(z,y)]  dodge to the left or right side, or to-
wards point(z, y)

PICK_BALL - get ball

SUPPORT (z,y) move towards pointx,y) facing
the ball

KICK_TO_POINT (z,v) kick the ball towards pointz, y)

KICK kick kick the ball with kick type (e.g.

forward, side, bump, etc.)

Table 3.1: List of available actions and their parameters.

wheren € [0, 3] is the robot identifier, ang; the number of actions teammate;
performs {m, corresponds to the reference robot). Actions are eithavithehl ac-
tions, such as “get the ball” or “kick”, or joint actions, $uas “pass the ball to robot
tm;”. The actions may have parameters that indicate additiof@mation to execute
them. For instance, in the turn action we can either speleéhgtobal heading the robot
should have or a point to face; in the kick action we indicatécl type of kick to
perform (forward, left, ...), etc. Table 3.1 details thé 6 available actions and their
parameters.

During the execution of the solution, all robots on the teaant performing their
sequences of actions at the same time. The duration of etioh &implicitly given
by the action type and its initiation depends on the actietnditions. Consider
the following situation: robot 4 must pass the ball to robefz, and robotr¢ has to
move to a poinp. Without explicitly indicating the timestep of each actidime timing
of the overall performance will be: robet; starts moving towards the ball to get it,
while robotr g waits for robotr 4, to make the pass. Once robot has done the pass,
rp receives the ball and kicks it forwards. In the meantimegesirobotr- has no
preconditions, it starts moving to poiptindependently from the state in which the
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(@) (b)

Figure 3.2: (a) Example of the scope of a case. The blaclediegresents the ball and
the gray rectangle represents the opponent. The ellipsesspond to the ball's scope
(solid ellipse) and the opponent’s scope (dashed ellipdg)Example of a simplified
problem description. The opponent’s scope is translatéu nespect to the ball.

other robots are. For this example, the solution would be:

T4 : [ get_near_ball, approach_grab, turn_with_ball(rg), kick(bump)],
A= | rp:|waitball(ra), pick_ball, kick(forward)],
ro ¢ [ go-to_point(p)]

3.1.3 Case Scope Representation

Because of the high degree of uncertainty in the incomingrinition about the state
of the world, the reasoning engine cannot rely on preciseegbf the positions of the
objects (robots and ball) on the field to make decisions. dfoez, we model these
positions as regions of the field calledopes The scopes are elliptic regions centered
in the object’s position with radius, andr,. The case scope is defined as:
K = (ball : (Tfﬁf)mppl : (Tzl,Tyl), ey 0ppm 1 (T 7))

wherer? and rf correspond to the: andy radius of the ball's scopeypp; is the
opponent identifier, and: andrlj, to the radius of opponenpp;’s scope { € [1, m]).
If there are no opponents in the case, then we do not inclugemponent paibpp =
(12, 7). Notice that we only consider the robots that are opponamis,not the ones
belonging to the team, i.e. reference robot and teamma&tgsi(;). As we will explain
during the retrieval process, we define two different meastor each type of robots.
While one requires the use of scopes, the other does not. fohereve do not need to
include this information for all robots in the case desaoipt

We must also anticipate that the ball's scope is fundamémt#he retrieval process
as we will explain in Section 3.3. A case might be considerpdtantial solution only
if the position of the ball described in the problem to solavithin the ball's scope of
the case. Otherwise, the case is dissmissed.
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Regarding the opponents featuréxyp, as defined in the problem description it
corresponds to the relative positions of the opponents reigipect to the ball. The
advantage of representing the opponents combining tHative coordinates and their
scopes is that we can easily define qualitative locationt@fopponents on the field
with respect to the ball. Reasoning with qualitative infation is advantageous in
this kind of domains, specially, as we have said, becaudeedfigh uncertainty in the
incoming information, and moreover, because it facilgatee generalization of similar
situations. For instance, it is more general to reason afowpponent being in front
of the ball, rather than the opponent being in positiony).

Figure 3.2a shows a simple example of this situation. Thexpmétation of this case
is that if we want to consider it as a potential solution forieeg problem, then the
ball should be located within the ball’s scope and an opposieould be positioned in
front of it. Figure 3.2b depicts a problem example where thygoment is considered to
be in front of the ball because it is located within the opptisescope. Note that the
opponent’s scope has been translated with respect to thentmosition of the ball in
the problem. This is due to the relative representation @oipponents with respect to
the ball. Since the ball is also situated within the ball's of the case, we can state
that the case in Figure 3.2a is a potential solution to thelpro in Figure 3.2b.

3.1.4 Case Example

Figure 3.3: Graphical example of the description of a case.

Following the example shown before for the problem desionipt-igure 3.3 com-
pletes the case representation including the solutiorriien and the case scope. We
represent the scopes of the ball and the opponent with sadidlashed ellipses respec-
tively. The arrows show the sequence of actions the robataldiperform to solve
the problem. RoboR takes the ball first and passes it to robet; with a left head
kick. Nexttm; receives the pass, turns until facing poi2t00, 200) (the pointed lo-
cation indicated by the arrow in the figure) and kicks with enfard kick. The formal
description of this case example is notated as:
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Re = (517,-506),
R = (-402,0),
B = (919, —506),
G = yellow,
Tmg = {tm1 : (919, 337)},
Tm = {tm : (0,843)}, ’
Oppe = {o pp1 : (1350, —506) },
Opp = {opp1 : (431,0)},
t =35,
case = S =1
P [ get_ball, ]
0| pass_ball(tmy, kick(head left)
frrn [ wait, receive_ball(tmy), }
turn(2700, 200), kick(forward)
( ball : (860, 480), )

opp1 : (315,200)

3.2 Case Base Description

Because of the spatial nature of the features in the caseigtést, interestingly a
particular case can be mapped into multiple ones throudhaspransformations. Thus,
from a small set of cases, we can automatically generatgerlaet reducing the human
effort when building the initial case base.

From the set of features of the problem description, theésbalid robots’ global
positions and the defending goal have three symmetric pliepe

1. with respect to the axis,
2. with respect to thg axis and the defending goal, and
3. with respect to both axis, andy, and the defending goal.

Hence, given a description of a problem, we can easily gém¢ieee more problems
applying spatial transformations based on the symmetdpgaies shown above. We
must point out that the spatial transformations have to eedsing the global coor-
dinates of the features instead of using the relative onkas,Twhen loading the case
base, we first generate the symmetric cases and then we thexivelative positions of
the features for each case.

Similarly, we also compute the symmetric description of thse solution. More
precisely, we must transform only the parameters of somieesdittions that are related
to spatial features, such as right, target point, turn argte Regarding the case scope,
no spatial transformations are needed since they onlyseptéhe radius of the scopes.
Table 3.2 summarizes the spatial transformations definedeator the different types
of features or parameters used in the case descriptionteF&ydi illustrates an example
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symmetry with respect to
x y & defending goal | zy & defending goal
(Z(J,y) (JZ, _y) (—x,y) (_l'v —Z/)
g g {cyan, yellow} \ {g} | {cyan,yellow} \ {g}
o - T— T+«
side | {right,left} \ {side} | {right,left} \ {side} side

Table 3.2: Spatial transformations of the different featuand parameters used in a
case, wherézx, y) corresponds to a point on the fielgjs the defending goaly is an
angle indicating the global heading of the robot, angk is a direction parameter of a
given action.

of a simplified case description and its three symmetricrilgtgans (we omit the scopes
and actions for clarity purposes).

Since we are working in a real time domain and because of ctatipoal limi-
tations in the robots, it is essential to minimize the timeested during the retrieval
process. To speed up the search we use an indexed list totls¢ocases in memory
once they have been loaded. Thus, we separate the casebabeddefending goal
feature (yellow or cyan). When a new problem has to be solvedynly look for sim-
ilar cases in one of the subsets. Searching in the rest ofabe lzase is useless since
those cases will not match the current problem at all.

Summarizing, the case base is composed of a set of caseslmaneated, where
only the basic information is stored (global positions). \Wliee case base is loaded,
for each case we first compute its symmetric cases and thereltiteve coordinates
of the features in each case. Therefore, we enlarge thenatigase base four times
its original size, covering the whole field. We use an indeigdo classify the cases
based on the defending goal feature to speed up the searcleionly have to explore
half of the case base instead of the complete one.

3.3 Case Retrieval

After having described the case definition and the desoniptf the case base used in
this work, in the remaining of this chapter we focus our attenin the retrieval step of
the Case-Based Reasoning approach proposed.

Case retrieval is in general driven by a similarity meastevben the new problem
and the solved problems in the case base. We introduce a ceselretrieval method.
We evaluate similarity along three important aspects: imdarity between the prob-
lem and the case, the cost of adapting the problem to the aadeahe applicability of
the solution of the case. Before explaining in more detaildimilarity computation we
first define two types of features describing the problem:

e controllablefeatures, i.e. position of the reference robot and the teatiesn (the
robots can move to more appropriate positions if needed).

e non-controllablefeatures, i.e. the ball's and opponents’ positions, thermidihg
goal, time and score (which we cannot directly modify).
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Figure 3.4: Example of the spatial transformations of a .c@georiginal case; symmet-
ric cases with respect to (b) theaxis, (c) they axis and defending goal, and (d) the
andy axis and the defending goal.

The idea of separating the features into controllable andammtrollable is that a
case can be retrieved if we can modify part of the currentlproldescription in order
to adapt it to the description of that case. Given the domairave dealing with, the
modification of the controllable features leads to a plagrmirocess where the system
has to define how to reach the positions of the robots indicat¢he retrieved case in
order to reuse its solution.

3.3.1 Similarity Measure

Since the nature of the features’ domain differs from onentmtfzer, we introduce dif-
ferent similarity functions to compare the features of ebpgmp and a case. We first
compute the similarities along each feature (assumingifeandependence) and then
we use an aggregation function to compute the overall siityilhetween the prob-
lem and the case. More precisely, for this measure we congatdset of the non-
controllable features (ball’'s position, time, score diffiece) leaving the opponents’ po-
sitions for the applicability measure. The defending gealat taken into account here
since, as already mentioned in the case base descriptiohaveepruned the search
of cases from the case base in advance by only considerisg thibh defending goal
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Figure 3.5: 2D Gaussian centered in the origin with= 450 andr, = 250. The solid
ellipse on the plan&'Y" corresponds t6:(z, y) = 0.367.

equal to the one described in problem

Similarity of Spatial Features

We are interested in defining a continuous function thatrgiveo points in a Cartesian
Plane indicates the degree of similarity based on the disthetween the points. As
larger the distance between two points is, the lower thdaiityi degree between them.
We propose to use a Gaussian function, which besides falifithese properties, it is
parametrized by its variance. We can use this parameterdeltite maximum distance
allowed to consider two points to have some degree of siityil&8ince we are working
in a two-dimensional space, we use a 2D Gaussian funafi¢n, y), to compute the
degree of similarity between two points.

Hence, in the robot soccer domain, we define the similaribction for the ball
feature as:

. Tp —xc\% | (Yp — Y\ ?
ssz(a?p,yp,xmyc)G(wprc,ypyc)exp<{( pTB C) +( pTB C)
T Yy

where(z,,y,) corresponds to the ball's position in problem(z.,y.), to the ball's
position in case, and7? andrf the ball's scope indicated in the case as defined in
Section 3.1.3. Figure 3.5 draws a 2D Gaussian function angrdjection on thexy’
plane (sequence of ellipses with increasing radius as thiasity decreases). As we
can observe, the Gaussian’s projection with radjlﬁsandf,jB represents the scope of
the ball, i.e. the region within which we consider two poitt$e similar enough, and
corresponds t6/(z, y) = 0.367.
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Figure 3.6: (a) Strategy function for tinte= 5. (b) Strategy function over time.

Similarity of Game Strategic Features

Defining a function that combines time and score is essesitiak they are closely re-
lated. As time passes, depending on the score of the gamepeete more offensive
or defensive behavior. We consider as critical situatitnosé where the score differ-
enceS is minimum, i.e. when the chances for any of the two teams phirg or losing
the game are still high, and thus the strategy (or behavidheaeam might be decisive.
We model the strategy for a 20 minutes game as:

sy S <0  (losing the game)
strat(t,S) = ¢ 55 if S=0  (tie game)
sy I S>0  (winning the game)

wherestrat(t, S) € [—1..1], with -1 meaning a very offensive strategy and 1 meaning
a very defensive strategy.

Figure 3.6a depicts the behavior of the team at tinfeositive and negative scoring
differences mean that the team is winning or losing respelgti The higher the absolute
value ofS is, the lower the opportunity of changing the current score the behavior
of the team. For extreme values 8f(in the interval[—10..10], close to—10 or 10) the
outcome of the function approaches zero. Otherwise, thetitmvalue indicates the
degree of intensity, either for a defensive or an offensiedvior. Figure 3.6b shows
the behavior of the function combining both variables. Aseipasses, the intensity
of the strategy increases until reaching maximum values afid -1, (defensive and
offensive, respectively). These features are beyond rebmter and are applicable to
other games.

We define the similarity function for time and score diffeceras:

simys (tp, Spyte, Se) = 1 — |strat(ty, Sp) — strat(te, Se)|
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wheret,, andS,, corresponds to the time and score difference features bigmrg and
t. andS,, the features in case

Aggregation Function

After describing the similarity measures for the differésdtures, we must define an
aggregation function in order to compute the overall siritifdetween the problem and
the case. To this end, we tested four different functions:ntiean, the weighted mean,
the minimum and the harmonic mean. After evaluating thelraveor, we concluded
that:

e The minimum function results in a very restrictive aggrematunction since the
overall outcome is based only on the lowest value. Hence vilwes penalize
high values rapidly.

e Regarding the harmonic mean, for similar values, its beirasgi closer to the
mean function. While for disparate values, the lower valueshiéghly consid-
ered and the outcome decreases (although not as much asheithihimum
function) as more lower values are taken into account. Ocdhérary, the mean
function rapidly increases the outcome for high values,does not give enough
importance to low values.

¢ Finally, the weighted mean does not differentiate betwegndnd high values
either, since the importance of each value is given by theights. If a low
value has a low weight and the rest of the values are all hiyhoutcome is
slightly affected and results high anyway.

We are interested in obtaining an aggregation functionabasiders all values as
much as possible but highlighting the lower ones. This ismaportant property as
the values we are considering are similarities. Hence, éf @inthe features has a low
similarity, the overall similarity has to reflect this factaeasing its value. Based on
the properties of the different functions, we finally opt the harmonic mean as the
aggregation function:

n

Yicia;

wherez; corresponds to the individual similarity values of the fzes.
Therefore, within the domain we are working on, we define th@larity function
between problemp and case as:

h(wlv 71'77.) =

. 2 2s1mpBSsiMyg
sim(p,c) = — — =
simp SiMts

simp + simys

wheresimpg andsim;g are the similarity functions for the ball and time-scordeti
ence features respectively.
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Figure 3.7: Case descriptionRf, B,tm{), and current problem description
(RP, BP,tmf). The dashed rectangles represent the adapted positiahe obbots
with respect to the ball's position described in the problem

3.3.2 Cost Measure

This measure computes the cost of modifying the contraléddtures, i.e. the cost of
adapting the current problem to the case. It is computed asdai6én of the distances
between the positions of the reference robot and the teamsnrathe problem and the
adapted positions specified in the case after obtaining toeiespondences. Next we
separately present the new concepts introduced with thésuane.

Adapted Positions

We refer to the adapted positions as those global locatidreravthe robots should
position in order to execute the solution of the case. In ggnt® compute them we
transform the robots’ relative coordinates to global camates, having the position of
the ball in the problem as the reference point. But in faet tiapted position of the first
robot taking the ball in the gameplay is computed differentt actually corresponds
to the closest point to the ball within the straight line beén the current robot’s and
ball's position. As we defined in the solution descriptidrere is exclusively one robot
whose first action is going after the ball. Hence, its firsifpms on the field will be next

to the ball. Figure 3.7 illustrates a simple adaptation edarwith two robots. Robot
R is the one that controls the ball first, white:; waits to receive the pass.

Robots’ Correspondence

In order to compute the cost of adapting a problem to a casewséfinst determine the
correspondence between the robots described in the pramdrthe ones described in
the case, i.e. which robet from the problem description corresponds to which robot
r; in the case description. Moreover, we must find the best mateh the one that
minimizes the cost, including one restriction: the disehetween two points must be
shorter than a given thresholthr.. Due to the domain’s dynamism, the distances the
robots have to travel must be limited since we cannot allavrdbots to move from
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one point to another for long periods of time because in thentime, the state of the
world may have significantly changed and thus, the case midyenaseful anymore.

In this work, since the maximum number of robots is small aredi(x = 3, the
goalie is always the same robot, so we only have to find thenhatsth for the remaining
three players of the team) we can easily compute all possibtehes§! = 6) without
the need of an efficient search algorithm. However, as thebeumf robots becomes
larger, the number of combinations increases exponentiéius, we require a search
algorithm to optimize the search as we present later.

Cost Computation

We have studied two alternative functions to compute the tlos sum of distances the
robots have to travel and the maximum distance. The sum t#rdiss aggregates all
available distances in order to compute the outcome, whdentax function is based
only on one distance (the maximum), without consideringrémaining ones. There-
fore, we could define the sum as a more informed measure, vellevalues affect
the outcome. Moreover, interestingly, the maximum distgfionction has a drawback
when considering trapezoid (not necessarily having twalfgrsides) configurations.
Consider the layout depicted in Figure 3.8, where we haventbtfie optimal match
between point{1,2} and{A, B}. We have depicted in solid lines the distances the
robots would have to travel using the sum function, and irhdddines, the distances
using the max function. As we can observe, using the lattgetfon the robots’ paths
intersect. This situation will happen whenever both trapgeziagonals,D; and D,
are shorter than the trapezoid larger sideand the matching points correspond to the
end points of the middle sidesandd. Figure 3.9 illustrates two more examples com-
paring the correspondence outcome when using both fursctiois clearly shown that
we prefer to use the sum function instead of the max function.

Hence, in this domain we define the adaptation cost as the $uistances the
robots have to travel from their current locations to thempgted positions:

cost(p,c) = Z dist(r;, adaptPos;)
i=1

wheren is the number of robots that take part of the case solutitit,is the Euclidian
distancey; is the current position of robatandadapt Pos;, the adapted position for
robot;.

Optimizing the search

As mentioned previously, finding the robots’ corresponéefar a large number of
robots requires an optimization algorithm to reduce thecke@omplexity. Therefore,
we propose &8ranch&Bound(B&B) search algorithm in a binary tree for finding the
best match between two robot configurations (the robotsiuain the problem and the
layout in the case). Each node of the tree represents elibeiatt of considering a
match between the pafr;,r;), or the fact of not considering the match between this
pair. In order to apply the algorithm we need to define a hearfisnction to estimate
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Figure 3.8: Trapezoid layout of the matching between pgir2} and{A, B}. The
correspondence based on the sum function is representetidyirses, while the max
function is represented by the dashed ones.
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Figure 3.9: Two different layouts (top and bottom) showihg idvantage of the sum
function (solid lines) compared to the max function (daslreek).
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the lower bound and to set the constraints that restrictdhégurations in the nodes of
the B&B algorithm (in our case just one constraint):

e heuristic: the cost of all possible matches will always lrgda or equal to the
actual cost of a concrete mapping.

h(Ry, Re) =Y min( dist(ri, 7;))
J

where R, and R, correspond to the set of robots positions in the problef (
and the caser() respectively; € [1,n] for n robots in the problem description,
j € [1,m] for m robots in the case descriptiom (< n), anddist is a function
that returns the Euclidean distance between two points.

e constraint: the distance between two points must be shibidera given thresh-
old, thr..

Hence, we reduce the complexity of the searchifoobots fromO(n!), all possible
combinations, t@(2"), the complexity of the search in a binary tree.

3.3.3 Case Applicability Measure

From the set of features included in the problem descrigifancase, there is one that
we have not yet included in any of the metrics described salfi@ropponents feature.
This last feature is precisely the one we focus on next, wisaksed to compute the
applicability of a case.

Defining all possible configurations of opponents during mggai.e. opponents’
positions on the field, is impossible. Hence, achieving aplete case base composed
of all possible situations would be not be feasible at alk.this reason we believe that a
certain degree of generalization must be included in theomiag engine when dealing
with this feature. Thus, we propose to combine two functiasfollows:

o free path functionthe trajectory of the ball indicated in the case must be éfee
opponents to consider the evaluated case to be applicable.

e opponent similarity the more opponents locations described in the problem
match with the opponents locations described in the casehitiher the simi-
larity between the problem and the case.

Free Path

Given a case, thiree pathcorresponds to a function that indicates whether the trajec
tories the ball follows during the execution of the case toiuis free of opponents or
not.

Because of the ball's movement imprecision after a kickhéidue to the robot’s
motion or the field’s unevenness), the ball could end in iffi¢ locations. Hence, we
represent a trajectory by means of a fuzzy set whose menipdusittion i indicates
the degree of membership of a point to the trajectory suchtligacloser the point to
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Figure 3.10: (a) Ball's trajectory represented by an islesctrapezoid defined by the
minimum and maximum radius, and the trajectory length. (eership function
corresponding to the fuzzy trajectory with,;,, = 100, 7,4 = 300 andl = 500. The
solid lines on the plan&Y” correspond tqu(z,y) = 0.367

the center of the trajectory, the higher the membership. eMwecisely, this function
is defined as a sequence of unidimensional Gaussians alosgfralcaxis, where the
width of each Gaussian increases from a minimum radiusa(fer 0) to a maximum
one (forz = [) defined in the trajectory. The projection of theunction on theX'Y
plane results in a trapezoid (Figure 3.10a). This trapegoiers the area of the field
where the ball could most likely go through according to tkeegimentation we have
performed. We formally define the membership function faagettoryt; as:

2
e, (2,9) = eap( — ¢
’ ’ P(x, Tmin, "mazx, l)

wherer,,,;, andr,,., correspond to the minimum and maximum radius respectively,
and!, to the length of trajectory;. Finally, p is a linear function that indicates the
radius of the Gaussian as a functiomofFigure 3.10b draws the membership function
described.

We callball paththe sequence of trajectories the ball travels through istigtion
of casec. Hence, we must verify that there are no opponents in theeptigtate of
the game (problem to solve) located within any of the trajectories of the bailthp
Figure 3.11a depicts an example. The initial position of ta# corresponds td3; .
After the first trajectoryty, the ball stops aB; and continues the second trajectdsy,
Each trajectory results from a robot's kick. Formally, wdie the free path function
as:

free_path(p,c) =1 — gléi%((@j (Opp))

_ [ 1, Zoppi € Opp (1, (opps) > thry)
&1, (Opp) { 0, otherwise
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Figure 3.11: (a) Example of the ball's path performed by asg@tween two players
(robots are not depicted for simplicity). The dashed edigpsepresent the opponents
regions described in the case, and the gray rectanglespgienents described in the
problem to solve. (b) Opponent similarity as a justificatafrthe action to perform.
Action a; represents kicking towards the goal, while action kicking towards the
robot’s right side.

whereT is the sequence of fuzzy trajectorig¢s &ndt, in Figure 3.11a) described in
casec, Opp is the set of opponents (each opponemt; is represented by the coordi-
nates(z, y) of its position) in problenp, andy;, € [0..1] is the membership function.
We consider that a poirttz, y) is within a trajectoryt; if p, (x,y) > thr,, where
thr, = 0.367. The free path function could indicate the degree of pathdoen using
1 directly, instead of. In other words, we could define it as a fuzzy function as well.

Opponent’s Similarity

Opponents on the field are modeled by means of ellipticabreggas defined in Sec-
tion 3.1. The opponent’s similarity measure indicates tinlper of these regions that
are occupied by at least one opponent described in the pndblsolve. We call them
restrictions. As more restrictions are satisfied, the mordar the state of the game
and the case description are. Figure 3.11a shows an exarhplte wnly one restriction

is fulfilled, since only one region-ég, ) is occupied by at least one opponent. We define
the opponent similarity function between a problgrnd a case as:

5iMepp(p, ¢) = [{reg; | reg; € Reg, Jopp; € Opp (Qreg, (0ppi) > threpy)}

Qreg, (oppi) = G(xi — x5,y — y;) = ezp( {(z ?Ij)z - (y 7yj>2])

Tx Ty

where Reg is the set of elliptic regions in case(reg; andregs in Figure 3.11a) and
Opp is the set of opponentsyfp; is represented by the coordinates, y;) of its po-
sition) described in problermp. Each regionreg; is defined by an ellipse with radius
T andrg centered inz;, y,) (the opponent’s scope indicated in the case as defined in
Section 3.1.3). We defir@ as a 2D Gaussian function, where the projection onffie
plane forQ(z, y) = 0.367 corresponds to an elliptical region on the field with radifis
andrg. Thus, to consider that an opponent is within a given regierset the threshold

50



thropp, 10 0.367. Once again, in this work we only consider if an opponent iinia
region or not, but we could use the degree of occupation ofengiegion instead.

We must notice that although this measure is not crucialferselection of a case
as a candidate (as we describe in the next section), its tampe lies in the candidate
cases sorting process in order to select the best one. Whilrel path function is
fundamental when deciding whether a solution can be agpéaar not, the opponent
similarity measure can be seen as a justification of the etilefined in the case so-
lution. Consider the example shown in Figure 3.11b. The tratdront of the ball
can either kick towards the goal (actien), or kick towards its right (actions). The
selection of one action or the other is basically given byekistence of an opponent in
between the ball and the goal. Hence, if there is no oppondstclear that the most
appropriate action to achieve the robot’s objective is ttk kowards the goal. But if
an opponent (a goalie) is right in front, it makes more sengeytto move to a better
position where the robot can then try some other action. &fbez, we can view the
existence of an opponent as a justification for the seleatédr in this example, kick
towards the right.

3.3.4 Case Filtering

After describing the different measures, we now have to éoenthem to retrieve a
case to solve the current state of the game (the new prob)erBecause of the real
time response requirements and the limited computati@salurces of the robots, we
need to reduce as much as possible the search space. Thgi@ftine retrieval process,
we use a filtering mechanism. Each case evaluated using the measures explained
in the previous sections. A case is rejected as soon as oree afonditions is not
fulfilled, and we proceed with the next case. If a case fuléillghe conditions, then
it becomes a candidate case. The filtering mechanism is showigorithm 1. We
first verify the ball similarity between the problem and thvaleated case (line 1), i.e.
whether the current ball position is within the ball's scapdicated in the caseélr, =
0.367). Next, from lines 2 to 6 we check that every distance betvieecurrent robots’
positions and their adapted positions (obtained after tneespondence computation
as explained in Section 3.3.2) is below the cost threshidld.(= 1500mm). Finally,

if the ball's path is free of opponents (line 7) then we cossithe evaluated case as a
valid candidate (line 8).

After evaluating all possible cases, we obtain a set of chatds. From this set we
select only one using a sorting mechanism. The mechaniserstide candidate cases
based on a set of criterion. Thus, given a set of candidatksh@problem to solve,
each criterion orders the cases as follows:

ordered_list = [¢;, ¢;, ..., Ck]
wherec;, ¢;, ¢, are candidate cases, and the criteria are:

1. number of fulfilled restrictiongaccording to the opponent similarity): the more
restrictions satisfied, the better.

SiMopp (D, €i) > $iMopp(D, €5) > ... > 8iMopp (D, k)
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Algorithm 1 IsCandidatef, c)

1: if simp(By, B.) > thr, then

2:  forall (robot,,robot.) € correspondence(p, c) do
3: if dist(roboty,robot.) > thr. then
4: return False

5: end if

6: end for

7. if free_path(p,c) then

8: return True

9: else

10: return False

11:  endif

12: else

13: return False

14: end if

2. number of teammates that take part in the solution of the:aasare interested

in using cases with multiple robots implied in the solutionxge can obtain a co-
operative team behavior instead of an individualistic teafmere only one robot
takes part in the execution of actions. Therefore, the meamtates implied in
the gameplay, the better.

UM, (i) = UM (¢5) > .00 > numy, (ck)

wherenumy,, returns the number of teammates that take part in the case.

. adaptation costthe lower the cost, the better.

cost(p, ¢;) < cost(p,c;) < ... < cost(p,ck)

. similarity: the higher the similarity, the better.

sim(p, ¢;) > sim(p,cj) > ... > sim(p, cx)

. similarity intervals case classification in different subsets based on theitegim

ity. In this work we classify the cases in four similarityénvals (the intervals can
be easily modified based on the requirements of the domainevthe approach
is applied):

e very high similarity: H = [0.8,1.0],

e high similarity: h = [0.6,0.8),

e low similarity: [ = [0.4,0.6), and

e very low similarity: L = (0.0,0.4).
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A further sorting process within each interval based on sother criterion must
be then performed. For this work we chose the adaptationaiistion. The

goal of the similarity intervals is to have a trade-off bedéwehe similarity and
the adaptation cost. Having a case with high similarity igvgsortant as having
cases with low cost. Therefore, even if the similarity isybigh, if its cost is

also too high, it is more interesting to select a less sintitee within the same
interval, but with lower cost.

Finally we obtain a fldtlist:

ordered_list = flat([inty, inty, int;, intr)) = [ci, ¢, ..., Ck)

whereint, = [¢;,¢;,...] is an ordered list of cases based on the cost criterion,
s € {H, h,l, L} stands for the similarity interval, and flat is a functionttfeturns
a flat list.

Although we have presented five criteria to sort the candgjahe designer may
freely create any other alternative criterion that fits dretd the domain the approach
is focused on. The next decision point is whether the cateldanking is based on a
single criterion or based on a set of criteria. In the latteye; the designer not only has
to select which criteria to use, but also the order in whiatheaiterion will be applied.

Finally, after sorting the candidates, either based onglesitriterion or using mul-
tiple criteria, the most adequate case to retrieve corredspto the first element of the
ordered list:

ret_case = first(ordered_list)

The overall retrieval process is presented in Algorithmt&.ifputs are the problem to
solve,p, and the case basé B.

Algorithm 2 Retrievep, CB)

1: for ¢cin CB do
if IsCandidate(p, c) then

candidates < append{, candidates)

end if
: end for
. ordered_list «— sortcandidates)
: ret_case «— first(ordered_list)
: return ret_case

O NOoOaR D

In this work we opted to employ the combination of the fiveerid previously
described in the sorting process. Hence, we must decidéwbimbination is the most
appropriate to use in this domain, i.e. in which order to palch individual criterion.
In the next section we study different candidate sortingfiams varying the order of
the criteria used to rank the cases.

1we define a flat list as a list with one single level, i.e. no edsists.
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3.3.5 Experiments

The goal of the experimentation is to determine the mostbldtcriteria sequence
to employ when sorting the candidate cases obtained afefiltering process. To
this end, we defined three sequences that apply the differgatia described in the
previous section in the following order:

e sorting function 1:

1. number of teammates
similarity intervals

number of fulfilled restrictions
adaptation cost

a k> 0N

similarity
e sorting function 2:

1. number of fulfilled restrictions
number of teammates
similarity intervals

adaptation cost

similarity

o~ N

e sorting function 3:

1. number of teammates
number of fulfilled restrictions
similarity intervals

adaptation cost

similarity

ok N

The experiments are performed in simulation only. The case lis composed of
33 hand coded cases (hence, 132 cases in total after theatieneaf their symmetric
cases). The cases can be classified as single or multipldoither refers to those cases
where only one robot takes part of the case, while the latteses where two robots take
part of the case. Furthermore, cases can also be grouped tmagke regions of the
field they cover and the purpose of the case. Hence, we ogtirezases as follows:

e back of the field (with or without opponents)

o middle of the field (with or without opponents)

side of the field (with or without opponents)

corner of the field (with or without opponents)

in front of the goal (with or without goalie)
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Figure 3.12: From left to right scenarios 1, 2 and 3 used dittie experimentation.

e in diagonal of the goal (with or without goalie)

A trial starts positioning the robots (two robots from onarntg and a goalie as an
opponent) and the ball in a fixed location. Next, the robadsnfthe same team start
playing using the CBR approach, i.e. retrieving cases aaduing their solutions (we
detail the reuse step in Chapter 4), while the goalie rangdonaves within its penalty
box. The aim of the robots performing the CBR approach is twesa goal. A trial
ends when either the ball goes out of the field or the goaliettesiit.

Each experiment consists of 500 trials using the same gdttirction and the same
layout, i.e. initial positions of robots and ball. Figurd3.depicts the three scenarios
we designed for the experimentation. Each experiment isatey for every scenario
and every sorting function defined previously. In this ekpentation stage we are
not interested in evaluating the outcome of the trial in ®mwh goals scored, goals
stopped, etc., but in observing the behavior of the sortiitgr@a defined above based
on the cases they propose as solutions to the differensstatthe game. Therefore,
we computed two measures: number of different retrieveéscdsiring a complete
experiment (500 trials), and the average time for a trialrsfi. Table 3.3 summarizes
the results obtained for each configuration. We have alsg@aoted the number of cases
retrieved per trial and then ordered them based on this meaBigure 3.13 plots the
outcome for the three scenarios.

We can immediately observe that the second sorting fungtéforms the fastest
compared to the other two, and at the same time, makes ussesotdses during the
experimentation (shown both in the table and in the figurBisg¢se two facts are directly
related since the reason why it takes less time for a triahtband uses less cases is
because the cases retrieved with the second sorting fungéce more appropriate than
those retrieved by the other functions. To confirm this statet we studied the number
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Figure 3.13: Trials sorted by frequency of cases retriemexhth scenario. From top to
down, scenario 1, 2 and 3.
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scenario| sort func | #diff cases  time (sec)

1 40 15.90
1 2 16 7.51
3 24 8.56
1 44 30.01
2 2 31 22.63
3 41 28.78
1 44 32.22
3 2 40 24.44
3 46 28.85

Table 3.3: Number of different cases reused in the expetsreamd average time per
trial.

of times each different case was completely execubgdeach function. Figure 3.14
depicts the most relevant outcomes for all three scenafiwsvisibility reasons we

cannot show all the retrieved cases; we omitted those with legv frequency). Each

letter corresponds to a different case. After analyzing¢iselts in detail we conclude
that:

e In general, cases B, C, D, E, V and W are retrieved by the thugetibns in
every scenario. These cases correspond to situations &hetmt is in front or
at one side of the goal with or witout the goalie. It is easyde that whenever
the robots get near the goal they would need at some pointet@mg of these
cases to try to score avoiding the goalie in case it was bhocttie goal. Case A
is often retrieved as well in the different scenarios. Thiserepresents a robot in
the middle front of the field having a short kick to the froritisla very common
situation that can take place in any of the scenarios at amgent

e Scenarios 2 and 3 present a layout where the robots ardljnjtiasitioned in
the middle back of the field. Hence, it is necessary to considses located in
this region, as cases G, H, |, J, Kand L are. As we can notice chas a very
high frequency in scenario 2. This is due to the fact thataivugys the first case
retrieved given the initial configuration. Thus, all tri@bvays start retrieving
this case to move the ball to the front region of the field.

e Case N is noticeably frequent in scenario 3. In this situretth@ ball is positioned
in an edge of the field (side of the field). Once again, sinceitgetly matches
the initial configuration of the scenario, this case is alsvatrieved when the trial
starts. The gameplay consists in passing the ball to the cbbet (teammate)
and this latter kicks the ball towards the middle of the figtdom that point on,
middle cases as G, H, I, J, K and L are most likely to be retdedepending on
the location where the ball ends after the last kick.

2We do not consider cases that were aborted during their #macuThe execution of a case may be
aborted when the state of the environment does not match anythase retrieved, i.e. the case is no
longer applicable.
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Figure 3.14: Case frequency for each scenario. From topwmdecenario 1, 2 and 3.
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e Inscenario 1 case O is regularly retrieved by all three fionst It corresponds to
a situation where both robots are near the goal, one neae teathand having the
goalie in front of it blocking the ball, and the other robotame side with a free
path to score. Hence, a pass towards the free robot is thesuitadble action, so
it can then try to score.

e Cases P, Q, R, S, T and U are specially retrieved by funcsortd andsort3in
all three scenarios. They correspond to cases with two sabahe middle of
the field with an opponent in front of the ball and another anene side of it.
Therefore, the solution corresponds to a side pass (thdrsie®f opponents) to
the other teammate.

Both sorting functions give the highest priority to casethwimore than one robot
(criterion 2). Therefore, although a short kick could bewagtoto get closer to
the goal, itis not preferred because that would imply hawinly one robot in the
gameplay (individualistic behavior), instead of havinggapbetween teammates
(cooperative behavior). Although for many adversarialaions cooperation
among teammates is desired, in this situation is not nedded the robots are
alone in the middle of the field without any opponents neae (thly opponent
is the goalie, but it remains in its penalty box). Having [gass these situations
can even be disadvantageous because the pass could failgrbeiball further
from the goal, instead of getting closer to it.

On the contrary, functiosort2first considers the number of restrictions fulfilled
(criterion 1), and then the number of players (criterionT?)erefore, a case with
simple kick to move the ball forward and no opponents woulddked first,
while the cases mentioned above would be ranked lower bedhey do not
fulfill any of the restrictions, i.e. regions occupied by oppnts.

e We pay special attention to the first scenario, where func@stl often retrieves
case F, while functionsort2andsort3 retrieve case X instead. In both cases the
ball is diagonally located with respect to the goal, but ia finst case, there is a
goalie, while in the latter, there is not (Figure 3.11b drals situation). Hence,
the main difference between both cases is the fact of havimgtoan opponent,
i.e. the number of fulfilled restrictions (criterion 1). As example, consider the
situation where there is no goalie in between the ball andytda and that the
similarity of case F is much higher than the similarity of €as Since function
sortlconsiders the restrictions fulfilled (criterion 1) afteetbimilarity intervals
(criterion 5), it is more likely that it would retrieve casdristead of case X. On
the contrary, the other two functions consider criteriorefobe criterion 5, and
therefore, they first maximize the number of fulfilled regidgns, and then the
similarity. Since in this example there are no opponentsigreng case X is the
most adequate.

Summarizing, in general all three functions worked welhiaging the goal of the
experiments and retrieving the appropriate cases to maeatots in a reasonable
and expected way (first four points of the previous analysiswever, after evaluating
the experiments in more detail we can deduce that criterjore Lnumber of fulfilled
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restrictions, is fundamental for ranking the cases andiderigag it in first place is
indispensable (mainly for the last two points discussedyrédver, the right selection
of the case to reuse has direct impact on the time investadtiressfully achieving the
goal. Therefore, we conclude that functisort2is the most suitable one to use in the
retrieval process for the remaining experiments of thiskwor

3.4 Conclusions and Future Work

In this chapter we have described the first step of the CBRe¢y®. the retrieval
step. To this end, we have introduced the case structurehweloirresponds to features
that describe the environment, as well as derived featused during the different
computational processes of the case retrieval. We havecklssified the features in
two sets: controllable and non-controllable features. disgnction between both types
lies in the capability of the system to modify the values & fleatures in the problem
to solve, in order to increase their similarity with the exatked case.

The initial case base is composed of a set of hand-coded.c#&3ese the case
library is loaded, it is automatically enlarged exploitittge symmetric properties of
the case description through spatial transformations. cHse base is divided in two
sets of cases depending on the defending goal feature ingdhe search space during
retrieval.

A case is considered as a candidate solution based on theeires: the similar-
ity measure, which corresponds to the aggregation of iddali similarities; the cost
measure, which indicates the cost of modifying the cordhié features; and the appli-
cability measure, which verifies if the case is applicablaairbased on the opponents’
positions in the problem to solve. This latter measure igum, composed of two
different functions: the free path function that indicatg@sether the ball’s trajectories
are free of opponents or not, and the opponent similaritychvis used to reinforce the
similarity between the problem and the case.

A filtering mechanism is applied to obtain a set of candidatees to speed up the
search. These candidates are sorted based on differeatacend the first case of the
list corresponds to the retrieved case to use afterwardieireuse step. We have shown
empirical experiments in simulation to test the efficientihe retrieval process.

As future work, several improvements to the current modat ¢ould be addressed
are the following (although not limited to them):

e The cost function should also reflect the existence of oketaio the robots’
paths (in this domain, obstacles correspond to opponemt®ach the adapted
positions. Thus, the cost could increase depending on thadbs found in
the planned trajectory. However, we must not forget thahis lomain we are
dealing with dynamic obstacles, and therefore, the costaeval time can differ
from the cost at reuse time. In other words, while the robotesdo a given point,
the opponents also modify their locations either movingritto the robot’s path,
altering the initial computed cost. As proposed in [57] otfeatures that could
be considered in the cost computation are the orientatitimeafobots, velocities,
etc.
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e As already mentioned in Section 3.3.3 we could make use dtittey represen-
tations of the free path function and the opponent simijldtinction instead of
the boolean function used in the current model. Hence, thievel step would
be more flexible when considering the applicability of a case

e Cases may only differ in their solution description. Theiextl process pre-
sented in this chapter only evaluates cases based on tlbiepr description.
Therefore, two cases may result with the same ranking sdorerder to dis-
criminate between similar cases, probably the outcomauatiah of the reused
solution should be introduced in the case description. Taklpm here is how to
evaluate the outcome of the reused case, i.e. how well thmigaa of the case
was performed? Is the outcome altered due to external &a¢i@cause of the
world dynamics) or not?

e Through time, cases are retrieved and reused one aftereandifier the exe-
cution of a given case, there is a correlation between therdased case and
the candidate cases of the following retrieval step. THukel last reused case
corresponded to a given region of the field, it is most likélgttcases within or
near that region will be considered as candidate cases inetkteretrieval step.
On the contrary, cases describing situations in furtheatloas, are less probably
to have any similarity with the current state. We believenththat it would be
interesting to include these relations in the case degmnipA simple way is to
maintain for each case, a list of cases that were retrieved after its execution
(of caser;). Those cases in the list with higher frequency corresportdg most
likely cases to retrieve in the next CBR cycle. With this imf@tion we could re-
duce the search space, and instead of looking in the whobdebees®, the retrieval
step could first center the search to a subset of cases. Ifsgongere found, then
it should search in the remaining of the case base. Moreaxeeould obtain
sequences of linked cases, where given a case indicatesogtepnobable next
case to retrieve, and in turn, this latter indicates its peabable case to retrieve,
and so on. Thus, patterns of cases can be obtained and ahalyeevards for
instance to evaluate the overall behavior of the team, od asepredictions of
future states.
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Chapter 4

Case Reuse through a
Multi-Robot System

We focus this chapter on the second step of the Case-Basaoiteg approach: the
reuse step. In the previous chapter we described the r&tsesp, including the case
definition, the different measures used for computing thee camilarity, and the re-
trieval process itself. Hence, after obtaining the re#tbease, we must center our
attention on how to reuse this case.

In most case-based applications the reuse step consisbpioging a solution (or
adapted solution) to the user who would then make use of tfdsmation as she re-
quires it. In this work, the user querying the case-basetsy# not a single user, but
a team of robots. The solution proposed by the system cendfist set of sequences
of actions that each robot of the team should reuse (exeddieover, the execution
must be done in a coordinated manner.

The first part of the chapter is devoted to the internal rabatthitecture, while the
second one is focused on the multi-robot system, the caatidimmechanism and the
case reuse. More precisely, we describe how we have inéebitad retrieval and reuse
steps of the CBR approach within a team of robots.

4.1 Robot Architecture

We define our robot architecture as a hybrid architecturk thitee layers (Figure 4.1):

¢ deliberative systepin charge of making the high level decisions. Two modules
coexist in this layer: the case-based reasoning engine (@B&ule), and the
region-based algorithm (RBA module).

e executive systemesponsible for the execution of plans or actions inditdg

the deliberative system. The system is composed of the m¥kawnodule and
the perception module.
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Figure 4.1: Robot architecture.

e actuators/sensorsthey correspond to the physical components of the robot.
Thus, the motors (legs, head and neck) correspond to thatactuand the cam-
era correspond to the sensors. The actuators receive thievelvcommands
from the executive system, i.e. from the behaviors, whikedamera sends the
images to the perception module.

We also include the communication channel between thenakeobot architecture
and the rest of the robots, i.e. the wireless lan. Robots anstantly exchanging
messages among them. Two main types of messages are ttaedsmit

e periodical messages, which contain information about timt's beliefs and
state, such as teammate’s Id, teammate’s position, distartbe ball, etc.

o explicit messages, which are used to transmit specific imfition, such as an
ABORT message.

The periodical information is included in the current rébatorld model, while the
specific information is queried by the specific modules thatexpecting it. The mod-
ules are also able to send messages to the remaining robots.

Most part of the implementation of this architecture hasnbesalized using the
Carnegie Mellon’s team code, CMDash’'06. More preciselyhaee used the executive
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system and the RBA module. We have extended their implerient® include the
CBR module and its relation with the rest of the architecture

4.1.1 Deliberative System

As many other robot architectures, the deliberative sysseim charge of making the
high level decisions in order to achieve a given goal. Moegown our work the system
is composed of two hierarchical modules: the CBR module hadRBA module.

CBR Module

The CBR module contains the Case-Based Reasoning systisin ¢harge of propos-
ing a solution for the current state of the game and monigatgexecution afterwards,
i.e. itis responsible for the case retrieval and the casserdtdence, this module is com-
posed of two components: the retrieve module (RTM) and theeenodule (RUM).
Since both components need access to the case base, wechlde ihin the module.

The retrieval process defined in Section 3.3 takes placednretrieve module
(RTM). Hence, given the current state of the game (the woddehobtained through
the perception module), the RTM proposes a case as a sotatibat problem. It not
only indicates the case identifier to the reuse module, lnat tde matching between
robots (so each robot knows which sequence of actions itedida the case to per-
form).

The reuse module (RUM) is triggered when it receives therinfdion about the
retrieved case: the case identifier and the robots’ correfgrce. It is in charge of
first moving the robot towards its adapted position, and,rexdcuting and monitoring
the sequence of actions indicated in the retrieved caset dhw point, the case is
not applicable anymore (we must recall that we are working dynamic domain and
therefore, the state changes constantly), then the erecotithe case is aborted. We
will go through the reuse step in more detail in the next secsince it implies the
multi-robot system and we first need to define some new cosdegbre continuing
with the reuse description.

RBA Module

The region-based algorithm (RBA) is a general behavioetadgorithm that activates
different behaviors based on the region of the field wherdottlieis located at a given
time. It could be seen as a rule-based approach combinea@wéhision tree algorithm.
Each rule corresponds to a region of the field. Thus, it definemall set of rules of
type: if ball in region reg;, then apply behaviobeh;. Each behavior is defined as a
procedural process where typically the robot will first aygmh the ball, and then based
on a decision tree, it will try either to get closer to the eltiag goal or to score if it is
close enough to the goal.

The RBA also includes an implicit coordination mechanismatoid having the
robots go after the ball at the same time. Thus, when a robsggsses the ball, it
informs the others so they move away from its path. In gendhnal robots back up
from their current positions on the field. The algorithm adlsdudes a set of roles that
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are assigned to each robot so they cover different regiotisedfield. For instance, a
defender stays at the back of the field, while a striker remairthe front of the field
waiting for an opportunity to attack when the ball gets withis region.

Combining the Modules

As we can see, the region-based approach describes a gelageals behavior taking
into account only local information for fast and reactivepense to the current state
of the world. In other words, although it has some degree libetion, it still lacks

a broader view of the state of the game to try to achieve modeiteous strategies
including collective actions with teammates. It is mairdgfised on taking the ball and
moving towards the attacking goal in an individualistic weich of course, is also
beneficial for certain situations where a fast attack is &mental.

On the contrary, the case-based approach uses a more cemnmuldél of the state
of the world considering, not only the ball's position, bisa@other aspects such as
the positions of all the robots and evaluating the apprégmisss of executing a set of
actions.

Hence, in the proposed deliberative system we combine licdkegies, a more
deliberative one (the CBR approach) with a more general aadtive one (the RBA
approach), in a way that the latter one is triggered only wtherformer does not find
an appropriate solution for the current problem, i.e. theneo case that matches the
current problem well enough to be of use.

4.1.2 Executive System

This system is responsible for the execution of the actindigated by the deliberative
system (in this case the actions correspond to behaviord)thee world model genera-
tion.

A behavior is a sequence of actions that a robot executesfiorpea task. There
is a wide range of behaviors, varying from very simple taskeh as “walk forward”,
to very complex ones, such as “move away from ball”. Usuatiyjnplex behaviors
are compositions of simpler behaviors, or make use of theradecific substasks, i.e.
they have a hierarchical structure. For instance, in the/graway from ball” behavior,
the high level behavior must constantly know the positiothefball. Hence, it makes
use of the “track ball” low level behavior. In general all befors, except for the very
simple ones, make use of the world model to know where thetsodred the ball are
located on the field.

The perception module is in charge of building the world madehe robot, i.e.
the robot’s beliefs of the state of the world (its positidme ball’'s position, etc.). Al-
though the perception system is much more complex than teevenshow here, for
the purpose of this work we note two main sources of incomifigrmation from the
outside world: the images from the camera and the messagesysether robots. The
module processes the images sent by the camera and infatataef the world (ob-
jects positions). It also incorporates the incoming infation from the teammates, i.e.
the messages sent through the wireless network. Hence,athe mvodel of the robot
not only considers its own perception, but the teammatasgmptions as well.
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Figure 4.2: Multi-robot system far = 3 robots andc = 2 retrievers Each robot has
a library of cases (CB).

4.2 Multi-Robot System and Case Reuse

After detailing the internal robots’ architecture, we negiscribe the architecture for
our multi-robot system integrating the retrieval and resteps of the CBR approach.

The multi-robot system is composed ofrobots. All robots interact with the en-
vironment and with each other, i.e. they perceive the wdhdy perform actions and
they send messages (MSG) to each other to coordinate (#igved case, match, abort
execution,...) and to exchange information about theerirdl state (e.g. retrieving,
adapting, reusing,...). There is no external system obwgetlie complete environment
where the robots execute their tasks, nor a centralize@rsysi collect the incoming
information from the robots to make decisions and to orgatie task. Therefore,
the team as a whole must decide how to fulfill the task collatieg with each other,
or even exchanging useful information that some of the ®lobtthe team may not
perceive. This characteristic is common in those domainsreshuman access is not
feasible, and therefore, installing a centralized systeimpracticable. Some examples
of such systems are planetary explorations or disasteneaquerations.

We distinguish a subset &f(1 < k < n) robots, calledetrievers These robots are
capable of retrieving cases as new problems arise. We refategutordo the rest of
the robots, i.e. those that are not retrieves and are onghtapf reusing the solution
of cases. All robots, retrievers and executors, have a cbihesame case base so they
can gather the information needed during the case reusereMg shows the described
multi-robot system.

Given a new problem to solve, the first step of the processdgtale which of the
retriever robots is going to actually retrieve a case toesdl{since only one case can
be reused at a time). The most appropriate robot to perfoistiabk should be the one
that has the most accurate information about the envirohnkeom the set of features
described in a case, the only feature that might have differalues from one robot
to another is the ball's position. Moreover, this is the niogbortant feature in order
to retrieve the correct case and we must ensure as less aintelds possible. The
remaining features are either common to all the robotsralots’ positions, or given
by an external system, i.e. defending goal, the score araldinthe game. Therefore,
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Figure 4.3: Finite state machine for (a) tte¢rieverrobots and (b) thexecutorobots.
Solid arrows indicate transitions, while dashed ones spord to messages sent be-
tween robots.

we propose that the robot retrieving the case should be tise€l to the ball, since
its information will be the most accurate (the further a rotsofrom an object, the
higher the uncertainty about the object’s information)orgmow on, we will refer to
this robot as theoordinator. While the selected coordinator is retrieving a case, the
remaining robots wait (either remaining in their currensigions or performing some
other behavior). Figure 4.3 depicts the finite state machimethe retriever robots and
for the executor robots.

Since we are working with a distributed system, the robotg heve different in-
formation about each other at a given time. Their beliefaualize state of the world
are constantly updated. They are also constantly sendisgages about their current
internal beliefs (robot’s Id, position, ball's positiortce to the rest of the robots. As
a consequence, we cannot ensure that all robots agree orswhwadne closest to the
ball at a given time. To solve this issue, only one robot ipoesible for selecting the
coordinator. In order to have a robust system (robots mashcrar be removed due
to a penalty), the robot performing this task is always the wiith lower Id among
those present in the game (since each robot has a unique dixe@mce it selects the
coordinator, it sends a message to all the robots indic#timtd of the new coordinator.
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Figure 4.4: Finite state machine for the case executiordépendent positioning strat-
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After the coordinator is selected, it retrieves a case aliegrto the process de-
scribed in Section 3.3.4 and informs the rest of the team #se ¢o reuse. It also
informs the correspondences between the robots in thentypreblem and the robots
in the retrieved case (so they know what actions to executesang their case bases.
The correspondences are obtained following the procedetagled in Section 3.3.2).
This process takes place in the RTM module of the robot'smatiearchitecture.

Then the case execution begins. Figure 4.4 describes theedtate machine for the
case reuse process (corresponding to the RUM module witkinobot's architecture).
First, all robots that take part of the solution of the casetshoving to their adapted
positions (ADAPT state). As explained in Section 3.3.2 ¢ghpssitions correspond
to relative positions indicated in the case with respectt durrent ball’s position.
Hence, a robot can easily derive the location where it shodde using the matching
information transmitted by the coordinator. The robotg thmnot take part of the case
reuse remain in the WAIT END state (either waiting at theisifions or performing an
alternative behavior) until the execution ends. At thispoie can choose between two
strategies:

e independent positioninghe robots move towards their adapted positions inde-
pendently from each other until reaching it. Once they rdahelr adapted po-
sitions, they send a message to the coordinator. In this daseoordinator is
in charge of receiving the messages from the robots indigdtiey are at their
adapted positions, and then sending a message to all this tolsiart executing
the gameplay. Hence, the case reuse only starts when atisrabive to their
initial positions.

In Figure 4.4 this strategy would correspond to the WAIT AT $&tate and
switching to the EXECUTE state when all robots are ready ingiat their
adapted positions.

e dependent positioninghe robots do not have to wait for all robots to reach their
adapted positions. As we described in Section 3.1.2, tisesibvays a robot that
goes first to get the ball. All robots know who this robot is aislo know in
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Figure 4.5: Kick adaptation during the case reuse. The arepresents the ball direc-
tion indicated in the case. Thus, robot A should perform akKigk, while robot B, a
right kick.

which state all robots are (adapting, reusing, waiting) ettence, they only wait
for this robot to arrive to its adapted position and immesliastart executing the
gameplay, even if they have not reached their own adaptetiqgresyet. In other
words, the robots’ positioning depends on a given robot the one going first
to the ball).

In the finite state machine depicted in Figure 4.4 the roboteitner transit from
the ADAPT state or the WAIT AT POS state to the EXECUTE statemthe
robot getting the ball first has already reached its adapasiipn. In the former
situation, switching from the ADAPT state, the robot islstibving towards its
adapted position when the transition takes place. In therlsituation, switching
from the WAIT AT POS state, the robot has reached its adapsiipn but the
robot getting the ball first has not yet.

In an adversarial game domain, as the one this work is focasedve realized
that it is more advantageous to use the dependent stratagythb independent one.
Otherwise, while the robots are all moving to their adaptesiitipns, the opponents
may steal the ball. An independent strategy is more conaétveuse in other domains
where reaching the initial positions of all robots is crutdesuccessfully fulfill the task.

Either using the independent or the dependent positioniategy, the execution of
the solution of a case starts (state EXECUTE in Figure 4.d)adrobots perform their
sequences of actions. Each action corresponds to a beliaxtue executive system
(Figure 4.1). A last adaptation process takes place wheadtien corresponds to a
kick. In this case, depending on the direction from wherertimt reaches the ball,
the robot might perform the symmetric of the kick indicatedthe case solution to
move the ball towards the expected direction. Figure 4.%stam example. As we can
observe, the kick varies if the robot is coming from the frésituation described by
robot A in the figure) or from the back (robot B representatiothe figure) of the ball.
The execution continues until all robots finish their seaesrof actions.

Finally, they report to the coordinator that they finished &xecution and wait for
the rest of the robots to end (WAIT END state in Figure 4.4}hia state the robots may
perform some other behavior while waiting for the other itskto end the execution.
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When the coordinator receives all messages, it informs thetsoso they all go back
to the initial state of the process, i.e. selecting a newdioator, retrieving a case and
executing its solution.

The execution of a case may be aborted at any moment when dhg fifllowing
situations occur:

e Any of the robots detects that the retrieved case is not egipke anymore. Once
the execution of a case has started, we consider a case tplishbfe if the re-
maining ball's path is still free, i.e. there are no opposemithin the trajectories
the ball is about to follow.

e A robot receives an unexpected message. Because of theindise wireless
network, a message can be delayed or even get lost. Hence, avheessage
arrives and it is not coherent with the current case reuse, st@ opt for aborting
the current case execution. Although we are aware that itdisastic solution,
due to the domain requirements (real time response ancetincibmputational
capacities), we believe that it is more suitable since itdg@ple and fast tactic.

e A timeout occurs. We include timeouts for the states ADAPT &XECUTE
since we want to make sure that the case reuse is not goingddda long. In
general this situation occurs when a robot does not recire@ssary messages
or its perception fails. The former situation could cause ribbot to remain in
a state infinitely, while the latter could lead the robot tarsk for the ball in a
wrong location, lengthening the behavior execution.

In any case, the robot detecting the exceptional situagodsan aborting message
to the rest of the robots so that they all stop executing thetions. Then, they once
again go back to the initial state in order to restart the @seci.e. select a coordina-
tor, retrieve a case and reuse it. We must remark that mos$techtorting situations
occur due to the first situation (case applicability), whiile remaining ones are mainly
defined to ensure robustness in case of system failure amsbase common.

4.3 Conclusions and Future Work

This chapter has been addressed to the internal archigeatwr robot, as well as the
multi-robot architecture of the team. Regarding the rabaiternal architecture we
have proposed a hybrid architecture, where the deliberddiyer is responsible for
the high level decision-making, i.e. the combination of ®BR reasoning system
and a region-based algorithm, while the executive layetrotmthe execution of the
behaviors proposed by the deliberative layer.

Within the multi-robot architecture we define two types obats: the retrievers,
who include the CBR system and therefore are in charge ofgsing cases, and the
executors, who only execute the cases indicated by thevets, i.e. cannot propose
solutions to the current state of the world. In order to deiee the next case to reuse,
a coordinator is selected among the retrievers based ardib&nces to the ball. After
the coordinator is chosen, it retrieves a case and informsetst of the team (retrievers
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and executors). At this point the reuse step of the case sTavb positioning strategies
have been proposed to start the execution of the actionsaitedi in the case. During
the case reuse, any robot (retriever or executor) may aierase reuse if it considers
that the case is not applicable anymore.

As future work we propose to improve the case selection fasee Each retriever
may propose a different case based on its internal beliefheoftate of the world.
Hence, a negotiation protocol could be included to decidilwls the most suitable
retrieved case to reuse. This way we provide the team withra caoperative mecha-
nism where all robots participate in the global decisiorkimg and the achievement of
the goals of the team.
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Chapter 5

Learning the Scopes of Cases

The case base is the most fundamental component of a casg-fE@soning system
since it provides the domain knowledge of the reasoner, laegttore, determines the
system’s accuracy performance. As Ram states in [50], @neagprogram may fail
on finding the right solution, if any, due to incomplete knedge in the system. More
precisely, he detects three sources for gaps in the syskermvgledge: ) novel situa-
tions, there is no case to solve the new probldinfis-indexed cases, although there
might be a case in the case library to solve the new probleensyhtem is not able to
retrieve it because of mistaken case indexation, @ndirfcorrect or incomplete case,
the situation represented by the case may not be completdgrstood, and thus, the
case is incorrect or incomplete. The work we present in thégpter is mainly addressed
to knowledge adaptation, i.e. incorrect or incomplete séseurceii ), and initial steps
for knowledge acquisition, i.e. novel situations (soujce

¢ knowledge adaptatiorthe perception of the expert providing the initial knowl-
edge to the reasoner may largely vary from the perceptioheféasoner. This
a very common situation when the reasoning system is apiplidee real world
and depends on the system’s sensors accuracy. Hence,gdlttteiknowledge
provided to the reasoner might be “correct”, from its poifiview it is not. For
this reason, an adaptation of the knowledge, in this caseabe base, is neces-
sary to achieve a correct performance of the reasoningrayste

A second reason for including a mechanism for adapting thsarer’'s knowl-
edge is that the environment may change (either graduadlyieng or being sud-
denly altered) through time. Hence, the initial knowledggyrbecome useless
degrading the performance of the system.

e knowledge acquisitianalthough the expert may try to provide the necessary
knowledge to the reasoner, she may miss some situationgharefore, gen-
erate gaps in the system’s knowledge. Besides, again ddiatihe changes in
the environment through time mentioned above, it is mostyilthat the expert
cannot predict all future situations the reasoning systeiirhave to deal with.
Thus, to overcome these situations, it is fundamental fsistem to automati-
cally incorporate knowledge to cover these gaps.
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In this chapter we present a first attempt to automate thetatiapand acquisition
of the case-based reasoning system’s knowledge with refspibe scope of a case, i.e.
the case coverage. The motivations for studying an algoritfat allows the automation
of this process in the working domain are:

1. because of the nature of the domain this work is focusedsath obots with high
uncertainty in its perception), we believe that it is fundamal that the knowledge
of the reasoner system corresponds to its actual percejgii@hnot only to the
expert’s one;

2. the opponents of a game are part of the environment themeasystem is deal-
ing with. If we consider the opponent’s strategy as part efeéhvironment, it
is easy to see that the environment may radically vary basdtiestrategy the
opponents apply during a game, i.e. a change in the oppsnsrategy (even
more, changing opponents) implies a modification on therenment. Hence,
it is essential to provide the reasoning system with an entgiralter its current
knowledge through adaptation. This adaptation may leacgps gn the knowl-
edge, and therefore, introducing new cases to cover thg@sagarucial.

Thus, we propose a supervised learning algorithm for thetatian of the knowledge
of the reasoning system. More precisely, we focus the algaron learning the ball’'s
scope of a case (which matches with the case scope), althibegioncepts and mech-
anisms presented here can be equally applied to the opgdseapes.

The idea is to provide the robot with a set of cases which mesidapted to its
actual perception. The expert knows several generic gitum(prototypical cases) and
their corresponding solutions, but cannot predict the seape of the cases from the
robot’s point of view. The learning starts with a classifioattask, where the robot
classifies the problems proposed by the expert with respeietavailable cases in the
case library (every case corresponds to a different cldés)class is returned, i.e. a
case, then the robot adjusts the case scope based on thadketissification. Ideally,
this feedback could be automatically inferred by the roleelf after observing the
outcome of its actions, but this is a far more complex taskwleado not address in this
work. On the contrary, if no class is returned, then it me&ias there is a gap in the
case library. Thus, an automatic mechanism for creatingazs&s should be included
in the system. Once a case is created, the system must degetiraicase coverage, i.e.
the case scope. At this point, the adaptation process pgegsenthis chapter can be
applied.

The chapter is organized as follows. We first introduce thenieg algorithm for
adapting the case scope, i.e. when and how to modify the sddpet, we present a
simple mechanism to introduce new cases when no solutiauisdf Experiments to
show the effectiveness of the leanring algorithm follow thexd finally, conclusions
and future work conclude the chapter.

5.1 Scope Adaptation Algorithm

The adaptation mechanism is addressed to existing cagkdpas not deal with gaps
in the case library. As we have described in Section 3.18p#il's scope is defined
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Figure 5.1: Case scope representation. The center of ipeesh, corresponds to the
ball’s position indicated in the case, while problems p, andps are the problems to
classify. (a) Graphical similarity evaluation of three plem examples. (b) Example of
the security region (gray region) and the risk region (whétgion) of a case defined by
vz = 0.5 andy, = 0.75.

by an ellipse with radius? andrf. Since we are focusing this section on learning the
ball’'s scope, for simplicity we will generalize the conceptball’s scope to the scope
of the case and omit the superindBxin the r parameters. Moreover, henceforward
we will refer to the scope of the case, either as the scopeecogltipse. The algorithm
consists in updating the size of the cases scopes varyingtharameters, i.e. the radii
of the ellipse. To this end, we must define a policy to deteenvitnen and how these
parameters should be adjusted given the expert’s feedback.

The center of the ellipse represents the position of the(bgtin the field specified
in that case. As we move towards the boundary of the elligseuhcertainty about
whether the points belong to the scope of the case incredsespoints next to the
boundary of the ellipse represent higher degree of uncgytdrigure 5.1a depicts the
scope of a case and three problems to classify. Problemsandp, are similar to the
case, i.e. they belong to the classsince they are within its scope, althoughwith
higher similarity degree compared g (since it is closer to the center of the scope).
In contrast,ps is out of the scope, and therefore we do not consider it sintdldhe
case, i.e. it does not belong to class If two cases overlap their scopes, a problem
may belong to one or more classes, i.e. the problem to ¢Jakas some similarity
degree with both cases. Thus, the outcome of the classificatirresponds to the class
with higher similarity. The similarity is computed with tigaussian function presented
in3.3.1.

5.1.1 When to Adjust the Values

The goal of increasing or decreasing the size of the ellipg® ireach the expected
region that a case should cover. The expected region comdsyo the region that the
expert believes the case should cover. We sadflurity regionthe set of points next
to the center of the ellipse, amidk regionthose near the boundary of the ellipse. We
definey, and~, as the proportion of radius, andr, that corresponds to the security
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region (wherey, € [0,1] and~, < [0,1]). Figure 5.1b shows an example of these two
regions. Problenp; is within the security region, while problep is within the risk
region of the case scope.

When the system classifies a new problem, i.e. returns acdasehich the prob-
lem belongs with higher similarity degree, we use the expértedback for tuning the
scope’s parameters andr, of that case. If the proposed case is correct, the scope of
the case is increased. Otherwise, it is decreased.

¢ Increasing the scopdf the problem is located within the security region (ileet
position of the ball is in this region) the system cannotdadtrce new knowledge
to caser. Its current information is robust enough to determine thatproblem
corresponds to the scope of that case. On the contrary, pirtiidem is inside the
risk region the system can confirm that the current scopeetése is correct.
Thus, we increase the size of the ellipse modifying the ssqg@ameters to
enlarge the security region anid) (o evaluate a bigger scope of the case. Since
the security region is computed as a proportion of the algize, expanding the
ellipse results in expanding this region as well.

e Decreasing the scopéA problem is incorrectly classified using casbecause
of its scope overestimation. Hence, we have to reduce tieofithe ellipse. If
the ball is inside the security region, we do not decreasepénameters since
it corresponds to a robust region. If the problem is withiis tlegion and the
feedback is negative, we assume that the error is originayedther reasons
(wrong localization) and not because of wrong informatibthe case. Suppose
the following situation: the robot is not well localized aad a consequence, it
perceives the ball in a wrong position. It could happen thabirectly classifies
the problem given its own perception. But from the extermelesver perception,
the returned case that classifies that problem is not thé cgd. Therefore,
the feedback given to the robot is negative. If the systemaeslthe ellipse, it
could radically reduce the scope of the case, not becausasitowerestimated,
but because of the high uncertainty in the robot’s percaptitowever, when the
problem is inside the risk region, the system does reducedbpe of the case,
since the scope overestimation might be the cause of theivefeedback.

In summary, the adaptation algorithm enlarges or redueesdbpe of a case when
the problem to solve is correctly or incorrectly solved ani iwithin the case’s risk
region.

5.1.2 How to Adjust the Values

After describing when to enlarge or reduce the scope of g easwiill now detail how
to update the parameters, or in other words, how much to increase or deetbam.
First we introduce some notation. Given a new probjaim classify, and given the case
(class)c that classifies that problem at timewe define:

° SI, Sy: the maximum increasing values fof andr, respectively. These values
are assigned by the expert.
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Figure 5.2 Increasing policy functiong;,,., with § = 10 andy = 0.5: (a) step
function, (b) linear function, and (c) polynomial function

e 0;,0;: the actual increasing values fof andr, respectively. These are the
values to compute.

. A;,A;: the relative distances between problgnand the center of the case
scope, i.e. the ball’s position described in the case:

AL =p, — b, AZ:pyfby

wherep, andp, correspond to the ball’s coordinates in the problem @nend
b,, the ball's coordinates in the case.

In order to compute thé’, 5!, values for adjusting the’ values at time we pro-
pose three increasing policy functions,. (henceforward we will refer to them as the

policies:

o fixed the increasing amount is a fixed value. Thus, we define a stegtion
(Figure 5.2a):

I i t t t
0y If YTy < Ay <7,

t_
0 otherwise % _{ 0  otherwise

z =

5t_{ 5r If’YrT;SAEcSTQE

e linear: we compute the increasing value based on a linear fundiiguge 5.2b):

t t
TL—YaT,
z z VaTg

0 otherwise

At —7. Tt oA .
Zy Yy, t t t
Sy =13 ThwT oy i1, <Oy <7,
otherwise

e polynomial we compute the increasing value based on a polynomial ifmct

(Figure 5.2c):

(AL —vaTh)® & t ¢ ¢
ot ={ s 0 MaT SO s
otherwise
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T =13)?

At _ t\5 A i
s | G b <oy <
0 otherwise

Once we compute the increasing values, we update the cgse: sco

t+1 _ t o st t+1 _ bt st
T, =T, + 0, T, =T, 40,

wherer! ! andr/*! represent the updated radius of the case scope.

The goal of reducing the scope of a case is to resize theebipshat the incorrectly
solved problem is not considered similar to the case anynmerehe problem remains
outside the ellipse. We compute the new values as follows:

S VAN | .S N <7t ol A; if ’ny; .§ AZ < T?j

@ i otherwise Y 7,  otherwise

Note that we only update the, value if the problem: component {\,) is within
the risk region. Similarly, we modify the, if the y component{\,) is within the risk
region. Updating both values separately prevents frontedigireducing the scope of
the case.

Algorithm 3 UpdateScope(p, ¢, feedbacKi,c, Va, 7y» 0z 0y)
1: if p € risk_region(c)then
2: Aw — Px — bz

3 Ay —py—by

4:  if feedback is TRUEhen

5: 5m — finc(AxvvzvgzaTx)
6: Sy — finc(Dy, vy, ys Ty)
7: Ty < Tz + 0y

8: Ty « Ty + 0y

9: else

10: if Ay > 7,7, then

11: Ty AL

12: end if

13: if Ay > ~,7y then

14: Ty — Oy

15: end if

16: endif

17: end if

Algorithm 3 describes the overall adaptation algorithmyvegia probleny, the
casec that classifieg, the expert’'s feedback and the parameters presented abeve (
increasing policy functiory;,., 4, and~), the algorithm updates the values for re-
sizing the case scope if the problem is within the scopelsnégion (line 1). When
the feedback is positive (line 4), the algorithm increasesdurrent size of the scope
(lines 5 to 8). Otherwise, the scope is reduced (lines 10 JoTHe process is repeated
until the expert determines that the expected scope hasrbaehed, i.e.the new in-
coming problems are classified with little error. Next weatdse a simple example for
illustrating the algorithm.
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Figure 5.3: Case scope evolution. The dashed ellipse muethe “ideal” scope. In
gray, the security region with, = v, = 0.8.

5.1.3 Example

Figure 5.3 depicts four steps of the adaptation process giideregion represents the
security region, while the dashed ellipse correspondsa@ipected scope of the case
(defined by the human trainer) we attempt to reach. Any probteated within this
ideal area produces a positive feedback by the expert. Huk llot represents a new
solved problem (ball position with respect to the case).uféds.3a shows the initial
stage at timé, where the scope of the case is minimmﬁ,(rg). Since the new solved
problem is within the risk region and the feedback is posjtie proceed to enlarge the
size of the ellipse using one of the policies defined.

At time 4, Figure 5.3b, we can observe that the ellipse has increasedtill has
not reached the expected size. Hence, we keep on enlargirsgtipe by solving new
problems as long as the expert feedback is still positive.

Figure 5.3c, time¢ — 1, depicts a situation where the updated ellipse is bigger tha
the expected size. From now on, the feedback may be positinegative. If a new
problem is within the risk region and the feedback is posjtihen we would proceed
to increase the ellipse. But, if the feedback is negativen tihe decreasing process is
used to reduce the ellipse. The figure shows an example o$ithition. As we can
see, the new problem is located within the risk region, btibéthe ideal scope. Thus,
the current scope is reduced, but only updatinginceA, < v,7,.

Figure 5.3d shows the updated scope, where the problemnsmiaiside the scope
of the case. As more problems are solved, the scope of thenéhs®nverge to the
ideal scope.

In conclusion, we distinguish two phases in the adaptatimegss: growing the
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scope of the case, and converging to the ideal scope. Dimirfirst phase, the feedback
is always positive and the scope is always being expanded.s&bond phase occurs
once the expected scope is exceeded. Then, the feedbackeithdr be positive or
negative. The goal of the first one is to enlarge the scopdeine second one, is to
converge to the ideal scope the human trainer expects.

5.2 Acquiring New Cases

After the adaptation step, the knowledge of the system npigdgent some gaps, i.e. the
scope of the cases may not cover the whole field. The coverggends on the number
of cases used during the first learning stage. However, asevépsly mentioned, the
expert cannot a priori define all possible cases. Hence, asept the first step towards
a learning mechanism to acquire new knowledge when nowveltgins occur and the
system does not have any case to solve them. Although wihrtetchanism we create
simplified cases, it is useful to guide the expert in comptethe knowledge of the
system, providing support on the manual generation of tee base.

A new case is created using the description of the envirob(pesblem description,
i.e. robot’s and ball’'s position), and a generated gameglalytion of the new case). To
create a gameplay, we provide the system a set of possimastte robot can perform.
Hence, given a new problem to solve, if the system does nia¢vetany case, i.e. the
problem does not belong to any of the classes (either duepcetision problems or
because the problem is actually in a gap) the system randsedcts a gameplay.
The robot executes the suggested action and the experaslie correctness of the
solution proposed. Only if it succeeds, the new case is eleatVe are aware that
this procedure is too simplistic. But as mentioned befarégast the process provides
information to the expert regarding the coverage of thesnursystem’s knowledge, the
case library, allowing her to afterwards improve the casedgtion with more suitable
information.

When a new case is inserted into the system, it is created witienum scope
(a small ellipse). From that moment on, the evolution of tae kase depends on how
often the robot reuses it, enlarging or reducing its scopguble adaptation mechanism
presented previously. The idea is that at the beginningyélecase could seem to be a
good solution for that concrete situation, but its actutdaiveness has to be evaluated
when the robot reuses it. As time passes, if the scope of the daes not increase,
and instead, it is reduced, we can deduce that the case issafil dor the robot’s
performance. On the contrary, if its scope increases, @aat| it remains stable, then
we consider that the case contributes to the system’s kulgwle

5.3 Experiments

This section describes the experiments performed in oodest the learning algorithm
introduced above. We divide the experimentation in two estagimulation and real
robots.
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5.3.1 Simulation Experiments

The goal of this first phase is to determine the behavior optilesies using different
values for the parameters presented in Section 5.1.2. Sieckad to test different
combinations of values, simulation was the fastest way taionlorientative results.
The most relevant were selected for the experimentatidm nedl robots.

We based the experiments on the adaptation of a single caseséwve how the
different values £,,7,) computed through the learning process affect the evaiuifo
its scope, i.e. the resulting size of the ellipse in mm. Thigalncase was defined with
a small scoper, = 100 andr, = 100. The expected outcome (“ground-truth”) was
T, = 450 andr, = 250. A trial consists of 5000 random problems which are iterated
as the input for the learning algorithm. For each trial we ffi& increasing policy and
the parameters andé. The outcome of the trial are the new learnedalues, i.e.
the radius of the scope. An experiment consists of 10 tridls the same parameters
per trial. Since the problems are randomly generated, e@dtgénerates a different
outcome. For every experiment we combined each policy vhighfollowing set of
values per parameter:

e Security region proportion size:

Yz =y = {0.5,0.6,0.7,0.8,0.9}

e maximum increasing parameter (expressed in mm):

5, = 6, = {10,20, 30,40, 50, 60, 70, 80, 90, 100}

Figure 5.4 shows the average of the results obtained fondberienents performed.
The z axis corresponds to the maximum increasing paramétevhile they axis in-
dicates the average computed for each experiment. Each curve is obtained vgryin
the values of the security region parameter,On the one handj defines how much
the ellipse may increase at each time. Hence, the higher\hkies, the bigger the
resulting scope of the case. On the other handetermines the size of the security
region and the risk region (low values represent small seycregions and large risk
regions). The risk region determines when the scope of the bas to be modified.
As this region increases, there are more chances of modifiim scope as well. Thus,
for all three policies, the curves tend to increase fromttefight, i.e. obtaining larger
scopes (higher values) on the right side of the figure.

With respect to the evaluation of the policies behavior,fiked policy obtains the
highestr values, while the polynomial, obtains the lowest ones. Tmmér function
has a more aggressive behavior, radically increasing #eeddithe ellipse always with
the maximum increment allowed. The latter function has aengonservative behavior,
computing small incrementg’§) for problems near the boundary between the security
and the risk region, and enlarging them as the problems te selch the boundary of
the ellipse. We can easily observe the behavior differebeéseen all three policies
and their influence on the outcome, andr,, in Figure 5.5. We depict the evolution

of the learned values for a single trial with= 10 and~ = 0.5. During the converging
step of the adaptation process (region marked with a dagletahgle) the variations of
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the radius using the fixed policy are much larger (the ogmleof ther, ranges from
450 to 760, and the,, from 250 to 469) than the ones obtained with the polynomial
policy (ther, varies from 450 to 552, and thg, from 250 to 326).

As a consequence of the influence of the two factors mentiabede (i.e. the be-
havior of the policy itself and the values of theind~ parameters used in the learning
process), the distance between the curves in Figure 5.4 tiggrfixed policy is signif-
icantly larger than the ones using the polynomial policyr iRstance, in Figure 5.4a
the average,, computed with the fixed policy varies on the left side (I6from 475
to 565, and on the right side (high from 593 to 721. On the contrary, the curves
computed with the polynomial functions (Figure 5.4e) vamtloe left side from 471 to
488, and on the right side, from 515 to 534. Regarding thalipelicy, we can observe
that it has an intermediate behavior between the other ®valiihg to behave more as
the fixed policy). Furthermore, the differences betweenciintwes obtained with the
fixed policy and the ground-truthr{ = 450) are much larger than the ones obtained
with the polynomial policy. As expected, we can state thatgblynomial policy has a
more stable behavior compared to the fixed one, besides mvirdp similar results to
the ground-truth. Figure 5.6 shows the average valug ahdr, computed after each
problem has been classified for a specific trial (with= 10 and~y = 0.5). It is clear
that the polynomial policy obtains the closest values togttoeind-truth.

The configuration that obtained the closest values to thealidones,r, = 450
andr, = 250, was: polynomial policyy = 0.9 anddé = 10. Hence, after the experi-
mentation we can confirm that a more conservative strategylaw increasing values
and small risk regions, is the most appropriate combindtiarbtain the desired scope
of the cases. This conclusion is clear when performing tipeements in a simulated
environment. But two problems arise when extending the rxats to the real world:
time and uncertainty. First, the number of iterations ndedeeach the expected result
is not feasible when working with real robots; and secondopiaaifree environment
is only available under simulation. Although we have obedrdifferent behaviors in
the graphics obtained when gradually modifying the paramsethese differences are
not so obvious in a real environment because other issueynibd expected result.
Therefore, the next stage is to experiment with the robdtérréal world evaluating the
most relevant parameters (understanding relevant as #setbat show more contrast-
ing behaviors) to determine the effectiveness of the ptegdrarning algorithm.

5.3.2 Real World Experiments

Two types of experiments were performed in a real envirorimigme first one is aimed
at finding out the most appropriate parameters and policyséoduring the learning
process. The second one consists in evaluating the comeergé the cases in a given
case base, and the acquisition of a new case.

Testing the Parameters and Policies

As mentioned in the example of the learning algorithm (®ech.1.3), we can divide
the training process in two steps: growing the scope of tlse @nd converging to
the expected scope. We are interested in rapidly enlarpiegize of the ellipse until
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Figure 5.6: Convergence of the average value ofrtaand (b)7, of a specific trial.
Ground-truth in dashed line.

almost reaching the expected one (i.e. use as less problampés as possible since
in the real world we cannot afford to generate and classifgrgel set of problems),
and then opt for a more conservative behavior to adjust ie gitowing step finalizes
when a negative feedback is given by the expert’s for thetfirgt. As we mentioned in
the explanation of the algorithm, a negative feedback m#atshe scope of the case
is overestimated, and therefore it has to be reduced to ogane the expected one.
Thus, we modify the algorithm such that it switches from ookgy to the other when
the convergence step starts, i.e. the size of the ellipsedsedsed for the first time.
Moreover, besides alternating the policies used for detengithe growing size of the
ellipse, we can also vary the parameters that define the ithe security region~),
and the maximum increment for enlarging the scapeaé observed in the simulation
evaluation.

We have defined a set of strategies to study their resultihg\er and thus, select
the most appropriate one to use in the second part of the imxg@aation. Table 5.1
summarizes the set of strategies. We differentiate betwesetwo steps of the learning
algorithm, growing and converging the scope, indicatirgy piblicy used at each step,
as well as the values of the paramete@nds (the same values for bothandy axis).
The experimentation is similar to the simulation stage,netilee experiments are based
on a single case with initial scopg = 7, = 100. The expected scope of the case
is 7, = 900 and7, = 600. A single trial consists in positioning the robot in a fixed
location on the field and randomly generating 100 probleras the robot detects as
inputs for the learning algorithm. We manually move the Ilii@m one position to
another within the field of view of the robot since for this elments the robot only
moves its head to search for the ball. The learning algorithtasted with one of the
strategy configurations shown in Table 5.1. An experimensists of 10 trials for each
strategy.

Figure 5.7 illustrates the average size of the learned stmpeach experiment.
Comparing the results obtained with respect to the expecigple (ground truth in both
figures) we conclude that:
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growing step |  convergence step

policy v 5 | policy v 5
fixed 0.5 100 fixed 0.5 100
fixed 0.7 50 fixed 0.7 50
fixed 0.5 100 fixed 0.7 50
linear 0.5 100 linear 0.5 100
linear 0.7 50 linear 0.7 50
linear 0.5 100 linear 0.7 50
polynomial 0.5 100| polynomial 0.5 100
polynomial 0.7 50| polynomial 0.7 50
polynomial 0.5 100| polynomial 0.7 50
fixed 0.5 100| polynomial 0.5 100
fixed 0.7 50 | polynomial 0.7 50
fixed 0.5 100| polynomial 0.7 50
linear 0.5 100| polynomial 0.5 100
linear 0.7 50| polynomial 0.7 50
linear 0.5 100| polynomial 0.7 50

Table 5.1: Strategies defined in the real world experimeanging the policies and the
scope parametessandd.

o the strategies using only the fixed and linear policies fahb@arning steps gen-
erate the highest values, while the strategy using only the polynomial policy
obtains the lowest. As concluded in the simulation expemnisiehe former poli-
cies have a more aggressive behavior compared to the latter.

o the strategy defined with only the polynomial policy doesen reach the ex-
pected scope most of the times due to its low increasing sty the growing
stage. At every time step the increment is not as high as taeomputed with
the other policies and therefore, reaching the expecteplesoequires a larger
amount of problems to solve until starting the convergetages

e the strategies combining two types of policies (fixed/polyial and lin-
ear/polynomial) as well as the values for the scope paraméte= 0.5/0.7
andé = 100/50) obtain the closest scopes to the expected ones, sincedhey c
bine the advantages of both policies and the parameteesisiag properties, i.e.
first large risk regions and high increments for the growitggpsand then small
risk regions and low increments for the converging step.

e comparing the results for theand they axis with respect to their ground truths
(horizontal lines in the figures) we can observe that the otained for they
axis reach and exceed the ground truth most of the times. nBuhie experi-
ments, the robot is positioned parallel to thexis. Therefore, variations in the
x component of the ball's position are harder to identify by tbbot, compared
to they component. For instance, moving the ball 10cm closer to ¢betris
not as easy to distinguish as moving the ball 10cm to theltshce, the number
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of problems needed to rapidly fulfill the growing processtfex axis is higher

than for they axis. Since the problems were randomly generated with&irtda
into account this issue, we can estimate that 50% of the pnoblwere used for
each axis, and therefore, not enough problems remainetidaranverging step
in thez axis.

We conclude that the best strategy within the real world tsatee aggressive strate-
gies for the growing step in order to reach as fast as posibleleal scope, and then
progressively adjust it to the robot’s perception using aerstable strategy.

Adapting the Case Base

The final experiment consists in training a small case baseder to evaluate if the
robot is able to learn the expected scopes. We created aestapé base of four cases
(Figure 5.8a) that covered a quarter of a field:

o center midfield.

e side left edge.

e corner. left corner.

o front: between theentercase and the goal.

All cases were initiated with the same scopg & 7, = 100) as depicted in Fig-
ure 5.8b. A trial consists of 50 random problems manuallitipzsng the ball in a
quarter of the field and let the robot move searching for thleundil facing it. During
the growing step we used the fixed policy with large risk ragimd high increment
parametersy{ = 0.5 andé = 100) to rapidly reach the expected scopes. For the con-
verging step the algorithm switched to the polynomial poliéth small risk region and
low increment valuesy(= 0.7 andd = 50). We performed 25 trials in total.

The outcome of a trial example of the adaptation algorithdrasvn in Figure 5.8c.
The classified problems are represented with crossgfo¢ thecentercase, circlesd)
for thesidecase, plus-£) for thecornercase and squaresSl) for front case. As we can
observe, the modified scopes approximate with high accutecexpected outcome.
Figure 5.8d shows the final steps of a trial where the size ektlipses are converg-
ing towards the final outcome. Finally, Figure 5.8e showsaferage of the 25 trials
outcomes. As we can see, the robot successfully acquiresstimated scopes for the
cases in the case base designed by the expert (Figure 5.8a¢oWér, in spite of the
high uncertainty in the robot’s perception, we can deduaeithis still close enough to
the expert’s own perception.

Acquiring Knowledge

After the adaptation process of the case base, the robatdy te acquire new cases.
The goal is to verify that the robot is able to fill in the gapdtef adapted knowledge.
We focused the experiment on learning a single case locatwaebn the four cases.
The expected action was to get near the ball facing the gabbamp it (the intention
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Figure 5.8: (a) Case base designed by the expert. (b) Inésg base for the learning
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Acquiring a new case (average of 20 trials).
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is to bring the ball closer to the goal not with a forward kighce it is too strong and
would push it outside the field).

We performed 20 trials, each composed of 50 random problé@meough all the
trials the new case was at some point created and adaptegt@ntbe empty region,
while the other cases’ scopes stayed stable even thougliéptagion algorithm was
being used. This confirms that the conservative policy useihd the converging step
(polynomial policy, small risk region and low incrementwes) ensures stability of the
learned parameters. Figure 5.8f shows the scope (average @D trials) of the new
case after expanding it. We can observe a slight modificaticdhe remaining scopes’
size with respect to Figure 5.8e (the initial case base fierlHst experiment). As we
can see, the gap is almost completely covered with the exgecise.

5.4 Conclusions and Future Work

We have presented the first steps towards developing an atédmmechanism to adapt
and acquire the knowledge of a reasoner engine. More phgacike mechanism fo-
cusses on learning the scope of a case. The algorithm consiattwo-step process:
growing the scope, and converging the scope. We have pessdifterent policies to
determine how to increase the size of the scope, and whenito\We have also intro-
duced a simple mechanism to create new cases. To analyzmatinéng algorithm, we
have performed experiments both in simulation and with ¢a mobot.

The experiments we have presented confirm that the propdgedtlam is able
to successfully evolve the cases scopes based on the rpleoteption. Moreover, it
also confirms that the resulting scopes are similar to the erpected by the expert’s
perception. Hence, although the adaptation is not negeksahe initial cases created
by the expert, it is indeed useful to guide her through theiesitipn of new cases and
the coverage of the existing ones.

The introduced knowledge acquisition algorithm is notlseadeant for the reason-
ing system to successfully acquire new knowledge, but tp tied expert on detecting
possible gaps in the system’s knowledge. As future work welavbike to develop a
more complete process for knowledge acquisition, so thiabnly serves as a support
engine for the expert, but in fact, automatically creates nases with complete de-
scriptions, i.e. including teammates, opponents, and roongplex solutions. Once a
case has been introduced, the adaptation algorithm pessigrthis chapter can be used
to generate its coverage.

We believe that the learning approach should observe ttat’'satwn performance
and automatically detect new interesting situations taagyce in the future. This
is a very challenging task since the main difficulties aig¢:when to consider that a
potential case has started, i.e. the initial situati@n,when does it finish, i.e. which
are the actions to store as part of the solution of a case,ightidw to evaluate the
outcome of the performed actions to determine if the cassdgulior not for achieving
the robot’s goals (i.e. positive or negative feedback). Wttie challenges of the first
two questions are easy to see, the latter one may seem leptexdmecause it consists
in judging whether the actions were successful or not. Bigeaneral, and specially
in these kind of domains, this judgement is not so simple le#he consequences of
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the actions taken at a given time cannot be analyzed in a tont but in the long
term. Thus the robot is faced with tloeedit assignment problenie. which actions
contributed to the success or failure of the execution? Thblpm can become even
more difficult if there are more robots involved in the exémuti.e. who did well? This
is a very ambitious and complex research area which wouldhtaimthe cycle of the
case-based reasoning process presented in this thesis.
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Chapter 6

Experimentation

We focus this chapter on the evaluation of the approach predén the previous chap-
ters. The goal of the experimentation is to empirically dastate, not only that the
robots successfully perform the task, but also that theopmdince results in a coop-
erative behavior where the team works together to achievmranon goal, a desired
property in this kind of domain. The approach allows the tslto apply a more delib-
erative strategy, where they can reason about the state gathe in a more global way,
as well as to have special consideration of the opponentss,Tthey try to avoid the
opponents by passing the ball between them, which shoutdase the possession of
the ball, and therefore, the team should have more chanceadh the attacking goal.

We compare our approach with respect to the approach impkeahén the Carnegie
Mellon’'s CMDash’06 team, i.e. the region-based algoritiRBA) described in Sec-
tion 4.1.1. As we already mentioned, the approach includeisnalicit coordination
mechanism to avoid having two robots “fighting” for the balltlhe same time. The
robot in possession of the ball notifies it to the rest of tlarteand then the rest of the
robots move towards different directions to avoid collisioThe robots also have roles
which force them to remain within certain regions of the figitat instance, defender,
striker, etc.). The resulting behavior of this approach @erindividualistic and reac-
tive in the sense that the robots always try to go after thedsafast as possible and
move alone towards the attacking goal. Although they trymichopponents (turning
before kicking, or dribbling), they do not perform explipsses between teammates
and, in general, they move with the ball individually. Passely occur by chance and
therefore are not previously planned. Henceforward we nefiér to this approach as
thereactiveapproach.

The experiments presented in this chapter are focused dfgingrthe following
hypotheses:

Hypothesis 1. Action selection in multi-robot domains is feasible applyi
Case-Based Reasoning techniques, since it facilitatedebign of the robots
behaviors, it is close to what humans do, and it provides arcteodel for

defining the situations to solve and their correspondingsonhs.
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Hypothesis 2. The approach proposed is robust enough to deal with uncer-
tainty in the incoming information (perception) and to reeo from impreci-
sion in the outcome solution (robot’s action execution).

Hypothesis 3. Due to the adversarial component in the working domain,
a team of robots using a cooperative strategy that includesses between
robots outperforms an individualistic strategy where tidats do not plan
joint actions to achieve the common goal.

The first part of the chapter corresponds to the Case-BasasbRiag system set-
tings, mainly the case base description. Then we detail¢peranents setup including
the evaluation measures used to assess the experimentidts, as well as the dif-
ferent scenarios used. Finally, we present and analyzeutcerme of the experiments
performed, both in simulation and with real robots.

6.1 CBR System Settings

The case base used for the experimentation is composed afak&8. From this set,
34 cases are hand-coded, while the remaining ones are didaliyegenerated using
spatial transformations exploiting the symmetries of thecsr field as described in 3.2.
After some experimental tests we concluded that this seagdswas large enough, at
least for the purpose of the evaluation presented in thikwés we describe later,
in the experiments we have designed, the robots alwaykédtiacsame goal. Hence,
during the retrieval process only half of the case base (683)as actually processed in
the search due to the indexed list used to store the casesthdyeare loaded, i.e. we
only consider those cases with attacking goal equal to teebthe current problem to
solve.
In general we can classify the cases along the following @mapts:

1. strategiccomponent: based on the region of the field that the casegdvean
vary from offensive to defensive. Regions close to the ddifengoal correspond
to a more defensive strategy, while regions close to thekittg goal imply a
more offensive strategy. Regions in the middle represeeusral strategy.

2. teamworkcomponent: the number of robots (teammates) describeceinabe
indicates the degree of teamwork, ranging from indivicitalito cooperative,
i.e. ranging from one robot to robots. The largen is, the more cooperative is
the team behavior.

3. adversarialcomponent: the number of opponents in the case descrifithsa
case from highly adversarial to non-adversarial (no opptsat all).

In this work the case base is composed of cases which comtiineomponents
defined above in different degrees. Figures 6.1 and 6.2 deglicof the case base (the
68 cases with yellow defending goal). For simplicity we oshow the ball’s scope,
which is useful to evaluate the region of the field where theeéatriggered. We define
the following types of cases for our experimentation:
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(b)

Figure 6.1: Case Base: cases with one teammate and (a) nnagpaor (b) one or two
opponents.
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mSide[H/N/S)

mMiddle(R/L) (H/N/S)

mMiddle(R/L) (H/N/S)

mEide[FFIS)

(@)

mGOmiddle(R/L) (HINIS)

(b)

Figure 6.2: Case Base: cases with two teammates and (a) moemis or (b) one or
two opponents.
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1. neutral to offensive cases: most of the cases are situatetie half of the
field containing the attacking goal, although we also inelsdme cases for the
middle-back of the field in case the ball moves towards thgibre In the figures
we identify the following regions: front (f), corner (c),atjonal (d or D), middle
(m), side (s) and back (b).

2. individualistic and cooperative cases: mainly two typkesases, either consider-
ing one teammate (single cases, Figure 6.1) or two (multpges, Figure 6.2).
Although we are interested in achieving a high degree ofaboltation among
robots, there are situations where having passes betwapnmates is not the
best choice. More precisely, this happens in those situstichere the ball is in
front of the attacking goal. In this case, trying to scorenitiially may yield
better results, rather than planning a pass with other temnmAs we can ob-
serve in Figure 6.2 there are no cases in front of the goal.themaeason for
including single cases is to cover situations where thetso@ie too distant from
each other. In these situations the resulting adaptatishawld be too high,
and therefore, the filtering mechanism would reject all fldesnultiple cases as
candidate solutions, considering only single cases atbfeamlutions.

3. non-adversarial and adversarial cases: we include gasesit opponents (Fig-
ures 6.1a and 6.2a) and with one or two opponents (Figuresafd 6.2b). Since
the opponents in the experiments are moving robots, it ctendfappen that
there are no opponents near the ball. Hence, a case with ranep{s can be
then reused.

Thus, the case identifier is defined by the regular expression
case_id = (s|m)[G?0"](region)R|L|[H|N|S]

where, s and m indicate the teamwork degree (single or nejiti® and O correspond
to the optional adversarial component (G stands for goalie @, for opponent; the
number of O’s matches the number of opponents). Omitting épression would
correspond to a non-adversarial case, i.e. no opponesgsyn corresponds to the
strategic component represented by either the complete magion or its first letter;
and finally, the optional reduced solution descriptionrespnted by two parameters
that indicate the side of the attacking goal to point the Kradht side or left side) and
the strength of the kick (hard, soft, or normal if no parametset).

Thus, for instance, the encoded identifieil ddl e(R/' L) (H N S) in Fig-
ure 6.2a corresponds to cases in the middle of the field withtbammates (multiple)
without opponents, performing a hard, normal or soft kickNFb) towards either the
right side or the left side of the attacking goal (L/R). Figud.3 illustrates four case
examples.

We do not include the time and score difference featureseoptbblem description
of a case to simplify the experiments. Hence, we set botltéwdin the cases and the
problems to solve to default values, ite= 0 andS = 0, so their resulting similarity is
equal to 1 §imys(tp, Sp, tc, Sc) = 1.0). Regarding the thresholds for the ball similarity
(thrp) and the adaptation costhf.) used in the filtering mechanism (Section 3.3.4,
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ID: sBack ID: sGf

#tm: 1 #tm: 1

#opp: 0 #opp: 1 (goalie)

region: back region: front

sol: normal front kick sol: turn to free goal and kick
(a) (b)

ID: mSideS ID: mOOmMRH
#tm: 2 #tm: 2
#opp: 0 #opp: 2 (defenders)
region: side region: middle
sol: left pass and soft kick sol: right pass and hard kick
to goal to right side of the goal
(€) (d)

Figure 6.3: Case examples: (a) sBack, (b) sGf, (c) mSide® (@nmOOmMRH. The
small circle is the ball. The big circles A and B correspondhie teammates, and the
squares D and E, to the opponents. The ellipses represecaskescope, both for the
ball and the opponents, while the trapezoids corresporttetball’s path.
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Algorithm 1) we set them to the following valueshr, = 0.367 (which corresponds
to the Gaussian projection on tl&Y plane) andthr. = 1500mm (obtained through
empirical experimentation). The sorting function for ranikthe candidate cases is
set tosort2 as we discussed in Section 3.3.5. Finally, with respect éontllti-robot
system, since we are dealing with only two robots, they bo¢tretrievers(k = 2),
i.e. both are able to reason and to propose solutions to tieguns presented in the
experimentation stage.

6.2 Experiments Setup

Two types of experiments were performed: experiments vitttukated robots and ex-
periments with real robots. As in most robotic domains, thet #xperiments are per-
formed in a simulated environment in order to easily deteoblgms and therefore,
correct and improve the evaluated approach until obtaisatisfactory results. Once
this stage is achieved, the next step is to experiment withighl environment, i.e. the
robots, and thus, prove that the approach works as expected.

For both experiments we initialize a trial positioning tlodots (two attackers vs. a
defender and a goalie) and the ball in a fixed location. A &rals either when the ball
goes out of the field, enters the goal, or the goalie touches it

6.2.1 Robot’s Behaviors

The attackers are the players to be evaluated, i.e. theyitss the CBR approach
or the reactive approach. We must recall that within the CBR@ach the robots may
perform the region-based algorithm, i.e. the reactive @ggir, when no case is retrieved
as explained in Section 4.1.1. However, these situationallysoccur when the cost of
any of the available cases is over the cost threshold, anblewsiuse there are no cases
defined. Hence, while the attackers move towards the bdlmeing the region-based
algorithm, they reduce their distances with respect to #ik B\t some point, any of
the available cases that was previously filtered out duegbissues, may now become
a candidate solution.

Both approaches also share a behavior, which we will refastihedefaultbehav-
ior. This behavior consist in moving next to the ball, far egb to not interfere in its
movements, but close enough to easily approach it and tgkeotind a meter away).
Within the CBR approach the robots performing this behaarerthose robots that do
not take part of the case reuse, or that finished their garyepihile the case reuse
continues (i.e. when the robots are in the WAIT END stateitdetan Section 4.2).
Regarding the reactive approach, the robots perform treuttdfehavior when a robot
indicates that it has the ball, and therefore, the remaiaires have to move away from
the ball’s path.

With respect to the opponents, we have implemented a simgitevior for the
defender and the goalie. Both perform the same behavior \plesfing against any
of the two evaluated approaches (reactive and CBR).

We define theaction regionas the region of the field where the robot can freely
move, go after the ball and perform any action with it. Theatadannot move outside
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Figure 6.4: Action region for (a) the defender and (b) theligodhe robots are facing
the ball since it is out of their action region.

its action region. Thus, when the ball is within the robottan region, the robot grabs
it and kicks it towards the center of field to prevent the &tas from trying to score.
We callline of actionthe imaginary line parallel to thgaxis where the robot waits until
the ball enters its action region. Hence, if the ball is outhaf robot’s action region,
then the robot remains on iliwe of actionfacing the ball, perpendicular to the ball’s
position.

Figures 6.4a and 6.4b depict the action region for the defiezmod the goalie respec-
tively, defined for the experiments. As we can observe, tfiendier's action region is
also limited by the penalty area, since the rules of the rgboter forbid any robot to
enter its own penalty area, except for the goalie, of couRsgarding the goalie, its
action region corresponds to the penalty area (althoughrgabkgame it can indeed
walk out of this region). We have set the defender’s line tibaco x = 900, i.e. 90cm
away from the midfield line, while the goalie’s to= 2400, close to the middle of the
penalty area.

6.2.2 The Scenarios

We have defined four scenarios for the experimentation siégecan classify them in
two sets:

e Scenarios 1 and 2 (Figures 6.5a and 6.5b): the ball (smelékiand the attackers
(A and B) are positioned in the middle-back of the field, wiiile defender (D)
remains in its line of action facing the center of the fieldhsitt blocking the ball,
and the goalie (G) is situated within the penalty area. Thesrarios correspond
to general situations where the attackers are coming frenb#tk of the field
towards the attacking goal, while the defender is waitinigsgtosition.

e Scenarios 3 and 4 (Figures 6.5¢c and 6.5d): the ball and atseke located in
the middle-front of the field, the goalie remains within thenplty area facing
the ball and the defender is right in front of the ball. Thegeetof scenarios are
more interesting from a strategic point of view, since th& filecision (action) the
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Figure 6.5: Scenarios used during the experimentationmifegtes are represented
with circles, while opponents, with squares. (a) Scenarib)lscenario 2, (c) scenario
3 and (d) scenario 4.

attackers make (execute) is critical in their aim to reaehgbal while avoiding
the defender whose main task is either to intercept or td stedoall.

We believe that these two sets of scenarios are general krtougpresent the
most important and qualitatively different situations thbots can encounter in a game.
Initiating the trials on the left or right side of the field dorot make much difference
on the actions the robots might perform in any of the two eat@d approaches, since
they would perform their symmetric actions instead.

We have neither defined any scenario with the ball near thelattg goal because
the defender would not be able to do much since it cannot ¢méepenalty area, as
mentioned in the previous section. Instead, we are inttldathaving the defender as
an active opponent complicating the attackers’ task.

Finally, regarding the corners, although they are alsa@sting areas to evaluate,
we have not included any specific scenario with this inigdut because the big chal-
lenge within the corners is not really focused on the stgategise, but on improving
the localization of the robots. Computing the position & thbot with a minimum de-
gree of accuracy when it is located in a corner is a very diffiogalization task. The
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visible objects the robot can detect from that position atsemough to ensure a robust
localization. Hence, we preferred to omit these initiahaitons because there are high
chances for both approaches to perform poorly. Neverthethging the experiments
the ball can end up in a corner situation, and the approachsessomehow overcome
these situations for the robots to achieve their goal.

6.2.3 Evaluation Measures

We have defined two main measures to assess the performatheeagfproaches. The
first one is based on the final outcome of a trial, while the sdamne is based on
the opponent’s (more precisely, the defender) posseséithre dall during the trial (a
similar evaluation is performed in [15]).

As mentioned before, a trial ends when either the ball goésfthe field, enters
the goal, or the goalie blocks it. In order to evaluate eaehre classify the possible
outcomes as:

goal the ball enters the goal.

close the ball goes out of the field but passes near one of the gstslpMore
precisely, at most 25cm to the left (right) of the left (riggbalpost.

block the goalie stops or kicks the ball.
e out the ball goes out the field without being a goal or close td.goa

We also consider tha goal balls, which correspond to balls that are eitiealsor
closeto goal. This measure indicates the degree of goal intemtidhe kicks. Thus,
although the balls might not enter the goal, at least theywdended to do so.
Regarding the defender ball's possession, for every trealcaunt the number of
times that the defender touched or kicked the ball away t@&rdeThis measure shows
the effectiveness of a cooperative behavior. We can iagljtistate that having a pass
when a defender is in front reduces the chances of the daftmdet the ball, if the pass
does not fail. Therefore, the likelihood of successfullynpeting the task increases.

6.3 Simulation Experiments

In this section we evaluate and discuss the experimentempeetl in simulation using
the four scenarios described before. The goal of this expriation stage is mainly to
verify hypotheses 1 and 3.

6.3.1 The Simulator

The simulator used for this part of the experiments is anneldd version ofPup-

pySim 2 created by the Carnegie Mellon’s team. We had to implem@anesadditional
features for our experiments, such as managing team meassagets walking while
grabbing the ball, etc. The final version of the simulator 8raplified version of the
real world. The robots’ perception is noiseless, i.e. thHéshaosition and the location
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PuppySim 2

Figure 6.6: Snapshot of the robot soccer simulator PuppySiRobots 1 and 2 corre-
spond to the attackers (A and B), while robots 3 and 4, to tleiggand the defender
respectively.

of all robots on the field is accurate. However the outcoméhefdctions the robots
perform have a certain degree of randomness. The kicks &ngenf@ct and the ball
can end in different points within its trajectory (definedSaction 3.3.3). In addition,
when the robot tries to get the ball, it does not always sut;cg@mulating a “grabbing”
failure (a very common situation with the real robots). Th#*®movement is modeled
taking into account the friction with the field, starting lver high speed and decreasing
through time and gradually ceasing (if no one interceptgfbie). A snapshot of the
simulator is presented in Figure 6.6.

When a trial ends, the simulator stores the ball outcome (basehe ball classifi-
cation stated before), the position where the ball endedtaduration of the trial in
seconds. Then it restarts a new trial. This information ferafards used to compute
the statistics shown in the next section.

6.3.2 Simulation Results

We performed 500 trials for each approach and each scenaria,total of 4000 trials.
Table 6.1 summarizes the ball classification outcome obthfor all four scenarios
(results in percentage). We also computedtthgoal measure, which results from the
sum of thegoal balls andcloseballs.

As we can see the percentage of b&dlgoal with the CBR approach is higher in
all four scenarios compared to the reactive approach. Merethe percentage of balls
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. ball classification (%)
scenario| approach
goal close out blocl{ to goal
1 cbr 25 9 28 38 34
reactive | 25 3 37 35 28
5 cbr 26 8 28 38 34
reactive | 25 6 41 28 31
3 cbr 25 6 40 29 31
reactive | 13 4 59 24 17
4 cbr 36 8 11 45 44
reactive | 22 4 25 49 26

Table 6.1:; Ball outcome classification (simulation).

. ball possession
scenario| approach
average stdev

1 cbr 1.34 1.37
reactive 1.91 1.39

5 cbr 1.38 1.29
reactive 2.13 1.82

3 cbr 1.35 1.23
reactive 2.20 1.33

4 cbr 0.43 0.94
reactive 0.85 1.42

Table 6.2: Defender’s ball possesion (simulation).

out are lower when using the CBR, indicating that the defenddrléss opportunities
to take the ball and kick it out of the field. The differences apecially significant
in scenarios 3 and 4, where the initial position of the deéens right in front of the
ball. In these situations, it is difficult for a robot to movéthwthe ball without losing
it, which is what the reactive approach would do. Thus, thencks for the opponent to
steal the ball increase. On the contrary, performing a pasgden teammates is more
useful, since the team keeps the possession of the balleakog the opportunities
for the defender to take it. Moreover, we believe that usiagsps in situations where
it is not clear which is the best strategy (i.e. perform a passct individually) does
not degrade the overall performance either. This is the @distategy using the CBR
approach.

Figures 6.7 and 6.8 graphically compare the ball classificatutcome between
both approaches (the CBR approach outcome on the right coamd the reactive
approach results on the left). We can easily observe thadle¢hsity of points corre-
sponding toout balls is higher for the reactive approach, as the percentegmble 6.1
shows. More interestingly, with the CBR approach thesetpaine mainly located on
the half of the attacking field (i.e. the right half side of fledd), while with the reactive
approach, they are dispersed along the width of the fiel{glhein the third scenario,
Figure 6.8b, where the points are even more concentrateldeoleft half of the field,
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scenario 1| scenario 2| scenario 3| scenario 4
robot | A B A B A B A B

AV | 33 16.0/ 7.2 26.2| 28 18.6| 165 21.6
% 17 83 |21 79 | 13 87 | 43 57

Table 6.3: Average and percentage of the backing up timesobert (A or B) and
scenario.

rather than on the right half). This occurs because the defdmad more opportunities
to steal the ball close to the middle of the field before thackitrs managed to reach
the middle-front of the field (right side of the field closertte attacking goal). The
defender then clears the ball sending it towards the badhkedfi¢ld, and easily kicking
it out of the field. We can also notice that, in general, thestgrof out balls next to the
attacking goal (i.e. points with coordinate within the interval [-1500..1500]) is higher
for the CBR approach. Thus, we can deduce that at least #ekats were definitely
aiming at scoring more times that the attackers with thetrgaapproach.

Table 6.2 summarizes the defender’s performance duringexperimention. It
shows the average and the standard deviation of the numberesf the defender either
touched the ball or kicked it per trial. We can see that in gantae defender play-
ing against the reactive approach had more chances foringaahtaking the ball than
when playing against the CBR approach. Furthermore, irg$teskenario, it even dou-
bled the average. The higher average values for both agpeeaorrespond to the first
three scenarios since in these scenarios the ball is lofatger from the goal com-
pared to the fourth scenario. Hence, the chances for thediefdo steal the ball are
higher since the distance the attacking robots have toltraveach the goal is longer.

In order to show the degree of collaboration among robotsomeptited two more
measures in this experimentation set. As we described iticBeg.2.1, the reactive
approach provides the robots with a simple coordinationfraeism: while a robot
possesses the ball, the second robot performs a defaultibelba avoid interfering
with the first one. Thus, in general, during a trial the roliatting the first action (e.g.
get the ball and kick it) moves with the ball while the secone @& backing up. Once
the action ends, both robots will try to get near to the bail the chances for the second
robot to arrive first are lower since it had previously movegy from the ball. The
first robot instead, has more chances to get the ball firsievthe second robot will
have to back up again and again. For each trial, we counteduimder of times each
robot backed up. Table 6.3 shows the average and perceritdgenumber of times the
robots backed up per trial. As we can see, except for the ¢asizsio, the percentage
of times that robot A backs up is significantly lower compatedobot B. Hence, we
can conclude that in general, because of the strategy useat, A (the robot that gets
the ball first) acts individually without involving robot Biithe task.

Since the reactive and CBR approaches are very differentcameot apply the
“number of backing ups” measure to the latter one. Therefordemonstrate collabo-
rative behavior with the CBR approach, we compared the nuwibreused cases that
implied a single robot in the solution, “single” cases, widlspect to cases with more
than one robot “multiple” cases (in this work two robots).€eTercentage of the type
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scenario 1 scenario 2 scenario 3 scenario 4

case| single mult| single mult| single mult| single mult
AV 3.9 50| 4.1 6.0 3.6 5.3 2.4 25
% 44 56 41 59 40 60 49 51

Table 6.4: Average and percentage of “single” and “multigiases used during the
experimentations.

of cases used and the average per trial is detailed in TadbleA®. we can observe, in
general, half of the time (or even slightly more) the robetsieve multiple cases, i.e.
cases where an explicit pass between two robots takes pldts.is due to the fact
that the robots start their performance in the middle of tblel fand with a defender in
between them and the goal. In this situation a cooperatragesty (multiple cases) is
more useful since the robots can work together to get clastiret goal. Once they get
near the penalty area, it makes more sense to try to sconddudlly (single cases),
and not to have passes between teammates.

6.4 Real Robot Experiments

After the successfull results in simulation, the next stefoitest similar experiments,
but this time with the real robots. We must keep in mind théalifties that arise when
dealing in a real environment, increasing the complexitthefproblem to solve. More
precisely, the uncertainty in the incoming informationb@ts’ perception), which has
not been taken into account in the simulated environmentncelewith this second
experimentation stage we aim to verify hypothesis 2, i.e ahility of the approach
presented in this work to handle uncertainty, as well asitdorce hypotheses 1 and 3,
already supported in the previous experimentation stage.

6.4.1 The Robots

The robots we have used in this experimentation are four 3¢BY ERS-7 robots
(one M2 robot, and three M3 robot). The AIBO robot is a fougged robot with
a dog shape (Figure 6.9). The dimensions of the robot arex280319 (in mm,
widthx height<length). A camera is located in its nose with a field of view 6f%
wide and 45.2 high. It has 18 PID joints, each with force sensing: 3 joirgs leg
(elevate, rotate, knee), 3 joints on the neck (tilt, pan,)ndgoints on the tail (tilt, pan)
and 1 joint on the mouth. Its internal CPU is a 576 MHz processth 64MB RAM.
As we can see, itis a very limited processor and thereforgimes|the implementation
of fast and computational simple algorithms. The programscapied to a Memory
Stick that is inserted in the robot. When the robot is turnedtdoads all the informa-
tion from the Memory Stick and starts moving autonomoushe Tobots communicate
through a standard wireless network card (802.11b wiretfs=rnet). The robot has 26
independent leds on its face which are useful for debugdiegdbot’s behavior. It also
has four pressure sensors (three on its back and one on d} émployed to modify
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Figure 6.9: Sony AIBO ERS-7(M2-M3) robot description.

the robot’s behavior (pause, resume, reset, etc.). Pgtfreur four robots are shown
in Figure 6.10.

Vision Issues

The vision system of the robots is in charge of identifyingl dwcalizing the objects
in the environment, i.e. ball, markers, goals, lines aneiotbbots. Hence, a robot is
capable of knowing its own position on the field (its locdlian is based on the ob-
served markers positioned along the field) and deriving dbatlons of the objects in
its field of view accordingly. Because of computational tations the vision processes
must be fast and simple. Therefore, the robustness of tienwystem is not guaran-
teed. The main efforts of the designers are focused on sagetecting the ball and
markers on the field, which are the most important objectshferobot to perform its
task, i.e. move the ball towards the goal. Hence, althougtetis an attempt to also
identify and localize opponents, in fact, the robots cardlyaknow where the oppo-
nents are with a minimum degree of accuracy. Figure 6.14tities some examples of
images extracted from the robot vision system, both origmages (RGB) and after
the segmentation process.

The purpose of this research is to study the performancesadppproaches, and not
to improve robustness to the perception system. Since thengmts locations are fun-
damental for the experimentation we present in this worleveduate both approaches
independently from vision issues, the robots from the oppbteam report their posi-
tions to all the robots on the field through the network (thesavay the robots from
the same team do so).

We must also mention that during the experimentation w#GBR approach, after
every cycle (i.e. retrieving and executing the case) albtsistop for 5 seconds in order
to update their localization on the field with lower uncertgiand thus, increase the
accuracy of the case retrieval. Otherwise, the performahtiee CBR approach would
be degraded due to visual issues, misleading the overailaian of the system.
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Figure 6.10: The robots: (a) Fang (Mud), (b) Boira (Mist), Terra (Soil) and (d) Nata
(Cream).

6.4.2 Results

Since working with real robots is harder than in simulatibis(unfeasible to reproduce
with the real robots the volume of experimentation donermusation), for this second
part of the evaluation we only used the third and fourth s@éeaaAs mentioned before,
we believe these are more interesting than the first two siosnaecause the defender
is located in front of the ball, blocking the first movemeng tittacker could perform.
Hence, the attacker needs to apply some strategy to avoiefeader and not to lose
the ball.

We performed 30 trials per approach and per scenario, 1218 tni total. Next we
evaluate both scenarios separately discussing for bottoagipes: first, the approach
performance; second, the ball classification outcome; auadlyfj the defender’s perfor-
mance.

Scenario 3

e CBR approach performance
After analyzing the results of the 30 trials performed bynigots, we sketch the
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Figure 6.11: Top: original images (RGB), and bottom: segeeimages. (a) Cyan
goal and a robot. (b) Marker and ball. (c) Yellow goal and bathe center of the field.

general behavior of the CBR approach in Figure 6.12. As weobaerve, given
the initial positions of the robots, the first action is tofpem a pass to avoid
the defender (Figure 6.12a). Hence, robot A moves towamrbal to start the
pass, while robot B moves towards the front to receive the heanwhile, the
defender (robot D) remains on its line of action facing thd. bAs the pass
takes place, the defender moves to a better position torazantblocking the
ball. Since robot A has ended its sequence of actions (gaykeijil performs
the default behavior, maintaining a close distance to thie lnat without going
after it. When robot B receives the ball, it performs a kick &ots the middle
line (Figure 6.12b). The first case reuse ends. The nexévetlicase consists in
moving the ball forward in order to place it closer to the elttag goal. Hence, as
robot A is closer to the ball, it is in charge of reusing aldme $econd case, while
robot B moves next to the ball towards a better position etkegithe default
behavior. Meanwhile the defender tries to reach the ball el (Wigures 6.12c
and 6.12d). Finally, the last case is retrieved, which ogaéreconsists in having
a pass between robots A and B to avoid the goalie (robot G)céjemmbot A
moves to take the ball, while robot B waits for the pass (Fegbil2e). Once it
receives the ball, it kicks it towards the goal (Figure 6)12e

The sequence detailed above is a perfect execution, whettdickers manage
to score and the trial ends. Unfortunately, because of thie iniprecision of the
action executions, the performances of the trials variethfone to another re-
trieving different cases (thus, executing different ats)ato overcome the altered
sequence. The critical points where a modification of thalidgecution occurs
are:

— during a pass (Figures 6.12b and 6.12f): the pass coulddadursei] the
ball is sent to the wrong direction (usually due to wrong lizedion of the
robots), {i) the receiver does not succeed in grabbing the balliiigrthe
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Figure 6.12: Sketch performance of the attackers using BR &jproach in scenario
3. Solid arrows represent the robots movements, dashedsriioe default behaviors
(moving next to the ball), and pointed arrows, the ball's eroent.
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Figure 6.13: Sketch performance of the attackers usingthetive approach in scenario
3.

defender intercepts the pass.

— during the adaptation of the case (Figures 6.12c and 6.%2gle the robot
is moving towards the ball, the defender may reach the bat| fitearing
the ball or kicking it out of the field.

¢ Reactive approach performance

This approach only takes into account the position of theoappt for making

decisions when the opponent is very close to the ball (apmately 40 cm away
at most), blocking it from a forward kick. Hence, in the ialtirial layout, the

defender is too far from the ball to be considered during theision making

and therefore, robot A first performs a forward kick (Figurgé3). In the next
timestep, the ball is close enough to the defender and theseactive approach
includes it as an obstacle that must be avoided. Since é&xphsses are not
modeled in this approach, the only chance for avoiding thmoopnt is to dodge
it, moving in diagonal (either to the right or to the left) wegrabbing the ball

as shown in Figure 6.13b. The opponent, in this case the defealso moves
towards the ball and both robots collide fighting for the balhe outcome is
either a success for the attacker, getting rid of the defeade kicking the ball

forward, or a success for the defender, stealing the baltkating it.

The overall performance of the reactive approach is the sargeneral, trying
to move the ball close to the attacking goal, and dodging gpooent when it
gets near the ball approaching from the front. At some ptietattacker reaches
the attacking goal and tries to score avoiding the goalfeeeiurning or dodging
side to side.

¢ Ball classification
The CBR approach outperforms the reactive approach. As suined in Ta-
ble 6.5 the percentage of battsgoalis higher in the CBR approach (30%) than
in the reactive one (17%), as well as the percentagdadkedballs, i.e. 43%
for the CBR approach, and 30% for the reactive approach. éjehe chances
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scenario| approach ball classification (%)
goal close out blocl{ to goal
3 cbr 20 10 27 43 30
reactive | 10 7 53 30 17
4 cbr 20 3 17 60 23
reactive | 30 7 30 33 37

Table 6.5: Ball outcome classification (real robots).

scenario| approach ball possession out balls
average stdey def att]| total
3 cbr 1.40 1.16| 6 2 8
reactive 2.27 193] 11 5| 16
4 cbr 0.60 072 2 3 5
reactive 1.07 087| 5 4 9

Table 6.6: Defender’s ball possesion (real robots).

for scoring with the CBR approach are higher, because thelats reached the
attacking goal more times, ending the trial either scorintfyong to score. This
fact is also derived from the percentage of ballg, where we can observe that
the percentage for the reactive approach (53%) even dotli@gsercentage for
the CBR approach (27%). More precisely, as listed in Tale the number of
balls out due to the defender’s actions is higher for the reactive @agr (11)
with respect to the CBR approach (6).

e Defender’s ball possession

The chances for the defender to steal the ball are higher Wieeattackers use
the reactive approach. Table 6.6 lists the average andathaéviation of the

number of times the defender possessed the ball, i.e. ddhehed or kicked

the ball. The average of the defender’s ball possessior2i.contrast to the

average of 1.40 when playing against the attackers with B &oproach. This

means that in average, at least two times per trial the defdmatl the opportu-
nity to either block the ball or even worst, to clear the batinfi its defending

zone (the half side of the field it defends). Thus, we can shatethe teamwork

playing strategy in the CBR approach, more precisely thegsmbetween team-
mates, is indispensable for reducing the opponent’s clsaiodatercept the ball.

This fact is also confirmed by the number of baillgt mentioned above, where
the defender kicks the ball out of the field more times whegippagainst the

reactive approach.

Scenario 4

e CBR approach performance
Similarly to the previous scenario, the first action thecktas perform is a pass
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Figure 6.14: Sketch performance of the attackers using B &jproach in scenario
4,

between them to avoid the defender, while the latter triesite the ball (Fig-
ure 6.14a and Figure 6.14b). After the first case reuse, therds close to the
penalty area, where the goalie is expecting it as shown iargi§.14c. Since the
goalie is on the right side of its penalty area, it is not orlycking the ball from
a front kick, but also incapacitating robot A from scoringeride, the only option
for robot B is to individually try to score dodging the goaliégure 6.14d), while
the defender comes from the back trying to take the ball oa.ti@nce again, fail-
ures during the execution can occur due to the reasons glreantioned in the
previous scenario (errors during passes or defender regatte ball first).

e Reactive approach performance
In contrast to the third scenario, in this occasion the oppbis positioned close
enough to the ball, so the attacker can detect it. Hencegubadodging tac-
tic robot A tries to avoid the defender, moving diagonallwands the left and
kicking the ball forward (Figure 6.15a). Meanwhile, robotri®ves towards the
attacking goal, avoiding to intercept the ball. Once robdtas kicked the ball,
robot B can immediately go after it (Figure 6.15b). This actcould be inter-
preted as a pass, although it was not really meant to be. Kibdt B is close
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Figure 6.15: Sketch performance of the attackers usingtietive approach in scenario
4,

enough to the attacking goal and alone with the goalie, aacktare, tries to
score (Figure 6.15c).

We must once again recall that the above described scer@riesponds to an
ideal execution. As the results we have obtained show, nfosteotimes the
defender prevented the attackers from reaching the godlleast, greatly com-
plicated their task.

o Ball classification

The CBR approach is not as efficient as the reactive appréecive can observe
in Table 6.5 the percentage of baitsgoal using the reactive approach (37%) is
higher than using the CBR approach (23%). However, we masttake special
attention to the fact that the percentagebtifickedballs by the goalie is much
higher for the CBR approach (60%, it doubles the reactiveagyh). Therefore,
we confirm that altough the attackers with the CBR approadmdt manage to
score as many goals as the attackers with the reactive ajipmast of the times
they reached the attacking goal and aimed at scoring. Thassé reinforced
by the fact that the percentageaft balls in the reactive approach (30%) almost
doubles the percentage in the CBR one (17%). Moreover, agdefkin Table 6.6,
the defender playing against the reactive robots had maguertymities to kick
the ball out of the field (5 times vs. 2 against the CBR apprhameventing the
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attackers from reaching the attacking goal.

e Defender’s ball possession

Similarly to scenario 3, as Table 6.6 summarizes, the agaramber of times the
defender intercepted the ball when playing against thetiveaapproach (1.07)
is higher than when playing against the CBR approach (0A8)mentioned in
the approach performance, the first attacker’s action usiageactive approach
is to dodge the defender moving forward with the ball, indteaperforming a
pass, as the CBR approach does. Hence, although the atitaicisrtry to avoid
the defender, most of the times, the defender manages tk btomovements,
forcing the attacker to lose the ball. Therefore, in averagjéeast once per trial
the defender blocks the ball, complicating the task of tkec&er to finally move
the ball towards the attacking goal, whereas with the CBRagah, it happened
about once every two trials in average.

Further discussion on the overall performance of the agh@scomparing the sim-
ulation and the real robots results is presented in the déasiog of this chapter.

6.5 A Trial Example

In order to complete the experimentation stage, we nextldetamplete trial with the
real robots, starting with the coordinator selection ofrthéti-robot system, continuing
with the retrieval process, and finally, showing the exexutf a case, i.e. the case
reuse.

Figures 6.16 through 6.24 show the evolution of a trial ughgfourth scenario.
For each case reuse we first show the retrieved case and kisfglédwed by the robot.
The subsequent figures show the execution sequence of the aaaposed of four
series of snapshots. The general description of each insage following:

e retrieved case: similar to the figures shown in the beginofirtgis chapter (Sec-
tion 6.1), the green circles correspond to teammates (A gnavBile squares
correspond to opponents, the defender (D) and the goalieT{t&) ball and op-
ponents’ scopes are depicted with ellipses, and the baltls with trapezoids.

e path image: itillustrates the path of the robots and thechalhg the case execu-
tion. As shown in the legend, green crosses correspond tit foand blue stars,
to robot B (the attackers). The defender and the goalie (D@rate represented
with a yellow and a pink square respectively. Finally, th# isadenoted by the
red circle. The data is obtained from the internal beliefthefrobots, i.e. where
they believe they are located on the field and what is thesjadisition.

e execution sequence: each step of the case reuse is compdsezbdmages:

— a snapshot of the video of the trial. The brown robots cooedpo the
attackers, while the white ones, to the opponents.
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— the robot’s internal beliefs, also called world mddebrresponding to any
of the two attackers.

— an image extracted from one of the robots vision system (eatgd im-
ages). The robots id’s in the world model are 1 and 2 for theckérs, 3 for
the goalie, and 4 for the defender (white or gray filled sgs)are

In this trial example, three cases were reused to fulfill #z&t We next detail each
of the steps:

1. Case 1 (Figures 6.16, 6.17 and 6.18): as observed in thesriapshot of the
field, Figure 6.17 (1), the robots are located as in the irlaigout of the fourth
scenario. The selected coordinator corresponds to robtteAglosest robot to
the ball. The world model and the segmented image were aatdiom robot
A. A reduced description of the problem to solve correspdadfrom robot A's

perspective):
id position (X,y)
A 182 -1288
B 756 -79

defender| 1458 -1273
goalie 2359  -163
ball 682 -1263

The retrieved case corresponds to the case mSide (musiigdd; Figure 6.16a,

which consists in a pass between both robots to avoid thexdefgositioned in
front of the ball.

The second row, Figure 6.17 (2), shows the robots startiagexiecution of the
case, i.e. the case reuse. In the picture we can see thatkabperforming the

pass, while robot B is waiting to receive the ball. Meanwhilee defender has
moved to intercept the pass. Next, robot B takes the ballrei§.18 (3), and
turns to kick the ball towards the attacking goal, Figure8g4). The segmented
image in this last row is taken from robot A, and illustrates kick performed by
its teammate (robot B) finalizing the execution of the cade Ball ends close to
the attacking penalty area as shown in red in the path’s irfeigere 6.16b).

1To obtain this information we used Chokechain2, a debuggiobimplemented by the CMU team. The
symbols and graphics shown correspond to features usedtig tled robot’s behavior. We only detail those
relevant for this example.
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Figure 6.16: Trial example: first case. (a) Retrieved cdgaopots’ paths.
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2. Case 2 (Figures 6.19, 6.20 and 6.21): after the execufitimeoprevious case,
robot B is selected as the new coordinator. Robot A is fuiith#re back blocked
by the defender, while the goalie starts moving perpendical the ball to pre-
vent a goal. The problem description corresponds to (tme firom robot B's
perspective):

id position (X,y)
A 952 -1288
B 685 -371

defender| 908 -1006
goalie 2369 -140
ball 1595 -4

Since robot B is alone in front of the goalie, Figure 6.20 (gse sGf (single-
goalie-front) is retrieved, Figure 6.19a. Thus, the rolhamtdd take the ball and
try to score alone avoiding the goalie (either turning teefano empty spot in the
goal or dodging the goalie).

In the second row, Figure 6.20 (2), we can observe that rolepiioaches the
ball and the defender starts traveling towards that pointels The segmented
image is taken from robot A's point of view, where we can olieeobot B getting

closer to the ball. In the next row, Figure 6.21 (3), robot 8kkithe ball while the
defender tries to steal it. The defender does not manage theball, although

the goalie moves to block it and succeeds (segmented imdgjgune 6.21 (4)).

However, the trial in this occasion is not stopped, sincegttadie has not kicked
the ball out i.e. it just blocked the ball.

3. Case 3 (Figures 6.22, 6.23 and 6.24): in this final stemtrBhs selected as the
coordinator once again, although as we see next, the casasisd only by robot
A. Thus, given the current state of the world:

id position (X,y)
A 1656 -363
B 1522 114
defender| 1630 -328
goalie 2374 0
ball 1952 -42

The retrieved case corresponds to case sFront (singlesfFagure 6.22a, where
no opponent is considered. Although from our perspectivendn) we can
clearly see in the first picture, Figures 6.23 (1), that thaligds in front of robot
A and therefore, the case sGf (as above) would be more appt@pwe must
recall that a high degree of uncertainty is present withanrtibots’ beliefs. In
fact, if we observe the picture in the Figure 6.23 (2), it tugut that the goalie
moves too much towards its left, leaving the goal free forarisperiod of time
(the segmented image illustrates a free gap in the attagiaat). Thus, the case
execution continues, Figure 6.24 (3) and (4), and in spite@bpponents’ efforts
to prevent the goal, finally robot A manages to score.
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Figure 6.19: Trial example: second case. (a) Retrieved ¢asebots’ paths.
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Figure 6.22: Trial example: third case. (a) Retrieved cfgeaobots’ paths.
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6.6 Discussion and Future Work

In general, analyzing both, the results obtained in sinmiaand the ones obtained
with the real robots, we can confirm that the Case-Based Rewsapproach indeed
improves upon the region-based approach, not only on gacinigher percentage of
balls close to the opponent’s goal, but also, achieving @tqercentage afut balls.
More precisely, the results of the third scenario with the rebots confirms the results
obtained in simulation. In the fourth scenario, once agamaverage of ballsut is
higher for the reactive approach, which confirms that themnigér had more chances to
take the ball.

However, in the last scenario, the reactive approach aetiiavhigher percentage
of ballsto goalcompared to the CBR approach. We must point out that conpéin
ideal executions of both approaches (Figures 6.14 and &4 %gan easily observe that
the reactive approach is more efficient on faster moving #ikt@wvards the attacking
goal, i.e. with two kicks the robots can score. On the copttae attackers with CBR
approach need at least three kicks to complete the sameHesice, the chances for
the goalie to move towards a better position to block theddatl increase, as confirmed
in the percentage dflockedballs by the goalie (60% for the CBR approach vs. 33%
for the reactive approach). These results also supportathatst the CBR approach
had more chances to get closer to the attacking goal, i.ecesded on avoiding the
defender in the first step (Figure 6.14b), while with the tiwa@pproach, the attacker’s
first action was blocked most of the times (Figure 6.15a).e@tise, as the ideal se-
guences shows, the attackers would have had even more opitied to try scoring,
considerably increasing the percentagéoafoal balls.

We must analyze a last issue. Comparing the results obtéandte fourth scenario
in simulation and with the real robots, we can see that in Eitimn, the CBR approach
outperformed the reactive approach. Hence, no mattertibatumber of kicks to goal
is higher, the CBR can still improve the reactive approacbweler, we must always
have in mind that the high uncertainty in the perception lier iobots is not present in
the simulated environment. If we take a look back to Figuleé, we can observe that
after reusing the first case, the ball stops near the penaty #lthough the goalie is
not allowed to leave its action region (the penalty areag, tduthe high uncertainty in
the robot’s world model, the goalie may believe that the isalNithin its action region,
and therefore, try to grab it. In the simulated environméig situation never takes
place, unless the ball is actually within the penalty areandé, while in the real world
the trial could end with the goalie clearing the ball, ildock ball in the statistics, in
simulation the attacker would probably be able to scoreaite goalball.

This fourth scenario situation, where the attackers areantfof the opponent’s
goal, verifies that in this kind of domains (high uncertajrtighly dynamic and real
time response requirements) to solve critical situations useful to have a reactive
strategy rather than a deliberative strategy. When the pdagre in front of the goal,
there is no need of reasoning about interesting plays.ddsteing focused on trying to
score as fast as possible is the best strategy. We must ateomeer that the defenders
are forbidden to enter the penalty area, and thus, the opptesam has less opportuni-
ties to take the ball. The goalie is the last obstacle to sa@eal. Thus, acting fast is
crucial. However, a deliberative strategy outperformsagtiee one for the remaining
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situations, i.e. in the middle, back, sides and corners®fitid where the opponents
have more chances of stealing the ball.

Regarding the defender’s performance, we have confirmedisiirag the CBR ap-
proach is a better strategy to avoid the defender stealmfdh because of the explicit
passes between teammates. The reactive strategy almdsesldie chances for the
defender to steal the ball compared to the CBR approach.

In conclusion, we believe we have indeed verified all thrageotlyeses presented in
the beginning of the chapter. First, both experiments irugtion and with the real
robots confirm that applying Case-Based Reasoning tecbsigla feasible alternative
to procedural programming; second, the real robots exgarisnreinforce the ability
of the CBR approach to handle uncertainty; and third, admith) experiments encour-
age the advantages of performing a cooperative strateggifartasks within dynamic
adversarial domains, as the robot soccer presented in thiks w

As future work, we are interested in studying in depth a corathistrategy integrat-
ing both approaches, i.e. a pure deliberative strategy avitactive one. We believe
that because of the domain features, the reactive compongitalways be part of the
overall strategy to solve critical situations. Hence, bynbiing both approaches we
can benefit from their advantages.
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Chapter 7

Conclusions and Future Work

In this chapter we review the contributions presented is digsertation. We also sum-
marize future research lines to improve the presented appro

7.1 Summary of the Contributions

Designing the decision-making engine of a team of robotsébkallenging task, not
only due to the complexity of the environment where the rehmually perform their
task, which include uncertainty, dynamism and imprecision also because the coor-
dination of a team must be included in this design. The robutst be aware of other
robots’ actions to cooperate and to successfully achiesie tommon goal. Besides,
decisions must be made in real-time and with limited comparial resources. In this
thesis we have proposed a Case-Based Reasoning systertidarsatection in a team
of robots within the robot soccer domain.

We next go through the contributions presented in this dig8en and briefly sum-
marize the conclusions drawn from each chapter:

Case definition and Case Base description

A case represents a snapshot of a game, i.e. the descriptibe environment,
the actions the robots should perform, i.e. the solutiormig$on, and the case
scope, i.e. general domain knowledge. An initial set of sdmses been manually
created. When the system loads the case base, a larger seesfisautomati-
cally derived through spatial transformations. The congptase base is divided
in two sets to reduce the search space during retrieval.

Assessing case similarity

When comparing the current problem to solve with the casdtigase base, we
first compute their similarity based on what we call tte-controllablefeatures.
The values of these features cannot be directly modified &ysyistem. Differ-
ent similarity functions have been proposed depending erighatures domains.
The overall similarity results from the aggregation of thdividual similarities.
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Next, we compute the cost of adapting the current problerhdaase using the
controllablefeatures. The idea underlying this measure is that the sadifcthe
team (not the opponents of course) can move to better poesitioorder to in-
crease the similarity between the state of the world andvhkiated case. The
last measures to compute involve the positions of the opgendhe aim is to
evaluate whether the case is applicable or not even thowgprtblem to solve
and the case have been considered similar enough. Thuse é&sagplicable if
the trajectories the ball follows when applying the actiordicated in the solu-
tion of the case are free of opponents. Finally, the opposiemitarity measure
reinforces the similarity degree. All this process is cartdd through a filtering
mechanism. Hence, whenever a case fails in any of the fijfestiages, it is im-
mediately withdrawn and the procedure evaluates the neeticethe case base,
thus reducing the time invested in the search.

Filtering mechanism

After the filtering process takes place, a set of candidadescare obtained. A
sorting algorithm ranks the candidates based on sevetaliari In this work

we have presented five criteria and three different sortiggrathms. We have
performed empirical evaluation in simulation to verify thiae retrieval process
is suitable for the work presented here, and also to deterthie most efficient
sorting algorithm among the three proposed.

Multi-robot architecture, coordination and case reuse

After a case is retrieved, the next step is to reuse it. Hameehave introduced
a multi-robot architecture and a coordination mechanismxerute the actions
indicated by the retrieved case in a cooperative way. Thdismldot system is

composed of two types of robots: thetrieversand theexecutors As their names

indicate, the retrievers are capable of retrieving casesthiey incorporate a CBR
module in their internal architecture. The executors mdtevait for the retrievers
to indicate the case to reuse. Only one case can be execuwdidnat Therefore,

a coordinator is selected to retrieve the next case to reuse.

Once the coordinator informs the rest of the team (retriesad executors) about
the retrieved case, they all first move towards their adaptsitions to start the
execution of the case. During the case reuse, any of thesabay abort the
execution if, based on its beliefs, it finds out that the cas®i applicable any-
more. When the case reuse ends, the process starts agaitingedecoordinator,
retrieving a case, reusing it, and so on.

Supervised learning for acquiring the scope of cases

In this thesis we have also included a first attempt to autenhat adaptation and
acquisition of the case-based reasoning system’s knowledltp respect to the
scope of a case, i.e. the case coverage. To this end, a tp@adtrithm has been
presented. The first step grows the initial scope of a caskapprroximating the

expected one (based on the expert's knowledge), while tbenseone, makes
it converge. We have presented three different functioictigal to this end, and
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evaluated them through simulation and with a real robot. ‘&eefalso included
a simple mechanism to create new cases when no case is found.

Empirical evaluation of the approach

Finally, we have evaluated the retrieval and the reuse sb#ip in simulation
and with real robots comparing the proposed approach (CBfRoaph) with
the region-based approach (reactive approach) preseptdteiCarnegie Mel-
lon team, CMDash. The scenarios consisted of two vs. two gambkere the
attackers played using either the CBR or the reactive appro&/e have imple-
mented the behaviors for the defender and the goalie, wharle wsed against
both types of attackers.

The results showed that the CBR approach not only outpeddrthe reactive
approach in general, scoring more goals, throwing fewels lmlt of the field
and decreasing the defender’s ball possession, but alsueged the team to
behave in a cooperative way, having passes between thkeatachen possible.
The experiments also demonstrated that in this kind of dosd@igh uncertainty,
highly dynamic and real time response requirements) tcesoliical situations
it is sometimes useful to have a reactive strategy rather dhdeliberative strat-
egy where acting fast is crucial. Thus, we believe that thahination of both
strategies is essential to obtain an effective robot behnavi

7.2 Future Directions

The presented work introduces a complete framework for thieraselection problem
in ateam of robots, starting from the decision-making uhglcoordinated execution of
the selected actions. As concluded in the previous seaimhpbserving the successful
results obtained through the experimentation, we can dla@the goals of the thesis
have been achieved, while the proposed hypotheses haveedsoverified. However,
and as expected, improvements and open issues are stilhgenle next review the
open challenges proposed through this dissertation.

Retrieval Step

The cost function should model not only the distance the tohave to travel

to reach their adapted positions, but also the possibleaolest the robots may
encounter in their paths. However, it must be taken into aecthat the cost may
vary from decision time, i.e. during retrieval, to executtone, i.e. during reuse,
since the obstacles are other robots that are constantlinpna®ther parameters
such as robot’s orientation or velocities can also be censdiwhen defining the
cost function.

In order to increase flexibility in the applicability measuwe could make use of
the fuzzy representation of the free path and the opponesiiasity functions.

The evaluation of the candidate cases could be extendddding not only the
problem description, but also an analysis of the soluti@tdption. This way we
could discriminate between similar cases whose problemrigi¢i®ns are equal,
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but with different actions. To this end, the outcome of theseal case should be
included in the case description so that different solugicein be compared.

It would be also interesting to include for each case desoripa list of most
likely cases to be retrieved in the next cycle of the CBR. Muy patterns of
case executions can be obtained for further analysis, suttteaevaluation of the
team behavior or prediction of future states.

Reuse Step

The selection of the case to reuse could be improved cotirsigtite proposals
of each retriever robot. Thus, a negotiation mechanismldhmeiintroduced so
the robots could bargain for selecting the most suitable taseuse among the
retrieved ones.

Some of the available negotiation mechanisms we can find enlitbrature,
among others, and that should be studied to determine tiasitity, are:

¢ voting mechanismavhere the retrievers would vote for a case or a set of
candidate cases, and the most voted case would be selected;

¢ bidding mechanismsvhere each retriever indicates along with the proposed
case, a bid representing the confidence on how suitable tieves case
is given its current internal beliefs (we must recall thatentainty in the
robot’s beliefs is always present in different degrees); or

e argumentation mechanismehich are far more complex, since the robots
(agents) must exchange arguments for or against the prispagamitted
for discussion. However, this approach might not be feadibldomains
where acting fast is crucial.

Revise Step

Including this step in the current approach is fundameffitaki expect the sys-
tem to automatically improve its performance as well as tapaénd to learn
new situations encountered through time. However, becafutbe nature of the
domain, and more precisely, the continuous property of tmeadn, the design of
this latter step is very challenging. In order to revise #gsed case, at least the
following questions should be analyzed:

e when to consider that a potential case btsted i.e. identify the initial
situation;

e when does ifinish i.e. which are the actions to store as part of the solution
of a case; and,

e how to evaluate theutcomeof the performed actions to determine if the
case is useful or not for achieving the robot’s goals (i.esitpee or negative
feedback).

Some previous works have been already presented in the gdr&tsgaing these
issues [51, 37, 27], and should be studied in detail in omedapt their ideas to
the robot soccer domain.
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As discussed in the experimentation chapter, we shouldstuisly in more detail the
combination of the two types of strategies, deliberative mgactive, in order to benefit
from the advantages of both. Having a deliberative stratefyndamental for making
decisions from a high level point of view, considering thenpdete state of the world,
as well as past history or future predictions of the statdéutiem. However, a reactive
strategy is also essential when fast response is requirgmite critical situations.

Finally, the parameters used in the approach, such as tidsslcould be modified
on-line in order to alter the behavior of the retrieval ane thuse step. Thus, differ-
ent cases would be retrieved modifying the team strategyeMer, these parameters
could vary based on the time and score of the game. For irsstanosider a situation
where few minutes remain for ending the game and the tearsirggolt would be then
desirable that the team switched to an offensive strategycOMld achieve this through
two means: we could design a specific set of cases for eachofygteategy, and let
the retrieval step to select the most suitable type of cageesented in this disserta-
tion; or we could vary the parameters of the approach sudhctses that would be
initially withdrawn, would now be candidates because thesnees’ thresholds have
been altered. In the case of the free path function for it&taa case is discarded if an
opponent is within the ball’s trajectory(whose width isgaetrized by a given thresh-
old). If we alter the value of this latter parameter, we cordduce the width of the
trajectory. Hence, the opponent that initially occupied jpé the path, would not be
considered within it anymore, and therefore, the case woeld next candidate. Sim-
ilarly, the ball's scope and the opponents’ scope can beratsdified on-line, and as
a consequence, the retrieval process of the CBR system igieabds well, which in
turn, alters the robots’ behavior.
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