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Foreword

Trust is one of the most pervasive concepts in computer science, being vital in
all networked systems and applications. Now, in the area of multiagent systems,
it is widely acknowledged that agents require the ability to reason about the
honesty of their counterparts because the most robust assumption on which to
base system design is that agents are self-interested. This, in turn, means that
negotiation is the de facto form of interaction and that trust plays a key role.
Specifically, trust represents a way to determine with whom to negotiate and
also how to conduct the negotiation itself. Against this background, Sarvapali
Ramchurn’s PhD represents the most solid attempt to date to model trust as a
measure of expected deviation of behaviour (i.e. modeling trust as a measure of
how much partners will stick to what they have agreed to). To do so, this PhD
uses a number of techniques (principally probabilistic and fuzzy) to combine di-
rect experiences with reputation measures and to build up a sophisticated and
realistic model. The model is realistic in the sense that negotiation is placed in
the context of normative systems that is in the platforms where agent-mediated
trade is actually happening nowadays. While trust captures the uncertainty
regarding the reliability and efficiency of agents, the negotiation process itself
is prone to other uncertainties given the privately known preferences of the
agents which shape the negotiation space. Given this, the second main topic
this PhD tries to tackle relates to persuasive negotiation; that is, where agents
offer promises of reward to their negotiation opponent in order to reach a deal.
Such promises aim to reduce the amount of time needed to reach agreements
and better explore the negotiation space. In this case, new negotiation strate-
gies are developed and empirically evaluated to highlight the performance of
such models over their more traditional counterparts. Our collaboration with
Sarvapali (Gopal to his friends) during the last three years has proved to be
both scientifically fruitful (if somewhat exhausting given his tendency to work
days and nights non-stop) and personally rewarding (given his extraordinarily
friendly character). We hope you enjoy the book as much as we enjoyed working
with Gopal.

Prof. Carles Sierra and Prof. Nicholas R. Jennings
Bellaterra and Southampton, September 2005
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Abstract

In this thesis, we propose a panoply of tools and techniques to manage inter-
agent dependencies in open, distributed multi-agent systems that have significant
degrees of uncertainty. In particular, we focus on situations in which agents are
involved in repeated interactions where they need to negotiate to resolve conflicts
that may arise between them. To this end, we endow agents with decision making
models that exploit the notion of trust and use persuasive techniques during the
negotiation process to reduce the level of uncertainty and achieve better deals
in the long run.

Firstly, we develop and evaluate a new trust model (called CREDIT) that al-
lows agents to measure the degree of trust they should place in their opponents.
This model reduces the uncertainty that agents have about their opponents’
reliability. Thus, over repeated interactions, CREDIT enables agents to model
their opponents’ reliability using probabilistic techniques and a fuzzy reasoning
mechanism that allows the combination of measures based on reputation (in-
direct interactions) and confidence (direct interactions). In so doing, CREDIT
takes a wider range of behaviour-influencing factors into account than existing
models, including the norms of the agents and the institution within which trans-
actions occur. We then explore a novel application of trust models by showing
how the measures developed in CREDIT ca be applied negotiations in multiple
encounters. Specifically we show that agents that use CREDIT are able to avoid
unreliable agents, both during the selection of interaction partners and during
the negotiation process itself by using trust to adjust their negotiation stance.
Also, we empirically show that agents are able to reach good deals with agents
that are unreliable to some degree (rather than completely unreliable) and with
those that try to strategically exploit their opponent.

Secondly, having applied CREDIT to negotiations, we further extend the ap-
plication of trust to reduce uncertainty about the reliability of agents in mech-
anism design (where the honesty of agents is elicited by the protocol). Thus,
we develop Trust-Based Mechanism Design (TBMD) that allows agents using
a trust model (such as CREDIT) to reach efficient agreements that choose the
most reliable agents in the long run. In particular, we show that our mecha-
nism enforces truth-telling from the agents (i.e. it is incentive compatible), both
about their perceived reliability of their opponent and their valuations for the
goods to be traded. In proving the latter properties, our trust-based mechanism
is shown to be the first reputation mechanism that implements individual ratio-
nality, incentive compatibility, and efficiency. Our trust-based mechanism is also
empirically evaluated and shown to be better than other comparable models in



reaching the outcome that maximises all the negotiating agents’ utilities and in
choosing the most reliable agents in the long run.

Thirdly, having explored ways to reduce uncertainties about reliability and
honesty, we use persuasive negotiation techniques to tackle issues associated with
uncertainties that agents have about the preferences and the space of possible
agreements. To this end, we propose a novel protocol and reasoning mecha-
nism that agents can use to generate and evaluate persuasive elements, such as
promises of future rewards, to support the offers they make during negotiation.
These persuasive elements aim to make offers more attractive over multiple en-
counters given the absence of information about an opponent’s discount factors
or exact payoffs. Specifically, we empirically demonstrate that agents are able
to achieve a larger number of agreements and a higher expected utility over
repeated encounters when they are given the capability to give or ask for re-
wards. Moreover, we develop a novel strategy using this protocol and show that
it outperforms existing state of the art heuristic negotiation models.

Finally, the applicability of persuasive negotiation and CREDIT is exempli-
fied through a practical implementation in a pervasive computing environment.
In this context, the negotiation mechanism is implemented in an instant mes-
saging platform (JABBER) and used to resolve conflicts between group and
individual preferences that arise in a meeting room scenario. In particular, we
show how persuasive negotiation and trust permit a flexible management of in-
terruptions by allowing intrusions to happen at appropriate times during the
meeting while still managing to satisfy the preferences of all parties present.
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Chapter 1

Introduction

Open distributed computing applications are becoming increasingly common-
place in our society. In most cases, these applications are composed of multiple
actors or agents, each with its own aims and objectives. In such complex sys-
tems, dependencies between these multiple agents are inevitable, and generally
speaking, they cannot all be predicted in advance. Therefore a runtime mecha-
nism is needed to manage them and to resolve any conflicts that might ensue in
a context-dependent manner. We believe the de facto mechanism for achieving
this is automated negotiation and this is the area explored in this thesis.
However, designing effective negotiation mechanisms for open distributed ap-
plications is a major research challenge. Specifically, there is a high degree of
uncertainty in the variables that impact on negotiations. This is because the
actions of the actors (i.e. what they are able to achieve), their preferences (i.e.
what outcomes they deem possible and would prefer), their honesty (i.e. to what
extent they want to reveal private information truthfully), and their reliability
(i.e. how good they are at what they say they can do) are not public knowledge.
This uncertainty may, in turn, prevent the agents from reaching good agree-
ments during negotiations (because they are not able to make decisions with full
knowledge of the effects of their actions). Given this, the underlying motivation
of this thesis is to devise techniques to reduce this uncertainty so that agents
can reach better agreements through automated negotiation. In particular, this
involves modelling the variables that are prone to uncertainty using decision
theoretic techniques (e.g. statistics and/or fuzzy reasoning), determining ways
in which the output of such techniques can be used in automated negotiation,
and detailing how this output can be refined over multiple encounters between
the agents in order to make the search for the best agreement quicker. Against
this background, we develop three general classes of techniques that aim to en-
hance the outcome of such repeated encounters. First, we propose that agents
model their opponents’ reliability through the notion of trust. To this end, we
develop the CREDIT! trust model. Using CREDIT, agents are able to adapt

I Confidence and REputation Defining Interaction-based Trust (CREDIT).
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their negotiation stance in bargaining encounters according to how trustworthy
(reliable and honest) they believe their opponent to be in enacting the con-
tents of a contract. Second, we develop the notion of Trust-Based Mechanism
Design (TBMD) that uses game theoretic techniques to select the most reliable
agents in the system by incentivizing them to honestly reveal their preferences
and their trustworthiness. Third, we develop a novel mechanism for Persuasive
Negotiation (PN) for reducing the uncertainty in repeated encounters by allow-
ing agents to constrain the space of outcomes that they need to search in order
to find an agreement. Thus, in persuasive negotiation, agents can ask for or give
rewards, which constrain future encounters, in an attempt to make an offer in
the current negotiation more acceptable.

The rest of this chapter is structured as follows. Section 1.1 maps out the
general need for automated negotiation in Multi-Agent Systems (MAS). In
section 1.2 we discuss the techniques that are used in negotiation and identify
those attributes of negotiation encounters that can be uncertain. In section 1.3,
we then discuss the issue of trust as a means to reduce the uncertainty about the
honesty or reliability of agents. Then, in section 1.4 we discuss how uncertainties
about the action set and preferences of agents can be dealt with in persuasive
negotiation. The aims and objectives, as well as the main contributions of the
thesis, are outlined in section 1.5 and the structure of the remainder of this thesis
is given in section 1.6.

1.1 Motivation for Research

Many computer applications are open distributed systems in which the (very
many) constituent components are spread throughout a network, in a decen-
tralised control regime, and are subject to constant change throughout the sys-
tem’s lifetime. Examples include the Grid (Foster and Kesselman, 1998), peer-
to-peer computing (Ripeanu et al., 2002), the semantic web (Berners-Lee et al.,
2001), web services (Seth, 2003), e-business (Kersten and Lo, 2001), m-commerce
(Tveit, 2001; Vulkan, 1999), autonomic computing (Kephart and Chess, 2003),
and pervasive computing environments (Satyanarayanan, 2001). Such open
distributed systems are typically composed of various stakeholders, each with
their own, possibly conflicting, interests. Therefore, there is a need to have au-
tonomous components, that represent these stakeholders, and act and interact
in flexible ways in order to achieve their design objectives in uncertain and dy-
namic environments (Simon, 1996). Given this, agent based computing has been
advocated as the natural computation model for such systems (Jennings, 2001).

More specifically, the agent paradigm allows the decomposition of large, com-
plex, and distributed systems into a number of autonomous entities that can in-
teract with each other in order to achieve their individual objectives (Jennings,
2000). To be even more precise, the following definition of an agent will be used
throughout this work:

Definition 1.1. An agent is a computer system situated in an environment,



and capable of flexible autonomous action in this environment in order to meet
its design objectives (adapted from Wooldridge and Jennings (1995)).

This definition highlights the fact that an agent must have the following
properties:

e Reactivity — the ability to respond to changes to its perceived environment
including those changes that result from the actions of other agents.

e Proactiveness — the ability to exploit opportunities to satisfy its goals,
rather than constraining itself to predefined rules.

e Social ability — the ability to interact with other agents in its environment
to satisfy its goals.

The last of these properties is probably the main defining characteristics of
agents that are situated in MAS. In this work, agents within such systems are
assured to interact with one another according to some interaction mechanism
that guides the participants to a particular outcome:

Definition 1.2. An interaction mechanism is a means by which agents are able
to achieve one or more of the following: (i) exchange information, (ii) coordinate
their actions and (i) resolve their conflicts.

Given this, open distributed systems can be modelled as open multi-agent
systems that are composed of autonomous agents that interact with one another
using particular interaction mechanisms. Obviously, depending on the nature of
the interaction, different types of interaction mechanisms will be used. Broadly
speaking, we can characterise the nature of interactions in the following ways:

o (Competitive interactions — agents interact to satisfy their own preferences.
These preferences are usually captured through their utility function which
assigns a score (usually a real value) to particular outcomes in the interac-
tion. In such competitive interactions, agents try to maximise their utility
function and are hence termed selfish or self-interested. Specifically, the
agents try to deduce the course of action that maximises their utility given
their knowledge of their environment and the possible actions of other
agents. This may involve hiding their preferences since doing otherwise
might lead to a low utility deal being achieved.? Given this, MAS design-
ers have to engineer the system that guides such competitive interactions
through protocols so that agents do not unduly exploit one another or the
overall system in seeking to maximise their individual utility. In so doing,
the designer can ensure that the system is fair and incentivises individual
stakeholders to participate in it. Generally speaking, these protocols dic-
tate the range of actions that agents can perform (i.e. their action set), the
sequence of actions that are permissible (e.g. each agent performing only

2Such decision making based on the computation of the utility maximising action relative to
other agents’ actions is normally termed strategic decision making (Rosenschein and Zlotkin,
1994).
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one action concurrently with others or a number of actions sequentially
with others’ actions), and how the agents’ actions translate into an out-
come (Dash et al., 2003; Rosenschein and Zlotkin, 1994; Sandholm, 1999).
Given the system’s protocols, the agents’ owners need to define the strategy
of the agents that can achieve their goals (i.e. given the history of actions,
what an agent is supposed to do next).

o (looperative interactions — agents interact in order to try and maximise
the sum of all their utilities (also termed the social welfare (Mas-Colell
et al., 1995)) (as opposed to their individual utility in the competitive
case). In these interactions, agents totally devote themselves to the group’s
cause even at the expense of their individual goals (Pynadath and Tambe,
2002) (i.e. even if their individual utility is low in the chosen outcome).
In this context, the main problem of the MAS designer is that of devising
algorithms (i.e. covering both the protocol used and the strategy of the in-
dividual agents) that can find a globally optimum set of actions that still
manage to satisfy each agent’s constraints (Yokoo and Hirayama, 2000;
Becker et al., 2003). The problem of finding the optimum set of actions is
usually exacerbated in this case by uncertainties in the knowledge agents
have about each other’s actions and the number of constraints (or vari-
ables) that exist for each agent.

In this thesis we focus on interaction mechanisms that deal with competitive
interactions since this represents the most general class of interactions (i.e. a
competitive interaction can be reduced to a cooperative one by changing the
nature of the utility function of each agent). In particular, as stated earlier,
agents, while having selfish interests, may need to collaborate to achieve their
goals. In such contexts, agents usually aim to find an agreement that deter-
mines a course of action that maximises their individual utilities. To this end, a
number of techniques have been devised, forming the general class of negotiation
mechanisms, more commonly known as automated negotiation mechanisms in
the MAS literature.

1.2 Automated Negotiation Mechanisms

Negotiation has been defined in many different ways (see (Walton and Krabbe,
1995; Fisher and Ury, 1983; Rosenschein and Zlotkin, 1994; Jennings et al.,
2000)). However, fundamentally, its main goal is to achieve an agreement over
some issue(s) of contention. In this thesis we adopt the following definition:

Definition 1.3. Negotiation is an interaction mechanism that aims to resolve
a conflict of interest between two or more parties through the use of a defined
protocol and the strategies of the agents (adapted from (Jennings et al., 2001)).

The protocol usually determines the sequence of steps agents need to fol-
low during negotiation, while the agents’ strategies are part of their reasoning
mechanism (which also involves information gathering and analysis, and offer
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generation components). As can be deduced from the above definition, the aim
of negotiation is to find an agreement that satisfies the agents’ preferences or
constraints, but such encounters do not always end up in an agreement (and
agents may gain zero or negative utility from this). Non-agreement can happen
as a result of a lack of time, an unavailability of viable options for the par-
ticipants (that could result from a lack of knowledge about the participants’
preferences), or an incompatibility between the strategies used by the agents
(Fisher and Ury, 1983; Raiffa, 1982). However, if an agreement is feasible and
the agents are actually able to achieve it, all parties are normally committed to
enacting the contents of the agreement (Jennings, 1993). In this work, we define
a commitment as follows:

Definition 1.4. A commitment is a pledge by an agent to ensure that the con-
tents of the commitments are achieved through some actions (adapted from (Jen-
nings, 1993)).

The properties of the agreement reached (i.e. the type of actions agents
commit themselves to) are dictated by the negotiation mechanism used (i.e.
the protocol and strategies of agents). For example, if the mechanism allows
agents to exhaustively explore the space of all possible agreements, the agreement
chosen should be one that maximises all negotiating agents’ utilities. In contrast,
if the negotiation mechanism only allows an agent to accept or reject only one
offer (e.g. in take it or leave it negotiation), the agreement may not be the most
efficient one that could be obtained. Moreover, the type of mechanism chosen by
the system designer may, in turn, depend on a number of factors, among which
we note the following:

e The context of application — while some applications give an upper hand
to the system designer to formulate a protocol that meets certain criteria
(wanted by the designer), other applications may give more control to the
individual agents’ owners. For example, in selling licenses for bandwidth to
telecommunication companies, a government agency (the system designer)
may decide on a particular protocol that the companies need to comply
with in placing their offers and, in so doing, elicits their true preferences
and maximises the agency’s profit (Krishna, 2002). On the other hand,
traders in a stock market have to decide on their own (negotiation) strate-
gies in order to get the best profit in the system given the rules that are
in place.

e The uncertainty prevailing in the application — in most applications ne-
gotiations have to take place in an environment where there is a degree
of uncertainty. In this context, uncertainty about a particular property or
attribute means that there is a lack of information about that property or
attribute and there is no statistical model for this. For example, agents
may be uncertain about their exact preferences or about the actions they
can perform in the environment. Agents may also be uncertain about their
opponents’ reliability (i.e. how good they are at doing what they say they
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can do) and their honesty (i.e. whether they tell the truth about the infor-
mation have). In such cases, the protocol and the agents’ strategies used
for the negotiation will have to take these into account if the agents are
to come to acceptable outcomes. Such uncertainties can be reduced in a
number of ways including, but not limited to:

— Developing decision making models that allow agents to model those
attributes or properties liable to uncertainty. In such contexts, we
expect agents to use decision theoretic techniques such as statistics
(Savage, 1954) or fuzzy reasoning (Zadeh, 1965; Mamdani, 1977) that
permit such a modelling.

— Adapting the protocol to permit agents to reduce the number of vari-
ables over which the uncertainty applies. This may involve using a
protocol that forces the agents to reveal all the information available
to each of them (Krishna, 2002) or constraining the number of actions
that they may perform (Hovi, 1998; Mas-Colell et al., 1995),.

Given this, a number of automated negotiation mechanisms have been devised
to cater for different contexts and uncertainties. We can broadly classify these
into following categories (see figure 1.1):

e Bargaining — this typically involves the exchange of offers between the
interacting agents until an agreement is reached (this is often termed ‘ne-
gotiation’ in some cases (Jennings, 2001; Faratin et al., 1998)). In this
context, each offer implies a conditional commitment on the part of the
sending agent that it will enact the contents of the offer if and only if
the recipient sends an ‘agree’ message. The contents of the offer or the
negotiation object can vary from the very simple (e.g. based on price or
quality only) to the extremely complex (e.g. involving trade-offs between
price and quality) (Klein et al., 2003; Faratin et al., 2002). The negotiation
object may also be dynamically changed by adding other issues during the
negotiation process or by constraints imposed during other (concurrent or
previous) negotiation encounters (games).

Bargaining is appealing in situations where it is not possible to have a
central authority that can generate an outcome that maximises the utility
of all interacting agents. Also, bargaining protocols do not usually assume
known preferences, reliability levels, action sets, or degree of honesty of
the agents. Typically they only impose the sequence of exchange of offers
(e.g. alternating offers or ‘take it or leave it’) or the participation rules
that determine when agents are allowed to leave the negotiation or send
offers for example. In such cases, these uncertainties are left mostly to
the agent designers to model and use in their bargaining strategy (Faratin
et al., 1998; Jennings et al., 2001) (i.e. in this case a strategy is a mapping
from the history of offers to the next offer to be generated). To this end,
the agents’ owners may use some form of heuristic that provide general
rules on how to add issues to the negotiation object, the type of offer to be
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sent, or the trade-offs that can be made between different issues. The way
these different functions are performed define the agent’s negotiation stance
(i.e. how it shapes the negotiation encounter to its advantage). Heuristics
generally try to reach good outcomes (i.e. those that give a high positive
utility to the participating agents) rather than optimal ones (Jennings
et al., 2001). In contrast, optimal outcomes that maximise the sum of
the utility of participating agents are usually sought by game-theoretic
techniques (Nash, 1953; Muthoo, 1999). In this context, optimal outcomes
are those that maximise the sum of the utility of participating agents.
To achieve this outcome, the agents’ preferences and all their possible
actions are usually assumed to be known. However, as can be seen, such
approaches often make overly strong assumptions about the availability of
information about the agents’ private preferences and action set.

e Mechanism Design (MD) — this involves the development of a protocol
specifying an exact sequence (and number) of actions (imposed by the sys-
tem designer) to ensure that agents act in such a way that the resulting
behaviour satisfies certain properties sought for by the system designer
(Dash et al., 2003). To this end, the system designer assumes that the
agents present in the system interact in a game-theoretic way (meaning
that each agent models the effect of its actions on other agents’ actions).
The mechanism thus devised is to ensure that, at equilibrium, the intended
properties are satisfied. The equilibrium here determines the state reached
when all agents choose their utility maximising course of action and the
main properties sought for by such mechanisms include: (i) pareto ef-
ficiency (i.e. maximising the sum of the utility of all agents in such a
way that no other allocation exists where an agent gains more utility and
no other agent is worse off); (ii) incentive compatibility (i.e. enforcing
truthful revelation about the agents’ preferences or other attributes); and
(iii) individual rationality (i.e. agents are better off participating in the
mechanism than opting out). To achieve such properties, game-theoretic
mechanisms generally assume a completely known action set and that each
agent knows its preferences perfectly (but not those of its opponent). To
achieve such outcomes, the system designer provides incentives to agents
to behave in a certain way through the specification of a payment scheme
(i.e. how payments are made to agents which sell goods) and an alloca-
tion scheme (i.e. how goods are allocated to agents which pay for them)
that takes into account the utility-maximising nature of agents. Usually,
the protocols used in mechanism design imply a centralised authority that
regiments the interactions (i.e. decides the agreements for the agents after
knowing their preferences).

In general, both bargaining and mechanism design are subject to some uncer-

tainty regarding similar or different attributes. For example, mechanism design
reduces the uncertainty about the agents’ preferences by enforcing a protocol
which elicits these preferences. In contrast, bargaining seeks to elicit these pref-
erences through an iterative exchange of offers which is not guaranteed to find



15

an agreement that satisfies the agents’ preferences. Therefore, as shown in fig-
ure 1.1, there exists a number of attributes that are subject to uncertainty and
we view these as a cloud that envelops the negotiation process. Here we will
concentrate on the attributes that most obviously affect negotiations such as:3

e Honesty — in competitive interactions agents may lie about their prefer-
ences or reliability in order to maximise their utility and this may, in turn,
lead to inefficiency in the system. In such cases, the system designer needs
to provide the right incentives to elicit truthful revelation of such informa-
tion. This is usually achieved through engineering the protocol using some
form of game theoretic analysis (i.e. mechanism design). In cases where
this is not possible, agents may analyse the honesty of their opponents over
multiple encounters and avoid those that are most dishonest in the long
run.

e Reliability — in cases where a negotiation opponent’s reliability of per-
forming a particular task is not perfect, an agent might want to add some
more stringent conditions to the agreement reached between them (e.g.
specify a quality standard to be met or a compensation to be paid if ex-
pectations not met). This aims to make sure that the enactment of the
agreement by the opponent is in line with what the agent expects. In such
cases, in order to be able to analyse the reliability of an opponent, the agent
may need to model this attribute statistically over multiple encounters and
elicit a decision from that model at negotiation time. In this context, the
reliability and honesty of agents is captured through the concept of trust
(see chapter 3 for more details).

Definition 1.5. Trust is a belief an agent has that the other party will
do what it says it will (being honest and reliable) or reciprocate (being
reciprocative for the common good of both), given an opportunity to defect
to get higher payoffs (adapted from (Dasgupta, 1998)).

Thus, through a trust model, it is possible to capture the probability of
losing utility in an interaction with a particular agent by virtue of its
trustworthiness (i.e. its reliability and honesty). Hence, through the use of
a trust model, the risk? that agents incur in interactions can be significantly
reduced.

e Preferences — when each agent in a negotiation encounter knows its op-
ponents preferences, the outcome is usually easy to predict according to

30ther attributes, such as the communication mechanism used or the computational capa-
bility of the agents, are also subject to uncertainty, but in this thesis we will assume these are
already factored into the decision making models of the agents.

4We conceive of an environment as being prone to uncertainty, when every possible event
in the environment has an equal chance of happening. Risk, instead, arises when there is a
probability that an event causing some utility loss will happen (Zeckhauser and Viscusi, 1990).
These probabilities can be hard to estimate especially in the types of open distributed systems
in which we are interested.
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game theory (Mas-Colell et al., 1995). In mechanism design, the proto-
col is usually devised in such a way that these preferences are elicited.
However, when preferences are not known and agents are in a bargaining
encounter, they have to use efficient techniques to search the space of of-
fers that meets their opponent’s preferences. To assist in this process, the
agents could also exchange more information (on top of an offer) which
gives partial information about their preferences (i.e. without completely
revealing them).

e Environment (action set) — when agents do not know each other’s pos-
sible actions, it is hard to act strategically (as per game theory) to find
an agreement (which dictates a set of actions to the participants) that
maximises the utility of participating agents. Moreover, if the space of all
possible actions is very large, negotiating agents may find it computation-
ally hard to find a solution in a negotiation encounter. In such cases, the
system designer might need to formulate a protocol that reduces the space
of actions that agents need to search to find an agreement.

Against this background, in this thesis we aim to develop models that can
reduce the impact of the above uncertainties on the effectiveness of bargaining
and mechanism design techniques. In general, this can be achieved either by
engineering new protocols or enriching the strategy of an agent in order to make
the system, as a whole, more robust to uncertainty.

In more detail, in bargaining models in multi-agent systems, the uncertainty
about preferences and the environment are increasingly being researched using a
new class of techniques, here termed argumentation-based negotiation techniques,
of which persuasive negotiation is a special category (see chapter 2). These mod-
els attempt, in various ways, an exploration of agents’ preferences and actions.
Currently, such models limit themselves to very abstract implementations (i.e.
make no connection to a real application). Moreover, no existing agent-based
bargaining model deals with the uncertainties underlying the reliability of agents
or the honesty of agents. Similarly, in mechanism design where action sets are
assumed to be known and honesty is elicited, some attention has been given to
the uncertainty with respect to preferences of agents (Mas-Colell et al., 1995).
However, there is a dearth of mechanisms that deal with uncertainty about the
reliability of agents.

Given these lacunae, we aim to develop a new persuasive negotiation mecha-
nism that aims to achieve better outcomes in less time than current bargaining
techniques. To this end, we will clearly specify both the protocol and the strate-
gies of the participating agents in such a way that the uncertainty about the
agents’ action sets and preferences is reduced. We also aim to develop modelling
techniques, based on the concept of trust, that can be used by agents to reduce
the uncertainty they have about their counterparts’ reliability and honesty both
in bargaining and mechanism design. In so doing, we will develop mechanisms
that can generate better outcomes than current models when faced with uncer-
tainty. Finally, we aim to show the applicability of our models by providing
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an example application where our persuasive negotiation mechanism and trust
model can be used.

In the following sections we outline the landscape within which we develop
our models. We will therefore describe issues that need to be dealt with in the
area of trust and argumentation-based negotiation respectively.

1.3 Trust in Multi-Agent Systems

Broadly speaking, there are two main approaches to trust in multi-agent sys-
tems which we will focus on in this thesis. Firstly, to allow agents to trust
each other, there is a need to endow them with the ability to reason about the
reciprocative nature, reliability or honesty of their counterparts. This ability is
captured through trust models. Such models aim to enable agents to calculate
the amount of trust they can place in their interaction partners. A high degree
of trust in an agent would mean it is likely to be chosen as an interaction partner
and (possibly) a reciprocative strategy used towards it over multiple interactions
in order to elicit the best pay-off in the long run (Axelrod, 1984). Conversely,
a low degree of trust in an agent would result in it not being selected (if other,
more trusted, interaction partners are available) or a non-reciprocative strategy
adopted against it over multiple interactions (if there is no better alternative).
In this way, trust models aim to guide an agent’s decision making in deciding
on how, when, and who to interact with. However, in order to achieve this,
trust models initially require agents to gather some knowledge about their coun-
terparts’ characteristics. This can be achieved in a number of different ways
including: (i) through inferences drawn from the outcomes of multiple direct
interactions with these partners forming the agent’s confidence in them or (ii)
through indirect information provided by others forming the reputation of these
partners. The combination of an agent’s confidence and reputation measures
(through some decision mechanism) can then be used to derive a general notion
of trust that the agent has in its counterparts.

Secondly, while trust models pertain to the reasoning and information gath-
ering ability of agents, the other main approach to trust concerns the design of
protocols of interactions (i.e. through mechanism design techniques). As stated
in section 1.2, one of the main aims of MD is to devise systems that are incentive
compatible. This is normally achieved by providing the right incentives in the
form of payments that are made from the mechanism to the agents involved in
it. Thus, agents are compelled to be honest by the system.

From these two perspectives, it can be seen that trust pervades multi-agent
interactions at all levels (i.e. at the protocol level and at the agent’s reason-
ing level). With respect to designing agents and open multi-agent systems we
therefore conceptualise trust in the following ways:

e individual-level trust, whereby an agent has some beliefs about the
honesty, reliability, or reciprocative nature of its interaction partners.

e system-level trust, whereby the actors in the system are forced to be
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honest by the rules of encounter (i.e. protocols and mechanisms) that
regulate the system.

The above approaches can be seen as being complementary to each other since
they suit different contexts. Thus, while protocols aim to ensure the honesty of
agents at the system level, they are limited in that they require a central author-
ity (to compute outcomes or receive private information) and assume agents are
completely reliable. In contrast, where the system cannot be completely cen-
tralised and agents cannot be assumed to be completely reliable, trust models at
the individual level provide an alternative approach to measuring trust in a dis-
tributed fashion and are only limited by the agents’ own sensing and reasoning
capability (see chapter 3 for more details).

As can be seen from figure 1.2, while the individual level trust models enable
an agent to reason about its level of trust in its opponents, the system level
mechanisms aim to ensure that these opponents’ actions can actually be trusted.
In more detail, using their trust models, agents can:

e reason about strategies to be used towards trustworthy and untrustworthy
interaction partners (e.g. being reciprocative or selfish towards them) given
a calculation of payoffs over future interactions (i.e. using learning and
evolutionary models).

e reason about the information gathered through various means (e.g. either
directly or through reputation models) about potential interaction partners
(i.e. using reputation models).

e reason about the motivations and capabilities of these interaction partners
to decide whether to believe in their trustworthiness (i.e. using socio-
cognitive models).

In contrast, the mechanisms and protocols described (i.e. enforcing system-level
trust) aim to force agents to act and interact truthfully by:

e imposing conditions that would cause them to lose utility if they did not
abide by them (i.e. using trustworthy interaction mechanisms).

e using their reputation to promote their future interactions with other
agents in the community or demote future interactions whenever they do
not behave well (i.e. using reputation mechansims).

e imposing specified standards of good conduct that they need to satisfy
and maintain in order to be allowed in the system (i.e. using security
mechanisms).

In general, these two approaches to trust have, however, rarely been used
to deal with the uncertainties that arise in negotiation (except in the process
of partner selection, see chapter 3 for more details). For example, in bargain-
ing no trust modelling technique has been devised to allow agents to influence
agreements according to the believed reliability or honesty of their counterparts.
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In mechanism design, on the other hand, while most models have focused on
incentive compatibility (honesty) as a means of eliciting trust, very few models
deal with the varying reliability of agents (see chapter 6 for more details).

Given these observations, the first main aim of this thesis is to devise a
trust model that captures both the reliability and honesty of agents, and can
be used in both bargaining strategies and mechanism design. Obviously, the
reliability or honesty of agents cannot easily be measured unless the agents
observe each other’s behaviour over a number of interactions or share information
about their observations with other agents. A trust model therefore needs to
build its measures of trust over multiple interactions to obtain a more precise
impression of an opponent. Given this, an agent using such a trust model in a
bargaining encounter would need to adjust its strategy over multiple encounters.
Moreover, using a trust model in a mechanism would mean refining the computed
outcome to choose those agents that are most reliable and honest in the long
run.

The second main aim of this thesis is to deal with uncertainties concerning
the preferences and actions of the agents. While mechanism design tends to
assume known action sets and uses the protocol to elicit preferences in a mostly
centralised fashion, bargaining approaches do not assume anything about action
sets and do not specify a rigid protocol to elicit the true preferences of the
agents. Rather, agents are left to use their own strategy in bargaining to find an
agreement that maximises their utility. Bargaining is therefore very appropriate
for distributed applications and is less restrictive than centralised mechanisms.
However, bargaining in the simple form of exchange of offers and counter-offers
does not allow an efficient exploration of preferences or action sets. In the next
section we therefore explore a new bargaining approach that aims to make this
exploration more efficient.

1.4 Argumentation-Based Negotiation

In section 1.3 we proposed to deal with uncertainties regarding the honesty and
reliability of agents in bargaining encounters through the use of trust models.
However, trust models do not cater for uncertainties about the preferences of
the agents and the action sets. While in mechanism design these attributes
are assumed to be available or are elicited through the protocol, in bargaining
encounters these uncertainties are not usually taken into account and may lead
to an inefficient outcome in the following ways:

e Uncertainty about preferences — the offers made during a bargaining en-
counter determine the values that one or multiple issues in the negotiation
object must take in a possible agreement (e.g. price, quality, quantity).
The domain of these values may be very large (because the agents may
accept many different values for the same issues or trade-off the utility
they obtain from the value of a particular issue for more utility for a value
of another issue). During bargaining, the exchange of offers equates to
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searching through this large, and possibly multi-dimensional, space for an
agreement. This may, therefore, prove to be a time-consuming and com-
putationally expensive process. Also, the smaller the space of agreements
that may satisfy all the negotiating agents’ preferences, the harder it is to
find the agreement in that large space of all offers. In such cases, agents
are less likely to reach an agreement if they have short time deadlines or
incur some costs in communicating their offers for example.

e Uncertainty about the action set — only involving a restricted number of
issues in the negotiation object (e.g. price, quality, quantity) ignores the
fact that the agents may have preferences about other resources or issues
(upon which they can act) which may be negotiated. For example, a router
agent might propose to give free access to some files to a client agent (which
the client might be interested in and which do not cost anything to the
router agent) if it accepts to pay a high price for bandwidth to access
the internet. To ignore these issues in the negotiation process may reduce
the possibility of finding common interests between agents which could,
in turn, lead to an agreement that satisfies all the agents’ preferences
(Fisher and Ury, 1983). However, enlarging the space of issues needs to be
undertaken carefully since this equates to an increase in uncertainty about
the preferences of the agents over these issues.

The ideal negotiation procedure would therefore enable agents to quickly identify
a small space of issues that they all value most. Given this, a new approach to
bargaining has been growing in the past few years in the MAS community known
as Argumentation-Based Negotiation (ABN). This approach involves the use of
additional constructs in offers exchanged so as to make these offers more attrac-
tive to an opponent and therefore reach an agreement faster. These constructs
aim to provide additional information about the agents’ properties, resources,
or attributes or about the offer made, that can reduce the uncertainty about
their action set and preferences (without revealing their exact preferences). In
so doing, this information reduces the time to find an agreement by allowing the
agents to search a small number of issues they value most. ABN is based on
constructs called arguments which we define as follows:

Definition 1.6. An argument is an illocution (a speech act (Searle, 1969;
Austin, 1975)) that contains a justification for an offer or a commitment to
some course of action conditional on whether the offer is accepted or not.

The above definition captures the two general strands of current research
in ABN namely those that deal with justifications (or information) and those
that deal with commitments to actions. These two types of arguments aim to
achieve the similar objectives. In more detail, these two types of arguments
make the search for an agreement between negotiating agents more efficient in
the following ways:

e Justification-based ABN — justifications usually expose more information
about an agent’s preferences. These justifications either give more details
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about why an offer is rejected or what changes would be needed to make an
offer acceptable (Fisher and Ury, 1983; Rahwan et al., 2003d). For exam-
ple, if a seller offers a blue car for five hundred dollars, it may additionally
argue that the car has a very good engine and that the blue colour is very
trendy. These may, in turn, influence the buyer to increase its preference
for that colour (since an agent’s preferences may be partially determined
by what other agents consider to be trendy). Moreover, such justifications
can expose additional issues of common interest for the agents concerned
(i.e. here the type of the engine or the colour).

e Persuasion-based ABN — commitments to actions conditional on the an-
swer of the recipient (i.e. whether the agent accepts or rejects) determine
the persuasive tactics that can be used in negotiation (Schelling, 1963).
Such conditional commitments provide an agent with a means to influence
its opponent through persuasive arguments such as threats (which are en-
acted if an offer is rejected) or rewards (which are enacted if an offer is
accepted) in order to get an agreement faster. Their influence is captured
by the constraints they impose on the domain of values an opponent may
offer (or counter-offer) and on the space of issues that need to be considered
in a given interaction. For example, a seller may promise to reward a buyer
agent with a discount on its next purchase if it accepts to buy a car for six
hundred pounds. Thus, the price of the next purchase is already biased in
favour of the buyer and makes the search for an agreement faster (since
values of the next negotiation object may be bounded by the reward). If
a seller instead threatened to increase the price of future car services if its
negotiation opponent did not accept a current offer about the price of the
car being proposed, the opponent may be forced to accept the offer (if the
threat is credible), since refusing may result in constraining the outcome
of future negotiations about the car services to its detriment (and reducing
the search for an agreement in the next encounter).

Both classes of arguments have their own merits but in this thesis we focus
on persuasion based ABN, more commonly known as Persuasive Negotiation
(PN), because we believe that using justifications is overly restrictive since this
requires the same deductive mechanism for all negotiating agents. Also, each
agent would need to believe what its opponent provides as a belief as completely
true (i.e. they are trustworthy) (Amgoud et al., 2002; Parsons et al., 1998; Sadri
et al., 2002). In comparison, PN provides a more established and less restrictive
framework based on the use of commitments to actions which makes them more
appealing in the following ways. First, PN does not impose any restriction on the
deductive machinery used by negotiating agents. This means that the actions
committed to in an argument can be evaluated through a preference structure
such as a utility function. Second, PN does not assume that the agents are com-
pletely trustworthy and is therefore more applicable to competitive interactions
where agents may lie about their preferences or reliability.

In general, a PN mechanism requires all of the following (Jennings et al.,
2001):
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1. Mechanisms must exist for passing proposals and their supporting argu-
ments in a way that all agents involved understand them. This implies
that the protocol needs to specify illocutions for agents to express the na-
ture of the argument they need to send (e.g. whether they want to ask for
a reward or give one).

2. Techniques must exist for generating proposals and for providing the sup-
porting arguments. This implies that an agent must have a means to
construct proposals given its own goals and the issues that are to be ne-
gotiated. It should also be able to devise a supporting argument about
issues or actions that an opponent is expected to give value to.

3. Techniques must exist for assessing proposals and their associated sup-
porting arguments. This usually involves evaluating the proposals and
arguments according to the agent’s preferences (i.e. utility function).

4. Techniques must exist for responding to proposals and their associated
supporting arguments. This implies that an agent must have a strategy to
generate offers and arguments. In particular, this involves measuring the
utility that is likely to be obtained from a given combination of a received
offer and argument and to give a best response that seeks to meet the
opponent’s preferences while still maximising the agent’s utility.

In most existing PN mechanisms, however, arguments such as threats or rewards
are usually given very abstract definitions that cannot readily be used in real
applications (see chapter 2 for more details). Specifically, rewards or threats are
generally defined as those actions that aim to increase or reduce the utility of an
opponent, respectively, at a later point in time (after a negotiation encounter is
terminated and an agreement is enacted or not). In such cases, those actions that
are deemed credible rewards or threats represent yet another space the agents
need to search in order to find the most appropriate one to send. To reduce the
size of this space, in this thesis we decided to impose a protocol or a strategy
that constrains the set of actions that can be considered rewards and threats.
It therefore follows that the protocol and the rewards (or threats) need to be
defined in such a way that they have clear semantics to be used in a realistic
application.

Against this background, we believe PN is a natural fit for repeated nego-
tiation encounters (or long-term relationships) for a number of reasons. First,
arguments that apply to actions at a later point in time can easily be construed
as constraints that apply over negotiations in future encounters (hence giving
clear semantics to arguments). In this way, arguments can reduce the space of
actions that needs to be searched for an agreement in future encounters (thus
reducing uncertainty about the action set) and influence an agent to accept an
offer in a present encounter (thus reducing the time to find an agreement that
matches the agents’ preferences). Second, by constraining future encounters
through arguments, agents can ensure that they obtain a positive utility in the
present encounter or future ones whenever they have an amount of resources



24

or capabilities that can predictably vary over time. This can be achieved by
applying constraints to future encounters that guarantee certain outcomes that
fit the agents’ dynamic constraints.

By applying PN to repeated encounters we therefore define the common
thread that links this mechanism with our use of trust models in negotiation to
reduce uncertainty about the reliability and honesty of agents. In effect, these
models of PN and trust aim to provide an agent with a reasoning mechanism
robust to the uncertainties which are endemic to repeated negotiations in open
distributed systems. Moreover, we aim to show through example applications
how they would each work in practice.

1.5 Research Contributions

In this section we summarize the aims and objectives of this thesis and the
contributions to the state of the art that were made to achieve them. Our
general aim is to develop techniques that help to reduce the uncertainty in
repeated multi-agent negotiations in open distributed systems. To this end, we
set out to achieve the following particular objectives:

e Develop a comprehensive trust model for multi-agent systems that can
evaluate the reliability or honesty of agents.

e Use trust in bargaining encounters and mechanism design in order to re-
duce the uncertainty agents have about their negotiation opponents’ reli-
ability and honesty. This involves using the trust measure developed by
our trust model in an agent’s reasoning mechanism (i.e. in its bargaining
strategy) and developing the protocol for an interaction mechanism that
caters for the uncertainty regarding the reliability of agents.

e Develop a comprehensive model of persuasive negotiation that comprises:
(i) a protocol that incorporates the use of arguments and determines what
commitments hold whenever agents make offers or issue arguments and
(ii) a reasoning mechanism that can generate offers and arguments and
can evaluate and respond to these during a negotiation encounter. This
requires developing both an argument generation and evaluation compo-
nent, as well as the strategies for PN.

e Demonstrate the benefit of using arguments in automated negotiation and
show that they enable agents to reach agreements more efficiently (i.e.
better and faster) than using normal negotiation protocols that only allow
an exchange of offers.

e Implement PN in a realistic context in order to demonstrate its applica-
bility and effectiveness in managing inter-agent dependencies.

To achieve these objectives, a number of contributions were made to the state
of the art:
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e In (Rahwan et al., 2003b), we provided the first survey of the state of the
art in the area of ABN and identified the main trends and challenges that
pervade the field. This survey set the landscape within which we develop
our model of PN and appears as chapter 2 in this thesis.

e In (Ramchurn et al., 2004b), we provided a critical analysis of the trust
issues that arise in MAS. In particular, we showed how various models
developed in MAS form a coherent approach towards resolving uncertain-
ties about the reliability and honesty of agents. Thus, we also identify the
current challenges in the field which we aim to meet in our model. This
review appears in chapter 3 in this thesis.

e Based on our preliminary work in (Ramchurn et al., 2004d) and the re-
quirements presented in chapter 3, we describe a novel trust model (called
CREDIT) that enables an agent to measure its opponents’ trustworthiness
(honesty or reliability) over multiple encounters (Ramchurn et al., 2004c).
The model is shown to be effective and efficient at preventing exploitation
by opponents by allowing the agent to adjust its negotiation stance in re-
peated bargaining encounters according to its trust in its opponents (hence
reducing uncertainty). Moreover, using CREDIT’s trust measure, an agent
is also able to select its interaction partners more effectively. CREDIT is
presented in chapter 5.

e Given our work on CREDIT, we then introduced the use of trust modelling
to the area of mechanism design by developing the notion of Trust-Based
Mechanism Design (TBMD) to reduce uncertainty about the reliability of
agents (Dash et al., 2003). In so doing, we created the first efficient, indi-
vidually rational, and incentive compatible mechanism that takes into ac-
count the trust agents have in each other. This is, in effect, the first efficient
reputation mechanism that incentivises agents to reveal their impressions
of others truthfully. Specifically, our Trust-Based Mechanism combines
these measures into an overall trust measure (using a trust model such as
CREDIT) to select those agents that are best at doing certain tasks. This
work is presented in chapter 6.

e While CREDIT and TBMD are concerned with uncertainties about relia-
bility and honesty, in (Ramchurn et al., 2003a) we provided a preliminary
model of Persuasive Negotiation whereby agents can use threats and re-
wards to elicit better agreements by reducing uncertainties about prefer-
ences and action sets. This model describes the general concepts that are
used to develop our new PN mechanism that can allows agents to reach
better agreements faster than standard bargaining mechanisms. In par-
ticular, we develop a new protocol and reasoning mechanism for agents
to use to give or ask for rewards in repeated encounters. We also show,
empirically, that agents are able to engage in more efficient and effective
agreements using this protocol and reasoning mechanism than only bar-
gaining with offers. We also develop a novel strategy for PN and show that
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it enables agents to achieve even better agreements than current negotia-
tion strategies. The complete model is given in chapter 7.

e Given our model of PN, we then apply it, together with CREDIT, in a
pervasive computing environment (Ramchurn et al., 2004a). In so doing,
we are able to show, for the first time, how a PN and trust model can
be used in practice to allow agents to resolve their conflicts effectively. In
particular, in this work we show how PN can be used by agents to negotiate
about the usefulness of interruptions in a meeting room scenario. In so
doing, negotiating agents provide an effective way to reduce the intrusions
caused by interruptions and help their human owners to focus on the main
task undertaken during the meeting. This work appears as chapter 8.

Drawing all these together, the application of the various models we develop
to cater for uncertainties in negotiation is graphically expressed in figure 1.3. As
can be seen, CREDIT and TBMD overlap in that they deal with the uncertainty
regarding the reliability and honesty of agents. In CREDIT, we show how to
develop and use trust in bargaining encounters, while in TBMD we show how to
use the core concepts of CREDIT in mechanism design. Given this, CREDIT
also overlaps with persuasive negotiation as they both apply to bargaining en-
counters and both try to reduce uncertainty about the action set of agents. They
do this by either adjusting the negotiation stance of an agent (i.e. the selection
of values for issues in this context) or by using arguments to constrain the action
set. In addition to this, PN overlaps with TBMD since PN also aims to explore
preferences more efficiently than standard bargaining techniques through the use
of arguments while TBMD aims to elicit these preferences through the protocol
it enforces upon the agents together with the trust model it uses.

1.6 Thesis Structure

The thesis is structured in the following way:

Chapter 2 : surveys the literature on ABN. The main models in the literature
are analysed and their prominent characteristics defined. We identify the
particular components of an ABN protocol and strategy and discuss the
main challenges that still exist in this area. We then define the require-
ments of the protocol and reasoning mechanism that are to be developed
for our persuasive negotiation model which we describe in chapter 7.

Chapter 3 : details the background on trust for MAS. Here we justify the
need for trust to be acquired through an agents’ modelling capabilities
and through constraints imposed by the interaction mechanism. Thus,
different types of trust mechanisms are surveyed and a general typology of
trust is derived. Following this, we define the main requirements for the
CREDIT trust model and TBMD which we develop in chapters 5 and 6
respectively.
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Chapter 4 : formalises the basic notions of agreements and preferences. These
formalisms define the common thread that underpins the settings used in
the empirical evaluation of CREDIT and PN.

Chapter 5 : details the CREDIT trust model. The model is based on the no-
tions of confidence and reputation and can be used to influence an agent’s
negotiation stance. The computational complexity of the algorithm under-
lying the model is shown to be linear in the number of negotiated issues
and quadratic with respect to the number of decision variables (here these
are fuzzy sets) used to capture the particular behaviour of opponents.
The model is shown to be effective and efficient at enabling an agent to
avoid interacting with agents that are unreliable or dishonest. Moreover,
CREDIT allows an agent to adapt its negotiation stance so as to elicit
profitable outcomes when it deals with those agents that are reliable to
some degree.

Chapter 6 : applies the basic notions of trust from CREDIT to design a cen-
tralised mechanism using game theoretic principles in order to elicit ef-
ficiency in the system. Thus, in this chapter, we develop TBMD as a
novel method to deal with the variable reliability of agents. Specifically,
we prove that the trust-based mechanism we develop is incentive compat-
ible, individually rational, and efficient. Then we empirically show that
our mechanism enables the most reliable agents to be chosen in the long
run and that it performs better than other comparable models.

Chapter 7 : presents our novel model of PN based on the exchange of rewards
(asked for or given). This involves detailing a protocol that guides the use
of arguments in negotiation and manages the commitments that agents
make through their offers and arguments. In particular, we use dynamic
logic to build such a framework and we provide the reasoning mechanism
that agents can use to generate offers and arguments (i.e. we define strate-
gies for PN). Then, we empirically evaluate the model and show that it
enables agents to achieve better agreements (i.e. higher utility) faster (i.e.
in less negotiation rounds) than current bargaining protocols and strate-
gies.

Chapter 8 : describes an application of our PN and trust models. In particular,
through PN and CREDIT, we resolve the conflicting preferences agents
have about the interruptions received on devices in a pervasive computing
environment. The particular scenario chosen is that of a meeting room
which contains devices (built into the room and those that each participant
owns) on which notifications are received. In such a context, we therefore
show how PN can be used to flexibly manage these notifications so as to
minimise their intrusiveness while the meeting takes place.

Chapter 9 : summarizes and discusses the main achievements of this thesis.
We analyse the extent to which the models therein meet the objectives
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set in chapter 1. Finally, we discuss future avenues of work that we have
identified in the domains of trust and PN.






Chapter 2

Argumentation-Based
Approaches to Negotiation

In chapter 1 we justified the need to build an ABN mechanism in general, and a
PN mechanism in particular, to reduce the uncertainty that agents have about
each other’s preferences and action sets. Before doing so, however, in this chapter
we first survey the state of the art in the area of ABN to determine the main
issues that arise in designing such mechanisms. In particular, we analyse the
impact of augmenting bargaining mechanisms with arguments. We do this both
from the perspective of the system (comprising the negotiation object and the
protocol) within which agents interact and the agent’s decision making model. In
so doing, we also define the main requirements of our PN mechanism and identify
those elements of existing ABN mechanisms we can exploit in developing our
model.

The rest of this chapter is structured as follows. In section 2.1 we discus
the main components of the framework that is needed to implement an ABN
mechanism. Given this, in section 2.2 we elaborate on the general requirements
of ABN agents. Finally, section 2.3 summarises our findings and outlines the
main challenges that exist in defining our PN mechanism.

2.1 External Elements of ABN Frameworks

As described in figure 1.1, in order to allow agents to resolve their conflicts,
bargaining mechanisms require different elements in the agent’s reasoning mech-
anism (i.e. its strategy) and in the system within which these agents interact
(i.e. the protocol). Moreover, bargaining mechanisms require that agents are
also able to understand the different operations that are possible on the negotia-
tion object and are able to communicate these operations to their counterparts.
To this end, agents also need a language to understand and communicate their
different manipulations of the object. In this context, therefore, the definition
of the language and the protocol constitute the framework of what we consider

31
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to be a bargaining mechanism.

We will deal with approaches to the agents’ decision making models (captur-
ing their strategy and assessment of the negotiation object) in section 2.2 while
in this section we will focus on the protocol and the language that allows an
agent to manipulate the negotiation object. Considering the language first, this
primarily involves defining different aspects of the domain that are necessary to
describe the content of the negotiation object (e.g. what are the issues involved
in the object or what are the agents that are to benefit from an agreement).
Moreover, the language may also need to define those elements that allow agents
to communicate their intended actions on the negotiation object (e.g. whether
they are retracting their offer or requesting more information about the object).
Turning now to the protocol, this can generally be divided into two main parts
(as shown in figure 1.1); namely managing participation rules and managing the
commitments agents make and the information they exchange during bargain-
ing. In this context, the participation rules determine when and what particular
actions can be carried out. This includes actions such as making an offer or
withdrawing from the negotiation. The management of commitments requires
that the system keeps track of what commitments agents make and what com-
mitments are fulfilled (as a result of what they say or do). The management
of these commitments or any information that is passed between the agents is
usually captured by an information storage component. Given these different
aspects of the system, in the following subsections we detail the different ap-
proaches to defining the language for bargaining, the participation rules, and
the information stores.

2.1.1 The Language for Bargaining

A negotiation framework requires a language that facilitates communication be-
tween the agents (Labrou et al., 1999). Elements of the communication language
are usually referred to as locutions or utterances or speech acts (Searle, 1969;
Traum, 1999). Traditional automated negotiation mechanisms normally include
the basic locutions such as propose for making proposals, accept for accepting
proposals, and reject for rejecting proposals.

In addition to the communication language, agents often need a common
domain language for referring to concepts of the environment, the different
agents, time, proposals, and so on.! When a statement in the domain lan-
guage is exchanged between agents, it is given particular meaning by the com-
munication language utterance that encapsulates it. For example, in the PN
framework presented by (Sierra et al., 1998), the locution offer(a,b, Price =
$200 N Item = palm130,t1), means that agent a proposes to agent b, at time
t1 the sale of item palm130 for the price of $200. On the other hand, the
reject locution gives the same content a different meaning. The locution

INote that this language may be different from the language used internally by an agent.
In such cases, the agent needs to perform some type of translation into the common language
in order for communication to work (Sierra et al., 1998).
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reject(b, a, Price = $200 A Item = palm130,ts) means that agent b rejects such
a proposal made by agent a.

In ABN frameworks, agents need richer communication and domain lan-
guages to be able to exchange meta-level information (i.e., information other
than that describing outcomes). Therefore, a major distinguishing factor of
ABN frameworks is in the type of information that can be expressed and ex-
changed between agents, and consequently, in the specifications of the agents
that generate and evaluate this information. As we pointed out in section 1.4
chapter 1, such information are intended to allow a better reduction of uncer-
tainties that surround agents’ action sets and preferences. Table 2.1 shows the
main distinguishing features between ABN and non-ABN frameworks as they
relate to the communication and domain languages.

Non-ABN Frameworks ABN Frameworks

Domain Language

Expresses  proposals only
(e.g., by describing products
available for sale).

Expresses proposals as well as
meta-information  about  the
world, agent’s beliefs, prefer-
ences, goals, etc.

Communication Lan-
guage

Locutions allow agents to pass
calls for bids, proposals, ac-
ceptance and rejection, etc.

In addition, locutions allow
agents to pass meta-information
either separately or in conjunc-
tion with other locutions.

Table 2.1: Differences between ABN and Non-ABN w.r.t Domain and Commu-
nication Languages

State of the Art

In existing ABN frameworks, various domain and communication languages have
been proposed. They range from those designed as simplistic domain specific
languages to more complex languages grounded in rich logical models of agency.

In multi-agent systems, two major proposals for agent communication lan-
guages have been advanced, namely the Knowledge Query and Manipulation
Language (KQML) (Mayfield et al., 1996) and the Foundation for Intelligent
Physical Agents’ Agent Communication Language (FIPA ACL) (FIPA, 2001).
FIPA ACL, for example, offers 22 locutions. The contents of the messages can
be in any domain language. The locution inform(a,b, ¢, lan), for example, al-
lows agent a to inform another agent b of statement ¢ which is in language lan.
Other locutions exist allowing agents to express proposals for action, acceptance
and rejection of proposals, make various queries about time and place, and so
on. FIPA ACL has been given semantics in the form of pre- and post-conditions
of each locution (Searle, 1969; Austin, 1975).

While FIPA ACL offers the benefits of being a more or less standard agent
communication language, it fails to capture all utterances needed in a negotiation
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interaction. For example, FIPA ACL does not have locutions expressing the
desire to enter or leave a negotiation interaction, to provide an explicit critique
to a proposal or to request an argument for a claim. While such locutions
may be constructed by injecting particular domain language statements within
locutions similar to those of FIPA ACL, the semantics of these statements fall
outside the boundaries of the communication language. Consider the following
locution from the framework presented by (Kraus et al., 1998):

Request(j, i, Do(i, ), Do(i, ) — Do(j,3))

In this locution, agent j requests that agent ¢ performs action a and supports
that request with an argument stating that if ¢ accepts, j will perform action 3
in return. For the locution to properly express a promise, action 4 must actually
be desired by agent ¢. If, on the contrary, 8 is undesirable to i, the same locution
becomes a threat, and might deter i from executing a. The locution Request,
however, does not include information that conveys this distinction.

In order to deal with the above problem, ABN framework designers often
choose to provide their own negotiation-specific locutions which hold, within
them, the appropriate semantics of the message. For example, (Sierra et al.,
1998) provides explicit locutions for expressing threats and rewards (e.g., threaten(i, j, a, 3)
and promise(i, j, a, 3)).

Having discussed some issues relating to the communication languages in
ABN, let us now discuss the domain languages. In negotiation, the domain lan-
guage must, at least, be capable of expressing the object of negotiation. In Sierra
et al.’s model (Sierra et al., 1998), the domain language can express variables
representing negotiation issues (or attributes), constants representing values for
the negotiation issues (including a special constant ‘?” denoting the absence of
value), as well as equality and conjunction. This enables them to express full or
partial multiple-attribute proposals. For example the sentence

(Price = £10) A (Quality = high) A (Penalty =7)

expresses a proposal to agree on a high-quality product or service for the price
of £10, and with a cancellation penalty yet to be agreed upon. There is also a
meta-language for explicitly expressing preferences. For example, the statement
Pref([Price = £10],[Price = £20]) expresses the fact that an agent prefers a
price of £10 to £20.

In addition, ABN frameworks may need some way to express plans and re-
sources needed for different plans. This is because agents participating in nego-
tiation may be doing so in order to obtain resources needed for executing their
plans. This means that an agent may be able to inform another agent of (parts
of) its plans in order to justify its request for particular resources. (Sadri et al.,
2002), for example, express plans using the plan(.) predicate. The following
formula:

plan((hit(nail), hang(picture)), { picture, nail, hammer})
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denotes a plan (or intention) to hit a nail and hang a picture. The resources this
plan requires are a picture, a nail and a hammer.

Some ABN frameworks also explicitly express information about agents’ men-
tal attitudes. The ABN frameworks presented by (Kraus et al., 1998) and by
(Parsons et al., 1998), for example, allow an agent to represent beliefs about other
agents’ beliefs, desires, intentions, capabilities, and so on, and are based on log-
ics of Belief, Desire, and Intention (BDI) (Rao and Georgeff, 1995; Wooldridge,
2002). An agent can use this information not only in its internal reasoning
processes, but also in its interaction with other agents.

The usefulness of the domain language in the context of ABN becomes partic-
ularly apparent when agents provide arguments for requesting certain resources,
for rejecting certain requests, and so on. The richer the domain language, the
richer the arguments that can be exchanged between agents. This will become
more evident when we discuss argument generation and evaluation in the fol-
lowing sections.

Challenges

There are a number of challenges in the design of domain and communication
languages for ABN. First, there is a need to provide rich communication lan-
guages with clear semantics. For example, McBurney et al. (2003) specified a set
of locutions as part of a dialogue game? for purchase negotiation among multiple
agents. The authors provided a public axiomatic semantics to their locutions
by stating each locution’s externally observable preconditions, the possible re-
sponse, and the updates to the information stores.®> Moreover, the framework
presents an operational semantics of the whole framework, connecting locutions
with each other via the agents’ decision mechanisms. However, this framework
does not cover the whole spectrum of ABN situations. For example, there are no
locutions for explicitly requesting, providing and challenging arguments, or for
supporting argumentation over preference criteria. Locutions facilitating argu-
ment exchange have been proposed in other frameworks (e.g., Sadri et al., 2001a;
Torroni and Toni, 2001; Sadri et al., 2002; Amgoud et al., 2000b; Amgoud and
Parsons, 2001). There are opportunities for extending the model of (McBurney
et al., 2003) with a richer argumentation system. Moreover, there is also a need
to extend the semantics of the language to cover other actions (e.g. the enact-
ment of an agreement or a reward) apart from illocutions. This may require the
use of an action-based logic (as opposed to first order logic which is commonly
used) such as dynamic logic (Harel, 1984).

2Dialogue games are interactions between two or more players, where each player makes
a move by making some utterance in a common communication language, and according to
some pre-defined rules. Dialogue games have their roots in the philosophy of argumentation
(Aristotle, 1928; Hamblin, 1970). In multi-agent systems, dialogue games have been used to
specify dialogue protocols for persuasion (Amgoud et al., 2000a), negotiation (Amgoud and
Parsons, 2001), and team formation (Dignum et al., 2000).

3We shall discuss information stores in more detail in section 2.1.3.
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2.1.2 Participation Rules

As discussed in chapter 1, a bargaining framework should also specify a partici-
pation rules in order to constrain the use of the language and other the actions
of the participants (i.e. what the agents can say or do at what point in time).
Thus, participation rules reduce uncertainty about the actions of the agents.
Here we view the participation rules as a formal set of conventions governing
the interaction among participants (Jennings et al., 2001). This includes the
dialogue rules as well as other rules governing the actions of the agents.

The dialogue rules specify, at each stage of the negotiation process, who is
allowed to say what. For example, after one agent makes a proposal, the other
agent may be able to accept it, reject it or criticise it, but might not be allowed
to ignore it by making a counterproposal. The rules might be based solely on
the last utterance made, or might depend on a more complex history of messages
between agents.

The other rules that form part of the participation rules may address the
following issues (Jennings et al., 2001; Esteva et al., 2001):

- Rules for admission: specify when an agent can participate in a negoti-
ation dialogue and under what conditions.

- Rules for participant withdrawal: specify when a participant may
withdraw from the negotiation.

- Termination rules: specify when an encounter must end (e.g. if one
agent utters an acceptance locution).

- Rules for proposal validity: specify when a proposal is compliant with
some conditions (e.g., an agent may not be allowed to make a proposal
that has already been rejected).

- Rules for outcome determination: specify the outcome of the interac-
tion. In an auction-based framework, this would involve determining the
winning bid(s) (Sandholm, 2002). In argumentation-based frameworks,
these rules might enforce some outcome based on the underlying theory of
argumentation (e.g., if an agent cannot construct an argument against a
request, it accepts it (Parsons et al., 1998)).

- Commitment rules: specify how agents’ commitments should be man-
aged, whether and when an agent can withdraw a commitment made pre-
viously in the dialogue, how inconsistencies between an utterance and a
previous commitment are accounted for, and so on. These rules make
the connection between information stores (which we discuss in the next
section) and the dialogue rules.

In ABN, the participation rules are usually more complex than those in non-
ABN. By “more complex”, we mean that the participation rules may have to
consider a larger number of locutions, and, hence consist of a larger number of
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rules. This leads to computational complexity arising from processes such as
checking the locutions for conformance with the protocol given the history of
locutions.

State of the Art

With respect to the dialogue rules, a variety of trends can be found in the ABN
literature. Dialogue rules can be either specified in an ezplicit accessible format,
or be only implicit and hardwired into the agents’ specification.

Explicit specification of dialogue rules may be represented by finite state
machines (e.g., Sierra et al., 1998; Parsons et al., 1998). In this way, each state
has a set of outgoing and incoming transition lines that represent illocutions
that bring the agents and take the agents away from that state. Thus, a propose
illocution in (Sierra et al., 1998) brings an agent from one state where the only
other possible illocution is withdraw to one where it is additionally possible to
say accept (and propose). Another representation of this state machine can be
achieved by expressing dialogue rules explicitly as in dialogue games (e.g., as
in Amgoud et al., 2000b; Amgoud and Parsons, 2001; McBurney et al., 2003)
by stating the pre- and post-conditions of each locution as well as its effects on
agents’ commitments. The following is the specification of a locution from the
protocol presented by (McBurney et al., 2003). This locution allows a seller (or
advisor) agent to announce that it (or another seller) is willing to sell a particular
option:*

Locution: willing to_sell(P;,T, P, V), where P is either an ad-
visor or a seller, T is the set of participants, P; is a seller and V/
is a set of sales options.

Preconditions: Some participant P3 must have previously uttered
a locution seek_info(Ps,S,p) where P; € S (the set of sellers),
and the options in V satisfy constraint p.

Meaning: The speaker P; indicates to audience T that agent P, is
willing to supply the finite set V' = {a,b, ...} of purchase-options
to any buyer in set T'. Each of these options satisfy constraint p
uttered as part of the prior seek_info(.) locution.

Response: None required.

Information Store Updates: For each a € V, the 3-tuple (T, P»,a)
is inserted into IS(P1), the information store for agent P;.

Commitment Store Updates: No effects.

One advantage of dialogue game protocols is that they have public axiomatic
semantics. This is because they refer only to observable pre-conditions and
effects, rather than to the agents’ internal mental attitudes. This makes it easier
to verify whether agents are conforming to the protocol.

Other frameworks implicitly hardwire the dialogue rules in the agents’ inter-
nal specification (e.g., Kraus et al., 1998; Sadri et al., 2001a; Torroni and Toni,

4We leave the discussion of “information stores” to section 2.1.3.
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2001; Sadri et al., 2001b, 2002). In these frameworks, the dialogue rules are spec-
ified using logical constraints expressed in the form of if-then rules. Since these
frameworks describe a logic-based approach to agent specification ((Kraus et al.,
1998) implement their agents using Logic Programs, while (Sadri et al., 2001b)
use Abductive Logic Programs), the participation rules are coded as part of the
agent’s program. These rules take the form P(t) A C(t) = P'(t + 1), meaning
that if the agent received performative (i.e. locution) P at time ¢, and condition
C was satisfied at that time, then the agent must use the performative P’ at
the next time point. The condition C' describes the rationality precondition in
the agent’s mental state. For example, one rule might state that if an agent
received a performative which includes a request for a resource and it does not
have that resource, then it must refuse the request. Note that this constitutes a
private semantics of the protocol, and is hence harder to enforce by an external
regulator (which might be needed to ensure the predictability of the system).

The termination rules in negotiation protocols specified as finite state ma-
chines are defined as a set of links to a final state. This is usually the case when
one agent utters a withdraw(.) or an accept(.) locution. In the framework of
(McBurney et al., 2003), a rule specifies that the dialogue ends after an agent
utters the locution withdraw_dialogue(.) causing either no remaining sellers or
no remaining buyers in the dialogue. In some frameworks, however, no termi-
nation rules have been defined, and hence the dialogue remains open even after
agreement or failure.

In relation to outcome determination rules, some frameworks determine out-
comes based on the logical structure of interacting arguments. For example,
in the frameworks of (Parsons et al., 1998) and (Amgoud et al., 2000b), a rule
specifies that an agent must accept a request if it fails to produce an argument
against that request. A similar case occurs when agents argue about their beliefs
— an agent must accept a proposition if it fails to provide an argument for the
negation of the proposition. In this sense, outcome determination is implicit
in the underlying argumentation logic. In other frameworks, such as those of
(Kraus et al., 1998), outcomes are reached through uttering a specific locution
explicitly (e.g., by uttering accept(.)). Agents may utter such a locution based
on some internal utility evaluation.

We shall leave the discussion of commitment rules to section 2.1.3, where we
discuss information stores.

Challenges

Participation rules for ABN share the challenges faced in the design of argu-
mentation protocols in general. For example, there is a need for qualities such
as fairness, clarity of the underlying argumentation theory, discouragement of
disruption by participants, rule consistency, and so on.?

One particularly important property is that of termination. To this end, some
rules for preventing certain causes of infinite dialogues have been proposed. For

5For a more elaborate discussion of the properties desired in argumentation protocols, refer
to (McBurney et al., 2002).
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example, the protocol of (Amgoud and Parsons, 2001) does not allow agents
to repeat the exact same locutions over and over again. The intuition is that
this would prevent the agent from, say, repeating the same question over and
over again. In subsequent papers, the authors present further analysis of the
outcomes of various argumentation-based dialogues (Parsons et al., 2002, 2003).

Torroni (2002) study termination and success in an ABN framework pre-
sented earlier (see Sadri et al., 2001b). Since the ABN framework is grounded in
an operationally defined agent architecture based on abductive logic program-
ming, it has been possible to study some properties by referring to the machinery
of abduction. In particular, the author determined an upper limit to the maxi-
mum length of a dialogue, measured in the number of exchanged messages. Since
these results are strongly dependent on the underlying logical system, it is not
clear whether these results can be generalised to a variety of protocols without
regard to the internal agent architecture.

Another important desired property in ABN paricipation rules is that of
guaranteed success. Wooldridge and Parsons (2000) investigate the conditions
under which particular logic-based negotiation protocols terminate with agree-
ment. They provide results showing the complexity of solving this problem with
negotiation frameworks using different domain languages. Most interestingly,
they show that the problem of determining whether a given protocol can be
guaranteed to succeed, when used with a FIPA-like communication language, is
provably intractable.

An important problem related to participation rules in general is that of
conformance checking. This problem is concerned with answering the question
of whether a particular utterance is acceptable, given the history and context of
interaction. Conformance checking is one of the sources of complexity in dialogue
systems; however, to date, it has received little attention in the ABN literature.

Another avenue of future research is in the design of admission rules in nego-
tiation protocols. While some frameworks (e.g., McBurney et al., 2003) require
that agents explicitly request to enter a negotiation dialogue no ABN framework
includes external rules that govern admission to the negotiation dialogue. One
may envisage situations where only agents with particular credentials, such as
reputation or performance history, may be admitted to a negotiation. For ex-
ample, a malicious agent may attempt to disrupt the interaction among other
participants, and hence should not be admitted. Moreover, in repeated encoun-
ters, agents usually continue to interact only if they come to a fruitful outcome
in the previous interactions (e.g. in making short term contracts for a long-term
project or buyers choosing those sellers repeatedly only if their services prove to
be of a good quality each time). More work needs to be done on investigating
the effect of different admission rules on the outcome of negotiation.

2.1.3 Information Stores

In some ABN frameworks, there is no explicit centralised information store avail-
able. Instead, agents internally keep track of past utterances (e.g., Kraus et al.,
1998). However, in many negotiation frameworks there is a need to keep exter-
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nally accessible information during interaction. For example, we might need to
store the history of utterances for future reference or to store information about
the reputation of participants (Yu and Singh, 2002a; Rubiera et al., 2001). More-
over, having external information stores makes it possible to perform some kind
of enforcement of protocol-related behaviours. For example, we may be able to
prevent an agent from denying a promise it has previously made.

State of the Art

One type of information store that is common in the argumentation literature is
the commitment store.5 Commitment stores were initially conceived by (Ham-
blin, 1970) as a way of tracking the claims made by participants in dialogue
games. Hamblin studied dialogues over beliefs, although he was at pains to state
that commitments made in dialogue games should not be construed as necessar-
ily representing the real beliefs of the respective participants (Hamblin, 1970, p.
257). Hamblin’s notion of commitment store has been influential in later work
on dialogue games, both in philosophy and in MAS, although the notions of com-
mitment used sometimes differ. In the work on the philosophy of dialogue (e.g.,
Walton and Krabbe, 1995) the focus is on action commitments, i.e., promises
to initiate, execute or maintain an action or course of actions. Commitments
to defend a claim if questioned, called propositional commitments, are viewed
as special cases of such action commitments by these authors. In the MAS lit-
erature the concern is usually with action commitments, where the associated
actions are assumed to take place outside the agent dialogue. For example, one
agent may commit to providing a specified product or service to another agent.

Note that commitment stores should not be confused with the interaction
history, which only records the sequence of utterances during the whole interac-
tion.” While the latter only form a passive storage of “unprocessed” utterances,
commitments in commitment stores have more elaborate consequences. For
example, when an agent asserts a proposition p, it may not only be commit-
ted to believe that p holds, but also to defending that p (if challenged), not
denying that p, giving evidence that p, and so on (Walton and Krabbe, 1995).
In the MAS literature, (Singh, 2000) gave “social” semantics for commitments
using modal operators in branching-time logic. This semantics is public (i.e.,
is based on external observations of utterances as opposed to agents’ internal
mental states) and hence can be used for specifying, and checking for confor-
mance with, the interaction protocols. Amgoud et al. (2002) also present a
social semantics of communication based on argumentation. Another difference
of commitment stores in comparison with interaction histories is that commit-
ment stores have specific commitment rules governing the addition and removal
of statements the agent is committed to. One rule may specify, for example,
that if the agent retracted a previously asserted claim, it must also retract every

SFor a more detailed discussion of commitments in multi-agent dialogues, see (Maudet and
Chaib-draa, 2003).

"Sierra et al. (1998) use the term negotiation thread, while (Sadri et al., 2001b) use the
term dialogue store.
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claim based on the former via logical deduction. Another relevant concept is that
of pre-commitment proposed by (Colombetti, 2000). A request pre-commits the
utterer in the sense that the utterer will be committed in case the hearer accepts
the request. Commitment stores enable us to capture such pre-commitments.

In the ABN literature, (Amgoud and Parsons, 2001) define for each agent
a publicly accessible commitment store. Adding statements to the commit-
ment store is governed by the dialogue-game rules. For example, when an
agent accepts a request for action p, then p is added to its commitment store.
Agents may also be allowed to retract commitments under certain conditions.
In the context of purchase negotiations, (McBurney et al., 2003) dealt with
the issue of retraction differently. For example, the framework involves two
locutions: agree_to_buy(.) and agree_to_sell(.), for committing to certain re-
source exchanges. Instead of providing explicit locutions for retracting these
commitments, the authors provide additional locutions: willing to_buy(.) and
willing to_sell(.), which are softened versions of the former locutions, how-
ever, with no commitments incurred (i.e., they are free to refuse to sell or buy
something they have previously agreed upon). This way, agents may usefully
provide information without necessarily committing to it or having to explicitly
retract it.

Finally, Bentahar et al. (2004) have recently proposed a dynamic logic ap-
proach to capturing commitments in argumentation. Their model explicitly
relates the different actions of the agents to the commitments that ensue. Thus,
as a result of different actions, the commitments reach different states (e.g. ac-
tive, withdrawn, satisfied) in a way similar to (Fornara and Colombetti, 2003).
Hereunder we provide an example from (Bentahar et al., 2004) of an illocution
creating a particular commitment:

M, Pa, s; = Accept-content(Ags, SC(Idy, Ag1, Aga, p)) iff
M, Pa, s; = Active(SC(Idy, Ag1, Aga, p)) A Create(Ags, SC(Idy, Aga, Ag1, ¢))

where M is the Kripke model which structures the states of the world, Pa is the
infinite sequence of states of the world, s; is the given state of the world, Idy
and Id; are identifiers for the different commitments captured by the predicate
SC.

The above formula indicates that the acceptance of the content ¢ of the
commitment by agent Ago is allowed iff: (i) the SC' is active (i.e. the agent has
made a commitment to ¢ conditional upon the reception of an accept) because
we cannot act on a SC content if the SC' is not active and (ii) agent Ags creates a
SC whose content is ¢. Therefore, Ags becomes committed towards the content
¢ (which could be the result of enacting the contents of an agreement or the
truth value of a particular information).

Bentahar’s model forms a good basis for building practical systems for ABN
agents since it connects the illocutionary contents to actual actions and the result
of actions (i.e. here ¢). However, their approach is limited to only considering
propositions that can be attacked or challenged (in the argumentation sense) as
the object of their commitments. A more expressive notion of these propositions
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would be needed to allow the representation of real offers that agents pass to
each other during negotiation.

Challenges

The representation and manipulation of information stores is not a trivial task,
and has significant effects on both the performance and outcomes of negotiation
dialogues. In particular, information store manipulation rules have a direct effect
on the types of utterances agents can make given their previous utterances (i.e.,
the protocol), the properties of the dialogues (e.g., termination), and the final
outcome (e.g., the ability to change one’s mind coherently).

Some of the key questions that need to be addressed in an ABN framework
are: Under what conditions should an agent be allowed to retract its com-
mitments and how would this affect the properties of dialogues? Under what
conditions should an agent be forced to retract its commitments to maintain
consistency? While many of these questions are being investigated in the multi-
agent dialogue literature in general (Maudet and Chaib-draa, 2003), there are
issues specific to negotiation dialogues. In particular, commitments to provid-
ing, requesting, and exchanging resources may require a different treatment from
commitments in other types of dialogues, such as persuasion or information seek-
ing. This is because negotiation dialogues involve selfish agents for whom the
only goal is to come to an agreement that maximises their individual utility
while agents in the persuasion or information exchange dialogue are more inter-
ested in ensuring consistency in the beliefs agents share in the dialogue. Thus,
agents in negotiation dialogues are more likely to make commitments conditional
upon the acceptance of an offer while agents in persuasion or information dia-
logues will mostly make commitments to the truth of statements they make.
How these conditional commitments can be managed has received relatively less
attention in the community than the commitments agents make in persuasion
or information dialogues.

2.2 Elements of ABN Agents

In the previous section, we discussed the different elements of an ABN framework
that are external to the participating agents. Issues such as the protocol and
languages help to define the system in which agents operate, but often these say
little about how agents are specified, or how they reason about the interaction.

Before we get into a discussion of the general features of an ABN agent, we
shall describe what constitutes (at an abstract level) the decision making model
(see figure 1.1 in chapter 1) of a basic, non-ABN-based bargaining agent. This
will allow us to clearly contrast the ABN agent from other negotiators, making
our analysis more focused. Therefore, we begin by presenting a conceptual model
of a simple negotiator in figure 2.1. This captures, on a very abstract level, the
main components needed by an agent in order to be capable of engaging in
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bargaining.® This model is not meant to be an idealisation of all existing models
in the literature, but rather a useful starting point for illustrating how ABN
agents are different from other types of agent.

We refer to an agent involved in bargains which largely depend on exchanging
proposals as a classical bargaining agent. This agent needs to have a locution
interpretation component, which parses incoming messages. These locutions
usually contain a proposal, or an acceptance or rejection message of a previ-
ous proposal. They might also contain other information about the interaction,
such as the identity of the sender (especially in the case of multi-party encoun-
ters). Acceptance messages usually terminate the encounter with a deal. A
proposal may be stored in a proposal database for future reference. Propos-
als (or rejections) feed into a proposal evaluation and generation component,
which ultimately makes a decision about whether to accept, reject or generate a
counterproposal, or even terminate the negotiation. This finally feeds into the
locution generation component which sends the response to the relevant party or
parties. A more sophisticated classical bargaining agent may maintain a knowl-
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Figure 2.1: Conceptual Elements of a Classical Bargaining Agent

edge base of its mental attitudes (such as beliefs, desires, preferences, and so on
(Wooldridge, 2002)), as well as models of the environment and the negotiation
counterpart(s). This knowledge may be used in the evaluation and generation
of proposals by judging the validity and worth of proposals made (for example,

8For a more detailed discussion of the conceptual architectures for negotiating agents, refer
to (Ashri et al., 2003).
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by verifying whether proposals are actually feasible and do not conflict with the
current observations of the environment). Moreover, the knowledge base may
be updated in the light of new information. However, the updates that can be
made are somewhat limited because the only information usually available to
the agent during the interaction is:

1. Proposals (or bids) from the counterpart or a competitor.
2. A message rejecting a proposal initially made by the agent.

3. Other observations from the environment (e.g., a manufacturing plant
agent bidding for raw material may monitor customer demand changes
and bid accordingly).

The agent may be able to infer certain things from this information. For example,
by receiving a rejection the agent may infer that the counterpart does not rate
certain attribute/value assignments highly. Similarly, by receiving a proposal (or
by observing the proposal of another competing bidder) the agent might infer
attribute values that appeal to the counterpart (or competitor), which can then
guide his own bargaining or bidding strategy.”

In contrast with a classical negotiating agent, more sophisticated meta-level
information can be explicitly exchanged between the ABN agents (see figure
2.2).10 This, in turn, can have a direct effect on the agent’s knowledge base.
Therefore, in addition to evaluating and generating proposals, an agent capable
of participating in argument-based negotiation must be equipped with mecha-
nisms for evaluating arguments (and updating the mental state accordingly) and
for gemerating and selecting arguments. If the locution contains an argument,
an argument evaluation or interpretation mechanism is invoked which updates
the agent’s mental state accordingly. This may involve updating the agent’s
mental attitudes about itself and/or about the environment and its counter-
parts. Now, the agent can enter the proposal evaluation stage in the light of
this new information. Note that at this stage, not only does the agent evaluate
the most recent proposal, but it can also re-evaluate previous proposals made
by its counterparts; these proposals are stored in the proposal database. This
is important since the agent might (intentionally or otherwise) be persuaded to
accept a proposal it has previously rejected.

As a result of evaluating proposals, the agent may generate a counterpro-
posal, a rejection, or an acceptance. In addition, however, a final argument
generation mechanism is responsible for deciding what response to actually send
to the counterpart, and what (if any) arguments should accompany the response.

9Similar issues have been investigated in the study of signalling in game-theory (Spence,
1974).

10Note that the actual way in which ABN agents are designed or implemented may differ
from the above. For example, the agent might perform certain operations in a different order,
or might combine or further decompose certain functionalities. Therefore, our conceptual
model is to be taken in the abstract sense and should not be seen as a prescriptive account of
how ABN agents must precisely look like. Instead, it provides a useful point of departure for
beginning an analysis of the generic features of these agents.
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Figure 2.2: Conceptual Elements of an ABN Agent (the dashed lined boxes
represent the additional components necessary for ABN agents).

For example, the proposal evaluation and generation component might decide
that a proposal is not acceptable, and the argument generation mechanism might
accompany the rejection with a critique describing the reasons behind the re-
jection. Such arguments might also be explicitly requested by the other party
or even enforced by the protocol. Note that an agent may also choose to send
a stand-alone argument (i.e., not necessarily in conjunction with a proposal,
acceptance or rejection).

At times, there might be a number of potential arguments that the agent can
send. For example, in order to exert pressure on a counterpart, an agent might
be able to either make a threat or present a logical argument supporting some
action. Deciding on which argument to actually send is the responsibility of an
argument selection mechanism. Finally, this information is given to the locu-
tion generation mechanism which places this information in the proper message
format and utters it.

In summary, negotiating agents must, at least, be able to:

1. interpret incoming locutions

2. evaluate incoming proposals

w

. generate outgoing proposals

>~

. generate outgoing locutions

An ABN agent needs, in addition, to be able to:
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1. evaluate incoming arguments and update its mental state accordingly
2. generate candidate outgoing arguments

3. select an argument from the set of available arguments

Now that we have given an overview of the features of an ABN agent, we
consider each of these features in more detail. In the course of doing so, we
evaluate the state of the art and outline major challenges and opportunities.

2.2.1 Argument and Proposal Evaluation

Recall that an ABN agent needs to evaluate potential agreements proposed by
its counterpart(s). The agent also needs to be able to evaluate arguments in-
tended at influencing its mental state. While proposals may be evaluated more
straightforwardly through comparison with some subjective preference criteria,
argument evaluation is less trivial.

Argument evaluation is a central topic in the study of argumentation, and
has been studied extensively by philosophers at least from the days of Aristotle
(Aristotle, 1928; Hitchcock, 2002). In Artificial Intelligence, argument evaluation
and comparison has been applied, for example, in internal agent deliberation
(Kakas and Moraitis, 2003), in legal argumentation (Prakken and Sartor, 2001),
and in medical diagnosis (Krause et al., 1995; Fox and Parsons, 1998).

Here, however, we find it useful to distinguish between two types of consid-
erations in argument evaluation:

1. Objective Considerations: An argument may be seen as a tentative
proof for some conclusion. Hence, an agent, or a set of agents, may eval-
uate an argument based on some objective convention that defines how
the quality of that proof is established. This may be done, for example,
by investigating the correctness of its inference steps, or by examining the
validity of its underlying assumptions. For example, (Elvang-Ggransson
et al., 1993b) propose a classification of arguments into acceptability classes
based on the strength of their construction. Arguments may also be evalu-
ated based on their relationships with other arguments. For (Dung, 1995),
for instance, an argument is said to be acceptable with respect to a set S of
arguments if every argument attacking it is itself attacked by an argument
from that set. The set S is said to be admissible if it is conflict free and
all its arguments are acceptable with respect to S.

2. Subjective Considerations: Instead of applying an objective, agent-
independent convention for evaluating arguments, an agent may choose to
consider its own preferences and motivations in making that judgement,
or those of the intended audience. In the framework presented by (Bench-
Capon, 2001), for example, different participants in a persuasion dialogue
have different preferences over the “values” of arguments. Argument as-
sessment and comparison would then take place in accordance with the
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preferences of the dialogue participants. This means that the participants
may influence the outcome of the argument evaluation process by having
different subjective preferences.

Let us now examine the usage of the above considerations in different types of
argumentation dialogues. If two agents are reasoning about what is true in the
world (i.e., if they are conducting theoretical reasoning), then it makes sense for
them to adopt an objective convention that is not influenced by their individual
biases and motivations. For example, whether it is sunny outside should not be
influenced by whether participants want it to be sunny, but rather only by the
material evidence available.

If, on the other hand, two participants are engaged in a dialogue for deciding
what course of action to take (i.e., if they are conducting practical reasoning),
or what division of scarce resources to agree upon, or what goals to adopt, then
it would make more sense for them to consider their subjective, internal motiva-
tions and perceptions, as well as the objective truth about their environment.!!
Even objective facts may be perceived differently by different participants, and
such differences in perception may play a crucial role in whether or not partic-
ipants are able to reach agreement. For example, a potential airline traveller
may perceive a particular airline as unsafe, while the staff of the airline itself
may consider it to be safe. Presumably such a difference in perceptions may
be resolved with recourse to objective criteria (if any can be agreed) regarding
relative crash statistics, deaths-per-mile-flown on different airlines, etc. But if,
for example, potential travellers perceive a particular airline as unsafe compared
to other airlines, despite objective evidence showing the airline to be safer than
others, this perception may inhibit them from flying the airline anyway. The
marketing team of the airline concerned, in trying to persuade potential trav-
ellers to fly with it, will have to engage in dialogue with potential customers on
the basis of those customers’ subjective perceptions, even though such percep-
tion may be false. For the marketers to ignore such mis-perceptions risks the
dialogue terminating without the potential customers flying the airline.

In summary, agents participating in negotiation are not concerned with es-
tablishing the truth per se, but rather with the satisfaction of their needs. Hence,
negotiation dialogues require agents to perform argument evaluation based on
objective as well as subjective criteria.'? In other words, agents need to perform
argument evaluation as part of, or in relation to, proposal evaluation.

State of the Art

As we argued above, argument evaluation in negotiation must involve both objec-
tive as well as subjective considerations, and hence must involve some subjective

HRefer to (Rahwan et al., 2003d) for a related comparison between argumentation over goals
and beliefs.

I2Note that objective argument evaluation may also take into account certain “preferences”,
such as the trust the evaluator has in the agent proposing the argument. However, this remains
aimed at establishing the truth, rather than being influenced by the agent’s personal gain.
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assessment of proposals put forward by negotiation counterparts. In this sub-
section, we show some approaches to proposal and argument evaluation in the
existing ABN literature.

One approach to proposal and argument evaluation is to assume agents are
benevolent, using the following simple normative rule: If I do not need a resource,
I should give it away when asked. This approach can be found in a number of
frameworks (e.g., Parsons et al., 1998; Amgoud et al., 2000b; Sadri et al., 2001b).

Consider the following example from (Parsons et al., 1998). An agent a in-
tending to hang a picture would produce, after executing its planning procedure,
intentions to acquire a nail, a hammer and a picture. Interactions with other
agents are only motivated in case the agent is not able to fulfill its intentions
on its own. Suppose the agent does not have a nail. This leads the agent to
adopt a new intention (we can call that a sub-intention) to acquire a nail, which
may be written I,(Have(a, nail)). If a believes that another agent b has a nail,
it would generate another sub-sub-intention that b gives the nail to it, written
I.(Give(b, a, nail)). This triggers a request to be made to agent b in the form
Hy, + I,(Give(b,a, nail), where the argument H; constitutes the sequence of
deductive steps taken to reach the request.'® In general, agent b accepts the
request unless it has a conflict with it. There are two types of conflicts that
would cause b to reject the request:

1. Agent b has a conflicting intention. In argumentation terms, the agent
refuses the proposal if it can build an argument that rebuts it.

2. Agent b rejects one of the elements of the argument supporting the inten-
tion that denotes the request. In argumentation terms, the agent refuses
the proposal because it can build an argument that undercuts it.

We shall explain the above two cases using the same picture-hanging example.
An example of the first case is if agent b rejects the proposal because it also
needs the nail, say to hang a mirror; i.e., it can build an argument for the
intention Ij(—Give(b, a, nail)). This argument is based on (among other things)
the intention Ip(Can(b, hang(mirror))). An example of the second case is if, in
the plan supporting the intention I,(Give(b,a, nail)), agent a made the false
assumption that b possesses a nail, written B, (Have(b, nail)). If b actually does
not have a nail, then it would adopt the intention of modifying that belief,
ie. Iy(—Bg(Have(b, nail))). Agents continue through a process of argument
exchange, which may involve recursively undercutting each other’s arguments
until a resolution is reached.

In order for argumentation to work, agents must be able to compare ar-
guments. This is needed, for example, in order to be able to reject “weak”
arguments. Parsons et al. (Parsons et al., 1998) compare arguments by classi-
fying them into acceptability classes based on the strength of their construction

13Note that the argument (or plan) may not contain intentions only, but also belief and
desire formulae about the agent and its environment. For example, in the argument H7p, agent
a may state the assumption that it believes b has a nail, and so on.
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(Elvang-Ggransson et al., 1993b). If two conflicting arguments belong to the
same class, the authors assume the agent has some capability to perform com-
parisons based on utility analysis. However, they do not specify how this decision
procedure is actually undertaken, nor do they specify the conditions it needs to
satisfy.

A similar approach is taken by (Sadri et al., 2001b). This framework, how-
ever, does not involve arguing about beliefs. If an agent a receives a request
for a resource, and needs that resource for achieving some goal g,, the agent
rejects the request, unless an alternative acceptable plan for achieving g, can be
produced by the counterpart, with a promise to provide any missing resources
for that plan to a. Agents are also assumed to have some ordering over plans
that allows them to choose between alternative plans.

In the frameworks of (Parsons et al., 1998) and (Sadri et al., 2001b) described
above, argument and proposal evaluation take into account a very simplistic
subjective rule; that is to give any resource requested that the agent does not
currently need. While this may be useful for facilitating cooperative behaviour
and making sure agents preserve their current subjective interests, it may not be
suitable in open agent systems where agents may be purely self-interested and
may refuse to provide any resources without something in return.

An alternative trend in proposal and argument evaluation in PN agents is to
explicitly take into account the utility of the agent. The basic idea is that the
agent would calculate the expected utility in the cases where it accepts and rejects
a particular proposal. And by comparing the expected utilities in these two cases
(i.e., in the resulting states), the agent would be able to make a decision about
whether to accept or reject the proposal. In the framework of (Kraus et al., 1998),
the agent makes a decision about whether to accept a request by evaluating three
factors: (i) the Collision_Flag, which fires if the requested action conflicts with
one of the agent’s intentions; (ii) the Convincing_Factor, which is a value
between 0 and 1 assigned to the argument using some ad hoc rule (e.g., an appeal
to past promise is assigned value 1 if the agent believes it has actually made such
promise, and assigned 0 otherwise); and (iii) the Acceptability Value, which
involves a numerical calculation of utility tradeoffs in the case of accepting the
request versus rejecting it. However, it is not clear, from the paper, how these
factors are combined to produce a final decision.

Sierra et al. (1998) introduce authority as a criteria for evaluating arguments.
They present an authority graph imposed by a relation over agent roles. This
graph can be used to specify, for each pair of agents, which agent has higher
authority. The authors also propose a way of comparing authority levels of sets
of agents. This can be used to compare arguments involving statements made
by multiple agents. An argument H; is preferred to another Hs if and only
if the authority level of agents involved in H; is higher than those in Hy. As
an example, the authors define a conciliatory agent, which accepts appeal-to-
authority arguments regardless of the content of the justification of the appeal.
This means that there would be no difference between a strong appeal and a
weak (or even meaningless) one. While authority seems to be a useful factor
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in evaluating arguments in an organisation, it seems unreasonable to rely solely
on it. There are, therefore, opportunities for combining authority with other
argument evaluation techniques described earlier.

Challenges

The discussion above shows that the nature of argument evaluation depends
largely on the object of negotiation and the way agents represent and update
their internal mental states. For example, in the framework presented by (Par-
sons et al., 1998), agents are able to perform some objective argumentation over
their beliefs about the availability of resources, the achievability of intentions,
and so on. This allows agents to potentially modify each other’s mental atti-
tudes, which may influence their preferences. In frameworks such as those of
(Ramchurn et al., 2003a) and (Kraus et al., 1998), on the other hand, eval-
uation is based solely on the direct comparison of expected utilities. Agents
do not influence each other’s beliefs, but rather exert pressure on each other
by exercising their ability to influence the outcomes (for example, by making a
promise or a threat). In other words, an agent would not voluntarily modify its
position as a result of correcting its perceptions of the environment, but rather
forcedly concede on its position as a result of pressure from its counterpart.
Many opportunities exist for combining the objective (belief-based) and subjec-
tive (value-based) approaches to argument evaluation. For example, how can
we combine the objective evaluation of the logical form of an argument with a
subjective evaluation of its consequences based on utility, trust, authority, etc.?

Another challenge is that of providing unified argumentation frameworks
that facilitate negotiation dialogues involving notions of goals, beliefs, plans,
etc. (Rahwan et al., 2003d) argue that systems of argumentation designed for
arguing about beliefs are not readily suitable for allowing for argumentation over
goals, particularly due to the different ways conflict resolution among arguments
must be dealt with. For example, there is a difference between attacking a goal
by demonstrating that it is not achievable and attacking it by demonstrating
that it is not useful.

Rahwan et al. demonstrate different ways in which goals may relate to their
sub-goals, their super-goals and the agent’s beliefs Rahwan et al. (2003c,d). This
allows one to characterise different types of arguments that may be provided
against a particular goal, and how they can, if successful, affect the agents’
mental states. Rahwan et al. discuss other types of possible attacks, as a
preliminary step to understanding the space of possible influences ABN agents
may (or must be able to) exert in the course of dialogue.

The above approach has recently been taken up by Amgoud and Kaci (Am-
goud and Kaci, 2004) where the goals are attributed a bipolar nature. This
means that the agent may have some goals that it deems will bring about a
positive outcome for itself while there are goals that bring a negative outcome.
Those that are neither of the two types are termed goals in abeyance. The
authors thus provide a reasoning mechanism that allows an agent to define ac-
ceptable arguments in terms of attack relations as in Rahwan et al.. Moreover,
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arguments are given a strength according to either the certainty with which the
goal supported by the argument will be achieved or the weight the goal has in
achieving the purpose of the agent. In this way, agents can determine which are
the arguments that need to be used to evaluate or make an offer. However, it is
not very clear how certainty and weight are determined, nor how agents are to
share their goals without revealing their preferences in a bargaining context.

2.2.2 Argument and Proposal Generation

Another central problem in the study of argumentation is that of argument gen-
eration. This problem is concerned with generating candidate arguments'* to
present to a dialogue counterpart. These arguments are usually sent in order to
entice the counterpart to accept some proposed agreement. Hence, in negotia-
tion, argument and proposal generation are closely related processes.

State of the Art

In existing ABN frameworks, proposal generation is usually made as a result of
some utility evaluation or planning process (Sierra et al., 1998). Sierra et al.
assume agents have a means of generating proposals that increase (or maximise)
their utilities. For (Kraus et al., 1998), (Parsons et al., 1998), and (Sadri et al.,
2001b), an underlying planner generates a set of actions or resources needed
to achieve some intention. Agents then request the actions or resources they
cannot achieve or obtain on their own, from other agents. If they fail to obtain
immediate acceptance, they may propose to perform an action (or set of actions)
or to provide resources in return for acceptance. This may be done by just
giving away what they do not need, or by measuring the utilities they lose in
the exchange.

Proposals may be accompanied by arguments. In the framework of (Kraus
et al., 1998), for example, agents may choose to accompany proposals with argu-
ments generated using explicit rules. By means of an illustration, what follows
is an informal description of the threat-generation rule for agent i:

IF

A request has been sent to agent j to perform action a &
j rejected this request &

j has goals g1 and g» &

j prefers gs to g1 &

doing « achieves —g; &

doing (3 achieves gy &

1 believes doing ( is credible and appropriate
THEN

i requests a again with the following threat:
if you don’t do «, I will do 3

14We leave the discussion of selecting the best argument to section 2.2.3 below.
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If the rule body is satisfied, the corresponding threat will become a candidate
argument. The agent may generate other candidate arguments, such as promises
or appeals, using other rules.

As mentioned above, the frameworks of (Parsons et al., 1998), (Sadri et al.,
2001b) and (Amgoud et al., 2000b) take a planning approach to proposal gen-
eration. Arguments are in fact generated in the process of proposal generation
itself. In other words, an agent justifies a request by simply stating the truth
about its needs, plans, underlying assumptions, and so on, which ultimately
caused the need to arise. This is different from other utility-based approaches
described above, where agents can, in a sense, create arguments, such as threats
and rewards, by exploiting their abilities to influence the outcomes. Of course,
there is nothing that directly prevents agents from combining the two.

As described earlier, (Rahwan et al., 2003c) provide a characterisation of
the types of arguments an agent can make in relation to the goal and belief
structures of its counterpart. This provides a more fine-grained portfolio of
candidate arguments than those of (Parsons et al., 1998), (Sadri et al., 2001Db)
and (Amgoud et al., 2000b) (where only plans or promises can be put forward
as arguments).

And finally, authority could also be used in argument generation. Sierra
et al. (1998), for example, define a simple authoritarian agent, which always
exploits its social power by threatening whenever possible. Boella et al. (2004)
further this approach by defining different persuasive arguments that exploit
norms of the environment. They outline three ways in which norms can be used
to formulate persuasive arguments such as ‘command’, ‘convince’, and ‘suggest’.
For a command to be issued, an authority relationship must exist while for a
‘convince’, the agents must share a certain level of trust. For a suggestion to be
made, the agents must only make sure that they trust the information shared
rather that their opponent. This work is, however, very preliminary.

Challenges

More work needs to be done in order to provide a unified way of generating
arguments by considering both objective and subjective criteria. Moreover, there
is a need for a complete characterisation of the space of possible arguments. This
is not necessarily a trivial task since in some frameworks the number of possible
arguments may be infinite (say, if the framework allows for nested arguments
about what may happen in the future, or nested dialogues).

More work is also needed to understand the influence of different factors,
such as the bargaining protocol, authority, expected utility, honesty, etc. on
argument generation. Specifically, how can authority be used in constructing an
argument? Should an agent believe in an argument in order to present it? Can
agents bluff? These are few of the questions that need to be answered before a
complete framework for argument generation is achieved.
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2.2.3 Argument Selection

Related to the problem of argument generation is that of argument selection.
The question of argument selection is as follows: given a number of candidate ar-
guments an agent may utter to its counterpart, which one is the “best” argument
from the point of view of the speaker?

Note that argument selection may take place in conjunction with argument
generation. An agent need not generate all possible arguments before it makes
a selection of the most suitable one. Instead, the agent may only concern itself
with the generation of the most suitable argument itself. In other words, the
agent might prune the set of candidate arguments during the process of argument
generation. Whether or not this is possible, of course, depends on the nature of
the argumentation framework underlying the agent’s decision making.

State of the Art

In the work of (Kraus et al., 1998), arguments are selected according to the
following argument strength order, with threats being the strongest arguments:

1. Appeal to prevailing practice.
2. A counter example.

3. An appeal to past promise.

4. An appeal to self-interest.

5. A promise of future reward.
6. A threat.

The intuition is that a negotiator would progress from weak arguments up to the
strongest ones. For example, there is no need to threaten the counterpart if an
appeal is sufficient to persuade him/her to accept a request. The authors argue
that generating appeals is less costly to the persuader than threats or rewards
since the latter involve possible negative side-effects.

In other frameworks, argument generation is based on the relationships be-
tween arguments. Agents in the framework presented by (Parsons et al., 1998)
provide the strongest argument possible based on the acceptability classes (e.g., a
tautological argument, if possible). For (Amgoud et al., 2000b), agents compare
arguments based on preferential ordering over their constituent propositions in a
similar manner to that in argument evaluation (i.e., based on the argumentation
system of (Dung, 1995)). In Kakas and Moraitis (2003), given a particular ar-
gumentation framework, they provide tactics to argue. These tactics tell agents
how to choose responses to requests by either accepting or challenging or even
refusing. Finally, for (Sadri et al., 2001b), agents may compare the costs of
different alternative plans to present to the counterpart.
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Challenges

The problem of argument selection can be considered the essence of strategy in
ABN dialogues in general (provided the candidate arguments contain all possible
arguments). However, there is very little existing work on strategies in multi-
agent dialogues. Some work is emerging that investigates strategic move selection
in persuasion dialogues (Amgoud and Maudet, 2002), as well as in inquiry and
information seeking dialogues (Parsons et al., 2002, 2003). Similar work needs
to be done on ABN dialogues in order to provide a sound theoretical base for
potential applications. (Rahwan et al., 2003a) provide a preliminary, informal
attempt at charactarising strategic factors in negotiation dialogues. In this work,
strategies depend on various factors, such as the agents’ goals, the interaction
protocol, the agents’ capabilities, the resources available to participants, and so
on.

Suitable argument selection in a bargaining context must take into account
information about the negotiation counterpart. In game theory, this informa-
tion about the opponent is modelled by a probability distribution modelling the
uncertainty of the first party regarding the counterparts’ preferences which, in
turn, determine its strategy. In cases where such a modelling is possible, learning
techniques can be used to find patterns in the counterpart’s behaviour and use
these findings in future bargaining encounters with the same (or similar) coun-
terpart(s). Thus, while PN as discussed in chapter 1 aims to reduce uncertainty
in the actions of the agents, this learning mechanism could reduce uncertainty
about the preferences of the agents (if preferences stay the same over multiple
encounters). An example of the application of such learning techniques on re-
peated encounters include (Sandholm and Crites, 1995) who apply reinforcement
learning in the context of the iterated Prisoner’s Dilemma game to allow agents
to better predict the patterns of behaviour of their opponents. Learning in less
restricted negotiation protocols has also been investigated by (Zeng and Sycara,
1997).

In ABN, more sophisticated models of the negotiation counterparts are needed,
and appropriate methods of updating these models are essential for understand-
ing the dynamics of opponents’ strategies, preferences, beliefs, etc. This is a
particularly challenging task for ABN since agents may not only model the ob-
served ‘behaviour’ of one another, but also the ‘mental attitudes’ motivating
that behaviour. Another important question is whether and how such learning
agents converge to better and quicker deals in multiple negotiation encounters.

2.3 Summary

Having analysed the various existing frameworks in detail in the previous sec-
tions, we now proceed to present a high-level view of what has been achieved in
the field of ABN as a whole. In this way, we aim to identify those areas that
we will try to tackle given our intention to design decision making models and
protocols for PN agents.
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To this end, in table 2.2, we compare the different existing frameworks in
terms of their main characteristics.!® Specifically, the first column describes
the style of argumentation underlying the ABN framework. This covers the
informal literature that motivates and provides intuitive backing of the research,
as well as the formal theories underlying the specification of the framework
(e.g., decision theory, argumentation theory, dialogue games, etc.). When taken
together this provides an idea of the starting point of each framework. As can
be seen, frameworks such as those of (Amgoud et al., 2000b) and (Sadri et al.,
2001b) start from a single-agent proof procedure and try to split it into multiple
disjoint agents while preserving the correctness of the proof theory.

In contrast, frameworks such as those presented by (McBurney et al., 2003)
and (Rahwan et al., 2003c) start by discussing the different types of interaction
patterns needed among agents, and from there attempt to create a dialogue
system. In comparison to these logic or mentalistic based ABN mechanisms,
relatively little work has been carried out on PN mechanisms to the exception
of (Kraus et al., 1998) and (Sierra et al., 1998).

The next column describes the protocol. It is clear that some ABN frame-
works have not yet addressed the protocol definition, while in others it is the
mainstay of their contribution. Moreover, the frameworks can differ in the way
they specify the protocols, by making them implicit or explicit, defining them
as finite state machines, as dialogue games, and so on. As can be seen, only
(Sierra et al., 1998) defines a protocol for PN, but their approach is only limited
to defining the participation rules and does not define what commitments agents
make during a dialogue. The third column describes some of the important as-
sumptions that each framework makes. In some frameworks, for instance, the
agents must be cooperative for ABN to work. Frameworks can also vary in their
assumptions about agents’ utilities and preferences. Finally, we have specified
whether the framework has been implemented and, if so, what form this takes.

In table 2.3, we outline the various frameworks in terms of whether and how
each framework addresses the problems of argument generation, selection, and
evaluation. One important observation from this is that argument selection has
had very little attention in the ABN community. This is, we believe, partly
because effective strategies for deciding what arguments to utter are likely to be
protocol-dependent. Consequently, there is still no formal theory of bargaining
protocols covering all types of mechanisms.

As can be seen, there is a clear contrast in the way the three main mechanisms
are conceived by the different frameworks. We contend that this is mainly due
to the differences in the underlying style of argumentation. However, despite
these differences, their contributions are broadly complementary.

In light of these comparisons, we have identified a number of problems that
pervade the particular area of PN. Specifically, one of the main problems is that
the semantics and constructs of arguments (i.e. what is contained in an argu-
ment) are not clearly defined. Given this, we aim to develop a precise definition

L5Wherever the framework in question has not addressed the particular attribute of the table
(e.g. Protocol) significantly, we note this as N/A.
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of arguments (rewards in particular) in repeated encounters. Moreover, as per
our stated objectives in chapter 1, we also aim to develop a complete protocol for
PN, as well as the decision making model that fits competitive settings. To this
end, we will extend those participation rules defined by Sierra et al. (discussed in
section 2.1.2) and build upon the specification of commitments by Bentahar et al.
to encompass PN offers and arguments (described in section 2.1.3). Moreover,
given the lack of implemented models and empirical evaluation in this area, we
propose to implement our PN mechanism and determine the negotiating agents’
performance given different strategies in generating offers and arguments. In so
doing, we aim to provide the first objective assessment of the role of arguments
in enhancing bargaining.
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Chapter 3

Trust in Multi-Agent
Systems

In the previous chapter we surveyed the ABN literature and determined the
particular requirements of our PN mechanism. In this chapter, we turn to the
issue of trust in order to determine the requirements of our trust model. More
specifically, we evaluate the most prominent trust models from the literature
at the individual level in order to determine which components of our trust
model we need to develop afresh and which parts we can exploit from existing
models. This analysis is carried out with particular respect to making the model
applicable to both bargaining and mechanism design. Moreover, we identify
those system level mechanisms that aim to elicit trust. In so doing we also lay
the foundations for creating a protocol (through mechanism design techniques)
that selects the most trustworthy agents in resolving conflicts.

The rest of this chapter is structured as follows. Section 3.1 analyses trust
models at the individual level while section 3.2 surveys existing system level
trust models. Finally section 3.3 summarises the main findings and discusses
the main requirements of our trust model and their relationship to mechanism
design and bargaining.

3.1 Individual-Level Trust

Here we take the viewpoint of an agent situated in an open environment trying
to choose the most reliable interaction partner from a pool of potential agents
and deciding on how to interact with it. As we mentioned earlier (section 1.3),
there are a number of ways the agent can go about doing this:

e it could interact with each of them and learn their behaviour over a number
of encounters. Eventually, it should be able to select the most reliable or
honest agents from the pool or devise an appropriate strategy to deal with
the less (or more) reliable ones. In this case, the agent reasons about the
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outcome of the direct interactions with others.

e the agent could ask other agents about their perception of the potential
partners. If sufficient information is obtained and if this information can
be trusted, the agent can reliably choose its interaction partners. In this
case, the agent reasons about interactions that others have had with its
potential partners (indirect interactions).

e the agent could characterise the known motivations of the other agents.
This involves forming coherent beliefs about different characteristics of
these agents and reasoning about these beliefs in order to decide how much
trust should be put in them.

Given the above, we can classify trust models at the individual level as either
learning (and evolution) based, reputation based, or socio-cognitive based. While
the learning and evolutionary models, which we consider in section 3.1.1, aim
to endow agents with strategies that can cope with lying and non-reciprocative
agents, reputation models, which we describe in section 3.1.2, enable agents to
gather information in richer forms from their environment and make rational
inferences from the information obtained about their counterparts. Finally, in
section 3.1.3 we describe socio-cognitive models which adopt a rather higher
level view of trust that takes the knowledge of motivations of other agents for
granted and proposes ways to reason about these motivations.

3.1.1 Learning and Evolving Trust

In this section we consider trust as an emergent property of direct interactions
between self-interested agents. Here we assume that the agents will interact
many times rather than through one-shot interactions. This tallies with the
concept of trust as a social phenomenon that is inherently based on multiple
interactions between two parties (Molm et al., 2000; Carley, 1991; Prietula, 2000;
Yamagishi et al., 1998; Dasgupta, 1998). It is further assumed that agents have
an incentive to defect (Dasgupta, 1998). For example, defecting in an interaction
could mean that the agent does not satisfy the terms of a contract, sells poor
quality goods, delivers late, or does not pay the requested amount of money
to a seller. In these examples, defection could get higher payoffs for the agent
defecting (e.g. the seller gets paid more than the actual value of the goods sold)
and cause some utility loss to the other party (e.g. the buyer loses utility in
buying a low quality product at a high price). However, defection may reduce the
possibility of future interactions since the losing agent would typically attempt
to avoid risking future utility losses. In contrast, if both interaction participants
cooperate, we assume that they get an overall higher payoff in the long run
(Axelrod, 1984). For example, a seller delivering goods on time or selling goods
of a high quality may result in future purchases from the buyer. In all these cases,
we are generally assuming that the agents already know the payoffs associated
with each of their actions.
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In most encounters the move of an opponent is not known in advance. In such
competitive interactions (discussed in section 1.1), the safest (i.e. minimising
possible loss), and not necessarily the most profitable for the interacting agents,
move will be chosen unless there can be some way to ascertain that the other
party can be trusted!'. Thus, if an agent believes its counterpart is reciprocative,
then the former will never defect, otherwise it will, and both could end up with
lower payoffs than if they trusted each other or learnt to trust each other. This
belief may only be acquired if the game is repeated a number of times such that
there is an opportunity for the agents to learn their opponent’s strategy or adapt
to each other’s strategy.

To this end we will first consider models that show how trust, through recip-
rocation (of positive deeds), can be learnt or evolved over multiple direct in-
teractions (section 3.1.1). These interaction models, however, greatly simplify
the interactions to extreme notions of cooperation and defection. In reality we
believe these two extremes can rather be considered the two ends of an axis
measuring the success of the outcome of the interaction. In this context, co-
operation could mean, for example, that a seller actually delivers some goods
(rather than not delivering at all), but some slight delay in the delivery might
still be considered poor cooperation (rather than complete defection). Hence
the perception of an agent of another party’s trustworthiness is relative to the
level of satisfaction of the outcome. We therefore consider, in section 3.1.1, how
the payoffs in the individual interactions can actually be modelled in realistic
applications.

Evolving and Learning Strategies

The most common example used to illustrate the evolution of trust or cooper-
ation over multiple interactions is Axelrod’s tournaments revolving around the
Prisoner’s Dilemma (Axelrod, 1984). The Prisoner’s Dilemma is a game in-
volving two prisoners that have to decide whether to cooperate by not revealing
their accomplice’s deeds or to defect by revealing this information. The dilemma
arises as a result of each other having to separately (in different rooms) decide to
cooperate or not, resulting in some years of imprisonment (5 for one cooperating
and 1 for the one defecting, 3 for both if they both defect and 1 for both if they
both cooperate). In the face of such uncertainty the best strategy proves to be
defection even though this does not lead to best outcomes (hence the dilemma).
Within very controlled settings, Axelrod’s tournaments have shown that the tit-
for-tat strategy was the most successful (reaping higher average points over all
the encounters) relative to other selfish or nicer (i.e. mostly cooperative) strate-
gies. Tit-for-tat cooperates on the first move and imitates the opponent’s move
in the remaining interactions. By adopting this strategy, agents are, in fact,
trusting each other but would punish untrustworthy behaviour if it ever hap-
pens (and also forgive if trustworthy behaviour is shown again). If two agents

IThe moves chosen will also be dependent on the risk attitude (risk seeking, risk neutral,
or risk averse) of the agent. In this respect, we conceive of trust as a means to reduce the risk
perceived by the agent (Yamagishi et al., 1998; Molm et al., 2000; Dasgupta, 1998).
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adopt tit-for-tat (or permanently cooperative strategies) it is shown that they
end up with the highest payoffs compared to all other strategies. However,
when faced with other selfish strategies, tit-for-tat does not get the maximum
payoff, though it actually gets a higher payoff than most other strategies. This
is because tit-for-tat actually loses on the first encounter.

It is therefore required that an agent adapts its strategy according to the
type of environment (agents therein) it encounters in order to minimise loses
and foster cooperation. By allowing agents to adapt, Wu and Sun have shown
that trust can actually emerge between them (Wu and Sun, 2001). This means
that the agents evolve a trusting relationship (i.e. a cooperative stratetgy) by
evaluating the benefit of each possible strategy over multiple interactions. A
multi-agent bidding context, in which a number of seller agents bid for contracts
in an electronic marketplace, is chosen to exemplify the concept. It is first
shown that when agents are all nice (always cooperating) to each other, sellers
tend to learn to exploit them. To counter this, the nice agents learn to use
tit-for-tat to minimise their losses. As a result, the nasty sellers (exploitative
agents) then learn to be reciprocative since cooperating would bring them more
benefit than defecting in the long run. Thus, trust emerges as a result of the
evolution of strategies over multiple interactions. This example also shows that
the evolution of strategies allows nice agents to beat nasty ones in the long run.
However, while strictly applying to the bidding context, Wu and Sun’s model
does not take into account the fact that there might be some utility loss (in the
short run) in cooperating with the other party (e.g. giving away some resources).

In this respect, while acknowledging a cost to cooperation, Sen? demonstrates
how reciprocity can emerge when the agents learn to predict that they will receive
future benefits if they cooperate (Sen, 1996). In a more recent set of experiments,
Sen and Dutta give clear guidelines about evolutionary stable strategies (Sen and
Dutta, 2002) (not necessarily tit-for-tat) in different types of environments (with
different sorts of strategies). They show that collaborative liars (collaborating
defectors) perform well whenever the number of interactions is small and the
number of philantropic agents (always cooperating) is large. However, recip-
rocative strategies perform better in all other scenarios they tested. Besides
proving that reciprocation pays, these results show that the length and number
of interactions matter when it comes to evaluating another agent’s trustworthi-
ness. If the number of interactions is too low, then trust cannot be built. This
is corroborated by Mui et al. and Wang et al. in their probabilistic trust model
which identifies a threshold for the number of encounters needed to achieve a re-
liable measure of an opponent’s trustworthiness based on performance appraisal
(Mui et al., 2002; Wang and Vassileva, 2003).

In the case where this threshold cannot be reached, other techniques must be
used to elicit trustworthiness. In this respect, Mukherjee et al. have shown how
trust can be acquired if agents know their opponent’s chosen move in advance
(Mukherjee et al., 2001). They show that, in the case where the agents do not

2For a wider reading on the problem of learning cooperative strategies in competitive set-
tings, see (Mukherjee et al., 2001; Biswas et al., 2000; Sen, 1996).
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reveal or only partially reveal (only the first mover does) their actions before their
opponent acts, no amount of trust is built since it is optimal for the opponent to
always choose to defect. However, in the bilateral information revealing scenario
(both agents reveal their actions), both agents trust each other through mutually
learning to choose an action that results in higher outcomes than predicted for
the non-learning situation. It is to be noted that their model (as well as Sen’s),
besides assuming a static environment, uses an arbitrarily defined function to
calculate the cost of interacting and returns from future actions (the basis of
which might need more investigation but has proven to be quite successful in
the applications that have been simulated).

Up to this point, all the above models deal strictly with the problem of
cooperation between self-interested parties. However, not all multi-agent inter-
actions are strictly competitive. For example, agents may be self-interested, but
still need to achieve a maximum payoff as a group or society since the latter
determines their individual payoffs (e.g. individuals contributing an unspecified
amount of money to build a road in their community such that the total amount
collected decides whether the road will be built, giving utility to the individuals,
otherwise the money is used for a secondary purpose). This is the problem tack-
led by Birk (Birk, 2000, 2001). It is thus shown that trust may not only emerge
from the evolution of strategies (Birk, 2000), but can also arise strictly out of
learning (Birk, 2001). The learning method Birk exposes uses a continuous case
N-prisoner’s dilemma as basis for simulation. This involves agents contributing
to a common fund required for the society to achieve its goals, but each agent is
tempted to contribute less than the equal split of the total investment required,
in the hope that others will contribute more. In this context, a cooperative
strategy (i.e. contributing more than the equal split) gradually predominates in
an environment where bad agents (i.e. contributing less) are in the majority.
This is because the low investment obtained by the society impacts negatively
on the utility of each individual member as well, forcing the latter to learn to
cooperate to get higher payoffs. However, as the number of cooperative agents
increases, the agents learn to defect again to get better payoffs (this is similar to
what Wu and Sun’s model predicts). Birk’s results additionally show that the
society reaches an equilibrium with a high level of trust (or cooperation) among
its members.

The above learning and evolutionary models of multi-agent strategic interac-
tions assume complete information (e.g. strategies, payoff matrix) for the multi-
agent learning algorithms to work. These results have typically been obtained
through simulations using very strict assumptions and static settings (as opposed
to learning in dynamic settings as in Banerjee and Peng (2004)) rather than real
life scenarios where the main assumption of complete information about payoffs
simply does not hold. Also, most of the learning models conceive the outcome
of interactions as being bistable, that is, either a defection or cooperation. To
be more realistic, we believe agents need to infer, from the information gathered
through their direct interactions, how their opponents are performing and how
their performance is affecting their goals. This leads on to devising realistic trust
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metrics.

Trust metrics

For an agent to computationally model its trust in its opponent, it is first required
that the former can ascribe a rating to the level of performance of its opponent.
The latter’s performance over multiple interactions can then be assessed to check
how good and consistent it is at doing what it says it will. Therefore, in addition
to a performance rating, an agent also needs a means of keeping track of the
performance of an agent (in its direct interactions with it). Marsh was the
first to model trust computationally. His ideas on trust had their roots mostly
in sociology and economics (Marsh, 1994). He modelled trust according to the
subjective perception of one agent about another. Specifically, he views trust as a
‘situational’ concept whereby an agent would trust another differently in different
situations (given by the risk and the importance of an issue that an agent is to
be trusted about). In his model, trust is a value between -1 and 1 and for each
variable the agnt is to be trusted upon, the trust value is weighted by variable’s
importance. This, in turn, means that the trust value is not significantly altered
whenever the agent defects, and could lead the latter to exploit its opponent
over more interactions (see chapter 5 for more details).

More recently, Witkowski et al. proposed a model whereby the trust in an
agent is calculated based on its performance in past interactions (Witkowski
et al., 2001) (the context is a trading scenario for an intelligent telecommuni-
cations network where bandwidth is traded, the quality and quantity of which
is varied depending on the trust suppliers and buyers have in each other). The
update to the trust value is different for the different types of agents defined in
the system. Specifically, consumers update their trust value according to the
difference between their bids and the received goods (bandwidth in this case).
The better the quality (size) of the goods the higher the increase in trust and
conversely for low quality goods. A higher trust in a seller would then result in
it being chosen for future purchases (conversely for low trust). In contrast, the
supplier agents update their trust in the consumers according to the extent to
which the quality (size) of the goods (bandwidth) supplied has been exploited.
If the quality offered was not fully used, then the trust goes down since it implies
that the consumer has dishonestly asked for more than it actually needed. If
the quality is fully exploited, the trust goes up. Results of the experiments show
how trust (of consumers in suppliers) is effectively strongly dependent on the
ability of suppliers to cope with the demand.?

The model used by Witkowski et al. simplifies the calculation of trust through
equations that deal with measurable quantities of bandwidth allocation and

31t is to be noted, however, that their model increases an agent’s trust even if the perfor-
mance of its opponent has not been faultless (e.g. a buyer not using the bandwidth completely
but partially). This allows the opponent to exploit the agent so long as the opponent is not
“completely defecting”. While this property of the model may not harm the system analysed
by the authors, it seems to be counterintuitive to the ideal attributes of a trust model which
should prevent the agent implementing it being exploited.



65

bandwidth use. Other models such as (Mui et al., 2002; Sen and Sajja, 2002;
Schillo et al., 2000) consider the performance of an agent to be simply a bistable
value (good or bad). While these models achieve the objectives of the agents
for the specific simulation settings studied, they cannot generally be used more
widely because realistic interactions in an open distributed system involve richer
outcomes (e.g. quality of goods traded, efficiency of task handling, duration of
task). To overcome this, we need more generic means of assessing performance
over time. To this end, Sabater et al. (through the REGRET system) do not
just limit the overall performance to a bistable value or to an efficiency measure
(as per Witkowski et al.), but rather attribute some fuzziness to the notion of
performance (Sabater and Sierra, 2002). Thus, depending on the context, the
performance of an agent can be subjectively judged on a given scale where -1
represents very poor performance, 0 represents neutral, and +1 represents being
very good. REGRET actually gives richer semantics to ratings (or impressions)
by defining their particular characteristics. For example, an agent can express a
satisfaction -0.5 for the delivery date of some goods and +1 for the price of the
same goods. These impressions are then analysed and aggregated using fuzzy
reasoning techniques to elicit a representative value for the overall impression
(or trust) of one agent on another.

In contrast to Witkowski et al.’s model, REGRET’s evaluation of trust is
not only based on an agent’s direct perception of its opponent’s reliability, but
it also evaluates its behaviour with other agents in the system. This is carried out
because only perceiving direct interactions can pose a number of problems. For
example, in an open system, it would be very difficult for an autonomous agent to
select an interaction partner if the agent itself had never interacted with another
party (i.e. it has no history to analyse). Moreover, the method opens itself to
attack by strategic liars which, knowing how they are rated by the other side, can
adapt their behaviour (e.g. clients overloading their channels) to make the other
party believe it is trustworthy (i.e. fully using its bandwidth). In such cases an
agent could be better off evaluating other environmental parameters (such as
asking other agents about their impressions on each other) in an attempt to get
a more reliable rating of its opponents. However, a number of problems arise in
doing this. For example, information gathered from other agents could be wrong
or incomplete. Such problems are exemplified and studied in section 3.1.2.

3.1.2 Reputation Models

Reputation can be defined as the opinion or view on someone about something
(Sabater and Sierra, 2002). Here we consider that this view can be mainly
derived from an aggregation of opinions of members of the community about

one of them*. In multi-agent systems, reputation can be useful when there

4We here distinguish between trust and reputation in the sense that the former is derived
from direct interactions while the latter is mainly acquired (by an agent about another) from
the environment or other agents and ultimately leads to trust. This distinction is only made
to facilitate the study of different models presented, rather than to prescribe such an approach
to trust and reputation.
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are a large number of agents interacting (e.g. online auctions, stock-trading).
Reputation should, for example, enable buyers to choose the best sellers in the
system (e.g. on eBay, the buyers rate the sellers they interact with and this
rating is provided to future buyers for them to choose the most reliable seller(s)).
Moreover, reputation can induce sellers to behave well if they know they are
going to be avoided by future buyers as a result of their reputation going down
due to bad behaviour. These different aspects of reputation divide the field into
the following lines of research:

e devising methods to gather ratings that define the trustworthiness of an
agent, using relationships existing between members of the community.

e devising reliable reasoning methods to gather as much information from
the aggregation of ratings retrieved from the community.

e devising mechanisms to promote ratings that truly describe the trustwor-
thiness of an agent.

The last of the above items is dealt with in section 3.2.2 (since it falls within the
realm of system-level trust). For now we will be concerned with the first two
items because these are at the level of individual agents.

In order to organise the retrieval and aggregation of ratings from other agents,
most reputation models borrow the concept of a social network from sociology
(Burt, 1982; Buskens, 1998). Similar to human societies, this assumes that
agents are related to each other whenever they have roles that interconnect
them or whenever they have communication links (e.g. by observation, direct
communication, or as information sources) established between one another.
Through this network of social relationships, it is assumed that agents, acting as
witnesses of interactions, can transmit information about each other (Panzarasa
et al., 2001). Information takes the form of a performance rating (e.g. good
or bad, seller delivers late, buyer never paid) as explained in the section 3.1.1.
Such a rating could then be shared by the different nodes of the social network,
thus giving rise to the concept of reputation.

Retrieving Ratings from the Social Network

Yu and Singh tackle the problem of retrieving ratings from a social network
through the use of referrals (Yu and Singh, 2002a). In this context, referrals
are pointers to other sources of information similar to links that a search engine
would plough through to obtain a web page or url. Through referrals, an agent
can provide another agent with alternative sources of information about a po-
tential interaction partner (particularly if the former cannot handle the latter’s
request itself). Yu and Singh propose a method of representing a social network
(based on a referral network (Singh et al., 2001)) and then provide techniques to
gather information through the network (Yu and Singh, 2003). Specifically, they
show how agents can explore a network by contacting their neighbours and can
use referrals gathered from the latter to gradually build up a model of the social
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network. Furthermore, Schillo et al. enrich the representation of an existing
social network by annotating nodes of the network to represent their particular
characteristics (Schillo et al., 2000). Thus each node of the network holds two
values: (i) the trust value which describes the degree of honesty of the agent rep-
resented by the node, and (ii) the degree of altruism (i.e. being good to others
even at the expense of one’s own utility). Both of these values are used to deduce
the trustworthiness of witnesses queried at the time of calculating the reputation
of potential interaction partners (see section 3.1.2). From an established social
network it is then possible to derive higher level concepts. For example, Sabater
and Sierra (Sabater and Sierra, 2002) and Yu and Singh (Yu and Singh, 2002a)
derive the concept of a group or neighbours from the social network by identify-
ing those nodes (agents) that are close together (linked together). Thus, having
a social network represented allows an agent to select and contact those agents
it needs in order to get a proper measure of the reputation of another agent.
For example, Yu and Singh’s model takes into account ratings from those agents
that are close (by virtue of the number of links separating them with a potential
interaction partner) to choose witnesses for a particular agent. Underlying this
is the assumption that closer witnesses will return more reliable ratings.

It is further assumed, in all of the above models, that witnesses share ratings
freely (i.e. without any profit). This is a relatively strong assumption which can
be removed if proper mechanisms are implemented (as will be seen in section
3.2.2). Therefore, given that agents have represented their social network and
properly extracted the ratings of their counterparts from the network, they then
need to aggregate these ratings so as to form a coherent impression of their
potential interaction partners.

Aggregating Ratings

Several means of aggregating ratings in online communities already exist. For
example, in eBay (eBay, 2003), ratings are +1 or -1 values (in addition to tex-
tual information) that are summed up to give an overall rating. Such simplistic
aggregation of ratings can be unreliable, particularly when some buyers do not
return ratings (see (Kollock, 1999; Resnick and Zeckhauser, 2002) for a complete
account of online reputation systems). For example, a sum of ratings is biased
positively when there are less people not reporting bad ratings even though these
people have had bad experiences. Having no rating is not considered as a bad
rating, nor as a good rating and is simply discarded from the aggregation. More-
over, ratings are open to manipulation by sellers trying to build their reputation.
While the latter problem can be dealt with by designing sophisticated reputation
mechanisms (see section 3.2.2), the former problem can be solved at the level of
the agent’s reasoning mechanism.

To this end, Yu and Singh deal with absence of information in their repu-
tation model (Yu and Singh, 2002b). The main contribution of their work is
in aggregating information obtained from referrals while coping with the lack of
information. More specifically, they use the Dempster Shafter theory of evidence
to model information retrieved (Yager et al., 1994). The context is the following:
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an agent may receive good or bad ratings (+1 or -1) about another agent. When
an agent receives no rating (good or bad), how should it classify this case? In
Yu and Singh’s model, a lack of belief (or disbelief) can only be considered as a
state of uncertainty (where all beliefs have an equal probability of being true).
Dempster’s rule allows the combination of beliefs obtained from various sources
(saying an agent is trustworthy, untrustworthy, or unknown to be trustworthy
or not) to be combined so as to support the evidence that a particular agent
is trustworthy or not. Moreover, together with a belief derived from ratings
obtained, an agent may hold a belief locally about the trustworthiness of an-
other due to its direct interaction with it. However, in such cases, the ratings
obtained from witnesses are neglected. Nevertheless, their measure of reputa-
tion does not discredit nor gives credit unnecessarily to agents (as eBay does)
in the absence of information. Another recent approach taken by Wang et al.
(Wang and Vassileva, 2003) is to capture the performance of agents interacting
in peer-to-peer systems according to a Bayesian network. In such a network it
is possible to attribute different levels of reputation in each particular aspect of
an agent’s capabilities (e.g. an agent might be good in delivering files at a high
speed while being very bad at delivering good quality files). In this paper it is
shown how agents can better their performance by inferring information from all
other agents’ Bayesian networks. However, the percentage improvement in using
such a probabilistic approach is not very high given the number of interactions
it takes to build the bayesian network accurately.

As can be seen, Yu and Singh and Wang et al. do not deal with the possi-
bility that an agent may lie about its rating of another agent. They assume all
witnesses are totally trustworthy. However, an agent could obtain some benefit
by lying about its rating of an opponent if it is able to discredit others such
that it appears to be more reliable than them. In this respect, Schillo et al.
deal with the problem of lying witnesses (Schillo et al., 2000). They first de-
compose the rating into social metrics of trust and altruism (see section 3.1.2).
The latter metrics are used in a recursive aggregation over the network taking
into consideration the probability that the witnesses queried may lie to (or be-
tray) the querying agent. In this way, the value obtained for the trust in an
agent is more reliable than fully trusting witnesses as in the case of Yu and
Singh’s model (which assumes cooperative settings). The probability of a wit-
ness lying to the querying agent is actually learnt over multiple interactions in
Schillo et al.’s model. Similarly, Sen et al. extend this work and demonstrate
how agents can cope with lying witnesses in their environment through learning
rather than attributing subjective probabilities to the event of a witness lying
(Sen and Sajja, 2002; Sen et al., 2000). Specifically, they develop a reputation
model which makes the same simplifying assumptions as those illustrated in sec-
tion 3.1.1. Their approach shows how the sharing of trust values (or reputation)
can benefit reciprocative agents in the long run. In the short run though, selfish
and lying agents still benefit from totally reciprocative agents. Furthermore, it
is shown that, over time, colluding agents cannot exploit reciprocative agents if
these learn the behaviour of the former and share their experience with others
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of a similar type. The reciprocative agents then become selfish towards these
lying and completely selfish agents so as to minimise utility loss in interacting
with them. Their model, however, fails when the number of witnesses in the
environment falls below a given threshold. This is because a sufficiently high
number of witnesses is needed to report ratings about most lying agents in pop-
ulation. If this is not the case, there is a higher probability of a reciprocative
agent interacting with a lying one which has not previously been encountered
by the witnesses.

While Yu and Singh’s model demonstrates the power of referrals and the
effectiveness of Dempster Shafter’s theory of evidence in modelling reputation,
Schillo et al.’s, and Sen and et al.’s models show how witness information can be
reliably used to reason effectively against lying agents. These models, however,
greatly simplify direct interactions and fail to frame such interactions within the
social setting (i.e. relative to the type of relationships that exist between the
witnesses and the potential interaction partners). To overcome this limitation,
Sabater and Sierra adopt an (sociological) approach closer to real life settings
(Sabater and Sierra, 2002). Thus their reputation value, which is representative
of the trust to be placed in the opponent, is a weighted sum of subjective impres-
sions derived from direct interactions (the individual dimension of reputation),
the group impression of the opponent, the group impression on the opponent’s
group and the agent’s impression on the opponent’s group (together, all of these
compose the social dimension of reputation). Now, the weights on each term
allow the agent to variably adjust the importance given to ratings obtained in
these diverse ways. Moreover, older ratings, devised as shown in section 3.1.2,
are given less importance relative to new ones. The strong realism of REGRET
also lies in its definition of an ontological dimension that agents can share to
understand each other’s ratings (e.g. a travel agent being good might imply
low price for one agent, but may imply good quality seats reserved for another).
However, REGRET does not handle the problem of lying (strategically) among
agents. Ratings are obtained in a cooperative manner (from an altruistic group)
rather than in a competitive setting (where witnesses are selfish). Moreover, the
aggregation method REGRET uses can be sensitive to noise since ratings are
simply summed up.

Some recent work in tackling noisy ratings has been proposed by Whitby
et al. (Whitby et al., 2004). In this paper, it is shown how noise, in the form
of unfair ratings, can be filtered out from the reputation system. Thus it is
shown that by excluding the percentage of reports that fall out of the general
characterisation of a particular agent, a more accurate measure of the agent’s
reputation can be obtained. Note that this system is based on Bayesian networks
which captures the ratings of each agent about each other. Other approaches
in a similar vein include (Josang and Ismail, 2002) and (Wang and Vassileva,
2003).
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3.1.3 Socio-Cognitive Models of Trust

The approaches to modelling trust at the individual level that we have consid-
ered in the previous sections are all based on an assessment of the outcomes
of interactions. For example, learning models consider the payoffs of each in-
dividual strategy, while reputation models assess outcomes of both direct and
indirect interactions (i.e. third-party assessments). However, in assessing the
trustworthiness of an opponent, it may also be important to consider the sub-
jective perception® on the latter since it enables a more comprehensive analysis
of the characteristics of the opponent (Dasgupta, 1998; Gambetta, 1998). For
example, the tools and abilities available to that opponent could be (subjec-
tively) assessed to check whether or not the agent can indeed use these to carry
out an agreed task. Such beliefs or notions are normally stored in an agent’s
mental state and are essential in assessing an agent’s reliability in doing what it
says it will (i.e. being capable), or its willingness to do what it says it will (i.e.
being honest).

In this respect, we report the line of work initiated by Castelfranchi and Fal-
cone (Castelfranchi and Falcone, 1998, 2000b,a). In particular, they highlight the
importance of a cognitive view of trust (particularly for Belief-Desire-Intention
agents (Wooldridge, 2002)) in contrast to a mere quantitative view of trust (sec-
tions 3.1.1 and 3.1.2).

The context they choose is that of task delegation where an agent x wishes
to delegate a task to agent y. In so doing agent x needs to evaluate the trust it
can place in y by considering the different beliefs it has about the motivations
of agent y. They claim the following beliefs are essential (in 2’s mental state) to
determine the amount of trust to be put in agent y by agent x (these have been
adapted and summarised):

e competence belief: a positive evaluation of y by x saying that y is capable
of carrying out the delegated task as expected. If agent y is not capable,
there is no point in trusting it to accomplish the task fully.

o willingness® belief: x believes that y has decided and intends to do what it
has proposed to do. If agent y is not believed to be willing to do the task,
it might be lying if it says it wants to do so. This would then decrease z’s
trust in y.

o persistence® belief: z believes that y is stable enough about its intention
to do what it has proposed to do. If y is known to be unstable, then there
is added risk in interacting with y, hence a low trust would be put in y
even though it might be willing to do the task at the point the task is
delegated.

5By subjective, we mean that these beliefs are formed according to the assessment of the
environment and the opponent’s characteristics which could also include an analysis of past
interactions.

SIn order to have this belief, agent = needs to model the mental attitudes of agent y.
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e motivation belief: x believes that y has some motives to help x, and that
these motives will probably prevail over other motives negative to = in
case of conflict. This highlights the possibility for y to defect as argued
in section 3.1.1. The motives mentioned here are the same as the long
term gains obtainable in helping = achieve its goals. If y is believed to
be motivated (to be helpful or positively reciprocative as in section 3.1.1),
then x will tend to trust it.

To devise the level of trust agent x can place in agent y, agent z would need
to consider each of the above beliefs (and possibly others). These beliefs actu-
ally impact on trust, each in a different way, and these need to be taken into
account in a comprehensive evaluation of all beliefs concerned. For example, the
competence belief is a pre-requisite to trust another agent, while the motivation
belief would vary according to the calculation of the future payoffs to the agents
over multiple interactions. This kind of strategic consideration becomes even
more important when such beliefs are known to all actors (i.e. the preferences
of agents are public). For example, what could happen if agent y knows that x
trusts it, or relies on it? The authors claim that this may increase the trustwor-
thiness of z in y’s mind, the self-confidence of y, or its willingness to serve x,
which in turn change the trustworthiness of y. Agent x can then take into ac-
count the possible effects of its trust in y (even before performing the delegation)
to support its decision of delegating. However, Castelfranchi and Falcone’s ap-
proach is strongly motivated from humans which are not always rational beings
(as opposed to what we expect agents to be).”

As opposed to the cognitive approach of Casltefranchi and Falcone, Brainov
and Sandholm support the need to model an opponent’s trust (as described
above) with a rational approach (Brainov and Sandholm, 1999) (they specifically
target the context of non-enforceable contracts). They do so by showing that
if an agent has a precise estimation of its opponent’s trust (in the former),
this leads to maximum payoffs and trade between the two agents. However, if
trust is not properly estimated, it leads to an inefficient allocation of resources
between the agents involved (hence a loss in utility) since both under-estimate
or over-estimate their offers on exchanged contracts. It is also shown that it is in
the best interests of the agents, given some reasonable assumptions, to actually
reveal their trustworthiness in their interaction partner (to efficiently allocate
resources)!

While still in its infancy, the socio-cognitive approach to modelling trust
takes a high level view of the subject. However, it lacks the rational grounding
(as shown by Brainov and Sandholm) in rational mechanisms which learning
and reputation models (and mechanisms) provide. In effect, the socio-cognitive
approach could exploit the assessment performed by these models to form the

7Castelfranchi and Falcone do not show what agent y would gain in trusting « in the case
presented here. If we consider rational agents to be utility maximising with respect to the
goals set by their human designers, then agent y has no apparent reason to trust  more than
it should if there is no gain in doing so, and it would be irrational to do so (from our definition
of rationality).
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core beliefs illustrated above. Thus, speaking generally, all the individual models
of trust could contribute to a comprehensive evaluation of trust at the individual
level. This would take into account strategies learnt over multiple interactions,
the reputation of potential interaction partners, and finally the latter’s believed
motivations and abilities regarding the interaction. However, it can be computa-
tionally expensive for an agent to reason about all the different factors affecting
its trust in its opponents. Moreover, as highlighted earlier, agents are limited
in their capacity to gather information from various sources that populate their
environment. Given these limitations, instead of imposing the need to devise
trust at the individual level, it can be more appropriate to shift the focus to the
rules of encounter so that these ensure that interaction partners are forced to be
trustworthy. In this way, these rules of encounter can, at times, compensate for
limited applicability of individual-level trust models (conversely, whenever the
rules of encounter cannot guarantee interacting agents will be trustworthy, we
might need to resort to individual-level trust models to do so).

3.2 System-Level Trust

As we mentioned earlier in section 1.2 in chapter 1, system designers usually
engineer negotiation mechanisms with the intended properties of individual ra-
tionality, efficiency, and incentive compatibility. The last of these properties is
the most important one with regards to trust as it implies that the system can
incentivise honest behaviour from the agents. Apart from negotiation mecha-
nisms, the system may also impose certain requirements on the behaviour of
the agents or gather information about these in order to determine their level of
reliability, hence their trustworthiness. Generally speaking, such requirements
impose some rigidity on the system. However, these rules imposed by the sys-
tem enable an agent to trust other agents by virtue of these different constraints.
These constraints can be applied in a number of ways. Firstly, it is sometimes
possible to engineer the negotiation protocol (as in mechanism design) such that
the participating agents find no gain in utility by lying or colluding (or find a
better gain in being honest). Secondly, an agent’s reputation as being a liar (or
truthful) can be spread by the system. Thus, knowing that their future inter-
actions will be compromised if they are reputed to be liars (i.e. the shadow of
the future in Axelrod’s terms (Axelrod, 1984)), agents can be forced to act well
(up to the point they leave a system). Thirdly, agents can be screened upon
entering the system by providing proof of their reliability or honesty through
the references of a trusted third party.

Against this background, we subdivide system-level trust® in terms of (i) de-

8In what follows, we distinguish system-level trust borne out of strategic considerations
in building mechanisms (without necessary contractual commitments) from the control-trust
mentioned in (Tan and Thoen, 2000). The latter is more concerned with the level control
exercised by transaction procedures without any consideration for the particular strategic
behaviour of agents in the system. We believe this is an important distinction since system-
level trust is not only concerned with agents performing correctly, as in the case of control-
trust, but also with incentivising them to provide information truthfully to the system and
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vising incentive compatible protocols, (ii) developing incentive compatible rep-
utation mechanisms (incentivise truthful revelation of reputation) that foster
the selection of most reliable agents, and (iii) developing security mechanisms
that ensure new entrants can be trusted (both honest and reliable). This is the
structure that we adopt in the following subsections.

3.2.1 Truth Eliciting Interaction Protocols

In order to ensure truth-telling on the part of agents involved in an interaction,
a number of protocols and mechanisms have been devised in recent years (see
(Sandholm, 1999) for an overview). These protocols aim to prevent agents from
lying or speculating while interacting (e.g lying about the quality of goods sold or
proposing a higher price than one’s true valuation for goods to be bought). They
do so by imposing rules dictating the individual steps in the interaction and the
information revealed by the agents during the interaction. Thus, by adhering
to such protocols it is expected that agents should find no better option than
telling the truth. Given the aim of this thesis, we do not wish to delve into a
detailed explanation of all available protocols (i.e. the Vickrey-Clarkes-Groves
or VCG class of mechanisms) that enforce truth telling and enforce them to a
certain degree (see (Mas-Colell et al., 1995; Dash et al., 2003) for such a wider
analysis). Rather we will focus on one such protocol (namely auctions, since
these are the most widely used mechanism in multi-agent system applications).

There are four main types of single-sided auctions, namely the English,
Dutch, First-price-sealed-bid, and Vickrey. In the English auction, each bid-
der is free to raise his bid until no bidder is willing to raise any further, thus
ending the auction. The Dutch auction instead starts with a very high ask price
and reduces it in steps until one of the bidders bids for the item and wins the
auction. The first price sealed bid involves agents submitting their bids with-
out knowing others’ bids. The highest bidder wins the auction. In the Vickrey
auction, the bids are sealed but the winner pays the price of the second highest
bid.

In this context, the Dutch and English auctions enforce truth-telling on the
part of the auctioneer (e.g. the winner and the winning price cannot be faked)
since bids are made publicly (as opposed to Vickrey and First-price-sealed-bid
auctions where the bids are hidden). However, the Dutch, English, and First-
price-sealed-bid auctions do not ensure that the bidders reveal their true wval-
uation of the goods at stake. This is because the dominant strategy in these
auctions is to reveal either a lower valuation (in the case of Dutch and First-
price-sealed-bid) or to bid only a smaller amount more than the current highest
bid up to one’s true valuation (in the case of the English auction). In contrast,
the Vickrey auction does enforce truth-telling by bidders and is a common ex-
ample of the class of VCG mechanisms. Here, a bidder’s dominant strategy is
to bid its true valuation since doing otherwise, given uncertainty about other
bids and the final price to be paid, would result in some loss in utility. Bidding

other agents.
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higher than its true valuation could end up with the agent paying more than
its valuation and bidding lower than its true valuation could make it lose the
auction altogether.

As pointed out above, one of the main weakness of the Vickrey mechanism
is that it does not ensure truth-telling on the part of the auctioneer. The latter
could still lie about the winning bid since bids are private and known only to
the auctioneer (and obviously to each of the bidders in private, unless there is
some amount of collusion). The auctioneer could thus ask for a higher price than
the second highest bid (just below the highest bid) to the highest bidder. In so
doing, the auctioneer reaps a higher benefit than it should without the bidders
knowing. In this respect, Hsu and Soo have implemented a secure (i.e. ensuring
the privacy of bids and the allocation of the goods to the true winner) multi-
agent Vickrey auction scheme (Hsu and Soo, 2002). The scheme differs from the
original Vickrey auction in that it involves an additional step of choosing the
auctioneer from among the bidders (advertised on a blackboard). The bidders
submit their encrypted bids to a blackboard. The auctioneer is selected at
random from the bidders and it is given a key to access all sealed bids. Using
this key, it can only compare the bids’ values. Thus, the auctioneer can only
determine the order of bids and allocate the second highest bid to the winner.
This scheme also allows the auctioneer (also a bidder), the winner, and the
second highest bidder to verify the result by using their keys to check the bids
shown on the blackboard.

However, the Vickrey auction, and the other main ones stated above, are not
collusion proof. This means that agents can collaborate to cheat the mechanism
by sharing information about their bids. Collusion would first necessitate that
the agents know each other before they place their bids and therefore arrange
to place bids that do not reveal their true preferences (e.g. agents withholding
their bids in a Dutch auction until the ask price has gone very low, or some
bidders colluding with the auctioneer to artificially raise the ask price in an
English auction to force others to pay a very high price, or bidders colluding to
beat competitors in a Vickrey auction). To prevent the latter from happening,
Brandt extends the work of Hsu and Soo by devising a collusion proof auction
mechanism that ensures the privacy and correctness of any (M+1)st-price auc-
tion (Brandt, 2001, 2002) (i.e. an auction where the highest M bidders win and
pay a uniform price determined by the (M+1)st price). In this type of auction,
bids are sealed and the highest bid wins the auction but pays a price determined
by the auctioneer (e.g. in the Vickrey auction the second highest price is paid).
Only the auctioneer and the bidder know the highest bid. To allow bidders to
verify whether the winning bid is actually the highest (hence checking the hon-
esty of the winner and auctioneer) the protocol devised by Brandt distributes
the calculation of the selling price between the individual buyers using some
cryptographic techniques. However, the only other agent, apart from the seller,
able to calculate the exact value of the selling price is the winner of the auction.
The protocol also ensures that bids are binding. These conditions, combined
with the fact that the protocol can be publicly verified, allow the identification
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of malicious bidders which would have tampered with the bids and prevent col-
lusion from affecting a single bidder. While being very powerful, the protocol is
computationally expensive for a large number of agents but works well for small
numbers.

As can be seen above, most auctions are not robust to lying and collusion
unless some security mechanism is added into them (i.e. using cryptographic
techniques). The protocols mentioned above, besides constraining interactions,
neglect the fact that the agents in an open distributed system might want to
interact more than once. As was shown in section 3.1.1, reciprocative or trust-
worthy behaviour can be elicited if agents can be punished in future interactions
or strictly prevented from engaging in future interactions if they do not interact
honestly. For example, if a winning bidder in an auction has been found to have
lied about its preferences, it could be prevented from accessing future runs of
the auction (Brandt, 2002). If an agent knows it will lose utility in the future
due to bad behaviour in the present, it will find no better option but to act in a
trustworthy way. In this respect, earlier in the paper (see section 3.1.1) we have
shown how agents could learn to actually adapt their strategy (reciprocative or
not) in order to maximise their long term payoffs against different strategies over
multiple runs of an auction.

However, as pointed out in section 1.3, open multi-agent systems allow agents
to interact with any other agent in the environment. This could allow malicious
agents to move from group to group whenever they are detected by a given group
of agents and therefore exploit trustworthy agents as they move around. Also,
note that the Vickrey auction (and the whole class of VCG mechanisms) does
not aim to select or determine the most reliable agents that should be involved
in a given interaction. Rather, agents are assumed to be completely reliable
and this could lead unreliable agents, though honest, to be selected. In order to
prevent this from happening, agents can be made to share their ratings of their
opponent with other agents in the environment once they have interacted with
them. Techniques to allow agents to gather ratings and aggregate those in a
sensible way were presented in section 3.1.2. However, it was shown that these
techniques do not consider the fact that we expect agents to share (true) ratings
only if it brings them some utility. In open multi-agent systems, this can be
achieved through reputation mechanisms which we discuss in the next section.

3.2.2 Reputation Mechanisms

As was seen in section 3.1.2, the reputation models described do not take into
account the fact that the agents are selfish and therefore will not share infor-
mation unless some benefit can be derived from doing so. Furthermore, these
reputation models (e.g. REGRET or Yu and Singh’s model) do not motivate
the use of reputation by some agents to elicit good behaviour from other agents.
These models aim to endow agents with a better perception of their opponent
and do not consider the effect of doing so on an opponent when the latter is
aware of it! Given these shortcomings of reputation models, reputation mech-
anisms consider the problem of inducing trustworthy behaviour and modelling
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the reputation of agents at the system level. Reputation mechanisms can operate
through centralised or distributed entities that store ratings provided by agents
about their interaction partners and then publicise these ratings, such that all
agents in the environment have access to them. In this case, it is the system
that manages the aggregation and retrieval of ratings as opposed to reputation
models which leave the task to the agents themselves. In so doing, reputation
mechanisms can be used to deter lying and bad behaviour on the part of the
agents. Moreover, reputation mechanisms aim to induce truthful ratings from
witnesses and actually make it rational for agents to give ratings about each
other to the system (i.e. individually rationality).

More specifically, Zacharia and Maes have outlined the desiderata for repu-
tation mechanisms particularly with regards to how ratings are aggregated and
how these impact on the behaviour of the actors in the system (Zacharia and
Maes, 2000). They do not propose such requirements for agent-based reputa-
tion systems per se, but as we move into agent-mediated electronic commerce
(He et al., 2003), it is obvious that such mechanisms will guide agent-based
reputation systems. These desiderata are listed below:

1. it should be costly to change identities in the community. This should
prevent agents from entering the system, behaving badly, and coming out
of the system without any loss of utility or future punishment bearing upon
them.

2. new entrants should not be penalised by initially having low reputation
values attributed to them. If new entrants have low reputation they are
less favoured though they might be totally trustworthy. This actually
makes the system less appealing to agents (with bad reputation) intending
to (re-)enter the system.

3. agents with low ratings should be allowed to build up reputation similar to
a new entrant. This allows an agent to correct its behaviour if it has been
shown to be badly behaving in the past.

4. the overhead of performing fake transactions should be high. This prevents
agents from building their own reputation.

5. agents having a high reputation should have higher baring than others on
reputation values they attribute to an agent. This presupposes that agents
with high reputation will give truthful ratings to others. However, this
can be contentious if reputation determines the level of profit the agent
acquires since it could lead to the creation of monopolies or cartels in the
market.

6. agents should be able to provide personalised evaluations. This involves
giving more than just a simple rating of +1 to -1 to allow a better eval-
uation of the reputation of another agent. For example, the REGRET
system implements richer ratings that can be shared using the ontological
dimension (see section 3.1.2).
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7. agents should keep a memory of reputation values and give more impor-
tance to the latest ones obtained. This is needed to keep the reputation
measure as up to date as possible and helps prevent an agent from building
up positive reputation by interacting well and then start defecting (the last
defection having a greater effect than its past good behaviour).

With respect to the above requirements, Zacharia and Maes present two repu-
tation systems (targetted at chatrooms, auctions, and newsletters): SPORAS
and HISTOS. While these are not strictly multi-agent systems, they present
techniques to aggregate ratings intelligently and reflect the real performance of
human users in an online community. In both cases, the aggregation method al-
lows newer ratings to count more than older ones. SPORAS, however, gives new
entrants low initial reputation values and therefore reduces their chance of being
selected as possible interaction partners. This is a trade-off afforded to prevent
identity switching. This is because an agent having low reputation would not
be any better off by re-entering the system with a new identity. HISTOS is an
enhancement to SPORAS which takes into account the group dynamics as in
REGRET. In particular, HISTOS looks at the links between users to deduce
personalised reputation values (i.e. taking into account the social network).
This enables an agent to assemble ratings from those it trusts already rather
than those it does not know. Moreover, both HISTOS and SPORAS have been
shown to be robust to collusion. This is because those agents that are badly
rated themselves have a diminished effect on the reputation of others and those
they might want to protect. However, as the authors point out themselves, the
major drawback is that users are reluctant to give bad ratings to their trading
partners. This is because there is no incentive to give ratings in the first place
(i.e. it is not incentive compatible).

In an attempt to make the report of agents’ reputation truthful, they propose
the CONFESS reputation mechanism (Jurca and Faltings, 2004). This actually
builds up on their earlier work in (Jurca and Faltings, 2003b,a). In CONFESS,
buyers and sellers pay a certain fee (the seller pays a listing fee while the buyer
pays a participation tax) to engage in a transaction. Agents are incentivised,
using these fees, to reveal the true reputation of the seller. In particular, it is
shown that a buyer will find no better option than to reveal the true reputation of
the seller and that the seller can lie only a limited number of times. Here, it is the
use of these fees after the transactions happens that allows the system to enforce
truthful revelation of the sellers’ trustworthiness. However, their approach has
some fundamental problems. Indeed, the way the payoff to agents is calculated
disregards the fact that sellers can exploit buyers simply by keeping the goods
and the payments for the goods while still reporting truthfully. This follows
from a wrong modelling of the game tree in that type of interaction.

A Dbetter attempt at modelling a reputation mechanism was proposed by
Dellaroccas (Dellarocas, 2002). He introduced ‘Goodwill Hunting’ (GWH) as a
more realistic feedback mechanism, for a trading environment. This system:

e induces sellers of variable quality goods to truthfully reveal the quality of
their goods.
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e provides incentives to buyers to truthfully reveal their feedback.

The GWH algorithm uses the threat of biased future reporting of quality (of
goods to be sold) in order to induce sellers to truthfully declare the individual
qualities of their items. Specifically, the mechanism keeps track of the seller’s
‘goodwill’. This value represents the seller’s honesty (about revealing its reli-
ability). It is adjusted by the quality reported by buyers. Good reports bias
goodwill positively and bad reports bias it negatively. To induce sellers to reveal
the true quality of their goods, the goodwill factor is used to adjust the quality
they wish to broadcast for the goods they wish to sell. Thus if the seller has low
goodwill, the quality of the goods it tries to publicise will be actually shown to
have a lower quality by the system.

To induce buyers to report their ratings of sellers, they are given rebates
on future transactions in the system. It is then shown that, if buyers report
untruthfully, they can drive out sellers of good quality goods, and therefore lose
the opportunity of buying high quality goods. However, the mechanism makes
several somewhat unrealistic assumptions about online markets. For example,
it assumes that sellers are monopolists; that is, they are the only ones to sell a
particular product (of varying quality). Also it assumes that buyers will interact
with sellers only once. These are needed to simplify the analysis of the model.
As the author points out, among other enhancements, it is still to be shown how
the mechanism fares against strategic reporting from buyers whereby they force
a seller to reduce the price of its goods by giving it bad ratings, hence damaging
its reputation.

In a similar vein as GWH (i.e. using mechanism design techniques), Porter
et al. (2002) proposed a mechanism that incentivises agents to reveal their own
reliability as opposed to how they believe others to be reliable. As opposed to
GWH, their fault-tolerant mechanism aims to result in efficient outcomes in a
one-shot interaction (in the mechanism design sense). However, their approach is
limited (as we show in chapter 6) since it does not consider the impressions other
agents might have on those agents which truthfully reveal their reliability. Thus,
an agent may be biased on its impression about its own reliability (e.g. a seller
wrongly its goods to be the best or a mechanic believing its services to be better
than what its clients deem it to be). This may, in turn, lead the mechanism to
choose the unreliable agents (according to the unbiased trust values).

The reputation mechanisms detailed above and the interaction mechanisms
discussed in section 3.2.1 try to enforce trustworthy behaviour by minimising
the opportunity for agents to defect to gain higher payoffs (see our definition
of trust in section 1.3). As has been shown, more of these mechanisms still
need to be developed. In the case where interaction protocols and reputation
mechanisms cannot guarantee trustworthy behaviour, there still exists a need to
give agents in an open system the possibility of proving their trustworthiness and
should enable other agents to recognise them as reliable interaction partners.
One way this could proceed is by providing references from highly recognised
sources. This is similar to the case of a job seeker providing its credentials to
its potential new employer. Huynh et al. (2004) recently devised a model that
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alms to use references in this way. However, this approach is limited in that
it does not consider sources that can be trusted by all agents. Rather it uses
references from any agent in the environment. This procedure then leads to
very high uncertainty in the reliability of the rating itself. Note that the process
of gathering credentials is not the same as reputation building and acquisition
which pertains to the recognition of an entire community. Rather, credential
assessment falls mostly within the realm of network security which we discuss
next.

3.2.3 Security Mechanisms

In the domain of network security® , trust is used to describe the fact that a user
can prove who it says it is (Mass and Shehory, 2001). This normally entails that
it can be authenticated by trusted third parties (i.e. those that can be relied
upon to be trustworthy and as such are authorities in the system (Grandison and
Sloman, 2000)). At a first glance, this does not completely fit with our initial
definition of trust (see section 1.3), but it is certainly a basic requirement for the
trust models and mechanisms described earlier to work (see sections 3.1.1, 3.1.2,
3.1.3, 3.2.1, 3.2.2). This is because these models are based on the fact that agents
can be recognised by their identity and would therefore require authentication
protocols to be implemented.

To this end, Poslad et al. have recently proposed a number of security re-
quirements that they claim are essential for agents to trust each other and each
other’s messages transmitted across the network linking them (Poslad et al.,
2003) (i.e. to ensure messages are not tampered with by malicious agents):

e identity: the ability to determine the identity of an entity. This may
include the ability to determine the identity of the owner of an agent.

e access permissions: the ability to determine what access rights must be
given to an agent in the system, based on the identity of the agent.

e content integrity: the ability to determine whether a piece of software, a
message, or other data has been modified since it has been dispatched by
its originating source.

e content privacy: the ability to ensure that only the designated identities
can examine a message or other data. To the others, the information is
obscured.

The authors specify these requirements for the FIPA (Foundation for In-
telligent Physical Agents) abstract architecture (FIPA, 2002). These basic re-
quirements can be implemented by a public key encryption and certificate in-
frastructure (Grandison and Sloman, 2000). A digital certificate is issued by

9We do not wish to give a complete account of network security mechanisms since this
is beyond the scope of this thesis. Rather, we will focus on the main concepts and models
that strictly pertain to multi-agent systems. For a wider reading on network security for open
distributed systems see (Grandison and Sloman, 2000).
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a certification authority, or CA, and verifies that a public key is owned by a
particular entity. The public key in a certificate is also used to encrypt and
sign a message in a way that only its owner can examine the content and be
assured about its integrity. The two most popular public key models are PGP
(Pretty Good Privacy) and the X.509 trust model (Adams and Farrel, 1999).
The former supports a web of trust in that there is no centralised or hierarchical
relationship between CAs, while the latter is a strictly hierarchical trust model
for authentication (Grandison and Sloman, 2000). However, these authenticat-
ing measures do not suffice for open multi-agent systems to ensure that agents
act and interact honestly and reliably towards each other. They only represent
a barrier against agents that are not allowed in the system or only permit their
identification in the system. In order to enforce good behaviour ¢n the system,
it is instead possible that certificates are issued to agents if these meet specific
standards that make them trustworthy.

In order to achieve this, trusted third parties are needed to issue certificates
to agents that satisfy the standards of trustworthiness (i.e. being reciprocative,
reliable, honest). For example, agents would need to satisfy certain quality stan-
dards (e.g. products stamped with the Kitemark or the ‘CE’ marking are assured
to conform to the British standards and the European community standards re-
spectively) and terms and conditions for the products they sell (e.g. sellers have
to abide by a 14-day full-refund return policy in the UK for any goods they
sell). It is only upon compliance with these quality standards that the agent
would be able to sell its products. To this end, Herzberg et al. present a policy-
based and certificate-based mechanism which can assign roles to new entrants
(Herzberg et al., 2000). A certificate in this work is signed by some issuer and
contains some claims about a subject. There is no restriction on what claims can
be. For example, there may be claims about organization memberships (com-
pany employee, etc.), capabilities of the subject, or even the trustworthiness (or
reliability) of the subject in the view of the issuer.

The mechanism in (Herzberg et al., 2000) also enables a party to define
policies for mapping new entrants to predefined business roles. Thus an agent
can ensure that a new entrant will act according to the settings defined by its role
or access rights. The role assigned to an agent carries with it a number of duties
and policies it needs to abide by. If the agent undertakes the role, it is forced to
abide by the given rules of good behaviour. The process of role assignment and
access provision is performed in a fully distributed manner, where any party or
agent may be a certificate issuer. Moreover, it is not required that certificate
issuers be known in advance. Instead, it is sufficient that, when requested, an
agent that issues certificates provides sufficient certificates from other issuers to
be considered a trusted authority according to the policy of the requesting party.
This allows distributed trust build-up among parties in an open environment
(Mass and Shehory, 2001).

Mass and Shehory extend the work in (Herzberg et al., 2000) to open multi-
agent systems (Mass and Shehory, 2001). Specifically, they take into account the
fact that agents with reasoning or planning components can adapt their strate-
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gies rather than sticking to one strategy while maintaining their role (as discussed
in section 3.1.1). This means that an agent’s role does not fully constrain its ac-
tions so as to prevent it from reasoning strategically about its interactions with
other agents. An agent could thus learn how to adapt its strategy according to
the role it has. For example, an agent bearing the role of accountant in a system
could report fictitious profits, thus benefiting its company’s share price, while
still satisfying its role. To prevent such strategic defection or wrong doing, the
agent assigning the role to the new entrant is allowed to adjust its priorities or
policy based on results from interactions with others dynamically. This presents
a more realistic view of using trust (both at the individual and system level) to
decide how to constrain the actions (or stragegies) of an interaction partner. Re-
cent works on trust dynamics and formal modelling of trust relationships could
also help in this context by ensuring that certain rules of trust are respected by
agents interacting in the system (Liau, 2003; Marx and Treur, 2001; Gans et al.,
2003).

3.3 Summary

In this chapter we have systematically analysed the issue of trust in open multi-
agent systems in order to define the basic requirements of the trust model we
intend to develop. In particular, we have related the different means of devising
trust both at the individual level and at the system level. Given this analysis,
we can now define the more particular requirements for our trust model:

e Our model needs to be able to learn the reliability and honesty of an
agent over repeated encounters (as per the discussion in section 3.1.1).
As we have seen in the latter section, most models use a probability based
mechanism. In our model we intend to use a similar probabilistic approach
but, in the case where a dynamic behaviour is perceived, we will use a
window of past interactions in order to adapt the trust measure over time
to the most recent behaviour of an opponent (in a similar way to (Sabater
and Sierra, 2002)). Moreover, our model needs to be able to define non-
bistable trust values in order to cater for agents that have a given degree
of reliability. This trust value can then be used in a bargaining encounter,
amongst other things, to restrict or enlarge the domain of values of issues
that are negotiated (i.e. adjust the stance of the agent) whenever an
opponent is not deemed completely reliable or honest. In addition, such a
continuous measure of trust can provide a ranking of those agents deemed
most reliable or honest. Some mechanism can then make a selection of
the most trusted agents when it comes to determine the outcome of the
negotiation.

e Attributes of the interaction context, such as the institution within which
it takse place or the norms that agents have are not usually incorporated
either at the individual level or the system level in existing models of
trust. Nevertheless, we believe that modelling the context is important
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since it determines, to some extent, whether agents can be trusted (e.g.
if the institution guarantees good behaviour or if the norms of the agent
foster cooperation). Given this, in our trust model we aim to model these
attributes and use them in determining the trustworthiness of an agent.

e Many trust models at the individual level already cater for the aggrega-
tion and dissemination of ratings from other agents in a society and we will
assume such techniques can be used to generate reputation measures (see
discussion in section 3.1.2). We will therefore focus on defining a compo-
nent in our model that facilitates the combination of reputation measures
from other agents with trust measures an agent has privately calculated.

e As we saw in section 3.1.2, individual level trust models, and in partic-
ular reputation models, do not enforce truth-telling on the part of other
agents in the society. Thus when it comes to bargaining, it can only be
assumed that the reputation measures obtained from other agents are re-
ported truthfully. However, in many cases we believe this is unrealistic
and so we endeavour to build our trust model such that it can be coupled
to an interaction mechanism (such as the VCG class of mechanisms) that
enforces truth-telling at the system level (see section 3.2.1). As discussed
in section 3.2.2, existing reputation mechanisms that aim to do so are
very limited and sensitive to biased reports. In combining measures from
our trust model with such an incentive compatible mechanism, we intend
to build the first efficient and individually rational reputation mechanism
that is also robust to biased reports from some agents.

Against the above requirements, in chapter 5 we develop the CREDIT trust
model and show how it can be used to influence an agent’s negotiation stance
in bargaining encounters to reduce the uncertainty. Moreover, in chapter 6, we
propose a Trust-Based Mechanism (TBM) where we show how CREDIT can be
coupled to the interaction mechanism in order to generate an efficient outcome
with such properties as individual rationality and incentive compatibility.



Chapter 4

Formal Definitions

Having identified the main requirements of our persuasive negotiation (PN)
mechanism and trust model in chapter 2 and chapter 3, we now focus on the
basic formal definitions that we will use in our models. In this chapter we only
provide those definitions that are common to all the models we develop in the
rest of this thesis. In particular we define the contracts (or offers) that agents
may devise during (or reach at the end of) a negotiation encounter and the util-
ity function that is used to evaluate these contracts. We particularly structure
the utility functions of any pair of negotiating agents such that these agents have
payoffs as defined in the Prisoner’s Dilemma (PD) (described in section 3.1.1).!
We choose this particular game since it provides clear incentives to agents to de-
fect (i.e. be unreliable or dishonest) to obtain higher payoffs (see section 3.1.1)
while also providing incentives to them to cooperate in the long run (i.e. since
both defecting causes both agents to obtain low utilities and both cooperating
gives both the highest utilities in the long run). This aspect of the game is
important for our trust model, since it is then possible to show that our model
fosters cooperation from both interacting agents (as trust dictates how the inter-
action unfolds) and hence results in higher utilities as the trustworthiness of the
agents is learnt over repeated encounters. The PD is also important in defining
strategies for PN since cooperation and defection can be clearly ascribed to dif-
ferent types of arguments agents might use in bargaining (e.g. a reward might
be a proposition to cooperate and allow the opponent to defect in the next game
and vice versa for a reward that is asked). Thus, the semantics of arguments
are clearly defined in terms of the action sets of the agents (since cooperation
and defection are different actions agents might perform). Moreover, we believe
such characterisation of the utility functions closely pictures realistic interactions
where agents are normally involved in non-zero sum interactions (i.e. the agents
do not necessarily gain utility at the expense of their opponent). The rest of this
chapter is structured as follows. Section 4.1 provides the basic definitions about
the agents and contracts while section 4.2 provides the characterisation of utility

n chapters 6 and 8 we specialise the definition of the utility function according to require-
ments of the application.
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functions which allows us to define an extended version of the PD (known as the
multi-move prisoners’ dilemma (MMPD)) and discusses its use in our PN model
and trust model. Finally, section 4.3 summarises the main concepts defined in
this chapter.

4.1 Basic Notions

Let Ag be the society of agents noted as «, 3,... € Ag. A particular group of
agents is noted as G C Ag and each agent can only belong to one group.2 We
conceive that agents within each group have a set of similar norms which define
part of the context of interaction (e.g. all retailers in the UK agree to a 14-day
return policy on all items they sell or all retailers in Spain close on Sunday).
The attributes of the context are particularly useful in developing our trust
model in chapter 5 as per the requirements mentioned in section 3.3. 7 denotes
a totally ordered set of time points (sufficiently large to account for all agent
interactions) noted as tg,t1,..., such that t; > t; if and only if ¢ > j. In the
following subsections, we define the main components of the negotiation object
(see section 1.2) that agents use to define their offers particularly in bargaining
encounters. Then we define the basic utility function used to evaluate these
offers. Given these, we then structure the relationship between the negotiating
agents’ utility functions such that they play an extended version of the PD
(which we define as the MMPD) as per the requirements of our trust model and
PN model .

4.1.1 Contracts

After negotiation, agents usually come to an agreement that is normally termed
a contract (offers made while bargaining also represent potential contracts and
have the same structure). In this thesis, contracts are agreements about (com-
mitments to) issues and the values these issues should have (as per section 1.2).
Let X = {x1,23,...2,} be the set of potential issues to include in a contract,
and the domain of values taken by an issue x be noted as D, (for simplicity we
assume that all D, are an interval of real numbers R). We will note that issue x
takes the value v € D, as x = v. Thus, a particular contract, O, is an arbitrary
set of issue-value assignments noted as O = {ml = V1,Tg = Vg,..., Ty = vn}
where z; € X, v; € D,,, and O € O which denotes the set of potential con-
tracts. We denote by O the set of potential contracts. We will also note the set
of issues involved in a contract O as X(O) C X. Given an agreed contract, two
or more agents all have a (disjoint) subset of the contract to enact. For example,
a seller has to deliver the goods at a given time while the buyer has to pay for
the goods. Each subset of the contract allocated to an agent is superscripted by
the respective agent identifier such that, for example, in a contract O between
a and 5, 0*U0OP = 0.

2If G denotes a partition {G1,Ga2,...,G;} of the society of agents into non-empty groups,
then for all G;,G; € G,G; NG =0, U, G; = Ag.
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4.1.2 Utility Functions

We capture the preferences of an agent through its utility function (von Neuman
and Morgenstern, 1944). This function outputs a measure of how much an
agent prefers a particular outcome. Thus, an agent, «, has a utility function for
contracts, noted as U* : O — [0,1], and for each issue z € X(O) in a contract
noted as US : D, — [0,1]. We will generally assume that the utility functions
are linear so as to simplify the analysis of the properties of the models we study
and facilitate the understanding of the strategies use in both our PN and trust
models. In this work, we will define the utility of a contract, for an agent, as
an aggregation of the weighted utilities of the individual issues as shown below
(note this assumes that issues are independent):

U*(0)= > we-U(va) (4.1)

z€X(0)

where > w, =1 and v, € D, is the value taken by the issue z € X(0). We
consider that agents, whether from the same group or from different groups,
invariably interact within some electronic institution (Esteva et al., 2001) which
specifies and (or) restricts (some) issue-value assignments of contracts through a
set of norms (see section 3.3). An electronic institution, as devised by the system
designer, dictates what agents are able to do and say in a given interaction by
virtue of their role (e.g. a seller submits asks in an auction while a buyer bids)
and the nature of the interaction (e.g. until a winner has been identified, bids
are allowed, and then the goods need to be paid for by the winner). Naturally,
each institution may also specify different rules.

In the next section, we further describe how we assign weights to different
issues in the utility function shown in equation 4.1. The relative weights agents
place on each issue of a contract are important in defining what type of game
agents play. In particular, we devise these weights such that the agents play the
MMPD which extends the usual PD based on our requirements.

4.2 The Multi-Move Prisoner’s Dilemma

In defining our trust model and PN model it is intended that they can be im-
plemented in most general applications where agents engage in non-zero sum
interactions. In this context, the PD is a common characterisation of interac-
tions between agents that aim to closely model realistic interactions (Axelrod,
1984; Tsebelis, 1990). The PD would, however, limit our models to considering
only two types of actions. As per the requirements defined in section 3.3, our
trust model needs to be able to adapt to different degrees of reliability of agents
(i.e. not be a bistable value), hence different levels of cooperation and defection.
Moreover, only defining only two types of actions that can be used as arguments
would strongly limit the applicability and efficiency of our PN model in contexts
where agents have a large action set to search for an agreement. Given these
constraints, we need a continuous scale of cooperation between the two extremes
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that the PD provides us with. To this end, we extend the PD to the MMPD
(Prechelt, 1996; Tsebelis, 1990) as shown on figure 4.1. In the MMPD, actions
(or moves) are considered to be the enactment of the contents of a contract (e.g.
paying for goods, delivering goods). Both the interaction partners have their
own actions dictated by the part of the contract that they have to enact (e.g.
seller delivers goods and buyer pays for the goods at a given time). Agents may
also have more than one issue to take care of (e.g delivery of goods and ensuring
they are of a certain quality) and for each issue a discrete number of possible
values can be given (e.g. paying after 3 days, 4 days,... or delivering after 1
month, 2 months). When agents engage in the MMPD repeatedly, we term this
form of interaction as the Iterated Multi-Move Prisoner’s Dilemma (IMMPD).
In the following section, we first define the action set (possible moves) of the

B's increasing
defection degree

B's increasing

defection degree
—_—

0o 1

0133705
1[5,0(1,1

a's increasing
defection degree

~
a's increasing
defection degree

Prisoner’s Dilemma Multi-Move Prisoner’s Dilemma
(PD) (MMPD)

Figure 4.1: Transforming the normal Prisoner’s Dilemma to the Multi-Move
Prisoner’s Dilemma. The defection degree increases from 0 to 1 along the direc-
tion of the arrows for each agent and the payoffs to each agent is shown in each
slot of the game matrix. The shaded region in the MMPD consists of the payoffs
of the agents for each degree of defection which we aim to define in terms of the
relationship between the utility functions of the agents. Thus, we aim to make
the transition from one end of the MMPD to the other a continuous one rather
than the discrete one.

agents which will interact via the MMPD. Then, we provide a formal definition
of the MMPD (with respect to multi-issue contracts). The last subsection shows
how we can devise the utility functions of the agents so that they can engage in
an MMPD. These utility functions are then used by the agents in experiments
where we evaluate our trust model and our PN model.

4.2.1 The Action Set

Whenever a contract is signed, each agent is given its part of the contract to
enact. In effect, the achievement of the issue-value pairs (z; = v;) in an agent’s
part of the contract is its ‘action’ or ‘move’ in the game. Achieving what has been
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agreed or better (for an opponent) is termed cooperation, while doing otherwise
is considered a defection. Thus, an agent « can generate its action set O(O%) for
the MMPD by defining all the possible assignments of the values of the issues
that it controls. This is expressed as:

O(0%) ={0% ={z1 = v1,...,zn = v, } | 7, € X(0%),v; € Dy, } (4.2)

Each agent thus has all its possible actions defined and these actions result
in a payoff for each agent similar to a prisoner’s dilemma with a discrete multi-
action set (as opposed to a binary action set).

4.2.2 The Game

The MMPD is represented as a matrix where each row (and column) corresponds
to a particular degree of cooperation from one of the agents (see figure 4.1).
Therefore, a contract O between agents a and (3 can be represented as a point in
the matrix where Of* is o’s action and Of is B’s action such that O = O3 U Og.
The sub-indexes of the different contracts correspond to a row ¢ and a column
k respectively in the matrix. We assume that a total order applies over all the
possible contracts (in the matrix) according to the utility of each contract to the
agent concerned when moving along a single row or column. This means that
for an agent , Of and Of, where j > i, are two possible executions but Of
is a defection from the agreed contract O resulting in greater utility for o and
utility loss for 3, if 3 performs Of (i.e. staying on the same column). Let O%
be the set of contracts handled by o and OF similarly for 3.

We can then define the multi-move prisoner’s dilemma as follows for Of
representing a defection from Of by a and Of representing a defection from O,f
by B3:

Definition 4.1. Two agents a and 3 engage in a Multi-Move Prisoner’s Dilemma
(MMPD) over the contracts they can execute iff, for any four points in the ma-
triz:

VO, 0F € 0%, where U*(05) < U*(0OF) andVOﬂOlﬁ € 08 where Uﬁ(Of) <
Us (Olﬁ), the following rules are respected:

1. Defection Rules (an agent can exploit another’s cooperation by defecting
but ends up with a lower payoff if the other side also defects):

U(0$U0)) < U0 U0)) < U(08 U0y < U (0T U0Y),
UP(02u0y)) > U (03 u0)) > UP (02 LOY) > UP(0FUOY),

2. Pareto Efficiency Rules (the sum of the rewards when both cooperate is
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higher than the sum obtained if either or both of the agents defect):
U(02 UOy) + U (08 U0)) > U0 U0y) + U (03 UOy)
U053 U0y) + U0 U0y)) > U*(0FU0)) + U (03 u0y)
U(08U0))+UP (02 uOy) > U (0¥ U0)) +UP (03 UOY)
U*(0F UOY) +UP(0% UOY) > U (0F UOP) + UP(0¢ LOY)

0
0

From the above rules it is then possible to derive the following payoff matrix
for any pair of possible contracts to be enacted by both agents:

a’s part
o o7
of [ UP(0r UOP), U0 UOF) | UP(02 UOP), U(02 U OF)
o) [ UP(0g u0)),Uu*(0r u0oy) | UP(0F LOY), U (02 UOY)

(3’s part

Table 4.1: The Multi-Move Prisoner’s Dilemma

We next define the utility functions that do respect the payoff structure of
the MMPD. To this end, we propose the following theorem:

Theorem 4.2. Let X be a given set of issues, a and 3 be two agents, with X
being issues under a’s control and X being issues under 3’s control (with X =
XU XP). Assume that the utility for o of a contract O = (z1 = v1,...,2, =
v,) over issues X (O) € X is of the form U*(0) = }_, cxoyws - Uz, (vi) and
analogously for agent 3, U%(0O) = 2zieX(0) w8 -UP (v;), where US and U are
the utility functions for o and ( of the individual issue x;. Moreover we assume
that Ug(v) and U (u) are differentiable (strictly) increasing functions for any
r € X%(O) and y € XP(O) respectively, and differentiable (strictly) decreasing
otherwise.

Then, U® and U” respect the aforementioned defection and pareto-efficiency
rules of a Multi-Move Prisoner’s Dilemma (MMPD) if the following conditions
are satisfied:

(i)

dup dUg

B (_ T a T
wh - ( . ) > ws . (4.3)

for all issues z € X*(0).
(if)

auy dup
oL (——=L A ¥ 4.4
op (-G > (14)

for all issues y € X”(0O)
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where the inequalities are point-wise.

Proof. Without loss of generality, we may assume X(0O) = {z,y}, X* = {z}
and X? = {y}. Let O = (z = v,y = u) be the agreed contract. We begin by
considering a defection by agent « in an issue x from the value v to a value v’ such
that U*(v") > U*(v) (given that everything else remains the same). For an easier
notation we will write U*(v,u) to denote the utility of agent o on a contract
(r = v,y = u), similarly for agent 3, and U(v,u) for U®(v,u) + UP(v,u). From
the defection and pareto-efficiency rules of the MMPD we have the condition

Uv,u) > U, u),

and using our assumptions on the utilities U* and U” (from equations 4.3 and
4.4), this means

wpUg (v) + WU (v) > wgUg (') + UL (V) (4.5)
That is, we have the equivalent condition to be required:

WP (UL (v) = UZ(v) > wg (U2 (V) = U2 (v)). (4.6)

Now, under general assumptions, we have

v due
« AN « — z 4
vp) ~Us) = [ G de (47)
and ,
UL() - URw) =~ [ (48)

Hence, applying the conditions expressed in equations 4.3 of the theorem to
equations 4.7 and 4.8 we have equation 4.6 satisfied, and hence U (v,u) > U(v', u)
as well (where u' is a defection by « from v). Similarly, the same procedure
can be applied to equations 4.7 and 4.8 above using equation 4.4 such that a
defection by agent 3 changing the agreed value y = u to any new value y = v/,
with UP(u') > UP(u) (given the opponent does not defect in each case), yields
U(v,u) > U(v, ).

Finally, if both agents defect to say = v' and y = v/, with U2 (v") > U%(v)
and U?f (u') > Uyﬁ(u) (given all else stays the same), then we obviously have the
desired inequalities which actually express the pareto-efficiency rules:

U(u,v) > max(U(u,v"),U(u',v)) > min(U(u,v"),U(u',v)) > U(u',0")  (4.9)

while still having the following defection rules satisfied: UZ(v) < UZ(v'),
UP(u) < UP (W) and Ug(u) > UZ (W), US(v) > UP(v') (given all else stays
the same). O

If the utility function of an agent « for each issue in a contract satisfies the
conditions expressed in equations 4.3 and 4.4 with respect to its opponent J3,
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then the two agents follow a PD. The transformation of the PD to the MMPD
is shown in terms of the game matrix in figure 4.1. As can be see, the binary
action set (i.e. cooperation and defection) is transformed into a larger set where
agents can enact defections in increasing degrees from 0 to 1.

This characterisation of utility functions is used differently in our persuasive
negotiation component and trust model as discussed in the following sections.

4.2.3 Using Persuasive Negotiation in the MMPD

The MMPD can characterise the moves made during negotiations in the form of
cooperations and defections. Thus a cooperative move in the MMPD equates to
conceding on one’s issues (O for agent «) in the negotiation, while a defection
in the MMPD equates to demanding more on one’s issues. If the negotiation
mechanism seeks to maximise the social welfare (i.e. the sum of utilities) of
the agents in this type of game, each the outcome of the negotiation should be
such that each agent concedes more on the issues it likes less and exploits its
opponent’s less preferred issues. These concessions by the pair of interacting
agents has a fixed point in the MMPD, which is known in game theory as
the Nash bargaining solution (Osborne and Rubinstein, 1990) (i.e. where the
products of their utilities is maximised) as shown on figure 4.2.

U

a

(ua-d)(uﬁ-d) = constant
/

(C,D,)

Nash Bargaining Solution

(D

0 (D,C,) Us

Figure 4.2: The social utility (i.e. sum of both agents’ utilities) for different
negotiation outcomes in the MMPD. C, means that the agent a cooperates
while D, means that o defects. A higher level of cooperation equates to a
higher level of concession in negotiation and a defection equates to demanding
more (exploiting the opponent).

However, in repeated negotiation games where agents have different discount
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factors over repeated games (i.e. the IMMPD), the cooperate-cooperate point in
the MMPD may not represent the pareto-efficient point any more. Obviously, in
this repeated case the social welfare is higher when agents that have the higher
discount factor exploit later games rather than earlier ones while both agents
cooperate on the earlier ones. Note that for zero-sum games, the best social
welfare is achieved if any of the two agents exploit the first game (and this is
likely to be the one with the high discounting effect trying to trade-off the second
game in favour of its opponent). This is depicted in figure 4.3. For example,
if a buyer highly discounts the value of cars to be bought in future at a low
price, the seller (who values future sales more than the buyer) should give a low
price to the buyer in the current sale and may increase its price in later sales so
that the overall utility is maximised. However, common negotiation techniques
neglect this aspect of negotiation and seek only to find the cooperate-cooperate
point where no agent is completely exploited in any game (Faratin et al., 1998;
Fatima et al., 2004).

a's maximum utility a's maximum utility
in first game in second game
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Figure 4.3: Choosing the combination of outcomes that maximises the overall
utility while ensuring agents have non-zero utilities.

In contrast, through persuasive negotiation and, in particular, the use of
rewards, agents may be able to influence the negotiation in such a way that the
efficient outcome is reached in this case (i.e. the outcomes circled in dotted line
in figure 4.3). Thus, a better social welfare is achieved if agent 5 which has a
high discount factor concedes in earlier games in return for rewards, in the form
of concessions by «, in the second game as shown on figure 4.3. We elaborate
on such a procedure in chapter 7.
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4.2.4 Using Trust in the MMPD

A contract is an agreement over the values that issues should take. In the
MMPD, this equates to a slot in the game matrix. After an agreement has been
signed, agents enact the contents of the contract and may do so with varying
degrees of success. Given the structure of the MMPD and the dominant strategy
of a PD, the agents will be tempted to defect by enacting values that are more
profitable to themselves. This is illustrated on figure 4.4(a) where agent « tries
to exploit agent (3 by enacting the contract in such a way that it obtains a higher
utility than what has been agreed in the contract, resulting in a lower utility for

3.

Higher utility for B
since higher degree of
defection

7 Agreement

defection
Oa

Higher utility for o
since higher degree of

Enactment by « and
(o defects while  enacts
what has been agreed)

(a) a defecting after agreeing with .

Higher utility for 8
since higher degree of

defection

o N
50 0 \OF 1
55 c 0 N\ & New agreement
2358 : Expected enactment
5 9 S
2cd e} by o and B
2235 N
(o))
£8 1 A

®

Agreement in
first game

(b) B constraining negotiations (the dotted line) such that
agreements are at a higher value and the expected defection
still results in an acceptable contract.

Figure 4.4: Agents can retaliate using their trust model to capture defections by
constraining future agreements.

Agent 0 may then capture such defections using its trust model and alter
its subsequent behaviour accordingly. One of the ways in which this can be
achieved is by the agent bounding the range of slots in the MMPD that are
available for the next agreement (see dotted line in figure 4.4(b)). This may then
reduce the amount of loss expected in the next interaction. As shown in figure
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4.4(b), if agent « indeed defects by the same degree, the resulting enactment of
the contract results in more utility for 8 than in the first agreement and this
additional utility may compensate to some extent for losses incurred in the first
game.

Using the formal definitions in this chapter we can now provide a description
of this procedure as follows (the details follow in chapter 5). Assume a trust
measure by (’s trust model determines the reliability of a to be such that for
a given value of v € D, for an issue z, a will enact values of x lying in the
range [ev™,evt]. Therefore, given a negotiation range [Umin,Vmaz], an agent

may restrict the range to V], Viae) defined as follows:

V= {’U | [6’07, €U+} - ['Umina’umam]}
Uin = inf{v € D, | v e v}

Uhaw =Sup{v € D, | v € v}

The above procedure implies restricting the action set of @ and 3, hence the con-
tract, to only those values where the enactment of the contract can compensate
for an expected utility loss due to a possible defection by a. We investigate such
a technique as well as other means of adapting an agent’s negotiation behaviour
in the IMMPD in chapter 5.

4.3 Summary

In this chapter we provided the main formal definitions that are to be used in
our trust and PN models. In particular, we defined contracts which describe
what agents can offer during negotiation encounters (i.e. the negotiation object)
and the utility function that agents can use to evaluate these contracts. More-
over, we provided a description of the MMPD that agents play by virtue of the
relationship existing between their utility functions. In so doing, we define the
action set of the negotiating agents. This set can be used to define arguments in
the PN model and to assess the level of reliability of an opponent by the agents
using the trust model. In the latter case, the trust model can subsequently be
used to adjust the agent’s negotiation stance accordingly.

Given these definitions, in the next chapter we describe our CREDIT trust
model. This model allows an agent to determine its level of trust in its opponents
based on its own confidence in them and their reputation in the society of agents.
Based on CREDIT’s trust measure, we further elaborate on the different means
that CREDIT provides to adjust the negotiation stance.






Chapter 5

CREDIT: A Trust Model
based on Confidence and
Reputation

Having reviewed the state of the art models of trust (in chapter 3) and provided
the basic definitions in the previous chapter, we now describe our trust model.
In particular, we design our trust model as per the general requirements for our
negotiation mechanisms detailed in section 1.2 and the particular requirements
discussed in relation to other trust models in section 3.3.

To this end, in section 5.1 we first analyse the particular problems that remain
with current individual level trust models described in section 3.1 and discuss
the techniques we use to solve these problems in our model. Building on this, in
section 5.2 we then go on to define the CREDIT trust model. Thus we provide
definitions of the context within which agents interact and measures of confidence
and reputation that model trust in direct and indirect interactions respectively.
Moreover, we provide an algorithm to calculate confidence levels and combine
these measures with reputation to generate trust measures. The computational
complexity of the algorithm is shown to be linear with respect to the number of
past interactions analysed and quadratic with respect to the number of decision
variables (here these are fuzzy sets) used to characterise particular levels of
reliability. We then show in section 5.3 how CREDIT can be directly used in a
bargaining encounter, as per our objectives set in 1.5, to influence agreements
reached according to the trustworthiness of the negotiating agents. Section 5.4
empirically evaluates CREDIT and shows that, by influencing the negotiation
stance, it is indeed effective and efficient in preventing an agent from being
exploited in the long run and in dealing with agents which are reliable to a
certain degree. Furthermore, in section 5.5 CREDIT is shown to be better
than other comparable models in negotiating fruitful contracts with partially
unreliable agents. Section 5.6 summarizes the main properties of CREDIT and
discusses the main issues arising in integrating it with bargaining mechanisms

95
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and the system-level trust models.

5.1 Introduction

As we have seen in chapter 3, in general, in a society of agents, trust evolves as
a result of the direct assessment of the performance of contracted agents over
a number of interactions (see section 3.1.1 or from the acquisition of informa-
tion from the environment, including other agents (see sections 3.1.2 and 3.2.2).
More specifically, obtaining a useful measure of trust requires assessing an op-
ponent’s performance according to the utility derived from the tasks performed
by it (i.e. through direct interactions) and public knowledge about its efficiency
and effectiveness in each of these tasks (i.e. indirect interactions). By consid-
ering and combining these two sources (of measures) we believe an agent can
better assess the trustworthiness of an opponent, particularly in circumstances
where either the private or the public source is not reliable on its own. For
example, in cases where an agent has interacted a number of times with its op-
ponent, it will probably rely on! When an agent decides to do so will depend on
the context within which it finds itself) on its direct measure of its opponent’s
trustworthiness. However, in cases where the opponent is previously unknown,
the agent will rely on the publicly available knowledge. In between, the agent
may combine both and give more importance to one or the other depending on
the number of interactions it has had with its opponent (Sabater and Sierra,
2002). Nevertheless, whichever measure of trust is used the overall aim is the
same; namely to provide an indication of how an agent is likely to perform with
respect to a given commitment. Thus, if an agent has been known to defect
very often in the past, it may not prove reliable in the future. Similarly, if an
agent has frequently proven its effectiveness in past interactions, it may be re-
garded as reliable in future interactions. Naturally, in some cases, both of these
assumptions may turn out to be false.

When measuring trust, it is therefore important to consider the context in
which the interactions take place. Here we view this context as being mainly
captured by norms (Conte and Castelfranchi, 1999; Esteva et al., 2001). Such
norms equate to the obligations imposed on the interactions by the system and
they occur as a consequence of the utterances, roles, and pledges of the inter-
acting agents. For example, it is the norm in the eBay auction to pay for the
goods that one has won before they can be delivered and it is required by mobile
service providers (in Britain) to allow seven days to their customers to cancel
any contract they may have signed. The relationship between trust and norms
is as follows. If it is known that agents act according to certain norms which
guarantee good performance, then there is no point in an agent increasing its

IThe agent may decide to rely on its own measure of trustworthiness depending on the
context. For example, if the agents interact many times in one day and then meet after one
month or a year, the direct measure of trust may have become obsolete if the environment is
dynamic, while if the environment is static, it may still rely on its own measure after a few
days or even a month.
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trust in another that performs well since we cannot assume that it would do so
without the norm applying. However, if no norms or rules force agents to behave
well (i.e. there exists a possibility to renege), then trust should be increased in
an agent which lives up to its commitments (or decreased if it reneges). Thus,
the trust value for a specific agent for a specific task should take into account the
potential risk (associated with the task in question) in a contract given informa-
tion about the norms within which the contract is enacted (Marsh, 1994). This
follows from the fact that cooperating under high potential losses (i.e. when
no norms enforce good behaviour) shows greater trustworthiness than otherwise
(Yamagishi et al., 1998). For example, if no penalty applied for late delivery
(i.e. there is no norm regarding delivery times), a seller delivering at the agreed
time is deemed more trustworthy than when a harsh penalty applies (i.e. there
is a norm that guarantees delivery times).

In general, extant trust models fail to capture all the above-mentioned basic
factors in deriving trust (see chapter 3 for more details). In particular, while
some of these models devise trust using arbitrary equations that do not take de-
grees of efficiency into account (see section 3.1.1), others simply assume that the
trust measure is readily available from the system (see section 3.1.2). Moreover,
those models which do analyse the performance of opponents fail to consider the
norms of the environment which foster good behaviour (Lépez y Lépez et al.,
2002; Esteva et al., 2001). Finally, in most applications, extant trust models
only use trust in choosing interaction partners and neglect the fact that trust
can also be used to adapt the behaviour of an agent towards its opponent at
negotiation time (Fisher and Ury, 1983).

Against this background, this chapter develops and evaluates a novel com-
putational trust model (called CREDIT - Confidence and REputation Defining
Interaction-based Trust) that rectifies these shortcomings. Specifically, we show
that by taking into account its past experience (from direct interactions) and in-
formation gathered from other agents (indirect interactions), an agent can build
up beliefs about how trustworthy a contracted agent is likely to be in meeting
the expected outcomes of particular contract issues (e.g. delivering goods on
time or delivering high quality goods). In this respect, we conceive of two ways
of assessing trustworthiness: (i) Confidence derived (mainly) from analysing the
result of previous interactions with that agent, and (ii) Reputation acquired from
the experiences of other agents in the community through gossip or by analysing
signals sent by an agent. Both measure the same property; that is, the oppo-
nent’s believed reliability in doing what it says it will regarding particular issues
of a contract. In CREDIT both measures rely on (probabilistic) estimations of
utility variation in the current contract, based on an agent’s past experiences as
mentioned and experiences of other agents, which are, in turn, used to evalu-
ate the performance of an opponent by means of a small number of fuzzy sets
defining different typical behaviours (in terms of utility variations).? The com-

2Fuzzy sets are here used to characterise the vague perception of the performance of an
opponent and to provide agents with a high-level of abstraction means of assessing the extent
to which an opponent satisfies the issues of a contract. Thus an opponent may be characterised
as satisfying with a high degree the (graded/fuzzy) property of ‘delivering-on-time’ and a with
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putational complexity of the model is linear with respect to the number of past
interactions analysed and quadratic in the number of fuzzy sets (in the worst
case) in its incremental complexity (i.e. as new interactions occur). Finally, we
show how CREDIT can be used in an agent’s decision making mechanism in or-
der to minimise risk in interactions by influencing the selection of an interaction
partner and the negotiation of contracts.

Set against the requirements of our negotiation mechanisms (which need a
technique to model an agent’s reliability and honesty in terms of trust) and
the challenges that arise in developing such a model (see section 3.3), the work
described in this chapter advances the state of the art in the following ways.
First, we use the norms of the environment as a key factor in evaluating the trust
of opponents. In so doing, we prevent agents from trusting those opponents that
are only performing well because of the prevailing norms. Second, we show how
fuzzy sets are a very useful tool to describe an agent’s probabilistic estimation of
its opponent’s effectiveness and provides a common ontological basis that permits
a combination of this estimation with other agents’ estimations. Third, we show
how both confidence and reputation measures can be used to develop a measure
of trust that is adapted to the environment in which the agents interact and,
moreover, how this measure can be adapted over time to become more accurate
as more information becomes available. Fourth, we show how CREDIT allows
interacting agents, with different norms, to negotiate those issues for which they
have different expected values (guided by the norms) and avoid negotiating over
those issues for which they have coherent expectations. This, in turn, minimises
losses and saves negotiation time. Fifth, we show how trust can be used to adjust
the stance that an agent takes during negotiation so as to minimise the utility
loss incurred when it believes its opponent is likely to defect by different degrees
from a signed contract.

5.2 The CREDIT Model

In this section we define the CREDIT trust model which builds upon our previous
work in (Ramchurn et al., 2004d, 2003b). We first provide some new definitions
that complement those given in chapter 4 and which we will use in the rest
of this chapter. Using these definitions, we model confidence, reputation, and
norms. We then show how to combine these measures to compute appropriate
trust values according to the environment and the state of an agent. Finally, we
analyse the computational complexity of the model.

5.2.1 Rules Dictating Expected Issue-Value Assignments

The agreed contract provides a clear statement of what is expected with respect
to each issue. However, the social setting in which the interaction takes place
may also give rise to expectations but these are not explicitly stated in the

a low degree the (graded/fuzzy) property of ‘selling-high-quality’, to denote that it is expected
to deliver on time and sell goods of relatively poor quality.
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contract itself. For example, a buyer agent « from country A might expect seller
agent ( from country B to deliver goods nicely wrapped up in gift paper as
opposed to in a carton box. This clause may not have been specified in the
contract as it is a norm in the client’s group that goods must be nicely wrapped
up. Thus, at execution time, an agent may fail to satisfy another’s (contracted
or not) expectations because (i) it is not able to meet the expectations, (ii) it
is not willing to meet the expectations, or (iii) it is not aware of the unspecified
expectations. In any case, the satisfaction or not of these expectations directly
impacts on the trust the agent has in its opponent (Molm et al., 2000). If a
satisfactory reason is given for poor performance, the trust value may not be
modified, but this is not considered here.

Against this background, CREDIT takes into account the three basic sets of
norms?® that can be sources of unspecified expectations®: (i) Social rules, noted as
SocRules, that all agents in the society Ag possess in common, (ii) Group rules,
noted as GroupRules(G), that all agents within a particular group G C Ag have
in common, and (iii) Institutional rules, noted as InstRules, that agents « and
0 interacting within a particular electronic institution must abide by. In the case
of group rules, there is no guarantee that agents from different groups, having
different norms, will satisfy their interaction partner’s group rules. On the other
hand, the conclusions of institutional rules are guaranteed by the institution
(e.g. price ¢ has to be paid, seller has to give goods). This guarantee is normally
specified through a penalty which must be paid (by the rule breaker) if the rule is
not respected. In more detail, rules of all types allow an agent to infer expected
issue-value assignments from a contract. Here the rules will be written in the
following way:

If ©1 = v1 and 29 > vy and ... and x,, = v,, Then z <wv

meaning that if (1 = v1), (x2 > v2), ..., (T = V) € O, then issue a’s value is
expected to be equal to v. We assume that x does not appear in the premise of
the rule (otherwise this could lead to cyclic rules). An example of such a rule
would be:

IF price > £100 and qos =8 Then anti-DoS = 10

which means that if the price of a telecommunication line (bought from some
Internet Service Provider (ISP)) is equal to or greater than a hundred pounds,
and the quality of service guarantee (qos) of the ISP is eight (i.e. high in this
context), then it is expected that the ISP will provide a very high level (on a
scale of 1 to 10 with 10 representing the highest level) of anti denial-of-service
(DoS) on the line. We note by Rules the set of all possible rules written using

3We believe these are the necessary, rather than sufficient, sets of norms that can give rise
to unspecified expectations. Other sets of norms could arise from agents creating them or from
legal systems for example.

4Norms can be of a very complex nature. However, in this paper we operationalise norms
in the form of constraints that apply over the values of terms in a contract and foresee using
richer representations of norms in future work.
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the above syntax® over the set X of issues and corresponding domains of values.
The rules an agent abides by will depend on the group it belongs to and the
other rules implied by the institution within which it is interacting with others.

Given a contract O proposed by « to 3, where oo € G7 and 8 € G2, we can
now devise the set of all of a’s (or 8’s) expectations (unspecified and specified)
about the values of the issues in the contract. The unspecified expectations due
to the social setting, O, of issue-value assignments from O is the set of all
conclusions of the rules of agent «, Rules(a) = SocRules U GroupRules(G1)
and InstRules (that apply to « and (3), that have their premise satisfied by the
equalities in the contract O. The complete expanded contract from «’s point of
view is therefore defined as O = O U 02, (the latter will be different from (s

exrp
expanded contract, Of_, if B’s group have different rules GroupRules(G2) that
apply to the issues of O).

The issues contained in the expanded contract may vary (for the same con-
tract O) depending on the group and institutional rules that apply at the time
the agents make an agreement. This is because an agent may interact under
different institutions (having different institutional norms) or an agent may de-
cide to switch groups to one that has different norms from its original group.
Given the expanded contract, an agent may then decide to trust its opponent
depending on its prior knowledge of its opponent’s performance. In the next
section, we model this in more detail.

5.2.2 Interaction History and Context

In order to try and predict the future performance of an agent it is important to
analyse its interaction history in terms of both the outcomes of interactions and
the norms that prevailed in each past interaction. In more detail, the interaction
history of an agent «, intending to interact with an agent 3, can be viewed as
consisting of a list of elements with four main components: (i) o’s agreed contract
O with 8 and the outcome of the enactment of the contract O’ by 8 and « (i.e. a
list of pairs of (O, ’) form the contracting history), (ii) Rules(a) that « had to
abide by for the contract (at the time ¢ the contract was signed), (iii) InstRules
that both « and § had to abide by in a given institution, and (iv) «a’s utility
function (at time t) for the contract issues for which it hired 8. Each element in
o’s interaction history X, g, is therefore represented as:

c={(a,3,0,0" {U2},ex (0, Rules(), InstRules, t)

and the interaction history as CB = {c1, ca,...}. We will note by CB, g C CB,
the subset containing all interactions between « and .

For each new interaction between o and (3, a will need to consider the in-
teraction history as well as the currently prevailing rules and its current utility
function in order to predict the behaviour of 5 (as will be shown in section 5.2.3).

5Richer syntaxes could also be thought of for premises in these rules, allowing for predicates
like >, 27 < S’ ;é
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Thus we define as a’s current context® within which a new contract is negotiated
with an agent § and executed as the set:

Y3 = (CBag, {US}rex, Rules(a), t.). (5.1)

where t. represents the current time. We assume that the agents will have agreed
between them (through negotiation or by one partner imposing the institutional
rules) which institution will guide their interactions and this will imply a given
set of rules InstRules applying over the interaction.”

Every time a new contract is agreed and enacted, it is added as a new el-
ement to C'B in order to update the context of the agent. Moreover, all the
rules, including the InstRules, will be recorded in the interaction history after
the interaction is completed. Thus, this context can be dynamic for a number
of reasons (apart from the history being updated with new elements). First, an
agent may change groups such that its group rules might change and, conse-
quently, so will its expectations. Second, an agent may interact with the same
partners within different institutions (e.g. buying from a seller in England and
buying from the same seller in Spain where different trade rules or laws apply).
Third, the interacting agents might change their utility functions over time such
that they value an issue differently at different points in time (e.g. a travel
package may be worth more in summer than in winter).

By taking into account such a dynamic context in evaluating trust, our model
can adapt to cases where the environment and the agent are not necessarily
static. In the following sections, we use information derived from the context in
order to define and evaluate the agent’s trust in its opponent’s enactment of the
contractual terms. We will differentiate between the trust derived from personal
knowledge about an agent (confidence) and that derived from information about
the agent gathered from other agents in the society (reputation). In the next
section we focus on defining confidence (i.e. the personal aspect of trust) and
later combine it with reputation (which is based on the confidence of other
agents) to get an overall notion of trust.

5.2.3 Confidence

We will define confidence as follows:

a’s confidence in B’s handling an issue x is a measure of certainty (leading to
trust), based on evidence from past direct interactions with 3, which allows « to
expect a given set of utility deviation values to be caused by B’s handling of =.%

6 Again, we consider these features as necessary rather than sufficient. More features could
be added (e.g., social relationships existing between agents or reasons given by an agent ex-
plaining its poor performance) and their impact will be investigated in future work.

"We do not specify the institutional rules as part of the context since the decision to choose
an institution is not defined by the context. However, these rules need to be specified before
an agent is able to calculate its trust in its opponent (as will be shown in section 5.2.3, that
could lead to the choice of the latter as an interaction partner (or not)).

80Qur definition of confidence generally caters for a variety of techniques that could be used
to derive confidence values (such as probabilistic measures or time-series analysis). In future
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Thus if « has a high degree of confidence with respect to = being well enacted
or not by 3, then the interval of utility deviation values expected by a from § will
be relatively small (conversely the set is large if confidence is low). This set of
utility deviation values may bring either more utility than expected (i.e. a high
confidence in § being ‘good’) or less utility than expected (i.e. a high confidence
in B being ‘bad’). We initially consider confidence on a per-issue basis given
that agents may be more reliable in satisfying some issues than others. This
notion on an opponent’s behaviour is not only probabilistic in nature, since it
may involve imprecision as well as a subjective appreciation of performance as
well (e.g. how ‘Bad’ or ‘Good’ the delivery time of goods is for a buyer might
not be precisely defined and this perception might also vary over time depending
on the agent’s preferences). Given this, we choose a fuzzy set based approach
to model the meaning of a qualitative term set (e.g. ‘bad’, ‘average’, ‘good’) for
performance evaluations in terms of expected utility deviations (and ultimately
to expected values for issues), and the confidence level(s) on an opponent refer
to the extent to which a particular term fits with her performance. In general,
the use of fuzzy sets presents a number of advantages:

1. It allows the modelling of the meaning of imprecise and qualitative terms
like ‘deliver late’ or ‘sells high quality goods’ which are often used to define
the performance of an agent. Using fuzzy sets therefore allows an agent
designer to specify the analytical engine of the agent at a higher level of
abstraction than using only probabilities.

2. It does not require agents to hold the same ontology and objective appreci-
ation of a particular task in order to reliably share information about their
opponent’s performance, although they may translate such perceptions
over a common scale (e.g. utility deviations). For example, not all agents
may have the same quality standards for a given product or have the same
standards (as a result of different constraints or utility) to judge how late
is a delivery by a given seller. Rather, the agents can simply say whether
they deem the goods to be ‘good’ or the seller ‘delivers late’ to a certain
degree and each agent can privately translate this information according
to its own notion of ‘good’ or ‘late’ into the measure of efficiency all agents
use. Thus, agents would only have to share their ontology to understand
each other when there is a need to communicate measures rather than de-
fine their reasoning mechanism according to exactly the same framework
in order to share ratings.

Using this method goes further towards our aim of reducing the uncertainty sur-
rounding interactions between agents (see section 1.1). In particular, our use of
fuzzy sets helps to reduce the uncertainty about the communication mechanisms
that agents use to communicate their impressions of others.

work, we aim to define more specific semantics of confidence values and enrich our definition
of confidence.
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Confidence Levels

In this work, the behaviour of an agent regarding the fulfillment of an issue in a
contract is perceived in terms of the variations on utility between the signed value
for the issue and the enacted one. These utility variations are then sensed over
multiple interactions to build up a picture of the agent’s performance over time.
In this thesis we take the stance that fuzzy sets have their domains specified over
‘absolute’ variations on utility, rather than on relative variations® (i.e. relative to
the utility of the value signed for the issue). Thus, we consider that AU € [—1, 1]
(recall that utility values belong to the interval [0, 1]).

Specifically, we assume that agents share a (small) set £ = {Ly, Lo,..., Ly}
of linguistic labels to qualify the performance of an agent on each issue. In
what follows, we will use the basic set £ = {Bad, Average, Good}. We believe
these labels encompass the whole spectrum of characterisations'® that an agent
might use to express its view on the possible (approximate) utility deviations,
gains or losses, in the executed contract with respect to the utility of the con-
tractually signed values. For example, each agent could understand the labels
‘Bad’, ‘Average’, and ‘Good’ for the issue ‘delivery’ in different ways according
to their ontology (as shown in table 5.1). As this shows, each agent can have
a different ontology to qualify variations between the contracted values and the
executed value. We also assume that the translation between the common and
the specific terms is private. However, we do require that the common terms
have the same agreed upon interpretation among the agents in order to per-
mit a meaningful communication of confidence values among agents (see section
5.2.4).'! This means that the agents have to share their ontology to perform the
translation of terms. Thus, using table 5.1, agent « can translate a ‘Very Late’
rating from agent 8 as Late (since they both equate to ‘Bad’) and ‘Right time’
from 7 as ‘On time’ (since they both equate to ‘Average’). In more detail, we
model the meaning of a label L by a fuzzy set on the domain of utility deviations
AU € [-1,1], specified by its membership function pr,(du) : [-1,1] — [0,1]. Ex-
amples of membership functions'? for the above set of labels are given in figures
5.1(a), 5.1(b), and 5.1(c).

Thus, agent a’s confidence level is defined as the membership level to a
linguistic term L, measured over [0, 1], of the behaviour of a particular agent 3,
and is noted as C(f5,z,L). In the rest of this chapter, we will avoid the agent
identifier wherever this is unambiguously defined by the context. Therefore, the
cut of the fuzzy set L defined by C(z, L) represents a range (on the horizontal

9This can easily be modified to take into account relative variations depending on the type
of opponent encountered and is left as future work.

10The sets might be more fine-grained and this will depend on the context of application.
The search for the right sets may also be an iterative process where different sets are tried and
tested until the ones which fit the goals of the model are found.

1 This does not prevent agents from having different perceptions on the variation. Thus some
might perceive the same variation as significant while others might not. This may happen when
agents have different preferences or attribute different weights to the concerned issue.

12The shape of the membership function given only serves as an example. Arbitrarily com-
plex functions could be used.



104

Agent
Label « I5] ¥
Bad Late Very Late Too late

Average | On time | Just in time | Right time
Good Early Very early | Early enough

Table 5.1: Table showing the possible different meanings of the labels for 3
agents when applied to the issue ‘delivery’.

HBad 1 1 HGood

0.6

Bad

C(x,Bad) = 0 AU

-1 1

(a) Membership function for label ‘Bad’. The (b) Membership function for label ‘Good’.
thick line from -1 to 1 represents the support of The thick line from 0.4 to 1 represents the
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(c) Membership function for label ‘Aver- (d) Intersection of membership functions. The
age’. The thick line from -0.7 to 0.7 rep- thick line from 0.4 to 0.7 represents the inter-
resents the support for a confidence level section of the supports for all fuzzy zets given
of 0.25. their confidence levels.

Figure 5.1: Shapes of membership functions in different labels and ranges sup-
porting confidence levels in ‘Good’ (0.6), ‘Average’ (0.25), and ‘Bad’ (0) as well
as the intersection of the supports of these sets.
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axis) of values:
EAU (2, L) = {0 € [-1,1] | pr(6) = C(x, L)} (5.2)

that is understood as the range of expected utility deviations at execution time
on issue x by agent 5. For instance, & may express its belief that 8 is ‘Good’ to
a confidence level 0.6 in fulfilling the contractual values on price, ‘Average’ to
a level of 0.25, and ‘Bad’ to a level of 0. This would mean that « expects the
utility deviation to lie within the range of values which support the confidence
level of 0.6 for ‘Good’, 0.25 for ‘Average’, and 0 for ‘Bad’. This is shown on
figure 5.1.

Evaluating Confidence

In order to obtain confidence levels for different labels we first need to calculate
the range of utility variations expected for the issue. This expected range can
be obtained by considering the utility changes that have been observed in past
interactions. There are several techniques to model this range using probability
distributions given the size of the sample of AU, that can be obtained from
the interaction history (e.g. binomial, normal, or poisson distributions). While
the size of the sample of AU, will naturally determine the accuracy of the
model, the number of elements in the sample taken (i.e. a window over the
latest interactions) will determine how up-to-date the model is in determining
the current nature of the opponent. The behaviour of the agent could also be
modelled as a time-series so as to predict its behaviour over future time points
or analysed using other data-mining techniques (e.g. cluster analysis, neural
networks). However, the more complex the analysis, the more time and memory
the algorithm will need to devise a level of confidence. Therefore, here we opt
for an approximation to a normal distribution'® which minimises the complexity
of calculating the confidence level (see section 5.2.7) and can be tuned to elicit
different confidence intervals (e.g. 95%, 99%), for a given sample of AU,.'4
Using a probability distribution to model utility variations (as opposed to
fuzzy sets) does not differ from our initial goal since this probability only models
what can be objectively measured and does not take into account the subjective
considerations involved in evaluating the range of values obtained (e.g. the

13The type of probability distribution is not central to the trust model we wish to devise,
provided it is continuous and there are techniques to estimate the mean and variance given a
small sample of values (since the agent’s interactions will certainly not generate the infinite
number of samples/points required to model a distribution accurately).

M Earlier in section 5.2.3 we highlighted the reasons for using fuzzy sets instead of probabili-
ties. In devising our distribution, we take into consideration all past interactions. This design
decision does not permit the model to keep track of a time-dependent behaviour (i.e to cope
with time dependent behaviour would simply mean windowing the history to take into account
past interactions) and makes the model slow to react to a sudden change in behaviour by the
opponent (since the addition of a new element in a large sample may not change its mean or
variance significantly). However, it allows us to tune the model to elicit a more precise picture
of an opponent when its behaviour does not follow any particular pattern over time and to
keep trust sufficiently high for interactions to take place in case the opponent suffers some
inefficiencies only for a small number of interactions (i.e. it can forgive bad behaviour).
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extent to which the range of utility variations is detrimental to the agent and
the combination of this measure with reputation measures). The subjective
perception actually determines which fuzzy set the agent chooses to represent
these variations (see section 5.2.3).

Therefore, given a context 3, 3 and a proposed (not yet agreed) contract O,
for each issue z in X (O), we can estimate, from the history of past interactions,
a probabilistic distribution ® of a’s utility variation AU, € [—1,1] (negative
or positive) relative to issue x (we will avoid the agent identifier in the utility
function since this is clear from the context). Values of AU, correspond to the
possible differences between the utility US(vg) of the value (z = v9) € O and
the utility U%(v) of the (unknown) final value (x = v) in the executed contract
O (ie. AU, = US(v) — UZ(v)). Then we can say that the agent « has a
certain risk with issue x when it estimates that ¢ > 0 where ¢ is the probability
that AU, < 0. Of course, the more negative the mean, AU, of this probability
distribution (i.e. the higher the expected utility loss), the higher the risk, and
the more positive this mean is, the lower the risk (i.e. the lower the expected
utility loss).

Thus, to calculate the confidence levels in each of the issues concerned, we
first need to estimate the probability distribution of AU,. This has to be done
both for those issues x appearing in O and those in the expanded contract
O+ = OUO¢yy resulting from the application of the rules in the current context
(see section 5.2.1). We have to do so analogously with the contracts in the
precedent cases of the interaction history C'B of the current context. However,
if we assume that the proposed contract is signed such that the norms of the
institution InstRules under which the agents (« and () are operating are fully
enforced (i.e. penalties, matching the utility loss on an issue, have to be paid by
the agent which does not respect the norms which regiment the performance on
the issue), then the risk is zero'® for those (groups of) issue-value assignments
insured by institutional norms. This is the case even though the inference from
previous interactions may suggest that the agent would defect. In such cases,
we remove all these insured issues from the analysis. In the same way, if in an
element of the interaction history, an issue’s enactment was guaranteed by the
institution under which the agents interacted at the time, we remove it from
the sample of elements being analysed for that issue. This procedure avoids us
incrementing trust when an institution has guaranteed good behaviour in the
past (since risk is zero in such cases).

Now, assume we have a probability distribution ® for AU,. In order to
determine confidence levels C(z, L) we initially need to determine a signifi-
cantly representative interval [07,d3] for AU, (e.g. such that the probability
that (6; < AU, < dy) is equal to 0.95). This involves first approximating the
distribution to a normal distribution by calculating the estimated sample vari-
ance 62 of the distribution as well as the mean. Then the confidence interval

can be obtained from the following equation: AU, + UZCTI”V”, where leon = 1.96

15This assumes that the institution fully insures against any losses. This assumption could
be removed and a risk level determined according to the institutional rules as well.
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for a 95% confidence and N is the sample size.

Finally, to calculate confidence levels C(x, L) for each label L € £, we want
the interval [01,d2] to coincide as much as possible with the set of expected
values EAU.(z,L) as computed in equation 5.2. Since this range is defined
by the confidence levels of its limits, the procedure amounts to selecting the
minimum confidence levels of the two limits for that label as shown in equation
5.3.

C(z, L) = min(pr,(01), pr(62)) (5.3)

We will assume that all agents in the society are able to evaluate their con-
fidence in issues handled by their opponents and may transmit these measures
to others. The transmission of such confidence then gives rise to the concept of
reputation which is described next and later combined with personal confidence
measures in section 5.2.5.

5.2.4 Reputation

An agent’s reputation is the perception of a group or groups of agents in the
society about its abilities and attributes (see section 3.1.2). Several models of
reputation have been developed to show how an agent can build up its trust in
another by retrieving (see section 3.1.2) and aggregating (see section 3.1.2) in-
formation about the latter from other agents. Thus, here we do not consider how
this reputation information is gathered (and aggregated) from the other agents'6
in the society as there already exists several techniques to do this efficiently (Yu
and Singh, 2002a; Sabater and Sierra, 2002). Rather, we assume this informa-
tion is simply available from a social network that structures the knowledge that
each agent has of its neighbours and keeps track of past interactions (as per
(Sabater and Sierra, 2002)). This allows us to focus on representing reputation
and combining it with confidence (as shown in section 5.2.5). In CREDIT, we
specialise the definition of reputation to the following:

a’s estimate of B’s reputation in handling an issue x is a’s measure of certainty
(leading to trust), based on the aggregation of confidence measures (for x) pro-
vided to it by other agents which allows o to expect a given set of values to be
achieved by (3 for x.

These agents may have obtained these confidence values from other agents
(i.e. gossiping) or by interacting with 8 (i.e. witnessing as in (Sabater and
Sierra, 2002)). Hence, we assume that an agent a possesses a function Rep :
Ag x X x L — [0,1] where Rep((,x, L) represents the reputation of an agent

16In the case where agent receive conflicting beliefs about its opponent, the agent may
choose one of many techniques to tackle this. In REGRET for example, more importance is
given to reports from trusted agents while in eBay positive and negative reports are separately
reported than aggregated. Depending on how aggregation of reports is performed, an agent
may wrongly believe that its opponent is trustworthy. Moreover, in the case where reports do
not tally with the behaviour of an opponent, the agent aggregating those reports may less trust
the report providers. The problem of conflicting reports are discussed in (Ramchurn et al.,
2004b) and a possible solution to this proposed in (Dash et al., 2004).
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£ in handling issue x with respect to the qualifying label L (the name of the
agent will be omitted when the context unambiguously determines it).1” We
also assume that the labels L € £ have their domain specified over the same
range of utility deviations (i.e. AU € [—1,1]) as explained in section 5.2.3.

In general, reputation measures can be particularly useful to an agent that
enters a system for the first time. This is because the agent would not have
interacted with any other agents in its environment in the past. Therefore, it
would not be possible for it to compute its confidence in them. Thus it can
only use information that is supplied to it by other agents in the environment.
However, such information may be liable to noise or may not be true if agents are
lying. In such circumstances, the agent can only learn from its direct interactions
with other agents and compute its confidence measures from these interactions.

As can be seen, using just confidence or just reputation values to compute the
set of expected values for a given issue is often only useful in extreme situations.
Given this, in the next section we devise a measure that caters for all situations
between these extremes and then in section 5.2.6 derive a trust measure from
this.

5.2.5 Combined Confidence and Reputation Measures

Generally speaking we consider that both confidence and reputation should be
taken into account in order to come up with a set of expected values for an
issue. We rely on a combination of both measures in order to balance both
the societal view on an opponent and the personal view of the agent until the
latter can be sure that its own view is more accurate. We assume in this work
that the reputation values expressed by each agent in the society represent their
confidence values on the behaviour of a given agent. In other words a value
Rep(z, L) represents an aggregation of different confidence values.'® To come to
this conclusion, each agent will have its own threshold on the number of interac-
tions needed to have this accurate measure. Therefore, given agent a’s context
Y8 = (CBa g, {U%}zex, Rules(a),t.), here we propose to define the threshold
k as k = min(1, |C By, g|/0min), where |C' By, g| is the number of interactions of «
with 8 and 0,4, is the minimum number of interactions (successful negotiations
and completed executions!?) above which only the direct interaction is taken
into account (Sabater and Sierra, 2002).

Thus, we capture the combination of confidence and reputation measures
through the function CR : Ag x X x £ — [0, 1], which is, in the simplest case,
a weighted average of both kinds of degrees (as in the previous cases we omit

7For more details on such a function, see (Ramchurn et al., 2004d).

18We are therefore implicitly assuming that all these measures are commensurate (i.e have
the same meaning and are based on the same scale), and hence their aggregation make sense.

197t is important to specify that only those completed interactions should be taken into
account since only these can give us information about the behaviour of the opponent in
its execution of contracts. Negotiations could end up in no agreements and these should be
excluded when counting interactions in the history.
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references to the agent whenever possible and use CR(x,1) instead):
CR(z,L)=#-C(z,L)+ (1 — k) - Rep(z, L), (5.4)

Given C'R levels it is then possible to compute the expected values for an issue
x and label L as:

EAU..(z,L)={d € [-1,1] | p7.(6) > CR(z,L)} (5.5)
and then the intersection of the expected ranges for all the labels L € L:

EAUq(2) = (| EAU(x,L) . (5.6)
Lel

The assignment of C'R values for all labels may not always be consistent (i.e.
EAU,.(z,L) = 0). This is because each agent in the environment may have
undergone different interaction experiences with a particular agent 8 and each
of these agents will obviously transmit different confidence levels for each label.
Therefore, in some cases, these confidence levels (when aggregated), may lead
to Rep(x, L1) describing a range of values that does not intersect with that of
Rep(x, Ly) or Rep(z, Ls). One solution could be to take the average of inter-
vals to determine a representative interval. However, this may result in a large
interval of utility deviations synonymous with a large imprecision in determin-
ing the opponent’s behaviour. Given this, our straightforward solution to this
problem is the following: whenever the intersection results in an empty set, we
will iteratively not consider the label with the lowest confidence level, until a
non-null range of values is obtained. This procedure equates to removing those
decision variables that have the lowest importance in the set under consideration.
Our solution ensures that a consistent intersection can be found in all possible
cases and minimises the imprecision in modelling an opponent’s behaviour given
conflicting reports.

As can be seen, the above range is defined in terms of the utility deviations
rather than in terms of the values that the issue could take. However, at ne-
gotiation time, for example (as will be seen in section 5.3.2), we might need to
compute the expected values an issue could take, after execution of the contract,
given an offered value vy for the issue. This requires transferring the expected
utility deviations to the domain of the issue considered.?? This can be computed
in the following way:

EVe(z,v9) = {v € D, | Up(v) — Uzp(vg) € EAU. ()} (5.7)

5.2.6 Trust

In our trust model we use the combined degrees {CR(f3,x,L)}rer, as given by
equation 5.4, to define the interval of expected values EAU,,.(x), that provides

20By using utility variations, rather than value variations, we can use the same membership
functions even if the utility function changes over time.
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us with a maximum expected loss in utility A{7_ (z) = inf(EFAU..(z)) (when

o <(@) < 0 there is an expected utility loss and when A{’ () > 0 there is an
expected utility gain). This maximum expected utility loss represents the risk
that is involved in the interaction given knowledge acquired both from direct
interactions and reputation and also from the norms of the environment. While
the risk describes how much we expect to lose at most from an interaction, trust
is the opposite of this given our initial definition (see section 5.1). Thus we

define o’s trust as:

T (5, x) = min(L, 1+ Aj () (5.8)

where T serves to describe os trust in 3 for issue z based on both «o’s confidence
in 8 and (’s reputation with respect to issue x.

Here, we choose to bound trust values?! in the range [0, 1] where 0 represents
a completely untrustworthy agent (and corresponds to the maximum possible
utility loss) and 1 represents a completely trustworthy agent (and corresponds
to zero utility loss).?2

In any case, we can now define the trust T(8, X (0O)) of an agent « in an agent
B over a particular set X(O) = {x1,..., 21} of issues appearing in the contract
O (or in the expanded one O, ) as an aggregation of the trust in each individual
issue (e.g. trust in delivering on time, paying on time and the product having
the quality specified in the contract). That is, we postulate:

where agg : [0,1]¥ — [0, 1] is a suitable aggregation function?®. If some issues are
considered to be more important than others, the aggregation function should
take this into consideration. This can be achieved by means of different weights?*
w; given for each issue z; € X (O) (the higher the weight, the more important
the issue). A typical choice would be to take the aggregation?® function as a
weighted mean:

T(3,X(0) = Y wi T(B,mz) (5.10)

z;€X(0)

where > w; =1 and 0 < w; < 1.

21'We acknowledge that other bounds may be applied in other trust models (e.g. [—1,1] as
in (Marsh, 1994) or [0, c0] in eBay). See (Marsh, 1994) for a wider discussion on the meaning
of the bounds on the rating.

220ur choice for the bounds of [0,1] serves to simplify the analysis when normalising all
trust ratings in issues and over contracts.

23Generally, an aggregation function is monotonic such that min(uy, ..., ug) < g(u1, ..., ux) <
max(u1,...,ug) (see (Calvo et al., 2002) for a survey).

24Most aggregation operators are defined parametrically with respect to weights assigned to
each component to be aggregated (see (Calvo et al., 2002) for more details).

25More sophisticated aggregation models (based, for example, on different Lebesgue, Cho-
quet, or Sugeno integrals) could also be used (Calvo et al., 2002).
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5.2.7 Algorithmic Description and Computational Com-
plexity

Here we detail the algorithm used by CREDIT in generating trust values and
analyse its computational complexity. We will assume that reputation informa-
tion (Rep(fB,z, L) for all L € £) about the opponent 3 has been retrieved by a.
Furthermore, we assume that the issues that are guaranteed by the institutional
rules, InstRules, that apply in the current context ¥, 3 have been removed from
the set under consideration (as discussed in section 5.2.3). As discussed in sec-
tion 5.3.2, those social and group rules for which their premises have low trust,
will introduce more issues to the set under consideration. Finally, we assume
that the list of past contracts €2 with § have been retrieved from the interaction
history C'B.

In table 5.2 we present pseudocode of the function FT used to calculate
trust values for a given issue x (according to equation 5.8). As explained in
section 5.2.2, the set of precedent cases where an agent o € Gy has interacted
with § € Go, will have been recorded in the interaction history CB, g. For
each of the elements of CB,, g, the utility variation is obtained in step 1. Step
2 generates the probability distribution from the list of all utility variations,
while step 3 computes the 95% confidence interval of AU,. Step 4a generates
the confidence levels (C(z, L) for all L € L) for each issue using the procedure
shown in section 5.2.3 while Step 4b combines this measure with reputation
to form CR(x,L) for each label. Step 5 simply creates a new instance of all
labels to be used in the analysis. In case it is s first interaction we assume
C(z,L) =0for all L € £, and start from step 5. Step 6 details the procedure to
remove inconsistencies arising out of combining different reputation levels with
confidence levels (as was discussed in section 5.2.5, whereby those labels with
the lowest confidence levels are removed from the set under consideration). Step
7 checks that inconsistencies have been removed. Step 8 returns the maximum
expected utility loss and step 9 returns the trust value using the procedure we
later describe in section 5.2.6.

In figure 5.2 we show how the above algorithm fits into the general picture
of devising and using trust so as to reduce the uncertainty about the agents’
reliability and honesty in interactions and particularly in negotiations (see figure
1.3). As can be seen, steps 1 to 3 implement function g which defines the range
of utility variations [d7, d2]. Function g could also be implemented using neural
networks or cluster analysis in order to elicit the range of utility variations
(as discussed in section 5.2.3) but here we use a probabilistic approximation
to a normal distribution (for reasons specified in section 5.2.3). Function f is
implemented by step 4. The calculation of trust in steps 5 to 9 eventually results
in T(«, 8,2) and T(«, 5) while the negotiation range [vUmin,Umaz] is specified
using the procedure in section 5.3.2.

In order to analyse how efficient CREDIT is both in one run of the model and
in incremental runs (as more interactions are added to the interaction history),
we will derive the computational complexity of each step of the algorithm. This
is shown in table 5.3.
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Select issues based on Select Agent  Select Negotiation range and

Norms execution strategy
Check negotiation range
T(B.x) T(p) [vmin,vmax]
Rep(x,L,), Rep(x,L,),
..., Rep(x,L,)
EAU,,
[6,,6,] < +
Interval
S r

PDF(AU)=N(y,5), C(x,L,), C(x,L,),...,.C(x,L,)

Neural Networks, Time
Series analysis,...

Figure 5.2: The processes involved in calculating and using trust with an oppo-
nent 8. Function g generates the interval given the distribution of utility losses
over multiple interactions. Function f evaluates confidence levels as in section

5.2.3. Reputation information is assumed to be available.



function: FT(B3,z,v,Q,U%, L, M, R k)
with

T € X,

v € Dy;

Q2 =1[(01,01), -, (On, O3]
L=L1, L) k> 2
M= [ML17"'7/'LLk];

R = {Rep(, 1)} rec:

begin

1.

AU = {Uf(Oi(z)) - U;?(O;(I))}izl..n,(oi,Og)eQ ;

. PNN(AUI,UAUE) 3

6 leon G AU, lcon
. 51:AU1—%7fand52:AUx+%7f

Vil N
with logn s = 1.96;

4. for each L € L do
a. C(B,x,L) = min(ug(61), pr(62)) ;
b. CR(z,L) =k -C(x,L)+ (1 — k) - Rep(x, L) ;
5. »Caua: = 'Cv
6. repeat
2. EAU(2) = (e, (v | 1~ (u) > CR(x, L)}
b. if (EAU.(z)=0)
and L = argminge,,,, {Rep(z,L)})
then Loyz = Louz — L
7. until FAU..(z) #0 ;
8. Alcgss = Sup(EAUCT(x)) )
9. return min(1,1 - A7 ) ;
end
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issue under consideration.

the value for issue .

the list of past contracts.

fuzzy sets characterising performance.
membership functions for fuzzy sets.
reputation levels of agent 3 in all labels.

obtaining utility variations

in past contract executions.

obtain a Normal probability distribution of
utility variations.

determine the 95% confidence interval of ®.

obtain confidence levels for each label
given the confidence interval.
compute combined measure based

on confidence and reputation.
copying labels.

obtaining range of expected values
given reputation and confidence.

correct inconsistency by removing

low importance sets using linear search
(could be logarithmic as well).
inconsistency removed

calculating maximum possible utility loss .
returning the trust value.

Table 5.2: Algorithm used to calculate trust values.
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Step Complexity | Incremental Complexity
1 O(n) O(k)

2 O(n) O(k)

3 O(k) O(k)

4a O(b) O(b)

4b O(b) O(b)

5 O(k) O(k)

6a O(b) O(b)

6b O(b) O(b)

7 O(k) O(k)

8 O(k) O(k)

9 O(k) O(k)

] Overall \ O(kn) \ O(kb?) \

Table 5.3: Computational complexity of individual steps of the algorithm. Here,
n is the number of cases recorded in the case base, b is the number of labels and
k is a constant.

As can be seen from table 5.3, the computational complexity of the model
when calculating trust on a per issue and per agent basis, is linear with respect
to the number of cases in the interaction history when we consider one single run
of the model. Tt is also quadratic with respect to the number of labels (i.e. three
in our case - Bad, Average, Good) when evaluated with a new case. This means
that, as more and more cases are added (as the agents interact and execute more
contracts), the model loops b? times in the worst case where b is the number of
labels (i.e. when all confidence levels do not coincide with each other).

5.3 CREDIT in Practice

Trust models such as CREDIT can help reduce the uncertainty underlying the
honesty and reliability of the interacting agents. However, most trust models are
only put to use in selecting interaction partners (see section 3.3). In addition,
however, we use CREDIT to influence the bargain that takes place before an
agreement is signed (the next chapter is devoted to its application in MD). This
is achieved by coupling CREDIT to the decision making model of a agent (see
figure 1.3). In this way, CREDIT can directly influence the quality of agreements
reached and the efficiency of the negotiation. Thus, in the remainder of this
section we examine these two scenarios.

5.3.1 Influencing an Agent’s Choice of Interaction Part-
ners

When an agent, say «, has a particular task to contract for, it will decide
on the issues to be negotiated and identify possible interaction partners, say
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{61, B2, ..., Bn} C Ag. For each agent in this set, we can calculate the trust value
for each issue (as per equation 5.8) and aggregate these to give a general trust
value for each agent (using equation 5.9). That is, T'(«, 81, X'), T(cv, B2, X'), ...,
T(c, Bn, X'), where X’ C X is the set of issues under consideration. Trust can
thus provide an ordering of the agents in terms of their overall reliability for a
proposed contract. Agent a can then easily choose the preferred agent or the set
of agents it would want to negotiate with (i.e. by choosing the most trustworthy
one(s)).

5.3.2 Influencing an Agent’s Negotiation Stance

In the next two subsections we detail ways in which CREDIT can be used to
change the negotiation stance. First, we show how CREDIT can be directly used
to adapt negotiation intervals on different issues depending on the confidence
level for each issue. Second, we show how issues to be negotiated can be varied
according to the level of trust in the opponent.

Redefining Negotiation Intervals

At contracting time, issue-value assignments, x,, = v,, are agreed upon. Agents
accept values that lie within a range [Umin, Vmaz], Such that Uy (vmin) > 0 and
Uz (Umaz) > 0. This interval is the acceptable range which an agent uses to offer
and counter offer (according to a strategy) during negotiation (Jennings et al.,
2001). Moreover, given a potential issue-value assignment x = v in an offer,
an agent can compute an interval of expected values. Thus, using equation 5.7
we have EV,.(z,v) = [ev™, ev™] over which the value v actually obtained after
execution is likely to vary. This range defines the uncertainty in the value of the
issue and if the acceptable range [ev™, ev™t] does not fit within [vyin, Vmaz], there
exists the possibility that the final value may lie outside the acceptable region.
This, in turn, means that U,(v') may be zero which is clearly undesirable and
irrational.

Given this information, there are a number of strategic moves the agent can
perform. First, the agent can restrict the negotiation interval [Vpmin, Umaz] With
respect to the set of expected values [ev™,ev'| as shown below. To do this,
we first define the set of possible contracts, O,, that are consistent with the
expected values of z and its acceptance range, and then define the corrected
values for v,,;, and Vpag:

0, = {O ‘ (JL‘ = U) € O,E‘/CT(ZC,’U) - [%in;vmax]}
v =inf{lo € D, | (x=v) € 0,0 € O,} (5.11)
Ve =sup{v € D, | (x =v) € 0,0 € O,}

This will shrink the range of negotiable values for an issue (i.e. from [Vymin, Vmaz)
t0 [V ins Umax), Where either v/ . > vy, Or V), < Umas depending on which
of the two limits v/, ,,, and v}, .. gives higher utility respectively) to ensure that
the final outcome will fit within the range [VUmin, Umaz]. As well as reducing the

possibility that the executed value will lie outside the acceptable range, reducing
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the negotiation range can also bring some other added benefits. It can help the
agent reduce the time to negotiate over the value of each issue (e.g. if the range
is smaller, the number of possible offers is also smaller) and it can help the agent
to make better decisions that depend on the negotiation outcome (e.g. if a seller
is expected to deliver goods 1 day later than the agreed 3 days, the buyer can
adjust its other tasks to fit with delivery in 4 days).

Second, given information about a possible defection on the part of its op-
ponent from an agreed value x = vy, an agent can also decide to defect from its
own issues (by a given degree) in order to recover the expected utility loss. This
means that the agent will calculate min{U,(ev™),U,(ev")} and then achieve
y = u' instead of y = wp (which has been agreed in the contract for issue y
which it handles) such that:

Uy (ug) — Uy (v') = min(0, Uy (vo) — min{U,(ev™), Uy (ev')}) (5.12)

However, if the opponent is also fitted with a trust model, it will distrust the
defecting agent and this may lead to an arms race (Axelrod, 1984; Fisher and
Ury, 1983) until the agents will distrust each other so much that they avoid
each other (or cannot find a coinciding negotiation range if they both use the
procedure described in equation 5.11) .

Extending the Set of Negotiable Issues

Initially we argued that higher trust could reduce the negotiation dialogue and
lower trust could increase the number of issues negotiated over. In this section
we deal with this particular use of trust in defining the issues that need to be
negotiated. To this end, issues not explicitly included in a contract O% may
receive an expected value through one of the rules in Rules(a) for an agent a:

r:If z1 =v; and z9 > vy and ... and x,, = v,, Then x <wv (5.13)

Thus, if the premise of such a rule is true in a contract, the issue x is expected
to have the value v. If, however, the trust in the agent fulfilling the values
of the issues present in the premises is not very high, it means that the agent
believes that the values vy, vs, ..., v, may not be eventually satisfied. In such a
case, to ensure that the issue = actually receives value v it should be added to
the negotiated terms of the contract. This means that, when the trust is low in
the premises, the unspecified issues (as discussed in section 5.2.1) are added to
the contracted issues in order to try and ensure that they will be met (whereas
if trust is high the issue is not negotiated). For example, if a buyer believes
that the quality of a product to be delivered (the premise of a rule) will not be
the quality of the product actually delivered, the buyer might request that the
product satisfies very specific standards (e.g. kitemark or CE), which it privately
expected and would not normally specify in a contract if trust were high.
Formally, this means that if T'(«, 8, X;) < threshold, (where (T(a, 8, X,) is
defined as per equation 5.9 and X, is the set of issues in the premise of rule
r), then the issue z in the conclusion of the rule should be added to the set of
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contract terms. On the other hand, as an agent becomes more confident that
its interaction partner is actually performing well on the issues in the contract,
it might eventually be pointless negotiating on the issue if the premises of the
issue pre-suppose that the value expected will actually be obtained. Thus, if
T(«, 8, X,) > threshold, then the issue x in the conclusion of the rule can be
removed from the set of contract terms. An example of this would be:

If T(«, 3, price) > 0.8 and T'(«, 3,qos) > 0.7 Then avoid negotiating anti-DoS

which means that the if the trust in provider g giving the quoted price a telecom-
munication line (bought from some Internet Service Provider (ISP)) is above 0.8,
and the trust in its quality of service guarantee (qos) is above 0.7, then the ISP
can be trusted to give an anti denial-of-service (DoS) on the line and this issue
can be avoided in the negotiation process.

The two processes described above serve to expand and shrink the space of
negotiation issues. For a new entrant to the system, for example, the trust value
others have in it are likely to be low and hence the number of issues negotiated
over will be large. But, as it acquires the trust of others, the number of issues
it would need to negotiate will go down. Ultimately, with more trust, the set
of negotiable issues can thus be reduced to a minimal set, affording shorter
negotiation dialogues. Conversely, with less trust, the negotiable issues expand,
trading off the length of dialogues with higher expected utility.

5.4 Evaluating the CREDIT Model

This section empirically evaluates the performance of CREDIT. Here we concen-
trate on the properties of CREDIT (i.e. in influencing negotiation as shown in
section 5.3.2) in two main contexts; namely, in facing normal defectors and those
that defect by degrees. We choose these two contexts since these are representa-
tive of the behaviours we can reasonably expect agents to exhibit in interactions.
Moreover, we use the MMPD to characterise the utility functions as proposed in
chapter 4. In this respect, we can describe the three types of agent behaviours
as the different ways an agent would enact an agreement as shown in figure 5.3.
We build agents that implement such behaviours in their strategy and evaluate
CREDIT accordingly. Building on these results, section 5.5 compares the pref-
ormance of CREDIT with the main other comparable trust models that have
been proposed in the literature.

5.4.1 Bandwidth Trading Scenario

In order to test CREDIT we need a scenario where agents at both ends of the
interaction need to trust their interaction partner in negotiating and enacting
contracts. These contracts should consist of a number of issues, parts of which
are handled by each agent. The agents should also find it profitable to defect
on the issues under their control. While this description fits many scenarios, we
specifically wanted to choose one that was not developed by us so there is no
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Figure 5.3: The different types of behaviours considered in evaluating CREDIT
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bias towards the features of our model. As yet, there is no common benchmark
test in this area and so we chose the scenario of (Witkowski et al., 2001). The
latter model has the advantage of providing both agents (e.g. the buyer and
the seller) involved in an interaction to defect for a number of reasons which
we elaborate upon and augment. Here, a number of service provider agents are
interacting with a number of users buying telecommunication bandwidth over a
given channel. As an example, the service providers could be Internet Service
Providers (ISPs) selling connection on an Asymmetric Digital Subscriber Line
(ADSL) link to individual home users who use the link to browse the internet
or download movies. Thus, service provider agents (SP) provide bandwidth for
telecommunication for a price ¢ € [30,100], and of size s € [2Mbits/s,4Mbits/s].
Service users (SU) buy the service through a negotiated agreement to pay for
the service at time ¢, (normally between 10 days and 30 days) after the contract
is made. The agents also negotiate the security level, I € [1,6] (where [ = 1 is
the lowest security level and [ = 6 is the highest security level), that the channel
users will respect (e.g. a channel of [ = 6 will prevent denial of service attacks or
use a firewall to prevent worms infiltrating, but might also block common user
programs such as instant messengers). SU agents will negotiate for lower security
levels so as to be able to use the bandwidth for various types of programs, while
SP agents will negotiate for higher security requirements to keep its services
robust against attacks. We assume that users and providers belong to different
groups (e.g. SU can be Academic users, Home users and Business users, while SP
can be International ISPs, Local ISPs, Home ISPs) and therefore have different
social rules and norms but interact within the same institution (e.g. the British
trade laws).

Specified and Unspecified Issues

Generally speaking, agents agree on the price, size of the bandwidth, the time
of payment, and security level. Other issues that may get included in a con-
tract include (i) the quality of service level, qos € [1,8] (where qos = 1 is the
lowest quality and gos = 8 is the highest quality, each specifying error rates or
download speed for example), and (ii) the connection usage of the SU agent,
usage € [5,100] (i.e. in terms of the number of http requests per minute). The
addition of such issues will depend on the social rules and norms that pervade
the interaction.

While the SP agents might believe that a size and price of bandwidth
equates to a certain level of gos (i.e. through a rule If ¢ < 35 and s =
4Mbits/s Then gos < 6), the SU agents might believe other values for the
gos (i.e. If ¢ > 32 and s = 4Mbits/s Then qos > 4). Moreover, SU agents
may have different norms regarding the expected bandwidth usage of the ser-
vice given the time of payment and security level agreed for the bandwidth
(ie. Ifl <5 and t. = 15 Then usage > 60) as compared to the SP agent
(ie. Ifl > 5 and t. = 15 Then usage < 75). Thus, if an agent cannot be
trusted on the issues (it handles) that form the premises of such rules, the issue
involved in the conclusion of the rule gets added to the contract as shown in
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section 5.3.2. Finally, all agents have the same institutional rule concerning the
method of payment; cash if below a certain value and credit card if above a cer-
tain value (i.e. If p > 50 Then creditcard and IF p < 50 Then cash). This
means that the institution guarantees that the payments will be made by the
appropriate method, otherwise penalties are paid by the defector such that the
other agent loses nothing (e.g. using a credit card to pay for very low amounts
of money causes an additional commission to be charged by the credit card
company). Adding new issues to the negotiation equates to expanding the nego-
tiation object (see section 1.2). In terms of the MMPD which agents are playing,
this procedure equates to scaling up the game matrix to consider a larger space
of possible degrees of defections from a given agreement. This is because an
additional issue in a contract increases the range of possible enactments of a
contract and therefore increases the range of possible defections. The rules are
summarised in tables 5.4 and 5.5.

Agent GroupRules 1 GroupRules 2

SP If p < 35 and s = 4Mbits/s Then qos <6 | If Il > 5 and t. = 15 Then usage < 75

SU If p > 35 and s = 4Mbits/s Then qos >4 | If | <5 and t. = 15 Then usage > 60

Table 5.4: Group Rules that apply to quality of service and usage.

Agent Institutional Rule 1 Institutional Rule 2
SP and SU | IF p <50 Then cash | IF p > 50 Then creditcard

Table 5.5: Institutional rules that apply to the payment method.

Defections and Cooperation

The opportunities for defection or cooperation are identified for both agents
regarding the main issues as shown below. Here we assume that (§ is the SP
agent and « is the SU agent.

1. Specified Issues (forming O constituting of issues that are always negoti-
ated upon, as explained in section 5.2.1).

(a) Price ¢ — SP agents can defect after reaching an agreement by sub-
sequently asking for a higher price than ¢ or cooperate by asking for
an equal (or lower) price than ¢. In the MMPD, this means that
p € X(0®) and a higher price demanded equates to a higher level of
defection.

(b) Time of payment t. — SU agents can defect by paying later than ¢,
or cooperate by paying at time ¢. or earlier (paying later allows them
to manage their funds better — hence higher utility). In the MMPD,
this means that t. € X(0®) and a later price means a higher degree
of defection by a.
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(¢) Size s — SP agents can defect by providing a lower bandwidth (using
the bandwidth elsewhere brings them higher utility) or cooperate by
providing the required size or more. Depending on the institution, the
size may or may not be changed at execution time. In the MMPD,
this means that s € X (0?) and a lower bandwidth equates to a higher
level of defection.

(d) Security level [ — SU agents can defect on this issue by using the band-
width to transmit spam and viruses in order to gain some economic
benefit by sending mass advertising email or to attack other users and
damage their system so as to get a larger share of the market they
might be trading in. In the MMPD, this means that [ € X(O%) and
abusing the bandwidth means a higher degree of defection by «a.

2. Optional Issues (forming Oy, constituting of those issues that are negoti-
ated only if trust is low in the specified issues above as explained in sections
5.2.1 and 5.3.2).

(a) Quality of service, gos - the gos is only added to the set of negotiable
issues by an SU agent if the SP agent it wishes to contract cannot
be trusted on the price and the size to be provided (see table 5.4).
If the gos is added to the contract, an SP agent could defect from
the agreed value since providing a service of low quality results in a
higher payoff for the SP agent and lower payoffs for the user agents. In
the MMPD, adding this issue equates to extending the game matrix
(shown in figure 5.3) horizontally since this issue provides 8 with a
larger range of issues to defect on.

(b) Connection usage, usage - the usage is only added to the set of ne-
gotiable issues by an SP agent if the SU agent wishing to contract it
cannot be trusted on the time of payment and the security restrictions
it should normally respect (see table 5.4). SU agents can additionally
defect from an agreed usage by loading the bandwidth more than
agreed causing a loss in efficiency in the SP’s servers managing the
channel. In the MMPD, adding this issue equates to extending the
game matrix (shown in figure 5.3) vertically since this issue provides
«a with a larger range of issues to defect on.

Prior to contract execution, the agents engage in negotiations to reach an agree-
ment over the above-named issues. Once a contract is signed, the agents commit
themselves to the values agreed upon. Different values for the above issues re-
sult in different executions of the contract, each with a different utility to both
agents. Defections result from achieving the values which give a utility gain to
one agent (SP or SU) and a utility loss to the other (SU or SP). A walk through
the use of CREDIT, taking into consideration all the above factors, is given in
appendix 9.4. The experimental setup is described in the following section.
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5.4.2 Experimental Setup

There are two aspects of CREDIT to be tested (as discussed in section 5.3): (i)
defining issues to be negotiated upon; and (ii) defining negotiation intervals. As
was pointed out in section 5.3, CREDIT also performs partner selection based
on trust. However, the behaviour of the model in this respect follows from the
results of the other two mentioned above since these will also show how well
CREDIT detects defectors and how fast the trust value changes accordingly.
Therefore, to evaluate whether the CREDIT model does indeed bring added
value to the agents, it is necessary to show how agents using the model can
identify and cope with agents of different execution strategies®® with respect to
enacting the contents of a contract.

In more detail, we will show how the trust model helps agents cope with
other agents which (i) either defect (i.e. achieve the worst possible values for
issues for their opponent) or cooperate (i.e. enact the contract) completely, and
(ii) defect in degrees (i.e defecting from the values agreed to a limited extent).
These execution strategies exploit the basic moves we described in the MMPD
in figure 5.3 (see beginning of section 5.4). To this end we devise two sets of
experiments with execution strategies as defined below?":

1. Experimental set 1 deals with extreme defection or cooperative execution
strategies (i.e. with maximum defection or cooperation degrees or both):

(a) philanthropic (P) — never defects, and always delivers what has been
agreed in the contract.

(b) nasty (N) — always defects maximally and achieves whatever brings
it maximum expected utility.

(c) tit-for-tat (TFT) — defects when the opponent defects but cooperates
fully on the first contract.

(d) strategic defector (STDefect) — defects and cooperates alternatively
in an attempt to keep up its opponent’s trust on it, thus exploiting
the latter.

2. Experimental set 2 deals with agents that have fixed degrees of defection.
To this end we define the degree defector (DD,) as a defector which defects
from an agreed value by a degree d in the range d € [0,1]. The value d
represents the maximum fraction (of the range of values that the issue can
take) that the agent will defect by.

These two experimental sets generally cater for behaviours commonly encoun-
tered in e-commerce. For example, degree defectors could represent inefficient

26Here we distinguish an execution strategy as being the behaviour an agent adopts when
enacting the contents of a contract from a negotiation strategy that is used in negotiating the
contract.

2TWe exploit those strategies commonly used in assessing trust models (since Axelrod’s
experiments (Axelrod, 1984)) but we modify them for our context.
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companies, complete defectors represent hackers or spammers while philan-
thropic and tit-for-tat agents represent well established companies or sellers (e.g.
on eBay or Amazon).

In the remainder of the chapter, we will denote the strategy used by an agent
by tagging the strategy identifier with the role of the agent. For example, P-SP
denotes a philanthropic SP agent and N-SU denotes a nasty SU agent. Wherever
we will need to test our results for statistical significance we will use ANOVA
(ANalysis Of VAriance between groups) to analyse the means of samples of
different sizes to ensure that our means indeed exhibit the properties we seek,
and as a result to prove or disprove our hypotheses.

The same fuzzy sets applying over utility deviations are given to each agent to
characterise the performance of an opponent’s issues of a contract.?® Specifically,
the three fuzzy sets Bad, Medium, and Good are defined using linear functions
based on figure 5.1. The basic settings for these experiments are summarised in
table 5.6 and the utility functions together with the weight each issue has in the
overall utility of each type of agent are given in table 5.7.

emin 50
No. of specified issues 4
No. of unspecified issues 2
Institution Rules defined as per table 5.5
Fuzzy Sets Bad, Average, Good
Level of Confidence of Risk 95%

Table 5.6: Basic settings of the experiments for sets 1, 2 and 3.

Ue,we Us, ws U, wy Utca Wt Uq037 Wqos Uusagea Wysage
c s [ usage
SP | 2005 |1- 2,005 L01 |1—t,01|1—-L 05| 1— %5 o2
SU | 1-— ﬁ,0.5 370.2 1-— 11*0,0.1 %,0.1 %,0.05 u;gge,0.05

Table 5.7: Utility functions used in the experiments for SP and SU agents. Note
that all agents of each type (SU or SP) have the same utility functions but may
have different execution strategies.

These weights were chosen such that the agents play the MMPD (see section
4.2). Moreover, more weight is given to ‘specified’ issues than to ‘unspecified’
ones given that we expect an agent to consider those specified issues as more
important than the unspecified ones (since the former are always negotiated).
Finally, the calculation of the overall trust value for each type of agent is given in
table 5.8. As can be seen, the SU agent weighs its trust in each issue respecting

28We expect these fuzzy sets to be different for each agent in realistic applications. This
difference in perception (which fuzzy sets express) will matter whenever agents are meant to
exchange reputation values. However, this is a feature which we do not use here since the
reputation values are assumed to be available from the society and we wish to keep a focus on
the analysis of direct interactions rather than delve into the topic of aggregation of reputation
values. See (Ramchurn et al., 2004b) for a wider discussion on reputation and trust.
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the order of the weight each issue has in its utility function (and similarly for
the SP agent). This assumes the agent will choose an opponent it trusts most
on those issues it considers most important. In remaining subsections we detail

T(a,8) =05 x T(e,B,¢) + 0.4 x T(a, 3,8) + 0.1 x T(av, B3, qos)
T(B,a) =05 xT(8,a,te) +04 x T(B,a,l) + 0.1 x T(8, o, usage)

Table 5.8: Calculation of trust values for an SU agent o and an SP agent (3.

the different experiments performed to test CREDIT when used by agents with
different strategies. The behaviour of CREDIT is not specifically tested for one
shot interactions. In such cases, we expect CREDIT to use the reputation model
connected to it (e.g. REGRET, SPORAS or HISTOS) to dictate what should
the behaviour be (Ramchurn et al., 2004d). Moreover, in the one-shot interaction
case where the only interaction partner available has a low reputation, an agent
might choose to interact within the framework of an institution which guarantees
all or most of the terms of contracts they make.

5.4.3 Experimental Set 1: Facing Extreme Strategies

In this set of experiments, pairs of agents with extreme execution strategies 1
to 4 (as per section 5.4.2) negotiate contracts with each other and enact them
after coming to an agreement.

Using Norms and Trust in Negotiation

Having proposed to use a combination of norms and trust at negotiation time in
section 5.3.2, here we test CREDIT to see whether this combination can actually
enhance negotiation encounters. Specifically, we applied the following rules to
the issues (based on those rules explained in section 5.3.2):

e Rule 1 : If T(SU,SP,¢) > 0.9 and T(SU,SP,s) > 0.95 Then avoid
negotiating gos.2’

This rule means that the SU agent will avoid negotiating the quality of
service if it trusts that the SP agent will not defect on the price and the
size of bandwidth. This is based on a norm in SU’s group which says that
qos is normally understood to be of a given type if the price and size of
bandwith are of a certain value (see table 5.4). The same norm might not
apply in the SP’s group.

e Rule 2 : If T(SP,SU,t.) > 0.99 and T(SP,SU,l) > 0.9 Then avoid
negotiating usage.

29We use thresholds above or equal to 0.9 to indicate a high threshold on trust. This imposes
stringent conditions on the trustworthiness of the opponent for the issues the proponent values
most. Lower thresholds could be imposed to compensate for any noise in perceiving the
performance of the opponent, but we do not consider this here.
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This rule means that the SP agent will avoid negotiating bandwidth usage
if it trusts the SU agent will honour its payment in time and if it satisfies
the security level (see table 5.4).

Given our expectations regarding the effect of norms and trust on the negotiation
process and in particular on the number of offers exchanged in the process (i.e.
the negotiation thread) which may determine the time taken to come to an
agreement, we postulate the following hypothesis:

Hypothesis 5.1. The more issues negotiated due to trust being low, the length-
ier will be the negotiation thread using standard negotiation strategies.

In order to test this hypothesis, we set a P-SU agent to negotiate with a
P-SP agent given the rules set above.?0 For this experiment, the two agents use
off-the-shelf negotiation strategies such as Relative and Absolute tit-for-tat.3!
In order to vary the number of issues to be considered at negotiation time, we
reduced each agent’s trust in the premises of the norms accordingly and then
kept the trust values fixed for each subset of these experiments. For example,
one subset of the experiments would involve only Rule 1 above not firing given
that trust in price or size would be high (i.e. T(SU,SP,¢) > 0.99). In order
to keep all other variables constant, CREDIT was prevented from modifying
the negotiation ranges at runtime as well (as per section 5.3.2) since changing
negotiation ranges changes the number of possible agreements and the value of
those agreements to the agents.

Rule 2
Rule 1 Fires | Does not Fire
Fires 3.084 3.286
Does not Fire | 3.308 3.47

Table 5.9: The effect of norms on the average length of the negotiation thread
needed to reach an agreement (results from P-SU v/s P-SP with rules 1 and 2
firing alternatively and together)

Table 5.9 outlines the effect of these rules on the negotiation encounters. As
can be seen, our hypothesis is validated since agents can reduce the length of
negotiation threads (by 11% in the best case) needed on average to reach an
agreement whenever they trust their counterparts.®> While this enables agents

30In this experiment, we disconnect the trust evaluation (used in changing negotiation
ranges) component of CREDIT in order to specify conditions where trust is low independent
of the strategy and thus simplify the analysis we wish to make here.

310ther negotiation strategies could be used but the variable we study here is not strictly
dependent on the negotiation strategy and it is only our intention to show that a difference in
the number of issues considered will affect the negotiation efficiency. We therefore use those
simple negotiation strategies that rely on very few heuristics for ease of analysis.

32These results were tested for statistical significance using ANOVA (single factor) and the
null hypothesis (i.e. that the means of the groups are the same) was invalidated. This follows
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No. of issues 4 Ha, 5b 6
Average Utility | 0.465 | 0.4640 | 0.4645 | 0.4647

Table 5.10: The effect of the number of issues negotiated on the average utility of
agreements for a P-SU agent (results from P-SU v/s P-SP). 5a and 5b represent
the five issues that are negotiated given that only one rule fires for either the SP
or SU respectively.

to achieve agreements faster (i.e. they might take less time to negotiate), it is
questionable whether the conclusion of the rules (i.e. gos and usage) should be
negotiated at all.?3 This is because, even though these issues are given acceptable
values according to the norms, it cannot be guaranteed that these values are the
best that could be achieved given the preferences of both agents negotiating.
In fact, we might expect a trade-off between accelerating negotiation based on
norms and making better agreements (i.e. achieving higher utility). However,
from the above experiments it was also found that the gain (or loss) in average
utility achieved was not substantial when more issues were negotiated as can
be seen in table 5.10 (in this case the agent lost utility when more issues were
negotiated since the newly negotiated issues are assigned lower values than those
they usually get when trust is high and the issue is not negotiated).>* This is
because the issues, only negotiated due to rules not firing, do not have substantial
weight in the utility function of the agent. Otherwise, we would expect these
issues to form part of the initial negotiable set (e.g. price and size are important
issues that need to be negotiated since they contribute significantly to the utility
of the agent).

In summary, the above results tell us that CREDIT will cause fewer issues
to be negotiated when trust is high and more issues to be negotiated when
trust is low. Moreover, CREDIT has been shown not to significantly reduce the
maximum achievable utility in negotiated contracts by applying norms (when
the issues added do not significantly impact on the utility of agents). There-
fore, we decided to keep the rules above in future negotiations in the following

from the fact that F = 9.07 > Fi.;s = 3.5 > 1, with p = 5.8 x 107%,0 = 0.01, and a sample
size of 500. This result proves that each rule indeed has an effect on the outcome. To further
investigate the interaction between different rules, we used ANOVA on the results for rule
1 and rule 2 alone firing. The results are as follows for o = 0.025 and a sample size of 500:
F =5.004 < F¢rit = 5.006, and p = 0.0258 > «. As can be seen, the means do not significantly
differ in this context (i.e. since F' < Fi¢p;¢). This is because these two samples actually test
the negotiation length using the same number of issues where these issues have been obtained
from different rules firing. The low value of m = 3.084 can be explained by the fact that less
issues have to be negotiated (i.e. four issues as compared to five or six in the other cases).

33In our experiments, when the issues are not negotiated, we choose the value lying in the
middle of the intersection of the agents’ acceptable ranges for these issues.

34These results were checked for statistical significance using ANOVA (single factor) which
tries to identify significant differences between means of different samples (of 500 elements) of
utility of contracts. Thus, the means obtained were found not to be significantly different (i.e.
the null hypothesis that the means are the same is validated) given F' = 0.08 < F¢rit = 3.6
with a = 0.12. This means that the difference in means is more due to chance than the number
of issues’ influence.
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experiments in order to speed up negotiations.

Trust and Negotiation Intervals

Here, we aim to assess how well CREDIT can recognize defectors and adjust
its negotiation intervals accordingly. We therefore tested CREDIT on pairs
of agents with each combination of strategies (we consider all strategies except
degree defectors) in sequence and recorded the number of contracts agreed upon,
the trust values throughout the experiments, the utility of contracts achieved and
executed, and the number of issues negotiated.?>

There are four experimental variables that we will vary in order to see their
impact on the behaviour of the agents (note that agents cannot change their trust
value during negotiations): (i) the execution (as opposed to the negotiation)
strategies used by pairs of agents, (ii) the reputation of the interacting agents,
(iii) the point at which the agreement is made, and (iv) the extent to which
the negotiation ranges of pairs of agents coincide. The first two variables can
be preset by simply pairing agents with different (or same) execution strategies
(e.g. TFT v/s N or P v/s P) and hardwiring the reputation levels on each fuzzy
set at different levels (and elicit different initial trust values). The agreement
point could be set by the agents’ negotiation strategies. However, using such
strategies results in a different agreement point for each negotiation such that
it is difficult to extract the general trend and analyse it. Therefore we set the
agreeement points as follows.

From figure 5.4, we can set the degree of alignment between negotiation
ranges, A, as:

A= (5.14)

w
z

where z is the whole range covered by the negotiation ranges and w is the range
of values describing the intersection of the negotiation ranges.

Given that the negotiation range of agent « is noted as [v2,,,, v%,.], and that
of agent 3 is noted as [vfjlm, v ..], and assuming that v2, and v, are fixed,

Veae and Ufm-n can easily be adjusted to give different degrees of alignment (i.e.
by changing w).

On the other hand, the negotiation power3® of agent «, ¢ is set as follows:

p=1-—— (5.15)

w

where w' is the distance of the agreement from the lower bound of the intersection
(here the lower bound is of higher utility to agent «), and w is the range of values

35In our case, the one-shot interaction case is experienced when x = 0 where the agents can
only rely on reputation information. Thus, the effect of CREDIT on outcomes of one shot
interactions can also be viewed as every point in figures 5.5 or 5.6 for example.

36The negotiation power is here defined as the ability of an agent to shift the agreement to
a given point in the intersection of the negotiation ranges. The higher its negotiation power,
the higher is the utility of the agreement for the agent (and conversely for lower power).
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describing the intersection of the negotiation ranges. Therefore, given a known
vf”n and v2, ., the agreement (i.e. vim + w') can be obtained.

The negotiation power tries to capture different bargaining behaviours that
agents may have. Thus, here we do not define what strategies agents may use to
influence and reach the agreement but only specify where this agreement will lie
(i.e. what utility they will bring) for agents with different (or same) negotiation
power resulting from their negotiation strategy (e.g. Boulware and Conceder
strategies will concede less and more respectively in a negotiation encounter and
hence, have different negotiation powers). In so doing, we focus the analysis on
the impact of trust on the agreements agents reach rather than on the bargaining
strategies agents might use alongside CREDIT.

w' agreement

Figure 5.4: Deriving the degree of alignment A and negotiation power ¢ from

the negotiation ranges of the agents o and B with ranges [v2,,,,v% .. and
[fufjlm, v ] respectively.

Given the above definitions we start by testing the model with extreme strate-
gies: P v/s P and N v/s P, since these are the basic behaviours that TFT and
ST Defect implement in different ways to adapt to and exploit their opponent
respectively. In so doing, we aim to show that CREDIT can indeed distinguish
between trustworthy (i.e. P) and untrustworthy agents (i.e. N) and that it
will adapt the agents’ negotiation strategies accordingly. In this experiment,
the initial trust (based on reputation) of the pairs of agents was varied be-
tween 0 and 1. This was achieved by setting different reputation levels on each
fuzzy set (i.e. Bad, Average, and Good) for each issue (e.g. for T = 0.96,
Rep(s, Bad) = 0.01, Rep(s, Average) = 0.96, Rep(s, Good) = 0)). 0, was set
at 50. The negotiation power was kept at ¢ = 0.5, while the degree of alignment
was set at A = 0.5 as well. Thus, by fixing the negotiation power and degree of
alignment, we determine a fixed point of agreement between two agents. How-
ever, if the negotiation ranges of the agents is modified by CREDIT (see section
5.3.2), this point of agreement changes for subsequent negotiation encounters.

With these settings and using equations to derive the trust value and utilities
in tables 5.7 and 5.8 and equations 5.7 and 5.11, the agents can reach agreements
until the P agent’s trust reaches 0.83. At this point, the P agent’s negotiation
ranges are shifted by the maximum possible for all issues and therefore no agree-
ments are then possible. This is because, the expected utility deviations are such
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that they extend the (expected) enacted range of values beyond the acceptable
range of values (see procedure in equation 5.11). In what follows, we discuss the
observations made using these settings.
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Figure 5.5: Trust and Utility of a P-SP faced with a P-SU agent (the baseline
at Utility = 0.45 represents the utility of a contract signed when trust = 1).

First, when a P-SU and a P-SP agent are made to negotiate and execute
contracts with each other, it was seen that the agents would come to agree on all
negotiated contracts. The trust held by the two agents settled at 1.0 throughout
the experiment for different starting values of reputation as shown in figure 5.5.
As expected, below a trust of 0.83 (i.e. the equivalent confidence level set for all
the labels of each issue handled by the SP agent), there is no possible agreement.
Moreover, the high trust reached in the long run, enlarges negotiation ranges up
to their maximum (with respect to the alignment) and reduces the number of
issues to be negotiated down to 4. These factors make way for more agreements.
However, with high trust, the agents do not shrink their negotiation ranges such
that agreements are made in more relaxed negotiation ranges (given ¢ = 0.5).
This is why the utility of contracts made by the P-SP agent decreases as trust
increases. Also, the gradient of the different trust lines are dependent on the
difference between confidence levels and reputation levels. Hence, the larger the
difference (i.e. the lower the reputation), the larger is the gradient (see equation
5.4).
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We then set an N-SU agent against a P-SP agent.?” The impact of trust
on the agreements reached is shown in figure 5.6. As can be seen, if the agent
has an initial trust of 1.0 (i.e. all issues have high confidence levels based on
reputation), the cut-off trust value of 0.83 is reached as the effect of reputation
tails off (given 6,,;,, = 50). At this value of trust, no more interactions are
possible between the two agents. Moreover, the value of deals made for the P-
SP agent increases as trust decreases. This is because the P-SP agent negotiates
for higher prices and shorter time of payment, for example, as trust decreases
(i.e. as the confidence levels settle at low values). In so doing, it is decreasing
the negotiation range until no further agreements can be reached. This is why
all interactions stop after the 39", 32"% and 11** interaction when the initial
trust is 1.0, 0.957, and 0.91 respectively. These initial trust values are obtained
by setting the reputation on the issues handled by the opponent at different
values. Thus for a trust of 1.0, a high level of reputation is set for all issues (i.e.
Rep(x, Average) = 1, Rep(x, Bad) = 0, Rep(x, Good) = 0 where x € {¢, s, qos}).
For T = 0.95, the reputation levels are the same for all issues as well and are
set such that Rep(x, Bad) = 0.05, Rep(x, Average) = 0.99, Rep(x, Good) = 0
and the trust value is calculated as per equation 5.8 and table 5.8. On the
other hand, for T" = 0.91, the following values are given to each issue in order
to simulate the fact that least important issues (in the trust function) have
lower reputation levels (i.e. an opponent defects most of the time on the least
important issues): Rep(c, Bad) = 0.07, Rep(c, Average) = 0.99, Rep(c, Good) =
0.1, used for the most weighted issue ¢ in the trust function, while Rep(s, Bad) =
0.1, Rep(s, Average) = 0.95, Rep(s, Good = 0) for the second most weighted
issue s and Rep(qos, Bad) = 0.15, Rep(qos, Average) = 0.94, Rep(qos, Good) =
0 for the least weighted issue qos.

The number of agreements reached also depends on the reputation based
trust (or initial trust) since it determines what the initial negotiation ranges
are. Thus, the lower the initial trust, the smaller the negotiation ranges will be
(i.e. the negotiation range is shrunk so as to lead to more profitable contracts
as described in section 5.3.2). This leads to higher utility agreements (for the P-
SP) agent being achieved. A defection by an opponent therefore causes a higher
utility loss when the trust in it is initially low than the utility loss we obtain when
trust is initially high (i.e. when contracts may be of lower utility). Thus, the P-
SP agent shrinks its negotiation ranges faster when the initial trust is low than
when it is high and therefore comes to less agreements. Moreover, depending on
the weighting of the issue on which an opponent is less trustworthy (see table
5.8), the defections on different issues will cause an equivalently weighted change
to the trust value. Thus, even if trust starts at 0.91, those issues which have
a low weight in the trust function will already have low confidence levels such
that many agreements are not possible and the cut-off trust value only reaches
0.87. Thus, defections on less important issues cause negotiations to end in
disagreements even though the overall trust value might still be high.

37Similar results were observed when the roles of the agents were reversed and it is only as
a matter of convenience and succintness that we choose to mention SU v/s SP interactions.



132

Alignment (\)
Pairing 0.1]0.25]0.5]0.75 [ 0.9
NSU-NSP 8 21 39 80 | 494
NSU-PSP 8 21 39 80 | 494
NSU-STDefectSP 8 21 39 80 | 494
NSU-TFTSP 8 21 39 80 | 494
PSU-NSP 8 21 39 80 | 494
PSU-PSP all all all all all
PSU-TFTSP all all all all all
TFTSU-TFTSP all all all all all
TFTSU-PSP all all all all all
PSU-STDefectSP 16 40 all all all
STDefectSU-NSP 8 21 39 80 | 494
STDefectSU-PSP 16 40 all all all
STDefectSU-STDefectSP | 16 40 all all all
STDefectSU-TFTSP 16 40 all all all
TFTSU-NSP 8 21 39 80 | 494
TFTSU-STDefectSP 16 40 all all all

Table 5.11: Number of successful negotiations achieved given a varying degree
of alignment A\. A = 0 means that the negotiation ranges of the two agents
have no intersection (i.e. no agreement possible) and A = 1 means that they
always have an intersection (i.e. all agreements possible). The word ‘all’ means
that the pair of agents concerned can find an agreement for any number of
interactions simulated (in practice, however, they may not reach an agreement
due to imperfections in the negotiation strategies).

The above results lead us to expect that, in any case, nasty agents will be
avoided in the long run by all other types of agents which negotiate with them.
The avoidance is made at negotiation time rather than when selecting the agent
for an interaction (i.e. before negotiation). If the agent is avoided at selection
time (i.e. another agent is selected instead), then it is not given any opportunity
to prove its trustworthiness. Selection at negotiation time actually gives a chance
to a nasty agent to be trustworthy (i.e. by changing its execution strategy) in
order to be accepted in the future (here its execution strategy is fixed to be
nasty). As a result, we postulate the following hypothesis:

Hypothesis 5.2. Untrustworthy agents (i.e. those attracting low trust) achieve
fewer agreements than trustworthy ones.

In order to test this hypothesis, we analysed the number of agreements
reached by pairs of SU and SP agents using different strategies and for dif-
ferent degrees of alignment between the negotiation ranges of the two parties.
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Here, we alter the alignment between the negotiation ranges since this alignment
is modified whenever agents are deemed untrustworthy and this can, in turn, in-
fluence the number of successful agreements achieved. The negotiation power
was set at ¢ = 0.5 and the initial trust based on reputation was set to be 1.0 by
fixing the confidence level on each issue to 1 for the set ‘Average’ and zero for
the others (we discuss how altering these values can change the results later).
It is to be noted that with the initial trust set at 1.0, agents will be bound to
make a number of interactions before their personal measures of trust take over.
Using a high initial level of trust also allows us to study the worst case scenario
where an agent has a wrong perception of its opponent given the information
it gets from society and then uses CREDIT to learn the real behaviour of its
opponents.
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Figure 5.7: Number of agreements reached by N faced with P (similar results
are obtained with TFT or ST Defect as opponents).

The results of the experiments are shown in table 5.11 and the main obser-
vations are as follows:

e Whenever the alignment of negotiation ranges A < 0.5, pairs of P agents
and TFT agents still manage to reach agreements. This is because these
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pairs maintain high trust and always find a coinciding point to agree upon
(TFT behaves the same as P if faced with P and TFT). When TFT is
faced with N or ST De fect in any pairing of SU and SP, the TF'T will react
in the same way as the N strategy after the first interaction, resulting in
the agents achieving fewer agreements.

Whenever N or STDefect agents are interacting with other or same
agents, the number of agreements reached increases with the degree of
alignment. This is because, given maximal defections by strategies such
as N, STDefect, and TFT, the rate of reduction of the negotiation range
by CREDIT changes with respect to the size of the alignment. Thus, the
higher the alignment, the higher the rate of reduction. This is because
the defection sensed is dependent on the agreement point chosen in the
intersection which, in turn, depends on the size of the alignment (as deter-
mined in equation 5.14 and explained in section 5.4.3) . However, this rate
of reduction is always less than the rate of increase in the intersection of
negotiation ranges (since the agreement point lies midway due to ¢ = 0.5).
Therefore, agents will negotiate with defectors more when the alignment
is increased.

When an N agent interacts with P, ST Defect, or TFT agents, the in-
crease in the number of agreements is quadratic with respect to the align-
ment degree as shown on figure 5.7. The relationship is quadratic since the
calculation of the negotiation ranges is dependent on the calculation of the
confidence interval which is itself quadratic with respect to the intersection
of negotiation ranges.?®

For values of A > 0.25, ST Defect agents are always interacted with since
the trust level in that type of agent remains sufficiently high, at 0.88,
(since it defects and cooperates alternatingly) to keep negotiation ranges
intersecting when the degree of alignment is moderately large. While this
allows the ST Defect agent to exploit its opponent when it defects, it
also allows other agents to make profitable contracts with it whenever it
cooperates (rather than completely avoiding it). Moreover, given that the
contracts agreed upon have a higher value for ST De fect’s opponent (given
negotiation ranges are shrunk because of an expected defection), the latter
is able to make an additional profit with expected value (0.58—0.45) x0.5 =
0.065 (where 0.58 and 0.45 are the values of the contract when trust is 0.88
and 1 respectively and 0.5 captures the fact that ST Defect cooperates half
of the time) since the ST De fect always achieves the agreed value whenever
it cooperates!®®

38The calculation of the confidence interval involves using the square root of the number of
samples under consideration (in approximating to a normal distribution as described in section
5.2.3). Increasing the range of samples (or degree of alignment) means that to achieve an
equivalent confidence interval, which closes the intersection for a smaller degree of alignment,
would require squaring the number of agreements. Hence the relationship is quadratic.

39CREDIT is slower to react to defections that occur after a past number of cooperative
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Negotiation Power (¢)
Pairing 1]075][05[0.25] 0
NSU-NSP 19 | 20 21 20 | 19
NSU-PSP 24 | 23 21 20 | 19
NSU-STDefectSP 24 | 23 21 20 | 19
NSU-TFTSP 19 | 20 21 20 | 19
PSU-NSP 24 | 23 21 20 | 19
PSU-PSP all | all all all | all
PSU-TFTSP all | all | all all | all
TFTSU-TFTSP all | all all all | all
TFTSU-PSP all | all | all all | all
PSU-STDefectSP 36 | 38 40 42 | 46
STDefectSU-NSP 19 20 21 23 24
STDefectSU-PSP 46 | 42 40 38 | 36
STDefectSU-STDefectSP | 36 | 38 40 38 | 36
STDefectSU-TFTSP 36 | 38 40 38 | 36
TFTSU-NSP 19 20 21 20 19
TFTSU-STDefectSP 36 | 38 40 38 | 36

Table 5.12: Number of successful negotiations achieved when varying the nego-
tiation power. ¢ = 0 means that the SU agent has no power at all and 1 means
that the SU agent is always able to achieve the most profitable values for its
issues.

Given that the utility loss detected is dependent on the value of the initial
agreement, we would expect it to change according to the negotiation power the
agents have. Given this, and the above observations regarding defectors and the
number of agreements reached, we postulate the following hypothesis.

Hypothesis 5.3. When a high negotiation power agent is faced with an un-
trustworthy one, the pair of agents will come to fewer agreements than when the
negotiation power is low.

To test this hypothesis, we fix the degree of alignment of negotiation ranges
to 0.25 (to observe the effect on ST Defect and other strategies) and see whether
varying the negotiation power alters the number of agreements reached. As can

interactions. Such an event may happen when the opponent knows that it is the last time
it is going to interact (i.e. the endgame). The slowness of CREDIT is due to the positive
utility loss element being added to an already long list of non-positive utility loss elements of a
sample of utility deviations. As a result, the mean of the sample will not be very much affected.
Thus, the larger the number of non-positive utility loss elements in the sample the less will
be the change in the sample mean when a positive utility loss element is added. Moreover,
the behaviour of CREDIT could be made more sensitive to variations over time by tightening
the window over the history of interactions is analysed and giving more importance to latest
interactions than older ones as in the REGRET system.
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be seen in table 5.12, the negotiation power directly affects the number of agree-
ments achieved particularly when agents are faced with N, ST Defect or TFT.
Thus, the higher the negotiation power of a trustworthy agent when faced with
an untrustworthy one, the lower the number of agreements reached. This is
because the higher negotiation power of the trustworthy agent causes the agree-
ment to settle at a higher utility for the trustworthy agent than when its power
is lower. Thus, a defection from its opponent is sensed as a stronger defection
than when its negotiation power is lower. This leads to a faster reduction of
trust and negotiation ranges and fewer agreements.

To understand how both the alignment of negotiation ranges A and the ne-
gotiation power ¢ can affect the number of agreements reached, ¢ and \ were
varied in an experiment involving a N-SU v /s P-SP agent*° and the results plot-
ted in figure 5.8. The reputation of both agents was initially set to be 1. As can
be seen, there exists a quadratic relationship between the number of agreements
and both the negotiation power and alignment when low values of trust exist in
the interaction partners. For very high alignments and low negotiation power,
the trustworthy side will take more interactions to see that its opponent is un-
trustworthy while if the alignment is small and the negotiation power is high,
it will take less interactions to do so. This is because the larger the alignment
and smaller the negotiation power, the smaller are the defections sensed. This
is because contracts made under such conditions will already be of low value
to the trustworthy agent (since the opponent has a higher negotiation power).
Thus, when the opponent defects, the utility loss sensed is not high enough to
significantly affect the trust value. On the other hand, the larger the negotiation
power of the trustworthy agent the more utility the contracts will have for the
latter. Consequently, defections by its opponent will result in significant utility
losses (such that trust is significantly affected). In this case, the smaller the
degree of alignment of negotiation ranges, the quicker will be the reduction of
the negotiation ranges. Moreover, it is noted that the degree of alignment has a
greater importance in determining the number of agreements reached than the
negotiation power. This is because the alignment of negotiation ranges deter-
mines the space of possible agreements while the negotiation power only changes
the point at which the agreement is made in that space (as seen from equations
5.14 and 5.15). Thus, when negotiation ranges are shrunk due to low trust, the
negotiation power barely changes the value of agreement (particularly when ¢
is high) while the alignment, which itself determines by how much negotiation
ranges can be shrunk, significantly affects the point at which the agreement is
made.

5.4.4 Experimental Set 2: Facing Degree Defectors

Having investigated CREDIT’s behaviour with different opponents with extreme
strategies in the previous section, we now aim to test how CREDIT can manage

40The choice of these strategies for the experiment is only made to simplify the analysis. We
expect the same properties to be exhibited with other pairings since the shape of the curves
are independent of the strategies, although the actual intercepts may not be the same.
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Figure 5.8: Number of agreements reached between a N v/s P for various align-
ment degrees and negotiation power.

with opponents which do not always defect maximally, but rather defect by
a given degree. This is important because agents may not always be faced
with opponents that always cooperate or defect. Indeed, the performance of the
opponent might lie in-between these two extreme strategies. For example, an SP
agent may defect to some degreee by unconditionally charging a transaction fee
for supplying bandwidth even though this may not be included in the contract.
Thus the SU agents could find themselves paying a price that lies outside their
set of acceptable prices. An SU agent might also be paying for the bandwidth
by posting a cheque such that it always adds two more days to t.. The SP
agent may therefore find itself getting the money after its acceptable deadline.
In general, we believe a trust model should be able to adjust the behaviour of
an agent such that it is still able to come to some form of agreement with such
defectors. Thus, it should allow the agent to still make profitable contracts (e.g.
by specifying more stringent conditions or penalties that cover the losses) when
evolving in environments where not all agents perform contracts perfectly (or
are perceived as doing so).%!

We focus on experiments where only one of the two agents defect.*? This

41Generally current trust models, such as (Sen et al., 2000; Birk, 2001) or (Yu and Singh,
2002b), do not cater for this type of defection. Those models which do (e.g. REGRET (Sabater
and Sierra, 2002), Schillo et al. (Schillo et al., 2000)) do not use the information about degree
defectors in any significant way apart from partner selection.

42We report experiments where the SU agents are defectors. However, the behaviour of
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Degree of Alignment ()

Defection | 0.1 [ 0.25 [ 0.5 | 0.75 | 0.9
0.2 all all all all all
0.4 11 30 all all all

0.6 8 21 42 all all
0.8 8 21 39 | 118 | all
0.9 8 21 39 80 all

Table 5.13: Number of agreements reached with degree defectors with different
degrees of alignment of negotiation ranges.

allows us to focus on the influence of CREDIT on the negotiation and rule out
other possibilities for the observations made. First we test to see if CREDIT
is able to recognise such defectors with varying degrees of alignment of the in-
teracting agents’ negotiation ranges. The agents are first given high reputation
(i.e. trust value 1.0) and the agents have equal negotiation power. Thus, ini-
tially agents are expected to negotiate with relaxed negotiation ranges until they
assimilate the trustworthiness of their opponent. In so doing, we see whether
the agents will avoid a degree defector if the degree of defection is too high for
the negotiation ranges afforded by the trustworthy agent. To this end, table 5.13
records the number of agreements reached for different degrees of alignment. As
can be seen, the number of agreements reached by the defectors increases with
increasing degrees of alignment. This is because the agents have larger negotia-
tion ranges and therefore they are able to adjust them sufficiently such that the
higher degrees of defection still end up being profitable. Given this, we postulate
the following hypothesis:

Hypothesis 5.4. For different degrees of alignment of negotiation ranges, an
agent using CREDIT is able to adjust its negotiation ranges to prevent defections
by its opponent lying outside its acceptable regions.

To check if CREDIT is always able to profitably adjust negotiation ranges,
we recorded the difference between the utility of the executed contract and the
value of the contract for minimum acceptable values of the issues the opponent
handles in the contract. If the result is negative, the enacted values lie outside
the acceptable ranges and if it is positive or zero, then the enacted values lie
within the acceptable ranges. We study a pair consisting of a P-SP agent and a
DDy »-SU agent with different degrees of alignment.*®> The graphs obtained for

CREDIT does not change if we reverse the roles.

43D Dy 2 means that the agent defects by a degree of defection of 0.2 on all issues it handles.
This means that the agent always pays at most 4 days late (i.e 0.2 x (30 — 10)), abides by a
security level which is at most 1 level lower (i.e 0.2 x (6 —1)), and uses the connection at a rate
of 19 connections/min at most (i.e. 0.2 x (100 — 5)) more than agreed (where the multipliers
represent the range of values for the issues concerned). We choose a degree of defection of
0.2 to provide a better analysis of the effect of the degree of alignment on the behaviour of
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other degrees of defection were found to be similar in nature for various degrees
of alignment.
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Figure 5.9: Utility change for P-SP agent (v/s DDg2-SU) after execution of
contracts relative to acceptable contracts for different levels of alignment.

As can be seen, when the alignment is low (0.1 and 0.25), the P agent suffers
some utility loss for some part of the deals (i.e. 23 and 35 deals respectively).
During these interactions, the high reputation contributes to the high trust in
the defector (since |CBq g| < Omin = 50) and this causes negotiation ranges to
be relaxed for some interactions. However, after having adjusted its negotiation
ranges according to its own confidence levels in the defector (i.e. |CBgyg| >
Omin), the P agent suffers no more utility losses. Moreover, the utility of signed
contracts is seen to rise with a larger alignment of the negotiation ranges, such
that the P agent is able to increase its utility gain. This leads us to postulate
the following hypothesis:

Hypothesis 5.5. When facing increasing degrees of defection, an agent using
CREDIT 1is able to adjust the megotiation ranges so as to engage in profitable
interactions.

Having tested how CREDIT fares with different degrees of alignment in the
previous set of experiments, we now wish to see how it is able to cope with

CREDIT when faced with degree defectors (since CREDIT achieves all possible agreements
with DDg.2 as seen in table 5.13).
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tracts for different levels of alignment.
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increasing degrees of defection for a given fixed degree of alignment. From
table 5.13 we can see that for degrees of alignment below 0.75, the number
of agreements reached by high degree defectors (i.e. 0.8 or 0.9) is less than for
low degree defectors. While this provides evidence that high degree defectors
will be avoided in the long run, for higher degrees of alignment it is not apparent
that CREDIT still manages to enforce profitable interactions. To test for this
property, we recorded the utility gain with respect to acceptable contracts (as in
the previous experiment) for different degrees of defection (see figure 5.10). Here,
the agents are all assumed to have high reputation and the degree of alignment
is set to 0.75. As can be seen, CREDIT is indeed able to profitably adjust
negotiation ranges against low degree defectors or else it shrinks the negotiation
ranges sufficiently so as to prevent agreements from being reached with high
degree defectors. This validates our hypothesis.** Moreover, note that given
our definition of degree of defection (see section 5.4.2), if values of a contract
are close to the edges of the negotiation range, the degree defectors cannot be
easily differentiated from each other.

It should also be noted that the utility gain for the 0.9 defector stays at
-0.1 for all deals made. This is because this agent defects so as to achieve a
contract that is at most equal to 90% of the maximum defection possible on
a given issue and is therefore avoided after a small number of interactions (80
as in the case of nasty agents in table 5.11). Thus for values contracted that
lie closer to the maximum degree of defection, the 0.9 defector will act in the
same way as a nasty agent. For example, a 0.9 defector SU agent will defect to
the latest possible time of payment (i.e. 30 days) if ¢, has been contracted for
29 days. Otherwise, if ¢, has been agreed for 30 days, a 0.9 defector SU agent
will only defect to 30 days (i.e. 90% of the interval). Thus for a high degree
of alignment such as A = 0.9 (when the 0.9 defector achieves all contracts), we
expect CREDIT to force the enacted contract to lie as close as possible to the
range of acceptable values in the long run. This should make the utility losses
with respect to acceptable contracts tend to zero. This is confirmed by the graph
in figure 5.11.

5.5 Benchmarking CREDIT

Having analysed its performance in isolation, the next step is to put CREDIT’s
into context. To this end, we compare CREDIT’s effectiveness against other
comparable models that are available in the literature. The most relevant
models are those by Witkowski et al. and Marsh (see section 3.1 for more
details). We will refer to Witkowski’s model as WT and Marsh’s model as
MT from now on. In general, these two models calculate trust by analysing
an opponent’s behaviour during interactions in a similar manner to CREDIT

441t is also to be noted that all the models suffer a jump in utility losses on the first few
interactions. This is due to the rule of the P-SU agent firing (see table 5.4) such that the gos
is added to the set of negotiation issues. Thus a defection on the gos causes the utility losses
experience to start at an even lower value.
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Figure 5.11: Utility change for P-SP agent (v/s DDy ¢-SU), after execution of
contracts relative to acceptable contracts for A = 0.9.

(others base trust on reputation and assume an analysis of interactions (Sabater
and Sierra, 2002; Yu and Singh, 2002a; Mui et al., 2002)). Even though these
models do not specifically use trust to influence negotiations (which we will
apply them to in our benchmarks), we use them as representative of two classes
of models each having their own merits (as we will see later in this section): (i)
those models that change trust values by arbitrarily set values; (ii) those that
are based on a different model of risk. The formulae used to calculate trust in
WT and MT are as follows:

WT:
Twi(e, B,x) = p X Tun(@, B, x) defect
th(a,ﬁ,x) = th(Oé,/B,ZL') + QO X (1 - th(a,ﬂ,x)) cooperate
Twi(o, B,2) +n X (1 = Ty, B,2))  faced with DD,

(5.16)
where T (v, B, x) is the trust of « in 3 over issue z, p weighs the impact of a
defection on the trust value, ¢ weighs the impact of a cooperation on the trust
value and n € [0, 1] is a defection degree perceived (i.e. when the defector does
not completely cooperate nor completely defect). WT updates the trust value
after each interaction depending on the behaviour of the opponent. A defection
is equivalent to the opponent achieving a less profitable value for an issue such
that it causes a utility loss to the agent. Cooperation is equivalent to enacting
the exact values of the issues specified in a contract. As can be seen from the
above formulae, a given degree of defection is considered as cooperation rather
than defection. Therefore an agent defecting by a given degree will increase its
opponent’s trust in it. While we recognise that this equation fits the purpose
of the experiments by Witkowski et al., we consider it counterintuitive to the
notion of trust (and irrational). Therefore, we adopt only the first two equations
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in order to capture cooperations and defections.

MT:
Tmt(avﬂvx) = Ug(v) X fmt(avﬂv LE) (517)

where U2 (v) is the utility of issue x with value v for o (including its weight
in a’s utility of a set of issues including ), Tpn:(«, 3, ) is the trust of « in
0B over issue x. MT updates the trust in a similar manner to our model by
considering the risk involved in the interaction given the subjective perception
on the opponent. T;,; is actually an estimation of trust in the opponent given
the risk incurred by an agent. While Marsh in (Marsh, 1994) does not give a
concrete implementation for this value in his model, we calculated it through
our probabilistic modelling of the opponent as described in section 5.2.3. This
method respects the reasoning behind the meaning of T,;.

WT and MT do not specifically associate trust with negotiation ranges.
Therefore, we map the trust values obtained from the above equations to the
probabilistic model of utility loss which CREDIT uses to shrink the negotiation
ranges. This is achieved by inverting equation 5.8 and applying the multiplying
factors (p and p for WT and U%(z) for MT). For WT we also set p = ¢ = 0.25
(as used in Witkowki’s experiments). Moreover, T,,; and T;,; were used in the
norms to specify issues that were to be negotiated or not as specified in section
5.3.2.

With the above settings implemented, the models were tested in a similar
manner to our model as in section 5.4.2. However, here we focus on those aspects
where the trust can directly influence the interaction between two agents.*®
Therefore, we choose the following measures to see how well the models are able
to elicit and use trust in order to:

1. Prevent exploitation by a (extreme) defector (e.g. N or ST Defect)

2. Allow agents to negotiate contracts with agents which defect by degrees
(e.g. DDg2 or DDy 4).

Each of these is now detailed in turn.

5.5.1 Experimental Set 1: Facing Extreme Strategies

Here, we base our experiments on the best execution strategy to be used against
a defecting agent irrespective of the trust model. In so doing, we avoid relating
the strategy to the variables to be measured (e.g. a philanthropic agent might
do better with CREDIT but a nasty agent could do better with another trust
model). Therefore, based on Axelrod’s experiments, we choose to use the TFT
strategy as the execution strategy of one agent which interacts against a nasty
agent or a strategic defector. TFT was then shown to be better than any

45We do not test how agents will choose their interaction partners using trust derived from
different models since this behaviour can be inferred from the results of other experiments
which test the model at interaction time.
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other strategy at preventing exploitation (but never obtained the highest reward
itself).

Given this, our first set of experiments aims to show how well an agent can
adapt to a defecting agent. This aims to show how the agent can detect bad
behaviour using its trust model and alter its own behaviour at negotiation time.
To this end, we plot the trust value of the TFT agent against the number of
negotiations the agents go through. The initial level of trust was set at 1 as
in the previous experiments by setting the reputation values of the fuzzy set
‘Average’ to 1 for all issues and 0 for the other sets. The results are shown in
figure 5.12.

As can be seen, the fastest to react to defections by a nasty agent is WT.
Trust goes down within the first few interactions settling at 0.83 for a nasty
agent and oscillating until it reaches 0.867 for a strategic defector. CREDIT
gradually settles at a value of 0.83 for a nasty agent (after which the agents
do not interact) and a value of 0.88 for a strategic defector. This occurs after
around 40 interactions for the nasty agent and 60 interactions for the ST Defect
agent. MT, which reacts slower than CREDIT, decreases the trust to a value
of 0.952 for the nasty agent and 0.98 for the ST Defect agent after the first 50
interactions over which the defectors’ high reputation prevails.

These results are explained by the formulae used to calculate trust values.
According to equation 5.16, WT decreases or increases trust from 1 by a factor
of 0.25. This is an ad-hoc method of manipulating the trust value. This simple
heuristic is based on applying punitive action for bad behaviour and rewarding
for good behaviour (good meaning cooperation). It effectively reduces trust by a
relatively large amount (asymptotically reaching 0 or 1) compared to the other
models. Moreover, the values of trust in strategic defectors and nasty agents
are lower than those reached in CREDIT and MT. The latter models also react
more slowly (i.e. they need more interactions to get a reliable rating) to bad
behaviour. This is because they are both based upon a statistical analysis of
the behaviour of an opponent which takes a larger number of interactions to be
precise, while it takes only 20 interactions for WT (60 for CREDIT and MT).

It is to be noted that MT never stops negotiating with both the nasty agent
and the strategic defector and always settles on an agreement with them. There-
fore, we can infer that multiplying the utility (or weight) with the trust value
(as in equation 5.17) reduces the effect of defections on the trust value, allow-
ing better exploitation by an opponent (i.e. the nasty agent). Moreover, the
weights reduce the influence of trust on negotiations since the loss in confidence
is reduced whenever a defection occurs.

Instead, CREDIT gives equal importance to all issues at negotiation time.
Thus, CREDIT is able to avoid a nasty agent while still engaging in interac-
tions with the strategic defector (for a degree of alignment of 0.5). In so doing,
CREDIT is still able to make profitable contracts in the long run while WT is
not able to do so with the ST Defect agent (at least for the interactions where
the latter cooperates). Given that the strategic defector defects half of the time,
the expected utility in any one interaction with it is half the utility of the issue-
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Figure 5.12: Plots showing trust values of a TFT-SU agent v/s ST Defect-SP
and N-SP agents for CREDIT, WT, and MT respectively. For MT, each negoti-
ation it undertakes reaches an agreement meaning that it never stops negotiating

with a defector.
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value pairs agreed upon. Independent of trust models, this expected utility when
facing an ST Defect agent is 0.5 x 0.45 = 0.225 (where 0.45 is the value of a
contract when trust is 1). However, CREDIT shrinks negotiation issues since
it expects a given ‘degree’ of defection from the ST Defect agent. Thus, when
ST Defect cooperates, it actually enacts a contract which has a higher value
than the expected degree of defection. Therefore, CREDIT induces an expected
utility of 0.5 x 0.58 = 0.29 (where 0.58 is the utility of the contract for the P
agent when negotiation ranges are shrunk when trust is 0.88) and is able to gain
more utility than both WT and MT in the long run (for MT, the expected values
is 0.5 x 0.48 = 0.24).

5.5.2 Experimental Set 2: Facing Degree Defectors

In this set of experiments we aim to compare the performance of the trust models
when the latter are used by agents facing opponents which defect by degrees.
Here a P agent was made to interact with the defectors with negotiation power
of 0.5 and degree of alignment between negotiation ranges of 0.5. The agents
using WT and MT were faced with agents defecting with degrees of 0.2, 0.4, 0.6,
0.8, and 0.9. Given the properties we have identified in the previous section, we
can expect that WT will reduce trust drastically no matter what the degree of
defection of its opponent is. As for MT, we expect it to react to degree defectors
more slowly than CREDIT given that it will weigh defections by the utility of
the issues it has contracted. To this end table 5.14 shows the results of the
experiments carried out.

Degree of Trust Model
Defection | MT | WT | CREDIT
0.2 all 13 all
0.4 all 13 all
0.6 all 13 42
0.8 all 13 39
0.9 all 13 39

Table 5.14: Number of agreements reached by pairs of P and DD,, agents.

As can be seen, MT actually continues negotiations with all defectors while
WT considers all degree defectors to be the same as nasty agents. CREDIT
instead considers each degree of defection differently. In order to see how well the
agents are able to adapt their negotiation ranges so as to minimise utility losses,
we plot the utility gain of the P agent with respect to acceptable contracts (i.e.
those for which the minimum acceptable values are achieved by the opponent).
Here we show the utility gains of the P agents when faced with a DDy 4.

As can be seen, WT shrinks its negotiation ranges too much to allow possible
negotiations with degree defectors (for A = 0.5 and p = 0.5). This is because
WT detects a given degree of defection as a full defection even for very low
degrees of defection. This is explained by its ad-hoc method of calculating the
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Figure 5.13: Plots showing utility gain w.r.t an acceptable contract of P agents
v/s DDy 4 for MT, CREDIT, and WT.

trust value. Indeed, the trust value is not calibrated according to the value
achieved by the opponent, but only based on the action of defecting. MT does
not perform any better in this sense even for very low degrees of defections since
it is unable to sufficiently adjust the negotiation ranges so as to have executed
contracts fall within the acceptable range. This is due to the model giving
low importance to defections by considering the weights of issues in considering
its trust (see equation 5.17. CREDIT shows the best performance overall by
achieving profitable deals even with some degree of defection from its opponent
(see section 5.4.4 for more details).

5.6 Summary

In this chapter we have detailed a novel trust model called CREDIT and shown
it to be both efficient and effective at guiding agents in their interactions given
uncertainty about the honesty and reliability of their opponents. Thus, CREDIT
meets the initial objectives described in section 1.5. Specifically, we have shown
how trust can be related to the expected utility loss in interactions. Here, the
combination of confidence levels and reputation using fuzzy sets provides a robust
way of combining societal measures with individual measures of trust. Fuzzy
sets also take into account the ontological dimension of trust measures that
agents may share with each other. Using the trust measures thus devised, we
have described an algorithm to calculate trust that is linear with respect to



148

the number of past interactions and incrementally quadratic with respect to the
number of fuzzy sets used. Finally, having tested and benchmarked CREDIT
we here summarise the conclusions inferred from the observations made.

1. By combining norms and trust, CREDIT is able to reduce the length of the
negotiation dialogue (analogous to time) required to reach an agreement
(see section 5.4.3).

2. CREDIT is able to prevent nasty agents from exploiting philanthropic and
tit-for-tat agents by adjusting the agent’s negotiation stance. Thus, when
nasty agents are encountered, the agent shrinks its negotiation ranges such
that no agreement is possible (section 5.4.3).

3. CREDIT is better able to engage in profitable contracts with strategic
defectors than other trust models (see section 5.5.1). This shows that the
model is able to adapt to agents with varying reliability.

4. CREDIT is able to cope with degree defectors better than other trust
models. It does so by eliciting profitable contracts in the long run or by
avoiding high degree defectors (section 5.4.4).

Thus we have shown how the outcomes reached in bargaining can be signifi-
cantly improved when CREDIT is used to model the reliability and honesty of
interacting agents. In this respect, CREDIT clearly differentiates itself from
current work in the area of trust which has, up to now, only considered using
trust to select the most reliable or honest partner. Moreover, CREDIT is the
only model to provide a comprehensive analysis of the context in which agents
interact by considering norms and by using such norms during the bargaining
process. Finally, in benchmarking CREDIT, we have provided the first set of
guidelines against which future trust models can be benchmarked (in terms of
the experiments carried out to differentiate CREDIT from WT and MT).
Through CREDIT we have shown how bargaining agents can use trust to
reduce uncertainty about the reliability and honesty of agents. CREDIT also
reduces, to some extent, uncertainty about the actions of the agents by shrinking
negotiation ranges when defectors are detected. However, CREDIT neglects the
uncertainty about the preferences of the agents and usually expands the action
set when trustworthy agents are interacted with. To remedy this, we develop the
PN model (in chapter 7) that enables agent to further reduce uncertainty about
the action set and preferences through the use of arguments. Given this, with the
combined use of PN and CREDIT, agents can substantially reduce uncertainty
in most aspects of their bargaining encounters. Given this, the (combined) use
of these models in a practical application is described in chapter 8.
Furthermore, in the next chapter, we show how a trust model, such as
CREDIT, can be integrated into negotiations based on MD techniques. In so
doing, we aim to show how trust at the individual level (i.e. CREDIT) can
be combined with trust at the system level (as per the requirements described
in section 3.3) to elicit efficient outcomes (which bargaining techniques cannot
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guarantee) while ensuring that the most reliable agents are chosen as per the
objective set in section 1.5.






Chapter 6

Trust-Based Mechanism
Design

Having demonstrated the significant improvement that CREDIT brings to the
utilities that agents gain in bargaining encounters, this chapter focuses on using
trust in mechanisms or protocols in order to obtain an efficient partitioning of
the resources that agents negotiate. As we have seen in chapter 3, there are
a number of system-level trust mechanisms that already enforce some level of
honesty (about their costs or valuations) among the participating agents so as
to reach efficiency. However, none of these mechanisms effectively select the
most reliable agents in determining the partition of resources. To this end,
in this chapter we propose the area of TBMD as an extension of traditional
MD, where trust is used to select the most reliable agents in determining the
outcome of the mechanism as per our objectives. In this way, TBMD effectively
reduces the uncertainty surrounding both the reliability and honesty of agents
(as per objectives set in section 1.5). In particular, we develop the TBM, as
an extension of the Vickrey-Clarkes-Groves (VCG) class of mechanisms, that
is incentive compatible, individually rational, and efficient. Thus, in our TBM
agents are incentivised to honestly reveal their valuations (or cost) as well as
their trustworthiness and the reputation of other agents. Moreover, we show
how our TBM is more robust than other comparable mechanisms at dealing
with biased ratings from some of the agents (see section 3.3).

The rest of this chapter is structured as follows. In section 6.1, we justify the
need to extend traditional MD to consider trust. Section 6.2 describes related
work in the area of mechanism design. Section 6.3 shows how a standard VCG
mechanism usually determines the outcomes in a task allocation scenario. This
serves as the basis for describing TBMD in section 6.4. Section 6.5 describes
our TBM and demonstrates how the TBM generalises the standard VCG mech-
anism to consider trust. Section 6.6 empirically evaluates our TBM and shows
how it is indeed effective and efficient at choosing the most reliable agents over
repeated encounters (as trust models build clearer trust measures), and that it
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is more robust than comparable mechanisms against biased ratings. Finally, sec-
tion 6.7 summarizes the main achievements of this chapter and discusses their
relationship to other models we provide in this thesis.

6.1 Introduction

As discussed in section 1.2, MD is the field of microeconomics that studies how
to devise systems such that the interactions between strategic, autonomous and
rational agents lead to outcomes that have socially-desirable global properties.
Given that the designer of MAS typically has many of the same aims, there is
a growing body of work that seeks to exploit the tools and concepts of MD to
this end (Dash et al., 2003). However, an important facet of MAS that is rarely
considered in MD is that agents do not always complete their tasks as planned
or promised (this means they are not always sucessful). Thus, for example, an
agent may not always complete every task it starts or it may default on payment
for a good. Furthermore, in traditional MD an agent chooses to interact with
partners based on their costs or valuations only. However, cheapest is not always
best and these agents may ultimately not be the most successful. Thus, in many
practical situations the choice of interaction partners is motivated by an agent’s
individual model of its counterparts, as well as by information gathered from its
environment about them. For example, on eBay buyers determine the credibility
of particular sellers by considering their own interaction experiences with them (if
they have any) and by referring to the historic evaluated information provided
by other buyers. To capture this phenomenon, we exploit the notion of trust
used in the CREDIT (where trust results from the combination of confidence
and reputation) to represent an agent’s perception of other agents’ reliability. In
this chapter, we refer to an agent’s reliability as its probability of success (POS)
in completing its task. This, in turn, leads us to propose the area of TBMD as
an extension of traditional MD that adds trust as an additional factor to costs
and valuations in decision making.

As we argue in earlier in the thesis (see section 1.3), the trust in an agent is
generally defined as the expectation that it will fulfill what it agrees to do, given
its observable actions and information gathered from other agents about it (see
section 1.3). By their very nature, different agents are likely to hold different
opinions about the trust of a particular agent depending on their experiences
and the specifics of the trust model they use (see section 3.1). As a result, we
cannot simply extend traditional MD (e.g. the VCG mechanism) to encompass
the notion of trust because such work is predicated on the fact that agents have
private and independent information which determines their choice over out-
comes. Trust, on the other hand, implies public and interdependent information
(see sections 3.1.2 and 3.2.2).

In this work, we specifically consider MD in the context of task allocation
(where it has often been applied Sandholm (2003)). In our scenario, agents may
have different probabilities of success in completing a task assigned to them (e.g.
it may be believed that a particular builder has a 95% chance of making a roof
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in five days, while another builder may be believed to have a 75% chance of
doing so). Moreover, an agent may assign different weights to the reports of
other agents depending on the similarity of their types. For example, consider
a “repair engine” task assigned to a garage. In this case, two agents owning
a Ferrari would assign higher weights to each other’s report about the POS of
the garage than they would to the report of another agent which owns a Robin
Reliant.

Against this background, this chapter develops and evaluates the notion of
trust-based mechanism design. We also define the general properties that trust
models must exhibit to allow a trust-based mechanism to generate an optimal
allocation of tasks. In particular, we advance the state of the art in the following
ways:

1. We specify the properties that trust models must satisfy to be incorporated
in mechanisms that permit efficient allocations.

2. We generalise the standard VCG mechanism to incorporate the notion of
trust.

3. We prove that the trust-based mechanism we develop is efficient, individ-
ually rational, and incentive compatible.!

4. We empirically show that our trust-based mechanism leads to the most
successful and cheapest agents being selected to fulfill an allocation in the
long run and that it performs better than comparable mechanisms when
agents’ reports of POS are biased.

6.2 Related Work

In associating trust to mechanism design, we build upon work in both areas.
In the area of trust and reputation, a number of computational models have
been developed (see chapter 3 for a review). While these models can help in
choosing the most successful agents, they are not shown to generate efficient
outcomes in any given mechanism. An exception to this is the work on reputation
mechanisms (see section 3.2.2). However, as it was shown in section 3.2.2, these
mechanisms only produce efficient outcomes in very constrained scenarios and
under strict assumptions (e.g. in (Dellarocas, 2002) sellers are monopolists and
each buyer interacts at most once with a seller and in (Jurca and Faltings, 2003a)
the majority of agents must already be truthful for the mechanism to work).
In the case of MD, there has been comparatively little work on achieving
efficient, incentive-compatible and individually-rational mechanisms that take

IThe mechanism we develop also forms the only class of mechanisms that have these prop-
erties under a Nash equilibrium strategy when factoring trust into the decision making process.
Intuitively, this follows from the uniqueness of the VCG which charges agents their marginal
contribution to the system. Since we use a similar technique to develop our mechanism we
believe the same result will ensue (the formal proof of this assertion is beyond the scope of
this thesis).
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into account uncertainty in general. An exception to this rule is the dAGVA
mechanism (Mas-Colell et al., 1995) which considers the case when the types of
agents are unknown to themselves but are drawn from a probability distribu-
tion of types which is common knowledge to all agents. However, in our case,
the agents know their types and these incorporates their uncertainty related to
fulfilling a task. Porter et al. (Porter et al., 2002) have also considered this case
and their mechanism is the one that is most closely related to ours. However,
they limit themselves to the case where agents can only report on their own
POS. This is a drawback because it assumes the agents can measure their own
POS accurately and it does not consider the case where this measure may be
biased (i.e. different agents perceive the success of the same event differently).
Thus our mechanism is a generalisation of theirs (see section 6.5.2 for the formal
proof).

Finally, our work may also seem to be a case of interdependent, multidi-
mensional allocation schemes (Dasgupta and Maskin, 2000) where there is an
important impossibility result of not being able to achieve efficiency when con-
sidering interdependent, multidimensional signals (Jehiel and Moldovanu, 2001).
However, we circumvent this by relating the trust values to a probability that
an allocation is completed, rather than to an absolute valuation or cost signal.

6.3 A Standard VCG Task Allocation Scheme

In the rest of this chapter, we use a different notation from that presented in
chapter 4 so as to conform to the usual notation used in the domain of mechanism
design. Given this, we consider a set of agents Z, where Z = {1,..., I}, and a set
of possible tasks 7. Each agent ¢ € Z has a particular value, v;(7,6;), for having
a task (completed by another agent), 7 € 7, which is dependent on its type 6;
drawn from a possible set of types, ©;. An agent i also has a cost, ¢;(7,6;),
of attempting to complete a task. Given a vector of values, v(7, ), and costs,
c(t,0), from the set of agents, we can determine the value of an allocation K € K
where K is the set of all possible mappings of 7 to Z. Once a certain allocation
K is implemented, an agent ¢ is then asked to pay for the task(s) it requested or
receive payment for the task(s) it performed. The overall transfer of money to
a particular agent i is denoted by r;. As is common in this domain, we assume
that an agent is rational (expected utility maximiser) and has a quasi-linear
utility function (Mas-Colell et al., 1995). The following definition of the utility
function refines our earlier definition in chapter 4 to take into account costs as
well as valuations of tasks/issues:

Definition 6.1. A quasi-linear utility function is one that can be expressed
as:
Ui(K,Ti,HZ') :vi(K,Hi)—ci(K,Qi)+ri (61)

In devising a mechanism for task allocation, we focus on incentive compatible
direct revelation mechanisms (DRMs) by invoking the revelation principle which
states that any mechanism can be transformed into a DRM. In this context,
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Figure 6.1: Simple task allocation model using the VCG mechanism.

“direct revelation” means the strategy space (i.e. all possible actions) of the
agents is restricted to reporting their types and “incentive compatible” means
the equilibrium strategy (i.e best strategy under a certain equilibrium concept)
is truth-telling. Hence, in our allocation scheme, the agents report their types
to a centre which then decides on the allocation K and the reward vector r
and reports these back to the agents. The problem at hand is then to find
a mechanism M (v(r,0),c(r,0)) = {K,r} that fulfills the following commonly
sought objectives in MD:

e Efficiency: an allocation that maximises the total utility of all the agents
in the system.

o Individual Rationality: an allocation scheme is individually rational if
agents are willing to participate in the scheme rather than opting out
of it. It is commonly assumed that the utility of an agent choosing to opt
out of a scheme, u,(.), is 0. Hence, it is sufficient to ensure that the agents
derive a utility u; > 0 by being in the system.

o Incentive Compatibility: an incentive compatible system is one in which
the agents will find no better option than to reveal their true type.

Amongst the class of mechanisms that satisfy the above properties, the VCG
mechanism implements an efficient allocation under dominant strategies (i.e.
each agent has a best strategy no matter what other agents’ strategies are) (Mas-
Colell et al., 1995). Using the VCG mechanism, our task allocation problem is
then reduced to the following protocol which is shown in figure 6.1:

1. The centre receives the set of tasks 7 to be allocated from the agents (step
1).

2. The centre then posts these tasks in the vector T (step 3). Each agent 4
then reports its cost ¢; (K, 6;) (in the vector ¢(K, 0)) for completing a set of
tasks in the set of allocations K along with the reported valuation v; (K, 6;)
(in the vector ¥(K, 0)) it derives from having a set of tasks completed (step
4). In the rest of the paper, we will superscript with ‘~ those variables and
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functions that are reported to the centre (auctioneer) to differentiate from
those that are privately known. Of course, the reported values and costs
can be different from the actual values and costs.

3. The centre then solves the following standard VCG auction equation (step
5):
K* — s N , )
argmax S [Bi(K, 0,) — &(K, 0) (6.2)
=s
and computes each transfer r; in the vector r as:

ro= | Y0 [BR"0) 5K, 0,)] | - max 3 [5,(K.0,) — (K, 0,)]
je—i je—i
(6.3)
where —i =T\ i.

4. The centre allocates the tasks according to the optimal allocation K* and
implements the transfers r; (step 6).

The VCG mechanism results in an alignment of the goal of each agent with
that of the mechanism designer via the use of the transfer part of the mechanism.
Basically, each agent has as its best strategy the social optimum goal, which can
only be achieved via a truthful revelation. That is, for each agent 1,

and

Since the agents find it optimal to report their true valuations and costs, the
centre thus finds the efficient allocation in step 3 (i.e. K* = K*). The second
part of the transfer ensures that agents have u; > 0 and thereby makes the
mechanism incentive compatible.

We have thus presented a standard DRM for our task-allocation problem
that achieves efficiency, incentive compatibility, and individual rationality under
dominant strategy equilibrium. However, this mechanism only considers the cost
and value of the tasks and disregards the uncertainty about the reliability of the
agents in executing their tasks. Reducing this uncertainty through the use of
the concept trust (as calculated in individual trust models) is one of our main
goals (see chapter 1). To this end, in the next section we introduce trust as
another dimension to be used in the computation of the efficient allocation and
show why the standard VCG is neither incentive compatible nor efficient when
trust is taken into account.

6.4 Trust-Based Mechanism Design

To incorporate trust, a further dimension needs to be added to the utility func-
tion in equation 6.1 which, in turn, requires both the allocation and payment
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schemes in the VCG mechanism to be modified to take this additional dimen-
sion into account. Having defined our mechanism (see section 6.5), we prove that
it is incentive-compatible, efficient and individually-rational (in section 6.5.1).
Before doing this, however, we first need to specify the generic properties that
allow trust to be defined as a measure that can be used in computing efficient
allocations.

6.4.1 Properties of the Trust Model

As we have seen in chapters 3 and 5, many computational trust models have
been developed to allow agents to choose their most trustworthy interaction
partners or negotiate with them (as discussed in section 6.2). However, at their
most fundamental level, these models can be viewed as alternative approaches
for achieving the following properties?:

1. As can be deduced from our discussion in chapter 3, the trust measure of
an agent ¢ in an agent j normally depends both on #’s perception of j’s
POS and on the perception of other agents on j’s POS. This latter point
encapsulates the concept of reputation whereby the society of agents gen-
erally attributes some characteristic to one of its members by aggregating
some/all the opinions of its other members about that member (see section
3.1.2, chapter 3). Thus, each agent considers this societal view on other
members when building up its own measure of trust in its counterparts
(Dasgupta, 1998). The trust of agent 7 in its counterpart j, ] € [0,1], is
given by a function, g : [0, 1]l — [0, 1], (which, in the simplest case, is a
weighted sum) of all POS measures sent by other agents to agent ¢ about
agent j as shown below:

t] =g, onlse oy d) (6.6)

where nf € [0,1] is the POS of agent j as perceived by agent ¢ and g
is the function that combines both personal measures of POS and other
agents’ measures. In general, trust models compute the POS measures over
multiple interactions. Thus, as in CREDIT, the level of success recorded
in each interaction is normally averaged to give a representative value (see
chapter 3 for a wider discussion). In our model, we use such a basic model
whereby each agent records the success of a task and averages that with
its past impressions (in CREDIT we deduce a model of the agents’ POS
through a normal distribution and use a representative value from the
confidence interval of that distribution).

2. Trust results from an analysis of an agent’s POS in performing a given
task. The more successful, the more trustworthy the agent is. Thus, the

2Note that we do not focus on a particular trust model. This is because trust models
implement the above properties in their own ways and in different contexts. Therefore, we
concentrate on these abstract properties to keep the focus on the relationship between trust
and the design of an efficient mechanism. In so doing, we ensure that the properties of our
mechanism are independent of any specific trust model.
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models assume that trust is monotonic increasing with POS. Therefore,

J .
g;; > 0, where t]
is the trust of 7 in agent j and nf is the actual POS of agent j as perceived
by i. Though it may seem that this property is quite rational (in that
one does not reward bad behaviour with more trust), as we have seen in
section 5.5, some models do not implement such a property but these are
fairly rare (see discussion on Witkowski et al.’s (Witkowski et al., 2001) in

section 5.5, chapter 5)).

the relationship between trust and POS is expressed as:

Given the above, agents can update their trust rating for another agent
each time they interact (both by recording their view of the success of their
counterpart and by gathering new reports from other agents about it). Thus, if
an agent’s POS does not change, the trust measure in it should become more
precise as more observations are made and received from other agents. Moreover,
having the trust monotonic increasing with POS ensures Mirrlees’s condition
regarding fixed points in allocation schemes (Mirrlees, 1971) (which is a necessary
condition for the mechanism to be efficient) is satisfied.

6.4.2 Augmenting the Task Allocation Scenario

In this section we show how trust is to be calculated and taken into account in
the task allocation example we described in section 6.3. Here, any trust model
satisfying the properties discussed in section 6.4.1 (such as CREDIT) can be
used when actually building the system. The following changes are made (as
shown in figure 6.2):

e Each agent i reports to the centre their POS vector:
= [; - 1)

(step 1). This is the POS that an agent has observed about the other
agents. This vector may not be complete if agents have not experienced
any past interactions with other agents. However, this does not affect the
properties of the mechanism since the centre will only pick those POSs
that are relevant (and calculate trust according to these).

e The agents must also submit their respective trust calculation function
(equation 6.6) that applies over the vector of all (or part of) other agents’
reported POSs (i.e. 1), t; = g(n), to the centre before the allocation
of tasks (step 2). This allows the centre to compute the trust of agent
i in all other agents (given i’s own perception, as well as other agents’
perceptions of the task performer’s POS). Given that the trust ¢; only
affects the allocation of tasks originating from agent 4, the latter has no
incentive to lie about its trust function to the centre (otherwise it could
result in 7’s task not being allocated to the agent deemed most trustworthy

by ).
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Figure 6.2: Simple task allocation using TBM. The dotted lines represent the
modifications we make to the mechanism when using trust in the feedback loop.
The ¢ functions represent the trust functions that are used to aggregate all
POS values from other agents into a common measure of trust.

The trust function g(.) may assign different weights to the reports of different
agents depending on the level of similarity between the types of agents ¢ and —i
(where —i = Z \ ). Thus, given the trust functions and reports of POS of each
agent, we now require the centre to maximise the overall expected valuation of the
allocation (in step 5), as opposed to the valuation of the allocation independent of
trust (i.e. which the standard VCG does). This is because an agent has a certain
probability of completing the task to a degree of success which may be less than
one. We denote as 7y the completion vector of an allocation K which measures the
level to which each task in an allocation is deemed completed. Thus, the expected
value of an allocation is then (E[’Y|K7ti] Yz (K, 0)] = e G(K, Hi)) given
the trust vector t;. This captures the fact that the agent 4, that allocated the
task, determines the value of . Moreover, agent j, to which the task has been
allocated, incurs a cost independent of how agent ¢ evaluates the task. This
effectively means that the valuations are non-deterministic while the costs are
deterministic. The centre thus determines the efficient allocation K* (step 7)
such that the value of the efficient allocation is maximised.

Having shown how to fit trust into the process of determining the value of
allocations, in the next subsection we provide a simple example to show why the
standard VCG solution of section 6.3 is not incentive compatible (and thus not
efficient). This then motivates the search for a mechanism that is.

6.4.3 Failure of the VCG Solution

Consider a system of four agents where agent 4 has asked for a task 7 to be
allocated and its valuation of this task is v4(7,64) = 210. Each agent i has a
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Table 6.1: A set of four agents in which agent 4 has proposed a task.

Agenti || ¢ nt n? 7 th

1 40| 04 | 10| 0.8 | 0.5
2 80| 06 |10 0.8 | 1.0
3 50| 05 | 1.0] 0.9 | 0.86
4 oo | 0.525 | 1.0 | 0.95 | na

cost ¢; to perform the task proposed by 4 (agent 4 has infinite cost to perform
the task by itself) and does not derive any value from the task being performed.
Now, suppose that the trust function of agent 4 is a weighed sum of the POS
reports by the agents (i.e. ¢t} = a.n® where a = [0.3 0.2 0.1 0.4]). Note
that we do not concern ourselves with the reports 1} since the task is proposed
by agent 4 itself. Table 6.1 shows the cost ¢; of attempting the task, and the
observed POS value of each agent, n;, as well as the trust computed by agent 4,
ti, if each agent reports truthfully on its n;.

The VCG solution of section 6.3 determines the allocation and payments
based only on cost and valuations. However, this would clearly fail to find
an efficient allocation since agent 1 would be allocated the task despite being
the least trusted and hence most likely to fail. If we instead implemented the
VCG mechanism with the expected valuations (taking into account the trust
and POS reports), we then have K* = [0010] (i.e agent 3 is allocated the task),
ry = ro = 0 and r3 = 210y — 130. Thus, agent 3 will then derive an average
payment of 0.87 x 210 — 130 = 52.7. However, this scheme is not incentive-
compatible because agent 2 can lie about 73 by reporting 73 < 0.7357 which will
then lead to agent 2 being allocated the task and deriving a positive utility from
this allocation. Note that this scheme is exactly that of (Porter et al., 2002) for
a single-task scenario (with the modification that we use « as a level of success
rather than a binary indicator function of success or failure).

As can be seen, the VCG mechanism needs to be extended to circumvent this
problem. Specifically, we require a mechanism that is efficient given the reports
of the agents on their costs and valuations of allocations, as well as their observed
POS vector (since the VCG is affected by false reports of POS). In effect, we
need to change the payment scheme so as to make the truthful-reporting of POSs
an optimal strategy for the agent again. Once this is achieved, the centre can
then choose the efficient allocation based on expected utilities. The difficulty
with designing such a mechanism is that the centre cannot check on the validity
of POS reports of agents because it is based on a private observation carried out
by the agent. Thus two agents may legitimately differ in their observed POS of
another agent due to their different interaction histories with that agent.
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6.5 The Trust-Based Mechanism

Before presenting our trust-based mechanism (TBM), we first introduce some
new notation. Let the sum of utilities of all agents in a system given an alloca-
tion K and a completion vector v be denoted as U(K, 0,v) = >, .7 vi(K,0;,7)—
> ez ci(K,6;). Then the expected utility U(K, 6, y) before the allocation is car-
ried out is B, ¢ [U(K,8,~)] where 0 is the vector containing all agent types.
We also denote the marginal contribution of the agent ¢ to the system given
an efficient allocation K* as me; = U_;(K*,0,7) — maxgex W,i(K, 0_1-,7)]
where maxgex [U_Zv(K, O_i,fy)] is the overall expected utility of the efficient
allocation that would have resulted if agent i were not present in the system.
Now, we can detail TBM:

1. Find the efficient allocation K* such that:
K* = arg max U(K,0,v) (6.7)

This finds the best allocation; that is, the one that maximises the sum of
expected utilities of the agents, conditional on the reports of the agents.
We note here that we do not take into consideration the reward functions
of the agents when calculating the overall utility since these rewards are
from one agent to another and therefore do not make a difference when
calculating the overall utility of the agents.

2. We now calculate the efficient allocation that would have resulted if an
agent s report taken out:

K2y = g By gy (UK. 0.7) o9

, where ] = g(1\ 9;). This computes how 7); affects which allocation is
deemed efficient.

3. We now find the effect that an agent’s 7; has had on its marginal contri-
bution. Thus, find - -
D, =UK*.)-U(K*,,.) (6.9)
This distils the effect of an agent’s 7; reports.
4. Given K*, the payment r; made to the agent i is then:
r; = mc; — Di (610)

Naturally, if r; is negative it implies that ¢ makes a payment to the centre.
The first part of the payment scheme, mc;, calculates the effect that an
agent’s presence has had on overall expected utility of the system. We also
subtract D; to take into account the effect that an agent’s POS report has
on the chosen allocation. This is in line with the intuition behind VCG
mechanisms in which an agent’s report affects the allocation but not the
payment it receives or gives.

We will now prove each of the properties of TBM in turn whilst intuitively
explaining why the mechanism has the aforementioned properties.
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6.5.1 Properties of our Trust Based Mechanism

Given the mechanism presented in the previous section, we now prove its main
properties in the following order: incentive compatibility, efficiency, and individ-
ual rationality.

Proposition 6.2. TBM is incentive-compatible in ex-ante Nash Equilibrium.

Proof. We first need to calculate the expected utility, B, x ¢, [u; (K, 6;,7)], that
an agent derives from TBM because the goal of a rational agent is to maximise
its expected utility. We note here that we are assuming that the agent is myopic
in that it is only concerned with its current expected utility given the cost vector,
c(K, 0), the value vector, v(K, @), and the trust vector ¢. The expected utility
that an agent, HZ(IA( *,0;,7), derives from an efficient allocation, as calculated
from equation 6.7, given the reports of all agents in the system is:

ﬁi(f{*ﬁiﬁ) = E[VUA(*,ti] [Ui(-’?*,eiﬁ)] - Ci(-[?*aei)
+me;(K*,0;,7) — D;
=B gzt [0i(K*,60:,7) = (K", 6,,7)]
- (ci(f(*,ai) ~G(R",0)) +
U(K*,,0,v — Inax [U_i(K,0_;,7)] (6.11)

Zis
From 6.11 we will firstly prove the following lemma:

Lemma 6.3. An agent has an equilibrium strategy to reveal its observed POS
values.

Proof. We consider how n; affects EZ(I? 0;,7). From equation 6.11 we observe
that n; cannot affect U(K_;,0,v) — Maxpex [U_i(K,6_;,7)]. Thus, an agent

only has an incentive to lie so that K* is selected such that:
By ety (0K, 00,7) = 5B, 0,,7)] = (e(B7,0,) — (K™, 6,))

is maximised. If an agent reveals its cost and valuation truthfully i.e. v(.) = v(.)
and ¢(.) = ¢, we then have the term as zero. Then an agent cannot gain from
an untruthful reporting of n;. If however, an agent is to gain from such an
untruthful reporting, it needs to set either ¥(.) < v(.) and ¢(.) > ¢ or both.
However, doing so would decrease the chance of 7 successfully allocating a task
or winning an allocation. Therefore, i would not reveal untruthful values for ¢(.)
and 9(.). Moreover, i will actually report truthfully its 7; since this allows the
centre to choose those agents that ¢ deems to have a high POS (as well as helping
other agents choose i as having a perception close to theirs). Thus, reporting
7; = n; is an ex-ante Nash equilibrium strategy. O
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Given lemma 6.3, we can now show that TBM is incentive compatible. Sup-
pose an agent is truthful about ¥(.) and ¢(.). Then it derives as utility:

U(K*,;,0,v maxr Ke_m}

Now assume that the agent lies about ¥(.) and ¢(.) so as to increase its utility.
This then means that:

[.le* il ['Uz(K (91, ’Y) i}\z(K*a eia '7)] - (ci(K*a 91) - EZ(K*v 91)) +U(Kl—z7 0’ '7) > U(Kiw 97 7)
(6.12)
where K, is the efficient allocation found with ¢(.) and 9(.) without the report
of ;. However, as argued earlier, an agent would not report a lower value or a
higher cost. Thus

Bk tq) [vi (K™, 0:,7) — 0 (K*,0:,7)] — (Cz‘(f(*,e ) — Gi(K*,0; )) <0 (6.13)
Furthermore, by the maximisation of step 2 of TBM:

U(K",,0,7) < U(K*

—1 —1

9,7) (6.14)

if all other agents report truthfully. Thus, TBM is incentive-compatible in a
Nash equilibrium. O

Proposition 6.4. TBM is efficient.

Proof. Given that the agents are incentivised to report truthfully (proposition
6.2), the centre will calculate the efficient allocation according to equation 6.7
(i.e. K*=K*). O

Proposition 6.5. TBM is individually-rational (in expected utility).

Proof. We need to show that the expected utility of any agent from an effi-
cient allocation K* is greater than if the agent were not in the scheme (i.e.
w;(K*,6;,7v) > 0). As a result of the inherent uncertainty in the completion
of tasks, we cannot guarantee that the mechanism will be ex-post individually-
rational for an agent. Rather, we prove that the mechanism is individually-
rational for an agent if we consider expected utility. Given truthful reports, the
utility of an agent from equation 6.11is U(K*;, 0, v)—maxex r (K,0_;, 'y)]

The first maximisation is carried out without the reports n; —t ,whereas the sec-
ond maximisation is carried out over the set of agents Z \ i. Thus, the second
maximisation is carried out over a smaller set than the first one. As a result:

max [U_;(K,0_;,7)] > U(K*

such that @, (K*,0;,v) > 0. O
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6.5.2 Instances of TBM

TBM can be viewed as a generalised version of the VCG mechanism in which
there exist uncertainties about whether a set of agents will carry out an alloca-
tion and about the relevance of reports of POS by agents. In this section, we
demonstrate its generality by analysing two specific instances of the mechanism.

6.5.3 Self-POS Reports Only

The non-combinatorial mechanism developed in (Porter et al., 2002) is a special
case of TBM. Specifically, agents only report on their own POS (i.e. 7; = 7?)
and agents assign a relevance of 1 to reports by all other agents. However, since
in their model their is no notion of varying perceptions of success, we need to
introduce the notion of a report agent that has v(K,.) = 0 and ¢(K,.) = oc.
This acts as a proxy to agents reporting the ex-post POS to the centre. This
also caters for the problem of single POS reports as there is then no measure
of t! once j’s report is removed (and hence U(K*,,.) is undefined). The centre
then calculates the efficient allocation as:

K* = arg max [U(K ,0,7)] (6.16)

and the payment to the agent zis Ty =Mme; — D; = mc;. The term D; = 0 since,
as a result of the report agent, U(K*,.) = U(K*,,.) (because t is equal in both
cases are the same).

6.5.4 Single-Task Scenario

Consider the single task scenario (as presented in table 6.1) where an agent k
proposes a single task 7. Using equation 6.7, the efficient allocation is then
simplified to:

K* = [* K*.0, }
arg max | U( 7)
The payment to agent ¢, from equation 6.10, is then:

T = E[7|Kii,tk] [Uk(Kiiv 916)’7)] +/C\l(K*7 91’77) - Ziela(Kiia 01’7’7)

6.17

—maxgek |:E[7|K,tk] [vi (K, Ok, 7)] — Zje—igj(K’ O—iﬁ)] ( )
Since the above single-task scenario is an instance of the TBM, it is still
incentive compatible. Therefore, when applying the above allocation scheme to
the example, we can take the reported values of the agents as being truthful.
Given this, the efficient allocation is agent 3 getting to do the task. Then, we
need to check whether agent 3’s report has made itself more attractive. To do so,
we remove the report of agent 3 and end up with agent 4 having a trust vector
tf1 =[0.5 1.0 0.9] which again leads to agent 3 being allocated the task. Thus
agent 3 will get an expected utility of 210 % 0.8667 — 50+ 50 — 130 —50 = 2.
Agent 1 and 2 no longer have an incentive to lie about the POSs since this
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would not increase their utility. However, suppose that, after the allocation,
every type becomes common knowledge. Then agent 2 can deduce that lying
about its costs and reported POS would allow its utility to increase. This would
have been maximised when agent 2 reports ¢x(.) = 110 and 75 = 0. However,
before the allocation is carried out and payments are made, agent 2 would not
know about the private types of other agents and may reduce its chance of
deriving a positive utility by reporting ¢(.) > c2(.). Furthermore, agent 2 does
not report 7 > < M3 > since then ug(.) = 0 even if it wins the allocation. A
similar argument applies to agent 1. Thus, the mechanism has an ex-ante Nash
Equilibrium of truthful reporting.

6.6 Experimental Evaluation

Given that our TBM relies on the agents’ individual trust model, it is important
to show how the trust models can affect the (efficient) outcome chosen. This is
because, trust models at the individual level need a number of interactions to
refine their measures and may also be affected by biased reports (see discussion
in sections 3.1.2 and 3.2.2 in chapter 3) such that the actual efficient outcome
(i.e. one which maximises the utility and chooses the most reliable agents) may,
at times, not be chosen. Hence we empirically evaluate TBM by comparing it
with the fault tolerant mechanism (FTM) of (Porter et al., 2002) (this is chosen
because it also deals with the POS of agents as discussed in sections 6.2 and 6.5.2)
and the standard VCG. We refer to task performing agents as contractors in what
follows. In our experiments we perform 500 successive allocations, in the scenario
described in section 6.4, with six agents each given one task to complete. After
each allocation, contractors perform tasks and the level of success is measured
and reported to all agents. Each agent can then update its measure of the
contractors’ POSs as well as the contractors’ trustworthiness as discussed in
section 6.4.1. The valuations and POS of each agent are obtained from a uniform
distribution and the costs are the same for all tasks. We iterate the process and
average the results (here for 200 iterations). Given the properties of TBM and
FTM we postulate the following hypotheses and validate them as shown below:

Hypothesis 6.6. TBM always chooses the efficient allocation (K*) in the long
TUN.

This hypothesis reflects the fact that we expect agents in TBM to take a
number of interactions to model the true POS of their counterparts, using their
individual trust models. After this time, however, the mechanism can choose
those contractors that are most successful at completing a given task. As can
be seen in figure 6.3, the optimal allocation chosen by TBM, K*T BM, reaches
the efficient allocation K* (given real POSs) after 116 interactions.® After 116
interactions, the POS of each contractor is accurately modelled, as is the trust

3The results were validated using a student’s t-test with two samples of 100 and 200
iterations assuming equal variances with means p; = 0.99999 and p2 = 1.0 and p-value
p = 0.778528. This means that the difference between the means is not significant.
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of agents in their contractors. Thus, the most trusted and utility maximising
allocation is found by the TBM. This result is observed for all cases where the
POSs of contractors are varied.

Hypothesis 6.7. TBM finds better allocations than FTM when contractors’
own reported POS are biased.

While FTM only takes into account a contractor’s own reports, TBM uses the
trust model of the various individual agents (which take into account reports not
only from the contractor) to make an allocation. In the particular trust model
(based on CREDIT) we use in TBM, an agent can give different weights to
reports from different agents (as shown in section 6.4.3). We therefore varied
the weight w, assigned to a contractor’s report of its own POS in the trust model
of an agent. Here we exemplify the cases where w = 0.5 (i.e. the contractor’s
report is given equal weighting to the agent’s perceived POS), w = 0.25 and
w =0 (i.e. no importance is given to the contractor’s report).

As can be seen, our hypothesis is validated by the results given in figure 6.3
(with normalised expected values). Note here that K*VCG is the allocation
independent of POSs or if POSs of agents are all equal. We note as K*T BM,,
the allocation chosen by TBM with a weight w.

1
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Figure 6.3: Expected value of chosen allocations for TBM and FTM where K* =
1, K*VCG = 0.909, and at equilibrium, K*TBM = 1, 0.97 > K*TBMj 25 >
0.94, 0.86 > K*T'BMy5 > 0.84, and K*FTM = 0.8.

In more detail, TBMj (i.e. TBM) reaches the optimal allocation K* (i.e.
equivalent to zero bias from the seller) after 116 iterations, while T BMj o5 and
TBMjy5 settle around a sub-optimal allocation (the expected value of which
decreases with increasing w). Moreover, FTM is seen to settle at K*FTM = 0.8
after 82 iterations. In general, it is noted that F'TM always settles at K*FT M <
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K* (and sometimes even K*FTM < K*VCG as in figure 6.3 depending on
the valuations agents have for the tasks). This result is explained by the fact
that the biased reports cause biased trust values to be obtained by the centre
which then chooses a sub-optimal allocation (i.e. less than K* which chooses
agents according to their ‘real POSs’). TBMj.o5 and TBMy 5 are less affected
by biased reports since the weighted trust model reduces the effect of bias on
the overall trust values (but still affects the mechanism). In most trust models,
however, w > 0.5 is never given to the contractors’ POS report and here it
only represents an extreme case (Ramchurn et al., 2004b). Moreover, if the
bias is removed, then FTM and the weighted TBMs behave the same as TBM
since the agents then perceive the same POS and all achieve K*. It was also
observed that the speed with which TBM and FTM achieve K* also depends
on the difference between the optimum allocation and other allocations. This is
because the smaller the differences, the harder it becomes to differentiate these
allocations given imperfect estimations of POSs (i.e. the larger the samples, the
more accurate the POSs are, hence the longer the learning rate).

6.7 Summary

This chapter concludes our work on trust in general. At the individual level, we
first developed the CREDIT trust model in chapter 5 and showed how it could be
used by agents in direct negotiations when the agreements reached are prone to
uncertainty. In this chapter, at the system level, we have developed a trust based
mechanism that takes the burden of computation from the agent in order to come
to optimal allocations while being robust to uncertainty. In particular, we have
introduced the notion of Trust-Based Mechanism Design as a generalisation of
the VCG mechanism by using the trust model of individual agents in order
to generate efficient allocations. We have developed a Trust-Based Mechanism
and proved that it is efficient, individually rational, and incentive compatible.
Moreover, we have empirically evaluated TBM and shown that it always achieves
the optimum allocation in the long run and achieves better allocations than its
closest comparison when contractors provide biased reports of their probability
of sucess (POS).

Generally speaking, through CREDIT and TBMD, we have achieved our
main objectives (set in chapter 1) with regards to reducing uncertainty about
the reliability and honesty of agents through an agent’s reasoning mechanism (i.e.
through CREDIT) and through the protocol (i.e. through TBMD). However,
these models do not specifically consider uncertainties about the action set and
preferences of the agents. In the next chapter, we complement this with a
novel PN mechanism that can be used in bargaining encounters to reduce such
uncertainties through the use of arguments. These arguments aim, on the one
hand, to better explore the preferences of the bargaining agents and, on the
other, to reduce the space of offers (i.e. the action set) agents need to search to
find an agreement.






Chapter 7

Persuasive Negotiation for
Autonomous Agents

In chapters 5 and 6, we presented CREDIT and TBMD as models that reduce
the uncertainty that arises in negotiations between autonomous agents. While
reducing uncertainty about the reliability or honesty of agents, these models do
not consider uncertainty about the action set and the preferences of agents in
bargaining encounters. However, as stated in chapter 1, techniques that can
reduce these uncertainties can help ensure that agents are able to reach better
agreements faster. To this end, in this chapter we develop a new model of
PN that attempts to reduce such uncertainties through the use of persuasive
arguments. These arguments are rewards that are either given or asked from one
agent to another during the bargaining process. In our model, a reward implies
a constraint on the outcomes of future encounters (in favour of one agent or the
other) such that the expected outcome under this constraint entices an opponent
to accept an offer in the present encounter. Our model of PN consists of both
the protocol and the reasoning mechanism that allows agents to exchange such
arguments.

In more detail, we build upon existing protocols (Sierra et al., 1998; Bentahar
et al., 2004) (as discussed in section 2.3) to manage the commitments that arise
during PN using dynamic logic. Given this, we develop a new algorithm that
can be used with the offers generated by standard (non-persuasive) negotiation
tactics so as to compute rewards. Thus, we empirically show that the agents
generally reach agreements with higher expected utility when they use our algo-
rithm than when they do not. Moreover, we develop a new reward-based tactic
(RBT) for PN that aims to optimally determine offers and rewards during the
negotiation. We empirically evaluate the model and show that our RBT is able
to reach agreements with even higher expected utility than standard negotiation
tactics (with or without the PN component). Finally we evaluate RBT when the
properties of the negotiating agents are varied and therefore identify the main
factors that impact on the efficiency and effectiveness of rewards.

169
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The rest of this chapter is structured as follows. Section 7.2 details the
theory we use to describe the protocol agents will use to negotiate. Section
7.3 describes the reasoning mechanism used by agents to specify and evaluate
offers and counter offers as well as the rewards they may use in a negotiation
scenario based on an MMPD. Then the system is experimentally evaluated in
section 7.4. Section 7.5 finally summarises the main contributions of this work
and their implications for practical applications. First, however, we discuss the
main issues that arise when arguments are used in negotiation in the following
section.

7.1 Introduction

As was discussed in chapters 1 and 2, bargaining between autonomous agents
normally proceeds as a series of offers and counter offers (Fatima et al., 2004;
Faratin et al., 1998). These offers generally indicate the preferred outcome for
the proponent and the opponent may either accept or counter-offer a more viable
outcome. Recently, there have been a number of attempts to enrich this negoti-
ation process by allowing agents to express different preferences or information
during negotiation. These preferences or information have been generally char-
acterised as arguments (see chapter 2 for more details) which aim to support a
particular offer and therefore help in persuading an opponent to accept it. These
arguments can either contain some form of justification or represent some form
of reward, threat, or appeal. These two mechanisms represent the two main
ways of performing ABN, that is justification based negotiation and persuasive
negotiation (see sections 1.4 and 2.2 respectively). In this work, we are mainly
interested in PN (for reasons discussed in chapter 1) where the rewards or threats
have a clearer impact on an agent’s utility.

However, introducing threats or rewards in the negotiation process impacts
on many aspects of an agent’s reasoning mechanism and, to this end, various
attempts at dealing with these were discussed in chapter 2. Despite these works,
however, much work still remains to make these approaches provably better
than non-PN negotiation mechanisms (e.g., Faratin et al. (1998); Fatima et al.
(2004)). In more detail, even though threats or rewards imply either a reduction
of or an increase in an agent’s utility respectively, these types of arguments have
never been given clear semantics in terms of the actions or events that can be
properly assessed to evaluate their impact. This is particularly important when
it comes to implementing such mechanisms and comparing their efficiency with
other negotiation mechanisms. Moreover, the use of threats raises the issue of
non-credible alternatives (or empty threats) (Hovi, 1998). Indeed, if we take the
case of two agents which do not have any information about their opponent’s
preferences, it is nearly impossible for them to make any credible threat, and
there might be no purpose to enact threats if it costs an agent to do so (see (Hovi,
1998) for more details). In addition to this, the literature on negotiation has
shown that, while threats can allow good agreements to be reached in specific
settings, it is normally not recommended to use them since they usually cause
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mutual recriminations and the breakdown of relationships (repeated encounters)
(Raiffa, 1982; Fisher and Ury, 1983; Schelling, 1963).

Given this background, we focus on the use of rewards in our model of persua-
sive negotiation in repeated encounters. Rewards have the advantage of having a
clear economic benefit for the agent receiving it and entail a direct commitment
by the agent giving it to continue a long term relationship which is beneficial to
both participating agents (as opposed to threats which break relationships down
and are not guaranteed to be enforced which makes them harder to assess in a
negotiation encounter). This aspect of rewards makes it particularly suited to
our objectives of reducing uncertainty over repeated encounters as in CREDIT
and TBMD (see section 1.5 chapter 1). As discussed in section 2.2, rewards have
mostly been pictured as promises to give a particular resource or prize at a later
point in time. In our work, we propose that agents may also ‘ask’ for rewards.
This is common in negotiations where the negotiators ask for a favour in future
for accepting to concede in the current round of negotiation (Raiffa, 1982; Fisher
and Ury, 1983). The use of such rewards (given or asked) is, however, different
from negotiating multiple issues at the same time (as shown in CREDIT) where
the trade-off is normally made on the negotiated issues and the agreement is
settled then and there (Fatima et al., 2002, 2004). In contrast, rewards are con-
tingent upon acceptance of an offer and there is normally some uncertainty as
to whether and to what extent they will be carried out. This uncertainty exists
because agents may not want to clearly define the nature of the rewards since
they do not know their future costs or the probability of meeting again (e.g., a
seller may not give the full extent of a discount even if it promised to give it
earlier, or a buyer may ask for a low price on a car with a promise to buy another
similar car in future at the same price but the buyer may change her mind and
buy another car at a lower price). Given this, a key issue that arises is that of
determining what actually constitutes a reward in agent based negotiation. To
resolve this issue, we allow rewards to be an endogenous factor affecting the ne-
gotiation (i.e. built in operations on the negotiation object) rather than leaving
the notion of rewards as an exogenous aspect of negotiations (i.e. as an external
object to be given or asked). In so doing, it is possible to define a general deci-
sion making model that evaluates rewards thus defined as well as those that are
defined for other application contexts. Moreover, it is possible to analyse the
properties of this mechanism with a relatively small number of constraints (i.e.
the preferences and attributes of the agents) that are general enough to fit any
given context. This allows us to formulate a better analysis of the problem and
develop the persuasive negotiation mechanism that has a better grounding than
most models which stand on abstract bases.

In the context of this thesis, we apply the persuasive negotiation to long-term
relationships (i.e. repeated encounters) between autonomous agents and devise
mechanisms to rectify the shortcomings we identified in other models in section
2.3.

e First, while making offers about short term agreements, agents are also
allowed to offer or ask for rewards in the form of constraints over future
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agreements. In so doing, we also tackle the problem of bargaining in long-
term relationships (Muthoo, 1999), an aspect that has been overlooked by
the agent’s community.

e Second, we provide a novel protocol that specifies commitments that agents
make to each other in engaging in persuasive negotiations. Specifically, the
protocol aims to show how commitments can be made and retracted by
issuing proposals and rewards or by performing some actions.

e Third, we provide a Reward Generation Mechanism (RWG) that specifies
when and what arguments can be sent during a bargain. Moreover, we
show these arguments should be calculated relative to a given offer as
calculated by non-PN negotiation tactics.

e Fourth, we devise a novel reward based tactic (Reward Based Tactic
(RBT)) for generating offers and arguments and show that it can lead
to better outcomes than non-PN tactics (tagged with RWG and without).

e Fifth, we analyse the properties of our RBT under different conditions
in order to deduce which are the most important factors that affect the
effectiveness and applicability of arguments in bargaining.

7.2 The Negotiation Protocol

Negotiation proceeds via an exchange of offers and counter offers. In general,
the specification of such a protocol is rather simple in that there is only one type
of commitment (see definition 1.4) upheld by each agent at any one time (that is
enacting the proposal if its offer is accepted). However, extending the protocol
to encapsulate arguments means that other commitments (pertaining to the
enactment of the content of arguments) must be specified for the agents issuing
these arguments (Walton and Krabbe, 1995; McBurney et al., 2003; Bentahar
et al., 2004). These commitments can then be checked by an institution or
arbitrator in order to make sure that the agents are doing what they are supposed
to and thus provide guarantees of proper behaviour (as discussed in section 1.2).

As discussed in section 2.1 there are a number of representations, such as
Sierra et al.’s state machines or McBurney’s commitment rules, that can be
used to specify how these commitments can be made or retracted by the illo-
cutions (what the agents say) and the actions (what the agents do). However,
given that arguments are likely to result in a large number of states and state
transitions and that the enactment of arguments requires clear semantics of ac-
tions to be performed, we specify our protocol in terms of Harel’s dynamic logic
(DL) (Harel, 1984). This type of action-based logic is particularly suitable for
specifying programs or sets of actions which have start and termination condi-
tions and constructs similar to a negotiation encounter. For example, as shown
in section 2.1, the work of Bentahar et al. (2004) provides a particular characteri-
sation of aguments using a combination of dynamic logic and CTL (computation
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tree logic). However, as we argue in section 2.3, their work does not deal with
promises of future rewards as arguments and these have a particular meaning
that is not captured by the commitments Bentahar et al.’s use. To remedy this,
in our model we extend their work to cater for rewards that act as arguments.
To this end, we first provide a brief overview of the constructs of dynamic logic
and then specify the protocol in detail.

7.2.1 Background

The main components of DL are described as follows (see (Harel, 1984) for more
details). Agents perform atomic actions ag,as, .. € IIy. Iy represents the set of
all atomic actions. Atomic programs are basic and indivisible; they execute in a
single step. They are called atomic because they cannot be decomposed further.
I" is the set of formulae. The formulae in I' are true or not in given states and
the agents change states according to the actions they perform.

A program II is generated from Ily by composing atomic actions using the
following operators ;,*,?,U. ay;a,, signifies that a,, is performed after a, (i.e.
sequential composition) while af implies an iteration of a, an indeterminate
number of times, 7 tests whether ¢ is satisfied in the current state, and a,, Ua,
specifies a non-deterministic execution of either a or b. Moreover, [a]p denotes
that after program a € II is executed, ¢ € T is necessarily true. (a)y denotes
that after program a € II is executed, it is possible that ¢ € T is true. We
also introduce the predicates Do to denote the action of making a formula true
and Done to check whether an action has been executed (then true) or not
(then false). Thus [Do(p)]p means that after the execution of Do(y), ¢ is
necessarily true. Similarly, [a]Done(a) means that after executing a, Done(a) is
true. Finally al denotes that the execution of program @ is not possible in any
state. The propositional operators A, V, =, «>, and 1 can be defined from — and
0 in the usual way.

In DL we first capture the set of all states of the world through the set S.
Then, p : IIy — 29%9 is a function taking a program and giving the correspond-
ing set of pairs of starting and end states. In our model, the states of the world
are completely represented by the ‘social’ commitments (‘social’ since they re-
sult from a public expression of a commitment that can be tracked by everyone
in the society). We denote social commitments with the predicate SC. Agents
therefore make social commitments to each other about particular actions which
may involve deals or contracts as defined in chapter 4 (the result of the negoti-
ation encounter), noted as (z, = vp) A ... A (T, = vy,), agents come to during
and after a negotiation dialogue respectively. Here z,, = v,, means that an
issue x,, in the deal takes a value v,, (we detail these in the next section).! The
social commitments and enactment of deals are well formed formulae that can
be made true or false according to the actions agents take. Hence, the function p
in our model takes an action and returns formulae that represent the beginning
and end state of that action. We will show the start and end states using the

LOther mathematical operations such as <,=,> can also be used in contracts.
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commitments and deals. Thus we give semantics to the negotiation dialogue in
what follows.

7.2.2 The Syntax

Agents negotiate by sending illocutionary particles which contain offers and
counter-offers. These illocutionary particles are considered to be actions as per
speech-act theory (see section 1.4). Illocutions, from the set I C IIy, generally
talk about other illocutions (to be sent at a later time) or about contracts that
can be made between the pair of negotiating agents. The set of contracts to be
enacted by a group of agents g € G where G C Ag, is denoted as Og. In more de-
tail, we refine the definition of a contract from chapter 4 to mean a composition
of a number of actions noted as (Do(x1 = vi Axa = v2 A ... AZyy = vp)) € Ofay
which implies that agent « is to ensure that (x = v) € WFF (i.e. issue z takes
the value v is a well formed formula) such that [Do(x = v)](z = v). A con-
tract would obviously contain some actions to be performed by the sender and
some by the receiver (as in section 4.1) such that O, gy = O(ay U Oygy. We
require that each variable x in a deal occurs at most once and that the number
of variables and the values taken by them is finite.

We conceive of two general classes of illocutions that can be used in persuasive
negotiation. The first consists of negotiation illocutions I, that are used in
negotiation, while the second contains those illocutions I,e,s that are added
to form the persuasive part of negotiation. Moreover, both these classes of
illocutionary acts form the set I = Ij,cq0 U Ipers. In a dialogue between agents
«a and (3 for example, we note [ g C I as being those illocutions that are sent by
o to . Finally, the set I, and I3 denote the set of all illocutions that a and
0 can send respectively. In what follows, we detail the syntax of each of these
illocutions.

Negotiation Illocutions

I,cq is the set of the usual negotiation illocutions noted as i(«, 3,p) € Ineq Where
i € {propose, accept}. These illocutions are described as follows:

e propose(a, 3, p) — denotes that « sends a proposal to § to accept the deal
given in p € Oy, 5y -

e accept(a, 3, p) — denotes that o accepts to enact the contents of p € Oy, 53
that it is supposed to perform (i.e. the part Oyq)).
Persuasive Illocutions

We specify persuasive illocutions as follows: i(a, 3,p,q) € Ipers where ¢ €
Deals U I and p € Oy, 5 and i € {askreward,reward}. As for negotiation
illocutions, we specify below the type ¢ takes in the illocution.

e reward(a, 3,p,q) — denotes that o will reward 3 with ¢ € Oy U I, if
3 accepts the deal proposed in p € Oy, gy. As can be seen, g can either
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be a deal that is favourable to § or an illocution that will help 3 in future
(e.g. enhance the reputation of 5 or an accept of a deal to be presented at
a later time).

e askreward(a, 3,p,q) — denotes that a asks for a reward ¢ € Og, U I
from 3 if 3 accepts the offer presented in p € Oy, gy-

Having exposed the syntax of these illocutions, we next describe the compo-
nents that allow us to give semantics to these illocutions.

7.2.3 Semantics of Illocutions

As discussed in section 7.2.1, the actions or programs performed by agents result
in changes in the state of the world. In our model, programs consist of a number
of illocutionary acts or the execution of deals. To give semantics to our model
we exploit the theory presented by Bentahar et al. (2004). In their model, the
authors prescribe commitments that hold in different states of the world and
agents are able to navigate between different states through the actions they
perform. In short, these actions lead to some commitments becoming true or
false (i.e. commitments are equivalent to well-formed formulae in our model).
We therefore extend the work of Bentahar et al. to incorporate the notion of
persuasive negotiation. To this end, we first conceive of Comms as the set of
social commitments that can be made in a dialogue as a result of illocutions
being uttered and that can be retracted as other illocutions are uttered or other
actions are executed. At the beginning of a negotiation dialogue (i.e. before
any agent says anything), all the commitments are false. As the negotiation
proceeds, some will become true (active) or false (inactive) according to the
illocutions sent. Some commitments might also become false after some actions
are performed after negotiation. In general, we specify a commitment in the
following way:

SC(a, B, p,q) € Comms

which implies a social commitment by a to 8 to commit to ¢ if ¢ is true. By
specifying ¢ in terms of the state resulting from the execution of an illocution
or a contract, it is then possible to define different commitments that result
from issuing propose, accept, reward, or askreward as we show in the following
subsections.

Basic Axioms

We start with the basic axioms and explain each of them.

o [propose(a, 3,p)]SC(a, B, Done(accept(B, a,p)),p). This means that «
commits to enacting p if 3 accepts the proposal. We deal with seman-
tics of accept in the next section.

SC(a, B, Done(accept (83, o, p)), p)

o |reward(e.5.2.0| N 5o, 3. Donelaccept(B, a.p):p),q)
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This means that a commits to ¢ and its part of the deal p if 3 accepts the
deal p.2

SC(a, 8, Done(accept(f, a, p)), p)

means that [ is committed to giving ¢ to « if 8 ever accepts p and p

is enacted at a later point in time. Moreover, o commits to enacting the
proposal if 3 accepts.

o |askreward(a, 3,p, q)} A This

We next outline the axioms that specify the constraints that exist over pro-
posals and rewards:

o Mutually exclusive proposals

a,B,p,p".p' #p

This is a basic statement saying that our protocol does not keep previous
offers (here p’ € Oy, 1) on the negotiation table.

o Mutually exclusive rewards

A | A SC(a.B, Done(ace;p), q) — ~SC/(a, B, Done(ace; p). )

a,B,p \a0:9',97#49

where acc = accept(,a,p) if ¢ or ¢’ is a reward offered by «a, acc =
accept(a, B, p) if a asked for a reward ¢ or ¢/, and ¢,¢' € Oq 53 U Ia.

This implies that there cannot be two rewards associated with the same

deal at any given time.

o Mutually exclusive rewards and proposals

A [ A\ ~(5C(a, 8, Done(accept(8,a,p); p), q) A SC(8, , Done(accept(8, a,p);: p'), ')
a,8,4,9" \p.p’

where p,p’ € Ofq gy

In essence this means that a’s commitment to giving a reward ¢ and en-
acting p cannot hold together with a commitment by (§ to give ¢’ to «
(which would have asked for it before hand) and enacting p’.

2We assume here that the contract p is executed after the accept. In other cases, we
might have intermediate contracts being enacted between the reception of the accept and the
enactment of p but we do not consider this here.
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Dynamics of Commitments

Here we detail those axioms that illustrate the interaction between different
commitment types.

Accepting Proposals and Rewards

e Accepting a proposal:
SC(a, B, Done(accept(S, a, p)), p) —[accept(S, a, p)]
=SC(a, B8, Done(accept(f, a, p)),p)
A SC(a, B, true,p') A SC (B, a, true, p”)
where p’ € Oy, p” € Ogpy, and p = p' U p”. Here we express that both

agents are committed to enacting the content of the deal if the recipient
of the offer accepts.

e Accepting a reward:

SC(a, B, Done(accept(B, a, p); p), q) —[accept (3, a, p)]
A SC(a, B, true,p’) A SC(B, o, true, p)
A SC(a, 8, Done(p), q)

where p’ € Oqy, p” € Oypy, and p = p’ Up”. This signifies that o and

[0 commit to enacting the proposal if the proposal is first accepted and «
will give the reward ¢ € Oqy U I, if p is enacted.

e Accepting a request for a reward:

SC(av, B, Done(accept(e, 3,p); p), q) —laccept(3, , p)]
~5C(a, 8, Done(accept(a, 8,p); p), q)
A SC(a, B, true,p’) A SC(B, o, true, p”)
where p' € Oqy, " € Ofpy, and p = p’ Up”. This signifies that o and
[ commit to enacting the proposal if the proposal is first accepted and [
will give the reward g € O3y U I if the proposal p is enacted.

Changing Offers or Arguments
e A new proposal after another proposal:
A (SC(a, B, Done(accept(B, a,p)),p) — [propose(a, 5,p)]p)
a,B,p,p" ,p#p’

where SC(a, B, Done(accept(3,a,p')),p’) A
-SC(a, B, Done(accept(B,a,p)),p) = . Here we show how com-
mitments to a previous proposal p are revoked when a new offer p’ is
made.
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e A new proposal after a reward:

/\ (SC(a, B, Done(acc; p), q) — [propose(a, 3,p")]¥)
a,3,p,p",p#p’

where © = SC(a, B, Done(accept(B, a,p’)),p’) A
-SC(a, 8, Done(acc; p),q), acc = accept(B,a,p) if a has offered re-
ward ¢ and acc = accept(a, 3,p) iff 5 has asked for reward q. Here we
specify that an agent revokes a commitment to p and reward ¢ (given or
asked for) if it proposes a new offer p’.

A new reward following another reward:

N (SC(aB,ace,q) — [reward(a, 8,p,d))

a,8,p,9,9',a7#q’

where © = SC(«, B, Done(accept(B, o, p);p),¢') A
-SC(a, B8, Done(acc; p),q), and acc = accept(B,a,p) iff « offers re-
ward q and ¢’ and acc = accept(a, 3,p) iff B asks for reward ¢ or ¢’. This
specifies that o commits to a new reward ¢’ and decommits from a past re-
ward ¢ (given or asked) if it offers a new reward given the same proposal p.

A new proposal and reward following another proposal and reward:

A (SC(a, B, Done(acc; p), q) — [reward(a, 3,7, q)lp)
a.B,q,p,p’ ,p#p’

where © = SC(«, B, Done(accept(B,a,p');0'),q) A
-SC(a, B, Done(acc; p),q), and acc = accept(B,a,p) iff a gives re-
ward ¢ and acc = accept(w, 8, p) iff 8 asks for reward ¢. This says that «
commits to a new proposal p’ and the same reward gq.

Asking for a reward after another reward:

N (SC(a, 8, Done(ace;p), q) — laskreward(a, 3,p,q'))¢)

a,8,p,4,9",a#q’

where %) = SC(B8, a, Done(accept(B, a, p);p),q") A
-SC(a, 8, Done(acc; p),q)), acc = accept(B,a,p) iff « offered re-
ward ¢ and acc = accept(a, B,p) iff B asked for reward ¢. This means
that « revokes its commitment to give a different reward ¢ if it asks for a
reward ¢’ from (3. This ensures there only exists one offer and one reward
on the table at any time.

e Asking for a reward after another proposal (with reward):

N\ (SC(a, 8, Done(acc:p),q) — laskreward(a, 8,p',q)))
a,B3,q,p,p’ ,p#p’
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where © = SC(8, a, Done(accept(5, a, p’)), q) A
-SC(a, 8, Done(acc; p),q)), acc = accept(B,a,p) iff « offered re-
ward ¢ and acc = accept(a, 3, p) iff § asked for reward ¢. This says that
o« commits 3 to give reward ¢ if it accepts the offer in p’ while revoking
its commitment to give ¢ if 8 accepts p.

Enacting Proposals and Rewards

SC(a, B, true, p) — [p]=SC (e, B, true, p)

where p € O(,y. This simply means that after the deal p is achieved the commit-
ment is revoked. When £ also fulfills its commitment to its part of the contract,
we consider the contract of the agents to terminate at this point. However,
in the case where a reward has been given or offered earlier, the enactment of
the proposal leads to an unconditional commitment to enacting the reward as
follows:

SC(w, B3, Done(p),q) — [p]-SC(«, B, true,p) A SC(a, 8, true, q)

The commitment to the reward ¢ is then revoked when the reward is enacted in
the same way as for a proposal. This can be achieved simply by substituting the
offer p by the appropriate reward (given or asked) that ensues from accepting a
particular offer.

7.3 The Persuasive Negotiation Strategy

Given our protocol for persuasive negotiation, and knowing the effects of com-
mitments, we now deal with the reasoning mechanism that agents must use at
negotiation time to generate and evaluate offers and rewards. In particular,
we do so with respect to the requirements identified by Jennings et al. (1998)
(described in section 1.4):

1. Mechanisms must exist for passing proposals and their supporting argu-
ments in a way that other agents understand — the protocol we have
provided in section 7.2.3 accounts for this part of the agent’s reasoning
mechanism in that the agent only needs to choose the appropriate illo-
cution to express the meaning of its offer and rewards (asked or given).
The protocol also clarifies the meaning of the illocutions and their content
through the commitments they entail.

2. Techniques must exist for generating proposals (counter-proposals) and
for providing the supporting arguments — this demands that agents be
endowed with strategies to generate offers. Here we will assume no prior
information (except that of the knowledge of a conflict of preferences and
the domain of discourse) about the opponent (as is commonly the case
in most models (Faratin et al., 2002; Fatima et al., 2004)). In this case,
the heuristic-based approach has a proven track record of eliciting good
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outcomes and so this is the approach adopted here (see section 1.2). Gen-
erally, these mechanisms assume no knowledge of the opponent and decide
on offers and counter offers according to the behaviour of the opponent
(behaviour-dependent tactics), the deadline of the agent (time-dependent
tactics), and the amount of resources available (i.e. resource-dependent
tactics) (Faratin et al., 1998) (see section 7.4.2).

3. Techniques must exist for assessing proposals (counter-proposals or cri-
tiques) and their associated supporting arguments — this means that
agents need to be able to evaluate the economic benefit of proposals and re-
wards to them. This is normally captured by evaluating the incoming offers
against the agent’s preference structure or utility function. However, as we
will see, in repeated encounters, agents do not know the outcome of future
games a priori; that is, there exists some uncertainty about such outcomes
(see section 2.3). This uncertainty needs to be taken into account in the
decision making of the agents in prior games. Currently, however, there
is no negotiation technique that deals with strategies specifically tailored
for such repeated encounters and we aim to use persuasive negotiation to
do so by minimising the uncertainty of future outcomes through the use
of rewards.

4. Techniques must exist for responding to proposals (counter-proposals or
critiques) and their associated supporting arguments — here again the
heuristic-based models can provide good reponses to offers and counter
offers. We will give special attention to those heuristic-based models that
try to achieve pareto-efficiency (the Nash solution discussed in chapter 1)
in the bargaining encounter such as Faratin et al.’s model (Faratin et al.,
1998). In so doing, we aim to develop a bargaining mechanism that seeks
the most efficient partitioning of resources.

In general, through persuasive negotiation, we give agents a means of influ-
encing future negotiations through rewards, rather than just exchanging offers
and counter offers that only impact the outcome of the present encounter. Given
that negotiation normally occurs over the partitioning of some resource, the re-
wards, in our case, aim to constrain this partition by imposing bounds on or
settling agreements on future negotiations. Thus, promises of rewards (asked
for or given) partially determine the partitioning of resources to be negotiated
at a later time. For example, a seller may reward a buyer with a discount of
at least five pounds on her next purchase if she agrees to buy some goods at
the price offered and the buyer may agree to this if she believes the discount is
worth it. Similarly, a buyer might reward a seller with a guarantee to buy its
next stock of goods from the same seller if a good price is offered on the current
stock being negotiated and the seller may agree to this rather than continue
negotiations. Such promises are important because they can result in shorter
negotiations (i.e. take less time) and can lead to a more efficient partitioning of
the resources (we elaborate on these in the following sections). To this end, we
first develop a Reward Generation Mechanism (RWG) that generates rewards
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based on offers calculated by other techniques (such as heuristic-based tactics).
Second, we develop a new strategy for persuasive negotiation that is specifically
suited to the repeated encounters we consider. While it is possible to apply
rewards to infinitely or finitely repeated games, we focus on the base case of
one repetition which is simpler to analyse in order to understand the impact of
rewards on the encounters. Third, we use the MMPD (as discussed in section
4.2.3) to clarify the intuition behind the generation of rewards and the selection
of the type of reward to be sent. In the following sections we first build upon
the definitions provided in chapter 4 to define the properties of the agents play-
ing the iterated MMPD and offer the general intuitions behind the persuasive
reasoning model. Then we describe the details of the reasoning mechanism and
how agents evaluate the rewards they might receive or be asked for.

7.3.1 Properties of the Negotiation Games

We consider two agents o and § having utility functions designed as per chapter
4. In short, this means that one agent values some issues more and some issues
less than its opponent. Let us assume each agent values two issues more than
its opponent and two issues less (four issues to be negotiated in all). These
agents are made to play two negotiation games. A negotiation game is one in
which an agent (« or 3) starts by making an offer over a set of issues O € O
and the opponent may then counter-offer or accept. The agents may then go on
counter-offering until an agreement is reached or the deadline tg.qq is reached
(we superscript it with the agent identifier where needed). If an agreement is
reached, the agents are committed to enacting the deal settled on according to
the protocol defined in section 7.2 (if they cannot be forced to enact a deal,
CREDIT can be used to check for this and alter the behaviour of the agent
accordingly). We also constrain the games, and further differentiate them from
the case where agents play one game each time independently of the previous
one, by allowing the second game to happen if and only if the first game has a
successful outcome (i.e. an agreement is reached within the agents’ deadlines).
In so doing, there is no possibility for agents to negotiate both outcomes in one
negotiation round. This, we believe, more closely models realistic applications
where agents will engage in a long-term relationships only if they can find some
benefit in so doing given the result of their previous agreement (i.e. reach some
agreements prior to continuing their relationship). Such approaches are common
in long-term contracting or relationships as defined in the economic literature
(Muthoo, 1999; Busch and Hortsmann, 1999).

The set of outcomes in the first game is captured by O; while Oy represents
the set of outcomes in the second game (O,, in the more general case). During
these games, as time passes when agents exchange offers or when there is a delay
until the next game, the value of the outcome decreases for each agent according
to their discount factor (noted as e, for agent ).

Assuming that the time between two illocutions is 7 and the time between
two games is 6, the discount due to time is calculated as exp~<(®*) between two
games and exp~ ("t between offers. Note that we expect § >> 7 generally.
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Obviously, the larger the value of 6 or 7, the more the outcome is discounted
and conversely for small values of 6 or 7, since the discounting effect increases in
0 and 7. The value of € scales the impact of these delays, where a higher value
of € means a more significant discount of an offer, while a lower value means a
lower discounting effect. Each agent is also assumed to have a target utility to
achieve over the two games, noted as L € [0,2]. This target can thus be less
or equal to the sum of the maximum achievable utility over the two games (2
in the case an agent has a ¢ = 0 and exploits both games completely), that is
L < 14exp~ <+t where 1 is the maximum achievable utility in an undiscounted
game (see definitions of utility functions in section 4). Finally, agents can impose
bounds on the range of values for each issue they negotiate noted as [Vmin, Umaz]-

Given the above characterisation, in the next section we detail our persuasive
negotiation reasoning model for agents.

7.3.2 Applying Persuasive Negotiation

In persuasive negotiation, agents try to give rewards or ask for rewards in order
to get their opponent to accept a particular offer. Rewards are about giving a
higher utility outcome to an opponent in the second game (when given) or a
higher utility to the agent asking for it. Agents may find an advantage to accept
such rewards in the first game if it costs them more to counter-offer (due to
their discount factor) or they risk passing their deadline (or their opponent’s).
In more detail, in negotiation a reward can be given or asked for in the following
contexts:

e A reward is proposed when the agent can still manage to achieve its target
L after reaching an agreement and giving the reward. This may happen
if agent « is asking 3 to concede in the first game, giving « more utility
in the first game. Agent o may then afford to foresake some utility on the
second game (which it values less due to discounting effects). It may do so
by conceding in the second game and this acts as a reward. Note here that
the reward may cost the sender something as well and it therefore needs
to estimate the cost of this reward with respect to L% properly before
committing to it.

e A reward can be asked by an agent if it is able to concede in the first
game so as to catch up in the second game. In this case, the agent asking
for the reward has some costs in conceding in the first game and entices
the opponent to pledge to something in return (a concession in the second
game) for the concession in the first game. The agent asking for the reward
also needs to ask for a reward that is commensurate with its target and
the level of concession it is making.

These rewards do not specifically determine the outcome of the second game
but specify the negotiation ranges that the agents will use to negotiate in the
second game in a similar way to CREDIT. This is shown on figure 7.1. As can be
seen in this figure, a reward from agent a to 8 would be to propose a negotiation
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Figure 7.1: Determining the outcome of the second game according to the offer

made in the first game.
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range (i.e. make offers with high utility for 3) that is more favourable to 8 in
the second game (in CREDIT, the ranges are larger for more trusted agents).
The agreement reached in the first game would then be of higher utility for «.
The converse applies when agent « asks g for a reward (the ranges are narrowed
in CREDIT when the agent is exploited in the first game). These procedures
can be seen as a trade-off mechanism often used in negotiation whereby agents
trade-off gains in the present (or the future) in return for gains in the future (or
in the present) (Raiffa, 1982). In general, there are two main ways agents stand
to gain from using rewards as a trade-off mechanism:

1. Agents may be able to reach an agreement faster in the first game by
providing some guarantees over the outcome of the second game. If some
level of guarantee can be obtained for the outcome of the second game
through a more favourable negotiation range, agents may find the current
offer and the reward worth more than counter-offering. This, in turn,
reduces negotiation time and hence the less discounted is the outcome.

2. The negotiation mechanism can be more efficient in that the agents which
value future outcomes more than their opponent are able to obtain a higher
utility in future games. This may happen particularly when agents have
different discount factors, such that one agent can trade-off gains in the
second game, which its opponent values more, against higher profits in the
first game (see discussion in section 4.2.3).

In order to allow agents to decide on what to offer or ask for as a reward, we
propose that agents determine the level to which they concede in the first game
in order to determine how much they will ask for or give as reward in the second
game. The higher the concession, the higher will be the reward demanded, while
the lower the concession, the higher will be the reward given. This is graphically
illustrated in figures 7.2 and 7.3.

As can be seen in figure 7.2, « exploits § through the offer p and compensates
for that in its reward ¢q. The reward actually specifies a number of slots, one
of which will be an agreement they reach after negotiation in the second game.
Conversely in figure 7.3, « concedes in the first game in return for a higher
utility agreement in the second game. In the next section, the exact procedure
by which rewards can be calculated given the payoff structure of the MMPD.

7.3.3 Asking for or Giving a Reward

We now formalise the intuition behind the use of rewards. To this end, we
extend the notation presented in chapter 4. Let Oy € O; be an offer chosen
by agent « to send to ( in the first game. According to the utility functions
in the MMPD, an agent values some issues more than its opponent and some
less. Similar to the notation we use in chapter 4, X (O®) denotes those issues o
likes less (have a lower utility gradient than 8’s) in the offer Oy = O U Olﬁ and
X (O’l6 ) denotes those issues it likes more (which 3 likes less). Given this, if «
concedes on the values of issues in X (Of ), it loses more utility than if it concedes
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(a) Exploiting on first game in the offer (b) Giving reward ¢ on second game by specifying a
p. small region over which the agreement will be made.

Figure 7.2: These two figures represent the value of the offer p and reward ¢ used
in reward(a, 3,p,q). The offer p by a intends to exploit the opponent 5 and
the reward ¢ given by a to 0 aims to compensate for that exploitation. While 0
represents no concession, 1 represents full concession where the agent conceding
gets less utility than its opponent when the latter exploits (i.e. tends to 0).

the same amount on X (O¢). The same reasoning applies symmetrically to 3.
Therefore, in order to determine the level of concession in the second game on
these two sets of issues, we need to transpose the level of concession from X (O%)
to a concession on X (Og ) in the next game and from X (O’f ) to a concession
on X(0%) where Oy = O3 U 05 and Oz € Oy. In so doing, the agents will
be effectively giving more or less utility to their opponent in the next game.
Obviously, these decisions must be made in line with other factors such as the
target L and other information or strategy the agent might employ. We will
look at these in the next section. For now, we will aim to determine the level of
concession which dictates whether a reward should be asked or given.

To this end, let Con : Ag x Ag x O1 — [0,1] be a function that determines
how much an agent concedes on an offer in the first game. The higher the value
returned by C'on the higher is the concession in the offer. Assuming vy, is the
value of an issue z in O, then the degree of concession of o on (each) issue x
in O; can be calculated as the relative concessions on the values taken by the
issues:

VUmaxz —Umin
Vfirst —Umin

Ymaz ZVfirst if U ; ot
cy = { , if Uy(v) increasing in v (7.1)

, if Uy(v) decreasing in v

VUmax —VUmin
where [Umin, Umaz] 18 the negotiation range for issue x for agent a.

Therefore, « is able to calculate how much it concedes on issues X (Of ) which
it prefers more than 3 through the following equation:

Con(a, 8,0°) = Z Wy Cy (7.2)
zeX(0%)
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(a) Conceding on first game through offer p.
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exploitation by o
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AskReward
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(b) Asking for reward ¢ on second game in the shaded
region specified.

Figure 7.3: These two figures represent the value of the offer p and the reward ¢
used in askreward(a, 8,p,q). Through the offer p, a concedes to the opponent
0 and the reward g asked by « aims to compensate for that concession. While 0
represents no concession, 1 represents full concession, meaning more utility for
the opponent and less for the agent conceding.
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where w, is the weight of the issue as a level of importance of concession on it
and > w, = 1.

Now, a can also calculate how much it concedes on issues it likes less than §
by replacing O? with O® in equation 7.2. Hence, the slot chosen in the MMPD
payoff matrix is equivalent to the pair (1 — Con(a, 8,0%),1 — Con(a,ﬂ,O?))
(using the axes shown in figure 7.3 for example). Therefore, the choice to give a
reward or to ask a reward is carried out according to the following rule:

if Con(a, 8,0¢) — Con(a, 3, Of) = 0 then % equates full cooperation
propose(a, 3,01)

else if Con(a, 3,0%) — Con(a, 3,07) > 0 then % equates to a concession
askreward(a, 8, 01, aw)

else % equates to exploitation
reward(a, 3, O1,rw)

end if

where rw is the reward given and aw is the reward asked for. In the next section
we provide a number of ways of calculating these rewards. It is important to
note that the agents, while knowing the structure of the pay-offs according to
the shape of their utility functions (as shown in section 4.2), do not know the
exact utility their opponent gets in the payoff matrix by virtue of their private
discount factors and gradients of their utility functions. Thus, agents may know
that they are conceding to their opponent without knowing exactly how much
the concession is worth to them.

7.3.4 Determining the Value of Rewards

Having determined which type of argument should be sent, we can now determine
the value of the reward to be given or asked. Given that an agent aims to
maximise its utility in both games and, in so doing, achieve its target L, the
value chosen for a reward will depend on the following factors::

e L, the target of the agent — the higher the value of L, the lower is the likely
reward given and the higher the likely reward asked for (and conversely
with a low value of L).

e (Con(a, 3,0%),Con(a, 3,0%)), the degrees of concession of the agent —
the higher the degrees of concession, the higher the reward asked for is
likely to be and the lower the reward given (and conversely for lower degrees
of concession).

We will consider each of the above points in turn.
Given an offer, an agent is able to compute the utility I3 € [—, 1] it needs to
get in the second game as:
lo=L-U(Oy) (7.3)

3We believe these factors to be necessary rather than sufficient ones in the decision making
process in the model we study.
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where O; is the offer the agent has computed in the first game. Given this, we
need to consider the following two cases (remember exp~ ¢+ is the maximum
that can be obtained in the second game with discounts):

o Iy < exp (t9) — in which case it is possible for an agent to reach its
target in the second game (provided the agents reach an agreement in first
and it can ask for or give rewards according to the current offer or shape
these to maximise its utility. As will be seen, the reward asked for or given
will be constrained by the value that needs to be achieved for the target
to be met in the second game (note that if I < 0 the agent can afford
to concede to the maximum in the second game while still achieving its
target). The larger this value is, the more constrained will the second game
be.

o Iy > exp®t® — in which case it is not possible to give a reward but the
agent might ask for a reward to achieve its target which, in this case, would
be asking the opponent to concede on all issues (when Iy = exp—<0+t) for
example). Obviously, this may not be acceptable to the opponent if the
proponent is not conceding anything in the first game. The best the agent
can do is try to get an agreement on the first game to get to play the second
game. In this case, the agent will simply use offers and no arguments if it
is not warranted to do so.

As can be seen, the less possible it is for an agent to achieve its target in
the two games, the more exploitative it may tend to be in the second game to
maximise its utility. This becomes clearer when we come to determining the
value of the reward according to the level of concession.

For now, assuming we know ly < exp~<*%) it is possible to determine how
much it is necessary to adjust negotiation ranges for all or some issues in the
second game in order to achieve l5. First, the agent calculates the undiscounted
utility expfﬁ it needs to get in the second game. Then it needs to decide how
it is going to adjust the utility it needs on each issue, hence the value for each
issue, in order to achieve the overall desired target. One approach to this is to
try to gain more utility on issues the agent values more than its opponent. How-
ever, exploiting the more preferred issues can reduce the possibility of reaching
an agreement (since the negotiation range would become very small and may
therefore not intersect with that of the opponent). Another approach is to dis-
tribute the utility to be obtained on all issues according to the weight each issue
has in the utility function (i.e. the utility to be obtained per issue is the same as
the value of I but is multiplied by the weight of the issue in the utility function
described in equation (4.1) in chapter 4). Therefore, the required outcome vy
of an issue in the second game can be computed as:

l
1 2
Vout = Uy (eXpe(9+t)> (7.4)

Given the constraint defined by v,y (i.e. how much it should get at least to
achieve its target), the agent needs to determine by how much it can reward or
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ask for a reward. To this end, the agent computes the contract O which satisfies
the following properties:

Con(a, 3,08) = Con(a, 3,0Y) (7.5)
Con(a, 8,04) = Con(a, 3,07 (7.6)

This is equivalent to the procedure described in figures 7.2 and 7.3 where
the level of concession or exploitation in the offer in the first game (i.e. here
0O, =0%U Of) is mapped to the reward asked or given in the second game (i.e.
here Oy = Oy U OF). Assuming linear utility functions and finite domains of
values for the issues, the procedure above is equivalent to reflecting the level of
concession on each issue valued more by a onto those valued more by 3. This is
the same as inverting equation 7.2 and finding vys: given c, for each issue by
inverting equation 7.1 (a procedure linear in time with respect to the number of
issues considered). Let us assume that for an issue x this results in a bound v,
(a maximum or minimum according to the type of argument to be sent).

Thus, from O, a obtains bounds on the rewards it can ask from or give to
B. These bounds are expressed in terms of the minimum or maximum values
(depending on which type of argument is chosen) that each issue would take in
the second game. We will next consider how these bounds must be adjusted to
fit the targets of the agent.

Sending a Reward

Now, given v, and v,,; for an issue x, assume that « prefers high values for x
and (3 prefers low values. Also assume that it has been determined that a reward
should be sent. Then a can determine whether a reward should be given and
what is the value of the reward according to the following constraints:

® v, > vyt — « can offer a reward implying an upper bound v, on the
second game. This is because the target vy, is less than v, and a can
therefore negotiate with a revised upper bound of v/, ,. = v, and a lower
bound of v/, = vout- The reward that can be sent in this case is the

upper bound v, implying that « will not ask for more than v,..

® Uout > U — « cannot offer a reward commensurate with the amount it
asks [ to concede in the first game. The best it could offer as a reward
is vout. This implies that o revises its negotiation ranges to v),,.. = Vout
(with vpq. remaining the same). In this case, the agent does not send a
reward but simply modifies its negotiation ranges.

Asking for a Reward

Similar to the case where a reward is asked for, assuming v, and v,,; have been
determined for an issue z, agent « has to consider the following constraints in
determining whether a reward should be asked for and the value it should have:
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® U, > Uyt — « can ask for a reward with lower bound v,.. This is because
the target v,,; is less than v, and «a can therefore negotiate with a revised
lower bound of v},;, = v, and the same upper bound v, in order to
achieve a utility that is well above its target.

® Uyt > U — « cannot ask for a reward with lower bound v,.. This is because
it cannot achieve its target if it asks 3 for the exact reward it deserves.
Therefore, « can privately bound its future negotiation to v/, = Vout

while keeping its upper bound at v,,4,. No argument is sent in this case.

It is straightforward to extend the above reasoning mechanism to cater for §’s
appreciation of values of v, (i.e. its utility is decreasing in z). Given these
constraints on rewards, in the next section, we bring together the different com-
ponents of the reward generation algorithm.

7.3.5 The Reward Generation Algorithm

In this section we capture the reasoning mechanism of an agent trying to give
or ask for a reward. To this end, we devise an algorithm that contains all the
different operations described in sections 7.3.1, 7.3.2, 7.3.3, and 7.3.4. Thus,
we aim to clarify the reasoning process. We explain each significant step of the
algorithm in turn (see algorithm 7.4).

As can be seen in the preconditions of the algorithm, it is required that
the current time t < tgeqq such that the agent has not reached its deadline.
The algorithm also requires that the agent has generated an offer O using its
negotiation tactic (e.g. behaviour based, time dependent). Step 1 computes the
utility that is needed in the second game l5. Step 2 computes the minimum
value vy of each issue that needs to be obtained in the second game for the
agent to achieve its target. Step 3 initialises values that represent outputs con,,
and cong of functions Con(a, 3,0%) and Con(a, 3, OP) respectively. These aim
to determine how much the agent concedes in the first game by virtue of the
offer O. Steps 4 to 14 calculate con, and cong. These are calculated as the
weighted sums of concessions on all individual issues (Steps 7, 9, and 11) in
the offer (as in equation (7.2)). Step 13 actually maps out the concessions to
the second game (as in equation (7.6)). This procedure will vary according to
the particular characterisation of the negotiation game. In a zero sum game, it
would simply mean inverting the level of concessions of the first game onto the
second game. In contrast, in the MMPD, it equates to mapping the concessions
on preferred issues of « in the first game onto those of 5 in the second game (as
shown in equations 7.5 and 7.6). As from Step 15, the agents starts making a
choice about which illocution to send and what type of argument is to be tagged
to it. In case both agents are conceding an equivalent amount, Step 16 sends a
proposal containing the offer O. Otherwise, it calculates the reward according to
the procedure described in section 7.3.4. Steps 17 to 31 describe how an agent
changes its negotiation ranges and selects a reward to be asked according to
the procedure described in section 7.3.4. Similarly steps 32 to 46 describe the
procedure for giving a reward according to section 7.3.4.
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Require: O € 01,0, 7,¢,L, R, (w,),t < tgead % O being the offer calculated accord-

[

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:
40:
41:
42:
43:
44:
45:
46:
47:

ing to a's negotiation tactic
: lo — L —U(O); % utility is required in second game to meet target L

: For each issue 2 € X(0), calculate voys < Uy ' (Cxp_i%); % values of issues

required in second game
set cong, cong = 0; % calculate Con(a, 3,0%) and Con(a, 3, 0°)
: for all z € X(O) do
get (x = vyirst) € O; % extract values of issues in offer for first game
get range [Umaw, Umin] for z; % obtain the range of negotiable values for x
%, % assuming U (v) is increasing in v, get concession level
if 2 € X(O%) then
CONG “— CONa + Wq - Cz; Y% concessions on issues highly valued by o, Y w, =1
else
cong < cong + w}, - c;; % concessions on issues highly valued by 3, >~ w}, =1

Cp —

end if
select O, where Con(a, 8,02) = cong and Con(a, 3,02) = cona; % find equiv-
alent concession in second game

end for

if cona — cong == 0 then % equal concessions from « or (3

send propose(a, 3,0);
else if con, — cong > 0 then % « conceding in first game - « asks reward
for all (x =v,) € O, do
if v, > vour then % if reward falls within acceptable range
set negotiation range in second game to [vy, Umaz];% this is the reward asked
for.

ask-possible = true;
else % deserved reward cannot be asked
set negotiation range to [Vout, Umaz);
ask-possible = false;
end if
end for

if ask-possible then
send askreward(a, 3,0, 0;);
else
send propose(a, 3, 0);
end if
else % « exploiting in first game - « gives reward
for all (x =v,) € O, do
if v, > vour then % if reward falls within acceptable range
set negotiation range in second game to [vout, vT];
reward-possible = true;

else % deserved reward cannot be given
set negotiation range in second game t0 [Vout,Umaz|;% this is the reward
given.
reward-possible = false;
end if
end for

if reward-possible then
send reward(a, 8,0, Oy);
else
send propose(a, 3,0);
end if
end if

Figure 7.4: Determining the argument type and value to be sent to 3.
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7.3.6 Evaluating Offers and Rewards

Having discussed how agents would generate rewards, we now describe how
an agent evaluates the offers and rewards it receives. Generally, when agents
negotiate through the alternating offers protocol (Rubinstein, 1982), they accept
an offer only when the next offer they might put forward has a lower (discounted
due to time) utility than the offer presented to them by their opponent. This is
expressed as in figure 7.5.

if U(Opext) - exp?T+) < U(Oyiven) then
accept(a7 57 Ogi'uen)
end if

Figure 7.5: Accepting an offer in the usual case.

However, agents using persuasive negotiation also have to evaluate the in-
coming offer together with the reward they are being asked for or are being
given. From the previous section, we can generally infer that a reward will im-
ply a value v, for a given issue which defines either a lower or an upper bound
for that issue in the next negotiation game. For example, a reward to be given
by a seller might be a guaranteed discount (i.e. a lower limit price) on the next
purchase by the current buyer which could also have been a reward requested
by the buyer. Therefore, given this bound, the agent may infer that the out-
come of any given issue will lie in [v],;,., V], ,»] Which might be equivalent to or
different from the agent’s normal negotiation ranges [Umin, Umaz] and may take
into account the agent’s target v,y (given its target lo) or the value v, itself.

Generally, we can assume that given a negotiation range [v],;,, Vhae)s a0
agent may be able to define an expected outcome of that range using a prob-
ability distribution (e.g. normal, beta) or some (fuzzy) reasoning based on its
negotiation strategy (e.g. a conciliatory strategy would expect a lower utility
gain in the second game as compared to a non-conciliatory one when faced with
a non-conciliatory opponent). This probability distribution may be estimated
from previous interactions with the agent or knowing the behaviour of its bar-
gaining strategy and its relationship with the agent’s own bargaining strategy
(i.e. the relative negotiation powers of the agents as defined in CREDIT). Given
this expected outcome for any issue, the agent may then calculate the expected
utility (determined according to the bounds set by the reward) of that reward
along with the utility of the offer to which it is tagged. Moreover, using the
same procedure it can calculate the expected utility of any reward or offer that
it might want to send next. By comparing the two sets of utilities, it can then
make a decision as to whether to accept or counter offer in the next step. We
detail such a procedure as follows.

Assume (3 is the agent that is the recipient of a reward (given or asked for)
and that 3 prefers small values for the issue x being considered. Then, let §’s
negotiable range be [Unin, Umaz] for the issue x and 3’s target be lg in the second

game (which implies that it needs at least vfm for the issue in the second game).
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Now, if § receives reward(a, 3,0,0,) (or askreward(a, 3,0,0))) for the
second game, O, implies that v> is the upper bound proposed for each each
issue z in O, (v would be a lower bound in O}). In the meantime, § has cal-
culated another offer O,,.,, with a reward O, in which a bound Uf is to be given
to each issue = in Op. Then, for each issue x, 3 calculates the negotiable ranges
given v¥ as [Umin, vY] (or [v%, Min{veut, Vmaz] if O, is asked) while it calculates
(w8, min{v?,,, vmae}] given v2. We assume 3 can then calculate (using a proba-
bilistic technique) the expected outcome of each range as ev? for [Vpmin,v2] (or
[v%, Min{Vout, Umaz] in the case of 0) and ev? for [vf, min{v?,,, vmaez]. Given
each of these expected outcomes for each issue, the overall expected outcomes,
EO, and EOy, of the second game can be calculated for each type of reward
respectively as:

UEO,) = > wy-Ulevd) (7.7)
z€X(EO,)

UEO) = Y wy - Ulew)) (7.8)
ZEX(EO[,)

where EQ, is the expected outcome of the reward given by «, FO, is the ex-
pected outcome of the reward given by 3, > w, = 1 and w,, is the weight given
to each issue in the utility function (as per equation (4.1)).

Given that the expected outcomes have been calculated, then the agent de-
cides to accept or counter offer using the following rule in figure 7.6 which eval-
uates the offer generated against the offer received to decide whether to accept
the offer received or send the reward illocution (note the addition of discount
factors to reflect the time till the next game and between illocutions, that is,
sending the counter offer, receiving an accept, and sending the first offer in the
second game).

if U(Opew) - exp™ T (U (EOy) - exp~ 07+ < T(0) - exp~ 7)) 4
(U(EO,) - exp~0+37+1) then
accept(f, a, O)
else
reward(8, a, Opew, Op)
end if

Figure 7.6: Evaluating a received reward when about to give a reward

If instead, a reward O were to be asked for by § along with an offer Oy,
then 3 will apply a similar decision rule as above in figure 7.7 where EOj is the
expected outcome [ calculates for the reward it asks «. This rule evaluates the
received offer against the newly generated offer and reward to decide whether to
ask for the reward or accept.

Finally we consider the case where agent 3 has received a persuasive offer
and can only reply with another offer without any argument. In this case, §
calculates the expected outcome of the second game without any constraints
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if  (U(O),) - exp”0HH(U(EO,) - exp~s*7H)) < U(0)
exp~ @ CTH) L (U(EOQ,) - exp~ @ +37+1) then

accept(f, a, O)
else

askreward(B3, o, O}, 0})

end if

Figure 7.7: Evaluating a received reward when about to ask a reward

(i.e. using its negotiation range [Umin,VUmaz) to elicit EO}). The rule given in
figure 7.8 therefore compares the utility of the offer received against the utility
of the offer generated and the outcome expected in the next game to decide
whether to propose or to accept. Note here that the second game is left more
uncertain in this case since the bounds have not been changed by any reward.
This means that the agent cannot guarantee that it will meet its target and can
also result in the agents taking more time to reach an agreement in the second
game (as in the case of non-persuasive tactics as we show in the next section).

if (U(0;,e)-exp™ ") 4 (U(EOY)-exp™+7H0) < U(0)-exp™ e CmH) 4
(U(EO,) - exp—<#(0+3741)) then

accept(f, a, O)

else
propose(B, a, Op..,,)
end if

Figure 7.8: Evaluating a received reward when about to send a normal offer.

Having described our mechanisms for sending and evaluating rewards and
offers, we next experimentally evaluate our model of persuasive negotiation and
compare it with other standard mechanisms.

7.4 Experimental Evaluation

In this section, we describe a series of experiments that aim to evaluate the
effectiveness and efficiency of our model of persuasive negotiation in repeated
interactions. To this end, we build pairs of negotiating agents that respect
the protocol described in section 7.2 and that use the reasoning mechanism
described in section 7.3 to generate and evaluate arguments. In the following
sections, we first detail the settings of the experiments and provide the results of
the experiments we carry out. We also provide a new algorithm that specifically
takes into account the repetitive nature of the interaction to generate rewards
and offers and show how its performance compares with standard negotiation
tactics that take into account one game at a time in making offers (and use
our reward generation component to select rewards). Finally, we evaluate the
performance of our algorithm under different conditions in order to determine
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the main factors that affect the effectiveness and applicability of rewards in
negotiation.

7.4.1 Experimental Settings

The general settings that apply to the two negotiation games are as follows:

The pair of negotiating agents have their utility functions shaped by the
MMPD in a similar scenario to CREDIT (see section 5.4.1). The actual
utility the opponent obtains for particular values of the issues are not
known since utilities are private. Thus agents « and (3 negotiate over 4
issues 21, ..., x4 where x1 and x5 (e.g. price or bandwidth) are more valued
by « than  while x5 and x4 (e.g. usage of service or time of payment),
are more valued by § than a.

the agents have their utility functions U® and UP specified over each issue
as well as the weight of each in table 7.1.

tmaz — The maximum time for a negotiation game to take place is set to 2
seconds which is equivalent to around 300 illocutions to be exchanged be-
tween the two agents.? Unless stated otherwise, the agents’ deadlines, g, ,
and tgea +» are then defined according to a uniform distribution between 0
and 2 seconds.

€ and €” — the discount factors are set to a value between 0 and 1 drawn
from a uniform distribution (unless stated otherwise).

L and LP — the targets of the agents are drawn from a uniform distrib-
ution between 0 and 2 (unless stated otherwise).

0 and 7 — 0 is set to 0.5 seconds while 7 is set to 0.0001 to simulate
instantaneous replies (unless stated otherwise).

[Umins Umaz] — the negotiation range for each issue and each agent are
defined using A, degree of alignment of the negotiation ranges as described
in section 5.4.3. The degree of alignment is arbitrarily set (between 0 and
1).

Agent Utility function and weight of each issue
Ugys W, Ugys Wi, Usyr Wey Ug,s Way
o 0.4z, 0.5 0.9z, 0.2 1-0.221,0.2 | 1 —0.6x2, 0.1
1] 1-0.229,04 | 1 —0.624, 0.1 0.92, 0.3 0.4z, 0.2

Table 7.1: Utility functions and weights of issues for each agent.

4Preliminary experiments with the negotiation tactics suggest that if the agents do not
come to an agreement within this time period, they never achieve any agreement even if the
maximum negotiation time is extended.
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We will further assume that the first offer an agent makes in any negotiation
is selected at random (but having a high utility for the agent). Also, the first
agent to start any bargain is chosen at random. This random choice reduces
any possible first-mover advantage a strategy may have over another (i.e. which
loses less utility due to discount factors). Moreover, in order to calculate the
expected outcome of the second game (as discussed in section 7.3.6), agents draw
the outcome for each issue from a normal distribution with its mean centred in
the middle of the agent’s negotiation range for the second game with a variance
equal to 0.5. Finally, in all our experiments we will use ANOVA (ANalysis Of
VAriance) to test for the statistical significance of the results obtained.

7.4.2 Negotiation Tactics

Given that our persuasive negotiation model calculates rewards given an offer, it
is possible to use standard negotiation tactics to generate the offers at negotiation
time and get the corresponding reward from our algorithm (shown in figure
7.4). Here, a tactic is a mechanism that can be used (sometimes based on prior
information) to generate offers or rewards in our case. To this end, we exploit
the standard negotiation tactics presented in (Faratin et al., 1998).

The Standard Negotiation Tactics

We select the basic tactics that are most commonly used in the literature (Fatima
et al., 2002; Faratin et al., 1998) to evaluate our model. Using such basic tactics
(as opposed to more complex ones such as (Faratin et al., 2002; Winoto et al.,
2004)), allows us to focus on the main properties of our PN model and to clearly
show the added benefit of using rewards on different aspects of the negotiation.
The basic negotiation tactics we use are described as follows:

e Behaviour based tactics (BB) — these calculate a new offer based on the
difference between the opponent’s last offer and its previous offer. In this
way, the agent imitates its opponent. Thus, the agent calculates changes
to the values from its previous offer to generate values for its next offer in
the following ways for each issue:

— Relative Tit-for-Tat (RTFT) — the change is calculated as a percent-
age difference between the value of the last offer and the one before.

— Average Relative Tit-for-Tat (ARTFT) — The change is calculated
as a percentage over a number of previous offers and averaged.

— Absolute Tit-for-Tat (ATFT) — the change is calculated as the ab-
solute difference between the value of the issue in the last offer and
the one before.

In our experiments we will calculate a BB offer by using the average output
of RTFT, ATFT, and ARTFT.
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e Time-based Tactics — these calculate a new offer by changing a previous
offer depending on the amount of time elapsed since the beginning of the
negotiation using a polynomial function or an exponential function. Thus,
these tactics do not imitate in any way their opponent. There are two
main ways these tactics operate:

— Boulware (BW) — this only concedes significantly towards the end of
the negotiation (i.e. as the agent’s deadline approaches). Thus, the
agent waits for the opponent to concede more until its deadline.

— Conceder (CO) — this significantly changes the previous offer early
during the negotiation in an attempt to reach an agreement quickly.

As can be seen, these strategies only calculate a new offer based on the agent’s
own previous offer. Moreover, both behaviour-based and time-based tactics do
not take into account the fact that agents are to meet more than one time and
that they can either ask for or give rewards. Given this, in the next section
we present a new reward-based tactic (RBT) that takes the repeated nature of
negotiations into account in generating offers and rewards.

The Reward-Based Tactic

The tactics presented in the previous section usually start with an offer with very
high utility for the proponent. If these tactics generate offers that are then used
in our reward generation mechanism (presented in section 7.3.5), the reward
generation mechanism would also start by giving rewards and end up asking
rewards as its deadline approaches. This is because these tactics generate offers
that are exploitative at the beginning of the negotiation. As the agent gradually
concedes on its initial offer during the negotiation, the reward generation mech-
anism would ask for rewards instead. Thus, it is not possible for these tactics to
ask for rewards at the beginning of the negotiation. This can significantly reduce
the efficiency (in terms of the sum of utilities of the agents) of the negotiation
encounter since one of the agents may be better off conceding the second game if
it has a low discount factor € and, in return, exploit the first game (as discussed
earlier in section 4.2.3). This would mean that the more patient agent (i.e. the
one with a high discount factor €) could ask for a reward in the second game or
the other agent could offer a reward in the second game.

Given this background, we provide an algorithm that either asks for or gives
a reward at any point in the negotiation in order to reach an agreement. To
do so, the agent needs to know how to evaluate incoming offers and generate
counter-offers accordingly. We will consider three main cases in calculating the
best response to an offer and a reward. These are:

1. An offer and a reward have been received and it is possible to counter offer
with a reward.

2. An offer and a reward have been received and it is not possible to counter
offer with a reward.
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3. An offer has been received and it is not possible to counter offer with a
reward.

We show how the algorithm deals with each of these cases in turn.
Case 1: An offer and a reward have been received and it is possible to counter
offer with a reward.

In this case, an agent « needs to calculate combinations of rewards asked for
or given with offers and choose the combination which it deems most appropriate
to send to 3. To calculate these combinations, « first needs to determine the
overall utility each combination should have. To achieve this, we use a hill
climbing method similar to Faratin et al.’s model (Faratin et al., 2002). In this
method, the agent tries to find an offer that it believes is most favourable to its
opponent while not necessarily conceding too much. In our case, this procedure
equates to the agent trying to move the agreement more towards the corners
(upper or lower depending on the offer and reward selected) in the MMPD.
In so doing, the strategy can maximise joint gains in the repeated negotiation
encounter.

Therefore, to calculate the best combination of offer and reward to send in
the hill-climbing approach, the agent first calculates the utility of the next offer
it intends to send and then finds the offer and reward that optimally match this
utility value. By optimality, in this case, we mean that either the offer or the
reward should also be the most favourable one to the opponent. Thus, the utility
of the next offer is calculated according to the difference that exists between the
agent’s previous offer and the last one sent by its opponent and the step in utility
the agent wishes to make from its previous offer. The size of this utility step
can be arbitrarily set. Given a step of size f, the utility step is calculated by
the function Su : 01 X Oz x O1 x Oy X [1,00] as follows:

-t E —(0+1)
Su(O1,0,01,04, ) =L 01 exP +Uf< O2) exp

—U(0}) exp~ ") —U(EO}) exp~ (0+27+1)
f

where O1 and EQOs are the previous offer and expected outcome in the second
game from «’s reward Os respectively, O] and EO) are the current offer and
the expected outcome of 3’s argument O respectively. When a reward is not
specified by the agents, the utility calculated by the function only considers the
offers made by each agent (i.e. remove U(EO’) and U(EOY}) from its calculation).

Given the utility step Su, it is then possible to calculate the utility Nu of
the combination of the next offer and reward using the following equation:

(7.9)

Nu = U(O;) exp~ @) LU(EO,) exp™ 374D _Su(01, 04,04, 0%, f) (7.10)

Given that rewards specify bounds on the negotiation in the second game,
each combination that can be offered in a step represents a space of possible
agreements in the second game given an offer in the first game. Therefore,
finding a combination that more closely matches the opponent’s offer and reward
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equates to finding another space of offers that is close to the opponent’s space
that covers its latest offer and reward. This procedure is pictured on figure 7.9.

Space of combinations of offers
and rewards that have same utility
for agent p

Previous offer and reward
by agent o

Selected offer and reward
by agent o

_— Utility step
Space of combinations of offers calculated by o
and rewards that have same utility ~ & U?

for agent p

Previous offer and
reward by agent

Equivalent combinations of
offers and rewards

Current combination of offer

o and reward by agent

2
Reward asked
for or given
} Utility varies depending on agreement

\*: B reached in second game
(or reliability)

offer O,

Figure 7.9: The hill climbing performed by RBT for an agent « to find an
appropriate reward and offer in response to the offer and reward by agent (.
The shaded semi circles represent spaces over which different offers and rewards
have the same utility for « (top) or § (bottom). Each new offer by « is made
closer to agent (3’s previous offer.

As can be seen in this figure, in our tactic, « calculates the most favourable
combination of offer and reward for agent [ that achieves the utility Nu. In
so doing, our tactic aims to make offers that meet the space representing all
equivalent outcomes, or the isocurve, of § in a few steps. In calculating a reward
to be given we take into account the fact that in the MMPD the opponent likes
some issues more than others and by maximising the opponent’s gain on these
issues we ensure that the reward is more attractive to the opponent. In the same
way, when a reward is asked for, the associated offer is calculated such that the
values of the issues in the offer are more favourable to the opponent on those
issues it prefers most according to the MMPD. To calculate these offers and
rewards, we use an optimisation function OptComb : O1 x Oz x O1 x Oy —
O1 x Oy, based on linear programming (LP), that calculates the reward that is
either most favourable to 3 or to a. OptC'omb therefore runs through our reward
generation mechanism to find the best possible rewards and the associated offers



200

whose combined utility are equal to Nu. However, OptComb can also fail to
find an optimal output (as a result of the constraints being too strong (e.g. the
target L being too high) or the optimizer not being able to find the solution in
the specified number of steps) and in these cases, we resort to another procedure
described next (i.e. Case 2).

Case 2: An offer and a reward have been received but it is not possible to counter
offer with a reward.

In this case, the agent cannot find a combination of a proposal and a reward
that match Nu. Therefore, the agent calculates an offer using one of the basic
negotiation tactics presented in section 7.4.2. In this case, BB tactics would
not be appropriate to generate an offer given previous offers by the opponent
since these offers may also be associated to rewards. This means that the offers
by themselves (which would be used in BB to calculate the next offer) do not
exactly depict the concessions that the agent has made and using BB could lead
to an offer where it concedes more than it should. Therefore, either BW or CO
is used to generate the offer since these are independent of the previous offers
made by the opponent.

Case 3: An offer and a reward have been received and it is possible to counter
offer with a reward.

In the event that § only proposes an offer without any rewards, our tactic
needs to be able to respond by a similar procedure (as in case 1) in order to
continue the same step-wise search for an agreement. In this case, our tactic
calculates the offer whose utility is equal to Nu (without U(FO}) in equation
7.10). Moreover, the offer calculated is such that it is the one that is most
similar to the offer by . This is achieved by running an optimization function
OptProp : O1 x O — O7 which calculates an offer O; such that O; maximises
the level of concession the opponent likes most as in the previous case while still
achieving Nu. In case the issues being negotiated are qualitative in nature, the
similarity based algorithm by Faratin et al. (2002) may be used.

The Algorithm for the Reward Based Tactic

In this section we describe our RBT algorithm. The algorithm is provided in
figure 7.10. Here we take the point of view of an agent « trying to respond
to an offer and a reward by agent 3. We describe each important step of the
algorithm as follows. In steps 1 to 8, a calculates the utility step by which it
needs to decrement the utility of its current offer (and reward) and the value of
the new offer (and reward) it needs to send, depending on whether a reward has
been offered (steps 2 to 4) or not (steps 5 to 7). In step 10 « runs an optimisation
to determine whether an optimal offer and reward is possible. If it is not, then
in step 12, « calculates an offer using either BW or CO, while if it is, a sends
the offer and reward. In the case where only an offer has been made earlier
(either by a or ), the new offer is calculated using OptProp in step 17 and the
associated reward calculated using our reward generation mechanism presented
in figure 7.4. The proposal and the associated reward (if possible) is then sent
to B in step 19.
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Require: O1,0,,01,0;

1:
2.

%

if Oy and O) not null then
Use a probabilistic mechanism to calculate EOy, EO) (as discussed in
7.3.6) % « calculate the expected outcomes of the arguments.
step = «— Su(O1, 02,07, 0%) % calculate the step in utility.
nu = « U(O1) exp™t +U(EO2) exp~ 27 _ step % calculate the utility of the
offer and reward to be generated

else
step = «— Su(O1, null, O}, null) % calculate the step in utility.
nu — U(O;) exp~ 3™+ — step % calculate the utility of the offer and to be gen-
erated

end if

if Oz and O} is not null then
(07, 0%) — OptComb(01, Oz, 01, 0%) s.t.
U(OY)exp t +U(EOY) exp~ @27+ — nu % Here the values in the

reward or the offer are optimised so as to be more favourable to the (.

if OptComb fails then
use BW or CO to generate O % Resort to Standard negotiation tactics.

else
send offer and reward % the tactic chooses which type of illocution to use
depending on whether the reward is asked from or given to 3.

end if

else

Of « OptProp(01,07) s.t. U(Of) = nu % find the offer that is most
favourable to 3 given a constraint on utility.

Find O3 using algorithm in figure 7.4.

Send offer and reward if any applicable.

end if

Figure 7.10: The algorithm used in RBT to generate offers and rewards.
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As can be seen from figure 7.10, the algorithm only generates offers and re-
wards in the first game. In the second game, we use a standard negotiation
tactic to calculate offers. While it is possible to generate offers using the opti-
misation function of RBT in the second game, we do not do so in order to focus
our analysis on the effect the bounds imposed by rewards have on the outcome
of the second game when agents use basic tactics. We describe the experiments
carried out and the results obtain in the following section.

7.4.3 Efficiency Metrics

As argued in section 1.5, PN aims to achieve better agreements faster than
standard negotiation mechanisms. To test whether this is indeed the case, we
first devise some metrics that help us to properly evaluate the results of our
experiments as follows:

e Average number of offers — this is the average number of offers that agents
need to exchange before coming to an agreement. To calculate this, we
record the number of offers made each time an agreement is reached and
calculate the average of these. Note that each time an offer is made a short
time 7 elapses. A lower average equates to a shorter time before agents
come to an agreement (mutatis mutandis if the average is high). Moreover,
the lower this average is the lower is the loss in utility as a result of the
time-dependent discount factors e. Thus we can define a time-efficient
tactic as one that takes a relatively small number of offers to reach an
agreement.

e Success rate — this is the ratio of agreements to the number of times agents
meet to negotiate. The larger this success rate, the better the negotiation
tactic is at finding an attractive offer for the opponent.

e Average utility per agreement — this is the sum of utility of both nego-
tiating agents over all agreements divided by the number of agreements
reached. The higher this value, the better is the strategy at finding an
outcome that brings a high utility to both participating agents. Thus we
define a socially efficient negotiation tactic as one which brings a high sum
of utility in the outcome.

e Expected utility — this is equal to the average utility weighted by the
probability that an agreement is reached. The probability is calculated
by dividing the total number of agreements by the number of encounters
agents have. Thus, if the agents find an agreement on all encounters,
there is a probability of 1 that they will come to an agreement in a future
encounter. A strategy with a high expected utility is one which is most
likely to reach high utility agreements every time it meets other strategies.
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7.4.4 Comparing PN strategies against Non-PN strategies

Having defined the tactics that agents use during negotiation and the metrics
used to evaluated the process and outcomes, we can now detail the experiments
carried out in order to evaluate the benefit PN brings to negotiating agents.
Given our objectives set in section 1.5, we aim to show that, by using rewards
which constrain the action set in the future games, agents are able to influence
the outcome of negotiations and permit a better appraisal of the preferences of
the agents. To this end, we experiment with the standard negotiation tactics
BB, BW, CO, including those that are coupled to the RWG, as well as RBT.
The settings of the strategies (i.e. the combination of tactics for the two games)
for each of games played by the agents is described in table 7.2. Note that
when we use the standard tactics connected to our reward generation mechanism
we tag their identifiers with P (for persuasive). Thus, in the first game, NT

Strategies
Non-Persuasive Agents (NT) Persuasive Agents
NT PNT RBT
Game 1 BB, BW, CO PBB, PBW, PCO | RBT
Game 2 BB, BW, CO BB, BW, CO | BB

Table 7.2: Settings for agents’ tactics and acronyms used.

(without the reward generation mechanism) is only able to make offers and
evaluate offers, while PNT is able to both generate and evaluate offers and
rewards. Given that persuasive strategies like PNT and RBT can constrain their
rewards according to their target L (as shown in section 7.3.4), we also need to
allow other non-persuasive tactics to constrain their ranges accordingly to ensure
a fair comparison. Thus, we allow all tactics to constrain the ranges of the issues
in the second game according to their target whenever they reach agreements
without the use of any arguments (i.e. using only a propose illocution). The
procedure to do so is similar to that described in section 7.3.4 where vy, as
calculated in equation (7.4), is used as the bound the negotiation range of the
second game but without the use of rewards.’
Therefore, we postulate the following hypothesis:

Hypothesis 7.1. Negotiation tactics that use the reward generation mechanism
are more time efficient than those that do not.

This hypothesis follows from the fact that we expect arguments to help agents
find an agreement faster. To this end, we run a number of experiments with the
following settings:

o We impose the following basic settings on the interactions: L* = 0.8 and
L8 =08, 15, =th ~=1s, ¢ = =0.1,0=1s, and A = 0.8. These

5The difference between the constraint applied by the reward and by the target is that the
reward applies the constraint to both agents while the constraint specified by a target only
applies separately to each agent according to their individual targets.
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settings are chosen to represent symmetric conditions for both agents and
impose relatively few constraints on the two negotiation games that agents
play. The symmetric nature of the interaction ensures that no tactic is in
a more advantageous position to its opponent.

e We define different populations of strategies used by agents for the two
games as follows:

— Both agents use one of BB, BW, and CO in the first and second game
in any combination. For example, an agent may use BB in the first
game and CO in the second. We therefore play each combination of
strategies against all other possible combinations. This results in 81
combinations and therefore 81 interactions per combination (one in-
teraction being 2 games, hence an agent using one combination meets
81 other agents using similar or different combinations of strategies
162 times). We repeat these 81 interactions at least 10 times and
average the results.

— Both agents use one of PBB, PBW, and PCO in the first game and
then both use one of BB, BW, and CO in the second game. This
results in the same number of interactions as in the previous case.
The same experimental procedure as above is repeated in this case.

— One agent uses RBT in the first game and BB in the second game
while the other agent uses one of PBB, PBW, and PCO in the first
game and one of BB, BW, and CO in the second game. We run
81 interactions between these agents (i.e. RBT meets a P strategy
3 times) and repeat these at least 10 times and average the results.
This population of strategies aims to show how effective RBT and
PNT agents are at eliciting better outcomes than PNT alone.

— Both agents use RBT in the first game and BB in the second game.
We run 81 interactions (each consisting of 2 games) between these
two agents and average the results.

To test hypothesis 7.1, we ran the experiments above and recorded the av-
erage number of offers made by each population of strategies. The results are
shown in figure 7.11. As can be seen, NT takes an average of 500 offers to
reach an agreement, while PNT strategies take 58 and the combined PNT and
RBT population takes 56 offers per agreement. The performance of only RBT
strategies is significantly better than the other populations since they reach
agreements within only 26 offers.® These results validate hypothesis 7.1. The
superior performance of the persuasive strategies show that the reward genera-
tion mechanism helps agents to reach agreements faster. This improvement can
be attributed to the fact that both negotiating agents calculate rewards and of-
fers (through the hill-climbing algorithm) that aim to maximise their opponent’s

6Using ANOVA, it was found that, using a sample size of 15 for each population, and
a = 0.05, that F = 2210 > Fp;; and p = 8 x 10~ 74, hence that the results are statistically
significant (i.e. the difference between the means of the distribution are not the same).
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Average Number of offers/interaction for each population
T T T

547.5

Average number of offers/interaction (log scale)

NT PNT RBT&PNT RBT
Strategies used

Figure 7.11: Average number of offers used by agents during negotiation en-
counters (2 games)

utility (as explained in section 7.4.2). Hence, this is faster than in the PNT and
RBT case where only one party (the RBT) performs the hill-climbing properly.

The results above lead us to postulate the following hypothesis based on the
fact that shorter negotiations lead to less discounted outcomes:

Hypothesis 7.2. Negotiation strategies that use our reward generation mecha-
nism achieve a higher expected utility than those that do not.

To test this hypothesis, we run the same experiments as in the previous case
and record the average utility per agreement and the number of agreements
reached. Thus, it is possible to calculate the expected utility, average utility per
encounter, and the success rate per game as explained earlier. The results are
shown on figure 7.12.

As can be seen from figure 7.12(c), the success rate of persuasive strategies
is generally much higher than NT strategies (0.87/encounter for non-persuasive
strategies, 0.99/encounter for PNT strategies only, 1.0/encounter for RBT and
PNT, and 1.0/encounter for RBT only).” The expected utility shown on figure
7.12(a) followed a similar trend with NT agents obtaining 1.6/encounter, PNT
1.88/encounter, RBT and PNT 1.95/agreement, and 2.02/encounter for RBT

"Using ANOVA, it was found that for a sample size of 15 for each population of PNT, PNT
and RBT, and PNT only, with a = 0.05, F = 8.8 > F.,.;; = 3.15 and p = 4.41 x 10~%. These
results prove that there is a significant difference between the means of PNT and the other
strategies. The success rate of NT agents were always lower than the other populations in all
elements of the sample.
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Expected utility per interaction (2 games)
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(a) Expected utility obtained by two agents per encounter.
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(b) Average utility obtained by two agents per encounter.

Success Rate per encounter
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Strategies used

(c) Success rate of strategy per encounter.

Figure 7.12: Expected utility, Average utility and success rate of agents using
different strategies.
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agents only. Moreover, as can be seen from figure 7.12(b), the average util-
ity of persuasive strategies is generally higher (i.e. 1.9/encounter for PN only,
1.95/encounter for PN and RBT, and 2.03/encounter for RBT only) than non-
persuasive ones (i.e. 1.84/encounter).® These results suggest that PNT agents
perform very similarly to NT agents when they use rewards (though rewards
reduce the time to reach agreements and increase the probability of reaching an
agreement). As discussed earlier in this section, PNT agents usually generate
offers first (starting from high utility ones as for NT agents) and then calculate
the rewards accordingly. Given this, the agents tend to start by giving rewards
and end up asking for rewards. As the negotiation proceeds (if the offers are not
accepted), the offers generally converge to a point in the middle of the MMPD
and rewards converge to a region around the centre of the MMPD. This process
results in a lower overall utility over the two games than if each agent exploits
the other on each game in turn. However, when PNT agents use rewards they
are able to reach agreements much earlier on during the negotiation so that the
outcome results a more efficient partitioning of the resources and hence a higher
utility than NT agents. If rewards are selected in a more intelligent fashion, as
in RBT, the agents reach much higher overall utility in general. This is further
demonstrated by the results of the RBT agents which efficiently select offers
and rewards and therefore tend to reach agreements that have high utility for
both participating agents. Given this, we can infer that the reward generation
mechanism used together with normal strategies which do not fully exploit the
potential of rewards in reaching agreements allows agents to reach better agree-
ments to some extent and these agreements are reached much faster and more
often!

It can also be noticed that the performance of mixed populations of RBT
and PN agents performs less well than RBT agents and slightly better than a
pure PN population (see results above). This suggests that the RBT agents
can find agreements that convince their PNT opponent more quickly as they
are able to propose better rewards and offers than PNT agents. Moreover,
it was noted that on average, both RBT and PN agents obtained equal aver-
age utilities per agreement (i.e. 0.96/agreement)? This also suggests that RBT
agents can avoid exploitation by any other PN-based agent. This is because the
hill-climbing mechanism of RBT agents calculates offers that can convince the
opponent without reducing the utility of RBT (and PNT) agents significantly
(i.e. in small steps).

In general, through the above experiments we have empirically proven the
usefulness of rewards in bargaining. Thus, we have achieved our initial aim of
using PN to enable agents to achieve better agreements faster. In the following

8These results were validated statistically using ANOVA, where it was found that F =
3971 > Fopie = 2.73, and p = 7.36 x 10780, for a sample size of 15 per population and
a = 0.05. These results imply that there is a significant difference between the means of the
populations.

9We validated this result using ANOVA with a sample of size 15 per strategy and a = 0.05.
Thus it was found that the null hypothesis (i.e. equal means for the two samples) was validated
with F0.13 < Feprit = 4.10 and p = 0.71 > 0.05.



208

section, we further study our RBT strategies to see how it is affected by different
conditions in the environment.

7.4.5 Evaluating the Reward Based Tactic

In this section we further explore the properties of RBT by studying its behaviour
when key attributes of the agents are varied. As can be deduced from section 7.3,
there are a large number of attributes that can affect the behaviour of RBT but
here we will focus on the following main ones which we believe have a siginificant
impact on both our reward generation component and the behaviour of RBT.
These attributes are:

1. L — the target determines the size of the reward that can be given to
or asked for as determined by v,y in equation (7.4) and the procedure
described in equation 7.3.4. Given this, varying L allows us to study the
effectiveness of PN in general as the possibility of asking for or giving a
reward changes. Moreover, we aim to study the effect of one agent having
a lower or higher target than its opponent on the outcomes of negotiations.

2. € — the discount factor dictates the utility of offers as well as rewards. In
particular, we aim to see how RBT and our reward generation mechanism
can help agents that have different discount factors find good agreements.

3. 0 — the delay before the second game is played determines the value of
the reward. Increasing this value can significantly reduce the value of a
reward to an agent. By varying # we aim to see how it impacts on the
use of rewards during negotiation and how this affects the outcome of each
game.

First we investigate the impact of the negotiation target L on the outcome
of negotiations. In this context, L is used to decide whether a reward should
be sent or not and what the negotiation ranges of an agent should be in the
second game (see section 7.3.4). The higher the value of L, the less agents are
likely to be able to construct arguments. This is because, an agent may have to
shrink the negotiation range in the second game more in to achieve a higher L
over the two games. Therefore, we expect the agents to achieve fewer deals and
have a corresponding lower overall expected utility. Moreover, in the case where
only one agent has a high L, then the opponent’s rewards are less likely to be
accepted because these rewards are less likely to allow the agent to achieve its
target, and hence the agents are less likely to come to agreements or take more
offers to come to any agreement. In this case we would also expect the agent
with the higher L to negotiate more strongly and constrain the second game
more such that it should get a higher utility than its opponent. To investigate
these intuitions, we will consider a pair of agents o and ( that use RBT and
postulate the following experimental hypothesis:

Hypothesis 7.3. The higher the value of L* relative to LP, the higher is the
average utility o compared to that of 3.
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To test hypothesis 7.3 we ran an experiment where the agents were made to
negotiate using similar settings as in the previous section except to the fact that
the target of @ was made to vary between 0 and 1.5 while 3’s target was kept
fixed at 0.5. The results of the experiment are shown in figures 7.13,7.14, and
7.15.

Overall expected utility/encounter as o’s target is varied

1.735

173

1.725

172

1.715

1.71

Expected utility/encounter

1.705

1.7

1.695

Figure 7.13: Expected utility of @ and 8 when L” = 0.5 and L® are varied.

As can be seen from figure 7.13, the overall expected utility of both agents
suffers a sharp drop after a peak at L® = 0.75 and there is a a sharp rise in the
number of offers exchanged between the two agents (in figure 7.14). Moreover
it was found that the success rate of the agents did not significantly drop (de-
creasing from 1 when L* = 0.75 to around 0.99 till L* = 1.5). The main cause
for the drop (and peak) in expected utility and rise in the average number of
offers can be explained by the results shown in figure 7.15. As can be seen, as
from L* = 0.75, a’s utility gradually rises while ’s utility sharply falls. This
means that a exploits # on all the issues that are negotiated.

In more detail, in order to obtain L™ = 0.75, a would need to exploit § in
the first game on all the issues it prefers more than 8 or exploit 8 on all issues
(which it likes less or more than 3) in the second game. This can be deduced
from the weights used in the utility functions shown in table 7.1. Therefore, at
this point, @ and (§ are likely to exploit each other maximally on the issues they
prefer in each game. This results in a high point in utility since it represents the
cooperate-cooperate point in the MMPD (hence the peak in figure 7.13). When
L% < 0.75, the agents can still find agreements without completely exploiting
their opponent on any issue and therefore agree to proposals and rewards that
result in a lower overall utility since the outcome then lies further away from the
cooperate-cooperate point of the MMPD.
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Average number of offers/encounter when o''s target is varied
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Figure 7.14: Average number of offers between a and § when L¢ is varied.

Average utility/encounter of o and B as o’s target is varied
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Figure 7.15: Average Utility of a and 3 when L? = 0.5 and L® is varied.
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Beyond L% = 0.75, it becomes harder for « to give or ask for any rewards.
This is because, as L™ increases, the use of arguments decreases as the a’s ability
to concede in either game decreases (since it nees to achieve a high target) and
« can only constrain its negotiation ranges more and more in the second game
in trying to get its target. However, given that g has a low target, it can
still afford to be exploited by « and still manage to reach its target over the
two games. Hence the success rate of the two agents does not significantly
decrease. However, given the more stringent demands of «, the agents are likely
to exchange a large number of offers (i.e. § conceding a significant number of
times) until an agreement is reached.

In general, these results validate hypothesis 7.3 and also confirm our intuition
that a’s bargaining power should increase with respect to its target. Given these
results, it can be expected that if the second game were less discounted, o could
have started exloiting 8 at a higher value than 0.75. We will therefore explore
such discounting effects on the negotiation and investigate the effect of increasing
both agents’ targets at the same time to see the general behaviour of the system
as the discounts and targets are varied.

Before doing so, however, we next study the effect of the discount factor
on the outcome of the negotiation (keeping e’ = 0.5). In this case, a low value
of €* equates to a low discounting effect on the outcome of the two games and
conversely for a high value of €®. Therefore we can expect that as e gets higher
the agreements reached in the two games would be much more discounted and
hence result in a lower overall expected utility. Moreover, with higher € values,
agents will find it harder to achieve their target L as they will value both offers
(and counter offers) and rewards less. Agents are then likely to take more offers
to reach an agreement and reach fewer agreements as well. In the case where only
a’s discount factor e is varied, we would expect that the agent with the higher
discount factor would be more likely to accept any offer by its opponent since
counter-offering might take up time that discounts its own offer more than the
one offered by the opponent. This means that the more patient agent is likely to
get its offers more easily accepted (i.e. take fewer numbers of offers on average)
and exploit its opponent more. Hence, as predicted by game theoretic models of
bargaining (Muthoo, 1999), the more patient agent gets an increasingly higher
average utility than its less patient opponent as the difference between their
discount factors increases. We therefore postulate the following hypothesis:

Hypothesis 7.4. The higher the value of €* relative to €, the less agents are
likely to reach agreements and take more offers to reach an agreement.

To test this hypothesis, we ran a similar experiment as above apart from the
fact that we kept the target for both agents at L™ = L® = 0.5 and we varied
¢ between 0 and 3 (while keeping ¢’ = 0.5). In this context, it is obvious that
the overall expected utility of the agents will decrease when € increases (and
the utility « gets decreases as a result of the discounting effect). Given this we
recorded the average utility of each agent and the number of offers they take to
reach an agreement. The results are shown in figures 7.16 and 7.17. As can
be seen from figure 7.16, G’s utility gradually decreases as € rises. The number
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of offers used by the agents also rises significantly as ¢ increases beyond 1.44.
This is because, beyond €* = 1.44, the discounting of the second game is such
that it is worth less than 0.5 (assuming « exploits all issues in the second game).
Thus, it becomes impossible for a to ask for rewards and it can only rely on
giving rewards. Moreover, as the discounting effect increases, it also becomes
harder for 8 to convince o with rewards. Eventually, as time passes, the agents
can only rely on simple proposals and « constrains its negotiation ranges in the
next game so as to achieve its target. Given this, negotiations take even more
time in the second game (as in the previous experiement). Therfore, the target
reduces the advantage of 3’s patience (i.e. in having a lower discount factor) in
this type of game. It was also found that the success rate of the agents does
not significantly decrease (from 1 to 0.98) after ¢* = 1.44. This suggests that
(B concedes more than « in the second game in order to come to an agreement.
This is also confirmed by the (3’s decreasing average utility in figure 7.16. These
results therefore validate hypothesis 7.4.

Given the above results, we can expect that the combined effect of an in-
creasing target and an increasing discount factor should significantly reduce the
expected utility of both agents and increase the number of offers they need to
make to come to an agreement. We therefore postulated the following hypothe-
ses:

Hypothesis 7.5. The higher the value of L® and LP, the lower expected utility
of both agents.

Hypothesis 7.6. The higher the value of € and €°, the less agents are likely
to reach agreements and take more offers to reach an agreement.

Therefore, we varied both agents’ discount factors and targets to see which
had a stronger effect on the negotiation outcomes. The plot of the expected
utility of the agents is shown in figure 7.18.

As can be seen from figure 7.18, the expected utility is more significantly
affected by the target of o and (3. The results confirm hypotheses 7.5 and 7.6.
Indeed, the drop in utility (as in the experiment for hypothesis 7.3) is noticed
at particular values in the agents’ target, corresponding to points where the
target can no longer be met easily as a result of the second game not providing
sufficient utility. Moreover, we notice that the point at which expected utility
drops relative to target values decreases in €. This confirms our initial intuition
that the discount factor influences to some extent the effect of the target on the
expected utility.

We also recorded the average number of offers made by the agents to see
the impact of the target and discount factors on it. The results are shown
in figure 7.19. As can be seen from figure 7.19, the drop in expected utility
is reflected by the jump in the number of offers made. The region where the
peak occurs corresponds to values of the targets and discount factors where
the agents are still able to use rewards to persuade each other and significantly
shrink their negotiation ranges in the second game to reach their target. Beyond
this peak (i.e. for higher values of the targets in particular), the agents can only
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find agreements in the first game and they do so according to the hill climbing
mechanism of RBT (which guarantees that they meet in a few number of steps).
Note that the plateau at low values of L is at a lower value than that at high
values of L, suggesting that rewards can significantly reduce the number of offers
made to reach an agreement compared to those that only make offers using the
hill climbing method.

Finally, given that higher values of € on the offers and rewards decrease the
probability that agents reach an agreement and increase the number of offers
exchanged, we expect a similar effect for higher values of the delay. This is
because a longer delay decreases the value of rewards to both agents, and hence
reduces the probability of reaching each agent’s target L. Therefore, we expect
that the longer the delay 6, the lower the success rate of the agents and the
higher the average number of offers needed to reach an agreement. Given this,
we postulate the following hypothesis:

Hypothesis 7.7. The higher the value of 8, the less likely it is that agents will
reach profitable agreements and the more offers they take to reach an agreement.

As for the above hypotheses, we ran a similar experiment keeping L® =
L8 = 0.5 and € = €® = 0.5, varied # between 0 and 10 seconds, and recorded
the expected utility of the agents. The success rate of the agents only decreased
slightly from 1 to around 0.99 after § > 5 while the number of offers significantly
increased when 6 increased beyond 3 seconds as shown on figure 7.20. These
results confirm hypothesis 7.7. The reason for the jump in the number of offers at
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0 = 3 has a similar explanation to that in the previous experiment for e* = 1.44.
Indeed at 6 = 3, the total value of the second game decreases below 0.5 and
decreases the value of rewards that can be given or asked for. This results in the
agents only being able to make offers without arguments and hence increase the
constraints on the second negotiation and increases the number of offers needed
to reach an agreement. To confirm these results, we also recorded the number of
agreements reached through the use of rewards. As shown in figure 7.21, it was
indeed found that the number of agreements reached through the use of rewards
decreases as 6 increases.
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7.5 Summary

In this chapter we have presented a comprehensive model of persuasive negotia-
tion. In particular, we have provided a novel protocol based on dynamic logic to
specify commitments that arise in persuasive negotiation based on the exchange
of arguments in the form of rewards (given or asked for). Given this, we specified
a new decision making model for agents to generate, select, and evaluate rewards
that they exchange. This mechanism allows agents to reduce the uncertainties
about the action set and the preferences of the agents (as per our objectives set
in chapter 1). Thus, it is shown that the use of rewards can result in agreements
with higher expected utility than standard negotiation tactics and that it can
take less time in doing so. Moreover, we developed a new negotiation tactic
specially suited for persuasive negotiation and showed how it can allow agents
to reach better agreements than standard negotiation tactics augmented with
our reward generation mechanism.

Given this, we can broadly conclude that PN effectively enhances the search
for agreements in negotiation. Moreover, we have shown how PN can be ef-
ficiently applied to influence outcomes in repeated encounters. Given this, in
the next chapter we show how PN can be practically applied to allow agents
to negotiate over repeated encounters in a flexible manner through the use of
rewards. Moreover, we aim to show, through this application, how CREDIT can
also be used alongside PN in such encounters in order to reduce the uncertainty
agents have about the honesty and reliability of their counterparts.
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Chapter 8

Persuasive Negotiation in a
Pervasive Computing
Environment

Having developed CREDIT and our model of PN, we aim to show how these
can be integrated in a practical application as per our initial objectives stated in
chapter 1. In particular, we apply PN to the problem of managing the display
of notifications in a pervasive computing environment. In this context, agents
have different (private) preferences (built in by their human users) about the
notifications that are received at different points in time. Thus, while some
messages might be preferred by the user receiving the notification, it might
be intrusive to the group activity the user is engaged in, hence less preferred
to the other group members. In other cases, however, the message might be
preferred by the group as well. Given this, agents are faced with significant
degrees of uncertainty about the preferences of their opponents (since these are
kept private) and notifications that may arrive in at any given moment during the
group activity. Hence, the distributed and repeated nature of these interactions
make it suitable to apply CREDIT and PN to reduce these uncertainties (as per
the attributes of CREDIT and PN discussed in section 1.5). Using these models,
we therefore show how they can help selfish agents to manage the intrusiveness
of notifications on their human owners’ group activities.

The rest of the chapter is structured in the following way. Section 8.2 de-
scribes the notion of interruptions and defines intrusiveness for pervasive envi-
ronments. It also describes the context of the meeting room scenario that we use
to demonstrate our solution. Section 8.3 provides an account of our agent-based
solution, while section 8.4 describes a practical implementation of our solution.
Finally, section 8.5 summarises the main achievements of this chapter.

219



220

8.1 Introduction

Pervasive computing artefacts such as laptops, smart whiteboards, video phones,
and pagers are becoming increasingly commonplace in our every day lives
(Abowd and Mynatt, 2000; Chandy et al., 2002). Moreover, such devices are
becoming increasingly interconnected given advances in communication technol-
ogy (e.g. 3G mobile phones, bluetooth) and processing power (e.g. PDAs, Video
telephony). Thus, users of such devices can be contacted in very many ways and
in most environments.

There are a number of advantages to this. First, users are able to receive
information on a variety of interactive media which afford different types of
interactions (e.g. responding to an email, responding to a video call). Second,
users can communicate information through many different light and portable
devices that can be used anywhere with such connectivity (e.g. GPRS palm,
wireless laptop). Third, users can use these devices as supports to their tasks
(e.g. a stock trader using different monitors to check stock prices, while at the
same time having a phone call with a broker, or a customer checking prices of
books online on a PDA while walking in a bookshop to check which books are
better deals). Thus, in general, such technology can increase the efficiency and
well-being of its users.

However, the uses of such pervasive technology also have some downsides.
First, notifications or messages received on such devices disturb the users in their
current focus of activity which might warrant more attention than the message
itself (e.g. a phone call received while making a presentation or an instant
messenger (IM) beeping while having a discussion). Second, this shift of focus
affects the other users with whom the user is interacting (e.g. the attendees of
the presentation lose track of what is being presented or the discussion stops).
Third, using current filtering techniques (e.g. in instant messengers or phones) it
is not possible to distinguish between messages which are completely irrelevant
to either the current activity of the users (e.g spam mail, wrong number phone
call), as captured by their context, or their own interests (e.g. a subscribed
weekly electronic newsletter, or news flash), and messages which are actually
relevant to the preferences of the users and/or help in the task at hand (e.g. an
email containing attachments that need to be used in a presentation, or a phone
call from the users’ boss).

Given this background, there is a clear demand for middleware systems to
manage the intrusive nature of interactions in pervasive computing environ-
ments. Such systems should nevertheless permit users to carry out their normal
activities and effectively interact with pervasive computing artefacts seamlessly
without blocking incoming information that might be important given the in-
terests of the user and their context. In more detail, these systems need to be
dynamically configurable so as to adapt to the current context of the user and
their interests. For example, the underlying system should be able to react dif-
ferently when the user is in a meeting (where notifications should be relevant
to the meeting or be important for the user) and where the user is alone and
browsing an email (when emails that are not very important can be viewed).



221

Moreover, in order for the system to be non-intrusive itself, it should be able
to autonomously decide on behalf of the user which is the best course of ac-
tion, given the objectives of the user and other users that may be in the same
environment.

Given these desiderata, agent-based computing has been advocated as the
natural computation model for such systems (see chapter 1). More specifically,
pervasive computing environments can be modelled as open MAS that are com-
posed of autonomous software agents that each represent their respective human
owner and make decisions on their behalf given their specified preferences. Thus,
in our model, users relinquish the management of incoming messages to their
software agent which decides when, how, and where messages are to be displayed
such that the notification delivered disturbs the user on the right device, given
the intrusive nature of the device and the level of intrusiveness permitted by
the user’s context (e.g. an unimportant instant messenger chat window may be
hidden until the meeting is over, while an important email might be highlighted
in the list of received emails with a beep to warn the user). As part of this
endeavour, the agent may need to negotiate the display of notifications (i.e. on
which device and at what point in time) with other software agents that repre-
sent other users in the environment in order to reconcile the preferences of the
group, as opposed to those of the user, when the latter is involved in a group
activity.

In more detail, agents need to negotiate about each notification received since
they are uncertain about the preferences of other agents about the notifications
received (since the other agents’ preferences about the contents are kept private)
and about new notifications they may receive as the meeting progresses (which
may disturb the meeting more if they occur too frequently). For example, if a
video call expected by the group is received on one user’s laptop, other agents
may negotiate to have it displayed on the public display which can be viewed
by all participants in the meeting. Conversely, if no one is interested in an in-
stant messenger message received by a participant, then the other agents would
negotiate to make sure that message could be redirected to his email if it is
not important or beeped to him if it is. Thus, through negotiations, agents can
discover that they have similar preferences about notifications received or can
even persuade each other through the use of arguments (see chapters 2 and 7) to
accept notifications. For example, one agent can accept a particular notification
if the proponent of a notification agrees to accept some future notifications by
the former in future. In so doing, the agents can give rewards to each other by
agreeing to the display of future notifications in exchange for displaying a partic-
ular notification in the present encounter. Also, agents can also ask for rewards
by asking opponents to agree to display of future notifications in exchange for
agreeing to their notifications in the present encounter. Thus, agents can reduce
the time they take to reach an agreement the next time a notification is received
since uncertainty about the space of offers is reduced in the next encounter.

Against this background, this work advances the state of the art in the fol-
lowing ways. First, we define a typology of interruptions for pervasive computing
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environments using notions of intrusiveness. Second, using our model of PN and
CREDIT we develop a novel agent-based solution to the problem of managing
intrusiveness given the preferences of the human users. Finally, we describe
an implementation of our system in a meeting room scenario using the Jabber
platform as the underlying architecture of our solution.

8.2 Intrusiveness and Interruptions

McFarlane was the first to distinguish the notion of intrusiveness from that of in-
terruption (McFarlane, 1999). He defines the former as the degree of interference
with the realisation of the main task of a group caused by a number of intrusions.
In turn, an intrusion is defined as an occurrence of a process or event that is not
intimately related to the current task of a group and that interferes with the real-
isation of that task. Note that interruptions and intrusions are clearly distinct
concepts: the latter cause errors where people incorrectly perform actions in an
interrupted task after task switching (i.e. handling the interruption), while the
former are general methods by which a person shifts his focus of consciousness
from one processing stream to another (McFarlane, 1997). Thus intrusions can
be regarded as a subset of interruptions (see section 8.2.2 for more details).

8.2.1 Receiving and Managing Interruptions

Interruptions can happen in very many ways. Specifically, in pervasive com-
puting environments, these interruptions generally take the form of notifications
that are received on the various artefacts that a user may possess or perceive
in his environment. To this end, McFarlane identifies four main ways to dis-
rupt someone (McFarlane, 1999) and we identify examples where these apply in
pervasive computing environments:

1. Immediate: require the attention of the user immediately without any
other choice. This might involve displaying a notification on a public
display or popping up a chat message in an instant messenger when a
message is received.

2. Negotiated: allow the user to choose the moment when they will deal with
the interrupting activity that needs attention. A user may thus notice that
an email has arrived on his email client or that a message is flashing on
his instant messenger.

3. Mediated: alert the user on another device rather than the one on which
it was supposed to be delivered. Such systems are now starting to become
reasonably standard. For example, an email client can redirect via SMS
(Short Message Service) to a phone or a phone call is re-routed to the voice
mail of the user (which he can access at a later time or listen to after the
message is recorded).
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4. Scheduled: come at prearranged intervals. For example, a user may have
a pre-arranged video-conference call or may schedule a periodic alarm on
a PDA to alert him to take his regular insuline dose.

Whatever the form in which a message is received, there are four possible
responses to it (Clark, 1996):

1. take-up with full compliance — handle the interruption immediately.

2. take up with alteration — acknowledge the interruption and agree to handle
it later.

3. decline — explicitly refuse to handle the interruption.

4. withdraw — implicitly refuse to handle the interruption by ignoring it.

In each of the above responses, some degree of mental processing by the user
is involved in deciding what course of action to take. In most cases the answer
depends on the preferences of the user with respect to the information available
about the content of the notification. Typically, the information available from
the notification (rather than from the whole content of the message) is the name
or identification number of the message sender and a subject line briefly describ-
ing the content of the message (mostly in emails, IM messages, and sometimes
on video conference calls as well). From this information, the user can usually
tell whether the message (for which the notification has happened) is something
that he asked for (e.g. information about his children’s health), or was sent to
him to inform him of something important (e.g. an email about his latest stock
prices), or is relevant to his current context (e.g. an advertising SMS received
on his mobile phone about a shop in his surroundings). The device through
which the notification is conveyed determines the degree to which the user is
disturbed (e.g. a notification displayed on a public device on which a message is
publicly visible is almost certain to alert the user and other users present, while
a message shown in an email client without beeping or popping up an icon, is
sure not to disturb the user). Moreover, the device gives a level of guarantee
that the notification will be seen by the user (e.g. an IM beeping is sure to
alert the user, while the user must be looking at his laptop screen to see the
heading of an email). Thus, the right device must be chosen in the right context
in order to balance the importance of the message with the intrusive nature of
the interaction with these devices (e.g. an IM must not beep when the user is
doing a presentation, while he can be beeped when he is not focussed on any
important task). In the next subsection we therefore consider the issues involved
in choosing devices that can be used to disseminate the information contained
in the message.
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8.2.2 Typology of Interruptions

We can generally assume that interruptions define a means of disseminating in-
formation'. Now, whether this information warrants the disturbance of the user
is dependent on the relevance of the information to the needs and preferences of
the user or the user’s group. We therefore classify the information dissemination
solutions as information push, where information is not expected by the user, or
pull, where the information is expected.

Whenever messages are received, we will use the preferences of the users
to define the messages’ pull or push nature. Thus, whenever preferences specify
that a sender and a particular subject is much liked, then the message concerned
is considered to be pulled, while if preferences do not specify the sender or the
subject then that message is considered to be pushed. Given this description,
we can now further distinguish between intrusive interruptions and non-intrusive
ones.

Generally, we consider that the intrusiveness of a notification displayed on a
particular device depends on the preferences of the user and the context within
which the notifications are received. Those interruptions that help the user or
the user’s group with the task at hand are not intrusions. Rather, they are task
support information which we interpret as “good” interruptions. We define task
support information as: being related to another task (i.e. handling the content
of the message) concurrent to the one being performed that will aid the latter’s
completion or enhance its efficiency.

Thus, in information dissemination terms discussed above, we further classify
intrusions and task support information as follows:

e intrusions are unwanted (by the group or user) pushed information;

e task support information is pulled or useful pushed information (as deter-
mined by the user(s)’s preferences).

Although some intrusive notifications might be unwanted by the group, they
might nevertheless be considered important enough by the user receiving them
for her to switch to handling the notification (i.e. disturb the group) rather than
stick to the group task at hand (i.e. not disturb the group). This happens when
there is a conflict of preferences between the group as a whole and the individual
within the group. In such cases, the users would need to discuss whether the
intrusion should be allowed or not. This would typically involve the users each
stating their preferences regarding the intrusion in the current context and thus
deciding as a group whether to allow the notification (i.e. whether they would
mind the group being disturbed). However, if the users do this themselves, the
group task is necessarily disturbed. Moreover, the users may not want to reveal
their true preferences about the notifications in case other users may want to
exploit these preferences to display more notifications and therefore disrupt the

1We consider a specific aspect of interruptions here. However, an interruption may also be
a request to take action on some issue. We will investigate this other aspect of interruptions
in future work.
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former’s attention repeatedly during the meeting. In some cases, the users might
also want to delay the notification of messages of other users to a later point in
time when the attention level required in the group activity is lower. In yet other
situations, a user might allow other users to disturb the meeting if they agree
to let the former receive messages at a later point in time during the meeting.
This may happen if the former is expecting an important message or does not
need to be particularly attentive later on during the meeting (e.g. if she has
presented her work earlier during the meeting).

Given the above desiderata, we require an additional interface, between the
notification controllers (i.e. the software that controls the notification devices)
and the physical world. This interface is responsible for managing these complex
interactions and resolving the conflicts over the decision to display incoming no-
tifications. As discussed in chapter 1, negotiation is the main way of resolving
such conflicts and, to this end, in section 8.3, we develop an agent-based mecha-
nism that can flexibly negotiate the best course of action on behalf of the users.
Before doing so, however, we detail in the next subsection the meeting room
scenario.

8.2.3 Intrusiveness in the Meeting Room

The scenario involves a number of users meeting in a room that is fitted with
pervasive computing artefacts that are fixed in the room (e.g. a smart white-
board or an audio system capable of generating audio cues) or that are brought
in by the users (e.g. laptops, PDAs, mobile phones) as can be seen on figure
8.1. The aim of the meeting is to discuss a group project which has a specific
subject, and each user takes turns at voicing his viewpoint on the subject. The
meeting may also involve presentations by group members on a particular issue
of the project. Video calls are expected from other members who were not able
to physically attend the meeting.

There are different ways a user in the meeting room can be disturbed. Here,
we consider the following as the most relevant types of notification delivery
services:

1. An email client — this device simply shows a header containing the email
sender and subject (other details may be added but the content is not
shown). This type of notification is intrusive to the extent that it alerts
the user of the meta-information about the message rather than the content
itself. This does not guarantee that the user will entirely shift his focus of
attention to reading the email unless he finds the subject very interesting
(i.e. negotiated interruption).

2. An instant messenger — this pops up a window and beeps the user. This
type of notification gives the content of the message and disturbs the user’s
activity with the beep. This nearly always results in the user shifting his
focus of attention (i.e. scheduled or immediate interruption).

3. A public display — this is a whiteboard that simply shows messages that
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Figure 8.1: Intrusiveness in the meeting room. Users might be checking their
email or sending SMS while attending a presentation, thus disturbing their col-
leagues.
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are sent to it. This device is potentially the most intrusive since it disturbs
the whole group as everyone in the meeting room is able to see the message.
Users may re-route messages or video calls received on their laptops to
this device whenever the messages are relevant to the whole group (i.e.
scheduled or immediate interruption).

The participants of the meeting may reach different states of focus at different
points in time. For example, in a presentation most users are focussed on the
presentation, while if two users are in discussion, the others might lose focus
altogether. In another context, the meeting might even be silent if all users are
reading an important document together. The latter state would require a very
high level of attention. At yet other times, the group might be having a coffee
break which can allow intrusive notifications.

Given that each of the devices involves a particular degree of interruption
(e.g. immediate as opposed to negotiated), it is possible to relate the preferences
of users over a received notification or message to a given device through its
degree of interruption. Thus, an important message to a particular user might
be displayed on his IM, while an important message to the group should be
displayed on the public device. However, when users have conflicting preferences
regarding notifications, some form of negotiation is needed. To this end, the
next section details our multi-agent based solution to negotiating and managing
interruptions.

8.3 The Multi-Agent Solution

We have developed a multi-agent system for managing intrusiveness and have
applied this system to a real meeting room (at our university). This system
defers the handling of messages to software agents that each represent their
owners. Specifically, we assume that users relinquish the decision about which
device to use for a notification to their agent (after negotiations with other
agents). This may mean re-routing an IM message to an email client or even
being kept on an invisible queue for later (e.g. post-meeting) delivery depending
on the preferences of the user. This is a fundamental change to the present
situation in which the sender of the notification chooses the device on which
his message will appear. To capture the group’s influence on the display of a
notification, we incorporate the use of a dial which can be turned up or down by
the members of the group (with all members’ consent) to regulate the level of
intrusiveness allowed. Thus, at different points in the meeting, the users might
want their agents to know that they do not want to be disturbed (except for
very important messages) by turning the dial down. During a coffee break the
dial can be turned up to signal to the agents that intrusions are allowed.? Here,

2While the dial is a manual means of managing the level of intrusiveness, we aim in the
longer term to develop sensing devices to monitor the state of the meeting in order to adjust the
level of intrusiveness automatically (e.g. by tracking the progress of the meeting through the
agenda, by monitoring movements of users through a video processing tool to detect how users
are interacting, or by assessing the level of noise to detect the level of interactivity between
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we assume that the users have input their preferences into their representative
agent to allow the latter to know which messages are to be considered important
and which are not. Fundamentally, this involves assigning points (from 0 to
1 inclusive) to particular sender names and subjects that a notification could
contain. For example, a sender named Wendy gets 1 point since she is the
project supervisor and a subject such as ‘Project guidelines’ gets 1 point as well
since it is relevant to the current meeting (about that project). On the other
hand, sender names that are not expected or not deemed very important will get
less than 1 point (including 0 expressing no interest in such notifications being
routed to their target user).

8.3.1 Formal Definitions

The meeting room contains human users hi,ho,...,h, € H and devices
dy,da,...,d, € D. There also exist other users outside the meeting room noted
as hi,hf...,h! € H'. Devices can have different characteristics: private display
(OD) (e.g. email client), public display (PD) (e.g. the smart whiteboard) and
part-private-part-public (POD) (e.g. IM) such that POD U PD UOD = D.
Devices are controlled indirectly by user agents «, 3, ... € Ag. By indirect con-
trol we mean that it is the system, a special user agent representing the meeting
room and the group of users, called SAgent, that handles the actual display
of messages, but it is the user agent that decides which device should be used.
Thus, SAgent carries out the display of notifications when asked by another
user agent if the agent satisfies certain conditions. In this way, the SAgent ac-
tually manages the group preference on the level of intrusiveness allowed. The
behaviour of the SAgent is regulated through the dial (controlled by the group
of human users) which indirectly scales the level of intrusiveness of all devices
in the meeting room by changing the conditions which SAgent imposes on the
display of notifications. Figure 8.2 shows the flow of messages between agents
(including S Agent) whenever a notification is received from outside the meeting
room. We generally capture the devices that are accessible by a user’s agent
by the function G : H — 2P. Each meeting room user can have a number
of devices used to display (notifications of) messages. We use oy, to note an
agent a belonging to user hi. Devices under the indirect control of an agent are
noted as (a, (di,da, ...)). Messages received by users from outside the meeting
are noted as mq,ma,...,m, € M. Each message has the following structure
m = (h',h,s,c,t,d), where b’ € H' is a sender outside the meeting room, h € H
is the recipient inside the meeting room, s is the subject of the message, c is the
content of the message, t € Time is the time at which the message arrives, and
d € G(h) is (are) the device(s) available for display for that user. The meeting
starts at time ¢t = 0 and ends at a given time ¢y q.

We consider the intrusiveness to be a cost to the group activity since it
disturbs the meeting; notifications can be allowed into the meeting if and only
if the gain of displaying them matches the cost (or level of disturbance) to the

users).
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msg A’s agent

. negotiation

SAgent| C'’s agent

Dial L

A’s devices

Figure 8.2: Interactions between device and agents. Dotted lines represent in-
teractions after a message is received by user A’s agent has negotiated with B’s
and C’s agent.

group. The dial can be formalised as a function that scales the acceptable level
of intrusiveness K : 2P — [0,1]. Assuming each set of devices (i.e. POD, PD,
OD) has a different degree of intrusiveness @ € [0,1] (and therefore cost) in the
following order Qop > Qpop > Qpp, then the actual cost of a particular device
d in a particular context (as set by the dial), is obtained by the function Cjy :
[0,1] x [0,1] — [0,1] defined as Cy = Qsq x K(d), where sd € {POD,PD,0OD}.
As can be seen in the function Cy, the dial scales the cost to display a message
on each set of devices (private display, public display, part private-part public
displays). We also assume the existence of an invisible queue that stores messages
that are not sufficiently important to be displayed at a particular time, but which
might become important enough later on. This device does not interrupt any
user and is therefore assigned a cost of zero.

Agents negotiate about the display of a notification of a given message on a
particular device. Also, agents negotiate about the particular point in time the
notification is to happen. In this context, the negotiating agents may have dif-
ferent preferences about the message m. For example, some senders or subjects
might be more preferred by one agent than another.® Agents may also have dif-
ferent preferences about the device chosen* deposen (€.g. a public device might
be more preferred by an agent since it guarantees the alert will be perceived by
the user while an email which needs to be polled is more preferred by the other
agents since their owners are going to be less disturbed), and the time at which

3The sender name and subject are considered to be only the necessary rather than sufficient
features of the utility function. The other elements of the message such as the content of the
message (e.g. using data-mining techniques where possible) and the time at which it is received
may also allow for a more comprehensive analysis of the utility of the message. We foresee
doing so in future work.

4In contexts where agents cannot be trusted, the content might not be transmitted to the
other agent when given for evaluation or some form of cryptographic technique used to encode
the message and the utility function (see 3 for more details).
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it is displayed tgispiay (i-¢. disturbing a user immediately may be preferred by
an agent while other agents may prefer it to be displayed much later on at the
end of the meeting). The content of the message is non-negotiable but the time
of display and device chosen can be negotiated. All these issues are captured
in a contract O such that {Myeceived = M, taispiay = b5 dechosen = d} = O. For
each of these issues, we assume the pairs of negotiating agents have linear utility
functions U for each issue that follow the MMPD as described in chapter 4. The
domain of values each issue takes is assumed to be finite (e.g. a fixed number
of devices ranked in order of their level of guarantee to alert a user while the
domain of time points is constituted of a fixed number of time points along the
duration of the meeting).

The utility function applying over a contract O is then refined to capture
the points assigned to a sender name and a subject, determine the utility of the
device chosen and the time of display minus the cost (intrusiveness) of using
that particular device as shown below:

U*(0)= > wy Uv)—Cq (8.1)

(z=v)€eO

where > w, = 1. Thus, the utility function returns a points obtained for hav-
ing a given message displayed on a given device at a particular point in time.
Whenever a message is displayed on a particular device, the S Agent rewards the
agent concerned (i.e. the user agent which asked to display the message) with
the number of points dictated by its utility function. This reward represents
the user’s reward to its agent for satisfying his preferences. The more points it
gets, the more the agent is able to pay for messages that the user might like.
Moreover, agents may also be allowed to exchange points they receive if they
need to collaborate to pay for the cost of a message (whenever they cannot pay
for a message on their own).

Messages from users, H, are received by the system agent SAgent which
manages the meeting room (i.e. devices forward incoming messages to the system
agent and wait for a decision to be made before displaying anything). We assume
that devices forward the messages they receive to the system to notify the user
agent concerned. A message is first analysed by the system to determine the
recipient h. The system then contacts the appropriate user agent «j. The user
agent then needs to make some decisions by taking into account the cost Cy of
displaying a message m on the targetted device d, the time at which it wants
the message displayed, and the utility of a message U (m) to itself. We assume
that all agents are initially assigned a budget B“* equal to the cost of displaying
a message for the most expensive set of devices (i.e. B*" = maxgegn){Ca})-

In this way, messages are first assessed using the preferences of the user and
then the decision is made whether to ask the system to display or not. There
are 3 possible courses of actions that a user agent can take:

1. Ask the system to queue the message, resulting in no cost.

2. Ask the system to display message by paying cost Cy with the budget B*»
available. The more costly the device chosen is, the less will the budget of
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an agent be after a message is displayed and agents might prefer to display
high value messages on the less costly devices to maintain a high budget.
This is graphically shown in figure 8.3.

3. Ask other agents to contribute to pay the cost of displaying the message.

Budget resulting from displaying m of different values on d with different costs

B after displaying m on d

V(m) (points) o0 c, (points)

Figure 8.3: The budget B resulting from displaying a message m on a device d
for different costs and values of the message displayed

The first two options are straightforward to carry out. The agent simply
needs to analyse the message and determine the payoffs. If the budget matches
the cost of display and the payoffs will replenish (partly or fully) the budget,
then the message is displayed. However, there might be cases where B*» < Cy
and U,, (O) > 0 meaning that the agent would get a higher payoff than Cj if
it had the additional funds to match Cy. To be able to achieve this, an agent
can therefore negotiate with other agents to get their contribution to the pool of
funds and get the message displayed. The display can be on the users’s private
device or on other agents’ devices (if they agree to this) or on a public device
depending on the importance of the message to the user and the group. The
user agent will therefore negotiate with other user agents for their investments
to match the cost of displaying the message. These other agents might have an
interest in getting the message displayed since they might also have a preference
for the sender and the subject. Agents may also have different preferences about
the time of display and the device chosen such that it is possible to propose
alternative devices on which a message can be displayed and times at which
these events can happen. Moreover, since the agents are assumed to be selfish,
we can expect that they might renege on their commitments to display a message
on a particular device in order to increase their utility. Given this, in the next
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section, we describe the negotiation mechanism that aims to resolve the agents’
conflicting preferences while taking into account their trustworthiness.

8.3.2 Persuasive Negotiation

In order to allow agents to reach efficient agreements quickly, we choose the
persuasive negotiation model described in chapter 7. We choose such an ap-
proach specifically because it incorporates the use of promises of future rewards
(i.e. trading points) together with proposals exchanged (e.g. display on IM and
promise to give 0.3 points in the next encounter if the opponent agrees to 0.3
points now). Thus, not only can agents negotiate about the type of device to
display a message on, but they can also promise points to each other in order
to get their proposal accepted. Given that such promises are more likely to
persuade the opponent (since they obtain points in return or have committed to
give some) to agree to contribute to the payment than only proposing a device
and time of display, the negotiating agents are expected to find an agreement
more quickly than if they operated without such promises (as shown in chapter
7). Moreover, given that the agents are likely to meet repeatedly during the
meeting as notifications are received, the use of promises allows the system to
flexibly deal with important messages (to a user or the group) over time such
that important messages are not rejected simply because the user’s budget size
varies as his messages are notified.

We will also assume, in this scenario, that agents are selfish as users might
not want to be disturbed by messages of other users. In this case, the agents
might not want to give all the points they promise or display the notification on
a chosen device (in order to get more points). Given this, agents can use the
CREDIT trust model to shrink or expand their negotiation ranges over the time
of display and the device chosen. For example, as in CREDIT, a high level of
trust would equate to agreeing to the proposed device and time of display while
a low level of trust would equate to negotiating for later time of display and
less intrusive device. Moreover, by using CREDIT, agents may also modify the
promises they make according to the trust they have in their opponent. A high
degree of trust would equate to a reasonable demand for extra points, while a
low degree would equate to a high amount of points demanded since the agent
would be expected to defect on the number of points provided.

Next we describe the algorithm used by the agents to perform negotiations
with other agents in their environmentand decide which device to choose for
display.

8.3.3 The Negotiation Algorithm

The algorithm is described in figure 8.4. Note that —h = H/h and Tell,_,3(x)
(for « tells B about z) is a message from « to § with the content z. From
Steps 1 to 6 the agent determines its utility for all possible offers that it can
make, sends the different proposals and arguments with them according to its
level of trust previously calculated (using a trust model such as CREDIT). The
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type of argument (i.e. asked or given) and the offer is determined according
to the RBT algorithm presented in section 7.3.5. In this case, given that the
proponent is involved in multi-party negotiations and might make rewards or
ask for rewards over multiple sequential negotiations with different parties, the
value of the reward «j can give or ask for in each encounter with other agents
is at most equal to:

max{0, Ua, (0) + B — > i}

where i} represents the points promised or asked for the current offer O by
agents other than a_j. In so doing, aj makes a promise to a_p that it will
be able to refund after it can get its message displayed. In Step 5 each agent
sends its potential investment i_j, for the offer given. Step 8 computes the pool
of points available given the utility to be obtained and the cost of the device.
Then, in Step 9, oy, selects the device and the time of display for which it gets the
maximum investment and checks whether the points to be obtained are greater
than zero. If o, does get some points, in Step 11 to 14 it notifies all other agents
about its decision so that they can update their commitments (i.e. keep track
of promises) and send their investments to SAgent which updates their budgets
(i.e. by deducting the promised i_,, for the current message), otherwise it queues
the message. In Step 16 «ay, forwards the payment for the device to SAgent. In
Step 17, the SAgent pays oy, and Step 18 updates «y’s budget.

8.4 Implementation

In order to evaluate the efficiency and effectiveness of our algorithm we developed
it using the Jabber® platform (a highly extensible instant messaging system). In
more detail, the Jabber platform incorporates devices and agents in the following
ways:

1. Devices with various levels of intrusiveness are represented by a number
of highly configurable instant messaging clients. Thus, Jabber clients (e.g.
Psi) can be configured to simulate an email client by having messages sent
to a client that simply displays an icon when a message is received. The
client then needs to be checked (or polled) to view the message. An IM
can instead be simulated by having the client pop up a chat window and
beeping at the same time. Thus the user is alerted and the message can
be viewed immediately. Other devices mentioned as part of the meeting
room, such as the public device and the invisible queue, can be created
by having a custom-made Jabber client that simply outputs messages it
receives to a window and an internal queue that is not visible respectively.

2. Software agents as pictured in figure 8.2 are made to interact on a server
that plugs into the Jabber system that is responsible for routing XML-
based messages which come from users outside the meeting room. In this

Shttp://jabber.org/
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Require: Trust(ay,a_p)
1: for all a_j, do
2:  use Trust(ayp,a_p) to adjust negotiation range in offer O.
3:  while a_j; and oy, disagree do
4 Tello, —a_, (illoc(O,i* },)) where illoc € {propose, reward, askreward}
% offer O and, if possible, argument i* ;, to other agents using RGM and CREDIT.
Tella_, —ay, (i—n, (0,4 })) where i, < B*=" and i_p, € [0, 1] % agents return
their promise of contribution for the pair (O,i" ).
end while
7: end for
8: YO € O calculate Sum? = {ZheH i_h} % sum investments promised for each
offer.
9: Omax = argmaxoco {Ua“ (0)+ Sumio} % choose utility maximising offer.
10: if B — Cyq + Sum® > 0 then % if a device and time of display can indeed be

o

1

chosen
11: for all v_j, do
12: Tellay,—a_;, (Omax) % tell other agents the choice.
13: Tello_, —ay, (i—h,Omax) % agents reply to ay, with their investments. This is
where agents can defect on payments.
14: Update Trust(an, a—n) % update the trust model.

15:  end for

16:  « calculates its own investment i, = min{B*", Cq — Sumio"’a"}

17 Tella, —sAgent(ih, Omax) % give investment and contract chosento SAgent.

18:  Update trust of other agents % Using CREDIT here.

19:  Tellsagent—ay, (points = U (Omax) + SumS™>) % SAgent gives points to ay,
including any extra points from investments.

20:  B% = U (Omax) + Sum?"‘a" + B®" — i, % agent updates its budget with new
points.

21: else

22:  send to queue

23: end if

Figure 8.4: Algorithm to determine most appropriate device and time to display
message
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way the negotiation is performed in a single thread of control every time
a message is received. Thus, after negotiation, agents can provide the
appropriate routing information to the Jabber system (i.e. which device
to be chosen for notification).

In the next section, we detail the operation of our system.

8.4.1 System Operation

Each user in the environment is assigned their own unique ‘Jabber ID’. Associ-
ated with that identifier there are a number of resources, in the scenario’s case
there are two; an e-mail ‘device’ and one for instant messages. The other two
candidate devices for notification delivery are the invisible queue device, and
the public whiteboard display (a first class Jabber ID in its own right), shared
amongst all of the users in the scenario. The various components of our system
are shown in figure 8.5.

Nick
Scripting
component
‘
Public Display P—
Jabber
(backbone)

Dave

Gopal

ER[EY

Meeting Room Server
(negotiating agents)

B
-

Figure 8.5: The architecture used for the meeting room and negotiating agents.

The user agents were implemented within a Jabber server component (i.e the
meeting room server), representing a meeting room. The meeting room server
maintains an internal description of each user’s preferences as part of the Jabber
system’s user profile (i.e. U%"). The user can view or change his preferences
via dialogue (using an instant messenger) with this component. This preference
information is then used to initialize the user’s agent, which is created when the
user first logs in to the system. As a user adds further devices to the system,
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this agent is then informed of the new device, and thus different components
become candidate targets for notifications.

Messages that are sent from outside the meeting to a particular Jabber user
go through the Jabber server, which then re-routes them to the meeting room
server (which represents the SAgent). The agent representing the recipient is
then notified of the message so that it may begin to negotiate for an appropriate
display device. The meeting room server receives the resulting choice of the
agent and provides the Jabber server with the appropriate routing information.

To illustrate the operation of our system, consider the following interaction
episode. We will assume that Nick, Gopal, and Dave are having a meeting.
Each user has a Psi-based email client and an IM client up and running on his
laptop while the public display client is connected to a smart whiteboard and
the invisible queue is implemented in the meeting room server. Before the users
start the meeting, they log on to the Jabber system which communicates their
presents to the meeting room server. The latter then queries the users for their
preferences. The meeting topic is about “FEEL project” which all users register
in their preferences in their profile (e.g. they each give 1 point to that subject
to indicate a high preference). Moreover, they each assign, possibly different,
preferences for senders (e.g. Nick gives Wendy 1 since she is his boss while
Dave gives Wendy 0.5 since she is not involved with Dave on any projects at the
moment) and other subjects including the meeting subject. Duplicate entries
are prevented by the system. Let us assume in the following that a message (e.g.
an email) is sent to Nick by Wendy about the meeting subject in particular and
that the dial is set to K(d) = 1 such that a message to a public display would
cost 2.5, an IM 2.2, an email client 1.0 and the invisible queue 0, and that each
agent is given an initial budget of B*» = 1:

1. The meeting room server (i.e. SAgent) intercepts a message ‘from’
wendy@scenario with subject FEEL project to recipient Jabber ID of
Nick, nick@agentbox.scenario.

2. The SAgent dispatches the message (including message metadata con-
tained in envelope) to the agent representing the interests of the target
user (i.e. Qpick)-

3. Qpick first calculates the utility of the message using equation 8.1 and then
negotiates with agave and agopar as per the algorithm described in figure
8.4. As can be deduced from our initial settings, ayicr can only afford an
email or invisible queue by itself but given investments of other agents, it
could send the message to the public device or the IM. Given that Gopal
and Dave have a high preference for the meeting room subject and that
Dave also has a high preference for the sender while Gopal has none (i.e.
from equation 8.1, U%sorat > ( and U%dave > (), each decides to invest
different amounts in the message for different devices that could be used
for the notification. Let us assume (according to preset values of Pp)
that the utility maximising device (without promises) for ay;. is the IM
which attracts an investment of igopq; = 0.2 from Gopal and ig44ye = 0.4
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from Dave. Instead, with a promise of returning ig,,, = 0.1 to Gopal
and 7},,. = 0.1 to Dave, the utility maximising option for ay;.; is when
it uses a public device. Thus auick can get igopar = 0.8 from Gopal and
idave = 1.0 from Dave’s agent for the public display (for which they would
invest more than the IM without the promises but these investments would
not be enough to satisfy the cost of the public device). Nick’s agent can
thus display the message on the public display by investing only %, = 0.9
and rewarding cgopar and gave in future encounters.

4. apick sends the identifier of the chosen device to S Agent together with the
investments of all agents.

5. The SAgent then sends the whole content of the XML-based message from
Wendy to the Jabber system with the appropriate routing information that
selects the public whiteboard.

6. The SAgent then rewards all the agents with the utility they gain from the
display of the message on the public device (i.e. 2 to apick, 1.5 t0 Qe
and 1 to agopai)-

8.5 Summary

In this chapter, we have presented an agent-based system to manage intrusive-
ness in pervasive computing environments. The solution takes into account the
preferences of a user, and other users in his environment through our model of
PN and CREDIT, in deciding the intrusive level of a message. Moreover, we
successfully implemented the algorithm in Jabber and deployed it in a meeting
room scenario. Thus we have achieved our main objectives towards showing the
applicability of our negotiation models to solving conflicts prone to uncertainty
in practical applications (see section 1.5).

In general, the main findings of this work were that the multi-agent negotia-
tion algorithm would always choose the most important incoming messages for
display and, if too many messages of medium importance are received, the agents
gradually run out of budget and cannot afford to display any further messages.
This results from the relationship between the budget and the value the agent
obtains from the display of messages on certain devices as shown in figure 8.3.
The more costly the device, the lower the resulting budget after a notification,
hence the potential of an agent to display notification next time decreases. More-
over, the negotiation algorithm allows agents to adapt their behaviour over time,
through the use of arguments and trust, to permit important notifications when
their budgets are low and reduce their contributions to untrustworthy agents
respectively.






Chapter 9

Conclusions

The various models we have developed in this thesis are linked by the underlying
theme of attempting to reduce the uncertainty in negotiations in multi-agent
systems. Therefore, in this chapter we bring together the main achievements of
these models and discuss how they impact on the wider issues that pervade the
field of multi-agent systems.

The rest of this chapter is structured as follows. Section 9.1 summarises the
main results of this thesis, while Sections 9.2 and 9.3 discuss the theoretical
and practical implications of our work respectively. Finally, Section 9.4 dis-
cusses future lines of work concerned with reducing uncertainty in multi-agent
negotiations.

9.1 Summary of Results

Our main aim at the beginning of this thesis was to develop mechanisms that
would enable the resolution of conflicts under uncertainty. In particular, we set
out to devise techniques to reduce uncertainties about the agents’ reliability,
honesty, preferences, and action sets, when agents are involved in negotiation.
We applied our techniques to the two main classes of negotiation mechanisms,
namely mechanism design and bargaining. In both cases, these techniques were
based around the notions of trust and persuasive negotiation.

Thus, using mechanism design principles, we developed the area of Trust-
Based Mechanism Design. This aims to produce efficient solutions by reducing
the uncertainty about the agents’ preferences through a protocol and uncer-
tainty about their reliability through the use of trust. Thus, our Trust-Based
Mechanism is the first reputation mechanism that is incentive compatible, indi-
vidually rational, and efficient. Moreover, it was shown that our TBM can use
any trust model to produce efficient outcomes in the long run, as the trustwor-
thiness (reliability) of all agents are learnt over multiple interactions by the trust
model.

In the area of bargaining, we aimed to reduce uncertainty about agents’ hon-
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esty and reliability through the use of a trust model that could accordingly adjust
the agents’ negotiation stance. To this end, we developed the CREDIT trust
model. This is the first such model that can reduce uncertainties in bargaining
encounters. Specifically, in CREDIT we showed how trust, learnt over multiple
interactions, could be used both to constrain the domains of issues being nego-
tiated and choose issues to be negotiated. In so doing, CREDIT is able to avoid
exploitation by unreliable and dishonest agents. CREDIT was also shown to
elicit profitable outcomes against agents that are reliable to a certain degree.

Given that CREDIT only reduces uncertainty regarding the reliability and
honesty of agents, we developed a novel model of Persuasive Negotiation that
reduces the uncertainties about the agents’ preferences and action sets in bar-
gaining encounters. Thus, we provided a new protocol for PN that takes into
account rewards that can be asked from or given to another agent. This protocol
reduces the uncertainty about the type of actions agents are allowed to perform.
In so doing, we also provided the first protocol that clearly specifies the main
commitments agents make when engaging in persuasive negotiation. Moreover,
we provided a novel decision making model for agents engaging in persuasive
negotiation. Thus, we provided a mechanism that generated arguments in the
form of rewards that constrain the outcome of repeated encounters (i.e. that
constrain the agents’ action sets). These arguments try to give more value to
an offer (than the offer by itself) on the present encounter by providing guaran-
tees on the outcome of future encounters and therefore speed up the search for
an agreement (without knowing the opponents’ specific preferences). Thus, we
showed that through persuasive negotiation agents are able to reach agreements
in less time than in the non-persuasive case and obtain a higher overall utility.
Furthermore, we developed a new strategy for persuasive negotiation that se-
lects the offers and rewards that are most likely to persuade an opponent and
maximise the agents’ utilities over repeated encounters.

Finally, we provided an example application of CREDIT and our model of
PN through the model developed to manage intrusiveness in pervasive comput-
ing environments. Thus we showed how the intrusiveness of notifications in a
pervasive computing environment could be reduced by allowing agents to nego-
tiate, on behalf of their owners, the display of these notifications. In so doing,
we provided the first practical application of both PN and trust in multi-agent
negotiation.

In short, the models we have described above form part of a wider initiative to
solve the problem of uncertainties in multi-agent interactions. In the next section
we discuss their theoretical implications for research in multi-agent systems in
general.

9.2 Theoretical Implications
Conflict resolution in multi-agent systems is a major issue that has always re-

ceived a significant degree of attention in the agent-based research community.
In particular, mechanism design and bargaining have been at the centre of this
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endeavour. This effort has lead to a number of models that each aim to elicit
predictable and efficient outcomes given certain constraints. In this context, the
work presented in this thesis has tried to reduce the constraints on these mech-
anisms so as to make the solutions more widely applicable in realistic settings.

Against this background, CREDIT represents a first attempt at using trust
in automated negotiation. In CREDIT, trust is used both to choose issues to
be negotiated and their corresponding negotiation ranges. These uses of trust
borrow ideas from the human negotiation literature such as Fisher and Ury
(1983) and Raiffa (1982). Thus, our work on CREDIT has showed that trust
can make or break relationships between agents as they do in the human domain
(Gambetta, 1998). Specifically, trust can either widen negotiation ranges and
allow for more profitable agreements in the long run or it can shrink negotia-
tion ranges so as to recover previous losses or reduce the risk of losing utility
in an encounter. In so doing, CREDIT’s shrinkage of negotiation ranges is syn-
onymous to increasing an agent’s bargaining power since this procedure results
in higher utility for the agent (than without the shrinkage) if an agreement is
reached. Obviously, reducing the negotiation ranges also reduces the probability
of reaching an agreement as the negotiation ranges of the agents may not inter-
sect anymore (which happens when interacting with nasty agents). Nevertheless,
this reduction of negotiation ranges is sometimes useful since it serves to avoid
unreliable and dishonest agents.

In general, through CREDIT, we have provided the first insight into pro-
cedures that allow agents to specify their negotiation ranges according to the
known characteristics of the opponent they encounter. Previously, this was not
possible and heuristics for negotiations relied on a rule of thumb to specify ne-
gotiation ranges for the agents as in (Faratin et al., 1998; Fatima et al., 2001).
Moreover, in CREDIT we have shown how societal factors can impact on auto-
mated negotiation. By introducing aspects such as institutions and norms that
could impact on trust, CREDIT can adapt to the context within which it is used
(and therefore adapt the negotiation stance of an agent accordingly). Up to now,
negotiation models had hardly assessed the impact of such societal factors on
the outcome of negotiations.

The social aspect of interactions has also been neglected in mechanism design
up to now. Indeed, mechanism design relies on micro-economic principles that
tend to boil all the attributes of the agents down to what is termed their ‘type’.
For example, the different degrees of reliability of an agent could be defined
according to different types (Ely et al., 2004) or the value an agent attributes to
a particular good is also usually defined by its type. While the analysis resulting
from such a modelling technique is rigorous and precise, it assumes that all
possible types of agents are known apriori. However, this is not the case in most
realistic applications, where for example, a mechanic’s reliability is only known
after a number of interactions with him or a buyer’s valuation of some goods
may only be known (by herself) after analysing the quality of the goods or the
need for the goods. Our work in TBMD captures such aspects of agents which
have been usually avoided by game theoretic models. TBMD achieves this by
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separating the type of an agent from the reliability other agents attribute to it
through their trust model. The latter relies on the agents’ information gathering
capability to output the believed reliability of another agent. Therefore, as was
shown in chapter 6, the mechanism perfects its outcome as the agents refine
their measure of trust over repeated encounters. Through TBMD, we provide
the first mechanism that connects mechanism design to the social aspects of an
agent since the trust model (as was shown for CREDIT) can capture many of
the social attributes that impact on an agent’s decision making. For example,
the reputation other agents have in the society or the agents’ similarity in their
assessment of others may determine how an agent perceives the reliability of
another agent.

In general, TBMD differentiates itself from current mechanisms by the fact
that it generates the efficient outcome (resulting in maximum profit and choosing
the most reliable agents) after a number of encounters rather than in one shot.
The repetitive aspect of TBMD is needed in order to remove the assumption that
all agents are believed by other agents to be completely reliable. Thus, through
TBMD as well as CREDIT, it is expected that, in the long run, only the most
reliable and trustworthy agents will survive in a population as the unreliable
ones are avoided and cannot make any profit. In so doing, these mechanisms
may neglect the fact that agents may have varying reliabilities. Thus, over time,
agents could either get better or worse depending on circumstances that may
or may not be known a priori. For example, TBMD would avoid unreliable
agents and not select them in a future encounter where they could have been
more reliable. CREDIT reduces the possibility of overlooking a reliable agent by
leaving the negotiation mechanism to decide the fate of a previously unreliable
agent. However, this does not take into account the fact that an agent may know
its opponent is going to be more or less reliable in future. If it did, the agent
could shrink negotiations in the encounter where the agent is more reliable (and
claim more utility) and expect lower profits when the agent is less reliable (and
hence negotiate with more relaxed ranges). This could also help the agent make
other parallel decisions more efficiently. In general, communicating information
other than the costs and valuations of an agent to another falls into the realm of
ABN (as discussed in chapter 2). In this thesis we developed a particular aspect
of ABN through our PN model.

Using PN we have shown how agents can use arguments to influence repeated
encounters positively. As we highlighted in chapter 1, there are very few nego-
tiation models that allow agents to influence repeated encounters as we do in
PN. Moreover, there are also very few ABN mechanisms that have been applied
to solve the particular types of conflict that arise in multi-agent systems. Given
this, we believe repeated bargaining encounters could be used as a testbed for
ABN mechanisms since they allow them to benchmark their properties directly
against other basic negotiation tactics as we have done in this thesis (see chapter
7). ABN mechanisms may do so by specifying arguments in repeated bargains
which consider operations on the negotiation object that is negotiated over in
each encounter. As we have shown in this thesis it is then straightforward to
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specify arguments that the agents can directly evaluate.

9.3 Practical Implications

Having discussed the theoretical implications of our models in the previous sec-
tion, we turn to their practical implications for multi-agent systems in general.
Specifically, as we propose in chapter 3, we believe the semantic web provides
agent researchers with many possibilities for applying their work to practical
applications. The Grid, peer-to-peer systems, and pervasive computing environ-
ments, are yet further fertile areas that share similar issues with the semantic
web and therefore, we believe are likely to make use of the variety of models
developed for multi-agent systems. In all these domains, we believe the manage-
ment of resources will be handled by intelligent agents which can autonomously
choose their interaction partners and negotiate with them. These systems are
all prone to the uncertainties we have considered in this thesis (see chapter 1)
which make our models of trust and persuasion particularly suitable for them.

For example, the particular need for trust in such applications has been
recognised by the semantic web community which places trust at the top of the
semantic web ‘layer cake’ (see figure 9.1). The fact is, and this constitutes the
thrust of this thesis, that trust underlies all interactions prone to uncertainty and
such uncertainty pervades all interactions that are performed over unsupervised
and open systems such as the semantic web or the Grid. As a specific example,
it is possible to concretely apply TBMD in running online auctions where buyers
and sellers are allowed to state their trust in each other when negotiating over
resources that are available in the Grid or the semantic web (see appendix 9.4 for
a worked example). This has become possible thanks to the work by Giovannucci
et al. (Giovannucci et al., 2004) who have developed an agent-based online
(combinatorial) auction mechanism, iBundler, that is currently being integrated
with TBMD. This combination will allow auctions to be more flexible and
adapt to richer information (as opposed to the only use of cost and valuations)
in making allocations. This, we believe, will also benefit e-business (Sadeh, 2002)
at large because it encourages trustworthy behaviour in sellers and buyers who
use the system to trade.

Where centralised systems such as TBMD cannot be applied, CREDIT could
be used to allow agents to negotiate resources without the need for a central
auctioneer when the agents’ reliability and honesty are prone to uncertainty.
Thus, for example, agents that share files in peer-to-peer systems could avoid
agents that free-ride over their resources by directly negotiating downloads with
them according to their trustworthiness in providing the files they possess (Feld-
man et al., 2004) (i.e. taking into account the quality or download speed for
example). Combined with a reputation model (such as REGRET or Yu et
al.’s), agents using CREDIT could then spread the trustworthiness of their coun-
terparts throughout the network and prevent free-riders from exploiting other
agents.

The other potential application area of agent-based systems we have explored
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Figure 9.1: The semantic web layer cake proposed by Berners Lee (at
www.w3.org /2002/Talks/ 04-sweb/ slide12-0.html).

in this thesis is that of pervasive computing environments. In this domain, the
problem of managing intrusiveness has largely been neglected by community.
Rather researchers have focused on using agents to perform identification, au-
thentication, and perform transactions or to transmit information (e.g. instant
messengers, or chat room bots) (Satyanarayanan, 2001; Schmeck et al., 2002).
Moreover, most applications of pervasive computing consider mostly coopera-
tive settings (e.g., multi-sensor networks (Manyika and Durrant-Whyte, 1997) or
sharing information through smart phones (Islam, 2004)). In contrast, our work
presented in chapter 8 presents a novel way of developing pervasive computing
applications in competitive settings by using agents to manage the preferences
of the users in a dynamic fashion through negotiation rather than through con-
straints satisfaction algorithms used in the cooperative case. Also we highlight
the use of agents in group applications where the need for focus is important
and this focus needs to be adjusted according to the context and the conflicting
preferences of the users as individuals and the group as a whole. Specifically,
our persuasive negotiation mechanism goes some way towards solving this com-
petitive side of interactions in pervasive computing environments. Moreover,
through our PN model, we have shown how agents, using arguments, can parti-
tion resources more efficiently over time by allowing important messages to be
displayed even if agents run out of budget.

Our PN mechanism could also be applied in peer-to-peer systems or Grid-
based applications where agents need to repeatedly and autonomously negotiate
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over the partition of resources such as computing power or storage space. Thus,
through the use of rewards, agents can avoid losing customers when they are
heavily loaded (i.e. having many users at the same time) by negotiating for a
certain level of service commensurate with their capability to deliver the service
and promising rewards on future contracts that may be made. Conversely, agents
could ask for future rewards when accepting a lower level of service from a
particular agent. In this way, the resources distributed over the system can be
more efficiently used over time. In so doing, the system of self-interested agents
can achieve a level of efficiency close to that of a cooperative group of agents.

9.4 Open Challenges

The work presented in this thesis is a step towards engineering robust and ef-
ficient protocols and reasoning mechanisms for open multi-agent systems prone
to uncertainty. While we have considered issues that are prone to uncertainty
which may affect the outcome of negotiations such as the reliability, honesty,
preferences, and action sets of agents, there remains a number of other impor-
tant challenges that need to be met for automated negotiation to be more robust
to uncertainty. In particular, the automated negotiation mechanisms need to be
able to handle uncertainty about the efficiency of the communication mechanism
used and the computational capability of agents.

The efficiency of communication mechanism is determined by, amongst other
things (e.g. by the noise in the information transmitted or by the size of band-
width available), the time lag it allows between offers that agents send to each
other. If the communication mechanism is not efficient (i.e. there is a long time
lag) and the agents’ environment is very dynamic (as we expect it to be in open
distributed systems), the agents’ preferences may change when offers are de-
layed. Hence, the inferences of one agent about its opponent’s preferences may
be completely wrong and reduce the attractiveness of offers or rewards made
using these inferences. Moreover, agents may also find offers sent by their oppo-
nent less attractive than they were at the time they were originally sent. In such
cases, the agents may end up taking a long time to find an agreement that is
likely to be sub-optimal. Therefore, techniques must be devised to cope with the
dynamic nature of the agents’ preferences in the negotiation to allow agents to
come to good agreements. This could be achieved by devising agents’ strategies
according to the dynamic features their preferences and devising a negotiation
protocol that takes such factors into account.

Another major factor in negotiations that is prone to uncertainty is the com-
putational capability of agents. The computational capability of an agent deter-
mines its ability to compute good offers in a timely fashion. This ability may be
limited to such an extent that it is not possible to calculate the optimal offers
within the time allowed by the protocol. This is because agents are likely to have
combinatorial valuations about the issues being negotiated and may impose ad-
ditional constraints on the values these issues take, which make the generation
or evaluation of offers computationally expensive (Pekec and Rothkopf, 2003).
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Given this, agents may not be able to generate the most preferable offer (to them)
or find an agreement that meets their opponents’ constraints and combinator-
ial preferences. Therefore, we believe that agents’ strategies must be designed
to allow fast evaluation and generation of combinatorial offers and adapt to an
opponent’s computational capability (e.g., by using arguments to show an op-
ponent that some constraints cannot be satisfied by the offers received from it).
Also, protocols could be engineered to reduce the computational complexity of
evaluating such offers.

We also believe that our work opens up a number of further possibilities in
the particular areas of trust and ABN. We will first consider the challenges that
still need to be met in the area of trust:

Collusion Detection — very few existing reputation or interaction mecha-
nisms can prevent or deal with collusion (Sen and Sajja, 2002; Brandst,
2002). Moreover, while we have shown how agents can learn to recipro-
cate good actions over time, it has not been shown how they could learn
to collude, which is equivalent to reciprocating to only some agents and
sharing false information about these accomplices to exploit others. There
are clear benefits to collusion as highlighted by Conitzer and Sandholm
(2004), and we can therefore expect agents to collude in an open environ-
ment whenever this is possible. If the system is to be robust and incentive
compatible, collusion should be prevented either through the application
of a certain protocol (through mechanism design) or at the level of trust
models which try to recognise colluders. Otherwise, agents could end up
wrongly trusting others that are, in fact, exploiting them.

Social Networks — while most reputation models or security mechanisms (to
some extent) assume that there exists a social network, the connections
between the nodes in the network are rarely, if at all, given a meaning.
That is, the semantics of connections are not detailed. Connections have
mostly been used to represent past interactions among the agents in the
community (i.e. a connection means that an interaction has occurred be-
tween the two nodes at its ends) or are simply given to the agents (Sabater
and Sierra, 2002; Yu and Singh, 2002b; Schillo et al., 2000). A clearer de-
finition of relationships (e.g. as collaborators, partnerships in coalitions,
or members of the same organisations), defining the connections within
the network would be needed in order to make trust models practically
applicable.

In the area of ABN the following issues still need to be addressed:

Engineering Efficient Protocols — there are a number of protocols, includ-
ing the one presented in chapter 7, which aim to precisely determine the
commitments resulting from the illocutions made and the participation
rules of the negotiation. While most of these protocols have been engi-
neered to ensure termination of the negotiation dialogue or dictate the ex-
act allowable moves of the participants, they have rarely been engineered
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to ensure specific outcomes. Moreover, most game theoretic models of
bargaining only analyse existing protocols of bargaining (Muthoo, 1999)
rather than trying to develop new protocols that ensure that the strate-
gies available to the agents will result in an outcome close or equal to the
efficient partitioning of resources. It would therefore be a significant step
forward if bargaining protocols were developed to allow agents to negotiate
in a distributed fashion and ensure efficient outcomes are selected.

Preferences — as shown in chapter 2, ABN aims to provide a mechanism to
change preferences of agents during negotiations by providing justifica-
tions. In collaborative settings this is easier since the agents can totally
trust each other and assess the information given to make further deci-
sions. However, when agents are selfish, the information and justifications
they give may only be such that they result in a higher utility for the agent
sending them. In such settings, agents may need to verify the information
transmitted or rely on their trust in their opponent to accept such infor-
mation. Moreover, if agents can autonomously change their preferences
according to new information received from other agents, their human
owners may not obtain what they specified as their preferences to their
agent. Therefore, more work needs to be done to ensure that agents can
indeed exchange arguments that can convince other self-interested agents
to change their preferences during negotiation and make sure that these
changes are still agreeable to the agents’ owners. This will ensure the
predictability and robustness of the system.

The advent of such technologies as the Grid, semantic web, and pervasive
computing, has widened the scope of potential applications of MAS, as well as
the range of issues MAS researchers have to consider in developing their systems.
It is therefore crucial that the challenges we have identified here be met to ensure
that MAS are secure, efficient, and result in profitable outcomes for their users
so as to be applicable in a wide variety of domains.
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Trust in Practice

We choose the semantic web to illustrate the practical applications of trust for
open multi-agent systems. This is because, while potential applications of agent
based systems such as ubiquitous computing and pervasive computing applica-
tions are still in their infancy, the semantic web is building upon the considerable
success of the world wide web and technologies associated with it. Moreover, the
semantic web is strongly motivated by concepts in multi-agent systems (e.g. rea-
soning under uncertainty, ontologies, communication languages). It can therefore
be considered that the semantic web will provide the testbed for the first large
scale application of agent-based systems in every day life. For these reasons,
we provide the following vision of the semantic web (adapted from (Berners-Lee
et al., 2001)) and detail the roles of trust models and interaction mechanisms
within it.

Lucy and Peter have to organise a series of appointments to take their
mother to the doctor for a series of physical therapy sessions. (We identify the
need for trust at each step of the scenario in italics).

At the doctor’s office, Lucy instructed her Semantic Web agent through her
handheld Web browser. The agent promptly retrieved information about Mom's
prescribed treatment from the doctor's agent, looked up several lists of providers,
and checked for the ones in-plan for Mom's insurance within a 20-mile radius of her
home and with a rating of excellent or very good on trusted rating services.

The first interaction between Lucy’s agent and the doctor’s agent
should involve a secure authentication protocol (see section 3.2.3)
that would ensure that Lucy’s agent is allowed to handle her mom’s
data. This protocol would first verify the true identity of Lucy’s
agent and assign to it the proper rights to handle the data. Also,
the trusted rating services could be based on reputation mechanisms
(see section 3.2.2). These reputation mechanisms could publish the
ratings of health care providers and reward agents which return
ratings with discounts on treatment costs to be paid to the advertised
providers. This would make the mechanism incentive-compatible.
Also, different providers could bid, via a trusted mechanism such
as a secure Vickrey auction, to provide the requested service to
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Lucy’s agent (see section 3.2.1).  Provider agents would need
to bid their true valuation of the treatment plan requested to win
the bid whereas Lucy’s agent would act as the auctioneer in this case.

Lucy's agent then began trying to find a match between available appointment
times (supplied by the agents of individual providers through their Web sites) and
Pete's and Lucy's busy schedules. In a few minutes the agent presented them with
a plan. Pete didn't like it: University Hospital was all the way across town from
Mom's place, and he would be driving back in the middle of rush hour. He set his
own agent to redo the search with stricter preferences about location and time.
Lucy's agent, having complete trust in Pete's agent in the context of the present
task, automatically assisted by supplying access certificates and shortcuts to the
data it had already sorted through.

The interaction between individual providers and the user agents
(Lucy’s and Pete’s) needs a secure mechanism that ensures messages
transmitted between all parties are mot manipulated. Pete’s agent
could enhance the search for trustworthy potential providers by
looking at its past interaction history with them (see section 3.1.1)
rather than looking at only the reputed ones (see sections 3.1.2 and
3.2.2). It could also use referrals of other agents in the network to
get in touch with a trustworthy agent it does not directly know.

Almost instantly the new plan was presented: a much closer clinic and earlier
times but there were two warning notes. First, Pete would have to reschedule
a couple of his less important appointments. He checked that they were not a
problem. The other was something about the insurance company's list failing
to include this provider under physical therapists: "Service type and insurance
plan status securely verified by other means,” the agent reassured him. " (Details?)" .

Here the issue of reputation and distributed security is again raised
(sections 3.1.2 and 3.2.3). The ‘other means’ that have helped
to check the wvalidity of the insurance company may pertain to an
analysis of the certificates it provided that linked it to trusted sources.
These certificates could provide evidence of the provider’s compliance
with laws and requlations of the country or certain quality standards
that are equivalent to those needed by the insurance company.

Lucy registered her assent at about the same moment Pete was muttering,
"Spare me the details,” and it was all set. (Of course, Pete couldn't resist the
details and later that night had his agent explain how it had found that provider
even though it was not on the proper list.)



Here, the need for an agent to demonstrate how it could flexibly deal
with different beliefs it acquired in the environment about potential
interaction partners is highlighted (see section 8.1.3). This implies
a higher level reasoning ability than just an evaluation reputation of
providers for example. The agent should also be able to reason about
the selected provider’s location and treatment facilities to decide on
whether to trust that provider in being able to supply the required
services.

267






Using CREDIT in a
Bandwidth Trading
Scenario

We consider an SU agent « trying to find a reliable SP agent in its environment
in order to get a good internet connection to perform voice over IP and access
web services for a reasonable price. Figure 2 graphically summarises the different
steps involved in using CREDIT during the interaction between a and a given
SP agent. Thus, agent « first selects the issues it intends to contract an SP agent
for (see block 1 in figure 2) and then queries other agents in the environment,
asking them how they rate the available SP agents (see block 2). We assume
agent « has also interacted with some of these SP agents in the past and has
built up a history of interactions with them. From this history it has built up
confidence values in each of the issues it wants to contract, given the context, as
shown in section 5.2.3.

CREDIT
Al

Trust Trustand N Conaence and ——» Denotes an influence
e rustand Florms Negotiation Ranges ™ in the direction of the
H ll JJ arrow
Issue Selection Partner Selection Issue Refinement Negotiate Contract Contract Update CREDIT
> [ — Execution
®)
t Next Interactior ‘

Figure 2: Using and updating CREDIT in interactions.

The reputation values for each SP agent are fed into CREDIT and combined
with any available confidence values in order to compute the overall trust of each
SP agent for each of the issues a wants to negotiate (using equations 5.4, 5.6 and
5.8). The fuzzy sets used to characterise performance of an agent per issue were
those shown in figure 5.1 and these are transfered to the domain space of each
issue using the procedure outlined in equation 5.7. Thus, assume four SP agents
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are found with the following overall trust ratings (see block 2), using equation
5.10, T(«, 81, X(0)) = 0.8, T(c, B2, X(0)) = 04,T (e, B3, X(0)) = 0.6, and
T(c, B4, X(0)) = 0.1. From these measures, « therefore decides to choose £y
as the interaction partner since it is the most trusted of all SP agents (given
the issues o wants to contract and the weights these issues take in its utility
function).

Having decided to choose agent (31, « checks if the SU’s rule in table 5.4
applies and how far 8 can be trusted on the premises of the rule (see block 3
in figure 2). Having found that § is highly trustworthy on price and size (e.g.
T(«a, B1,¢) > 0.9 and T(c, B1,8) > 0.95) a decides not to include the gos in the
set of issues to be negotiated as discussed in section 5.3.2. Agent « then contacts
(1 to engage into negotiations.

Prior to negotiations, 01, which is also using CREDIT in this case, checks if
its trust in « is high enough to interact with it instead of other agents. Finding
that « has a relatively high trust with respect to other agents (e.g. T(«, X (O)) =
0.8), f1 decides to interact with o but includes the usage issue in the number
of issues to be contracted since « is not trusted on ¢, and [ (i.e. T(5, o, t.) <
0.85 and T(8, a,1) > 0.9).

Thus the final set of issues to be negotiated by the two agents are: price,
size, time of payment, security level, and usage. Given (;’s low confidence in «
with respect to t. and [, §; will shrink its negotiation range (see block 4), using
the procedure described in section 5.3.2, from [10,20] days to [10,15] days for
time of payment and shrink the negotiation range for the security requirement
from [5,10] to [7,10]. Similarly o’s reduced confidence in 1 on the issue of price
will cause it to shrink its negotiation range on price from [30,80] to [30, 40].

Having thus defined their negotiation ranges, the two agents will negotiate
using their own negotiation strategies (see block 4). Thus, the two agents come to
an agreed contract O = {c = 35,s = 3Mbits/s,l = 5,usage = 70, t. = 1lddays}.
While (31 can defect from the agreement by demanding a higher price at a later
time, and reducing the bandwidth allowed, a can defect by paying later than
agreed and using the connection more than agreed (e.g. by sending spam, or
using peer to peer programs). However, the SP agent, 51, decides to play a P
strategy at execution time in order to keep its reputation in the society high,
while « decides to be N since it can find other suppliers if 8; does not want to
interact with it in the future (see block 5).

Therefore, 51 achieves what has been agreed in the contract while « defects on
all the issues that it controls. This means that « will pay the latest it can (i.e. 30
days instead of 14), defects from the level of security agreed by using unwarranted
software (i.e. I = 1 instead of [ = 5), and exceeds the number of connections
allowed per second by using a peer-to-peer program (i.e. usage = 100 instead of
usage = 70).

Once the bandwidth has been paid for and used by «, the two agents then
analyse each other’s performance of the agreed contract and update their trust in
their counterparts (see block 6). Thus, « senses no utility loss on the part of £,
on those issues which are not regimented by any institutional norms. Therefore
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« senses a lower probability of utility loss on these issues and this increases its
confidence. Hence its trust in ; increases over each issue it handled correctly
(given the procedure described in section 5.2.3). As a result « increases its
overall trust in 5y (e.g. say from T'(«, 31) = 0.88 to T(c,31) = 0.90). On the
other hand, ; finds that it has incurred substantial utility loss on all issues that
« handled in the contract. Using the procedure described in section 5.2.3, (4
therefore decreases its confidence on all issues a handled and as a result reduces
its overall trust in « (e.g. from T'(f1, ) = 0.8 to T(B1, @) = 0.70).

The next time 3; is contacted by «, (; might refuse any contract with it or
else shrink its negotiation ranges so as to demand higher-valued contracts (for
(1) in order to compensate its past utility loss.



