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Foreword

This monograph reports an investigation into the use of case based reasoning for expressivity-
aware tempo transformation of audio-recorded performances of melodies. This specific task is
illustrative of a wider application domain that has emerged during the past decade: content-
based multimedia processing. Large scale availability of image, video, and audio information
in digital format requires new ways of managing and transforming information. The work
presented in the monograph is an example of such content-based transformation. The mono-
graph investigates the problem of how a musical performance played at a particular tempo
can be rendered automatically at another tempo, while preserving naturally sounding ex-
pressivity.

The work presented raises a number of challenging topics. First there is the question
of data modeling. It is an open issue how expressivity information can be extracted from
the performance and appropriately represented, and what aspects of the melody should
be explicitly described for content-based manipulation of performed music. Secondly, from
the case based reasoning perspective tempo-transformation of performed melodies is an
interesting problem domain, since the problem and solution data are composite structures
of temporal nature, and the domain expertise (expressively performing music) is almost
entirely a tacit skill. Thirdly, since problem solving in case based reasoning is based on
the reuse of previous problems, similarity measures for melodies and performances play a
central role. This creates an overlap with the field of music information retrieval. Lastly, this
research raises the question of how the quality of transformed performances can be evaluated.
The evaluation of models for expressive music performance is an important unsettled issue
that deserves broad attention.

Bellaterra, October 2007

Josep Llúıs Arcos
IIIA, CSIC

email: arcos@iiia.csic.es
http://www.iiia.csic.es/~arcos

xv





Abstract

This dissertation is about expressivity-aware tempo transformations of monophonic audio
recordings of saxophone jazz performances. It is a contribution to content-based audio
processing, a field of technology that has recently emerged as an answer to the increased
need to deal intelligently with the ever growing amount of digital multimedia information
available nowadays. Content-based audio processing applications may for example search a
data base for music that has a particular instrumentation, or musical form, rather than just
searching for music based on meta-data such as the artist, or title of the piece.

Content-based audio processing also includes making changes to the audio to meet specific
musical needs. The work presented here is an example of such content-based transforma-
tion. We have investigated the problem of how a musical performance played at a particular
tempo can be rendered automatically at another tempo, while preserving naturally sound-
ing expressivity. Or, differently stated, how does expressiveness change with global tempo.
Changing the tempo of a given melody is a problem that cannot be reduced to just applying
a uniform transformation to all the notes of the melody. The expressive resources for empha-
sizing the musical structure of the melody and the affective content differ depending on the
performance tempo. We present a case based reasoning system to address this problem. It
automatically performs melodic and expressive analysis, and it contains a set of examples of
tempo-transformations, and when a new musical performance must be tempo-transformed,
it uses the most similar example tempo-transformation to infer the changes of expressivity
that are necessary to make the result sound natural.

We have validated the system experimentally, and show that expressivity-aware tempo-
transformation are more similar to human performances than tempo transformations ob-
tained by uniform time stretching, the current standard technique for tempo transformation.
Apart from this contribution as an intelligent audio processing application prototype, several
other contributions have been made in this dissertation. Firstly, we present a representation
scheme of musical expressivity that is substantially more elaborate than existing representa-
tions, and we describe a technique to automatically annotate music performances using this
representation scheme. This is an important step towards fully-automatic case acquisition
for musical CBR applications. Secondly, our method reusing past cases provides an example
of solving synthetic tasks with multi-layered sequential data, a kind of task that has not
been explored much in case based reasoning research. Thirdly, we introduce a similarity
measure for melodies that computes similarity based on an semi-abstract musical level. In
a comparison with other state-of-the-art melodic similarity techniques, this similarity mea-
sure gave the best results. Lastly, a novel evaluation methodology is presented to assess the

xvii



quality of predictive models of musical expressivity.

This research was performed at the Artificial Intelligence Research Institute (IIIA),
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Chapter 1

Introduction

This dissertation is an investigation into the use of case based reasoning for expressivity-
aware tempo transformation of audio recorded performances of melodies. This specific task
is illustrative of a wider application domain of science and technology that has emerged
during the past decade, and the impact and importance of which is only recently being
realized: content-based multimedia processing. Large scale access to the world wide web,
and the omnipresence of computers have lead to a strong increase of image, video, and audio
information available in digital format, and it is only realistic to assume that in the future the
majority of information will be distributed in the form of multimedia. This shift toward non-
text media asks for new ways of managing information. In parallel with the technology that
aims at automatic semantic description of image, video, and audio information to make its
content accessible, there is a need for technology that enables us to handle such information
according to its content. This includes for example content based information retrieval, but
also content based transformation, where previous information is reused for new purposes,
often requiring non-trivial adaptations of the information to its new context.

Both in content extraction and manipulation progress has been made (see Aigrain [1999]
for an overview). Nowadays high-quality audio time stretching algorithms exist (e.g. [Röbel,
2003; Bonada, 2000]), making pitch-invariant temporal expansion and compression of audio
possible without significant loss in sound quality. Such algorithms perform low level content
based transformation, i.e. by segmenting the audio signal into transient and stationary parts
based on spectro-temporal content and stretching the audio selectively. The main goal of
those algorithms is to maintain sound quality, rather than the musical quality of the audio
(in the case of recorded musical performances). But as such, they can be used as tools
to build higher level content based audio transformation applications. A recent example
of this is an application that allows the user to change the swing-ratio of recorded musical
performances [Gouyon et al., 2003]. Such audio applications can be valuable especially in the
context of audio and video post-production, where recorded performances must commonly
be tailored to fit specific requirements. For instance, for a recorded musical performance to
accompany video, it must usually meet tight constraints imposed by the video with respect
to the timing or the duration of the recording, often requiring a tempo transformation.

In order to realize a tempo transformation that maintains the musical quality of the mu-
sical performance, higher level content of the audio must be taken into account (as we will
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argue in the next section). Content based transformation of music performances inevitably
demands a thorough grip on musical expressivity, a vital aspect of any performed music. We
use the term musical expressivity to refer to the deviations of the music as it is performed
with respect to some norm, for example the score. This phenomenon is notoriously complex.
Changes in the musical setting (for instance changes of tempo), often lead to subtle changes
in expressivity that may nevertheless be indispensable to maintain a feeling of musical cor-
rectness. Through the use of case based reasoning as a state-of-the-art AI problem-solving
methodology that has proved its merits in a variety of tasks, we try to realize tempo trans-
formations of musical performances that are expressivity-aware. This means that apart from
changing the rate at which the performance is being reproduced, changes to the expressive
character of the performance are made to the extent that a human musician would change
her way of performing to make the performance sound good at the new tempo.

The task and chosen approach raise a number of challenging topics. First there is the
question of data modeling. It is an open issue how expressivity information can be extracted
from the performance and appropriately represented, and what aspects of the melody should
be explicitly described for content based manipulation of performed music. Secondly, from
the case based reasoning perspective tempo-transformation of performed melodies is an
interesting problem domain, since the problem and solution data are composite structures
of temporal nature, and the domain expertise (expressively performing music) is almost
entirely a tacit skill. Thirdly, since problem solving in case based reasoning is based on
the reuse of previous problems, similarity measures for melodies and performances play a
central role. This creates an overlap with the field of music information retrieval. Lastly, this
research raises the question of how the quality of transformed performances can be evaluated.
The evaluation of models for expressive music performance is an important unsettled issue,
that deserves broad attention.

In the remainder of this chapter, we explain the problem of expressivity-aware tempo-
transformation in more detail (section 1.1). Then we will outline the scope and the specific
problems addressed in this dissertation (section 1.2). Finally, we give a brief overview of the
structure of the dissertation (section 1.3).

1.1 Musical Expressivity and Tempo

It has been long established that when humans perform music from score, the result is never
a literal, mechanical rendering of the score (the so called nominal performance). Even when
musicians intentionally play in a mechanical manner, noticeable differences from the nominal
performance occur [Seashore, 1938; Bengtsson and Gabrielsson, 1980]. Furthermore, different
performances of the same piece, by the same performer, or even by different performers, have
been observed to have a large number of commonalities [Henderson, 1937; Seashore, 1938].
Repp [1995b] showed that graduate piano students were capable just as well as professional
piano players, of repeatedly producing highly similar performances of the same piece.

Given that expressivity is a vital part of performed music, an important issue is the
effect of tempo on expressivity. It has been argued that temporal aspects of performance
scale uniformly when tempo changes [Repp, 1994]. That is, the durations of all performed
notes maintain their relative proportions. This hypothesis is called relational invariance (of
timing under tempo changes). Counter-evidence for this hypothesis has also been provided
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Figure 1.1: The frequency of occurrence of several kinds of performance events as a function
of global performance tempo

however [Desain and Honing, 1994; Friberg and Sundström, 2002; Timmers et al., 2002],
and a recent study shows that listeners are able to determine above chance-level whether
audio-recordings of jazz and classical performances are uniformly time stretched or original
recordings, based solely on expressive aspects of the performances [Honing, 2007].

A brief look at the corpus of recorded performances we will use in this study (details
about the corpus are given in subsection 3.2) reveals indeed that the expressive content of
the performances varies with tempo. Figure 1.1 shows the frequency of occurrence of various
types of expressivity, such as ornamentation and consolidation, as a function of the nominal
tempo of the performances (the tempo that is notated in the score). In subsection 4.3 we
will introduce the various types of performance events as manifestations of musical expres-
sivity in detail. Note that this figure shows the occurrence of discrete events, rather than
continuous numerical aspects of expressivity such as timing, or dynamics deviations. The
figure clearly shows that the occurrence of certain types of expressivity (such as ornamenta-
tion) decreases with increasing tempo, whereas the occurrence of others (consolidation most
notably) increases with increasing tempo.

Figure 1.2 shows how various expressive parameters change systematically with tempo.
The points in the figure represent comparisons of performances of the same phrase at differ-
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Figure 1.2: Dissimilarities between performances (of the same phrase) vs. their difference in
tempo

ent tempos (tempos are specified in the number of beats per minute, or BPM ). The x-axis
shows the difference in tempo between the two performance. In the top left figure, the y-axis
shows the root mean square (RMS) value of the pairwise absolute difference in note onset.
The top right figure shows the RMS value of the pairwise duration difference (proportion).
The bottom left figure shows the RMS value of the pairwise energy difference (proportion).
The bottom right figure shows the distance value between the performances as sequences
of performance events. The distance increases when the sequences contain different perfor-
mance events. In all four expressive parameters, values tend to differ more when the tempos
of the compared phrases increases. In some parameters the change as a function of tempo
seems only small, but it must be kept in mind that the actual performances are a result of
the combination of all parameters. The effects in the individual parameters are therefore
cumulative.

The above observations amount to the belief that although in some circumstances rela-
tional invariance may hold for some aspects of expressivity, in general it cannot be assumed
that all aspects of expressivity remain constant (or scale proportionally) when the tempo of
the performance is changed. In other words, tempo transformation of musical performances
involves more than uniform time stretching (UTS ).
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Throughout this dissertation, we will use the term UTS to refer to the scaling of the
temporal aspects of a performance by a constant factor. For example, dynamics, and pitch
will be left unchanged, and also no notes will be inserted or removed. Only the duration and
onsets of notes the will be affected. Furthermore, we will use the term UTS in an abstract
sense. Depending on the data under consideration it involves different methods to realize
it. For example, it requires non-trivial signal-processing techniques to apply pitch-invariant
UTS to the audio recording of the performance. In symbolic descriptions of the performance
on the other hand, UTS consists in a multiplication of all temporal values by a constant.
Note that this holds if the descriptions measure time in absolute units (e.g. seconds). When
time is measured in score units (e.g. beats) UTS makes no sense, since changing the tempo
of the performance only changes the translation of score time units to absolute units of time.

1.2 Problem Definition, Scope and Research Objectives

In this section we describe the main problem we address in this dissertation. We define the
scope of the project with regard to the type of musical data and the level of processing.
After that we will list the secondary objectives that derive from the main problem.

1.2.1 A System for High-level Content-Based Tempo Transforma-
tion

As mentioned at the beginning of this chapter, the primary objective of this research is to
develop an expressivity-aware system for musical tempo transformations of audio recorded
performances, that maintains not only the sound quality of the recording, but also musical
quality of the performance. There are several ways to concretize the criteria for success of
the system. For instance, we can say the tempo-transformation of a recorded performance
is successful if:

• its expressive characteristics (statistically speaking) are in accordance with human
performances at that tempo (more than with human performances at other tempos);

• it is preferred by human listeners over a tempo-transformed performance that was
obtained by UTS;

• it is not recognized by human listeners as being a manipulated performance; they
regard it as an original recording of a human performance;

Although there is not a strictly logical relation between the above criteria, we feel that in
practice, each former criterion is implied by the subsequent criteria. That is, they are or-
dered from weak to strong. In subsection 2.4.6 we review evaluation paradigms for expressive
music prediction models in general, and in subsection 6.3 we propose a hybrid evaluation ap-
proach that combines human judgment with a quantitative assessment of tempo-transformed
performances.
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1.2.2 Scope

In order to optimize the conditions for investigation of expressivity aware tempo transfor-
mation and to make the problem feasible as a project, the scope of research must be cho-
sen appropriately. We work with a corpus of recorded performances that has some rather
specific characteristics, that make it suitable for this research. Firstly, the recordings are
performances of jazz standards, taken from The Real Book [2004]. Jazz is a good genre for
studying expressivity because of its emphasis on liberal and expressive performance rather
than precise reproductions of notated melodies. Secondly, the performances are played by
a saxophone, an instrument that offers a very broad range of sound-qualities that allow a
skilled performer to perform expressively in an elaborate manner. Thirdly, the melodies are
monophonic, which relieves the need for voice separation, and lets us focus directly on the
expressivity in the performance. Finally, the type of expressivity in the recording is what we
call ‘natural’: the melodies are performed as the performer (a professional musician) thinks
they should without any explicit intentions of expressing a particular mood or affection. See
section 3.2 for more details on the musical corpus.

In addition to the focus on a specific type of musical data, we focus on a particular level of
data processing. As explained before, we will work within the paradigm that separates con-
tent extraction from content analysis/manipulation, as opposed to for example purely signal
processing approaches to audio-transformation1. The research presented in this disserta-
tion exclusively addresses content analysis/manipulation. For the content extraction (audio
analysis) and reconstruction of audio from content descriptions (audio re-synthesis), we rely
on an external system for melodic content extraction from audio, developed by Gómez et al.
[2003b,a].

1.2.3 Representation of Expressivity

One of the secondary objectives is the development of a suitable representation scheme for
the expressivity in the data that we work with. This will require a study of the expressive
phenomena encountered in the musical corpus.

1.2.4 Melodic Retrieval Mechanisms

The case based approach to the tempo transformation problem implies the need for a retrieval
mechanism for cases that is based on the melodic material contained in the cases. We will
investigate and compare several approaches to melodic similarity.

1.2.5 Performance Model Evaluation

In order to evaluate the proposed tempo transformation approach we need an evaluation
methodology that assesses the quality of tempo transformed performances. We will discuss
common evaluation paradigms.

1This two-level paradigm has been argued for by e.g. Scheirer [1995]
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1.3 Outline of the Dissertation

In chapter 2, we provide the relevant background of the work presented in this dissertation.
We discuss the principal concepts involved, notably musical expressivity, performance models
and their evaluation, melodic similarity, and case based reasoning. Along with this survey
we will review related research, methodologies, and notable findings.

In chapter 3 we propose a system architecture for the tempo transformation system.
We define the terms that will be used, and summarize the goal and functionality of the
different components. Furthermore, we detail the musical corpus used for experimentation,
we present various representation schemes of the musical data, and discuss their value for
the current application.

In chapter 4 we explain in detail the methods we have developed to process the input
data, in order to form cases that contain not just the raw input data, but provide higher
level knowledge-enriched data descriptions that interpret and interrelate the input data, and
are used at various stages throughout the case based reasoning process.

Chapter 5 is devoted to the problem solving process, that consists in applying case based
reasoning to construct a tempo transformed performance of the input phrase.

Chapter 6 describes a set of experiments that validate the different components of the
system, notably knowledge acquisition (performance annotation), and abstract melody rep-
resentation, and melody retrieval. The final section of the chapter describes an experimental
validation of the system as a whole.

In chapter 7 we summarize the research presented in the dissertation. We list the main
contributions of our work, and identify future work.

The appendices respectively contain abbreviations/notational conventions, annotated
scores of the phrases used as musical corpus to form the case base, a list of songs used
for a melodic similarity comparison experiment, and a list of publications by the author.
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Chapter 2

Preliminaries and Related Work

In this chapter we provide the context in which the present research is situated. The first part
of the chapter is dedicated to musical expressivity, providing a description of the phenomenon
of expressivity, its communicational functions, and alternative definitions (sections 2.1, 2.2,
and 2.3). Then, we discuss various methodologies for developing computational models
of expressivity, and alternative ways of evaluating such models (section 2.4). After that,
we briefly survey research on melodic similarity and different computational approaches to
assess melodic similarity (section 2.5). In section 2.6 we introduce case based reasoning and
give a characterization of CBR with respect to other learning approaches. We conclude the
chapter with some observations and concluding remarks on the reviewed work (section 2.7).

2.1 Expressivity in Musical Performances

Investigations into the performance of music dates from at least the end of the nineteenth
century and early twentieth century. For example, around 1896, Binet and Courtier [1896]
prepared a grand piano to display the dynamics of the keys pressed on a paper. In 1913,
Johnstone [1913], observed that in piano performances, the notes that belong to the melody
are often played slightly earlier than chord notes at the same metrical position. Around
1930, extensive research on music performance was carried out and reported by a group of
researchers led by Seashore [1938]. This research was mainly concerned with singing, violin,
and piano performances.

The performance of a musical piece is determined by several factors. Firstly, physical
conditions of the musician and her instrument are of influence. Obviously, the type of
instrument determines to a large extent the character of the performance. Also, physiological
conditions of the musician (such as fatigue, or state of health) can play a role. Secondly,
the motor skills of the musician are of importance. This becomes clear when comparing the
performances of a novice to those of a skilled musician. With practice, the musician trains her
motor speed and accuracy, reducing the amount of unintentional deviation from performance
to score. A third factor consists of the cognitive, and affective aspects of the musician. It has
been shown by Sloboda [1983] that performers deviate systematically from the score when
they play variations of the same score that consist of exactly the same sequence of notes
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(only their placement within the meter was changed). This result rules out the possibility of
deviations due to motor incapacities and shows the influence of meter on the performance of
a score. Other studies have shown systematic deviations in performances that were played
with different moods or expressive intentions [Rigg, 1964; Gabrielsson, 1995; De Poli et al.,
2001].

2.2 Functions of Expressivity

As far as performance deviations are intentional (that is, they originate from cognitive
and affective sources as opposed to e.g. motor sources), they are commonly thought of as
conveying musical expressivity. But what is it that is being expressed? Two main functions
of musical expressivity are generally recognized. We will address both functions.

2.2.1 Expressivity and Musical Structure

Firstly, expressivity serves to clarify the musical structure (in the broad sense of the word:
this includes metrical structure, but also the phrasing of a musical piece, harmonic structure
etc.). Sloboda [1983] showed the influence of metrical structure on performances by having
pianists perform the identical sequences of notes, differing in the position of the bar lines.
For instance, the pianists varied their performances such that the notes at the beginning of
measures were played louder and more legato than other notes. Furthermore, he observed
that the more advanced the performers were, the more they utilized this kind of expressivity,
and the better listeners were able to transcribe the performed music correctly. This is a clear
indication that expressivity clarifies metrical structure.

Phrase structure also has a salient effect on performance. Phrases were found to start
and end slow, and be faster in the middle [Henderson, 1937]. Moreover, Todd [1985, 1989]
invented a model that predicts the level of rubato of a given musical piece, given a hierarchical
grouping structure of the piece. The predictions of this model are similar to the rubato
patterns in professional performances of the piece. Gabrielsson [1987] found that pianists
performing Mozart’s Piano Sonata K. 331, tended to lengthen note durations considerably
at the end of phrases. Similarly, he found the tones to be relatively loud in the middle of
the phrases and relatively soft at the beginning and end of the phrase.

Another form of structure that influences performance is harmonic and melodic tension.
Harmonic and melodic tension are commonly defined by reference to the circle of fifths (where
the tension is low for notes or chords that are close together on the circle of fifths and high
for those that are far apart) [Lerdahl, 1996]. Palmer [1996] calculated a positive correlation
between note lengthening and tension. Contrastingly, no correlation was found between
note intensity and tension. In the same article, Palmer showed that melodic expectancy, the
extent to which an implied continuation of a melody is actually realized, did correlate with
note intensity (unexpected notes were played louder), but not with note lengthening. As an
explanation of the fact that the expression of tension-relaxation and melodic expectancy are
realized in unrelated ways, Palmer observes that the two phenomena manifest themselves
on different time scales; tension-relaxation is a phenomenon at the level of phrases and sub
phrases (that is, a large time scale), whereas melodic expectancy is manifested from note to
note, i.e. on a smaller time scale.
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In a general survey of the relation between expressivity and musical structure, Clarke
[1988] proposes the interesting view that expressivity is tied to structure by a limited set of
rules (like the rules proposed by Sundberg et al. [1991]; Friberg [1991], see subsection 2.4.3).
Hence, the diversity of ways in which a piece can be played is not due to ambiguous rules
for expressivity, but due to the diversity of ways in which the music can be structurally
interpreted (i.e. ambiguous musical structure). In this context, Clarke notes the practice of
the live performances of jazz standards. In this practice, the music that is played belongs
to a widely known and fixed repertoire. Therefore the audience is usually acquainted with
the music, and the expressiveness of the performance is not constrained by the requirement
that it should clarify the basic musical structure to the listeners. The musicians can thus
freely vary their expressiveness to surprise the audience through an unexpected musical
interpretation of the piece.

Another structural aspect of music that has been found to influence musical expressivity
is the melody. In ensemble performance (but also polyphonic piano performances), the voice
that plays the melody tends to be slightly (by around 20–30 ms.) ahead of the accom-
paniment [Rasch, 1979; Palmer, 1988]. The purpose of melody lead is presumed to be the
avoidance of masking of the melody by the accompaniment, and to facilitate voice separation
in human perception.

In a study of performances of jazz melodies by well-known jazz musicians, Ashley [2002]
has shown that the patterns of rubato tend to be related to motivic structure. He also
found that note displacement was related to the underlying harmony (chord tones are more
displaced than non-chord tones).

For more extensive surveys of music performance research in relation to structural aspects
see [Friberg and Battel, 2002; Clarke, 1991; Palmer, 1997].

2.2.2 Expressivity and Emotional Content

Secondly, expressivity serves as a way of communicating, or accentuating affective content.
Langer [1953] proposed the view that the structure of music and the structure of moods or
feelings are isomorphic. Langer observes that similar properties are ascribed to music and
emotional life (such as ‘excitation’ and ‘relief’). Another influential theory about music and
meaning (which subsumes emotion) is from Meyer [1956]. He states that meaning (be it emo-
tional, or aesthetic) arises in music when expectations raised by the music are not realized.
Early work investigating the relation between emotional character and musical structure is
reviewed by Rigg [1964]. Some typical regularities were found, e.g.: solemn music is often
played slow, low pitched and avoiding irregular rhythms and dissonant harmonies; happy
music is played fast, high pitched, it contains little dissonance and is in major mode; exciting
music is performed fast and loud and apt to contain dissonance [Gabrielsson, 1995] (another
mapping between emotional characters and musical cues can be found in [Juslin, 2001]).
Gabrielsson [1995]; Lindström [1992] have studied the relation between emotional intentions
and micro structure in music (e.g. timing deviations, intensity changes and articulation).
They compared versions of “Oh, my darling Clementine”, played with emphasis on different
emotional characters (‘happy’, ‘sad’, ‘solemn’, ‘angry’, ‘soft’, ‘expressionless’). Their results
with regard to the overall properties tempo and loudness were mainly in accord with previous
results: angry and happy versions were played faster than sad, soft, and solemn versions;
angry versions were played loudest. With respect to the micro structure they also found
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clear differentiation between the different versions, Notably the variance of articulation and
loudness. Duration ratios in the rhythm were also different for different emotional characters
(the performers were given great freedom of performance, only the pitch sequence was to be
kept intact).

Similar results have been found by Canazza et al. [1997a], who have studied how physical
parameters of recorded performances (e.g. timbre, and temporal parameters like articulation
and global tempo) affected by varying expressive intentions of the musician. The performer
was told to communicate a particular mood through his performance, that was described by
a sensorial term, e.g. ‘heavy’,‘light‘,‘bright’, or ‘dark’. The sonological analysis of the record-
ings made it possible to tie particular parametric values to particular moods (for instance
a light performance turned out to be in fast tempo, with shortened note durations and soft
attacks). The results were validated by performing listening tests on synthetic performances
that were generated with the physical parameter values corresponding to particular moods.
The subjects were able to recognize the intended mood in the synthesized performances.

In a related perceptual analysis of listener judgments of expressed moods in musical
performances [Canazza et al., 1997b], Canazza et al. found that there is a large degree of
consistency between the mood ratings of the listeners. They concluded that tempo and note
attack time are two important factors by which listeners rank the sensorial terms (as those
mentioned above). Moods like ‘heavy’ were opposed to ‘light’ and ‘bright’ on the scale of
tempo, whereas ‘soft’, ‘dark’ and ‘hard’ were distinguished from each other on the scale of
attack time.

See [Gabrielsson, 1999, 2003] for more general reviews on music performance research,
including the role of expressivity in the communication of emotions.

2.3 Definitions of Expressivity

Until now, we have used the term expressivity in performances loosely as deviations or irreg-
ularities that occur when a score is performed by a musician. But deviations or irregularities
with respect to what? Several definitions have been proposed [Timmers and Honing, 2002]:

Expressivity as Microstructure (EM) Firstly, there is the definition of ‘expressivity as
micro structure’ [Repp, 1990; Clynes, 1983]. This definition conceives of expression as
everything that is left unspecified in the score. This definition does not view expressiv-
ity strictly as deviations from a standard. Rather, it holds that the score only specifies
the macro structure of the music, leaving undecided how the low level attributes of
the macro elements should be realized. To quantify this microstructure however, at
least with regard to the timing of notes, the difference with nominal values is com-
puted [Repp, 1995a]. As a result, although conceptually different, this definition is in
practice equivalent to the following definition of expressivity.

Expressivity as Deviation from the Score (EDS) The second, and most common def-
inition is ‘expressivity as deviation from a musical score’. This definition was employed
already in early music performance research [Seashore, 1938], and was stated more ex-
plicitly by Gabrielsson [1987]. In this definition expressivity is regarded as the deviation
from the norm dictated by notation, in terms of intrinsic note attributes like pitch,
timbre, timing, and dynamics.
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In spite of its intuitive appeal, this definition has been criticized [Huron, 1988] for
stemming from a exaggerated distinction1 between content and form. Another criticism
is that knowing the score is not indispensable for listeners to appreciate expressiveness
[Desain and Honing, 1991].

Expressivity as Deviation within the Performance (EDP) As an alternative to the
EDS definition Desain and Honing proposed to define expressivity as deviation within
a performance [Desain and Honing, 1991]. More precisely, ‘expression is the deviation
of a lower order unit from the norm as set by a higher order unit’ [Timmers and
Honing, 2002]. This definition thus assumes a hierarchical description of the musical
piece. For example, the deviation of a beat duration can be related to the deviation
of the duration of the enveloping bar.

Although we do acknowledge the problems with EDS, we believe their impact is limited.
For example, many popular and jazz music has a fixed tempo accompaniment, that steadily
marks the beat. This means that the timing deviations in the melody will be perceived
with respect to this beat, and effectively, with respect to the nominal score. In other words,
in restricted contexts, particularly where the melody has a regular background, and the
(performance) style is familiar to the listener, the listener’s conception of the melody she
hears may correspond closely to the score. As a consequence, the definition of expressivity
as deviations from the score may (in such contexts) be an acceptable approximation of a
more sophisticated definition of expressivity.

However, we signal another problem with the usual interpretation of EDS in the research
that we have encountered. The problem is that the deviations with respect to the score are
defined on a note-to-note basis. We have found this interpretation of expressivity to be too
limited to accurately represent the deviations encountered in actual musical performances
that we use in the research presented in chapters 3 to 6. Therefore, we propose an extension
to the standard note-to-note fashion of computing performance deviations from the score
(section 3.6).

2.4 Computational Models of Expressivity

A natural step in the study of expressive music performance research is the development
of computational models of expressivity. In a general manner of speaking such models are
intended to express and clarify the structure and regularities that occur in musical expressiv-
ity. In particular, they seek to establish a relation between the form that expressivity takes
and the musical context. These aspects include characteristics of the melody such as phrase
structure and meter. A number of such models have been proposed in the past decades.
Due to the richness and complexity of the subject, the proposed models are typically limited
to a few aspects of expressivity, or to a particular musical style. Apart from differences in
area of focus, there is also divergence in methodologies. In the rest of this section we briefly
discuss various methodologies, and highlight their corresponding research and models.

1Huron argues that this strict separation may arise from the Western tradition of division of labors
between composers and performers.

13



2.4.1 Common Prerequisites

Every methodology for constructing models of expressivity has certain requirements, espe-
cially with regard to data:

Recordings of Performances The most essential part of nearly all methodologies is the
availability of recorded performances. Such data are commonly gathered through one
of the following methods:

Audio Recording The most straight-forward approach to gathering performance
data is to record the acoustical signal that the instrument emits when the musician
plays. The result is a (discretized) continuous audio signal.

MIDI Recording Performance data can also be gathered in MIDI format, when the
musician plays a MIDI instrument. The output of the digital instrument is a non-
continuous series of events symbolically describing the states of the instrument.

Recording of Augmented Instruments When there is no satisfactory MIDI im-
plementation of the instrument, a solution is to augment the acoustical instrument
with sensors that capture for example finger or lip pressure (depending on the
type of instrument). In this way, detailed and multi-channel information can be
gathered in a non-intrusive way2.

Recorded performances are not strictly necessary for the analysis by synthesis ap-
proach, which in turn relies strongly on synthesis of performances. See [Goebl et al.,
2005] for a more complete survey of performance data acquisition methods.

Annotation / Extraction of Expressivity It is uncommon that recorded performances
are used directly for the modeling of expressivity. Usually, an extensive and often
manual processing of the data is necessary to annotate the performed data so that
the information of interest (e.g. dynamics and timing deviations per note) is easily
accessible. This step requires most effort when the performance is recorded as audio.
Automatic pitch and onset detection algorithms (e.g. [Goto, 2004; Gómez et al., 2003b;
Klapuri, 1999]) can be of help to obtain a description of the performed melody, after
which a symbolic performance-to-score alignment can be performed [Desain et al.,
1997; Arcos et al., 2003]. Integrated melodic extraction and score alignment are also
common (e.g. [Dannenberg and Hu, 2003; Orio and Schwarz, 2001]).

Musical Expertise Especially the analysis by synthesis relies on the a priori postulation
of hypotheses in the form of rules for applying expressivity based on the score. Since
the space of possible hypothesis is so large, musical intuition and experience is indis-
pensable to guide the generation of hypothesis. In other approaches the role of musical
expertise is less explicit, but the choice of representation schemes for score and perfor-
mance/expressivity is critical for a successful model and requires a certain degree of
musical knowledge as well.

2Very few professional musicians feel comfortable with a MIDI implementation of their instrument, since
the tactile characteristics, the ‘feel’ of the instrument is very distinct. This holds notably for grand piano
vs. MIDI keyboard.
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2.4.2 Analysis by Measurement

The analysis by measurement approach in essence tries to construct models for expressive
phenomena that are revealed by measuring the expressivity from a set of recorded musical
performances. A common way to construct models is to hypothesize a particular relation
between some aspects of the score and some type of deviation (in for example the timing of
the notes) and test the statistical significance of the hypothesis on the data.

Many expressive effects have been addressed individually. Perhaps most widely studied
are expressive deviations of performed notes in terms of timing3, dynamics, and to a slightly
lesser degree articulation. Todd has proposed a simple model for the relation between timing
and dynamics stating that notes are played ‘the faster, the louder’ and vice versa [Todd,
1992]. Subsequent research has proved that this relation is too simplistic to account for a
wider range of observations [Windsor and Clarke, 1997]. In [Drake and Palmer, 1993], timing,
dynamics and articulation were found to accentuate melodic turns (peaks or valleys in the
melodic contour), and rhythmic grouping. Accentuation through these variables is obtained
by playing louder, delaying notes, and playing staccato, respectively. In a study of Beethoven
Minuet performances by 19 famous pianists, Repp found a large amount of common variation
in expressive timing, in part as a response to phrase ending, and melodic inflections [Repp,
1990]. He provided (weak) counter-evidence for the existence of a ‘composer’s pulse’ [Clynes,
1983] (see next subsection).

Special attention has been paid to the timing of musical ornaments (that is, notated
ornaments in classical music). It was shown that the timing of ornaments is of a different
nature than the timing of regular notes [Timmers et al., 2002]. In particular, the timing of
grace notes scales to a lesser degree with tempo than ordinary notes.

A notable case of analysis by measurement is a mathematical model for rubato [Todd,
1985, 1989]. In accordance with other studies [Palmer, 1989; Repp, 1995a], Todd argues
that rubato, the pattern of speeding up and slowing down during a performance, is at least
partly determined by the phrase structure of the music. To demonstrate this, he designed
a model that predicts a rubato curve based on the time-span reduction of a musical piece
[Lerdahl and Jackendoff, 1983] (see subsection 3.4.1). The system maps parabolic functions
to the different subtrees of the global time-span reduction tree, and adds these functions to
obtain a final rubato curve. Apart from phrase structure, other contextual factors of the
music also have an effect on rubato, such as metrical structure and the presence of a second
melody [Timmers et al., 2000].

A specific form of rubato is the final ritard, the slowing down that frequently occurs
at the end of a piece. Several studies [Todd, 1995; Friberg and Sundberg, 1999] establish
an analogy between the final ritard and the motion of physical bodies, arguing that their
dynamics is very similar. This kinematic model of the final ritard has been criticized for not
taking into account any musical context, in particular rhythm [Honing, 2003]. Honing et
al. argue that a model for the final ritard might rather take the form of a set of constraints
than that of a mechanical model, despite its elegance.

Timmers has fit a regression model to predict the subjective quality ratings of continued
performances based on factors including the rubato, dynamics, and articulation of the initial
part of the performance [Timmers, 2003].

3It should be noted that the term timing in some studies is used to refer either to incidental changes of
the onset/offset of individual notes, to the local tempo at which the melody is performed, or to both.

15



2.4.3 Analysis by Synthesis

One approach to automatic performance of music is to construct a set of performance princi-
ples allowing for the reconstruction of real expressive performances. That is, a grammar that
describes the structure of musical expression in terms of the musical score. This approach
has been taken by Friberg [1991]; Sundberg et al. [1991]. They have defined a set of context-
dependent rules. These rules prescribe small deviations for timing and dynamics of notes,
based on their musical context. They can act in ensemble to sequentially process a sequence
of notes, to synthesize an expressive performance. In this way, the validity of the rules can
be checked, either by judging the musical acceptability of the synthesized performance, or by
rating the quantitative difference of expressive deviations from a human performance of the
same piece of music. This approach is called analysis-by-synthesis, referring to the procedure
of analyzing musical expressivity by synthetically mimicking it. In this approach, the factors
contributing to musical expressivity are validated by judging their effects on performances.
The rules have been incorporated into a software application called Director Musices (DM ),
which processes MIDI files to generate expressive performances.

The rules were developed with the help of a musical expert (L. Frydén, a music performer
and music teacher). The method of rule development is as follows: An intuition by the
expert about the effect of a particular aspect of a musical score on the performance of that
score, is translated into an initial rule. This rule is used to synthesize an ‘expressive’ MIDI
performance of the score. The expert judges the result and adjusts his instructions if the
result is unsatisfactory. Thus, performance rules evolve in an iterative process of synthesis,
judgment, and adjustment. The rules affect the duration, overall sound level (dynamics),
time envelope of the sound level (articulation), vibrato speed and depth, and fine tuning
of the pitch. The rules have a conditional part that specifies the target notes to which the
rule applies. Furthermore, each rule has a corresponding quantity parameter, specifying how
large the effect of the rule should be (i.e. a scaling factor for the deviations prescribed by
the rule).

An interesting hypothesis that has lead to further experimentation is that emotional
colorings of performances may correspond to specific parameter settings for the rule set.
Subjects were able to recognize intended emotions by listening performances that were gen-
erated with a specific ‘rule palette’ to suggest a particular emotion (e.g. anger, tenderness,
sadness etc) [Bresin and Friberg, 2000].

Clynes has argued that timing of classical pieces is in part dependent on the composer.
For a number of famous composers from the Classical and Romantic periods (e.g. Beethoven
and Mozart), he established a ‘composer’s pulse’, a pattern of timing and dynamics devi-
ations that was characteristic for authentic performances of the works of that composer
[Clynes, 1983, 1995]. He applied an analysis by synthesis approach to evaluate different
combinations of pulses and composers.

2.4.4 Automatic Rule Induction

The development of machine learning techniques for discovery of knowledge from data
[Mitchell, 1997] has also had an impact on expressive music performance research. Tech-
niques such as inductive logic programming [Muggleton, 1991; Quinlan, 1990], and decision
tree learning [Quinlan, 1986; Mitchell, 1997] have proved useful for deriving predictive, and
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to some extent explanatory, models for music performance [Widmer, 2000]. Widmer has de-
rived a number of performance principles from a large set of piano performances of Mozart
sonatas. The models are typically in the form of rules that predict expressive deviations
based on local score context. An advantage of this method over analysis by synthesis is
that no prior hypotheses have to be specified, rather the hypotheses are extracted from the
data. This circumvents a possible bias in the generation of hypotheses due to limitations
in the ability of musical experts to verbalize their musical knowledge. On the other hand,
another kind of bias may arise, namely bias due to the form of representing the musical data,
and the representation language of extracted hypothesis. Another drawback of this method
is that score/expressivity regularities are only detected if they are statistically significant,
although infrequent (and thus statistically insignificant) expressive phenomena may still be
meaningful4.

Model generation using inductive algorithms is subject to a trade-off: on the one hand
predictive models can be derived to maximize predictive power. Such models provide a high
predictive accuracy due to the induction of a large set of highly complex rules, that are
generally unintelligible. On the other hand, the induction of descriptive models involves a
conservative approach to the introduction of rules, trying to keep the complexity of rules as
low as possible, at the cost of reduced accuracy.

A specialized algorithm for learning rules from data, PLCG, was proposed by Widmer
[2003]. This algorithm is oriented towards finding simple and robust classification rules
in complex and noisy data. This is achieved by first learning many rules that cover a
subset of the data, and clustering the learned rules so that similar rules (syntactically and
semantically) are in the same cluster; then for each cluster of rules a new rule is formed,
generalizing the rules in the cluster. From the resulting set of rules, the rules that have
the highest percentage of correct predictions are selected. In this way the obtained rule set
consists of a modest number of rules with a reasonable degree of generality.

Ramirez and Hazan [2004] have compared k-nearest neighbor, support vector machines,
and tree-learning (C4.5) techniques for predicting the durations of notes in jazz performances
(using the classes ‘lengthen’, ‘shorten’, and ‘same’). They used the same set of performances
as used in this dissertation, and also included the Implication-Realization analysis of the
melody (see subsection 3.4.2) as part of the data instance representation. Some rules with
general validity were induced that linked the timing of notes to the I-R structures. Structural
descriptions of the melodic surface as part of the instance representation were also used for
rule induction by Widmer [1996]. In another study, Hazan et al. [2006a,b] have proposed
an evolutionary generative regression tree model for expressive rendering of melodies. The
model is learned by an evolutionary process over a population of candidate models. The
quality of rendered melodies was computed both as the root mean square error and tuned
edit-distance to a human target performance of the melody.

A machine learning approach has also been adopted in an attempt to classify the expres-
sive style of various professional pianists [Goebl et al., 2004; Widmer, 2002]. Performances
were first represented as curves in the local tempo/dynamics plane. Those curves were
segmented and the segments were clustered. The curve segments of the most important

4This limitation of inductive approaches in the context of expressive music performance research was
mentioned by Johann Sundberg, during the Music Performance panel, held at the MOSART workshop,
Barcelona, 2001
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clusters were collapsed into prototype curve-segments. This yielded an alphabet of charac-
teristic curve-forms that was used to represent a performance as a string of symbols from
the alphabet. Standard pattern matching techniques are employed subsequently to discover
commonalities in the performances of the same pianist.

2.4.5 Case Based Reasoning

An alternative technique to the automatic rule induction technique described above is case
based reasoning (CBR). It has in common with rule induction that it uses example data
to predict expressivity for unseen melodic material, but CBR employs a different strategy:
Instead of generating a set of rules in an analysis phase, it uses the most similar examples
(called cases) directly to process new melodic material. We explain the case based reasoning
process in more detail in section 2.6. Here we present related case based reasoning approaches
to the generation of musical expressivity.

SaxEx [Arcos et al., 1998] is a CBR system that generates expressive music performances
by using previously performed melodies as examples. The work presented in this document
springs from and extends this previous work. Hence, we will address some of the topics
involved (especially CBR and musical models) in more detail in subsequent sections, and in
the following overview of SaxEx, we will mention those topics only briefly, referring to the
relevant sections for further details.

The goal of SaxEx was to transform inexpressive performances into expressive perfor-
mances, allowing user control over the nature of the expressivity, in terms of expressive
labels like ‘tender’, ‘aggressive’, ‘sad’, and ‘joyful’. The input to the system is a musical
phrase in MIDI format, and the audio recording of inexpressive performance of the phrase
to be played expressively. To obtain appropriate values for the expressive features of the
performance, case based reasoning (see section 2.6) is used. Thus, a case base is employed,
containing examples of expressively played phrases. For each note of the input phrase, a
set of similar notes is retrieved from the case base. This retrieval step employs different
perspectives on the phrases. One perspective used in SaxEx refers to the musical analysis of
the phrase, using music theories such as the Implication-Realization model and GTTM (see
subsection 3.4.2). Such analyses are useful to determine the role of notes in their musical
contexts and can be used to assess similarities between notes. Another perspective is con-
structed using the desired expressive character of the output performance. This requirement
is specified in advance by the user, on three bipolar scales (tender-aggressive, sad-joyful, and
calm-restless, respectively). Each pole on these scales is associated with particular expressive
values. In this way, the affective requirement perspective is used to bias the performances
in the case base that meet those requirements.

This inexpressive performance sound file is analyzed using spectral modeling synthesis
techniques (SMS) [Serra, 1997] yielding a parametric description of the audio. The param-
eters, that correspond to expressive features like note-onsets, dynamics, and vibrato, are
changed according to the expressive feature values derived from earlier examples by CBR
and the sound is re-synthesized with the new parameter-values using SMS, resulting in an
expressive performance.

Note that although strictly speaking, SaxExperforms a transformation of a performance,
it uses the input performance only as a basis for the re-synthesis. The CBR process does

18



include expressive features as a part of the case descriptions. On the expressive level the
task of SaxExis therefore performance generation rather than transformation.

Another example of a CBR system for expressive music performance is Kagurame, pro-
posed by Suzuki [2003]. This system renders expressive performances of MIDI scores,
given performance conditions that specify the desired characteristics of the performance.
Kagurame employs the edit-distance for performance-score alignment, but it discards dele-
tions/insertions and retains just the matched elements, in order to build a list of tim-
ing/dynamics deviations that represent the performance. Furthermore, its score segmen-
tation approach is a hierarchical binary division of the piece into equal parts. The obtained
segments thus do not reflect melodic structure. Kagurame operates on polyphonic MIDI,
and the expressive parameters it manipulates are local tempo, durations, dynamics, and
chord-spread.

Tobudic and Widmer have taken a k-nearest neighbor approach (akin to CBR) in order
to predict timing and dynamics deviations for Mozart sonatas [Tobudic and Widmer, 2003].
They constructed a hierarchical phrase analysis for every melody and, for every level in the
hierarchy, a polynomial function is fitted to the timing and dynamics curves. The lower
level polynomials are fit to the residual curves of fitting higher level polynomials. Training
instances are defined to contain phrase constituents of the melody, with attributes describing
overall attributes of the melody fragment, for example the phrase length and start-end pitch
interval. The distance between a training and a target instance is defined as the inverse of
Euclidean distance between the attribute vectors, and the solution (the parameters of the
polynomial tempo and dynamics curve). The initially poor prediction results could be im-
proved by averaging the solutions over 10 nearest neighbors instead of adopting the solution
from the single nearest instance as is. The results were also improved by taking into account
only the lowest three levels. Finally, results were improved by additionally employing the
PLCG (see subsection 2.4.4) algorithm to derive rules that account for the residual dynamics
and timing curves after subtracting all polynomials. Tobudic and Widmer have extended
this approach by replacing the attribute-value instance representation scheme to a first or-
der predicate representation scheme [Tobudic and Widmer, 2004]. The distance measure
for instances was a maximal matching set distance. In particular, the distance between two
literals was computed as before (i.e. the Euclidean distance between the arguments of a
predicate), and sets of literals were compared by computing the maximal match between
literals and adding a constant cost for each unmatched literal in either of the sets.

2.4.6 Evaluation of Expressive Models

An important question in computational modeling of musical expressivity is how models
should be evaluated. Clearly, the evaluation depends on the aims of the model.

Descriptive or explanatory models are intended to explain expressive variations of the
performance by hypothesized principles. In accordance with the criteria for evaluating scien-
tific theories in general, they should have explanatory power (account for as much variation
as possible) and be parsimonious at the same time. As mentioned before, expressivity is
thought to arise from many different factors, such as communication/expression of emo-
tions/affects, and various forms of musical structure. Many existing models cover only a
single aspect. This has lead Desain and Honing to propose an evaluation technique that
consists in fitting complementary partial models for expressivity jointly to performance data
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[Desain and Honing, 1997]. Alternative (sets of) models can then be compared by the amount
of variation in the performance data they explain after optimization. Although theoretically
appealing, this approach relies on some strong assumptions, like the assumption that the
partial models jointly represent all sources of expressivity, and that a poor explanation of
variance by a model is not caused by sub-optimal parameter settings.

Perceptual or cognitive models, on the other hand, describe the cognitive processes in-
volved in listening to expressive performances, such as the emergence of perceptual cate-
gories, for example in rhythm perception, or the mental association of rubato to physical
motion. Such models may be validated by testing hypotheses derived from the model. Hy-
potheses could for example predict subject response times to recognition tasks or particular
phenomena in EEG signals.

Most relevant for this dissertation however is the evaluation of predictive models, that
predict deviations of note attributes such as timing and/or dynamics, and rubato, given the
score. The evaluation of such models is most naturally based on the prediction result of
the model. Generally two distinct evaluation approaches can be identified. Firstly, one can
measure how different the predicted performance is quantitatively from a target performance.
The prediction accuracy is thus used as an indicator of the model quality. In this apparently
simple approach, some issues must be addressed:

What is the right target performance? Although expressive performance research
throughout the years has revealed some clear regularities in the form of expressivity, it
is generally acknowledged that musical expressivity is not completely determined by such
regularities, and that there is a considerable degree of freedom for the performer to play a
melody in a variety of musically acceptable ways, that can differ substantially in quantita-
tive terms. To evaluate a predicted performance for a given score by comparing it to just
a single target performance can therefore be overly restrictive. An accurate prediction for
this particular target performance is of course a satisfactory result, but when the prediction
is not accurate, there may still be another (unknown) target performance that it resembles.

How to evaluate partial models? Another problem when assessing models by comparing
their results to a real performance is that most models of expressivity only model a small
subset of the possible sources of expressivity. That is, the predicted performance contains
only the expressive deviations that arise from the modeled sources (e.g. metrical structure).
However, any performance played by a human musician is bound to contain expressive
deviations that arise from a much wider range of sources. The resulting pattern of expressive
deviations is constituted by overlaying the patterns due to the individual sources.

A second approach to evaluating predictive expressive performance models is to rate how
well generated performances sound in itself. The advantages of such an approach are that
the arbitrariness of choosing a target-performance is avoided, and also that the evaluation
does not depend on a numerical comparison between expressive performances that may not
be representative for human perception. It does introduce new questions however:

Subjectivity The rating of the ‘quality’ of a performance is inherently a subjective task.
The rating subjects may have different notions of the concept of quality, and it is unclear
how to interpret lack of consensus in the ratings of different subjects. A panel of subjects
who discuss their opinions to form consensus may resolve the latter problem.

Which subjects? A related question is which subjects should be chosen. There is evidence
that at least for some musical listening tasks, results diverge for trained and untrained
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musical listeners [Lamont and Dibben, 2001; Canazza et al., 1997b; Granot and Donchin,
2002]. Differences in rating may arise from different levels of musical background knowledge,
or differences in selectivity of perception.

The Rendering Contest (Rencon) [Hiraga et al., 2004] is an annual event started in 2002
that strives to evaluate computer generated performances by human judgment. Contes-
tants participate by rendering a given musical piece (semi) automatically using a predictive
performance model. In a loose sense the contest employs a Turing test paradigm. That
is, a successful system is one that renders performances in such a way that it is believed
to be a human performance. In practice, since most automatically rendered performances
are still easily discerned from human performances, the contestant performances are ranked
according to listener preference. The judgments are made by the audience of the event.
The ranking of the contestant performances is established by voting. The contest has a
compulsory section, where a small number of fixed musical pieces (piano pieces by Mozart
and Chopin) must be performed. The rendered expressive performance is delivered in MIDI
format, which is synthesized to audio using a high quality sampled piano instrument. An
open section was also added to the contest to allow for the participation of a wider range
of models, for example models that focus on the rendering of monophonic melodies, or that
render expressivity for other instruments than piano, e.g. human voice or wind instruments.
The comparison of contestant performances of different pieces may be problematic because
the listener’s aesthetic perception of the performance is likely to be influenced mainly by the
piece rather than the way it is performed.

To summarize, the evaluation of expressive performance models is a complex topic, that
allows for different perspectives. We have pointed out two major evaluation strategies and
some problems that they must address. In part these are practical problems such as the
problem of gathering reference data, and the incompleteness of models. Although rendering
systems exist for diverse types of music and instrumentation, the number of participating
systems in the Rendering Contest is not yet large enough to establish fixed compulsory
sections for different musical styles and instruments. Other problems are more conceptual.
For example, should models be quantitatively or qualitatively assessed, and if they are
assessed quantitatively, what is the point of reference for comparison?

2.5 Melodic Similarity

The assessment of similarity between melodies is a topic that has wide interest, partly due
to its commercially relevant applications such as music recommender systems, composer
attribution, and plagiarism detection. In music analysis, and music processing systems
that involve comparison of musical material, such as the one presented in this dissertation,
melodic similarity is also an important issue.

Despite its acknowledged importance, the concept of melodic similarity is hard to pin-
point, firstly because it is of an intrinsically subjective nature, and secondly because melodic
similarity is strongly multi-faceted, implying that two melodies can be similar in one respect,
but dissimilar in another. Because of this it is difficult to speak of melodic similarity in a
universal and unambiguous manner.

Nevertheless, useful research has been done on the topic, including theoretical, empirical,
and computational studies. For example, Deliège [1997] proposed a theory of the cognitive
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processes underlying human similarity judgments of music. She states that when humans
hear music, they abstract from what they hear by means of emphcues. She defines a clue as
‘a salient element that is prominent at the musical surface’ (Deliège [2001], page 237). This
concept is akin to Gestalt psychology, since it conceives of the perception of music as having
a background (the normal flow of music) and a foreground (salient elements in this flow).
Memorization is realized through the cues, which are the parts of the music that are stored
in the listener’s long-term memory. The cues serve as a ‘summary’ of the music.

The similarity judgment between two fragments of music, according to Deliège, is based
on the similarity (or identity) of clues. This is implied by the fact that music is memorized
as clues, since similarity judgments involve the listeners memory of the music (the fragments
of music compared are not heard at the same time, and may not be heard at the moment of
judgment at all). In particular, the perception of different musical fragments as variations
of each other, is thought to be caused by the fact that the fragments give rise to identical
clues. In this way, the concept of clues can form the basis of a theory of categorization of
music, where musical motifs can belong to the same category based on the perceptual cues
they provide, with varying degrees of prototypicality.

Lamont and Dibben [2001] have performed listening experiments to investigate melodic
similarity from a perceptual point of view. They are interested in questions such as: Do
listeners perceive similarity while listening? Is perceived similarity based on deep, thematic
relations between the musical fragments, or rather on shared surface attributes of the music?
Do listeners employ the same similarity criteria across different styles of music? Are the
employed criteria the same for listeners with different levels of musical experience? The
listening experiments involved both trained musicians and non-musicians as subjects. They
were asked to rate the similarity of pairs of musical extracts. Based on the results, Lamont
and Dibben concluded that similarity perceptions in general (i.e. across musical styles) are
based on surface features such as contour, rhythmic organization, texture, and orchestration.
Remarkably, they concluded that ‘deep’ structural relationships, that are often regarded as
determining for the similarity of musical motifs, do not seem to have a significant impact on
listeners judgments on similarity of musical motifs.

Scheirer [2000] has measured perceived similarity for short polyphonic audio fragments.
He uses a multiple regression model to predict listeners’ similarity ratings based on psycho-
acoustic features of the audio. In contrast to the previous experiment, this experiment also
takes into account non-melodic features of the music, such as orchestration.

A variety of computational methods exist to quantify the degree of similarity between
two melodies. We will summarize a selection of methods:

Edit-Distance A method based on string-matching techniques used in other fields such as
genetics, and text-mining (see section 4.2). The edit-distance has proved useful in a variety
of computer music applications such as score-following [Dannenberg, 1984], performance
error-detection [Large, 1993], and pattern-detection [Rolland, 1998]. It has also been used
to compute melodic similarity, e.g. for melody retrieval or melodic clustering [Mongeau and
Sankoff, 1990; Smith et al., 1998; Lemström and Ukkonen, 2000; Grachten et al., 2005a,
2004b].
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Earth-Mover-Distance Typke et al. [2003] apply the Earth-Mover-Distance (EMD)
[Rubner et al., 1998] to compare melodies. The EMD can be understood metaphorically
as conceiving the notes of two melodies under comparison as heaps of earth and holes re-
spectively, where the size of the heaps and holes represents note attributes like duration and
pitch. The distance is proportional to the minimal effort it takes to move the heaps of earth
into the holes.

n-Grams n-Grams based melody comparison rates the distance between melodies by seg-
menting both of the melodies under comparison into overlapping segments of n notes (n-
grams), and counting the number of segments the two melodies have in common. The
distance is proportional to this number [Doraisamy and Rüger, 2003; Orio, 2005; Suyoto
and Uitdenbogerd, 2005].

Compression Cilibrasi et al. [2003] have introduced a distance measure to the area of
musical similarity that is based on compression. The core idea is that two musical fragments
are similar to the extent that one fragment can be efficiently compressed by using the other
fragment. Ideally, the efficiency of compression would be measured by the Kolmogorov
complexity of the fragments. This quantity is equal to the length of the smallest string of
bits that allows exact reconstruction of one melody from the other. Because it is effectively
uncomputable, existing compression algorithms such as ‘bzip2’ are used as an approximation.

Hybrid Approaches Different existing melodic similarity algorithms can be employed in
ensemble to form a final distance measure. Frieler and Müllensiefen [2005] linearly combine
over 50 melodic distances, and tune the linear weights of each of the distances according to
ground truth data.

2.6 Case Based Reasoning

Case based reasoning (CBR) is the process of problem solving using the solutions of pre-
viously solved problems. It refers both to the cognitive process of problem solving, and to
a formal method that can be used for a variety of tasks such as supervised learning (e.g.
classification, or regression tasks), design, and planning. The basis for CBR as a formal
method is a model of dynamic memory by Schank [1982]. Henceforth, we will use the term
CBR in the latter sense, unless otherwise specified.

Problem solving by CBR is achieved by retrieving a problem similar to the problem that
is to be solved from a case base of previously solved problems (the cases), and using the
corresponding solution to obtain the solution for the current problem. From this it becomes
clear that CBR is based on the general assumption that if two problems are similar, their
solutions will also be similar. In many domains this is a reasonable assumption, since
solutions are often related to the characteristics of problems in some systematic way. Of
course this does not imply that the relation between problem and solution is easily captured
explicitly e.g. in terms of rules.

CBR can be regarded as a special form of instance based learning (IBL), a ‘lazy’ machine
learning technique where the problem solving task is performed by using individual instances
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of training data, as opposed to ‘eager’ learning techniques that induce general knowledge
from the complete set of training data and use that knowledge to solve problems [Mitchell,
1997]. We will go into this distinction in more detail in subsection 2.6.2.

Instance based learning is typically used for classification and regression tasks, and in such
applications, instances are usually represented as a vector of numerical features, where the
distance between instances is often the (weighted) sum of differences between features. CBR
on the other hand is characterized by the use of a richer representation of the instances.
Features may have non-numeric attributes, such as symbols, text, or references to other
cases, and cases may contain more than just the information that defines a problem and its
solution. Meta-information may also be included, for example an indication of the quality
of the solution, time-stamps (in case the domain is dynamic, and valid solutions to problems
at one time are not necessarily valid at another), a description of the steps that were taken
to arrive at the solution, or a justification of the solution in terms of domain-knowledge.
As a result, similarity computation between cases can involve complex comparisons. In this
comparison, general domain-knowledge may also be used (for example in the form of rules).
Due to its representational richness, CBR lends itself for other tasks than classification,
such as query/answer systems [Kolodner, 1983], structural design [Hinrichs, 1992], diagnosis
[Koton, 1988], and legal reasoning [Ashley, 1990].

CBR systems can be categorized according to the type of problem solving task they
address: analytical, or synthetical tasks [Plaza and Arcos, 2002]. In analytical tasks there
is a limited number of solutions and solutions are simple, non-aggregate entities (classifica-
tion/diagnosis is a typical analytical task). In synthetic tasks, the solutions have a composite
structure, and as a result the number of possible solutions is usually very large. A typical
example of a synthetic task is structural design.

The concept of problem solving using CBR is illustrated in figure 2.1, where problem
solving is conceived of as mapping points on a problem plane to points on a solution plane.
The transition from problem to solution plane is made via a (possibly multiple) neighboring
problem, for which the solution is known. Relating the unsolved problem to a nearby solved
problem is referred to as retrieval, and proposing a solution based on the nearby solution is
referred to as reuse, as explained in the next subsection.

2.6.1 The CBR Cycle

The CBR problem solving process is commonly described as a cycle of four principal steps
[Aamodt and Plaza, 1994]:

Retrieve Pick earlier solved problems from the case base, that are similar to the problem
to be solved currently.

Reuse Adapt (or construct) an initial solution for the current problem, based on the solu-
tions of the retrieved problems.

Revise Test the proposed solution for adequacy (typically by user feedback) and if necessary
revise the solution to meet the requirements.

Retain Store the problem, together with its revised solution, in the case base for future
use.
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Figure 2.1: Problem solving in CBR.

Figure 2.2 shows how the four CBR tasks are organized within the problem solving
process. For generating a solution, a CBR system must at least provide methods for the
Retrieve and Reuse tasks.

In the retrieve step the input problem is compared to the cases in the case base (which
contain a problem and a solution). This requires a distance measure that ranks cases accord-
ing to their similarity to the input problem. Typically a similarity threshold is established in
advance to filter out all cases that are not similar enough to serve as examples for solving the
input problem. The distance measure is a crucial component of the CBR system, because
it should ensure that the ‘similar problems have similar solutions’ assumption holds. To
achieve this, a distance measure can be chosen and/or optimized in order to fit a known
‘real’ similarity relation between cases, or alternatively, to fit a utility function that ex-
presses how well one case serves to solve another case [Smyth and Keane, 1998; Stahl, 2004].
Both the distance measure and the threshold value usually require domain-specific knowl-
edge. The sensitivity of the distance measure to problem features should be proportional
to the influence of the features on the form of the solution. The threshold value comprises
knowledge of the range of variation that is tolerable between cases without their solutions
becoming incomparable.

The objective of the reuse step is to propose a solution for the input problem based on
the solutions of one or more retrieved problems. More specifically, the task is to determine
how the solution changes as a function of (relatively small) changes in the problem. Like the
retrieve step, the reuse step usually involves knowledge of the problem domain. Depending on
the problem solving task, adaptation can range from very simple to very elaborate operations.
CBR systems for classification usually employ a simple reuse strategy, such as a majority
voting among the retrieved cases to predict the class of the input problem. In synthetical
tasks on the other hand, the solution is not a nominal value, but rather a composite structure.
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Reuse in such tasks may consist in adjustment of parameters in the structure, or substitution
of sub-structures. Like the retrieve step, reusing retrieved cases typically requires domain
knowledge, for example in the form of adaptation rules that specify how to modify a solution
given certain conditions of the input problem and the retrieved problem.

The solution derived by the CBR system through retrieval and reuse is suggested as an
initial solution to the input problem. This solution is then assessed for its effectiveness,
normally by the user that queried the CBR system with the input problem. Testing effec-
tiveness can be done by trying out the solution in the real world, although in some domains
this may be too dangerous or costly (e.g. in decision support for oil well drilling [Skalle
and Aamodt, 2004]). Based on this feedback, revisions are made to the case to improve the
quality of the solution. This is the revise step.

Finally, in the retain step, if the revision of the solution is successful, that is the revised
solution is of sufficient quality, the solution is stored together with the input problem as a
new case in the case base. In this way the case can be used for solving future problems. One
aspect of case retention is the actual storage of the case, possibly including case indexing
for faster retrieval. Another aspect is case base maintenance. Depending on the actual and
desired characteristics of the case base, a case may be either stored or not. For example,
if the case base size must be minimized due to memory constraints, a case that introduces
redundancy will be left out, implying that the solution must be derived again if the system
is queried with same problem. If the cost of adaptation is high (e.g. due to computational
complexity or time constraints), the case base redundancy introduced by the new case may
be an acceptable trade-off.

The revise and retain steps enable the CBR system to learn incrementally. That is, the
system can learn to solve new problems one at the time, without the need to have all training
data available at the same time.

2.6.2 CBR Characterization

As mentioned before in this section, CBR is a special form of IBL. This approach, which
is called lazy learning, is different from eager learning approaches such as inductive logic
programming or decision-tree learning, in that the induction step from seen instances to un-
seen instances is postponed until a new unseen instance is presented, whereas eager-learning
approaches generalize from the training data without regard to any particular problems to
be solved. The advantage of postponing generalization is that the training data remains
accessible with all of its detail. If a new problem must be solved that is very different from
the seen data, inevitably a strong generalization must be made that may result in a low
accuracy, but if on the other hand a problem similar to the seen data must be solved, little
generalization is required and the system may benefit from the detailed data. Contrastingly,
an eager learning system a priori determines a single generalization of the data. In order for
this generalization to be broad enough to cover problems that are different from the seen
data, accuracy is sacrificed for problems that are similar to the seen data. Stated otherwise,
lazy learning approaches construct many local approximations of the target function5, rather
than a single global approximation. This generally allows for more complex target functions
to be learned.

5the function that maps problems into solutions
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Knowledge Intensiveness

Low High

No explicit general knowledge Substantial general knowledge
Many cases Few cases

Cases are data records Cases are user experiences
Simple case structures Complex case structures

Global similarity metric Sim. assessment is explanation
No adaptation Knowledge-based adaptation

Table 2.1: Characterization of IBL/CBR systems in terms of knowledge intensiveness
(adapted from Aamodt [2004])

Aamodt and Plaza [1994] note that in CBR, as opposed to most other problem solving
approaches, it is possible to employ both specific knowledge about individual cases, and
general knowledge. The degree to which general domain knowledge is employed may vary,
leading to a scale of knowledge-intensiveness on which CBR approaches can be located
[Aamodt, 2004]. Characterizations of the low and high ends of the scale are given in table 2.1.

A common critique is that problem solving using CBR is opaque, that it does not explain
the obtained solution to the user. It is argued that learning techniques that build general
models on the other hand do explain the solution, since the model (e.g. a decision tree),
allows the user to trace how the solution was obtained. We feel that this argument is not
convincing. Firstly, we believe that like induced general models, cases can provide the user
with an intuition of why a particular solution is predicted. Just like learning a new task is
often easier when examples are given than when just the rules are summed up, providing
a case to the user that is known to be related to the input problem, may give her insight
into which aspects of the problem (by comparing input and retrieved problem) are relevant
for the solution, and where the solution differs as a function of the differences between the
problems. Secondly, the level of insight the user gets from a model is likely to be related
to the complexity of the model, rather than the type of model. Tracing how an expressive
performance was obtained through a decision tree that has thousands of branches will not
in any way clarify the principles that underlie expressive performance. Neither will a CBR
system with overly specific cases. On the other hand, models that have an adequate instance
representation, and are not over-specified, can be transparent both as eager and as lazy
learners.

2.7 Conclusions

From the review of the different types of models of expressivity in music performance we
observe that most modeling approaches belong to either of two opposed approaches. One
approach can be roughly described as top-down. It starts from the concepts that are as-
sumed to (partly) determine the expressivity (like phrase structure, or emotions/affects),
and investigates how these concepts manifest themselves through expressivity. The other
approach can be called bottom-up. It does not interpret expressive information primarily as
conveying underlying concepts, but rather takes it as data of which the syntactical form is to
be discovered. Both approaches have their merits and limitations. The top-down approach,
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although it may give more insight to the nature of expressivity, is unlikely to account for
detailed and low level aspects of expressivity. It typically derives more general rules such
as: ‘Sadness is conveyed by playing softly and legato’ [Juslin, 2001]. On the other hand, the
bottom-up approach typically accounts for detailed forms of expressivity without putting
them in an interpretative framework (e.g. ‘Ascending melodic lines are played faster than
descending lines’ [Friberg, 1991]). In order to provide a more complete picture of expressivity,
existing models may have to be integrated into a general model.

It also becomes clear from the survey of related work is that most studies are devoted to
expressive performance generation rather than performance transformation. In generation
the focus is on how expressive deviations are related to the score alone (or other forms of
musical structure), whereas performance transformation deals with an initial performance
that already contains expressive deviations. These deviations may play a role when deciding
how to play the new performance.

Furthermore, although research on jazz music performance exists, many of the predictive
models are based on classical music rather than jazz. This, together with the performance
practice in classical music that tends to follow the score more strictly than jazz performance,
may account for the fact that many predictive models are restricted to predicting dynamics
and tempo curves. In jazz performance practice it is common that the score is interpreted
loosely, as an outline of the melody rather than a complete specification of it. Even in
performances of melodies that would not be classified as improvisations or variations on the
melody (which depart even more from the score), phenomena like note ornamentations, frag-
mentations, and consolidations frequently occur, as pointed out in section 1.1. To deal with
such forms of expressivity, a richer representation of expressivity is required. In section 3.6
we propose a representation scheme for these forms of expressivity.

We have also concluded that the evaluation of predictive models is a complex topic and
that both of the approaches explained have their drawbacks. Although we do not pretend
to solve all evaluation questions, in this dissertation we present a novel hybrid approach to
evaluating performance models that combines human subject ratings with a computational
distance measure between performances (see section 6.3).

As for the method of modeling expressivity, we consider case based reasoning a promising
approach for application for several reasons. Firstly, expressive music performance appar-
ently involves a large amount of background knowledge, but musicians hardly employ the
knowledge in an explicit form (e.g. as rules). CBR is an appropriate problem solving method
for such domains as it applies cases directly, without the need to infer explicit knowledge
from them. Secondly, an advantage over analysis-by-synthesis that CBR shares with induc-
tive learning approaches is that the range of expressive effects is not limited to a set of rules
that human musical experts can verbalize (as discussed in subsection 2.4.4) . Rather it will
use the expressive effects that actually occur in the training data. The other side of the coin
is that for inductive learning approaches to pick up a certain expressive regularity, it must be
statistically significant in the training data, whereas Sundberg (see footnote 4) argued that
this is not a necessary condition for an expressive effect to be musically significant. CBR on
the other hand does not suffer from this drawback.
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Chapter 3

The TempoExpress System
Architecture and Data Modeling

In this chapter we present TempoExpress, a case based reasoning system for applying global
tempo transformations to monophonic audio recordings of saxophone jazz recordings. The
system deals with tempo transformations as problems to be solved using a set of previously
solved tempo transformations. In line with the case based reasoning process discussed in
the previous chapter, the previously solved problems are not used to learn a general model
for applying tempo transformations, but rather they are stored as cases in a case base and
only relevant cases are retrieved and used to solve particular problems.

The focus of the problem solving is on the musical aspects involved in the tempo transfor-
mation, as opposed to the signal processing aspects required to render the tempo-transformed
performance into audio.

In chapters 4 and 5 we will present the main components of TempoExpress in more detail.
The present chapter is intended to give an overview of the system, introduce the key concepts
involved, motivate design decisions, and present the models to represent the input data, such
as scores and performances. The chapter also includes a section that provides details about
the musical corpus we used to construct cases.

3.1 A Global View of the System

The structure of the system is shown schematically in figure 3.1. The complete process of
tempo-transformation of audio is divided into an audio analysis/synthesis part and a content
manipulation part. The audio analysis/synthesis part is responsible for the derivation of a
melodic content description from audio, and vice versa. This part falls outside the scope of
this dissertation. The content-manipulation part is the part that is embodied by the CBR
system we have named TempoExpress. Its task is to revise the content description of the
source audio in such a way that the audio, when resynthesized according to this revised
description, will be at the target tempo and have expressive features that are in accordance
with that tempo.

The input data of TempoExpress consists of:
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Figure 3.1: Diagram of the major components of TempoExpress

1. a melodic description of the input audio recording of which the tempo is to be trans-
formed;

2. a MIDI score with the nominal melody that is played;

3. a target tempo, the tempo (in BPM) at which the recorded performance should be
rendered;

The melodic description (MD) is a formatted description of the melody as it is detected in
the input audio recording, containing both a frame-by-frame description of the audio (with
descriptors like fundamental frequency candidates, and energy), and a segment-by-segment
description of the audio. The audio segment descriptions correspond to the individual notes
detected in the audio, and apart from their begin and end time (i.e. note onset and offset)
they include mean energy (dynamics), and estimated fundamental frequency (pitch) as de-
scriptors. The method for deriving MD’s from monophonic audio recordings is described in
more detail in [Gómez et al., 2003a; Maestre and Gómez, 2005].

The result of transformation is a revised MD of the output audio recording to be gener-
ated. The difference between the revised MD and the original MD define the changes that
must be made to the original audio to obtain the output audio.

3.1.1 Problem Analysis

This subsection provides an overview of the topics that will be covered in more depth in
chapter 4.
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Within TempoExpress, again two major sub tasks can be identified, in the figure indicated
by the boxes ‘problem analysis’, and ‘problem solving’. The first task is to build a phrase
problem specification from the given input data. This is a data structure that contains
all information necessary to define a tempo transformation task for a musical phrase, and
additional information that will improve or facilitate the problem solving. A phrase problem
specification contains the following information:

1. a MIDI score, the score as a sequence of notes;

2. a musical analysis, an abstract description of the melody;

3. a source tempo, the tempo (in BPM) of the input performance;

4. a target tempo;

5. an input performance, the performance as a sequence of performed notes;

6. a performance annotation, a description of the expressivity in the performance; and

7. a list of segment boundaries, that indicates how the score of the phrase is divided into
segments.

As figure 3.1 shows, only items (1) and (4) of this list are directly provided by the user.
The musical analysis (2) is derived from the MIDI score and contains information about
various kinds of structural aspects of the score, like metrical structure, an analysis of the
melodic surface, and note grouping. The phrase segmentation (7) is also derived from the
MIDI score, and is intended to capture the musical groupings inherent in the phrase.

The performance annotation module takes the MIDI score and the MD of the input
audio recording as input and provides the source tempo (3), the input performance (5),
and the performance annotation (6). The source tempo (3) is estimated by comparing the
total duration of the audio (time in the MD is specified in seconds) and the duration of the
MIDI score (which specifies time in musical beats). Although this way of estimating the
global tempo is simple, it works well for the data we used 1. The input performance (5) is a
symbolic representation of the performed notes, with MIDI pitch numbers (estimated from
the fundamental frequency), duration, onset, and dynamics information. This information is
readily available from the MD. To facilitate comparison between the performed notes and the
MIDI score notes, the duration and onset values of the performed notes are converted from
seconds to beats, using the computed source tempo. Finally, the performance annotation
(6) is computed by comparing the MIDI score and the input performance.

We will refer to the phrase problem specification that was built from the input data as
the phrase input problem, being the problem specification for which a solution should be
found. The solution of a tempo transformation will consist in a performance annotation.
The performance annotation can be interpreted as a sequence of changes that must be
applied to the score in order to render the score expressively. The result of applying these
transformations is a sequence of performed notes, the output performance, which can be
directly translated to an MD at the target tempo, suitable to be used as a directive to
synthesize audio for the transformed performance.

1Tempo estimates computed for 170 performances have a mean error of 0.2 BPM and a standard deviation
of 1.1 BPM
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3.1.2 Problem Solving

This subsection provides an overview of the topics that will be covered in more depth in
chapter 5.

In a typical CBR setup, the input problem is used to query the case base, where the
cases contain problem specifications similar in form to the input problem, together with
a solution. The solution of the most similar case is then used to generate a solution for
the input problem as a whole. In the current setting of music performance transformation
however, this approach does not seem the most suitable. Firstly, the solution is not a single
numeric or nominal value, as in e.g. classification, or numeric prediction tasks, but it rather
takes the form of a performance annotation, which is a composite structure. Secondly,
melodies are usually composed of parts that form wholes in themselves (a phrase is typically
composed of various motifs). The first observation implies that solving a problem as a whole
would require a huge case base, since the space of possible solutions is so vast. The second
observation on the other hand suggests that a solution may be regarded as a concatenation
of separate (not necessarily independent)2 partial solutions, which somewhat alleviates the
need for a very large case base, since the partial solutions are less complex than complete
solutions.

This has lead us to the design of the problem solving process that is illustrated in fig-
ure 3.2. The phrase input problem is broken down into phrase segment problems (called
segment input problems, or simply input problems henceforward), which are then solved in-
dividually. The solutions found for the individual segments are concatenated to obtain the
solution for the phrase input problem. However, a preliminary retrieval action is performed
using the problem at the phrase level. The goal of this preliminary retrieval is to set up the
case base for the segment-level problem solving, from what we will call proto cases. Proto
cases are information units that contain phrase related information like the MIDI score, the
musical analysis, the segmentation boundaries, and all performances (with varying global
tempos) available for that phrase. The case base is formed by pooling the segments of the
selected proto cases, hence the number of cases M it will contain depends on the selectivity
of the preliminary retrieval, and the number of segments per phrase: If C is the subset of
proto cases that were selected during preliminary retrieval, and si the number of segments
in the ith proto case from C, then the case base size is:

M =
|C|∑
i=1

si

The case base obtained in this way contains cases, consisting of a segment problem spec-
ification and a solution at the segment level. The cases contain the same type of information
as the input problem specifications and solutions at the phrase level, but they span a smaller
number of notes. Solving the phrase input problem is achieved by searching the space of
partially solved phrase input problems. A partially solved phrase input problem corresponds
to a state where zero or more segment input problems have a solution. A complete solution
is a state where all segment input problems have a solution. Solutions for the segment input

2For example, the way of performing one motif in a phrase may affect the (in)appropriateness of particular
ways of playing other (adjacent, or repeated) motifs. Although such constraints are currently not defined in
TempoExpress, we will explain in section 5.3 how the reuse infrastructure can easily accommodate for this.
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Figure 3.2: The problem solving process from phrase input problem to phrase solution

problems are generated by adapting retrieved (segment) cases. This technique for case reuse
is called constructive adaptation [Plaza and Arcos, 2002].

The expansion of a state is realized by generating a solution for a segment input problem.
To achieve this, the retrieve step ranks the cases according to similarity between the MIDI
scores of the segment input problem and the cases. The reuse step consists of mapping the
score notes of the retrieved case to the score notes of the input problem, and using this
mapping to ‘transfer’ the performance annotation of the case solution to the input problem.

3.2 Musical Corpus

In this section we present the musical material that was used for the tempo-transformation
experiments reported in this dissertation. We had at our disposal a set of monophonic sax-
ophone recordings, which were made in the context of Ta[asco3, a research project focusing
on content-based audio transformation.

Four different songs were recorded using professional recording equipment. The perform-
ing artist was a professional jazz saxophone player. Every song was performed and recorded
at various tempos. One of these tempos was the nominal tempo. That is, the tempo at
which the song is intended to be played. This is usually notated in the score. If the nominal
tempo was not notated, the musician would determine the nominal tempo as the one that
occurred most natural to him. The other tempos were chosen to be around the nominal
tempo, increasing and decreasing in steps of 5 (in slow tempo ranges) or 10 BPM (in faster
tempo ranges). About 12 tempos per song were recorded. The musician performed on his
own, accompanied by a metronome indicating the global tempo of the piece. In total 170
interpretations of phrases were recorded, amounting to 4256 performed notes. Table 3.1

3CICYT Grant TIC 2000-1094-C02 28-12-2000/27-12-2003
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Title Composer Song Structure Tempo Range (BPM)

Body and Soul J. Green A A B1 B2 A 35 – 100

Like Someone in Love Van Heusen/Burke A B1 B2 65 – 260

Once I Loved A.C. Jobim A B C D 55 – 220

Up Jumped Spring F. Hubbard A1 A2 B 90 – 270

Table 3.1: Songs used to populate the case base

shows the top level phrase structure of the songs (determined manually from the score) and
the tempo range per song.

The musician was instructed to perform the music in a way that seemed natural to him,
and appropriate for the tempo at which he was performing. Note that the word natural
does not imply the instruction play in-expressively, or to achieve ‘dead-pan’ interpretations
of the score (that is, to imitate machine renderings of the score). Rather, the musician was
asked not to strongly color his interpretation by a particular mood of playing.

The songs were manually split up into phrases 4 (in the case of jazz standards, the phrase
structure of a song is often easily determined by looking at the score, if not annotated
explicitly), and the recordings of each song were accordingly split up into phrases.

3.3 Melody Representation

The history of computer music comprises a wealth of melody representation
schemes [Selfridge-Field, 1997], some being oriented towards graphical notation, others to
for example efficient data storage, or real-time usability. According to their purpose, they
represent different aspects of the music. For example, they may or may not convey infor-
mation about timbre, dynamics, or articulation. The bare minimum of information that
will always be present in some way or another (it can be considered as the essence of the
melody), is the information conveyed by piano-roll notation: pitch, duration, and temporal
position of the notes. The temporal position may sometimes be implicitly defined as the
summed duration of the previous notes/rests. This is also the principal information present
in traditional Western music notation, where pitch is conveyed by the vertical position of the
note heads on the staff, and duration by the graphical form of the note. Another aspect of
the melody that is represented in traditionally notated music is meter. The melody is nor-
mally preceded by a time signature, and the notes of the melody are accordingly separated
by barlines indicating the beginning/end of each bar. Because time signatures by convention
have a fixed pattern of accents, this implicitly defines the metrical strength of each note in
the melody.

The notation of classical music usually contains additional hints for performance. For
example, crescendo/decrescendo signs may indicate dynamical evolution, and articulation
may be indicated by slurs and dots. In jazz however (notably in The Real Book [2004],
the primary resource of notated jazz music), such expressive directions are usually absent.
Another difference with the notation of classical music is that the melody is typically tran-

4see appendix B for score representations of the individual phrases
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scribed monophonically, and harmony is not notated using notes on the staff, but is instead
annotated using chord-labels that describe the degree and tension of the chords. This allevi-
ates the problem of defining/separating melody and harmony in polyphonically transcribed
music.

Our focus in this dissertation will be on jazz music. Hence, given the above observations,
we will assume that a melody representation in the form of a sequence of note elements that
includes pitch, duration, onset, and metrical information for each note captures all essential
of the score. The reason for not including further expressive hints into our melody repre-
sentation scheme is that the task of the system we propose is performance transformation
rather than performance generation. That is, the aim of the system is not to generate an
expressive performance from a nominal melody representation, but rather to manipulate ex-
pressive effects present in one performance, in order to obtain a performance with different
characteristics (in our case a different tempo). The source of the expressivity is therefore
the input performance rather than expressive hints in the score.

3.4 Musical Models

The melody representation presented above is commonly used in computational systems
dealing with music, probably because it is the most obvious and straight-forward scheme.
Although this representation conveys the most essential melodic information, it leaves im-
plicit a number of aspects of melody that will be of importance in musical tasks, such as
melody comparison, pattern finding, and segmentation of melodies. Aspects not present in
the note sequence representation are for example: metrical structure, (sub) phrase struc-
ture, and the development of harmonic tension. These aspects are all emergent properties
of melody as a perceived whole, rather than a sequence of notes.

3.4.1 GTTM

A number of theories exist that describe how such higher level constructs arise from se-
quences of notes. The most well-known of these is GTTM [Lerdahl and Jackendoff, 1983],
a theory that models the evolution of harmonic tension (prolongational reduction) and the
relative importance of notes (time-span reduction) within a melody. This theory is based
on systematic musicology rather than cognitive studies. A more recent approach provides
a framework for extracting a variety of musical structures like meter, phrase structure, and
key [Temperley, 2001]. The theory is accompanied by Melisma5, a set of algorithms that
implement the theoretical framework.

3.4.2 The Implication-Realization Model

Another, strongly cognitively motivated model for musical structure is the Implication-
Realization (I-R) Model [Narmour, 1990, 1992]. This model tries to explicitly describe
the patterns of expectations generated in the listener with respect to the continuation of the
melody. It applies the principles of Gestalt Theory to the melody perception, an approach

5URL: http://www.link.cs.cmu.edu/melisma/
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Figure 3.3: Eight of the basic structures of the I/R model

introduced by Meyer [1956]. The model describes both the continuation implied by par-
ticular melodic intervals, and the extent to which this (expected) continuation is actually
realized by the following interval.

According to the I-R model, the sources of the listeners’ expectations about the continu-
ation of a melody are two-fold: both innate and learned. The innate sources are ‘hard-wired’
into our brain and peripheral nervous system, according to Narmour, whereas learned factors
are due to exposure to music as a cultural phenomenon, and familiarity with musical styles
and pieces in particular. The innate expectation mechanism is closely related to the gestalt
theory for visual perception [Koffka, 1935; Köhler, 1947]. Gestalt theory states that percep-
tual elements are (in the process of perception) grouped together to form a single perceived
whole (a ‘gestalt’). This grouping follows certain principles (gestalt principles). The most
important principles are proximity (two elements are perceived as a whole when they are
perceptually close), similarity (two elements are perceived as a whole when they have similar
perceptual features, e.g. color or form, in visual perception), and good continuation (two
elements are perceived as a whole if one is a ‘good’ or ‘natural’ continuation of the other).
Narmour claims that similar principles hold for the perception of melodic sequences. In his
theory, these principles take the form of implications: Any two consecutively perceived notes
constitute a melodic interval, and if this interval is not conceived as complete, or closed, it
is an implicative interval, an interval that implies a subsequent interval with certain char-
acteristics. In other words, some notes are more likely to follow the two heard notes than
others. Two main principles concern registral direction and intervallic difference. The prin-
ciple of registral direction (PRD) states that small intervals imply an interval in the same
registral direction (a small upward interval implies another upward interval, and analogous
for downward intervals), and large intervals imply a change in registral direction (a large
upward interval implies a downward interval and analogous for downward intervals). The
principle of intervallic difference (PID) states that a small (five semitones or less) interval
implies a similarly-sized interval (plus or minus two semitones), and a large intervals (seven
semitones or more) implies a smaller interval.

Based on these two principles, melodic patterns can be identified that either satisfy or
violate the implication as predicted by the principles. Such patterns are called structures
and labeled to denote characteristics in terms of registral direction and intervallic difference.
Eight such structures are shown in figure 3.3. For example, the P structure (‘Process’) is
a small interval followed by another small interval (of similar size), thus satisfying both
the registral direction principle and the intervallic difference principle. Similarly the IP
(‘Intervallic Process’) structure satisfies intervallic difference, but violates registral direction.

Another principle that is assumed to hold concerns the concept of closure. Closure refers
to the situation where a perceived interval does not imply a following interval, that is the
listener’s expectation is inhibited. Occurrences of this kind of closure might coincide with
those of a different, more commonly used concept of closure in music theory that refers to the
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Figure 3.4: First measures of All of Me, annotated with I/R structures

Structure
Interval

sizes
Same

direction?
PID

satisfied?
PRD

satisfied?

P S S yes yes yes
D 0 0 yes yes yes
ID S S (eq) no yes no
IP S S no yes no
VP S L yes no yes
R L S no yes yes
IR L S yes yes no
VR L L no no yes

Table 3.2: Characterization of eight basic I/R structures; In the second column,‘S’ denotes small,
‘L’ large, and ‘0’ a prime interval

finalization, or completion of a musical whole, such as a phrase. In the I-R model, closure,
that is the inhibition of expectations, can be evoked in several dimensions of the music: when
the melody changes in direction, or when a small interval is followed by a large interval.
Additional factors that can add to the effect of closure are metrical position (strong metrical
positions contribute to closure), rhythm (notes with a long duration contribute to closure),
and harmony (resolution of dissonance into consonance contributes to closure). The degree
to which the listener’s expectations are inhibited is dependent on the accumulated degrees
of closure in each dimension. Points of closure mark the boundaries of I-R structures. When
there is closure, but only to a slight degree (weak closure), the end-note of one I-R structure
also marks the beginning of the next I-R structure, causing the structures to share one
note. When strong closure occurs, the next I-R structure begins on the note after the strong
closure point. On the other hand, at the notes where no closure occurs, or where closure
in some dimensions is overruled by continuing processes (such as repeated syncopation, or
ritardando) in other dimensions, linked I-R structures occur. That is, the middle note of
one I-R structure is the first note of the next I-R structure, causing the structures to share
an interval. In this way two or more I-R structures maybe chained together. An example of
this are the combined ID and P structure in figure 3.4.

3.5 Melody Segmentation

As we argued in section 3.1, working with musical chunks smaller than complete phrases
is a natural step, because melodies by their nature are composed of several smaller note
groups. Furthermore, segmentation likely to improve the utility of the case base, since it
relaxes the constraint that in order to reuse the solution of a case, the complete phrases of
the input problem and the retrieved case must match. Rather, it allows for partial reuse
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overlapping non-overlapping

musical I-R (weak closure)
Melisma, LBDM,

I-R (strong-closure)

non-musical n-grams, binary (hierarchical) binary (flat)

Table 3.3: Classification of melodic segmentation strategies

of the musical examples in the case base, so that only the parts of the retrieved case that
match the problem are reused (and only for the part of the problem that matches).

Given that cases should contain subphrase chunks of musical information, the next ques-
tion is how the musical material should be segmented. In this section we will present some
melody segmentation strategies, and discuss their characteristics and advantages/disadvan-
tages.

We use the term melody segmentation to refer to a partition of a phrase as a sequence of
notes into subsequences. Most automatic melody segmentation approaches are situated in
the context of modeling note grouping according to human perception, and therefore conceive
of melody segmentations as a complete and non-overlapping partitioning of the sequence of
notes. Here however, there is no a priori reason to limit the concept to non-overlapping
segments, since the aim of segmentation is not primarily to identify segments as ‘perceptual
wholes’, but just to extract melodic material at a short time scale from phrases.

In order to clarify how different segmentation methods relate to each other we pro-
pose to classify melodic segmentations along two major dichotomies: overlapping vs. non-
overlapping, and musical (that is, reflecting musical structure) vs. non-musical segmenta-
tions. In the following subsections, we will review various melodic segmentation techniques,
exemplifying the various approaches we have discussed above. They can be classified as
shown in table 3.3.

3.5.1 Melisma

The Melisma Music Analyzer [Temperley, 2001] provides a set of tools for various types
of musical analysis. One of its components, the Grouper, is a tool that segments melodies
into smaller units. It is flexible in the sense that it can operate on various time scales. For
example, it can segment melodies into phrases, but also into smaller segments like motifs.
It works in a straight-forward way: First it calculates a gap-score for every consecutive pair
of notes. This gap-score is the sum of the interonset interval and the offset to onset interval.
The score for a group of notes is proportional to the gap-scores at its boundaries. A penalty
is applied proportionally to the difference between the length of the group and a specified
optimal length. Additionally, a penalty is applied if the metrical position of its beginning is
different from the metrical position of the beginning of the previous group.
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3.5.2 Local Boundary Detection Model

The Local Boundary Detection Model (LBDM) [Cambouropoulos, 2001] is based on two
Gestalt-related principles: identity/change and proximity. The model focuses on the degree
of change in several parameters of melody, such as pitch, IOI, and rests. The change in
these parameters is represented by taking the intervals (absolute differences) between the
values for consecutive notes. Based in this, a boundary strength is calculated per interval
that is proportional to the change in consecutive intervals. The model thus computes the
second order derivative of the parameter sequence. Local maxima in the (weighted sum of
the) second order derivatives are postulated by the model as local group boundaries in the
melody. Like Melisma the LBDM model has several parameters to control its behavior. The
most important of these is a threshold for the local maxima values to be recognized as a
boundary. By increasing the threshold, longer segments are found.

3.5.3 I-R based Segmentation

Since I-R structure boundaries are determined by the level of perceived closure, it is not
surprising that the boundaries of musical constructs like motifs often coincide with bound-
aries of I-R structures. This is not to say the converse, that every I-R structure boundary
corresponds to a motif boundary. A motif may for example contain a weak closure (inducing
an I-R structure boundary). If no closure occurs within a motif, the motif may be formed
by multiple chained I-R structures.

Several melodic segmentation strategies can be based on the I-R analysis, depending
on the ‘closure threshold’ that is adopted. For example, one can define a segment as the
sequence of I-R structures that occur between two strong closure points. As mentioned in
sub section 3.4.2, no overlap between I-R structures occurs on strong closure points, so this
approach yields non-overlapping segmentations. When weak closure points are also taken to
define segment boundaries, the segments may overlap by at most one note. A third, and less
musically meaningful alternative is to define a segment for each I-R structure, even when
they are chained. This may result in segments that overlap by two notes.

A drawback of I-R segmentation is that the above mentioned parameter to control
segment-overlap provides only moderate control over the resulting segment length. Espe-
cially segmentation into non-overlapping segments may result in segments that vary greatly
in length, depending of the melody. This can be seen in appendix B. Non-overlapping I-R
segmentation results in segments that correspond to the joined horizontal brackets above
the I-R labels. For example, Up Jumped Spring, phrase B would result in a single segment
containing all 19 notes in the phrase, whereas phrases A1 and A2 of the same song contain
segments of only 3 notes. Choosing weakly overlapping segments leads to segments of more
constant length.

3.5.4 n-Grams Segmentation

n-Grams segmentation is commonly used in melody retrieval [Melucci and Orio, 2002; Uit-
denbogerd and Zobel, 2002; Doraisamy and Rüger, 2003]. An n-gram is a subsequence of n
items from a given sequence of items. By an n-gram segmentation of a melody we refer to
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the ordered set of all n-grams that can be extracted from that melody. This is a very simple
overlapping segmentation technique that employs no musical knowledge at all.

3.5.5 Binary Segmentation

In Kagurame Phase-II [Suzuki, 2003] Suzuki employs a form of binary segmentation of the
melody that recursively divides the phrase into two parts of equal duration, to a desired
level of granularity, for example measures, or beats. Because this method refers to measures
and beats to divide the melody, it is not clear how situations should be handled where the
number of measures, or beat is uneven. However, we can easily define a variation of Suzuki’s
method for binary segmentation that circumvents this problem, by dividing the melody by
duration (rather than the number of measures). In this setup, the melody is recursively split
in two, by finding its middle position (the position that is the average of the onset of the
first note and the offset of the last note), and defining the first group as all notes whose
onsets are before the middle position, and the second group as all notes whose onsets are
after the middle position. The depth of the recursion can be used as a parameter to control
the number of segments.

A notable difference with n-grams segmentation is that n-grams defines segments of equal
numbers of notes whereas binary segmentation defines segments of (approximately) equal
duration.

When the higher level segments of the recursive segmentation are included in the seg-
mentation, obviously those segments will overlap with their child segments. When only the
lowest level of segments is retained, a non-overlapping segmentation is obtained.

3.5.6 Characterization Segmentation Methods

Each segmentation method has advantages and disadvantages. Depending on the application
context of the segmentation, these (dis)advantages may be relevant or less relevant. We
discuss the different methods in the light of our current context, melody retrieval for tempo
transformation.

The main advantage of non-overlapping segmentations for reuse of performance segments
to transform an input performance in the current setting of tempo transformation, is that
the final phrase result can be obtained straightforwardly, by concatenating the results of
consecutive segments. If the problem solving would be done segment-wise using overlapping
segments, the solutions (performances) to each segment could not be concatenated because
the notes belonging to overlapping segments would have multiple solutions. In this case, an
additional strategy is needed to decide which solution is preferred for these notes.

However, this apparent drawback of overlapping segments can also be regarded as an
opportunity to evaluate the continuity of two consecutive segment performances. Since the
performances are in part performances of the same notes, the similarity between these two
performances can be taken as an indicator of continuity of the performance across segments.

Another advantage of overlapping segmentations is that it potentially allows for the
creation of larger sets of segments from the original data set. Of course this introduces
redundancy between segments, but the number of non-identical melodic segments in the
case base is larger, and therefore case retrieval may offer useful results for a wider range of
input problems, than with non-overlapping segmentations.
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Taking into account the empirical fact that a melodic phrase is usually composed of short
motifs, and that part of what defines musical styles is the length and melodic form of motifs
(this seems to hold at least for jazz music), motifs of melodies that belong to the same
style are likely to show recurring patterns. This means that segments that coincide with
musical motifs are more likely to be found in other melodies of the same style than segments
that intersect musical grouping boundaries, and are thus more useful as cases. To clarify
this, a loose analogy might be made to spectral analysis of signals: by using an adaptive
basis, wavelet analysis may yield both more accurate and more sparse representations of the
spectral content of the signal than traditional Fourier analysis.

Suzuki [2003] argues that when the melodic segmentation is used just for case retrieval,
it is not necessary that the segmentation reflects the musical structure. Even segments that
contain musical boundaries may be useful, although the expected utility of such segments is
lower, requiring a larger case base.

An additional observation regarding the class of musical grouping-aware segmentation
strategies is that musical (grouping) structure can be intrinsically ambiguous, and due to its
perceptual motivation is partially a subjective matter. Different segmentation approaches,
even if they all intend to capture musical structure, may therefore yield different results.

We can summarize the above as follows: 1) The expected utility is higher for segments
that correspond to musical groups, than for segments that do not correspond to such groups.
This reduces the need for a large case base. 2) For a given set of melodies, overlapping
segments result in a larger case base than non-overlapping segments. However joining the
tempo-transformation results of overlapping segments into a tempo-transformation of the
entire phrase is non-trivial. Although this creates an opportunity for deriving more consistent
expressivity at the phrase level, exploiting this opportunity requires expressivity comparison
criteria that we do not have at present. In conclusion, the most appropriate segmentation
approach in our current situation seems to be non-overlapping segmentation that coincides
with musical grouping. Therefore we employ Melisma as a segmentation algorithm in our
current setup. Note that the LBDM and I-R (weak-closure) algorithms may be used as valid
alternatives.

3.6 Performance Representation

It has been widely acknowledged that human performances of musical material are virtually
always quite different from mechanical renderings of the music. These differences are thought
to be vital for the aesthetic quality of the performance. Although it is not the only proposed
definition of musical expressivity (see section 1.1), it is common to define expressivity as
the deviations of the performance from the (mechanical rendering of) the score. This is a
rather general definition in the sense that it does not specify the dimensions in which the
difference should be measured. Most studies on expressive performance however focus on
two or three dimensions, typically a subset of dynamics, timing (in onset and duration of
notes), and local tempo changes (rubato) [Canazza et al., 1997a; Desain and Honing, 1994;
Repp, 1995c; Widmer, 2000]. The paradigmatic representation of the expressivity is a list
of expressive values for each note, and for each dimension, where the values represent the
deviation between the nominal values as notated in the score, and the observed values of the
corresponding note in the performance. In this setting, spontaneous insertions or deletions of
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notes by the performer are often discarded as artifacts, or performance errors. This may be
due to the fact that most of this research is focused on the performance practice of classical
music, where the interpretation of notated music is rather strict. Contrastingly, in jazz
music performers often favor a more liberal interpretation of the score, and as a consequence
expressive variation is not limited to variations in timing of score notes, but also comes
in the form of e.g. deliberately inserted and deleted notes. Thus, research concerning
expressivity in jazz music should pay heed to these phenomena and in addition to capturing
the temporal/dynamical variations of score notes, the expressive behavior of the performer
should be described in terms of note insertions/deletions/ornamentations etcetera.

In this section we propose an annotation scheme for performances that provides such
a deliberate representation of expressive phenomena. In the next chapter (section 4.2) we
describe how such an annotation can be automatically derived using the edit-distance, and
in chapter 6 (section 6.1), we show how this mechanism can be tuned to reduce annotation
errors.

3.6.1 Describing Expressivity through Performance Events

In the present context, we use the word ‘performance’ to refer to a sequence of performed
notes, the notes that are played by the musician when she interprets a musical score. The
expressivity, defined as the deviations of the performance from the score (see section 1.1
on page 2), can be conceived of as a sequence of events (we will call them performance
events) that describe how the notes in the score are translated to the notes present in the
performance. The first question that must be addressed is which types of performance
events we distinguish. On a very abstract level, performance events are reference events:
they refer either to notes in the performance, or to notes in the score, or both. When
viewing reference events as a class, we can thus distinguish two sub-classes: the events that
refer to score elements (score reference events), and the events that refer to performance
elements (performance reference events). Events that refer to both are called correspondence
events, forming a sub-class of both score reference event and performance reference event.
This taxonomy of performance events provides a framework in which more specific kinds of
performance events can be defined. Figure 3.5 shows this hierarchy, including more specific
types of performance events that will be discussed below.

Note that the choice of performance events is an important, but fundamentally subjective
decision. Since the performance of a melody by a human musician is not a causal process,
there is no way to systematically deduce which performance elements are the manifestation
of a particular score element. There may be situations where there is ambiguity as to the
way of representing a particular part of the musician’s interpretation through performance
events. In practice the majority of notes in a performance resemble their score counterparts
close enough in terms of pitch, metrical position, and duration in order to unambiguously
establish the association6. Such occurrences of performed notes that clearly correspond to
a score note are interpreted as instances of the class of correspondence events mentioned
above. Within a certain range of perceivable sameness, the onset timing, pitch, duration of
the performed note may deviate from the score note. These deviations are respectively stored

6One can argue that in cases where it is very difficult to recognize the score melody in the performance,
the performance should be conceived of as a variation, or improvisation on the melody, rather than an
expressive interpretation of it
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Figure 3.5: A taxonomy of performance events for performance annotation

in the attributes onset deviation, pitch deviation, and duration deviation, of correspondence
events. When a correspondence occurs between a single score note and a single performance
note, we represent this by a sub-class of correspondence events, transformation events (the
attributes of the score note are transformed in the performance).

The necessity of the various sub-classes of the correspondence event class to represent
the musician’s performance behavior is trivial, but it is less obvious what other kinds of
performance events will be necessary for a complete account of the performance. We have
analyzed the musical material that used to populate our case base (see section 3.2), focusing
on the situations where a one-to-one correspondence could not be made between score and
performance notes. In the following paragraphs, we will define various classes of perfor-
mance events that account for the different situations we encountered where transformation
events cannot describe the performance, and illustrate each performance event class with an
example found in the real performances.

The first situation is where a performance note occurs without a clear counterpart in
the score, whereas the score counterparts of surrounding notes are unambiguous. In other
words, the musician inserts a note that is not present in the score. We account for this
situation with an insertion event, which is a sub-class of performance reference event. It is
not a sub-class of score reference event, since the inserted note has no counterpart in the
score. An example of an insertion event from the real performances described in section 3.2
is shown in figure 3.6a. The figure shows the score that was performed, together with the
notes that were performed, shown as boxes. The vertical positions correspond to the pitch of
the performed notes (the higher the pitch, the higher the position). The widths of the boxes
are proportional to the durations of the notes, and their horizontal positions are proportional
to onset times of the notes. This way of representing melodies is common in MIDI editing
software and is usually called piano roll notation. The letters in between the score and the
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Figure 3.6: Examples of performance event classes encountered in real performances. The
boxes below the score represent the performance in piano roll notation. The letters denote
performance events (T = Transformation; I = Insertion; D = Deletion; O = Ornamentation;
F = Fragmentation; C = Consolidation)

performance represent the performance events that establish the relation between score and
performance elements.

The second situation is the opposite of insertion: deletion. This occurs when a note
in the score is not played by the performer, and consequently has no counterpart in the
performance. Hence, deletion events are a sub-class of score reference events only. An
example case of deletion is shown in figure 3.6b (denoted by the letter ‘D’).

Thirdly, a special kind of insertion that occurs very frequently, is ornamentation. Al-
though ornamentation also involves performed notes that have no counterpart in the score,
ornamentation events are different from ordinary insertion events in several respects: Firstly,
the inserted notes are usually very short (typically about one tenth of a second). Secondly,
they often come as a duple or triple of very short notes. Thirdly, the inserted notes virtually
always form a chromatic (occasionally diatonic) ascending progression with the note that
follows the ornamentation notes. Ornamentation event are as such a sub-class of insertion
events. An example is shown in figure 3.6c. Note that the triple of ornamentation notes in
the example are treated as a single ornamentation event. We argue that this is a more ap-
propriate conception of ornamentation events than viewing each inserted note as a separate
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ornamentation. Because of their pitch relationship, and closeness in time, the ornamentation
notes form a very strong perceptual whole. They are perceived as a single musical gesture.
Annotating this situation with three distinct ornamentation events suggests that each of
them could have occurred individually, which is clearly not the case.

The fourth kind of performance event occurs when several consecutive notes from the
score are played as a single long note. The notes typically have the same pitch, and the
duration of the performed note is close to the total duration of the score notes. This many-
to-one mapping of notes was described in [Mongeau and Sankoff, 1990] as consolidation in
the context of comparison of melodies (that is, theme and variations). It is interesting to
observe that consolidation of notes is a phenomenon that occurs both as a matter of melody
variation (at the level of composition), and in music performance (at the level of musical
expressivity). An example is shown in figure 3.6d.

The last kind of performance event described here is fragmentation. This is the converse
of consolidation, and involves the performance of a single score note as multiple notes of
the same pitch, with a total duration that is close to the duration of the score note. This
situation (which was also described in [Mongeau and Sankoff, 1990] to relate variations to
a thematic melody), was found to occur in a number of performances as well. Figure 3.6e
shows such a situation.

The kinds of performance events introduced above were adequate to cover the situations
where no obvious one-to-one correspondence could be established between score and per-
formance elements. Once the events have been defined and have been found to occur in
particular performances, it is interesting to see the frequency of occurrence of each type of
event as a function of the tempo at which the performance was played. Figure 3.7 shows
these numbers for each type of performance event (transformation events have been left out,
since their mere occurrence does not convey expressivity; rather it is the kind and amount
of transformation that bears expressive significance). The tempo is denoted as a proportion
of the nominal tempo (see section 3.2), that is, the average of all tempos available for a
given phrase. The frequency of occurrence of a given kind of performance event is given as
the proportion of that kind of event with respect to the total number of performance events
(including transformation events), for that tempo. The curves have been slightly smoothed
to improve the legibility of the graph.

Some systematic trends can be observed from the figure. The most salient of these is that
ornamentation events are by far the most frequent type of event. Furthermore, they occur
most frequently at low tempos, and their occurrence steadily diminishes with increasing
tempo. This is in accordance with the intuition that since the density of notes is lower at
slow tempos, the musician has more opportunity to add detailed forms of expressivity like
ornamentation. For the same reason, the general trend that the number of consolidations
increases with tempo is not surprising. Consolidation of notes decreases note density and thus
compensates for the increased note-density due to the tempo increase. Similarly, insertion
events are more frequent at low tempos than at high tempos, and vice versa for deletion
event. Only fragmentation events behave contrary to expectation. One would expect that
fragmentations (increasing note density) would be more frequent at low tempos than at high
tempos, but the opposite is the case. Table 3.4 makes these trends explicit. It shows per
event type how the occurrence of that event type is distributed over slow (< 1) and fast
(> 1) tempos. The numbers in the second and third columns are proportions of the total
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Figure 3.7: The frequency of occurrence of several kinds of performance events as a function
of nominal tempo

occurrence of the event types.
We don’t want to derive any quantitative conclusion from these numbers, since making

robust claims about the occurrence of specific types of events as a function of tempo would
likely require more data. However, we do think the figures presented here are strong evi-
dence that expressive phenomena such as ornamentation, and consolidation do not remain
constant throughout different tempos. And this justifies our claim that in addition to widely
recognized expressive features such as note timing, and dynamics, more complex features
like ornamentation, consolidation etcetera, should be taken into account when dealing with
expressivity in the context of tempo transformation of performances.
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event type slow fast

deletion 0.18 0.82
insertion 0.60 0.40
ornamentation 0.67 0.33
fragmentation 0.12 0.88
consolidation 0.39 0.61

Table 3.4: Distribution of kinds of performance events over slow and fast performances (slow
= slower than the nominal tempo; fast = faster than the nominal tempo). The numbers
express the proportion of events per tempo category for each kind of event
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Chapter 4

Knowledge Acquisition

This chapter is devoted to the knowledge acquisition aspects of TempoExpress. Knowledge
acquisition refers to the process of obtaining knowledge enriched representations of raw input
data. Such representations are in some cases unavoidable (for example, performances must be
aligned to their corresponding scores in a knowledgeable way in order to arrive at an adequate
description of the performance expressivity). In other cases they form part of the particular
strategy we apply to solve tempo transformation problems. For example, we use Implication-
Realization analysis to compare melodies during case retrieval. The motivation for this
approach is that it is widely recognized that expressivity in music performance is strongly
related to musical structure in the melody, (as discussed in chapter 2). Widmer [1996] has
shown that structural representations of the melody improve the prediction of expressive
performance prediction over simple note-level representations. This suggests that a proper
grasping of expressive aspects of music performance involves at least some abstraction from
the note-level perspective on the melody.

Knowledge acquisition occurs at two stages that are very much related: case acquisition
and input problem specification. Case acquisition refers to the construction of cases to
populate the case base, which is done before the CBR system becomes operational. Input
problem specification is done at the time of problem solving, and consists in building a
problem description containing all the information needed to solve the problem. Because a
case is essentially a problem description together with its solution, the task of input problem
analysis is in fact subsumed by the task of case acquisition.

Figure 4.1 on the next page shows the TempoExpress system components that will be
addressed. Section 4.1 on the following page describes the musical analysis component, in
particular, the procedure we developed to obtain the I-R analysis of a melody. In section 4.2
we review the edit-distance, a distance measure and alignment technique for sequential data
that we use extensively in this work. Section 4.3 deals with performance annotation. The
last section describes how these representations are stored together as cases.
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4.1 The Implication-Realization Parser

The Implication-Realization model provides a way to describe the pattern of implied and
realized expectations that a melody generates through its surface form. As such, the model
is hypothesized to describe the cognitive processes that constitute the listener’s auditory
experience of the melody. Typical I-R structures span three notes and may be chained
across two or three structures (i.e. consecutive structures overlap by one or two notes),
depending on particular form of the melody. Rather than reducing the melody as a whole
to a single construct (such as a tree), the I-R analysis primarily expresses local structure
of the melody. It reflects the temporal and streaming nature of melody, and the sizes of
the structures are in accordance with current knowledge of the character human short term
memory. This adds to the cognitive plausibility of the model.

The character of the I-R analysis as outlined above, makes it a good candidate repre-
sentation for melody processing applications. In this dissertation, its major application is
melodic similarity computation, a step that is crucial for case retrieval. An empirical study
showed that human subjects tend to base similarity judgments of melodic motifs on surface
features (like contour, and rhythmic organization), rather than on deep structure [Lamont
and Dibben, 2001]. This result implies that for melodic similarity computation, the I-R anal-
ysis as a melody representation is favorable over deep structure analyses such as GTTM’s
time-span reduction trees.

In order to employ the I-R model in TempoExpress, we have implemented a parser for
monophonic melodies that generates the corresponding I-R analyses. In this section, we will
subsequently describe the features and limitations of the I-R parser (subsection 4.1.1), and
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explain the parsing steps involved to derive the I-R analysis from the melody (subsection
4.1.2).

4.1.1 Scope and Limitations

The I-R model has high degree of complexity, and although the core part of the theory
is stated explicitly and in great detail, not all aspects of the theory are very amenable to
computational modeling. Therefore, it is hard to achieve fully automatic derivation of I-R
analysis of melodies, so that they incorporate to all of the aspects the I-R model. In this
sense, the I-R parser that we present here is only a partial implementation of the I-R model.

Firstly, the parser implements bottom-up rather than top-down processes. Thus, accord-
ing to the theory, it captures innate factors that govern expectation, not learned factors. In
effect, the parser has no way to identify exceptions to the expectation generation mechanism,
as imposed by familiarity with the particularities of the musical piece being parsed (intra
opus style) and by the embedding in a particular musical culture (extra opus style). The I-R
model does not specify top-down processes in as much detail as the bottom-up processes,
supposedly because they are harder to identify and formalize. Moreover, since the bottom-up
processes are claimed to be style, culture, and training independent [Narmour, 1990; Cuddy
and Lunney, 1995; Schellenberg, 1996], it seems justified to focus on that part of the model.

The parser can identify 17 different types of I-R structures, namely the basic structures
P, D, R, ID, their derivatives VR, IR, VP, and IP, the retrospective structures (P), (ID),
(R), (VR), (IR), (VP), (IP), dyadic, and monadic structures. Combinations (two structures
linked together) and chains (more than two linked structures) of these structures are also
identified.

We designed the parser to operate on monophonic melodies that are represented as
sequences of notes having only pitch, onset, and duration attributes. As a consequence,
the concept of closure/ non closure is implemented for the parameters meter, and rhythm.
Closure (and its inhibition) induced by harmony, melodic consonance/dissonance, dynamics,
and ritardando/accelerando effects are not taken into account since the necessary information
is not present in the representation of the melody.

Lastly, the parser analyzes only the melodic surface. That is, no higher level structures
are obtained.

4.1.2 Implementation

In this sub-section we present a parser for constructing I-R analyses from melodies. Melody,
rhythm, and meter are processed to produce the I-R analysis as a sequence of I-R structures.

The parser takes as input a melody, represented as a sequence of notes, having pitch,
duration and position attributes. Additionally, the meter is known (that is, the metrical
strength of each beat can be inferred). The strategy applied to obtain the analysis is roughly
to first determine the boundary notes of structures (or chains of structures) by computing
the level of (non) closure in various dimensions, and then identify the I-R structures between
those boundaries, based on pitch and interval information. Determining non closure is not
entirely independent of the I-R structure identification, but this dependency can be solved
by ‘peeking forward’ to determine the I-R structure at the position in question, and does
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Figure 4.2: Interval information for the first measures of All Of Me

not create a bootstrapping problem. More concretely, the parsing process can be divided
into the following steps:

1. Gather interval information;

2. Mark level closure at each note position;

3. Mark inhibition of closure;

4. Identify structures between points of strong; closure based on interval information; and

5. Aggregate chained D and P structures.

In the following sub-sections, we will explain these steps in more detail.

Gather Interval Information

The first step is to compute the interval sizes and their directions (‘up’, ‘down’, and ‘lateral’).
In addition to the numerical interval values (measured in semitones), we apply the so-called
syntactic parametric scale to the intervals, in order to categorize their size as either small
(‘S’) or large (‘L’). In general, the I-R model assumes that intervals smaller than 6 semitones
are perceived as small intervals, and those larger than 6 semitones as large intervals. Intervals
of 6 semitones are ambiguous (and may therefore give rise to multiple I-R analyses of the
same melody). To avoid this additional complexity, the syntactic parametric scale in the
parser defines intervals of 6 semitones to be large as well. Figure 4.2 illustrates this for the
first measures of All of Me.

Additionally, the difference in size between pairs of consecutive intervals are computed,
and the pairs are labeled with two Boolean labels: intervallic similarity, and registral same-
ness. These two features are of primary importance in the classification of a sequence of
notes as a particular I-R structure.

Two consecutive intervals are said to be intervallically similar whenever their interval-
lic differentiation (i.e. the difference between these intervals) is less or equal to a minor
third. The registral sameness predicate holds if subsequent intervals have the same registral
direction, which can be either upward, downward, or lateral (in the case of a prime interval).
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Mark Closure

In the I-R model, the term closure is used for the inhibition of implication. This inhibi-
tion can be established by several conditions. The most prominent are rests, durational
cumulation (this occurs where a note has significantly longer duration than its predecessor),
metrical accents, and resolution of dissonance into consonance. These conditions can occur
in any combination. Depending on the number of dimensions in which closure occurs and
the degree of closure in each dimension, the overall degree of closure will differ.

The closure detection step in the parser here presented detects four conditions for closure,
all related to meter and rhythm:

1. durational cumulation (the duration of a note is substantially longer than its prede-
cessor);

2. the onset of a note falls on a metrical accent;

3. the occurrence of a rest after a note; and

4. a metrical accent occurs while the note is sounding.

For each note in the melody, every condition is evaluated as, illustrated in figure 4.3. The
total degree of closure depends on the conditions that are satisfied. Weak closure occurs
when any of the closure conditions occur. Strong closure occurs either when condition (3)
holds, or when condition (1), and (3) hold, and (1) doesn’t hold for the next position.

But in order to determine the final positions where strong or weak closure occurs, one
must also take into account factors that may inhibit closure.

Mark Inhibition of Closure

The conditions mentioned in the previous sub section in themselves imply closure. However
there are other factors that may inhibit such closure. This causes I-R structures to chain and
combine. There are eight conditions that inhibit closure in other parameters. Four of them
deal with harmony, melodic consonance/dissonance, dynamics and accelerando/ritardando,
respectively. As mentioned before, those factors are ignored in the parser. The remaining
factors are:
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1. The absence of metrical emphasis;

2. The envelopment of a metric accent by a P process in the context of additive (equally
long) or counter-cumulative (long to short) durations;

3. The envelopment of a metric accent by a D process in the context of additive (equally
long) durations; and

4. The occurrence of repeated syncopation.

When any of these conditions are satisfied, any metrical closure that was detected in the
previous step, is canceled. Notice that conditions (2) and (3) require that the I-R structure
is known for the intervals surrounding the note which is investigated for closure inhibition.
Although the final I-R structures can only be calculated after the structure boundaries have
been identified, we compute the I-R structure of the relevant interval pair regardless of the
boundary positions, in order to evaluate the conditions. In the example shown in figures 4.2,
and 4.3, the last two triplet notes at the end of the second bar satisfy condition (1), and in
addition the last triplet note satisfies condition (3), and as a result, there is no boundary on
any of these notes.

Identify I-R Structures

When the final degree of closure is established for each point in the sequence, the next step
is the categorization of the interval pairs, based on the information gathered during the
first step. The notes on which weak closure occurs will be the terminal note of one I-R
structure and the initial note of its successor. The notes where strong closure occurs will be
the terminal note of an I-R structure, but its successor structure will begin on the next note.
The fact that the interval between these two notes is not part of any I-R structure expresses
the fact that this interval is not implied nor implies anything. In between two points of
closure, combining and chaining occurs (i.e. consecutive structures share one interval), due
to the lack of closure.

The I-R structures are identified by taking every consecutive pair of intervals between
closure points, and traversing the decision tree depicted in figure 4.4, based on the interval
information that was gathered earlier. Two special situations deserve attention. Firstly, the
case were two successive notes both have strong closure. In this situation, a dyadic structure
applies, which spans only one interval, and is denoted by a number indicating the size of the
interval in semitones. The second case occurs when a note occurs in isolation (e.g. separated
from the melody by rests). This leads to a monadic structure, denoted with the letter M.

Aggregate Chained P and D Structures

In the I-R model, there are two of the basic structures that can span more than three notes,
viz. P and D structures. the latter occur when three or more notes form a ascending
or descending sequence of similar intervals; The former occurs when three or more notes
continue in lateral direction, that is, have the same pitch. A further condition is the absence
of closure, for example by durational cumulation.

In the previous step, only structures of three notes have been identified. Yet, possible
instantiations of longer P and D structures in this way manifest themselves necessarily as
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combined or chained P and D structures, respectively, Thus, to arrive at a correct I-R
analysis, any combined or chained repetition of P or D structures is replaced by a single P
or D structure, spanning all of the notes that were spanned by the original structures.

4.1.3 I-R Analysis Representation

The final I-R analysis for the example is shown in figure 4.5. At the bottom, the figure
shows the concrete representation of the analysis, as output of the parser. The analysis is a
sequence of I-R structure objects, that have as attributes:

• the name of the I-R structure (e.g. P, VP)

• the number of notes the structure spans
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• the registral direction (defined as the sign of pitchLastNote−pitchFirstNote; if zero then
sign of pitchLastNote − pitchMiddleNote)

• the number of notes shared with successor structure

In section 5.2.2, we will propose a method for computing melodic similarity that is based
on the I-R analysis. This method compares sequences of I-R structures using the edit-
distance. In the next section we will give a general overview of the edit-distance and show
how it can be extended to allow for context sensitive comparison of sequence elements.

4.2 Flexible Sequence Alignment/Comparison:
the Edit-Distance

The Edit-distance, or Levenshtein-distance [Levenshtein, 1966], is a measure for compar-
ing sequences (or strings) commonly used in a variety of fields and applications that deal
with sequential data. Common application domains are for example spell-checking of text,
and bio-computing, where it has been used to solve pattern finding, and information re-
trieval problems. In the domain of music, the edit-distance has been used for computing
melodic similarity [Mongeau and Sankoff, 1990; Smith et al., 1998], score following/automatic
accompaniment [Dannenberg, 1984; Puckette and Lippe, 1992] and performance transcrip-
tion [Large, 1993; Pardo and Birmingham, 2002].

The edit-distance is defined as the minimal cost of a sequence of editions needed to
transform a source sequence into a target sequence, given a predefined set of edit-operations.
The canonical set of operations consists of insertion, deletion and replacement of sequence
elements. The cost of a particular edit-operation is defined through a cost function w for
that operation, that computes the cost of applying that operation to the notes of the source
and target sequences that were given as parameters to w. Let A be the alphabet, i.e. the
set of possible symbols occurring in sequences, and let s and t be finite sequences over A,
of length M and N respectively. Then the typical cost functions associated to insertion,
deletion, and replacement are respectively:

w(∅, tj) = 1 insertion (4.1)
w(si, ∅) = 1 deletion (4.2)

w(si, tj) =
{

0 if si = tj
1 otherwise replacement (4.3)

where si (0 ≤ i < M) and tj (0 ≤ j < N) are the elements of s and t, respectively. In
case M 6= N , insertion and deletion operations are used to accommodate the superfluous
elements in the longer of the sequences. The above edit cost scenario is called the unit cost
model : the cost of edit-operations does not depend on any characteristic of the elements un-
der consideration, apart from their equality or inequality, in the case of replacement. More
specialized cost models can be defined that take into account the semantic relations between
the symbols of the alphabet. The sequences may also consist of composite structures, such
as attribute-value pairs, rather than symbols. Moreover, the set of edit-operations for com-
puting the edit-distance is not necessarily limited to insertion, deletion, and replacement.
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Edit-operations may operate on subsequences of arbitrary size from the source and the tar-
get sequences. The edit-distance can be defined to deal with any set of edit-operations. To
do this, we write wK,L to denote that a cost function w takes a subsequence of length K of
the source sequence as its first input parameter, and a subsequence of length L of the target
sequence as its second input parameter. The numbers K and L correspond to the number
of elements from the source and target sequence w operates on, respectively. For example,
a deletion operation would have a cost function w1,0. For a given set of edit-operations, let
W be the set of corresponding cost functions, and let

Vi,j = {wK,L | K ≤ i ∧ L ≤ j} ⊆ W

be the subset of cost functions that accept subsequences with maximal lengths of i and j,
respectively. Furthermore, let s1:i = 〈s1, · · · , si〉 and t1:j = 〈t1, · · · , tj〉 be the source and
target sequences respectively. Then the edit-distance di,j between s1:i and t1:j is defined
recursively as1:

di,j = min
w∈Vi,j

(di−K,j−L + w(si−K+1:i, tj−L+1:j) ) (4.4)

where the initial condition is: d0,0 = 0.
Using equation (4.4), a M + 1×N + 1 matrix can be filled with distance values di,j for

0 ≤ i ≤ M and 0 ≤ j ≤ N . The edit-distance value dM,N for the entire source and target
sequences appears in lower right corner of the matrix, and the optimal alignment is found by
tracing back from cell (M,N) to (0, 0) and recording which was the last applied operation
operation that led to the distance value in each visited cell (i, j). This yields (in reverse
order) the optimal sequence of edit operations, called the optimal alignment between s and
t.

The edit-distance has proved to be a versatile tool in the research presented in this
dissertation. Since the musical data we deal with is mainly of sequential form (e.g. melody,
performance, I/R analyses), comparison of sequences is a common task, both for distance
estimation (as in case retrieval, for example), and sequence alignment (as in performance
annotation, and case reuse). We will briefly point out the key advantages of the edit-distance.

Firstly, the edit-distance is informative, in the sense that computing the edit-distance
yields not only a distance value, but also the optimal alignment between two sequences, that
displays which parts of the sequences are resembling. In case the primary interest is in the
alignment, the distance value is still useful, as it reflects the quality of the alignment.

Secondly, a fundamental characteristic of the edit-distance is that it is tolerant : it puts
no restrictions on the length of the sequences: sequences of unequal (and arbitrary) length
can be compared. Of course, with non-zero insertion and deletion costs, distance values will
increase with increasing difference in sequence length.

Thirdly, the set of edit-operations is by no means limited to the canonical set of insertion,
deletion, and replacement. Arbitrary edit-operations may be defined. Depending on the
domain, or interpretation of the sequences, other edit-operations may be appropriate, such
as order inversion, permutation, consolidation, or fragmentation of elements. In this way,
the edit-distance can be customized to fit the application domain.

1See appendix A for notational conventions on denoting sequences
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Fourthly, through the adaptation of the costs of edit-operations, the distance measure
can be optimized to fit a particular (partly) known distance (examples of this can be found
in sections 6.1 and 6.2.2). Finding the desired edit-operation costs can be done manually,
or by local search methods, like genetic algorithms [Grachten et al., 2004a], or probabilistic
methods [Ristad and Yianilos, 1998].

Finally, the use of edit-distance for comparing sequences is not limited to sequences of
symbols, nor to sequences of elements of the same type. As long as the cost functions
properly define the cost of an edit-operation, the elements of the sequences can be of any
type. This feature is of crucial importance in our method of performance annotation, that
we will present in detail in section 4.3 on the next page.

4.2.1 Context-Sensitive Cost Functions

An edit-operation always accounts for (or operates on) zero or more elements in the source
sequence, and zero or more elements in the target sequence. A complete alignment accounts
for every element in the sequences, and each element is accounted for by precisely one
operation (e.g. an element cannot be both deleted and replaced). The number of elements
an edit-operation accounts for in the source and target sequences is implicitly specified in
the definition of d (equation (4.4)). For example, the term di−1,j + w(si, ∅) (being the
cost of the optimal alignment di−1,j plus the cost of deleting element si), specifies that the
deletion operation accounts for one element in the source sequence, and zero in the target
sequence, since the deletion extends the alignment from sequences (s0, · · · , si−1), (t0, · · · , tj),
to (s0, · · · , si), (t0, · · · , tj).

In equation (4.4), the number of elements passed to w coincides with the size of the
operation range (i.e. the number of elements accounted for by the edit-distance). Thus,
only the elements accounted for by the edit-operation can figure in the cost function. In
this sense, the cost function is not context-sensitive. But there is no reason why the number
of arguments to w should coincide with the size of the operation range. In addition to the
operation range itself, preceding and succeeding ranges can be included, to determine the
cost of the operation based on the elements accounted for inside their context. Figure 4.6
illustrates this. Note that the elements that serve as context for one operation, will be
accounted for by neighboring operations in the alignment. Note also that in this more
general way of defining cost functions, the cost functions w must be indexed, since the
functions for the various edit-operations cannot be distinguished anymore based on their
signature, like the functions (4.1), (4.2), (4.3).

Taking this into account, and using the letters A, B, C, D, E, and F to denote the
sizes of the operation ranges and contexts as in figure 4.6, we can redefine the edit-distance
recursion equation in a more general way like this:

di,j = min
w∈Vi,j

(di−K,j−L + w(si−K−Kpre+1:i+Kpost , tj−L−Lpre+1:j+Lpost) ) (4.5)

where 0 ≤ i − Ak, 0 ≤ j − Bk, i + Bk + Ck ≤ M , and j + Ek + F k ≤ N (0 ≤ k ≤ n, and
M , and N are the sizes of the sequences s and t respectively).

It can be easily seen that equation (4.5) subsumes the earlier recurrence equation (4.4),
since the terms in the latter equation can be obtained by choosing the appropriate values
for the operation range and context sizes. For example, the deletion term has an operation
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range of size one in the source (B), an operation range of size zero in the target (D), and all
context sizes zero (A, C, D, and F ). In the insertion term, D is equal to one and the other
values to zero.

An earlier report of the use of context-sensitivity of cost functions was made by [Lemström
and Ukkonen, 2000]. They applied context-sensitive cost functions to enable transposition
independent melody comparison using the edit-distance without the need for a preprocessing
step to obtain interval encodings of the melodies. We will show in section 4.3.1 how the
context-sensitivity of cost functions is employed in the process of performance annotation to
detect ornamentations in the performance.

4.3 Automatic Performance Annotation

In subsection 3.6.1, we have described a representation scheme for annotating performances,
with the goal of having an explicit description of the performer’s behavior in terms of the
changes that she applied to the nominal score information to obtain a performance. We
will now describe how such performance annotations can be automatically derived from a
performance and its corresponding score using the edit-distance.

Although the use of the edit-distance is well established in related fields like melodic sim-
ilarity [Mongeau and Sankoff, 1990; Smith et al., 1998], score following/automatic accompa-
niment [Dannenberg, 1984; Puckette and Lippe, 1992] and performance transcription [Large,
1993; Pardo and Birmingham, 2002], not much attention has been paid to its value for the
expressive analysis and annotation of musical performances. We will argue that the edit-
distance is a very appropriate tool for performance annotation, and show that how a set of
parametrized edit-operations can be optimized to bring error rates of automatic performance
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annotation down to 2–4%.
An advantage of the edit-distance that explains why it is commonly used in compar-

isons between scores, or between scores and performances, is that in addition to expressing
a distance, it provides an optimal alignment between the sequences to be compared. The
alignment provides a detailed account of which element in the source sequence resembles
which element in the target sequence (both in terms of similarity and relative sequential or-
der). This information is obviously of interest in score-following where the score-performance
correspondence is needed to keep track of the performer in real-time, or in performance-
transcription, where it is used to detect the errors in the performance.

Another advantage is that the edit-distance is robust in the sense that its base-line
performance is very good. That is, when the source and target sequences have a reasonable
degree of similarity, that is, when a human subject would find it easy to establish an intuitive
alignment, the edit-distance will be able to align the sequences in that intuitive way, even
with a very simplistic cost model like the unit cost model (see subsection 4.2). Still, in
specific cases it is possible to improve the alignment quality well beyond the base-line (as
we will show in section 6.1 for the case of performance-annotation).

For use in automatic performance annotation, the primary virtue of the edit-distance is
that it is generic enough to work with arbitrary sets of (user-defined) edit-operations. This
allows us to define a set of performance events that we consider adequate to cover all the types
of expressive events occurring in musical performances (as we did in the previous subsection),
and define edit-operations for each type of performance event. Using context-sensitive cost
functions for edit-operations (subsection 4.2.1), even more complex performance-events such
as ornamentation events can be accommodated for by the edit-operations, as will be shown
shortly.

In the following subsection we will propose a cost model for the performance annotation
scheme. In particular, we will define cost functions for of the edit-operations corresponding
to each of the performance events.

4.3.1 Proposed Edit Cost Model

Through the functions that define the cost model, one can control what the optimal align-
ment between the sequences will be like, and therefore how the performance will be anno-
tated. The performance annotation for a particular performance and score is far from arbi-
trary, since often listening to the performance while reading the score gives an unambiguous
impression of the performance events involved. Of course human listeners will not be able
to quantify in detail the deviations from the score, but it is generally easy to determine for
example when an ornamentation occurs, or when two notes are contracted (consolidation).
In this sense, it is generally unproblematic to speak of ‘correct’ annotations. Obviously, the
aim of the automatic performance annotation process is to derive this correct annotation,
and thus, the cost-model should be set up so as to minimize the difference between the
generated annotation and the correct annotation.

The main factors that determine which of all the possible alignments between score and
performance is optimal, will be on the one hand the features of the score and performance
notes that are involved in calculating the cost of applying an operation, and on the other
hand the relative costs of the operations with respect to each other.
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Perhaps unsurprisingly, most transformation events (simple matches between one score
note and one performance note) are identified correctly even with a relatively simple cost-
model, such as presented by [Mongeau and Sankoff, 1990], that measures the difference in
pitch and duration when considering a transformation operation, called ‘replacement’ in the
context of comparing scores to scores. In more complicated situations, where e.g. deletions
or consolidations occur, this simple model is not always adequate. Improvements can be
made by incorporating the difference in position in the costs of the correspondence opera-
tions (transformation, consolidation and fragmentation). One situation where the alignment
benefits from position information is when one note in a row of notes with the same pitch
and duration is omitted in the performance, as illustrated in figure 4.7. Without taking into
account positions, the optimal alignment will delete an arbitrary note of the sequence, since
the deletions of each of these notes are equivalent when the cost of mapping is based on
pitch and duration information only. When position is taken into account, the remaining
notes of the performance will all be mapped to the nearest notes in the score, so the deletion
operation will be performed on the score note that remains unmapped, which is often the
desired result.

It is important to note that when combining different features, like pitch, duration and
onset into a cost-value for an operation, the relative contribution of each term is rather
arbitrary. For example when the cost of transforming one note into another would be defined
as the difference in pitch plus the difference in duration, the outcome depends on the units
of measure for each feature. The relative weight of duration and pitch is different if duration
is measured in seconds, than if it is measured in beats. Similarly, pitch could be measured
in frequency, semitones, scale steps, etcetera. Therefore, we have chosen a parametrized
approach, in which the relative contribution of each attribute in the cost function is weighted
by a constant parameter value (γ for pitch, δ for duration, and ε for position).

The other aspect of designing cost functions is the relative cost of each operation. After
establishing the formula for calculating the costs of each operation, it may be that some
operations should be systematically preferred to others. This independence of costs can be
achieved by multiplying the cost of each operation by a factor (α) and adding a constant
(β).

The cost functions w for the edit-operations are described below. The expressions P(x),
D(x), O(x) respectively represent the pitch (as a MIDI number), duration and onset time
of a score or performance element x.
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Insertion/Deletion The costs of insertion (4.6) and deletion (4.7) operations both depend
only on (and are proportional to) the duration of the inserted or deleted notes, as in [Mongeau
and Sankoff, 1990]. This reflects the fact that insertions or deletions usually involve notes
of short duration.

wi(∅, pj) = αi · D(pj) + βi (4.6)
wd(si, ∅) = αd · D(si) + βd (4.7)

Transformation Transformation events involve a score and a performance note. The cost
of the corresponding operation should be proportional to the sum of the difference in the note
attributes. When a score note and a performance note have very similar attributes, it is very
probable that the performance note is a (transformed) version of the score note. When the
difference increases, the probability that the performance note is actually a transformation
of the score note decreases. As explained earlier, (pairwise differences of) pitch, duration,
and position are used to compute the cost of transformation operations (4.8).

wt(si, pj) = αt ·


γ· |P(si)− P(pj) | +

δ· |D(si)−D(pj) | +

ε· |O(si)−O(pj) |

 + βt (4.8)

Ornamentation The cost of ornamentation (4.9) is determined by the pitch relation of
the ornamentation elements and the ornamented element (chromatically ascending sequences
are preferred), and the total duration of the ornamentation elements.

Note the competitive relationship of the insertion and ornamentation operations, since
they both account for performance elements that have no corresponding score element. We
want very short notes with a certain pitch relationship to subsequent notes to be matched
as ornamentations. If the duration of the notes exceeds a certain limit, or the pitch relation
is not satisfied, the notes should be matched as insertions instead. This can be achieved
by setting βi higher than βo and αi lower than αo. Figure 4.8 shows how the cost values
of insertion and ornamentation vary with note duration. Before the point where the lines
intersect (shorter durations), the notes will be accounted for as ornamentations; after this
point (longer durations) the notes will be accounted for as insertions.

wo(∅, pj , · · · , pj+L+1) = αo ·

 γ ·
PL

l=1 |1 + P(pj+l)− P(pj+l−1) |+

δ ·
PL

l=0 D(pj+l)

 + βo (4.9)

Fragmentation/Consolidation Fragmentations and consolidations are similar to trans-
formations since they all map score notes to performance notes. In fragmentation, a large
score note is performed as several shorter notes. The pitch of the performed notes should
thus be the same as that of the score note (c.q. the summed difference should be zero), and
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Figure 4.8: Cost values for insertion and ornamentation operations as a function of note
duration

the summed duration of the performance notes should be close to the duration of the score
note. Furthermore, the onset of the first performance note should be close to the onset of
the score note. This is reflected in the cost function (4.10). The cost of consolidation (4.11)
is defined conversely, but completely analogous.

wf (si, pj , ..., pj+L) = αf ·


γ ·

∑L
l=0 |P(si)− P(pj+l) | +

δ· |D(si)−
∑L

l=0D(pj+l) | +

ε· |O(si)−O(pj) |

 + βf (4.10)

wc(si, ..., si+K , pj) = αc ·


γ ·

∑K
k=0 |P(si+k)− P(pj) | +

δ· |D(pj)−
∑K

k=0D(si+k) | +

ε· |O(si)−O(pj) |

 + βc (4.11)

The costs of transformation (4.8), consolidation (4.11), and fragmentation (4.10), are
principally constituted by the differences in pitch, duration and onset times between the
compared elements. In the case of one-to-many matching (fragmentation) or many-to-one
(consolidation), the difference in pitch is calculated as the sum of the differences between
the pitch of the single element and the pitches of the multiple elements. The difference in
duration is computed between the duration of the single element and the sum of the durations
of the multiple elements. The difference in onset is computed between the onset of the single
element and the onset of the first of the multiple elements. The cost of insertion (4.6) and
deletion (4.7) is determined by the duration of the deleted element.

From a musical perspective, it can be argued that the cost of matching two elements with
different pitches should not depend on the difference of the absolute pitches, but rather on
the different roles the pitches play with respect to the underlying harmonies, or their scale
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degree, as these features have more perceptual relevance than absolute pitch difference.
This would certainly be essential in order to make good alignments between scores and
performances that very liberally paraphrase the score (e.g. improvisations on a melody) and
also in the case where alignment is constructed for assessing the similarity between different
scores. In our case however, we currently deal with performances that are relatively ‘clean’
interpretations of the score (rather than improvisations). As such, changes of pitch are very
uncommon in our data. Still, it is desirable to have a more sophisticated pitch comparison
approach, to accommodate more liberal performances in the future.

4.4 Connection of the Musical Data

In the previous sections we have shown how two secondary representations of the score and
the performance can be derived, respectively the I-R analysis and the performance anno-
tation. Together, the primary representations (score, and performance) and the secondary
representations (I-R analysis, and performance-annotation) form an enriched description of
the musical data. In order to employ the representations to their full extent, it is essential
that they are linked together, so as to make clear the structural relations that exist between
them.

The linking between the representations will be used for example when deriving cases
from proto-cases, based on the melodic segmentations. The constructive adaptation step
also depends on links between score and performance-events.

In chapter 3, we discussed the models we use to represent the different kinds of data. In
all models, the data representation is of sequential nature, although there is not a one-to-one
mapping between the elements of every sequence. For example, a note may belong to two
I-R structures at the same time, and inserted notes in the performance have no counterpart
in the score. To represent such facts, we define relations between the elements of the various
sequences. The result is a vertically layered structure.

Figure 4.9 shows an example of such a structure, for the beginning of a (fictitious) musical
phrase. It involves representations of five different kinds of data: the melody, its I-R analysis
as produced by the I-R parser described in section 4.1, a performance of the melody, and the
annotation of that performance. The sequential nature of the representations is expressed
by the next predicate that connects subsequent elements of sequences.

The relation between notes and I-R structures is expressed by the belongs-to predicate
from notes to I-R structures, and the predicates first-note, middle-note, and last-note, that
specify which note plays which role in the I-R structure. These relations serve for example
to segment the melody by I-R groups, or to identify the melodic context of a note.

Lastly, the performance and the score melody are connected. But rather than con-
necting them directly through predicates, the performance annotation serves to express the
relations between score elements and performance elements. Figure 4.9 illustrates the dif-
ferences between the various abstract types of performance events (shown in figure 3.5):
Score reference events and performance reference events are identified by their relations to
score elements, and performance elements, respectively. Correspondence events have both
the score-reference and the performance-reference relations. Note that between the first
transformation event and the ornamentation event that precedes it, a relation ornamented-
by exists, which expresses the dependence between ornamentations and their successor notes
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Figure 4.9: An example of interconnected representations of the different kinds of musical
data

(ornamentation notes do not occur in isolation; moreover, the pitches of ornamentation notes
are usually related to the successor note pitch).

The vertical interconnections between the sequences serve to retrieve the ‘vertical musical
context’ of any element. For example, the context of a particular score note n can be
defined to be the set of all sequence elements that are directly or indirectly connected to n,
through any relation except the next relation. This yields the I-R structure n belongs to,
the performance event that refers to n, and (depending on the type of performance-event)
the performed-note that represents n in the performance. Any ornamentation events that
occur before the performance event corresponding to n will also be included, due to the
ornamented-by relation.
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Chapter 5

Problem Solving

In the previous chapter we have described the knowledge acquisition aspects of TempoEx-
press. This included the process of deriving knowledge-rich representations of melodies and
performances, to be used as a specification of the input problem, as well as forming cases
that can be used to solve tempo transformation problems.

In this chapter we explain how this musical information is stored in proto cases and cases
(see chapter 3, section 3.1), and we will address the part of the system that uses the obtained
cases in order to solve new tempo-transformation problems (see figure 5.1). In particular,
we will focus on the retrieval and reuse processes of the CBR approach that is employed.

In chapter 3, section 3.1, we also outlined the problem solving process, illustrated in
figure 3.2. It involves an initial retrieval step at the phrase level. In this step, proto cases
are selected from the proto case base. The selected proto cases are segmented to form a
set of cases that are used in a combined retrieval and adaptation step called constructive
adaptation. In this step solutions are constructed for every segment of the input problem
and those solutions are concatenated to form a solution for the phrase input problem.

In the following subsections, we will address each of the steps. First we will look at the
concept of cases and proto cases in more detail, and how the data is organized in proto cases
and cases (section 5.1). Proto case retrieval is explained in section 5.2, and section 5.3 is
devoted to the use of constructive adaptation and the transfer of expressive features from
retrieved cases to the input problem segments.

5.1 Cases and Proto Cases

Cases in a case based reasoning system are composite units of information that embody the
knowledge to solve problems. They describe a particular problem and contain a solution
to that problem. Additionally, meta-information of different kinds may be present (see
section 2.6). The problem description part of the cases is used for indexing/retrieving cases
from a case base, given a problem description for which the CBR system should find a solution
(the input problem). The solutions of the retrieved cases are employed in the adaptation
step to form a solution to the input problem, either by transforming a retrieved solution
(transformational reuse) or by constructing a new solution where the retrieved solution is
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Figure 5.1: The problem solving part of TempoExpress

used as a guide (generative reuse). The meta-information can be used for example to guide
the retrieval (e.g. in the case of time-stamps), or the adaptation step.

As mentioned above, TempoExpress deals with two different types of cases. The tempo
transformation knowledge is stored in the system in a permanent way as proto cases in a
proto case base. When the system receives the input that is necessary to perform a tempo
transformation, an actual case base is created dynamically from the proto cases.

5.1.1 Proto Cases

One particular characteristic of the problem domain we are considering is that a single
musical phrase has several performances, as discussed in section 3.2. Given that many
performances pertain to a single phrase, it makes sense intuitively to store them together in
a single case. But from the point of view of tempo-transformation this doesn’t yield useful
cases. Since the tempo-transformation task is to change a performance at one tempo to a
performance at another tempo, only performances at (or close to) those tempos will actually
serve as precedents for a particular problem. This implies firstly that not all performances for
a given phrase will be used for a particular problem. Secondly, many tempo-transformation
cases can be constructed using the performances of a single phrase. since any of the available
performances is potentially part of a problem description, or a solution, as long as the source
and target tempos have not been specified. Thus, a proto case holds the information for
more than just one tempo transformation. More precisely, when the proto case contains
performances at n different tempos, any of them may occur as an input performance paired
with any other as output performance. If we exclude identity tempo transformations (where
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the same performance serves both as input and output performance), this yields n(n − 1)
possible tempo transformations.

To store the cases for all possible tempo transformations explicitly is inefficient. Firstly
because it would involve a vast multiplication of problem description data like the musical
phrase and its musical analysis, that are identical for many cases. Secondly, it is known
a priori that the usability of a particular case excludes the usability of many other cases,
namely all cases that solve tempo-transformations of the same phrase as the usable case, but
for source and target tempos that are very different from the source and target tempo of the
usable case. For example, when a case with a tempo transformation from 50 to 120 BPM
is useful for a particular problem (because these tempos are close to the source and target
tempos in the input problem description), it is clear that the inverse tempo transformation,
from 120 to 50 BPM will not be relevant, nor other any tempo combinations where the
source and target tempos are very different from 50 and 120 BPM respectively. In other
words, the case base would be cluttered with many cases of which only a very small number
can possibly be used per problem solving episode.

To deal with this problem, the musical information is stored in the system in the form of
proto cases. The proto cases are not used directly to solve tempo transformation problems;
Instead, they form the material from which a case base is constructed dynamically. Figure 5.2
shows a schematic view of a proto case, with the information that is contained in it. Note
that there is no explicit labeling of any data as being part of the problem description or the
solution. Rather, the performance information at all available tempos (T 1 · · ·T 4) is present.
The items of the left side, the tempo-specifications and the I-R analysis, will be used as
primary and secondary indices for retrieval, respectively (explained in section 5.2).

5.1.2 Cases

Cases, as opposed to proto cases, correspond to a specific tempo-transformation problem,
mentioning a source and a target tempo, and contain a solution for that problem, in the
form of a performance, and performance annotation at the target tempo.
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Another difference with proto cases is that cases provide solutions to tempo-
transformations of phrase segments instead of complete phrases.

This case layout is illustrated in figure 5.3. The solid boxes represent information that
is provided as input; the dashed boxes represent knowledge that is derived from the input
information; arrows denote the presence of structural relations between elements. The names
tagged with the superscript s pertain to the source tempo, and the names tagged with t
pertain to the target tempo.

Note that the I-R analysis, although present in the proto cases, is not present in the
actual cases, because it is used only in the proto case retrieval, not in the retrieval of cases.

5.2 Proto Case Retrieval

In the case retrieval phase, those cases that are expected to be for solving the current
problem are retrieved from the case base. Using the retrieved cases, in the reuse phase a
solution is constructed for the input problem. The retrieval phase in TempoExpress can be
divided into three steps: tempo filtering, melodic phrase comparison, and phrase segment
comparison. The motivation for these steps follows from the basic assumption in CBR that
similar problems have similar solutions (see section 2.6). This implies that to solve a new
problem, the retrieval step should return the cases with the most similar problems to the
input problem, since their solutions are assumed to be closest to the desired solution. Input
problem specifications in TempoExpress comprise primarily the source and target tempos for
the tempo-transformation, and the melody (and its analysis) of the performance to be trans-
formed. Comparing input performances (which are also part of the problem specification) is
not useful, since apart from the tempo, the cases do not exemplify any explicitly described
way of performing the melodies. Input performances do play a crucial role in the reuse phase
however.

Note that retrieval, when it is taken to refer to functional aspects of the CBR process,
is not necessarily a single processing phase that is carried out once. Case retrieval may
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happen in several non-consecutive steps (possibly interleaved with case reuse). Of the three
retrieval steps mentioned above, only the first two steps, tempo filtering and melodic phrase
comparison, are executed prior to case reuse, and only once per problem solving cycle (i.e.
once per tempo transformation). The last step, phrase segment comparison, is done once
for every input segment, and precedes the reuse of that segment.

5.2.1 Tempo Filtering

The most straight-forward step in the case retrieval is selecting the cases with performances
at the relevant tempos. It follows logically from the claim that lies at the heart of this work,
namely, that performances of the same melody are increasingly dissimilar with increasingly
different tempos (see section 1.1 for a more elaborate discussion). It can be concluded that
in order for a case to be relevant, it must have an input performance at approximately the
source tempo, and an output performance at approximately the target tempo. We will allow
for a certain mismatch between the tempos because requiring the tempos to be identical
is likely to be overly restrictive: the expressivity of a performance that sound good at a
particular tempo will probably also sound good for a tempo about 5 BPM faster or slower.
We have defined the tempo tolerance window to be 10 BPM in both upward and downward
directions. For example, a tempo transformation from 80 BPM to 140 BPM may serve as
a precedent for tempo transformation from 70 BPM to 150 BPM. This particular tolerance
range (which we feel may be too nonrestrictive), is mainly pragmatically motivated: In our
corpus, different performances of the same phrase are often at 10 BPM apart from each
other. Therefore, a <10 BPM tempo tolerance will severely reduce the number of available
precedents, compared to a ≥10 BPM tempo tolerance.

The tempo filtering procedure is applied before the proto-cases (see section 5.1.1) are
converted into actual cases. If a proto-case, which contains the performances at every avail-
able tempo for a particular phrase, does not have performances within the tolerance region
of both the source and the target tempo, it is considered as irrelevant for solving the cur-
rent problem. That is, no actual case can be constructed from that proto-case, as it should
contain a performance close to the source tempo as input-performance and a performance
close to the target tempo as output-performance. This procedure is illustrated in figure 5.4.
Vertical bars under the phrases represent performances of that phrase, at a tempo that is
proportional to the vertical position of the bars.

5.2.2 Melodic Phrase Comparison

After filtering the proto case base by the source and the target tempos of the input problem,
a melodic similarity value is calculated between the input phrase and the phrases in the
proto cases. The purpose of this rating is to make a rough assessment of the similarity on
the phrase level, so as to prevent the reuse of segments that coincidentally match well with
an input segment, but belong to a phrase that is radically different from the input phrase
as a whole. For example, one can imagine that a very short fragment of a slow ballad might
be similar to a fragment of a bebop style melody, but the expressive performance of the
fragment will likely be rather different, so the ballad will not make a good precedent for the
bebop phrase.
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Note that the purpose of making rough and global similarity measurements (e.g. for clus-
tering) requires different characteristics from a melodic similarity measure than for example
the typical music information retrieval task of finding the single most similar melody to a
given query. For the latter application, the main concern is that the discriminative power
of the measure is good in the highest similarity regions (e.g. when the compared melodies
are almost identical). On the other hand, for an overall similarity assessment of a set of
melodies, the similarity measure should also be discriminative when the melodies are not
very much alike (melodies within the same style can be rather different and may share only
some global features).
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In section 6.2.1 we present a comparison of melodic similarity measures using melody
representations with different levels of abstraction. It turns out that there is roughly a trade-
off between the two capabilities mentioned in the previous paragraph, and that more abstract
melody representations (like the I-R analysis and pitch contour) are more discriminative on
a wide range of divergent melodies than concrete representations such as absolute pitch with
duration. We have therefore chosen to use a similarity measure that compares I-R analyses
rather than the melodies at the note level. Since the I-R analyses are of a sequential nature,
the similarity between them can be assessed using the edit-distance. To do this it is necessary
to define the edit operations that can be applied to the individual I-R structures, and the
functions that compute the costs of such operations. Although specialized operations such
as consolidation and fragmentation have been proposed for computing the edit-distance
between note sequences [Mongeau and Sankoff, 1990], we decided to use the three canonical
edit operations, insertion, deletion, and replacement. Costs of deletion and insertion of I-
R structures are proportional to the number of notes spanned by the I-R structure, and
replacement is a weighted sum of differences between attributes of the I-R structures, plus
an additional cost if the I-R structures under replacement do not have the same label. The
latter cost is reduced if the labels are semantically related, that is, one of the structures is
the retrospective counterpart of the other.

The cost functions of the edit-operations are parametrized to allow for control and fine-
tuning of the edit-distance. They are defined as follows:

w(si, ∅) = αdSize(si) (5.1)
w(∅, sj) = αiSize(sj) (5.2)

w(si, sj) = αr


βLabelDiff (si, sj)+
γ |Size(si)− Size(sj ) | +
δ |Dir(si)−Dir(sj ) | +
ε |Overlap(si)−Overlap(sj ) |

 (5.3)

LabelDiff (si, sj) =

{
0 Label(si) = Label(sj )
ζ Label(si) = −Label(sj )
1 otherwise

where w(si, ∅) is the cost of deleting I-R structure si from the source sequence; w(∅, sj) is
the cost of inserting I-R structure sj into the target sequence; and w(si, sj) is the cost of
replacing element si from the source sequence by sj from the target sequence.

Label, Size, Dir, and Overlap are functions that, given an I-R structure, respectively
return its I-R label (encoded as an integer), its size (number of notes spanned), its melodic
direction, and its overlap (the number of notes belonging to both the current I-R structure
and its successor). LabelDiff is an additional function that determines the part of the
replacement cost due to difference/equality of I-R labels. The I-R labels are mapped to
integer values in such a way that the integer for the retrospective counterpart of a particular
label is always the negative of the integer of that label.

The parameters come in two kinds: Firstly there are the parameters that are used to
control the relative costs of the operations, αi, αd, and αr. For example by setting αi and
αd to relatively low values, the optimal alignment is more likely to include insertions and
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deletions of elements than replacements. The second kind of parameters, including β, γ, δ,
ε, and ζ, regulate impact of differences in attributes. For example, a relatively high γ value
will make the replacement cost function more sensitive to size differences (leading to higher
a cost if the sizes differ).

The parameter values of the cost functions were determined experimentally, by optimizing
them to make the edit-distance measure mimic human similarity judgments. This is reported
in section 6.2.2.

With this distance measure, the distance to the I-R analysis of the input problem is
assessed for the I-R analyses of every proto case. The proto cases closest to the input
problem are selected as the basis to form the case base. A parameter defines the proportion
of most similar proto cases that is retrieved. The parameter value used by default is 0.5.

5.2.3 Case Creation from Proto Cases

From the final set of proto cases that has been selected, the actual case base is constructed.
This consists in partitioning the music representations present in the proto cases, and storing
the segments in separate cases. In section 3.5 we have discussed various melody segmentation
strategies, and argued that non-overlapping, musical grouping (using the Melisma Grouper)
is the most appropriate strategy in our application. The melody segmentation has been
performed in the proto case construction/problem description phase, and is stored in the
proto case (in the form of note indices that represent the segment boundaries).

The melody segmentation is used as the primary segmentation, from which the segmen-
tations of other representations are derived. These secondary segmentations are derived by
employing the structural relations defined between the elements of different representations,
as outlined in section 4.4. For example, the performance annotation segment corresponding
to a given melodic segment is found by taking the first note and the last note ni and nj from
a given segment, and finding the corresponding performance-events, that is, the events ek

and el for which scoreReference(ek ,ni) and scoreReference(el ,nj ) holds, respectively. The
performance annotation segment is defined as the subsequence ek:l of the performance an-
notation e of the complete phrase. The corresponding performance segment is delimited by
the performed notes pm and pn for which scoreReference(ek , pm) and scoreReference(el , pn)
holds, respectively.

Segmentation of Performance and Performance Annotation

Due to the fact that the performance events that constitute the performance annotation
are not necessarily one-one correspondences between the melody and the performance, some
non-trivial situations may occur. For example, in case the first performance event of the
segment ek is preceded by any non-score-reference events (ornamentation, or insertion), the
first of these events will mark the beginning of the performance annotation segment rather
than ek. This situation is shown in figure 5.6 (left). The reason for joining those events at
the beginning of the segment rather than at the end of the previous segment is that from a
perceptual point of view, they are normally connected to the note that follows (especially in
the case of ornamentation events).

Figure 5.6(right) shows another situation, where the last note of the segment in the
performance is played as a consolidation with the first note of the next segment. In such
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Figure 5.6: Two examples of the derivation of performance annotation and performance
segments from melody segments

cases, the latter consolidated note will be included in the melody segment, since otherwise,
an inconsistent situation would occur, where a single note is performed as a consolidation.
Note that with melodic segmentations that follow musical grouping, this situation is very
unlikely, since the musician usually expresses the musical structure of the melody to some
extent, e.g. by a short silence. On the other hand, a consolidation event that bridges the
segment boundaries effectively masks the musical grouping structure, and thus is improbable.

5.3 Constructive Adaptation

In this step a performance of the input score is generated at the target tempo, based on
the input performance and the set of matching cases. Constructive adaptation (CA) [Plaza
and Arcos, 2002] is a technique for case reuse that constructs a solution by a search process
through the space of partial solutions of the problem. Partial solutions are represented as
states. Furthermore, a ‘hypothesis generation’ function is defined for generating a set of
successor states for a given state. The search process is started by defining an initial state
that corresponds to the empty solution, the state where no part of the solution is configured.
The state space is constructed by applying the hypothesis generation function exhaustively
to the initial state and its (direct and indirect) successors. A state is a goal state when it
satisfies the constraints defined by the input problem, tested by a ‘goal test’ function. The
order of expansion of states is controlled by a ‘hypothesis ordering’ function, that orders the
states in a best-first manner. The constructive adaptation process is expressed in pseudo
code below (adapted from [Plaza and Arcos, 2002]):

Initialize OS = (list (Initial-State P))

Function CA(OS)

Case (null OS) then No-Solution

Case (Goal-Test (first OS)) then (S2C (first OS))

Case else

Let SS = (HG (first OS))

Let OS = (HO (append SS (rest OS)))

(CA OS)
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The functions HG and HO realize hypothesis generation and hypothesis ordering, respectively.
Domain knowledge, as provided by past cases, is typically employed inside these two func-
tions. For example, given the input problem, cases can be retrieved and reused to propose
a solution to a part of the problem. They may also be used to determine the order of
expansion of states. But the employment of domain knowledge is not limited to cases.
Domain-knowledge may also be stated in the form of rules, or otherwise.

The variables OS and SS are the lists of open states (yet to be expanded) and successor
states (the states resulting from the current expansion). The function Initial-State maps
the input problem description P into a state. The function S2C maps the solution state
(the state for which Goal-Test succeeded) into the configuration of the solution. Although
the use of domain knowledge is normally most prominent in the functions HG and HO, the
functions S2C, Initial-State, and Goal-Test are also domain-specific.

In TempoExpress states have three components: A list of input problems and a list of
corresponding solutions (the input problems and solutions are of the kind that cases contain,
see figure 5.3), and lastly, a list of quality values for every solution. The quality values are
numbers in the range [0, 1] that indicate the estimated quality of the corresponding solutions.
A partial solution to a phrase input problem is defined as a state where zero or more of the
(segment) input problems have a corresponding solution and quality. In the initial state,
none of the input problems have a solution (and hence no quality estimate).

To expand this state into successor states, an input problem is selected from the set
of unconfigured input problems, and solutions are generated for this problem. Different
solutions can be generated, using different retrieved cases. The procedure is expressed as
pseudo-code below:

Function HypothesisGeneration(State)

NewStates = emptySet

Problem = (selectUnconfiguredInputProblem State)

Cases = (retrieveRelevantCases Problem)

For each Case in Cases

Let Solution = (solve Problem Case)

Let Quality = (quality S)

NewStates = (append (makeState Problem Solution Quality) NewStates)

NewStates

The function selectUnconfiguredInputProblem picks the input problem for which solu-
tions will be constructed. The current implementation of the function picks the first uncon-
figured input problem it encounters in the list. The retrieveRelevantCases function uses
the case base that was constructed based on the filtered set of proto cases, to find the cases
with phrase segments that best match the phrase segment of the input problem. Each of
the retrieved cases are then used in the solve function to construct a new solution for the
current input problem. Section 5.4 explains the functionality of retrieveRelevantCases
and solve in more detail.

The process of state expansion/hypothesis generation is illustrated in figure 5.7. The
figure shows states with three input problems (the score fragments), where different states
provide different solutions to the problems (the solutions being the performed notes, repre-
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Figure 5.7: Constructive adaptation: The segment-wise construction of the solution through
state expansion

sented by the bars underneath the score).
When a state is reached that satisfies the goal state criteria, the solutions are con-

catenated to form the solution for the phrase problem specification. Otherwise, the state
expansion is repeated, by solving one of the remaining unsolved input problems.

The goal state criteria require that a state has a solution for every input problem, and
that the overall estimated solution quality of the solutions is maximal. The quality of
a solution is estimated as the proportion of notes in the problem score segment for which
performance events could be inferred based on the retrieved case. This proportion depends on
the matching quality between problem score and retrieved score segment, and the availability
of a matching adaptation rule, given the performance annotations in the problem and the
case.

Independence is assumed between the solution qualities of the input problems, and thus
the solution quality of the solution to a phrase input problem is defined as the average quality
of the segment solutions, weighted by the segment length. Therefore, a best first search that
expands states in the order of their solution quality is guaranteed to find the solution with
maximal quality.

Although as of now no constraints have been defined for regulating interdependence of
segment solutions, note that such constraints can easily be incorporated through CA. A
constraint can take the form of a rule that prescribes a decrease or increase of the overall
solution quality, based on some (probably high level) description of two or more segment
solutions. Of course this may introduce local maxima in the search space, and the search
strategy employed will become more crucial.

5.4 Case Adaptation at Phrase Segment Level

In this section we will explain in detail how a solution is obtained for a segment input prob-
lem. This is the process that constitutes the state expansion mentioned before. Figure 5.8
shows an example of the reuse of a retrieved case for a particular input segment. We will
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explain the numbered boxes in the figure one by one.

5.4.1 Melody Segment Retrieval/Alignment

Box 1 denotes the comparison of the input score segment to those of the cases in the case
base in order to find the case that is most similar to the input problem. The similarity is
assessed by calculating the edit-distance between the score segments. The edit-distance now
operates on notes rather than on I-R structures, to have a finer grained similarity assessment.

In box 2, a mapping between the input segment and the best matching retrieved segment
is made, using the optimal alignment found through the calculation of the edit-distance that
was used in box 1 to compute the similarity. The purpose of the edit-distance is thus
twofold: To compute the distance between the problem and the cases, and to derive a
mapping between the score segment and the retrieved segment. There is a clear relation
between the two. The mapping is of prime importance, since the more correspondences
can be established between the notes of the input segment and the notes of the retrieved
segment, the more likely it is that the case can be reused (the correspondences are necessary,
not sufficient conditions for reuse). By configuring the cost of edit-operations in such a way
that correspondences are preferred over insertions/deletions, at the same time one ensures
that the most reusable cases are rated as closest to the problem.

Of course there is a trade-off between the number of correspondences in the mapping,
and the effectivity of reuse, since not all cases are expected to provide good solutions for
the current problem (e.g. cases with melodies that are radically different from the input
segment). Ideally, correspondences between problem segment notes and retrieved segment
notes should only be established when it benefits the solution. Therefore, an edit cost
scenario that facilitates replacements too much is not a good option either.

5.4.2 Linking of Performance Events

In box 3, the performance annotations corresponding to the relevant tempos are extracted
from the retrieved segment case and the input problem specification (both the source tempo
T s and the target tempo T t for the retrieved segment case, and only T s from the input
problem specification).

Box 4 shows the linking of the performance events of the retrieved segment at T s and
T t to the performance events of the input segment at T s . From the way the performance
event scheme was defined it follows that the general form of a performance of a score m =
(m0, · · · ,mt) is:

(P0,S0, · · · ,Pt,St) (5.4)

where Pi ∈ {O, I, ∅}, and Si ∈ {D,T,C, F}, 0 ≤ i ≤ t. This is convenient because it allows
us to group performance events per score note. The performance events corresponding to a
note mi are thus (Pi,Si). That is, a note is always represented in the performance annotation
by zero or one (non-correspondence) performance reference event, followed by exactly one
score reference event1.

1Actually the scheme does not prohibit multiple insertion events to occur subsequently or after the last
score reference event. But since this never occurred in the corpus, we eliminated these possibilities by
imposing that an insertion event must always precede a score reference, the constraint that also holds for
ornamentation events.
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Let (mi, · · · ,mj) be the subsequence of a score m = (m0, · · · ,mt), and PT (m) =
(p0, · · · , pv) be the performance of m at tempo T , then we define:

Definition 1 The slice PT ((mi, · · · ,mj)) of m is the unique subsequence (pk, · · · , pl) of
PT (m), having the form (Pi,Si, · · · ,Pj ,Sj) where Si is the score reference event referring
to mi, and Pi is any performance reference event that precedes Si or null in case Si is not
preceded by a performance reference event.

The mapping between the input segment and the retrieved segment is used to determine
which performance events from the retrieved case belong to which performance event from
the input problem, as shown in box 4 from the figure. This is done as follows: Suppose that
the alignment of the input score m and the retrieved score n determines that the elements
(mi, · · · ,mj) correspond to (nk, · · · , nl). The mapping be either one-to-one (i = j, k = l),
one-to-many (i = j, k < l), or many-to-one (i < j, k = l). Given a performance of m at
tempo T s, and two performances of n at tempos T s and T t respectively, we define:

Definition 2 The annotation triple of (mi, · · · ,mj) and (nk, · · · , nl) for tempos T s and T t

is the triple of slices (PT s((mi, · · · ,mj)), PT s((nk, · · · , nl)), PT t((nk, · · · , nl)).

An annotation triple 〈PT s(m), PT s(n), PT t(n)〉 can be read intuitively as saying: a score
fragment (usually just a single note) n was played as PT s(n) at tempo T s , and played as
PT t(n) at tempo T t , while a melodically similar score fragment m was played as PT s(m)
at tempo T s . In order to infer from this how to play m at tempo T t , i.e. PT t(m), two
potential difficulties must be overcome. Firstly, it is possible that although n and m were
similar enough to be matched, the number of notes in n and m differs (as occurs in the
example in figure 5.8). Secondly, even when n and m would be identical, it still may occur
that PT s(n) and PT s(m) are very different. For example, in one performance a note may
be prolonged, and preceded by an ornamentation, whereas it is deleted in the other. This
suggests that although the input problem and case are similar with respect to their score,
their performances are very different.

In case the mapping is not perfect and a note of the input segment is not matched to any
notes of the retrieved segment, that note has no corresponding annotation triple. Such gaps
are filled up by resorting to UTS. That is, PT t(m) is constructed from PT s(m) by scaling
the duration (in seconds) of the events in PT s(m) by the proportion T s

T t , leaving all other
expressive features unchanged.

5.4.3 Adaptation Rules for Establishing Analogies

To deal with these situations, we have defined a set of adaptation rules (exemplified in box 5),
that given an annotation triple 〈PT s(m), PT s(n), PT t(n)〉, determine PT t(m). The rules are
intended to establish analogies between the tempo transformations of two matched melodic
fragments, based on the perceptual similarity of the performances. We will illustrate this
using the example adaptation rules that are shown in figure 5.8.

The lower rule infers the fragmentation event (F ). This rule states that if you have
an annotation triple 〈T,C, TT 〉, you may infer F . The motivation for this is that from a
perceptual point of view (ignoring the score), changing a performance from a consolidation
event (C) to two transformation events (T ) amounts to changing from one performed note to
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two performed notes. To obtain this effect when the initial performance is a single performed
note (T ), a fragmentation event (F ) is needed, so that two notes occur in the performance.

The upper rule infers OT , based on the annotation triple 〈T, TT, OTT 〉. The annotation
triple indicates that in the retrieved case two notes were performed as two transformation
events at tempo T s and similarly at tempo T t , but with an ornamentation preceding the first
transformation event. The net result is thus the introduction of an ornamentation in front.
Since the performance of the input problem at tempo T s is T , the inferred performance at
tempo T t is therefore OT .

The examples provided above are actually instantiations of abstract rules. The abstract
rule system is defined as follows: First, a symmetric and reflexive perceptually-similar -
relation PS on performance event sequences is defined on the alphabet of score reference
events A = {T,C, F, D}. We defined PS to be:

PS = {(T,C), (C, T )(TT, F ), (F, TT )} ∪ {(X,X) | X ∈ A} (5.5)

This relation is then used to specify three abstract adaptation rules that infer an output
performance from an annotation triple:

〈X,Y, OY〉 → OX ⇔ {X,Y} ∈ PS (5.6)
〈X,Y, IY〉 → IX ⇔ {X,Y} ∈ PS (5.7)
〈X,Y,Z〉 → V ⇔ {X,Y} ∈ PS ∧ {Z,V} ∈ PS (5.8)

The first rule governs the introduction of ornamentation events, henceforth called Orna-
mentation Introduction (OI). The second rule governs the introduction of insertion events,
henceforth called Insertion Introduction (II). The last rule allows the substitution of PT s(m)
for any correspondence event that is perceptually similar to PT t(n), whenever PT s(m) and
PT s(n) are perceptually similar. We will call this rule Analogy Transfer (AT). Since the
rules are based on a general and theoretic conception of perceptual similarity, we believe
them to be general, that is, not specific to the domain of jazz music we currently deal with.

When an annotation triple matches none of the adaptation rules, this implies that the
performances of the retrieved case is too different from the performance of the input problem
to be reused. In this case, UTS will be applied as a default transformation.

The quality of the solution found in this way, is defined as the proportion of notes in the
input segment for which a matching adaptation rule was found.

5.4.4 Transfer of Expressive Values

Until now we have focused only on the derivation of the type of performance event to form
the performance annotation for the output performance. To construct the actual output
performance from this performance annotation it is not sufficient to determine the type of
the event; Concrete values must also be derived for the attributes of the events, like onset-
deviation and duration deviation (in the case of correspondence events), and the dynamics
of the performed notes.

The score, performances, and their annotations of the input and retrieved segment are
divided into smaller parts by the score alignment between the two segments, leading to
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a sequence of annotation triples as explained in subsection 5.4.2. If a given annotation
triple (PT s(m), PT s(n), PT t(n)) has matched an adaptation rule, this implies that PT s(m)
and PT s(n) are perceptually similar. The process of determining PT t(m) depends on the
adaptation rule that matched. Nevertheless, all three adaptation rules are based on the
transfer of expressive features from PT t(n) to PT t(m). We first specify how the transfer is
realized for the pairs of performance event sequences that belong to the PS relation. Note
that these are all instantiations of the general form specified in equation (5.4), where the
performance reference parts (P0, · · · ,Pt) are all empty.

Let m = (m0, · · · ,mt) be the sequence of score notes of input slice PT t(m) =
(p0, · · · , pv), and let n = (n0, · · · , nu) be the sequence of score notes of retrieved slice
PT t(n) = (q0, · · · , qw). Whenever the context implies that either m, n, PT t(m) or PT t(n)
consists of a single performed note we refer to that note by m, n, p, and q (without sub-
scripts) respectively. The transfer of respective onset, duration, and dynamics values are
given for each pair of slices in PS:

(T, T ) When both PT t(m) and PT t(n) are single transformation events, implying m = (m)
and n = (n), the transfers of onset, duration, and energy are respectively defined as:

O(p) = O(m) +O(q)−O(n) (5.9)

D(p) = D(m) · D(q)
D(n)

(5.10)

E(p) = E(q) (5.11)

(T,C) When PT t(m) is a consolidation event and PT t(n) is a transformation event, the
transfers of onset, duration, and energy are defined as:

O(p) = O(m0) +O(q)−O(n) (5.12)

D(p) =
∑

m∈m

D(m) · D(q)
D(n)

(5.13)

E(p) = E(q) (5.14)

(C, T ) When PT t(m) is a transformation event and PT t(n) is a consolidation event, the
transfers of onset, duration, and energy are defined as:

O(p) = O(m) +O(q)−O(n0) (5.15)

D(p) = D(m) · D(q)∑
n∈nD(n)

(5.16)

E(p) = E(q) (5.17)
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(F, TT ) When PT t(m) is a pair of transformation events and PT t(n) is a fragmentation
event, the transfers of onset, duration, and energy of each played note are defined as:

O(pi) = O(m) +O(qi)−O(n0) 0 ≤ i ≤ 1 (5.18)

D(pi) =
∑

m∈m

D(m) · D(qi)
D(mi)D(n)

0 ≤ i ≤ 1 (5.19)

E(pi) = E(qi) 0 ≤ i ≤ 1 (5.20)

(TT, F ) When PT t(m) is a fragmentation event, and PT t(n) is a pair of transformation
events, the transfers of onset, duration, and energy of each played note are defined as:

O(pi) = O(mi) +O(qi)−O(n) 0 ≤ i ≤ 1 (5.21)

D(pi) = D(m) · D(qi)∑
n∈nD(n)

0 ≤ i ≤ 1 (5.22)

E(pi) = E(qi) 0 ≤ i ≤ 1 (5.23)

(D,D) When PT t(m) and PT t(n) are both deletion events, no transfer of expressive values
is necessary, since the score note will not be performed.

(F, F ) When PT t(m) and PT t(n) are both fragmentation events, the transfer is:

O(pi) = O(m) +O(qi)−O(n) 0 ≤ i ≤ 1 (5.24)

D(pi) = D(m) · D(qi)∑
q∈PT t (n)D(q)

0 ≤ i ≤ 1 (5.25)

E(pi) = E(qi) 0 ≤ i ≤ 1 (5.26)

(C,C) When PT t(m) and PT t(n) are both consolidation events, the transfer is:

O(p) = O(m0) +O(q)−O(n0) (5.27)

D(p) =
∑

m∈m

D(m) · D(q)∑
n∈nD(n)

(5.28)

E(p) = E(q) (5.29)

Ornamentation Introduction

The matching of the OI rule conditions that PT t(n) = (Pn,Sn) where Pn = O, and
Sn ∈ {D,T, TT, C, F}. The consequent of the rule states that PT t(m) = (O,Sm),
where Sm ∈ {D,TT, C, F} is determined by the input performance at the source tempo
PT s(m) = (Pm,Sm). Furthermore, the rule conditions that (Sm,Sn) ∈ PS, hence the
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transfer of expressive values from Sn to Sm can be realized through the corresponding for-
mulae described above.

The ornamentation event is introduced before the score reference event Sm. The ex-
pressive values for the ornamentation are adapted from the ornamentation Pn in PT t(n).
The number of notes that form the ornamentation k is equal to the number of notes in Pn.
Since the ornamentation is not a score reference event, there is no score note to compute the
onsets based on the onset deviations from the score note. To solve this problem we compute
the onset deviations of the ornamentation notes relative to the next score note (m0 and n0

respectively for the input and the retrieved slices). Just as the onsets, the pitches of the
ornamentation note cannot be transferred as absolute values, hence we take same approach
to determine the pitches of the ornamentation notes.

O(pi) = O(m0) +O(qi)−O(n0) 0 ≤ i ≤ k (5.30)
P(pi) = P(m0)− P(qi) + P(n0) 0 ≤ i ≤ k (5.31)
D(pi) = D(qi) 0 ≤ i ≤ k (5.32)
E(pi) = E(qi) 0 ≤ i ≤ k (5.33)

Insertion Introduction

The transfer of expressive values for a matching II rule is analogous to that of OI. The
difference is that an insertion only refers to a single performance note. Since the II rule
conditions that only one insertion event occurs, the transfer functions (5.30), (5.31), (5.32),
(5.33) for onset, pitch, duration, and energy can be used, setting k = 0.

Analogy Transfer

The AT rule conditions that (PT t(m), PT t(n)) ∈ PS. The transfer of expressive values can
therefore be done as in the OI and II rules, by using the appropriate transfer functions (5.9)–
(5.29).

Note that, depending on the specific form of PT t(n), multiple instantiations may be
derived for PT t(m) based on PS. For example, if PT t(n) = (T ), both PT t(m) = (T ) and
PT t(m) = (C) follow from PS. The choice for one of the two instantiations is determined
by the alignment between the input score and the retrieved score. In a 1-1 alignment for
example, m = (m), so it is not consistent to derive a consolidation event in that situation,
because that would require more than one input score notes.

Preservation of Monophony

The lengthening and displacement of performed notes, as well as the introduction of orna-
mentation and insertion events may lead to temporal overlap between consecutive notes in
the performance. Such situations cannot be rendered by saxophone, as it is a monophonic
instrument. Therefore, note overlap is eliminated by shortening the duration of the former
of two overlapping notes by the amount of overlap.

This approach is partly justified by findings of Timmers et al. [2002], that ornamental
notes tend to steal their time from the previous notes.
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Concluding Remarks

We want to make some final remarks on the expressive transfer approach explained above,
especially on its current limitations, and possible enhancements and elaborations.

For simplicity fragmentations and consolidations have been limited to two notes. In
principle fragmentations and consolidations may involve more than two notes. It is easy to
generalize the expressive transfer approach to k notes for consolidation and fragmentation
events.

The formalization of the ‘perceptually similar’ concept by the PS relation is defined on
the event level, where events are treated as nominal values. This relation obviously captures
perceptual similarity only roughly. For example, it states that any two transformations
events (T) are perceptually similar. In reality the perceived similarity greatly depends on
the actual deviations in onset, duration, and energy. A more refined interpretation of the
concept can be envisioned that also includes a ‘perceptually similar’ relationship for note
attributes. Since the comparison of such quantitative attributes is not a crisp matter, this
will add a fuzzy component to the relationship. As a consequence, PS membership will
be graded. Case adaptations that were made based on low-valued PS memberships are
obviously less trustworthy than those based on high-valued PS memberships. This difference
can be taken into account by making adaptation quality (see subsection 5.4.3) proportional
to PS membership.
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Chapter 6

Experimentation

This chapter describes an experimental analysis and evaluation of the different components
of TempoExpress. Section 6.1 deals with the knowledge acquisition component, and describes
the results of optimizing of the performance annotation model we have proposed in chap-
ter 3. Section 6.2 covers two experiments on melodic similarity, the most important aspect
of the case retrieval step. Firstly, it provides an empirical comparison of several melodic
similarity measures that may be used for case-retrieval. Secondly, the results of the MIREX
2005 contest for symbolic melodic similarity are discussed, where our edit-distance based
comparison of I-R analyses is compared to several different approaches to melodic similarity
computation. Finally, in section 6.3 a systematic test of the proposed problem-solving pro-
cedure is carried out in order to assess the quality of the tempo-transformations performed
by TempoExpress.

6.1 Optimization of Automatic Performance Annota-
tion

In this section we report experiments done in order maximize the accuracy of the automatic
derivation of performance annotations for performances that we proposed in section 4.3.
The performance annotation method can be fine-tuned by adjusting the parameters in the
definition of the edit-operation cost functions.

We remark that even without optimization (that is, with arbitrary parameter settings),
the resulting performance annotations are not wholly incorrect in general. This indicates
that the cost model is essentially adequate, in the sense that the terms that figure in the
cost functions, like the absolute differences of pitch, and duration, are terms that, when
minimized, lead to an intuitive alignment between performed notes and score notes. The
parameters in the cost model balance the relative importance of the terms. When the
performance is close to the score, the balance is not crucial, and many parameter settings
will yield the correct result (a sequence of transformation events). The parts where the
balance is of importance, are where for example ornamentations or consolidations occur. In
such situations, random parameter settings often interpret the performance wrongly, e.g. an
ornamentation is interpreted as several insertion events, or consolidations are interpreted as
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combinations of deletion and transformation events.
Manually tuning the parameters is possible for a small set of performances, but this

becomes unfeasible for larger sets (adjustments that improve the annotation of one perfor-
mance lead to incorrect annotations of other performances). Therefore, we have employed an
evolutionary approach to obtain a good parameter setting. The idea of the evolutionary op-
timization of the parameter values is simple: an array of the parameter values can be treated
as a chromosome. The number of errors produced in the annotation of a set of performances
using that set of parameter values, is inversely related to the fitness of the chromosome.
By evolving an initial population of (random) chromosomes through crossover, mutation
and selection, we expect to find a set of parameter values that minimizes the number of
annotation errors, and thus improves automatic performance annotation.

We are interested in two main questions. The first is whether it is possible to find a
parameter setting that works well in general. That is, can we expect a parameter setting that
worked well for a training set to perform well on unseen performances? The second question
is whether there is a single setting of parameter values that optimizes the annotations. It
is also conceivable that good annotations can be achieved by several different parameter
settings.

6.1.1 Experiment Setup

We have run the genetic algorithm with two different (non-overlapping) training sets, both
containing twenty performances from the musical corpus described in section 3.2. The per-
formances were phrases from the songs (Body and Soul, and Once I Loved), performed at
different tempos. For each of the performances, the correct annotation was available (all
annotations were manually checked and where necessary corrected). The fitness of the pop-
ulations was assessed using these annotations as a reference.

The fitness evaluation of a population (consisting of 20 chromosomes) on the training
set is a rather time consuming operation. Therefore, it can take a long time before a good
solution is obtained, starting the evolution with a randomly initialized population. In an
attempt to solve this problem, we initialized the population with solutions that were trained
on the individual phrases of the training set (which is a much faster procedure). Assuming
that the solution optimized for one phrase may in some cases work for other phrases, this
speeds up the time needed to find a good solution for the whole training set.

A new generation is generated from an old generation as follows: From the old generation
(consisting of N chromosomes), the k best chromosomes are selected (where k is dependent
on the distribution of the fitness across the population); Then, N − k new chromosomes are
created by a cross-over of the selected chromosomes; The newly generated chromosomes are
mutated (multiplying each parameter value by a random value), and the N − k mutated
chromosomes, together with the n (unchanged) chromosomes from the old generation, form
the new generation.

6.1.2 Fitness Calculation

The fitness of the chromosomes is calculated by counting the number of annotation errors
using the parameter values in the chromosome. For example, assume that the correct anno-
tation of a melodic fragment is (T, T,C, T ), and the annotation of that fragment obtained

90



 0

 0.2

 0.4

 0.6

 0.8

 1

β γ δ αd αi αo αt αc αf

Train1a
Train1b
Train1c
Train2a
Train2b

Figure 6.1: Estimated parameter values for two different training sets (Tr1 and Tr2). Three
runs were done for each set (a, b, and c). The x-axis shows the nine different parameters of
the cost functions (see section 4.3.1). For each parameter the values are shown for each run
on both training sets

by using the parameter values of the chromosome is (T, T, T,D, T ) (that is, a consolida-
tion operation is mistaken for a transformation and a deletion operation). The C does not
match to an element in the second sequence, and the T and D don’t match to elements
in the first sequence and thus three errors occur. To count the errors between the correct
and the predicted annotations (which are represented as sequences of symbols), we use the
edit-distance (don’t confuse this use of the edit-distance to compare annotations with the
use of the edit-distance to generate annotations).

For a given set S of performances (for which the correct annotations are known), we
define the fitness of a chromosome c as:

fit(c) =
1

E(c, S) + 1

where E(c, S) is the total number of errors in the predicted annotations for S using the
parameter values in c. The fitness function fit ranges from zero to one. Obviously, a fitness
value of one is the most desirable, since it corresponds to zero annotation errors.

6.1.3 Results

The training sets Tr1 and Tr2 both consist of 20 annotated performances, amounting to a
total 488 performance events for Tr1 and 479 for Tr2. For each of the two training sets
the evolution algorithm was run three times. The resulting parameter settings are shown in
figure 6.1. Table 6.1 shows the number of annotation errors each of the parameter settings
produced on the training sets, and on a test set of 35 performances (875 performance events),
none of which occurred in Tr1 or Tr2. The first table row shows the number of errors on
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Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Errors on Train 19 (3.89) 9 (1.84) 10 (2.05) 11 (2.30) 12 (2.51) 11 (2.30)
Errors on Test 19 (2.17) 26 (2.97) 30 (3.43) 19 (2.17) 32 (3.66) 65 (7.43)

Table 6.1: Annotation errors produced by the obtained solutions for three different runs
(denoted by the letters a, b, and c) on two different training sets (Tr1 and Tr2) and a test
set.

Tr1a Tr1b Tr1c Tr2a Tr2b Tr2c

Tr1a
Tr1b -0.32
Tr1c -0.70 0.17
Tr2a 0.92 -0.02 -0.61
Tr2b -0.32 -0.33 0.76 -0.33
Tr2c -0.28 0.68 0.07 -0.12 -0.47

Table 6.2: Cross-correlations of the parameter values that were optimized using two different
training sets (Tr1 and Tr2), and three runs for each set (a, b, and c)

the set that the solutions were trained on. The second row shows the number of errors on
the test set. The values in parentheses are the errors as a percentage of the total number of
performance events in the data set.

The average number of annotation errors on the test set is about 32 on a total of 875
annotation elements in the test set, an error-percentage of 3.66%. This is only slightly
higher than the error-percentages on the training sets: 2,60% for Tr1, and 2,37% for Tr2
(averaged over three runs), and substantially lower than the average error-percentage of
random parameter settings on the test set, which is 13.70%.

Table 6.2 shows the pair-wise correlations of the parameter values found in each of the
runs. As can be seen from the cross-correlations in the table, the parameter settings did not
all converge to the same values. Nevertheless, there were some cases in which the parameters
were highly correlated. In particular the solutions found in runs Tr1a, and Tr2a are highly
similar (this can be easily verified by eye in figure 6.1). A rather strong correlation is
also observed between the solutions found in Tr1c and Tr2b, and those in Tr1b, and Tr2c.
It is interesting that the correlated solutions were obtained using non-overlapping sets of
performances. This is evidence that the solutions found are approximations of a single
parameter setting that is valid for the performances in both training sets. In the case of
the solutions of Tr1a and Tr2a, the approximated parameter setting may also have a more
general validity, since both solutions have a low error number of annotations on the test set
as well (see table 6.1).

6.1.4 Conclusions

The two questions we wanted to answer through this experiment were whether it is possible
to find a parameter setting that has a broader validity than just the set of performances
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it was optimized for, and whether there is a single parameter setting that optimizes the
annotations. All solutions from different trials on two non-overlapping sets of performances
substantially improved the quality of annotation of a test set over random parameter settings.
In particular, whereas random parameter settings have an annotation accuracy of around
87% on average, the average accuracy of optimized parameter settings is 96% on the test set.
Affirming the first question, we conclude that it is indeed possible to improve the accuracy
of the automatic performance annotation mechanism, and that the tuned cost functions also
show improved accuracy on unseen performances.

Moreover, some cross-correlations were found between some parameter settings that were
optimized for different training sets. This suggests that they are approximations of a pa-
rameter setting that works well for a larger group of performances. In general however, the
solutions did not all converge to a single set of parameter values, implying that there are
different, equally valid, parameter settings.

6.2 Melodic Similarity

This section is devoted to experiments on melodic similarity. It consists of two main parts.
The first part is a mostly qualitative comparison of different melody representations for
computing melodic similarity. In particular, we investigate how melodic similarity based on
I-R representations relates to traditional melody representations such as pitch intervals and
melody contour in terms of abstraction. In the second part we report how the I-R based
melodic similarity measure was tuned to predict human similarity ratings on a set of queries
from a database of melodic incipits, and discuss the results of this measure in the MIREX
2005 contest for symbolic melodic similarity.

6.2.1 Looking for a Good Abstraction Level

It has been argued that adequate comparison of melodies requires abstraction from the
surface of the melodies (the melody as a sequence of notes). For example, in applications
such as pattern discovery in musical sequences [Cope, 1991], [Hörnel and Menzel, 1998], or
style recognition [Hörnel and Menzel, 1998], it has been established that melodic comparison
should take into account not only the individual notes but also structural information of the
melody based on music theory and music cognition [Rolland, 1999].

Common ways to view a melody in a more abstract way are by representing its pitch
contour, either as a sequence of pitch intervals, or as a sequence of registral directions
(taking only the sign of the pitch intervals). Pitch intervals eliminate the absolute pitch
of the melody, so that for example the interval representation of a transposed variant of a
melody will be identical to the original melody. Registral direction representations not only
eliminate absolute pitch, but also the differentiation between pitch intervals.

The I-R analysis of a melody can also be regarded as an abstract representation of the
melody. The I-R structures that correspond to particular melodic fragments convey both
relations between subsequent pitch intervals, and the patterns of implication and realization
of melodic expectations formed by those intervals. In addition, rhythmic and metric structure
is reflected in the chaining and combining of I-R structures. As such, it is interesting to see
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how the I-R analysis as a basis for assessing melodic similarity compares to the more common
representations for melody similarity.

In the present experiment we compare a similarity measure based on the I-R represen-
tation against similarity measures based on interval and registral direction contours, and
based on the note representation. We use the edit-distance as a method of comparison for
all of the representations.

Comparison Criteria

The focus of the experiment is on the discriminatory power of the measures. We use this
term informally to refer to the degree to which a similarity measure is informative about the
inherent structure of a set of data. Even if the structure is unknown, a similarity measure
whose pairwise similarity values on a set of melodies are diverse can be said to have a higher
discriminatory power than a measure whose pairwise similarity values are all identical or
near-identical, in the sense that the former is more ‘in focus’ for the data at hand. This
illustrates that the term discriminatory power is relative to the data set under inspection, and
more generally, to a desired range of similarity. A geometric example may clarify this point.
To express the distances between points in a plane, we commonly compute the Euclidean
distance between the points. Another distance measure is obtained by taking the square of
the Euclidean distance. It will be clear that, compared to the unsquared Euclidean distance,
this measure is not as discriminative for points that are close together as for points that
are further apart, because small distance values are compressed, and large distance values
are stretched further apart by the square function. Conversely, taking the logarithm of the
Euclidean distance yields a measure that is more sensitive in the range of small values, and
less in the range of large values. This shows that the discriminatory power of a measure may
be localized in a certain range.

We will look at the discriminatory power of the measures both globally, and within the
range of nearly identical phrases. We define the global discriminatory power of a measure as
the diversity of the pairwise similarity values for a given data set. This can be measured as
the entropy of the similarity value distribution: Let p(x), x ∈ [0, 1] be the normalized value
distribution of a distance measure D on a set of phrases S, discretized into K bins, then the
entropy of D on S is:

H(D) = −
K∑

k=0

p(k) ln p(k)

where p(k), is the probability that the distance between a pair of phrases is in bin k.
To measure the discriminatory power for near-identical phrases we employ the labeling

that is available in the used data set (see the next subsection) that allows us to identify
which phrases are very similar to each other. We define the discriminatory power as the
difference between the similarity value distribution of pairwise comparisons between near-
identical phrases to that of pairwise comparisons between non-related phrases. In other
words, the discriminatory power according to this criterion is the ability of the measure to
systematically assign lower distance values to near-identical phrases than to phrases that
are not near-identical. The distributions are compared using the Kullback-Leibler (K-L)
divergence, a measure of distance between two distributions. In particular, when computing
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the distance measure D over a set of phrases S, let

P = { {s1, s2} | s1, s2 ∈ S ∧ s1 6= s2 ∧ nearIdentical(s1, s2) }

be the set of pairs of near-identical phrases from S, and let

Q = {(s1, s2) | s1, s2 ∈ S ∧ s1 6= s2} − P

be the set of remaining pairs from S. Furthermore, let p(x), x ∈ [0, 1] and q(x), x ∈ [0, 1] be
the jointly normalized discretized value distributions of D over P and Q respectively. Then
the K-L divergence is defined as:

KLD(P ||Q) =
K∑

k=0

p(k) log
p(k)
q(k)

Experiment Setup

The comparison of the different similarity measures was performed using 124 different mu-
sical phrases from 40 different jazz songs from the Real Book [The Real Book, 2004](see
appendix C). The musical phrases have a mean duration of eight bars. Among them are jazz
ballads like ‘How High the Moon’ with around 20 notes, many of them with long duration,
and Bebop themes like ‘Donna Lee’ with around 55 notes of short duration. Jazz standards
typically contain some phrases that are slight variations of each other (e.g. only different
beginning or ending) and some that are more distinct. This is why the structure of the song
is often denoted by a sequence of labels such as A1, A2 and B, where labels with the same
letters denote that those phrases are similar. We will call such variations of the same phrase
phrase variants henceforward.

The similarity measures were implemented as edit-distances, each one using specialized
cost functions for the type of melody representation. The note distance operates on sequences
of notes, having the attributes pitch, duration, and onset. The cost functions of the note
distance are:

w(si, ∅) = D(si) (6.1)

w(∅, tj) = D(tj) (6.2)

(6.3)

w(si, tj) =

0BB@
|P(si)− P(tj) | +

|D(si)−D(tj) | +

|O(si)−O(tj) |

1CCA (6.4)

w(si−K:i, tj) =

0BB@
PK

k=0 |P(si−k)− P(tj) | +

|D(tj)−
PK

k=0 D(si−k) | +

|O(si−K)−O(tj) |

1CCA (6.5)

w(si, tj−L:j) =

0BB@
PL

l=0 |P(si)− P(tj−l) | +

|D(si)−
PL

l=0 D(tj−l) | +

|O(si)−O(tj−L) |

1CCA (6.6)
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In this experiment, we wish to test not only pure interval and direction contour repre-
sentations, but also hybrid contour representations that contain both interval/direction and
duration information. We form this representation as a list of pairs where each pair is a pitch
interval and the corresponding interonset interval (IOI). The cost functions of the interval
contour distance take into account both values, where the IOI value is weighted by a factor
k:

w(si, ∅) = I(si) + kIOI(si) (6.7)

w(∅, tj) = I(tj) + kIOI(si) (6.8)

w(si, tj) =

0@ |I(si)− I(tj) | +

k |IOI(si)− IOI(tj) |

1A (6.9)

(6.10)

Obviously, when k = 0 the distance measures only differences in pitch interval contours.
The direction contour representation is defined analogously, replacing the pitch interval
values by the sign of the interval (that is, -1, 0, and +1). The cost functions of the direction
contour distance are:

w(si, ∅) = C(si) + kIOI(si) (6.11)

w(∅, tj) = C(tj) + kIOI(si) (6.12)

w(si, tj) =

0@ |R(si)−R(tj) | +

k |IOI(si)− IOI(tj) |

1A (6.13)

The cost functions of the I-R distance defined similarly to the definitions given in sec-
tion 5.2.2, but without the weighting parameters:

w(si, ∅) = Size(si) (6.14)
w(∅, sj) = Size(sj) (6.15)

w(si, sj) =


LabelDiff (si, sj)+
|Size(si)− Size(sj ) | +
|Dir(si)−Dir(sj ) | +
|Overlap(si)−Overlap(sj ) |

 (6.16)

LabelDiff (si, sj) =

 0 Label(si) = Label(sj )
0.5 Label(si) = −Label(sj )
1 otherwise
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X1:
X2:

note
int.

note
dir.

note
I-R

int.
dir.

int.
I-R

dir.
I-R

E(X2−X1) −0.19 −0.31 −0.26 −0.11 −0.06 0.05
rX2,X1 0.15 0.19 0.25 0.77 0.74 0.84

Table 6.3: The distances compared pairwise. The distances are shown in the uppermost row.
In the left column, X1 and X2 respectively refer to the two measures under comparison

Results

With the 124 jazz phrases we performed all the possible pair-wise comparisons (7626) using
the four different distances. The resulting values were normalized per distance. Figure 6.2
shows the distribution of values for each distance. The results for the interval and direction
distances were obtained by leaving IOI information out of the cost functions (i.e. setting the
k parameter to 0).

Table 6.3 summarizes some statistical relations between the distances. The top row show
the expected value of the difference between each pair of distances; The distances closest
together on average are the direction and I-R distances, and furthest apart are the direction
and note distances. The bottom row shows the correlation coefficients. There is a strong
correlation between the interval, direction, and I-R distances, and only moderate correlation
between the note distance and the other three distances.

Figure 6.2 reinforces the impression from table 6.3, that there is a clear difference in
similarity assessments at the note-level on the one hand, and the interval, direction and
I-R-levels on the other hand. Whereas the distance distributions of the last three distances
are more spread across the spectrum with several peaks, the note distance has its values
concentrated around one value. This means that roughly speaking, the note distance rates
the majority of the phrases from the set equally similar, whereas the other distances rate
some phrases more similar than others. This indicates a difference in overall discriminative
power, as we described in the previous subsection. The entropy values for each measure are
shown in figure 6.3(left). It can be seen that the discriminatory power is substantially higher
for the interval, direction, and I-R measures than for the note measure.

Next to the main peak in the note distance distribution a very small peak can be observed
in the distance range between 0.0 and 0.2, which comprises the comparisons between phrase
variants. This peak is also present in the I-R distance, in the range 0.0− .05. In the interval
and direction distance distributions this peak is not visible. In these two distributions, the
phrase-variant comparisons are ‘masked’ by the main peak of the distribution, that comprises
the non-phrase-variant comparisons (e.g. comparisons between phrases from different songs).
This means that the note and I-R distances are better at identifying which phrases are very
similar than the interval and direction measures, suggesting that the note and I-R distances
have a relatively good discriminatory power at the low distance range.

The K-L divergence (KLD) between the distance distribution of phrase-variant compar-
isons and the distance distribution of non-phrase-variant comparisons supports this. The
KLD is a measure for comparing distributions. High values indicate a low overlap between
distributions and vice versa. Figure 6.3(right) shows the KLD values per distance. Note
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Figure 6.2: Distribution of distances for four melodic similarity measures. The x axis represents
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of pairs that have the distance shown on the x axis
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Figure 6.3: Left: Discriminatory power (measured as entropy); Right: KL-Divergence be-
tween within-song distance distribution and between-song distance distribution. The Inter-
val+IOI and Direction+IOI measures were computed with k = 2.0

that the values for the interval and direction distances are slightly lower than those of the
note and I-R measures.

The interval and direction measures do not include any kind of rhythmical/temporal
information. Contour representations that ignore rhythmical information are sometimes
regarded as too abstract, since this information may be regarded as an essential aspect of
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Figure 6.4: Distributions of distances of the direction measure for various weights of interon-
set intervals.

melody [Schlichte, 1990; Typke et al., 2003]. Therefore, we tested the effect of weighing
the interonset time intervals (IOI) on the behavior of the interval and distance. Increasing
the impact of IOI, through the parameter k in equations (6.7–6.13), improved the ability
to separate phrase-variant comparisons from the non-phrase-variant comparisons. However,
it decreased the discriminatory power of the measures (see figure 6.3). In figure 6.4, the
distance distributions of the direction distance are shown for different weights of IOI. Note
that, as the IOI weight increases, the form of the distribution smoothly transforms from
a multi-peak form (like those of the interval, direction and I-R measures in figure 6.2), to
a single-peak form (like the note-level measure in figure 6.2). That is, the direction level
assessments with IOI tend to resemble the more concrete note level assessment.

Conclusions

In this experiment we have compared various edit-distance based melodic distances. We
were especially interested in the distance that was based on the I-R analysis of the melody,
since this is a novel way of computing melodic similarity. As a representation of melodic
material, the I-R analysis provides an intermediate level of abstraction from the melodic
surface, between a note representation as a less abstract representation, and the pitch contour
(up/down patterns) representation as being more abstract. Although the labels given to the
I-R structures merely represent pitch interval relations, the overlap and boundaries of the
structures convey information about meter and rhythm, be it in an implicit way.

The measures we used for discriminatory power, the overall entropy and the K-L diver-
gence, reflected the intermediate level abstraction of the I-R distance, in between the note
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distance as the most concrete distance, and the interval and direction distances as the most
abstract.

There appears to be a trade-off between discriminatory power on the short range of
melodic similarity on the one hand, and discriminatory power on the long range of similarity
on the other. Similarity measures based on more concrete melody representations tend to
favor the former and those based on more abstract melody representations the latter. In
terms of applications, concrete measures would be more suitable to find the single best match
for a query (e.g. to implement Google’s “I’m feeling lucky” functionality), whereas abstract
measures would be more useful for multidimensional scaling of a set of melodies.

6.2.2 Ground Truth Prediction

In this subsection we report an experiment on melodic similarity ground-truth prediction,
based on human similarity judgments. Part of the ground-truth data was made publicly
available as training data for the symbolic melodic similarity contest, held as part of the
1st Annual Music Information Retrieval Evaluation eXchange (MIREX 2005). Using the
training data we optimized our I-R distance, and submitted the algorithm for participation
in the contest. Below we describe the contest setup, the optimization, and the results from
the contest.

The MIREX 2005 Contest for Symbolic Melodic Similarity

The Music Information Retrieval Evaluation eXchange is an annual event with the goal of
comparing state-of-the-art algorithms and systems relevant for music information retrieval.
Among the contest tasks of MIREX 2005 were for example audio tempo extraction, melody
extraction, genre classification (for audio and symbolic data), and symbolic melodic similar-
ity.

The symbolic melodic similarity contest aimed to evaluate melody retrieval algorithms,
used to retrieve the most relevant melodies from a data base, given a query melody. The
data used in the contest was taken from the RISM A/II database (a database containing
about 476.600 bibliographic records of musical manuscripts written after 1600). Prior to the
contest, Typke and co-workers [Typke et al., 2005b] carried out a survey in which subjects
were asked to rank a set of melodic incipits (shown as in score notation). For eleven query
incipits, the data base was filtered to obtain a set of around 50 candidate incipits per
query, based on a rough filtering method that compared statistics like pitch range, interval
histograms etc. In total 35 subjects participated; In majority they had either enjoyed musical
education, or played an instrument, or both. The subjects ranked the 50 candidate incipits
according to their similarity to the corresponding query, as judged by the subject. Candidate
incipits that were judged entirely unrelated could be left unranked. The final ranking defined
as ground-truth had the form of ranked groups of candidate incipits, where the between-
group order of incipits was significant and the within-group order was not significant. The
significance was based on the level of inter-subject agreement measured by a Wilcoxon rank
sum test on the answers of all subjects.

The contest task consisted in ranking a subset of the database according to melodic
similarity against eleven query incipits. The subset was the union of candidate incipits for
all eleven queries (558 incipits in total). The ground-truth for the eleven queries of the
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survey were available to participants as training data. The survey was repeated for another
eleven queries that formed the test data. The melody incipits were available as MusicXML.
MIDI versions derived from MusicXML were also available. Grace notes were removed in
the MIDI versions, since including them without altering the durations of surrounding notes
would break the time structure of the melody (the grace notes would incorrectly consume
time).

The ranking computed by the participant algorithms were compared to rankings by
human subjects. The rankings were evaluated using four different evaluation metrics:

average dynamic recall (ADR) The average of recall values after each retrieved incipit,
where the set of relevant incipits is increased group-wise.

normalized recall at group boundaries (NR) A weighted average of the recall at group
boundaries, where the recall value at each group boundary is weighted by the size of
the preceding group.

average precision (AP) The average of the precision values at every retrieved relevant
incipit.

precision at N incipits (PN ) where N is the number of relevant incipits. The precision
value after retrieving N incipits

The ADR [Typke et al., 2006] metric was defined to compare computed rankings to
ground-truth rankings in such a way that the computed ranking is not penalized for changing
the order of incipits whose order is not significant in the ground-truth ranking. That is, the
order of incipits from the same group in the ground-truth ranking is not taken into account.
Furthermore, the ADR penalizes deviations from the ground truth less towards the end of
the candidate list.

Like ADR, the NR metric measures recall over an incremental list of relevant incipits.
The main difference between the two metrics is that NR is sensitive to group size, whereas
ADR is not.

The AP and PN metrics do not penalize the incorrect order of retrieved relevant docu-
ments, only the retrieval of any irrelevant documents before relevant documents.

The ADR was chosen as official evaluation metric for the contest (by a vote among the
participants prior to the contest), because it best fitted the format of the ground-truth as
partially ordered lists of relevant incipits.

Optimization of the I-R Measure on Training Data

The melodic similarity ground-truth for eleven queries was available as training data to
optimize the participant algorithms. We used this training data to tune the I-R distance.
The cost functions of the distance for insertion, deletion and replacement are identical to
the ones used in TempoExpress, as given in definitions (5.1)–(5.3) on page 75.

The optimization approach we took is largely identical to the optimization of performance
annotation, described in section 6.1: A genetic algorithm was applied to search the space of
parameter settings. A random initial population of 30 members was evolved using an elitist
approach, employing mutation and crossover. The fitness function for selection was based
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parameter operation/attribute value

αi insertion 0.064
αd deletion 0.131
αr replacement 1.000
β labels 0.587
γ size 0.095
δ direction 0.343
ε overlap 0.112
ζ retrospective counterparts 0.801

Table 6.4: Parameter values found by evolutionary optimization, using train data from RISM
A/II database

on ground-truth training data. More concretely, a particular setting for the parameters αd,
αr, β, γ, δ, ε, and ζ was evaluated by ranking the candidates for each query using the
I-R distance with the given setting. The computed ranking was compared to the ground-
truth ranking. The fitness was defined as the average dynamic recall value mentioned in the
previous subsection, over all queries:

fitness(d) =
1

| Q |
∑
q∈Q

ADR(d, q) (6.17)

where Q = q1, · · · , q11 is the set of queries, and ADR(d, q) is the average dynamic recall for
a distance d on a query q.

A cross-validation setup on the 11 queries was chosen to prevent overfitting of the param-
eters to the training data. Sets of three queries were taken per run to optimize a population,
and after 200 runs (which was generally enough for the fitness to stabilize) the best param-
eter setting from the population was selected and its ADR value was tested on a test set
that included all the queries (both the three queries that were used for optimizing, and the
eight remaining unseen queries). For each set of three queries (there were four sets) this
procedure was executed twice, amounting to eight runs in total. The normalized parameter
settings with the highest ADR value on the test set are shown in table 6.4.

Results

Seven different algorithms participated in the contest. The methods used are described
in [Typke et al., 2005a], [Orio, 2005], [Suyoto and Uitdenbogerd, 2005], [Lemström et al.,
2005], [Frieler and Müllensiefen, 2005], and [Grachten et al., 2005a], respectively. A rough
characterization of each algorithm is given in table 6.5.

Table 6.6 shows the overall evaluation of each of the algorithms on the eleven test queries1.
The official evaluation metric, the ADR, is shown, along with the additional three metrics
mentioned in the previous subsection, and the runtimes needed to do the candidate ranking
for the eleven queries. The entries with an asterisk (*) before the runtime were executed in

1Evaluation results per query are available here:
http://www.music-ir.org/evaluation/mirex-results/sym-melody/
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Participant (Label) Distance Representation

Grachten, Arcos & Mántaras (GAM) Edit-distance I-R analysis

Orio (O) N-grams matching Pitch interval/IOI

Suyoto & Uitdenbogerd (SU) N-grams matching Pitch interval

Typke, Wiering & Veltkamp (TWV) Earth Mover’s Distance Pitch/onset/duration

Lemström, Mikkilä, Mäkinen & Ukkonen
(LMMU-P3)

Geometric Matching Pitch/onset/duration

Lemström, Mikkilä, Mäkinen & Ukkonen
(LMMU-DP)

Edit-distance Pitch/pitch interval

Frieler & Müllensiefen (FM) Hybrid Multi-feature

Table 6.5: MIREX 2005 symbolic melodic similarity contest participants

the M2K evaluation environment2 and thus include the time needed to evaluate the rankings.
The evaluation time was approximately five seconds. Figure 6.5 shows the results in table 6.6
graphically (the left-most bar in each of the four metrics represents our I-R based distance).

The rating of algorithms is roughly similar for the two recall based metrics, ADR and
NR. The same holds for the two precision based methods, AP and PN . With respect to
recall, the three best scoring algorithms (GAM, O, and SU) performed substantially better
than the remaining algorithms. These three algorithms also perform relatively good in terms
of precision. Our I-R based distance even performs best in all four evaluation metrics. The
good performance on the ADR and NR metrics indicate that it is good at ranking the
relevant candidates in the right order. The high AP and PN values indicate that it is good
at retrieving relevant candidates before retrieving irrelevant candidates (i.e. false positives,
incipits that did not appear in the ground-truth ranking).

It may be tempting to interpret the good results of the I-R based distance as a corrobo-
ration of the I-R Model. However some reservations must be made, Firstly, one should bear
in mind that the I-R analysis of a melody is hypothesized to express patterns of listening
expectations (and their satisfaction/violation) that the melody generates. Evidence that
perceptually similar melodies have similar I-R analyses is not necessarily evidence for this
hypothesis. And secondly, the evaluation results are only partly determined by the choice
of representation (in our case the I-R analysis), the actual distance metric may have a great
impact as well. Nevertheless, the good performance of our algorithm indicates that the I-R
analysis provides a relevant and useful representation of melody.

With respect to runtimes our I-R distance algorithm lags behind. This is hardly surpris-
ing, since our focus has not been on computational efficiency. In particular, the preprocessing
step that performs the I-R analysis of the MIDI files is currently implemented as an inter-
preted Guile/Scheme script, which inevitably runs slower than compiled code. Furthermore,
we used a C++ implementation of the edit distance that is very generic. It allows for an ar-

2http://www.music-ir.org/evaluation/m2k/
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Rank Participant

Average

Dynamic

Recall

Normalized
Recall

at group

boundaries

Average

Precision,
non-

interpolated
Precision at
N incipits

Runtime
(seconds)

1 Grachten, Arcos & Mántaras 65.98% 55.24% 51.72% 44.33% ∗80.17

2 Orio 64.96% 53.35% 42.96% 39.86% 24.61

3 Suyoto & Uitdenbogerd 64.18% 51.79% 40.42% 41.72% 48.13

4 Typke, Wiering & Veltkamp 57.09% 48.17% 35.64% 33.46% 51240

5 Lemström, Mikkilä, Mäkinen &
Ukkonen (P3)

55.82% 46.56% 41.40% 39.18% ∗10.01

6 Lemström, Mikkilä, Mäkinen &
Ukkonen (DP)

54.27% 47.26% 39.91% 36.20% ∗10.11

7 Frieler & Müllensiefen 51.81% 45.10% 33.93% 33.71% 54.59

Table 6.6: Results for the MIREX 2005 contest for symbolic melodic similarity, ranked
according to Average Dynamic Recall

bitrary number of edit-operations, and supports context-aware edit-operations, thus trading
speed for flexibility.

In an attempt to interpret the results better, we have characterized the participating
algorithms in terms of matching method and the abstraction level of the melody representa-
tion. The matching method can either be global or local. Global matching methods force the
query and the candidate to be compared entirely, whereas local matching methods perform
(multiple) matches on parts of the query and candidate. Global matching can lead to an
undesirably low matching result especially if the query and candidate are largely identical
but have a very small portion that is very different. Also, in case the query and candidate
have different lengths, the matching quality using global matching may be very low.

We define the level of abstraction of a melody representation scheme informally as pro-
portional to the number of non-identical melodies (when represented as notes with pitch,
onset, and duration) that lead to identical representations in that scheme. We classify the
level of abstraction as low, medium, or high. By low abstraction we mean the representation
of the melody as a sequence of primary note attributes, like absolute pitch, onset, and dura-
tion. Medium abstraction refers to for example pitch intervals, either with our without IOI
information. High abstraction covers any representation that is more abstract than pitch
intervals, e.g. melodic contour (direction), and other global contour representations like I-R
structures.

Table 6.7 shows the characterization of each participating algorithm. With respect to
matching method, note that the local matching algorithms generally performed better than
the global matching algorithms. The exception to this rule is our I-R edit-distance. However,
a look at the optimized parameter values of the edit-distance (table 6.4) reveals that the
parameters αi, αd, and γ, that determine the cost of insertion and deletion are all very low.
This indicates that the distance had to assign low distance values to query/candidate pairs
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Figure 6.5: MIREX 2005 evaluation results, from table 6.6

that had rather different parts, or were different in length. Apparently, to a certain point
the global matching approach can accommodate this, due to optimization of parameters.
But it is obvious that the cost of insertion and deletion cannot be lowered without limits,
because that would eliminate the influence of the actual melodic content on the distance
computation. Local alignment is more appropriate in such cases.

With regard to the abstraction level of representation, apparently higher abstraction
levels seems to work better than lower abstraction levels. This is evidence for the claim
mentioned at the beginning of subsection 6.2.1, that measuring melodic similarity requires
more than just note-to-note differences of melodies. It is surprising to see the relatively good
results of Suyoto & Uitdenbogerd, as they apparently use only pitch interval representations,
and discard duration information. This implies that either duration and other non-pitch
information is irrelevant for melodic similarity (which we consider very unlikely), or that
the N-grams counting method they used is very effective. Frieler and Müllensiefen’s hybrid
approach is hard to classify, as it involves both concrete and abstract melody representations.
Moreover, the low ranking of their algorithm is probably due to the fact that they optimized
their distance on melodies from another data set, rather than the training data for the
MIREX 2005 contest [Frieler and Müllensiefen, 2005].

Conclusions

In the MIREX 2005 contest for symbolic melodic similarity, the I-R based melodic distance
measure outperformed other state-of-the-art melody comparison methods, both in recall and
precision, showing that the I-R representation of melody captures aspects of the melody that
are relevant for similarity judgments.
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Participant Matching Abstraction Level

GAM global high

O local medium

SU local medium

TWV local low

LMME-P3 local low

LMME-DP global medium/low

FM global hybrid

Table 6.7: Characterization of participating algorithms in terms of matching approach and
abstraction level of the melody representation

Analyzing the results of the contest, we conclude that the profile of a promising distance
measure includes local matching, and a relatively high level of abstraction in its melody
representation. Given that our I-R based measure employs a global matching edit-distance,
an interesting question is whether combining I-R representations with other distance metrics
can further improve the results. An obvious possibility is using a distance metric based on
matching N-grams of I-R structures. Such a metric would accomplish local matching. This
approach seems promising since n-grams based methods of Suyoto, and Uitdenbogerd, and
Orio also give good results. Another possibility is to use a local alignment version of the
edit-distance [Mongeau and Sankoff, 1990].

The computation speed of our distance measure can be improved in various ways. A
major improvement can be made by implementing the I-R parser in a compiled language,
rather than as an interpreted script. Also, loading and processing all MIDI files in a single
run instead of invoking the program for each MIDI file individually will probably save run-
time. Finally, using an edit-distance implementation that is more specialized (where edit-
operations are not context-sensitive, and the set of edit-operations is hard-wired into the
code) will reduce computation cost further. We believe that with this changes, our algorithm
can be highly competitive in terms of runtimes as well, since the number of I-R structures in
the I-R representation of a melody typically is only half the number of notes in the melody.
With an average decrease of 50% of the sequence length of both query and database incipits,
only 25% of the original number of comparisons are necessary, given that the complexity is
of edit-distance sequence comparison is O(mn) in the length of the sequences m and n.

6.3 Large Scale Evaluation of Tempo Transformations

After describing tests of the annotation and retrieval components of TempoExpress in the
previous sections, we report our evaluation of the TempoExpress system as a whole. The
first question that needs to be addressed is how the tempo transformation results can be
evaluated. Due to the subjective aspects involved, evaluation of results is not an obvious
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issue (see subsection 2.4.6), as is the case with many applications that deal with musical or
other artistic content such as generation, manipulation, or classification of musical content.
Ground truth can not be established analytically in such domains. Instead, user surveys are
often held to define the ground truth as the inter-subjective agreement between subjects. In
the case of TempoExpress, the evaluation could take the form of a survey in which tempo
transformed performances are presented to the subjects along with original (untransformed)
performances at the target tempo. If subjects would not be able to distinguish the trans-
formed performance from the original performance, that would prove that the expressivity
in the transformed version is not perceived as unnatural.

We have however opted for an alternative evaluation approach, that measures the dif-
ference between the transformed performance and the original (target) performance. This
method has some drawbacks, but also has important advantages. A drawback is that it
evaluates a transformed performance using a single human performance as a reference. This
may be overly restrictive, because the fact that the transformed performance does not sound
like that (natural sounding) human performance does not mean that it does not sound natu-
ral. It is obvious that there may be different performances of the same phrase that all sound
natural. Another drawback is that the results are not directly judged by human listeners,
because the ultimate goal of TempoExpress as an application is that its transformation results
sound natural to users in terms of expressivity.

A major advantage of the system evaluation based on difference to target performances
is that it allows for a much more systematic evaluation of the results. Whereas a direct
evaluation of the results by human listeners would only permit the evaluation of a small
selection of results, with target-based evaluation is feasible to evaluate transformation results
for every phrase and tempo for which a human performance is available. Another advantage
of target-based evaluation is the possibility of experimentation. A feedback/experimentation
cycle can be set up to test the effect of different settings of the system. This is not feasible
with listener-based evaluation of results.

6.3.1 Evaluation Setup

As mentioned above, the quality of a tempo transformation is defined as the distance of
the transformed performance of a phrase to a target performance. The target performance
is a performance of the phrase played at the target tempo by a human player. In such an
evaluation setup the distance measure is a crucial issue. For the distance measure to be
of value, it must somehow reflect human perception of difference and similarity between
performances. To achieve this, we have set up a web-survey to gather human similarity
judgments of performances. An edit-distance measure was then modeled after the results
of the survey in such a way that it predicts the human similarity judgments (described in
subsection 6.3.3).

The distance measure compares the melodic descriptions of the performances, rather than
the audio, for two reasons. Firstly, we are primarily interested in testing the musical quality
of the tempo transformed performance (see subsections 1.2.1 and 1.2.2), whereas any kind
of evaluation of the resynthesized audio would probably be strongly influenced by the sound
quality. The melodic descriptions describe the aspects of the performance that the system
has manipulated (ornamentations, timing and dynamics attributes etcetera), and therefore
provide a more direct way to evaluate the changes the system has made. Secondly, the audio
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resynthesis is currently done in a semi-automatic way (that is, timing and dynamics changes
are translated to audio transformations automatically, but for note insertions and similar
extensive changes, manual intervention is still necessary). This limitation would prevent a
large-scale evaluation, if the evaluation was to be done using re-synthesized audio rather
than the transformed melodic descriptions.

The musical unit TempoExpress handles as input data is the phrase. It processes the
phrase by segmenting it, generating solutions for each segment and concatenating the solu-
tions. Since no constraints have yet been defined that deal with inter-dependencies between
segment-solutions, a solution to a phrase level tempo transformation problem can be re-
garded as a set of solutions to a set of segment level tempo transformation problems. An
advantage of defining tempo transformation problems at the segment level rather than at the
phrase level is that it increases both the number of possible tempo transformation problems
to solve, and the amount of training data available, given the musical corpus. As a conse-
quence, the statistical reliability of the system evaluation will be higher with segment level
tempo transformations. Therefore, we defined the tempo transformation problems used to
evaluate the system by segmenting the phrases in the proto case base into segments (having
a typical length of about five notes), and using the performances at different tempos as
problem descriptions and solutions respectively.

In this way, 6661 tempo transformation problems were defined. Each of the problems is
solved and the tempo-transformed performance is compared to the target performance using
the performance distance measure that was modeled after the similarity judgments gathered
from the survey. For reference, the tempo transformation was also performed using uniform
time stretching and the resulting performance is also compared to the target performance.
This permits us to see to what extent TempoExpress improves the quality of the tempo
transformations over uniform time stretching.

The distance measure for comparing expressive performances was modeled after human
performance similarity judgments, in order to prevent the risk mentioned above, of measuring
difference between performances that are not perceptually relevant (or conversely, failing to
measure differences that are perceptually relevant). In subsection 6.3.2 we explain the setup
of the survey by which we gathered human similarity judgments. In subsection 6.3.3 we show
how the performance distance measure was derived from the survey results. Subsection 6.3.4
describes the results of tempo transformation evaluation.

6.3.2 Obtaining Ground Truth: a Web Survey on Perceived
Performance Similarity

The human judgments were gathered using a web based survey3. Subjects were presented a
target performance A (the nominal performance, without expressive deviations) of a short
musical fragment, and two different performances B and C of the same score fragment. The
task was to indicate which of the two alternative performances was perceived as most similar
to the target performance. Thus, subjects were asked questions of the form:

A is most similar to
B
C

3The survey is available on line at: http://musje.iiia.csic.es/survey/introduction.html
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Figure 6.6: Screenshot of the web survey on performance similarity

The underlined items could be clicked to play the corresponding performance, and lis-
teners were asked to mark their answer by selecting either B or C, through radio-buttons.
Figure 6.6 shows a screenshot of the web-interface for presenting the questions to the sub-
jects4.

The two alternative performances were systematically varied in the expressive dimen-
sions: fragmentation, consolidation, ornamentation, note onset, note duration, and note
loudness. One category of questions tested the proportionality of the effect quantity to
perceived performance distance. In this category, versions B and C contained variations
in the same expressive dimension, but to a different degree. In the case of numerical pa-
rameters like duration and dynamics, this means that in version C the same notes were
lengthened/shortened, loudened/softened as in version B, but to a lesser degree. In the
case of discrete parameters such as ornamentation or consolidation, version C would have
a smaller number of those events than version B. Another category measured the relative
influence of the type of effect on the perceived performance distance. In this category version
B contained deviations in a different dimension than version C (e.g. dynamics changes vs.
ornamentation, or fragmentation vs. consolidation) 5.

Ten different score fragments were used for constructing the questions (i.e. triples of
performances). The fragments were manually selected motifs (varying in length from six to
nine notes) from eight different jazz standards (All of Me, Body and Soul, Black Orpheus,
Like Someone in Love, Once I Loved, How High the Moon, Sophisticated Lady, and Au-
tumn Leaves). More than one score fragment were used, because in initial tests, subjects
reported losing their attention after answering several questions that employed the same
score fragment. Therefore, care was taken to prevent the use of the same score fragment

4The second part of the question, regarding the naturalness of the fragments was added for a secondary
aim of the survey, namely to study the possible relation between naturalness and the type and degree of
expressive effects; this secondary study has not been included here, as it is not directly relevant for the
current system evaluation experiment.

5In both types of questions, the performances of the labels B and C were interchanged occasionally, to
prevent familiarization.
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in two subsequent questions. The three performance variants A, B, and C were rendered
into audio using a sampled saxophone, based on manually generated specifications of the
expressive deviations from the score. The deviations were defined so as to comply to the
question categories mentioned above.

A total of 92 subjects responded to the survey, answering on average 8.12 questions
(listeners were asked to answer at least 12 questions, but were allowed to interrupt the
survey). The results were filtered in several ways to discard artifacts and improve reliability.
Firstly, answers to a question were discarded whenever the subject hadn’t listened to each
of the sound-links at least once6. Then, from the total set of questions (66), those questions
were selected that were answered by at least ten subjects. This selection was again filtered
to maintain only those questions for which there was significant agreement between the
answers from different subjects (at least 70% of the answers should coincide). This yielded a
set of 20 questions with answers, that is, triples of performances, together with dichotomous
judgments, conveying which of the two alternative performances is closest to the target
performance. The correct answer to a question was defined as the mode of all answers
for that question (the filtering ensures that this is the answer on which at least 70% of the
subjects were in agreement). This data formed the ground truth for modeling a performance
distance measure.

6.3.3 Modeling the Ground Truth using a Performance Distance
Measure

An edit-distance metric was chosen as the basis for modeling the ground truth, because
the edit-distance is flexible enough to accommodate for comparison of sequences of different
lengths (in case of e.g. consolidation/fragmentation) and it allows for easy customization
to a particular use by adjusting parameter values of the edit-operation cost functions. In
this subsection we will explain how the distance was fit to the human performance similarity
judgments by optimizing parameter values.

The distance is intended to assess the similarity between different performances of the
same score. Notice that this time, we are not interested in the optimal alignment, as in the
performance annotation process, where a score and a performance were matched. Moreover,
since one performance is not an interpretation or variation of the other (as in the case of
performance vs. score), it is conceptually inappropriate to speak of the differences between
the performances in terms of e.g. ornamentation, or consolidation. To avoid confusion, we
will call the edit-operations in this context by their edit range, e.g. 1-0 or 1-N. To compute
the distance, using equation (4.4), we defined the following cost functions for 1-0, 0-1, 1-1,
N-1, and 1-N edit-operations, respectively:

6The number of times the subject clicked the sound-fragment links was included in the HTML form as
hidden entries
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w(si, ∅) = α1 ( δD(si) + εE(si) ) + β1 (6.18)

w(∅, tj) = α1 ( δD(tj) + εE(tj) ) + β1 (6.19)

w(si, tj) = α2

0BBBBB@
π |P(si)− P(tj) | +

δ |D(si)−D(tj) | +

o |O(si)−O(tj) | +

ε |E(si)− E(tj) |

1CCCCCA + β2 (6.20)

w(si−K:i, tj) = α3

0BBBBB@
π

PK
k=0 |P(si−k)− P(tj) | +

δ |D(tj)−
PK

k=0 D(si−k) | +

o |O(si−K)−O(tj) | +

ε
PK

k=0 |E(si−k)− E(tj) |

1CCCCCA + β3 (6.21)

w(si, tj−L:j) = α3

0BBBBB@
π

PL
l=0 |P(si)− P(tj−l) | +

δ |D(si)−
PL

l=0 D(tj−l) | +

o |O(si)−O(tj−L) | +

ε
PL

l=0 |E(si)− E(tj−l) |

1CCCCCA + β3 (6.22)

Where si = 〈si〉, and P(si), D(si), O(si), and E(si) respectively represent the pitch, du-
ration, onset, and dynamics attributes of a note si. Each attribute has a corresponding
parameter (π, δ, o, and ε, respectively), that controls the impact of that attribute on opera-
tion costs. The β parameters control the absolute cost of the operations. The α parameters
control the partial cost of the operation due to (differences in) attribute values of the notes.
Note that the same α and β parameters occur in the 1-0 and 0-1 cost functions, and also in
the 1-N and N-1 cost functions. This ensures that the distance will be symmetric.

Fitting the edit-distance to the ground truth is a typical optimization problem, and an
evolutionary optimization was used as a local search method to find good values for the ten
parameters in equations (6.18) – (6.22).

The fitness function for evaluating parameter settings was defined to be the proportion
of questions for which the correct answer was predicted by the edit-distance, using the
parameter settings in question. A correct answer is predicted when the computed distance
between the target performance and the most similar of the two alternative performances
(according to the ground truth) is lower than the computed distance between the target
and the remaining alternative performance. More precisely, let Q = {q1, · · · , qn} be the
questions for which the ground truth is known, where qi is a triple 〈ti, si, ri〉 containing the
target performance ti of question qi, the alternative performance si that was selected by the
subjects as being most similar to ti, and the remaining (less similar) alternative performance
ri for that question. The fitness of a distance d is then defined as:

fitness(d) =
|{ qi ∈ Q | d(ti, si) < d(ti, ri) }|

n
(6.23)
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α1 α2 α3 β1 β2 β3 π δ o ε

0.031 0.875 0.243 0.040 0.330 0.380 0.452 1.000 0.120 0.545

Table 6.8: Optimized values of edit-operation cost parameters

Using this fitness function a random population of parameter settings was evolved using
an elitist method for selection. That is, the fittest portion of the population survives into the
next population unaltered and is also used to breed the remaining part of the next population
by crossover and mutation [Goldberg, 1989]. A fixed population size of 40 members was used.
Several runs were performed and the fitness tended to stabilize after 300 to 400 generations.
Typically the percentages of correctly predicted questions by the best parameter setting
found were between 70% and 85%. The best parameter setting found (shown in table 6.8) was
employed in the edit-distance that was subsequently used to evaluate the tempo transformed
performances generated by TempoExpress.

6.3.4 Comparison of TempoExpress and Uniform Time Stretching

In this subsection we report the evaluation results of the TempoExpress system on the task
of tempo transformation, and compare them to the results of uniformly time stretching the
performance. As said before, the evaluation criterion for the tempo transformations was
the computed distance of the transformed performance to an original performance at the
target tempo, using the edit-distance optimized to mimic human similarity judgments on
performances.

A leave-one-out setup was used to evaluate the CBR system where, in turn, each proto
case is removed from the case base, and all tempo transformations that can be derived from
that proto case are performed using the reduced case base. The constraint that restricted
the generation of tempo transformation problems from the proto cases was that there must
be an original human performance available at the source tempo (the performance to be
transformed) and another performance of the same fragment at the target tempo of the
tempo transformation (this performance serves as the target performance to evaluate the
transformation result). Hence the set of tempo transformation problems for a given proto
case is the pairwise combination of all tempos for which a human performance was available.
Note that the pairs are ordered, since a transformation from say 100 BPM to 120 BPM is not
the same problem as the transformation from 120 BPM to 100 BPM. Furthermore the tempo
transformations were performed on a phrase segment basis, rather than on complete phrases,
since focusing on phrase level transformations is likely to involve more complex higher level
aspects of performance (e.g. interactions between the performances of repeated motifs), that
have not yet been addressed in this research. Moreover, measuring the performance of the
system on segments will give a finer grained evaluation than measuring on the phrase level.

Defining the set of tempo transformations for segments yields a considerable amount of
data. Each of the 14 phrases in the case base consists of 3 to 6 motif-like segments, identified
using Temperley’s Melisma Grouper [Temperley, 2001], and has approximately 11 perfor-
mances at different tempos (see subsection 3.2). In total there are 64 segments, and 6364
transformation problems were generated using all pairwise combinations of performances for
each segment. For each transformation problem, the performance at the source tempo was
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Figure 6.7: Performance of TempoExpress vs. uniform time stretching as a function of
tempo change (measured as the ratio between target tempo and source tempo). The lower
plot shows the probability of incorrectly rejecting H0 (non-directional) for the Wilcoxon
signed-rank tests

transformed to a performance at the target tempo by TempoExpress, as well as by uniform
time stretching (UTS). Both of the resulting performances were compared to the human
performance at the target tempo by computing the edit-distances. This resulted in a pair
of distance values for every problem. Figure 6.7 shows the average distance to the target
performance for both TempoExpress and UTS, as a function of the amount of tempo change
(measured as the ratio between target tempo and source tempo). Note that lower distance
values imply better results. The lower graph in the figure shows the probability of incorrectly
rejecting the null hypothesis (H0) that the mean of TempoExpress distance values is equal to
the mean of UTS distance values, for particular amounts of tempo change. The significance
was calculated using a non-directional Wilcoxon signed-rank test.

Firstly, observe that the plot in Figure 6.7 shows an increasing distance to the target
performance with increasing tempo change (both for slowing down and for speeding up),
for both types of transformations. This is evidence against the hypothesis of relational
invariance, which implies that the UTS curve should be horizontal, since under relational
variance, tempo transformations are supposed to be achieved through mere uniform time
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mean distance to target Wilcoxon signed-rank test

TempoExpress UTS p <> z df

tempo ↑ 0.0791 0.0785 0.046 1.992 3181

tempo ↓ 0.0760 0.0786 0.000 9.628 3181

Table 6.9: Overall comparison between TempoExpress and uniform time stretching, for up-
wards and downwards tempo transformations, respectively

stretching.
Secondly, a remarkable effect can be observed in the behavior of TempoExpress with

respect to UTS, which is that TempoExpress improves the result of tempo transformation
specially when slowing performances down. When speeding up, the distance to the target
performance stays around the same level as with UTS. In the case of slowing down, the
improvement with respect to UTS is mostly significant, as can be observed from the lower
part of the plot.

Finally, note that the p-values are rather high for tempo change ratios close to 1, meaning
that for those tempo changes, the difference between TempoExpress and UTS is not signifi-
cant. This is in accordance with the common sense that slight tempo changes do not require
many changes, in other words, relational invariance approximately holds when the amount
of tempo change is very small.

Another way of visualizing the system performance is by looking at the results as a
function of absolute tempo change (that is, the difference between source and target tempo
in beats per minute), as shown in figure 6.8. The overall forms of the absolute curves and
the relative curves (figure 6.7) are quite similar. Both show that the improvements of
TempoExpress are mainly manifest on tempo decrease problems.

Table 6.9 summarizes the results for both tempo increase and decrease. Columns 2 and
3 show the average distance to the target performance for TempoExpress and UTS, averaged
over all tempo increase problems, and tempo decrease problems respectively. The remaining
columns show data from the Wilcoxon signed-rank test. The p-values are the probability
of incorrectly rejecting H0 (that there is no difference between the TempoExpress and UTS
results). This table also shows that for downward tempo transformations, the improvement
of TempoExpress over UTS is small, but extremely significant (p < .001), whereas for upward
tempo transformations UTS seems to be better, but the results are slightly less decisive
(p < .05).

How can the different results for tempo increase and tempo decrease be explained? A
practical reason can be found in the characteristics of the case base. Since the range of
tempos at which the performances were played varies per song, it can occur that only one
song is represented in some tempo range. For example, for Up Jumped Spring the tempos
range from 90 BPM to 270 BPM, whereas the highest tempo at which performances of other
songs are available is 220 BPM. That means that in the leave-one-out method, there are no
precedents for tempo transformations to tempos in the range from 220 BPM to 270 BPM.
This may explain the increasing gap in performance in favor of UTS, towards the end of the
spectrum of upward tempo transformations.
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Figure 6.8: Performance of TempoExpress vs. UTS as a function of tempo change (measured
in beats per minute). The lower plot shows the probability of incorrectly rejecting H0 (non-
directional) for the Wilcoxon signed-rank tests

6.3.5 Conclusions

With the experiment described in this section we have intended to give an extensive eval-
uation of the TempoExpress system. We have done so by testing the system on all tempo-
transformation problem for which a target performance was available. The transformed
performances are evaluated by measuring the distance to the target performance. This ap-
proach depends on a distance measure for (melodic descriptions of) performances that was
modeled after human similarity judgments between performances. Note that rather than
testing directly the naturalness of transformed performances in a survey, we have performed
a survey on the similarity between excerpts. By using the survey to model human sim-
ilarity judgments with a computational distance measure the gathered information has a
broader applicability, because the model may be used to evaluate a much larger set of per-
formance than is feasible through a survey. Moreover, the model may be used not only for
judging naturalness of performances by computing the distance to naturalness ground truth
(performances that are known to be natural), but for evaluating any descriptive label for
performances (provided that ground truth performances are available for that label). This
approach rests on the intuitively plausible assumption that if a performance P1 is known to
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have a perceptual quality Q and another performance P2 is perceptually similar to P1, then
P2 will also have perceptual quality Q.

The results of the evaluation showed that overall, there is a significant improvement of
tempo transformation when realized by TempoExpress, over tempo transformations realized
by uniform time stretching. Remarkably, the improvements are most significant for tempo
transformations where the tempo of the original performance is decreased. For increasing
tempo transformation, no significant improvements were observed.
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Chapter 7

Conclusions

In this final chapter we first summarize the topic covered in this dissertation (section 7.1).
Secondly, we list the contributions of our work to the field of melody retrieval, expressive
music performance rendering and its evaluation, and content based audio processing (sec-
tion 7.2). Finally, we elaborate on some future directions of work (section 7.3), which we
believe will improve the quality and utility of our current work, as well as they will cover
areas that have not yet been explored extensively.

7.1 Summary

In this dissertation we have explored a case based reasoning approach to deal with the prob-
lem of respecting expressivity in monophonic audio recordings under tempo-transformation.
The problem that arises when changing the tempo of an audio recording is that the ex-
pressivity of timing does not scale uniformly with tempo [Honing, 2007]. Other expressive
aspects like dynamics, and also more extensive effects like note ornamentations, do not
remain constant under tempo change either. This causes the tempo transformed perfor-
mance to sound unnatural in terms of expressive quality, when realized through uniform
time stretching, the standard technique for tempo-transformation that is found in most
state-of-the-art audio editing applications. Some existing techniques obtain high sound
quality tempo-transformations employing knowledge of low-level audio-content, for example
by applying the stretching only to stationary parts of the audio, and leaving the transients
intact [Bonada, 2000]. However they do not address the musical, or expressive quality of
the recording. We have proposed and implemented a case based reasoning method that
employs knowledge of higher level audio content, like a description of the melody, to derive a
suitable transformation of expressive features. It uses implicit knowledge in the form of hu-
man performed phrases. In the problem description and solving processes it employs general
musical knowledge to segment phrases, to annotate performances, and to transfer expressive
information from one phrase to another. A large scale evaluation of the system has shown
that the quality of tempo transformations by the proposed system improves compared to
uniform time stretching.
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7.2 Contributions of this Dissertation

7.2.1 An I-R Parser for Melody

The Implication-Realization model provides a formalization of the cognitive processes of
creation and fulfillment/violation of expectation in melody perception. It employs a number
of principles based on Gestalt-laws that predict to what degree particular continuations of a
melody are expected by human listeners. Computational models exist computing the degree
to which each principle is fulfilled [Toiviainen and Eerola, 2002; Eerola and North, 2000].
However, the next step described in the model, the categorization and grouping of notes
based on such expectancies, to our knowledge, has not been formalized into a computational
model. We present such a model, in the form of an I-R parser that analyses symbolic
monophonic melodies and returns the I-R analysis as a sequence of I-R structures that
describe the melodic surface. The parsing steps are described in section 4.1.

7.2.2 An I-R based Distance Measure for Melody

The I-R analysis of a melody can be regarded as semi-abstract representation of the melodic
surface, that reflects perception related concepts such as grouping and expectancy, as well as
a rough melodic and rhythmic contour. Based on the cognitive theory of melodic similarity
by Deliège [1997], and subsequent experiments of perceived melodic similarity [Lamont and
Dibben, 2001], it is plausible that such a representation has a good abstraction level for as-
sessing similarity between melodies. Hence we defined a set of weight-functions that enable
comparison of sequences of I-R structures using the edit-distance (see subsection 5.2.2). In
comparison to other state-of-the-art methods for melodic similarity assessment (the MIREX
2005 symbolic melodic similarity contest, see subsection 6.2.2), this melodic similarity mea-
sure was shown to be superior in its ability to predict human similarity judgments.

7.2.3 Comparison of Melodic Distance Measures

In addition to the comparison of distance measures with respect to melodic similarity ground
truth as mentioned above, we have done a more qualitative comparison of four edit-distance
based melodic similarity measures (subsection 6.2.1). Each of the measures compared
melodies using a different representation. The melodies were represented respectively as
sequences of notes, melodic intervals, melodic directions, and I-R structures. With each of
the measures, the pairwise distances were calculated for a set of about 125 phrases from
about 35 songs from the Real Book of Jazz. The main conclusions were that the note rep-
resentation had a relatively low discriminative power (defined as the entropy of the distance
distribution of the measure) for the whole data set, but was good at recognizing phrases
of the same song that were close variants of each other. The interval, direction and I-R
representations had similar discriminative power, but the I-R representations gave better
results for the recognition of phrases from the same song. Since the interval and direction
representations only contain information derived from pitch and do not capture any rhyth-
mic information (which can be argued to be too abstract), we adapted the representations
to include note durations. This decreased the discriminatory power, but increased the recog-
nition of phrases from the same song. Using these two criteria, the interval representation
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with durational information had slightly better results than the I-R representation.
These results are useful for the retrieval part of our CBR system, where melodic simi-

larity is assessed as a criterion for retrieval. But the results may also be relevant for music
retrieval in general, as for example in query-by-humming systems, where melodic similarity
is frequently used for retrieval.

7.2.4 A Scheme for Performance Annotation

Due to the complexity of musical expressivity, computational models often are limited to
only a few dimensions of expressivity, typically timing and dynamics curves. Such curves are
constituted of the deviations of performed notes from their corresponding score complement.
As such, they discard any relation between score and performance notes that is not a 1-to-1
correspondence, although such relations are clearly significant manifestations of expressivity
[Arcos et al., 2003] (see sections 1.1 and 3.6). Moreover, interpolated timing and dynamics
curves falsely give the impression of a sampled continuous timing/dynamics ‘signal’, whereas
the performance is more properly regarded as a stream of events, where the timing and
dynamics properties of these events depend on the musical context of the events Desain and
Honing [1993].

To address these issues, we have presented an annotation scheme to represent expressive
information from performances (see section 3.6). The annotation consists of a sequence of
performance events, that describe how the performance relates to the score. These events
capture in some sense the musical behavior of the musician while performing a melody. For
example, if the musician ornamented a certain notes while playing, this is represented by
an Ornamentation Event. Alternatively, changing the timing, dynamics, duration or other
attributes of notes, is reflected by Transformation Events. The events are not just labels,
but complex structures that have references to elements from the score and the performance,
and can hold additional information such as the quantity of timing or duration deviations
(in the case of Transformation Events). Other performance events are Consolidation Events,
Fragmentation Events, Insertion Events, and Deletion Events.

This annotation scheme provides a more extensive description of expressivity in perfor-
mances compared to timing/dynamics curves. Apart from timing/dynamics deviations, it
accounts for various ubiquitous non-1-to-1 relations between score and performance notes as
expressive gestures.

7.2.5 A Technique for Automated Performance Annotation

The performance annotations of the form described above can be constructed automatically
given a score and a performance of that score. By mapping each of the performance event
types that may occur in the performance annotation to an edit-operation, the edit-distance
can be used to find the optimal sequence of edit-operations that maps the performance to
the score (see subsection 4.3). The corresponding sequence of performance events forms the
performance annotation.

Although many different possible performance annotations may account for the same
performance, usually only one of them is correct, i.e. perceptually plausible. Therefore, the
cost functions of the edit-operations must be well-designed and balanced in order for the edit-
distance to derive the correct annotation. The design of the cost functions is an extension
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of the cost functions proposed by Mongeau and Sankoff [1990] (see subsection 4.3.1). The
standard definition of the edit-distance was extended to allow for context-sensitive cost
functions (see subsection 4.2.1), to allow for the proper calculation of note ornamentations.

The terms that figure in the cost functions (like pitch/timing/duration of score and
performance notes) are weighted by parameters, just as the relative cost of edit-operations
with respect to each other. We observed that untuned cost functions lead to an average
accuracy of about 76% on a test set of 40 performances. Manual parameter tuning can
improve the accuracy when annotating individual performances, but is unfeasible for larger
sets of performances. Using a cross-validation setup, a genetic algorithm was used to optimize
performance annotations (using hand-corrected performance annotations as training data).
Optimizing parameter settings in this way lead to improved accuracies on the test sets
ranging from 92% to 97%. Although the optimal parameter settings found in different runs
on different data sets did not all converge, there were some strongly correlated settings,
amounting to the belief that the number of alternative valid parameter settings is small.
Details of this experiment can be found in section 6.1.

In addition to its relevance to expressive performance research, this can be seen as a con-
tribution to CBR research, as an example of automated case base acquisition. In knowledge-
intensive domains, it is often difficult and cumbersome to gather and analyze data to form
cases. In the domain of music processing, this method automates an important part of this
task.

7.2.6 A System Architecture for Case Based Tempo-
Transformation

We have developed and implemented the system architecture for expressivity aware musical
tempo transformations based on case based reasoning, as described in chapter 3. The system
loads a MIDI file containing a monophonic phrase, and an XML file containing a melodic
description of some performance of that phrase (the tempo of that performance should be
specified – it is not inferred from the performance). Furthermore a desired output specified.
The input problem specification is constructed from those data automatically: an I-R anal-
ysis of the MIDI score is made, and the performance is annotated. Then, the CBR system
is consulted to solve the problem. The result is a new performance annotation, which is
used to convert the old melodic description into to a new one. The XML file containing the
new melodic description can be used as the input to a sound synthesis module (such as the
saxophone synthesizer Salto [Haas, 2001]).

7.2.7 Analogy Based Transfer of Expressivity across Performances

A problem we faced designing the reuse process of the CBR system is that often the most
similar case in the case is a melodic fragment that is not very similar to the melodic fragment
of the input problem. Moreover, even if the melodic fragments are similar, it is possible that
the performance of the fragments differs substantially. In such situations it is not clear how
the retrieved case can be reused. To overcome this problem we have designed a process
that infers a tempo transformation for the input fragment based on an analogy with the
tempo transformation of the retrieved fragment. The analogy is established by adaptation
rules that compare performances of the different fragments. The crucial point here is that
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the adaptation rules are defined using the concept of perceptual similarity. That is, they
ignore the melodic scores and their interpretations, but only compare how similar the results
sound. In this way, we take advance of situations where input problem and retrieved case
are different both in melody and interpretation but where these differences cancel each other
out. The result is a reuse method that is relatively robust to imperfect retrieval. This
characteristic becomes more crucial as the input problem to the system is not similar to the
material in the case base in terms of melody.

From the case based reasoning perspective, this contribution is an example of case reuse
in a knowledge-intensive domain. In particular, it performs a synthetic configuration task,
that deals with multi-layered sequential data. In contrast, most current CBR applications
dealing with sequential data perform analytical tasks such as classification or regression.

7.2.8 An Evaluation Methodology for Expressive Performance
Models

Finally, we have employed a novel evaluation methodology to test the tempo transformation
system. This is a hybrid methodology, as it employs a computational distance measure
to assess predicted results using target performances, but it also uses human similarity
judgments on performances. By modeling the assessment distance measure after human
judgments of similarity, we obtain a distance measure that can be used as a model of a
human listener to evaluate how similar a predicted performance is to a target performance.
In this way, we avoid the drawback of computational distance measures that they may fail
to correspond to a perceptual notion of similarity. At the same time we avoid the drawback
of evaluating model predictions directly on human judgments that large scale evaluations
become infeasible.

This evaluation methodology is not limited to the evaluation of tempo transformations. It
can be used in any evaluation context where target performances are available that are known
to have desired expressive characteristics. This includes for instance expressive performance
generation from the score. As an example of this, we have employed the distance measure
fitted to human similarity judgments as a fitness function to evaluate expressive models that
were constructed using genetic programming [Hazan et al., 2006a].

7.3 Future Directions

7.3.1 Finer Grained Performance-Annotations

A vital step for improving musical quality of the transformed performances further is to
extend the performance annotations to include means of expressivity at the sub-note level,
vibrato, timbre, attack-time, and articulation. Maestre and Gómez [2005] proposed an initial
design of an algorithm and model for extracting and describing articulation and dynamics
at the sub-note level. The model consists of a parametric description of the dynamics curve,
where parameters characterize the principal stages of the note, like attack, sustain, and
release. The degree of legato and staccato is modeled by another parameter. A first step in
the direction of performance rendering using such features has been made by Ramirez et al.
[2005].
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To employ such extended performance annotations in TempoExpress, a more elaborate
retrieval and reuse mechanism may be required. Based on the unconfirmed hypothesis that
finer details of the performance are dependent on a smaller musical context, the results are
likely to benefit from a further hierarchical decomposition of cases. Just as phrases were
decomposed into segments in the current problem solving mechanism, deriving intra-note
features could require a decomposition of the cases into note triples, duples, or even single
notes.

7.3.2 Case Base Quality Evaluation

We have performed initial work for the evaluation of case base quality [Grachten et al.,
2005b] (not covered in this dissertation). This work aims to visualize the problem solving
capabilities (competence) of the case base so that different kinds of regions in the problem
space can be identified. For example, it is possible that certain parts of the problem space
may be covered with high competence by just a few cases, whereas other regions may need
a dense population of diverse cases in order to cover the region sufficiently. It is also helpful
for the maintenance of the case base over time. For example it allows one to study the
effect of including individual cases on the competence of the case base. In a later stage of
development, low competence regions may be analyzed automatically in order to guide case
addition. For example, cases with specific characteristics may be proposed for addition to
populate low density regions of the problem space, or regions where all available cases are
of low quality.

7.3.3 User-Interaction

In conjunction with introspective competence-awareness of TempoExpress, a user interface is
required to allow interaction with the user for revision and rentention of proposed solutions.
In this dissertation we have focused on data preparation, and storage, retrieval, and reuse of
cases. A prototype GUI was designed to control these subtasks of the system, as shown in
figure 7.1. Future work on the interface includes non-linear control of the retrieve and reuse
steps, where the user can investigate alternative precedent cases to solve partial problems and
hear the effect of the reuse of different precedents on the final performance. This allows for
pervasive learning. In the first place, allowing the user to correct solutions will lead to higher
quality cases, that can be stored to improve future problem solving capabilities. Moreover,
the user interference with the choice of precedents to be reused provides feedback on case
retrieval. By adjusting the similarity measure to mimic the users preferences for certain
precedents in certain problem contexts, the quality of the retrieval step can be improved
over time.

7.3.4 Hybrid Problem Solving

An approach that is bound to improve the capabilities of TempoExpress is the combined ap-
plication various problem solving techniques. In particular, a general model for performance
prediction induced from the available data can be applied in situations where CBR provides
no satisfying outcome.
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Figure 7.1: Screenshot of the TempoExpress GUI prototype

There are several ways to realize such hybridization in TempoExpress. The most straight-
forward and least intrusive way would be to learn a set of performance rules or decision trees
such as those described by Ramirez and Hazan [2004], and Hazan et al. [2006a], and apply
those rules whenever an unmatched note is encountered, or when no adaptation rule applies
during the reuse of a retrieved segment (see subsection 5.4.3).

A more systematic way would be to experimentally establish the optimal division of
labors between different problem solving approaches, that is, the one that maximizes the
quality of the transformed performances. Alternatively, one could give priority to one of the
problem solving strategies and tune the other strategy to fill the gaps of the primary strategy.
For example, by determining the regions of the problem space where the competence of
TempoExpress’s CBR system is lowest (as described above), one could assemble a specific
data set for an eager inductive learner that tries to derive a predictive model just for those
problem space regions. Such a model is likely to have a higher accuracy on the target regions
than a model that must cover the complete problem space.
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Appendix A

Abbreviations and Notational
Conventions

A.1 Abbreviations

MD Melodic Description
I-R Implication Realization
UTS Uniform Time Stretching
BPM Beats per Minute
PRD Principle of Registral Direction (I-R model)
PID Principle of Intervallic Difference (I-R model)
IOI Interonset Interval
OI Ornamentation Introduction (Adaptation)
II Insertion Introduction (Adaptation)
AT Analogy Transfer (Adaptation)

A.2 Names of I-R structures

P Process
VP Vector Process
IP Intervallic Process
R Reversal
IR Intervallic Reversal
VR Vector Reversal
ID Intervallic Duplication
D Duplication
[0-8] Dyadic Structure

(P) Retrospective Process
(VP) Retrospective Vector Process
(IP) Retrospective Intervallic Process
(R) Retrospective Reversal
(IR) Retrospective Intervallic Reversal
(VR) Retrospective Vector Reversal
(ID) Retrospective Intervallic Duplication
M Monadic Structure
8D Octave Dyad
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A.3 Notation

si:j The subsequence (si, · · · , sj) of a sequence s; We adopt the con-
vention that si:j = (si) whenever i = j and si:j = ∅ whenever
i > j.

si The subsequence (si) of a sequence s.
P(si) The pitch of a note si

D(si) The duration of a note si

O(si) The onset of a note si

S(si) The metrical strength of a note si

E(si) The energy of a note si

I(si) The size in semitones of an interval si

IOI(si) The interonset interval of interval si

C(si) The melodic direction (contour) of interval si

Size(si) The number of notes spanned by an I-R structure si

Overlap(si) The number of notes shared by an I-R structure si with its suc-
cessor I-R structure

Direction(si) The direction of an I-R structure si
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Appendix B

I-R Annotated Phrases in Case
Base

Scores with annotated I-R analyses of the phrases used in TempoExpress.
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Appendix C

Songs Used in Melodic Distance
Comparison

Songs used for melodic distance comparison:

A Child Is Born Like Someone In Love
A Fine Romance Misty
A Foggy Day Molten Glass
African Flower My One And Only Love
Afro Blue Naima
Afternoon In Paris Once I Loved
All Of Me Ornithology
A Night In Tunisia Round Midnight
As Time Goes By Search For Peace
Autumn Leaves Sometime Ago
Black Orpheus Song For My Father
Blue Bossa Sophisticated Lady
Body And Soul Straight No Chaser
Confirmation Sugar
Dexterity The Song Is You
Donna Lee Up Jumped Spring
How High The Moon What Is This Thing Called Love
Impressions When I Fall In Love
In A Sentimental Mood When Sunny Gets Blue
Inch Worm Where Are You
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Appendix D

List of Publications/Awards by
the Author

Awards

• First prize in the Symbolic Melodic Similarity Contest of the Music Information Re-
trieval Exchange (MIREX) 2005.

• Best Paper Award, International Conference on Case Based Reasoning (ICCBR) 2003.

Refereed Journal Articles

• Grachten, M., Arcos, J. L., and López de Mántaras, R. (2006a). A case based approach
to expressivity-aware tempo transformation. Machine Learning. In press. DOI:
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Refereed Conference Papers

• Hazan, A., Grachten, M., and Ramirez, R. (2006). Evolving performance models by
performance similarity: Beyond note-to-note transformations. In Proceedings of the
7th International Conference on Music Information Retrieval (ISMIR 2006). Victoria,
Canada.

• Grachten, M., Arcos, J. L., and López de Mántaras, R. (2006). TempoExpress: An
expressivity-preserving musical tempo transformation system. In Proceedings of the
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