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Foreword

Distributed constraint satisfaction (DisCSP) is a new model of constraint rea-
soning, where problem elements are distributed among agents and cannot be
grouped into a central one for some reasons. A solution, as in the classical case,
must satisfy all constraints. In a distributed setting, a solution can be achieved
by message passing among agents.

This book deals with algorithmic approaches for DisCSP solving. The differ-
ent types of distributed algorithms, synchronous, asynchronous and hybrids, are
analyzed in the DisCSP context. Taking the pioneering work of Makoto Yokoo
on asynchronous backtracking as reference algorithm, a number of extensions
from a common core are presented here. Among them, we emphasize the new
algorithm which does not add new links among agents during the solving pro-
cess. The extension to non-binary constraints and its practical implementation
are also addressed.

Good part of this work is devoted to privacy, one of the main motivations for
distributed constraint reasoning. A new model of partially known constraints
is proposed, to express those constraint problems which appear to be naturally
distributed. In this model, new algorithms to preserve privacy are proposed.
Looking further to protect privacy, lies are allowed among agents, providing they
will tell the truth in finite time afterwards. Unsurprisingly, enforcing privacy
causes efficiency in the solving process to decrease.

In addition to the conventional evaluation on distributed random problems,
this work considers two applications: distributed meeting scheduling and dis-
tributed stable matching. Since these problems have been widely studied in their
centralized versions, when possible centralized approaches have been extended to
the distributed case, and compared with generic distributed approaches, looking
for the best solving strategy for these kind of problems.

Bellaterra, June 2007

Pedro Meseguer
Researcher of IIIA-CSIC
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Abstract

In recent years, the Artificial Intelligence community has shown an increasing
interest in solving distributed problems using the agents paradigm. When mul-
tiple agents in a shared environment pursue a common goal, there are usually
constraints among the possible actions of these agents. Finding a consistent
combination of actions that satisfies agents’ constraints can be seen as a Dis-
tributed Constraint Satisfaction problem (DisCSP). Various application prob-
lems in multi-agent systems can be formalized as DisCSPs.

This thesis is dedicated to the development of distributed complete algo-
rithms for solving DisCSP. In it, we study three types of algorithms: syn-
chronous, asynchronous and hybrid. We evaluate the proposed algorithms in
two dimensions: efficiency and privacy. Regarding efficiency, we propose new
distributed algorithms which mainly are faster and consume less network re-
sources than state-of-the-art algorithms. Regarding privacy, we propose novel
algorithms to enforce the privacy of the local information held by agents without
using cryptographic tools. The main ideas that we have developed in this thesis
are:

Synchronous Algorithms: The use of variable reordering heuristics for con-
straint satisfaction problems has been shown to be a powerful strategy in order
to improve efficiency. Inspired in this idea, we present two approximations of
the popular minimum-domain heuristic for dynamic variable reordering.

Asynchronous Algorithms: We present a basic kernel for grouping asyn-
chronous backtracking algorithms. By implementing the condition for termi-
nation in this kernel, we obtain four asynchronous algorithms. One of these
algorithms does not add links between agents not sharing constraints, which can
be useful for solving problems where privacy is the main concern.

Hybrid Algorithms: We present a novel algorithm which combines syn-
chronous and asynchronous elements. This algorithm outperforms the reference
asynchronous algorithm.

Non-binary Constraints: Although most of state-of-the-art methods for
DisCSP assume that every constraint involves two variables, they can be ex-
tended to handle constraints involving more than two variables. We present new
versions of existing algorithms to deal with non-binary constraints, including the
addition of redundant constraint projections.

Assignment Privacy : We propose an asynchronous algorithm that allows
agents to maintain their variable assignments private during problem resolution.

Constrain Privacy : We present the Partially Known Constraint model
(PKC ), a new DisCSP model in which constraints are kept private and are

xxi



xxii

only partially known to agents. We propose two algorithms for solving DisCSP
expressed under the PKC model. Both algorithms also consider assignment
privacy.

Enforcing Privacy with Lies: We present a novel algorithm that further
enforces constraint privacy. This is algorithm is based on the idea that agents
may lie. It requires a single extra condition: if an agent lies, it has to tell the
truth in finite time afterwards.

Applications: We consider naturally distributed constraint problems which
have a clear motivation to be tried with distributed techniques: Meeting Schedul-
ing and Stable Matching problems. For each these problems we present dis-
tributed versions. Regarding Stable Matching problems, we consider two well-
known problems: Stable Marriage and Stable Roommates problems. We propose
ways to solve these problems while keeping personal preferences private.

All proposed algorithms in this thesis have been implemented, evaluated and
formally proven to be correct, complete and terminate.



Chapter 1

Introduction

This thesis addresses search algorithms for Distributed Constraint Satisfaction
problems. Distributed Constraint Satisfaction is a novel research topic related
to two well-known research areas: Constraint Satisfaction and Distributed Al-
gorithms. Constraint Satisfaction is the process of finding a solution to a Con-
straint Satisfaction problem (CSP). A CSP consists of a set of variables, each
one taking a value in finite domain. Values are related by constraints that im-
pose restriction to the values that variables can take. A CSP solution is an
evaluation of these variables that satisfies all constraints.

A Distributed Constraint Satisfaction problem (DisCSP) is, thus, a CSP
whose variables and/or constraints are geographically distributed among com-
municating agents1 and cannot be solved by using the centralized approach.2

Analogously to CSP, a DisCSP solution is an assignment of values to variables
which satisfies every constraint. In an algorithm for DisCSP, agents cooperate
and exchange messages in order to find a solution.

A distributed algorithm can be classified in two main classes: synchronous
and asynchronous. In between these two classes are hybrid algorithms, which
combine elements of both algorithm type. In general, a synchronous algorithm
is based on the notion of privilege, a token that is passed among agents. Only
one agent is active at any time, the one having the privilege, while the rest of
agents are waiting. When the process in the active agent terminates, it passes
the privilege to another agent, which now becomes the active agent. In an
asynchronous algorithm every agent is active at any time, and they do not have
to wait for any event. In a hybrid algorithm, an agent may be required to wait
for some special event, but not for every event. In this thesis we consider these
three different classes of distributed algorithms for DisCSP.

Search is one of the common approaches for CSP as well as for DisCSP. A
search algorithm consists in searching a solution within the search space defined
by all possible solutions to the problem. A search method is complete if the

1By agent we mean a software and/or hardware component capable of acting exactingly in
order to accomplish tasks on behalf of its user [Nwana and Ndumu, 1997].

2By centralized we mean single processor, as opposed to distributed.

1
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exploration of the search space is systematic and it is conducted until a solution
is found or the absence of a solution is proven.

1.1 Motivation

Distributed Constraint Satisfaction is motivated by the existence of naturally
distributed CSP, for which it is impossible or undesirable to gather the whole
problem knowledge into a single agent and to solve it using the centralized ap-
proach. There are several reasons for that. The cost of collecting all information
into a single agent could be taxing. This includes not only communication
costs, but also the cost of translating the problem knowledge into a common
format, which could be prohibitive for some applications. Furthermore, gather-
ing all information into a single agent implies that this agent knows every detail
about the problem, which could be undesirable for security or privacy reasons
[Yokoo et al., 2002].

Distributed CSPs can be found in many real domains such as scheduling,
planning and as part of many coordination processes in multi-agent systems.
This thesis contributes to the development of DisCSP solving methods according
to two issues: efficiency and privacy.

Distributed Constraint Satisfaction is an NP-complete task and hence all
DisCSP algorithms have, in the worst case, exponential time in the number of
variable of the problem. In such context, the development of algorithms to solve
DisCSPs as efficient as possible is necessary. This intractability of DisCSP has
motivated the part of our work. We present new approaches and heuristics in
order to improve the efficiency of some state-of-the-art algorithms.

As mentioned above privacy is one of the main motivations to solve dis-
tributed CSP in a distributed form. Privacy in DisCSP is concerned with the
desire of agents to conceal their information about the problem. Most of the ex-
isting algorithms for DisCSP were conceived without taking into account privacy
issues (their agents give constraints and exchange value freely). This makes them
to be unsuitable to solve naturally distributed problems where privacy is the
main concern. Examples of this kind of problems are: Stable Marriage and Sta-
ble Roommate problems [Gusfield and Irving, 1989] where agents often want to
keep their personal preferences private. There exists two main approaches: those
that use cryptographic techniques [Silaghi and Mitra, 2004, Yokoo et al., 2005,
Nissim and Zivan, 2005] and those that enforce privacy by different strate-
gies but excluding cryptography [Silaghi, 2002, Brito and Meseguer, 2003,
Brito and Meseguer, 2005b, Zivan and Meisels, 2005a]. For many applications
the use of secure algorithms based on cryptographic methods is costly and diffi-
cult to implement. In our work we are concerned with DisCSP algorithms that
leak less information that existing ones. We present new DisCSP algorithms
that achieve a higher degree of privacy than existing approaches.
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1.2 Scope and Orientation

The boundaries of this work are established by the following decisions:

• Practical Application. This work is oriented to further extend the applica-
bility of DisCSP algorithms to solve naturally distributed problems. Our
contributions are new approaches and heuristics that improve the perfor-
mance of existing algorithms according to two issues: efficiency, in terms
of computation cost, and privacy.

• General Distributed Constraint Solving. Except for the problems consid-
ered in Part ”Applications”, all algorithms and ideas that we propose in
this thesis are applicable for solving any DisCSP whose agents hold only
one variable. The extension of proposed approaches and heuristics for nat-
urally handling multi-variable variants could be part of further research.

• Complete Search. A different approach to avoid the computationally in-
tractability of Distributed Constraint Satisfaction uses incomplete search
schemas, and they do not guarantee to find a solution to a solvable instance.
In our work, however, we are concerned with complete search algorithms
with polynomial space complexity.

• Empirical evaluation. Because of the practical orientation of our work and
the intractability of DisCSP, the assessment of our contributions is mainly
supported by empirical methods. In our experiments, we have used a set
of benchmarks widely used in the CSP community.

1.3 Contributions

In the following we give the main contributions of this thesis:

• A Family of Asynchronous Backtracking Algorithms. We present a basic
kernel for grouping asynchronous backtracking algorithms. We believe
that this characterization of asynchronous backtracking will help better
understand these non-trivial mechanisms. By implementing the condition
for termination in this kernel, we obtain four asynchronous algorithms.
One of these approaches does not add links between agents not sharing
constraints, which can be useful for solving problems where privacy is the
main concern. These ideas are gathered in:

– C. Bessière, A. Maestre, I. Brito, P. Meseguer. Asynchronous Back-
tracking without Adding Links: a New Member to ABT Family. Ar-
tificial Intelligence. Volume 161, Issues 1-2. pp. 7-24. January,
2005.

• Synchronous Backtracking. The use of variable reordering heuristics for
constraint satisfaction problems has been shown to be a powerful strategy
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in order to improve efficiency. Inspired in this idea, we present two approx-
imations of the popular minimum-domain heuristic for dynamic variable
reordering.

– I. Brito. Synchronous, Asynchronous and Hybrid Algorithms for
DisCSP. Proceeding of the Tenth International Conference on Prin-
ciples and Practice of Constraint Programming (CP-2004). Lecture
Notes in Computer Science, Volume 3258, p. 791, Jan 2004.

• Hybrid Algorithms. We present a novel algorithm which combines syn-
chronous and asynchronous elements. This algorithm outperforms the
reference asynchronous backtracking algorithm. A comparison about syn-
chronous, asynchronous and hybrid algorithms as well as variable reorder-
ing heuristics for synchronous ones can be found in:

– I. Brito, P. Meseguer. Synchronous, Asynchronous and Hybrid Al-
gorithms for DisCSP. Fifth International Workshop on Dis-
tributed Constraint Reasoning at the Tenth International
Conference on Principles and Practice of Constraint Pro-
gramming (CP-2004). Toronto, Canada. September, 2004.

– I. Brito, F. Herrero, P. Meseguer. On the Evaluation of DisCSP Al-
gorithms. Fifth International Workshop on Distributed Con-
straint Reasoning at the Tenth International Conference on
Principles and Practice of Constraint Programming (CP-
2004). Toronto, Canada. September, 2004.

• Non-binary Constraints. Although most of state-of-the-art methods for
DisCSP assume that every constraint involves two variables, they can be
extended to handle constraints involving more than two variables. We
present new versions of existing algorithms to deal with non-binary con-
straints, including the addition of redundant constraint projections.

This ideas were published in:

– I. Brito, P. Meseguer. Asynchronous Backtracking Algorithms for
Non-binary DisCSP. Workshop on Distributed Constraint Sat-
isfaction Problems at the 17th European Conference on Ar-
tificial Intelligence (ECAI-2006), Riva del Garda, 2006.

• Assignment Privacy. We propose an asynchronous algorithm that allows
agents to maintain their variable assignments private during problem res-
olution. This algorithm is based on the idea that agents exchange sets of
consistent values instead of their own assignments.

• Constraint Privacy. We present the Partially Known Constraint model
(PKC ), a new DisCSP model in which constraints are kept private and
are only partially known to agents. We propose two algorithms to solve
DisCSPs expressed under the PKC model. These algorithms also preserve
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agents’ assignments. The ideas related to assignment and/or constraint can
be found in:

– I. Brito, P. Meseguer. Distributed Forward Checking. Proceeding
of the Night International Conference on Principles and Practice of
Constraint Programming, CP-2003. Lecture Notes in Computer
Science, Volume 2833, pp. 801 - 806, November 2003.

• Enforcing Privacy with Lies. We present a novel algorithm to further
enforce constraint privacy. This is algorithm is based on the idea that
agents may lie. It requires a single extra condition: if an agent lies, it has
to tell the truth in finite time afterwards.

– I. Brito, P. Meseguer. Distributed Forward Checking May Lie for
Privacy, Recent Advances in Constraints, Lecture Note in
Artificial Intelligence. Volume 4651, 2007.

• Applications. We consider naturally distributed problems which have a
clear motivation to be tried with distributed techniques. We examine some
DisCSP algorithms for solving several versions of two well-known Stable
Marriage problems [Gusfield and Irving, 1989]: Stable Marriage and Sta-
ble Roommates. We propose a way to resolve these problems while keeping
personal preference private. Four publications develop privacy issues re-
lated to several versions of the Stable Matching:

– I. Brito, P. Meseguer. The Distributed Stable Marriage Problem with
Ties and Incomplete Lists. Workshop on Distributed Constraint
Satisfaction Problems at the 17th European Conference on
Artificial Intelligence (ECAI-2006), Riva del Garda, 2006.

– I. Brito, P. Meseguer. Distributed Stable Matching Problems with
Ties and Incomplete Lists. Proceeding of the Twelfth International
Conference on Principles and Practice of Constraint Programming
(CP-2006). Lecture Notes in Computer Science, Volume 4204,
pp. 675-680, Nantes, 2006.

– I. Brito, P. Meseguer. The Distributed Stable Marriage Problem.
Sixth International Workshop on Distributed Constraint
Reasoning at the Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI-2005). Edinburgh, Scotland,
30 July - 5 August, 2005.

– I. Brito, P. Meseguer. Distributed Stable Matching Problems. Pro-
ceeding of the Eleventh International Conference on Principles and
Practice of Constraint Programming (CP-2005). Lecture Notes in
Computer Science. Volume 3709. pp. 152-166. Sitges, Spain.
September, 2005.
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1.4 Thesis Structure

This document is divided in five Parts and one Appendix. Parts II, III and IV
contain the contributions of our work.

• Part I Background : This part includes two Chapters. Chapter 2 and
3 are an overview of Constraint Satisfaction and Distributed Constraint
Satisfaction frameworks, respectively. In both, we formally define the cor-
responding problems and briefly describe the main solving algorithms that
will useful to understand the following Chapters.

• Part II Approaches: This part has four chapters. In Chapter 4, we study
synchronous backtracking algorithms and present two approaches for vari-
able ordering. In Chapter 5 we consider four asynchronous backtracking
algorithms. In Chapter 6 we present a novel hybrid algorithm, which we
evaluate against synchronous and asynchronous approaches. In Chapter
7 we present several distributed algorithms to deal with non-binary con-
straints and consider the idea of add constraints projections in order to
speed up the search.

• Part III Privacy in DisCSP : This part contains two chapters. In Chapter
8 we study three types of privacy in DisCSP : domain, assignment and con-
straint privacy. We propose three asynchronous algorithms for enforcing
assignment and/or constraint privacy. In Chapter 9, we further enforce
constraint privacy in of the algorithms studied in Chapter 8 by allowing
agents to lie.

• Part IV Applications: In this part we resolve two problems with privacy
requirements: Meeting Scheduling (Chapter 10) and Stable Matching prob-
lems (Chapter 11).

• Part V Conclusions and Appendix : This part contain two Chapters: Chap-
ter 12 where we present the conclusions and further research of our work
and Appendix A, where we analyze centralized and distributed specialized
algorithms to Stable Matching problems with privacy requirements.

1.5 Abbreviations

The abbreviations used in this thesis are summarized next:
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CSP Constraint Satisfaction Problem
DisCSP Distributed Constraint Satisfaction Problem

BT Chronological Backtracking algorithm
DepDB Dependency-directed Backtracking algorithm

GBJ Graph-based Backjumping algorithm
CBJ Conflict-based Backjumping algorithm
FC Forward Checking algorithm

GLS Generic Local Search algorithm
BO Break-out algorithm

MAC Maintaining Arc-Consistency algorithm
DisMS Distributed Meeting Scheduling problem

SensorDCSP Sensor-mobile problem
SBT Synchronous Chronological Backtracking algorithm

SCBJ Synchronous Conflict Backjumping algorithm
ABT Asynchronous Backtracking algorithm
AWC Asynchronous Weak-commitment algorithm
DIBT Asynchronous Graph-based Backjumping algorithm
AAS Asynchronous Aggregation Search

DMAC-ABT Distributed Maintaining Asynchronous Consistency algorithm
ABT-DO Dynamic Ordering Asynchronous Backtracking algorithm

ConBT Concurrent Backtracking Search
ConDB Concurrent Dynamic Backtracking
DisBO Distributed Break-out algorithm
amd1 An Approach of the Minimum-Domain heuristic
amd2 An Approach of the Minimum-Domain heuristic

SCBJ amd1 SCBJ plus amd1
SCBJ amd2 SCBJ plus amd2
ABT kernel Kernel of ABT family

ABT all ABT with all potentially new links added in advance
ABT temp ABT with temporary new links
ABTnot ABT without adding new links
ABThyb ABT -like algorithm with synchronous and asynchronous elements
ABT proj Non-binary ABT with constraint projections
SCBJ proj Non-binary SCBJ with constraint projections

ABT 1 ABT with the single phase strategy
ABT 2 ABT with the two-phase strategy

DisFC 1 DisFC with the single phase strategy
DisFC 2 DisFC with the two-phase strategy

DisFC lies DisFC 1 with lies
SM Stable Marriage problem

EGS Extended Gale-Shapley algorithm
SMI Stable Marriage problem with Incomplete Lists

DisEGS Distributed Extended Gale-Shapley algorithm
DisSM Distributed Stable Marriage problem

DisSMI Distributed Stable Marriage problem with Incomplete Lists
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SR Stable Roommates problem
SRI Stable Roommates problem with Incomplete Lists

DisSR Distributed Stable Roommates problem
DisSRI Distributed Stable Roommates problem with Incomplete Lists

SMT Stable Marriage problem with Ties
SMTI Stable Marriage problem with Ties and Incomplete Lists

DisSMT Distributed Stable Marriage problem with Ties
DisSMTI Distributed Stable Marriage problem with Ties and Incomplete Lists

SRT Stable Roommates problem with Ties
SRTI Stable Roommates problem with Ties and Incomplete Lists

DisSRT Distributed Stable Roommates problem with Ties
DisSRTI Distributed Stable Roommates problem with Ties and Incomplete Lists

DisFC-SM Distributed Forward Checking algorithm for finding Stable Matchings
MS Meeting Scheduling problem

DisMS Distributed Meeting Scheduling problem
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Background





Chapter 2

Constraint Satisfaction

Constraint Satisfaction is a useful framework for modeling and solving many
combinatorial problems. It is central in multiple Artificial Intelligence (AI) prob-
lems, especially in many areas related to scheduling, logistics and planning. In
this chapter, we formally define the Constraint Satisfaction problem, in short
CSP, (Section 2.1) and provide some examples (Section 2.2). We also discuss
the main generic methods for CSPs (Section 2.3).

2.1 What is a Constraint Satisfaction Problem?

A Constraint Satisfaction Problem (CSP) involves a finite set of variables, each
one taking a value in a finite domain. Values are related by constraints that
impose restrictions on the value combinations that subsets of variables can take.
The following is the formal definition of a finite CSP.

Definition 2.1.1. A finite Constraint Satisfaction Problem is defined by a triple
(X ,D, C), where

• X = {x1, . . . , xn} is a set of n variables;

• D = {D(x1), . . . , D(xn)} is a collection of finite and discrete domains;
D(xi) is the initial set of possible values for xi;

• C is a set of constraints among variables. A constraint ci in the ordered set
of variables var(ci) = (xi1 , . . . , xir(i)) specifies the relation rel(ci) of the
permitted combinations of values for the variables in var(ci). An element
of rel(ci) is a tuple (vi1 , . . . , vir(i)), vi ∈ D(xi). The arity of ci is the
number of variables involved by ci, that is, |var(ci)|.

In the above definition, constraints are defined explicitly because they are
given by the sets of permitted combinations of values. Conversely, a constraint
can be defined implicity, in one of the following ways:

11
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• mathematical expressions (e.g. x1 < x2)

• computing procedures (e.g. isPrime?(x1))

• a specific sematic (e.g. the all-different constraint, all-diff(x1, x2, . . .)
which is equivalent to saying that the variables it involves must take dif-
ferent values)

Unless otherwise specified, in this document we assume that constraints are
defined explicitly.

According to the arity, constraints can be classified in three types. The sim-
plest type is the unary constraint, which restricts the values of a single variable.
Every unary constraint can be eliminated by simply preprocessing the domain
of the corresponding variable to remove any value that violates the constraint.
A binary constraints just relates two variables. A binary constraint among vari-
ables xi and xj will be denoted by cij . A non-binary constraint includes three
or more variables.

Definition 2.1.2. A binary CSP is a problem whose constraints are either
unary or binary constraints.

A CSP can represented as a constraint graph. In the constraint graph associated
to a binary CSP, a node represents a variable and a link between nodes represents
a constraint between the corresponding variables.

Definition 2.1.3. A non-binary CSP is a problem with at least one non-binary
constraint.

It is well known that a non-binary CSP can be translated into an equiva-
lent binary CSP. Two general methods are known: the dual problem method
[Dechter and Pearl, 1989] and the hidden variable method [Dechter, 1990]. How-
ever, both methods require the addition of new variables with exponentially large
domains, which is usually seen as a serious drawback.

Solving a CSP is equivalent to assigning a value to each variable such that
all constraints are satisfied. This is, a CSP solution is an assignment of values
to variables which satisfies every constraint. In general, solving a CSP is NP-
complete1. This property directly results from transforming CSPs to SAT, that
is a satisfiability problem for propositional formulas in conjunctive normal form
[Garey and Johnson, 1979]. In the next section we present some examples of
CSPs.

2.2 Examples of CSPs

Constraint Satisfaction can be used to model and solve sev-
eral problems such as: frequency assignment [Box, 1978], belief

1The complexity theory is clearly presented in [Garey and Johnson, 1979]. There, one can
find the definitions of P, NP, NP-complete, NP-hard and P-space problems.
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Figure 2.1: A solution to the 5-queens problem.

maintenance [Dechter and Dechter, 1988], planning and scheduling
[Kautz and Selman, 1992], diagnostic reasoning [Geffner and Pearl, 1987].
Next, we describe two classical CSP examples: the n-queens and the graph-
coloring problems.

2.2.1 N-queens Problem

A large number of problems can be modeled as a CSP. A typical example of CSP
is the n-queens problem. In this problem, the objective is to place n queens on an
n×n chessboard such that queens do not attack each other. One can formalize,
for example, the 5-queens problem as a CSP as follows. There are 5 variables
x1, x2,... ,x5; each one corresponds to the position of a queen in each row. The
domain of the variables is {1, 2, 3, 4, 5}. There exits a constraint between each
pair of queens that forbids involved queens to be placed in the same column or
diagonal line. A solution is a combination of values such that every constraint is
satisfied. Figure 2.1 shows a solution for the 5-queens problem. The letter ”Q”
represent the positions of the queens for each row.

2.2.2 Graph-coloring Problem

Another example of CSP is the graph-coloring problem. In this problem, the
goal is to color the nodes of a graph so that there is not a pair of linked nodes
painted with the same color. Each node has a finite number of possible colors.
This problem can be modeled as a CSP by representing each node of the graph
as a variable. The domain of each variable is defined by the possible colors
that this variable can take. There exits a constraint between each pair of linked
variables that prohibits these variables to have the same color.

A practical application of the graph-coloring problem is the problem of col-
oring a map. In this situation, the goal is to color regions so that no two
neighboring regions have the same color. Figure 2.2 shows an example of the
map-coloring problem. In the following, we describe the basic solving methods
for CSP.
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Figure 2.2: An example of the map-coloring problem. At the top, the provinces
of Cuba. Coloring this map can be viewed as a CSP. The goal is to assign a
color to each region so that no neighboring regions have the same color. At the
bottom, the map-coloring problem represented as a constraint graph.

2.3 Algorithms for Solving CSPs

Existing algorithms for solving CSP can be divided into three types: search,
inference and hybrid approaches. A search algorithm, broadly speaking, is an
algorithm that returns a solution to the problem, usually after evaluating a
number of possible solutions. A search algorithm can be complete or incomplete.

Definition 2.3.1. An algorithm is complete if and only if it guarantees to find
a solution, if one exists, or prove that the problem is unsolvable, otherwise.

Definition 2.3.2. An algorithm is incomplete when it cannot guarantee that if
it ends without finding a solution then the problem is unsolvable.

Inference methods translate a CSP P into a new one P ′ which is equivalent to the
original (that is, if P is satisfiable, then P ′ has the same solutions as P , otherwise
P ′ is also unsatisfiable). Presumably, P ′ is easier to solve than P . Inference
methods also can be complete or incomplete. A complete inference method
always finds a solution or detects unsatisfiability for any CSP. In contrast, an
incomplete inference method may terminate without solving the problem. In
that case, the additional use of a search algorithm is required. Hybrid algorithms
result from combining search algorithms and incomplete inference methods.
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2.3.1 Complete Search

The simplest complete algorithm is based on the generate-and-test paradigm.
The algorithm tests, one by one, all the candidate solutions in the search space
of the CSP until finding a solution or exhausting all of them.

Definition 2.3.3. The search space of a CSP is defined by the elements in the
Cartesian product of the domains of the variables. Each one of these elements
in search space is also called state and constitutes an hypothetical solution for
the CSP.

This algorithm is very simple, and it has been proven inefficient. In contrast, the
tree-search procedures with backtracking try to discard multiple non-solutions
at once. A backtracking algorithm keeps a subset of variables and their values.
This subset is called a partial solution since all variables within the subset satisfy
every constraint. Initially, the partial solution is the empty set. The partial
solution is expanded by adding new variables one by one, until all variables are
included.

When a variable cannot find a consistent value with the previously assigned
variables in the partial solution, backtracking is performed. Backtracking is the
operation in which the current value of one of the variables that appears in
the partial solution must be changed. After backtracking, the partial solution
is updated and the search is resumed. There exits several backtracking-based
algorithms. They differ in which variable, from the partial solution, is selected to
change its value. Overviews of the classic backtracking-based algorithms appear
in [Tang, 1993].

The simplest backtracking algorithm is Chronological Backtracking (BT )
[Bitner and Reingold, 1975]. In BT, when a variable’s domain becomes empty
because all its values are inconsistent with previously assigned variables, the
value of most recently variable added to the partial solution is changed. The
partial solution that causes backtracking it is considered a nogood.

Definition 2.3.4. A nogood is an incompatible assignment of values to a subset
of variables.

If the algorithm records all discovered nogoods it may avoid repeating elements
of the search space that are not solutions to the problem because the same
reasons. Chronological Backtracking appears in Figure 2.3. BT ends when the
partial solution cannot be extended either because of all variables are included
or because each value of the first variable is prohibited by a nogood. In the
former case, the partial solution constitutes a solution to the problem while in
the latter case, the problem has no a solution. BT is correct (i.e. a solution
reported by the algorithm is a true solution), complete (i.e. if there is a solution,
the algorithm finds it) and terminates.

Figure 2.4 presents one example of the execution of BT for solving the 4-
queens problem. Initially, the partial solution is the empty set. The algorithm
starts by assigning to x1 the first value in x1’s domain. The assignment x1 = 1 is
added to the partial solution. Then, the algorithm ties values 1 and 2 (which are
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Figure 2.3: The Chronological Backtracking algorithm
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Figure 2.4: Example of the execution of the Chronological Backtracking algo-
rithm
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Figure 2.5: Tree Traversal of BT for example in Figure 2.4.
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Figure 2.6: Example of the execution of the Dependency-directed algorithm

inconsistent with x1s value) and finds that value 3 for the x2 is valid with respect
to the constraints with the variables in the partial solution (i.e. variable x1).
Variable x2 is assigned to the third value and x2 = 3 is included to the partial
solution. This causes x3 to not have a valid value. In this situation, x2 has to
change its value since it is the last variable added to the partial solution. Then,
the algorithm assigns to variable x2 the fourth value and adds this assignment
to the partial solution. The algorithm continues until finding a solution.

Backtracking-based algorithms do a depth-first traversal on a search tree,
which is defined by the problem variables and their domains. In the search tree
corresponding to a CSP, each tree level corresponds to a variable and different
tree nodes correspond to different assignment alternatives. Figure 2.5 shows
three traversal done by BT for solving the previous example.

Another backtracking algorithm is Dependency-directed Backtracking
[Stallman and Sussman, 1977], in short DepDB. The idea is to identify the vari-
ables causing failure upon backtracking. When a variable xj cannot find a
consistent value with the variables’ values in the partial solution, the algorithm
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backtracks not to the previous assigned variable like in BT, but to a variable xi

that may allow xj to have at least one valid value.
Figure 2.6 shows an example of the algorithm execution in solving the 6-

queens problem. Let us assume that the algorithm has assigned the first 5
variables in the ordering x1, x2, x3, x4 and x5. The values of these variables
are presented by shaded circles. When the algorithm tries to find a valid value
for x6, it discovers that no value exists; this causes the algorithm to backtrack.
Variables that forbid each value of x6 (i.e. culpable variables) appear in the sixth
row. Since no value of x6 becomes valid if x5 changes its value, backtracking to
x5 is useless. Therefore, the algorithm backtracks to x4 instead of to x5.

There exits a trade-off between the amount of useless backtracking saved by
DepDB and the computation cost and memory required to identify the culprit
variable of a failure. In order to avoid having exponential memory, the Graph-
based Backjumping (GBJ ) algorithm [Dechter and Pearl, 1988] and the Conflict-
based Backjumping (CBJ ) [Prosser, 1993] keep a reduced set of nogoods, using
polynomial amount of memory.

Various heuristics have been studied to improve efficiency. It has been showed
that the ordering of selecting variables and values affects the performance of
backtracking algorithms [Haralick and Elliot, 1980]. The first-fail principle is
commonly used in variable ordering heuristics. The idea is to select first vari-
ables that are more likely to fail. The minimum-domain heuristic follows this
principle. Each time the algorithm has to select a variable to be assigned, it
selects the variable with the least number of valid values in its domain.

The min-conflict heuristic is a beneficial strategy for ordering value domains
[Minton et al., 1992]. The idea is to select first the value which is more consistent
with domains of unassigned variables.

2.3.2 Incomplete Search

In the worst-case scenario, complete algorithms must consider all hypothetical
solutions of a CSP before deciding its satisfiability. This may cause those algo-
rithms to be slow when solving very large CSPs (i.e. problems with large number
of variables and large domains). For solving this kind of problems, incomplete
search methods can be a suitable option.

Local search is a common form of incomplete search. Typically, in most
local search algorithms, the concept neighborhood refers to the set of states
considered as neighbors of a given state. Well-known local search methods,
such as GSAT [Selman et al., 1992], Min-Conflict [Minton et al., 1990], Hill-
Climbing, Random-Walk, and Tabu-Search [Glover, 1986], [Bartak, 1988], can
be seen as specializations the generic local search algorithm The Generic Local
Search [Silaghi, 2002], GLS in short. In the literature, these algorithms also
appear as Iterative Improvement algorithms.

The generic local search algorithm considers one state at a time. The initial
state can be generated randomly or based on some prior knowledge about the
problem to solve. Whether the state in turn constitutes a flawed solution, the
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function GLS()
s ← random valuation of variables;
N ∈ neighborhood(s);
while true do

if ¬ restartRule(s, N) then
c ← selection(s, N);

else
c ← alternative-selection(s, N);

end if
s ← c;
if(solution(s)) return s;
if(abandon()) return failure;

end while

Figure 2.7: The Generic Local Search algorithm.

procedure Breakout()
until current-state is solution do

if current-state is not a local-minimum then
make any local change in current-state that reduces the total cost;

else increase weights of all current conflicts;
end if

end until

Figure 2.8: The Break-out algorithm.

algorithm moves to a neighboring state that improves the current state. Usu-
ally, the improvement is done by changing small parts of the current state, for
instance, by changing the value of one variable in the current assignment. Occa-
sionally, it may happen that state in turn does not have a state that outperforms
it in its neighborhood. In this situation, the current state is called local-optimum.
When the algorithm is trapped in a local-optimum, it uses an alternative strat-
egy for selecting the next state that allows it to escape from the local-optimum.
GLS terminates when a real solution is found or when a termination condition
is reached. GLS appears in Figure 2.7.

A typical local search method for CSP is the Break-out algorithm
[Morris, 1993, Yokoo, 2001]. Figure 2.8 shows the Break-out algorithm (BO)
presented in [Yokoo, 2001]. The algorithm assumes that also, original constraints
of the problem and the inconsistencies found during the search, are represented
as nogoods (i.e. a subset of conflicting variable values). Every conflict has a
weight associated to it, which, initially is equal to 1. The evaluation of a state
is defined as the addition of the weights of all conflicts that appears in the state.
When trapped in a local-minimum, the algorithm increases the weights of all
conflicts in the current state by 1. This causes the evaluation of the current
state to become larger than those of the neighboring states.
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Figure 2.9: Example of an arc-inconsistency CSP.

2.3.3 Inference Algorithms

Incomplete Inference

Although backtracking algorithms outperform the generate-and-test method,
they may still need to explore a large part of the search space before detect-
ing the satisfiability of difficult problems. According to [Gaschnig, 1979], one
of the justifications for this poor performance is that in different parts of the
search space, the search fails because the same reasons, i.e. the same subset of
inconsistent assignments. This phenomenon is called thrashing. Algorithms can
reduce thrashing if they store all discovered nogoods and consider them as new
constraints for the problem.

Alternatively, one can reduce thrashing by combining a backtracking-based
algorithm with a constraint propagation method, in which the implications of a
constraint on one variable are propagated to the rest of the variables. Some
constraint propagation methods have the ability to discard some values that do
not belong to any solution from the variable domains, while others may help to
discover subsets of inconsistent assignments, i.e. nogoods. Within the related
literature, constraint propagation methods are also called filtering algorithms.

The simplest cause of thrashing concerns unary constraints and is referred
to as node-inconsistency [Mackworth, 1977]. If the domain Di of a variable
xi contains a value a that does not satisfy the unary constraint on xi, then
no solution can have the assignment xi = a. Therefore, thrashing because
node inconsistency can be eliminated by simply removing those values from the
domains Di of each variable xi that do not satisfy unary constraint Ci. After
removing all those values, the problem becomes node-consistent.

Another possible source of thrashing is referred to as the lack of arc-
consistency [Mackworth, 1977]. Here ”arc” refers to a directed arc in the con-
straint graph, such as the arc from x1 to x2 in the constraint graph illustrated
in Figure 2.9. In the following, the term arc(xi, xj) represents the arc that goes
from variable xi to xj . We say that arc(xi, xj) is arc-consistent if each value
of xi in Di is consistent with at least one value of xj in Dj . The concept of
arc-consistency is directional, that is, if arc(xi, xj) is arc-consistent then it does
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function REVISE(xi, xj)
delete ← false;
for each value a ∈ Di do

if no exits b ∈ Dj such as (a, b) is consistent then
remove a from Di;
delete ← TRUE;

end if
end for
return delete;

Figure 2.10: The Revise function for achieving arc-consistency in a given arc.

procedure AC-3()
Q ← {(xi, xj); such as xi 6= xj};
while Q is not empty do

arc(xi, xj) ← any arc from Q;
remove arc(xi, xj) from Q;
if REVISE(arc(xi, xj)) then

for each arc from any variable xk to the variable xi

Q ← Q ∪ {arc(xk, xi)}, such as xk 6= xj and xk 6= xi;
end for

end if
end while

Figure 2.11: The AC-3 algorithm for achieving arc-consistency in a CSP.

not imply that arc(xj , xi) is also arc-consistent. An arc is arc-inconsistent if it
is not arc-consistent.

Definition 2.3.5. A CSP is arc-consistent when every arc in the constraint
graph is arc-consistent. Conversely, a CSP is arc-inconsistent if at least one arc
is arc-inconsistent.

Figure 2.9 illustrates an example of an arc-inconsistent CSP. In this example,
there are three variables, x1, x2 and x3 with domains D1, D2, D3, respectively.
There is a binary equality constraint between each pair of variables. arc(x1, x2) is
arc-inconsistent because the value a in the domain of x1 is not valid for the unique
value in the D2, the domain of x2. Similarly, arc(x3, x2) is arc-inconsistent
because the value a of x3 is not consistent with any value in the domain of
x2. In contrast, arc(x1, x3) and arc(x3, x1) are arc-consistent since each value
of x1 in D1 is consistent with at least one value of x3 in D3 and viceversa.
arc(x2, x1) and arc(x2, x3) are also arc-consistent since the unique value in x2

is also included in the domains of x1 and x3.
Clearly, arc(xi, xj) can be made arc-consistent by simply deleting those val-

ues from the domain Di of xi that are not consistent with any values for xj in
Dj . This is the idea of the function REVISE, which appears in Figure 2.10. It
was taken from [Mackworth, 1977].

In order to make a CSP arc-consistent, it is not enough simply to invoke
once the above function for each arc in the constraint graph corresponding to
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the problem. When the domain of xi is reduced by the application of the pro-
cedure REVISE, all the previously checked arcs of the form arc(xk, xi) must be
checked again. Otherwise, the arc-consistency property of those arcs cannot be
guaranteed because some values of the domain of a variable xk may no longer
be compatible with no remaining values of the xi’s domain. [Mackworth, 1977]
presents different versions of full algorithms for achieving arc-consistency. One
of this algorithm is AC-3, which appears in Figure 2.11. Basically, this algorithm
keeps in a queue all the arcs that have to be checked for inconsistency. The algo-
rithm processes one arc at a time. The arc in turn arc(xi, xj) is deleted from the
queue and checked; if at least one value of the domain of xi is removed, then,
every arc of the form arc(xk, xi) has to be inserted in the queue. AC-3 ends
when the queue is empty. The time and space complexities of AC-3 are O(ed3)
and O(e + nd), respectively. In the equations, d is the maximum domain size
and e is the number of constraints.

The term k-consistency refers to stronger degrees of consistency.

Definition 2.3.6. A CSP is k-consistent if, for any set of variables x1, ..., xk−1,
and for any set of consistent values for these variables, any other variable xk will
have at least one value consistent with the assignment of the previous k − 1
variables.

The aforementioned concepts of node-consistency and arc-consistency, are equiv-
alent to 1-consistency and 2-consistency, respectively. A CSP is strongly k con-
sistent if it is j consistent for all j ≤ k.

In [Freuder, 1988], Freuder presents an algorithm to make a CSP strongly k
consistent, for k > 2. From the definition of strong k-consistency, it is straight-
forward to prove that, if a CSP with n variables is n-consistent, then one can
find a solution without any backtracking. Nevertheless, the algorithm for mak-
ing a CSP (with n variables) strongly n-consistent might require, in the worst
case, exponential time in n.

For some kinds of CSPs, however, it is possible to ensure a backtracking-
free search with a degree of consistency smaller than n. If a CSP is strongly k
consistent, and k > w, where w is the width of the CSP, then a search ordering
exists that is backtracking free [Freuder, 1988]. In this property the term ”width
of the CSP” is related to an ordered CSP, i.e. a CSP whose variables have been
ordered linearly. The width of an ordered CSP is the maximum of the width of
all variables. The width of a variable in a ordered CSP is defined by the number
of constraints from the variable to preceding variables in the ordering.

Even when the application of a constraint propagation method on a certain
problem results in a backtracking-free search, this is no good if we spend more
time propagating constraints than we would have spent applying a backtracking
algorithm.

Incomplete Inference plus Backtracking-based Algorithms

When combining with a backtracking-based algorithm, a constraint propagation
method for achieving arc-consistency can either be invoked in a preprocessing
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Figure 2.12: Example of the execution of the Forward Checking algorithm

step or after each assignment performed by the backtracking algorithm. In the
latter case, the algorithm is known as Maintaining Arc-Consistency (MAC ) algo-
rithm [Sabin and Freuder, 1994]. In general, after establishing arc-consistency,
the variable domains can have: (1) no values; (2) exactly one value; or (3) more
than one value. When at least the domain of a variable becomes empty, this
means that the problem is unsolvable. When the domain of each variable con-
tains exactly one value, these values constitute a solution to the problem. If at
least one variable has multiple values in its domain, then the search is required
to find a solution or discover that no solution exits.

Unlike MAC, Forward Checking (FC ) [Haralick and Elliot, 1980] is a
backtracking-based algorithm which makes a limited amount of arc-consistency
after each assignment. FC works like BT, except that it propagates the effect
of each assignment by pruning from the domains of unassigned variables those
are inconsistent with the assignments. Figure 2.12 provides an example of the
execution of FC when solving the 6-queens problem. Let assume that variable
are assigned following the lexicographical ordering: x1, x2, x3, x4, x5, x6. Then,
FC starts by assigning the value 1 to x1 (i.e. the first queen is placed in the
first position of the first row). This assignment is added to the partial solution.
Note this cause each unassigned variable to have 2 invalid values in its domain
(Figure 2.12 (a)). Then, FC selects x2 as the next variable to be added to the
partial solution. x2 is assigned to the value 3 (x2 = 3). After this assignment,
variable x6 has 3 invalid values while the rest of the variables have 4 invalid val-
ues (Figure 2.12 (b)). FC searches for consistent value for x3. Then, FC assigns
the value 5 to x3 (x3 = 5). In this case, the numbers of invalid values are 5, 4, 4
for x4, x5, x6, respectively (Figure 2.12 (c)). FC assigns the second value to x4

(x4 = 2) and adds this assignment to the partial solution. This produces invalid
values for the unassigned variables x5 and x6 is 5 and 6, respectively (Figure 2.12
(d)). Since no value is valid for x6, FC can backtrack to x4 before determining
a values for x5. FC removes x4’s assignment from the partial solution. For this
problem, FC continues the search until finding a solution.
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Complete Inference

A method for complete inference is variable elimination. It consists on removing
one variable of the network, joining all constraints mentioning it and producing
a single constraint that summarizes their effect but it does not mention the
variable. Interestingly, the new network is equivalent in the set of remaining
variables to the previous one. The new network can be processed in the same
way, eliminating one of its variables, and producing an equivalent (in the set
of remaining variables) network with two less variables than the original one.
This process is repeated until every variable has been eliminated. The resulting
network is trivially solved, and its solution is passed back to generate a global
solution. The algorithm that perform this process is adaptive consistency (ADC )
[Dechter and Pearl, 1987], which can be seen as an instance of a more general
algorithm called bucket elimination (BE ) [Dechter, 1999].

The complexity of ADC is O(n(2d)w∗+1) in time and O(ndw∗) in space,
where w∗ is the induced width along the static variable ordering (required by
ADC ). Intuitively, w∗ is the largest arity of intermediate constraints that are
computed and stored by ADC. It holds that w∗ < n.

2.4 Summary

We introduced in this chapter the Constraint Satisfaction framework. We have
given a formal definition for the Constraint Satisfaction problem and presented
some sample problems that can be modeled as CSP. We have also provided an
overview of the main algorithms, that appear in the related literature, for solving
CSP.



Chapter 3

Distributed Constraint
Satisfaction

In recent years, an increasing interest has arisen about problems where infor-
mation is distributed among different computers. If this information cannot
be centralized in a single computer, the classical CSP model is inadequate for
these problems, because it assumes centralized solving. Distributed Constraint
Satisfaction (DisCSP) consider constraint problems, where knowledge (i.e., do-
mains, variables and constraints) is distributed among communicating agents
and cannot be centralized for different reasons (i.e. prohibitive costs of con-
straint translation or security/privacy issues).

This chapter gives an overview of existing research DisCSP. First, we for-
mally introduce the Distributed Constraint Satisfaction problem (Section 3.1)
and provide some examples (Section 3.2). Then, we describe a set of solving
methods for DisCSP (Section 3.3). We also discuss some issues to evaluate
(Section 3.4) and implement (Section 3.5) DisCSP solving algorithms.

3.1 What is a Distributed Constraint Satisfac-
tion Problem?

A distributed CSP (DisCSP) is a CSP whose variables, domains and constraints
are distributed among automated agents. There exist two distributed models
for representing DisCSPs: the variable-based model [Yokoo et al., 1992] and the
constraint-based model [Silaghi et al., 2000].

Definition 3.1.1. A variable-based model is a distributed model in which each
variable belongs to one agent and constraints are shared between agents.

Definition 3.1.2. A constraint-based model is a distributed model in which
each constraint belongs to one agent and shared variables in two constraints not
belonging to the same agent are duplicated.

25
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In this thesis, we focus on problems that are modeled using the variable-based
model, which is the most frequently found in the related literature. According to
the variable-based model, the formal definition of a finite DisCSP is as follows.

Definition 3.1.3. A finite DisCSP is defined by a 5-tuple (X ,D, C,A, φ), where
X , D and C are the same as in CSP (see Definition 2.1.1 in Chapter 2), and

• A = {1, . . . , p} is a set of p agents,

• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables divides C in
two disjointed subsets, Cintra = {cij |φ(xi) = φ(xj)}, and Cinter = {cij |φ(xi) 6=
φ(xj)}, called intra-agent and inter-agent constraint sets, respectively. An intra-
agent constraint cij is known by the agent owner of xi and xj , but it is unknown
by the other agents. Usually, an inter-agent constraint cij is known by the agents
φ(xi) and φ(xj) [Yokoo et al., 1998, Hamadi et al., 1998].

Similar to CSP, a solution of a DisCSP is an assignment of values to vari-
ables satisfying every constraint (although DisCSP literature focuses mainly on
solving inter-agent constraints). Distributed CSPs are solved by the collective
and coordinated action of agents A. We assume the following communication
model ([Yokoo, 2001]):

• agents communicate by sending messages;

• an agent can send messages to other agents if it knows their addresses;

• the delay in delivering a message is finite, though random;

• for a given pair of agents, messages are delivered in the ordering they were
sent.

From now on, we identify the agent number with its variable index (∀xi ∈
X , φ(xi) = i) in DisCSPs where every agent owns exactly one variable. In this
situation, all constraints are inter-agent constraints, so C = Cinter and Cintra = ∅.
We use the terms ”variables” and ”agents” interchangeably.

Next, we discuss some examples of DisCSP.

3.2 Example of DisCSPs

Here, we describe three examples for DisCSP : the Distributed n-queens prob-
lem, the Distributed n-pieces m-chessboard problem and the Distributed Sensor-
Mobile problem.
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3.2.1 Distributed n-queens Problem

The n-queens problem is a frequent example in Constraint Satisfaction. In the
distributed version of this problem, queens are represented by autonomous agents
[Yokoo et al., 1998]. Similar to the n-queens problem (see Chapter 2, Section
2.2.1), the distributed n-queens problem consists of n queens which must be
located in a n× n chessboard in such a way that no queen attacks any other.

We model this problem as a DisCSP by having the same number of agents
and queens. In this formulation, each queen is represented by an agent which
holds a variable. Besides, each agent is associated to one row of the n×n chess-
board. The variable held by an agent corresponds to the position of the queen
in the row. There exits an inter-agent constraint between each pair of variables.
Every constraint is explicitly defined by the set of allowed combinations of po-
sitions where the involved two queens can be located, i.e. those combinations of
positions where the two queens are not placed in the same column or diagonal
(by construction, two queens cannot be at the same row).

3.2.2 Distributed n-pieces m-chessboard Problem

The n-pieces m-chessboard problem is an extension of the n-queens problem
[Brito and Meseguer, 2003]. This problem consists of n chess pieces and a m×m
chessboard and the goal is to put all pieces on the chessboard in such a way
that no piece attacks any other. Similar to the distributed n-queens problem,
in the distributed version of n-pieces m-chessboard, pieces are represented by
autonomous agents.

One can formalize the distributed n-pieces m-chessboard problem as a
DisCSP as follows. Every chess piece is represented by an agent, which holds
a variable. The domains of each variable contain m ×m values, each one cor-
responds to a position of the m ×m chessboard. Analogous to the distributed
n-queens problem, there exits a constraint between each pair of variables. Con-
straints depend on the way the involved chess pieces attack one another. Each
constraint enumerates the set of combinations of positions where the two in-
volved chess pieces can be located without attacking each other.

3.2.3 Distributed Sensor-Mobile Problem

Inspired by a real distributed resource allocation problem,
[Fernández et al., 2002] introduces the Distributed Sensor-Mobile problem
(SensorDCSP). It consists of a set of sensors {s1, s2, ..., sn} and set of mobiles
{m1,m2, ...mk}. Sensors are required to cooperate for tracking mobiles. Each
mobile must be tracked by 3 sensors. Each sensor can track at most one mobile.
A solution is an assignment of three distinct sensors to each mobile. This
assignment must satisfy two sets of constraints: visibility and compatibility
constraints.

Figure 3.1 presents an example of SensorDCSP. This example includes 6
sensors (s1, s2, s3, s4, s5 and s6) and 3 mobiles (m1, m2 and m3). This figure



28 Chapter 3. Distributed Constraint Satisfaction

m
1

m
2

s
1 s

2

s
4

s
6

s
5

s
3

(a) Visibility constraints

m
1

m
2

s
1 s

2

s
4

s
6

s
5

s
3

(b) Compatibility constraints

m
1

m
2

s
1 s

2

s
4

s
6

s
5

s
3

(c) A solution

Figure 3.1: An instance of the sensor-mobile problem. (a) Visibility constraints.
(b) Compatibility constraints. (c) A solution for the problem.

includes the visibility constraints (visibility graph (a)), compatibility constrains
(compatibility graph (b)) and also a possible solution for this instance (given in
graph (c)). One mobile is visible for a sensor if and only if there exits a directed
arc between them in the visibility graph. Two sensors are compatible if and only
if they are linked by an arc in the compatibility graph. In the solution, the three
sensors assigned to each mobile are the sensors that form a triangle where the
mobile is inside.

In general, finding a solution for the sensor-mobile problem is NP-complete
[Fernández et al., 2002]. Note that this problem can be easily reduced to the
problem of partitioning a graph into cliques of size three, which has been proven
to be NP-complete [Kirkpatrick and Hell, 1983]. In contrast, instances of this
problem, for which every pair of sensors is compatible, can be solved in polyno-
mial time [Fernández et al., 2002].

One can formulate SensorDCSP as a DisCSP, as follows. Each agent repre-
sents one mobile. Each agent includes three variables, one for each sensor that is
required to track the corresponding mobile. The domain of a variable is the set
of compatible sensors. There is a binary constraint between each pair of vari-
ables in the same agent. These intra-constraints must guarantee that sensors
assigned to a mobile are different but compatible. There exits a binary con-
straint between the variables of different agents. These inter-constraints make
every sensor be selected by at most one agent.

Furthermore, we present two other examples of problems that can be mod-
eled as DisCSPs in Part IV Applications. These problems are the Distributed
Meeting Scheduling and Distributed Stable Matching problems, which will be
studied in Chapter 10 and Chapter 11, respectively.
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3.3 Algorithms for Solving DisCSP

The most trivial algorithm for solving a DisCSP is to gather all the informa-
tion about the problem (variables, domains and constraints) into a single agent.
Then, this agent solves the problem using a centralized algorithm (Chapter 2).
In some cases, however, this approach is not convenient. The cost of collecting
the whole problem into a single agent could be very high. Furthermore, in some
applications, agents may desire to keep their local information as private as pos-
sible. In some other problems, agents may desire to participate actively during
the solving process. For example, an agent may want to decide dynamically
which value is more suitable for it, at any given time.

A distributed algorithm for DisCSP does not consider the centralized solving
approach. In a distributed algorithm, all agents cooperate for finding a globally
consistent solution. The solution involves assignments of all agents to all their
variables. Agents exchange messages containing information about their assign-
ments which allow them to check the consistency of assignments with respect to
the problem constraints.

Depending on the model we assume about the timing of events in the dis-
tributed system, we obtain different types of algorithms. In [Lynch, 1997], three
timing models are considered, which are informally described as follows:

1. The synchronous model. “This is the simplest model to describe, to pro-
gram and to reason about. We assume that components (agents) take steps
simultaneously, that is, that execution proceeds in synchronous rounds.”

2. The asynchronous model. “We assume that separate components (agents)
take steps in arbitrary ordering, at arbitrary relative speeds.”

3. The partially synchronous model. “We assume some restrictions on the
relative timing of events, but execution is not completely lock-step as it is
in the synchronous model.”

These three timing models generate three types of algorithms for solving DisCSP.
Broadly speaking, a synchronous algorithm is based on the notion of privilege,
a token that is passed among agents. Only one agent is active at any time, the
one having the privilege, while the rest of agents are waiting. When the process
in the active agent terminates, it passes the privilege to another agent, which
now becomes the active agent. In an asynchronous algorithm every agent is
active at any time, and they do not have to wait for any event. A partially syn-
chronous algorithm is in between these two types. An agent running a partially
synchronous algorithm may be required to wait for some special event, but not
for every event.

To solve a DisCSP instance, the three types of algorithms differ in their
functionality and efficiency. Considering functionality, asynchronous algorithms
are the most general and portable, because they impose no assumptions on the
timing of computation steps. Usually, they are more robust and offer more pri-
vacy than the other two types. Regarding efficiency, defined generally as the
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amount of resources required to compute a solution, there is some debate as
to which type of algorithm is more efficient. Literature concentrates on asyn-
chronous algorithms for solving DisCSP. In following subsections, we describe
several existent synchronous and asynchronous algorithms for DisCSP. Only
a few partially synchronous algorithms have been studied. In Chapter 6, we
present an algorithm that is basically asynchronous although it requires that
some agents to synchronize their actions under certain conditions.

3.3.1 Synchronous Search

The simplest backtracking algorithm for DisCSP is derived from Chronological
Backtracking algorithm (BT ) (Section 2.3, Chapter 2). BT searches for a solu-
tion by continuously trying to make the extension of the current partial solution
(which does not involve all the variables) into a total one.

The distributed version of this algorithm for DisCSP is called SBT. This
algorithm was first presented in [Yokoo et al., 1992]. In this work, it is assumed
that agents only have one variable. SBT requires a static instantiation ordering
of agents. Agents exchange two kinds of messages: ok? and ngd. Following the
static ordering, agents try to extend a partial solution into a total one by adding
consistent assignments for unassigned variables. Initially, the partial solution
is empty. The first agent in the ordering assigns any value to its variable and
inserts this assignment to the partial solution, which is sent, via an ok? message,
to the second agent in the ordering. In general, when a variable receives an
ok? message from the preceding agent in the ordering, it tries to assign a
consistent value to its variable according to the constraints with the previously
assigned variables. If such a value exits, the agent includes this valuation in the
partial solution and sends the partial solution to the next agent in the ordering.
Otherwise, the agent sends a ngd message to the preceding agent in the ordering,
which causes the receiver to search for a new consistent value.

DisBT terminates either because all variables are included in the partial
solution or because every value for the variable of the first agent has been dis-
carded. In the former, the partial solution constitutes a solution for the problem,
while in the latter, the problem is unsatisfiable. SBT is correct, complete and
terminates.

The Conflict Backjumping (CBJ ) algorithm is another CSP method that can
be easily implemented in distributed settings in a synchronous form. As seen
in Section 2.3, Chapter 2, CBJ improves the performance of BT. In CBJ, when
a variable cannot find a consistent value with its constraints and the preceding
variable assignments, the algorithm backtracks not to the previously assigned
variable, but to the closest preceding culprit.

The term SCBJ represents the distributed version of CBJ. This algorithm
was introduced in [Zivan and Meisels, 2003]. SCBJ requires a total ordering
among agents and uses the same kinds of messages as SBT : ok?, ngd. The
only difference between SBT and SCBJ occurs when an agent does not have
a valid value for one of its variables. In this situation, the SBT agent sends a
ngd message to the previous agent in the ordering while the SCBJ agent sends
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a ngd message to the closest culprit agent. For an agent j, the closest culprit
agent is the agent nearest to j, that appears before j in the ordering and holds
a variable which forbids at least one value in j’s domain. The ngd message
includes a nogood, that is the set of previously assigned variables which causes
the sender not to have consistent values in its domain.

Analogous to SBT, SCBJ is correct, complete and terminates. SCBJ is
experimentally compared with other novel synchronous methods in Chapter 4.

3.3.2 Asynchronous Search

Complete Algorithms

The pioneering works of Yokoo and colleagues propose two of the most fa-
mous asynchronous algorithms for DisCSP : the Asynchronous Backtracking
(ABT ) and the Asynchronous Weak-Commitment search (AWC ) algorithm
[Yokoo et al., 1992, Yokoo, 1995, Yokoo et al., 1998]. Both methods assume the
variable-based model.

These algorithms also require a total ordering among agents, which is static
for ABT and dynamic for WCS. This ordering defines the priority of agents.
Agents that appear first in the ordering have higher priority, while agents that
appear last in the ordering have lower priority.

ABT and AWC assume that every constraint is directed following the total
ordering among agents. For each constraint, the lowest priority agent involved
in the constraint is the agent that evaluates the constraint and, therefore, is
called the constraint-evaluating agent. The rest of agents in the constraint, that
is, the agents involved in the constraint with higher priority than the constraint-
evaluating agent, are called the value-sending agents because they send their
assignments to the constraint-evaluating agent, which will check the consistency
of the constraint. For each constraint, one link exits from each value-sending
agent to the constraint-evaluating agent.

The neighbors of an agent Ai refer to the set of agents that share constraints
with Ai. The higher priority agents of an agent Ai is the set of agents that are
neighbors of Ai and appear before Ai in the ordering. Conversely, the lower
priority agents of agent Ai is the set of agents that are neighbors of Ai and
appear after Ai in the ordering.

ABT and AWC use three kinds of messages to solve a problem: ok?, ngd
and addl. They initially assume links between each agent and its neighbors.
In both algorithms, agents start the search by assigning initial values to their
variables. Each time an agent assigns a new value to one of its variables, it
uses an ok? to inform its lower priority agents of the new assignment. Each
agent stores the last received assignments from its higher priority agents in the
agent view. When an agent does not find a value for one of its variables that is
consistent with the assignments in the agent view, the agent backtracks. Both
ABT and AWC have different ways of performing backtracking.

In the ABT algorithm presented in [Yokoo et al., 1992], when an agent can-
not find a consistent value for one of its variables, it finds all the minimal nogoods
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of its agent view, that is, every nogood that does not contain another nogood.
Then, the agent sends one ngd message for every of those minimal nogoods.
Each nogood is sent to the agent with the lowest priority among those that ap-
pear in the nogood that the message contains. After sending these messages, the
agent forgets the assignments of those agents to which it sent a ngd message.

A ngd message causes the recipient agent to record the received nogood as
a new constraint and to try to find a new value consistent with the agent view
and with all recorded nogoods. To simplify the computation of all the minimal
nogoods that are in the agent view of an agent, [Yokoo et al., 1998] propose to
use the whole agent view of the agent as a single non-minimal nogood. This
nogood is sent in a ngd message to the closest agent in the agent view.

Because as agents act concurrently and asynchronously, a ngd message may
be obsolete when received by an agent. In this situation, the agent ignores the
message and sends again its current value to the message sender. If an agent Aj

receives a ngd message, it may be that the received nogood includes a variable
xi belonging to Ai which does not share a constraint with Aj . In this case, Aj

will send an addl message to Ai informing to Ai that, each time xi changes its
value Aj must be informed via an ok? message.

In ABT, the priority ordering of agents is determined at the beginning and
it is maintained statically during the execution of the algorithm. This ordering
identifies the agents that act as constraint-evaluating agents and the agents
that act as value-sending agents. The static ordering has the drawback that any
value proposed by a value-sending agent will not be changed unless an exhaustive
search is performed by the constraint-evaluating agent, which could be costly in
large-scale problems.

AWC can be seen as a modification of ABT, working with a dynamic priority
ordering of agents. In AWC, in addition to the variable’s assignment, every
ok? message also includes the priority value of the sender agent. When the
current assignment is not consistent with the agent view, the agent selects a new
consistent assignment that minimizes the number of constraint violations with
lower priority agents. If an agent cannot find a consistent value with its agent
view, it generates a new nogood, it sends the ngd message to all its neighbors
and increases its priority one unit over the maximal priority of its neighbors.
Then, it finds a consistent value with the assignments of higher priority agents
and informs its neighbors via ok? messages. If no new nogood can be generated,
the agent waits for the next message.

In both algorithms, nogoods are exchanged and stored by agents. This may
lead to extra message passing and extra memory usage. ABT and AWC are
correct, complete and terminate [Yokoo, 2001]. However, the completeness of
AWC may be affected if all nogoods are not stored. This causes AWC to have
an exponential-space complexity.

The original ABT presented by Yokoo and colleagues has been de-
veloped further and studied in number of other works [Yokoo et al., 1998,
Hamadi et al., 1998, Bessière et al., 2001, Bessière et al., 2005]. A new version
of ABT which does this without adding new links is one of the contributions of
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this thesis. This algorithm is presented in Chapter 5.
Next, we mention some other asynchronous and complete algorithms that

have been proposed to solve DisCSP :

• DIBT is distributed asynchronous backtracking algorithm which performs
Graph-based Backjumping without nogood storage [Hamadi et al., 1998,
Hamadi, 1999]. In its original formulation, DIBT is not complete
[Yokoo, 2000, Bessière et al., 2001]. A revised version of this algorithm
is discussed in Chapter 5.

• The Distributed Maintaining Asynchronously Consistency for ABT
(DMAC-ABT ), presented in [Silaghi et al., 2001a], is a complete proto-
col for maintaining asynchronously consistency. DMAC-ABT is a generic
algorithm that can be easily integrated into more complex versions of ABT.

• The Asynchronous Aggregation Search (AAS ) assumes the constraint-
based model [Silaghi et al., 2000, Silaghi and Faltings, 2005]. The algo-
rithm and its later versions can be seen as generalizations of ABT. They
are based on the exchange of sets of partial solutions among agents. Unlike
the variable-based model, where variables are distributed among agents,
AAS considers the dual case where constraints are controlled by a single
agent. The use of AAS may cause that the problem to be solved has to
be translated into a new one. This transformation could be inadequate in
many naturally distributed problems where the initial problem structure
must remain unchanged. This approach is especially suitable for prob-
lems with arithmetic constraints, where variables are common to multiple
agents.

• Following the idea of AWC, other works propose new algorithms which
allow agents to change dynamically the priority ordering during search.
Alternative dynamic variable orderings for DisCSP are investigated in
[Armstrong and Durfee, 1997]. [Silaghi et al., 2001b] say that a large
number of reordering operations in an asynchronous algorithm may
be costly. They suggest performing only a finite number of reorder-
ing operations. However, the experimental results presented in the
work show minor improvements to static ordering ABT. More recently,
[Zivan and Meisels, 2005b] propose a generic method for dynamic order-
ing in asynchronous backtracking (ABT-DO). Agents in the algorithm
choose orders dynamically and asynchronously. At the same time, each
agent acts according to the most updated ordering it knows. An array of
counters represents each suggested ordering of its priority with respect to
others orders. Each time an agent replaces the assignment of its variables,
it may propose a new ordering. In this algorithm, an agent can propose
only orderings which affect to agents with lower priority than itself. Thus,
the first agent in the ordering will never be reordered. The combination of
ABT-DO and heuristic inspired by the idea used for dynamic backtracking
in CSPs [Ginsberg, 1993] was found to be very effective.



34 Chapter 3. Distributed Constraint Satisfaction

• Recent works propose new approaches to DisCSP. In the Concurrent Back-
tracking Search (ConBT ) several search processes asynchronously scan dis-
joined parts of the search space. The search that each process performs is
completely synchronous and when an agent cannot find a consistent value,
it backtracks following a chronological ordering [Zivan and Meisels, 2004a].
In contrast to ConBT, in the Concurrent Dynamic Backtracking (ConDB)
when an agent cannot find a consistent value, it backtracks to the closest
agents involved in the the conflict [Zivan and Meisels, 2004b].

Incomplete Algorithms

Considering asynchronous and incomplete approaches for DisCSP, the Dis-
tributed Break-out algorithm (DisBO) [Yokoo, 2001] is the method that has
been studied the most in the literature. The algorithm is inspired on the Break-
out algorithm (BO) for CSP. Similar to the original Break-out algorithm, DisBO
assumes that the original constraints of the problem and the inconsistency found
during the search, are represented as nogoods (i.e. a subset of conflicting vari-
able values). Every conflict has a weight associated, which initially is equal to
1.

In BO, a flawed solution containing some constraint violations is revised by
local changes until all constraints are satisfied. The evaluation of the flawed
solution is defined by the sum of the weights of all conflicts that appears in it.
The algorithm moves from one flawed solution to another one if the new one has
better evaluation than the preceding one.

DisBO agents exchange two kinds of messages among them: ok? and im-
prove. The former is used by an agent to exchange the current valuation of its
variables while the latter is used to reveal the maximal improvement it will get
if it changes the assignments of its variables. In contrast to BO, in DisBO more
than one variable may change its value in the flawed solution at a time, which
allows the algorithm to take advantage of parallelism. Each agent communicates
only with its neighboring agents, that is, the agents that share a constraint with
them. Neighboring agents exchange values of possible improvements, and only
the agent that can maximally improve the evaluation value may change its value.
Note that it is possible for two non-neighboring agents to change its assignments
concurrently.

Since agents only process local information, they cannot detect when the
whole system is trapped in a local-minimum like in BO. Alternatively, DisBO
agents work with the concept of quasi-local-minimum, which is a weaker condi-
tion than a local-minimum but can be detected via local communications. An
agent is said to be in a quasi-local-minimum if the agent is violating some con-
straint and the possible improvement of it and all its neighboring agents is 0.
When an agent is trapped in a quasi-local-minimum, it increases by 1 the weights
of all constraint violations which help the system to jump out of a possible real
local minimum.
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3.4 Comparing Algorithmic Performance

Some debate has happened about the parameters for measuring the performance
evaluation of the algorithms [Meisels et al., 2002]. We consider that solving dis-
tributed problems requires search effort from individual agents, plus the usage
of a global network that implements message passing. The search effort can be
measured as the total number of constraint checks performed by the set of agents
during one execution, or as the CPU time that an agent requires to complete
such execution (network communication time is not included in this measure).
The network usage is measured as the total number of messages exchanged dur-
ing the resolution of a problem. The cost in time of exchanging one message
is usually higher than the cost of performing a constraint check, although the
exact relation depends on the implementation and the network. Because of that,
we tend to consider better algorithms those which exchange less messages.

In synchronous algorithms, the computation effort is measured by the to-
tal number of constraint checks (cc), and the global communication effort is
evaluated by the total number of messages exchanged among agents (msg)
[Lynch, 1997]. In asynchronous algorithms, search effort is measured by the
number of ”non-concurrent constraint checks” (nccc), which was defined in
[Meisels et al., 2002], following Lamport’s logic clocks [Lamport, 1978]. Each
agent has a counter for its own number of constraint checks. The number of
non-concurrent constraint checks is computed by attaching to each message the
current counter of the constraint checks of the sending agent. When an agent
receives a message, it updates its counter to the higher value between its own
counter and the counter attached to the received message. When the algo-
rithm terminates, the highest value among all the agent counters is taken as the
number of concurrent constraint checks. Informally, this number approximates
the longest sequence of constraint checks not performed concurrently. As for
synchronous search, we evaluate the global communication effort as the total
number of messages exchanged among agents (msg).

Note that, in synchronous algorithms, all constraint checks are performed
sequentially. Therefore, nccc = cc. In this thesis we use the term nccc to refer
to the computation cost in both kinds of algorithms.

3.4.1 Random Binary DisCSP

Random binary problems are commonly used as sample problems to evaluate
the performance of methods for solving CSP and DisCSP. A binary random
CSP class is characterized by 〈n,m, p1, p2〉 where n is the number of variables,
m the number of values per variable, p1 the network connectivity defined as
the ratio of existent constraints, and p2 the constraint tightness defined as the
ratio of forbidden value pairs. The constrained variables and the forbidden value
pairs are randomly selected [Smith, 1994]. Similarly, a binary random DisCSP
is defined by 〈n,m, p1, p2〉, where each element has the same meaning as for
random binary CSP. In addition, each variable is assigned to one agent.
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3.5 Simulator

Ideally, to evaluate a new algorithm one should have n dedicated processors
connected to a common network on which tests would be done. However, this
setting is often not available in most of our labs. Even if there is a number of
computers available, the workload of each computer and the load of the commu-
nication network are out of the control of the experimenter, and these aspects
have a significant impact on the efficiency of the algorithms. Because of that,
we consider that simulation on a single computer is a suitable alternative in
order to make most of the experimentation in DisCSP algorithms. After that,
some algorithms can be tested in a real setting, assuming the resources needed
to perform a field test. In the following, we consider the different options for
DisCSP algorithms when are evaluated by simulation on a single computer.

Usually, DisCSP algorithms are described in terms of agents. An agent is
an autonomous entity that contains a part of the problem, is able to perform its
own reasoning process and to communicate with other agents. In a multi-task
computer (for instance, a desktop with Linux operating system (OS)), a direct
option is to implement each agent as a different task, all having the same prior-
ity. The OS scheduler is in charge of activating / deactivating the agents, that
take control of the CPU as any other task in the system. Communication among
agents is performed using a standard task communication facilities (usually im-
plemented using disk storage). This approach is relatively simple to implement
but presents some drawbacks. First, it depends on the OS, so results obtained in
computers with different OS may not be directly comparable. Second, even us-
ing the same computer and the same implementation, it is difficult to reproduce
exactly the same results when repeating the same experiments. There are some
sublet factors (such as the mail server, the network load, the disk storage) which
change between executions and are out of the experimenter’s control. Because
of that, the exact reproduction of previous results is almost impossible with this
approach.

To overcome this obstacle, an alternative is to use a simulator that offers
the same facilities as the OS, but allows one complete control. This simulator
allows agents to execute, perform the scheduling among agents and provide
communication facilities. With this approach, results are reproducible, the same
experiment generates the same results (providing random elements are initialized
with the same seed).

The first simulator of this kind appears in the seminal work of Yokoo
[Yokoo et al., 1992, Yokoo et al., 1998]. Each agent keeps its own clock, which
is incremented at each cycle of computation. One cycle for an agent consists
of reading all its incoming messages, processing them and writing all messages
generated as answers. It is assumed that a message sent at time t is available to
the receiver at time t + 1. This means a kind of synchronicity in the activation
of agents, which is somehow contradictory with the evaluation of asynchronous
procedures.

Another scheduling policy is to activate agents randomly: a random number
between 1 and n determines the identifier of the agent to activate. When this
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agent terminates, the same process selects the next agent to activate. This
approach seems to be more adequate to evaluate asynchronous procedures. In
this work, every algorithm is designed and implemented following this approach.

3.6 Summary

In this chapter we have discussed the basic issues of Distributed Constraint
Satisfaction. We formally define the problem and present problems that can be
modeled as DisCSPs. We also describe the main existent methods for solving
DisCSP. At the end of the chapter, we discuss some issues that have to be
considered when evaluating and implementing DisCSP procedures.
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Chapter 4

Synchronous Backtracking

Synchronous procedures can be directly derived from constraint algorithms in
centralized search when extended to distributed environments. Broadly speak-
ing, a synchronous algorithm is based on the notion of privilege, a token that
is passed among agents. Only one agent is active at any time, the one having
the privilege, while the rest of the agents are waiting.1 When the process in
the active agent terminates, it passes the privilege to another agent, which now
becomes the active one. One of the drawbacks of this algorithms is its low tol-
erance to failure: if the active agent crashes, the algorithm crashes because the
rest of agents will be waiting for receiving the privilege that possibly will never
arrive.

In this chapter, we describe two distributed versions of existing algorithms
for CSP : the Synchronous Backtracking (SBT ) algorithm (Section 4.1) and the
Synchronous Conflict-based Backjumping (SCBJ ) algorithm (Section 4.2). In
addition, we introduce two approaches for dynamic variable reordering in syn-
chronous backtracking algorithms (Section 4.3). Empirically, we compare the
results of SCBJ with and without variable reordering on the n-queens problem
and on random instances (Section 4.4).

4.1 Synchronous Backtracking

As seen in Chapter 2, the basic backtracking algorithm (BT ) for CSP was
presented in [Bitner and Reingold, 1975]. A value assignment to a subset of
variables that satisfies all the constraints within the subset is constructed. This
subset is called a partial solution. Initially, a partial solution is an empty set.
In SB a partial solution is expanded by adding consistently new variables one
by one, until it becomes a complete solution (which involves all the variables) or
until a new variable cannot find a consistent value. When for one variable, no

1Except for special topological arrangements of the constraint graph.
[Dechter and Pearl, 1988] proposes a synchronous algorithm where several agents are
active concurrently.

41
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value satisfies all the constraints with the variables in the partial solution, then a
backtracking is performed. That is, the value of most recently added variable to
the partial solution is changed. The algorithm finishes when a complete solution
is found or when the first variable cannot find a compatible value (which means
the problem is unsolvable).

In [Yokoo et al., 1998], BT was modified to yield synchronous backtrack-
ing (SBT ) algorithm for DisCSP. SBT requires a instantiation ordering among
agents. Basically, agents exchange two types of messages to find a solution: ok?
and ngd. Each ok? message contains the assignments of the preceding agents.
An agent sends a ngd message if it cannot find a consistent value. After re-
ceiving any of these messages, recipient agent becomes the active agent. When
an agent receives a partial solution from the preceding agent, it instantiates its
variable based on the constraints that it knows. If the agent finds such a value,
it appends this assignment to the partial solution, which is passed to the next
agent. If no instantiation of its variable can satisfy the constraints, then it sends
a backtracking message to the previous agent.

Regarding efficiency, the major drawback of SBT is that the problem is
solved sequentially. In particular, after trying all the values without finding any
consistent, the SBT agent sends a ngd to the previous variable in the ordering,
which is not necessarily the culprit variable.

4.2 Synchronous CBJ

The Synchronous Conflict-based Backjumping (SCBJ ) algorithm
[Zivan and Meisels, 2003] is a distributed version of the centralized Conflict-
based Backjumping (CBJ ) algorithm [Prosser, 1993]. SCBJ performs
non-chronological backtracking, that is, an agent does not necessarily backtrack
to the previous agent in the total order. Each agent keeps the conflict-set
(CS ), formed by the assigned variables which are inconsistent with some value
of the agent variable. Let self be a generic agent. When self discovers that
all the values of its domain are forbidden by the assignments of previously
assigned variables, self backtracks directly to the agent which include the
closest conflicting variable in CSself , say xi, and sends CSself − {xi} to be
added to CSi. Like SBT, SCBJ exchanges ok? and ngd messages, which are
processed as follows (in the following self is the receiver agent):

• ok?(partial-solution). self receives the partial solution, assigns its variable
consistently, selects the next variable and sends the new partial solution
to it in an ok? message. If self has no consistent value, self sends a ngd
message to the agent containing the closest conflicting variable in CSself .

• ngd(conflict-set). self has to change its value, because sender has no
value consistent with the partial solution. The current value of self is
discarded, and the new conflict-set of self is the union of its old conflict-
set and the received one. After this, self behaves as after receiving an ok?
message.
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After receiving any of these messages, self becomes the active agent. self passes
the privilege to other agent sending to it an ok? or a ngd message. The search
ends unsuccessfully when any agent encounters an empty domain and its CS is
empty. Otherwise, a solution is found when the last agent is reached and it has
a consistent value for its variable.
Since the activation of the message is caused by the reception of a message, it
may happen that the active agent crashes. In this situation, the whole system
also crashes.

4.3 Heuristics for Dynamic Variable and Value
Ordering

As seen in Chapter 2, the first-fail principle is commonly used for guiding the se-
lection of variables for assignment [Haralick and Elliot, 1980]. A common and ef-
fective heuristic is to select the variable with minimum-domain size (md). When
we use md in an algorithm, after any assignment, the domain of each unassigned
variable is updated discarding inconsistent values.

In a distributed setting, an agent does not have enough information about
the whole problem. An interesting question for synchronous search is how to
implement dynamic variable reordering, and in particular md.

If self is the active agent, self knows the values assigned to previous vari-
ables, because it has received the current partial solution. But self does
not know the constraints between previous variables and unassigned ones.
Therefore, self cannot compute the minimum domain heuristic exactly, un-
less it uses extra messages. Alternatively, we propose to estimate the vari-
able with minimum domain by using one of the following approximations
[Brito and Meseguer, 2004, Brito, 2004]:

• amd1. Each agent computes the interval [mini,maxi] of the minimum and
maximum number of inconsistent values in the domain of every unassigned
variable xi with the partial solution. This interval is included in the ok?
message. Then, the next variable to be assigned is chosen as follows:

– if there is xi such that mini ≥ min{d,maxj}, ∀xj unassigned, selects
xi (where d is the domain size);

– otherwise, selects the variable with maximum maxj .

• amd2. This approach only computes the current domains of the unas-
signed variables after ngd messages. When self sends a ngd message to
xj , instead of sending it directly to xj it goes chronologically. Each inter-
mediate variable recognizes that it is not its destination, and it includes
the current size of its domain in the message. This messages ends in xj

and after assigning it, the minimum domain heuristic without considering
the effect of xj ’s assignment can be applied on the subset of intermediate
variables. It causes some extra messages, but its benefits pay-off.
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lex SCBJ SCBJamd1 SCBJamd2
n nccc msg nccc msg nccc msg
10 1,612 170 2,142 127 1,181 141
15 31,761 2,231 31,540 1,951 9,048 695
20 6,518,652 306,337 960,467 46,685 21,684 1,212
25 1,771,192 70,336 25,533,029 1,015,628 138,591 6,718

rand SCBJ SCBJamd1 SCBJamd2
n nccc msg nccc msg nccc msg
10 965 91 1,742 81 881 103
15 4,120 247 7,697 241 2,978 223
20 19,532 921 20,661 596 8,523 482
25 21,372 746 31,849 586 18,165 815

min SCBJ SCBJamd1 SCBJamd2
n nccc msg nccc msg nccc msg
10 2,800 204 2,239 138 2,240 162
15 35,339 2,210 16,735 916 18,694 1,244
20 215,816 10,765 235,540 11,636 29,089 1,214
25 19,949,074 791,089 3,617,532 144,083 56,143 1,869

Table 4.1: Results for distributed n-queens with lex, rand and min value order-
ing.

Regarding dynamic value ordering, we consider the min-conflict heuristic
[Minton et al., 1992], which prefers values that are more consistent with do-
mains of unassigned variables. An exact computation requires extra messages.
To avoid this, we propose an approximation, which consists of computing the
heuristic assuming each agent knows the initial domains of the rest of agents. It
is worth noting that if the variable ordering is static, the value ordering heuristic
becomes static as well, and the value ordering can be computed in a preprocess-
ing step, before the search starts.

4.4 Experimental Results

In this section, we evaluate SCBJ algorithms for solving the distributed n-queens
problem and instances of the random binary problems. Regarding dynamic
variable ordering, we consider three approaches for variable reordering: (i) SCBJ
plus a lexicographical and static variable ordering (the original SCBJ ), (ii) SCBJ
plus adm1, in short, SCBJ amd1 and (iii) SCBJ plus adm2, in short, SCBJ amd2.
amd1 and adm2 are the two dynamic variable reordering approaches described
the in previous section. Regarding dynamic value ordering, we consider three
approaches for the three algorithms above: (i) lex, a lexicographical and static
value ordering, (ii) rand, in which values are chosen in random ordering; and
(iii) min, the approach for dynamic value ordering based on the min-conflict
heuristic seen in the previous section.

4.4.1 Distributed n-queens Problem

As seen in Chapter 3, the distributed n-queens problem is the classical n-queens
problem seen in Chapter 2 (locate n queens in an n×n chessboard such that no
pair of queens are attacking each other) where each queen is held by an agent.
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Figure 4.1: Constraint checks and number of messages for SCBJ, SCBJ amd1,
SCBJ amd1 on binary random DisCSP.

We measure the efficiency of any algorithm by the number of constraint checks
(nccc) and the number of messages (msg), which represent, respectively, the
computation and communication efforts that the algorithm consumes to solve a
problem.

We consider four instances of the n-queens problem: n = 10, 15, 20, 25. Table
4.1 shows the results in terms of nccc and msg, averaged over 100 executions
with different random seeds (ties are broken randomly).

We observe that the random value ordering provides the best performance
for every algorithm and every dimension tested. Considering SCBJ, approximat-
ing minimum domains heuristic has opposite results: amd1 requires more nccc
although uses less messages; amd2 improves on nccc but requires more messages
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min SCBJ SCBJamd1 SCBJamd2
p1 nccc msg nccc msg nccc msg

0.20 7,100 3,277 907 153 1,811 687
0.50 44,024 9,367 5,637 783 11,677 2,669
0.80 102,153 15,111 16,206 1,843 40,449 7,142

Table 4.2: Results near of the pick of difficulty on binary random classes 〈n =
16,m = 8〉 with min-conflict value ordering.

for n = 10, 25. In addition, amd2 produces more stable results, specially when
the value ordering heuristic is not good (lex and min).

4.4.2 Random Binary DisCSP

We have tested the proposed algorithms on random instances with 16 agents
and 8 values per agent, considering three connectivity classes: sparse (p1=0.2),
medium (p1=0.5) and dense (p1=0.8). In Figure 4.1, we report results averaged
over 100 executions for SCBJ, SCBJ amd1, SCBJ amd2. In this case value are cho-
sen following the lexicographical static order. Considering SCBJ, approximating
minimum domains heuristic is always beneficial in terms of nccc and msg. When
using SCBJ amd1, the baseline of constraint checks is not zero. This is due to the
heuristic computation done as a preprocessing step. Consistently, in the three
classes tested, amd1 provides better results than amd2, both in terms of checks
and messages.

We also considered the min-conflict value ordering heuristic. Table 4.2 re-
ports the results for solving the hardest instances (near to the pick of difficulty).
SCBJ amd1 is the algorithm which requires the less number of nccc and msg.
However, both approaches for dynamic variable reordering result more efficient
than SCBJ in terms of nccc and msg.

We also compared SCBJ, SCBJ amd1, SCBJ amd2 with respect to the ran-
dom value ordering. This results are omitted because they show a minor but
consistent improvement of all the algorithms with the respect to the lexicograph-
ical value ordering approach. The relative ranking of algorithms obtained with
random value ordering remains.

4.5 Summary

In this chapter we have studied the performance of the SCBJ on n-queens in-
stances and on random DisCSP. We proposed two approximations of the min-
imum domain heuristic for dynamic variable selection. Similar to the effect of
using dynamic variables and values reordering for solving CSP, empirically, we
show the benefic of using these techniques in synchronous backtracking algo-
rithms for solving DisCSP.



Chapter 5

Asynchronous Backtracking

Note: A large part of the work described in this chapter is the result of a col-
laboration with Christian Bessière and Arnold Maestre (LIRMM, Montpelier,
France). The discussion of the kernel for ABT algorithms and the theoretical
results associated thereof are mainly due to them, however we can say that we
have made substantial contributions to the remaining parts of this chapter.

In asynchronous search, all agents are active at any time, having a high de-
gree of parallelism. However, the information that any agent knows about other
agents is less updated than in synchronous procedures. Generally, asynchronous
algorithms are more difficult to understand and implement than synchronous
ones. This chapter is devoted to the study of asynchronous backtracking algo-
rithms.

The structure of this chapter is as follows. We first describe the well known
Asynchronous Backtracking (ABT ) algorithm from Yokoo and colleagues (Sec-
tion 5.1). We propose a basic kernel for grouping asynchronous backtracking
algorithms (Section 5.2). This kernel is correct, but it does not guarantee termi-
nation. By implementing the condition for termination in this kernel we obtain
four algorithms (Section 5.3). We also present some new ideas to improving the
performance of asynchronous backtracking algorithms (Section 5.4). We present
experimental results of algorithms on random DisCSP (Section 5.5).

5.1 Asynchronous Backtracking Algorithm

Asynchronous backtracking (ABT ) [Yokoo et al., 1992, Yokoo et al., 1998] was
a pioneering algorithm used to solve DisCSP, its first version dating from 1992.
ABT is executed autonomously and asynchronously by each agent in the net-
work. Each agent makes its own decisions, informs other agents about them,
and no agent has to wait for the others’ decisions. The algorithm computes
a global consistent solution (or detects that no solution exists) in finite time;
its correctness and completeness have been demonstrated. ABT requires con-
straints to be directed. A constraint causes a directed link between the two
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constrained agents: the value-sending agent, from which the link originates, and
the constraint-evaluating agent, at which the link finalizes. To make the network
cycle-free, there is a total order among agents, which is followed by the directed
links.

In the following, we present a description of how ABT works. To follow
we recall the notion of nogood as inconsistent assignment of values to variables
(presented in Definition 2.3.4, Chapter 2).

Definition 5.1.1. A directed nogood for the value c of variable xk is xi = a ∧
xj = b∧. . . ⇒ xk 6= c, meaning that the assignment of c to xk is inconsistent with
respect to the assignments of a, b, . . . to xi, xj , . . .. This nogood is a justification
of c removal, as long as the values a, b, . . . are assigned to variables xi, xj , . . ..
The left-hand (lhs) and right-hand sides (rhs) of a nogood are defined from the
position of ⇒.

Each agent keeps its own agent view and nogood store. Considering a generic
agent self , self ’s agent view is the set of values that it believes to be assigned
to agents connected to self by incoming links. The nogood store keeps nogoods
received by self as justifications of inconsistent values. ABT agents exchange
three types of messages: ok? (assignments), ngd (nogoods) and adl (link re-
quest). When self makes an assignment, it informs those agents connected to
it by outcoming links. self always accepts new assignments, updating its agent
view accordingly. When self receives a nogood, it is accepted if it is consistent
with self ’s agent view, otherwise it is discarded as obsolete. An accepted no-
good is added to self ’s nogood store to justify the deletion of the value it targets.
When self cannot take any value consistent with its agent view, because of the
original constraints or because of the received nogoods, new nogoods are gener-
ated by resolution of its nogood store and each one is sent to the closest agent
involved, causing backtracking. If self receives a nogood mentioning another
agent not connected with it, self is required to add a link from that agent to
self . From this point on, a link from the other agent to self will exist. The
search terminates once quiescence is achieved, meaning that a solution has been
found, or when the empty nogood is generated, meaning that the problem is
unsolvable.

Figure 5.1 presents an example of ABT execution. The problem has three
agents, x1, x2, x3, with variable domains {1, 2, 3}, {2}, {1, 2}, respectively, and
constraints x1 6= x3 and x2 6= x3. First, each variable takes on a value. In the
Figure, the underlined value in each domain represents the current assignment.
In Figure 5.1(a), the agent view of x3 will be {(x1 = 1), (x2 = 2)} after receiving
ok? messages from x1 and x2. Those messages generate two nogoods that are
stored in the nogood store of x3: {(x1 = 1)∧(x3 6= 1)} and {(x2 = 2)∧(x3 6= 2)}.
Then, a consistent value for x3 does not exist. Agent x3 resolves the nogood
store obtaining a new nogood (i.e. {(x1 = 1) ∧ (x2 6= 2)}). Then, agent x3,
sends a nogood message with this new nogood to agent x2, the lowest priority
agent involved in it (Figure 5.1(b)). When receiving this nogood message, agent
x2 records it. This nogood contains agent x1, which is not connected with x2

by a link. Therefore, a new link must be added between x1 and x2. Agent
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Info: x1 = 1

x1 x2

x3

D1={1, 2, 3} D2={2}

D3={1, 2}

x1 x2
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D1={1, 2, 3} D2={2}

D3={1, 2}

x1 x2

x3

D1={1, 2, 3} D2={2}

D3={1, 2}

x1 x2

x3

D1={1, 2, 3} D2={2}

D3={1, 2}

Info: x2 = 2

(a) (b)

(c) (d)

Back: x1 = 1 & x2 = 2

AddLink Back: x1 = 1 

Figure 5.1: Example of ABT execution.

x2 requests that x1 sends x1’s value to x2, and adds x1 = 1 to its agent view
(Figure 5.1(c)). Agent x2 checks whether its value is consistent with the agent
view. Since the nogood received from agent x3 it is not obsolete (it is compatible
with its assignment x2 = 2 and its agent view {x1 = 1}), the assignment x2 = 2 is
inconsistent because of this nogood. The agent view {(x1 = 1)} of x2 constitutes
a nogood because x2 has no other possible values. There is only one agent in this
nogood, i.e., agent x1, so agent x2 sends a nogood message to agent x1 (Figure
5.1(d)). By receiving this nogood message, agent x1 records this nogood. Agent
x1 checks whether its value is consistent with the agent view. Agent x1 changes
its values taking the value 2 and informs to agents x2 and x3. The current value
of agent x2 is consistent with the new value of agent x1. When agent x3 receives
the ok? message from agent x1, it updates its agent view with x1 = 2, and
discards the nogood {(x1 = 1)∧ (x2 6= 2)} as obsolete. Agent x3 checks whether
its current value is consistent with its agent view. Finally, agent x3 takes on the
value 2, and the search ends due to the fact that current assignments constitute
a solution for the problem.

5.2 The Unifying Kernel

In the following, we describe ABT kernel, a generic algorithm for variable-based
DisCSP. This algorithm is correct but it may fail to terminate. We also identify
the condition to assure termination.
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5.2.1 The ABT kernel algorithm

The ABT kernel algorithm requires, like ABT, that constraints are directed —
from the value-sending agent to the constraint-evaluating agent— forming a
directed acyclic graph (in short, DAG). Agents are statically ordered in agree-
ment with their constraint orientation. Agent i has higher priority than agent
j if i appears before j in the total ordering. Take for instance, a generic agent
self , Γ−(self) is the set of agents constrained with self appearing above self
in the ordering. Conversely, Γ+(self) is the set of agents constrained with self
appearing below self in the ordering.

In ABT kernel, nogoods can have been received from lower priority agents,
or derived from constraints with higher priority agents. ABT kernel takes the
following options with respect to nogoods,

1. One nogood per removed value. Each agent keeps only one nogood per
removed value. This option, also taken in some version of ABT, assures a
polynomial space complexity.

2. Nogood resolution. When all values of a variable xk are ruled out by
some nogoods, these nogoods are resolved by computing a new nogood
newNogood as follows. Let xj be the closest variable (in the total order)
to xk in the left-hand side of the nogoods, with value b. lhs(newNogood)
is the conjunction of the left-hand sides of all nogoods for values of xk with
the exception of xj . rhs(newNogood) is xj 6= b. newNogood is sent to xj .
Agent k removes nogoods with xj in their left-hand side from its nogood
store.

Each agent keeps its agent view and a nogood store, which must be consistent.
The agent view of self is the set of values it believes are assigned to Γ−(self)
agents. Agents exchange assignments and nogoods until a solution is found or
inconsistency is detected. A message msg can be of the following types (sender
is the sending agent and self is the receiver),

• ok?: informs self that sender has made a new assignment msg.Assig;

• ngd: informs self that sender has found a nogood msg.Nogood as a cause
of inconsistency requiring self not to take rhs(msg.Nogood);

• stp: informs self that no solution exists and stops the procedure.

ABT kernel appears in Figure 5.2. In the main procedure ABTkernel, each agent
selects a value and informs other agents (CheckAgentView call, line 2). Then, a
loop receives and processes messages (lines 3-8).

ok? messages are processed by ProcessInfo and they are always accepted.
After receiving an ok? message, the agent view of self is updated to include the
new assignment, and any nogood inconsistent with the agent view is removed
(Update call, line 1). Then, after the change in the agent view, a consistent value
for self is searched (CheckAgentView call, line 2). CheckAgentView checks if
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procedure ABTkernel()

1 myV alue ← empty; end ← false;
2 CheckAgentView();
3 while (¬end) do
4 msg ← getMsg();
5 switch(msg.type)
6 ok? : ProcessInfo(msg);
7 ngd : ResolveConflict(msg);
8 stp : end ← true;

procedure CheckAgentView(msg)
1 if ¬consistent(myV alue, myAgentV iew) then
2 myV alue ← ChooseValue();
3 if (myV alue) then for each child ∈ Γ+(self) do sendMsg:ok?(child, myV alue);
4 else Backtrack();

procedure ProcessInfo(msg)
1 Update(myAgentV iew, msg.Assig);
2 CheckAgentView();

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood, Γ−(self) ∪ {self}) then
2 for each assig ∈ lhs(msg.Nogood) \ Γ−(self) do Update(myAgentV iew, assig);
3 add(msg.Nogood, myNogoodStore); myV alue ← empty;
4 CheckAgentView();
5 else if msg.sender ∈ Γ+(self) ∧ Coherent(msg.Nogood, self) then

SendMsg:ok?(msg.sender, myV alue);

procedure Backtrack()
1 newNogood ← solve(myNogoodStore);
2 if (newNogood = empty) then
3 end ← true; sendMsg:stp(system);
4 else
5 sendMsg:ngd(newNogood);
6 Update(myAgentV iew,rhs(newNogood) ← unknown);
7 CheckAgentView();

function ChooseValue()

1 for each v ∈ D(self) not eliminated by myNogoodStore do
2 if consistent(v, myAgentV iew) then return (v);
3 else add(xj = valj ⇒ self 6= v, myNogoodStore); /*v is inconsistent with xj ’s value*/
4 return (empty);

procedure Update(myAgentV iew, newAssig)
1 add(newAssig, myAgentV iew);
2 for each ng ∈ myNogoodStore do
3 if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore);

function Coherent(nogood, agents)
1 for each var ∈ nogood ∪ agents do
2 if nogood[var] 6= myAgentV iew[var] then return false;
3 return true;

Figure 5.2: The ABT kernel algorithm for asynchronous backtracking search.
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the current value of self is still consistent (line 1). If not, it tries to select a
consistent value (ChooseValue call, line 2). In this process, some values of self
may appear as inconsistent. The nogoods justifying their removal are added to
the nogood store (line 3 of ChooseValue). If a new consistent value is found,
this new assignment is notified to all agents in Γ+(self) through ok? messages
(line 3). Otherwise, self has to backtrack (Backtrack call, line 4). Backtrack
generates a new nogood by the resolution of existent nogoods for the values of
self (line 1). If the new nogood is empty, a stp message is sent to the agent
system and the process stops (lines 2-3). Otherwise, the new nogood is sent in a
ngd message to the agent appearing in its rhs (line 5). The value of this agent
is deleted from the agent view (Update call, line 6) and a new consistent value
is selected (CheckAgentView call, line 7).

ngd messages are processed by ResolveConflict. A ngd message coming
from sender is accepted if its nogood has the same assignments as Γ−(self) ∪
{self} (line 1). In this case, the assignments in the nogood for variables not
directly related to self are taken to update the agent view (Update call, line
2). The nogood is stored, acting as justification for removing the current value
of self (line 3). A new consistent value for self is searched (CheckAgentView
call, line 4). If the message is not accepted, it is considered obsolete. Then, if
the value of self was correct in the received nogood, self resends its value to
sender via an ok? message (line 5) because sender has forgotten the value of
self when sending the ngd message (line 6 of Backtrack). If not, self does
nothing because there is an ok? message traveling from self towards sender
that has not arrived yet.

A stp message means that the empty nogood has been derived, so the prob-
lem has no solution and the process must stop.

Eventually, the system can stabilize in a state in which each agent has a value
and no constraint is violated. This state is a global solution and the network
has reached quiescence, which is to say that no message is traveling through
the network. Such a state can be detected using specialized snapshot algorithms
[Chandy and Lamport, 1985]. If no solution exists, an empty nogood will be
generated.

5.2.2 Theoretical Results

ABT kernel has the following formal properties.

Proposition 5.2.1. ABTkernel is correct.

Proof. If a solution is claimed, we have to prove that all agents satisfy their
constraints. Let us assume quiescence in the network. If the current assignments
are not a solution, there exists at least one violated constraint, i.e., an agent still
unsatisfied with its current assignment. In this case, at least one message has
been sent from the unsatisfied agent to the nearest culprit. This message is
either not obsolete, in which case the recipient will change its value and break
our quiescence assumption by sending a message, or obsolete, which means that
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some other message has not yet reached its destination and again breaks our
assumption. ¤

Proposition 5.2.2. ABTkernel cannot infer inconsistency if a solution exists.

Proof. Every nogood resulting from an ok? message is redundant with regard
to the DisCSP to solve. Since all additional nogoods are generated by logical
inference when an agent does not encounter a consistent value for its variable,
the empty nogood cannot be inferred if the DisCSP is satisfiable. ¤
In spite of these good properties, ABT kernel may fail to terminate. The problem
lies in the obsolescence of nogoods. The way nogoods are generated guarantees
that every variable appearing in the nogood is above self in the ordering. But
nothing ensures that those variables are in Γ−(self). This leads us to the fol-
lowing observation.

Lemma 5.2.3. ABTkernel may store obsolete information.

Proof. Since a nogood may contain an unrelated agent u above self in the
ordering, it cannot be locally checked for obsolescence as u will not send its new
value to self . Thus, an agent can end up storing indefinitely information that
is no longer updated. ¤
Worse, the agent may use that information to prune a value. If there is a
solution including this value, it will be missed. Since ABT kernel cannot infer
inconsistency if a solution exists, it will not terminate.

Lemma 5.2.4. Storing obsolete information, ABTkernel agents may fall into
an infinite loop.

Proof. Let i be an agent keeping a nogood about an unrelated agent u above
i in the ordering, i.e. xu = a ⇒ xi 6= c. Suppose this nogood is now obsolete
since xu changed its value, and c is the only value of xi in a solution. xi will
try all other values in its domain, find them unfeasible and generate a backtrack
message. When this message will reach u, it will be discarded as obsolete, and i
will continue looping on the same subdomain, sending backtrack messages which
are doomed to be dropped by u. The solution will never be detected. ¤

Proposition 5.2.5. ABTkernel may fail to terminate.

Proof. The proof flows naturally from lemma 5.2.3 and 5.2.4. ¤
If we eliminate obsolete information in finite time, that means that crucial values
will not stay deleted forever. At least some of the backtracking messages will be
processed, and will thus delete a value on some agent above self in the ordering.

Lemma 5.2.6. The first agent in the ordering can never fall into an infinite
loop.

Proof. Every variable in a nogood received by self is above self in the
ordering. So, if agent 1 receives a nogood, it has an empty left-hand side. Thus,
it will never become obsolete. ¤
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Lemma 5.2.7. If the first k − 1 agents in the ordering are not trapped in an
infinite loop and obsolete information disappears in finite time, agent k cannot
fall into an infinite loop.

Proof. Suppose agent k is looping. Since we assume that no obsolete informa-
tion can last forever, some of the backtracking messages sent by k will be seen
as relevant, and will lead to value deletions. Since no agent among 1, . . . , k − 1
is supposed to be in an infinite loop, they can accept only a finite number of
relevant backtracking messages. Thus, they will either stabilize, in which case
k will exit its so-called infinite loop as soon as the obsolete data are deleted, or
generate an empty nogood, which will also stop the entire system. Therefore, k
is not in an infinite loop. ¤

Proposition 5.2.8. Removing obsolete information in finite time, ABTkernel

will terminate.

Proof. By recurrence, lemma 5.2.6 and lemma 5.2.7 show that none of our
agents can fall into an infinite loop. So ABT kernel terminates if obsolete infor-
mation is erased in finite time. ¤

Therefore, complete algorithms based on ABT kernel should be able to discard
obsolete nogoods. If a nogood becomes obsolete, it may survive in the network
only for a limited period of time.

5.3 The ABT Family

In the following, we explore ways to remove obsolete information from ABT kernel

in finite time, producing several correct and complete algorithms. This allows
us to rediscover already existent algorithms, like ABT [Yokoo et al., 1998] or
DIBT [Hamadi et al., 1998], derived from ABT kernel in a clean and elegant way.
A first way to remove obsolete information is to add new links thus allowing a
nogood owner to determine whether a given nogood is obsolete or not. An added
link from agent i to agent j can be seen as the universal constraint between xi

and xj , permitting all value tuples. xi should be included in Γ−(xj) and xj in
Γ+(xi), which implies that xj will be informed of the xi’s value changes. These
added links were proposed in the original ABT algorithm [Yokoo et al., 1998].
A second way to remove obsolete information is to detect when a nogood could
become obsolete. In that case, the hypothetically obsolete nogood and the values
of unrelated agents are forgotten. These two alternatives lead to the following
four algorithms,

• Adding links as preprocessing: ABT all. This algorithm adds all the po-
tentially useful new links during a preprocessing phase. New links are
permanent.

• Adding links during search: ABT. This algorithm adds new links between
agents during the search. A link is requested by self when it receives a
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ngd message containing unrelated agents above self in the ordering. New
links are permanent.

• Adding temporary links: ABT temp. This algorithm adds new links
between agents during the search, as in ABT. The difference is that
new links are temporary. This idea has been informally proposed in
[Silaghi et al., 2001c]. A new link remains until a fixed number of mes-
sages have been exchanged through it. After that, it is removed.

• No links: ABTnot. No new links are added between agents. To achieve
completeness, this algorithm has to remove obsolete information in finite
time. To do so, when an agent backtracks it forgets all nogoods that
hypothetically could become obsolete.

In the following we present each of these algorithms in additional detail.

5.3.1 ABT all: Adding links as preprocessing

In a preprocessing phase, ABT all adds a permanent link between every pair
of unrelated agents i and j such that xj may receive a nogood mentioning xi

during the execution of ABT kernel. This is done adding exactly the same links
as in the computation of the induced constraint graph from the initial ordered
constraint graph [Dechter and Pearl, 1988]. These new links are computed as
follows. Agents (graph nodes) are processed from last to first, according to the
total ordering of agents. When an agent is processed, all its parents (related
agents before it in the ordering) are connected by new links if they were not
connected before. These new links are directed, following the total ordering of
agents. The structure of the induced graph is recorded in the sets Γ− and Γ+ of
each agent. During the search phase, ABT all behaves exactly like ABT kernel,
which is now a complete algorithm because each agent is directly connected to
every other agent that could appear in a nogood contained in a ngd message.
Obsolete nogoods will be removed in finite time, so ABT all is a correct and com-
plete algorithm that terminates with a correct answer. Interestingly, it is possible
to modify ABT all in such way that agents do not store nogoods anymore, by
fixing the agent to backtrack to the closest agent in Γ−(self). A somewhat
erroneous form of this algorithm was published in [Hamadi et al., 1998] as the
DIBT algorithm.

5.3.2 ABT : Adding links during search

Instead of linking all possible sources of conflict beforehand, we can wait until the
conflict actually happens, and add a link at that point. The original ABT takes
this approach. ABT uses a fourth type of message, adl, to request the addition
of a new link. Each time an agent j receives information about a higher priority
agent i previously unheard of, an adl message is sent. As a result, xi extends
its Γ+ to include xj , and sends its current value on the newly created link. This
way, each agent storing a nogood is guaranteed to be informed whenever one of
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the variables in the nogood changes its value. The ABT algorithm appears in
Figure 5.3, only those parts which differ from ABT kernel. The main procedure
ABT includes the reception of the adl message (line 9.1), which is processed by
SetLink. When a link request arrives, the sender is included in Γ+(self) (line 1)
and self sends its value through an ok? message (line 2). When a ngd message
is received, ResolveConflict considers if a request for a new link must be sent
(CheckAddLink call, line 2.1). Also, the condition for resending self value to
senders of obsolete ngd messages is simplified (line 5.1). CheckAddLink checks if
unrelated agents appear in the received nogood (lines 1-2). In such case, it sends
a request of new link for each unrelated agent, adding it to Γ−(self) (lines 3-4).
Finally, it updates its agent view taking as the value of the unrelated agent the
value coming in the nogood (line 5). This value will be confirmed or discarded
later, when the link request will cause the just related agent to send its value to
self .

procedure ABT()

1 myV alue ← empty; end ← false;
2 CheckAgentView();
3 while (¬end) do
4 msg ← getMsg();
5 switch(msg.type)
6 ok? : ProcessInfo(msg);
7 ngd : ResolveConflict(msg);
8 stp : end ← true;
9.1 adl : SetLink(msg);

procedure ResolveConflict(msg)
1 if Coherent(msg.Nogood, Γ−(self) ∪ {self}) then
2.1 CheckAddLink(msg);
3 add(msg.Nogood, myNogoodStore); myV alue ← empty;
4 CheckAgentView();
5.1 else if Coherent(msg.Nogood, self) then sendMsg:ok?(msg.sender, myV alue);

procedure SetLink(msg)
1 add(msg.sender, Γ+(self));
2 sendMsg:ok?(msg.sender, myV alue);

procedure CheckAddLink(msg)
1 for each (var ∈ lhs(msg.Nogood))
2 if (var /∈ Γ−(self)) then
3 sendMsg:adl(var, self);
4 add(var, Γ−(self));
5 Update(myAgentV iew, var ← varV alue);

Figure 5.3: The ABT algorithm with permanent links. Only the new or modified
parts with respect to ABT kernel in Figure 5.2 are shown.
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5.3.3 ABT temp: Adding temporary links

Given that links added in ABT serve the sole purpose of informing self when
some nogood becomes obsolete, we may add them during search on a temporary
basis. In fact, as soon as self knows the new value for the linked agent, obsolete
nogoods are discarded and no further information from that agent is needed at
this time, so this additional link could be dropped. It may happen that future
ngd messages will also mention this agent, so the link will have to be established
again. If this happens often, it may be more efficient to keep the link active for
a number of ok? messages, carrying the value changes of the linked agent to
self . This is the approach taken by ABT temp. When a new link is set from
agent i to j, it is maintained for a fixed number k of ok? messages going from
xi to xj . After this number of messages has been sent, the link is removed and
agents i and j become disconnected. The number k of messages for a link is
known a priori by both agents, so two simple counters —one in each agent—
allow for an effective implementation of this technique. When reporting results
the number k is essential, and then this algorithm is mentioned as ABTtemp(k).

5.3.4 ABT not: No links any more

Instead of trying hard to be informed when an unconnected agent changes its
value, self can study its own course of action and update its knowledge accord-
ingly. More precisely, when all values of self have been removed, a new nogood
is generated and sent to the nearest culprit. self knows that this nogood will
possibly reach every variable it contains, forcing them all, in the worst case, to
change their value. For those variables in Γ−(self), there is no need to worry,
because they are bound to inform self . For the others, the very action of back-
tracking can lead to the obsolescence of any nogood inside which they appear.
Hence, self will forget those insecure variables and nogoods upon backtracking.
There are two cases which deserve some attention. First, it may happen that a
forgotten nogood does not become obsolete after all. If self takes the value that
this nogood was removing, then self will necessarily receive again this nogood,
rediscovered by a lower priority agent. Second, it may happen that a nogood be-
comes obsolete because an unrelated, higher priority agent has changed its value
and self has not been notified. If the value suppressed by the obsolete nogood
is not mandatory to find a solution, this mistake does not compromise finding a
solution. On the contrary, if that value is mandatory, self will be forced to try
every other value in its domain before backtracking. A new nogood resolving all
nogoods removing self values will be produced. This nogood will include the
agent that had changed its value, so when sending the ngd message, its value
will be forgotten and search will be resumed. The ABTnot algorithm takes
this approach. This algorithm was described in [Bessière et al., 2001], under the
name DisDB. We call it here ABTnot to follow our scheme. ABTnot only differs
from ABT kernel in the forgetting policy of nogoods that could become obsolete,
and this concerns the procedure Backtrack that appears in Figure 5.4. This
procedure computes the new nogood as the resolvent of the nogoods that justify
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procedure Backtrack()
1 newNogood ← solve(myNogoodStore);
2 if (newNogood = empty) then
3 end ← true; sendMsg:stp(system);
4 else
5 sendMsg:ngd(newNogood);
6 Update(myAgentV iew,rhs(newNogood) ← unknown);
6.1 for each var ∈ lhs(newNogood) \ Γ−(self) do

Update(myAgentV iew, var ← unknown);
7 CheckAgentView();

Figure 5.4: The ABTnot algorithm with no links. Only the new or modified
parts with respect to ABT kernel in Figure 5.2 are shown.

that every value of self is forbidden. If the new nogood is not empty, it is sent
in a ngd message. Then, self forgets the values of agents not in Γ−(self), and
the nogoods including those agents (line 6.1). Finally, a new value consistent
with the agent view is searched.

5.3.5 Discussion

Consider two agents i and j (i before j in the ordering) no originally constrained
but connected in the induced constraint graph. Previous algorithms differ in the
way information flows between these two agents. If i takes a new assignment,
we say that j is informed about this new assignment when j knows it. The
cost of informing j is the minimum number of messages required since i takes
the new assignment until j is aware of it. Algorithm A is better informed than
algorithm B if, for the same problem and the same agent ordering, the cost of
informing j of i changes using A is less than or equal to the cost of informing j
using B. From this concept, we observe a monotonic decrement in the quality of
information handled by the ABT family algorithms, from ABT all to ABTnot.
ABT all is better informed than ABT because both behave in the same way
except when ABT detects a conflict between i and j for first time. In this
case, ABT requires more messages than ABT all. ABT is better informed than
ABT temp since the latter requires some extra messages to set up again temporary
links. And ABT temp is better informed than ABTnot because the former could
inform j in one or two messages, while the latter always requires at least two
messages.

5.4 Implementation Details

In this section we propose some new ideas that could improve the performance
(regarding communication and computation cost) of the ABT -like algorithms.
In order to decrease the number of the exchanged messages, we implemented the
ABT family algorithms considering the following two improvements,
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1. Value in adl. When a new link with agent k is requested by self , instead of
sending the adl message and wait for answer, ABT and ABT temp include
in the adl message the value of xk recorded in the received nogood. After
reception of the adl message, agent k informs self of its current value only
if it is different from the value contained in the adl message. In this way,
some ok? messages can be saved.

2. Avoid resending same values. ABT family algorithms keep track of the
last value taken by self . When selecting a new value, if it happens that the
new value is the same as the last value, self does not resend it to Γ+(self),
because this information is already known. (See line 3 of CheckAgentView
in Fig. 5.2.) Again, this may save some ok? messages.

3. Sequence numbers (ABTnot(seq)). It is possible to enhance slightly the
quality of the information stored by ABTnot in the agent view, as follows.
Each agent keeps a sequence number, which is incremented each time its
value changes. Each time it sends its value, the sequence number is at-
tached. The agent view stores the values and sequence numbers of previous
agents in the ordering. When self receives a message, it keeps the newest
value for each variable in its agent view. In particular, a ngd message
is discarded as obsolete if it contains older values than those recorded in
self ’s agent view. When self sends a ngd message, the computed nogood
contains the values and sequence numbers of involved variables, forgetting
the values of unconnected variables but keeping their sequence numbers.

The network load and search effort could be reduced if agents store the “best”
nogood as a justification of a forbidden value. In the next subsection this idea
is discussed in details.

5.4.1 Selecting the Best Nogood

Regarding polynomial space asynchronous algorithms, agents can store a con-
stant number of nogood for removed value. However, if several nogoods are
available for each value, it may be advisable to choose the most appropriate
resolvent in order to speed up search. Unfortunately, in the most general case,
selecting the most suitable nogoods with respect to one particular criterion (or
set thereof) means generating all possible candidates in order to extract the best
one, which could be prohibitively expensive. Heuristics are usually considered
to tackle such issues: a polynomial-time process, although unable to find the
best candidate, should help to select a worthy candidate in order to make search
more accurate. In this case, when comparing two nogoods we have devised the
following heuristic: select the nogood with the highest possible lowest variable
involved. The rationale for this heuristic is to ensure that each time an agent
discovers that it does not have a consistent value in its domain, the ngd message
is sent as high as possible in the agent ordering, thus saving unnecessary search
effort. A similar idea was proposed in [K. and Yokoo, 2000].
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Our proposed heuristic selects the best nogood after a new nogood is received
without generating all possible nogoods. The new nogood is compared with the
stored nogood choosing the one which has the higher possible lowest variable
involved. When any agent in ABT accepts a ngd message, the incoming nogood
is coherent with its whole view, including its own assignment. Once this nogood
is stored, the local value it refers to is eliminated, which makes the nogood
coherent with the whole agent view except for the local assignment. It is all-
but-self relevant. If self receives a ngd message with a nogood coherent with its
agent view but not with its own assignment, this nogood is all-but-self relevant.
In this case, this nogood deserves to be considered because it brings valuable
information: it gives a valid reason to discard a value, even if that value may
already has been discarded. Thus, the incoming nogood has to be compared
against the current nogood for its target value, and replace it if it is better from
the heuristic point of view.

5.5 Experimental Results

We have tested ABT algorithms, with or without the heuristic of selecting the
best nogood, on distributed random DisCSP. In our experiments, we have gener-
ated instances of 16 agents and 8 values per agent, considering two connectivity
classes, sparse (p1 = 0.2) and medium (p1 = 0.5). Experiments are at the
complexity peak. Specifically, we tested the random classes 〈16, 8, 0.2, 0.7〉 (20
solvable instances out of 50) and 〈16, 8, 0.5, 0.42〉 (27 solvable instances out of
50). In Tables 5.1 and 5.2, we report the number of non-concurrent constraint
checks (nccc) and the total number of messages exchanged (msg), averaged over
100 instances.

Table 5.1 contains the results for the plain ABT algorithms. The parameter
k for ABT temp was adjusted manually after some trials. Only the results for
the best value of k are given. Considering the three algorithms adding links,
ABT all, ABT, and ABT temp, we observe that the better informed the algorithm
is, the less non-concurrent constraint checks it required to solve the problem.
This is at the cost of exchanging more messages. ABT temp is the algorithm
exchanging less messages, followed by ABT and ABT all. ABTnot requires the
highest number of non-concurrent constraint checks. Because it is the worst
informed algorithm, it is more likely to make wrong decisions, requiring more
effort than previous algorithms to solve the same problem. This also implies a
higher number of messages exchanged. ABTnot(seq) dominates ABTnot because
sequence numbers avoid some of the wrong decisions taken by ABTnot.

Table 5.2 shows the effect of using the nogood selection heuristic. We ob-
serve that the number of non-concurrent constraint checks and the number of
exchanged messages decreases consistently for all the algorithms, showing the
benefits of the heuristic. The relative performance of the algorithms remains
unchanged with respect to the plain versions.

Although ABTnot does not add links between any pair of agents not sharing
constraints, it may happen that the agent with lower priority backtracks to the
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p1=0.20 nccc msg p1=0.50 nccc msg
ABTall 4,113 5,060 ABTall 45,917 42,864
ABT 4,077 4,831 ABT 45,571 42,234
ABT temp(10) 4,014 4,709 ABT temp(5) 44,782 39,688
ABTnot 14,908 19,168 ABTnot 53,145 55,869
ABTnot(seq) 9,491 12,243 ABTnot(seq) 47,402 49,857

Table 5.1: Plain ABT s for solving random CSP.

p1=0.20 nccc msg p1=0.50 nccc msg
ABTall 3,701 4,561 ABTall 42,283 39,422
ABT 3,795 4,482 ABT 42,333 39,223
ABT temp(10) 3,731 4,329 ABT temp(5) 41,056 36,171
ABTnot 10,319 13,028 ABTnot 45,320 50,284
ABTnot(seq) 8,127 9,431 ABTnot(seq) 43,981 48,907

Table 5.2: ABT s with nogood selection heuristic for solving random CSP.

agent with higher priority. Thus, the lower priority agent may know the valuation
of the higher priority one, received via a ngd message from an agent connected to
the higher priority agent. In Table 5.3, we report the total number of different
values that are revealed via added links in ABT all, ABT and ABT temp and
via ngd messages in ABTnot. For both tested classes, we observe that the
more informed an algorithm is, the larger number of values it exchanges among
unrelated agents. ABT all and ABTnot, both with and without nogood selection
heuristic, are the algorithms that show the worst and best results, respectively.
Again, the use of sequence numbers in ABTnot slightly improves the original
ABTnot algorithm.

nogood nogood
added selection added selection

p1=0.20 links plain heuristic p1=0.50 links plain heuristic
ABTall 26 193 193 ABTall 50 301 301
ABT 26 182 177 ABT 40 286 284
ABT temp(10) 26 171 168 ABT temp(5) 40 275 273
ABTnot - 126 124 ABTnot - 255 253
ABTnot(seq) - 120 119 ABTnot(seq) - 250 249

Table 5.3: Number of values revealed through added new links in ABT all, ABT,
ABT temp and through ngd messages in ABTnot.

From the above results, we observe the following facts. Regarding computa-
tion effort, consistently for all problems, the more informed an algorithm is, the
smaller nccc it requires. Regarding communication cost, the dynamic links of
ABT improve over the static approach of ABT all. Temporary links of ABT temp

dominate the permanent link approach of ABT. ABTnot, the algorithm not
adding links, has the worst results in both of nccc and msg, showing a slight
improvement when sequence numbers are used (ABTnot(seq)). Regarding the
information revealed among unrelated agents, ABTnot improves the rest of ABT
family algorithms. This leads us to conclude that ABTnot has to be selected only
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if some privacy policy justifies its use. Regarding the nogood selection heuristic,
we observe clear benefits.

5.6 Summary

In this Chapter, we proposed ABT kernel, a simple basic procedure for asyn-
chronous backtracking search. We proved that ABT kernel is correct but does
not guarantee termination. We have presented some extensions of ABT kernel

that handle nogoods and links in a way such that termination is ensured. They
differ only in their extensions with respect to the basic kernel. These extended
algorithms are: ABT, ABT all, ABT temp and ABTnot, the first asynchronous
algorithm that does not add links between agents not sharing constraints. In ad-
dition to presenting the ABT family, throughout this chapter we have discussed
some improvements such as the heuristic of selecting the best nogood. Finally,
we compared experimentally the derived algorithms from the ABT kernel on dis-
tributed random problems. Our experimental results that the earlier links are
added between agents not sharing constraints, the smaller number of messages
the algorithm needs. On the other hand, the longer the duration of added links
is, the greater number of messages the algorithm needs. Although ABTnot is
the least economic algorithm, it exchanges much less information between agents
not sharing constraints.



Chapter 6

Synchronous versus
Asynchronous Backtracking

Distributed algorithms are divided in two main classes: synchronous and asyn-
chronous. There was some debate around the efficiency of these two types of
algorithms for DisCSP. The general opinion was that asynchronous algorithms
were more efficient than the synchronous ones, because of their higher concur-
rency.1 In the last decade, attention was mainly devoted to the study and
development of asynchronous procedures, which represented a new approach
with respect to synchronous ones, directly derived from centralized algorithms.
In this chapter, we continue this line of research, studying the effect of fully
asynchronous search in the context of ABT.

ABT agents assign values to their variables and exchange messages asyn-
chronously and concurrently. When an agent sends a backtracking message,
it continues working without waiting for an answer. This strategy may result
costly in some cases because performing two tasks concurrently could be ineffi-
cient if these tasks keep a dependency relation between them. In this chapter,
we identify a case in which ABT ’s efficiency can be improved if, after backtrack-
ing, an agent waits for receiving a message showing the effect of backtracking
on higher priority agents. We implement this idea on ABThyb, a new ABT -
like algorithm, that combines asynchronous and synchronous elements to avoid
redundant messages.

This chapter is organized as follows. We identify a source of inefficiency in
ABT in Section 6.1. To overcome this, we present ABThyb, the new hybrid
algorithm, in Section 6.2. We provide some theoretical results of ABThyb in
Section 6.3. We also propose a formal protocol to allow agents, in asynchronous
and hybrid algorithms, to process messages by packets instead of one by one
in Section 6.4. Empirically, we compare synchronous, asynchronous and hybrid

1However, a careful reading of [Yokoo et al., 1998] shows that ”synchronous backtracking
might be as efficient as asynchronous backtracking due to the communication overhead” (foot-
note 15).

63
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backtracking algorithms in Section 6.5. Finally, we resume the main proposal
we present in this chapter in Section 6.7.

6.1 Asynchrony in ABT

During the resolution of DisCSP, the largest number of messages exchanged by
ABT agents are ok? and ngd messages. ok? messages are always accepted.
However, some ngd messages may be discarded as obsolete when they arrive
to the receiver. ABT could save some work if these messages were not sent.
Although the sender agent cannot detect which messages will become obsolete
when reaching the receiver, it is possible to avoid sending those which are re-
dundant.

When agent j sends a ngd message, it performs a new assignment and in-
forms about it to lower priority agents, without waiting the reception of any
message showing the effect of the just sent ngd on higher agents. This can be
a source of inefficiency in the following situation. If k sends a ngd message to
j causing j to have no consistent value, then j sends a ngd message to some
previous agent i. If j takes the same value as before and sends an ok? message
to k before i changes its value, k will find again the same inconsistency so it will
send the same nogood to j in a ngd message. Agent j will discard this message
as obsolete, sending again its value in an ok? message. The process is repeated
generating useless messages, until some higher variable changes its value and the
corresponding ok? message arrives to j and k. In the next section we propose
a novel algorithm to avoid sending these redundant messages.

6.2 The ABT Hybrid Algorithm

Based on the intuition described above, we present ABThyb, a hybrid algo-
rithm that combines asynchronous and synchronous elements. ABThyb behaves
like ABT when no backtracking is performed: agents take their values asyn-
chronously and inform lower priority agents. However, when an agent has to
backtrack, it does it synchronously as follows. If k has no value consistent with
its agent view, it sends a ngd message to j and enters in a waiting state. In
this state, k has no assigned value, and it does not send out any message. Any
received ok? message is accepted, updating k’s agent view accordingly. Any re-
ceived ngd message is treated as obsolete, since k has no value assigned. Agent
k leaves the waiting state when receiving one the following messages:

1. an ok? message that breaks the nogood sent by k or,

2. an ok? message from j, the receiver of the last ngd message or,

3. a stp message informing that the problem has not solution.

The justification for leaving the waiting state follows. Case (1) is the confirma-
tion that the ngd message has generated a change in a higher priority agent that
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procedure ABT-hyb()

myV alue ← empty; end ← false; wait ← false;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : if ¬wait then ResolveConflict(msg);
adl : SetLink(msg);
stp : wait ← false; end ← true;

procedure ProcessInfo(msg)
Update(myAgentV iew, msg.Assig);
if wait then

if (msg.sender ∈ rhs(lastNogood)) ∨ (msg.sender ∈ lhs(lastNogood)∧
msg.Assig 6= lastNogood[msg.sender]) then wait ← false;

if ¬wait then CheckAgentView();
procedure SetLink(msg)
add(msg.sender, Γ+(self));
if ¬wait then sendMsg:ok?(msg.sender, myV alue);

procedure Backtrack()
newNogood ← solve(myNogoodStore);
if (newNogood = empty) then

end ← true; sendMsg:stp(system);
else
sendMsg:ngd(newNogood);
lastNogood ← newNogood; wait ← true;

Figure 6.1: The ABThyb algorithm for DisCSP. Only the new or modified parts
with respect to ABT in Figure 5.3 are shown.

breaks the nogood. So k has to leave the waiting state, returning to ordinary
ABT operation. Case (2) considers the situation in which k has a more updated
information than j. Then, until j does not receive the updated information,
it will reject the ngd message as obsolete and resend to k its value in an ok?
message. After receiving it, if k remains in the waiting state, the communication
with j might be broken, since j may say nothing when receiving the updated
information, k will have no notice of this updated information and the algorithm
would be incomplete. Therefore, k has to leave the waiting state, just to redis-
cover the same nogood, send it to j and enter in the waiting state again. This
loop breaks when the updated information reaches j: it will no longer reject
the ngd message because it is not obsolete according to its updated agent view.
Case (3) is the reception of a stp message (the empty nogood has been generated
somewhere), so every agent has to finish its execution.

At this point, ABThyb switches to ABT. ABThyb detects that a DisCSP
is unsolvable if during the resolution an empty nogood is derived. Otherwise,
ABThyb claims that it has found a solution when no messages are traveling
through the network (i.e.quiescense is reached in the network).
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The ABThyb algorithm appears in Figure 6.1. Its difference with the code of
ABT, given in Figure 5.3 (Chapter 5), is around variable wait, that appears in
ABT-hyb, ProcessInfo, Backtrack and SetLink.

6.3 ABThyb: Theoretical Results

6.3.1 Correctness, Completeness and Termination

No matter synchronous points introduced, ABThyb inherits the good theoretical
properties of ABT, namely correctness, completeness and termination. To proof
these properties, we start with some lemmas.

Lemma 6.3.1. In ABThyb, no agent will continue in a waiting state forever.

Proof. In ABThyb, an agent enters the waiting state after sending a ngd
message to a higher priority agent. The first agent (x1) in the ordering will not
enter in the waiting state because no ngd message departs from it. Suppose
that no agent in x1, x2, . . . , xk−1 is waiting forever, and suppose that xk enters
the waiting state after sending a ngd message to xj (1 ≤ j ≤ k − 1). We will
show that xk will not be forever in the waiting state.

When xj receives the ngd message, there are two possible states:

1. xj is waiting. Since no agent in x1, x2, . . . , xk−1 is waiting forever, xj will
leave the waiting state at some point. If xj has a value consistent with its
new agent view, it will send it to xk in an ok? message. If xj has no value
consistent with its new agent view, it will backtrack and enter again in a
waiting state. This can be done a finite number of times (because there is
a finite number of values per variable) before finding a consistent value or
discovering that the problem has no solution generating an stp message.
In both cases, xk will leave the waiting state.

2. xj is not waiting. The ngd message could be:

(a) Obsolete in the value of xj . In this case, there is an ok? message
traveling from xj to xk that has not arrived to xk. After receiving
such a message, xk will leave the waiting state.

(b) Obsolete not in the value of xj . In this case, xj resends to xk its value
by an ok? message. After receiving such a message, xk will leave the
waiting state.

(c) Not obsolete. The value of xj is forbidden by the nogood in the ngd
message, and a new value is tried. If xj finds another value consistent
with its agent view, it takes it and sends an ok? message to xk,
which will leave the waiting state. Otherwise, xj has to backtrack
to a previous agent in the ordering, and enters the waiting state.
Since no agent in x1, x2, . . . , xk−1 is waiting forever, xj will leave the
waiting state at some point, and as explained in the point 1 above, it
will cause that xk will leave the waiting state as well.
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Therefore, we conclude that xk will not stay forever in the waiting state. ¤

Lemma 6.3.2. In ABThyb, if an agent is in a waiting state, the network is not
quiescent.

Proof. An agent is in a waiting state after sending a ngd message. Because
Lemma 6.3.1, this agent will leave the waiting state in finite time. This is done
after receiving an ok? or stp message. Therefore, if there is an agent in a waiting
state, the network cannot be quiescent at least until one of those messages has
been produced. ¤

Lemma 6.3.3. A nogood, discarded as obsolete because the receiver is in a
waiting state, will be resent to the receiver until the sender realizes that it has
been solved, or the empty nogood has been derived.

Proof. If an agent k sends a nogood to an agent j that is in a waiting state,
this nogood is discarded and agent k enters the waiting state. From Lemma
6.3.1, no agent can stay forever in a waiting state, so agent k will leave that
state in finite time. This is done after receiving either,

• An ok? message from j. If this message does not solve the nogood, it will
be generated and resend to j. If it solves it, this nogood is not generated,
exactly in the same way as ABT does.

• An ok? message allowing a consistent value for k. In this case, the nogood
is solved, so it is not resent again.

• A stp message. The process terminates without solution.

Therefore, we conclude that the nogood is sent again until it is solved (either by
an ok? message from j or from another agent) or the empty nogood is generated.
¤

Proposition 6.3.4. ABThyb is correct.

Proof. From Lemma 6.3.2, ABThyb reaches quiescence when no agent is in
a waiting state. From this fact, ABThyb correctness derives directly from ABT
correctness: when the network is quiescent all agents satisfy their constraints,
so the current assignments of agents form a solution. If this would not be the
case, at least one agent would detect a violated constraint and it would send a
message, breaking the quiescence assumption. ¤

Proposition 6.3.5. ABThyb is complete and terminates.

Proof. From Lemma 6.3.3, the synchronicity of backtracking in ABThyb does
not cause to ignore any nogood. Then, ABThyb explores the search space as
good as ABT does. From this fact, ABThyb completeness comes directly from
ABT completeness. New nogoods are generated by logical inference from the
initial constraints, so the empty nogood cannot be derived if there is a solution.
Total agent ordering causes that backtracking discards one value in the highest
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variable reached by the ngd message. Since the number of values is finite,
the process will find a solution if it exists, or it will derive the empty nogood
otherwise.

To see that ABThyb terminates, we have to prove that no agent falls into
an infinite loop. This comes from the fact that agents cannot stay forever in
the waiting state (Lemma 6.3.1), and that ABT agents cannot be in an endless
loop. ¤

6.3.2 Comparison with ABT

In practice (see Section 6.5), we observed that ABThyb improves ABT perfor-
mance. However, there are some cases where the number of messages required
by ABT is shorter than the number of messages required by ABThyb. As an
example, let us consider the following instance,

• 8 variables ({x1, . . . , x8}) with the domains of values: {a, b, c};
• 8 agents ({A1, . . . , A8}), each one holding one variable (xi belongs to Ai,

1 ≤ i ≤ 8);

• 28 constraints, one per pair of variables.

For ABT and ABThyb, we consider the same network conditions (i.e. messages
are received by agents in the same order in both algorithms), the same priority
ordering of agents (lexicographical) and the same strategy of selection of values.
The algorithms start when each agent assigns a value to its variable and informs
the assignment to the agents with lower priority via ok? messages. In our
example, when A7 receives the assignments of the previous agents and a ngd
message from A8, it does not find a consistent value in its domain. The first value
of x7’s domain is forbidden by a conflict found and sent by A8. The second and
the third values are forbidden by the constraint c27, which restricts the values
of x2 and x7. Thus, the nogood store of A7 has the form:

x2 = a ∧ x3 = b ∧ x4 = c ∧ x5 = b ∧ x6 = a ⇒ x7 6= a

x2 = a ⇒ x7 6= {b, c}
In this situation both algorithms take the same action: Agent A7 backtracks

to A6, which is the lowest priority agent involved in the new nogood obtained
by the resolution of the nogood store of A7. After sending the ngd message,
in ABThyb agent A7 enters a waiting state and x7 will remain unassigned until
leaving that state; in ABT it discards x6’s value (the variable belonging to
recipient of the ngd message sent by A7) and every nogood in A7’s nogood store
which mention x6. As result, value a of x7 becomes permitted, and A7 assigns
a to x7.

Afterwards the conflict was discovered by A6, in ABThyb the number of
messages sent is 1 (1 ngd message from A7 to A6 ), while in ABT is 2 messages
(1 ngd message from A7 to A6 and 1 ok? from A6 to A7) in ABT. Let us assume
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that the conflict sent by A7 to A6 (from now on, referred as conflict α) will be
solved when A2 changes the value of x2. It may happen that before α is solved,
A7 receives an assignment from A1, which forbids A7 to assign value a to x7.
The new conflict (referred as β) will be considered by agent A7 in ABThyb when
α has been solved. In contrast, in ABT, both conflicts are going to be tried in
parallel. In ABT, conflict β causes A7 to assign value b to x7. Since this value
is new, A7 has to send a ok? message informing A8 of the new assignment.

In ABT, suppose that β is solved by A2 before α arrives to A6. If β has
been solved, A2 has assigned a new value to x2, which in this example, it is
also consistent with all the current values of lower priority agents. Therefore,
A2 has sent several messages (6 ok? messages) to inform lower priority agents
({A3, . . . , A8}) about x2’s value. These messages do not cause the recipients to
send out any more message. In A6, the new assignment of x2 will arrive first
that the ngd message containing α. Therefore, A6 detects that the nogood is
obsolete because x2’s value. This causes A6 to send again its assignment to A7

(1 ok? message). In total, the number of messages sent by ABT agents is 17: 1
ngd message from A7 to A6; 7 ok? messages from A1 to lower priority agents;
1 ngd message from A7 to A2; 1 ok? message from A7 to A8; 6 ok? messages
from A2 to lower priority agents; 1 ok? message from A6 to A7.

In ABThyb, an agent resolves one conflict after the other. A7 encounters first
α and tries to solve it. The resolution of α implies that all the agents between
A7 and A2 will enter in a waiting state before x2 takes a new value. This implies
several backtracking messages (5 ngd messages). Similar to ABT, A2 has to
inform its lower priority agents of the new assignment for x2 (6 ok? messages).
During this period of time, 7 ok? messages will be sent from A1 to lower priority
agents (the assignment that proves conflict β). Since we have assumed that both
α and β will be solved when A2 assigns a new value to x2, β will be solved as
soon as α is solved. In total, the number of messages sent by ABThyb agents is
18: 5 ngd messages from A7 to A6, A6 to A5, A5 to A4, A4 to A3 and A3 to
A2; 6 ok? messages from A2 to lower priority agents; 7 ok? messages from A1

to lower priority agents. In this example, ABThyb needs one message more than
ABT to solve a pair of conflicts. This occurs since an ABT agent tries to solve
several conflicts concurrently while an ABThyb agent considers one by one.

Next, we prove that if an ABT agent does not find another conflict when a
previous one has not been solved yet, then the number of messages needed by
ABThyb to solve this conflict is less or equal as the number of messages required
by ABT.

Proposition 6.3.6. The number of messages required by ABThyb to solve a
conflict is the same to or less than the number of messages that ABT needs, if
during the resolution of the first conflict no other conflict will be found among
conflicting variables.

Proof. We prove this property by counting the number of ok? and ngd
messages sent by conflicting agents. Let be agents Aj and Ai (Aj < Ai) the
agent that finds the conflict and the agent that resolves it after changing the
value of its local variable, respectively. Let S the set of agents S = {Ai+1 . . . Aj}.
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Regarding ngd messages, before Ai receives the ngd message that forces it
to change the value of its variable, agents in S have sent several backtracking
messages. In ABT, after sending each one of these backtracking messages, the
sender has to assign a new value to its variable without knowing the new value
that Ai’s variable will take. Since we have assumed that no any other conflict
between the agents in S will be discovered before the first conflict is solved,
these assignments will not produce any ngd message in ABT. Therefore, the
number of ngd messages exchanged by agents in S is the same number in both
algorithms.

Regarding ok? messages, each ABThyb agent in S will leave the waiting
state after receiving one of the following messages: (1) an ok? announcing the
new assignment of Ai’s variable, (2) an ok? announcing the new assignment of
any higher priority agents in S that has abandoned the waiting state or (3) a
stp message. Next, we count the number of messages sent by Ak, an agent in
S, considering the above three cases.

1. In ABThyb, Ak takes a value consistent with the assignment of Ai and
sends 1 ok? message to each lower priority agent. In ABT, after back-
tracking, Ak has to assign a value to its variable without knowing the new
value of Ai’s variable. This value may be consistent or inconsistent with
the value taken by Ai. If it is consistent, Ak will send 1 ok? message for
each lower priority agent. Therefore, the number of messages sent by Ak

in both algorithms is the same. If the value of Ak is inconsistent with the
new assignment of Aj ’s, Ak will send 2 ok? messages for each lower prior-
ity agent: one message because the inconsistent value and the other after
assigning a value consistent with Ai’s assignment. Therefore, the number
of messages sent by Ak in ABThyb is less than or equal to the number of
messages sent by Ak in ABT.

2. In ABThyb, if Ak takes a new value before receiving the assignment of
Ai, this means that the assignment may be consistent or inconsistent. If
Ak’s assignment is consistent with the new value of Ai’s variable, then Ak

will send one ok? message for each lower priority agents. Otherwise, it
will send two ok? messages for each lower priority agent. This is the same
situation that happens in ABT discussed in the previous point. Therefore,
the number of messages sent by Ak is the same in both algorithms.

3. In both algorithms when agent Ak receives a stp message, this means that
the search ends because the problem is unsolvable, therefore Ak does not
send any more message. Thus, the number of message sent by Ak in both
algorithms is the same.

For the three cases, no agents in S never sends more messages in ABThyb than
in ABT. Thus, the number of messages sent by ABThyb agents appearing in the
conflict is less than or equal to the number of messages sent by the same agents
in ABT. ¤
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6.4 Processing Messages by Packets

In ABT, agents can process messages one by one, reacting as soon as a message is
received. However, this strategy of single-message process may cause to perform
some useless work. For instance, consider the reception of an ok? message
reporting a change of an agent value, immediately followed by another ok? from
the same agent. Processing the first message causes some work that becomes
useless as soon as the second message arrives. More complex examples (involving
ok? and ngd messages) can be devised, causing to waste substantial effort. To
prevent this kind of useless work, we consider an alternative strategy. Instead
of reacting after each received message, the algorithm reads all messages that
are in the input buffer and stores them in internal data structures. Then, the
algorithm processes all read messages as a whole, ignoring those messages that
become obsolete by the presence of another message.

We call this strategy processing messages by packets, where a packet
is the set of messages that are read from the input buffer until it be-
comes empty. Somehow, this idea was mentioned in [Yokoo et al., 1998] and
[Zivan and Meisels, 2003]. In the latter, a comparison between processing mes-
sages one by one and processing messages by packets is presented. However, in
none of them a formal protocol for processing messages by packets is completely
developed. Instead of reading and processing only one message, when an agent
processes messages by packets, it has to read all its messages from the input
buffer, and processing them as a whole. It means that an agent looks for any
consistent value after its agent view and its nogood store are updated with these
incoming messages. Based on that, we propose a protocol for processing mes-
sages by packets in ABT.2 This protocol requires three lists to store the incoming
messages: ok?-list, ngd-list and the adl-list. In each list we store the messages of
the corresponding type, following the reception order. Each packet of messages
is processed as follows:

1. ok?-list. First, the ok?-list is processed. For each sender agent, all ok?
messages but the last are ignored. The remaining ok? messages update
self agent view, removing nogoods if needed.

2. ngd-list. Second, the ngd-list is processed. Obsolete ngd messages are
ignored. self stores nogoods of no obsolete messages, and it sends adl
messages to unrelated agents appearing in those nogoods. For those mes-
sages containing the correct current value of self , the sender is recorded
in RemainderSet.

3. adl-list. Third, the adl-list is processed updating Γ+(self) without sending
the ok? message.

4. Consistent value. Fourth, self tries to find a value consistency with the
agent view. If such value does not exit, self will backtrack to a lower

2Similarly, in the rest of algorithms that form the ABT family, agents may process messages
by packets.
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priority agent, sending a ngd message, and again, it will search a consistent
value.

5. ok? sent. Fifth, ok? messages containing self current value are sent to
all agents in Γ+(self) and to all agents in RemainderSet. The three lists
become empty.

The search ends when quiescence is reached (i.e. all agents are happy with their
current assignment) or an empty nogood is derived.

6.5 Experimental Results

We have tested ABT and ABThyb algorithms on the same instances of the
distributed n-queens problem and random binary problem that we studied in
Chapter 4. This allows us to compare the experimental results of synchronous
against asynchronous algorithms on those problems. In both algorithms, agents
process messages by packets instead of processing one by one. In addition,
when an agent detects that it has multiple justifications for a forbidden value it
follows the strategy of selecting the best nogood discussed in Chapter 5. Both
algorithms also include the implementation details explained in Section 5.4 of
the same chapter.

Algorithmic performance is evaluated according to the computation effort, in
terms of non-concurrent constraint checks (nccc), and the communication costs,
in terms of the total number of messages exchanged among agents (msg).

6.5.1 Distributed n-queens Problem

We have evaluated ABT and ABThyb algorithms for 4 dimensions (n =
10,15,20,25) of the n-queens problem. Table 6.1 shows the results in terms of
nccc and msg, averaged over 100 executions with different random seeds (ties
are broken randomly). Three value ordering heuristics have been tested lex
(lexicographic), rand (random) and min (min-conflicts) [Minton et al., 1992] on
both algorithms. Likewise for SCBJ in Chapter 4, we have made an approxi-
mation of min, for avoiding extra messages. This is approximation is computed
in a preprocessing step and consists of computing the heuristic assuming initial
domains.

We observe that the random value ordering provides the best performance
for every algorithm and every dimension tested. Considering the relative per-
formance of these algorithms, ABThyb is always better than ABT, in both nccc
and msg.

It is relevant to scrutinize the improvement of ABThyb over ABT with re-
spect to the type of messages. In Table 6.2, we provide the total number of
messages per message type for SCBJ (taken from the experimentation results
given in chapter 4), ABT and ABThyb with random value ordering. In ABThyb,
the number of obsolete ngd messages decreases in one order of magnitude with
respect the same type of messages in ABT, causing ABThyb to improve over
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lex ABT ABThyb

n nccc msg nccc msg
10 2,223 740 1,699 502
15 56,412 13,978 32,373 6,881
20 11,084,012 2,198,304 6,086,376 995,902
25 3,868,136 693,832 1,660,448 271,092

rand ABT ABThyb

n nccc msg nccc msg
10 1,742 332 916 238
15 7,697 1,185 4,007 786
20 20,661 4,772 15,720 2,748
25 31,849 6,553 27,055 3,863

min ABT ABThyb

n nccc msg nccc msg
10 3,716 896 2,988 555
15 49,442 11,055 32,303 5,906
20 320,278 63,378 165,338 28,686
25 38,450,786 6,716,505 17,614,330 2,795,319

Table 6.1: Results for the distributed n-queens problem with lex, rand and min
value ordering approaches.

ABT. However, this improvement goes beyond the savings in obsolete ngd mes-
sages, because ok? and ngd messages decrement to a larger extent. This is due
to the following collective effect. When an ABT agent sends a ngd message, it
tries to get a new consistent value without knowing the effect that backtracking
causes in higher priority agents. If it finds such a consistent value, it informs to
lower priority agents using ok? messages. If it happens that this value is not
consistent with new values that backtracking causes in higher priority agents,
these ok? messages would be useless, and new ngd messages would be gener-
ated. ABThyb tries to avoid this situation. When an ABThyb agent sends a ngd
message, it waits until it receives notice of the effect of backtracking in higher
priority agents. When it leaves the waiting state, it tries to get a new consistent
value. At this point, it knows some effect of the backtracking on higher priority
agents, so the new value will be consistent with it. In this way, the new value
has more chance to be consistent with all higher priority agents, and the ok?
messages carrying it will be more likely to make useful work.

Considering the performance of synchronous versus asynchronous backtrack-
ing algorithms (Table 4.1 in Section 4.4 vs. Table 6.1 here), we compare SCBJ
against ABThyb with random value ordering. In terms of computation effort
SCBJ performs better than ABThyb for n = 25 and worse for n = 20, with
very similar results for n = 10, 15. In terms of communication cost, SCBJ uses

rand SCBJ ABT ABThyb

n ok? ngd ok? ngd obso ok? ngd obso
10 55 36 251 81 24 195 43 2
15 146 101 901 284 91 649 137 10
20 539 382 3,612 1,160 408 2,293 455 38
25 452 294 5,027 1,526 520 3,240 623 50

Table 6.2: Number of messages exchanged by SCBJ, ABT and ABThyb per
message type, for the distributed n-queens problem with random value ordering.
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less messages than ABThyb for the four dimensions tested. This comparison
should be qualified comparing results in Table 6.2 and noting that the length
of ok? messages differ from synchronous to asynchronous backtracking algo-
rithms. In SCBJ, an ok? message contains the partial solution which could be
of size n, while in ABThyb an ok? message contains a single assignment of size
1. Assuming that the communication cost depends more crucially on the num-
ber of messages than on their length, we conclude that SCBJ is more efficient
in communication terms than ABThyb. Considering both aspects, computation
effort and communication cost, SCBJ seems to be the algorithm of choice for
the n-queens problem. However, synchronous algorithms are less steadfast than
asynchronous and hybrid ones when the network crashes.
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and ABThyb on binary random problems.
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6.5.2 Random Binary DisCSP

Similar to Section 4.4 in Chapter 4, we have tested random instances of 16 agents
and 8 values per agent, considering three connectivity classes, sparse (p1=0.2),
medium (p1=0.5) and dense (p1=0.8). Figure 6.2 gives results averaged over 100
executions for ABT and ABThyb with random value ordering. We observe again
that ABThyb is always better than ABT for the three problem classes, in both
computation effort and communication cost. We believe that this is due to the
effect already described for the distributed n-queens problem. This is confirmed
after analyzing the number of messages per message type of Table 6.3.

rand SCBJ SCBJamd1 ABT ABThyb
p2 ok? ngd ok? ngd ok? ngd obso adl ok? ngd obso adl

0.20 2,647 1,254 100 63 3,587 1,310 320 26 3,141 949 53 24
0.50 6,913 3,556 477 321 24,725 7,025 2,336 40 17,650 3,335 321 37
0.80 9,761 5,265 1,052 758 58,283 16,432 6,497 19 37,046 5,956 755 18

Table 6.3: Number of messages exchanged by SCBJ, SCBJ amd1, ABT and
ABThyb per message type, for random binary problems with random value or-
dering.

Contrasting these results with those given in Chapter 4, Section 4.4, Figure
4.1, we observe the following. In terms of computation effort (constraint checks),
SCBJ is always worse than ABThyb, and SCBJ is often the worst algorithm
(except in the 〈16, 8, 0.8〉 class, where it is the second worst). This behavior
changes dramatically when adding the minimum domain heuristic approxima-
tions: SCBJ amd1 and SCBJ amd2 are the best and second best algorithms in the
three classes tested, and they are always better than ABThyb.

Regarding communication costs, synchronous backtracking algorithms are
always better than asynchronous ones: consistently in the three classes tested,
SCBJ amd1, SCBJ amd2 and SCBJ are the three best algorithms (in this order).
Again, the addition of minimum domain approximations is very beneficial. As
mentioned above for the n-queens problem, ok? messages are of different sizes
in synchronous and asynchronous backtracking algorithms. Under the same
assumptions (communication costs depends more on the number of messages
exchanged than on their length), we conclude that for solving random binary
problems, SCBJ amd1 is the algorithm of choice. However, the selection of a
synchronous algorithm implies that it could fail, if the network crashed.

We have also tested the three problem classes using the min-conflict value
ordering. Results appear in Table 6.4 for the peak of maximum difficulty. We
observe a minor but consistent improvement of all the algorithms with respect

min SCBJ SCBJamd1 SCBJamd2 ABT ABThyb
p1 nccc msg nccc msg nccc msg nccc msg nccc msg

0.20 7,100 3,277 907 153 1,811 687 3,771 4,006 3,448 3,535
0.50 44,024 9,367 5,637 783 11,677 2,669 30,719 26,840 22,227 19,141
0.80 102,153 15,111 16,206 1,843 40,449 7,142 101,492 70,033 58,428 43,459

Table 6.4: Results near of the pick of difficulty on binary random classes 〈n =
16,m = 8〉 with min-conflict value ordering.
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to the random value ordering. In this case, the relative ranking of algorithms
obtained with random value ordering remains, SCBJ amd1 being the algorithm
with the best performance.

6.6 Related Work

Alternatively to add synchronization points, we can avoid resending redundant
ngd messages assuming exponential-space algorithms. Let assume that self
stores every nogood sent, while it is not obsolete. When self finds an empty
compatible domain, if the new generated nogood is equal to one of the stored
nogoods, it is not sent. This allows self not sending identical nogoods until
some higher agent changes its value and the corresponding ok? arrives to self .
But it requires exponential space, since the number of nogoods generated could
be exponential in the number of agents with higher priority than self . A sim-
ilar idea is also found in [Yokoo, 1995] for the asynchronous weak-commitment
algorithm (AWC ).

Very recently, Annon Zivan and Roie Meisels have studied concurrency of
the agents’ work in distributed algorithms from a point of view different from
ABT. In the Concurrent Backtracking Search (ConBT ) several search pro-
cesses scan asynchronously disjoined parts of the search space. The search
that each process performs is completely synchronous and when an agent can-
not find a consistent value, it backtracks following a chronological ordering
[Zivan and Meisels, 2004a]. An improved version of this algorithm considers
dynamic backtracking techniques [Zivan and Meisels, 2004b].

Regarding variable ordering in asynchronous backtracking,
[Zivan and Meisels, 2005b] presented a generic method for allowing agents
to choose orders dynamically and asynchronously. That work evaluated the
combination of ABT-DO with the heuristics for variable reordering that we
presented in Chapter 4 for synchronous algorithms. However, an heuristic
inspired by the idea used for dynamic backtracking in CSPs [Ginsberg, 1993]
was more effective.

6.7 Summary

We have proposed ABThyb, a new hybrid algorithm for distributed CSP that
combines synchronous and asynchronous elements. This algorithm avoids agents
to send some redundant messages after backtracking. We have demonstrate theo-
retical properties of the new algorithm. Empirically, we have compared ABThyb

and ABT on two benchmarks. For all considered problems, ABThyb outper-
forms ABT in terms of the computation effort and communication cost. This
improvement in performance is achieved after adding synchronization points
when backtracking. These points make ABThyb less robust than ABT to net-
work failures. We also compared synchronous against asynchronous algorithms.
Experimental results shows that synchronous approaches improve over ABT and
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ABThyb. This does not mean that synchronous backtracking algorithms should
always be preferred to asynchronous and hybrid ones, since they offer different
functionalities (synchronous algorithms are less robust to network failures, pri-
vacy issues are not considered, etc.). But for applications where efficiency is
the main concern, synchronous algorithms seems to be quite good candidates to
solve DisCSP.





Chapter 7

Non-binary DisCSP

It is widely acknowledged that many real world problems can be mod-
eled naturally with non-binary constraints. In CSP, this question has been
addressed in various papers, producing a corpus of knowledge that cur-
rently allows for an effective resolution of non-binary constraint problems
[Bacchus and van Beek, 1998]. In DisCSP, however, most solving algorithms
have been designed for binary constraints.

In this chapter, we present some approaches to deal with non-binary con-
straints in DisCSP. We start mentioning the works that have been published to
handle non-binary constraints in CSP (Section 7.1). Then, we consider asyn-
chronous backtracking (Section 7.2) and second we study synchronous back-
tracking (Section 7.3). Considering asynchronous backtracking, the extension to
the non-binary case is straightforward. The existence of non-binary constraints
will cause to add new links among agents, links that are used for transmit-
ting information about new assignments. However, agents receiving these new
links do not check any constraint. We suggest to add constraint projections,
so these agents could check them, speeding-up the constraint checking process.
We evaluate this idea comparing three algorithms: ABT, ABT with projec-
tions and ABTnot, which does not add any links during the search. Considering
synchronous backtracking, we present two extensions of SCBJ for non-binary
constraints, SCBJ and SCBJ with constraints projections. We evaluate the
proposed algorithms on distributed ternary random problems (Section 7.4). A
summary of this chapter appears in Section 7.5.

7.1 Related Work

In Chapter 3, we describe two distributed models for representing DisCSP :
the variable-based model [Yokoo et al., 1992]; and the constraint-based model
[Silaghi et al., 2000]. AAS [Silaghi and Faltings, 2005] is an asynchronous back-
tracking algorithm which assumes that the problem to be solved is expressed fol-
lowing the constraint-based model. Since this model considers that each problem

79
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constraint belongs to one agent, a non-binary constraint can be locally managed
by using the same techniques developed for CSP. Thus, AAS may consider con-
straints of any arity. The use of this algorithm for solving a DisCSP, which
is originally expressed according to the variable-based model, requires that the
problem be transformed to the constraint-based model. This transformation
may be inadequate in many naturally distributed problems in which the initial
problem structure must remain unchanged.

There are two options for solving a non-binary DisCSP expressed in the
variable-based model: (i) translating it into a binary DisCSP and applying
binary algorithms, or (ii) extending the binary algorithms to the non-binary
case.

Regarding the first option, it is well known that a non-binary CSP can be
translated into an equivalent binary CSP. Two general methods are known: the
dual problem method [Dechter and Pearl, 1989]; and the hidden variable method
[Dechter, 1990]. Both require the addition of new variables with exponentially
large domains, which is usually seen as a serious drawback in the centralized
case. However, once again losing the problem structure seems to be a real issue
in DisCSP, when original variables are owned by agents. These translations
generate new variables, which should be allocated to some ”virtual” agents,
while some original variables disappear from the solving process. This exchange
of information may be undesirable for security or privacy reasons.

In this thesis we develop the second option, that is, we analyze how we
can extend some existent algorithms for binary DisCSP to handle non-binary
constraints.

7.2 Asynchronous Backtracking

In this section, we focus on the resolution of non-binary DisCSP in the context
of asynchronous backtracking algorithms. First, we consider the straightforward
extension of ABT to the non-binary case. Second, we analyze the inclusion of
redundant constraint projections into the problem.

7.2.1 Non-binary ABT

The ABT algorithm, described in Chapter 5, is a reference systematic algorithm
for DisCSP solving. Originally, ABT was designed to handle binary constraints
[Yokoo et al., 1992]. A binary constraint causes a directed link between the two
constrained agents: the value-sending agent, from which the link departs, and
the constraint-evaluating agent, to which the link arrives. To make the constraint
graph cycle-free there is a total order among agents, which is followed by the
directed links.

We analyze how the inclusion of non-binary constraints in the original ABT
algorithm affects nogoods.1 and the relationship between each constraint’s

1In ABT, nogoods are generated by logical inference of problem constraints. ABT agents
consider generated nogoods as new problem constraints.
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constraint-evaluating and value-sending agents. Since ABT is able to manage
nogoods of any size, the inclusion of non-binary constraints does not cause signifi-
cant issues in its behavior. The only novelty is the representation of a non-binary
constraint in terms of links and constraint checking [Brito and Meseguer, 2006a].

Let us consider a non-binary constraint ci, such that var(ci) =
{xi1 , xi2 , . . . , xik

}. Assuming that agents are totally ordered from i1, i2, . . . , ik,
the inclusion of ci requires the addition of new links from i1, i2, . . . , ik−1 to ik.
The lowest priority agent ik will receive the variable values xi1 , xi2 , . . . , xik−1

though these links and it will check ci.
As in the binary case, the agent with lowest priority among those involved

in the constraint is in charge of checking the constraint. The existence of links
from the other agents to the constraint-evaluating agent is required, in order to
inform the constraint-evaluation agent about assignments of the value-sending
agents.

If ik, the constraint-evaluating agent of ci, upon receiving the assignments
of xi1 , xi2 , . . . , xik−1 , does not find any consistent value, it will send a back-
track message to ik−1. This agent will receive a nogood including variables
xi1 , xi2 , . . . , xik−2 . But ik−1 has no direct link with the agents owning those
variables, so it will ask them to set up a link, to confirm the values of these
variables. So new links, from i1, i2, . . . , ik−2 to ik−1 will be added. If it hap-
pens that ik−1 sends another backtrack message to ik−2, for the same reason
it will request new links from i1, i2, . . . , ik−3 to ik−2. So it is very likely that
finally a clique of links will appear among the agents involved in the constraint,
connecting any agent with all other lower priority agents.

7.2.2 Non-binary ABT not

The ABTnot algorithm, described in Chapter 5, is an ABT -based algorithm
that does not add any new links during the solving process. This is due to
the fact that it is able to forget all those variable assignments that may become
obsolete upon backtracking. It is ”less informed” than pure ABT, since an agent
cannot ask another agent to set up a new link. Changes in variables not directly
connected are detected by backtracking messages. In Chapter 5, we prove that
ABTnot is correct and complete.

Non-binary constraints can be added to ABTnot exactly in the same way
they are added to ABT [Brito and Meseguer, 2006a]. Since ABTnot does not
generate new links, it will solve the problem using the original connection topol-
ogy among agents. Typically, this requires an extra effort (in computation and
in communication) with respect to ABT performance.

7.2.3 Adding Constraints Projections

In the direct ABT extension, a constraint is checked by a single agent (the
constraint-evaluating agent). New links are used for two proposes: to transmit
the assignments among the agents owning variables involved in the non-binary
constraint and to check backtracking messages for obsolescence. However, the
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receiver of those new links added by ABT does not check any constraint. In
[Brito and Meseguer, 2006a], we propose to add constraint projections on those
new links that would be added by the ABT algorithm, in such a way that
the receiving agent will be the agent that evaluates the constraint projection.
Formally, a constraint projection is defined as follows:

Definition 7.2.1. The projection of a constraint C on a subset of variables S
(S ⊆ X , where X is the variables of the DisCSP to be solved) is a new constraint
C[S], whose permitted tuples are formed from C tuples removing the variable
values not in S.

Projections are redundant constraints, in the sense that they do not convey
more information than that contained in the non-binary constraint. But their
inclusion distributes consistency checking among all the variables (except the
one in the highest priority agent) since all these variables have to check one or
several constraint projections. Constraint projections will never detect to be
inconsistent a partial assignment that would be detected to be consistent for the
whole constraint. On the contrary, the partial assignments found inconsistent
by projections, will be found inconsistent by the whole constraint. The point
here is that in checking constraint projections, inconsistencies may be detected
sooner, at earlier tree levels or involving less variables than checking the whole
constraint.

We call ABT proj the version of non-binary ABT which includes constraint
projections. In ABT proj , projections are computed on ordered subsets of vari-
ables according to the total agent ordering as showed in the following example.

Example 7.2.1. Let us consider constraint ci, such that var(ci) =
{xi1 , xi2 , . . . , xik

}, and agents are ordered from i1 to ik. Then, we can add
all unary projections, ci[xij ], (1 ≤ j ≤ k), binary projections of the form
ci[xij , xi′j ], (1 ≤ j < j′ ≤ k), ternary projections of the form ci[xij , xi′j , xi′′j ], (1 ≤
j < j′ < j′′ ≤ k) and so on, until constraint projections of arity k − 1. The
constraint-evaluating agent for each of these redundant constraints is the lowest
priority agent among the agents owning the projection variables.

The idea of adding constraint projections has been previously studied in the
context of CSP [Larrosa and Meseguer, 1998, Bessiere et al., 1999]. Somehow,
ABT proj is motivated by the significant improvement that several versions of
FC with projections show over the classical FC.

7.2.4 Example

Let us consider a simple example to compare asynchronous backtracking ver-
sions for non-binary DisCSPs. There is a single non-binary constraint: c =
all − different(x1, x2, x3, x4), and there are four agents 1, . . . , 4 totally or-
dered by decreasing priority. Agent i owns variable xi. Domains are D(x1) =
{a, d}, D(x2) = {b}, D(x3) = {c}, D(x4) = {a}. The initial topology of links in
the distributed constraint graph appears in Figure 7.1 (a).
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Figure 7.1: A simple problem solved by ABT. (a) Initial links (b) Links af-
ter x3 received a backtracking message from x4. (c) Links after x2 received a
backtracking message from x3.

The direct ABT extension will start with the following links: x1 → x4,
x2 → x4 and x3 → x4. Assigning the first domain values, agent 4 will get the
tuple x1 = a, x2 = b, x3 = c, x4 = a which is a nogood for the constraint. Since
x4 has no other value, it will send a backtracking message to agent 3 with the
nogood x1 = a, x2 = b ⇒ x3 = c. Since x3 has no direct connection with the
nogood variables, two new links will be added: x1 → x3 and x2 → x3. Again,
x3 has no other value, so agent 3 will send a backtracking message to agent 2
with the nogood x1 = a ⇒ x2 = b. Since x2 has no direct connection with x1,
this new link is added: x1 → x2. Again, agent 2 has no other value, so it sends
a backtracking message to agent 1, which now changes its value to d, informing
all its neighbors. At this point, a solution is found and the network reaches
quiescence. The evolution of links during ABT execution can be seen in Figure
7.1 (b) and (c).

The direct ABTnot extension will have the same links as ABT in its starting
phase. Assigning the first domain values, agent 4 will get the tuple x1 = a, x2 =
b, x3 = c, x4 = a which is a nogood for the constraint. Since x4 has no other
value, agent 4 will send a backtracking message to agent 3 with the nogood
x1 = a, x2 = b ⇒ x3 = c. Agent 3 will update its agent view with this nogood.
Since x3 has no other value, agent 3 will send a backtracking message to agent 2
with the nogood x1 = a ⇒ x2 = b, and it will forget about the values of x1 and
x2, not directly connected to it. Agent 2 will update its agent view with this
nogood. Since x2 has no other value, agent 2 will send a backtracking message
to agent 1 with the nogood x1 = a, and it will forget about the values of x1, not
directly connected to it. After receiving this message, x1 changes its value to d,
informing all its neighbors. Again, a solution is found and the network reaches
quiescence.

The projections addition approach will consider the addition of the follow-
ing redundant constraints: c[x1], c[x2], c[x3], c[x4], c[x1, x2], c[x1, x3], c[x1, x4],
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c[x2, x3], c[x2, x4], c[x3, x4], c[x1, x2, x3], c[x2, x3, x4]. Unary constraints can be
processed, eliminating from the domains those values not permitted by them. In
this way, value a ∈ D(x1) is eliminated. From each agent there are links towards
any other agent of lower priority. With the first assignment, a solution is found.

7.3 Synchronous Backtracking

In this section, we examine the resolution of non-binary DisCSP in the context
of SCBJ, a synchronous backtracking algorithm. SCBJ has been previously
described and empirically evaluated in Chapter 4.

7.3.1 Non-binary SCBJ

In synchronous backtracking algorithms, only one agent is active at any time
while the rest of the agents are waiting. The activation of agents is provoked
by the reception of any message. As seen in Chapter 4, SCBJ is a synchronous
backtracking algorithm that requires a static instantiation ordering of agents. In
accordance with this priority order, agents try to extend a partial solution into
a total one by adding consistent assignments for unassigned variables. When an
agent does not have a value for one of its variables, which is consistent with the
assignments of preceding variables in the partial solution, the agent backtracks
to the closest preceding agent which does not permit a valid value.

The extension of SCBJ for non-binary constraints is straightforward. Like
in ABT, we analyze how the inclusion of non-binary constraints affects nogoods
and the relationship between each constraint’s constraint-evaluating and value-
sending agents. The original SCBJ can handle nogoods of any size. Thus, the
inclusion of non-binary constraints does not affect nogoods.

In SCBJ, the lowest priority agent of each constraint is the agent in charge of
checking the consistency of the constraint (i.e. the constraint-evaluating agent).
Since, each SCBJ agent receives the assignments of all preceding variables, the
constraint-evaluating agent of each constraint will receive from the value-sending
agents all the information it needs to check the consistency of the constraint.
Therefore, the inclusion of non-binary constraints does not alter the behavior of
SCBJ.

7.3.2 Non-binary SCBJ with Projections

As seen in Section 7.2.3 for ABT, the addition of constraint projections to a
distributed algorithm allows it to have multiple constraint-evaluating agents for
each non-binary constraints. This may help agents to detect early inconsistency.
In this subsection, we present a version of SCBJ for non-binary DisCSPs which
also adds constraint projections. We call this algorithm SCBJ proj . Projections
are computed on ordered subsets of variables following the total agent ordering.
The process to generate constraint projections is the same as explained in Ex-
ample 7.2.1 for ABT proj . This implies that, for a given DisCSP, ABT proj and
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SCBJ proj adds the same constraint projections for each non-binary constraint.
There is a significant difference between ABT proj and SCBJ proj . In

ABT proj , a non-binary constraint and its corresponding projections may be
evaluated simultaneously due to the parallel nature of the algorithm. This may
produce that a partial solution can be simultaneously found to be inconsistent
because a constraint projection and the corresponding non-binary constraint.
Regarding communication cost, this situation will produce several useless mes-
sages. Regarding computation cost, since these constraint checks are done in par-
allel, this situation does not affect substantially to the performance of ABT proj .

In contrast, the above situation will never occur in SCBJ. That is, a partial
solution will never be simultaneously found to be inconsistent because a projec-
tion and the non-binary constraint. This can be explained because, in SCBJ,
constraint projections corresponding to a non-binary constraints are evaluated
sequentially and always before the non-binary constraint. Nevertheless, due to
the sequential order in which redundant constraint projections and the original
non-binary constraint are evaluated, it may increase computation effort with
respect to SCBJ.

7.4 Experimental Results

We have evaluated asynchronous (ABT, ABTnot and ABT proj) and synchronous
backtracking approaches (SCBJnot and SCBJ proj) on random ternary problems.
In accordance to [Larrosa and Meseguer, 1998], we use an extended version of the
four parameter binary model [Smith, 1994] to ternary problems. A ternary ran-
dom problem is defined by four parameters 〈n, m, p1, p2〉 where n is the number
of variables, m is the cardinality of their domains, p1 is the problem connectiv-
ity, the ratio between existent constraints and the maximum number of possible
constraints (the problem has exactly p1n(n− 1)(n− 2)/6 constraints), and p2 is
the constraint tightness, the proportion of forbidden value triplets between three
constrained variables (the number of forbidden value triplets is exactly p2m

3).
The constrained variables and their nogoods are randomly selected following a
uniform distribution.

In our experiments, each agent owns a variable. For all algorithms, each
ternary constraint is evaluated by the lower priority agent involved in it. Agents
store ternary constraints as lists of permitted combinations of variable values.
These lists are called ternary constraint tables. ABT proj and SCBJ proj add at
most three unary projections and one binary projection for each ternary con-
straint. In both algorithms, agents compute unary and binary projections from
ternary constraint tables in a preprocessing step. We assume that each variable
involved in a ternary constraint completely knows the constraint. Therefore,
agents do not need to communicate in the preprocessing step.

Given a ternary constraint T [xi, xj , xk] between variables xi, xj and xk, the
binary constraint projection between xi and xj is computed by xj as follows.
First, xj removes from T the column corresponding to xk. Second, xj removes
duplicated rows from the resulting table. The output table B[xi, xj ] contains
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Figure 7.2: Number of binary projections added and their tightness.

the list of tuples allowed for the binary projection. Similarly, agents xi, xj , xk

compute their unary projections by removing from their copies of T columns
related to other two variables, respectively. Thus, agents do not need to perform
any constraint check in the preprocessing step. In the experiments, ABT proj

and SCBJ proj add only unary/binary projections with at least one forbidden
value/tuple.

We consider five different classes of random ternary problems with ten vari-
ables (n = 10) and five values per domain (m = 5). p1 takes the following
values: 0.1, 0.15, 0.2, 0.3 and 0.4. Higher values of p1 generate instances with
many ternary constraints. These instances are not particularly representative
of real problems. For these instances, there is a high probability that an agent
is linked to all higher priority agents. Therefore, in these instances ABT and
ABTnot have a similar performance (as seen in the plots). p2 varies between 0.1
and 0.9, in increments of 0.1.

In Figure 7.2, we give the number of binary projections added by ABT proj

and SCBJ proj and their average tightness for each value of p1 and p2. Both
parameters clearly depends on the value of p2. Larger value of p2 means a
higher number of binary projections are considered by (figure on left) and these
redundant constraints have higher tightness (figure on right).

For both algorithms, agents implement the heuristic of selecting the best no-
good seen in Chapter 5 and process messages by packets as discussed in Chapter
6. We compare performance algorithms according to computation effort, in
terms of the number of non-concurrent constraint checks (nccc), and communi-
cation cost, in terms of total number of exchanged messages (msg). In Figure
7.3 and Figure 7.4, we report nccc and msg needed by algorithms for solving
the five problem classes studied. Results are averaged on 100 instances for each
value of p1 and p2.

Considering asynchronous backtracking approaches, we observe that ABTnot

always requires more nccc than ABT for each tested class. This can be explained
by the fact that agents of ABTnot are worse informed that agents of ABT,
since ABTnot does not add new links during the search. Differences evolve
with constraint density: in classes with very low p1, ABT is much better than
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Figure 7.3: Computation and communication cost of ABT, ABTnot, ABT proj ,
SCBJ and SCBJ proj for solving ternary random instances with low constraint
density (n = 10, m = 5, p1 = 0.1, 0.15, 0.2).

ABTnot, but as p1 increases their difference decreases, until p1 = 0.4 and on,
where both algorithms show a similar behavior. From this connectivity on, the
probability of any two agents being linked is very high, so ABT and ABTnot

behave in the same way most of the time.
ABT proj requires a number of nccc equal to or less than ABT for each tested

class. This depends on constraint tightness. For p2 < 0.5, both require a similar
number of nccc. In this region, the tightness of the added projections is quite
low (see Figure 7.2 right), so they have practically no effect. For p2 ≥ 0.5, the
tightness of the added projections rises steadily (see Figure 7.2 right), producing
the expected benefits in distributed search. As connectivity increases, differences
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Figure 7.4: Computation and communication cost of ABT, ABTnot, ABT proj ,
SCBJ and SCBJ proj for solving ternary random instances with higher constraint
density (n = 10, m = 5, p1 = 0.3, 0.4).

between ABT and ABT proj decrease slightly (observe the different scales in
plots in Figures 7.3 and 7.4). As the probability of any two agents being linked
increases, information about assignments is more available on the network, so
the probability of backtracking for a ternary constraint also increases. In this
way, the relative efficiency of ABT proj is diminished.

In terms of communication effort, the relative order of three asynchronous
backtracking remain unchanged. ABTnot always requires more messages than
ABT. The difference is higher for low connectivity classes, and it decreases
steadily until achieving a similar performance for p1 ≥ 0.4. This is due to the
high probability of two agents being linked for this constraint density, as dis-
cussed above. ABT proj requires a number of messages equal to or less than ABT
for each tested class. Again, this depends on constraint tightness. For p2 < 0.5,
both require a similar number of messages, but for p2 ≥ 0.5, ABT proj requires
less messages than ABT. This is due to the tightness of the added projections
in Figure 7.2 as discussed above.

Considering synchronous backtracking approaches, we observe that, in terms
of number of non-concurrent constraint checks, SCBJ proj is worse than SCBJ
at the complexity peak for all tested classes. This is because the effect of adding
constraint projections in the number of non-concurrent constraint checks is two-
fold. On one hand, an agent in charge of checking a constraint projection will
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increase its constraint check counter each time it makes a constraint check. Since
there are more agents increasing their counters, the global nccc may increase. On
the other hand, since backtracking may appear at earlier levels of the tree, some
nccc may be saved and the global nccc may decrease. The added effect of these
two tensions is a nccc saving in ABT proj and a nccc increasing in SCBJ proj .
To understand this one must keep in mind the way in which constraint projec-
tions and non-binary constraints are checked by each algorithm. In SCBJ proj ,
every non-binary constraint is always checked after the corresponding constraint
projection has been checked. Conversely, constraint projections and non-binary
constraints may be checked concurrently in ABT proj .

Regarding communication cost, the number of messages sent by SCBJ proj

agents is approximately larger than or equal to the number of messages sent by
SCBJ. The benefic of adding constraint projections for problems at the complex-
ity peak decreases as p1 increases. This is because as soon as p1 increases the
complexity peak shifts to the left, where non-binary constraints become looser.
This causes the added constraint projections to be looser as well and, therefore,
to have a low pruning capability as can be seen in Figure 7.2. For each tested
classes, SCBJ proj outperforms SCBJ on instances on the left of the complexity
peak. In this region, the improvement of ABT proj over ABT is larger than the
improvement of SCBJ proj over SCBJ. However, ABT proj is never better than
SCBJ proj .

Considering asynchronous and synchronous backtracking approaches not
adding constraint projections, we note that SCBJ is always better than ABT
and ABTnot with respect to nccc and msg for all tested problem classes. These
results show what we have discussed in Chapter 6 for binary DisCSPs. Again,
the use of synchronous backtracking approaches seems to be more effective on
problems where efficiency is the main concern.

7.5 Summary

We have presented asynchronous and synchronous backtracking approaches to
deal with non-binary DisCSPs. Considering asynchronous backtracking, we pre-
sented versions of ABT and ABTnot to handle non-binary constraints. In addi-
tion, we proposed to add constraints projections over those new links that are
dynamically added by ABT but are no used to check any constraint. These
projections are redundant constraints of smaller arity, which can be exploited
by ABT to detect inconsistencies at earlier levels of the search tree. Considering
synchronous backtracking, we presented a version of SCBJ to handle non-binary
DisCSPs. Similar to ABT, we propose to add constraint projections to SCBJ in
order to improve the algorithmic performance. The experimental results show
that synchronous algorithms outperforms asynchronous ones. In both search
types, the addition of constraint projections is much effective when their prun-
ing power is high.
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Chapter 8

Privacy in DisCSP

Privacy is one of the main motivations to solve DisCSPs in a distributed form.
Many problems appear to be naturally distributed, each part belonging to a
different agent. In that setting, agents may desire to keep their information as
private as possible. Take for example a DisCSP in which agents want to keep
their variable domains private or to hide assignments and constraints from other
agents considered as potential competitors.

Generally speaking, most distributed algorithms leak some kind of infor-
mation in the solving process, which can be exploited by some agents to de-
duce the reserved information of other agents. Although the original ABT
was not concerned with privacy issues (agents exchanged their values freely),
privacy has been a key aspect in the development of new DisCSP solving
algorithms. So far, there are two main approaches to enforcing privacy.
One considers the use of encryption techniques to conceal values and con-
straints [Silaghi and Mitra, 2004, Yokoo et al., 2005, Nissim and Zivan, 2005].
Alternatively, the other aims at enforcing privacy by different strate-
gies but excluding cryptography [Silaghi, 2002, Brito and Meseguer, 2003,
Brito and Meseguer, 2005b, Zivan and Meisels, 2005a].

In this chapter, we investigate how privacy can be enhanced in ABT with-
out using encryption methods.1 We analyze privacy from three perspectives
related to different elements of DisCSP : domain privacy (Section 8.1), assign-
ment privacy (Section 8.2) and constraint privacy (Section 8.3). We discuss the
evolution of distributed algorithms for trying to maintain constraint and/or as-
signment privacy during resolution. This includes two families of algorithms:
DisFC 2/DisFC 1 and ABT 2/ABT 1.

These algorithms do not keep agents’ information completely secure as agents
may leak some data during the search. We propose a way to count the amount of
information related to problem constraints that agents reveal to other agents. We
assess the algorithms on random DisCSP instances (Section 8.4). Experimental
results show that ABT is worse than the algorithms we present here in terms of

1All the strategies that we propose here are also applicable to the rest of algorithms that
form the ABT family seen in Chapter 5. Their extensions are straightforward.
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privacy issues but it is more economic than them in terms of computation effort
and communication cost.

8.1 Domain Privacy

Domain privacy is concerned with the idea that agents may want to hide the
domains of their variables. In the variable-based model for DisCSP, every vari-
able belongs to one agent. This implies that the agent owns a variable and is
the only one that knows its domain. Hence, this model guarantees the desired
domain privacy. All the distributed algorithms seen in previous chapters, ABT
included, assume this model.

Regarding solving methods, except for the value dynamic ordering heuristic
seen in Chapters 4 and 6, none of the algorithms previously described requires
that agents know the whole domains of other agents2. Let us analyze how ABT
execution affects domain privacy. During problem resolution, agents exchange
assignments and nogoods to find a solution. Thus, an agent may detect some
values from the domains of the variables held by others agents through received
messages. If an agent stores all the values it receives from any other agent then,
at the end of the algorithm, it will have enough values to partially reconstruct
the other agents’ domains. The more values an agent receives from the variable
domain of another agent, the closer it will be to know the whole domain of this
variable. Therefore, the lower number of values an agent tries when assigning
consistent values to its variable, the higher domain privacy it achieves.

In Section 5.4, Chapter 5, we presented several heuristics to reduce the num-
ber of exchanged messages in asynchronous backtracking algorithms. One of
them is that, after backtracking, an agent tries first the value it had assigned
to the variable before it found an empty consistent domain. This strategy can
be generalized to enforce domain privacy. That is, each time an agent searches
a consistent value, it should try first the values that it has considered before.
This strategy can be easily implemented by agents either in synchronous or
asynchronous algorithms.

For solvable DisCSPs, it is impossible for an agent to detect if another agent
has shared all its values. Only when an agent j backtracks, the agent i which
receives the ngd message can infer that j has checked the consistency of all its
values. But this does not mean that all those values have been assigned to j’s
variable and, consequently, sent out to lower priority agents via ok? messages.
Take for example a problem where a value of j’s variable is always ruled out by
constraints provided by other higher priority agents, so, j will never assign this
value to its variable. In addition, notice that the agent i that receives a ngd
message from j will never receive an ok? message from j, because i appears
first in the priority ordering. In consequence, when a solution is found, no agent

2This is only true in the case that problem constraints are expressed implicitly. Since all the
algorithms described so far assume that the lowest priority agent involved in each constraint
has to know the complete constraint, if this constraint is given explicitly, the lowest priority
agent of each constraint must know the variable domain of the higher priority one.
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knows if it has received the complete variable domains that belong to other
agents.

For unsolvable DisCSPs, however, if the identity of the agent i that detects
inconsistency is revealed, all lower priority agents that shares a constraint with
i will receive all the values of i’s domain.

Proposition 8.1.1. If an ABT agent detects inconsistency, every lower priority
agent directly connected with it has received all the values of its domain.

Proof. Let i an agent detecting inconsistency. If i finds the empty nogood, it
means that there is a nogood for every value of i’s domain. These nogoods have
an empty left-hand side (otherwise, i could not deduce the empty nogood). So
they have been produced as a result of ngd messages coming from lower priority
agents. Therefore, every possible value of i has been taken, so i has sent every
value to its lower priority agents through ok? messages. ¤

In order to hide the identity of the agent i that detects inconsistency, one
could add an extra agent for announcing to the agents that the search has finished
or allow the agent i to send stp messages to the rest of agents in such way that
the identity of i in those messages is concealed.

8.2 Assignment Privacy

Assignment privacy is concerned with the idea that agents may want to conceal
their assignments. An ABT agent sends its current assignment in two messages
(between i and j, i < j):

1. ok?: when agent i informs low priority agents of its value. This message
contains i value. It is used by j to find a compatible value with i, so j has
to know the constraint Cij .

2. ngd: when agent j sends a backtrack message to i. This message contains
the values of the agent view of j. It is used by i to check if the nogood
message is obsolete, testing whether the assignments of common variables
with higher priority than i in the agent views of i and j are the same or
not.

In order to preserve assignments private, agents must avoid sending their as-
signments to other agents. In the following subsection we present an ABT -like
algorithm that resolves the above two points.

8.2.1 Distributed Forward Checking

The Distributed Forward Checking (DisFC ) algorithm
[Brito and Meseguer, 2003] avoids that agents send their assignments in
ok? and ngd messages. About ok? messages, instead of sending i current
value, the ok? message contains the subset of Dj values that are compatible
with i current value. From this subset, j may be consistently assigned without
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procedure DisFC()

compute Γ−, Γ+;
myV alue ← empty; mySeq ← 0; end ← false;
DisFC();

procedure DisFC()

CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end ← true;

procedure ProcessInfo(msg)
UpdateAgentView(msg.Sender = msg.Seq);
UpdateDomain(msg);
CheckAgentView();

procedure ResolveConflict(msg)
if coherent(msg.Nogood, Γ−(self) ∪ {self}) then
add(msg.Nogood, myNogoodStore); myV alue ← empty;
CheckAgentView();

else if coherent(msg.Nogood, self) then
SendMsg:ok?(msg.Sender, mySeq, compatible(D(msg.Sender), myV alue));

procedure CheckAgentView()
if (myV alue = empty ∨myV alue eliminated by myNogoodStore) then

myV alue ← ChooseValue();
if (myV alue) then

mySeq ← mySeq + 1;
for each child ∈ Γ+(self)

do sendMsg:ok?(child, mySeq, compatible(D(child), myV alue));
else Backtrack();

procedure UpdateDomain(msg)
for each v ∈ D(self) ∧ v /∈ msg.Domain do
add(msg.Sender = msg.Seq ⇒ self 6= v, myNogoodStore);

Figure 8.1: The DisFC algorithm. Missing procedures appear in Figure 5.2,
Chapter 5.

further checking. This is the idea of Forward Checking in the centralized
case [Haralick and Elliot, 1980]. About ngd messages, we propose the use of
identifiers. Each variable keeps a sequence number that starts from 1 (or some
random value), and increases monotonically each time the variable changes
its assignment, acting as a unique identifier for each assignment. Messages
include the sequence number of the assignment of the sending agent. The agent
view of the receiver is composed of the sequence numbers it received in ok?
messages from higher priority agents. Nogoods are formed by variables and
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their sequence numbers.
DisFC is an ABT -like algorithm that combines the above two strategies:

sending filtered domains to other agents and replacing the own value by its
sequence number. DisFC allows an agent to exchange enough information with
other agents to reach a global consistent solution (or proving that no solution
exists) without revealing its own assignment at any time. The code of DisFC
appears in Figure 8.1. Only the new or modified parts with respect to ABT are
shown. Missing procedures can be found in Figure 5.2, Chapter 5.

8.2.2 DisFC : Theoretical Results

Here, we formally prove that DisFC inherits the good properties of ABT : com-
pleteness, correctness and termination. Regarding nogoods, the only difference
between ABT and DisFC is that actual values are replaced by sequence num-
bers. This is fine, as the only role of values/sequence numbers is to detect that
an assignment is obsolete. However, it might occur that two different sequence
numbers for one variable would represent the same value. If this happens after
receiving a backtrack message, when comparing the agent view of the message
with the agent view of the receiver, the message will be discarded as obsolete.
But this will cause no problem. Since each time the sequence number changes,
an ok? message is sent, if either the sender or the receiver of the backtrack
message are not updated, it means that the message with the most updated
sequence number has not arrived yet, but it is on its way. After its arrival, the
backtrack message will be accepted. After this clarification, we prove that the
good theoretical properties of ABT also held for DisFC.

The search space is defined by the variables and domains of the problem
instance. The way this space is traversed depends on (i) the total order among
agents and (ii) the set of nogoods generated during asynchronous search. As-
suming that all algorithms follow the same agent ordering, the proof will be
based on the fact that all algorithms can generate the same nogoods.

Lemma 8.2.1. A nogood can be generated by DisFC iff it can be generated by
ABT.

Proof. Let us differentiate between explicit and implicit nogoods. In ABT
and DisFC, an explicit nogood is generated as a consequence of an ok? message.
An implicit nogood is generated by resolution of the set of nogoods that forbid
every value of a variable.

Explicit nogoods. Let us consider two constrained agents i, j, i < j. The
only difference with ABT is that ok? messages may generate more than one
nogood. In fact, an ok? message from i to j generates as many nogoods as
values considered inconsistent in Dj . However, these nogoods would have been
generated by ABT if these values would have been successively assigned to j.

Implicit nogoods. (Proof by induction on the number of implicit nogoods in
a sequence of backtracking steps). The first implicit nogood in the sequence
that appears in DisFC is generated by resolving explicit nogoods. Since all
explicit nogoods of DisFC can be generated by ABT, and the nogood resolution
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mechanism is the same, this first implicit nogood can also be generated by ABT.
Let us assume that this is true up to the n-th implicit nogood generated by
DisFC, and let us prove that this is the case for the n + 1-th implicit nogood.
Let us consider the n+1-th implicit nogood generated. It has been computed by
resolving previous nogoods, either explicit or implicit. We have already proved
that explicit nogoods can also be generated by ABT. All previous (n) implicit
nogoods can be generated by ABT by the induction step. Therefore, since
the nogoods involved in the resolution can all be generated by ABT and the
resolution process is the same, the resolvent nogood could also be generated by
ABT. A similar argument holds in the other direction of the lemma, starting
from ABT implicit nogoods and implying nogoods of DisFC. ¤

Proposition 8.2.2. DisFC is correct, complete and terminates.

Proof. Correctness. If DisFC reports a solution, it is because the network has
reached quiescence. In that case, every constraint is satisfied (otherwise, quies-
cence cannot be reached). Therefore, the reported solution is a true solution.

Completeness. DisFC performs the same kind of search as ABT : total order-
ing of agents, asynchronous instantiation, resolving nogoods, adding links, etc.
The only differences of DisFC with respect to ABT are that agents exchange
filtered domains instead of current assignments and replace the own value by
its sequence number. But we know, by Lemma 8.2.1, that these changes do not
cause any modification in the set of nogoods generated by DisFC with respect
to ABT. Consequently the DisFC algorithm will discard the same parts of the
search space as ABT, but not other parts. Since ABT is complete, DisFC is
also complete.

Termination. An argument similar to the one used in completeness applies
here. Nogoods rule out parts of the search space. Because the total ordering of
agents, discarded parts accumulate, so ABT terminates in a finite search space
(see Proposition 5.2.8, Chapter 5). Since DisFC generates the same nogoods as
ABT, and they perform the same kind of search, DisFC also terminates. ¤

8.3 Constraint Privacy

ABT assumes that an inter-agent constraint Cij is totally known by the agents
owning their related variables, that is, Cij is totally known by agent i and agent
j (see Section 2.2 of [Yokoo et al., 1998]). We say that they follow the Totally
Known Constraints(TKC ) model. In fact, it is enough for ABT that the lower
priority agent in each constraint knows the set of permitted tuples. However,
versions of ABT, in which the order of agents can dynamically change during
the execution of the algorithm, require that a constraint be totally known by
both agents involved in it [Zivan and Meisels, 2005b].
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8.3.1 Partially Known Constraint Model

To enforce constraint privacy, we presented the Partially Known Constraints
(PKC ) model of DisCSP [Brito and Meseguer, 2003]. In PKC, a constraint Cij

is partially known by its related agents. Agent i knows the constraint Ci(j)

where:

• vars(Ci(j)) = {xi, xj};
• Ci(j) is specified by three disjoint sets of value tuples for xi and xj :

– prm(Ci(j)), the set of tuples that i knows to be permitted;
– fbd(Ci(j)), the set of tuples that i knows to be forbidden;
– unk(Ci(j)), the set of tuples whose consistency is not known by i;

• every possible tuple is included in one of the above sets, that is,
prm(Ci(j)) ∪ fbd(Ci(j)) ∪ unk(Ci(j)) = Di ×Dj .

Similarly, agent j knows C(i)j , where vars(C(i)j) = {xi, xj}. C(i)j is specified
by the disjoint sets prm(C(i)j), fbd(C(i)j) and unk(C(i)j). For the model to be
truly partial, it is required that, there is at least one pair of constrained agents
i and j that do not have the same information about the shared constraint (i.e.
they differ in at least one of the three sets of tuples). The relation between a
totally known constraint Cij and its corresponding partially known constraints
Ci(j) and C(i)j is

Cij = Ci(j) ⊗ C(i)j

where ⊗ depends on the semantic of the constraint. The above definitions satisfy
the following conditions:

• If the combination of values k and l, for xi and xj is forbidden in at least
one partial constraint, then it is forbidden in the corresponding total con-
straint: if (k, l) ∈ fbd(Ci(j)) or (k, l) ∈ fbd(Ci(j)) then (k, l) ∈ fbd(Cij).

• If the combination of values k and l, for xi and xj is permitted in both
partial constraints, then it is also permitted in the corresponding total
constraint: if (k, l) ∈ prm(Ci(j)) and (k, l) ∈ prm(Ci(j)) then (k, l) ∈
prm(Cij).

In this chapter, we only consider constraints for which unk(C(i)j) = unk(Ci(j)) =
∅. In this case, a partially known constraint Ci(j) is completely specified by its
permitted tuples (tuples not in prm(Ci(j)) are in fbd(Ci(j))). Furthermore,
the intersection of the constraints known by agent i and agent j is the actual
constraint existing between i and j, that is,

prm(Cij) = prm(Ci(j)) ∩ prm(C(i)j)

Next, we give an example of the application of the PKC model to the n-pieces
m-chessboard problem [Brito and Meseguer, 2003]. This problem consists of n
chess pieces and an m × m chessboard. The goal is to put all pieces on the
chessboard in such a way that no piece attacks any other.
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Example 8.3.1. Let us consider the n-pieces m-chessboard problem. As dis-
tributed CSP, the problem can be formulated as follows,

• Variables: one variable per piece.

• Domains: all variables share the domain {1, . . . , m2} of chessboard posi-
tions.

• Constraints: one constraint between every pair of pieces, following chess
rules.

• Agents: one agent per variable.

For instance, we can take n = 5 with the set of pieces {queen, castle, bishop,
bishop, knight}, on a 4× 4 chessboard, with the variables,

x1 = queen, x2 = castle, x3 = bishop, x4 = bishop, x5 = knight.

If agent 1 knows that agent 5 holds a knight, and agent 5 knows that agent 1 holds
a queen, the result is a complete known constraint C15 including the following
tuples,

C15 = {(1, 8), (1, 12), (1, 14), (1, 15), . . .}
With the PKC model, agent 1 does not know which piece agent 5 holds. It only
knows how a queen attacks, from which it can develop the constraint,

C1(5) = {(1, 7), (1, 8), (1, 10), (1, 12), . . .}
Analogously, agent 5 does not know which piece agent 1 holds. Its only informa-
tion is how a knight attacks, from which it can develop the constraint,

C(1)5 = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 8), . . .}
The whole constraint C15 appears as the intersection of these two constraints,

C15 = C1(5) ∩ C(1)5 = {(1, 8), . . .}
In fact, C1(5) does not depend on agent 5. It codifies the way a queen attacks,
which is independent of any other piece. In this problem, the PKC model allows
each agent to represent itself, independently of other agents.

8.3.2 Two-Phase Strategy for PKC

In [Brito and Meseguer, 2003], we presented the first strategy that incorporates
the PKC model of constraints: the two-phase strategy. It consists of a cycle
of two phases. In the first phase (phase I), the original problem is relaxed
considering only one partial constraint for each pair of constrained agents. If
no solution is found in phase I, the procedure ends returning failure, since no
solution exists for the whole problem. If a solution is found, it is passed to
the second phase (phase II) where it is checked against the partial constraints
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disregarded in phase I. If it is also a solution of phase II, then it is a solution
for the whole problem. Otherwise, one or several nogoods are generated and
search is resumed in phase I. In this way, nogoods found in phase II are used
in phase I to escape from incompatible assignments. The two-phase strategy is
a generic method which implementation details depend on the algorithm used
to find a solution in phase I. In the following, we present DisFC 2 and ABT 2

algorithms, which have been obtained by combining the two-phase strategy with
DisFC and ABT, respectively. The order in which algorithms are described here
correspond to the order in which they were published.

DisFC 2

Originally, we implemented the two-phase strategy using DisFC
[Brito and Meseguer, 2003]. This combination was conceived for enforcing
assignment and constraint privacy. We call this algorithm DisFC 2. It works as
follows:

• phase I. Constraints are directed, forming a directed acyclic graph (in
short, DAG), and a compatible total order of agents is selected. The stan-
dard DisFC algorithm finds a solution with respect to constraints Ci(j),
where agent i has higher priority than j (the constraint C(i)j is checked by
the lower priority agent, j). A solution is identified by detecting quiescence
in the network. If no solution is found, the process stops, reporting failure.

• phase II. Constraints and the order of agents are reversed. Now C(i)j are
considered, where j has higher priority than i (e.g. in the reversed order).
j informs i of its value. If the value of i is consistent, i does nothing.
Otherwise, i sends a ngd message to j, which receives that message and
does nothing. Quiescence is detected.

Figure 8.2 presents the code for the DisFC 2 algorithm. DisFC 2 agents have
the same data structures as ABT agents. In the main procedure (procedure
DisFC-I()), the agents perform standard DisFC to find a solution compatible
with all constraints held by lower priority agents. If such a solution is obtained,
the agents reverse the total order by exchanging Γ− and Γ+ (as seen Chapter 5,
the sets Γ− and Γ+ of an agent i are the higher and lower priority agents which
are constrained with i). Then phase II is performed (procedure DisFC-II()).
If it is successful (no nogood generated during phase II), the algorithm ends,
otherwise Γ− and Γ+ are exchanged again and phase I is resumed. Agents
exchange ABT message types, plus the messages qes, qnn meaning quiescence in
the network after ngd and after no ngd messages, respectively. DisFC 2 inherits
the good properties of DisFC : completeness, correctness and termination.

ABT 2

[Zivan and Meisels, 2005a] propose the ABT 2 algorithm. This algorithm results
of combining the two-phase strategy for PKC and the well-known ABT algo-
rithm. In this case, it is assumed that agents do not consider relevant to hide
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procedure DisFC2()

compute Γ−, Γ+;
myV alue ← empty;
end ← false; nogoods ← false;
repeat
DisFC-I();
if (¬end)

exchange Γ−, Γ+;
DisFC-II();
exchange Γ−, Γ+;

until end or ¬nogoods

procedure DisFC-I()

quiescence ← false;
CheckAgentView();
while (¬end ∧ ¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end ← true;
qes : quiescence ← true;

procedure ProcessInfo(msg)
UpdateAgentView(msg.Sender = msg.Seq);
UpdateDomain(msg);
CheckAgentView();

procedure ResolveConflict(msg)
if coherent(msg.Nogood, Γ−(self) ∪ {self}) then
CheckAddLink(msg);
add(msg.Nogood, myNogoodStore); myV alue ← empty;
CheckAgentView();

else if coherent(msg.Nogood, self) then
SendMsg:ok?(msg.Sender, mySeq, compatible(D(msg.Sender), myV alue));

procedure CheckAgentView()
if (myV alue = empty ∨myV alue eliminated by myNogoodStore) then

myV alue ← ChooseValue();
if (myV alue) then

mySeq ← mySeq + 1;
for each child ∈ Γ+(self) do
sendMsg:ok?(child, mySeq, compatible(D(child), myV alue));

else Backtrack();

procedure UpdateDomain(msg)
for each v ∈ D(self) ∧ v /∈ msg.Domain do
add(msg.Sender = msg.Seq ⇒ self 6= v, myNogoodStore);
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procedure DisFC-II()

quiescence ← false;
for each child ∈ Γ+

0 (self) do sendMsg:ok?(child, mySeq, compatible(D(child), myV alue));
while (¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : if myV alue /∈ msg.Domain then
sendMsg:ngd(self = mySeq ⇒ msg.Sender 6= msg.Seq);

ngd : add(msg.Nogood, myNogoodStore); myV alue ← empty;
qes : quiescence ← true; nogoods ← true; /*quiescence with ngd messages*/
qnn : quiescence ← true; nogoods ← false; /*quiescence without ngd messages*/

Figure 8.2: The DisFC 2 algorithm for the PKC model (continued from previous
page). Missing procedures appear in Figure 5.2, Chapter 5.

their assignments from other agents. Essentially, ABT 2 works like DisFC 2 with
the difference in which constraints are checked in each phase.

Let us consider ABT 2 and two constrained agents i, j, i < j. In phase I, the
partial constraint C(i)j is tested by j, while in phase II Ci(j) is tested by i. In
DisFC 2 it happens exactly in the opposite order: in phase I Ci(j) is tested by i
and in phase II C(i)j) is tested by j. This is due to the type of information sent
(values in ABT 2, consistent sub-domains in DisFC 2) and the partial constraint
owned by each agent, but this is not a fundamental difference. ABT 2 is com-
plete, correct and terminates [Zivan and Meisels, 2005a]. The ABT 2 algorithm
appears in Figure 8.3. It uses the same types of messages as DisFC 2.

8.3.3 Single Phase Strategy for PKC

[Zivan and Meisels, 2005a] suggest that, instead of checking some constraints in
phase I and the rest in phase II, all constraints can be simultaneously tested in
a single phase. To achieve this, they propose the single phase strategy, in which
each agent has to check all its partially known constraints with both higher and
lower priority agents. In the single phase strategy, an agent has to inform all
its neighboring agents when it takes a new value, and nogood messages can go
in both directions (from lower priority to higher priority agents as in ABT but,
also from higher to lower). In the following, we present DisFC 1 and ABT 1

algorithms, which have been obtained by combining the single phase strategy
with DisFC and ABT, respectively. Similarly to the two-phase strategy, the
description of the algorithms follows the order in which they were published.

ABT 1

The single phase Asynchronous Backtracking for PKC (ABT 1) results from com-
bining ABT with the single phase strategy [Zivan and Meisels, 2005a]. ABT 1

enforces only constraint privacy. Unlike ABT 2, each ABT 1 agent checks simul-
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procedure ABT2()

compute Γ−, Γ+; myV alue ← empty; end ← false; nogoods ← false;
repeat
ABT-I();
if (¬end)

exchange Γ−, Γ+;
ABT-II();
exchange Γ−, Γ+;

until end or ¬nogoods

procedure ABT-I()

quiescence ← false;
CheckAgentView();
while (¬end ∧ ¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end ← true;
qes : quiescence ← true;

procedure ABT-II()

quiescence ← false;
for each child ∈ Γ+(self) do sendMsg:ok?(child, myV alue));
while (¬quiescence) do

msg ← getMsg();
switch(msg.type)

ok? : if ¬ consistent(myV alue, msg.V alue) then
sendMsg:ngd(self = myV alue ⇒ msg.Sender 6= msg.V alue);

ngd : add(lhs(msg.Nogood, myNogoodStore)); myV alue ← empty;
qes : quiescence ← true; nogoods ← true; /*quiescence with ngd messages*/
qnn : quiescence ← true; nogoods ← false; /*quiescence without ngd messages*/

Figure 8.3: The ABT 2 algorithm for the PKC model. Missing procedures appear
in Figure 5.2, Chapter 5.

taneously its constraints with all constraining agents (i.e. higher priority and
lower priority constraining agents.). This means that, after an assignment, the
agent has to send its current value to all constraining agents via ok? messages.
Despite an agent may know the assignments of all its neighboring agents, it
searches a value which is only consistent with the assignments of higher priority
agents. That is, values from the domain of agents are eliminated only if they
violate constraints with higher priority agents [Zivan and Meisels, 2005a]. After
an agent finds a value which is consistent with all assignments of higher priority
agents, it checks the assignment against the assignment of each lower priority
agent. If a conflict is detected, the agent keeps its assignments but sends a ngd
message to the lower priority agent. This message includes the assignments of
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both agents. ABT 1 processes all ngd messages in the same way as ABT, no mat-
ter they come from higher or lower priority agents. [Zivan and Meisels, 2005a]
prove that ABT 1 inherits the good properties of ABT : completeness, correctness
and termination. The code of ABT 1 appears in Figure 8.4. Only the new or
modified parts with respect to ABT (Figure 5.2, Chapter 5) are shown. ABT 1

agents have the same data structures as ABT agents.

procedure ABT1()

myV alue ← empty; end ← false; compute Γ+, Γ−;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end ← true;

procedure ProcessInfo(msg)
UpdateAgentView(msg.Assig);

if ¬consistent(myV alue, msg.Assig) then
if (msg.Sender ∈ Γ+) then
SendMsg:ngd(msg.Sender, self = myV alue ⇒ msg.Sender 6= msg.Assig);

else CheckAgentView();

procedure CheckAgentView(msg)
if ¬consistent(myV alue, myAgentV iew[Γ−]) then

myV alue ← ChooseValue();
if (myV alue) then

for each child ∈ Γ+(self) ∪ Γ−(self) do sendMsg:ok?(child, myV alue);
for each child ∈ Γ+(self) such that ¬consistent(myV alue, child.Assig) do

sendMsg:ngd(child, self = myV alue ⇒ ¬child.Assig);
else Backtrack();

Figure 8.4: The ABT 1 algorithm for the PKC model. Missing procedures appear
in Figure 5.2, Chapter 5.

DisFC 1

The DisFC 1 algorithm results of applying the single phase strategy proposed
by [Zivan and Meisels, 2005a] to DisFC. DisFC 1 enforces assignment privacy
while keeping constraint privacy in the PKC model. The algorithm works like
ABT 1 with the following differences: (i) instead of sending its current value,
agent i sends the subset of Dj consistent with it, and (ii) the assigned value
is replaced by a sequence number. The code of the DisFC 1 algorithm appears
in Figure 8.5. In addition to the data structures of DisFC 2, each agent keeps
in myFilteredDomains the received filtered domains from lower priority con-
straining agents.
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procedure DisFC1()

myV alue ← empty; end ← false; compute Γ+, Γ−;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end ← true;

procedure ProcessInfo(msg)
UpdateAgentView(msg.Sender = msg.Seq);
if (msg.Sender ∈ Γ+(self)) then myFilteredDomain[msg.Sender] ← msg.Domain;
if (msg.Sender ∈ Γ−(self)) then UpdateDomain(msg);
if ¬(myV alue ∈ msg.Domain) then

if (msg.Sender ∈ Γ+(self)) then
SendMsg:ngd(msg.Sender, self = mySeq ⇒ msg.sender 6= msg.Seq);

else CheckAgentView();

procedure CheckAgentView()
if (myV alue = empty ∨myV alue eliminated by myNogoodStore) then

myV alue ← ChooseValue();
if (myV alue) then

mySeq ← mySeq + 1;
for each child ∈ Γ+(self) ∪ Γ−(self) do

sendMsg:ok?(child, mySeq, compatible(D(child), myV alue));
for each child ∈ Γ+(self) such that ¬ (myV alue ∈ MyFilteredDomain[child]) do

sendMsg:ngd(child, self = mySeq ⇒ child 6= child.Seq);
else Backtrack();

Figure 8.5: The DisFC 1 algorithm for the PKC model. Missing procedures
appear in Figure 8.2.

8.3.4 DisFC 2/DisFC 1: Theoretical Results

Here, we prove that DisFC 2 and DisFC 1 inherit the good properties of DisFC :
completeness, correctness and termination. The proof that ABT 2/ABT 1 hold
these properties appears in [Zivan and Meisels, 2005a]. We assume that all al-
gorithms follow the same agent ordering. The proof will be based on the fact
that all algorithms can generate the same nogoods.

Lemma 8.3.2. A nogood can be generated by DisFC2/DisFC1 iff it can be gen-
erated by DisFC.

Proof. We distinguish between two types of nogoods: explicit and implicit. In
DisFC and DisFC 2/DisFC 1, an explicit nogood is generated as a consequence
of an ok? message. An implicit nogood is generated by resolution of the set of
nogoods that forbid every value of a variable.

Explicit nogoods. Let i and j be two agents, i < j in the total order, and
let xi = v ⇒ xj 6= w be a nogood generated by DisFC 2/DisFC 1. If the pair
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(v, w) is forbidden in Ci(j), this nogood will be generated in j after receiving the
ok? message containing the filtered domain of xj associated to the assignment
xi = v , and it will be stored in j. Otherwise, if the pair (v, w) is permitted in
Ci(j) but forbidden in C(i)j , it will be generated in i, and it will be sent from
i to j and stored in j. In any case, if it is forbidden by, at least, one partial
constraint it is enough for the pair (v, w) to be forbidden by the total constraint
Cij . Therefore, it will be generated by DisFC.

Let us assume that (v, w) is forbidden by Cij , so DisFC will generate the
nogood xi = v ⇒ xj 6= w when sending the ok? message from i to j containing
the filtered domain of xj associated to the assignment xi = v. By the definition
of PKC model, we know that the pair (v, w) will be forbidden by, at least, one of
the partial constraints. If it is forbidden by Ci(j), the nogood will be generated in
j after receiving the ok? message containing the filtered domain of xj associated
to the assignment xi = v, and stored in j. If it is forbidden by C(i)j , the nogood
will be generated in i when i sends j an ok? message containing the filtered
domain associated to xi = v and j sends i an ok? message containing the filtered
domain associated to xj = w (this requires two phases in DisFC 2 but a single
one in DisFC 1). This nogood will be sent to j, and stored there. So, in both
cases the nogood is generated (and stored in j).

Implicit nogoods. Analogous to the proof given in Proposition 8.2.1 for im-
plicit nogoods. ¤

Proposition 8.3.3. DisFC2/DisFC1 are correct, complete and terminate.

Proof. Correctness. If DisFC 2/DisFC 1 network has reached quiescence. In
that case, every partial constraint is satisfied (otherwise, quiescence cannot be
reached). If every partial constraint is satisfied, every total constraint is satisfied
as well (by definition of partial constraints, see Subsection 8.3.1). Therefore, the
reported solution is a true solution.
Completeness. DisFC 2/DisFC 1 perform the same kind of search as DisFC :
total ordering of agents, asynchronous instantiation, resolving nogoods, adding
links, etc. Their only difference is that (i) agents send filtered domains to higher
and lower priority agents through ok? messages, and (ii) if an agent i receives
an ok? message a one lower priority agent j and the filtered domain included
in the message is inconsistent with the i’s current assignment, the agent will
sends a nogood message to j. These points are crucial in the generation of
nogoods. However, by Lemma 8.3.2, we know that these changes do not cause
any modification in the set of nogoods generated by these algorithms with respect
to DisFC. Consequently the DisFC 2/DisFC 1 algorithms will discard the same
parts of the search space as DisFC, but not other parts. Since DisFC is complete,
DisFC 2/DisFC 1 are also complete.
Termination. An argument similar to the one used in completeness applies here.
Nogoods rule out parts of the search space. Because the total ordering of agents,
discarded parts accumulate, so DisFC terminates in a finite search space. Since
DisFC 2/DisFC 1 generate the same nogoods as DisFC, and they perform the
same kind of search, DisFC 2/DisFC 1 also terminate. ¤
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8.3.5 An Example

Let us consider the problem of safely locating a queen Q and a knight k on a
4 × 4 chessboard (see Section 8.3.1 for the formal definition of the n-pieces m-
chessboard problem). Each piece is handled by an independent agent, and none
knows the identity of the other piece, so the PKC model applies here. There
is a single constraint between Q and k. Initially we assume that Q has higher
priority than k, so the constraint is directed Q → k. We show the execution of
DisFC 2, ABT 2, ABT 1 and DisFC 1 on this problem.

Considering DisFC 2, the algorithm execution is as follows (assuming that
values are selected lexicographically). When phase I starts, both pieces take
value 1. Q informs k of its filtered domain with respect to Q value, and k
changes its value to 7. Quiescence is reached and phase II starts. The constraint
direction is reversed, now k → Q. k informs Q of its filtered domain with respect
to k value. Q realizes that its current value is forbidden, so it sends a ngd
message to k. Quiescence is reached and the constraint direction is reversed
again, now Q → k. phase I starts. k realizes that its value is eliminated
by the nogood contained in the ngd message received in phase II. Therefore,
k changes its value to 8. Quiescence is reached and phase II starts. The
constraint direction is reversed, now k → Q. k informs Q of its filtered domain
with respect to k value. Q finds that its current value is permitted, so it does
nothing. Quiescence is reached causing termination because no ngd message
has been generated in phase II.

ABT 2 works as follows. phase I starts locating each piece in the first position
of the chessboard. Afterwards, Q informs k of its current assignment. This
causes k to take value 2, which is consistent according to its partial constraint
with the value of Q. Then, quiescence is reached and phase II starts. The
constraint direction is reversed, now k → Q. k informs Q of its value. Q notes
that its current value is not consistent with the value of k, so it sends a ngd
message to k. Quiescence is reached and the constraint direction is reversed
again, now Q → k. phase I starts. k realizes that its value is eliminated by the
Nogood contained in the ngd message received in phase II, so k changes its
value to 3. Quiescence is reached and phase II starts. The constraint direction
is reversed, now k → Q. k informs Q of its value. Q finds that its current
value is not consistent with the value 3 of k and then sends a Nogood message
to k. Quiescence is reached and the search is resumed in phase I. This process
continues until k takes value 8. Then, k informs Q of the new assignment. Q
checks that its assignment is consistent with k value. Quiescence is reached
causing termination because no ngd message has been generated in phase II.

ABT 1 works as follows. First, each piece takes value 1. Agents exchange two
ok? messages. Q informs k that it has taken value 1, and k informs Q that it
has taken value 1. When Q receives the ok? message, it sends a ngd message
to k informing that its current value it is not consistent with the value of Q
(both pieces are in the same chessboard cell). When k receives the ok? and
ngd messages it takes value 2 and informs this change to Q via an ok? message.
When Q receives this message it notes that its current value is not consistent
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with k value, so Q sends an ngd message to k informing it to change its value.
Then, k takes the value 3 and informs Q. This process continues until k takes
value 8. Then, it informs Q of the new assignment. Q finds that its current
value is consistent with the value of k, so it does nothing. Quiescence is reached
causing termination.

When DisFC 1 starts, both pieces take value 1. Agents exchange two ok?
messages. Q informs k its filtered domain with respect to Q value, and k informs
Q its filtered domains with respect to k value. When Q receives the message it
sends an ngd message to k informing that its current value it is not consistent
with Q value. When k receives the ok? and ngd messages it takes value 7 and
informs this change to Q via an ok? message. When Q receives this message
it notes that its current value is not permitted, so Q sends an ngd message to
k informing that it has to change its value. Then, k takes value 8 and informs
Q. Q finds that its current value is permitted, so it does nothing. Quiescence is
reached causing termination.

8.3.6 Evaluating Privacy Loss of Constraints

The agents in the four proposed algorithms have to reveal some information
about their constraints during the search process. In order to compare the
algorithms with respect to privacy loss of constraints that they provide, we
must be able to count the amount of information that can be inferred by agents
in each algorithm. We look at each binary constraint as a matrix in which every
entry represents the compatibility of two values, one for each agent. In the PKC
model, for two mutually constrained agents, each owns a partial constraint. In
matrix terms, each agent has a matrix, and these matrixes could be different.

To measure the privacy loss of constraint Ci(j) held by i, we propose to count
the number of constraint matrixes that are consistent with information about
Ci(j) that i reveals to j. Of these matrixes, one is the actual Ci(j). In ABT
algorithms, this number is computed by simply counting the number of entries
(e) of Ci(j) that i has shared with j. Thus, we can define the privacy loss of
Ci(j) by the following equation:

2(|Di||Dj |−e)

where |Di| and |Dj | are the sizes of domains of i and j, and e is the number of
entries that i has shared with j. The larger this number is, the less information j
can infer about Ci(j). The critical privacy value is 1, that occurs when j deduces
the values of all entries in Ci(j).

In ABT, if i has higher priority than j, e is equal to |Di||Dj |, otherwise e = 0.
This is due to ABT assumes that the lower priority agent in each constraint
has to know the whole constraint and higher priority agents never receive the
assignments of lower priority ones.

In ABT 1, e is equal to the number of different negative entries of Ci(j) that
i reveals to j. An entry is negative if the combination of values that the entry
represents is incompatible. Each different explicit nogood holds a negative entry.
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As we have defined before, a nogood is said explicit if it is a direct consequence
of a conflict defined by a problem constraint. In ABT 1, when an agent i receives
an ok? message from a lower priority agent j, i checks if the j’s value containing
in that message and its own current value are valid with respect to Ci(j). If i
detects that such values are inconsistent, i sends an explicit ngd message to j.
Explicit nogoods are differentiable from the other nogood, because they always
are sent from higher to lower priority agents. Hence, if i has higher priority than
j, e is equal to number of different negative entries revealed by i to j, otherwise
e = |Di||Dj |.

In ABT 2, e is equal to the number of different negative entries, like in ABT 1,
plus the number of different positive entries that j can infer from Ci(j). An entry
is positive if the combination of values that the entry represents is compatible.
Agents reveal negative and positive entries in phase II. At this phase, an agent
j sends its value to every constraining agent i with higher priority. Then, agent
i detects that j’s value is either inconsistent or not. If it is inconsistent, i will
send to j an explicit nogood, otherwise i will do nothing. If j receives such a
ngd message, j deduces that the entry in Ci(j) that correspond to the values of
i and j is negative. Otherwise, j deduces that this entry is positive. Hence, if
i has higher priority than j, e is equal to number of different explicit nogoods
and explicit goods that j can infer from Ci(j), otherwise e = |Di||Dj |.

Regarding DisFC 2/DisFC 1, it is more costly to compute the number of con-
straint matrixes which are consistent with the information exchanged between
every pair of constraining agents. In both algorithms, if agent i is constrained
with j and i has higher priority, instead of sending the actual value of i to j
like in ABT algorithms, it sends the subset of Dj that is compatible with the
actual value of i. After reception, j does not know the actual value of i, but it
knows a complete row of Ci(j) without knowing its position in the matrix. As
search progresses, j may store new rows of Ci(j). At the end, j has a subset
of rows without knowing their position. In addition, some search episodes (in-
formation exchanged by agents in phase II in DisFC 2, nogood messages from
high to low priority agents in DisFC 1) may reduce the number of acceptable
positions for a particular row [Meisels and Zivan, 2006]. With all this, we con-
struct a CSP instance where the variables are the rows, their domains are the
acceptable positions, under the constraints that two different rows cannot go to
the same position and every row must get a position. Computing all solutions of
this instance we obtain all matrixes which are compatible with the information
obtained from the search using the following equation:

∑

i=0...s

2(|Di||Dj |−|Di|rowsi) − rep

where s is the number of solution of the CSP instances, rowsi is the number of
rows that solution i locates in Ci(j) and rep is the number of matrixes that are
counted more than once. Of all the matrixes included in the above equation,
one is Ci(j).

Let us consider an example that illustrates how we generate the CSP in-
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stance. Figure 8.6 shows an example of a part of DisFC 1 execution. The domain
of both variables is: {a, b, c, d, e}. Matrixes are expressed assuming that values
of each variable are lexicographically ordered. An entry is positive (+) if the
combination of values that this entry represents is consistent for the constraint.
Conversely, an entry is negative (−) if the combination of values that the entry
represents is invalid.

Agent j
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i
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x
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Figure 8.6: Information deduced by a DisFC 1 agent after receiving a ngd mes-
sage from a higher priority agent.

This example starts when agent i sends an ok? message to agent j saying
that i’s current value is compatible only with the values {a, b, d} of j’s domain
(Figure 8.6.a). From this message, j can deduce that there exits a row in Ci(j)

with the form: [+ +−+−]. However, with this information j cannot infer the
position of this row in Ci(j). After receiving the ok? message, j takes a new
value and sends an ok? message to i saying that the only valid values for i are
in the domain {a, b, d} (Figure 8.6.b). Similar to j, i may deduce that C(i)j

has a row with the form [+ + − + −]. When i receives that message from j,
it discovers that the received ok? message is incompatible with its own value
and sends a ngd to j (Figure 8.6.c). From this message, j can deduce that i’s
current value does not belong the compatible domain it has sent it previously,
therefore, the current value of i is either c or e. Thus, j may deduce that the
row corresponding to c or e in Ci(j) has the form [+ + − + −] (i.e. the value c
or e for agent i are compatible only with a, b and d for agent j). Suppose that
the example continues; j changes its value and, following the same reasoning we
have described before, j discovers that Ci(j) has a row with the form [++−+−]
that corresponds to value c or d. Then, the algorithm ends.

In this example, we construct a CSP instance that includes two variables
x1 and x2; one for each time the row [+ + − + −] has been discovered. The
domains of these variables are: {c, e} and {c, d}, respectively. There exists a
constraint between variables in order to avoid that both rows be associated to
value c. The CSP has 4 solutions: s1 = {x1 = x2 = c}; s2 = {x1 = c, x2 = d};
s3 = {x1 = e, x2 = c}; s2 = {x1 = e, x2 = d}. The privacy loss of C(i)j
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is: 2(25−5) + 3 × 2(25−10) − rep, where rep = 2(25−5) + 2 × 2(25−10), because
the matrixes for s2 and s3 are included in the matrixes for s1, and as well as
matrixes for s1 are included in the matrixes for s4. Hence, according to the
information that j has at the end of the search, the original Ci(j) could be one
of those 215 = 32768 matrixes.

In DisFC 2, the process to build the CSP instance is the almost same as for
DisFC 1 with some minor differences. Similar to ABT 2, all inferences are done
at phase II. When j receives a ngd message from a higher priority agents,
the process is the same as for DisFC 1. In addition, if after j has sent an ok?
message to a higher priority agent i, j does not receive a ngd message that
agent, this mean that i’s value appears in the domains sent by j to i in the ok?
message. Thus, the rows previously sent from i to j corresponds to one of the
value that appears in domain included in the ok? messages sent from j to i.

Contrary to ABT algorithms, breaking constraint privacy in
DisFC 2/DisFC 1 requires that all solutions of a CSP instance have to be
computed (an NP-hard task). In practice, solving this instance requires
significant effort and in some cases subsumption testing is required.

Because of the required static ordering of agents, in all proposed algorithms
lower priority agents tend to work more than higher priority ones. This causes
lower priority agents to reveal more information than higher priority ones.
Therefore, they tend to have a higher privacy loss. To overcome these differ-
ences, we propose to use three functions to aggregate the values of privacy loss
of constraints of all agents. These functions are: minimum (min), median (med)
and average (avg). The minimum function measures the amount of information
that a better informed agent has about partial constraints of other agents. The
median function measures the amount of information that the agent with the
median value of privacy loss of constraints has. The average function measures
the average value of the privacy loss of constraints for all agents.

8.4 Experimental Results

We have performed some experiments to assess the potential of proposed algo-
rithms when solving DisCSPs under privacy requirements. In our experiments
we have used distributed random problems to evaluate privacy loss of constraints
during algorithm execution. We evaluate the performance of algorithms accord-
ing to communication cost, computation effort and privacy loss of assignments
and constraints. As discussed in Chapter 3, we measure the computation ef-
fort in terms of the number of non-concurrent constraint checks (nccc) and the
communication cost in terms of the total number of exchanged messages (msg).
Regarding privacy constraints, we evaluate privacy loss of constraints in terms
of the number of constraint matrixes consistent with the information exchanged
among agents (see Subsection 8.3.6).

We performed experiments on the following class of random problems:
〈15, 10, 0.4, p2〉. Problems include 15 agents (n = 15) each holding one vari-
able and 10 values for each variable (k = 10). The value of the constraint one
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density is p1 = 0.4. The tightness (p2) varies between 0.1 and 0.9 to cover all
ranges of problem difficulty. For each pair of density and tightness (p1, p2),
we generated 100 different instances. We assumed that problems are initially
expressed under the PKC model. The p2 values correspond to the tightness of
the total constraints. For each pair of constraining agents i and j, the set of
forbidden pairs of values of the total constraint Cij are randomly split between
the two partial constraints Ci(j) and C(i)j . Since ABT requires that j knows
the whole constraint Cij , j must receive, via message(s), the partial constraint
Ci(j) from i before running ABT.

The results of ABT 2/ABT 1 and DisFC 2/DisFC 1 are reported and discussed
in the following subsections. For all algorithms, messages are processed by pack-
ets, as described in Chapter 6.

8.4.1 ABT, ABT 2 and ABT 1

Figure 8.7 (left) shows the average number of non-concurrent constraint checks
required by ABT, ABT 2 and ABT 1 to solve the considered random instances.
The overhead of algorithms that preserve constraint privacy is clear. ABT 2 and
ABT 1 run more than twice slower than standard ABT. For problems in the
phase transition region, ABT 1 outperforms ABT 2 by 30%. On instances with
high tightness, ABT 1 behaves like the standard algorithm (i.e. the difference
between the algorithms is constant) while the performance of ABT 2 deteriorates.
This phenomenon occurs because the problem solved by ABT 2 in phase I is
actually less tight than the problem solved by ABT 1. Therefore when ABT 1

detects that the problem is too tight to be solved, ABT 2 works hard to solve a
problem with lower tightness.

Figure 8.7 (right) presents the results for the total number of exchanged mes-
sages among agents during algorithm execution. Comparing ABT 2 and ABT 1

with the standard ABT, we observe the similar result previously seen in terms
of nccc: algorithms that preserve constraint privacy are much more costly than
ABT. In contrast to the results for nccc, for low tightness instances, the num-
ber of messages sent by ABT 2 is smaller than for ABT 1. This is because the
agents in ABT 1 send ok? messages to all their neighbors while in ABT 2 in each
phase the agents send ok? messages only in one direction. For tighter problems,
ABT 1 sends less messages than ABT 2 when solving instances to the right of the
complexity peak.

Table 8.1 reports the minimum (min), median (med) and average (avg) of the
numbers of constraint matrixes that are consistent with information exchanged
between every pair of constraining agents. Larger values mean higher privacy.
The critical privacy occurs when the number of constraint matrixes is 1, which
means that one agent may build the whole partial constraint matrix of one other
agent.

According to min, ABT and ABT 1 are the algorithms with lower and higher
constraint privacy, respectively. ABT reaches the value of critical privacy for
every value of p2. This is because ABT requires that the lower priority agent of
each constraint knows the entire matrix in order to check the consistency of the
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Figure 8.7: Non-concurrent constraint checks (left) and number of messages
(right) for ABT, ABT 1, ABT 2 on binary random DisCSP.

constraint. In contrast, no agent in ABT 1 and ABT 2 receive enough information
to infer completely the partial constraint of other agent. Except for p2 = 0.9,
ABT 2 agents can infer more information about the partial constraint of the
other agents than ABT 1 agents. According to med, the number of consistent
matrixes is the same for the three algorithms. This means that, for half of the
agents both algorithms provide the same privacy. In terms of avg, ABT, ABT 2

and ABT 1 shows very similar results. For p2 ≥ 0.8, ABT 1 is just one order of
magnitude worse than the other two algorithms. This is due to the first phase
of DisFC 2, where only some constraints are considered, is enough to detect that
instances are unsolvable.

These results show a trade-off between efficiency and constraint privacy on
ABT algorithms. The more private an algorithm is, the more inefficient it is.
ABT requires less computation effort and communication cost than ABT 1 and
ABT 2. According to constraint privacy, we conclude that: (1) ABT is less
private than ABT 2 and ABT 1 because ABT needs that all the information
about constraints must be revealed in advance; (2) the better informed agent in
ABT 2 have more information about other agents’ partial constraints that the

ABT ABT1 ABT2
p2 min med avg min med avg min med avg
0.1 1 1030 1030 1029 1030 1030 1029 1030 1030

0.2 1 1030 1030 1029 1030 1030 1028 1030 1030

0.3 1 1030 1030 1029 1030 1030 1027 1030 1030

0.4 1 1030 1030 1027 1030 1030 1026 1030 1030

0.5 1 1030 1030 1023 1030 1030 1018 1030 1030

0.6 1 1030 1030 1020 1030 1030 1010 1030 1030

0.7 1 1030 1030 1019 1030 1030 1015 1030 1030

0.8 1 1030 1030 1019 1030 1029 1019 1030 1030

0.9 1 1030 1030 1018 1030 1029 1025 1030 1030

Table 8.1: Constraint privacy of ABT, ABT 1 and ABT 2 measured by the min-
imum (min), median (med) and average (avg) of the numbers of consistent
constraint matrixes.
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better informed agent in ABT 1; (3) globally, ABT 1 agents have slightly more
information about partial constraint matrixes of other agents than ABT 2 agents.

8.4.2 DisFC 2 and DisFC 1

We have tested DisFC 2 and DisFC 1 on the same class of random problems used
in the evaluation of ABT 2/ABT 1: 〈n = 15,m = 10, p1 = 0.4, p2〉. Similarly,
we evaluate the performance of algorithms by the number of non-concurrent
constraint checks (nccc), the number of exchanged messages (msg) and the min-
imum (min), median (med) and average (avg) of the numbers of constraint
matrixes that are consistent with the information that agents reveal during res-
olution.
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Figure 8.8: Non-concurrent constraint checks (left) and number of messages
(right) for DisFC 1, DisFC 2 on binary random DisCSP.

Figure 8.8 (left) shows the number of non-concurrent constraint checks re-
quired by DisFC 1 and DisFC 2 to solve considered problems. We observe that
DisFC 1 is more than twice slower than DisFC 2 for problems close to the com-
plexity peak. However, DisFC 2 is worse than DisFC 1 for tighter problems
(p2 ≥ 0.7). These results differ from those obtained for ABT versions where
ABT 1 is faster than ABT 2 for instances close to the complexity peak. This
is explained by the following fact. Before sending an ok? message, a DisFC 1

agent has to check consistency with each value in the domain of every agent
constrained with it. Conversely, a DisFC 2 agent has to check consistency with
every lower priority agent constrained with it, which generates a lower number
of constraint checks. Comparing these algorithms with ABT 2/ABT 1, the for-
mer have to perform a much larger number of constraint checks than the latter
(because they send filtered domains, not just single values), which justify these
results.

Figure 8.8 (right) presents the results of communication cost in term of the
number of messages exchanged among agents in DisFC 1 and DisFC 2. Mainly,
the relative ordering of algorithms is the same as that shown in the ABT ver-
sions. DisFC 1 agents exchange more messages than DisFC 2 for problems with
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constraint tightness lower than 0.6 (p2 ≤ 0.6). Although, DisFC 2 is more costly
than DisFC 1 for the rest of the problems (p2 ≥ 0.7).

Comparing these results with the ABT-2ph/ABT-1ph in problems with low
and high density, we see that DisFC algorithms are much slower. Similarly,
agents in DisFC algorithms send more messages. This inefficiency of DisFC al-
gorithms can be explained. In ABT-2ph/ABT-1ph as in standard ABT, assign-
ments are sent to neighboring agents which concurrently check there consistency
with the local assignments. In DisFC, in order to keep the assignments pri-
vate, agents must perform the consistency checks of their proposed assignments
sequentially, checking the entire domains of their neighboring agents. This in-
creases the non-concurrent effort of the DisFC algorithms.

We also evaluate DisFC 1 and DisFC 2 according to privacy issues. Loss in
assignment privacy depends on constraint tightness. In DisFC 1, when an agent
j sends a filtered domain to a higher priority agent i, i may find inconsistency
between i’s assignment and the filtered domain sent by j. In this situation, i
sends a ngd message to j. When j receives this ngd message, it can deduce
that i’s assignment is one of those values that are not included in the filtered
domain sent to i. Because agents work asynchronously, j cannot infer anything
about i’s assignment if no ngd message is received from i. This is true because
i may have changed its assignment before receiving the ok? message.

Following a similar reasoning, every DisFC 2 agent can infer the assignments
of higher priority agents when receiving ngd messages from them. All these mes-
sages are exchanged in the second phase of DisFC 2. Since agents’ assignments
remain unchanged in the second phase, an agent j can deduce the assignments
of a higher priority agent i even when it does not receive a ngd message from
i. In this case, j knows that i’s assignment is one of the values that is valid
according to the filtered domain sent by j to i in the second phase of the algo-
rithm. Note that all these inferences are produced in the second phase of the
algorithm, which is only invoked at certain points of the execution. One can say
that, DisFC 1 agents have a higher certainty of the assignments of higher pri-
ority agents during the whole execution of the algorithm, while DisFC 2 agents
may suspect the current assignments of other agents only at some points of the
execution. Similarly to the standard ABT, assignments of lower priority agents
are keeping completely private for higher priority agents during the execution of
both algorithms.

Table 8.2 shows the minimum (min), median (med) and average (avg) num-
bers of constraint matrixes which are consistent with information exchanged be-
tween constraining agents. Again, larger values mean higher privacy and value
1 represents the critical privacy loss. In terms of min, we observe that DisFC 1

improves over or ties with DisFC 2, for all values of p2 up to p2 = 0.4. This is
due to the following fact. Synchronization points required by DisFC 2 to change
from one phase to the other make every agent i to know exactly the set of com-
patible values of other agent j that shares a constraint with it. This reduces the
number of possible acceptable positions for the row of partial constraint C(i)j

that corresponds to the filtered domain sent by j to i before phase change. In
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DisFC1 DisFC2
p2 min med avg min med avg
0.1 1023 1028 1029 1026 1028 1028

0.2 1023 1027 1029 1025 1027 1028

0.3 1016 1024 1029 1021 1026 1027

0.4 107 1014 1028 103 1024 1025

0.5 1 109 1025 1 106 1020

0.6 1 106 109 1 106 1010

0.7 1 106 1012 1 106 1010

0.8 1 106 1010 1 106 1012

0.9 1 106 1010 1 106 1017

Table 8.2: Constraint privacy of DisFC 1 and DisFC 2 measured by the minimum
(min), median (med) and average (avg) of the numbers of consistent constraint
matrixes.

contrast, an DisFC 1 agent may deduce the position of a particular row only after
receiving an explicit ngd message (one coming from a higher priority agents).
For tighter instances (p2 ≥ 0.5), both algorithms reveal enough information al-
lowing at least one agent to build completely the partial constraint matrix of
other one.

In terms of med, we find that both algorithms reveal almost the same up to
p1 = 0.4, where DisFC 2 outperforms DisFC 1. For tighter instances, we conclude
that approximately in half of partial constraint matrixes all rows are revealed
during search since 106 is close to 10! = 3.6× 106 (the number of permutations
of 10 rows). According to min and med, we observe that privacy loss is high as
p2 increases. In terms of avg, higher privacy loss occurs at the complexity peak
(p2 = 0.6). For p2 > 0.7, it seems that DisFC 2 tends to increase. This occurs
because the first phase of the algorithm does not find any solution. Therefore,
the second phase is not performed and explicit ngd are not sent. In contrast, in
DisFC 1, explicit ngd are sent throughout the algorithm.

Comparing these results with those obtained about privacy loss of constraints
in ABT algorithms, we observe the following. DisFC algorithms reveal more
information about partial constraints than agents in ABT algorithms. Actually,
in some problems, all rows of the partial constraint matrixes are revealed. This
happens because DisFC agents exchange filtered domains which correspond to
rows in the partial constraint matrixes. Since no agent i reveals its assignments
during the search, an agent j cannot easily infer which values of i’s domain cor-
respond to the filtered domains received from i. Although apparently, in DisFC
algorithms, an agent may find out the partial constraints of another agent, as
happens in ABT, it is important to keep in mind that in DisFC algorithms this
process has a cost that is equal to search cost for finding all a CSP ’s solutions.

8.5 Summary

In this chapter, we have treated privacy in the context of ABT. To this end,
we have differentiated among privacy of domains, assignments and constraints.
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The first considers that the whole domain of every variable must be concealed
by holding agent during resolution. The second considers that actual assigned
values are not made public in the solving process. The third is concerned with
constraints that are initially private (the PKC model) between agents, and they
remain as private as possible during the solving process.

Somehow, the variable-based model assumed by ABT guarantees a substan-
tial domain privacy because only the holding agent of each variable knows its
domain. Here, we have discussed some ideas to enhance further domain pri-
vacy in ABT. Referring to assignment and constraint privacy, we have presented
two families of ABT -like algorithms, ABT 2/ABT 1 and DisFC 2/DisFC 1, to
perform the actual solving while trying to keep the above mentioned privacy
levels. They were initially conceived as two phase algorithms, although later
both phases were joined into a single one. These algorithms are not perfect and
leak some information in the solving process, but less than standard ABT.

The proposed algorithms have been implemented and evaluated on random
DisCSP instances. Empirically we observe an expected fact: to achieve some
privacy, algorithms degrade their performance (because they have to conceal
some values, exchange more messages etc). In addition, the more privacy is
required the less performance is obtained by the solving algorithm. This is the
price one has to pay to achieve the required privacy.



Chapter 9

Enhancing Privacy with
Lies

In the preceding chapter we introduced DisFC 1 and DisFC 2, two asynchronous
backtracking algorithms that are concerned with privacy of assignments and
constraints. In both algorithms, each time an agent changes its value, it sends,
via ok? messages, the domain of the low priority agent that is compatible
with its current value. Although, this strategy allows agents to not reveal their
current assignments, it may cause a privacy loss on shared constraints that was
initially overlooked when assuming the PKC model. This phenomenon is clearly
observed in the experimental evaluation of the preceding chapter, in particular,
in Table 8.2 which measures privacy loss of constraints. In those experiments, at
least one DisCSP1/DisCSP2 agent can infer totally the partial constraint matrix
of other agent (after computing all the solution of a CSP). To further enhance
privacy of constraints, in this chapter we propose a novel algorithm that works
like DisFC 1 but it may lie about the compatible domains of other agents. The
new algorithm requires a single extra condition: if an agent sends a lie, it has to
tell the truth in finite time afterwards.

The structure of this chapter is as follows. In Section 9.1, we present the strat-
egy of false domains to reduce the information that DisFC 1/DisFC 2 agents can
deduce from other’s partial constraints. In Section 9.2, we present DisFC lies, an
algorithm that works as DisFC 1 and implements the strategy of false domains.
We formally prove that the DisFC lies is correct, complete and terminates in Sec-
tion 9.3. We discuss privacy improvements of DisFC lies with respect to DisFC 1

in Section 9.4. In Section 9.5, we evaluate DisFC lies on random DisFC. Finally,
in Section 9.6, we summarize this chapter.
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9.1 The Strategy of False Domains in
DisFC 1/DisFC 2

To enhance constraint privacy in DisFC 1/DisFC 2 we propose that agents could
lie. Instead of sending true rows of Ci(j), the algorithm may send true and false
rows. Each false row represents a lie. False rows will make much more difficult
the hypothetical reconstruction of Ci(j) by agent j, but it has to be done keeping
the correctness and completeness of the algorithm.

This idea can be formalized as follows. If i has d values Di = {v1, v2, . . . , vd},
it is assumed that i has an extended domain D′

i = {v1, v2, . . . , vd, vd+1, . . . , vd+k}
of d + k values. We call true values the first d values, while the rest are false
values. When i assigns the true value vp, 1 ≤ p ≤ d, it sends to agent j the subset
of values that are compatible with vp (that is, a true row of Ci(j)). When i assigns
the false value vq, d < q ≤ d+k, it sends an invented subset of compatible values
to j (that is a row which does not exist in Ci(j)). The only concern that an
agent must have after assigning a false value is that it must tell the truth (assign
a true value or perform backtracking if no more true values are available) in
finite time. The point is that no solution could be based on a false value, so
assignments including false values have to be removed in finite time (in fact, in
a shorter time than required to detect quiescence).

9.2 The DisFC lies Algorithm

DisFC 1 offers a better platform for privacy than DisFC 2, because it has no syn-
chronization points between phases. For this reason, we implement the strategy
of false domains on top of DisFC 1 (although it can also be implemented on top
of DisFC 2).

We call DisFC lies the new version of DisFC 1 where agents may exchange
false pruned domains. DisFC lies appears in Figure 9.1. It includes most of
the procedures, functions and data structures of DisFC 1, and uses the same
types of messages. Each agent has a local clock to control when it has to tell the
truth after a lie. In the structure FalseDomains, each agent puts away the false
domains that it will send to its neighbors for each false value the agent’s variable
can take. Dtrue(self) is the set of true values for self , while Dfalse(self) is the
set of its false values. D(self) is the union of these two sets.

In the main procedure, self first initializes its data structures and generates
the false domain that it will send for each false value. Secondly, self assigns
a value to its variable by invoking the function CheckAgentV iew. This value
may be false or not. Then, self enters in a loop where incoming messages
are received and processed. This loop ends, and therefore the algorithm, when
self receives either an stop or a qcc message from system. This is a special
agent that handles these messages in the same way it did in DisFC 1. If self
ends the search because a qcc message, it means that a problem has at least
one solution, otherwise, the problem is unsolvable. Quiescence state can be
detected by specialized algorithms [Chandy and Lamport, 1985]. However, in
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procedure DisFClies()

myV alue ← empty; end ← false; compute Γ+, Γ−; tsaytrue ← 0;
for each value ∈ Dfalse(self) do

for each neig ∈ Γ+(self) ∪ Γ−(self) do generate FalseDomain[value][neig];
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp, qcc : end ← true;

if (value ∈ Dfalse(self)) and (gettime() ≥ tsaytrue) then TakeATrueValue();

procedure CheckAgentView()
if (myV alue = empty or myV alue eliminated by myNogoodStore) then

myV alue ← ChooseValue();
if (myV alue) then

mySeq ← mySeq + 1;
if (myV alue ∈ Dfalse(self)) then

for each neig ∈ Γ+(self) ∪ Γ−(self) do
sendMsg:ok?(neig, mySeq, FalseDomain[myV alue][neig]);

tsaytrue ← gettime() + tlies; /* tlies < tquies */
else

for each neig ∈ Γ+(self) ∪ Γ−(self) do
sendMsg:ok?(neig, mySeq, compatible(D(neig), myV alue));

for each child ∈ Γ+(self) such that ¬ (myV alue ∈ MyFilteredDomain[child]) do
sendMsg:ngd(child, self = mySeq ⇒ ¬child.Assig);

tsaytrue ← 0;
else Backtrack();

procedure ResolveConflict(msg)
if coherent(msg.Nogood, Γ−(self) ∪ {self}) then
CheckAddLink(msg);
add(msg.Nogood, myNogoodStore); myV alue ← empty;
CheckAgentView();

else if coherent(msg.Nogood, self) then
if (myV alue ∈ Dfalse(self)) then
sendMsg:ok?(neig, mySeq, FalseDomain[myV alue][neig]);

else
SendMsg:ok?(msg.Sender, mySeq, compatible(D(msg.Sender), myV alue);

procedure TakeATrueValue()
tsaytrue ← 0; myV alue ← ChooseATrueValue();
if (myV alue) then

mySeq ← mySeq + 1;
for each neig ∈ Γ+(self) ∪ Γ−(self) do

sendMsg:ok?(neig, mySeq, compatible(D(neig), myV alue);
for each child ∈ Γ+(self) such that ¬ (myV alue ∈ MyFilteredDomain[child]) do

sendMsg:ngd(child, self = mySeq ⇒ ¬child.Assig);
else Backtrack();

function ChooseATrueValue()

for each v ∈ Dtrue(self) not eliminated by myNogoodStore do
if consistent(v, myAgentV iew[Γ−]) then return (v);
else add(xj = valj ⇒ self 6= v, myNogoodStore); /*v is inconsistent with xj ’s value */

return (empty);

Figure 9.1: The DisFC lies algorithm for asynchronous backtracking search.
Missing procedures/functions appear in Figure 8.5, Chapter 8.
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order to assure the completeness and correctness of the algorithm, the time
tquies required by system to assure quiescence in the network (i.e no message
has traveled through the network within the last tquies units of time) must be
larger than tlies, the maximum time agents may wait until rectifying their lies,
thus tlies < tquies.

In the following, we prove that DisFC lies is correct, complete and terminates.

9.3 Theoretical Results

Lemma 9.3.1. When DisFClies finds a solution, the last filtered domain received
by agent i from agent j corresponds to a (true) row in the partial constraint
matrix Ci(j).

Proof. For DisFC lies the current variables’ assignments are a solution if no
constraint is violated and network has reached quiescence. Let us assume that
DisFC lies reports a solution in which variable xi takes a false value. So the last
filtered domains sent by agent i are false too. However, DisFC lies requires that,
after lying, an agent must rectify in finite time. That is, assigning a true value
and sending to its neighbors the true filtered domains, or performing backtrack.
So, at least one ok? message or a ngd message has traveled through the network
after i lied, in contradiction with the initial assumption that the network had
reached quiescence. Therefore, the solution condition cannot be reached unless
true filtered domains are sent in the last messages from any agent. ¤

Proposition 9.3.2. DisFClies is correct.

Proof. If a solution is claimed, we have to prove that current agents’ assign-
ments satisfy their partial constraints. Lemma 9.3.1 shows that if DisFC lies

reports a solution the last variables’s assignments correspond to true values.
Therefore, one can prove that DisFC lies is correct by using the same arguments
to prove that DisFC 1 is correct.

Let us assume quiescence in the network. If the current assignment is not
a solution, there exists at least one partial constraint that is violated by agent
j. In that case, agent j has sent a ngd message to agent i, the closest agent
involved in the conflict. This ngd is either discarded as obsolete or accepted as
valid by agent i. If the message is discarded, it means that some message has
not yet reached its recipient, which breaks our assumption of quiescence in the
network. If the message is valid, i has to find a new consistent values, which will
produce several ok? messages or one new ngd message, which again breaks our
assumption of quiescence in the network. ¤

Proposition 9.3.3. DisFClies is complete.

Proof. Considering only nogoods based on true values, we can prove that
DisFC lies is complete by using the same arguments to prove that DisFC 1 is
complete. Since nogoods resulting from an ok? message are redundant with
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respect to the partial constraint matrixes, and the additional nogoods are gen-
erated by logical inference, the empty nogood cannot be inferred if the problem
is solvable.

Let us prove that DisFC lies cannot infer inconsistency based on false values
if the problem is solvable. Suppose that agent j detects inconsistency because a
lie introduced by agent i. We know that j detects inconsistency when it infers
an empty nogood. Besides, we know that the left-hand side of the nogoods
(justifications of forbidden values) stored by j is either empty or includes agents
with higher priority than j. Since we assume that inconsistency discovered by
j is based on the false value of i, i is before j in the agents’ ordering and there
is at least one nogood stored by j including i in its left-hand side. Therefore,
when j finds no consistent value, it has to send a backtracking messages to i,
which breaks our assumption that j derives an empty nogood. ¤

Lemma 9.3.4. DisFClies agents will not store indefinitely nogoods based on
false values.

Proof. Let us assume that a false nogood (i.e. a nogood including an agent
with a false value) will be stored indefinitely by an agent. In that case, the lying
agent cannot change its variable’s assignment, otherwise the nogood will become
obsolete and, therefore, deleted by the holder agent. But a lying agent must tell
the truth in finite time. So, in finite time, the agent storing the false nogood
will be informed of a new true value, the false nogood will become obsolete and,
therefore, it will be deleted by the holder agent. This breaks our assumption
that the false nogood lasts forever. ¤

Proposition 9.3.5. DisFClies terminates.

Proof. By Lemma 9.3.4, nogoods based on false values are discarded in
finite time. About nogoods based on true values, DisFC lies performs the same
treatment as DisFC 1. Since DisFC 1 terminates in finite time, DisFC lies also
terminates in finite time. ¤

Proposition 9.3.6. If a DisFClies agent detects inconsistency, every agent di-
rectly connected with it has received d true rows.

Proof. Let i be that agent. If i finds the empty nogood, it means that there is
a nogood for every true value of i. These nogoods have an empty left-hand side
(otherwise, i could not deduce the empty nogood). So they have been produced
as result of ngd messages coming from the lower priority agents. Therefore,
every possible true value of i has been taken, so i has sent to its neighbors d
true rows. ¤

9.4 Privacy Improvements of DisFC lies

The inclusion of false values has two direct consequences. First, agent j may
receive false rows of Ci(j). Then j has more difficulties to reconstruct Ci(j), since



124 Chapter 9. Enhancing Privacy with Lies

it is uncertain whether some received rows truly belong to Ci(j) or not. Second,
this strategy decreases performance, because any computation that includes a
false assignment will not produce any solution, so it is a wasted effort, only useful
for privacy purposes.

For a solvable instance, Lemma 9.3.1 shows that the last assignments corre-
spond to true values. So, agent j knows that the last message from i corresponds
to a true assignment, and it contains a true row of Ci(j). Agent j cannot dis-
criminate whether previous assignments are true or false, so it cannot include
the rows of these messages when trying to compute Ci(j). So j knows a single
row of Ci(j) but it does not know its location. The number of different con-
straint matrixes compatible with this information is approximately d ·2(d2−d) (d,
the number of possible locations for the true row, times 2(d2−d), the number of
compatible matrixes when d elements are known). This is a big difference with
the approach without lies, where all received rows truly belong to Ci(j).

For an unsolvable instance, Proposition 9.3.6 shows that every agent j di-
rectly connected with the agent i that detects inconsistency would have received
d true rows. In addition, since all possibilities have been tried, they have received
d+k rows (observe that j cannot receive more than d+k rows). Assuming that
j has received d+k different rows, if j wants to compute Ci(j), it has to select d
rows, take them as true rows and solve the corresponding CSP. j has to repeat

this process
(

d + k
d

)
times, that is, once for each different subset of d rows.

This increases the number of CSPs to solve, in order to compute the matrixes
compatible with the leaked information. However, j may have received less than
d + k different rows. In that case, j considers that some rows are repeated. If
there is no way to identify repeated rows, in addition to the previously described
combinations, we have to consider each possible row as possibly repeated, largely
increasing the number of CSP instances to solve. As a consequence, the privacy
level of the solving process is improved.

9.5 Experimental Results

In this Section, we compare the performance of DisFC 1 and DisFC lies solving
instances of binary random classes. As seen in Chapter 3, a binary random class
is defined by 〈n, d, p1, p2〉, where n is the number of variables, d the number
of values per variable, p1 the ratio of existing constraints and p2 the ratio of
forbidden value pairs. We solved instances in the class 〈15, 10, 0.4, p2〉 with
varying tightness (p2) between 0.1 to 0.9 in increments of 0.1. To create these
instances in PKC, we first generate random instances and then we split the
forbidden tuples of each constraint between its two partial constraints.

We consider three versions of DisFC lies that differ from each other in the
number of false values that their agents add to initial domains: 1, 3 and
5 false values. When an agent takes a value, it chooses between true and
false values with probability 0.5. tlies is randomly chosen between 1 and 99
internal units of time. Messages are processed by packets, as described in
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Figure 9.2: Computation and communication cost of DisFC and versions of
DisFC lies.

[Brito and Meseguer, 2004].
Algorithmic performance is evaluated by communication effort, computation

cost and constraint privacy. Communication effort is measured by the total
number of exchanged messages (msg). Computation cost is measured by the
number of non-concurrent constraint checks (nccc) [Meisels et al., 2002]. Con-
straint privacy is measured by the number of constraint matrixes consistent with
the information exchanged among agents (see Section 8.3.6). Generally, lower
priority agents work more than higher priority ones, therefore they reveals more
information than higher priority ones. Thus, we report the minimum (min),
median (med) and average (avg) of the numbers of constraint matrixes that are
consistent with information exchanged among agents.

Figure 9.2 shows the computation and communication costs. In both plots,
results are averaged on 100 instances. In terms of computation cost, we observe
that DisFC lies is more costly than DisFC, and the cost increases with the number
of allowable lies. The difference between algorithm is greater at the complexity
peak (p2 = 0.6). Except for p2 = 0.5, DisFC lies(5) always requires more nccc
than the others, while DisFC performs the lowest number of nccc. Similar results
appear for communication costs.

Table 9.1 contains the values of parameters min, med and avg to measure
constraint privacy. Larger values mean higher privacy. The critical privacy
occurs when the number of constraint matrixes is 1 (at least one agent knows
exactly the partial constraint matrix of one of its constraining agents). Regarding
constraint privacy in DisFC 1, the values of min and med decrease when p2

increases. Actually, in problems with constraint tightness greater than 0.4, at
least one agent can infer exactly the partial constraint of one of its constraining
agents (see column min). From med values in unsolvable instances (p2 ≥ 0.6),
we conclude that approximately in half of partial constraint matrixes all rows
are revealed during search since 106 is close to 10! = 3.6 × 106 (the number of
permutations of 10 rows). In terms of avg, higher privacy loss occurs at the
complexity peak (p2 = 0.6).

Regarding constraint privacy in DisFC lies, we notice the following. In solv-
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DisFC1 DisFClies(1) DisFClies(3) DisFClies(5)
p2 min med avg min med avg min med avg min med avg
0.1 1023 1028 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.2 1023 1027 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.3 1016 1024 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.4 107 1014 1028 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.5 1 109 1025 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.6 1 106 109 3.3 1030 1029 20 1030 1029 221 1030 1029

0.7 1 106 1012 2 1030 1029 10.7 1030 1029 163 1030 1029

0.8 1 106 1010 2.3 1030 1029 50.3 1030 1029 270 1030 1029

0.9 1 106 1010 3.3 1030 1029 25.3 1030 1029 426 1030 1029

Table 9.1: Constraint privacy measured by the minimum (min), median (med)
and average (avg) of the numbers of consistent constraint matrixes. Averaged
on 10 instances.

able instances (0.1 ≤ p2 ≤ 0.5), DisFC lies versions achieve the same level of
privacy for min, med and avg, no matter the number of allowable lies. This
occurs since each agent can only assure that the last filtered domain received
from another agent truly corresponds to a row in the partial constraint matrix
of that agent (see Lemma 9.3.1), which is independent to the number of false
values that agents may have. In terms of min and med, DisFC lies versions are
more private than DisFC 1. In unsolvable instances, DisFC lies versions have
different level of privacy when considering min. DisFC lies(5) is one and two
orders of magnitude more private than DisFC lies(3) and DisFC lies(1), respec-
tively. DisFC lies(1) is the least private of these three algorithms although it is
more private than DisFC. DisFC lies versions are equally private with respect to
med and avg. For these parameters, DisFC lies versions are more private than
DisFC 1.

9.6 Summary

We have shown in this chapter that lying is a suitable strategy to enhance
privacy in DisCSP solving. We have presented DisFC lies, a new version of the
DisFC algorithm that may tell lies, sending false compatible domains to neighbor
agents. The unique extra condition is that, after a lie, the lying agent has to tell
the truth in finite time, lower than tquies. We have proved that this algorithm
is correct, complete and terminates. Second, we have shown analytical and
experimentally that this idea effectively enhances constraint privacy in the PKC
model, because it increases the number of partially known constraint matrixes
that are compatible with the leaked information of the solving process. And
third, although solving DisCSP lying is more costly than solving it without lies,
experiments show that the extra cost required is not unreachable. It is clear
that any strategy used to conceal information will have an extra cost, and this
approach is not an exception. We believe that this approach could be useful for
those applications with high privacy requirements.
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Chapter 10

Distributed Meeting
Scheduling

Meetings are an important vehicle for human communication. The Meeting
Scheduling problem (MS ) consists of a set of people which use their personal
calendars to determine when and where one or more meeting(s) could take place
[Freuder et al., 2001].

The Meeting Scheduling problem is a naturally distributed problem because
(1) each person knows only his/her own personal calendar before resolution and
(2) people may desire to preserve the already planed meetings in their personal
calendars during resolution. In the centralized approach, all people must give
their private information to one person, who solves the problem and returns a
solution. This approach results in a high privacy loss (each person must give
his/her personal calendar to the solver). In a distributed approach, people work
together, revealing some information of their personal calendars, in order to
agree upon the time and the place that the meetings could be planned. In such
context, it is natural to view MS as DisCSPs with privacy requirements.

In this chapter, we provide an empirical comparison of three distributed
approaches (two synchronous and one asynchronous) for MS in terms of privacy
loss. Among these approaches, two are DisCSP algorithms: SCBJ and ABT.
We do not use the PKC model previously introduced because, in this problem
all interagent constraints are equality constraints given in the implicit form (the
concept of partially known constraint is not really applicable here).

This chapter is divided as follows. Section 10.1 gives a formal definition
of the Meeting Scheduling problem and a DisCSP encoding for this problem.
In Section 10.2, we discuss some issues related to privacy loss in the different
distributed approaches. In Section 10.3, we compare empirically the considered
algorithms in terms of computation effort, communication cost and privacy loss.
Finally, we summarize this chapter in Section 10.5.
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10.1 What is the Meeting Scheduling Problem?

The Meeting Scheduling [Freuder et al., 2001] problem (in short MS ) is a
decision-making process affecting several people, in which it is necessary to de-
cide when and where several meetings could be scheduled.

Definition 10.1.1. Formally, an MS is defined by the following parameters:

• P = {p1, p2, ..., pn}, the set of n people; each with his/her own calendar,
which is divided into r slots, S = {s1, s2, ..., sr};

• M = {m1,m2, ..., mk}, the set of k meetings;

• At = {at1, at2, ..., atk}, the set of k collection of people that define which
attendees must participate in each meeting, i.e. people in ati must partic-
ipate in the meeting mi, 1 ≤ i ≤ k and ati ∈ P ;

• c = {pl1, pl2, ...plo}, the set of o places where meetings can be scheduled,
places are separated by a given travel time.

Initially, people may have several slots reserved for already filled planning in
their calendars. A solution to this problem answers the where and when of each
meeting. This solution must satisfy the next rules:

• attendees of a meeting must agree where and when the meeting is to take
place,

• no two meetings mi and mj can be held at same time if they have at least
one attendee in common,

• each attendee pi of a meeting mj must have enough time to travel from
the place where he/she is before the meeting starts to the place where the
meeting mj will be. Similarly, people need sufficient time to travel to the
place where their next meetings will take place.

10.1.1 The Distributed Meeting Scheduling Problem

The Meeting Scheduling problem is a truly distributed benchmark, in which each
attendee may desire to keep the already planned meetings in his/her calendar
private. So this problem is very suitable to be treated by distributed techniques,
trying to provide more autonomy to each person, and to keep preferences private.
For this purpose, we define the Distributed Meeting Scheduling problem (in short
DisMS ).

Every DisMS instance can be encoded as a DisCSP as follows. There ex-
ists one agent per person. Every agent includes one variable for each meeting
in which the corresponding person wishes to participate. The domains of the
variables enumerate the possible alternatives of where and when meetings may
occur. That is, each domain includes k×o values, where k means the number of
places where meetings can be scheduling and o represents the number of slots in
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Figure 10.1: An instance of the DisMS. (a) The problem seen as a DisCSP. (b)
Required times for traveling among cities. (c) A solution to the problem.

agents’ calendars. There are two types of binary constraints between variables:
equality and difference constraints. There exists a binary equality constraint
between each pair of variables that belongs to different agents and corresponds
to the same meeting. There exists a binary difference constraint between each
pair of variable which belongs to the same agent.

Figure 10.1.(a) illustrates an instance of DisMS viewed as DisCSP. In that
example, there are four people, person1, person2, person3 and person4, and
two meetings, m1 and m2. Each agent has its own calendar divided into 7
slots. Regarding meeting m1, people person1, person2, person3 and person4

are looking for a place and time when they can meet together. As for meeting
m2, people person2, person3 and person4 have to agree on the place and time
when they can meet. Meetings can take place in any of the following three
places: c1, c2 and c3. Two out of the seven slots in every calendar are already
reserved for other personal meetings: person1 has to be in place c1 at time s1

and in place c2 at time s5; person2 has to be in place c1 at time s3 and time s4;
person3 has to be in place c2 at time s4 and s5; person4 has to be in place c1

at time s3 and in place c2 at time s5.
In the DisCSP formulation for this DisMS instance, each person is repre-

sented by an agent, such that agenti corresponds to personi. Variables x11 in
agent1, x21 in agent2, x31 in agent3 and x41 in agent4 make up meeting m1,
while variables x22 in agent2, x32 in agent3, x42 in agent4 make up meeting m2.
The DisCSP contains 10 constraints: one difference constraint between each pair
of variables held by an agent and one equality constraint between variables that
belong to the same meeting. The time required for travel among cities is given
in Figure 10.1.(b). A solution to this example appears in Figure 10.1.(c): all the
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people agree to meet at place c1 at time s2 and person2, person3 and person4

agree to meet at place c1 at time s7.

10.2 Privacy on DisMS Algorithms

To solve a DisMS instance, agents must cooperate and communicate among
them in order to determine when and where meetings will take place. During
this process, agents reveal some information about their personal calendars.
Privacy loss is concerned with the amount of information that agents reveal to
other agents. In the DisCSP formulation for DisSM, variable domains represent
the availability of people to hold a meeting at a given time and place, which
actually is the information that agents desire to hide from other agents. In that
sense, measuring the privacy loss of a DisMS modeled as DisCSP is actually the
same as measuring the privacy loss of variable domains.

Later on this section we will analyze privacy loss on three distributed algo-
rithms for DisMS. The first algorithm is based on a very simple communication
protocol, in which agents make proposals about when and where meeting can
occur following a Round Robin order [Freuder et al., 2001]. We refer this algo-
rithm as RR, which is presented next. The other two algorithms are SCBJ and
ABT, which have seen previously in Chapter 4 and 5, respectively.

From DisMS perspective, agents in these algorithms make proposals to other
agents about when and where meetings could take place.1 A proposal can be
accepted or rejected by recipient agents. Depending on the answers of recipient
agents, the proposing agent can infer some information about the other agents.
Similarly, when an agent receives an assignment proposal, some information is
leaked about the proposing agent. In following we describe which knowledge can
be inferred by agents in each case [Franzin et al., 2004]:

1. When a proposal is rejected, the proposing agent can infer that it may be
because the rejecting agent either has a meeting in that slot already or has
a meeting that could not be reached if the proposed meeting was accepted.

2. When a proposal is accepted, the proposing agent can infer that the accept-
ing agent does not have a meeting in that slot, that possible meetings that
are incompatible with the proposal do not occur in the possible another
agent’s calendar.

3. When an agent receives a proposal from another agent, the recipient agent
can infer that the proposing agent has not a meeting in that slot, nor in
any slot that would be incompatible because of the distance constraints.

The aforementioned points constitute what we call the process of knowledge
inference. In this work, we actually consider only part of the information that

1Notice that when an agent in SCBJ/ABT assigns a value to its variable and inform of
this to higher priority agents, actually it is proposing when and where a particular meetings
could occur.
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agents can infer by using the first point. The inferred knowledge in this case is
very vague because the agent that receives a rejection cannot deduce anything
for certain regarding the personal calendar of the rejecting agent. From the
other two cases (points 2 and 3), we identify three kinds of information that can
be deduced from agents:

Positive Information This is the information that denotes that can have a
meeting in certain locations at certain times.

Negative Information This is the information that denotes that an agent
cannot have a meeting in certain locations at certain times.

Open Slots This is the information related to slots in which an agent surely
does not have any meeting already in any of the places.

The concepts of Positive Information and Negative Information are similar
to the definitions of ”present-meeting information” and ”future-meeting infor-
mation” given in [Franzin et al., 2004]. Regarding Open Slots, this information
can be deduced by an agent if its proposal is accepted by another agent. In this
case, the accepting agent does not any meeting already in a time-and-city that
is incompatible with the proposal because the distance constraints.

In the following subsections we analyze the details of the process of knowl-
edge inference within each considered algorithm presuming that the number of
meetings to be scheduled is simply one (k = 1).

10.2.1 The RR Algorithm

In RR, one agent at a time proposes to the others agents the time and the location
that meeting may occur. The ordering in which proposals are made follows the
Round Robin strategy. When an agent receives a proposal, it responds only to
the proposing agent if this proposal is possible according to its calendar.

RR was presented and used in [Freuder et al., 2001] to solve DisMS. We
have rewritten this algorithm to present it in a similar way to the previously
mentioned and discussed algorithms in this thesis. The new code appears in
Figure 10.2. Agents exchange six types of messages: pro, ok?, gd, ngd, sol,
stp. pro messages are used by agents to select the proposing agent. When an
agent receives a pro message, this causes the agent to become the proposing
agent. After the proposing agent chooses the time/place that the meeting can
be scheduled, it informs about its decision to rest of agents via ok? messages.
When an agent receives an ok? message, it checks if the received proposal is
valid with respect to the previously scheduled appointments in its calendar. If
this proposal is consistent, the agent sends a gd message to the proposing agent
announcing it accepts the proposal. Otherwise, the agent sends a ngd message
to the proposing agent saying that it rejects the proposal. Messages sol and stp
are responsible for announcing to agents that a solution has been found or the
problem is unsolvable, respectively.
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procedure RR()

end ← false; allgood ← true;
received ← 0;
if self is the first agent in the agent ordering then Propose();
while (¬end) do

msg ← getMsg();
switch(msg.type)

pro : Propose();
ok? : Process-ok?(msg);
gd, ngd:: GetAnswers(msg);
sol, stp: end ← true;

procedure Propose()

allgood ← true; received ← 0;
if all possible proposals have been rejected do

for each other agent i do sendMsg:stp(i, self);
else

repeat
generate a proposal p at random;
check p to see if :

the time-slot referred in p is empty in self ’s calendar;
p has not conflict in the current agents’s calendar;
p has not been already rejected;

until the above conditions are satisfied
for each other agent i do sendMsg:ok?(i, self, p);
end if

procedure GetAnswers(msg)
received ← received + 1;
switch(msg.type)

gd : SaveAndInferFromGood(msg);
ngd : allgood ← false;

SaveAndInferFromNoGood(msg);
if (received = (#agents− 1)) then

if (allgood = true) do for each other agent i do sendMsg:sol(i, self);
else

/*the next agent in the ordering is selected as the proposing agent*/
next ← (self.id + 1)%#agents;
sendMsg:pro(i, self);

end if
end if

procedure Process-ok?(msg)
check msg.p to see if :

the time-slot referred in msg.p is empty in self ’s calendar;
msg.p has not conflict in the current agents’s calendar;
msg.p has not been already rejected;

if the above conditions are satisfied do sendMsg:gd(msg.from, self);
else sendMsg:ngd(msg.from, self);
end if

Figure 10.2: The code of RR.
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Based on the previously discussed message system, it logically follows that
the process of knowledge inference is clear-cut. The message system is simple:
proposals are sent via ok? messages; , which are accepted via gd messages or
rejected via ngd messages.

10.2.2 SCBJ

Agents in SCBJ assign variables sequentially. They exchange assignments and
nogoods through ok? and ngd messages, respectively. From the point of view
of DisMS, agents propose or reject the proposals made by other agents. ok?
messages are used for the agents to send proposals regarding the time and the
place that are acceptable for a meeting. Contrary to what happens in RR, ngd
messages only mean that someone has rejected the proposal, but the agent who
has done such is not easily discovered. It is important to note that SCBJ loses
some possible privacy in the sense that as the agents send ok? messages down
the line, each subsequent agent knows that all the previous agents have accepted
this proposal.

For the purpose of clarification, take for example a problem consisting of five
agents each one representing a person with its own personal calendar. Suppose
that the first agent sends a proposal to the second agent about meeting Monday
at 9:00 am in Barcelona. The second agent accepts the proposal and sends it to
the third agent. Then, the third agent finds this proposal to unacceptable and
therefore sends a ngd message to the second agent, effectively eliminating the
possibility of meeting Monday at 9:00 in Barcelona. In this case, it is impossible
for agent 1 or 2 to to know where the rejection originated, because any of the
agents situated ahead of them, could be responsible, an the ngd message came
via the third agent. Furthermore, it is impossible for both the first and second
agents to discover the agent that rejected the proposal, as it could have been any
of the agents situated ahead of them, as was simply relayed back to them via the
third agent. However, in such systems, there is one specific case in which it is
possible to determine which agent has rejected a proposal. In this example, such
a case would occur if all of the agents 1-4 have already received the proposal and
then the fifth agent rejects. When this happens, the fourth agent knows that
it was the fifth agent that rejected the proposal as the latter is the only agent
capable of sending such a message, assuming that the fourth agent knows that
the system contains only five agents in total.

10.2.3 ABT

Agents in ABT assign the variables asynchronously and concurrently. Mainly,
agents exchange assignments and nogoods through ok? and ngd messages re-
spectively. Similar to SCBJ, ok? messages represent proposals, while ngd
messages represent rejections. The pervious discussion regarding ngd message
in SCBJ is still valid for this algorithm. However, there is a difference with
respect to ok? messages: since a sending agent may send an ok? to all of the
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Figure 10.3: Constraint checks and number of messages for RR, SCBJ and ABT
on Distributed Meeting Scheduling instances.

lower priority agents, the information contained in this message is only valid for
the sending agent and is revealed only to the receiving agents.

10.3 Experimental Results

In this section, we evaluate two synchronous algorithms (RR and SCBJ ) as
well as one asynchronous algorithm (ABT ) for solving DisMS instances. In
order to compare the algorithms, we make use of three measures: computation
effort, communication cost, and privacy loss. We measure computation effort
using the number of non-concurrent constraint checks (nccc), communication
cost in terms of the number of messages exchanged (msg) and privacy loss using
the three types of information that agents may deduce regarding other agents’
calendars: Positive Information, Negative Information, Free Slots.

Lower priority agents in SCBJ and ABT tend to work more than higher
priority ones, which causes them to reveal more information than higher priority
agents. In order to analyze the difference in the amount of privacy loss, we give
the minimum, maximum and average amount data for each type of information
that agents can find out from other agents’ plans.

In our experiments, we deal with DisMS instances in which there has to be
only one meeting scheduled and which admit at least one solution. Each problem
is composed of 12 people, 5 days, with 8 time slots per day and 3 meeting places.
This gives 5 · 8 · 3 = 120 possible values in each agent’s domain. Meetings and
time slots are both one hour long. The time required for travel among the three
cities is 1 hour, 1 hour and 2 hours. DisMS instances are generated by randomly
establishing p predefined meetings in each agent’s calendar. The value of p varies
from 0 to 14.

We consider that an agent in RR performs a constraint check each time it
checks if meeting can occur at a certain time/place. In all algorithms, each time
an agent has to propose, it chooses a time/place at random. Agents in ABT
process messages by packets instead of processing one by one (Section 6.4) and
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implement the strategy of selecting the best nogood (Section 5.4.1).

Figure 10.3 gives the results in terms of nccc (on the left) and msg (on the
right) for each algorithm averaged over 100 instances. For every value of p, we
observe that RR requires less nccc than SCBJ and ABT has the worst results.
This can be explained by looking at how agents reject invalid proposals in each
algorithm. In RR, the proposing agent broadcasts its proposal to all the other
agents. Then, the receiving agents check if this proposal is valid or not. This
process can be performed concurrently by all receiving agents, and therefore,
its computation effort is just one non-concurrent constraint check. (Actually,
the nccc value for RR is equal to number of proposals made before finding a
solution.) In SCBJ, the active agent sends the proposal (received from prior
agents) to the next agent when this is valid for him/her. It could be happen
that a proposal make by the proposing agent in RR and by the first agent in the
ordering in SCBJ and ABT decide to meet at certain time and certain place
which is inconsistent for an agent lower in the ordering for SCBJ and ABT.
In RR, this inconsistency will be found as soon as this agent responds to the
proposing agent. In SCBJ, otherwise, this will be found when this agent receives
the proposal, after that all the prior agents have accepted it and have performed
several non-concurrent constraint checks. Regarding ABT, this results can be
explained because (1) agents choose their proposals randomly and (2) these
proposals are made possibly without knowing the proposals of higher priority
agents. The combination of these two facts make ABT agents more likely to
fail when trying to reach an agreement regarding where and when the meeting
could take place. Considering msg, the relative ordering among agents changes
only in the sense that RR is worse than SCBJ. This difference between both
algorithms occurs probably because SCBJ omits the accept messages used by
RR.

Figure 10.4 and Figure 10.5 report the privacy loss with respect to each
information type. Regarding Positive Information (plots on the left in Figure
10.4), we observe that according to minimum values of Positive Information,
ABT and SCBJ have similar behavior, while RR is a little worse, especially for
more difficult problems (p > 6). This plot indicates that the less informed agent
in terms for each algorithm infers only the Positive Information derived from
the problem solution. That is, when a solution is reached, this agent can deduce
that all the other agents can meet at the time and the location given by the
found solution.

In terms of maximum values it is apparent that the difference between algo-
rithms is greater. ABT is always less private than SCBJ and RR is the algorithm
with the best results. From these values we may conclude that the better in-
formed agent in RR has less Positive Information than the better informed
agent in the other two algorithms. In terms of average values of Positive In-
formation, the plot shows that ABT agents discover on average approximately
two time slots in which each agent is available while for agents in the other two
algorithms this value is approximately one. SCBJ shows better results than RR
on instances with larger numbers of already planned appointments.
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Scheduling instances.
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Considering the number of Free Slots that agents leak from other agents,
in terms of minimum values, we observe that the three algorithms have results
similar to Positive Information ones. The less informed agent for each algo-
rithms identifies almost 10 free slots from the other agents’ calendars. In terms
of maximum values, the better informed agent in ABT infers almost twice more
Free Slots than the better informed agent in RR, while the better informed
agent in SCBJ discovers more than this agent in RR. In terms of average values,
ABT agents also find more Free Slots than the other two algorithms. SCBJ
lightly outperforms RR on instances with p > 6.

The amount of Negative Information deduced in each algorithm is prac-
tically null (Figure 10.5). Only for instances with higher number of already
planned appointments, the better informed agent in ABT/RR can identify at
most one rejection from the other agents.

From the above results, we observe the following. Regarding computation ef-
fort and communication cost, ABT, the asynchronous algorithm, is less economic
than the other two algorithms. This is because ABT agents work concurrently
and select their proposals randomly, which makes more difficult ABT agents to
reach an agreement regarding when and where they can meet together. Consis-
tently for all tested instances, SCBJ requires less messages than RR, however,
it performs more constraint checks. Regarding privacy, for the three algorithm
the greater amount of information revealed identifies time slots in which agents
surely does not have any meeting in any of the places. In terms of this parame-
ter, ABT is always worse than the synchronous algorithms. On average, SCBJ
agents reveal less information than RR. However, the better informed agent in
SCBJ deduce more information than in RR.

10.4 Related Work

The Meeting Scheduling problem has been widely studied in several works
for a long time. Nevertheless, the paper that quantified first the privacy
loss of information from people’s calendars was published in this decade
[Freuder et al., 2001]. This work, however, does not use for its resolution nei-
ther of the DisCSP algorithms presented in this thesis. In its experimental
evaluation, authors included a version of RR whose agents can give one or all
the justifications for a rejection. Very recently, [Franzin et al., 2004] propose a
version of MS in which each person has a preference value associated to each
place in each time slot. This work demonstrates some relations among solution
quality according to people’s preference, efficiency and privacy loss. Conversely
to above approaches, [Silaghi, 2004b] proposes to use costly encryption tools for
keeping people’s calendars completely private.
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10.5 Summary

We have studied in this chapter the Meeting Scheduling problem, a naturally dis-
tributed benchmark that requires some privacy. We have defined a distributed
version for this problem that can be modeled as DisCSP. In the context of
the distributed version, we have discussed some issues regarding privacy loss
of domains in DisCSP, identifying three types of information that agents may
reveal to other agents at resolution time. Empirically, we have compared two
synchronous algorithms against one asynchronous one to solve instances of this
problem. Our experimental results show that the two synchronous approaches
outperform the asynchronous one regarding computation effort, communication
cost as well privacy loss. These results do not imply that synchronous algo-
rithms should be considered the chosen algorithms for solving this problem. As
discussed in previous chapters, synchronous and asynchronous algorithms have
different functionalities. Regarding privacy, neither of the distributed algorithms
that we have considered in this chapter is worse than the centralized approach,
which needs to gather the whole problem into a single agent to solve it.





Chapter 11

Distributed Stable
Matching Problems

The Stable Marriage and the Stable Roommates problems are well-known in-
stances of Stable Matching Problems [Gusfield and Irving, 1989]. The term
matching implies that the participants (elements of some underlying set or sets)
are to be matched or assigned to each other in some way to meet stability. The
stability criterion depends on fixed preferences expressed by the participants.

Stable Matching problems are combinatorial problems with real applica-
tions in computer science, economics, game theory and operations research
[Gusfield and Irving, 1989]. Dating from 1962, the most well-known applica-
tion for the Stable Marriage problem is the assignment of medical residents to
hospitals [Gale and Shapley, 1962]. Very recently, it has been considered for
the Stable Roommates problem an application about pairwise kidney exchange
between patient-donor pairs [Roth et al., 2005].

The Stable Marriage and the Stable Roommates problems can be solved by
centralized algorithms (i.e. algorithms which assume that all the information re-
quired to solve a given problem is centralized into a single processor/computer).
However, this requires to make public people’s preferences, which people would
like to keep private. With this aim, in this chapter, we define distributed ver-
sions of the Stable Marriage and the Stable Roommates problems, and provide
a constraint-based approach that solves these distributed problems keeping peo-
ple’s preferences privacy. We also consider other versions of these problems in
which participants may declare some others participants to be unacceptable (i.e.
preference lists may be incomplete) and/or may be indifferent between a subset
of possible partners (i.e preference lists may contain ties).

In order to preserve preferences private, the original the Stable Marriage and
the Stable Roommates problems have also been solved with a secure protocol
which uses cryptographic tools [Silaghi, 2004a, Atkinson et al., 2006]. The ap-
proaches that this thesis proposes do not use these techniques. Typically, the
overhead in communication and computation in secured protocols is very large.

143
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11.1 What is the Stable Marriage Problem?

The Stable Marriage problem (SM ) consists of two finite equal-sized sets of
players, commonly called men and women. Each man mi (1 ≤ i ≤ n, n is
the number of men) ranks women in strict order forming his preference list.
Similarly, each woman wj (1 ≤ j ≤ n) ranks men in strict order forming her
preference list. A matching M is just a complete one-to-one mapping between
the two sexes. The goal is to find a stable matching M .

Definition 11.1.1. A matching M is stable if there are not a man m and a
woman w such that m prefers w to his partner in M and w prefers m to her
partner in M .

If this pair (m, w) exists, we say that M is unstable and the pair (m,w) is a
blocking pair for M .

Figure 11.1 shows an instance of SM with 3 men (m1, m2, m3) and 3 women
(w1, w2, w3). Each person has its own preference list. The preference lists are
given in decreasing order, that is, the most-preferred partner for each person is
the person who appears first in his/her list. For this instance, the matching M
= {(m1,w1),(m2, w2), (m3, w3)} is unstable because the pair (m1, w2) blocks
M . This instance only has one stable matching: M1 = {(m1,w2), (m2,w1),
(m3,w3)}.

Gale and Shapley proved that at least one stable matching exists for every
SM instance. They obtained a O(n2) solving algorithm, called the Gale-Shapley
algorithm [Gale and Shapley, 1962]. The algorithm consists of a sequence of
proposals from persons of one sex to the persons of the other sex. However, GS
needs that:

Observation 11.1.1. Each time a person has to propose marriage, he/she must
propose marriage to the most preferred person in his/her current preference list.

The Extended Gale-Shapley algorithm (EGS ) is a version of the origi-
nal Gale-Shapley algorithm, that avoids some extra steps by deleting from
the preference lists certain pairs that cannot belong to a stable matching
[Gusfield and Irving, 1989]. A man-oriented version of EGS appears in Figure
11.2. In this version, men propose marriage to women.

During EGS execution, some people are deleted from preference lists. The
reduced preference lists that result of applying man-oriented Gale-Shapley algo-
rithm are called man-oriented Gale-Shapley lists or MGS-lists. On termination,

m1 : w2 w3 w1 w1 : m1 m2 m3

m2 : w1 w2 w3 w2 : m1 m3 m2

m3 : w2 w1 w3 w3 : m2 m1 m3

Figure 11.1: A SM instance with three men and three women.
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assign each person to be free;
while some man m is free and m has a nonempty list loop

w := first woman on m’s list; {m proposes to w}
if m is not on w’s preference list then

delete w from m’s preference list;
goto line 3

end if
if some man p is engaged to w then

assign p to be free;
end if
assign m and w to be engaged to each other;
for each each successor p of m on w’s list loop

delete p from w’s list;
delete w from p’s list;

end loop;
end loop;

Figure 11.2: The man-oriented Extended Gale-Shapley algorithm for SM.

each man is engaged to the first woman in his (reduced) list, and each woman
to the last man in hers. These engaged pairs constitute a stable matching, and
it is called man-optimal (or woman-pessimal) stable matching since there is not
other stable matching where a man can achieve a better partner (according to
his ranking). Similarly, exchanging the role of men and women in EGS (which
means that women propose), we obtain the woman-oriented Gale-Shapley lists
or WGS-lists. On termination, each woman is engaged to the first man in her
(reduced) list, and each man to the last woman in his. These engaged pairs
constitute a stable matching, and it is called woman-optimal (or man-pessimal)
stable matching.

The intersection of MGS-lists and WGS-lists is known as the Gale-Shapley
lists (GS-lists). These lists have important properties (see Theorem 1.2.5 in
[Gusfield and Irving, 1989]):

• all the stable matchings are contained in the GS-lists,

• in the man-optimal (woman-optimal), each man is partnered by the first
(last) woman on his GS-list, and each woman by the last (first) man on
hers.

Figure 11.3 shows the GS-lists for the example given in Figure 11.1. The reduced
lists of all persons have only one possible partner which means that only one
solution exits. In that case, the man-optimal matching and woman-optimal
matching are the same.
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m1 : w2 w1 : m2

m2 : w1 w2 : m1

m3 : w3 w3 : m3

Figure 11.3: GS-Lists for SM of Figure 11.1.

11.2 A Constraint Formulation

According to [Gent et al., 2001], every instance of the Stable Marriage can be
modeled and solved using a binary CSP encoding. This constraint encoding is
described next. Each person in the Stable Marriage instance is represented by
a variable in the CSP : variables x1, x2, ..., xn represent the men (m1, m2, ...,
mn) and variables y1, y2, ..., yn represent the women (w1, w2 ..., wn). PL(q) is
the set of people that belong to q’s preference list. Domains are D(xi) = {k :
wk ∈ PL(mi)}, D(yj) = {l : ml ∈ PL(wj)}, 1 ≤ i, j ≤ n. When xi takes value
j, it means that man mi marries woman wj . Constraints are defined between
men and women. Given any pair i, j ( 1 ≤ i, j ≤ n), the constraint Cij is a
|D(xi)| × |D(yj)| conflict matrix that represents all possible partial matchings
involving xi and yj . For any pair k, l (k ∈ D(xi), l ∈ D(yj)), the element
Cij [k, l] represents the partial matching (mi, wk)(ml, wj). This element could
be one of the following values:

• Cij [k, l] = Allowed, when k = j and l = i. This represents the partial
matching (mi, wj). At most one element is A.

• Cij [k, l] = Illegal, when either k = j and l 6= i or k 6= j and l = i. This
assures matching monogamy.

• Cij [k, l] = Blocked by the pair (mi, wj), when mi prefers wj to wk and wj

prefers mi to ml.

• Cij [k, l] = Support, all other entries that are not A, I or B.

Constraint matrixes in terms of A, I, B, S are transformed in terms of 1/0
(permitted/forbidden) pairs, using the natural conversion A, S → 1, I, B →
0. Figure 11.4 shows the constraint matrix for man m3 and woman w1 of the
example given in Figure 11.1. In the constraint matrix, the domains of x3 and
y1 are listed in decreasing ordering of the preferences. From that example, we
can see that assignment x3 = w1 does not block any of other pairs which involve
variable x3 or variable y1.

Let be J the CSP that result of applying the above constraint encoding to
an SM problem I. [Gent et al., 2001] proves that J produces as solutions all
the stable matchings that I admits and that the number of solutions of J and
the number of stable matchings I is the same. Special emphasis is put on the
fact that achieving arc consistency on J produces a reduced domains which are
exactly the GS lists obtained by the EGS algorithm.
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11.3 Generalizations of the Stable Marriage

The Stable Marriage requires that each person’s preference list has to be com-
plete (i.e. all member of the opposite sex must be included) and totally ordered.
A natural generalization of SM occurs when persons may declare one or more
members of the opposite sex to be unacceptable, so they do not appear in the cor-
responding preference lists. This relaxed version is called the Stable Marriage
Problem with Incomplete Lists (SMI ) [Gale and Sotomayor, 1985]. Although
people prefer be married to be unmatched, it is possible to find stable matching
in which some persons are not matched. Thus, the goal in SMI is to find a stable
matching which could be incomplete. Similar to SM, the meaning of the therm
stability is defined by the Definition 11.1.1. Every SMI instance admits at least
one stable matching [Gale and Sotomayor, 1985]. However, all stable matchings
for a given SMI instance will have the same lengths (the number of coupled men
in a matching) since every one involves the same men and women.

An alternative natural generalization of SM arises when persons need not
to rank all the members of the opposite sex in a strict order, so ties entries in
the preference lists are possible. That is, a person might be indifferent between
a subset of his/her possible partners. This relaxed version is called the Stable
Marriage Problem with Ties (SMT ). For this problem the goal is also to find
a stable matching. Three possible notions of stability have been formulated
([Gusfield and Irving, 1989]):

1. Weak stability. A matching M is weakly stable if it does not admit a weak
blocking pair (m,w) such that m and w are not partners in M and each
of whom strictly prefers the other to his/her partner in M . Note that this
formulation is exactly the same as the definition of the stability given in
Definition 11.1.1 for SM and SMI.

2. Strong stability. A matching M is strongly stable if it does not admit a
strong blocking pair (m,w) such that m and w are not partners in M and
one strictly prefers the other to his/her partner in M and the other is at
least indifferent between them.

3. Super stability. A matching M is super stable if it does not admit a super
blocking pair (m,w) such that m and w are not partners in M and each
of whom either strictly prefers the other to his/her partner in M or it is
indifferent between them.

m1 m2 m3

w2 S S I
w1 I I A
w3 S S I

m1 m2 m3

w2 1 1 0
w1 0 0 1
w3 1 1 0

Figure 11.4: C31 for example of Figure 11.1. Left: in terms of A,I,B,S. Right:
in terms of 0/1.
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SM version Size All solutions Algorithm Complexity
Length Partners

SM n same same EGS [Gusfield and Irving, 1989] polynomial
SMI ≤ n same same EGS [Gusfield and Irving, 1989] polynomial
SMT-weak n same same break ties + EGS [Irving, 1994] polynomial
SMT-strong n same same STRONG [Irving, 1994] polynomial
SMT-super n same same SUPER [Irving, 1994] polynomial
SMTI-weak ≤ n diff diff break ties + EGS [Manlove, 1999] polynomial
SMTI-strong ≤ n same same STRONG2 [Manlove, 1999] polynomial
SMTI-super ≤ n same same SUPER2 [Manlove, 1999] polynomial
SMTI-weak-max ≤ n same diff break ties in all possible NP-hard

ways + EGS [Manlove, 1999]

Table 11.1: Solvability conditions, solving algorithm (centralized case) and com-
plexity for the different SM problems. Any instance of SM, SMI, SMT-weak
and SMTI-weak always has a solution, while this is not guaranteed for other
problem instances. For SM and the three SMT versions, a solution has size n,
while for the other versions the solution size is ≤ n. Given any instance, except
of SMTI-weak, all its solutions have the same length. Given any instance, except
of SMTI-weak and SMTI-weak-max, all its solutions involve the same partners.
All these problems are solved in polynomial time, except SMTI-weak-max that
is NP-hard.

The version of SM which considers the above two extensions (preference lists
may include ties and be incomplete) is named the Stable Marriage with Ties and
Incomplete Lists (SMTI ). The three stability types, defined previously, weak,
strong and super, have been also studied for SMTI. Each instance of SMTI
admits at least one weakly stable matching. In this situation, different solutions
may exists, with different lengths. It is of interest to find the weakly stable
matching with maximum length [Manlove, 1999]. Regarding strong and super
stability, it may happen that an instance admits no, one or several solutions. In
latter case, all the strongly stable/super-stable matchings have the same lengths
because they involve the same men and women [Manlove et al., 2002].

The solvability conditions, complexity and solving algorithms of each SMI,
SMT and SMTI in the centralized case are detailed in Table 11.1. Regarding
solving algorithms, SMI is solved by the EGS algorithm. SMT-weak is solved
by a direct extension of EGS since the definition of weak stability is the same
that the definition of stability for SM. SMT-strong is solved by the STRONG
algorithm [Irving, 1994]. SMT-super is solved by the SUPER algorithm
[Irving, 1994]. SMTI-weak is solved by a direct extension of EGS. SMTI-strong
is solved by the STRONG2 algorithm [Manlove, 1999]. SMTI-super is solved by
the SUPER2 algorithm [Manlove, 1999]. STRONG, STRONG2, SUPER and
SUPER2 are basically extensions of EGS and have polynomial time complexity
with respect to the number of men. However, in SMTI-weak, different solutions
may exist with different lengths, so it is of interest to find the matching of
maximum cardinality. This is SMTI-weak-max, an optimization problem that
is NP-hard.1

1The decision problem ”given an instance, there exists a matching of size ≥ K?”, is NP-
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In addition to the aforementioned algorithms, the constraint formulation
given in [Gent et al., 2001] can be used to solve the new versions of SM. For
instances with incomplete lists, the man and woman variables remain the same
but their domains are enlarged with the dummy value n + 1, that is always the
least preferred. Whether a person p is not an accepted partner for a person q,
of opposite sex, all entries in column or row assigning p to q on Cpq are I. The
rest of the constraint table is filled with S.

In addition we have extended the constraint formulation proposed by
[Gent et al., 2001] to deal with versions of SM in which preference lists contain
ties [Brito and Meseguer, 2006b, Brito and Meseguer, 2006c]. For this prob-
lems, there are different definitions of stability: weak, strong and super. The
type of stability affects the usage of Blocked pair in the constraint Cij . The
definition given in Section is valid for weak stability. Considering strong/super
stability, we replace B definition in [Gent et al., 2001] by,

• Cij [k, l] = Blocked by the pair (mi, wj), when (a) mi prefers wj to wk and
wj prefers to or is indifferent between mi and ml, or (b) mi prefers to or is
indifferent between wj and wk and wj prefers mi to ml (strong stability).

• Cij [k, l] = Blocked by the pair (mi, wj), when mi prefers to or is indifferent
between wj and wk, and wj prefers to or is indifferent between mi and ml

(super stability).

11.4 The Distributed Stable Marriage Problem

The SM problem, by its own nature, appears to be naturally distributed. Each
person may desire to act as an independent agent. For obvious reasons, each per-
son would like to keep his/her preference lists private. However, in the central-
ized case each person has to follow a rigid role, making public his/her preferences
to achieve a solution. So this problem is very suitable to be treated by distributed
techniques, trying to provide more autonomy to each person, and to keep prefer-
ence lists private. In [Brito and Meseguer, 2005a, Brito and Meseguer, 2005b],
we define the distributed problem corresponding to SM :

Definition 11.4.1. The Distributed Stable Marriage (DisSM ) consists of n
men, n women and a set of r agents. Each person has his/her own preference
list, in which he/she ranks members of the opposite sex in strick order. The n
men and n women are distributed among the agents: an agent owns some men
and women and every person is owned by a single agent. An agent can access
and modify all the information of its owned people, but it cannot access the
information (i. e. preference lists) of people owned by other agents. As in the
classical case, a solution is a stable matching (a matching between the men and
women such that no blocking pair exists).

complete [Manlove, 1999]. Finding the matching of maximum cardinality is NP-hard.
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For simplify description, it is assumed that each agent owns exactly
one person (so, r = 2 × n). Motivated by privacy requirements, we
also introduce the following distributed problems [Brito and Meseguer, 2006b,
Brito and Meseguer, 2006c]: the Distributed Stable Marriage with Incomplete
lists problem (DisSMI ), the Distributed Stable Marriage with Ties (DisSMT )
and the Distributed Stable Marriage with Ties and Incomplete Lists (DisSMTI ).
Formally, these problems can be defined by Definition 11.4.1. Only, they differ
from each other in the type of stability that is going to be considered (weak,
strong or super) and the structure of preference lists (that is, if preference lists
are complete or incomplete and if preference lists contain ties or not).

11.4.1 From Centralized to Distributed Algorithms

Regarding solving algorithms for the different versions of the distributed
Stable Marriage problem, a first question is to see if the centralized algo-
rithms can be extended to the distributed case keeping privacy. The Dis-
tributed Extended Gale/Shapley (DisEGS ) algorithm is a distributed version
of EGS that maintains privacy. It was used to solve the DisSM and DisSMI
[Brito and Meseguer, 2005a, Brito and Meseguer, 2005b].

As in the classical case, the DisEGS algorithm consists of a sequence of
proposals from agents which represent people of one sex to agents which represent
people of the opposite sex. Assuming a man-oriented version of this algorithm,
men agents propose marriage to women agents while women agents accept or
reject the received proposals according to their preferences. During the execution
of the algorithm, preference lists are reduced. Considering that preference lists
may be incomplete, that is SMI, the algorithm finishes when each man agent
is engaged or unmatched (because his preference lists is empty). The obtained
engagement relations that results of the execution of the algorithm constitute a
stable matching for the problem [Gale and Shapley, 1962].

In DisEGS, each agent can access to his/her own information only. For this
reason there are two different procedures, one for men and one for women. In
addition, actions performed by EGS on persons different from the current one
are replaced by message sending. Thus, when m assigns woman w is replaced by
sendMsg(propose,m,w); when w deletes herself from the list of p is replaced by
sendMsg(delete,w,p). Since procedures exchange messages, operations of mes-
sage reception are included accordingly. The code and other details of DisEGS
appear in Appendix A.

DisEGS algorithm guarantees privacy in preferences and in the final assign-
ment: each person knows the assigned person, and no person knows more than
that. In this sense, it is a kind of ideal algorithm because it assures privacy in
values and constraints. However, some information may be deduced by agents if
after the execution of the algorithm the found stable matching is made public.

DisSMT and DisSMTI jointly with the three different types of sta-
bility produce six different decision problems plus one optimization prob-
lem: DisSMT-weak, DisSMT-strong, DisSMT-super, DisSMTI-weak, DisSMTI-
strong, DisSMTI-super and DisSMTI-weak-max. Their resolutions by
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DisSM problem Centralized Extension to the distributed
Algorithm case, keeping privacy

DisSM EGS [Irving, 1994] DisEGS [Brito and Meseguer, 2005b]
DisSMI EGS [Irving, 1994] DisEGS [Brito and Meseguer, 2005b]
DisSMT-weak break ties + EGS [Irving, 1994] break ties arbitrary +

DisEGS [Brito and Meseguer, 2005b]
DisSMT-strong STRONG [Irving, 1994] No extension (Appendix A)
DisSMT-super SUPER [Irving, 1994] Extension (see Appendix A)
DisSMTI-weak break ties + EGS [Manlove, 1999] break ties arbitrary +

DisEGS [Brito and Meseguer, 2005b]
DisSMTI-strong STRONG2 [Manlove, 1999] No extension (Appendix A)
DisSMTI-super SUPER2 [Manlove, 1999] No extension (Appendix A)
DisSMTI-weak-max break ties in all possible Discussion (Appendix A)

ways + EGS [Manlove, 1999]

Table 11.2: DisSM, DisSMI, DisSMT-weak, DisSMT-super and DisSMTI-weak
can be solved by direct extensions of their corresponding centralized algorithms
that keep privacy. However, for DisSMT-strong, DisSMTI-strong and DisSMTI-
super, their centralized algorithms cannot be extended to the distributed case
keeping preference lists private.

extending the specialized centralized algorithms (given in Section 11.3)
to the distributed case have been studied in [Brito and Meseguer, 2006b,
Brito and Meseguer, 2006c]). Here, Table 11.2 summaries of which of these al-
gorithms can be extended to distributed while keeping preference lists private
[Brito and Meseguer, 2006b, Brito and Meseguer, 2006c]). Details of this anal-
ysis also appear in Appendix A. From it, we conclude that only three out of the
six decision problems can be solved by extending the centralized algorithms to
the distributed case while keeping preferences private. About DisSMTI-weak-
max, it requires to make public some extra information, although preference lists
could remain private.

11.4.2 Distributed Constraint Formulation

For adapting the constraint formulation of Section 11.3 to the distributed case,
we observe following: the constraint matrix Ci,j , that say which partial match-
ing including man i and woman j is valid or forbidden, requires that i and j
reveals their preferences. This requirement is incompatible with the formulation
of distributed Stable Marriage problems in which people desire to keep their
preferences private. Therefore, a method for solving distributed Stable Mar-
riage problems needs that constraints are kept private during the search of a
stable matching [Brito and Meseguer, 2005b, Brito and Meseguer, 2006c].

In Chapter 8, we presented DisFC 1 and DisFC 2, two approaches to pri-
vacy that differentiates between assignments and constraints. Briefly, privacy
on assigments implies that agents are not aware of other agent values during the
solving process and in the final solution. Regarding privacy on constraints, two
models were considered in Chapter 8: TKC and PKC models. TKC assumes
that when two agents i and j share a constraint Cij , both know the constraint
scope and at least one of them knows completely the relational part of the con-
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Ci(j) =

m1 . . . mi . . . mn

wi1 1 . . . 1 0 1 . . . 1
. . .

1 . . . 1 0 1 . . . 1
wj 0 . . . 0 1 0 . . . 0
wj′ # . . . # 0 # . . . #

? . . . ? 0 ? . . . ?
. . .

win ? . . . ? 0 ? . . . ?

Figure 11.5: Form of the partial matrix Ci(j).

straint. However, as we said above, in the distributed Stable Marriage problems
if an agent knows Cij , it can deduce the preferences of the other agent because
Cij is building using the preference lists of i and j. Therefore, TKC is an
unsuitable constraint model for solving distributed Stable Marriage problems.

Conversely, the PKC model assumes that when two agents i and j share a
constraint Cij , none of them knows completely the constraint. Each agent knows
the part of the constraint that it is able to build, based on its own information.
We say that agent i knows Ci(j), and j knows Cj(i). Note that, unlike the TKC
model, the PKC model applied to distributed Stable Marriage problems does
not need that any agent reveals his/her preference list.

In [Brito and Meseguer, 2005b], we describe how a DisSMTI instance can be
formulated in the PKC model.2 The first point is how the agent owning variable
xi can construct the partially known constraint matrix Ci(j). This matrix is
built from xi, knowing its preference list but ignoring the preference list of yj .
Figure 11.5 illustrates the form of partial matrix Ci(j), assuming lexicographical
ordering in rows and columns.

Each element in the matrix Ci(j) represents a partial matching in which the
man mi and the woman wj are involved. An element with value 1 means that
the partial matching it represents is stable. In the above example, all elements
in rows above wj are 1 (except mth

i column that are 0). An element with value ?
(undecided) means i cannot decide if the partial matching this element represents
is stable or not. In the above example, all elements in rows below wj may be 1 or
0, depending on the ordering of columns (except mth

i column that are 0). Since
xi does not know the preference list of yj , columns are ordered lexicographically,
and the elements below wj row are ? (undecided). If there is a tie between wj

and wj′ (other ties may exist, only those with wj are considered in Ci(j)) the
wj′ row has a tie with wj row. Elements in wj′ row are # (tie). Analogously,
yj build C(i)j using his/her own preference list but ignoring the preference list
of xi.

One interesting property of these constraints is that in Ci(j) (conversely C(i)j)

2This analysis is referred to DisSMTI, the most general Stable Marriage problem in which
preference lists may be incomplete and may include ties. An instance of DisSMTI is an SM
instance if preference lists neither are incomplete nor contain ties. An instance of DisSMTI
is an SMI instance if some preference lists are incomplete but none of them contain ties. An
instance of DisSMTI is an SMT instance if preference lists are complete but some of them
contain ties.
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all columns (rows) are equal, except the column (row) corresponding to xi (yj)
[Brito and Meseguer, 2005b, Brito and Meseguer, 2006c].

Proposition 11.4.1. In Ci(j) (conversely C(i)j) all columns (rows) are equal,
except the column (row) corresponding to xi (yj).

Proof. We have to prove that Ci(j)[k, l] = Ci(j)[k, l′], l 6= i, l′ 6= i, l 6= l′. Effec-
tively, if xi prefers woman k to woman j, both values Ci(j)[k, l] and Ci(j)[k, l′]
are 1, corresponding to S (supported, see Section 11.3). If xi prefers woman j to
woman k, both values Ci(j)[k, l] and Ci(j)[k, l′] are ? (undecided). Their exact
value could be 1 or 0, depending on the preferences of yj , information which is
not available when constructing Ci(j). Therefore, both are undecided in Ci(j).
If xi is indifferent between woman j and woman k, both values Ci(j)[k, l] and
Ci(j)[k, l′] are # (ties). Analogous arguments hold for C(i)j rows. ¤

In addition to the above property, we observe that Cij = Ci(j)¦C(i)j , where ¦
is an operator defined between the two elements that represent to a same partial
matching in the two partial constraint matrixes. In general, this operator is
different in for each distributed Stable Marriage problem and clearly depends on
the type of stability that one want to guarantee. Regarding instances in which
preference lists do not contain ties (i.e. DisSM and DisSMI ), the ¦ operator is
defined by the next rules [Brito and Meseguer, 2005b],

0 ¦ 0 = 0 1 ¦ 1 = 1 1 ¦ 0 = error
? ¦ 1 = 1 ? ¦ 0 = 0 ?¦? = 0

Rules including ? are quite intuitive. If a position in the constraint is decided
(permitted/forbidden) in one constraint and undecided in the other, the result
is the decided value. The last rule ?¦? = 0 is proved next.

Proposition 11.4.2. If element [k, l] is undecided in Ci(j)[k, l] =? and
C(i)j [k, l] =?, then the element [k, l] in Cij [k, l] is 0.

Proof. From the construction of partially known constraint matrixes, we
know that all undecided elements in Ci(j) are related to values which are less
preferred than j. If Ci(j)[k, l] =?, we infer that xi prefers j to k. Conversely,
if C(i)j [k, l] =?, we deduce that yj prefers i to l. Therefore, since xi prefers j
to k and yj prefers i to l, the pair (i, j) is blocking pair to the pair (k, l) so
Cij [k, l] = 0. ¤

Regarding instances in which some preference lists contain ties (i.e.
DisSMT and DisSMTI ), the ¦ operation depends on the stability type
[Brito and Meseguer, 2006c]:

• Weak Stability. From the weak blocking pair definition results that no
matched pair (m, w) will be blocked for any other pair (m′, w′), such that
either m is indifferent between w and w′ or w is indifferent between m and
m′. So, #’s are replaced by 1’s in matrixes. Rules for the ¦ operation are
similar to those rules for DisSM and DisSMI, given above.
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For DisSMTI-weak, not all stable matchings have the same length. One
may desire to find a matching of maximum cardinality. With this aim,
we consider the question ’Is there a weakly stable matching of size k?’,
where k starts with value n. If a weakly stable matching exits, it will
be of maximum cardinality. Otherwise, the value k is decreased by one,
and the problem is reconsidered. Modeling this idea with constraints, we
add n variables, u1, u2, . . . , un, plus an extra variable z, with the domains:
D(ui) = {0, 1}, 1 ≤ i ≤ n, D(z) = {k}. New constraints are: if xi < n + 1
then ui = 1 else ui = 0, 1 ≤ i ≤ n and z =

∑n
i=1 ui. The agent that owns

xi also owns ui. An extra agent owns z, located in the last position in the
agent ordering.

• Strong Stability. The ¦ operation is extended to deal with # (ties) as
follows:

– # ¦# = 1. If element [k, l] in both partial matrix Ci(j) and C(i)j is
#, then i is indifferent between j and k and j is indifferent between i
and l. Therefore, according to the definition of strong blocking pair,
the pair (i, j) cannot be a strongly blocking pair for (k, l). So Cij [k, l]
= 1 (permitted).

– 1 ¦ # = 1. If element [k, l] in matrix Ci(j) is 1 and in C(i)j is #,
then i prefers k to j and j is indifferent between i and l. Therefore,
according to the definition of strong blocking, the pair (i, j) cannot
be a strongly blocking pair for (k, l). So Cij [k, l] = 1 (permitted).

– #¦? = 0. If element [k, l] in matrix Ci(j) is # and in C(i)j is un-
decided, then i is indifferent between j and k and j prefers i to l.
Therefore, according to the definition of strong blocking, the pair
(i, j) is a strongly blocking pair for (k, l). So Cij [k, l] = 0 (forbidden).

– 0 ¦ # = 0. If element [k, l] in matrix Ci(j) is 0 and in C(i)j is #,
then i prefers j to k and j is indifferent between i and l. Therefore,
according to the definition of strong blocking pair, the pair (i, j) is a
strongly blocking pair for (k, l). So Cij [k, l] = 0 (forbidden).

• Super Stability. The ¦ operation has a single change from strong stability:

– #¦# = 0. If element [k, l] in both matrixes Ci(j) and C(i)j is #, then
i is indifferent between j and k and j is indifferent between i and l.
Therefore, according to the definition of super blocking pair, the pair
(i, j) is a super blocking pair for (k, l). So Cij [k, l] = 0 (forbidden).

With the property expressed by Proposition 11.4.1 and the existent re-
lationship between partial constraint matrixes expressed by the ¦ opera-
tor, we have specialized the DisFC 2 algorithm to solve DisSMTI instances
[Brito and Meseguer, 2006c]. We refer to this specialized algorithm as DisFC 2

for finding stable matchings (in short DisFC-SM ).
In phase I of DisFC 2, a solution is computed with respect to Ci(j) con-

straints; in phase II, this solution is verified with respect to C(i)j constraints.
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If so, it is a true solution and the algorithm stops. Otherwise, it is not a true
solution, and DisFC 2 resumes phase I. However, the special form of constraint
matrix (Proposition 11.4.1) allows for an effective disambiguation by the low
priority agent using the ¦ operation, without accessing the information of the
high priority agent, that is, the phase II of DisFC 2 is not necessary. Thus,
DisFC-SM consists of only one phase.

Similar to DisFC 2, DisFC-SM requires a total order among agents. Here,
it is assumed that men agents appear before women agents in the ordering.
When the algorithm starts, each agent instantiates its variable and sends to
lower priority agents the domains compatible with its assignment. A woman
agent receives messages from every man agent, and assigns a value permitted
by these n received domains. If no value is available, the woman agent performs
backtracking. The process iterates until finding a solution or detecting an empty
nogood, which means that the problem does not admit a stable matching for the
type of stability that is being considered.

In the previous argument, something must be scrutinized in more detail.
After assignment, what kind of compatible domain can a man agent send? If
agent i assigns value k to xi, it sends to j the row of Ci(j) corresponding to
value k. This row may contain 1’s (permitted values for yj), 0’s (forbidden
values for yj), ? (undecided values for yj) and # (undecided values for yj but
involved in ties with yk). If the compatible domain has 1 or 0 values only, there
is no problem and the yj domain can be easily computed. But what happens
when the domain contains entries with value ? or #? In this case, agent j
can disambiguate the domain as follows. When agent j receives a compatible
domain with ? (undecided) values, it performs the ¦ operation with a row of
C(i)j different from i. Since all rows in C(i)j are equal, except row corresponding
to value i (see Proposition 11.4.1), all will give the same result. Performing the
¦ operation, which depends of the type of stability that is considered, j will
compute the corresponding row in the complete constraint Cij , although j does
not know to which value this row corresponds (in other words, j does not know
the value assigned to xi). After performing the ¦ operator, the resulting domain
will contain neither ? or # values, and the receiving agent can operate normally
with it.

Some information may be leaked during the solving process. But this infor-
mation does not allow one to deduce the relative preference order of any two
persons in the list of another one. The only information that person j knows
from person i (of the opposite sex) is the relative position between j and i’s
current partner, in the i’s preference list. It is enough to revise the rows that j
may receive from i:

• 1 . . . 1 0 1 . . . 1: j is more preferred than i’s current partner

• 0 . . . 0 1 0 . . . 0: j is i’s current partner

• #. . . #0 #. . . #: j is as preferred as i’s current partner

• ? . . . ? 0 ? . . . ? : j is less preferred than i’s current partner
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Since j does not know i’s current partner (unless it is j), privacy of preference
lists is guaranteed. Unlike DisEGS, men agents in DisFC-SM may propose
marriage to any woman agent, not necessarily to the most preferred one.

11.5 The Stable Roommates Problem

The Stable Roommates Problem (SR) [Gusfield and Irving, 1989] is a general-
ization of the Stable Marriage problem. SR consists of 2n participants, each
ranks all other participants in strict order according to his/her preferences. A
matching is a set of n disjointed participant pairs. Like in SM , a matching is
stable if it contains no blocking pair. A pair (pi, pj) is considered a blocking
pair in M if pi prefers pj to his/her current partner in M and pj prefers pi to
his/her current partner in M . If this pair exists, this pair blocks M and, there-
fore, M is unstable. Unlike SM , there are instances of SR that admit no stable
matching. Therefore, the goal is to determine whether a given SR instance is
solvable, and if so, find a stable matching. Like SM , several SR versions exist
[Gusfield and Irving, 1989]:

1. Stable Roommates with Incomplete Lists (SRI ). Some participants may
consider some of the other participants unacceptable, so they are not in-
cluded in their preference lists. Preference lists may have less than 2n− 1
elements. A solution is a stable matching.

2. Stable Roommates with Ties (SRT ). Some participants may consider some
of the other participants equally acceptable. In such case, there is a tie
among them. Preference lists have 2n − 1 elements, not strictly ranked.
A solution is a stable matching. There exit three types of stability, weak,
strong and super.

3. Stable Roommates with Ties and Incomplete Lists (SRTI ). Some partici-
pants may consider some the other participants equally acceptable, while
others are considered unacceptable. Preference lists may have less than
2n − 1 elements, not strictly ranked. A solution is a stable matching.
As for SRT, there are three stability types, weak, strong and super (see
Definition in Section 11.3).

Every SR versions may contain or not a stable matching. The solvability con-
ditions, complexity and solving algorithms (centralized case) of each SR version
appear in Table 11.3. Considering SRTI-weak, different solutions may exist with
different lengths, so it is of interest to find the matching of maximum cardinality.
This is SRTI-weak-max, an optimization problem that is NP-hard.

11.5.1 Algorithms for a Distributed Setting

The SR problem and its generalizations appear to be naturally distributed. In
a centralized setting, each participant has to make his/her preference list public
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SR version Size All solutions Algorithm Complexity
Length Partners

SR n same same Stable Roommates polynomial
SRI ≤ n same same Stable Roommates polynomial
SRT-weak n same same break ties in all possible ways + NP-complete

Stable Roommates, until finding
a solution [Irving and Manlove, 2002]

SRT-strong n same same ? [Irving and Manlove, 2002] ?
SRT-super n same same SRT-super polynomial
SRTI-weak ≤ n diff diff break ties in all possible ways + NP-complete

Stable Roommates, until finding
a solution [Irving and Manlove, 2002]

SRTI-strong ≤ n same same ? [Irving and Manlove, 2002] ?
SRTI-super ≤ n same same SRTI-super [Irving and Manlove, 2002] polynomial
SRTI-weak- ≤ n same diff break ties in all possible ways + NP-hard
max Stable Roommates

Table 11.3: Solvability conditions, solving algorithm [Irving and Manlove, 2002]
(centralized case) and complexity for the different SR problems. Any instance of
any SR version may be unsolvable. For SR and the three SRT versions, a solution
has size n, while for others the solution size is ≤ n. Given any instance, except of
SMTI-weak, all its solutions have the same length. Given any instance, except of
SRTI-weak and SRTI-weak-max, all its solutions involve the same partners. SR,
SRI, SRT-super and SRTI-super are solved in polynomial time, SRT-weak and
SRTI-weak are NP-complete, and SRTI-weak-max is NP-hard. Regarding SRT-
strong and SRTI-strong, no polynomial algorithm is known and their complexity
remains an open problem.

to achieve a solution. However, participants may desire to keep their preferences
private during the search for a stable matching. This problem, like SM , is very
suitable to be treated by distributed techniques.

In that sense, we present the Distributed Stable Roommates problem
(DisSR) [Brito and Meseguer, 2005b], which consists of a number 2n of persons
{p1, p2, ..., p2n} plus a set of r agents. For simplicity, we assume that each person
is represented by an agent, so r = 2n. Likewise, we define the following prob-
lems [Brito and Meseguer, 2005b, Brito and Meseguer, 2006c]: the Distributed
Stable Roommates problem with Incomplete Lists (DisRMI ) , the Distributed
Stable Roommates problem with Ties (DisRMT ) and the Distributed Stable
Roommates problem with Ties and Incomplete Lists (DisRMTI ).

Like for SM, we investigate if centralized solving algorithms can be ex-
tended to the distributed case keeping privacy [Brito and Meseguer, 2005b,
Brito and Meseguer, 2006c]. Their resolution is summarized in Table 11.4. From
it, we conclude that only two decision problems can be solved by extending the
centralized algorithms to the distributed case while keeping preferences private.
Details of the extension of centralized algorithms to the distributed case appear
in Appendix A.

Considering constraints, the formulation introduced in Section 11.3 is fully
applicable to encode instances of every version of SR. The distributed constraint
version, presented in Subsection 11.4.2 is also applicable to instances of every
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DisSR problem Centralized Extension to the distributed
Algorithm case, keeping privacy

DisSR Stable Roommates [Irving and Manlove, 2002] No extension (Appendix A)
DisSRI Stable Roommates [Irving and Manlove, 2002] No extension (Appendix A)
DisSRT-weak break ties in all possible ways + No extension (Appendix A)

Stable Roommates, until finding
a solution [Irving and Manlove, 2002]

DisSRT-strong ? [Irving and Manlove, 2002] No extension (Appendix A)
DisSRT-super SRT-super [Irving and Manlove, 2002] Extension (Appendix A)
DisSRTI-weak break ties in all possible ways + No extension (Appendix A)

Stable Roommates, until finding
a solution [Irving and Manlove, 2002]

DisSRTI-strong ? [Irving and Manlove, 2002] No extension (Appendix A)
DisSRTI-super SRTI-super [Irving and Manlove, 2002] Extension (Appendix A)
DisSRTI-weak-max break ties in all possible ways + No extension (Appendix A)

Stable Roommates [Irving and Manlove, 2002]

Table 11.4: DisSRT-super and DisSRTI-super can be solved by direct extensions
of their corresponding centralized algorithms that keep privacy. For all the other
versions, their centralized algorithms cannot be extended to the distributed case
keeping privacy.

version of DisSR, with the following remark. In each setting, there are 2n∗(2n−1)
2

binary constraints; one for each different pair of persons. Constraint matrixes
will have the form given in Figure 11.4 for SR versions and the form given in
Figure 11.5 for DisSR versions. In every case, the definition of blocking pair
depends on the type of stability that is being considered. Furthermore, we have
to take into account that no person can match with himself/herself. To avoid
that, we add unary constraints: xi 6= pi, for all i, 1 ≤ i ≤ n.

Fortunately, none of the above changes affect the fulfilment of Proposition
11.4.1. That is, in every constraint table, except for one, all columns or rows
are equal. This implies that one can use the DisFC-SM algorithm with PKC
model, as described in Subsection 11.4.2, to solve instances of any of the versions
of DisSR that appear in Table 11.4 [Brito and Meseguer, 2006c]. We remember
that only one phase of the algorithm is required.

Regarding DisSRTI-weak-max, we consider the question ’Is there a weakly
stable matching of size k/2?’, where k starts with value 2n. If a weakly stable
matching exits, it will be of maximum cardinality. Otherwise, the value k is
decreased by two, and the problem is reconsidered. A constraint formulation
requires the addition of 2n variables u1, u2, . . . , u2n, plus an extra variable z,
with the domains: D(ui) = {0, 1}, 1 ≤ i ≤ 2n, D(z) = {k}. New constraints
are: if xi < 2n + 1 then ui = 1 else ui = 0, 1 ≤ i ≤ 2n and z =

∑2n
i=1 ui.

The agent that owns xi also owns ui. An extra agent owns z. The discussion
about privacy when solving DisSM versions at the end of Section 11.4 is fully
applicable here.
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11.6 Experimental Results

We have implemented the distributed versions of specialized algorithms that
keep privacy: DisEGS (for DisSM, DisSMI, DisSMT-weak and DisSMTI-weak),
DisSUPER (for DisSMT-super) and DisSUPER-SR (for DisSRT-super and
DisSRTI-super). We report results of these algorithms plus DisFC-SM with
the PKC model on random instances.

The generation of a random instances has been extended from the generation
of random problems described in [Gent and Prosser, 2002]. Considering that
preference lists may be incomplete and/or contain ties, a random class is defined
by 〈n, p1, p2〉, where for DisSMTI n is the number of men and for DisSRTI 2n
is the number of participants; p1 is the probability of incompleteness and p2

the probability of ties. Random classes with p1 = p2 = 0.0 are instances of the
original problems, that is, instances in which preference lists are complete and
do not contain ties (DisSM or DisSR instances). Random classes with p1 6= 0.0
and p2 = 0.0 are instances in which preference lists are incomplete but do not
contain ties (DisSMI or DisSRI instances). Random classes with p1 = 0.0 and
p2 6= 0.0 are instances in which preference lists are complete and contain ties
(DisSMT or DisSRT instances). Random classes with p1 6= 0.0 and p2 6= 0.0
are instances with ties and incomplete lists (DisSMTI or DisSRTI instances).
In DisSMTI experiments n = 5, while for DisSRTI 2n = 12; p1 and p2 take
values 0.0, 0.4 and 0.8. For each class, results are averaged on 200 instances.

In DisSMTI instances, each agent represents a man or a woman, and ex-
ecute DisEGC man or woman version [Brito and Meseguer, 2005b] (equivalent
versions exist for DisSUPER). Alternatively, they run DisFC-SR. In instances of
DisSRTI versions, each agent represents a participant. In distributed versions
of centralized algorithms like DisEGS, SUPER and DisSUPER-SR, each agent
only knows its preference list. In DisFC-SM, each agent only knows its prefer-
ence lists and its partial constraint matrixes. In all algorithms, agent exchange
different kind of messages to find a stable matching according to different kind
of stability (weak, strong and super). DisFC-SM also requires a total ordering
among agents. For DisSMTI, it is assumed that men agents have higher priority
than women agents. For DisSRTI, person agents are lexicographically ordered.

Table 11.5 presents the nccc needed by algorithms for solving DisSMTI in-
stances for each stability type, while Table 11.6 resumes the msg needed. Both
tables are correlated. For weak stability, two problem types have been consid-
ered: finding a weak stable matching, and the one with maximum cardinality.
In 6th column, the length of the largest matching appears between parenthesis.
Considering weak stability, DisEGS is much faster than DisFC-SM for finding
a weak stable matching: it is a specialized algorithm vs. the generic constraint
formulation.

For DisSMTI-weak-max when it is possible to use DisEGS it is much faster.
When preference list are incomplete (p1 = 0.4, p1 = 0.8) only DisFC-SM is able
to find the optimal solution keeping preference lists private. Regarding their
length, increasing p2 causes larger matchings. Increasing p1 instances become
easier. Considering strong stability, DisFC-SM is the only algorithm that solves
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Weak Stability Strong
Any Max Card Stability Super-Stability

p1 p2 DisEGS DisFC-SM DisEGS DisFC-SM DisFC-SM DisSUPER DisFC-SM
0.0 0.0 133 994,237 133 921,137 (10) 994,237 133 994,237
0.0 0.4 133 1,115,142 133 1,025,018 (10) 1,087,487 195 758,883
0.0 0.8 133 1,637,439 133 88,897 (10) 1,249,360 320 33,874
0.4 0.0 81 169,442 − 270,446 (9.57) 169,442 − 169,442
0.4 0.4 81 168,956 − 216,534 (9.92) 166,463 − 90,122
0.4 0.8 81 16,958 − 68,429 (10) 189,495 − 10,623
0.8 0.0 28 2,758 − 15,141 (8.23) 2,758 − 2,758
0.8 0.4 28 1,843 − 19,599 (8.79) 3,548 − 2,436
0.8 0.8 28 920 − 30,674 (9.34) 3,849 − 1,647

Table 11.5: Computation cost of solving DisSMTI instances for the three sta-
bilities. Entries ”-” mean that the corresponding centralized algorithm cannot
be extended to the distributed case while keeping preference lists private.

Weak Stability Strong
Any Max Card Stability Super-Stability

p1 p2 DisEGS DisFC-SM DisEGS DisFC-SM DisFC-SM DisSUPER DisFC-SM
0.0 0.0 90 52,826 90 54,014 (10) 52,826 91 52,826
0.0 0.4 90 50,024 90 51,852 (10) 65,389 120 47,765
0.0 0.8 90 39,764 90 3,464 (10) 65,947 151 3,258
0.4 0.0 61 11,363 − 22,007 (9.57) 11,363 − 11,363
0.4 0.4 61 9,600 − 15,244 (9.92) 12,432 − 7,472
0.4 0.8 61 751 − 3,547 (10) 12,585 − 1,395
0.8 0.0 29 310 − 2,575 (8.23) 310 − 310
0.8 0.4 29 215 − 3,111 (8.79) 435 − 354
0.8 0.8 29 131 − 4,414 (9.34) 451 − 282

Table 11.6: Communication cost of solving DisSMTI instances for the three
stabilities. Entries ”-” mean that the corresponding centralized algorithm cannot
be extended to the distributed case while keeping preference lists private.

Weak Stability
Any Max Card Strong Stability Super-Stability

p1 p2 DisFC-SM DisFC-SM DisFC-SM DisSUPER-SR DisFC-SM
0.0 0.0 43,119 (176) 89,308 (10.56) 43,119 (176) 168 (176) 43,119 (176)
0.0 0.4 35,681 (199) 38,826 (11.94) 47,076 (46) 152 (22) 41,963 (22)
0.0 0.8 10,824 (200) 10,576 (12) 38,928 (69) 130 (1) 11,377 (1)
0.4 0.0 3,400 (165) 11,395 (8.67) 3,400 (165) 66 (165) 3,400 (165)
0.4 0.4 2,043 (198) 7,326 (11.15) 3,840 (29) 85 (12) 3,273 (12)
0.4 0.8 922 (200) 4,492 (11.87) 3,419 (61) 104 (0) 1,791 (0)
0.8 0.0 202 (197) 635 (9.67) 202 (197) 29 (197) 202 (197)
0.8 0.4 176 (198) 745 (9.97) 223 (75) 36 (57) 229 (57)
0.8 0.8 136 (200) 906 (10.30) 234 (39) 42 (11) 242 (11)

Table 11.7: Computation cost of solving DisSRTI instances for the three stabil-
ities.

the problem keeping preference lists private. Larger p2 values (more ties in pref-
erence lists), increase the cost of finding a strong stable matching. Considering
super stability, DisSUPER can find a super stable matching when preference
lists are complete (p1 = 0.0) keeping preference lists private. In that setting,
it is much faster than DisFC-SM. However, when lists are incomplete the dis-



11.7. Summary 161

Weak Stability
Any Max Card Strong Stability Super-Stability

p1 p2 DisFC-SM DisFC-SM DisFC-SM DisSUPER-SR DisFC-SM
0.0 0.0 3,828 (176) 9,364 (10.56) 3,828 (176) 27 (176) 3,828 (176)
0.0 0.4 3,088 (199) 3,962 (11.94) 4,044 (46) 18 (22) 3,435 (22)
0.0 0.8 878 (200) 1,052 (12) 3,297 (69) 12 (0) 863 (1)
0.4 0.0 480 (165) 2,507 (8.67) 480 (165) 16 (165) 480 (165)
0.4 0.4 285 (198) 1,661 (11.15) 525 (29) 19 (12) 456 (12)
0.4 0.8 133 (200) 1,553 (11.87) 522 (61) 20 (0) 256 (0)
0.8 0.0 34 (197) 547 (9.67) 34 (197) 11 (197) 34 (197)
0.8 0.4 29 (198) 652 (9.97) 38 (75) 13 (57) 39 (57)
0.8 0.8 23 (200) 885 (10.30) 39 (39) 14 (11) 40 (11)

Table 11.8: Communication cost of solving DisSRTI instances for the three
stabilities.

tributed version of SUPER2 cannot be applied without revealing information
about the preference lists. That it is in the largest values of p2, the instances
are easier.

Table 11.7 and Table 11.8 resume, respectively, the nccc and msg needed
by algorithms for solving DisSRTI instances for stability type. Both tables are
correlated. Between parenthesis appear the length of the largest matching (4th
column) and the number of solvable instances (3th, 5th, 6th and 7th columns).
Considering super stability, DisSUPER-SR is much faster and sends less mes-
sages than DisFC-SM.

According to the results showed in the above four tables, we observe that a
distributed version for a specialized algorithm, when applicable, is much better
than DisFC-SM. This could be expected, since specialized algorithms takes ad-
vantage of the problem features. In contrast, DisFC-SM is based on DisFC 2, a
generic algorithm that is applicable to any DisCSP. Regarding privacy, all those
distributed algorithms guarantee that people keep their preference lists private
during the search stable matchings.

11.7 Summary

In this chapter, we presented a distributed formulation for the Stable Marriage
and the Stable Roommates problem. For these problems, some relaxed versions
were also considered (i.e. preference lists may be incomplete and contain ties).
All them appear to be naturally distributed and there is a clear motivation to
keep their preference lists private during the solving process. On solving ap-
proaches, (1) we extend the specialized centralized algorithms to the distributed
case, and (2) we provide a generic distributed constraint formulation. Keeping
privacy, only a fraction of problem versions can be solved by the specialized
distributed algorithms, while all can be solved by the generic distributed con-
straint formulation. When applicable, specialized algorithms are more efficient
than generic ones. This relative inefficiency is the extra cost one has to pay to
keep preference lists private. As future work, we would like to consider other
constraint formulations for these problems.
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Chapter 12

Conclusions

Distributed Constraint Satisfaction is a necessary framework for modeling and
solving naturally distributed problems. Throughout this work, several complete
search algorithms and heuristics for DisCSP have been presented. Proposed
algorithms have been evaluated according to two issues: efficiency and privacy.

12.1 Conclusions

From our work, we can extract the following conclusions:

• Analogous to CSP, the use of variable reordering heuristics is fruitful for
DisCSP. In this work, we have presented two approaches for variable re-
ordering in SCBJ, a synchronous algorithm. Our results show that SCBJ
with any of these heuristics always outperform the original algorithm in
terms of computation effort and communication cost.

• The links that ABT adds between agents not sharing constraints are nec-
essary for deleting obsolete information and thereby, to guarantee the algo-
rithm termination. ABT kernel is a basic kernel for grouping asynchronous
backtracking algorithms that handling nogoods and links in a way such
that termination is ensured. From ABT kernel, we obtained four algo-
rithms: ABT, ABT all, ABT temp, and ABTnot, the first algorithm that
does not add links between agents not sharing constraints. Our experi-
mental results show that the earlier links are added between agents not
sharing constraints, the smaller number of messages the algorithm needs.
On the other hand, the longer the duration of added links is, the greater
number of messages the algorithm sends. Although ABTnot is the least
economic algorithm, it exchanges much less information between agents
not sharing constraints. ABTnot has to be selected only if some privacy
policy justifies its use.

• Asynchronous algorithms are not always more efficient than synchronous
ones. Furthermore, adding some synchronization points to asynchronous
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algorithms improve their performance. In this work, we have presented
ABThyb, a hybrid algorithm which combines synchronous and asyn-
chronous elements. This algorithm avoids sending redundant messages
after backtracking. ABThyb outperforms ABT regarding computation ef-
fort and communication cost.

• Although most of state-of-the-art algorithms for DisCSP assume binary
constraints, they can be extended to handle constraints involving more
than two variables. In this work we have extended one synchronous
(SCBJ ) and two asynchronous algorithms (ABT and ABTnot) to deal
with non-binary constraints. Empirically, we have shown that adding con-
straint projections speeds up the search.

• In order to guarantee polynomial space on asynchronous/hybrid algo-
rithms, the number of nogoods that agents may store has to also be poly-
nomial. This implies that agents have to forget some obsolete nogoods
that could be kept to avoid make same mistakes in future assignments.
Empirically, we have shown that the heuristic of selecting the best nogood
is a good strategy that improves practical performance.

• Part of this thesis have been concerned with privacy. In the context of
asynchronous algorithms, especially in ABT, we have analyzed how pri-
vacy can be enhance without using costly cryptography tools. We have
differentiate among three types of privacy: domain privacy, assignment
privacy and constraint privacy. For each type of privacy we have discussed
how privacy can be enforced.

– Domain privacy : Assuming constraints are given implicity, ABT
guarantees some domain privacy because the agent that holds a vari-
able is the only one that knows the variable domain. However, ABT
may be improved, for instances, by reducing the number of values
that agents assign to their variables.

– Assignment privacy : we presented DisFC, an asynchronous algorithm
based on ABT, in which, instead of sending its assignment, each agent
reveals to the other agents the set of values from their domains that is
consistent with the agent’s current assignment. DisFC achieves some
assignment privacy, since every agent knows its value and no agent
knows certainly other agent’s value.

– Constraint privacy : we have proposed the Partially Known Con-
straints model (PKC ) to express interagent constraints. This model
presumes that every agent involving in a constraint knows only a
part of this constraint. Assuming PKC, we have studied in this thesis
four distributed algorithms for PKC : DisFC 2, DisFC 1 and ABT 2,
ABT 1. The former two algorithms are derived from DisFC and,
thereby, they also preserve assignments. The other two methods are
directly derived from ABT. Our algorithms are not perfect and leak
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some information in the solving process. We have proposed a way to
measure the constraint privacy of constraints that these algorithms
offer.

Our experimental results for constraint privacy lead us to conclude
the following points.

∗ ABT 2 and ABT 1 always offer higher constraint privacy than the
original ABT.

∗ In general, DisFC 2 and DisFC 1 are less efficient and offer less
constraint privacy than ABT versions for PKC. However, they
also offer assignment privacy which are not provided by ABT al-
gorithms. In the worst scenario, agents in DisFC 2 and DisFC 1

reveal as much information about their constraints as ABT
agents. However, in order to construct the actual constraint
known by any other agent, an agent in DisFC 2/ DisFC 1 must
find all the solutions of a CSP, which is an NP-hard task.

∗ When allowing agents to lie about their constraints, constraint
privacy is further enforced. We have presented DisFC lies, an
DisFC 1-like algorithm, in which agents can send false consistent
domains with the only requirement that this false information
must be amended within a finite time.

∗ Regarding efficiency, original algorithms are much better than
their versions for PKC. This is the price one has to pay to achieve
the required privacy.

• The presented algorithms in this thesis are fruitful for solving real
problems with privacy requirements that can be viewed as DisCSP.
Efficiency and privacy have been evaluated in the context of Meet-
ing Scheduling [Freuder et al., 2001] and Stable Matching Problems
[Gusfield and Irving, 1989]. These problems appear to be naturally dis-
tributed and there is a clear motivation to keep personal information pri-
vate during the solving process. Regarding Meeting Scheduling problem,
we have used two synchronous (SCBJ and RR, [Freuder et al., 2001]) and
one asynchronous (ABT ) algorithms to solve it. Experiments lead us to
conclude that synchronous algorithms are more efficient and offer higher
privacy than ABT for this problem. Regarding Stable Matching prob-
lems, we have studied two classes of problems: Stable Marriage and Stable
Roommates problem. We have proposed a way to resolve these problems
keeping their preference lists private. First, we model these problems us-
ing the constraint formulation of [Gent et al., 2001]. Second, we resolve
problems in a simple way using the first phase of DisFC 2. For all prob-
lems, proposed solving methods offer more privacy than this that could be
achieved by using the centralized approach.
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12.2 Further Research

We consider as further research the following points.

• We have observed that heuristics for dynamic variables reordering improve
synchronous search performance (see Chapter 4). In order to complement
our work on dynamic variables reordering for DisCSP algorithms, and
following the ideas given in [Zivan and Meisels, 2005b], the addition of
dynamic variables reordering techniques to asynchronous searches could
be part of further research.

• Asynchronous backtracking with temporary links, ABT temp, appears as a
good algorithm for asynchronous backtracking (see Chapter 5). However,
the following question remains: how many ok? messages to allow through
a temporary link? In our experiments, this parameter was adjusted man-
ually after some trials. We think that it could be adjusted automatic and
dynamically, customized for each agent. The automatic selection of this
parameter is a direction for further research.

• The idea of adding synchronization points to ABT improves its perfor-
mance because it avoids to send redundant messages. Identifying other
cases of inefficiency in asynchronous algorithms may help to further im-
prove their efficiency.

• For solving DisCSP with privacy requirements, one would like to use an
algorithm that finds quickly a solution and offers a high privacy level
for agents. In this thesis, privacy in DisCSP has been evaluated mainly
from the perspective of asynchronous algorithms. Our experimental results
demonstrate that for problem domains synchronous and hybrid algorithms
could be more efficiency than asynchronous ones. The evaluation of syn-
chronous and hybrid algorithms in terms of assignment and constraint
privacy is still pending.

• The idea of allowing agents to lie about their actual constraints makes
DisFC 1 algorithms to enhance constraint privacy. The use of lies in
DisCSP algorithms should be considered to enforce other types of privacy.

• A common feature of the DisCSP algorithms in this work is that, in their
presentations, we have assumed each agent holds only one variable. It
is known that these algorithms can be applied to situations where one
agent has multiple local variables by either: (1) each agent finding all
the solutions to its local problem first and then all agents reformulating
the resulting problem as distributed CSP or (2) creating multiple virtual
agents, each of which corresponding to one local variable and simulating
the activities of these virtual agents. Both methods are neither efficient
nor scalable to large problems [Yokoo, 2001]. This is why the extensions
of proposed algorithms to handle multi-variable agents could be part of
future research.



Appendix A

Specialized Algorithms for
Stable Matching Problems

This appendix analyzes the extensions of specialized algorithms for Stable
Matching problems to the distributed case.

DisSM, DisSMI. It is possible to extend the centralized Gale-Shapley
[Gale and Shapley, 1962], in short EGS, to the distributed case while keeping
preference lists private. We call this algorithm the Distributed Gale-Shapley
(DisEGS ). The man-oriented version of the DisEGS algorithm for solving SM
and SMI instances appears in Figure A.1 (the woman-oriented is analogous,
switching the roles man/woman). It is composed of two procedures, Man and
Woman, which are executed on each man and woman, respectively. Execution is
asynchronous. The following messages are exchanged (where m is the man that
executes procedure Man and w the woman that executes procedure Woman),

• propose: m sends this message to w to propose engagement;

• accept: w sends this message to m after receiving a propose message to
notify acceptance;

• delete: w sends this message to m to notify that w is not available for m;
this occurs either (i) proposing m an engagement to w but w has a better
partner or (ii) w accepted an engagement with other man more preferred
than m;

• stop: this is an special message to notify that execution must end; it is
sent by an special agent after detecting quiescence.

Procedure Man, after initialization, performs the following loop. If m is free and
his list is not empty, he proposes to be engaged to w, the first woman in his list.
Then, m waits for a message. If the message is accept and it comes from w, then
m confirms the engagement (nothing is done in the algorithm). If the message
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procedure Man()
m ← free;
end ← false;
while ¬end do

if m = free and list(m) 6= ∅ then
w ← first(list(m));
sendMsg(propose,m,w);
m ← w;

msg ← getMsg();
switch msg.type

accept : do nothing;
delete : list(m) ← list(m)−msg.sender;

if msg.sender = w then m ← free;
stop : end ← true;

procedure Woman()
w ← free;
end ← false;
while ¬end do

msg ← getMsg();
switch msg.type

propose: m ← msg.sender;
if m /∈ list(w) then
sendMsg(delete,w,m);

else
sendMsg(accept,w,m);
w ← m;
for each p after m in list(w) do
sendMsg(delete,w,p);
list(w) ← list(w)− p;

stop : end ← true;

Figure A.1: The man-oriented version of the DisEGS algorithm.

is delete, then m deletes the sender from his list, and if the sender is w then m
becomes free. The loop ends when receiving a stop message.

Procedure Woman is executed on woman w. After initialization, there is a
message receiving loop. In the received message comes from a man m proposing
engagement, w rejects the proposition if m is not in her list. Otherwise, w
accepts. Then, any man p that appears after m in w list is asked to delete w
from his list, while w removes p from hers. This includes a previous engagement
m′, that will be the last in her list. The loop ends when receiving a stop message.

DisSMT-weak. Each person may arbitrarily break his/her ties. From this
point on, the problem becomes a DisSM, and any stable matching will be a
weak stable matching for the original one. So the DisEGC algorithm is enough
to solve it.
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DisSMT-strong. The STRONG algorithm requires the computation of a
deficient set for the bipartite graph defined by engagement between men and
women. In the Stable Marriage context, a set X of s men is a deficient set if the
men are collectively engaged to t women, for some s and t < s. The deficiency
of X is defined by δ(X) = s − t. In particular, STRONG requires, in some
points during its execution, the computation of a deficient set with the maxi-
mum deficiency (also called critical set). The search of critical sets requires the
exploration of the engagement graph. This forces to each person reveals his/her
current partners which breaks the privacy requirement to solve the problem. So
we conclude that STRONG cannot be extended to the distributed case while
keeping privacy.

DisSMT-super. The SUPER algorithm [Irving, 1994] can be easily ex-
tended to the distributed setting without revealing the people’s preference lists.
SUPER consists of a two-step cycle. The first step is similar to that of STRONG.
When the first step ends, every man can be engaged to 0, 1 or k women. If a
man’s preference list is empty then no super stable matching exists and the al-
gorithm ends. In second step, all men tied at the tail of a woman’s preference
list are deleted and the woman from their preference lists. Such pairs must be
deleted since they constitute super blocking pairs. This process continues until
each man is either engaged or has an empty list. When the cycle ends, if a
man’s preference list is empty then no super stable matching exists. Otherwise,
the matching given by the engaged pairs constitutes a super-stable matching.
Similar to EGS, the first step can be extended to the distributed setting while
keeping preference lists private. In the second step, each man who is deleted
from a woman’s preference list can only infer that the woman is indifferent be-
tween him and one or more men, but he will never know who is or who are those
men. Therefore, DisSUPER keeps privacy of preference lists and can be used to
solve DisSMT-super.

DisSMTI-weak. The same argument of DisSMT-weak applies here.

DisSMTI-strong. The STRONG2 algorithm requires the computation of
a maximum matching for a bipartite graph G (that represents the engagement
relation among men and women). A matching is maximum if it is not properly
contained in any other matching. A fundamental strategy for finding a maximum
matching in a bipartite matching is using alternating paths. For a given graph
G, a path P is an alternating path for the matching M of G if: (i) the two
end points of P are unmatched by M and (ii) the edges of P alternate between
edges matched by M and edges unmatched by M . A matching is maximum iff
it admits no alternating path. The graph defined by the engagement relation
among men and women have to be explore in order to find alternating paths.
This forces to each person reveals his/her current partners. When multiples
partners exits, all of them are equally preferred. Therefore, when a person
reveals his/her partners it is also revealing a tie in his/her preference lists which
breaks the privacy requirement to solve the problem. So STRONG2 cannot be
extended to the distributed case keeping privacy.
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DisSMTI-super. The same argument for DisSMTI-strong applies here.

DisSMTI-weak-max. To compute the matching of maximum length, one
has to break ties in all possible ways which will produce different instances of
SMI, that can be solved by DisEGC. The solution with maximum length is
recorded as the global solution. Extending this approach to the distributed case
presents an issue: it is required a new agent, that synchronizes the possible ways
in which agents can break their ties. This new agent has to know how many
ties contain each agent. Although this approach makes public this information,
preference list are still private. This agent records all solutions, to find the
optimal one.

DisSR, DisSRI. These two problems are solved by the Stable Roommates
algorithm [Irving and Manlove, 2002]. This algorithm consists of two phases.
The first phase is an extended version of EGS algorithm where every person
sends and receives matching proposals from the rest of people. EGS can be
extended to the distributed case while keeping preference lists private. The
distributed version of EGS is DisEGS.

The second phase of the Stable Roommates algorithm iterates reducing fur-
ther the preference lists until all lists contain just one entry, in which case it
constitutes a stable matching or until any preference list becomes empty, in
which case no stable matching exists. This phase consists of two parts. Firstly,
the algorithm builds a special sequence of matching pairs from the reduced pref-
erence lists. This sequence is called rotation and has the following form:

{(x0, y0), (x1, y1), ..., (xr−1, yr−1)},

such that yi is the most preferred partner for xi and yi+1 is the second most
preferred partner for xi for all i, 0 ≤ i ≤ r − 1, where i + 1 is taken as module
r. Secondly, the algorithm deletes from reduced preference lists the rotation ob-
tained in the first part of this phase (see section 4.2 of [Gusfield and Irving, 1989]
for more details).

Notice that the construction of a rotation requires that some agents reveal
either their most or their second most preferred partners in their lists. In this
sense, a distributed version of the centralized solving algorithm such that privacy
is maintained, does not seem feasible in this case.

DisSRT-weak. The centralized approach uses the Stable Roommates algo-
rithm, that cannot be extended to the distributed case without breaking privacy
[Brito and Meseguer, 2005b]. Therefore, this approach cannot be extended to
the distributed case.

DisSRT-strong. Up to our knowledge, no polynomial algorithm is known
to solve this problem [Irving and Manlove, 2002]. So no extension can be done
to the distributed case.

DisSRT-super. The SRT-super algorithm determines if a super-stable
matching exits for a SRT instance. If so, the algorithm finds it. SRT-super
consists of two phases. EGS is the kernel of the first phase, which is extended
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to the distributed case by DisEGS, keeping privacy. The second phase can be im-
plemented using the type of messages of DisEGS (propose and delete messages).
So, SRT-super can be extended to the distributed case, keeping preferences pri-
vate.

DisSRTI-weak. The same argument for DisSRT-weak applies here.

DisSRTI-strong. The same argument for DisSRT-strong applies here.

DisSRTI-super. The same argument for DisSRT-super applies here.

DisSRTI-weak-max. The same argument for DisSRT-weak applies here.
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