

MONOGRAFIES DE L’INSTITUT D’INVESTIGACIÓ
EN INTEL·LIGÈNCIA ARTIFICIAL

Number 22

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

Monografies de l’Institut d’Investigació en

Intel·ligència Artificial

Num. 1 J. Puyol, MILORD II: A Language for Knowledge–Based Sys-
tems

Num. 2 J. Levy, The Calculus of Refinements, a Formal Specification
Model Based on Inclusions

Num. 3 Ll. Vila, On Temporal Representation and Reasoning in
Knowledge–Based Systems

Num. 4 M. Domingo, An Expert System Architecture for Identification
in Biology

Num. 5 E. Armengol, A Framework for Integrating Learning and Prob-
lem Solving

Num. 6 J. Ll. Arcos, The Noos Representation Language
Num. 7 J. Larrosa, Algorithms and Heuristics for Total and Partial Con-

straint Satisfaction
Num. 8 P. Noriega, Agent Mediated Auctions: The Fishmarket

Metaphor
Num. 9 F. Manyà, Proof Procedures for Multiple-Valued Propositional

Logics
Num. 10 W. M. Schorlemmer, On Specifying and Reasoning with Special

Relations
Num. 11 M. López-Sánchez, Approaches to Map Generation by means of

Collaborative Autonomous Robots
Num. 12 D. Robertson, Pragmatics in the Synthesis of Logic Programs
Num. 13 P. Faratin, Automated Service Negotiation between Autonomous

Computational Agents
Num. 14 J. A. Rodŕıguez, On the Design and Construction of Agent-

mediated Electronis Institutions
Num. 15 T. Alsinet, Logic Programming with Fuzzy Unification and Im-

precise Constants: Possibilistic Semantics and Automated De-
duction

Num. 16 A. Zapico, On Axiomatic Foundations for Qualitative Decision
Theory - A Possibilistic Approach

Num. 17 A. Valls, ClusDM: A multiple criteria decision method for het-
erogeneous data sets

Num. 18 D. Busquets, A Multiagent Approach to Qualitative Navigation
in Robotics

Num. 19 M. Esteva, Electronic Institutions: from specification to devel-
opment

Num. 20 J. Sabater, Trust and Reputation for Agent Societies
Num. 21 J. Cerquides, Improving Bayesian Classifiers
Num. 22 M. Villaret, On Some Variants of Second-Order Unification
Num. 23 M. Gómez, Open, Reusable and Configurable Multi-agent Sys-

tems: Aknowledge Modelling Approach
Num. 24 S. Ramchurn, Multi-Agent Negotiation Using Trust and Per-

suasion

On Some Variants of

Second-Order Unification

Mateu Villaret i Auselle

Foreword by Jordi Levy

2005 Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Foreword by
Jordi Levy
Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

Volume Author
Mateu Villaret
Departament d’Informàtica i Matemàtica Aplicada
Universitat de Girona

Institut d’Investigació
en Intel·ligència Artificial

Consell Superior
d’Investigacions Cient́ıfiques

c© 2005 by Mateu Villaret
NIPO: 653-05-061-X
ISBN: 84-00-08319-9
Dip. Legal: B-36528-2005

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IIIA, Institut d’Investigació en Intel·ligència Artificial, Campus de la Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

per la Gemma i en Mateu petit
i pels meus pares

Contents

Foreword xiii

Acknowledgements xv

Resum xvii

Abstract xix

1 Introduction 1

1.1 Main Distinct Unification Problems 1
1.1.1 First-Order Unification 1
1.1.2 E-Unification . 3
1.1.3 Word Unification . 4
1.1.4 Context Unification . 5
1.1.5 Higher-Order and Second-Order Unification 6

1.2 Higher-Order Applications . 7
1.2.1 Automated Theorem Proving 7
1.2.2 Higher-Order Logic Programming 8
1.2.3 Program Synthesis and Transformation 9
1.2.4 Natural Language Semantics 12

1.3 Plan of the Thesis . 16

2 Second-Order Unification 19

2.1 Simply Typed λ-calculus . 19
2.1.1 Types . 19
2.1.2 Terms . 20
2.1.3 Substitutions . 21
2.1.4 λ-equivalence . 22
2.1.5 Unification . 25

2.2 Second-Order Unification Undecidability 27
2.3 Second-Order Unification Procedure 29

2.3.1 Pre-Unification . 32
2.3.2 Regular Search Trees . 33

2.4 Decidable Subcases . 34

vii

2.4.1 First-Order Unification 34
2.4.2 Pattern Unification . 34
2.4.3 Monadic Second-Order Unification 35
2.4.4 Second-Order Unification With Linear Occurrences of

Second-Order Variables 36
2.5 Higher-Order Matching . 36
2.6 Summary . 37

3 Linear Second-Order and Context Unification 39

3.1 Linear Second-Order Unification 39
3.1.1 Sound and Complete Procedure 40

3.2 Context Unification . 42
3.2.1 Context Unification From the First-Order Unification Per-

spective . 43
3.2.2 Context Unification From the Second-Order Unification

Perspective . 44
3.2.3 Comparison Between both Perspectives 45
3.2.4 Historical Notes . 48

3.3 Known Decidable Fragments of Context Unification 48
3.3.1 Word Unification . 48
3.3.2 Stratified Context Unification 50
3.3.3 The Two Distinct Context Variables Fragment 51

3.4 Bounded Second-Order Unification 52
3.5 Linear Second-Order, Linear Higher-Order and Context Matching 53
3.6 About Linear Second-Order and Context Unification Decidability 54
3.7 Summary . 54

4 Currying Second-Order Unification Problems 57

4.1 Introduction . 57
4.2 Preliminary Definitions . 60
4.3 Currying Terms . 61
4.4 Labeling Terms . 62
4.5 When Variables do not Touch . 63
4.6 About Currying Higher-Order Matching 68
4.7 Summary . 69

5 Context Unification and Traversal Equations 71

5.1 Introduction . 71
5.1.1 A Naive Reduction . 71

5.2 Preliminary Definitions . 74
5.3 Terms and Traversal Sequences 75
5.4 Traversal Equations . 78

5.4.1 Rank-bound Traversal Systems 79
5.4.2 Permutation and Rank-bound Traversal Systems 82

5.5 The Rank-Bound Conjecture . 83
5.6 Reducing Context Unification to Traversal Equations 86

viii

5.7 Some Hints in Favor of the Rank-Bound Conjecture 91
5.7.1 First Hint . 93
5.7.2 Second Hint . 96

5.8 Summary . 98

6 From LSOU to CU with TR-Constraints 99

6.1 Introduction . 99
6.2 Preliminaries . 101
6.3 Reducing LSOU to CU with TR-Constraints 103
6.4 Translating TR-Constraints to R-Constraints over Traversal Se-

quences . 109
6.5 About Decidability . 114
6.6 Extending the Results to Higher-Order Unification 115
6.7 Summary . 116

7 Describing Lambda-Terms in CU with TR-Constraints 119

7.1 Introduction . 119
7.2 The Parallelism and Lambda Binding Constraints Language . . . 121

7.2.1 Tree Structures and Parallelism 121
7.2.2 Lambda Structures and Parallel Lambda Binding 123
7.2.3 Constraint Languages . 125

7.3 Example . 127
7.4 The Non-intervenance Property 129
7.5 Elimination of Lambda Binding Constraints 131
7.6 The Monadic Second-Order Dominance Logic and TR-Constraints 137

7.6.1 Tree-Regular Constraints 137
7.6.2 Monadic Second-Order Dominance Logic 138
7.6.3 Extending Node Labels 139
7.6.4 Constructing Tree Automata 141

7.7 Extensions of Parallelism Constraints 143
7.8 Equivalence Between PC and CU when Considering TR-Constraints146

7.8.1 Main Result . 154
7.9 Limitations . 154
7.10 Summary . 155

8 Conclusion 157

8.1 Summary of the Thesis . 157
8.2 Future Work . 160

Bibliography 161

Index 173

ix

List of Figures

3.1 Solution of the n-ary variables equation F (G(a, b)) ?= G(F (a), b). 46
3.2 Solution of the unary variables equation

F (G0(g(G1(a), G2(b))))
?= G0(g(G1(F (a)), G2(b))). 47

4.1 Common instance of the curried context unification equation of
Example 4.1. 59

5.1 Examples of trees with ranks equal to 0, 1, 2 and ∞. 73
5.2 Representations of the function f(i) = width(a1 · · ·ai), for some

traversal sequences of f(a, f(b, f(c, d))). 77

7.1 Representation of part of a tree that satisfies the relations of
children-labeling: π0 : f(π1, π2), dominance: π0�

∗π3 and dis-
jointness: π1⊥π2. 122

7.2 The segment π/π1, π2. 122
7.3 Parallelism relation between π1/π2 and π3/π4. 123
7.4 The lambda structure of λx. (f x). 124
7.5 Representation of the axioms of parallel lambda binding. 124
7.6 Logical languages for tree and lambda structures. 126
7.7 The graph of the constraint language for lambda structures for-

mula for the semantics of the sentence: John saw a taxi and so
did Bill. 127

7.8 Intervenance. 130
7.9 Non-intervenance and lambda binding. 132
7.10 Translation Literals. Naming variable binder for correspondence

classes e. Auxiliary predicates in Figure 7.11. 133
7.11 Auxiliary predicates. 134
7.12 The tree τ ′ containing τ and its corresponding tree with extended

labels. 144
7.13 Reduction of Parallelism with Tree-Regular Constraints to Con-

text Unification with Tree-Regular Constraints. 151
7.14 Group parallelism between (X1/X2, X4/X5) ∼ (X2/X3, X3/X4). 155

8.1 Studied problems and their relations. 158

xi

Foreword

At the beginning of 90’s surged a problem in theorem proving called “context
unification” that caught the interest of part of the community. This is the guide-
line of this book. Context unification is a variant of second-order unification, but
contrarily to it, most people conjecture its decidability. However, the question
about this point remains open after more than ten years of intense research.
A lot of work has been done in such direction, proving decidability for a wide
variety of cases, some of them known to be undecidable in the case of general
second-order unification. It is indubitable that this book contains some of the
most decisive of these works.

Evidently, a positive answer to the decidability of second-order unification
would have had a great impact in theorem proving, because it would open the
possibility of automatizing part of the second-order logic. What makes second-
order unification undecidable is also an interesting question. It is known that the
absence of lambda-bindings do not improve the situation. Neither the restriction
on the number of variables, or on their number of occurrences. The limitation
on the number of times that a function uses its arguments, just the limitation
that defines context unification, seems to be the key. In this book it is proved
that the restriction on the number of second-order constants does not make any
difference, which allows us to concentrate in the case of just one second-order
function symbol. Then, it is proved that context unification is decidable if a
certain conjecture about the rank of the solutions is true. What is call “rank”
here, is nothing else than the Strahler number of a tree, a measure of trees
defined by a geologist, or the register number. The conjecture is not proved in
the book, but some interesting hints supporting it are given.

Finally, decidability of context unification would have a positive impact in
not only theorem proving, but also in some other areas of computer science,
such as computational linguistics. The last part of the thesis relates context
unification with parallelism constraints and the constraint language for lambda
structures that are used to represent semantic underspecification in linguistics.

Bellaterra, December 2004
Jordi Levy

Institut d’Investigació en Intel·ligència Artificial
Consell Superior d’Investigacions Cient́ıfiques

xiii

Acknowledgements

I have many people to thank. First of all, I want to express my gratitude to
Jordi Levy, the supervisor of this dissertation, who introduced me to the world
of computer science research. By contaminating me with the virus of Context
Unification he gave me a marvellous research line, although not free of suffering.
We have worked together in a great part of the thesis and he has carefully read
all the material and has always been ready to advise me whenever I asked. I
appreciate his patience and joy of teaching, thanks to which I have been able to
do this work. He has also become a good friend of mine.

I am especially indebted to Joachim Niehren, with whom after long e-mail
discussions, I have started a nice research line, not only in computer science,
but also in wine tasting. Some of the results of the former are also a part of the
work.

The discussions and talks with Katrin Erk, Philippe de Groote, Manfred
Schmidt-Schauß, Klaus U. Schulz and Ganesh Sittampalam, among others, have
also been very helpful and enriching.

I also wish to thank my many colleagues in the department of Informàtica
i Matemàtica Aplicada for their support. My office partner Miquel Bofill has
always been ready to help and listen to my problems, and of course we have
shared lots of hard and glorious moments. I hope there will be more beers to
share. The rest of the juniors Maria Fuentes, Roel Mart́ınez, Marc Massot,
Gustavo Patow and Pere-Pau Vàzquez, with whom I’ve shared the challenge of
writing a thesis, and the seniors Francesc Castro, Miquel Feixas, Xavier Pueyo,
Mateu Sbert, Joan Surrell, Josep Suy, Jaume Rigau have also encouraged me
thanks to their confidence in me and support. The rest of colleagues of the
department have been equally friendly and encouraging.

I would like to thank my colleagues in the Institut d’Inteligència Artificial,
for considering me as another member of the Institut. In particular to Jaume
Agust́ı, Pedro Messeguer, Mart́ı Sànchez, Marco Schorlemmer and Dani, with
whom I shared some of my worries and illusions. Also to the staff Francesc
Esteva, Ramon López de Màntaras, and the rest of the IIIAencs.

My colleagues in the department of Llenguatges i Sistemes Informàtics, Maria
Bonet, Guillem Godoy, Roberto Niewenhuis, Horacio Rodŕıguez, Albert Rubio
and Gabriel Valiente among others, have really been my other research family
in Barcelona.

xv

I thank Gert Smolka for welcoming me at the Programming Systems Lab.
in Saarbrücken. Andreas Framke, Tim Priesnitz, and many others, made that
month in Germany unforgettable.

My thanks to my wife Gemma Ab́ıo, who helped me to improve my poor
english style and gave me much-needed support and encouragement throughout
the project.

My friends from the faculty, from the volley club and from the chorus, have
given me moral support at all times.

Some other people have also helped me in other respects like my cousin
Ventura Passols, Rosa Sagristà, José Lúıs Balcázar, and many others.

This work has been founded by the Universitat de Girona, by the Universitat
Politècnica de Catalunya and by the the CICYT research projects DENOC
(BFM 2000-1054-C02-01) and CADVIAL (TIC2001-2392-C03-01).

And last but not least, I would like to thank all my family, especially my
parents, brothers and sisters for their patience and understanding. I also wish
to thank my wife’s family for all their love and support.

All these people have contributed to make this dissertation possible. Of
course, all remaining errors are my own responsibility.

Girona, December 2004
Mateu Villaret

Departament d’Informàtica i Matemàtica Aplicada
Universitat de Girona
villaret@ima.udg.es

xvi

Resum

En aquesta tesi presentem diversos resultats sobre el Problema de la Unificació
de Segon Ordre. És ben sabut que la Unificació de Segon Ordre és, en general,
indecidible, tot i que la frontera entre la decidibilitat i la indecidibilitat que
dibuixen les seves subclasses, és fina i no està totalment definida. El nostre
objectiu és aportar alguna pista més sobre aquest problema i estudiar algunes
de les seves variants. De fet, ens hem concentrat en el Problema de la Unificació
de Contextes i en el Problema de la Unificació Lineal de Segon Ordre. Aquests
dos problemes són variants de la Unificació de Segon Ordre on els unificadors han
de ser termes lineals. La Unificació de Contextes fa més de deu anys que es va
definir i la seva decidibilitat (aix́ı com la de la Unificació Lineal de Segon Ordre)
encara és un problema obert. En aquest treball aportem resultats significatius
que poden ajudar a solucionar el problema.

El primer resultat que presentem és una simplificació d’aquests problemes
gracies al que anomenem “currificació” (Levy i Villaret, 2002). Concretament
demostrem que la Unificació de Contextes es pot NP-reduir al Problema de la
Unificació de Contextes on només es poden usar un śımbol de funció binari i
constants, a més de les variables evidentment. També demostrem un resultat
similar per al Problema de la Unificació de Segon Ordre.

El resultat central de la tesi és la definició d’una condició no trivial en els
unificadors que és necessària i suficient per a demostrar la decidibilitat de la
Unificació de Contextes. Aquesta l’anomenem conjectura del rank acotat (Levy
i Villaret, 2001). La conjectura es basa en una mesura no trivial dels termes, el
rank, i postula que sempre que una instància del Problema de la Unificació de
Contextes sigui satisfactible, existirà un unificador amb un rank acotat per una
cota en funció de la grandària del problema. Assumint aquest postulat, redüım
el problema de la satisfactibilitat per a la Unificació de Contextes al problema
de la satisfactibilitat per a la Unificació de Paraules, que és decidible.

Finalment, tal i com s’ha fet per a la Unificació de Paraules, estudiem
l’extensió “natural” de la Unificació de Contextes mitjançant restriccions
d’arbres regulars en la instanciació de les variables. D’aquest estudi en surten
un parell de resultats més:

• primerament definim una interrelació entre el Problema de la Unificació
Lineal de Segon Ordre i la Unificació de Contextes (Levy i Villaret, 2000).
Concretament hem redüıt la Unificació Lineal de Segon Ordre a la Unifi-

xvii

cació de Contextes amb restriccions d’arbres regulars, aquestes restriccions
les usem per a evitar la captura de variables.

• Per últim, també hem definit una interrelació precisa entre el Problema de
la Unificació de Contextes i el Llenguatge de Restriccions per a Lambda
Estructures (Niehren i Villaret, 2002, 2003). Aquest llenguatge és usat
abastament en el tractament de sentències ambigües en llenguatge natural,
i actualment hi ha molt interès en saber quina és la potència d’aquest
formalisme aix́ı com quina és la seva naturalesa computacional. El fet
d’haver relacionat aquest llenguatge amb el món de la unificació pot ajudar-
nos a aplicar els resultats teòrics d’un costat cap a l’altre.

Al principi de la tesi també fem una breu descripció sobre el Problema de la
Unificació en general, aix́ı com introdüım les seves principals variants. Encara
que aquesta tesi no estigui directament enfocada a aspectes aplicats, també
assenyalem quins han estat i quin és el principal paper de la Unificació en la lògica
computacional i en les seves aplicacions, centrant-nos sobretot en les aplicacions
de la Unificació d’Ordre Superior.

xviii

Abstract

In this thesis we present several results about Second-Order Unification. It is
well known that the Second-Order Unification Problem is in general undecid-
able; the frontier between its decidable and undecidable subclasses is thin and
it still has not been completely defined. Our purpose is to shed some light on
the Second-Order Unification problem and study some of its variants. We have
mainly focused our attention on Context Unification and Linear Second-Order
Unification. Roughly speaking, these problems are variants of Second-Order
Unification where second-order variables are required to be linear. Context Uni-
fication was defined more than ten years ago and its decidability has been an
open question since then. Here we make relevant contributions to the study of
this question.

The first result that we present is a simplification on these problems thanks to
“curryfication” (Levy and Villaret, 2002). We show that the Context Unification
problem can be NP-reduced to the Context Unification problem where, apart
from variables, just a single binary function symbol, and first-order constants, are
used. We also show that a similar result also holds for Second-Order Unification.

The main result of this thesis is the definition of a non-trivial sufficient and
necessary condition on the unifiers, for the decidability of Context Unification.
The condition is called rank-bound conjecture (Levy and Villaret, 2001) in or-
der to enforce our belief about its truthness. It lies on a non-trivial measure
of terms, the rank, and claims that, whenever an instance of the Context Uni-
fication problem is satisfiable, there exists a unifier with a rank not exceeding
a certain bound depending on the size of the problem. Under the assumption
of this conjecture, we give a reduction of the satisfiability problem for Context
Unification to the (decidable) satisfiability problem of Word Unification with
regular constraints.

Finally, in the same spirit of the extension of Word Unification with regular
constraints, we also study the natural extension of Context Unification by means
of tree-regular constraints on variable instantiations. We contribute with two
more results:

• firstly, we establish a relationship between Linear Second-Order Unification
and Context Unification (Levy and Villaret, 2000). Mainly, we reduce
Linear Second-Order Unification to Context Unification with tree-regular
constraints, these constraints are used to avoid the capture of variables in

xix

this process.

• Then, we also establish a relationship between Context Unification and the
Constraint Language for Lambda Structures (Niehren and Villaret, 2002,
2003). This last formalism is broadly used in the treatment of ambiguous
sentences of natural language, and there is currently an effort to quantify
its power, and define its computational nature. Relating this constraints
language with the unification framework can help us to apply the theoretic
results from one side to the other.

We also give a brief description of unification and introduce its main distinct
kinds and variants. Although our thesis is not directly oriented to practical
issues, we also illustrate what has been, and what is the main role of unifica-
tion in computational logics and applications, mainly focusing on Higher-Order
Unification.

xx

Chapter 1

Introduction

The Unification Problem has several variants and has been studied in a number
of fields of computer science (Knight, 1989; Baader and Snyder, 2001), includ-
ing theorem proving, logic programming, automatic program transformation,
computational linguistics, etc.

Abstractly, unification means: given two descriptions d1 and d2, can we find
an object o that fits both descriptions?

In a more mathematical sense, unification consists of solving equations, i.e.,
given a pair of “terms” (equation) with some possibly common “unknowns”
(variables), the problem is to decide whether or not there exists a possible assig-
nation (substitution) to these unknowns that makes both objects “equal” modulo
some equality theory. If such substitution exists, it is called unifier. When we
have unknowns in only one of the terms, we talk about matching instead of
unification. When we are not just considering a set (conjunction) of equations,
but we allow to have more complex formulae combining equations and involving
in particular negation, the problem is called Disunification (Comon, 1991).

Depending on what are the terms, the unknowns and the equality notion that
we are considering, we get distinct kinds of unification. For instance, solving
arithmetic equations can be seen as solving unification where the objects are
arithmetic expressions, the unknowns are the variables that will be instantiated
by numbers and the equality relation is the relation defined by the field structure
of numbers. Therefore, the 10th Hilbert’s problem, can be formalised as an
(undecidable) unification problem.

1.1 Main Distinct Unification Problems

1.1.1 First-Order Unification

In First-Order Unification, terms are first-order terms, the unknowns are first-
order variables, i.e. variables that can be instantiated by first-order terms, and
the notion of equality corresponds to the syntactic equality.

1

2 Chapter 1. Introduction

The First-Order Unification Problem can be stated as: Given two first-order
terms s and t, does there exist a substitution σ of terms for the variables in s
and t such that σ(s) = σ(t)?

Note that σ(s) and σ(t) denote the application of substitution σ to terms s
and t respectively i.e., σ(s) and σ(t) denote terms s and t respectively where
all variables have been replaced by their corresponding values in σ. In general
we will denote the unknowns by capital letters, constant symbols by lower case
ones and substitutions by greek letters.

As a simple example, consider the following equation:

f(f(X3, X2), X1)
?= f(X1, f(X2, X3))

A possible unifier, could consist of assigning f(a, a) to X1 and a to X2 and X3.
This assignment can be represented by means of the substitution σ:

σ = [X1 7→ f(a, a), X2 7→ a, X3 7→ a]

Now, as we can see, the application of σ to both sides of the equation gives us
the same term:

σ(f(f(X3, X2), X1)) = f(f(a, a), f(a, a)) = σ(f(X1, f(X2, X3)))

First-Order Unification was firstly studied by Herbrand in 1931, although its
main crucial role in automated deduction was not considered until the 60’s when
J. A. Robinson invented the simple and powerful inference rule named resolution
(Robinson, 1965). First-Order Unification is the cornerstone of the rule discov-
ered by Robinson. In some sense this was also the beginning of automated logic.
Robinson also showed that the First-Order Unification problem is decidable and
that whenever a solution, or unifier exists, there always exists what is called a
most general unifier, i.e. a unifier from which all other unifiers can be generated.
Even more, in First-Order Unification whenever this most general unifier exists,
it is unique up to variable renaming. Robinson’s algorithm was quite inefficient
requiring exponential time and space in the worst case. A great deal of effort has
gone into improving the efficiency of unification. Among several other results,
there are the ones of Venturini-Zilli (1975) reducing the complexity of Robin-
son’s algorithm to quadratic time, and of Martelli and Montanari (1976) when
they proved that a linear time algorithm for unification exists.

It was soon realised that resolution is better behaved in the restricted context
of Horn clauses, a subset of first-order logic for which SLD-resolution is complete.
Colmenauer and Kowalski considered this class of clauses and defined the elegant
programming language PROLOG, which spurred the whole new field of logic
programming (Kowalski, 1974).

First-Order Unification is not just used in resolution, but for many other
purposes: in type inferencing for polymorphic programming languages (Mil-
ner, 1978), in expert systems, or in the calculation of critical pairs in the
Knuth/Bendix completion procedure (Knuth and Bendix, 1967). Even in an-
other theorem proving method that does not use resolution, like the so called
matings, unification is required (Andrews, 1981).

1.1. Main Distinct Unification Problems 3

Since the early 60’s there have been many attempts to generalise the basic
paradigm of theorem proving, and these attempts have stimulated research into
more general forms of unification. On the one hand there was the goal of adding
equality into the theorem proving procedure, and on the other hand there was
the goal of automate higher-order logic. Both goals propitiated the two main
generalisations of First-Order Unification: E-Unification and Higher-Order Uni-
fication.

1.1.2 E-Unification

The relevance of equational reasoning, i.e., the replaceability of equals by equals,
in ordinary mathematical reasoning, and the expressive power of first-order logic
to define algebraic structures, naturally lead to the introduction of equality into
resolution. In this framework, Robinson and Wos introduced a new deduction
rule dedicated to equality, paramodulation (Robinson and Wos, 1969; Nieuwen-
huis and Rubio, 2001). Due to efficiency reasons, the best option is to split the
deduction mechanism considering just the non-equational part in the refutation
mechanism and using E-Unification, that is, First-Order Unification modulo an
equational theory, instead of simply First-Order Unification to deal with the
equational reasoning during the unification steps (Plotkin, 1972).

In E-Unification the terms are again first-order terms, and the unknowns
first-order variables, but now the notion of equality is not just syntactic equality
but equality modulo a given equality theory E.

The E-Unification Problem can be stated as: Given a (finite) set E of equal-
ities and two first-order terms s and t, does there exist a substitution σ of terms
for the variables in s and t such that σ(s) and σ(t) are provably equal from the
equations in E?

As an example, consider the equation:

f(f(X1, X2), c)
?= f(X1, f(X2, c))

and the equational theory:

E = { f(x, f(y, z)) = f(f(x, y), z) }

a possible solution1 is the substitution:

σ = [X1 7→ a, X2 7→ b]

σ(f(f(X1, X2), c)) = f(f(a, b), c) =E f(a, f(b, c)) = σ(f(X1, f(X2, c)))

where here =E means the equality modulo the theory E.
Unlike First-Order Unification, E-Unification is undecidable in general. For

instance, due to the undecidability of the word problem for semi-groups, E-
Unification is undecidable when considering the semi-groups theory. Another

1Notice that if we were just considering first-order unification, this equation would have no
solution.

4 Chapter 1. Introduction

major difference with respect to First-Order Unification, is that if an equation
is solvable then there may not be a single most general unifier.

Nevertheless there are some theories known to be decidable, for instance
∅-Unification (i.e. First-Order Unification), AC-Unification (i.e. Associative-
Commutative Unification), D-Unification (i.e. Distributive Unification), and
A-Unification (i.e. Associative Unification). For a good summarisation of E-
Unification see (Siekmann and Szabó, 1984) and (Baader and Siekmann, 1993).

A-unification is of special interest to us because it corresponds to the well
known Word Unification Problem, shown to be decidable by Makanin (1977).

1.1.3 Word Unification

Word (String) Unification is unification where the terms are words, the unknowns
can be instantiated by words and equality means to be the same word.

The Word Unification Problem can be stated as: Given two words w1 and
w2, does there exist a substitution σ of words for the variables in w1 and w2 such
that σ(w1) and σ(w2) are the same word?

Word Unification can also be seen as A-Unification where we use an asso-
ciative symbol to form the words. Word Unification is decidable, but solvable
Word Unification Problem instances do not always have just one most general
unifier but possibly infinitely many independent unifiers, as illustrated by the
following example:

aX ?= Xa

for which for all n ≥ 0, any substitution of the form:

[X 7→

n︷ ︸︸ ︷
a . . . a]

is a unifier, not comparable to any other.
The race for the decidability proof of Word Unification was long and full

of little steps: firstly it was shown that the case when no variable occurs more
than twice is decidable, then the three occurrences fragment was also proved
decidable, and finally, thanks to the exponent of periodicity lemma, the general
case was proved decidable by Makanin (1977). Since then, a lot of work has
been made looking for lower upper bounds on the exponent of periodicity and
trying to get the precise complexity of the problem (Kościelski and Pacholski,
1995, 1996). Two recent and independent works, due to Plandowski (1999a,b)
and Gutiérrez (1998, 2000), show, with an alternative to Makanin’s proof, that
Word Unification is in the NEXP class and in the PSPACE class. These are the
best complexity classes known for Word Unification. Nevertheless, some people
believe that Word Unification is in NP.

It has also been proved that word equations, where variables can be con-
strained to belong to regular languages, is also decidable (Schulz, 1991). Several
attempts to simplify Makanin’s proof and trying to give a practical implemen-
tation of the algorithm, have been made (Jaffar, 1990; Schulz, 1993). Expres-
siveness of word equations has also been subject of study in (Karhumäki et al.,
1997).

1.1. Main Distinct Unification Problems 5

Word Unification has applications, for instance, in deduction systems (Huet,
1976) and in constraint logic programming (Colmerauer, 1988).

Closely related to Word Unification there is the Context Unification problem.
In fact, Word Unification can be seen also as “Monadic Context Unification”,
i.e. Context Unification considering just a monadic signature.

1.1.4 Context Unification

In Context Unification the terms are first-order terms and the unknowns are first-
order and context variables. Substitutions assign first-order terms to first-order
variables and contexts to context variables. Contexts are terms with “holes”,
i.e. terms with a special constant symbol called the hole, that is denoted by
’•’. When a context is “applied” to some terms (arguments), the result is the
term formed by the context where the holes have been replaced by the argument
terms.

The Context Unification Problem can be stated as: Given two terms s and t,
does there exist a substitution σ of first-order terms and contexts for the variables
in s and t such that σ(s) and σ(t) are the same term?

As an example consider:

f(F (a), b) ?= F (f(a, b))

where F is a context variable. One of its solutions is the substitution:

σ = [F 7→ •]

which, when applied to the equation, identifies both sides:

σ(f(F (a), b)) = f(a, b) = σ(F (f(a, b)))

But as we can easily observe, as in the previous Word Unification example, there
are infinitely many incomparable solutions for this equation, all of them having
this form:

F →

n︷ ︸︸ ︷
f(. . . f(•

n︷ ︸︸ ︷
, b) . . . , b)

Therefore, solvable Context Unification equations can have infinitely many most
general unifiers.

The Context Unification problem was firstly defined by Comon (1992a) and
its decidability still remains unsolved. Context Unification has applications in
rewriting (Comon, 1992a,b, 1998; Niehren et al., 1997a, 2000), in unification
theory (Schmidt-Schauß, 1996, 1998), and in computational linguistics (Pinkal,
1995; Niehren et al., 1997b; Egg et al., 1998; Niehren and Villaret, 2002, 2003).

Context Unification can also be seen as a variant of Higher-Order Unification,
in fact it is closely related to Linear Second-Order Unification (Levy, 1996; Levy
and Villaret, 2000, 2001), a variant of Second-Order Unification.

6 Chapter 1. Introduction

1.1.5 Higher-Order and Second-Order Unification

Higher-Order Unification serves for solving equations in the Simple Typed λ-
Calculus (Church, 1940). In this unification problem, the terms considered are
simply typed λ-terms, the unknowns are higher-order variables, i.e. variables
that can be instantiated by simply typed λ-terms of the same type, and the
equality relation is the congruence defined by the α, β and η congruencies of the
λ-calculus.

The Higher-Order Unification Problem can be stated as: Given two sim-
ply typed λ-terms s and t, does there exist a substitution σ of λ-terms for the
variables in s and t such that σ(s) and σ(t) are λ-equivalent?

For example, let s and t be:

F (λy. y, b) ?= G(a)

one of its infinitely many solutions is:

σ = [F 7→ λx1x2. x1x2, G 7→ λx. b]

σ(s) = (λx1x2. x1x2)(λy. y, b) =β (λy. y)b =β b β = (λx. b)a = σ(t)

where =β and β = denote β-equivalence in λ-calculus.
Like E-unification, Higher-Order Unification is undecidable in general and

most general unifiers may not exist.
Second-order variables are variables that stand for functions on individuals.

When variables are at most second-order, we talk about Second-Order Unifi-
cation. Second-Order Unification is also undecidable (Goldfarb, 1981). There
exists some recent work based on the number of distinct variables and the number
of occurrences per variable, that draws a frontier between decidable and unde-
cidable subclasses of Second-Order Unification (Levy, 1998; Levy and Veanes,
1998, 2000). Also the signature has been considered in the decidability question
(Farmer, 1988, 1991).

There is a variant of Second-Order Unification problem called Linear Second-
Order Unification (Levy, 1996). In this variant, it is imposed a limitation on the
possible instances of variables: they are just allowed to be instantiated by linear
terms, i.e. terms in normal form where each bound variable occurs in the body
of the term once and only once. As we will show, this problem is closely related
to Context Unification (Levy and Villaret, 2000). Although its decidability
is still an open question, the fact that some subclasses that are undecidable
in Second-Order Unification have been shown decidable in Context Unification
(Levy, 1996; Schmidt-Schauß and Schulz, 1999), supports the common belief
that Context Unification is decidable.

When variables are allowed to be instantiated by terms where bound vari-
ables can occur in the body of the term a bounded number of times, we talk
about Bounded Second-Order Unification. Bounded Second-Order Unification
is defined and shown decidable by Schmidt-Schauß (1999a, 2004). Adding the
constraint that the number of lambdas in the unifiers is also bounded, and con-
sidering no just second-order variables, but variables of any order, the Bounded

1.2. Higher-Order Applications 7

Higher-Order Unification Problem is obtained. This last problem is also decid-
able (Schmidt-Schauß and Schulz, 2002a).

1.2 Higher-Order Applications

Despite of its undecidability, Higher-Order Unification is useful and necessary in
many fields of computer science.

1.2.1 Automated Theorem Proving

Higher-Order Unification is required when automating higher-order logic. In
this logic, quantification over sets or predicates and functions is allowed. This
feature permits us, for instance, to axiomatise Peano arithmetic, which cannot
be axiomatised just using first-order logic. But this increase on the expressive
power is not for free. One of the major objections to the use of this logic comes
from the Gödel first incompleteness theorem that states that no system that can
formalise Peano arithmetic admits a complete deduction system. Nevertheless,
Henkin generalised the notion of model theory with the so-called general models
and proved that within this model theory, appropriate generalisations of first-
order calculi to higher-order logics exist and are sound and complete. Since then,
a wide range of methods for higher-order automated theorem proving has been
proposed (Robinson, 1969; Darlington, 1971; Pietrzykowski, 1973; Huet, 1973a;
Jensen and Pietrzykowski, 1976; Miller and Nadathur, 1987; Felty et al., 1990;
Paulson, 1990; Miller, 1991a; Paulson, 1993; Benzmüller and Kohlhase, 1998a,b).
A textual cite from (Jensen and Pietrzykowski, 1976) illustrates the interest in
higher-order logic despite its difficulty: “...The attractiveness of higher-order
methods in computational logic is not what you can or cannot prove, but rather
that many proofs are more natural in a higher-order setting.”.

The first successful attempts to mechanise and implement higher-order logic
were those of Pietrzykowski (1973); Jensen and Pietrzykowski (1976) and of
Huet (1973a). They combined the resolution principle with Higher-Order Uni-
fication. As we have already said, Higher-Order Unification is undecidable, in
fact semidecidable, and researchers were looking for procedures that were capa-
ble of completely enumerate all set of unifiers (notice that there can be infinitely
many). The first implementation of a procedure for Higher-Order Unification
already revealed that the search space for unifiers is far too large to be feasible
for practical applications. Huet made a major contribution in showing that a re-
stricted form of unification (also undecidable), called preunification, is sufficient
for most refutation methods, and in defining a method for solving this restricted
problem which is used by most current higher-order systems (Huet, 1975, 1976).

Nevertheless, since Higher-Order Unification is undecidable and when so-
lutions exist there can be infinitely many, incorporating unification into the
resolution inference rule would not result in an effectively computable rule. As
a remedy, the unification process can be delayed by capturing the unification

8 Chapter 1. Introduction

equations as constraints and effectively interleaving the search for empty clauses
by resolution with the search of unifiers.

But Higher-Order Unification is not only used in automated theorem proving
but also in higher-order logic programming, in program synthesis and program
transformation and in computational linguistics among other areas. We will
illustrate now some of these applications.

1.2.2 Higher-Order Logic Programming

As in Prolog, unification plays a crucial role in higher-order logic programming.
But now, the variables considered are not just first order but higher-order ones,
therefore we can write programs which are parameterised not just by values but
by functions. This feature is not just a privilege of higher-order logic program-
ming, but of higher-order programming in general like functional programming.

According to the use of variables there are distinct approaches, on the one
hand there is the logical framework Isabelle (Paulson, 1990, 1993) that just allow
higher-order variables as functions but not as predicates, and on the other hand
there is λProlog (Felty et al., 1990; Miller, 1991a,b; Müller and Niehren, 1998)
that allows both uses of variables.

One simple example to illustrate the higher-order features is the definition of
a mapping function: a function that takes a function and a list as arguments and
produces a new list by applying the given function to each element of the former
list. We show this example from the perspective of quantifying over predicates,
in a relational style.

We write the predicates in a higher-order logic program style, a la Prolog,
as follows:

mappred(P, [], []).

mappred(P, [X|L], [Y|K]) :- P(X, Y), mappred(P, L, K).

age(mateu, 31).

age(gemma, 29).

We have also added two facts that define the predicate age over two elements.
Using this program, now we could get the list of ages of mateu and gemma with
the query:

?- mappred(age, [mateu, gemma], L).

the answer of which would be the substitution [31, 29] for L. Tracing a suc-
cessful solution path for this query we can observe that Higher-Order Unification
has been required; for instance, to shoot the first rule, P has been matched with:

\x y. age(x, y)

As we can also notice, when predicate variables get instantiated and after
being supplied with appropriate arguments, they become new queries. In fact

1.2. Higher-Order Applications 9

the first new goal to solve becomes age(mateu, X’). Therefore, one needs to
be careful because Prolog only considers Horn clauses, therefore the predicate
variables when instantiated need to be correct Horn goals. Accordingly with this
fact, we can only use conjunctions, disjunctions and existential quantifications
to instantiate predicate variables that can become queries.

In (Miller et al., 1991), it is proposed the use of Hereditary Harrop Formu-
lae, a generalisation on the formulae considered to overcome these Horn clauses
limitations.

The previous example illustrates how predicate variables can be used and
the power increase that they provide. But not everything one could expect to
obtain can be achieved. Consider the following query:

?- mappred(R, [mateu, gemma], [31, 29]).

that could be used to find out what is the relation that exists between the two
lists [mateu, gemma] and [31, 29]. One could expect the answer to be:

R -> \x y. age(x, y)

but this is too much optimistic. In fact, there are infinitely many relations that
satisfy this query, and enumerating these does not seem to be a meaningful
computational task. The problem can be stated in the intensional/extensional
role of predicate variables. A broad discussion about these problems can be
found in (Nadathur and Miller, 1998).

In the next subsection we will show how higher-order logic programming has
nice properties to perform program transformations. We will also see that there
are some other techniques that use Higher-Order Unification and Matching for
program synthesis and program transformation.

1.2.3 Program Synthesis and Transformation

Automatic program synthesis consists of generating programs from specifications
in an automatic manner. One of the pioneers of these techniques was Darlington
(1973). His technique consisted of generating SNOBOL programs given a set of
axioms based on those of Hoare, and employing a resolution based theorem
prover incorporating a restricted Higher-Order Unification algorithm.

Program transformation is the process of converting a piece of code from one
form to another whilst preserving its essential meaning. We will show a couple
of perspectives to this field.

For instance, there is the work of Miller and Nadathur in λ-Prolog. Consider-
ing the higher-order facilities that λ-Prolog provides, basically its Higher-Order
Unification features, we can see that it is possible to give rules that apply to cer-
tain patterns only matchable using Higher-Order Unification, and that allows
us to re-build programs. One of such pattern examples occur in tail-recursive
programs. From this recognition we can translate such programs into equivalent
imperative programs.

10 Chapter 1. Introduction

Consider for instance, the following tail-recursive program that sums two
non-negative integers, written in a pseudo λ-calculus style, and using fixpt as
a recursive combinator:

fixptλsum.λn.λm. if (n=0) then m else (sum (n-1) (m+1))

The tail-recursiveness of this program can be easily recognised by using
Higher-Order Unification (Matching). The program is in fact, an instance of
the term:

fixptλf.λx.λy. if (C x y) then (H x y) else (f (F1 x y) (F2 x y))

as substitution σ shows:

[C 7→ λz1z2. (z1 = 0)

H 7→ λz1z2. z2
F1 7→ λz1z2. (z1 - 1)

F2 7→ λz1z2. (z2 + 1)]

In fact, any closed term that unifies with this last “second-order template”
must be a representation of a recursive program of two arguments whose body
is a conditional and in which the only recursive call appears as the head of the
expression that constitutes the “else” branch of the conditional. Clearly any
functional program that has such a structure must be tail-recursive.

Now we should use these matched parts to form the corresponding imperative
version of the program that will return the result in variable result. We use an
imperative style a la PASCAL:

done := false

while (not done) do

if (C par1 par2) then

begin

done := true;

result := (H par1 par2)

end

else

begin

par1 := (F1 par1 par2);

par2 := (F2 par1 par2)

end

Now, if we apply substitution σ to this imperative program template term,
we obtain the imperative version of the summing program:

done:=false

while (not done) do

if (par1 = 0) then

begin

1.2. Higher-Order Applications 11

done := true;

result := par2

end

else

begin

par1 := par1 - 1;

par2 := par2 + 1

end

Notice also that this template does not recognise all tail-recursive programs
but just the ones that have two parameters and just one conditional in their
body. A deeper study and discussion of how to solve this problem, and some
other nice examples about program transformation can be found in (Miller and
Nadathur, 1987).

There is a more recent work due to de Moor and Sittampalam (2001); Sittam-
palam and de Moor (2001). As they notice themselves, the automatic program
transformation field has its major impact in easing the tension between program
efficiency and program abstraction. The purpose of these program transformers
is to translate an abstract and readable human-written code into an efficient
one. But in general this task cannot be fully automatised and some human
annotations are required.

These annotations are made by means of conditional higher-order rewriting
rules that lead the transformed program to the transformation intended by the
programmer. These rules require Higher-Order Matching.

The work of de Moor and Sittampalam on the development of the system
MAG for HASKELL program transformation provides some nice examples that
illustrate the power of Higher-Order Matching. One of their examples is the
reverse list function expressed by means of a fold:

reverse = foldr (λx.λxs. xs ++ [x]) []

In this definition, we first apply to each element of the list the “switching
side” function and then the list concatenation function, therefore this reverse

definition has quadratic time complexity. Our goal is to transform it into a linear
time program using the so called “fold fusion” law:

if
λx.λy. (O2) x (Fy) = λx.λy. F (O1 x y)

then
F (foldr (O1) E xs) = foldr (O2) (FE) xs

The application of this law to our definition requires Higher-Order Matching
and provides us with this substitution for the new fold operator:

[O2 7→ λx.λg.λxs. g(x:xs)]

12 Chapter 1. Introduction

Then, applying the resulting substitution2 we obtain a linear time version of
the reverse function:

reverse l = foldr (λx.λg.λxs. g(x:xs)) ((++) []) l []

1.2.4 Natural Language Semantics

Now we will illustrate the Higher-Order Unification applications in computa-
tional linguistics, like scope ambiguity (Pinkal, 1995; Niehren and Koller, 2001).
We will dedicate a particular attention to the field of characterising the inter-
pretative possibilities generated by elliptical constructions in natural language.
In contrast to the previously presented applications of Higher-Order Unification,
a part of our work, mainly Chapter 7 which is based on (Niehren and Villaret,
2002, 2003), is closely related to these natural language semantics topic. Hence,
we will introduce this field in more detail than the previous ones.

In computational semantics, the formal description of the meaning of an
expression often requires the use of sets and higher-order notions. The task of
representing and reasoning about meaning in a computational setting was dealt,
for instance, by Montague (1988), or by Miller and Nadathur (1986) who showed
how it is possible to integrate syntactic and semantic analysis with λ-Prolog.

We now illustrate scope ambiguity and ellipsis, the two main linguistic phe-
nomena where Context Unification has been used. Then we will introduce the
approach that we will study and relate with Context Unification, in the last part
of the thesis.

Scope Ambiguity

Scope Ambiguity consists of having more than one possibility for determining the
scope of some elements (usually quantifiers) of the sentence. One of the examples
in (Pinkal, 1995) is this scope ambiguity example where Linear Second-Order
Unification is used, hence substitutions of Second-Order variables are required
to be linear. The following sentence:

Every researcher visited a company

which is represented by the following equation:

C1(@(every researcher, λx1 .(C3(@(visit,@(x1, x2))))))
?=

C2(@(a company, λx2 .(C4(@(visit,@(x1, x2))))))

has the following two possible solutions corresponding to the two possible read-
ings:

2Notice that in fact O2 is a third-order term because its second abstraction is a bound
variable of order two, i.e. a function.

1.2. Higher-Order Applications 13

1. every researcher visited a company which is not necessarily the same as the
one that the others researchers visited. To obtain this reading we consider
the following substitution:

[C1 7→ λx. x
C2 7→ λx. @(every researcher, λx1 .(x))
C3 7→ λx. @(a company, λx2 .(x))
C4 7→ λx. x]

which, applied to the equation gives us the following term:

@(every researcher, λx1 .(@(a company, λx2 .(visit,@(x1, x2)))))

2. or there exists a company (the same for all) that is visited by every re-
searcher. To obtain this reading we consider the following substitution:

[C1 7→ λx. @(a company, λx2 .(x))
C2 7→ λx. x
C3 7→ λx. x
C4 7→ λx. @(every researcher, λx1 .(x))]

which, applied to the equation, gives us the following term:

@(a company, λx2 .(@(every researcher, λx1 .(visit,@(x1, x2)))))

As we can appreciate, all substitutions are linear3.
The work of Pinkal has been extended by Niehren et al. (1997b) where it is

shown how Context Unification also deals with Ellipses.

Ellipses

Ellipses consist of omitting from a sentence, words needed to complete the con-
struction or sense. In (Dalrymple et al., 1991) it is shown how Higher-Order
Unification correctly predicts a wide range of interactions between ellipsis and
other semantic phenomena such as quantifier scope and bound anaphora. As
a particular example, we can reproduce the verb phrase ellipsis phenomenon
example from (Dalrymple et al., 1991):

Dan likes golf, and George does too. (1.1)

The intended meaning of the sentence is that that Dan and George both
like golf: like(dan, golf) ∧ like(george, golf). The source clause, “Dan likes

golf”, parallels the target “George does too”, with the subjects “Dan” and
“George” being parallel elements, and the verb phrase of the target sentence
being represented by the target phrase “does too”.

3Notice that there is a distinction between the lambdas and the bound variables of the
object language like λx1 and x1, and the lambdas and bound variables of the substitutions,
which disappear when applied to the term.

14 Chapter 1. Introduction

Now, we know that the property, let’s say P , being predicated of George in
the second sentence is such that when it is predicated on Dan, it means that Dan
likes golf. We might state this by means of a Higher-Order Unification equation
as follows:

P (dan) ?= like(dan, golf) (1.2)

where P is a predicate variable. A possible value for P in this equation is the
property represented by the λ-term λx. like(x, golf). Applying this predicate
to George, we obtain like(george, golf), and the full sentence meaning becomes
the intended one:

like(dan, golf)∧ like(george, golf)

Nevertheless not all the solutions of equation 1.2 have a meaningful coun-
terpart in the linguistic semantic world. Consider now the substitution of P by
λx. like(dan, golf). This is also a solution for the equation but when applied
to George we obtain like(dan, golf) and the following meaning for our elliptical
sentence:

like(dan, golf) ∧ like(dan, golf)

which is not an interesting semantic interpretation, in fact it is wrong because
it is not the intended meaning of sentence 1.1.

The way to solve this problem is to forbid some kind of substitutions, basically
those that instantiate variables by terms that contain primary occurrences of the
parallel elements (Dalrymple et al., 1991). In this example then, the proposed
second substitution is not a valid substitution because it contains a primary
occurrence: dan. The technique of Dalrymple et al. (1991), computes reasonably
enough solutions in comparison with other systems. But this way of filtering
substitutions was not fully satisfactory. The goal was not to filter among a huge
set of generated solutions, but rather to filter beforehand those solutions which
are correct from those which are not.

There have been several researchers who have approached this problem, for
instance Gardent and Kohlhase (1996), who deal with the primary occurrence
constraint, or the one that we have shown in the scope ambiguity example of
Pinkal (1995), using Linear Higher-Order Unification.

The Underspecified Semantic Representation Approach of The

Constraint Language for Lambda Structures

The use of Context Unification has been broadly studied and related with other
formalisms like Dominance Constraints (Koller et al., 1998) and Parallelism
Constraints (Erk and Niehren, 2000), in the works of Egg et al. (1998, 2001);
Erk et al. (2002). Although Parallelism Constraints are equivalent to Context
Unification, the procedures used to solve these constraints have a nicer behaviour
than the ones for solving Context Unification (Koller, 1998; Erk and Niehren,
2000; Erk et al., 2002), for instance the implementation of an incomplete Context
Unification procedure in (Koller, 1998), runs into combinatoric explosion when
dealing with scope ambiguities, and it does not perform well enough on the
Context Unification equivalent of Dominance Constraints.

1.2. Higher-Order Applications 15

Parallelism Constraints extended by means of lambda-binding constraints
and anaphora bindings, forms the Constraint Language for Lambda Structures
(Egg et al., 2001; Erk et al., 2002). This constraint language is currently an
active framework for underspecified semantics. The idea of semantic underspec-
ification is to postpone the enumeration of meanings of a semantically ambiguous
sentence. Instead, one represents the set of all meanings by need.

The last part of the thesis is devoted to establish a precise relationship be-
tween Context Unification and this Constraint Language for Lambda Structures
language, therefore we will briefly describe it here.

The Constraint Language for Lambda Structure is a language for defining
lambda-structures, i.e. terms with a special notion of λ-binding and of anaphoric
binding. This language has also been extended by means of beta-reductions
and group parallelism constraints. In the Constraint Language for Lambda
Structures, the variables denote nodes of the tree, and the structure of this tree is
described by stating the relations between its nodes and segments. The relation
between nodes are stated by means of the literals: labeling to indicate what
is the label of a node and what are its “mother-children” relations, dominance
that establishes dominance between two nodes by stating that one is above
the other, lambda-binding to indicate that a var-node is bound by a lam-node
and anaphoric-binding to indicate that a node is an anaphora of another one.
Segments are like contexts, and one can use the parallelism literal to indicate
that two segments are parallel, i.e. that they have a similar4 structure.

Consider again the following sentence:

Every researcher visited a company

Its Constraint Language for Lambda Structures description consists of: the
labeling literals X1 :lam(X2), X3 :lam(X4), X6 :var, X7 :var, ... the
dominance literals X2�

∗X5, X4�
∗X5 and the λ-binding literals λ(X6) = X1

and λ(X7) = X3. Its CLLS graphic representation counterpart is:

@
@

a company
@

@

every
lam lamX1:

X2:

X3:

X4:

var
var@

@

X6:
X7:

X5:

visit

researcher

The nodes of the graph correspond to variables denoting nodes of a λ-structure,
whereas labels, edges and arrows correspond to labeling, mother-children, domi-
nance and λ-binding atomic constraints. Dotted edges signify dominance, where
the upper node is required to be above the lower one in any λ-structure that sat-
isfies the description. The dashed arrows, for λ-bindings, act like elastic bands,
which can be stretched without breaking.

4The precise meaning of parallel will be defined more carefully later.

16 Chapter 1. Introduction

This underspecified description captures the two scope readings of the sen-
tence by leaving the relative ordering between the two quantifier fragments (con-
tiguous pieces of the graph that describe the a and the every) unspecified. But
since both fragments dominate the same fragment, one must dominate the other.
Such a situation is very common in scope underspecification.

Solving these constraints means finding a λ-structure which satisfies all the
literals. In our example there are two “minimal” (in the sense that they do not
introduce new non-strictly necessary nodes) solutions that correspond to, the
already presented, two possible readings:

• Every researcher visited a company which is not necessarily the same as
the one that the others researchers visited.

every researcher

@
@

lam

lam@
@

var
var@

@

visit

companya

• There exists a company (the same for all) that is visited by every re-
searcher.

every researcher

a company
@

@

lam

lam@
@

var
var@

@

visit

There are currently, several solvers for Constraint Language for Lambda
Structures formulae implemented in The Saarbrücken Programming Systems
Lab. We will come back to Constraint Language for Lambda Structures later
in our thesis to show how the stated relation between Context Unification and
Parallelism Constraints can be extended to Constraint Language for Lambda
Structures and Context Unification with regular constraints.

1.3 Plan of the Thesis

The thesis is organised as follows: Chapter 2 and Chapter 3 contain some prelim-
inary definitions and the introduction of Higher and Second-Order Unification
as well as the Linear Second-Order and Context Unification problems. It is also
summarised the state of the art of these areas of research. Chapter 4 describes

1.3. Plan of the Thesis 17

a simplification on the Second-Order and the Context Unification problems by
means of curryfication. This simplification serves for proving that decidabil-
ity of Second-Order, and Context Unification, can be reduced to decidability
of Second-Order, and Context Unification respectively, with just one binary
function symbol (the application), and constants. In Chapter 5 we define the
rank-bound property and prove that it is a sufficient and necessary condition for
Context Unification decidability. In Chapter 6 and Chapter 7 we consider the
natural extension of Context Unification by means of tree-regular constraints:
in Chapter 6 we establish a precise relationship between Linear Second-Order
Unification and Context Unification using tree-regular constraints to deal with
λ-abstractions and bound variables, while in Chapter 7 we study and define the
specific relationship between the Constraint Language for Lambda-structures
and Context Unification, using also the tree-regular constraints to deal with the
λ-bindings of the λ-structures, but in a different manner than in the Linear
Second-Order Unification reduction. Finally, in Chapter 8 we conclude and we
present the main lines of our future work.

Chapter 2

Second-Order Unification

In this chapter we introduce Second (and Higher)-Order Unification. We first
introduce the base language for these problems: the simply typed λ-calculus,
then we define Second (and Higher)-Order Unification, and sketch the undecid-
ability proof of Second-Order Unification by Goldfarb (1981). We also present
a sound and complete rule-based procedure for Second-Order Unification based
on the one of Gallier and Snyder (1990). Then we enumerate the main known
decidable fragments of Second-Order Unification.

2.1 Simply Typed λ-calculus

In this section, we give the definitions and elementary properties of simply typed
λ-calculus which is the term-language of higher-order logic, hence the terms con-
sidered in Higher and Second-Order Unification. The “equality notion” required
for Higher-Order Unification is the equivalence between terms under the conver-
sion rules of the λ-calculus. The proofs and detailed explanations of this topic
can be found, for instance, in (Barendregt, 1984; Hindley and Seldin, 1986).

2.1.1 Types

There are several varieties of λ-calculus (Barendregt, 1984). The one that is
the basis of our study is the simply typed λ-calculus. In this language, λ-terms
have “attached” a type. In some sense the type of a λ-term is a descriptor
of its nature. Simply typed λ-calculus has nice computational properties in
comparison to other λ-calculus variants, for instance simply typed λ-calculus is
normalising while the untyped λ-calculus is not.

Definition 2.1 Consider a finite set whose elements are called atomic types.
The set of types T (for the simply typed λ-terms) is the smallest set inductively
generated by the set of atomic types and the function type constructor→, such
that (τ1 → τ2) is a type whenever τ1 and τ2 are types.
The order of a type τ , noted by o(τ), is defined as follows:

19

20 Chapter 2. Second-Order Unification

• if τ is an atomic type then o(τ) = 1,

• if τ has the form (τ1 → τ2) then o(τ) = max{1 + o(τ1), o(τ2)}

Remark: By convention, → associates to the right. We may think of type
τ1 → τ2 → · · · → τn → τ as standing for the type of functions mapping n-tuples
of type (τ1 × τ2 × · · · × τn) into entities of type τ .

2.1.2 Terms

Definition 2.2 Let us assume given a signature of constants Σ =
⋃
τ∈T Στ ,

such that, for every atomic type, there is at least a constant symbol. Similarly,
for each type τ ∈ T , we assume given a denumerable set of variables of that type
Xτ , and consider X =

⋃
τ∈T Xτ .

The set of typed λ-terms (or λ-terms for simplicity) T (Σ,X) is the smallest set
inductively defined by:

• a constant or a variable of type τ is a λ-term of type τ ,

• if x is a variable of type τ1 and t is a λ-term of type τ2, then λx. t is
a λ-term of type τ1 → τ2. This λ-term is a function where λx is the
λ-abstraction and t is the body.

• If u is a λ-term of type τ1 → τ2 and v is a λ-term of type τ1, then (u v)
is a λ-term of type τ2. This λ-term is an application where function t is
applied over the argument u.

The expression τ(t) = τ1 → . . . → τn → τ denotes that the λ-term t has type
τ1 → . . .→ τn → τ .
A λ-term s is a subterm of t if s = t or if, being t = (u v), s is a subterm of u or
a subterm of v, or if being t = λx. u, s is a subterm of u.

Definition 2.3 The size of a λ-term is defined as follows:

• |x| = |c| = 1, for any variable x and constant c,

• |λx. t| = |t|, for any λ-term t and variable x,

• |(u v)| = |u|+ |v|, for any λ-terms u and v.

The order of a λ-term is the order of its type.
Let τ be an atomic type, and τ(t) = τ1 → . . .→ τn → τ , then, t is said to be of
arity n (n-ary), noted arity(t) = n.

Definition 2.4 An occurrence of a variable x in a λ-term t is bound, if it occurs
below a λ-abstraction (a binder) λx for it, i.e. if t has a subterm like λx. t′,
and x is a subterm of t′. Otherwise the variable is said to be free. If x is a free
variable in t, it is said to be bounded by the external λ-binder in term λx. t.

2.1. Simply Typed λ-calculus 21

Definition 2.5 The set of free variables of a term t is noted V ar(t). A λ-term
with no free variable is called a closed λ-term.

Remark: By convention, application associates to the left, therefore, an ex-
pression like (u v1 v2 . . . vn) is a notation for the λ-term (. . . ((u v1) v2) . . . vn).
We also may represent a sequence of λ-abstractions like the one of this λ-term:
λx1. (λx2. (. . . (λxn. t) . . .)) in the form λx1 . . . xn. t being t an application, a
constant or a variable. We will often drop superfluous parentheses. We also fol-
low the convention that the “dot” (of the λ-abstraction) includes as much right
context as possible in the scope of its binder, so that, e.g., a λ-term λx. fab is
to be interpreted as (λx. ((fa)b)).

From now on we will consider just one basic type (if nothing else is said),
let’s say ι, and we will often fail to specify types when they are clear from the
context or when the specification adds nothing to the discussion. Notice also the
usual convention that λ-terms of order one (first-order terms) denote individuals,
λ-terms of order two (second-order terms) denote functions on individuals, etc.

2.1.3 Substitutions

Substitution is the main operation required for formulating the axioms (rules)
that will define the convertibility relation of λ-calculus. But not only this, the
notion of substitution is central to unification problems, in fact, unifiers are
substitutions.

Definition 2.6 A substitution is a finite mapping from variables to λ-terms,
written as [x1 7→ t1, . . . , xn 7→ tn] where for each i ∈ {1..n}, xi is a variable and
ti is a λ-term of the same type. Substitutions will be denoted by greek letters
like σ, ρ,
Let σ be the following substitution: [x1 7→ t1, . . . , xn 7→ tn]:

• the domain of σ is: Dom(σ) = {x1, . . . , xn},

• its range is: Range(σ) = {t1, . . . , tn},

The substitution σ|A is the substitution σ restricted to the set of variables A.
We say that σ is a restriction of ρ if σ = ρ|Dom(σ). We say that σ is an extension
of ρ if σ|Dom(ρ) = ρ.

Roughly speaking, the result of applying a substitution σ to a λ-term t is the
λ-term t where the occurrences of its variables that are in Dom(σ) have been
replaced by the associated λ-term in the substitution. This replacements must
be done carefully in order to avoid confusion between free and bound variables.
There are two special situations that must be considered. See the following
examples:

• let t be the λ-term λx. x and let σ be the substitution [x 7→ y], if we simply
replace the occurrence of the variable x in t by y, we get λx. y, while the
variable x is bound in t, and thus we would rather expect the λ-term λx. x,

22 Chapter 2. Second-Order Unification

• take now the same substitution σ, but now let t be the λ-term λy. x, if
we simply replace the occurrence of x in t by y, we obtain the λ-term
λy. y, capturing now the variable y, while we would rather expect to get
the λ-term λz. y.

These two situations are considered and treated correctly in the next definition.

Definition 2.7 Let σ = [x1 7→ t1, . . . , xn 7→ tn] be a substitution and t a λ-
term, then the application of the substitution σ to the λ-term t is noted as σ(t)
and is defined as follows:

• σ(c) = c, for any constant c,

• σ(xi) = ti, for any variable xi ∈ {x1, . . . , xn},

• σ(x) = x, for any variable x 6∈ Dom(σ),

• σ(t u) = (σ(t)σ(u)),

• σ(λx. t) = λy. σ([x 7→ y]u), where y is a fresh variable, with the same
type as x, i.e. a variable that does not occur in t nor in t1, . . . , tn and that
it is different from x1, . . . , xn.

Let the λ-term s be σ(t) for some substitution σ, then s is said to be an instance
of t.
The size of a substitution σ = [x1 7→ t1, . . . , xn 7→ tn] is defined as:

|σ| = |t1|+ . . .+ |tn|

Definition 2.8 A substitution is said to be ground if its range just contains
closed terms.

2.1.4 λ-equivalence

The theory of the λ-calculus is defined mainly by means of three equivalence (or
convertibility) axioms: α, β and η-equivalence. The β and the η equivalences
are often presented as oriented rules. These rules are the core of an strongly
normalisable and confluent rewriting system that provides us with a normal
form notion that we will use to decide equivalence between λ-terms.

Definition 2.9 The λ-equivalence relation =λ, is the minimal equivalent and
congruent relation such that:

λx. t =λ λy. [x 7→ y] t α (provided y does not occur free in t)
(λx. t) s =λ [x 7→ s] t β
λx. t x =λ t η (provided x does not occur free in t)

i.e. that apart from the above equalities, for any λ-terms s, s′, t and t′, and for
any variable x, the relation satisfies the congruence axioms:

2.1. Simply Typed λ-calculus 23

if s =λ s
′ then (t s) =λ (t s′)

if t =λ t
′ then (t s) =λ (t′ s)

if t =λ t
′ then λx. t =λ λx. t

′

and the equivalence axioms:

s =λ s
if s′ =λ s then s =λ s

′

if s =λ s
′ and s′ =λ t then s =λ t

Proposition 2.10 Pairs of λ-equivalent λ-terms have the same type.

Definition 2.11 The α-equivalence relation is the minimum equivalent and
congruent relation that satisfies the equivalence α of Definition 2.9. Similarly
for the β-equivalence and the η-equivalence relations with respect to the β and
the η equivalences.

The α-equivalence relation captures the idea that bound variables can be
renamed. The β-equivalence relation means that when applying a function λx. t
over a term s, the formal parameter x of the function can be replaced by the
argument s. The η-equivalence relation entails extensionality, which means that
two functions are considered equal, if they behave equally for all arguments.
Remark: For simplicity, we assume that bound variables with different binders
have different names. In the following we shall identify α-equivalent λ-terms,
i.e. consider λ-terms as representatives of their α-equivalence classes.

Proposition 2.12 Orienting the equivalences β and η, we obtain a confluent
and terminating rewriting system between α-equivalent λ-terms formed by these
two rules:

(λx. t)u →β [x 7→ u] t β-reduction
λx. t x →η t η-reduction (provided x does not occur in t)

Minimum subterms of a λ-term where the β-reduction rule can be applied, are
called β-redexes. Similarly for the η-reduction rule and η-redexes.

Definition 2.13 Let the λ-term t be of type τ1 → τ2, then the η-expansion rule
is defined as follows:

t→η∗ λx. t x

provided, no β-redex is introduced, and x does not occur free in t neither.

Proposition 2.14 The rewrite system formed by →β and →η∗ is normalising.
Moreover,

(→β ∪ →η∗)
∗ = →∗

β ◦ →
∗
η∗

Proposition 2.15 A λ-term t is in βη-long normal form if, and only if, it has
the form:

λx1 . . . xn. h t1 . . . tm

where arity(h) = m, ti for i ∈ {1..m} are λ-terms in βη-long normal form, and
h (the head of the λ-term) is either a constant or a variable.

24 Chapter 2. Second-Order Unification

Example 2.16 Consider the λ-term t = λxyz. (z (x y)) (λx. x) f (λx. x) where
f has type ι→ ι→ ι (the remaining types can be inferred from the type of f).
We can obtain its βη-long normal form by performing the following β-reduction
and η-expansion steps:

λxyz. (z (x y)) (λx. x)︸ ︷︷ ︸
β−redex

f (λx. x) →β λyz. (z ((λx. x) y)) f︸ ︷︷ ︸
β−redex

(λx. x)

→β λz. (z ((λx. x) f︸ ︷︷ ︸
β−redex

)) (λx. x) →β λz. (z f) (λx. x)︸ ︷︷ ︸
β−redex

→β (λx. x) f︸ ︷︷ ︸
β−redex

→β f︸︷︷︸
η∗−redex

→η∗ λx. f x︸︷︷︸
η∗−redex

→η∗ λx. λy. (f x) y

Definition 2.17 A language has order n if it is built over a signature where all
constants are of order at most n+ 1, and a set of variables of order at most n.

In the Unification perspective, as we will see, the important aspect of this
last definition, is the bound on the order of free variables. As an alternative we
can define order n languages as the ones where all terms in βη-long normal form
may only contain variables of order at most n. Notice also that a term of order
n can contain variables of any order as the following example shows:

Example 2.18 Let f be a unary fifth-order constant with type τ(f) = (((ι →
ι) → ι) → ι) → ι and let g be a unary fourth-order constant with type τ(g) =
((ι→ ι)→ ι)→ ι, then the following term:

f g

that has type ι, hence is of order one, has a βη-long normal form that requires
variables of order 3:

f(λx. g(λy. x(λz. yz)))

where variable x has type (ι → ι) → ι, thus order 3, variable y has type ι → ι,
thus order 2, and variable z has type ι.

Remark: If we keep the assumption that there is just an atomic type, whenever
a λ-term is in βη-long normal form, we can infer the type of all the constants and
variables occurring in it. In general we will assume that terms under discussion
are in βη-long normal form.

We will also represent λ-terms in their decurried form, for instance, the λ-
term (λxy. f x y), where x, y are ι-typed variables and f is a binary function
symbol of type ι→ ι→ ι, will be written as λxy. f(x, y).

As a convention and for the sake of clarity, in what follows we denote con-
stants of atomic type by a, b, c, functions by f, g, h, bound variables of arbitrary
type by x, y, z and free variables by capital letters, the first-order ones by X,Y, Z
and the ones of functional type by F,G,H .

2.1. Simply Typed λ-calculus 25

2.1.5 Unification

Once introduced the simply typed λ-calculus language, we can define the main
operation of our study, unification.

Definition 2.19 A higher-order equation is an unoriented pair t ?= u of λ-
terms with the same type and of arbitrary order. Higher-Order Unification,
is the problem of, given a system (finite set) of higher-order equations S =
{s1

?= t1, . . . , sn
?= tn}, which unknowns are the free variables that occur in si

and ti for i ∈ {1..n}, to decide whether there exists a substitution σ such that
σ(si) =λ σ(ti), for all i ∈ {1..n}. Such σ is said to unify or solve S, and it is
called unifier.
Let σ be a unifier of the equation s ?= t, then we call the term σ(s) and σ(t) the
common instance of the equation.

Definition 2.20 Second-Order Unification is Higher-Order Unification restric-
ted to second-order languages, therefore terms of the equations do not contain
variables of order higher than 2 and constant symbols of order higher than 3.

Definition 2.21 The size of an equations system S = {s1
?= t1, . . . , sn

?= tn} is
defined by |S| =

∑
i∈{1..n}(|si|+ |ti|).

Definition 2.22 Higher-Order Matching (Second-Order Matching) is Higher-
Order Unification (Second-Order Unification) where one of the λ-terms of each
equation is a closed λ-term.

Definition 2.23 Let σ and σ′ be two substitutions and Dom(σ) ∪Dom(σ′) =
{x1, . . . , xn}, the composition of substitutions σ and σ′ is defined as follows:

σ ◦ σ′ = [x1 7→ σ(σ′(x1)), . . . , xn 7→ σ(σ′(xn))]

Definition 2.24 A substitution σ is said to be more general than a substitution
σ′, noted as σ ≤ σ′, if there exists a substitution ρ such that for every variable
x ∈ Dom(σ), σ′(x) = ρ(σ(x)), hence σ′|Dom(σ) = ρ ◦ σ|Dom(σ).
A substitution σ is said to be a renaming of σ′, if σ ≤ σ′ and σ′ ≤ σ.

Definition 2.25 Let S be an equations system. A unifier σ of S is a most
general unifier of S when, for all unifier σ′ of S, if σ′ ≤ σ then σ ≤ σ′.

The notion of most general unifier of First-Order Unification has distinct
interpretations in Higher-Order Unification. For instance, Baader and Snyder
(2001) and Prehofer (1995), define most general unifier as “a unique substitu-
tion (modulo renaming of free variables) from which all other unifiers can be
generated”. This definition does not coincide with our definition of most general
unifier in Definition 2.25.

On the other hand, the name of renaming comes from the First-Order Uni-
fication case, where the most general unifier is unique modulo renaming of free
variables. As we will show in the following example, the treatment of bound
variables is also relevant for renamings in Second-Order Unification.

26 Chapter 2. Second-Order Unification

Example 2.26 Consider the following equation:

F (a) ?= G(b)

for which substitution σ = [F 7→ λx. H(x, b), G 7→ λx. H(a, x)] and substitution
σ′ = [F 7→ λx. H ′(x, b), G 7→ λx. H ′(a, x)] are both most general unifiers. In
fact, σ and σ′ are renamings in the same sense as in First-Order Unification
because H is a “renaming” of H ′ and viceversa. However there are still more
renamings of σ, for instance, the following substitution:

σ′′ = [F 7→ λx. H ′′(x, b, x), G 7→ λx. H ′′(a, x, a)]

is a renaming of σ because σ′′|{F,G} = [H 7→ λxy. H ′′(x, y, x)] ◦ σ|{F,G}, and
also σ = [H ′′ 7→ λxyz. H(x, y)] ◦ σ′′|{F,G}. As it is easy to see, the equation has
infinitely many renamings.

Definition 2.27 A set of substitutions Ω is a minimal complete set of most
general unifiers of a unification equations system S, if and only if each element
of Ω is a unifier of S incomparable to any other in Ω, and for every unifier σ of
S, there exists a unifier σ′ in Ω such that σ′ ≤ σ.

Unification Problems are classified depending on the cardinality of minimal
complete sets of most general unifiers1.

Definition 2.28 We call a Unification Problem:

• unitary if a minimal complete set of unifiers is either empty or a singleton,

• finitary if a finite minimal complete set of unifiers always exists,

• infinitary if a possibly infinite minimal complete set of unifiers always ex-
ists,

• nullary if no minimal complete set of unifiers may exist.

Second-Order Unification is infinitary while Higher-Order Unification is nu-
llary.

Remark: In what follows, we may sometimes use the word problem to refer to
an equations system, then, for instance, a second-order unification problem will
be an instance of the Second-Order Unification Problem. When the signature
considered contains at least an n-ary function symbols (with n ≥ 2), we can
freely consider problems as just one equation instead of a set of equations.

1This notion does not only apply to Higher-Order Unification but to Unification in general.

2.2. Second-Order Unification Undecidability 27

2.2 Second-Order Unification Undecidability

Higher-Order Unification is undecidable, i.e. there is no algorithm that takes
as argument a higher-order equations system and answers if it has a solution
or not. This fact was shown independently by Huet (1973b) and by Lucchesi
(1972). These proofs reduce the Post’s Correspondence Problem to Third-Order
Unification. Also Huet (1976), proved that Third-Order Unification is nullary
because for a certain kind of equations there may exist an infinite chain of
unifiers, each one more general than the previous one, without any most general
one.

It was not until 1981, that the second-order case was shown undecidable
by Goldfarb (1981). His proof is based on a reduction of the Hilbert’s tenth
problem: he shows how the problem of given two polynomials P (X1, . . . , Xn)
and Q(X1, . . . , Xn) whose coefficients are natural numbers, to answer if there
exist natural numbers m1, . . . ,mn such that P (m1, . . . ,mn) = Q(m1, . . . ,mn),
can be reduced to Second-Order Unification.

We will now illustrate the main steps of the reduction. To encode polyno-
mials, we need to be able to encode natural numbers, and the addition and the
multiplication operators. We also need a mechanism to ensure that variables can
only be instantiated by encodings of natural numbers.

Goldfarb’s numbers are second-order terms of type ι → ι of the following
form:

nG = λx.

n︷ ︸︸ ︷
g(a, . . . g(a, g(a, x)) . . .)

where nG stands for the representation of the natural number n. A normal term
t of type ι→ ι is a Goldfarb’s number if and only if [X 7→ t] is a solution to the
equation:

g(a,X(a)) ?= X(g(a, a))

The addition operation can be expressed by the third-order term:

add = λxyz. x(y(z))

while multiplication requires an equation system. The following second-order
problem:

Y (a, b, g(g(X3(a), X2(b)), a))
?= g(g(a, b), Y (X1(a), g(a, b), a))

Y (b, a, g(g(X3(b), X2(a)), a))
?= g(g(b, a), Y (X1(b), g(a, a), a))

has a solution containing these mappings [X1 7→ mG
1 , X2 7→ mG

2 , X3 7→ mG
3] if

and only if m1 ·m2 = m3.
Then we can encode the polynomial equations as second-order equations

such that the second-order equations are solvable if and only if the polynomials
equations are solvable.

Theorem 2.29 [Goldfarb, 1981] Second-Order Unification is undecidable.

28 Chapter 2. Second-Order Unification

One of the particularities to mention about Goldfarb’s reduction, is that it
does not require third-order constants, therefore, it allows to proof undecidability
of Second-Order Unification even if we do not allow λ-bindings in equations.

This restriction is relevant for us because we will use it in the definition
of terms for Context Unification (see Definition 3.9), and in the second-order
language considered in Chapter 4, where the currying technique is used to re-
duce Second-Order Unification to Second-Order Unification with just one binary
constant symbol. In both cases, constants have to be second-order typed.

Goldfarb’s result shows that there are second-order (and therefore arbitrarily
higher-order) languages where unification is undecidable. However there exist
particular languages of arbitrarily high-order that have a decidable unification
problem. For instance, Goldfarb’s proof requires that the language to which
the reduction is made contains at least one binary function symbol (the one
required to codify Goldfarb’s numbers). It has been shown by Farmer (1988)
that the unification problem for second-order monadic languages (i.e., languages
where function symbols are at most unary) is decidable, even more, it has been
proved that it is NP -complete (Levy et al., 2004). Also, Miller (1991a) defines
a higher-order language for which unification is decidable, the so called higher-
order patterns. Patterns are λ-terms in βη-long normal form, where the list of
the arguments of any free variables is a list of pairwise distinct bound variables.
We will come back to these decidable sub-cases in Section 2.4.

As we can see, the decidability/undecidability question for Second-Order
Unification seems quite dependent on the syntactic characteristics of the lan-
guage that we are considering. In this direction, the result of Goldfarb has been
sharpened, just to mention some, by Farmer (1991), by Schubert (1998), by
Levy (1998); Levy and Veanes (1998, 2000) and by Levy and Villaret (2002).
The results of these works mainly consist of reductions of undecidable problems
to second-order equations systems with languages that have particular syntactic
requirements.

• The work of Farmer (1991) shows that there is an integer n such that
Second-Order Unification is undecidable even if all second-order variables
are unary and there are at most n of them, even more, first-order variables
are not required to occur in equations.

• Schubert (1998) proves that Second-Order Unification is undecidable for
systems of simple equations, i.e. equations where all arguments of free
second-order variables do not contain free variables.

• The work of Levy (1998); Levy and Veanes (1998, 2000) is quite exhaustive
and exhibits several reductions with very sharp results like, for instance,
when each second-order variable occurs at most twice and there are only
two second-order variables (as we will show, this case has been proved to
be decidable for Linear Second-Order Unification (Levy, 1996)); or when
there is only one second-order variable and it is unary, etc. Some of these
results are obtained by a reduction from Simultaneous Rigid E-Unification

2.3. Second-Order Unification Procedure 29

(see Degtyarev and Voronkov (1996) for an inverse reduction) to special
fragments of Second-Order Unification.

• The work of Levy and Villaret (2002) shows that Second-Order Unification
can be NP-reduced to Second-Order Unification where there is just one
binary function symbol by means of currying (see Chapter 4). Applying
this reduction to the results of Levy and Veanes (2000) proves that Second-
Order Unification is undecidable for one binary function symbol and one
second-order variable occurring four times.

Besides the undecidability of Second-Order Unification, another problem is
that, unlike in First-Order Unification, most general unifiers may not be unique.
In fact Second-Order Unification is infinitary, i.e. the minimal complete set of
most general unifiers always exists, but can be infinite. For example the equation:

F (f(a, b)) ?= f(F (a), b)

has infinitely many incomparable most general unifiers of the form:

[F 7→ λx.

n︷ ︸︸ ︷
f(. . . (x,

n︷ ︸︸ ︷
b) . . . b)]

for n ∈ {0..∞}.

2.3 Second-Order Unification Procedure

The problem of deciding if a given substitution is a unifier of a given problem is
decidable: it suffices to apply the substitution to both sides of each equation, nor-
malise the terms and check whether their normal forms are equal. Substitutions
are denumerable, therefore Second-Order Unification is semidecidable. Obvi-
ously, a generate and test procedure is very inefficient and several authors have
proposed unification procedures where the form of the terms in the equations
is used to restrict somehow the search space (Darlington, 1973; Pietrzykowski,
1973; Huet, 1973a, 1975, 1976; Jensen and Pietrzykowski, 1976). The work of
Pietrzykowski (1973) was the first in describing a sound and complete Second-
Order Unification procedure that was later extended to the higher-order case by
Jensen and Pietrzykowski (1976). We will now describe the second-order version
of the procedure.

The main idea behind these algorithms is the same as in the Martelli Mon-
tanari algorithm for First-Order Unification. It simply consist of, at each step,
trying to transform the equations into “more solved” ones from up to down,
therefore the transformation applied depends on the “shape” of the heads of the
chosen equation. The heads are rigid if they are constants or bound variables,
and flexible if they are free variables. As at the end, all equations have to be
solved, we can freely choose any equation to apply a transformation.

We will use the notation of transformations from (Gallier and Snyder, 1990)
for describing unification processes. In this notation any state of the process is

30 Chapter 2. Second-Order Unification

represented by a pair 〈S, σ〉 where S is the equations system and σ is the substi-
tution computed until that moment, i.e. the substitution leading from the initial
problem to the actual one. The initial state is 〈S0, []〉 where S0 is the original
equations system. The procedure is described by means of transformation rules
on states like 〈S∪E, σ〉 ⇒ 〈ρ(S∪E ′), ρ◦σ〉 2, where E is the chosen equation to
be transformed into E′ and ρ the substitution required for the transformation.
The goal is to reach a solved state 〈∅, σ〉 or to reach a search tree where no
transformation rule can be applied anywhere.

Definition 2.30 The transformations rules depending on the heads of the cho-
sen equation are the following ones:

• Rigid-rigid. If we have an equation like

E = {λx1 . . . xn. f(u1, . . . , up)
?= λx1 . . . xn. f(v1, . . . , vp)}

where f is a constant symbol or a bound variable, we can only apply the
Simplification rule. We need to propagate the equation over the arguments
of both sides ensuring that no bound variable is “freed”, therefore we
transform E into

E′ =
⋃

i∈{1...p}

{λx1 . . . xn. ui
?= λx1 . . . xn. vi}

and the accumulated substitution does not change

ρ = []

• Flexible-rigid (or Rigid-flexible, recall that equations are unoriented). If
we have an equation like

E = λx1 . . . xn. F (u1, . . . , up)
?= λx1 . . . xn. g(v1, . . . , vq)

we have two possibilities:

– Projection. We can guess that variable F projects on one of its argu-
ments which must have the same type as g(v1, . . . , vq) , therefore we
generate a substitution for it that guesses the argument

ρ = [F 7→ λy1 . . . yp. yi]

where i ∈ {1 . . . p}, and yi has the same type than g(v1, . . . , vq). We
transform E into

E′ = {λx1 . . . xn. ui
?= λx1 . . . xn. g(v1, . . . , vq)}

2The application of a substitution to an equation and to an equation system is the natural
extension of the application of a substitution to a term.

2.3. Second-Order Unification Procedure 31

– Imitation. We guess that variable F imitates the beginning of the
other side term g, then, we generate a substitution

ρ = [F 7→ λy1 . . . yp. g(F1(y1, . . . , yp), . . . , Fq(y1, . . . , yp))]

where F1, . . . , Fq are new appropriately typed free variables.

We transform E into

E′ =
⋃

i∈{1...q}

{λx1 . . . xn. Fi(u1, . . . , up)
?= λx1 . . . xn. vi}

• Flexible-flexible. If we have an equation like

E = {λx1 . . . xn. F (u1, . . . , up)
?= λx1 . . . xn. G(v1, . . . , vq)}

we have four possibilities:

– Simplification. When both head symbols are the same free variable,
i.e. F = G, we can propagate the equation over the arguments of F
ensuring that no bound variable is “freed”, therefore we transform E
into

E′ =
⋃

i∈{1...p}

{λx1 . . . xn. ui
?= λx1 . . . xn. vi}

and the accumulated substitution does not change

ρ = []

– Elimination. We can eliminate the i-th parameter of one of the head
variables by means of a substitution like

ρ = [F 7→ λy1 . . . yp. F
′(y1, . . . , yi−1, yi+1, . . . , yp)]

and

E′ =

λx1 . . . xn. F
′(u1, . . . , ui−1, ui+1, . . . , up)

?=
λx1 . . . xn. G(v1, . . . , vq)

being F ′ a new appropriately typed free variable.

– Iteration. We can also iterate the i-th parameter of one of the head
variables by means of a substitution like

ρ = [F 7→ λy1 . . . yp. F
′(y1, . . . , yp, yi)]

and

E′ = {λx1 . . . xn. F
′(u1, . . . , up, ui)

?= λx1 . . . xn. G(v1, . . . , vq)}

being F ′ a new appropriately typed free variable.

32 Chapter 2. Second-Order Unification

– Identification. when F 6= G we can identify both variables, trying to
fix a “maximal” common part. Therefore, we introduce a new free
variable that denotes this “common part”, being

ρ =[
F 7→ λy1 . . . yp.H(y1, . . . , yp, F1(y1, . . . , yp), . . . , Fq(y1, . . . , yp)),
G 7→ λy1 . . . yq.H(G1(y1, . . . , yq), . . . , Gp(y1, . . . , yq), y1, . . . , yq)

]

and

E′ =

λx1 . . . xn. H(u1, . . . , up, F1(u1, . . . , up), . . . , Fq(u1, . . . , up))
?=

λx1 . . . xn. H(G1(v1, . . . , vq), . . . , Gp(v1, . . . , vq), v1, . . . , vq)

whereH,F1, . . . , Fq , G1, . . . , Gp are new appropriately typed free vari-
ables.

Notice that in all transformations, flexible heads are first-order variables
when they have not arguments.

Theorem 2.31 [Soundness] For any second-order equations system S, if there
exists a derivation 〈S, []〉 ⇒∗ 〈∅, σ〉, then σ is a unifier of S.

Theorem 2.32 [Completeness] If σ is a most general unifier of a second-order
equations system S, then there exists a derivation 〈S, []〉 ⇒∗ 〈∅, σ〉.

It is easy to see that a procedure based on these rules is highly non-
deterministic. A complete strategy for applying these rules could be: while
the equations system contain rigid-rigid equations, apply simplification. The
choice of the equation is don’t care, i.e. we never need to backtrack to firstly try
another equation since all of them must be solved, and simplification is the only
applicable rule for rigid-rigid equations.

Then we could try to solve the flexible-rigid equations but now, the choice
of the rule to apply, and even, the projected argument in the projection rule,
introduces a don’t know non-determinism, i.e. this choice could require some
backtrack step.

Once there are no flexible-rigid nor rigid-rigid equations in the system (i.e.
the system is in presolved form), we could solve the flexible-flexible ones. Un-
fortunately, the don’t know non-determinism of the flexible-flexible rules is even
more explosive and makes implementations impracticable.

2.3.1 Pre-Unification

Huet noticed that a flexible-flexible equation is always trivially solvable (we
can always guess a common constant symbol and make the head variables of
both sides of the equation to be instantiated by it3) and defined a method in

3Remember that we are under the assumption that we have a constant in each atomic type,
therefore we can always find such a closed term as solution.

2.3. Second-Order Unification Procedure 33

(Huet, 1975), named preunification4. This method consist of applying just the
rigid-rigid and flexible-rigid rules until an equations system with just flexible-
flexible equations is obtained, thus a solvable system is reached. Whenever
an equations system is solvable, this method reaches a unifier. Therefore this
method can be used to decide solvability of an equations system and some of
the search branching explosion due to the don’t know non-determinism of the
flexible-flexible rules is avoided. Unfortunately, the imitation rule is enough to
make this method non-terminating.

The fact that in higher-order logic, testing for unifiability is much simpler
than enumerating unifiers, motivates the design of proof-search methods such as
constrained resolution (Huet, 1973a), that require only the testing of unifiability
and not the enumeration of solutions.

2.3.2 Regular Search Trees

An interesting approach to Huet’s algorithm is due to Zaionc (1986), who re-
marks that when the number of equations system that we can generate from a
given equations system is finite, i.e. when the number of distinct nodes in the
search tree is finite modulo free variables renaming, we can compute this set
of equations systems. If this finite set does not contain any solved state, then
we know that the problem is unsolvable. In this way he sharpened Huet’s al-
gorithm by proposing an algorithm that reports failure more often that Huet’s.
For instance, for the equation:

X(a) ?= f(X(a))

Huet’s algorithm would construct an infinite tree with no solved state, while
after an imitation step with substitution [X 7→ λx. f(X ′(x))], we obtain after
simplification, the equation:

X ′(a) ?= f(X ′(a))

that is the same equation, modulo free variable renaming, as the original one.
The other chance is to apply projection and obtain:

a ?= f(a)

that is trivially unsolvable. Thus we obtain a search tree with just two “distinct
states” and where none of them is a solved one, therefore Zaionc algorithm would
report a failure.

Moreover, when the number of equations generated by a given equation is
finite and it is solvable, the set of minimal unifiers may still be infinite, but it
can be described by a grammar. For instance, for the equation:

F (f(a, b)) ?= f(F (a), b)

4In fact preunification was defined for Higher-Order Unification, therefore it also applies to
the second-order case.

34 Chapter 2. Second-Order Unification

being σ the elementary substitution [F 7→ λx. x] and being τ the elementary
substitution [F 7→ λx. f(F (x), b)], all the most general unifiers have the form
σ ◦ τ ◦ τ ◦ . . . ◦ τ . Such substitutions can be represented by the words σττ . . . τ .
These words can be produced by the grammar:

s → σ
s → sτ

2.4 Decidable Subcases

A lot of effort has also been made in identifying decidable subcases of Higher
and Second-Order Unification. In this subsection we present some of them which
are obtained by restricting the order, the arity or the number of occurrences of
variables, or by just considering terms of a special form.

Besides these decidable cases, there remain three prominent subclasses of
problems: Higher-Order Matching, Linear Second-Order Unification and Con-
text Unification, whose decidability is still an open question. At the end of this
section, we will present the main advances about Higher-Order Matching decid-
ability, but we left Context Unification and Linear Second-Order Unification to
be introduced in detail in next chapter, as well as the main results about them.

2.4.1 First-Order Unification

The first decidable subcase of Higher-Order Unification is obviously First-Order
Unification. When all the variables of a problem have atomic type, i.e. they are
first-order variables, all the constants have at most second-order types and the
terms in the equations have first-order types, then the problem is simply First-
Order Unification, that as we have already said in the Introduction Chapter,
it is decidable (Martelli and Montanari, 1976; Robinson, 1965; Venturini-Zilli,
1975).

2.4.2 Pattern Unification

In mathematics, one often define functions by an equation of the following shape:

F (x, y) = x · x+ y · y

and we actually mean that F is a function that has two arguments that are
raised to the square and added:

F = λxy. (x · x+ y · y)

The particular shape of the first equation shows us that the function, the free
variable, is applied to distinctly named arguments (that in fact are distinct
bound variables). This motivates the study of unification problems where the
higher-order free variables can only be applied to distinct bound variables.

2.4. Decidable Subcases 35

A pattern is a term t such that for every subterm of the form F (u1, . . . , un),
where F is a free variable, the terms u1, . . . , un are distinct bound variables of
t. For instance, the following equation:

λx1x2x3. F (x1, x2)
?= λx1x2x3. f(λy1. G(x1, y1), F (x2, x3))

is a Pattern Unification equation.

Like First-Order Unification, Pattern Unification is decidable in polynomial
time and when a unification problem has a unifier, it has only one most general
unifier (Miller, 1991a; Nipkow, 1993). The algorithms for both problems have
also some similarities, in particular, the occur-check plays an essential role in
both cases. The relation between both problems is better understood when
considering quantifier permutation in mixed prefixes (Miller, 1992).

Pattern Unification is used in higher-order logic programming (Nadathur and
Miller, 1998). Prehofer (1995) studies some decidable extensions of patterns and
shows their usefulness in functional and logic programming.

2.4.3 Monadic Second-Order Unification

As we have already shown, Goldfarb’s undecidability proof requires a language
with a binary constant symbol. Thus, a natural problem to investigate is Second-
Order Unification where the language contains only unary functions, i.e. con-
stants with a single argument. This problem, called Monadic Second-Order
Unification has been proved decidable by Farmer (1988). Recently is has been
problem that in fact it is NP-complete (Levy et al., 2004).

Farmer’s proof exploits the similarity between closed monadic terms of atomic
type and words. A term like f1(f2(. . . fn(c) . . .)) can be represented by the word
f1f2 . . . fnc. Then, a unification equations system in such a language can be
reduced to a satisfaction equivalent Word Unification equation system, and Word
Unification is known to be decidable (Makanin, 1977).

In Monadic Second-Order Unification, the set of minimal unifiers may be
infinite, for instance, the following equation:

λy. f(X(y)) ?= λy. X(f(y))

which is equivalent to the word equation fX ?= Xf , has an infinite number
of minimal solutions like [X 7→ λx. x], [X 7→ λx. f(x)], [X 7→ λx. f(f(x))], . . .
corresponding to the solutions of the word problem: [X 7→ ε], [X 7→ f], [X 7→
ff], . . . In fact, for any natural number n the following substitution:

[X 7→ λx. fn(x)]

is a unifier of the previous monadic equation. Farmer proposes to describe
minimal unifiers using so called parametric terms. These parametric terms,
remind Zaionc’s descriptions of unifiers by means of grammars.

36 Chapter 2. Second-Order Unification

2.4.4 Second-Order Unification With Linear Occurrences

of Second-Order Variables

In a second-order equation like:

λx1 . . . xn. F (u1, . . . , up)
?= λx1 . . . xn. f(v1, . . . , vq)

we could perform a projection and replace the variable X by a closed term like
λx1 . . . xn. xi for some i ∈ {1..p}, thus the number of variables in the problem
decreases. And we could also apply imitation rule and simplify the equation,
obtaining the following equations instead of the original one:

λx1 . . . xn. F1(u
′
1, . . . , u

′
p)

?= λx1 . . . xn. v
′
1

· · ·

λx1 . . . xn. Fq(u
′
1, . . . , u

′
p)

?= λx1 . . . xn. v
′
q

which seems to be smaller than the original equation because the equations seem
smaller, but this is not necessarily true because the variable F may have occur-
rences in terms u1, . . . , up, v1, . . . vq , and therefore, terms u′1, . . . , u

′
p, v

′
1, . . . v

′
q

could be bigger than the original arguments of F and f . Nevertheless, when
second-order variables are restricted to occur just once, these occurrences of
the substituted variable in the arguments are not possible, therefore terms
u′1, . . . , u

′
p, v

′
1, . . . v

′
q are in fact the same original arguments u1, . . . , up, v1, . . . vq

and the resulting equations are effectively smaller, thus a terminating process
can be achieved (Dowek, 1993).

2.5 Higher-Order Matching

Matching is the particular case of unification where one side of each equation does
not contain any unknown. Higher-Order Matching decidability is conjectured
since Huet (1976), and still remains unproved.

The first positive result is the decidability of Second-Order Matching (Huet,
1976). The proof of this result is based in the measure (SizeG,]V ars) where
SiseG is the sum of the sizes of the original ground side of each equation and
]V ars is the number of variables in the equations system. This measure decreases
at each application of the rules of Huet’s preunification algorithm, in fact, imita-
tion will always be followed by a simplification. Notice that the flexible-flexible
case will never occur. Second-Order Matching equations systems have a finite set
of minimal solutions and has been proved to be NP-complete by Baxter (1977).

As soon as we have a free third-order variable (unknown), the required algo-
rithm is more complex and may produce an infinite number of minimal solutions.
For instance:

λx. F (x, λy. y) ?= λx. x

has an infinite number of solutions of the form [F 7→ λxf. f(f(. . . f(x) . . .))].
Thus, we cannot use Huet’s algorithm as a terminating algorithm for this case.
Nevertheless, terminating algorithms exist for third (Dowek, 1992, 1994), and

2.6. Summary 37

even for fourth-order matching (Padovani, 1995, 2000). There exists also a de-
cidability proof for third and fourth-order matching that uses tree-automata,
in a similar way as Zaionc with grammars (see Subsection 2.3.2), to recognise
solutions of a given problem (Comon and Jurski, 1997).

Recently, it has been proved that Higher-Order β-Matching, (matching of
λ-terms not considering η-equivalence), is undecidable (Loader, 2003). But this
result does not shed any light about the full Higher-Order Matching problem.
The same applies to the positive result about decidability of Linear Higher-Order
Matching (Salvati and de Groote, 2003; Dougherty and Wierzbicki, 2002), see
Section 3.5.

2.6 Summary

In this chapter we have introduced simply typed λ-calculus, Unification and
its related concepts, Second (and Higher)-Order Unification and the main re-
sults related with these problems, such as their undecidability, the existence of
sound and complete procedures for them, and the existence of several decidable
fragments. About these fragments, we have seen, that the frontier between de-
cidability and undecidability is not completely defined and seems to depend on
particular syntactic restrictions like the number of occurrences of each variable,
the signature considered or the shape of the terms.

Chapter 3

Linear Second-Order and

Context Unification

In this chapter, we define Linear Second-Order Unification and Context Unifi-
cation, and introduce the main known results about these problems. Roughly
speaking, Linear Second-Order Unification is Second-Order Unification where
second-order variable instantiations must be linear λ-terms while, Context Uni-
fication is an extension of First-Order Unification where variables can denote not
only first-order terms, but also context, i.e. terms with a hole or distinguished
position. Context Unification can also be seen as a Linear Second-Order Unifi-
cation restriction where neither third-order constants nor λ-bindings are allowed
in the equations.

3.1 Linear Second-Order Unification

Definition 3.1 A λ-term is said to be a linear if, written in βη-long normal
form, every bound variable occurs just once. In other words, every subterm of
the form λx. t, contains only one occurrence of x free in t.

Fact 3.2 Linearity of λ-terms is preserved under β and η-reduction, and η-
expansion. Therefore, if t and u are linear, [X 7→ u](t) is also linear.

Definition 3.3 A substitution is said to be linear if it maps variables to linear
λ-terms.

Definition 3.4 The Linear Second-Order Unification Problem is the problem
of deciding, given a second-order equation system, whether there exists a linear
substitution that solves it.

As can be seen from the definition, the presentation of linear second-order
equations is the same as the one of “general” second-order equations. Notice
that λ-terms of the equations are not required to be linear, linearity is only

39

40 Chapter 3. Linear Second-Order and Context Unification

required in variable instantiations. Obviously any equation that is solvable as a
linear second-order equation is also solvable as a second-order equation, but the
inverse is not true.

Example 3.5 The following equation:

F (a) ?= g(λy. f(a))

considered as a Second-Order Unification equation has these two unifiers:

σ = [F 7→ λx. g(λy. f(a))]
σ′ = [F 7→ λx. g(λy. f(x))]

but as we can observe none of these substitutions is linear. On the one hand,
σ is not linear because x does not occur in the body of λx. g(λy. f(a)) and y
does not occur in the body of λy. f(a) either. On the other hand, σ′ is not
linear because the variable y does not occur in the body of λy. f(x). Hence, the
equation is unsolvable when considered as a Linear Second-Order Unification
equation.

The interest of Linear Second-Order Unification arises in fields like automated
deduction (Levy and Agust́ı, 1996) or computational linguistics (Pinkal, 1995).
Decidability of Linear Second-Order Unification is a prominent open question
(as well as decidability of Context Unification) that remains open after more
than 10 years. Nevertheless, as well as in Second-Order Unification, a semi-
decision procedure exists (Levy, 1996; Cervesato and Pfenning, 1997), and some
decidable fragments have been found (Levy, 1996).

3.1.1 Sound and Complete Procedure

A naive semi-decision procedure could be the same “generate and test” proposed
for Second-Order Unification but now considering just linear solutions. We could
also use the Pietrzycowski semi-decision procedure (see Definition 2.30) and then
accept just the linear unifiers.

Levy (1996), proposes an accurate modification of the transformation rules of
the Pietrzycowski procedure, obtaining a less redundant one because it avoids the
use of the prolific elimination and iteration rules. Even more, Levy’s procedure
only computes unifiers of the form ρ ◦ σ where σ is a most general unifier and ρ
instantiates some variables by (λx. x).

This procedure has the same presentation as the one of Definition 2.30. Recall
that we are always considering normalised terms, therefore any equation s ?= t
will always have the following form:

λx1 . . . xn. h(s1, . . . , sp)
?= λx1 . . . xn. h

′(t1, . . . , tq)

since if s and t have the same type, then they must have the same number of
more external λ-bindings. We also give the same name to these bound variables.

3.1. Linear Second-Order Unification 41

Definition 3.6 All transformation rules have the form:

〈S ∪ {s ?= t}, σ〉 ⇒ 〈ρ(S ∪R), ρ ◦ σ〉

where for each rule, the transformation {s ?= t} ⇒ R and the linear second-order
substitution ρ are defined as follows:

1. Simplification. If h is a constant or a bound variable then:

λx1 . . . xn. h(s1, . . . , sp)
?= λx1 . . . xn. h(t1, . . . , tp)
⇓⋃

i∈{1..p} λx1 . . . xn. si
?= λx1 . . . xn. ti

and ρ = [].

2. Imitation. If f is a constant and F is a free variable then:

λx1 . . . xn. f(s1, . . . , sp)
?= λx1 . . . xn. F (t1, . . . , tq)
⇓⋃

i∈{1..p}{λx1 . . . xn. si
?= λx1 . . . xn. Fi(ti1 , . . . , tiqi

)}

and ρ = [F 7→ λy1 . . . yq. f(F1(yi11 , . . . , yi1r1
), . . . , Fp(yip1 , . . . , yi

p
rp

))].

Where Fi (for i ∈ {1..p}), are appropriately typed fresh free variables and
the set of indices {{i11 . . . i

1
r1
} . . . {ip1 . . . i

p
rp
}} is a partition of the indices

{1 . . . q} ensuring that ρ(F) is a linear term. Notice that when rj = 0 then
Fj is a first-order variable.

3. Projection. If h is a constant or a bound variable and F is a free variable,
and h(s1, . . . , sp) and t′ have the same type, then:

λx1 . . . xn. h(s1, . . . , sp)
?= λx1 . . . xn. F (t′)

⇓

λx1 . . . xn. h(s1, . . . , sp)
?= λx1 . . . xn. t

′

and ρ = [F 7→ λy. y].

4. Flexible-Flexible rule with equal-heads (or Simplification rule in Flex-Flex
case). If F is a free variable, then:

λx1 . . . xn. F (s1, . . . , sp)
?= λx1 . . . xn. F (t1, . . . , tp)
⇓⋃

i∈{1..p} λx1 . . . xn. si
?= λx1 . . . xn. ti

and ρ = [].

5. Flexible-Flexible rule with distinct-heads. If F and G are free distinct
variables, p′ < q and q′ < p, then

42 Chapter 3. Linear Second-Order and Context Unification

λx1 . . . xn. F (s1, . . . , sp)
?= λx1 . . . xn. G(t1, . . . , tq)
⇓

{
⋃
j∈{1..p′} λx1 . . . xn. Fj(sij1

, . . . , sijrj

) ?= λx1 . . . xn. tkj
}

∪

{
⋃
j∈{1..q′} λx1 . . . xn. sk′

j

?= λx1 . . . xn. Gj(tlj1
, . . . , tljrj

) }

and ρ =

[F 7→ λy1 . . . yp. H(F1(yi11 , . . . , yi1r1
), . . . , Fp′(yip′1

, . . . , y
i
p′
r

p′

), yk′1 , . . . , yk′q′),

G 7→ λz1 . . . zq. H(zk1 , . . . , zkp′
, G1(zl11 , . . . , zl1r1

), . . . , Gq′ (zlq′1
, . . . , z

l
q′
r

q′

))].

Where Fj (for j ∈ {1..p′}), Gj (for j ∈ {1..q′}) and H are appropriately

typed fresh free variables and where {{i11 . . . i
1
r1
} . . . {ip

′

1 . . . i
p′

rp′
}{k′1 . . . k

′
q′}}

is a partition of the indices {1 . . . p} ensuring that ρ(F) is a linear term, and

{{k1 . . . kp′}{l11 . . . l
1
r1
} . . . {lq

′

1 . . . lq
′

rq′
}} is a partition of the indices {1 . . . q}

ensuring that ρ(G) is a linear term. Notice that when rj = 0 then Fj (or
Gj) is a first-order variable.

The key point of this algorithm is that the elimination rule and the iteration
rule of the general second-order procedure, are not required. In order to ensure
linearity of the substitutions the restrictions made in the set of indices of bound
variables, are crucial.

Theorem 3.7 [Soundness, (Levy, 1996)] For any second-order unification equa-
tion system S, if there exists a derivation 〈S0, []〉 ⇒∗ 〈∅, σ〉, then σ is a minimal
linear second-order unifier of S0.

Theorem 3.8 [Completeness, (Levy, 1996)] If σ is a minimum linear second-
order unifier of the second-order unification equation system S0, then there exists
a transformation sequence 〈S0, []〉 ⇒

∗ 〈∅, σ〉.

One of the decidability fragments described by Levy (1996) is the one where
no free variable occurs more than twice. The proof is based on the fact that each
application of the transformation rules does not increase certain size measure
for the equations. Then, noticing that for any finite signature and given size
there are finitely many unification equation systems modulo renaming of free
variables, it is enough to control loops to ensure the termination of the previous
procedure. This argument resembles the one of Zaionc (1986) (see Section 2.3.2).

The decidability of this particular fragment of Linear Second-Order Unifica-
tion contrasts with the undecidability of the same fragment considered as general
Second-Order Unification (Levy and Veanes, 2000).

3.2 Context Unification

Context Unification can be defined from two perspectives. The main difference
between both is the arity of free variables or unknowns but, as we will show in

3.2. Context Unification 43

Subsection 3.2.3, this characterisation does not imply any difference with respect
to decidability.

1. From the “First-Order Unification” perspective, equations are defined over
the algebra of terms and contexts. Terms are first-order terms without any
constant of order higher than two, hence without bound variables. Context
variables are used as unary second-order variables and can be instantiated
by contexts. Contexts are terms with one occurrence of an special symbol
• that denotes the hole of the context. This hole is the place where,
when a context is “applied” to a term, the “argument” of the context
must be placed. This perspective is the one followed, for instance, in
(Comon, 1992a), where Context Unification is used in completion for some
rewrite systems, or in (Schmidt-Schauß, 1996; Schmidt-Schauß and Schulz,
1998, 1999, 2002b), where, just to mention one, Schmidt-Schauß (1996)
uses a decidable fragment of Context Unification to prove decidability of
Distributive Unification.

2. From the “Second-Order Unification” perspective, contexts are linear se-
cond-order λ-terms without any constant of order higher than two. Terms
in the equations are first-order terms without any constant of order higher
than two and hence without bound variables either, in other words, second-
order λ-terms as the ones used by Goldfarb (1981) (see Section 2.2). There-
fore second-order (context) variables can have any arity (greater than one),
and nor λ-abstraction nor bound variable occur in the equations but in
substitutions. This is mainly the perspective of Levy and Villaret (2000,
2001, 2002), and comes from the study of Linear Second-Order Unification
initiated by Levy (1996).

The following two Subsections provide the definition of Context Unification
from both perspectives.

3.2.1 Context Unification From the First-Order

Unification Perspective

Definition 3.9 Let us assume a given finite first-order signature Σ =
⋃n
i=0 Σi

where constants in Σ0 are first-order typed and constants in Σi, for i ≥ 1, are
second-order typed and have arity i. Similarly, we assume a given denumerable
set of variables X = X0∪X1 where X0 are first-order variables and X1 are context
variables.
A term is a first-order λ-term in T (Σ,X), hence apart from the usual first-order
terms, the application of a context variable to a term is also a term.
A Context C is a special term over the extended signature Σ ∪ {•}, where • is
a constant symbol of arity 0 named hole, such that the hole occurs just once in
C. The application of a context C to a term t (argument), denoted as C(t), is
the term resulting from replacing the occurrence of the constant symbol • with
the term t, in the context C.

44 Chapter 3. Linear Second-Order and Context Unification

Remark: Notice that this definition of terms coincides with the one of the
terms used by Goldfarb (1981) (see Section 2.2), with the restriction that con-
text variables are unary second-order variables. We will often not distinguish
explicitly between terms and λ-terms, when the distinction is not relevant or
can be inferred from the context.

Definition 3.10 A Context Substitution is a substitution that maps first-order
variables to terms and context variables to contexts.
The application of a context substitution to a term is the term resulting from
replacing first-order variables with the corresponding terms mapped by the sub-
stitution and context variables with their corresponding contexts.

Definition 3.11 The Context Unification Problem is the problem of deciding,
given an equation system over terms, whether there exists a context substitution
that solves it.

Example 3.12 Consider the following context equation:

F (F (a)) ?= f(f(G(a), b), X)

where F and G are context variables and X is a first-order variable. Substitution
σ = [X 7→ b, F 7→ f(•, b), G 7→ •] solves the equation, hence, it is a unifier:

σ(F (F (a))) = f(•, b)(f(•, b)(a)) =
= f(f(a, b), b) =
= (f(f(•(a), b), b)) = σ(f(f(G(a), b), X))

3.2.2 Context Unification From the Second-Order

Unification Perspective

Contexts can also be seen as linear second-order λ-terms with just an exter-
nal λ-abstraction where the “hole” is a variable occurrence bound by that λ-
abstraction. Then, the application of a context substitution becomes the appli-
cation of the linear second-order substitution followed by the reduction of the
introduced β-redexes.

Definition 3.13 We assume a given finite second-order signature Σ =
⋃n
i=0 Σi

where constants in Σ0 are first-order typed and constant symbols in Σi, for
i ≥ 1, are second-order typed and have arity i. Similarly, we assume a given
denumerable set of variables X =

⋃n
i=0 Xi where X0 are first-order variables and,

for i ≥ 1, Xi are second-order variables.
A context equation is a pair of first-order λ-terms over this signature.

Definition 3.14 The Context Unification Problem is the problem of deciding,
given a context equations system, whether there exists a linear second-order
substitution that solves it.

3.2. Context Unification 45

Example 3.15 Following this definition, the substitution σ of Example 3.12
has the following form σ = [X 7→ b, F 7→ λx. f(x, b), G 7→ λx. x] and it is, of
course, a unifier also:

σ(F (F (a))) = λx. f(x, b)(λx. f(x, b)(a)) =β

=β f(f(a, b), b) β =

β = (f(f((λx. x)(a), b), b)) = σ(f(f(G(a), b), X))

3.2.3 Comparison Between both Perspectives

In the following we will consider Context Unification from the Second-Order
Unification perspective, hence we will allow n-ary (n ≥ 1) context (second-
order) variables. Next we will show why this assumption does not affect to the
decidability of the problem. However, Salvati and de Groote (2003) show that
in the case of matching, this distinction affects to the complexity of the problem
(see Section 3.5).

The use of the Second-Order Unification perspective of Context Unification
is motivated by means of the following example.

Example 3.16 The following problem:

F (a) ?= G(b)

has the following most general unifier when allowing n-ary context variables:

σ = [F 7→ λx. H(x, b), G 7→ λx. H(a, x)]

where H is a binary context variable. However, if we restrict ourselves to unary
context variables, σ could not be represented. Even worse, to find a possible
unifier for this problem, we need to use an n-ary (n ≥ 2) constant symbol:

σ′ = [F 7→ λx. f(x, b), G 7→ λx. f(a, x)]

but notice that f does not occur in the equation. Therefore, the solvability of
this equation depends on the signature that we are considering.

In order to prove that the arity of context variables does not play any role
in decidability of Context Unification, we reduce the Context Unification with
n-ary context variables to Context Unification with unary variables (Levy and
Villaret, 2000). Similar ideas are also used by Schmidt-Schauß (1999a, 2004).

Given a context unification problem S with n-ary context variables over a
signature Σ, if Σ does not contain any constant with arity n ≥ 2 and a first-order
constant, we include them in Σ. In the case of n-ary Context Unification this
modification of the signature does not affect to the solvability of the problem.
Then, we construct a new context unification problem S ′ without n-ary context
variables by iteratively applying the following unarise rule, until all non-unary
context variables of the problem disappear.

46 Chapter 3. Linear Second-Order and Context Unification

Definition 3.17 The rule unarise consists of, given a context unification prob-
lem S, for any n-ary context variable F in S with n ≥ 2, guessing a p-ary
constant symbol g with p ≥ 2, from the (previously enlarged if required) sig-
nature. In a second step, we guess a partition of {1, . . . , n} into p ≤ n many
disjoint subsets such that

⋃
i∈[1..p]{c

i
1, . . . , c

i
qi
} = {1, . . . , n}, and at least two of

them are non-empty. We instantiate F in S by the following substitution:

[F 7→ λx1 · · ·λxn. F0(g(F1(xc11 , . . . , xc1q1
), . . . , Fp(xcp

1
, . . . , xcp

qp
)))]

where F0 is a fresh unary context variable and F1, . . . , Fp are (maybe non-unary)
fresh context or first-order variables.

Example 3.18 Consider the following n-ary context unification problem:

F (G(a, b)) ?= G(F (a), b) (3.1)

One of its infinitely many solutions is (see Figure 3.1):

σ = [F 7→ λx. H(H(x, b), b),
G 7→ λx, y. H(H(H(H(x, b), y), b), b)]

(3.2)

where H is a fresh context variable.

a b

b

b

b

b

H

H

H

H

H

H b

H

a

b

b

b

b

b

b

H

H

H

H

H

F (G (a, b)) G (F (a), b)

Figure 3.1: Solution of the n-ary variables equation F (G(a, b)) ?= G(F (a), b).

We use the unarise rule and we enlarge our signature to Σ′ = {a, b, g}, where
g is a new binary constant. Now, we can guess a partition of {1, 2} into two
disjoint subsets {1} and {2}, where both are non-empty, and instantiate G by:

τ = [G 7→ λx1, x2. G0(g(G1(x1), G2(x2)))]

We obtain a new problem:

F (G0(g(G1(a), G2(b))))
?= G0(g(G1(F (a)), G2(b))) (3.3)

3.2. Context Unification 47

which is also solvable (see Figure 3.2), and only contains (unary) context vari-
ables.

a

b

b

b

b

b

b a b

b

b

b

b

b

g

g

g

g

g

g

g

g

g

g

g

g

F (G0 (g (G1 (a), G2 (b)))) G0 (g (G1 (F (a)), G2 (b)))

Figure 3.2: Solution of the unary variables equation F (G0(g(G1(a), G2(b))))
?=

G0(g(G1(F (a)), G2(b))).

Theorem 3.19 [Levy and Villaret (2000)] The Context Unification Problem
where n-ary variables are allowed, is NP-reducible to Context Unification where
all context variables are unary.

Proof: We prove that a context unification problem S with n-ary context vari-
ables is unifiable if and only if there exists a translated context unification prob-
lem S′ (where n-ary context variables with n > 1 have been removed by the
described method) that is unifiable.

(⇒) Let σ be a context unifier of S. Substitution σ shows us how parameters
are split into the instantiation of any n-ary context variable. It is not difficult to
prove that any splitting can be conjectured by the translation method. Therefore
the corresponding context unification problem S ′, where context variables are
unary, can be constructed and one can also construct a context substitution σ′

that solves S′ from σ.

(⇐) It is easy to see that polynomially many steps of this non-deterministic
rule, transform an n-ary context unification problem S, into another one S ′

where all the context variables are unary, that is a context unification problem
where context variables are unary. Moreover, since S ′ is an instance of S, if S′

is solvable then, S is also solvable.

48 Chapter 3. Linear Second-Order and Context Unification

3.2.4 Historical Notes

Context Unification was introduced by Comon (1992a, 1998) who studied this
problem to solve membership constraints. He proves that Context Unification
is decidable when any occurrence of the same context variable is always applied
to the same term. Levy (1996) also proves decidability of Linear Second-Order
Unification under the same condition applied to second-order variables. This
condition is close to the linearity restriction on the occurrences of second-order
variables (Dowek, 1993), described in Subsection 2.4.4.

It is easy to see that any Context Unification equation system is also a
Linear Second-Order Unification equation system. Hence Levy’s semi-decision
procedure also applies to Context Unification. On the other hand, the presence of
“bindings” in Linear Second-Order Unification seems to increase the expressivity
of the problem and it is still not known if this difference could imply a distinct
decidability nature between both problems. We will discuss this in Chapter 6.

Context Unification has applications in rewriting (Comon, 1992a, 1998; Levy
and Agust́ı, 1996; Niehren et al., 1997a, 2000), in unification theory (Schmidt-
Schauß, 1996, 1998), and in computational linguistics (Egg et al., 2001; Erk et al.,
2002; Koller, 1998; Niehren et al., 1997b; Niehren and Villaret, 2003). Context
Unification decidability is unknown but several decidable fragments have been
found.

3.3 Known Decidable Fragments of Context

Unification

As we have already said, when all occurrences of the same context variable are
always applied to the same term, also known as Comon’s restricted case, Context
Unification is decidable (Comon, 1992a, 1998). Moreover, Levy and Villaret
(1998) prove that it in NP-complete. This result constrasts with the fact that
Second-Order Unification under the same restriction on second-order variables
has linear time complexity (Levy and Villaret, 1998). Obviously, the decidable
fragment of Linear Second-Order Unification, of at most two occurrences per
second-order variable (Levy, 1996), also applies to Context Unification. But
there are still more known decidable fragments in Context Unification.

3.3.1 Word Unification

When the signature considered for the terms is restricted to be at most unary,
we are dealing with the well known decidable problem of Word Unification.

Decidability of Word Unification, also known as String Unification and as
A-Unification, was an open problem for many years. The problem was raised
by Markov in the late 1950s who hoped to prove the undecidability of Hilbert’s
tenth problem by showing undecidability of the Word Unification problem. In
this context, Matiyasevich in 1968 gave a simple decision procedure for Word
Unification problems where each variable occurs at most twice. Later, J. I.

3.3. Known Decidable Fragments of Context Unification 49

Hmelevskii in 1971, proved decidability of Word Unification where there are
three variables with an arbitrary number of occurrences. The general case of
Word Unification was proved to be decidable by Makanin (1977).

Word Unification is a very important problem on his own. The close relation
with Context Unification suggests to us presenting it as a fragment of Context
Unification where constant symbols and variables are at most unary.

Example 3.20 Let a, b be constants and X,Y word variables, then, the follow-
ing word unification equation:

abXY ?= Y abX

with unifier σ = [X 7→ ab, Y 7→ ab], can be represented as this A-unification
equation1 where ·, is an associative symbol:

a · b ·X · Y ?= Y · a · b ·X

The previous equation can also be represented as the following context unifi-
cation equation where functions and variables are unary, but where we add an
special constant:], that denotes the end of the word:

a(b(X(Y (])))) ?= Y (a(b(X(]))))

Makanin’s algorithm was not thought to be implemented but rather to prove
decidability of Word Unification. Several authors have tried to simplify it and
obtain implementable versions like Jaffar (1990); Schulz (1993), who also give an
algorithm which complexity is in 4-NEXPTIME class (i.e. composition of four
exponential functions). Then Kościelski and Pacholski (1995, 1996) improved
the result and obtain an algorithm that is in 3-NEXPTIME class.

All these algorithms are based on the existence of a theorem that ensures
that whenever a word unification equation system is solvable, then there exists
a solution σ that has an exponent of periodicity bounded by the size of the
equations.

Definition 3.21 An exponent of periodicity of a word w is a maximal number
p(w) such that up(w), for a nonempty word u, is a subword of w. An exponent
of periodicity p(σ) of a solution σ of a word equation u ?= v is p(σ(u)).

Proposition 3.22 [Kościelski and Pacholski (1996)] There is a constant c such
that for each minimal solution σ of a word equation e, p(σ) ≤ 2c |e|.

Recently the complexity of the problem has been improved. Gutiérrez (1998)
shows that the problem is in EXPSPACE class, and then in Gutiérrez (2000),
that it is in PSPACE class. Plandowski (1999a), with an alternative to Makanin’s

1In the translation, variables that will be mapped to the empty word, must be guessed a
priori, and removed in the resulting translated equation.

50 Chapter 3. Linear Second-Order and Context Unification

proof, proves that the problem is in NEXPTIME class an then, in Plandowski
(1999b), that it is in PSPACE class. Up to now these are the best known
complexity classes for Word Unification. Nevertheless, some people think that
Word Unification is in NP.

An important extension of Word Unification is Word Unification with Reg-
ular Constraints. These constraints enforce instances of word variables in the
solutions to belong to desired regular languages. Schulz was the first in proving
its decidability (Schulz, 1991). This result for words suggested to us studying
the corresponding extension for trees in Context Unification (see Chapter 6 and
Chapter 7).

Decidability of Word Unification has been used several times to prove de-
cidability of some fragments of Context Unifications, also, our attempt to prove
decidability of full Context Unification relies on the decidability of Word Unifi-
cation. Schmidt-Schauß and Schulz have also used several ideas of the proof of
Word Unification decidability to obtain important results on Context Unifica-
tion. One of these results is the existence of an Exponent of Periodicity Lemma
for Context Unification (Schmidt-Schauß and Schulz, 1998).

One of the fragments shown decidable thanks to Word Unification (although
an alternative proof that does not rely on Word Unification decidability has been
found) is Stratified Context Unification.

3.3.2 Stratified Context Unification

Stratified Context Unification is a fragment of Context Unification where terms
considered must be second-order stratified terms. A term is said to be second-
order stratified if for any first and second-order (context) variable V , the se-
quence of second-order (context) variables from the root of the term to any
occurrence of V is always the same.

Example 3.23 The following term:

f(F (G(H(a)), b), F (h(G(b)), b))

is second-order stratified because all occurrences of variable G have always an
F above them, and all occurrences of variable F do not have any variable above
them. Variable H also fulfils the stratified condition because it occurs only once.
On the other hand, the following term:

F (F (a, b), b)

is not a stratified term because the outermost occurrence of F has no variable
above it while the innermost one has one F above it.

Schmidt-Schauß (1996, 1998, 1999b, 2002), proves decidability of Distribu-
tive Unification. His proof is based on Stratified Context Unification decidability.
Originally the proof of Stratified Context Unification decidability was based on
the decidability of Word Unification but a later work avoids the call to Makanin’s

3.3. Known Decidable Fragments of Context Unification 51

decision algorithm. The algorithm given by Schmidt-Schauß provides a termi-
nating strategy to solve cycles between equations. Cycles in equations establish
a cyclic dependence between variable instantiations, for instance, the following
set of equations:

{F (X) ?= f(G(a), b), G(Y) ?= g(F (a), b)}

forms a cyclic set of equations because the instantiation of F depends on the
instantiation of G which, in its turn, depends on the instantiation of F . Notice
that the same situation in First-Order Unification would produce an occur-check
failure, but Context Variables can be projected. Therefore, it is required that
at least one of the variables in the cycle is a context variable.

The termination ordering is of course dependent of the stratifiedness property
and does not seem easy to extend to the full Context Unification. The exponent
of periodicity bounds for context equations (Schmidt-Schauß and Schulz, 1998),
is also used in the proof. Further work on this fragment proves that the problem
is in PSPACE class, (Schmidt-Schauß, 2001). The proof requires the use of
a compression technique based on the use of powers to represent iterations of
contexts.

Decidability of Stratified Context Unification is not only relevant in Unifi-
cation theory but also in rewriting (Niehren et al., 2000) and in computational
linguistics (Niehren et al., 1997b) because it subsumes the Dominance Con-
straints language. This language is used to represent scope underspecification
(see Chapter 7).

3.3.3 The Two Distinct Context Variables Fragment

Another decidable fragment of Context Unification also relaying on the decid-
ability of Word Unification is the one where there are at most two distinct
context variables and an undefined number of the first-order ones (Schmidt-
Schauß and Schulz, 1999, 2002b). In these works, Schmidt-Schauß and Schulz
translate context equations into generalised context equations guessing the parts
of the original terms that must coincide to solve the equation. Then there is
a translation from this generalised context equations to word equations with
regular constraints which, as we have already said, is decidable. Unfortunately,
termination of this second translation relies on the existence of just two distinct
context variables.

The decidability of this Context Unification problem contrasts with the un-
decidability of Second-Order Unification where there is just one second-order
variable and it is unary (Levy, 1998; Levy and Veanes, 1998, 2000).

The decidability of the equivalent Linear Second-Order Unification fragment
is still not known.

52 Chapter 3. Linear Second-Order and Context Unification

3.4 Bounded Second-Order Unification

Bounded Second-Order Unification is a variant of Second-Order Unification. It
is Second-Order Unification under the restriction that only a bounded number of
bound variables is allowed in the instantiating terms for second-order variables.
However, the size of the instantiation is not restricted. This variant is introduced
and proved decidable by Schmidt-Schauß (1999a, 2004). It is the first non-trivial
decidable variant of Second-Order Unification where there are no restrictions on
the occurrences of variables nor in the shape of the terms. Terms of the equations
are the terms defined in Definition 3.9.

The first step of Schmidt-Schauß ’s proof is to reduce Bounded Second-Order
Unification to Z-Context Unification, where second-order variables are unary
and the number of occurrences of every bound variable, in an instantiation of
a second-order variable, may be zero or one. Then he proposes an algorithm
that resembles the one of Stratified Context Unification because both deal with
cycles in a similar way. Nevertheless, there is an important difference, in Z-
Context Unification, when all equations are flexible-flexible, we can say that
these are in a presolved form because we can solve these equations like it is done
in the preunification method from (Huet, 1975) for Second-Order Unification (see
Subsection 2.3.1).

It is easy to see that the decidability of Context Unification would trivially
imply the decidability of Z-Context, and hence, of Bounded Second-Order Uni-
fication: notice that we only would need to guess a priori what variables are
not going to “use” their argument and then we could simply replace them by
first-order variables. On the other hand, the decision algorithm for Bounded
Second-Order Unification cannot be trivially used as a decision algorithm for
Context Unification, since context variables must “use” their argument, and
thus the presolved forms for Z-Context Unification do not need to be solvable
when considering Context Unification equations.

Another unification problem related with Bounded Second-Order Unifica-
tion is Monadic Second-Order Unification. In fact, Monadic Second-Order Uni-
fication is simply Bounded Second-Order Unification where the signature is
restricted to be at most unary, thus Schmidt-Schauß provides an alternative
method for solving Monadic Second-Order Unification. In fact, Schmidt-Schauß
(1999a, 2004) also shows that Bounded Second-Order Unification and Monadic
Second-Order Unification are NP -hard.

Recently, it has also been proved that when variables are not restricted to
be second-order but higher, and the number of lambdas in the unifiers is also
bounded, the problem, called Bounded Higher-Order Unification, is decidable
(Schmidt-Schauß and Schulz, 2002a).

3.5. Linear Second-Order, Linear Higher-Order and Context Matching 53

3.5 Linear Second-Order, Linear Higher-Order

and Context Matching

Second-Order Matching is decidable, thus, Linear Second-Order and Context
Matching are also decidable. There are several results on the complexity of
these problems and other variants of Higher-Order Matching:

• Schmidt-Schauß and Schulz (1998), show that Context Matching is NP -
complete, by reducing 1-in-3-SAT to Context Matching.

• In (de Groote, 2000) it is shown the NP -completeness of Linear Higher-
Order Matching, i.e. Higher-Order Matching restricted to the set of linear
λ-terms. The proof relies on the fact that in each β-reduction, a certain
notion of size decreases thanks to linearity, then, a polynomial bound
on the size of the solutions can be given and hence, solutions could be
enumerated and tested in non-deterministic polynomial time.

• Schmidt-Schauß and Stuber (2002), study the complexity of some restric-
tions on Context Matching like, stratifiedness and the at most two occur-
rences per variable restriction, which are NP -complete, and the Comon’s
restriction that is shown to be in P . In that paper they also illustrate the
possible applications of Context Matching in information extraction from
XML documents.

• Dougherty and Wierzbicki (2002), generalise the result of de Groote (2000),
and show that Higher-Order Matching where instances of variables are
allowed to contain a bounded number of bound variable occurrences, is
decidable.

• Salvati and de Groote (2003), show that Linear Second-Order Matching
under Comon’s restriction is NP -complete, contrasting with the fact that
Context Matching under the same restriction is in P (Schmidt-Schauß
and Stuber, 2002). The main reason for this difference is that the order
in which the arguments of second-order variables are abstracted in Linear
Second-Order Matching, does not need to correspond to the order in which
these variables occur in the body of the term. In some sense, this difference
between Linear Second-Order and Context Matching, suggests that some
significant complexity difference must exist between Linear Second-Order
and Context Unification.

Unfortunately, none of these results sheds any light on the general Higher-
Order Matching case.

54 Chapter 3. Linear Second-Order and Context Unification

3.6 About Linear Second-Order and Context

Unification Decidability

Goldfarb’s reduction of the 10th Hilbert’s Problem to Second-Order Unification
(Goldfarb, 1981) (see Section 2.2), does not apply to Context Unification nor
to Linear Second-Order Unification. The linearity condition of the solutions for
these last two problems forbids a naive reutilisation of that reduction.

As we have already said, the most extended belief is that Context and Linear
Second-Order Unification are both decidable. There are some clues that support
this belief.

On the one hand, the similarities between Word Unification and Context
Unification, suggest that either

• an adaptation of the decidability proof of Word Unification could be made
for Context Unification; in this sense the existence of a bound on the
exponent of periodicity for Context Unification is a very important step,

• or some kind of reduction from Context Unification to Word Unification
could be done. Again the work of Schmidt-Schauß and Schulz (1999,
2002b) showing that the fragment of the two distinct context variables
can be reduced to Word Unification, is important in supporting this pos-
sibility (see Section 3.3); as well as our work (Levy and Villaret, 2001),
where we present a reduction from Context Unification to Word Unifica-
tion plus Regular Constraints that depends on the rank bound conjecture
(see Chapter 5).

On the other hand, the fact that some Context Unification fragments like the
Stratified one or the one of two distinct context variables, which when consid-
ered as Second-Order Unification are undecidable (Levy, 1998; Levy and Veanes,
1998, 2000; Schubert, 1998) (see Section 2.2), and when considered as Con-
text Unification become decidable (Schmidt-Schauß, 1996, 1998, 1999b, 2002;
Schmidt-Schauß and Schulz, 1999, 2002b) (see Section 3.3), also supports this
generalised belief.

Concerning the possibility that one of both problems were decidable and
the other undecidable, only makes sense in one direction, (because as we have
already said, Linear Second-Order Unification subsumes Context Unification).
We think that this should not be the case, as we will argue in Chapter 6.

3.7 Summary

In this chapter we have introduced the main topic of this thesis: Linear Second-
Order Unification and Context Unification, two variants of Second-Order Unifi-
cation that enforce linearity in instantiations of second-order or context variables.
We have argued that permitting the use of λ-abstractions and bound variables
in the first one but not in the second one, is the main difference between both
problems.

3.7. Summary 55

We have also discussed on the two “approaches” to Context Unification:

• as an extension of First-Order Unification by means of allowing variables
that denote contexts, i.e. terms with a hole,

• or as a restriction of Linear Second-Order Unification where neither λ-
bindings nor third-order constants are allowed to occur in the equations.

One of the differences is the arity of the variables: while in the first approach
context variables are just unary, in the second approach context variables are
allowed to be of any arity. We have shown that this difference is not significant
in terms of decidability, but it has some consequences with respect to solvability
depending on the signature that we consider.

We have also enumerated the several known decidable fragments of Context
and Linear Second-Order Unification, and presented the main results about the
Matching Problem.

Finally we have argued why we think that that Context Unification and
Linear Second-Order Unification can be decidable.

Chapter 4

Currying Second-Order

Unification Problems

In this chapter we show how the signature for Second-Order Unification and
Context Unification can be simplified to contain only one binary function symbol
and first-order constants.

This result shows us that in fact the importance of the signature, in terms
of decidability, lies in the difference between having at most unary constant
symbols (Monadic Second-Order Unification) or having at least a binary symbol
that allows branching. Apart from this theoretical reading of the result, this
simplification of the signature applied to the results of Levy (1998), allows us
to draw the frontier between decidability and undecidability of Second-Order
Unification problems more precisely. On the other hand, it also helps us to
simplify the study of Context Unification.

The work presented in this chapter is basically based on (Levy and Villaret,
2002).

4.1 Introduction

The Curry form of a term, like f(a, b), allows us to write it, using just a single
binary symbol, as @(@(f, a), b), where @ denotes the explicit application. This
helps to solve unification problems. In first-order logic, this transformation re-
duces a unification equation system to another one containing a single binary
symbol. The size of the new equation system, and of the unifier, is similar to
the size of the original equation system, and of the original unifier. So, from the
point of view of complexity there is not a significant difference, but in practical
implementations this allows us representing terms as binary trees, and contexts
as subterms, and this has been used in term indexing data structures (Ganzinger
et al., 2001).

In second-order logic the transformation is not so obvious. We can currify
constant symbol applications and second-order variable applications, obtaining

57

58 Chapter 4. Currying Second-Order Unification Problems

a first-order term. For instance, for f(F (a), Y), where F is a second-order
variable, we obtain @(@(f,@(F, a)), Y), where both X and Y are now first-order
variables. However, solvability of unification equation systems is not preserved
by such transformation, unless we consider some form of First-Order Unification
modulo β-reduction for solving the new problem. For instance, the Second-
Order Unification equation F (G(a), b) ?= g(a) is solvable, whereas its first-order
Curry form @(@(F,@(G, a)), b) ?= @(g, a) is unsolvable. Moreover, the right-
hand side of the β-equivalence (λx. t1)t2 = t1[t2/x] is a meta-term, unless we
make substitution explicit (Abadi et al., 1998). Roughly speaking this is what
is done in the so called Explicit Unification (Dowek et al., 2000; Bjorner and
Muñoz, 2000).

Here, we propose to currify function symbol applications, but not variable
applications. Therefore, the new equation system we get is also a second-
order unification equation system. For instance, for F (G(a), b) ?= g(a), we get
F (G(a), b) ?= @(g, a), that is also solvable. In this case, we do not reduce the
order of the unification equation system, but we reduce the number of function
symbols to just one: the application symbol @. It can be argued that this re-
duction is useless, since Second-Order Unification (Goldfarb, 1981) was already
known to be undecidable for just one binary function symbol (Farmer, 1991), al-
though applying the reduction to the results of Levy and Veanes (1998), proves
that Second-Order Unification is undecidable for one binary function symbol
and one second-order variable occurring four times. Moreover, the same reduc-
tion is applicable to Context Unification, for which decidability is still unknown
and it allows us concentrating the efforts in a very simple signature. We also
think that currying could help to simplify the signature used in Higher-Order
Matching, and this could help to prove its decidability (or undecidability).

If we currify function applications in a second-order (or context) unification
equations system, it is easy to prove that, if the original equations system is
solvable, then its Curry form is also solvable: we can currify the unifier of the
original equation system to obtain a unifier of its Curry form. However, the
converse is not true and, in general, solvability is not preserved by currying, as
the following examples prove.

Example 4.1 The following Context Unification equation

g(F (G(a)), F (a), G(a)) ?=
?= g(f(a, b), H(a, b), H(X, a))

is unsolvable. However, its Curry form

@(@(@(g, F (G(a))), F (a)), G(a)) ?=
?= @(@(@(g, @(@(f, a), b)), H(a, b)), H(X, a))

is solvable and has the following unifier

σ(F) = λx. @(x, b)
σ(G) = λx. @(f, x)
σ(H) = λxy. @(x, y)
σ(X) = f

4.1. Introduction 59

Similarly, the following Second-Order Unification equation

g(F (G(a)), F (G(a′)), F (a), F (a′), G(a), G(a′)) ?=
?= g(f(a, b), f(a′, b), H(a, b), H(a′, b), H(X, a), H(X, a′))

is also unsolvable, whereas its Curry form is solvable.

g

@

@

@

@

@

a b g

@

a b

@

@

@

@

f a

a

@

@

f

b

a

@

@

f

b

f a

σ(@(@(@(g, @(@(f, a), b)), H(a, b)), H(X, b)))(@(@(@(g, F(G(a))), F(a)), G(a)))σ

Cut over a left chain of "@"

Figure 4.1: Common instance of the curried context unification equation of
Example 4.1.

In the previous example, σ(F), σ(G), σ(H) and σ(X) are not “well-typed”,
i.e. they are not the Curry form of any well-typed term. For instance, σ(F) =
λx. @(x, b) is the Curry form of λx. x(b), but this term is third-order typed (and
F is a second-order typed variable), and σ(G) = λx. @(f, x) is the Curry form
of λx. f(x), but f has two arguments. This disallows us to reconstruct a unifier
for the original equation system from the unifier we get for its Curry form.

We can also see that the original unification equations contain variables that
“touch”. For instance, F touches G in F (G(a)), and H touches X in H(X, a).
We will prove, for Second-Order and for Context Unification, that, if no variable
touches any other variable, then solvability of the equations is preserved in both
directions by our partial currying. It is easy to reduce Second-Order and Context
Unification equation systems to equation systems accomplishing such property.
Therefore, we conclude that Second-Order and Context Unification can be both
reduced to the partial Curry form, where only a binary function symbol @ is
used.

In Subsection 3.3.1, we have already introduced Word Unification as an spe-
cial case of Context Unification. Plandowski (1999b), proves that if σ is a most
general unifier of a Word Unification equation t ?= u, then any substring of σ(t)
“is over a cut”, i.e. there exists an occurrence of the substring in σ(t) that is not

60 Chapter 4. Currying Second-Order Unification Problems

completely inside the instance of a variable. Something similar can be proved for
Second-Order and for Context Unification. The pathology of Example 4.1 is due
to the existence of a cut over a left chain of @ ended by a constant. For instance,
in the example, the left chain @(@(f, . . .), . . .) is “cut” by F (G(. . .)), i.e. one
piece is inside σ(F) and another inside σ(G) (see Figure 4.1). If variables “do
not touch” this situation is avoided, and satisfiability is preserved. Our main
result could be proved using a version of Plandowski’s theorem for Second-Order
Unification, but the proof would be longer than the one we present here.

This chapter proceeds as follows. In Section 4.2 we introduce some assump-
tions and considerations of the chapter. Most of our results hold for Second-
Order and for Context Unification, and sometimes we do not make the distinc-
tion explicit. In Section 4.3 we define the partial Curry forms where only function
symbol applications are made explicit. In Section 4.4 we define a labeling on
Curry forms that is used to characterise “well-typed” terms, i.e. terms that are
the Curry form of some well-built term. In Section 4.5 we prove our main re-
sult: Second-Order and Context Unification can be reduced to a simplified form
where only a single binary function symbol and unary constants are used. We
conclude in Section 4.6 with a discussion about the difficulties to extended these
results to Higher-Order Matching.

4.2 Preliminary Definitions

The terms we consider are first-order typed λ-terms over a restricted second-
order signature (see Definition 3.13). If nothing is said, the signature of a prob-
lem is given by the set of constants that it contains and a denumerable infinite
set of variables, for every arity. For technical reasons we also assume that the
signature contains, at least, a binary function symbol and a constant (that can
be added if the problem does not contain any).

The following is a basic property of most general second-order [and context]
unifiers that will be required in some proofs. It ensures that the signature does
not play an important role with respect to the decidability of the problem.

Property 4.2 Let t ?= u be a second-order or a context unification problem,
and σ be a most general unifier. Then, for any variableX , σ(X) does not contain
constants not occurring in the problem t ?= u.

Proof: Suppose that a most general unifier σ introduces a constant f not occur-
ring in the problem. Then we can replace this constant by a fresh variable F
of the same arity everywhere and get another unifier that is more general than
σ (we can instantiate F by λx1 . . . xn. f(x1, . . . , xn), but not vice versa). This
contradicts the fact that σ is most general.

Notice that this property is true for Context Unification thanks to the fact
that we allow n-ary context variables (see Subsection 3.2.3), otherwise it would
not be true, as Example 3.16 shows.

4.3. Currying Terms 61

4.3 Currying Terms

Definition 4.3 Given a second-order signature Σ =
⋃
n≥0 Σn, the curried sig-

nature Σc =
⋃
n≥0 Σcn is defined by

Σc0 =
⋃
n≥0 Σn

Σc2 = {@}

Σcn = ∅ for n 6= 0, 2

The currying function C : T (Σ,X)→ T (Σc,X) is defined recursively as follows:

C(a) = a
C(x) = x

C(f(t1, . . . , tn)) = @(
n
· · · @(f, C(t1))

n
· · ·, C(tn))

C(F (t1, . . . , tn)) = F (C(t1), . . . , C(tn))
C(λx . t) = λx . C(t)

for any constant a ∈ Σ0, bound variable x, function symbol f ∈ Σn, and variable
F ∈ Xn.

The currying function is injective, but it is not onto, as suggested by the
following definition.

Definition 4.4 Given a term t ∈ T (Σc,X), we say that it is well-typed (w.r.t.
Σ), if C−1(t) is defined, i.e. if there exists a term u ∈ T (Σ,X) such that C(u) = t.

Lemma 4.5 If the second-order [context] unification problem t ?= u over Σ is
solvable, then the second-order [context] unification problem C(t) ?= C(u) over
Σc is also solvable.

Proof: Let σ be a unifier of t ?= u, then it is easy to prove that the substitution
σC defined as, for each variable F ∈ Dom(σ), σC(F) = C(σ(F)), is a unifier of
C(t) ?= C(u).

In fact, we have proved a stronger result: given a unifier σ of t ?= u, we
can find a unifier σC of C(t) ?= C(u) that satisfies the commutativity property
C(σ(t)) = σC(C(t)). This commutativity property is represented by the following
diagram:

t ?= u
C- C(t) ?= C(u)

=====
C
⇒

σ(t)

σ

? C - σC(C(t))

σC

?

Unfortunately, as it is shown in Example 4.1, the converse is not true. Given
a unifier of C(t) ?= C(u) it is not always possible to obtain a unifier of t ?= u.
In the next Section, we describe sufficient conditions to ensure that the inverse
construction is possible.

62 Chapter 4. Currying Second-Order Unification Problems

4.4 Labeling Terms

The first step to find a sufficient condition ensuring that the currying function
preserves satisfiability is to characterise well-typed curried terms. This is done
by labeling application symbols @ with the “arity” of their left argument, and
using a “hat”to mark the roots of right arguments. If left arguments always
have positive arity, and right arguments always have arity zero, then the term
is well-typed.

Definition 4.6 Given a signature Σ =
⋃
n≥0 Σn, the labeled signature ΣL =⋃

n≥0 ΣLn is defined by:

ΣL0 =
⋃
n≥0 Σn

ΣL2 = {@l, @̂l | l ∈ {. . . ,−1, 0, 1, . . .}}

ΣLn = ∅ for n 6= 0, 2

The labeling functions L, L̂ : T (Σc,X)→ T (ΣL,X) are defined by the following
rules:

1. If the left child of an @ is an n-ary symbol f ∈ Σn, then it has label
l = arity(f)− 1 = n− 1.

2. If the left child of an @ is a variable X ∈ X , or a bound variable, then it
has label −1, regardless what the arity of the variable is.

3. If the left child of an @ is another @ with label n, then it has label n− 1.

In the case of L̂ we also use the following rule:

4. If an @ is the right child of another @, or it is the child of a variable, or it
is the root of the term, then, apart from the label, it also has a hat.

Example 4.7 The L̂-labeling of the term σ(C(t)), used in Example 4.1 and
shown in Figure 4.1, is as follows.

@̂0(@1(@2(g, @̂0(@1(f, a), b)), @̂−1(a, b)), @̂1(f, a))

@̂0

PPPPq
����)

@1

PPPPq
����)

@2

HHHj
����

g @̂0

ZZ~��=

@1

J
Ĵ

�
f a

b

@̂−1

A
AU

�
��
a b

@̂1

J
Ĵ

�
f a

4.5. When Variables do not Touch 63

Notice that labels can be negative numbers. These negative labels do not
appear in labelings of “well-typed” terms.

Based on these labels, it is easy to characterise well-typed terms.

Lemma 4.8 A term t ∈ T (Σc,X) is well-typed if, and only if, L̂(t) does not
contain application symbols with negative labels (@−n, for n > 0) or with hat

and non-zero labels (@̂n with n 6= 0).

Proof: The “only if” implication is obvious. For the “if” implication, assume

that the labeling L̂(t) does not contain @−n, with n > 0, or @̂n, with n 6= 0.
Then, any @ symbol is in a sequence of the form:

@̂0

HHHj
����

@1

HHHj
����

· · ·
ZZ~��=

@n−1

J
Ĵ

�
f t1

t2

tn−1

tn

where the node @̂0 is a right child of another @, or it is the child of a vari-
able F , or it is the root of the term. We can prove that this is the currying
of f(C−1(t1), . . . , C−1(tn)) which is a well constructed term, because f has n
arguments and arity n.

4.5 When Variables do not Touch

In this section, we try to find sufficient conditions ensuring that, when we have
a unifier for C(t) ?= C(u), we can find a unifier for t ?= u. The strategy to prove
this result is summarised in the following diagram:

t ?= u
C- C(t) ?= C(u)

L̂- L̂(C(t)) ?= L̂(C(u))

⇐=========
C−1

============
L̂

⇒

σ(t)

σ

?
�C

−1

σC(C(t))

σC

? L̂ - σ �

L(L̂(C(t)))

σ �

L

?

We will find a condition that makes the right square commute (Lemma 4.12).
Then we will prove that when the right square commutes, then the left one also

64 Chapter 4. Currying Second-Order Unification Problems

commutes (Lemma 4.13). This second commutativity property ensures that the
currying transformation preserves satisfiability.

The sufficient condition we have found is based on the following definition.

Definition 4.9 Given a term t ∈ T (Σ,X), we say that two variables F,G ∈ X
touch, if t contains a subterm of the form F (t1, . . . , G(u1, . . . , um), . . . , tn).

In the context unification problem of Example 4.1, the variable F touches G,
and the variable H touches X .

For technical reasons, before proving that the first square commutes (see
Lemma 4.12 below) we prove the same result using a variant of the labeling
function where hats are not considered (notice that in Lemma 4.10, the labeling
function L has no hats).

Lemma 4.10 If the variables of t ?= u do not touch, and σC is a most general
unifier of C(t) ?= C(u), then the substitution σL defined as follows: for each
variable F ∈ Dom(σC)

σL(F) = L(σC(F))

is a most general unifier of L(C(t)) ?= L(C(u)), and satisfies

σL(L(C(t))) = L(σC(C(t)))

Proof: First, we prove that

σL(L(C(t))) = L(σC(C(t)))

As far as σC and σL only differ in the introduction of labels, both terms have
the same form, except for the labels. Therefore, we only have to compare the
labels of the corresponding @’s in both terms. There are two cases:

• If the occurrence of the @ is outside the instance of any variable, then this
@ already occurs in C(t), and it is in a sequence of the form:

@0

Z
Z~

�
�=
· · ·
ZZ~��=

@n−2

S
Sw

�
�/

@n−1

A
AU

�
��
f

where the f and all the @’s in between, already occur in C(t) (they have
not been introduced by an instantiation either). Thus, the @ gets the same
label in σL(L(C(t))) as in L(σC(C(t))), because this label only depends on
the left descendants, and they have not been introduced by σC or σL.

4.5. When Variables do not Touch 65

• If the @ is inside the instance of a variable F , we have to prove that it gets
the same label in σL(L(F (t1, . . . , tn))) = σL(F)(σL(L(t1)), . . . , σL(L(t1)))
as in L(σC(F (t1, . . . , tn))). In the first case we label σC(F) before instanti-
ating (so we have bound variables in the place of the arguments), whereas
in the second case we label σC(F) after instantiating (so we already have
the arguments ti). As we will see, in both cases the labels we get are the
same. The root of one of the arguments ti can be a left descendant of the
@, and its label will depend on such argument. However, if variables do
not touch, the head of any argument ti of F is a constant, and the head of
C(ti) is either a 0-ary constant a or an @ with label 0. Therefore, the labels
of the ancestors of the argument inside σC(F) will be the same if we replace
the argument by a bound-variable, and the label of the corresponding @
inside σL(F) will be the same.

�
�

�
�

�
� S

S
S

S
S

S

��	@@R

��	@@R

@@R��	

��	�
�

�
�

�
�

�� @
@

@
@

@
@

@@

�
�

�
�

�
� S

S
S

S
S

S

@@R��	

��	��	

@k

. . .

. . .

f

@0

@n−1
. . .

. . .

@k

. . .

x

σ′(F) L(σ(F (t)))

λx

Similarly, we can prove σL(L(C(u))) = L(σC(C(u))). As σC(C(t)) = σC(C(u)),
we can conclude that σL is a unifier of L(C(t)) ?= L(C(u)).

Given a unifier of L(C(t)) ?= L(C(u)), we can find a unifier of C(t) ?= C(u) by
removing labels. Using this idea, it is easy to prove that, if σC is most general
for C(t) ?= C(u), then σL is also most general for L(C(t)) ?= L(C(u)). Otherwise,
there would be a unifier more general than σL, and removing labels we could
obtain a unifier more general than σC .

The following is a technical lemma that we need in the proof of Lemma 4.12.

Lemma 4.11 If the variables of t ?= u do not touch, and σC is a most general
unifier of C(t) ?= C(u), then the arguments ti of any variable F never occur as
left child of an @ in σC(C(t)).

Proof: As C(t) and C(u) are trivially well-typed, by Lemma 4.8, L(C(t)) and
L(C(u)) will not contain @’s with negative labels. Let σL be the most general
unifier of L(C(t)) ?= L(C(u)) given by Lemma 4.10. Now, by Property 4.2, as
σL is a most general unifier, for any variable F , σL(F) will not contain @’s with
negative labels, either. We can conclude then that the head of any argument ti
of F cannot be a left child of an @. As far as the heads of σL(ti) have zero label

66 Chapter 4. Currying Second-Order Unification Problems

or are 0-ary constants, this situation would introduce a negative label in some
@ inside σL(F).

Lemma 4.12 If the variables of t ?= u do not touch, and σC is a most general
unifier of C(t) ?= C(u), then the substitution σ �

L defined as follows: for each
variable F ∈ Dom(σC)

σ �

L(F) = L̂(σC(F))

is a most general unifier of L̂(C(t)) ?= L̂(C(u)), and satisfies

σ �

L(L̂(C(t))) = L̂(σC(C(t)))

Proof: We already know that both terms have the same form and the same
labels, thus we only have to prove that they have the same hats. Again, there
are two cases:

• If the occurrence of the @ is outside the instance of any variable, then the
only situation we have to consider is the following. If the @ has as father
a variable F in C(t), and after instantiation, it becomes a left child of an
@ inside σ �

L(F), then it could loose the hat. However, if variables do not
touch, this situation is not possible because, by Lemma 4.11, arguments ti
of F never occur as a left child of an @ in σ �

L(F (t1, . . . , tn)).

• If the occurrence of the @ is inside the instance of a variable F , then we
have to prove that the fact that @ has a hat or not, does not depend on
the arguments of F . This is obvious because this fact does not depend
on the descendants of the @. As in Lemma 4.10, this allows us to replace
arguments by bound variables and get a unifier σ �

L for our problem.

Using the argument of Lemma 4.10, we conclude that σ �

L is a most general unifier

of L̂(C(t)) ?= L̂(C(u)).

Lemma 4.13 If the variables of t ?= u do not touch, and σC is a most general
unifier of C(t) ?= C(u), then there exists a most general unifier σ of t ?= u that
satisfies

C(σ(t)) = σC(C(t))

Proof: Let σ �

L be the most general unifier of the equation L̂(C(t)) ?= L̂(C(u))
given by Lemma 4.12. As C(t) and C(u) are well-typed, by Lemma 4.8, they
do not contain negative labels nor hats over non-zero labeled @’s. Then, by
Property 4.2, σ �

L does not introduce such kind of labels or hats. Therefore, as
σ �

L(F) is defined as the labeling of σC(F), using again Lemma 4.8, σC(F) will be
well-typed, and we can define:

σ(F) = C−1(σC(F))

for each variable F ∈ Dom(σC).

4.5. When Variables do not Touch 67

Theorem 4.14 Decidability of Second-Order Unification can be NP-reduced to
decidability of Second-Order Unification with just one binary function symbol,
and constants.

Proof: By Lemmas 4.5 and 4.13, we know that, when variables do not touch, sat-
isfiability of second-order problems is preserved by currying. Now, we will prove
that we can NP-reduce solvability of Second-Order Unification to solvability of
the corresponding problems without touching variables.

For every n-ary variable F of the original unification problem (notice that n
can be 0), we conjecture one of the following possibilities:

• Project F 7→ λx1 . . . xn. xi, for some i ∈ {1, . . . , n}.

• Instantiate F 7→ λx1 . . . xn. f(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)), for so-
me constant f ∈ Σm occurring in the original unification problem, and
being F1, . . . , Fm fresh free n-ary variables.

Obviously, this reduction can be performed in polynomial non-deterministic
time, and the resulting problem satisfies that variables do not touch. As far
as the new problem is an instance of the original one, if the new problem is
solvable, so the original one is.

If the original problem is solvable, and σ is a most general unifier, then, for
every variable F of the original problem, let σ(F) = λx1 . . . xn. t be written in
normal form. Taking t as a tree, descend from the root to the left-most leave,
discarding free variables, until you get a bound variable xi, a 0-ary variable
or a constant f (this must be a constant occurring in the problem, by Prop-
erty 4.2). Then the instantiation F 7→ λx1 . . . xn. xi, if we find a bound variable
xi, F 7→ λx1 . . . xn. a for some fixed constant a, if we find a 0-ary variable, or
F 7→ λx1 . . . xn. f(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)), if we find a subterm like
f(t1, . . . , tm), results in a solvable problem that can be constructed using project
and instantiate.

In fact, the solution of the new problem is ρ ◦ σ where ρ projects the free
variables that we have discarded during the traversal by λx1 · · ·xn. x1, maps the
0-ary free variables that we have found to the fixed constant a and, in case we
have instantiated F by λx1 . . . xn. f(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)), maps
Fi to λx1 . . . xn. ti (for i ∈ [1..m]).

Theorem 4.15 Decidability of Context Unification can be NP-reduced to de-
cidability of Context Unification with just one binary function symbol, and con-
stants.

Proof: Again, by Lemmas 4.5 and 4.13, we know that, when variables do not
touch, satisfiability of context unification problems is preserved by currying.
Now, we will prove that we can NP-reduce solvability of Context Unification to
solvability of the corresponding problems without touching variables.

For every n-ary variable F of the original problem, we conjecture one of the
following possibilities:

68 Chapter 4. Currying Second-Order Unification Problems

• Project F 7→ λx. x, if it is unary.

• Instantiate

F 7→ λx1 . . . xn. f(F1(xτ(1), . . . , xτ(r1)), . . . , Fm(xτ(rm−1+1), . . . , xτ(n)))

for some constant f ∈ Σm occurring in the original unification problem,
some permutation τ , and being F1, . . . , Fm fresh free variables of appro-
priate arity.

As for the second-order case, it can be proved that this nondeterministic re-
duction preserves satisfiability. However, in this case the assumption that the
original signature (the problem) contains, at least, a binary function symbol (say
h) and a 0-ary constant (say a) is crucial because our proof will consider ground
instantiations of unifiers.

As far as the new problem is an instance of the original one, if the new
problem is solvable, so is the original one.

Let the original problem S be solvable, and σ be a most general unifier. Let
σ′ = ρ ◦ σ be a ground unifier, where ρ maps free n-ary variables (n ≥ 1) in
σ(S) to λx1 . . . xn. h(x1, h(x2, h(. . . , h(xn, a) . . .))) and to a if they are 0-ary, for
some binary function symbol h and constant a.

Now, guided by substitution σ′, we can build a solvable context unification
problem where variables do not touch (say S ′), by applying project and instan-
tiate rules to S. For every free variable F in S let

• σ′(F) = λx1 . . . xn. f(t1, . . . , tm) be written in normal form. Then to
obtain the new problem S′ we instantiate F by:

λx1 . . . xn. f(F1(xτ(1), . . . , xτ(r1)), . . . , Fm(xτ(rm−1+1), . . . , xτ(n)))

where {τ(ri−1 + 1), . . . , τ(ri)} is the set of indices of variables x1, . . . , xn
occurring in ti, or let

• σ′(F) = λx. x be written in normal form, then instantiate F by λx. x.

Then, the substitution that maps the introduced free variables Fi to the
terms λxτ(ri−1+1) . . . xτ(ri). ti, is a solution of S′.

Theorem 4.14 together with Corollary 9 of Levy and Veanes (1998) provides
us this corollary.

Corollary 4.16 Second-Order Unification is undecidable for one binary func-
tion symbol and one second-order variable occurring four times.

4.6 About Currying Higher-Order Matching

Decidability of Higher-Order Matching is still an open question. Proving that
Higher-Order Matching can be curried, i.e., that we can simplify the signature,

4.7. Summary 69

could contribute to prove its decidability or undecidability. The extension of our
technique to third-order and higher orders is proposed as a further work.

The first difficulty we find trying to apply our transformation to third or
higher order matching problems is that we must deal with instances of variables
that are not connected. For instance, the following matching problem:

f(F (λx. g(x), a), F (λx. g′(x), a′)) ?=
?= f(f(g(h(a)), a), f(g′(h(a′)), a′))

is solved by the substitution:

F 7→ λxy. f(x(h(y)), y)

where the instance of F is split into two pieces f and h. In such situations we
have to guarantee that these pieces do not touch, to avoid that these “cuts” (in
the sense of Plandowski (1999b)) could cut a left chain of @’s.

4.7 Summary

Currying terms is an standard technique in functional programming and has
been used in practical applications of automated deduction. It is also used
in Higher-Order Unification via explicit substitutions or Explicit Unification.
However, in these cases not only applications, but also lambda abstractions are
made explicit, and unification is made modulo the explicit substitution rules.

In this chapter we have proposed a partial currying transformation for Se-
cond-Order Unification, where the “order” of the unification problem is not
reduced, like in Explicit Unification, but the signature is simplified. The trans-
formation is not trivial, and we have proved that, to preserve solvability of the
problems, we need to ensure that “variables do not touch”.

This encoding serves, alternatively to Farmer (1991), to prove that Second-
Order Unification is undecidable with just one binary function symbol and it also
helps us to sharpen the results of Levy and Veanes (1998) (see Corollary 4.16).

The reduction also works for Context Unification. This allows us to concen-
trate on a simpler signature containing constant symbols and just one binary
function symbol: the explicit application symbol @.

We have also discussed on the possibility that this technique could help us
in solving the Higher-Order Matching Problem.

Chapter 5

Context Unification and

Traversal Equations

This is the core chapter of the thesis. In this chapter we present a non-trivial
sufficient and necessary condition for the decidability of Context Unification.
The condition requires unifiers to be “rank-bound”, a property on terms that
does not imply any bound on their size. We will show how Context Unification,
under this rank-bound property assumption, can be reduced to Word Unification
with Regular Constraints. The reduction requires several encoding techniques
and the use of traversal equations.

The work presented in this chapter is mostly based on (Levy and Villaret,
2001).

5.1 Introduction

The relationship between Context Unification and Word Unification was origi-
nally suggested by Levy (1996). We can easily reduce Word Unification to Con-
text Unification by encoding any word unification problem, like F aG ?= GaF ,
as the monadic context unification problem F (a(G(b))) ?= G(a(F (b))), where a
is now a unary constant symbol and b is a new (0-ary) constant. See Subsec-
tion 3.3.1 for more details about the relationship between both problems.

This chapter suggests that the opposite reduction may also be possible. In
the following subsection we motivate this statement using a naive reduction.
Although it does not work, we will see in the rest of the chapter how it could be
properly adapted so that it works.

5.1.1 A Naive Reduction

Given a second-order signature, we can encode a term using its pre-order traver-
sal sequence. We can use this fact to encode a context unification problem, like

71

72 Chapter 5. Context Unification and Traversal Equations

the following one
F (G(a, b)) ?= G(F (a), b) (5.1)

as the following word unification problem

F0G0 aG1 bG2 F1
?= G0 F0 aF1G1 bG2 (5.2)

We can easily prove that if the context unification problem (5.1) is solvable,
then its corresponding word unification problem (5.2) is also solvable. In our
example, the (word) solution corresponding to the following (context) unifier

F 7→ λx. f(f(x, b), b)
G 7→ λx. λy. f(f(f(x, b), y), b)

(5.3)

is
F0 7→ f f G0 7→ f f f
F1 7→ b b G1 7→ b

G2 7→ b

Unfortunately, the converse is not true. We can find a solution of the word
unification problem which does not correspond to the pre-order traversal of any
instantiation of the original context unification problem. For instance, the fol-
lowing unifier:

F0 7→ ε G0 7→ ε
F1 7→ ε G1 7→ ε

G2 7→ ε

where ε is the empty word, applied to equation 5.2, gives us the word:

a b

that is not a traversal of any term.
Word Unification is decidable (Makanin, 1977), and given a solution of the

word unification problem we can check if it corresponds to a solution of the
context unification problem. Unfortunately, Word Unification is also infinitary,
and we cannot repeat this test for infinitely many word unifiers.

The idea to overcome this difficulty comes from the notion of rank of a
term. In figure 5.1 there are some examples of terms (represented as trees) with
different ranks. Notice that terms with rank bounded by zero are isomorphic to
words, and those with rank bounded by one are caterpillars. For signatures of
0-ary and binary symbols, the rank of a term can be defined as follows

rank(a) = 0

rank(f(t1, t2)) =

{
1 + rank(t1) if rank(t1) = rank(t2)
max{rank(t1), rank(t2)} if rank(t1) 6= rank(t2)

Notice that the bound on the rank of a term does not imply any bound on its
size, although obviously a bound on the size implies a bound on its rank.

Alternatively, the rank of a binary tree can also be defined as the depth of
the greatest complete binary tree that can be embedded in the tree, using the
standard embedding of trees.

5.1. Introduction 73

Nahum Dershowitz made us notice that this notion was already defined for
trees under the name of order and can be computed by the so-called Horton-
Strahler rules (Horton, 1945; Strahler, 1952). The measure is one of the results of
the attempts of the geologists to quantify the morphological descriptions of river
networks. They intend to reflect, in a quantitative way, the intuitive notions of
main and affluent channels in a river network. One of the measures they use is
the order or rank.

Figure 5.1: Examples of trees with ranks equal to 0, 1, 2 and ∞.

We conjecture that there is a computable function Φ such that, for every
solvable context unification problem t ?= u, there exists a ground unifier σ,
such that the rank of σ(t) is bounded by the size of the problem as follows:
rank(σ(t)) ≤ Φ(|t ?= u|).

The other idea is to overcome the difficulties of the previous naive reduction,
is to generalise pre-order traversal sequences to a more general notion of traversal
sequence, by allowing subterms to be traversed in different orders. Then, any
rank-bound term has a traversal sequence belonging to a regular language. We
also introduce a new notion of traversal equation, denoted as t ≡ u, which means
that t and u are traversal sequences of the same term. We prove that a variant
of these constraints can be reduced to word equations with regular constraints
which are decidable (Schulz, 1991).

The rest of this chapter proceeds as follows. In Section 5.2 we define positions,
we give the notation for permutations and give a formal definition of the rank.
In Section 5.3 we define the notions of traversal sequence, rank of a traversal
sequence, rank of a term, and normal traversal sequence. Traversal equations
are introduced in Section 5.4. There, we prove that solvability of rank- and
permutation-bound traversal equations is decidable, by reducing the problem to
solvability of word equations with regular constraints. In Section 5.5, we state
the rank-bound conjecture. Finally, in Section 5.6 we show how, if the conjecture
is true, Context Unification could be reduced to rank- and permutation-bound
traversal systems.

74 Chapter 5. Context Unification and Traversal Equations

5.2 Preliminary Definitions

In this section, we introduce some more definitions and notations. We also state
the main assumptions of the chapter.

Definition 5.1 A position within a term is defined, using Dewey decimal no-
tation, as a sequence of integers i1 · · · in, and ε being the empty sequence. The
concatenation of two sequences is denoted by p1 · p2. The concatenation of an
integer and a sequence is also denoted by i · p, with i, j, . . . standing for integers
and p, q, . . . for sequences. The subterm of t at position p is denoted by t|p. If
p is a prefix of q then we write p ≤ q. By t[u]p we denote the term t where the
subterm at position p has been replaced by u. Notice that t[] also denotes a
context.

A position within a problem or an equation is defined by

{ti
?= ui}i∈{1..n}|j·p = (tj

?= uj)|p
(t ?= u)|1·p = t|p
(t ?= u)|2·p = u|p

The group of permutations of n elements is denoted by Πn. A permutation
ρ of n elements is denoted as a sequence of integers [ρ(1), . . . , ρ(n)].

Definition 5.2 The rank of a term, rank(t), is defined by rank(a) = 0, for any
constant a, and rank(f(t1, ..., tn)) = c where c is the minimum integer satisfying:
there exists a permutation ρ of indices 1, ..., n such that, for any i ∈ {1..n},
rank(tρ(i)) ≤ c− n+ i.

This definition is bizarre, but it can be simplified for binary trees.

Definition 5.3 The rank of a term, rank(t), where all symbols are 0-ary and
binary, is defined by:

rank(a) = 0

rank(f(t1, t2)) =

{
rank(t1) + 1 if rank(t1) = rank(t2)
max{rank(t1), rank(t2)} otherwise

for constants a and binary function symbols f .

According to Chapter 4, we can assume that the considered signature is finite,
and that it contains, at least, a first-order constant, and only one binary function
symbol (say f). This ensures that any solvable context unification problem has a
ground unifier. If nothing is said, the signature of a problem is the set of symbols
occurring in the problem, plus a first-order constant and the binary constant, if
required to fulfil the assumption.

Without loss of generality, we can also assume that the unification problem
only contains one equation t ?= u.

5.3. Terms and Traversal Sequences 75

5.3 Terms and Traversal Sequences

The solution to the problems pointed out in the introduction comes from gen-
eralising the definition of pre-order traversal sequences. This will allow us to
traverse the branches of a tree, i.e. the arguments of a function, in any pos-
sible order. In order to reconstruct the term from the traversal sequence, we
have to annotate the permutation we have used in this particular traversal se-
quence. With this purpose, we define a new signature ΣΠ that contains symbols
annotated with a permutation that indicates the order in which arguments are
traversed. We will firstly provide the Definition of Levy and Villaret (2001) for
any signature because it will be used in the next chapter. Then we will give the
definition for signatures with just one binary function symbol, that will be used
in the rest of this chapter.

Definition 5.4 Given a signature Σ, we define the (general) extended signature

ΣΠ = {fρ | f ∈ Σ ∧ ρ ∈ Πarity(f)}

where Πn is the group of permutations over n elements.
A sequence s ∈ (ΣΠ)∗ is said to be a traversal sequence of a ground term t,
noted s ∈ trav(t), if:

1. s = t when t = c is a 0-ary symbol

2. s = fρsρ(1) · · · sρ(n) when t = f(t1, . . . , tn) being si traversal sequences of
ti for any i ∈ {1..n}, and being ρ ∈ Πn a permutation.

Any traversal sequence of a ground term characterises this term. We use an
extended signature with permutations in order to allow us the use of distinct
traversals, i.e. the traversals of subterms in distinct possible orders.

In this chapter we are assuming signatures with just one binary function
symbol, therefore, our definitions can be simplified and will not use permutations
explicitly in the symbols. Instead of containing the two symbols f [1,2] and f [2,1],
we will use an extended signature containing f and f ′, where f denotes that the
argument will be traversed from left to right order and f ′ the other way round.

Definition 5.5 Given a signature Σ = Σ0 ∪ {f}, we define the extended signa-
ture

ΣΠ = Σ0 ∪ {f, f
′}

We define arity(f) = arity(f ′) = 2, and the rest of the symbols in ΣΠ are
constant symbols that have arity 0.
A sequence s ∈ (ΣΠ)∗ is said to be a traversal sequence of a ground term t ∈ T (Σ)
if:

1. t ∈ Σ0, and s = t; or

2. t = f(t1, t2), and either s = f s1 s2 or s = f ′ s2 s1, where si is a traversal
sequence of ti, for i ∈ {1, 2}.

76 Chapter 5. Context Unification and Traversal Equations

Definition 5.6 Given a sequence of symbols a1 · · ·an ∈ (ΣΠ)∗, we define its
width as

width(a) = arity(a)− 1
width(a1 · · ·an) =

∑
i∈{1..n} width(ai)

This definition can be used to characterise traversal sequences of ground
terms.

Lemma 5.7 A sequence of symbols a1 · · · an ∈ (ΣΠ)∗ is a traversal sequence, of
some ground term t ∈ T (Σ), if, and only if,

width(a1 · · ·an) = −1, and
width(a1 · · ·ai) ≥ 0, for any i ∈ {1..n− 1}.

Proof: For the “if” part we prove, by induction on the length of the sequence,
that it determines one and only one term. Such term can be found using the
following function F : (ΣΠ)∗ → T (Σ) defined by:

F(a) = a if width(a) = −1
F(fa2 . . . an) = f(F(a2 · · · ak),F(ak+1 · · ·an))
F(f ′a2 . . . an) = f(F(ak+1 · · · an),F(a2 · · · ak))

where k is the smallest integer such that width(a2 · · ·ak) = width(ak+1 · · ·an) =
−1. The proof of the “only if” part is trivial.

Now we define the rank of a traversal sequence.

Definition 5.8 Given a sequence of symbols a1 · · ·an ∈ (ΣΠ)∗, we define its
rank as

rank(a1 · · ·an) = max{width(a1 · · · aj) | j ∈ {0..n}}

Fact 5.9 Let fw1w2 be a traversal of f(t1, t2) such that w1 is a traversal of
t1 and w2 is a traversal of t2. If rank(w1) ≥ rank(w2) then rank(fw1w2) =
rank(w1) + 1 otherwise rank(fw1w2) = rank(w2) (conversely for f ′w2w1).

Proof: The maximal width of the sequence fw1 is the maximal width of the
sequence w1 + 1, i.e. rank(w1) + 1, even more, by Lemma 5.7, width(fw1) = 0
because w1 is a traversal. Then, if rank(w1) ≥ rank(w2), adding w2 to the
sequence fw1 will not increase the maximal width, hence we get rank(fw1w2) =
rank(w1) + 1. Otherwise, if rank(w2) > rank(w1), then the maximal width of
fw1w2 is still the one of w2 or the one of fw1, but being rank(w2) > rank(w1),
we can conclude that rank(fw1w2) = rank(w2).

In general, a term has more than one traversal sequence associated. The
rank of the term is always smaller or equal to the rank of its traversals, and
for at least one of them we have equality. These rank-minimal traversals are
relevant for us, and we choose one of them as the normal traversal sequence. In
figure 5.2, the third traversal sequence f a f b f c d is the normal one.

5.3. Terms and Traversal Sequences 77

−1

1

2

3

0

1

2

3

0

f ’ f c d b a

rank = 3

f ’

−1

da f ’ f c

1

2

3

0

1

2

3

0

b

rank = 2

f

−1

f a f b f c d

1

2

3

0

rank = 1

Figure 5.2: Representations of the function f(i) = width(a1 · · · ai), for some
traversal sequences of f(a, f(b, f(c, d))).

Definition 5.10 Given a term t, its normal traversal sequence NF(t) is defined
recursively as follows:

1. If t = a then NF(t) = a.

2. If t = f(t1, t2) then:

• when rank(t1) ≤ rank(t2) we have NF(t) = f NF(t1) NF(t2), and

• when rank(t2) < rank(t1) we have NF(t) = f ′ NF(t2) NF(t1).

Lemma 5.11 If w is a traversal of t, then rank(w) ≥ rank(t).
Moreover, the normal traversal sequence of a term t has minimal rank among
their traversals, i.e. rank(t) = rank(NF(t)).

Proof: For the first part of the Lemma we proceed by structural induction on the
structure of the term. For terms like a, it is trivial. For terms like t = f(t1, t2),
with w = fw1w2 such that w1 is a traversal of t1 and w2 a traversal of t2, we
have two possibilities:

• Let rank(t1) = rank(t2), then rank(t) = rank(t1) + 1 = rank(t2) + 1.
By Fact 5.9, if rank(w1) ≥ rank(w2) then rank(w) = rank(w1) + 1 and
by induction hypothesis, rank(w1) ≥ rank(t1) hence rank(w) ≥ rank(t);
otherwise if rank(w2) > rank(w1) then rank(w) = rank(w2), hence by
induction hypothesis together with rank(t1) = rank(t2) and rank(w2) >
rank(w1) we can conclude rank(w) ≥ rank(t).

• Let rank(t1) > rank(t2) (the converse is similar), then rank(t) = rank(t1).
By Fact 5.9, if rank(w1) ≥ rank(w2) then rank(w) = rank(w1) + 1 and
by induction hypothesis, rank(w1) ≥ rank(t1) hence rank(w) ≥ rank(t);
otherwise, rank(w) = rank(w2) > rank(w1) and by induction hypothesis
rank(w1) ≥ rank(t1) hence rank(w) ≥ rank(t).

Proving that rank(t) = rank(NF(t)) is enough for the second part of the
Lemma. Again we proceed by structural induction on the structure of the term.
For terms like a, it is trivial. For terms like t = f(t1, t2), we have three possibil-
ities:

78 Chapter 5. Context Unification and Traversal Equations

• Let rank(t1) = rank(t2), then NF(t) = f NF(t1) NF(t2) and rank(t) =
rank(t1)+1, moreover, by induction hypothesis, rank(NF(t1)) = rank(t1) =
rank(t2) = rank(NF(t2)). Then, by Fact 5.9, rank(f NF(t1) NF(t2)) =
rank(NF(t1)) + 1 = rank(t1) + 1 = rank(t).

• Let rank(t1) < rank(t2), then NF(t) = f NF(t1) NF(t2) and rank(t) =
rank(t2), moreover, by induction hypothesis, rank(NF(t1)) = rank(t1) and
rank(NF(t2)) = rank(t2). Then, by Fact 5.9, rank(f NF(t1) NF(t2)) =
rank(NF(t2)) = rank(t2) = rank(t).

• Let rank(t1) > rank(t2), then NF(t) = f ′ NF(t2) NF(t1) and rank(t) =
rank(t1), moreover, by induction hypothesis, rank(NF(t1)) = rank(t1) and
rank(NF(t2)) = rank(t2). Then, by Fact 5.9, rank(f ′ NF(t2) NF(t1)) =
rank(NF(t1)) = rank(t1) = rank(t).

Rank-upper bounded traversal sequences define a regular language. The
construction of associated automata can be found in (Levy and Villaret, 2000)
(see Section 6.4).

Definition 5.12 Given an extended signature ΣΠ and a constant k, the set of
k-bound traversal sequences is defined as follows:

RkΣ = {s ∈ (ΣΠ)∗ | rank(s) ≤ k ∧ s is a traversal}

Lemma 5.13 Given an extended signature ΣΠ and a constant k, the set of
k-bound traversal sequences is a regular language.

Proof: We can define RkΣ inductively as follows:

R0
Σ = Σ0

RkΣ = Rk−1
Σ ∪

(
(f |f ′) Rk−1

Σ

)∗
Σ0

5.4 Traversal Equations

In this section we introduce traversal equations and traversal systems. Solvability
of traversal equations and of traversal systems is still an open question, but we
prove that a variant of these (the so called permutation and rank-bound traversal
systems) can be reduced to word equations systems with regular constraints,
which are decidable (Schulz, 1991). This reduction is somehow inspired by the
reduction from trace equations to word equations used by Diekert et al. (1997)
to prove decidability of trace equations.

Later in Section 5.6, we will reduce Context Unification to solvability of per-
mutation and rank-bound traversal systems; we need the rank-bound conjecture
to prove that this reduction can be done. The conjecture will be presented in
the next section, Section 5.5.

5.4. Traversal Equations 79

Definition 5.14 A traversal system over an extended signature ΣΠ with word
variablesW is a conjunction of literals, where every literal has the form w1

?= w2

(word equation), w1 ≡ w2 (traversal equation) or w ∈ R (regular constraint),
with wi ∈ (ΣΠ ∪ W)∗ being words with variables and R ⊆ (ΣΠ)∗ a regular
language.

A solution of a traversal system is a word substitution σ : W → (ΣΠ)∗ such
that:

1. σ(w1) = σ(w2) for any word equation w1
?= w2,

2. σ(w1) and σ(w2) are both traversal sequences of the same term, for any
traversal equation w1 ≡ w2,

3. and σ(w) belongs to R, for any regular constraint w ∈ R.

5.4.1 Rank-bound Traversal Systems

Definition 5.15 A traversal system is said to be rank-bound if, for every traver-
sal equation w1 ≡ w2, there exist two constants k1 and k2, and two regular
constraints w1 ∈ R

k1
Σ and w2 ∈ R

k2
Σ in the system, where Rki

Σ is the (regular) set
of ki-bound traversal sequences.

We can transform rank-bound traversal systems into equivalent systems of
word unification with regular constraints using the following transformation
rules.

Definition 5.16 The following rules define a non-deterministic translation pro-
cedure from rank-bound traversal systems into word equations with regular con-
straints.

Rule 1: We guess two symbols γ1, γ2 from {f, f ′} ⊂ ΣΠ, being ρ and ρ′ their
corresponding permutations for the order of traversing the arguments.
Then we replace the traversal equation w1 ≡ w2 and the corresponding
regular constraints w1 ∈ R

k1
Σ and w2 ∈ R

k2
Σ by

w1 ≡ w2

w1 ∈ R
k1
Σ

w2 ∈ R
k2
Σ

=⇒

w1 ∈ R
k1
Σ

w2 ∈ R
k2
Σ

w1
?= X1 γ1 Yρ(1) Yρ(2) X2

w2
?= X1 γ2 Y

′
ρ′(1) Y

′
ρ′(2) X2

Yi ≡ Y ′
i

Yρ(i) ∈ R
k1−2+i
Σ

Y ′
ρ′(i) ∈ R

k2−2+i
Σ

for any i ∈ {1, 2}

where {Xi, Yi, Y
′
i }i∈{1,2} are fresh word variables.

80 Chapter 5. Context Unification and Traversal Equations

Rule 2: We replace the traversal equation w1 ≡ w2 and the corresponding
regular constraints w1 ∈ R

k1
Σ and w2 ∈ R

k2
Σ by

w1 ≡ w2

w1 ∈ R
k1
Σ

w2 ∈ R
k2
Σ

=⇒
w1

?= w2

w1 ∈ R
min{k1,k2}
Σ

Notice that if the rank of a traversal sequence f w1 w2 is bounded by k,
then, for any i ∈ {1, 2}, the rank of wi is bounded by k − 2 + i. These are the
values of the exponents used in the regular restrictions of the right-hand side
of Rule 1. Rank-boundness is crucial in order to ensure soundness of Rule 2
because this allows us to enforce words to be traversals of terms. For instance,
the traversal equation X aaY ≡ Y a aX has no solution, whereas the word
equation X aaY ?= Y a aX is solvable. Notice that some substitutions, like
X,Y 7→ a, give equal sequences, but they are not traversal sequences.

Theorem 5.17 The rules of Definition 5.16 describe a sound and complete
decision procedure for rank-bound traversal systems. In other words, for any
rank-bound traversal system S,

1. if S =⇒∗ S′ and the substitution σ′ is a solution of S′, then σ′|V ar(S) is
also a solution of S, and

2. if the substitution σ is a solution of S, then there exists a word unifica-
tion problem with regular constraints S ′, a finite transformation sequence
S =⇒∗ S′, and an extension σ′ of σ, such that σ′ is a solution of S′.

Proof:

1. We proceed by induction on the length of the transformation sequence S ⇒∗

S′. For 0 transformations is obvious.
Consider the step S ⇒ S′. We have two possibilities, either Rule 1 or Rule

2 has been the rule applied on this step. If it is Rule 2, obviously σ′|Dom(S) is
also a solution of S. Otherwise, let w1 ≡ w2 be the traversal equation with the
two regular constraints w1 ∈ R

k1
Σ and w2 ∈ R

k2
Σ , in S, where Rule 1 has been

applied and, hence S′ is equal to S up to this traversal equation (notice that the
regular constraints remain) plus the following literals

w1
?= X1 γ1 Yρ(1) Yρ(2) X2

w2
?= X1 γ2 Y

′
ρ′(1) Y

′
ρ′(2) X2

Yi ≡ Y ′
i

Yρ(i) ∈ R
k1−2+i
Σ

Y ′
ρ′(i) ∈ R

k2−2+i
Σ

for any i ∈ {1, 2}

Notice that by induction hyphotesis σ′|Dom(S′) solves S′. We just need to prove
that σ′|Dom(S)(w1) and σ′|Dom(S)(w2) are both traversals of the same term. We

5.4. Traversal Equations 81

know that σ′|Dom(S′)(w1) is a traversal of some term t and σ′|Dom(S′)(w2) is

a traversal of some term t′ because σ′|Dom(S′) satisfies w1 ∈ Rk1Σ and w2 ∈

Rk2Σ . We have to prove that t = t′. We consider the first word equation w1
?=

X1 γ1 Yρ(1) Yρ(2) X2. We know that σ′|Dom(S′)(Y1) and σ′|Dom(S′)(Y2) are both
traversals of terms (say t1 and t2), and γ1 (without loss of generality let γ1 = f)
corresponds to the binary function symbol f , then σ′|Dom(S′)(γ1 Yρ(1) Yρ(2)) is
a traversal of f(t1, t2). Let C be the context such that σ′|Dom(S′)(X1 aX2) is a
traversal of C(a) and σ′|Dom(S′)(X1 bX2) is a traversal of C(b), then, knowing
that σ′|Dom(S′)(X1 γ1 Yρ(1) Yρ(2) X2) = σ′|Dom(S)(w1) is a traversal of t, we can
conclude that C(f(t1, t2)) = t. We can do the same reasoning for the second
equation and conclude that t′ = C(f(t1, t2)) hence t = t′, notice that σ′|Dom(S′)

also satisfy the traversal equations Yi ≡ Y ′
i (for i ∈ {1, 2}).

2. Let S be a traversal equations system with solution σ. Consider w1 ≡
w2, w1 ∈ R

k1
Σ and w2 ∈ R

k2
Σ in S. Let t be the term such that σ(w1) ∈ trav(t)

and σ(w2) ∈ trav(t). Now we have two possibilities:

• if σ(w1) 6= σ(w2), then we apply Rule 1 and we obtain the new traversal
system S′ by means of removing the traversal equation and adding these
literals:

w1
?= X1 γ1 Yρ(1) Yρ(2) X2

w2
?= X1 γ2 Y

′
ρ′(1) Y

′
ρ′(2) X2

Yi ≡ Y ′
i

Yρ(i) ∈ R
k1−2+i
Σ

Y ′
ρ′(i) ∈ R

k2−2+i
Σ

for any i ∈ {1, 2}

Let t = C(f(t1, t2)) such that C is the biggest context that is traversed
equally in σ(w1) and in σ(w2); let σ(w1) = wX1γ1wY1wY2wX2 and σ(w2) =
wX1γ2wY ′

1
wY ′

2
wX2 where γ1wY1wY2 is the traversal of f(t1, t2) in σ(w1) and

γ2wY ′
1
wY ′

2
the traversal of f(t1, t2) in σ(w2). Moreover, γ1, γ2 ∈ {f, f

′} and
if γ1 = f then wYi

is a traversal of ti, otherwise if γ1 = f ′ then wY1 is a
traversal of t2 and wY2 is a traversal of t1 (similarly for γ2 and wY ′

1
, wY ′

2
).

Now we can extend substitution σ and obtain a solution of S ′ as follows:
Let σ′ be σ◦[X1 7→ wX1 , X2 7→ wX2 , Y1 7→ wY1 , Y2 7→ wY2 , Y

′
1 7→ wY ′

1
, Y ′

2 7→
wY ′

2
]. It is easy to check that σ′ satisfies all literals of S ′.

• if σ(w1) = σ(w2) we use Rule 2 and we obtain a new traversal system
S′ where the traversal equation has been replaced by the word equation

w1
?= w2 with the regular constraint w1 ∈ R

min{k1,k2}
Σ that is trivially

solvable with substitution σ hence in this case, σ′ = σ.

Notice that given a traversal system and a solution, at each application of a
rule, we are closer to obtain a word unification with regular constraints system
because Rule 1 replaces a traversal equation by two word equations and two
traversal equations where the size of the solution is strictly smaller than the

82 Chapter 5. Context Unification and Traversal Equations

original one, and Rule 2 replaces a traversal equation by a single word equation.

Unfortunately, this non-deterministic transformation procedure does not al-
ways terminate. Notice that we can have γ1 = γ2 = f , hence ρ(2) = ρ′(2) = 2,
and in such case we obtain a traversal equation Y2 ≡ Y ′

2 with the same bounds
Y2 ∈ R

k1
Σ and Y ′

2 ∈ R
k2
Σ as the original ones.

However, an adaptation of these transformation rules can be used to find
solutions σ of equations w1 ≡ w2, such that σ(w1) and σ(w2) are traversal
sequences for the same term, and they are “similar”, where “similar” means
that they only differ in a bounded number of permutations.

5.4.2 Permutation and Rank-bound Traversal Systems

Definition 5.18 Given two traversal sequences v and w over ΣΠ, we say that
they differ in b permutations if, either

1. v = f r1 r2 and w = f s1 s2 (or v = f ′ r2 r1 and w = f ′ s2 s1) , and for any
i ∈ {1, 2}, ri and si differ in bi permutations, and b1 + b2 = b, or

2. v = f r1 r2 and w = f ′ s2 s1, for any i ∈ {1, 2}, ri and si differ in bi
permutations, and b1 + b2 = b− 1.

Definition 5.19 A permutation-bound traversal equation, denoted as w1 ≡b
w2, is a tuple of two words with variables w1 and w2, and an integer b (b ≥ 0).

A substitution σ is said to be a solution of a permutation-bound traversal equa-
tion w1 ≡b w2 if σ(w1) and σ(w2) are both traversal sequences of the same term,
and they only differ in at most b permutations.

A permutation and rank-bound traversal system is a rank-bound traversal sys-
tem where all traversal equations are permutation-bound.

A slight modification of the rules of Definition 5.16 provides us rules to deal
with permutation and rank-bound traversal systems.

Definition 5.20 The following rules define a non-deterministic translation pro-
cedure from permutation and rank-bound traversal systems into word equations
with regular constraints.

Rule 1: We guess two symbols γ1, γ2 from {f, f ′} ⊂ ΣΠ, being ρ and ρ′ their
corresponding permutations for the order of traversing the arguments.
Then we replace the permutation-bound traversal equation w1 ≡b w2 and

5.5. The Rank-Bound Conjecture 83

the corresponding regular constraints w1 ∈ R
k1
Σ and w2 ∈ R

k2
Σ by

w1 ≡b w2

w1 ∈ R
k1
Σ

w2 ∈ R
k2
Σ

=⇒

w1 ∈ R
k1
Σ

w2 ∈ R
k2
Σ

w1
?= X1 γ1 Yρ(1) Yρ(2) X2

w2
?= X1 γ2 Y

′
ρ′(1) Y

′
ρ′(2) X2

Yi ≡bi
Y ′
i

Yρ(i) ∈ R
k1−2+i
Σ

Y ′
ρ′(i) ∈ R

k2−2+i
Σ

for any i ∈ {1, 2}

where {Xi, Yi, Y
′
i }i∈{1,2} are fresh word variables, and:

• if γ1 = γ2 then b1 + b2 = b and b1, b2 > 0, otherwise

• if γ1 6= γ2 then b1 + b2 = b− 1 and b1, b2 ≥ 0.

Rule 2: We replace the permutation-bound traversal equation w1 ≡b w2 and
the corresponding regular constraints w1 ∈ R

k1
Σ and w2 ∈ R

k2
Σ by

w1 ≡b w2

w1 ∈ R
k1
Σ

w2 ∈ R
k2
Σ

=⇒
w1

?= w2

w1 ∈ R
min{k1,k2}
Σ

Theorem 5.21 Solvability of permutation and rank-bound traversal systems is
decidable.

Proof: We can reduce any permutation and rank-bound traversal system to an
equivalent word unification problem with regular constraints using the rules of
Definition 5.20 finitely many times. On the one hand, is easy to prove that this
transformation process always terminates using a multiset ordering on bounds of
permutation-bound traversal equations. Notice that each time we apply a rule
the bounds on the permutations decrease. And on the other hand, notice that
we can easily proof soundness and completeness of the rules of Definition 5.20
using the same arguments than in Theorem 5.17.

5.5 The Rank-Bound Conjecture

In this section we introduce the rank-bound conjecture. This is the base of
the reduction of Context Unification to permutation- and rank-bound traversal
systems described in the next section. As we will see, this conjecture is essential
in order to prove that the traversal equations that we find in the reduction are
both permutation-bound and rank-bound.

84 Chapter 5. Context Unification and Traversal Equations

Conjecture 5.22 [Rank-Bound Conjecture] There exists a computable func-
tion Φ such that, for any solvable context unification problem t ?= u there exists
a ground unifier σ satisfying

rank(σ(t)) ≤ Φ(|t ?= u|)

The validity of the conjecture is still an open question. In fact, we think that
the conjecture is true, not only for just one ground unifier, but for any most
general unifier. This stronger version of the conjecture is not true for Second-
Order Unification, because we can have most general second-order unifiers with
an arbitrarily large rank, as shown by the following example.

Example 5.23 The second-order unification problem

F (f(a, a)) ?= f(F (a), F (a))

has only one context unifier σ = [F 7→ λx. x]. However, it has infinitely many
second-order unifiers which are not context unifiers, like

σ = [F 7→ λx. f(f(f(x, x), f(x, x)), f(f(x, x), f(x, x)))]

For any n ≥ 0, there is a second-order unifier where the bound variable x
occurs 2n times in the body of the function, and the rank of σ(F (f(a, a))) is
equal to n+1. This term σ(F (f(a, a))) can be represented as follows for n =∞.

In the following Lemma we prove that the conjecture is true for First-Order
Unification.

Lemma 5.24 Given a solvable first-order unification problem t ?= u, its most
general unifier σ satisfies

rank(σ(t)) ≤ |t|+ |u|

Proof: Suppose we have a unification problem t ?= u like

f(f(a, b), f(f(X,X), f(Y, Y))) ?= f(X, f(Y, Z))

We can represent it by a directed acyclic graph where we have two initial
nodes (one for each side of the equation), and a unique node per variable. We can
solve the unification problem by re-addressing the arrows pointing to a variable,

5.5. The Rank-Bound Conjecture 85

when this variable is instantiated. Therefore we can represent σ(t) by means of
a directed acyclic graph D, where |D| ≤ |t| + |s|, being the size of the graph
its number of arrows. This is the representation of the graph corresponding to
our example (where, for simplicity, we have added a dashed arrow instead of
re-addressing arrows pointing to variables):

f f

X Y

Z

f

f

f

f

0

ba

f

01

1 0 1 0

1

1

0

00 1

1

Now we can label the graph to indicate the order how it could be traversed,
1-labeled arrows are traversed first and then the 0-labeled. For any labeling
of the original graph, the same labels in the graph resulting from instantiation
represent a traversal sequence of σ(t) and a traversal sequence of σ(u).1 Defining
the rank of a node as the addition of the label in the path from the root to this
node, the rank of the traversal sequence will be the maximal of the rank of all
leaves. In our example, this rank is 5 and it is obtained from the following path

f 1−→ f 1−→ f 1−→ f 1−→ f 1−→ a

The rank of a path never exceeds the number of arrows of the graph, i.e. its
size, because, to avoid occur-check failure, we cannot repeat nodes in a path.
Therefore, when we use an arrow, there is at least another one (the one with the
same origin) that cannot be contained in the same path. We can conclude that
the traversal sequence of σ(t) represented in the path satisfies rank(s) ≤ |t|+ |u|,
thus rank(σ(t)) ≤ |t|+ |u|.

Remark: In the proof of Lemma 5.24 and Lemma 5.26 we use labeled trees in
order to represent traversal sequences. We can represent any term as a tree, and
its normal traversal sequence as a labeled tree, where we decorate every node
with the permutation we use to traverse its sons. Alternatively, we can represent
this traversal sequence using a tree with labeled arrows. We proceed as follows.
Consider the tree associated to f(t1, t2), and let ni be the label of the arrow
going from f to the subtree associated to ti. We choose the values of ni such
that,

if rank(t1) ≤ rank(t2) then n1 = 1 and n2 = 0,
otherwise n1 = 0 and n2 = 1

1Notice that, since we are using graphs instead of trees, not all traversal sequences of σ(t)
can be represented as a labeling of the graph.

86 Chapter 5. Context Unification and Traversal Equations

It is easy to see that, if in a labeled tree we first follow the arrows with higher
labels, we get the normal traversal sequence. Moreover, if we compute the sum
of the labels of the arrows we follow from the root to any leave, and we take the
maximum of these sums, we get the rank of the tree.

5.6 Reducing Context Unification to Traversal

Equations

In this section we prove that Context Unification can be reduced to solvability
of traversal systems. Moreover, we also prove that if the rank-bound conjec-
ture is true, then this reduction can be done to permutation and rank-bound
traversal systems. Therefore, if the conjecture is true, then Context Unification
is decidable.

The reduction is very similar to the naive reduction described in Subsec-
tion 5.1.1: first-order variables X are encoded as word variables X ′ such that,
if σ is a solution of the context unification problem, and σ′ is the corresponding
solution of the equivalent word unification problem, then σ′(X ′) = NF(σ(X)).

For every n-ary context variable F , we would need n + 1 word variables
F ′

0,. . . ,F
′
n, such that σ′(F ′

0 aF
′
1 a · · ·F

′
n−1 aF

′
n) = NF(σ(F (a, . . . , a))). How-

ever, this simple translation does not work. If a term t contains two occur-
rences of a first-order variable X , then NF(σ(t)) will contain two occurrences of
NF(σ(X)). However, two different occurrences of a context variable can have
different arguments, and this means that the context σ(F) can be traversed in
different ways, depending on the arguments. Notice that, in general, even if
NF(C(a)) = w0 aw1,

2 we can have NF(C(u)) 6= w0 NF(u)w1. Fortunately, the
different ways in which the occurrences of σ(F) are traversed in the normal form
of σ(C) are not very different, i.e. they differ in at most a bounded number of
permutations.

Example 5.25 Let σ(F) = λx . f(f(x, t1), t2), where rank(t1) < rank(t2), and
wi = NF(ti), for i = 1, 2. Depending on the argument u, we have

NF(σ(F (u))) =

f f NF(σ(u))w1 w2 if rank(σ(u)) ≤ rank(t1)
f f ′ w1 NF(σ(u))w2 if rank(t1) < rank(σ(u)) ≤ rank(t2)
f ′w2 f

′ w1 NF(σ(u)) if rank(t2) < rank(σ(u))

Lemma 5.26 Let F be a context variable and σ a substitution. For
any two terms F (t1, . . . , tn) and F (u1, . . . , un), there exist sequences
v0, . . . , vn, w0, . . . , wn and permutations ρ, τ ∈ Πn, such that

NF(σ(F (t1, . . . , tn))) = v0 NF(σ(tρ(1))) v1 · · · vn−1 NF(σ(tρ(n))) vn
NF(σ(F (u1, . . . , un))) = w0 NF(σ(uτ(1)))w1 · · ·wn−1 NF(σ(uτ(n)))wn

2Recall that C denotes a context.

5.6. Reducing Context Unification to Traversal Equations 87

and, for any sequence of constants {ai}i∈{1..n},

v0 aρ(1) v1 · · · vn−1 aρ(n) vn
w0 aτ(1)w1 · · ·wn−1 aτ(n)wn

are both traversal sequences of σ(F (a1, . . . , an)), and they only differ in at most
n · rank(σ(F (a1, . . . , an))) permutations.

Proof: We can prove that, for any context C, and term u, there exist two se-
quences v0 and v1 such that NF(C(u)) = v0 NF(u) v1 and v0 a v1 is a traversal
sequence of C(a). This can be generalised to n-arguments, and proves the first
part of the lemma.

For the second part of the lemma, consider the normal traversal sequences
of σ(F (a1, . . . , an)) and of σ(F (u1, . . . , un)), for any ui’s. We can represent
these traversal sequences as labeled trees. For instance, for the terms of ex-
ample 5.25, with t1 = b and t2 = f(c, c), and with u = a, u = f(d, d) and
u = f(f(d, d), f(d, d)), we get the following labeled tree:

a f f

d d f f

d d d d

1 0

1

1

1 00

0

10

0

0

00

1

1

1 1

1 0

1

1 1

0

0 0

b c c

ff

f

b c c

ff

f

b c c

ff

f

If we compare the labels of the context σ(F (, . . . ,)) in these two terms
σ(F (a1, . . . , an)), and of σ(F (u1, . . . , un)), we see that all the changes involve
arrows which have their origin at some point of the path to an argument. Ob-
viously, the traversal of the subterms of σ(F (a1, . . . , an)), that do not contain
the arguments a1, . . . , an are labeled as in σ(F (u1, . . . , un)). Moreover, as far
as rank(ai) ≤ rank(ui), the change can only consist of decreasing the label of
the arrow leading to the new argument ui, and increasing the label of the other
arrow with the same origin. If we only consider the path leading to one of
the arguments ai in σ(F (a1, . . . , an)), the number of arrows with non-null la-
bels in this path is not greater than rank(σ(F (a1, . . . , an))), because the sum
of the labels of this path is not greater than the rank of the term. There-
fore, at most as many arrows as rank(σ(F (a1, . . . , an))) can decrease their la-
bel. As there are arity(F) many paths to arguments, there are at most as
many nodes as arity(F) · rank(σ(F (a1, . . . , an))) with distinct permutations in
σ(F (a1, . . . , an)) and in σ(F (u1, . . . , un)). All these nodes are in the path to an
argument, and their arrow pointing to the argument has a non-null label. These
are precisely the nodes that can have distinct permutations in σ(F (u1, . . . , un))
and in σ(F (u′1, . . . , u

′
n)), independently of the values of rank(ui) and rank(u′i).

88 Chapter 5. Context Unification and Traversal Equations

Notice that we need the rank-bound conjecture in order to bound the value
of rank(σ(F (a1, . . . , an))), i.e. to prove that those two traversal sequences differ
in a bounded number of permutations.

In the rest we describe how a context unification problem could be effectively
translated into an equivalent system of traversal equations.

Theorem 5.27 Context Unification can be reduced to solvability of traversal
systems.
If the Rank-Bound Conjecture is true, then Context Unification can be reduced
to solvability of permutation and rank-bound traversal systems.

Proof: Let t ?= u be the original context unification problem, and Σ be the
original signature, with variables X . We assume that Σ is finite, and con-
tains at least 2 · n distinct first-order constants a1, . . . , an, b1, . . . , bn, where
n = max{arity(F) | F ∈ (V ar(t) ∪ V ar(u))}, and a binary symbol f , and
that a1, . . . , an, b1, . . . , bn do not occur in t ?= u. Therefore, if a problem is
solvable, it has a ground unifier.

First step The order of the arguments in F and in σ(F) are not necessarily the
same. In this first step we guess a permutation ρF ∈ Πarity(F) for any context

variable and transform t ?= u into σ0(t)
?= σ0(u) where

σ0 =
⋃

F∈V ar(t)∪V ar(u)

[F 7→ λx1 · · ·xn. F
′(xρF (1), . . . , xρF (n))]

Now, we can assume that F ′ and its instance have their arguments in the same
order. Moreover, as far as σ0 is simply a renaming substitution, t ?= u and
σ0(t)

?= σ0(u) are equivalent problems.

Second step We introduce a word variable X ′ ∈ W for every first order
variable X ∈ X , and arity(F) + 1 word variables F p0 , . . . , F

p

arity(F) ∈ W for

every occurrence p of a context variable F in the problem (notice that in this
case we use different word variables for every occurrence).

We guess a permutation ρp for any occurrence of a constant function f or of
a context variable F , with arity greater or equal than two, in a position p of the
problem.

We define the following translating function T that given a subterm t of
the problem, and its position p, returns its translation in terms of words with
variables w ∈ (ΣΠ ∪W)∗.

For any first-order constant a, or variable X ,

T (a, p) = a
T (X, p) = X ′

For every occurrence of the binary function symbol f at position p, let wi =
T (ti, p · i), and γp ∈ {f, f ′} be the symbol conjectured for this position, and ρp

5.6. Reducing Context Unification to Traversal Equations 89

the corresponding permutation for the arguments traversal order, then

T (f(t1, t2), p) = γp wρp(1) wρp(2)

For every n-ary context variable F , occurring at position p, let wi = T (ti, p ·
i), and ρp be the permutation conjectured for this position, then

T (F (t1, . . . , tn), p) = F p0 wρp(1) F
p
1 · · ·F

p
n−1 wρp(n) F

p
n

Finally, the traversal system will contain the following equations:

1. A word equation for the original problem t ?= u

T (t, 1) ?= T (u, 2)

2a. For any two occurrences F (t1, . . . , tn) and F (u1, . . . , un) of a context vari-
able F at positions p and q, we introduce the following traversal equations
and regular constraints:3

T (F (a1, . . . , an), p) ≡b T (F (a1, . . . , an), q)

T (F (a1, . . . , an), p) ∈ R
k1
ΣΠ

T (F (a1, . . . , an), q) ∈ R
k2
ΣΠ

T (F (b1, . . . , bn), p) ≡b T (F (b1, . . . , bn), q)

T (F (b1, . . . , bn), p) ∈ R
k1
ΣΠ

T (F (b1, . . . , bn), q) ∈ R
k2
ΣΠ

where b = arity(F) · Φ(|t ?= u|), k1 = k2 = Φ(|t ?= u|) and Φ is the
computable function introduced in the rank-bound conjecture.

2b. In case we want to reduce context unification to (non-bound) traversal
systems, we will introduce

T (F (a1, . . . , an), p) ≡ T (F (a1, . . . , an), q)

T (F (b1, . . . , bn), p) ≡ T (F (b1, . . . , bn), q)

In this second case, we do not need the conjecture to fix b, k1 and k2.

The duplication of traversal equations with distinct constants ai and bi en-
sures that these constants occur in the place of the arguments. Otherwise, if
we only introduce a traversal equation F0 aF1 ≡ F ′

0 aF
′
1, we can get solutions

like σ = [F0 7→ f a][F1 7→ ε][F ′
0 7→ f][F ′

1 7→ a], that do not satisfy σ(F0 b F1) ≡
σ(F ′

0 b F
′
1), and leads to incompatible definitions of σ(F) = λx. f(a, x) and

σ(F) = λx. f(x, a).

3We can avoid introducing a context variable occurrence in more than two traversal equa-
tion. If we have p1, . . . , pn occurrences of F , we can introduce an equation relating p1 and p2,
p2 and p3,. . . , pn−1 and pn.

90 Chapter 5. Context Unification and Traversal Equations

Theorem 5.28 If Context Unification is decidable, then the Rank-Bound Con-
jecture holds.4

Proof: To get the computable function Φ such that, for any size n of the problem,
gives us the bound on the rank for problems of that size, we just need to build
a program that:

1. checks solvability of all (finite set) context unification problems of size n.

2. Then, by “dovetailing” on the size of the substitutions, checks if the gener-
ated substitution is a solution of the solvable problems, until it has found
a unifier for each solvable problem.

The maximum rank of the set of solutions that it has found, serves as the bound
on the rank of the solutions for context unification problems of size n.

Corollary 5.29 Context Unification is decidable if, and only if, the Rank-
Bound Conjecture holds.

Example 5.30 To conclude, let us see how problem F (G(a, b)) ?= G(F (a), b)
could be translated into a traversal system.

We guess σ0 equals the identity in the first step. In a second step, we
introduce the word variables F0, F1, F

′
0, F

′
1 for the two occurrences of F , and

G0, G1, G2, G
′
0, G

′
1, G

′
2 for the two occurrences of G. For both occurrences of

G, the only symbol with arity 2 or greater, we have to guess their permutation
ρ1·1 = [1, 2] and ρ2 = [2, 1].

The translation of the unification problem results then into:

F0G0 aG1 bG2 F1
?= G′

0 bG
′
1 F

′
0 aF

′
1G

′
2

F0 a1 F1 ≡c F ′
0 a1 F

′
1 F0 b1 F1 ≡c F ′

0 b1 F
′
1

F0 a1 F1 ∈ RcΣΠ
F0 b1 F1 ∈ RcΣΠ

F ′
0 a1 F

′
1 ∈ R

c
ΣΠ

F ′
0 b1 F

′
1 ∈ R

c
ΣΠ

G0 a1G1 a2G2 ≡2·c G
′
0 a2G

′
1 a1G

′
2 G0 b1G1 b2G2 ≡2·c G

′
0 b2G

′
1 b1G

′
2

G0 a1G1 a2G2 ∈ RcΣΠ
G0 b1G1 b2G2 ∈ RcΣΠ

G′
0 a2G

′
1 a1G

′
2 ∈ R

c
ΣΠ

G′
0 b2G

′
1 b1G

′
2 ∈ R

c
ΣΠ

where c = Φ(8), and Φ is the function introduced by the rank-bound conjecture.

A solution of this permutation bound traversal system is the word substitu-
tion:

σ = [F0 7→ f ′ b, F1 7→ ε,
F ′

0 7→ f, F ′
1 7→ b

G0 7→ f, G1 7→ ε G2 7→ ε
G′

0 7→ f ′, G′
1 7→ ε G′

2 7→ ε]

4An anonymous referee of (Levy and Villaret, 2001) suggested us this result.

5.7. Some Hints in Favor of the Rank-Bound Conjecture 91

For the initial word equation F0G0 aG1 bG2 F1
?= G′

0 bG
′
1 F

′
0 aF

′
1G

′
2 we

have:
F0 G0 a G1 b G2F1︷ ︸︸ ︷

f ′︸︷︷︸ b
︷︸︸︷
f︸︷︷︸ a b︸︷︷︸

G′
0 b G′

1 F ′
0 a F ′

1 G′
2

For the traversal equation of F , F0 a1 F1 ≡c F ′
0 a1 F

′
1 we have that σ(F0 a1 F1) =

f ′ b a1 and σ(F ′
0 a1 F

′
1) = f a1 b, and both are traversals of the same term f(a1, b)

(similarly for F0 b1 F1 ≡c F ′
0 b1 F

′
1) .

Then, for the traversal equations of G, G0 a1G1 a2G2 ≡2·c G
′
0 a2G

′
1 a1G

′
2

we have that σ(G0 a1G1 a2G2) = f a1 a2 and σ(G′
0 a2G

′
1 a1G

′
2) = f ′ a2 a1, and

both are traversals of the same term f(a1, a2) (similarly for G0 b1G1 b2G2 ≡2·c

G′
0 b2G

′
1 b1G

′
2).

The context substitution corresponding to the word substitution σ is the
following substitution:

σ′ = [F 7→ λx. f(x, b), G 7→ λxy. f(x, y)]

Then, the common instance of both sides of the equation is:

σ(F (G(a, b))) = f(f(a, b), b) = σ(G(F (a), b))

and notice that NF(f(f(a, b), b)) is f ′ b f a b, the common instance of the word
equation.

5.7 Some Hints in Favor of the Rank-Bound

Conjecture

As we have repeatedly said, Conjecture 5.22 has not still been proved, and
the decidability of Context Unification remains as an open question. However,
we can present some hints reinforcing our opinion about the trueness of the
conjecture. All these results have never been published before, and constitutes
our main current research interest. As the reader will see most of the proofs of
this section are only sketched, and the whole section constitutes an incomplete
and unfinished work. We want to prevent the reader, who can consider this
section as an appendix of the thesis pointing out further lines of research.

First, we reformulate Conjecture 5.22 in terms of relations on the sets of sub-
terms of a term. This term is the common instance σ(t) solving the unification
problem t ?= u. We introduce a new kind of relations, called sheaf relations.

Definition 5.31 A sheaf is a pair 〈u = v, C〉 such that u = v is an equation
between terms, and C is a context.
Given a set of sheaves S = {〈ui = vi, Ci〉}i=1,...,n, we define the sheaf relation
generated by it as the smaller equivalence relation ≈ such that, for any i =
1, . . . , n, and any decomposition Ci = C ′

i(C
′′
i), we have C ′′

i (ui) ≈ C ′′
i (vi).

92 Chapter 5. Context Unification and Traversal Equations

The use of contexts in sheaf relations defines a kind of restricted congruence
on the equations. We still define another restriction on the equivalence and
congruence relation defined by a set of equations:

Definition 5.32 Given a term t, and a set of equations E = {ui = vi}i=1,...,n on
subterms of t, we define the equivalence and restricted to t congruence relation
generated by E as the minimal equivalence relation containing the relation ≈′,
where ≈′ is defined as the minimal relation satisfying:

1. ui ≈′ vi for any equation, and,

2. if u ≈′ v and f(s1, . . . , u, . . . , sm) and f(s1, . . . , v, . . . , sm) are both sub-
terms of t, then f(s1, . . . , u, . . . , sm) ≈′ f(s1, . . . , v, . . . , sm).

This new relation is more general than the corresponding sheaf relation, but
more restricted than the usual congruence and equivalence closure. This is stated
more formally in the following fact.

Lemma 5.33 Let t be a term, and S = {〈ui = vi, Ci〉}i=1,...,n a set of sheaves
where, for any i = 1, . . . , n, Ci(ui) and Ci(vi) are both subterms of t.
Let ≈1 be the sheaf relation generated by S, let ≈2 be the equivalence and
restricted to t congruence relation generated by E = {ui = vi}i=1,...,n, and let
≈3 be the minimal equivalence and congruence relation generated by E (without
restrictions).
Then ≈1⊆≈2⊆≈3.

The converse inclusions do not hold, in general, as the following example
proves.

Example 5.34 Let t = g(f(a), f(b), c, f(d)), and S = {〈a = b, •〉, 〈b =
c, •〉, 〈c = d, •〉}. We have

f(a) ≈3 f(b) ≈3 f(d)
f(a) ≈2 f(b) 6≈2 f(d)
f(a) 6≈1 f(b) 6≈1 f(d)

The distinction between ≈2 and ≈3 could seem negligible, but it is extremely
important. In fact, dropping out it would lead us to a fake proof of Conjec-
ture 5.22!! (see Remark 5.43).

We are interested on equivalence relations on subterms of t, defining a unique
equivalence class of subterms.

Definition 5.35 Given a term t, and an equivalence relation ≈ on subterms of
t, we say that ≈ collapses t if ≈ relates every pair of subterms of t.
Given a term t we say that it has at most n independent subterms, if, for every
set {u1, . . . , un+1} of subterms of t, there exists at least two of them, ui and uj ,
such that i 6= j and either ui is subterm of uj or vice-versa.

5.7. Some Hints in Favor of the Rank-Bound Conjecture 93

Then, we can reformulate Conjecture 5.22 as follows.

Conjecture 5.36 There exists a computable function Φ such that, for any term
t, if there exists a sheaf relation ≈ generated by a set of n sheaves, and collapsing
t, then rank(t) ≤ Φ(n).

Conjecture 5.37 There exists a computable function Φ such that, for any term
t, if there exists an equivalence and restricted to t confluence relation≈ generated
by a set of n equations, and collapsing t, and t has at most n independent
subterms, then rank(t) ≤ Φ(n).

Theorem 5.38 If Conjecture 5.37 is true, then Conjecture 5.36 is also true.
If Conjecture 5.36 is true, then Conjecture 5.22 is also true.

Proof: The first implication is a direct consequence of Lemma 5.33, and the fact
that all subterms of t must be related by some of the sheaves, so there can be
as many independent subterms as sheaves.

The second implication requires a longer proof. Here, we only sketch some
of the main ideas in this proof. Let σ be a most general unifier of t ?= u. Let
ρ be a substitution instantiating, fresh first-order variables introduced by σ,
by a constant a, and fresh n-ary context variables by some size-minimal term
λx1 · · ·xn. f(x1, . . . f(xn−1, xn) . . .). Now, we will prove that we can collapse the
term ρ(σ(t)) using a number of sheaves bounded on the size of t ?= u.

A most general unifier σ of a context unification problem t ?= u defines a
morphism d from positions in t to positions in σ(t), and a similar morphism d′

for u. The positions of σ(t) with inverse for such morphism are usually called
cut positions in the literature related with word unification.

Let F be a context variable with k occurrences in t and u, we can relate
positions inside the occurrences of σ(F) using k sheaves. We have to add now
some sheaves to relate the cut positions, but they are bounded by the size of
the unification problem. Finally, we have to relate the positions of the fresh
variables introduced by σ. This can be avoided for the first-order variables if we
instantiate them by the same constant (as ρ does). For the n-ary variables, we
can do it using as many sheaves as the sum of their arities, that also turns to be
bounded on the size of the unification problem.

Although Conjecture 5.36 and Conjecture 5.37 have not been proved, we
have been able to prove some variants of them (see Theorems 5.41 and 5.47).
We think that these proofs merits to be included in this thesis, as a justification
of our belief on the trueness of Conjecture 5.22.

5.7.1 First Hint

The first hint we present is the proof of a variant of Conjecture 5.37. Roughly
speaking, it states that, if we can orient the rules defining the equivalence and
congruence relation, obtaining a rank-decreasing and confluent rewrite system,
then the conjecture is true.

94 Chapter 5. Context Unification and Traversal Equations

Assume for the rest of the section that R = {ui → vi}i=1,...,n is a ground
term rewriting system such that it is rank decreasing, i.e. rank(ui) ≥ rank(vi),
for any i = 1, . . . , n, terminating and confluent. We prove the following Lemma:

Lemma 5.39 Let u rewrites to v using the above mentioned rewriting system
in n steps, and let v be a subterm of u, then there exists a subterm s of u, and a
subterm s′ of the left-hand side of some rule ui → vi ∈ R used in u →∗ v, such
that rank(s) = rank(u)− 1 and s rewrites to s′ in ≤ n steps.

Proof: Let p be the position of some occurrence of v in u, i.e. u|p = v. By
the properties of the rank, there exist two subterms u|q and u|q′ of u such that
rank(u|q) = rank(u|q′) = rank(u) − 1, and neither q is a prefix of q′, nor vice-
versa. Therefore, at least, one of them, say q, is not a prefix of p · p · · · p nor
vice-versa, for arbitrarily long sequences p · p · · · p. Let be s = t|q .

Since u rewrites to v in n steps, u|q rewrites to v|q in ≤ n steps, or u|q rewrites
to some subterm of the left-hand side of some rule ui. In the second case, we
are finish. In the first case, since u|p = v we have v|q = u|p·q and we can repeat
the same reasoning. The term u|p·q rewrites to v|p·q , or to some subterm of the
left-hand side of some rule. In this way, we can construct a rewriting sequence
of the form:

u|q →
∗ v|q = u|p·q →

∗ v|p·q = u|p·p·q →
∗ v|p·p·q →

∗ · · ·

Since the rewriting system is terminating this sequence can not be infinite.
All the rewriting steps of this sequence correspond to distinct rewriting steps of
the rewriting sequence u →∗ v. More precisely, for any rewriting step s1 → s2
of these sequence, there is a distinct rewriting step s′1 → s′2 in u→∗ v, such that
s1 = s′1|pm·q and s2 = s′2|pm·q, for some m ≥ 0. (Notice that for any n 6= m, pn ·q
is not a prefix of pm · q, nor vice-versa). Therefore the length of this rewriting
sequence is ≤ n, as stated by the Lemma.

The following Lemma states how the rank of a term decreases when we
rewriting it.

Lemma 5.40 Let R be a rank-decreasing rewriting system. If u →R v in one
step, then either rank(u) − 1 ≤ rank(v) ≤ rank(u) or there exists a rewriting
rule ui → vi ∈ R such that rank(ui) = rank(u).

Proof: By the properties of the rank, u contains two independent subterms u|p
and u|q with rank(u|p) = rank(u|q) = rank(u)− 1. Then either the redex of the
rewriting step contains both subterms, or at least one of them remains unchanged
after the rewriting step. In the first case, the redex has rank equal to rank(u).
In the second case, the rank of v is at least rank(u) − 1, since it contains the
unchanged subterm of such rank, and at most rank(u), since the rewriting step
is rank-decreasing.

Now, we can state the variant of Conjecture 5.37.

5.7. Some Hints in Favor of the Rank-Bound Conjecture 95

Theorem 5.41 For any term t, if there exists a rank-decreasing, terminating,
and confluent rewriting system R = {ui → vi}i=1,...,n collapsing t, and t has at
most n independent subterms, then rank(t) ≤ (n+ 1)2.

Proof: Since the rewriting system is terminating and confluent, and it relates
(collapses) all subterms of t, all subterms of t can be rewritten into the same
normal form. Now, since the rewriting system is also rank-decreasing, the normal
form has to be a subterm of rank zero, i.e. a 0-ary constant. For any i = 1, . . . , n,
let ri = rank(ui) and rn+1 = rank(t). Assume without loss of generality that
r1 ≤ · · · ≤ rn ≤ rn+1. Notice that r1 ≤ 1 (otherwise, terms of rank 1 could not
be rewritten into the normal form).

If ri+1 − ri ≤ n+ 2, for all i = 1, . . . , n, then the proof is done.
Otherwise, there exists some i = 1, . . . , n, such that ri+1 − ri > n + 2.

Notice that t contains subterms of any rank between 0 and rn+1. Consider a
subterm u of t with rank(u) = ri+1−1. By Lemma 5.40, any rewriting sequence
u = u1 → · · · → un+1 → · · · from u to the normal form satisfies rank(ui)− 1 ≤
rank(ui+1) ≤ rank(ui), for i = 1, . . . , n, i.e. during the n first steps, the rank
only decreases in at most one unity. Therefore, we have rank(ui) ≥ ri+1 − i, for
i = 1, . . . , n + 1. Now, since there are at most n independent subterms, there
exist 1 ≤ i < j ≤ n + 1 such that uj is a subterm of ui. By Lemma 5.39,
there exist some subterm v of ui with rank(v) = rank(ui) − 1 that rewrites to
some subterm s of the left-hand side of some rule, in ≤ j − i steps. We have
rank(v) = rank(ui) − 1 ≥ ri+1 − i − 1. Again, by Lemma 5.40, in ≤ j − i
steps, the rank can decrease in at most j − i unities and we get a term with
rank(s) ≥ ri+1− i− 1− (j − i) = ri+1− j− 1. On one hand, since j ≤ n+ 1, we
have rank(s) ≥ ri+1 − n− 2 > ri. But, on the other hand, s is a subterm of the
left-hand side of some rewriting rule used in the rewriting sequence u1 →∗ un+1,
therefore rank(s) ≤ ri. This contradicts the assumption ri+1 − ri > n+ 2.

Remark 5.42 The rank of a term respects the subterm relation, i.e. if u is a
subterm of t, then rank(u) ≤ rank(t). This means that, given a set of ground
equations E = {ui = vi}i=1,...,n, it is always possible to orient them to obtain a
terminating ant rank-decreasing rewriting system R = {ui → vi}i=1,...,n, using,
for instance a Knuth-Bendix ordering.

Remark 5.43 Given a terminating and rank-decreasing rewriting system R =
{ui → vi}i=1,...,n, it is always possible to obtain an equivalent rewriting system
R′ such that R′ is, apart from rank-decreasing and terminating, confluent. We
can apply, for instance, a Knuth-Bendix completion process where, every time
we find a non-confluent critical pair t[v2]← t[u2] = u1 → v1, we replace the rule
u1 → v1 by either t[v2] → v1 or v1 → t[v2], depending on the rank-decreasing
ordering. This completion process always terminates and does not increase the
number of rewriting rules.
From these remarks, one could be tempted to infer that, once we have a set
of ground equations E = {ui = vi}i=1,...,n, we can obtain a rewriting system
accomplishing the conditions of Theorem 5.41 and prove Conjecture 5.37. Un-

96 Chapter 5. Context Unification and Traversal Equations

fortunately, these remarks only apply to the usual congruence and equivalence re-
lations, but not to the restricted to t congruences considered in Conjecture 5.37.

5.7.2 Second Hint

The quadratic bound stated by Theorem 5.41 can be reduced to O(n logn).
First, we define the rational rank of a term as follows:

rrank(a) = 0

rrank(f(t, u)) = max

rrank(t)

rrank(u)

rrank(t) + rrank(u)
2

+ 1

The rational rank and the usual rank do not differ in more than one unity:

rank(t) ≤ rrank(t) ≤ rank(t) + 1

Using the rational rank it is possible to narrow the bounds stated in
Lemma 5.40, and obtain the bound annunciated.

In the sequel, we prove a variant of Conjecture 5.36 for a measure of terms,
called average depth, and inspired in the rational rank.

Definition 5.44 The average depth of a term is defined recursively as follows:

adepth(a) = 0

adepth(f(t, u)) =
adepth(t) + adepth(u)

2
+ 1

Like in the case of rank, any term contains subterms of any average depth
between zero and the total average depth of the term.

Lemma 5.45 For any term t, and any integer n ≤ adepth(t), there exists a
subterm u of t such that

n ≤ adepth(u) < n+ 1

Proof: By structural induction on t. If t = f(t1, t2), for some i = 1, 2, we
have adepth(ti) ≥ adepth(t) − 1. Now, if n ≤ adepth(ti), apply the induction
hypothesis to ti, and take the u given in such case. Otherwise, from adepth(t)−
1 ≤ adepth(ti) < n ≤ adepth(t), we can conclude n = badepth(t)c, and take
u = t.

The following is a technical lemma:

Lemma 5.46 Let G = (V,E) be a connected graph, where V ⊂ R. The number
of intervals of the form [n, n + 1), for some integer number n, beaten by G is

5.7. Some Hints in Favor of the Rank-Bound Conjecture 97

bounded on twice the number of edges with length longer than 1 plus the sum
of the lengths of the rest of edges.
Formally, if the length of an edge is the difference between its extremes,

|{bnc | n ∈ V }| ≤ 2 |{e ∈ E | length(e) > 1}|+
∑

e∈E

length(e)≤1

length(e)

Theorem 5.47 For any term t, if there exists a sheaf relation ≈ generated by
a set of n sheaves collapsing t, then adepth(t) ≤ n2.

Proof: Let S = {〈ui = vi, Ci〉}i=1,...,n be the set of sheaves. Let G = (V,D) be
the graph defined by the set of vertexes

V = {adepth(C ′′
i (ui)), adepth(C ′′

i (vi)) | 〈ui = vi, Ci〉 ∈ S ∧ Ci = C ′
i(C

′′
i)}

and the set of edges

E = {〈adepth(C ′′
i (ui)), adepth(C ′′

i (vi))〉 | 〈ui = vi, Ci〉 ∈ S ∧ Ci = C ′
i(C

′′
i)}

If ≈ is collapsing, then G is connected.
Let d be the maximal average depth of some subterm of t. The values of V

are bounded on d.
Let li = | adepth(ui)−adepth(vi)|. The sheaf 〈ui = vi, Ci〉 generates an edge

of length li, another of length li/2,. . . until another of length li/2
ki , being ki the

depth of the argument in Ci. Now, since li ≤ d, this sheaf generates at most
log(d) + 1 edges longer than one. The sum of the lengths of the rest of edges
generated by this sheaf is smaller than 2. Using Lemma 5.46, we can conclude
that the number of intervals beaten by the average depths of the sheaves is
bounded by 2n (log(d) + 2).

On the other hand, according to Lemma 5.45, if t contains a subterm with
average depth d, then it contains subterms with average depth beating any
interval [n, n+ 1[with n ≤ d. We have to beat bdc of such intervals. Therefore

2n (log(d) + 2) ≥ d− 1

This inequality implicitly defines a bound of d in terms of n. In particular, we
can conclude d ≤ n2 for large enough values of n.

Remark 5.48 Unfortunately, a bound in the average depth of a term does not
imply a bound on its rank. For instance, the infinite rational term generated by
the recursion t = f(f(t, b), f(b, t)) has adepth(t) = 4 and rank(t) =∞.
We can generalise the definition of average depth to

adepth(f(t, u)) =
adepth(t) + adepth(u)

k
+ 1

for any value k > 1. We obtain then a result similar to Theorem 5.47 that suggest
us that, if Conjecture 5.22 turns to be false, then counter-examples must be some
form of “sparse” terms, i.e. terms with small generalized average depth.

98 Chapter 5. Context Unification and Traversal Equations

5.8 Summary

In this chapter we have proved that, if the rank-bound conjecture is true, then
Context Unification is decidable. This rank-bound conjecture requires the ex-
istence of a computable function Φ that allows us to ensure that if the given
Context Unification problem P is solvable then it has a solution whose rank
does not exceed Φ(|P |). This measure is non-trivial because a bound on the
rank does not imply any bound on the size.

The existence of such a computable function would allow us to reduce solv-
ability of context equations to solvability of word equations with regular con-
straints, the solvability of which is decidable.

Our opinion is that, knowing how hard it has been to prove Word Unification
decidability and knowing also how closely related Word Unification is to Context
Unification, this reduction helps to avoid some of the intrinsic complexity in the
proof of Context Unification decidability.

This reduction requires several encoding steps and has led us to define traver-
sal equations and rank and permutation-bound traversal equations. We have also
proved that solvability of the latter is decidable.

Chapter 6

From Linear Second-Order

Unification to Context

Unification with

Tree-Regular Constraints

Linear Second-Order Unification and Context Unification are closely related
problems. However, the equivalence between both problems has not been proved.
Context Unification can be defined as a restriction of Linear Second-Order Uni-
fication. In this chapter we prove that Linear Second-Order Unification can be
reduced to Context Unification with tree-regular constraints. We also show that
rank-bound tree-regular constraints can be reduced to word-regular constraints.
These two results, together with the results of the previous chapter, suggest us
to comment on the possibility that Linear Second-Order Unification is decidable,
if Context Unification is.

The work of this chapter is based on (Levy and Villaret, 2000).

6.1 Introduction

Context Unification can be defined as a restriction on Linear Second-Order Uni-
fication where third- or higher-order constants are not allowed, there are no
internal λ-bindings, and the external ones are only used to denote the param-
eters of a second-order variable. The common belief was that third- or higher-
order constants do not play an important role with respect to the decidability of
both problems, neither the use of λ-bindings. However, the equivalence of both
problems has never been proved.

The naive attempt to reduce Linear Second-Order Unification to Context
Unification by replacing bound variables by new constant symbols does not work.
This is because we have to ensure that substitutions avoid variable capture. For

99

100 Chapter 6. From LSOU to CU with TR-Constraints

instance, the following linear second-order unification problem:

λx. f(x) ?=lsou λx. f(Y)

is not solvable1. However, applying the naive reduction to this problem we get
the following context unification problem:

f(cx)
?=cu f(Y)

that is obviously solvable, being the substitution [Y 7→ cx] a unifier.
We can try to apply a more sophisticated reduction. Take the original linear

second-order unification problem and replace the bound variables by two distinct
constants in two equations (instead of just one). This would avoid that the
instance of a free variable could contain constants corresponding to a bound
variable translation.

However, this method only works for the most external λ-bindings. Applying
the reduction to the following solvable linear second-order unification problem
with internal λ-bindings:

f(g(λx. x), a) ?=lsou f(Y, Z)

we get the following unsolvable context unification problem:

f(g(cx), a)
?=cu f(Y, Z)

f(g(c′x), a)
?=cu f(Y, Z)

whereas the original problem has this unifier [Y 7→ g(λx. x), Z 7→ a].
Bindings can transform free variables into bound variables at different depths.

Somehow we have to ensure that if an instance of a variable (unknown) contains
a bound variable, then it also contains its corresponding λ-binding. For instance,
given the linear second-order unification problem F (X) ?=lsou g(λy. y, a) and
the following substitutions:

σ1 = [X 7→ a, F 7→ λz. g(λy. y, z)]
σ2 = [X 7→ y, F 7→ λz. g(λy. z, a)]
σ3 = [X 7→ g(λy. y, a), F 7→ λz. z]

only σ1 and σ3 are unifiers. As we will show, such a restriction can be ensured
by means of tree automata (Comon et al., 1997), but it does not seem easy to
be simply encoded in terms of context equations.

On the other hand, we have also shown in Subsection 3.3.1 that Context
Unification and Word Unification are also closely related problems. Word Uni-
fication with regular restrictions is decidable (Schulz, 1991). Tree-regular lan-
guages are to terms the same as regular languages are to words. Therefore,
if Context Unification turns out to be decidable, then it seems reasonable to

1The substitution σ = [Y 7→ x] gives us: σ(λx. f(x)) = λx. f(x) 6=λ λy. f(x) = σ(λx. f(Y))
but both terms are not λ-equivalent, because an α-conversion is needed in order to avoid the
capture of variable x.

6.2. Preliminaries 101

think that Context Unification could be enriched with tree-regular restrictions
without losing decidability. To support this hypothesis, we would like to prove
that membership equations on tree-regular languages can be reduced to mem-
bership equations on (word) regular languages, by encoding terms as traversal
sequences. Unfortunately, we can only prove this reduction for a certain subset
of tree-regular languages (what we call rank-bound tree-regular languages).

We have conjectured in the previous chapter that whenever a context unifi-
cation problem is solvable, it has a rank-bound unifier. Unfortunately, it is not
clear what happens with Context Unification with tree-regular constraints prob-
lems, and hence it is not known what could happen with Linear Second-Order
Unification decidability.

This chapter proceeds as follows. We reduce Linear Second-Order Unification
to Context Unification with tree-regular constraints in Section 6.3. In Section 6.4
we reduce rank-bound tree-regular restrictions to word-regular restrictions. In
Section 6.5 we discuss the effects that this reduction could have in terms of
decidability for Linear Second-Order Unification. Finally, in Section 6.6 we
discuss whether this results could be extended to Linear Third- or Higher-Order
Unification.

6.2 Preliminaries

Firstly we are going to define what are tree automata and tree-regular languages.
The main reference of this topic is (Comon et al., 1997), and a pioneer work in
relating tree-automata and unification or matching is the work of Comon and
Jurski (1997).

Definition 6.1 A non-deterministic finite tree automaton (tree automaton for
short) A is a tuple (Σ, Q,Qf ,∆) where:

• Σ is a finite signature,

• Q is a finite set of states,

• Qf ⊆ Q is the set of final states,

• ∆ is a transition relation: it is a finite set of rules of the form:

f(q1, . . . , qn)→ q

where f ∈ Σ is n-ary and q1, . . . , qn ∈ Q.

Definition 6.2 A tree automaton A accepts (respectively accepts in state q) a
term t ∈ T (Σ, ∅) and a state qf ∈ Qf such that t→∗

∆ qf (respectively t→∗
∆ q).

The language L(A) recognised by a tree automaton A is the set of terms which
are accepted by A.
A language L is said to be tree-regular if there exists a tree automaton A such
that L(A) = L.

102 Chapter 6. From LSOU to CU with TR-Constraints

Example 6.3 Consider the automaton A defined by:

(Σ = {cons(,), s(), 0, nil} ,
Q = {qN , qL} ,
Qf = {qL} ,
∆ = {nil→ qL, cons(qN , qL)→ qL,

0→ qN , s(qN)→ qN})

This automaton recognises the set of Lisp-like lists of naturals. For instance:

cons(0, cons(s(0), cons(s(s(0)), nil)))

Theorem 6.4 [Comon et al. (1997)] Given a term t and a tree automaton A,
the membership question t ∈ L(A) is decidable in polynomial time.

Theorem 6.5 [Comon et al. (1997)] The class of recognisable tree languages is
closed under union, under intersection and under complementation.

As we have done in the introduction of the chapter, in the rest of the chapter,
willing to help on readability, we will denote linear second-order equations with
the symbol ?=lsou and context equations with ?=cu .

Definition 6.6 A context unification problem with tree-regular constraints is a
context unification problem with a tree-regular constraint v ∈ A.2 A solution is
a ground substitution σ solving the context unification problem, and satisfying
σ(v) ∈ L(A).

Fact 6.7 The solvability of the set of tree-regular constraints {t1 ∈ L(A1), · · · ,
tn ∈ L(An)} is equivalent to the solvability of f(t1, . . . , tn) ∈ L(A) where A
has a copy of each Ai plus a transition f(qf1 , . . . , qfn

) → qf for any possible
combination of final states of Qf1 , . . . ,Qfn

. Then, Qf of A is simply {qf}.

Fact 6.8 A linear second-order unification problem is solvable if and only if,
properly extending the signature, there exists a ground unifier.

Proof: We only need the existence of a 0-ary constant and a constant of arity
greater or equal to 2. In Linear Second-Order Unification this does not affect
the unifiability of problems whereas in Context Unification it does as we have
already seen in Subsection 3.2.3.

For simplicity we assume that the signature of the problem is finite and allows
us to ensure the existence of a ground solution whenever a solution exists. Recall
that this fact can always be guaranteed if we extend the signature ensuring that
it contains at least a 0-ary constant for any base type and a binary function.

Sometimes we will denote λ-abstractions as λ~x. t, where ~x denotes a list of
bound variables.

2Notice that a set of tree-regular constraints is equivalent to just one constraint, (see
Fact 6.7).

6.3. Reducing LSOU to CU with TR-Constraints 103

6.3 Reducing Linear Second-Order Unification

to Context Unification with Tree-Regular

Constraints

In this section, we prove that Linear Second-Order Unification can be reduced
to Context Unification with tree-regular constraints. We reduce the linear
second-order unification problem to a context unification problem by removing
λ-bindings and constants with order higher than two, and adding tree-regular
constraints to ensure that unifiers correctly treat bound variables occurring in
the problem. Recall that in second-order languages, λ-bindings of normal terms
are always just below higher-order constants or bound variables, or are the most
external symbol. They are never just below free variables.

Definition 6.9 Let the signature be Σ and the set of variables be X , the trans-
lation will be performed firstly removing external λ-bindings as a sort of pre-
process, and then removing internal λ-bindings and higher-order constants in a
three-step process:

Preprocess, we can eliminate external λ-bindings by extending the signature
Σ with an appropriate new unary constant o (if it does not contain any) and
translating the equation λ~x. s ?=lsou λ~y. t into o(λ~x. s) ?=lsou o(λ~y. t). This
new problem does not have external λ-bindings and is equivalent to the original
one.

First, we conjecture an α-conversion of bound variables in order to allow unifi-
cation when they are later translated into constants in the following step. Notice
that the second step of this translation procedure depends on the “names” of
these bound variables.

Second, let B ⊂ X be a finite set of variables and let A ⊂ Listsof (B) be a
finite set of lists of variables from B. We define a translation function transA,B

that replaces any occurrence of a variable from B by a new first-order constant,
and any occurrence of a λ-abstraction, whose list of bound variables is in A, also
by a new constant. This set B will be the set of bound variables of the unification
problem resulting from step 1, and A will be the set of lists of variables used in
the λ-abstractions.
The signature Σ′ of the resulting context unification problem also depends on
the set B of bound variables conjectured in the previous step, and on the set A
of lists of variables of the λ-abstractions. It is defined as follows: Σ′ contains the
same constants as Σ, but every constant h or bound variable z, with order higher
than two, is replaced in Σ′ by a new second-order constant h′ or cz respectively.
The arity of h′ (similarly for cz) is equal to the arity of h plus its number of
non-first-order arguments. Any non-first-order n-ary argument of h with type
τ1 → · · · → τn → τ0 is replaced by two first-order arguments (one for the λ-
abstraction and one for the body). For instance, if h : ι → (ι → ι) → ι then

104 Chapter 6. From LSOU to CU with TR-Constraints

h′ : ι → ι → ι → ι. The signature Σ′ also contains a new constant symbol
b[x1,...,xn], for every list [x1, ..., xn] ∈ A, and a new constant symbol cx, for every
variable x ∈ B. The set of variables of the resulting problem is X ′ = X\B.
Let t ∈ T (Σ,X) be a term, B ⊂ X a finite set of variables, and A ⊂ Listsof (B)
a finite set of lists of variables from B. The term transA,B(t) ∈ T (Σ′,X ′) is
defined by:

1. transA,B(c) = c

2. transA,B(f(t1, ..., tn)) = f(transA,B(t1), ..., transA,B(tn))

3. transA,B(X) =

{
X if X 6∈ B
cX if X ∈ B

)

4. transA,B(F (t1, ..., tn)) =

{
F (transA,B(t1), ..., transA,B(tn)) if F 6∈ B
cF (transA,B(t1), ..., transA,B(tn)) if F ∈ B

5. transA,B(h(t1, ..., tn, λ ~x1. u1, ..., λ ~xm. um)) =

= h′(transA,B(t1), ..., transA,B(tn), b ~x1
, transA,B(u1), ..., b ~xm

, transA,B(um))

6. transA,B(z(t1, ..., tn, λ ~x1. u1, ..., λ ~xm. um)) =

= cz(transA,B(t1), ..., transA,B(tn), b ~x1
, transA,B(u1), ..., b ~xm

, transA,B(um))

7. transA,B(λ~x. t) = λ~x. transA
′,B\~x(t)

In the fifth and sixth case, for constants h and variables z with order higher than
two, we have assumed, for simplicity, that non-first-order parameters are in the
last positions. The constant h′ is the second-order constant associated to h, cz
is the constant associated to the variable z, and b ~xi

is the constant associated
to the list of variables ~xi ∈ A of the λ-binding λ~xi. If, for some i ∈ {1..m},
~xi 6∈ A, then the translation is undefined. In the latter case, A′ is the set of
lists A where any list containing variables from ~x has been removed. Notice that
most external λ-bindings are not removed by this translation, hence it behaves
as we may expect when applied to unifiers.

Third, we introduce a set of tree-regular restrictions over the instantiations
of variables to prevent them from containing constants associated to bound
variables from B without its corresponding λ-bindings. The tree automaton
AA,B = 〈Σ′,Q,Qf ,∆〉 that characterises the set of linear terms that do not
contain these bound variables from B in free positions is defined as follows.

• The signature contains the set of constants Σ′. Notice that it is finite
because Σ, B and A are finite. Remember that Σ′ allows us to ensure that,
if a certain context unification problem S is solvable then, S has a ground
solution.

• The set of states is Q = {qX |X ⊆ B}∪{pX |X ∈ A}; where B is the (finite)
set of bound variables of the problem and A is the (finite) set of lists of
bound variables of the λ-bindings of the problem.

6.3. Reducing LSOU to CU with TR-Constraints 105

• There is a single final state Qf = {q∅}

• The set of transitions ∆ is defined as follows:

– For any first-order constant a ∈ Σ′ not associated to a variable
from B:

a→ q∅

– For any first-order constant cx associated to a bound variable x ∈ B
and any first-order constant b~y associated to a list of bound variables
~y ∈ A:

cx → q{x}
b~y → p~y

– For any second-order constant f ∈ Σ′ not associated to a variable
from B, and states qA1 , . . . , qAn

:

f(qA1 , ..., qAn
)→ qA1∪...∪An

provided for all i 6= j ∈ {1..n}, Ai ∩ Aj = ∅.

And, for any constant cx associated to a bound variable x ∈ B, and
states qA1 , . . . , qAn

:

cx(qA1 , ..., qAm
)→ qA1∪...∪An∪{x}

provided for all i 6= j ∈ {1..n}, Ai ∩ Aj = ∅, and x /∈ Ai.3

– For any second-order constant h′ ∈ Σ′ associated to a higher-order
constant h ∈ Σ, and states qA1 , . . . , qAn

, pB1 , qC1 , ..., pBm
, qCm

:

h′(qA1 , ...qAn
, pB1 , qC1 , ..., pBm

, qCm
)→ qD

where for i ∈ {1..m}, let An+i = (Ci \Bi) and

D =
⋃

i∈{1..n+m}

Ai

provided for all i ∈ {1..m}, all variables occurring in Bi also occur in
Ci, and for all j 6= k ∈ {1..(n+m)}, Aj ∩ Ak = ∅.

And for any second-order constant cz ∈ Σ′ associated to a higher-
order bound variable z ∈ B, and states qA1 , . . . , qAn

, pB1 , qC1 , ..., pBm
,

qCm
:

cz(qA1 , ...qAn
, pB1 , qC1 , ..., pBm

, qCm
)→ qE

And where for i ∈ {1..m}, let An+i = (Ci \Bi) and

E = {z} ∪
⋃

i∈{1..n+m}

Ai

3These provisos, as well as the ones of the next transition, ensure linearity. In the paper of
Levy and Villaret (2000), these provisos where omitted.

106 Chapter 6. From LSOU to CU with TR-Constraints

provided for all i ∈ {1..m}, all variables occurring in Bi also occur in
Ci, and for all j 6= k ∈ {1..(n+m)}, Aj ∩ Ak = ∅, and z /∈ Aj .

Notice that the Bk’s are treated as sets in the transitions but they
denote lists: λxy is not the same λ-abstraction as λyx, so they have
distinct associated constants but here they are treated as the same
set.

Then, we introduce a set of tree-regular restrictions over the translated problem.

• For any first-order variable X , the restriction X ∈ L(AA,B).

• For any second-order variable F , the restriction F (a, ..., a) ∈ L(AA,B),
where a ∈ Σ′ is a first-order constant not associated to any bound variable,
nor to a λ-binding.

Example 6.10 Given the problem f(X,X) ?=lsou f(g(λx. F (x)), F (g(λy. y))),
with unifier σ = [F 7→ λx. x, X 7→ g(λx. x)], we can conjecture the following α-
equivalent problem f(X,X) ?=lsou f(g(λx. F (x)), F (g(λx. x))) (this is the only
solvable one), and translate it into the following context unification problem
with tree-regular constraints:

f(X,X) ?=cu f(g′(b[x], F (cx)), F (g′(b[x], cx)))

σ(X) ∈ L(A{[x]},{x})
σ(F (a)) ∈ L(A{[x]},{x})

where the transitions of the tree automaton A{[x]},{x} are the following:

a→ q∅ b[x] → p{x} cx → q{x}
f(q∅, q∅)→ q∅ f(q∅, q{x})→ q{x} f(q{x}, q∅)→ q{x}
g′(p[x], q{x})→ q∅

Notice that the transitions f(q{x}, q{x})→ q{x} and g′(p[x], q∅)→ q∅ are not
present in the automaton, otherwise the linearity on the instances of variables
would not be guaranteed. Notice also, that the translation of substitution σ is
also a solution of the translated problem of context unification with tree-regular
constraints: [F 7→ λx. x, X 7→ g′(b[x], cx)].

In the following lemmas we assume that all the bound variables of the prob-
lem are in B and all lists of the λ-abstractions bound variables are in A.

Lemma 6.11 For any second-order substitution σ satisfying that σ(X) does
not contain variables of B in free positions, and satisfying also that the domain
of σ does not contain variables of B either, let σ′ = transA,B(σ) be the context
substitution defined by σ′(X) = transA,B(σ(X)). Then, for any term t we have

transA,B(σ(t)) = σ′(transA,B(t))

6.3. Reducing LSOU to CU with TR-Constraints 107

Proof: By structural induction on t. For most cases, it is trivial. Let us see the
two main cases.

If t = h(t1, ..., tn, λ ~x1.u1, ..., λ ~xm.um)) where h is a higher-order constant,
then assume variables of ~xi are in B (otherwise it is trivial), and σ(X) does not
have variables fromB in free positions. We have σ(t) = h(σ(t1), ..., λ ~x1.σ(u1), ...)
and

transA,B(σ(t)) = transA,B(h(σ(t1), ..., λ ~x1.σ(u1), ...))
= h′(transA,B(σ(t1)), ..., b ~x1

, transA,B(σ(u1)), ...)
= h′(σ′(transA,B(t1)), ..., b ~x1

, σ′(transA,B(u1)), ...)
= σ′(transA,B(t))

If t = F (t1, ..., tn) where σ(F) = λx1...xn. u then,

transA,B(σ(t)) = transA,B((λx1...xn. u)(σ(t1), ..., σ(tn)))
= (transA,B(λx1...xn. u))(transA,B(σ(t1)), ..., transA,B(σ(tn)))

= (λx1...xn. transA,B\{x1...xn}(u))(transA,B(σ(t1)), ..., transA,B(σ(tn)))
= σ′(F)(σ′(transA,B(t1)), ..., σ

′(transA,B(tn))))
= σ′(F (transA,B(t1), ..., transA,B(tn)))
= σ′(transA,B(t))

Lemma 6.12 For any closed first-order term t,

transA,B(t) ∈ L(AA,B)

if and only if:

1. the set of bound variables of t is a subset of B

2. the set of lists of the bound variables of the λ-abstractions of t, is a subset
of A

3. t is linear

Proof:

(⇒) The term transA,B(t) only contains the variables that do not occur in B,
and the λ-abstractions whose lists are not in A. Then, by the construction of
AA,B , if transA,B(t) ∈ L(AA,B), then transA,B(t) does not contain any variable
nor any λ-abstraction, therefore conditions 1 and 2 must hold. For condition 3,
we only need to check that the provisos in the tree automaton transitions enforce
linearity in transA,B(t) for the original term t. This can be done by structural
induction on t.

108 Chapter 6. From LSOU to CU with TR-Constraints

(⇐) Notice that the function transA,B translates any variable from t belonging
to B into a constant cx (except for bound variables bound by the most external
bindings, but recall that t is first-order), and all λ-abstractions λ~y, ~y ∈ A into
a constant b~y. We also know that t is linear, therefore, transA,B /∈ L(AA,B)
only if the tree automaton detects free occurrences of variables x ∈ B. The tree
automaton has to reject terms containing constants cx, except if t also contains
a binding for x before or over it, i.e. if transA,B(t) also contains b[~y] as its
immediate left brother or as an immediate left brother of one of its predecessors,
for some list such that x ∈ [~y]. This is exactly what the automaton does. We
only have to prove, by structural induction on u, that if u→∗ qX , then X is the
subset of variables of B occurring in u and such that, for any x ∈ X , there is no
constant b[~y] occurring in u with x ∈ [~y] in the positions described before. But
this will not happen because t is a linear, closed, first-order term.

Theorem 6.13 A linear second-order unification problem s ?=lsou t is unifiable
if and only if there exists an α-equivalent unification problem s′ ?=lsou t′ such
that

transA,B(s′) ?=cu transA,B(t′)

and the corresponding tree-regular constraints are solvable. Here, B is the set
of bound variables of s′ and t′, and A is the set of lists of bound variables
corresponding to λ-abstractions of s′ and t′.

Proof:

(⇒) Let σ be a most general unifier of s ?=lsou t, it’s easy to prove that most
general unifiers do not introduce constants, bound variables or λ-abstractions
not occurring in s ?=lsou t (see for instance the procedure of Levy (1996)).
Being s (and t) and terms in Range(σ) in normal form, σ(t) only requires β-
recutions (not η-expansions) to be normalised, hence, no new λ-abstractions or
bound variables not occurring in s ?= t will be introduced4. This is true also for
extensions of σ that are closed without using λ-abstractions or bound variables
(like it is done in Theorem 4.15), let σ′ be such unifier. Then, we can conclude
that there exists an α-conversion that makes s and t α-equivalents to s′ and
t′ such that σ′(s′) is syntactically equal to σ′(t′). The α-conversion needed to
transform s into s′ and t into t′ is the one conjectured in step 1 of the translation
algorithm.

Let us see now that σc = transA,B(σ′) solves transA,B(s′) ?=cu transA,B(t′).
We have σ′(s′) = σ′(t′) and, by Lemma 6.11 (we can apply this Lemma because
obviously σ′ cannot contain variables of B in free positions), transA,B(σ′(s′)) =
σc(transA,B(s′)), therefore σc(transA,B(s′)) = σc(transA,B(t′)).

Now we have to see that σc(X) and σc(F (a, . . . , a)) satisfy the tree-regular
restriction, for any first-order variable X and second-order one F ∈ Dom(σc).
As σ′(X) does not contain any bound variable of the problem, i.e. any variable
from B, in free positions, and it is linear (otherwise σ′ would not be a valid

4recall that η-expansions introduce λ-abstactions and bound variables

6.4. Translating TR-Constraints to R-Constraints over Traversal Sequences 109

unifier), by Lemma 6.12 transA,B(σ′(X)) = σc(X) satisfies the tree restriction.
Similarly for F (a, . . . , a) when F is a context variable.

(⇐) This implication is based on two facts. First, the transA,B is injective.
This allows us to use the inverse of transA,B to compute the solution of the linear
second-order unification problem. Second, Lemma 6.12 and the tree restrictions
ensure that we do not capture any free variable, and that substitutions are linear
terms. Thus, the inverse translation of the solution for the translated (context)
problem is a correct linear second-order unifier of the original (linear second-
order) problem.

Corollary 6.14 Linear Second-Order Unification is reducible to Context Uni-
fication with tree-regular constraints.

Proof: The conjecture of an α-conversion is computable because, although we
have infinitely many possible names for bound variables, the only relevant choice
is whether we give the same name to two bound variables or two λ-bindings (and
in a problem there are finitely many).

6.4 Translating Tree-Regular Constraints to

Regular Constraints over Traversal

Sequences

We have seen in the previous chapter that, if the rank-bound conjecture is true,
then Context Unification is decidable. The proof is based on a reduction of Con-
text Unification to Word Unification with regular constraints. In this section we
will show that a certain kind of tree-regular languages can be reduced to regular
languages on the traversals of trees, mainly the rank-bound languages. This re-
sult suggests the possibility that, if the rank-bound conjecture is true, then the
decidability proof of Context Unification could be extended to Context Unifica-
tion with tree-regular constraints and therefore, Linear Second-Order Unification
would also be decidable. Nevertheless, as we will discuss in the next section, the
adaptation of the proof seems to require a stronger conjecture to hold.

In what follows we show how membership equations on tree-regular languages
of rank-bound terms can be reduced to membership equations on (word) regular
languages. We start by defining rank-bound tree automata.

Definition 6.15 For any tree automaton A = 〈Σ,Q,Qf ,∆〉, and any state
qi ∈ Q, we define5

rank(qi) = max{rank(t) |t ∈ L(〈Σ,Q, {qi},∆〉)}

For any tree automaton A = 〈Σ,Q,Qf ,∆〉, we define

rank(A) = max{rank(qi) | qi ∈ Qf}
5Notice that 〈Σ,Q, {qi},∆〉 is similar to A but with a unique final state qi.

110 Chapter 6. From LSOU to CU with TR-Constraints

A tree automaton A is said to be rank-bound if rank(A) <∞.

Notice that the rank of the states of a tree automaton satisfies the following
property:

• for any state q having only transitions like c → q, where c ∈ Σ is a 0-ary
constant, rank(q) = 0, and

• for any accessible state q0 having transitions like f(q1, q2) → q0, where
f ∈ Σ is a binary function symbol, we have:

rank(q0) ≥

{
max{rank(q1), rank(q2)} if rank(q1) 6= rank(q2)
rank(q1) + 1 if rank(q1) = rank(q2)

Next we will translate tree-regular restrictions to (word) regular restrictions
over traversal sequences of terms. We can assume that the signature Σ contains
just constants and a binary symbol (say f). The result can easily be extended
to any signature. The signature used in the (word) regular automata is the
extended signature of Σ (see Definition 5.4 and Definition 5.5).

Definition 6.16 For any rank-bound tree automaton A = 〈Σ,Q,Qf ,∆〉 and
any state q ∈ Q, we define a regular language Rq satisfying that

• for any term t ∈ L(〈Σ,Q, {q},∆〉), Rq ∩ trav(t) 6= ∅,

• and
Rq ⊆

⋃

t∈L(〈Σ,Q,{q},∆〉)

trav(t)

We will construct the automaton that recognises Rq using the following rules.
Assume that Rq′ is already computed for any state q′ ∈ Q with rank(q′) <
rank(q). Let n = rank(q). The automaton Rq has a pair of states pi and pf for
any state p of the tree automaton satisfying rank(p) = n, and some additional
states that will be specified later. The initial state of Rq is qi, and there is a
single final state which is qf . The set of transitions of Rq is defined as follows.

• Base case, for any state p ∈ Q satisfying rank(p) = n, and any transition
a→ p ∈ ∆, where a is 0-ary, we add a transition:

a

p i p f

from pi to pf labeled with a.

• Inductive case 1, for any state p0 with rank(p0) = n and any transition
f(p1, p2)→ p0 satisfying rank(p2) < rank(p1) ≤ rank(p0)

6

6Notice that if rank(p1) = rank(p2) = rank(p0) then rank(p0) = ∞ and the tree automaton
would be non-rank-bound. Thus the existence of a bound n for the rank of the tree automaton
is crucial in our translation.

6.4. Translating TR-Constraints to R-Constraints over Traversal Sequences 111

p i
0

p i
2

p f
2

f

0
pp f

1

[2,1]

p i

1
Rp

2

f

we can assume that Rp2 is already computed. We add a copy of the
automaton Rp2 , i.e. a copy of all its states and transitions (these are the
unspecified additional states). We also add a transition from pi0 to the
initial state of the copy of Rp2 labeled with f [2,1], an ε-transition from the

final state of Rp2 to pi1, and another from pf1 to pf0 .

For any transition f(p1, p2) → p0 satisfying rank(p1) < rank(p2) ≤
rank(p0) we do something similar using the label f [1,2]

• Inductive case 2, for any state p0 with rank(p0) = n and any transition
f(p1, p2)→ p0 satisfying rank(p1) < rank(p0) and rank(p2) < rank(p0)

f
[1,2]

p f

022
pRp

1
f

1
pRip

1
i
2

p p fp i
0

we can assume that Rp1 and Rp2 have been already computed. We add
a copy of each one of these automata, a transition from pi0 to the initial
state of Rp1 labeled with f [1,2], an ε-transition from the final state of Rp1
to the initial state of Rp2 , and another from the final state of Rp2 to pf0 .

The final automaton associated to A has the extended signature of Σ and con-
sists of an initial state q0, a copy of Rq for any final state q ∈ Qf , a ε-transitions
from q0 to each one of the initial states of the Rq ’s. The set of final states of A
is the set of final states of the Rq ’s such that q ∈ Qf .

Notice that with these cases, transitions like f(q, q)→ q are not considered,
because this means that rank(q) =∞, and q can not lead to a final state.

Example 6.17 The tree automaton defined by the following transitions:
0→ qN , pair(qN , qN)→ qP , nil→ qL,
s(qN)→ qN , cons(qP , qL)→ qL

is translated into the following regular automaton:

112 Chapter 6. From LSOU to CU with TR-Constraints

[1,2]
[1,2]

R R

R

Rq qP

i

L

q

q

P

suc

f

N

fi
L

q

iqf

0

qN

q

q

0

suc

N N

q

cons

N

q
P

i
pair

N
q

L
f

nil

The term cons(pair(suc(suc(0)), suc(0)), cons(pair(suc(0), 0), nil)) recognised
by the tree automaton has a traversal sequence:

cons[1,2] pair[1,2] suc suc 0 suc 0 cons[1,2] pair[1,2] suc 0 0 nil

recognised by the regular automaton.

Theorem 6.18 For any tree-regular language L(A) of a rank-bound tree au-
tomaton A, let L(B) be the (word) regular language recognised by the (word)
automaton B resulting from applying the previous translation. The following
properties hold:

1. If t ∈ L(A) then there exists a sequence l ∈ L(B) such that l ∈ trav(t).

2. If l ∈ L(B) then there exists a term t ∈ L(A) such that l ∈ trav(t).

Proof:

1) We first prove that for any term t, and any q ∈ Q, if t ∈ L(〈Σ,Q, {q},∆〉),
then there exists a sequence l ∈ trav(t) such that l ∈ Rq . This is proved by
structural induction on t.

• The term t = c is a constant. Then, if t ∈ L(〈Σ,Q, {q},∆〉), then it
has been accepted due to a transition c → q in the tree automaton. The
automaton Rq recognises the sequence c using a transition from qi to qf .

• The term is t = f(t1, t2) and is recognised using a transition f(p1, p2)→ q
of the tree automaton. By the induction hypothesis we can ensure that the
automaton Rp1 and Rp2 recognise a traversal sequence l1 of t1 and l2 of t2
respectively. The translation that we use for the transition f(p1, p2)→ q,
in the two possible cases, recognises a traversal of t. This is f [1,2]l1l2 or
f [2,1]l2l1, depending on the relation between the rank of p1 and of p2.

By the construction of B, if t ∈ L(A) then t ∈ L(〈Σ,Q, {q},∆〉) for some q ∈ Qf ,
and Rq recognises a traversal of t, therefore so does B.

6.4. Translating TR-Constraints to R-Constraints over Traversal Sequences 113

2) Firstly, we prove the following property of the automaton Rp.
For any states p1, p2 ∈ Q, if rank(p1) = rank(p2) = rank(p), then any word

w read when going from pi1 to pf2 in the automaton Rp satisfies w ∈ trav(t) for
some term t ∈ L(〈Σ,Q, {p1},∆〉).

To prove this result, we proceed by induction on the length of w and the
rank of p.

1. If w = a w′ where a is a constant, then after reading a we are in pf1 ,

and from pf1 to pf2 we can only follow ε-transitions (notice that, by the
definition of the translating rules, in an automaton Rp, all transitions

between final states pfj and pfk such that rank(pj) = rank(pk) = rank(p)
are ε-transitions), so w′ is the empty word. Along the whole path we have
only read a, where a ∈ L(〈Σ,Q, {p1},∆〉).

2. If w = f w′ where f is unary, then after reading f we are in some pi3.
There are two cases:

(a) If rank(p3) < rank(p1) then we are in the initial state of a copy of the
subautomaton Rp3 . By the induction hypothesis, the automaton Rp3
only recognises traversal sequences of terms t3 ∈ L(〈Σ,Q, {p3},∆〉).
After reading this traversal sequence and an ε-transition, we are in
pf1 . From there to pf2 we can only follow ε-transitions. Along the
whole path we have recognised a traversal sequence of f(t3).

(b) If rank(p3) = rank(p1) then applying the induction hypothesis, from

pi3 to pf2 we read a traversal sequence of some t3 ∈ L(〈Σ,Q, {p3},∆〉).
Along the whole path we have also recognised a traversal sequence of
f(t3) ∈ L(〈Σ,Q, {p1},∆〉).

3. If w = f w′ where f is binary, then after reading f we are in the initial
state of a copy of a subautomaton Rp3 where rank(p3) < rank(p1). After
reading a traversal sequence of some term t3 ∈ L(〈Σ,Q, {p3},∆〉) and an
ε-transition, we leave the subautomaton and go to some state pi4. Now we
have to consider the same subcases rank(p4) < rank(p1) and rank(p4) =
rank(p1), and proceed as when f is unary.

For p1 = p2 = p, the previous property states that any word recognised by
Rp corresponds to some traversal sequence of some term t ∈ L(〈Σ,Q, {p},∆〉).
From here, we can conclude that any word recognised by B corresponds to some
traversal sequence of some term recognised by A.

Notice that when we have crossed definitions between states, the induction
hypothesis on the rank of p is not enough and we need to use an induction
hypothesis on the length of the sequence. Here there is a typical example of
crossed definition:

f(p1)→ p2, b→ p2,
g(p2)→ p1, a→ p1

We get rank(p1) = rank(p2) and the following automaton:

114 Chapter 6. From LSOU to CU with TR-Constraints

g f

pi

2
p

2

f

p i
1

p f
1

b

a

In such situations, to prove that any path from pi1 to pf1 recognises a traversal
of some term t1, we have to use as induction hypothesis that any shorter path
from pi2 to pf2 recognises a traversal of some term t2.

The set of terms satisfying rank(t) ≤ n defines a tree-regular language. More-
over, this language can be recognised by a rank-bound tree automaton An. For
instance, if Σ = {a, b, h(), f(,)}, then

An =

Σ = {a, b, h(), f(,)}, Q = {q0, ..., qn, qn+1}, Qf = {q0, ..., qn},

∆ =

a→ q0, b→ q0,
h(qi)→ qi for any i ∈ [0..n+ 1]
f(qi, qj)→ qmax{i,j} for any i, j ∈ [0..n+ 1] with i 6= j
f(qi, qi)→ qi+1 for any i ∈ [0..n]

Rank-boundness can also be defined for languages, obtaining a good corre-
spondence with automata.

Definition 6.19 A tree-regular language L is said to be n rank-bound if for
any term t ∈ L we have rank(t) ≤ n. A tree-regular language L is said to be
rank-bound if there exists a natural number n such that L is n rank-bound.

Theorem 6.20 Any rank-bound tree-regular language is recognised by a rank-
bound tree automaton. The language recognised by a rank-bound tree automa-
ton is a rank-bound tree-regular language.

Definition 6.21 A rank-bound tree-regular constraint is a tree-regular con-
straint that recognises rank-bound languages.

Now, from Theorem 5.27 and Theorem 6.18 the following result holds:

Corollary 6.22 Context Unification with rank-bound tree-regular constraints
over all variables occurring in the problem is decidable.

6.5 About Decidability

Although we have proved that Linear Second-Order Unification can be reduced
to Context Unification with Tree-Regular Constraints, and that rank-bound reg-
ular constraints can be reduced to regular contraints on the traversals, it is not

6.6. Extending the Results to Higher-Order Unification 115

clear what happens with decidability of Linear Second-Order Unification in case
Context Unification turns out to be decidable.

What is true is that if Context Unification with tree-regular constraints were
decidable, then Linear Second-Order Unification would also be. But Corol-
lary 6.22 only proves decidability of Context Unification with rank-bound tree-
regular constraints.

In other words, if the conjecture turns out to be true, we just get decidability
of Context Unification, but this would not say anything about decidability of
Context Unification with tree-regular constraints. One could think that, given
a context unification problem S with tree-regular constraints R, one could build
a rank-bound tree regular constraint Rb, as the result of intersecting R and the
tree-regular constraints that state the bound on the rank of the solutions of S.
Unfortunately, there is no guarantee that any solution of S + R is rank-bound.
Therefore, satisfiability would not be preserved in S +Rb.

To “use” the rank, we would need a stronger conjecture like:

Conjecture 6.23 [Extended Rank-Bound Conjecture] There exists a com-
putable function Φ′ such that, for any solvable context unification problem t ?= u
with tree-regular constraints R, there exists a ground unifier σ satisfying

rank(σ(t)) ≤ Φ′(|t ?= u|, |R|)

We leave the study of this Conjecture and its implications for further work.

6.6 Extending the Results to Higher-Order

Unification

In Section 6.3 we have shown how Linear Second-Order Unification can be re-
duced to Context Unification with tree-regular constraints. In this section we
discuss whether this result could be extended to Linear Higher-Order Unifica-
tion.

Higher-Order Unification can be defined as the problem of finding a sub-
stitution σ making the normal form of two instances of terms σ(s) and σ(t)
equal. When we try to find such a substitution we have to take into account
how these terms will be β-reduced after being instantiated. The problem is
simple in linear second-order. We know that any instance of F (t1, ..., tn), after
β-reduction, will contain σ(ti) as subterms, and representing σ(F (t1, ..., tn)) as
a tree, all nodes corresponding to σ(F) will be connected, forming a context.
In third-order the situation is more complicate. If we apply the substitution
F 7→ λyz. g1(y(g2(z))) to F (λx. f(x), a) we get g1(f(g2(a))). The nodes corre-
sponding to F are no longer connected: σ(F) is broken into pieces, and some
of the arguments can also disappear. Each one of such pieces forms a kind of
context. For instance, if F : (ι → ι) → ι → ι, any instance of F (t1, t2) has one
of the following forms:

116 Chapter 6. From LSOU to CU with TR-Constraints

0F
0F 0F

F1
F1

t1 t2 1 2tt t1

t2

Each one of these situations is respectively captured by:

F 7→ λxy. F0(λz. x(z), y)
F 7→ λxy. F0(λ~z. x(F1(~z)), y)
F 7→ λxy. F0(λ~z. x(F1(y, ~z)))

In this example, F0 is still a third-order typed variable. Moreover, the first in-
stantiation is F 7→ F0 in normal form, so it subsumes the other two. The second
one is equal to the first one, if ~z contains a single variable and we instantiate
F1 7→ λz. z. In fact, this classification only makes sense if we translate F0 into
a context variable using the method described in Section 6.3 for higher-order
constants. We would get:

F 7→ λxy. F ′
0(dz, x(cz), y)

F 7→ λxy. F ′
0(X~z, x(F1(~cz)), y)

F 7→ λxy. F ′
0(X~z, x(F1(y, ~cz)))

The variable X~z encodes the binding λ~z. If we were able to know a priori how
long and with which types, can these λ-bindings be, then the translation would
not seem much more complicated than in the second-order case.

We believe that the results on Linear Higher-Order Matching of de Groote
(2000) and of Dougherty and Wierzbicki (2002) shed some light on this question.
But we leave this study for further work.

6.7 Summary

As we have already explained in Chapter 3, Linear Second-Order and Context
Unification are closely related problems and they have sometimes been identi-
fied. In this chapter we have shown that such an identification is not possible
in a naif sense. We have shown that the permission of using λ-bindings and
bound variables in Linear Second-Order Unification seems to really increase the
expressive power of this problem with respect to Context Unification.

Nevertheless, we have still been able to relate both problems by means of re-
ducing Linear Second-Order Unification to Context Unification with tree-regular
constraints. This reduction relies on the trick of translating λ-bindings and
bound variables to new constant symbols that codify the names of the bound
variables. The tree-regular constraints serve to guarantee that the reduction is
sound by means of avoiding variable capture and loss of linearity in the instan-
tiation of context variables.

6.7. Summary 117

Then, trying to be able to apply the results of Chapter 5 to Context Unifi-
cation with tree-regular constraints, we have shown that satisfiability of rank-
bound tree-regular constraints can be reduced to satisfiability of regular con-
straints over traversal sequences. We have argued why this reduction is not
enough and we have extended the rank-bound conjecture to deal also with tree-
regular constaints.

Finally, we have explained the difficulties that arise when trying to extend
the reduction of Linear Second-Order Unification to Context Unification with
tree-regular constraints, to Linear Higher-Order Unification.

Chapter 7

Describing Lambda-Terms

in Context Unification with

Tree-Regular Constraints

In this chapter we relate the Constraint Language for Lambda-Structures with
the Problem of Context Unification with tree-regular constraints. On the one
hand, the Constraint Language for Lambda-Structures has been shown to be
more suitable for applications in computational linguistics than Context Uni-
fication but, on the other hand, the unification framework is more computa-
tionally well-known and understood. Our result helps to better understand the
computational nature of the Constraint Language for Lambda-Structures, and
establishes a more precise “bridge” between both frameworks that can be used
to apply the theoretic results from one side to the other.

This chapter summarises the results of (Niehren and Villaret, 2002, 2003).

7.1 Introduction

In the Introduction Chapter we comment on the relevance of Higher-Order Uni-
fication in the field of computational linguistics (Dalrymple et al., 1991; Gardent
and Kohlhase, 1996; Miller and Nadathur, 1986), and more precisely of Linear
Second-Order (Pinkal, 1995) and Context Unification (Niehren et al., 1997b) in
modelling semantics of ambiguous sentences applications. There exists another
formalism for this last purpose, the so-called Constraint Language for Lambda
Structures (Egg et al., 2001), which is a first-order language that is more suitable
for representing semantic underspecification than Unification (see Section 7.3).
It has been proved that some fragments of this language are closely related to
Context Unification (Egg et al., 1998, 2001; Erk et al., 2002). On the one hand
it is known that the Dominance Constraints sublanguage (Koller et al., 1998),
which on its own deals with the dominance and labeling relation between nodes

119

120 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

of trees, is subsumed by the stratified fragment of Context Unification (Niehren,
2002), and it is also decidable (see Subsection 3.3.2). On the other hand, it has
been proved that the Parallelism Constraints sublanguage (Erk and Niehren,
2000), that in turn subsumes Dominance Constraints and deals with the par-
allelism relation between segments of trees, has the same expressive power as
Context Unification (Niehren and Koller, 2001), hence its decidability is still
unknown. Recently, a fragment of Parallelism Constraints has been introduced
and shown to be decidable by Erk and Niehren (2003), the so called well-nested
fragment. In spite of these equivalences, the algorithms used to solve these con-
straints have a nicer behaviour than the ones used to solve Context Unification
(Koller, 1998; Erk and Niehren, 2000; Althaus et al., 2003; Erk et al., 2002).

The Constraint Language for Lambda Structures also provides lambda bind-
ing and anaphoric binding constraints, and has been extended with beta reduc-
tion and group parallelism constraints. These constraints are used in applications
but their expressiveness has never been studied and the way they are related with
the Unification framework is still unknown.

In this chapter we partially ask these questions by relating Parallelism with
lambda binding constraints, with Context Unification. The key point of our
result is the non-intervenance property which is crucial to ensure soundness of
the solutions when eliminating lambda binding constraints and then translating
the problem to Context Unification. This property can be expressed by means
of a logic that we introduce and that is equal in expressiveness to tree automata:
the Monadic Second-Order Logic over Dominance Constraints (in fact, as we
will show, the first-order fragment is enough to make the translation). Then,
using several encoding tricks, we show that Parallelism with lambda binding
constraints can be expressed in Context Unification with tree-regular constraints.

One may think that if Parallelism Constraints are equivalent to Context Uni-
fication and we just add lambda binding constraints, we could directly translate
Parallelism with lambda binding constraints to Linear Second-Order Unifica-
tion, but as we will show in Section 7.3, the notion of binding required for the
constraint language is not the same as the notion of binding in λ-calculus and
hence it is not the same as in Linear Second-Order Unification.

In Section 7.2 we define the sublanguages of the Constraint Languages for
Lambda Structures that we consider in this Chapter. Then, in Section 7.3, we
show why the direct translation of Parallelism with lambda binding constraints
to Linear Second-Order Unification does not work. In Section 7.4 we introduce
the non-intervenance property. In Section 7.5 we prove that lambda binding
constraints can be eliminated using First-Order Dominance Formulae, hence we
can translate Parallelism with lambda binding constraints into Parallelism with
First-Order Dominance formulae. Section 7.6 is devoted to the introduction, for
the first time, of the Monadic Second-Order Dominance Logic and showing its
satisfiability equivalence with respect to tree-regular constraints. In Section 7.7
we extend this last equivalence result when considering Parallelism Constraints.
Finally, in Section 7.8 we complete the reduction to Context Unification with
tree-regular constraints. In Section 7.9 we comment on the limitations of the

7.2. The Parallelism and Lambda Binding Constraints Language 121

translation.

7.2 The Parallelism and Lambda Binding

Constraints Language

We now describe the semantics and the relations considered by the languages
that we are introducing; firstly, tree structures with the parallelism relation and
then an extension of them, the lambda structures with the parallelism relation
also. Then we introduce the syntax of the constraint languages that we consider.

We make the usual assumption of a given finite first-order signature Σ of
function symbols ranged over by f, g, h, . . . for functions and a, b, c, . . . for con-
stants where each function symbol has an arity arity(f) ≥ 0. We also assume
that there exists at least one constant a ∈ Σ of arity 0 and at least one binary
function symbol (say f ∈ Σ).

7.2.1 Tree Structures and Parallelism

The relation between terms and trees and its representation has been taken for
granted during all this work. We now make this relation precise in the approach
of the Constraint Language for Lambda Structures.

Definition 7.1 A finite tree τ (tree for short) over the signature Σ is a ground
term over Σ:

τ ::= f(τ1, . . . , τn)

where f ∈ Σ, n = arity(f) ≥ 0 and τ1, . . . , τn are trees. We identify a node of a
tree with the word of positive integers π that addresses this node from the root,
as it is done with subterms and positions in terms (see Definition 5.1):

nodesf(τ1,...,τn) = {ε} ∪ {iπ | 1 ≤ i ≤ n, π ∈ nodesτi
}

The empty word ε is called the root of the tree, i.e. root(τ) = ε, while a word
iπ addresses the node π of the i-th subtree of τ .
We freely identify a tree τ with the function τ : nodesτ → Σ that maps nodes to
their label, then, for a tree τ = f(τ1, . . . , τn) we have:

τ(π) = f(τ1, . . . , τn)(π) =

{
f if π = ε
τi(π

′) if π = iπ′ and i ∈ {1..n}

If τ is a tree with π ∈ nodesτ then we write τ.π for the subtree of τ rooted by
π, and τ [π/τ ′] for the tree obtained by replacing the subtree of τ at position π
by τ ′.

Definition 7.2 The tree structure τ of a tree τ (we will often make no dis-
tinction between trees and tree structures) over Σ is a first-order structure with
domain nodesτ . It provides a children-labeling relation : f for each f ∈ Σ:

: f = {(π, π1, . . . , πn)|τ(π) = f ∧ arity(f) = n}

122 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

We denote this relation as π:f(π1, . . . , πn) where the children of π are π1, . . . , πn
in that order from left to right. The dominance relation π�

∗π′ holds for τ if
π is an ancestor of π′, in other words, if π is above π′ in τ , or if π is a prefix
of π′. Strict dominance π�

+π′ holds for τ if π�
∗π′ but π=π′ does not. The

disjointness relation π⊥π′ holds for τ if neither π�
∗π′ nor π′�∗π in τ .

0π

π1 2π

3π

f

Figure 7.1: Representation of part of a tree that satisfies the relations of children-
labeling: π0 : f(π1, π2), dominance: π0�

∗π3 and disjointness: π1⊥π2.

Definition 7.3 A segment σ = π/π1, . . . , πn for n ≥ 0, of a tree τ (see Fig-
ure 7.2), is a tuple of nodes π, π1, . . . , πn of τ such that π dominates all πi and
all πi with different indexes are pairwise disjoint. We call π the root of σ and
π1, . . . , πn its holes. The nodes of a segment σ of a tree τ , noted as nodesτ (σ),
lie between the root and the holes of σ in τ :

nodesτ (π/π1, . . . , πn) = {π′ ∈ nodesτ | π�
∗π′ and not πi�

+π′ for i ∈ {1..n}}

The labels of holes “do not belong” to segments. The inner nodes of a segment
are those that are not holes:

nodes−τ (σ) = nodesτ (σ) − {π1, . . . , πn} if σ = π/π1, . . . , πn

The segment π/ is the segment with 0 holes (hence, a tree).

2ππ 1

π

Figure 7.2: The segment π/π1, π2.

Segment nodes generalise tree nodes in that nodesτ.π = nodesτ (π/) for all
trees τ and π ∈ nodesτ .

7.2. The Parallelism and Lambda Binding Constraints Language 123

Definition 7.4 A correspondence function between segments σ1 and σ2 with
the same number of holes, of a tree τ is a function c : nodesτ (σ1)→ nodesτ (σ2)
that is one-to-one and onto and satisfies the following homomorphism conditions:

1. The root of σ1 is mapped to the root of σ2 and the sequence of holes of σ1

is mapped to the sequence of holes of σ2 in the same order.

2. The labels of inner nodes π ∈ nodes−τ (σ1) are preserved: τ(π) = τ(c(π)).

3. The children of inner nodes π ∈ nodes−τ (σ1) are mapped to corresponding
children in σ2: for all 1 ≤ i ≤ arity(τ(π)) it holds that c(πi) = c(π)i.

Definition 7.5 We call two segments σ1 and σ2 of a tree structure τ (tree)
parallel and write σ1∼σ2 if and only if there exists a correspondence function
between them.

π 1
π 3

2π 4π

Figure 7.3: Parallelism relation between π1/π2 and π3/π4.

Tree parallelism can be characterised equivalently by saying that parallel
segments are occurrences of the same context (from the first-order perspective
but with n holes).

7.2.2 Lambda Structures and Parallel Lambda Binding

Now we are going to introduce lambda structures which are tree structure ex-
tensions corresponding to λ-terms and including anaphora bindings. Here we
just define and use the λ-binding feature, which is the one we are considering.
One can find the precise definition of lambda structures in (Egg et al., 2001).

Lambda structures represent λ-terms uniquely modulo renaming of bound
variables. They are tree structures extended by a lambda binding function,
which can be represented graphically as lambda binding edges that go from nodes
corresponding to bound variables to nodes corresponding to λ-abstractions. The
signature Σ of lambda structures contains, at least, the symbols var (arity 0, for
bound variables), lam (arity 1, for λ-abstractions), and @ (arity 2, for applica-
tion).

The tree uses these symbols to reflect the structure of the λ-term in a curried
manner. There is a binding function λ which maps var-labeled to lam-labeled

124 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

@

varf

lam

11 12

1

ε

Figure 7.4: The lambda structure of λx. (f x).

nodes (var-nodes and lam-nodes, for short). For example, Figure 7.4 shows the
lambda structure of the term λx. (f x) which satisfies λ(12) = ε.

Definition 7.6 A lambda structure (τ, λ) is a pair of a tree τ and a total binding
function λ : τ−1(var)→ τ−1(lam) such that λ(π)�∗π for all var-nodes π in τ .

We consider lambda structures as logical structures with the relations of
tree structures plus lambda binding λ(π) = π′, and its inverse relation. Inverse
lambda binding λ−1(π0)={π1, . . . , πn} states that π0 binds π1, . . . , πn and no
other nodes.

Definition 7.7 Two segments σ1, σ2 of a lambda structure (τ, λ) are (binding)
parallel σ1∼σ2 if they are tree parallel so that the correspondence function c
between σ1 and σ2 satisfies the following axioms of parallel binding (see Fig-
ure 7.5):

Internal binder. Internal lambda binders in parallel segments correspond: for
all π ∈ nodes−τ (σ1) if λ(π) ∈ nodes−τ (σ1) then λ(c(π)) = c(λ(π)).

External binder. External lambda binders of corresponding var-nodes are
equal: for all π ∈ nodes−τ (σ1) if λ(π) 6∈ nodes−τ (σ1) then λ(c(π)) = λ(π).

No hanging binder. A var-node below a segment cannot be bound by a lam-
node within: λ−1(π) ⊆ nodes−τ (σi) for all i ∈ 1, 2 and π ∈ nodes−τ (σi).

lam

var var

(external binding)

lam

var var

(internal binding)

lam

var

(no hanging binder)

lam

Figure 7.5: Representation of the axioms of parallel lambda binding.

Note that this definition overloads the notion of parallelism σ1∼σ2. For
tree structures this means tree parallelism and for lambda structures binding

7.2. The Parallelism and Lambda Binding Constraints Language 125

parallelism (if not stated differently). Which of the two notions of parallelism is
spoken about should always become clear from the respective context.

The following lemma will be required in Section 7.4 to prove Lemma 7.14.

Lemma 7.8 Parallelism in lambda structures is symmetric: if σ1∼σ2 holds in
a lambda structure then σ2∼σ1 holds as well.

Proof: Suppose that σ1 and σ2 are parallel segments of a lambda structure
(τ, λ) and that c is the correspondence function between them. By assumption,
c satisfies the axioms of parallel binding. We have to show that the inverse
correspondence function c−1 also satisfies these axioms.

Internal binder. Let π, λ(π) ∈ nodes−τ (σ2) and π′ = c−1(π) be a node in
nodes−τ (σ1). Since λ(π′) dominates π′ there remain only two possibilities:

1. Case λ(π′) ∈ nodes−τ (σ1). The internal binder axiom for c yields
c(λ(π′)) = λ(c(π′)) = λ(π). We can apply the inverse function c−1

on both sides and obtain λ(c−1(π)) = c−1(λ(π)) as required.

2. Case λ(π′) 6∈ nodes−τ (σ1). The external binder axiom for c implies
λ(π′) = λ(c(π′)) = λ(π). If π′ does not belong to the inner nodes
of σ2 then λ(π′) is a hanging binder which is not possible. In the
same way, we can prove by induction that (c−1)n(π) must belong to
the inner nodes of σ2 for all n ≥ 1. But this is also impossible as trees
are finite.

External binder. Suppose that π ∈ nodes−τ (σ2) while λ(π) 6∈ nodes−τ (σ2). Let
π′ = c−1(π) ∈ nodes−τ (σ1). Again, there are two possibilities:

1. Case λ(π′) ∈ nodes−τ (σ1). The internal binder axiom for c yields
c(λ(π′)) = λ(c(π′)) = λ(π) which is impossible since λ(π) does not
belong to the image nodes−τ (σ2) of c.

2. Case λ(π′) 6∈ nodes−τ (σ1). The external binder for c implies λ(π′) =
λ(c(π′)) = λ(π) as required.

No hanging binder. This axiom coincides for c and c−1.

7.2.3 Constraint Languages

Given the model-theoretic notions of tree structures and lambda structures we
can now define logical languages for their description in the usual Tarski’an
manner.

We assume an infinite set {X,Y, Z, . . .} of node variables Vnode, and define
languages of tree descriptions. Figure 7.6 summarises these definitions.

Definition 7.9 A dominance constraint is a conjunction of dominance X�
∗Y

and children-labeling literals X :f(X1, . . . , Xn) that describe the respective rela-
tions in some tree structure. We write X=Y to abbreviate X�

∗Y ∧ Y�
∗X .

126 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

Definition 7.10 A first-order dominance formula ν is built from dominance
constraints and the usual first-order connectives: universal quantification, nega-
tion, and conjunction.

These can also express existential quantification ∃X.ν and disjunction ν1 ∨ ν2
which we freely use. Furthermore, we write X 6=Y instead of ¬X=Y and X�

+Y
for X�

∗Y ∧ X 6=Y .

Definition 7.11 A parallelism constraint φ is a conjunction of children-labeling,
dominance, and parallelism literals S1∼S2, where S1 and S2 are segments with
the same number of holes. We use segment terms S of the form X/X1, . . . , Xm

to describe segments with m holes, given that the values of X and X1, . . . , Xm

satisfy the conditions imposed on the root and holes of segments (Definition 7.3).

Note that a parallelism literal S1∼S2 requires that the values of S1 and S2

are indeed segments. Note also that dominance constraints are subsumed by
parallelism constraints, the holes of the segments must be dominated by the
root.

Definition 7.12 A lambda binding constraint µ is a conjunction of lambda
binding and inverse lambda binding literals: λ(X)=Y means that the value of
X is a var-node that is lambda bound by the value of Y , while λ−1(X)⊆{X1, . . . ,
Xm} says that all var-nodes bound by the lam-node denoted by X are values of
one of X1, . . . , Xm.

Lambda binding constraints:

µ ::= λ(X)=Y | λ−1(X)⊆{X1, . . . , Xm} | µ1 ∧ µ2

First-order dominance formulae:

ν ::= X :f(X1, . . . , Xn) | X�
∗Y | ∀X.ν | ¬ν | ν1 ∧ ν2

Parallelism constraints:

φ ::= X :f(X1, . . . , Xn) | X�
∗Y | S1∼S2 | φ1 ∧ φ2

Figure 7.6: Logical languages for tree and lambda structures.

To keep this section self-contained let us quickly recall some model theoretic
notions. We write V ar(ψ) for the set of free variables of a formula ψ of one
of the above kinds. A variable assignment to the nodes of a tree τ is a total
function α : V → nodesτ where V is a finite subset of node variables. A solution
of a formula ψ thus consists of a tree structure τ or a lambda structure (τ, λ)
and a variable assignment α : V → nodesτ such that V ar(ψ) ⊆ V . Segment
terms evaluate to tuples of nodes α(X/X1, . . . , Xn) = α(X)/α(X1), . . . , α(Xn)
which may or may not be segments. Apart from this, we require as usual that a

7.3. Example 127

formula evaluates to true in all solutions. We write τ, α |= ψ if τ, α is a solution
of ψ, and similarly (τ, λ), α |= ψ. A formula is satisfiable if it has a solution. We
write α|V ′ for the restriction of a variable assignment α to the variables in V ′,
(like it is done for substitutions restrictions).

Remark: It is interesting to notice here the different point of view when talk-
ing about trees (terms) between the Constraint Language for Lambda Structures
and the (Context) Unification framework. In the first, variables refer to nodes
of trees while in the second, variables refer to subtrees or to contexts. One could
also think that in the first language, there is just one tree and the literals par-
tially describe the relation between the nodes of that tree, and that one has to
find the tree that satisfies those relations, while in unification, there are two trees
(in an equation) and one has to make both trees be equal by “filling” the pieces
of the puzzle variables with appropriate subtrees and contexts. This difference
is properly studied in Section 7.8.

Before starting with the translation, we want to show why the Constraint
Language for Lambda Structures is better than Unification for the treatment of
semantics underspecification problems, mainly in the requirements of binding.

7.3 Example

As we have already said, the prime application of the Constraint Language for
Lambda Structures is to describe natural language semantics using underspec-
ified representations (Egg et al., 2001; Erk et al., 2002) and, as the following
example shows, the role of parallel lambda binding is crucial.

X2: John

@

@ lam

@

@

and

@

@

X1 / X2 ~ X3 / X4

X0: X1:

X3:

taxi

see

exists

X4: Bill

var

Figure 7.7: The graph of the constraint language for lambda structures formula
for the semantics of the sentence: John saw a taxi and so did Bill.

Consider for instance the sentence: John saw a taxi and so did Bill. This
elliptic sentence has two possible meanings that can be represented by the fol-
lowing λ-terms of Boolean type in higher-order logics:

128 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

1. There exists a taxi t seen by John and Bill:

@(@(exists, taxi), λt.@(@(and,@(@(see, t), john)),@(@(see, t), bill)))

2. There exists a taxi t1 seen by John and a taxi t2 seen by Bill.

@(@(and, @(@(exists, taxi), λt1.@(@(see, t1), john))),
@(@(exists, taxi), λt2.@(@(see, t2), bill)))

The ellipses require the meanings of source and target sentence to be the same,
except for the contribution of the contrasting elements john and bill. Note that
the elided parallel segments (shown in grey), are different in the two previous
readings.

This example also illustrates the interaction of parallelism and lambda bind-
ing: in the first reading, both occurrences of t are bound by the same lambda
binder outside the parallel segments, while in the second case, the occurrence
of t1 and t2 are bound by distinct but corresponding lambda binders inside the
parallel segments.

The lambda terms of both readings satisfy the constraint described by the
graph in Figure 7.7. The graph representation uses solid lines for children-
labeling literals, dotted black lines for dominance and dashed pink edges from
var to lam-labeled nodes for binding literals. Parallelism literals are made explicit
by means of writing them in the picture. These graph representation serves also
for describing lambda structures with their relations.

The binding edge in the picture represents the binding of the first occurrence
of t in the first reading and of the unique occurrence of t1 in the second reading.
To deal with λ-bindings, no variable names are needed in the constraint language,
this avoids variable renaming and capturing once and for all.

Another advantage of the constraint in Figure 7.7, hence of the Constraint
Language for Lambda Structures, is that it can be derived by compositional se-
mantics construction from a parse tree (Egg et al., 2001). The graphical part is a
dominance constraint that describes the meanings of the source sentence and the
conjunction. But it leaves underspecified where the fragment with the lambda
binder @(@(exists, taxi), lam()) should be placed, either above the conjunction
or below its first argument that starts at node X1.

The parallelism constraint X1/X2 ∼ X3/X4 expresses the parallelism re-
quirement of the ellipses. The parallel segments defined by X1/X2 and X3/X4

must have equal tree structure and parallel binding relations.
But this parallel lambda binding cannot be expressed in Linear Second-

Order Unification or Context Unification in any naive sense. In fact, this con-
stitutes a serious problem to Linear Second-Order Unification or other kinds
of Higher-Order Unification approaches dealing with ellipsis resolution (Pinkal,
1995; Shieber et al., 1996). One might hope for instance, to describe the first
reading above through the following lambda term:

@(@(exists, taxi), λt.@(@(and, C(john)), C(bill))) (7.1)

7.4. The Non-intervenance Property 129

where C(john) = @(@(see, john), t). The problem is that every unifier for the
linear second-order equation:

C(john) ?= @(@(see, john), t)

must map the second-order variable C to the linear lambda term
λj.@(@(see, j), t) with free variable t. This unifier is not valid in Linear Second-
Order Unification since t would get captured by λt when applying the substitu-
tion to the term 7.1, while Definition 7.7 allows this kind of external binder.

In fact, this example illustrates that the nature of the lambda binding relation
in the presence of parallelism in the Constraint Language for Lambda Structures
is not the same as the one of λ-calculus in Second-Order Unification (which, as
we have shown, models parallelism by means of multiple occurrences of the
same variable). Hence, this fact suggests that to be able to deal with this
kind of lambda bindings with some Second-Order Unification fragment, we need
something more.

7.4 The Non-intervenance Property

We now present the “corner-stone” of our translation to get rid of lambda binding
constraints.

The idea behind our translation is to eliminate lambda bindings from the
parallelism and lambda-binding constraints formulae, by naming variable binders
and bound variables. This means that we want to obtain similar parallelism
constraints that use named labels lamu and varu, instead of anonymous labels
lam and var and of lambda-binding constraints.

In order to avoid undesired variable capture, we would like to associate dif-
ferent names to different lambda binders. But unfortunately we cannot always
do so in the presence of parallelism because corresponding lam-nodes have to
carry the same label lamu and corresponding var-nodes the same label varu.

Given that we cannot freely assign fresh names, we are faced with the danger
of capturing which we have to avoid. The simplest idea would be to forbid trees
where some node with label lamu intervenes (occurs) between any two other
nodes with labels lamu and varu. This restriction can be easily expressed by a
closed first-order dominance formula or could also be directly checked by a tree
automaton in some tree-regular constraint.

Unfortunately, the above restriction is too restrictive and thus not correct
because forbids valid lambda structures, as illustrated by the following tree struc-
ture with named lam and var-nodes, where the parallelism relation ε/11∼11/1111
holds:

lamu(@(lamu(@(a, varu)), varu))

and where the lam-node 11 that corresponds to lam-node ε, occurs between ε
and the var-node 1112 (bound by 11).

It can always happen that a corresponding lamu takes place above a bind-
ing lamu-node, so that the binding lamu intervenes between the corresponding

130 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

lamu-node and one of the varu-nodes bound by it. Thus we need a refined
non-intervenance property, which holds in a tree structure stating that: no cor-
responding lamu may intervene between a lamu-node and one of the varu-nodes
bound by it.

Y/Y’X/X’ ~

Y’

V

lam

Y

X’

X

var

Figure 7.8: Intervenance.

Example 7.13 The following parallelism constraint that is drawn in Figure 7.8
is unsatisfiable:

X�
+Y�

+X ′ ∧ X/X ′∼Y/Y ′ ∧ Y�
+V ∧ λ(V)=X

This is proved by Lemma 7.14. The problem is that lam-node Y must correspond
to X but intervene between X and the var-node V that X binds.

Lemma 7.14 Let (τ, λ) be a lambda structure with parallel segments σ and
σ′ that correspond via the correspondence function c. For all π with λ(π) ∈
nodes−τ (σ) it is not the case that λ(π)�+c(λ(π))�+π.

Proof: We suppose that λ(π) ∈ nodes−τ (σ) and λ(π)�+c(λ(π))�+π and derive
a contradiction. The segments σ and σ′ must overlap such that the root of σ
dominates that of σ′ properly.

root(σ)�+root(σ′)

Notice that π must belong to the inner nodes of segment σ, π ∈ nodes−τ (σ), since
otherwise λ(π) would be a hanging binder.

Now suppose π does not belong to the inner nodes of the lower segment
π 6∈ nodes−τ (σ′). First of all, notice that π must be dominated by a hole of σ′

since otherwise π⊥root(σ′) and the lemma would follow trivially.
We also know that c(λ(π))�+π and that it belongs to the inner nodes of

segments σ and σ′, therefore we can apply the internal binder axiom and we
get that c(λ(π)) = λ(c(π)), to avoid the hanging binder axiom violation, c(π)

7.5. Elimination of Lambda Binding Constraints 131

must belong to the inner nodes of segments σ and σ′, which corresponds to the
next case.

Consider now the case in which π also belongs to the inner nodes of the lower
segment π ∈ nodes−τ (σ′). We prove the following property inductively and thus
derive a contradiction: For all π ∈ nodes−τ (σ) ∩ nodes−τ (σ′) it is impossible that:

λ(π)�+c(λ(π))�+π.

The proof is by well-founded induction on the length of the word π.

1. Case root(σ′)�∗λ(π)�+c(λ(π)). Let π′ = c−1(π) be an inner node of σ.
The length of the word π′ is properly smaller than the length of π. Since
π′ belongs to the inner nodes of σ, the axiom for internal binder can
be applied to the correspondence function c yielding c(λ(π′)) = λ(c(π′))
and thus c(λ(π′)) = λ(π). The node λ(π′) must properly dominate both
c(λ(π′)) and π′. The address (length) of c(λ(π′)) is smaller than that of
π′, so that:

λ(π′)�+c(λ(π′))�+π′

This is impossible as stated by induction hypothesis applied to π′.

2. Case λ(π)�+root(σ′)�∗c(λ(π)). Let π′ = c−1(π) be an inner node of σ.
Since π is externally bound outside σ′, the axiom for external binder

applies to the inverse correspondence function c−1 by Lemma 7.8 and
yields λ(π′) = λ(π). By now, π′ is internally bound in σ. The ax-
iom for internal binder applied to the correspondence function c yields:
c(λ(π′)) = λ(c(π′)) which is c(λ(π)) = λ(π). This clearly contradicts
λ(π)�+c(λ(π)).

This Lemma will be crucial in next Section to be able of eliminating lambda
binding constraints soundly. The problem could be that when we translate a
lambda binding constraint formula that is unsatisfiable because of the conditions
of Lemma 7.14, into a parallelism constraint formula where lambda binding
constraints have been removed by means of labeling lam and var nodes, we could
obtain a satisfiable parallelism constraint formula. We will avoid this by means
of first-order dominance formulae that will forbid this situation.

7.5 Elimination of Lambda Binding Constraints

We now give a translation that eliminates lambda binding literals while pre-
serving satisfiability. The procedure is highly non-deterministic and introduces
first-order dominance formulae to express and ensure consistent naming of bound
variables.

We impose the non-intervenance property of Lemma 7.14 when expressing
the lambda binding predicate bindu(X,Y) in Figure 7.9. This is defined by us-
ing the predicate intervenelamu

(Y,X), which expresses, via first-order dominance
formulae, that some lamu-node intervenes between X and Y .

132 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

intervenelamu
(Y,X) = ∃Z∃Z ′. Y�

+Z�
+X ∧ Z:lamu(Z

′)

bindu(X,Y) = ∃Z (Y :lamu(Z)∧Z�
∗X∧X :varu) ∧ ¬intervenelamu

(Y,X)

Figure 7.9: Non-intervenance and lambda binding.

Guessing Correspondence Classes. The lam and var-nodes that correspond
via a correspondence function, clearly have to carry the same node labels. But
we have to be a little more careful since we may have several correspondence
functions for several pairs of parallel segments. We say that two nodes are
in the same correspondence class for a given set of correspondence functions
{c1, . . . , cn} if they belong to the symmetric, reflexive and transitive closure of
the common graph of these functions. Consider for instance the following tree
structure τ :

11 12

1

ε

2f

f

a a

a

and the correspondence functions c1 and c2 defined by c1(11) = 12 and c2(12) =
2. Then, Cτ,{c1,c2} = {(11, 11), (11, 12), (11, 2), (12, 11), (12, 12), (12, 2), (2, 11),
(2, 12), (2, 2)} is the symmetric, reflexive and transitive closure of {c1, c2} in τ .

Given a parallelism and lambda binding constraint1 φ ∧ µ we consider the
set of correspondence functions for pairs of segments that are required to be
parallel in φ. But how can we know a priori whether two variables of φ ∧ µ will
denote nodes in the same correspondence class? We want to guess an equivalence
relation e between variables of φ ∧ µ depending on a solution τ, α for φ ∧ µ, such
that for any two variables X and Y of φ ∧ µ, (X,Y) ∈ e ⇐⇒ (α(X), α(Y)) ∈
Cτ,{c1,...,cn}, where {c1, . . . , cn} are the correspondence functions for pairs of
segments that are required to be parallel in φ. We cannot do this a priori, but
we simply guess the equivalence relation between them as there are only finitely
many possibilities for the finitely many variables of the given formula.

We want to guess one of the possible partitions into correspondence classes for
variables of φ. Instead, we simply guess an equivalence relation on the variables
of φ, and as our proofs will show, we don’t have to express that equivalent
variables denote values in the same correspondence class.

Definition 7.15 Let

equφ = {e | e ⊆ V ar(φ) × V ar(φ) equivalence relation}

be the set of possible equivalence relations on the variables of φ. We write e(X)
for the equivalence class of some variable X ∈ V ar(φ) with respect to e, but

1Recall that we use φ to denote parallelism constraints and µ to denote lambda binding
constraints.

7.5. Elimination of Lambda Binding Constraints 133

consider equivalence classes of distinct equivalence relations to be distinct. Let

namese = {e(X) | X ∈ V ar(φ)}

be the set of names of e which contains all equivalence classes of e. Note that
namese is finite for all e ∈ equφ, and that namese and namese′ are disjoint for
distinct equivalence classes e and e′.
We now fix a parallelism and lambda binding constraint formula Φ = φ ∧ µ
and guess an equivalence relation e ∈ equφ that determines the translation []e
presented in Figure 7.10.

[λ(X)=Y]e = binde(Y)(X,Y)

[λ−1(Y)⊆{X1, . . . , Xn}]e = ∀X.binde(Y)(X,Y)→ ∨ni=1X=Xi

[Y :lam(Z)]e = Y :lame(Y)(Z)

[X :var]e = ∃Y.
∨
{Z |Z:lam(Z′)∈φ} binde(Z)(X,Y)

[Y :f(Y1 . . . , Yn)]e = Y :f(Y1 . . . , Yn) if f 6∈ {lam, var}

[X�
∗Y]e = X�

∗Y

[S1 ∼ S2]e = S1 ∼ S2 ∧ external−bindere(S1, S2) ∧

no−hang−bindere(S1) ∧

no−hang−bindere(S2)

[Φ1 ∧ Φ2]e = [Φ1]e ∧ [Φ2]e

Figure 7.10: Translation Literals. Naming variable binder for correspondence
classes e. Auxiliary predicates in Figure 7.11.

This translation maps Φ to a parallelism constraint plus first-order dominance
formulae φ′ ∧ ν over the following signature Σφ which extends Σ with finitely
many symbols:

Σφ = Σ] {lamu, varu | u ∈ namese, e ∈ equ(φ)}

The literal λ(X) = Y is translated to binde(Y)(X,Y) as explained before (see
Figure 7.9). This ensures that all corresponding nodes in e are translated with
the same name e(Y). The axioms about external binding and no hang-

ing binder are stated by first-order dominance formulae in the translation of
parallelism literals (see Figure 7.11).
Note that the axiom of internal binding will always be satisfied without extra
requirements.
We have to ensure that all varu-nodes in the solutions of translated constraints
will be bound by some lamu-node. Let no−free−vare be as defined in Figure 7.11.
Recall that the lambda binding function is total. We then define the complete
translation [Φ] by:

[Φ] =
∨

e∈equφ

[Φ]e ∧ no−free−vare

134 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

inside(X, Y/Y1, . . . , Yn) = Y�
∗X ∧ (

∨
i∈{1..n}X�

+Yi)

root(X, Y/Y1, . . . , Yn) = X=Y

no−hang−bindere(S) =
∧
u∈namese

no−hang−binderu(S)

no−hang−binderu(S) =

¬(∃Y ∃Z. bindu(Y, Z) ∧ ¬inside(Y, S) ∧ inside(Z, S))

external−bindere(S1, S2) =
∧
u∈namese

external−binderu(S1, S2)

external−binderu(S1, S2) =

∀Z1∀Z2∀Y. (bindu(Z1, Z2) ∧ inside(Z1, S1) ∧ ¬inside(Z2, S1) ∧ root(Y, S2))

→ (Z2�
∗Y ∧ ¬intervenelamu

(Z2, Y))

no−free−vare =
∧
u∈namese

∀X. X :varu → (∃Y ∃Z. Y :lamu(Z) ∧ Y�
∗X)

Figure 7.11: Auxiliary predicates.

The following two lemmas, Lemma 7.16 and Lemma 7.17, entail that our
translation preserves satisfiability, Proposition 7.18.

Lemma 7.16 Let Φ be a conjunction of a parallelism and lambda binding con-
straint and e ∈ equ(Φ) an equivalence relation on V ar(Φ). If [Φ]e ∧ no−free−vare
is satisfiable then Φ is satisfiable.

Proof: Let τ be a tree structure and α : V → nodesτ an assignment with

τ, α |= [Φ]e ∧ no−free−vare

We now define a lambda structure (p(τ), λ) of signature Σ by projecting labels
away. The nodes of p(τ) are the nodes of τ . Let projection proj : Σφ → Σ be
the identity function except that proj(lamu) = lam and proj(varu) = var for any
u ∈ namese. The labels of p(τ) satisfy for all π ∈ nodesτ :

p(τ)(π) = proj(τ(π))

We define the lambda binding function λ : p(τ)−1(var)→ p(τ)−1(lam) as follows:
Let π be a node such that p(τ)(π) = var. There exists a unique name u such
that τ(π) = varu. We define λ(π) to be the lowest ancestor of π that is labeled
by lamu. This is the unique node in p(τ) that satisfies bindu(π, λ(π)). It exists
since we required τ, α |= no−free−vare.

It remains to prove that (p(τ), λ), α is indeed a solution of Φ, i.e. whether
(p(τ), λ), α satisfies all literals of Φ.

• X�
∗Y in Φ: The dominance relation of τ coincides with that of p(τ).

Since τ, α |= X�
∗Y it follows that (p(τ), λ), α |= X�

∗Y .

• X :f(X1, . . . , Xn) in Φ where f 6∈ {lam, var}. The children-labeling relation
of τ coincides with that of p(τ), so there is no difference again.

7.5. Elimination of Lambda Binding Constraints 135

• X :var in Φ: Notice that binde(Y)(X,Y) enforces X to be a vare(Y)-labeled
node in [Φ]e, which implies (p(τ), λ), α |= X :var by the definition of p.

• X :lam(Z) in Φ: Now, the literal X :lame(X)(Z) belongs to [Φ]e. Thus,
τ, α |= X :lame(X)(Z) which implies (p(τ), λ), α |= X :lam(Z) by the defini-
tion of p.

• λ(X)=Y in Φ: Let τ, α |= [λ(X)=Y]e. By definition of the translation
[λ(X)=Y]e this means that τ, α |= binde(Y)(X,Y). In particular, it fol-
lows that α(Y) is the lowest lame(Y)-labeled ancestor of the vare(Y)-labeled
node α(X). The definition of the lambda-binding relation of p(τ) yields
(p(τ), λ), α |= λ(X)=Y as required.

• λ−1(Y) ⊆ {X1, . . . , Xn} in Φ: the proof for this literal follows straightfor-
ward using similar arguments as for the previous one.

Consider at last, S1∼S2 in Φ: This is the most complicated case. If τ, α satisfies
this literal then clearly, (p(τ), λ), α satisfies the correspondence conditions for
all children-labeling relations. We have to verify that (p(τ), λ) also satisfies the
conditions of parallel binding. Let c : nodes−τ (α(S1)) → nodes−τ (α(S2)) be the
correspondence function between α(S1) and α(S2) which exists since τ, α |= [Φ]e.

Internal binder. Let λ(π1)=π2 for some π1, π2 ∈ nodes−τ (α(S1)). By definition
of λ, there exists a name u such that τ(π1) = varu and π2 is the lowest node
above π1 with τ(π2) = lamu. Since the labels of the nodes on the path
between π1 and π2 are equal to the labels of the nodes of the corresponding
path from c(π1) to c(π2) it follows that τ(c(π1)) = varu, τ(c(π2)) = lamu

and that no node in between is labeled with lamu. Thus, λ(c(π1)) = c(π2).

External binder. Suppose that λ(π1)=π2 for two nodes π1 ∈ nodes−τ (α(S1))
and π2 6∈ nodes−τ (α(S1)). There exists a name u such that τ(π1) = varu
and π2 is the lowest ancestor of π1 with τ(π2) = lamu. By correspondence,
it follows that τ(c(π1)) = varu and that no lamu-node lies on the path from
the root of segment α(S2) to c(π1). The predicate external−binderu(S1, S2)
requires that π2 dominates that root of α(S2) and that no lamu-node in-
tervenes on the path from π2 to that root. Thus, π2 is the lowest ancestor
of c(π1) that satisfies τ(π2) = lamu, i.e. λ(c(π1)) = π2.

No hanging binder. Let S be either of the segment terms S1 or S2. Sup-
pose that λ(π1)=π2 for some nodes π1 /∈ nodes−τ (S) and π2 ∈ nodes−τ (S).
There exists a name u ∈ namese such that τ(π1) = varu and π2 is the
lowest ancestor of π1 with τ(π2) = lamu. This contradicts that τ, α solves
no−hang−binderu(S) as required by [S1∼S2]e.

Lemma 7.17 If Φ has a solution whose correspondence classes induce the equiv-
alence relation e then [Φ]e ∧ no−free−vare is satisfiable.

136 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

Proof: Let Φ be a conjunction of a parallelism and lambda binding constraint
over signature Σ and (τ, λ), α a solution of it. Let {c1, . . . , cn} be the correspon-
dence functions for the parallel segments α(S) ∼ α(S ′) where S∼S′ belongs to
φ. Let c ⊆ nodesτ × nodesτ be the reflexive, symmetric, and transitive closure
of {c1, . . . , cn}, and e ∈ equ(Φ) be the relation {(X,Y) | (α(X), α(Y)) ∈ c}.

We define treee(τ, λ) as a tree over the extended signature Σφ whose nodes
are those of τ and whose labeling function satisfies for all π ∈ nodesτ that:

treee(τ, λ)(π) =

lame(X) if (π, α(X)) ∈ c, τ(π) = lam, X ∈ V ar(Φ)
vare(X) if (λ(π), α(X)) ∈ c, τ(π) = var, X ∈ V ar(Φ)
τ(π) otherwise

We now prove that treee(τ, λ), α solves [Φ]e, i.e. all of its conjuncts. This can be
easily verified for dominance, children-labeling, and parallelism literals in [Φ]e.
Notice in particular that corresponding lam-nodes in τ are assigned the same
labels in treee(τ, λ). Next, we consider the first-order formulae introduced in the
translation of lambda binding and parallelism literals.

1. Case binde(Y)(X,Y) in [Φ]e. This requires either λ(X)=Y or λ−1(Y) ⊆
{X1, . . . , Xn} or X :var in Φ. Let us consider the first case. The cor-
responding cases of λ−1(Y) ⊆ {X1, . . . , Xn} in Φ, and of X :var in Φ
are quite similar. It then clearly holds that treee(τ, λ)(α(X)) = vare(Y)

and treee(τ, λ)(α(Y)) = lame(Y). Furthermore α(Y)�+α(X). It remains
to show for treee(τ, λ) that no lame(Y)-node intervenes between α(X)
and α(Y). We do this by contradiction. Suppose there exists π such
that α(Y)�+π�

+α(X) and treee(τ, λ)(π) = lame(Y). By definition of
treee(τ, λ) there exists Z such that (π, α(Z)) ∈ c and e(Y) = e(Z). Hence
(α(Y), α(Z)) ∈ c and thus (π, α(Y)) ∈ c. But this is impossible by the
non-intervenance property shown in Lemma 7.14: no lam-node such as π
that corresponds to α(Y) intervene between α(Y) and the var-node α(X)
bound by it.

2. Case external−binderu(S1, S2) in [Φ]e where S1∼S2 in Φ and u ∈ namese.
By contradiction. Suppose that there exist π1 ∈ nodesτ (α(S1)), π2 6∈
nodesτ (α(S1)) such that treee(τ, λ)(π1) = varu and π2 is the lowest an-
cestor of π1 with treee(τ, λ)(π2) = lamu. Furthermore, assume either
not π2�

∗root(α(S2)) or intervenelamu
(π2, root(α(S2))). The first choice is

impossible since the binding axioms would be violated otherwise. (The
correspondent of an externally bound node must be bound externally).
Let π′1 be the correspondent of π1 with respect to the parallel segment
α(S1)∼α(S2). By Lemma 7.14 we know that no lam-node corresponding
to π2 can intervene between π2 and π′ and thus between π2 and root(S2).
This also contradicts the second choice: intervenelamu

(π2, root(α(S2))).

3. Case no−hang−bindere(S) in [Φ]e where S is either S1 or S2 and S1∼S2

in Φ. Let us proceed by contradiction. Assume that it is not satisfied by
treee(τ, λ), α, then there must exist a name u ∈ namesφ and two nodes

7.6. The Monadic Second-Order Dominance Logic and TR-Constraints 137

π1, π2 such that treee(τ, λ)(π1) = lamu and treee(τ, λ)(π2) = varu. Even
more, π1 ∈ nodesτ (α(S)), π2 6∈ nodesτ (α(S)) and there does not exist
a third node π3 between π1 and π2. Then, by Lemma 7.14, π1 cannot
be a corresponding node of the lambda binding node of π2, therefore, by
definition of treee(τ, λ), λ(π1) = π2 ∈ λ, but this is impossible because
(τ, λ), α must satisfy the no hanging binder condition.

4. Finally, we prove that treee(τ, λ), α satisfies no−free−vare. The only varu
labeled nodes in treee(τ, λ) are the ones that were var labeled in τ . As
(τ, λ) is a lambda structure, there are not free var labeled nodes, and
since the construction of treee(τ, λ) only labels nodes by varu if they are in
λ−1(π) for some node π such that treee(τ, λ)(π) = lamu, there cannot be
any varu labeled node not being under a lamu labeled node as required by
no−free−vare.

Proposition 7.18 A parallelism and lambda binding constraint φ ∧ µ is sat-
isfiable if and only if its translation [φ ∧ µ] is.

Theorem 7.19 Satisfiability of Parallelism and Lambda Binding Constraints
can be reduced in non-deterministic polynomial time to satisfiability of Paral-
lelism Constraints with First-Order Dominance Formulae.

Proof: The result follows from Proposition 7.18 and observing that all guesses
that we need are polynomially bounded on the size of the problem.

7.6 The Monadic Second-Order Dominance

Logic and Tree-Regular Constraints

We have removed the lambda binding constraints by adding first-order domi-
nance formulae. Now we introduce a superlanguage of these last formulae, the so
called Monadic Second-Order Dominance Logic, and we show that tree-regular
constraints and second-order dominance formulae are satisfaction equivalent.
Then, in Section 7.7, we prove that this satisfaction equivalence is preserved in
presence of parallelism constraints, and in Section 7.8 we show that this also
holds for Context Unification with tree-regular constraints.

7.6.1 Tree-Regular Constraints

We next introduce tree-regular constraints from the node perspective of trees2

and show how to express them in logics. A tree-regular constraint ξ has the
form:

ξ ::= tree(X) ∈ L(A) | ξ1 ∧ ξ2
2Recall that now, X is a node variable, and not a first-order variable denoting a tree.

138 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

Interpreted over a tree τ , the term tree(X) denotes the subtree of τ rooted by
X , while L(A) stands for the tree language accepted by the tree automaton A
over the assumed signature Σ.

But which properties of trees can be expressed by tree-regular constraints?
Can we express, for instance, the first-order dominance formula which requires
that no f labeled node intervenes between nodes X and Y ? We will see that we
can in Example 7.23.

7.6.2 Monadic Second-Order Dominance Logic

Now we define the Monadic Second-Order Dominance Logic to be the monadic
second-order logic over dominance constraints, hence, of ground terms. Note
that monadic second-order logics were already investigated for many other graph
structures (see Courcelle (2000)).

Apart from the assumed node variables Vnode, we also consider an infinite
set Vset of monadic second-order variables {A,B, . . .} that denote sets of nodes.
The formulae ψ of Monadic Second-Order Dominance Logic have the form:

ψ ::= X�
∗Y | X :f(X1, . . . , Xn) | X ∈ A | ψ ∧ ψ′ | ¬ψ | ∃X. ψ | ∃A. ψ

Beyond conjunctions of dominance and children-labeling literals, there are mem-
bership constraints, existential quantification over nodes and sets, negation, and
thus universal quantification.

The Monadic Second-Order Dominance Logic is interpreted over ground
terms. Every ground term τ now defines a two sorted domain: domainτ =
nodesτ]2nodesτ . Variable assignments to a tree τ are functions α : V → domainτ
defined on a finite set V ⊆ Vnode] Vset which map node variables to nodes and
set variables to sets of nodes, in other words, for all X,A ∈ V we have that
α(X) ∈ nodesτ and α(A) ∈ 2nodesτ .

The language of Monadic Second-Order Dominance Logic is closely related
to the Weak Monadic Second-Order Logic of the complete binary tree (Thatcher
and Wright, 1967; Doner, 1970). This was first noticed by Backofen et al. (1995).
The models of Monadic Second-Order Dominance Logic are ground terms while
the only model of the Weak Monadic Second-Order Logic is the infinite binary
tree. The latter is simpler in that all its nodes have first and second successors
(children). This allows us to found the Weak Monadic Second-Order Logic on
the two successor functions while Monadic Second-Order Dominance Logic must
rely on the children-labeling relation.

Still, one can encode all ground terms in the infinite binary tree and thereby
encode Monadic Second-Order Dominance Logic into Weak Monadic Second-
Order Logic. This was used in Koller et al. (1998) to encode the first-order
theory of dominance constraints into Weak Monadic Second-Order Logic. The
current section generalises and complements this earlier result.

Proposition 7.20 Every tree-regular constraint ξ is equivalent to some formula
ψ in the monadic second-order dominance logic over the same signature.

7.6. The Monadic Second-Order Dominance Logic and TR-Constraints 139

Proof: Let A be a tree automaton and X a node variable. We show how to
express tree(X) ∈ L(A) through an equivalent formula ψ of Monadic Second-
Order Dominance Logic. Let Q be the set of states of A and Qfin the set of its
final states. We consider all states q ∈ Q as second-order variables, whose set
value contains all those nodes Y such that tree(Y) has a run into state q in A.
We then require that the value of tree(X) has a run into a final state, i.e. that
tree(X) ∈ q for some final state q ∈ Qfin.

ψ = ∃Q.(
∨

q∈Qfin

X ∈ q ∧
∧

q∈Q

∀Y. (Y ∈ q ↔ stepA(Y, q)))

where stepA(Y, q) means that there is a single automaton step proving that the
value of tree(Y) has a run into q.

stepA(Y, q) =
∨
f(q1,...,qn)→q∈A ∃Y1 . . .∃Yn. (Y :f(Y1, . . . , Yn) ∧

Y1 ∈ q1 ∧ . . . ∧ Yn ∈ qn)

Note that all states of A may belong to the set of free set variables of formula
stepA(Y, q) so that the values of all sets q ∈ Q are defined by mutual recursion.

The converse of the above proposition is wrong. For instance, one cannot
express X�

∗Y equivalently by means of tree-regular constraints since satisfiable
tree-regular constraints can always be satisfied such that all variables denote dis-
joint nodes. Nevertheless, a weakened converse modulo satisfaction equivalence
still holds and will allow us to prove Theorem 7.27, which states that every tree-
regular constraint ξ is satisfaction equivalent to some formula ψ of the monadic
second-order dominance logic over the same signature, and vice versa.

This theorem establishes a bidirectional relationship between dominance log-
ics and tree automata. The one direction is already proved (Proposition 7.20).
The proof of the other direction relies on standard encoding techniques known
from Weak Monadic Second-Order Logic. For every formula of Monadic Second-
Order Dominance Logic, we have to construct a tree automaton that recognises
all its solutions converted into some tree format (Corollary 7.26 below). This
format is obtained by encoding information about the values of node variables
into extended node labels of some extended signature.

7.6.3 Extending Node Labels

The trick is to encode a solution pair τ, α into a single tree which looks like
the tree τ except that it contains all information about the variable assignment
α in extended node labels. Given a formula ψ of the Monadic Second-Order
Dominance Logic, one can then recognise all encoded solutions of ψ by a tree
automaton.

We first illustrate the encoding of pairs τ, α with an example.

Example 7.21 Let τ be the tree f(a, b) with nodes nodesτ = {ε, 1, 2} and α
be the variable assignment given by α(X) = ε, α(Y) = 1, α(Z) = 2, and

140 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

α(A) = {1, 2}. We then encode τ, α by means of the following tree with extended
node labels:

(b, [X=0, Y=0, Z=1, A=1])(a, [X=0, Y=1, Z=0, A=1])

(f, [X=1, Y=0, Z=0, A=0])��

�� ��

In the general case, we encode pairs τ, α : V → Σ into trees over the signature
of extended labels ΣV :

ΣV = {(f, ch) | f ∈ Σ, ch : V → {0, 1}}

The second components of extended labels (f, ch) are finite characteristic func-
tions with domain V . The arity of a label (f, ch) in ΣV is equal to the arity of f .
We identify the labels f and (f, ch) where ch is the constant 0-valued function.
Through this identification, we turn Σ into a subset of ΣV . As in the preced-
ing example, we use the record notation [Z1=B1, . . . , Zn=Bn] to represent the
finite characteristic function ch : {Z1, . . . , Zn} → {0, 1} with ch(Z1) = B1, . . .,
ch(Zn) = Bn.

Definition 7.22 We encode a pair τ, α : V → nodesτ through the α-extension
extα(τ). The trees extα(τ) and τ have the same set of nodes. A node π of extα(τ)
is given the label (f, ch) if and only if the same node of τ is given the label f
and for all X,A ∈ V :

π = α(X) iff ch(X) = 1 and π ∈ α(A) iff ch(A) = 1

Example 7.23 We now illustrate the encoding of the non-intervenance for-
mula which is crucial for our elimination of lambda binding constraints (see Sec-
tion 7.5). We present a tree automaton which accepts trees where no f -labeled
node intervenes properly between X and Y :

¬ ∃Z. (X�
+Z ∧ Z�

+Y ∧ ∃Z1∃Z2. Z:f(Z1, Z2))

Since automata are closed under complementation, it is sufficient to construct an
automaton for positive intervenance. The signature is ΣV where V = {X,Y }.
The only acceptance state of this automaton is qabove(X). For all finitely many
labels g ∈ Σ we have the following rules:

(g, [X=0, Y=0])(qbelow(Y), . . . , qbelow(Y)) → qbelow(Y)

(g, [X=0, Y=1])(qbelow(Y), . . . , qbelow(Y)) → qabove(Y)

(g, [X=0, Y=0])(. . . , qabove(Y), . . .) → qabove(Y) if f 6= g
(f, [X=0, Y=0])(. . . , qabove(Y), . . .) → qabovef

(g, [X=0, Y=0])(. . . , qabovef
, . . .) → qabovef

(g, [X=1, Y=0])(. . . , qabovef
, . . .) → qabove(X)

(g, [X=0, Y=0])(. . . , qabove(X), . . .) → qabove(X)

7.6. The Monadic Second-Order Dominance Logic and TR-Constraints 141

The state qbelow(Y) recognises all trees where Y=0 for all nodes. The state
qabove(Y) recognises trees containing a node where Y=1. The state qabovef

recog-
nises trees which contain a proper f -labeled ancestor of some node with Y=1. Fi-
nally, qabove(X) accepts all trees where X=1 occurs properly above an f -ancestor
of some node where Y=1.

We also need to check that X=1 and Y=1 are seen at most once in a node
label. This can be done by intersection with another tree automaton.

7.6.4 Constructing Tree Automata

We now construct tree automata for general formulae of Monadic Second-Order
Dominance Logic. The following lemma will be useful.

Lemma 7.24 If extα1(τ1) = extα2(τ2) then α1 = α2 and τ1 = τ2.

Proof: We first notice that being extα1(τ1) = extα2(τ2), we can state that
nodesextα1 (τ1) = nodesextα2 (τ2), and that for all node π ∈ nodesextα1 (τ1), we have
that extα1(τ1)(π) = extα2(τ2)(π). Then, it is easy to see (by structural induction
on the trees) that τ1 = τ2 and α1 = α2 hold.

Proposition 7.25 For all second-order dominance formulae ψ and finite sets
V of variables, there exists a tree automaton A over the signature ΣV which
accepts those trees over ΣV that encode tree-assignment-pairs τ, α|V such that
τ, α |= ψ:

L(A) = {extα|V (τ) | τ, α |= ψ}

Proof: We can assume without loss of generality that V ar(ψ) ⊆ V . Otherwise,
we can apply the proposition to ψ′ = ∃ V ar(ψ)−V. ψ which satisfies V ar(ψ′) =
V since V ar(ψ) − (V ar(ψ) − V) ⊆ V . The automaton A for ψ′ recognises the
required language L(A) = {extα|V (τ) | τ, α |= ψ′} = {extα|V (τ) | τ, α |= ψ}.
Let a V -extension of a tree τ be some α-extension of τ with α : V → domainτ .
We next construct an automaton AextV

which only accepts those trees over ΣV
that are V -extensions of some tree in Σ. This automaton has to check for
every first-order variable X ∈ V and acceptable tree τ that there exists exactly
one node in τ whose characteristic function maps X to 1. The automaton A∅
accepts all trees of Σ. For the general case, let V1 ⊆ V where V1 is the set of
first-order variables we define AextV

=
⋂
X∈V1

Aext{X}
. It only remains to define

the automata Aext{X}
for singleton sets {X}. Let V = {Z1, . . . , Zn}, for any

constant symbol f ∈ Σ, the rules are:

(f, [. . . , X=0, . . .])(qnone, . . . , qnone) → qnone

(f, [. . . , X=1, . . .])(qnone, . . . , qnone) → qonce

(f, [. . . , X=0, . . .])(qnone, . . . , qnone, qonce, qnone, . . . , qnone) → qonce

The automaton counts how often X=1 was seen. It starts with qnone and in-
crements to qonce when the first occurrence comes, and rejects starting from the
second occurrence. The only final state of Aext{X}

is qonce.

142 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

We next construct automataAψ over the signature ΣV that check the validity
of ψ. The proposition is then always satisfied with A = Aψ ∩ AextV

. The
construction is by structural induction on formulae ψ and the rules are defined
for any of the finitely many symbols f of Σ.

1. Case ψ = X=Y . We construct the following automaton that checks
whether X=1 and Y=1 occur simultaneously at some node. The only
final state qequal of Aψ indicates this case.

(f, [. . . , X=0, . . . , Y=0, . . .])(qall, . . . , qall) → qall
(f, [. . . , X=1, . . . , Y=1, . . .])(qall, . . . , qall) → qequal

(f, [. . . , X=0, . . . , Y=0, . . .])(. . . , qequal, . . .) → qequal

2. Case ψ = X�
+Y . We construct the following automaton that checks

whether Y=1 is seen properly below X=1. The final state of Aψ is
qabove(X).

(f, [. . . , X=0, . . . , Y=0, . . .])(qall, . . . , qall) → qall
(f, [. . . , Y=1, . . .])(qall, . . . , qall) → qabove(Y)

(f, [. . . , X=0, . . .])(. . . , qabove(Y), . . .) → qabove(Y)

(f, [. . . , X=1, . . .])(. . . , qabove(Y), . . .) → qabove(X)

(f, [. . .])(. . . , qabove(X), . . .) → qabove(X)

3. Case ψ = X�
∗Y . Tree automata are closed under union, so we define

Aψ=AX�+Y ∪ AX=Y .

4. Case ψ = ∃X.ψ′. We can assume without loss of generality that X /∈ V .
Let Aψ′ be the automaton for ψ′ but over the extended signature ΣV]{X}.
We call a tree τ over ΣV an X-projection of a tree τ ′ over ΣV]{X} if τ is
obtained from τ ′ by restricting all characteristic functions in node labels
of τ ′ to V . We can easily define the automaton Aψ such that it accepts
all X-projections of trees in L(Aψ′).

5. Case ψ = X :g(X1, . . . , Xn). We construct the automaton that checks that
the node ofX has a label g and is applied over the nodes that are the values
of X1, . . . , Xn. This last condition is ensured using states qX1

, . . . , qXn
.

(f, [. . . , X = 0, . . . , Xi=0, . . .])(qall, . . . , qall) → qall
(f, [. . . , X = 0, . . . , Xi=1, . . .])(qall, . . . , qall) → qXi

(g, [. . . , X=1, . . .])(qX1
, . . . , qXn

) → qlabel−ok

(f, [. . .])(. . . , qlabel−ok, . . .) → qlabel−ok

The only final state of Aψ is qlabel−ok.

6. Case ψ = X ∈ A. We construct the following automaton that checks
whether the node value of X belongs to the set value of A.

(f, [. . . , X=0, . . .])(qall, . . . , qall) → qall
(f, [. . . , X=1, . . . , A=1, . . .])(qall, . . . , qall) → qinside

(f, [. . .])(. . . , qinside, . . .) → qinside

7.7. Extensions of Parallelism Constraints 143

The only final state of Aψ is qinside.

7. Case ψ = ψ1 ∧ ψ2. Tree automata are closed under intersection, so we
can set Aψ = Aψ1 ∩ Aψ2 .

8. Case ψ = ¬ψ′. Tree automata are closed under complementation. We
define Aψ = AextV

\ Aψ′

9. Case ψ = ∃A.ψ′. The construction is as in the first-order case.

We can now prove that tree-regular constraints can indeed express second-
order monadic dominance formulae modulo satisfaction equivalence (but not
equivalence).

Corollary 7.26 For every formula ψ of the Monadic Second-Order Dominance
Logic there exists a satisfaction equivalent tree-regular constraint ξ over the
same signature.

Proof: We can assume without loss of generality that ψ is closed. Let V = ∅
and let A be a tree automaton according to Proposition 7.25 that satisfies:
L(A) = {τ | τ |= ψ}. We don’t need any variable assignment to interpret ψ since
ψ is closed. Let X,Y be fresh variables. The following conditional equivalence
is valid in all trees:

∀Y. X�
∗Y → (ψ ↔ tree(X) ∈ L(A))

If a tree τ, α satisfies the assumption ∀Y. X�
∗Y then α(X) must be the root

of τ . In this case, tree(α(X)) ∈ L(A) is equal to τ ∈ L(A) which is τ |= ψ.
Next note that the assumption ∀Y. X�

∗Y can be joint, while solving tree(X) ∈
L(A), with ψ. Thus, ψ is satisfaction equivalent to the tree-regular constraint
tree(X) ∈ L(A).

Now, the previously announced theorem follows:

Theorem 7.27 Every tree-regular constraint ξ is satisfaction equivalent to
some formula ψ of the monadic second-order dominance logic over the same
signature, and vice versa.

Proof: The Theorem holds as a direct consequence of Proposition 7.20 and Corol-
lary 7.26.

7.7 Extensions of Parallelism Constraints

Our next goal is to lift Theorem 7.27 to extensions of parallelism constraints
with tree-regular constraints and with Second-Order Dominance formulae. This

144 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

means that we want to reduce satisfiability of a conjunction φ ∧ ξ to the satisfi-
ability of some conjunctions φ′ ∧ ψ and vice versa. This is what Theorem 7.30
proves below.

The one direction still follows immediately from Proposition 7.20 (which is
modulo equivalence). But we cannot directly apply Theorem 7.27 to prove the
converse. This weakness is due to the notion of satisfaction equivalence used
in Corollary 7.26 in contrast to ordinary equivalence. We use the following
proposition:

Proposition 7.28 Every conjunction φ ∧ ψ of a parallelism constraint with a
formula of Monadic Second-Order Dominance Logic is satisfaction equivalent to
some formula

∨k
i=1 φi ∧ ξi with parallelism with tree-regular constraints.

The proof will take up the rest of this section. The idea is to describe a
solution τ, α of φ ∧ ψ by talking about a large tree that contains τ and extα(τ)
simultaneously. The translation keeps the parallelism constraint φ in order to
describe τ while it expresses the dominance formula ψ through a tree-regular
constraint about extα(τ). The intended relationship between τ and extα(τ) is
enforced by additional parallelism constraints (Lemma 7.29).

We first introduce formulae extV (X,Y) for finite sets V of variables. The free
variables of extV (X,Y) are those in V ∪{X,Y }. A pair τ ′, α satisfies extV (X,Y)
if the tree below α(Y) in τ ′ is the α|V extension of the tree below α(X) in τ ′,
in other words,

τ ′, α |= extV (X,Y)
iff

τ ′.α(Y) = extα|V (τ ′.α(X))

see Figure 7.12.

’ τ

α α
YX

=τ =extα|V(τ)
X) τ τ)Y.α(.α(’ ’ ’

Figure 7.12: The tree τ ′ containing τ and its corresponding tree with extended
labels.

Every solution τ ′, α of extV (X,Y) indeed contains occurrences of τ = τ ′.α(X)
and its extension extα|V (τ) = τ ′.α(Y) simultaneously. Note that α|V must map
to nodes of τ by definition of extensions, while the unrestricted assignment α
may map to arbitrary nodes of τ ′.

7.7. Extensions of Parallelism Constraints 145

Recall that we have identified the labels f and (f, ch) where ch is the constant
0-valued function, and that this identification makes Σ be a subset of ΣV . This
has an important consequence: if V contains only first-order variables then the
trees τ and extα(τ) have the same structure with finitely many exceptions: for
all Z ∈ V the node α(Z) below α(X) and its correspondent below α(Y) carry
distinct labels. The number of exceptions is bounded by the size of V . This
property would fail if we permitted second-order variables in V : a single second-
order variable A ∈ V where α(A) contains all nodes of τ makes all corresponding
node labels of τ and extα|V (τ) distinct.

Lemma 7.29 Let V be a set of first-order variables. Every formula extV (X,Y)

is equivalent to some positive existentially quantified formula
∨k
l=1 ∃

~Zlφl.

Proof: We construct a formula η of the above form by induction on the size of
V . If V = ∅ then we set η = X/∼Y/. Otherwise, we guess node labels for
all variables in V and all relationships between them: properly above, properly
below the i-th children, equal, or disjoint. These are O(|V |2 ∗M ∗ |Σ|) guesses
where M is the maximal arity of function symbols in Σ. This measure bounds
k. We then translate deterministically for all possible choices. Let X1, . . . , Xn

be some maximal set of top-most situated variables that take distinct values
(according to our guesses). We define:

η = ∃Y1, . . . , ∃Yn. X/X1, . . . , Xn ∼ Y/Y1, . . . , Yn ∧
n∧

i=1

ηi

The formulae ηi are still to be defined. Let chi : V → {0, 1} be the function
that maps all variables that take the same value as Xi to 1 and all others to 0
(according to our guesses). Let fi be the guessed node label of arity ni for the
variable Xi and V ji be the set of variables which are below the j-th child of Xi.
We then define:

ηi = ∃X1
i . . . ∃X

ni

i . Xi:fi(X
1
i , . . . , X

ni

i) ∧

∃Y 1
i . . . ∃Y

ni

i . Yi:(fi, chi)(Y
1
i , . . . , Y

ni

i) ∧
∧ni

j=1 extV j
i
(Xj

i , Y
j
i)

Proof: [of Proposition 7.28] We consider a formula φ ∧ ψ where ψ does not
contain free second-order variables without loss of generality. Otherwise, we
can produce a satisfaction equivalent formula of the same form by existential
quantification.

Let X be a fresh variable and V = V ar(φ∧ψ) ∪ {X} a set of first-order
variables. We next define a formula η that we will prove satisfaction equivalent
to φ ∧ ψ:

η = φ ∧ ∃Y. extV (X,Y) ∧ tree(Y) ∈ {extα|V (τ) | τ, α |= ψ}

First note that η can be rewritten into a satisfaction equivalent disjunction of
the required form

∨k
i=1 φi ∧ ξi. We can express extV (X,Y) by a disjunction

146 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

of parallelism constraints up to satisfaction equivalence (Lemma 7.29) and state
the membership condition on tree(Y) by a tree-regular constraint (Proposition
7.25).

It remains to show that η is satisfaction equivalent to φ ∧ ψ. Forward
direction: suppose τ ′, α′ |= η. We show that τ ′.α′(X), α′|V |= φ ∧ ψ. First note

that α′|V maps to nodes below α′(X) since τ ′, α′ |= extV (X,Y). Second note

that α′|V can interpret all variables of φ ∧ ψ by definition of V . Third, we show

that τ ′.α′(X), α′|V solves φ: By assumption, τ ′, α′ |= η and thus τ ′, α′|V |= φ.
But since φ contains parallelism literals only, we can restrict this solution to the
subtree of τ ′ to which α′|V maps; thus: τ ′.α′(X), α′|V |= φ. Fourth, we show

that τ ′.α′(X), α′|V solves ψ. Since τ ′, α′ satisfies the membership restriction on

tree(Y) there exists a solution τ, α |= ψ such that:

τ ′.α′(Y) = extα|V (τ)

Since τ ′, α′ |= extV (X,Y) we also know τ ′.α′(Y) = extα′
|V

(τ ′.α′(X)). The pre-

vious two equations combine into extα|V (τ) = extα′
|V

(τ ′.α′(X)) such that the

Uniqueness Lemma 7.24 yields α′|V = α|V and τ ′.α′(X) = τ . From τ, α |= ψ, we

get τ, α|V |= ψ, and hence, τ ′.α′(X), α′|V |= ψ.
For the other direction, we assume that φ ∧ ψ is satisfiable and construct a

solution of η. Let τ, α be a solution of φ ∧ ψ. We define τ ′ = f(τ, extα|V (τ), . . .)
where f is some function symbol of arity at least 2. (The children of τ starting
from position 3 can be chosen arbitrarily.) Let π1 be the first child of the root
of τ ′. It then holds that τ ′, α[X 7→ π1] |= η whereby the existentially quantified
variable Y can be mapped to the second child of τ ′.

Theorem 7.30 The satisfiability problems of Parallelism with Tree-Regular
Constraints and of Parallelism Constraints plus Monadic Second-Order Dom-
inance formulae are equal modulo non-deterministic polynomial time transfor-
mations.

Proof: Proposition 7.20 and Proposition 7.28 entail this theorem3. It is easy to
check that the guesses we have to make are polynomially bounded.

7.8 Equivalence Between Parallelism

Constraints And Context Unification When

Considering Tree-Regular Constraints

We know that Parallelism Constraints and Context Unification have the same ex-
pressiveness (Niehren and Koller, 2001). We now prove (in Theorem 7.37 below)
that this result can be lifted when extending both languages with tree regular

3Note that the signatures are part of the input of both satisfiability problems, hence the
satisfaction equivalent formulae need not be defined over the same signature.

7.8. Equivalence Between PC and CU when Considering TR-Constraints 147

constraints. The proof can be obtained by extending the proof in Niehren and
Koller (2001), but we show both implications independently. We first translate
Context Unification with tree-regular constraints to Parallelism with tree-regular
constraints.

Definition 7.31 Suppose without loss of generality that we are given a single
equation and a single tree-regular constraint E = 〈t1

?= t2, Y ∈ L(A)〉4 We
define the translation of E, dEe into a Parallelism with tree-regular constraint
problem by means of the following process:
We first introduce fresh node variables for all subterm positions in the equation
t1

?= t2. We then collect parallelism, children-labeling, and membership literals
in four steps.

1. We collect children-labeling literals for all subterms in t1
?= t2 that have

the form f(s1, . . . , sn). Let X be the node variable for the position of
such a subterm and X1, . . . , Xn the node variables for the positions of the
subterms s1, . . . , sn. We then add the children-labeling literal:

X :f(X1, . . . , Xn)

2. We collect parallelism literals for all context (and first-order) variables
occurring in t1

?= t2. So let F (s1, . . . , sn) be an occurrence of some context
variable F in t1

?= t2, X be the node variable of this occurrence and
X1, . . . , Xn the node variables of the subterms s1, . . . , sn. Let F (s′1, . . . , s

′
n)

be a second possibly equal occurrence of the same context variable F in
t1

?= t2, X
′ be the node variable of this occurrence and X ′

1, . . . , X
′
n the

node variables of the subterms s′1, . . . , s
′
n. We then add the parallelism

literal:
X/X1, . . . , Xn ∼ X

′/X ′
1, . . . , X

′
n

Notice that for first-order variables, the segment of the parallelism literal
will not have holes.

3. Suppose that Y (the variable of the tree-regular constraint) occurs in the
equation t1

?= t2 at some position with node variable Y ′. We then add:

tree(Y ′) ∈ L(A)

4. We ensure that both sides of the equation t1
?= t2 denote equal values. Let

X1 and X2 be the node variables of the subterm positions of t1 and t2 (the
roots). We then add the parallelism literal:

X1/ ∼ X2/

4Recall that when considering context equations, Y is a first-order variable, not a node
variable. Notice also that in Definition 6.6 we consider tree-regular constraints over any term
and here we consider constraints over a first-order variable. It is not difficult to see that both
definitions are equivalent.

148 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

Example 7.32 For instance, for the context equation F (f(X)) = f(F (a)) with
regular constraint X ∈ L(A), we first introduce node variables for all subterm
positions and we make the following node variables association:

X0 X1 X2 Y0 Y1 Y2

↓ ↓ ↓ ↓ ↓ ↓
F (f(X)) = f(F (a))

Then we translate the equation and the constraint as follows, where the lines
contain the literals of the subsequent steps:

1. X1:f(X2) ∧ Y0:f(Y1) ∧ Y2:a ∧
2. X0/X1 ∼ Y1/Y2 ∧
3. tree(X2) ∈ L(A) ∧
4. X0/ ∼ Y0/

In step 2 of this example we have freely omitted parallelism literals between
X2/ ∼ X2/ and equal segment terms: X0/X1 ∼ X0/X1 and Y1/Y2 ∼ Y1/Y2.
These last literals enforce dominance relations X0�

∗X1 and Y1�
∗Y2 that are

entailed by X0/X1 ∼ Y1/Y2 anyway.

For the sake of readability we identify terms with tree structures in the
following proofs.

Lemma 7.33 Any context unification equation with tree-regular constraints
E = 〈t1

?= t2, Y ∈ L(A)〉 is satisfiable if and only if its translation to parallelism
with tree-regular constraints dEe is.

Proof:
Forward direction. Let σ be a minimal ground solution of equation t1

?= t2, that
satisfies Y ∈ L(A). Then, let τ = f(σ(t1), σ(t2)), we will construct an α such
that τ, α |= dEe. Let us proceed by structural induction on the equation terms.
Let X be the topmost node variable of t1, then α(X) = 1 (and α(X ′) = 2 being
X ′ the topmost node variable of t2), now we have two possibilities,

• if t1 = f(s1, . . . , sn) then, let X1, . . . , Xn respectively be the node variables
for s1, . . . , sn, then let α(Xi) = α(X)i for i ∈ {1..n}.

• Otherwise, if t1 = F (s1, . . . , sn) then, let X1, . . . , Xn respectively be the
node variables for s1, . . . , sn , let σ(F) = λx1 . . . xn. t, and let pi be the
position of xi in t for i ∈ {1..n} (recall that σ(F) is linear), then let
α(Xi) = α(X)pi for i ∈ {1..n}.

Now, it is easy to see that effectively τ, α |= dEe. We proceed on the groups of
literals of the four-steps translation.

1. The children-labeling literals are obviously satisfied by construction of α
and τ .

7.8. Equivalence Between PC and CU when Considering TR-Constraints 149

2. For the introduced parallelism literals due to occurrences of con-
text (or first-order) variable F , let σ(F) = λx1 . . . xn. t and let
X/X1, . . . , Xn ∼ X ′/X ′

1, . . . , X
′
n be one of the literals introduced due to

the occurrences of F . It is easy to see by the construction of α that
α(X/X1, . . . , Xn) = α(X)/α(X1), . . . , α(Xn) and α(X ′/X ′

1, . . . , X
′
n) =

α(X ′)/α(X ′
1), . . . , α(X ′

n) are both equal to t (up to bound variables),
hence there exists a correspondence function between both segments, and
X/X1, . . . , Xn ∼ X ′/X ′

1, . . . , X
′
n holds.

3. Let Y ′ be the node variable of Y then, as far as σ satisfies the tree-regular
constraint, tree(Y ′) ∈ L(A) will also hold.

4. This last step is obvious because σ(t1) = σ(t2).

Backward direction. Let τ, α |= dEe. We will construct a substitution σ and
then we will show that it solves E.

For all variable F ∈ V ar(t1
?= t2) we proceed as follows. Let the paral-

lelism literal X/X1, . . . , Xn∼X ′/X ′
1, . . . , X

′
n ∈ dEe be introduced in the second

step of the translation due to occurrences of the variable F (hence, X and
X ′ are node variables for occurrences of F in t1 or t2). We define σ(F) =
λx1, . . . , xn. τ.α(X)[α(Xi)/xi] for i ∈ {1..n} being n = arity(F). In other words,
we obtain σ(F) by replacing the “holes” of the segment α(X)/α(X1), . . . , α(Xn)
by the corresponding bound variables. Notice also that it does not matter what
parallelism literal introduced by the occurrences of F we take: all of them are
related by parallelism literals and hence we would obtain the same substitution
whichever we take hence

λx1, . . . , xn. τ.α(X)[α(Xi)/xi] = λx1, . . . , xn. τ.α(X ′)[α(X ′
i)/xi] i ∈ {1..n}

Let us see that effectively σ is a unifier of t1
?= t2.

LetX1 andX2 be the node variables of t1 and t2 respectively, and α(X1) = π1

and α(X2) = π2. We will see that σ(t1) = τ.π1 and that σ(t2) = τ.π2. We
proceed by structural induction on t (for t1 and t2).

We have two possibilities:

• Let t = f(s1, . . . , sn) for some n-ary function symbol f . Then the children-
labeling literal Y : f(Y1, . . . , Yn) (where Y is the node variable of t, and
Yi of si for i ∈ {1..n}) is in dEe, and by induction hypothesis we get
σ(si) = τ.α(Yi) for all i ∈ {1..n}, hence σ(t) = τ.α(Y).

• Let t = F (s1, . . . , sn) for some n-ary variable F . Then the par-
allelism literal Y/Y1, . . . , Yn∼Y/Y1, . . . , Yn (where Y is the node vari-
able of t) is in dEe. Notice that, by the construction of σ, we also
know that σ(F) = λx1, . . . , xn. τ.α(Y)[α(Yi)/xi] for i ∈ {1..n}, hence
σ(F (s1, . . . , sn)) = τ.α(Y)[α(Yi)/σ(si)], but by induction hypothesis we
get that σ(si) = τ.α(Yi) for all i ∈ {1..n}, hence σ(t) = τ.α(Y).

Finally, we know that τ.π1 = τ.π2 because the parallelism literal X1/ ∼ X2/
introduced in the fourth step of the translation holds, hence we can conclude

150 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

that σ(t1) = σ(t2). Moreover, being Y ′ the node variable of Y and knowing that
tree(Y ′) ∈ L(A) holds, we can also conclude that σ(Y) ∈ L(A).

We now give an inverse reduction that maps Parallelism with tree-regular
constraints to Context Unification with tree-regular constraints. The difficulty of
this reduction is raised again by the different views on trees. As we have already
said: while Parallelism Constraints talk about nodes and segments, Context
Unification deals with trees and contexts. So how can we speak about the nodes
of a tree in Context Unification? The idea is that we speak about the context
between the root of the tree and the node.

We now encode an extended parallelism constraint η = φ ∧ ξ with the
set of node variable V = V ar(η) into a context unification with tree-regular
constraints problem.

Definition 7.34 Let η = φ ∧ ξ with the set of node variable V = V ar(η). We
define a set of first-order and context variables as follows:

• let Xall be a first-order (tree) variable (that will denote a model of η).

• For every node variableX ∈ V let FX be a unary context variable(that will
denote the context from the root of Xall to node X), and X ′ a first-order
variable (that will denote the tree below X in Xall).

We express the intended relationships between the introduced first-order and
context variables through the context equations eV :

eV =
∧

X∈V

Xall
?= FX(X ′)

Then we translate η by means of the translation bηc. The translation b c of the
literals of η is given in Figure 7.13.

Example 7.35 For instance, we translate the unsolvable parallelism constraint:

X :f(X1, X2) ∧ X1/X3, X4 ∼ X2/X3, X4

into this conjunction of context unification equations, also unsolvable:

FX1(a)
?= FX(f(a,X ′

2)) ∧ FX2 (a)
?= FX(f(X ′

1, a)) ∧

FX1(b)
?= FX (f(b,X ′

2)) ∧ FX2(b)
?= FX(f(X ′

1, b)) ∧

FX3(a)
?= FX1(F (a,X ′

4)) ∧ FX3 (a)
?= FX2(F (a,X ′

4))

∧ FX4(a)
?= FX1(F (X ′

3, a)) ∧ FX4(a)
?= FX2 (F (X ′

3, a)) ∧

FX3(b)
?= FX1 (F (b,X ′

4)) ∧ FX3(b)
?= FX2 (F (b,X ′

4))

∧ FX4(b)
?= FX1 (F (X ′

3, b)) ∧ FX4 (b)
?= FX2(F (X ′

3, b)) ∧

Xall
?= FX (X ′) ∧ Xall

?= FX1 (X
′
1) ∧ Xall

?= FX2(X
′
2) ∧

Xall
?= FX3 (X

′
3) ∧ Xall

?= FX4 (X
′
4)

7.8. Equivalence Between PC and CU when Considering TR-Constraints 151

bX : f(X1, . . . , Xn)c = FX1 (a)
?= FX(f(a,X ′

2, . . . , X
′
n))

∧ . . .∧

FXn
(a) ?= FX (f(X ′

1, . . . , X
′
n−1, a))

∧ FX1 (b)
?= FX(f(b,X ′

2, . . . , X
′
n))

∧ . . .∧
FXn

(b) ?= FX(f(X ′
1, . . . , X

′
n−1, b))

bX : ac = X ′ ?= a

bX/X1, . . . , Xn ∼ Y/Y1, . . . , Ync = FX1 (a)
?= FX(F (a,X ′

2, . . . , X
′
n)) ∧

FY1(a)
?= FY (F (a, Y ′

2 , . . . , Y
′
n)) ∧

∧ . . . ∧

FXn
(a) ?= FX (F (X ′

1, X
′
2, . . . , a)) ∧

FYn
(a) ?= FY (F (Y ′

1 , Y
′
2 , . . . , a))

∧ FX1 (b)
?= FX(F (b,X ′

2, . . . , X
′
n)) ∧

FY1(b)
?= FY (F (b, Y ′

2 , . . . , Y
′
n)) ∧

∧ . . . ∧
FXn

(b) ?= FX(F (X ′
1, X

′
2, . . . , b)) ∧

FYn
(b) ?= FY (F (Y ′

1 , Y
′
2 , . . . , b))

(being F a fresh context variable)

bη1 ∧ η2c = bη1c ∧ bη2c

btree(X) ∈ L(A)c = X ′ ∈ L(A)

Figure 7.13: Reduction of Parallelism with Tree-Regular Constraints to Context
Unification with Tree-Regular Constraints.

Lemma 7.36 Any parallelism with tree-regular constraints formula φ ∧ ξ with
variable set V is satisfiable if and only if the system of context unification equa-
tions with tree-regular constraints eV ∧ bφ ∧ ξc is.

Proof: Forward direction. Let τ, α |= φ ∧ ξ. We are going to construct a
substitution σ from τ and α and show that σ solves the context unification with
tree regular constraints problem eV ∧ bφ ∧ ξc. We define the substitution for
the three kinds of variables that we create in the translation:

• for the first-order variable Xall that denotes τ , let σ(Xall) = τ .

• For each context variable FX that denotes the context from the root of τ
to node X , let σ(FX) = λx. τ [α(X)/x].

• For each first-order variable X ′ that denotes the tree below X in τ , let
σ(X ′) = τ.α(X).

• And finally, for each n-ary context variable F introduced when translating
X/X1, . . . , Xn∼Y/Y1, . . . , Yn, let σ(F) = λx1, . . . , xn. τ.α(X)[α(Xi)/xi]

152 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

for i ∈ {1..n}. Notice again that due to parallelism, we have that σ(F) is
also equal to λx1, . . . , xn. τ.α(Y)[α(Yi)/xi].

Now we have to prove that σ solves eV ∧ bφ ∧ ξc. We will proceed showing
that it effectively solves the groups of equations introduced in the translation.

• Consider the equations of eV like Xall
?= FX (X ′) for any node variable

X . By definition of σ we have that σ(Xall) = τ and that σ(FX (X ′)) =
(λx. τ [α(X)/x]) (τ.α(X)) = τ .

• Consider now the equations introduced when translating the children-
labeling literals X : f(X1, . . . , Xn). There are two equations like FXi

(a) ?=
FX(f(X ′

1, . . . , a, . . . X
′
n)) and FXi

(b) ?= FX(f(X ′
1, . . . , b, . . .X

′
n)) for i ∈

{1..n}, where a and b occur as the i’th child of f . Let us consider the first
one (for the second one, the same proof applies). Now, by definition of σ
we have that σ(FXi

(a)) = (λx. τ [α(Xi)/x]) (a) = τ [α(Xi)/a] and that:

σ(FX (f(X ′
1, . . . , a, . . .X

′
n))) =

(λx. τ [α(X)/x]) (f(τ.α(X1), . . . , a, . . . , τ.α(Xn)))

but as far as τ, α |= X : f(X1, . . . , Xn), we get that the previous term is
equal to τ [α(Xi)/a] as our equation requires.

• Consider now the equations introduced when translating the parallelism lit-
erals X/X1, . . . , Xn∼Y/Y1, . . . , Yn. There are two equations like FXi

(a) ?=
FX(F (X ′

1, . . . , a, . . .X
′
n)) and FXi

(a) ?= FY (F (Y ′
1 , . . . , a, . . . Y

′
n)) for all

i ∈ {1..n}, where a is the i’th child of F , and two more equations where b
occurs instead of a. Let us consider the first one of the first pair (for the
ones with b’s, the same proof applies). Now, by definition of σ we have
that σ(FXi

(a)) = τ [α(Xi)/a] and we also have that:

σ(FX (F (X ′
1, . . . , a, . . .X

′
n))) =

(λx. τ [α(X)/x]) ((λ~x. τ.α(X)[α(Xi)/xi])(τ.α(X1), . . . , a, . . . , τ.α(Xn))) =
τ [α(X)/ (τ.α(X)[α(X1)/τ.α(X1), . . . , α(Xi)/a, . . . , α(Xn)/τ.α(Xn)])] =
τ [α(Xi)/a]

as our equation requires. To solve the second equation (the one with
the Y ’s variables), we just need to notice that both segments correspond.
Hence, the same proof applies.

• The tree regular constraints X ′ ∈ L(A) are also satisfied, because σ(X ′) =
τ.α(X) and τ.α(X) = tree(X) ∈ L(A).

We can conclude that σ solves eV ∧ bφ ∧ ξc.
Backward direction. Let σ solve eV ∧ bφ ∧ ξc. Then, let τ = σ(Xall). We

will define an α such that τ, α |= φ ∧ ξ.
For all node variable X ∈ V ar(φ ∧ ξ), let X ′ and FX be their corresponding

first-order and context variables in eV ∧ bφ ∧ ξc. Let σ(FX) = λx.t and let
t.π = x (recall that λx.t is linear and hence x occurs just once). Accordingly to

7.8. Equivalence Between PC and CU when Considering TR-Constraints 153

the fact that for all node variable X we have an equation Xall
?= FX (X ′), we

define α(X) = π. Now we have to prove that effectively τ, α |= φ ∧ ξ, and we
do so for the distinct kinds of literals of φ ∧ ξ.

• For the mother-children literal X : f(X1, . . . , Xn) we have to check that
effectively for all i ∈ {1..n}, α(Xi) = α(X)i and that τ(α(X)) = f .

Let α(X) = π and let α(Xi) = πi for all i ∈ {1..n}. First notice that for
all i ∈ {1..n} we have the equations:

FXi
(a) ?= FX(f(X ′

1, . . . , a, . . . , X
′
n))

FXi
(b) ?= FX(f(X ′

1, . . . , b, . . . , X
′
n))

(being a and b the i’th child of f). The fact that we have two equations
with distinct constants (a and b) as the argument of FXi

(hence occurring
at position πi of σ(FXi

(a))) and as the i’th argument of f (that being the
argument of FX occurs in position π, hence the constants occur at position
πi of σ(FX (f(X ′

1, . . . , a, . . . , X
′
n)))), allows us to conclude that the a’s (and

the b’s) must occur at the same position in both terms, hence πi = πi, even
more, we can also conclude that σ(FXi

(a))(π) = f .

It remains to prove that τ(α(X)) = f , hence that τ(π) = f . The equations:
FXall

?= FXi
(X ′

i), allow us to infer that τ = σ(FXi
(X ′

i)) for all i ∈ {1..n}.
Now, recall that σ(FXi

(a))(π) = f , hence σ(FXi
(X ′

i))(π) = τ(π) = f as
required.

• For the parallelism literals X/X1, . . . , Xn∼Y/Y1, . . . , Yn, we have to check
that X dominates X1, . . . , Xn and that these are disjoint, that Y domi-
nates Y1, . . . , Yn and that these are disjoint also, and that a correspondence
function exists between both segments.

Let α(X) = π, α(Y) = π′ and let α(Xi) = πi and α(Y ′
i) = π′i for all

i ∈ {1..n}. Again, for all i ∈ {1..n} we have the equations:

FXi
(a) ?= FX (F (X ′

1, . . . , a, . . . , X
′
n))

FXi
(b) ?= FX(F (X ′

1, . . . , b, . . . , X
′
n))

(being a and b the i’th child of the context variable F). Let σ(F) =
λx1, . . . , xn. t and for all i ∈ {1..n} let t.πFi = xi. Then, following the
same reasoning as before, we get that for all i ∈ {1..n}, α(Xi) = ππFi .
This proves that effectively X/X1, . . . , Xn is a segment because the root
dominates all the holes and these are pairwise disjoint since σ(F) is linear
and second-order typed, hence no bound variable can be applied over any
bound variable. The same reasoning applies to the segment Y/Y1, . . . , Yn.

Now we have to prove that a correspondence function exists between
π/ππF1 , . . . ππ

F
n and π′/π′πF1 , . . . π

′πFn in τ . We can use again the same
reasoning as in the previous case and see that both segments are iden-
tical because they correspond to instances of the context defined by
σ(F) = λx1, . . . , xn. t.

154 Chapter 7. Describing Lambda-Terms in CU with TR-Constraints

• For the tree-regular constraints, notice that σ(X ′) = τ.α(X) satisfies the
constraint, hence tree(X) = τ.α(X) ∈ L(A) holds also.

We can conclude that τ, α |= φ ∧ ξ as required.

Theorem 7.37 The extensions of parallelism constraints and context unifica-
tion with tree-regular constraints are equivalent modulo polynomial time reduc-
tions.

Proof: This theorem follows from Lemma 7.33 and Lemma 7.36.

7.8.1 Main Result

We have shown so far how to express Lambda Binding and Parallelism Con-
straints by means of Parallelism Constraints with First-Order Dominance, The-
orem 7.19. Now, by considering Theorem 7.30 in Parallelism Constraints plus
First-Order Dominance formulae and then considering Theorem 7.37 we get that
Parallelism Constraints plus First-Order Dominance formulae can be expressed
by Context Unification plus Tree-Regular Constraints equations. Then, the fol-
lowing theorem follows.

Theorem 7.38 Satisfiability of Parallelism and Lambda Binding Constraints
can be reduced in non-deterministic polynomial time to satisfiability of Context
Unification with Tree-Regular Constraints.

7.9 Limitations

An extension of the Constraint Language for Lambda Structures by Group Paral-
lelism in order to deal with Beta Reduction Constraints is proposed by Bodirsky
et al. (2001). The question is now whether Group Parallelism can be expressed
in Context Unification with tree regular constraints. This is a relation between
groups of segment terms (S1, . . . , Sn)∼(S′1, . . . , S

′
n) that behave as a conjunction

of parallelism literals ∧ni=1Si∼S
′
i but such that hanging binders are defined with

respect to groups of segments (S1, . . . , Sn) and (S′1, . . . , S
′
n).

Unfortunately, we cannot extend the encodings of the present thesis. The
problem is that Group Parallelism does not satisfy the non-intervenance prop-
erty as stated for ordinary parallelism in Lemma 7.14. Indeed, it is not always
possible to name variables consistently in the presence of group parallelism, so
that corresponding binder of parallel groups are named alike. In other words,
binding parallelism cannot be reduced to tree parallelism by naming binders.
This is illustrated by the lambda structure in Figure 7.14 which satisfies the
group parallelism constraint:

(X1/X2, X4/X5)∼(X2/X3, X3/X4)

Even though the lam-node X2 corresponds to X1, X2 intervenes between X1 and
its bound var-node X6. We thus cannot name these corresponding nodes alike.

7.10. Summary 155

X1

X4

@

X2

X3

var

varX5

lam

lam

X7

X6

@

Figure 7.14: Group parallelism between (X1/X2, X4/X5) ∼ (X2/X3, X3/X4).

7.10 Summary

We have shown that the lambda-binding constraints of the Constraint Language
for Lambda Structures can be expressed in Context Unification with tree-regular
constraints. This result depends on the non-intervenance property of parallel
lambda binding, by which binding parallelism can be reduced to tree parallelism.

The reduction of λ-binding and Parallelism constraints to Context Unifi-
cation with tree-regular constraints requires several encoding steps. We have
defined the Second-Order Dominance Logic and used it as an intermediate step
of the translation. In fact, a sublanguage of this logic, the First-Order Dom-
inance Logic, has allowed us to guarantee the soundness of the translation by
enabling us to express the non-intervenance property.

We have also proved satisfaction equivalence between Parallelism with tree-
regular constraints and Context Unification with tree-regular constraints.

We have also shown the main limitations of the techniques used in our trans-
lation when trying to extend it to group parallelism.

Chapter 8

Conclusion

In this last chapter we summarise the results of the thesis and we present the
main lines of our future work.

8.1 Summary of the Thesis

In this thesis we have studied Second-Order Unification, mainly two of its vari-
ants: Context Unification and Linear Second-Order Unification. Both of them
require unifiers where instantiations of second-order variables are linear terms,
i.e. terms where all subterms of the form: λx. t, satisfy that x occurs free in t
once and just once.

While Linear Second-Order Unification equations are like Second-Order Uni-
fication equations, Context Unification equations do not allow the use of third
(or higher)-order constants, nor of λ-abstractions. Even more, context (second-
order) variables are sometimes restricted to be unary.

Figure 8.1 illustrates the main results achieved in this thesis. In the figure,
CU stands for Context Unification, @ for just one binary symbol, λ for Lambda
Binding Constraints, LSOU for Linear Second-Order Unification, n-ary for n-ary
variables, PC for Parallelism Constraints, RC for Regular Constraints, SDOM
for Second-Order Dominance Formulae, TRC for Tree-Regular Constraints and
WU for Word Unification.

In the following we enumerate the main contributions of the thesis according
to Figure 8.1.

1. In this work we have shown (see Theorem 3.19) that the arity of the vari-
ables does not affect to the decidability, therefore we consider Context
Unification with n-ary context variables (for n ≥ 1).

2. We have also shown (see Theorem 4.15) how the signature of Second-Order
Unification and Context Unification can be simplified to only one binary
function symbol and constants. This result illustrates the fact that the

157

158 Chapter 8. Conclusion

LSOU

CU

WU

2

7

i

PC

CLLS

Satisfiability Equivalence

Problem Extension

Reduction

Conjectured Reduction

98

CU CU
n−ary n−ary

@1

3

4

5

6
RC
WU +

Problems

Decidable Problems

Thesis Constributions

CU +
TRC

LSOU +
TRC

PC +
TRC

PC +
SDOM

PC + λ

Constraint Language Framework Unification Framework

Figure 8.1: Studied problems and their relations.

importance of the signature, when considering decidability, lies in the dif-
ference between having at most unary constant symbols (Monadic Second-
Order Unification) or having at least a binary symbol that allows branch-
ing. This result allowed us to concentrate on Context Unification with just
one binary function symbol in this work.

3. The main result of the thesis is the reduction (see Theorem 5.21 and Theo-
rem 5.27), under the assumption of Conjecture 5.22, of Context Unification
to Word Unification with regular constraints, which is decidable. The con-
jecture claims the existence of a computable function Φ that allows us to
ensure that: if the given problem s ?= t is solvable then there exists a
solution σ such that rankσ(s) ≤ φ(|s ?= t|).

The rank measure is not a trivial measure as far as it does not imply

8.1. Summary of the Thesis 159

any bound on the size of the solutions. The reduction requires several
encoding steps and has led us to define traversal equations and rank and
permutation-bound traversal equations. Decidability of the latter has also
been shown.

The remaining results of the thesis consist of the study of the relationship
between Context Unification and Linear Second-Order Unification and between
Context Unification and the Constraint Language for Lambda Structures. In
order to be able to relate these problems we have extended Context Unification
by means of tree-regular constraints (in the spirit of the extension of Word
Unification with regular constraints). In both relationships, we have used tree-
regular constraints to ensure the soundness of the reductions.

4,5. First, we have shown that Linear Second-Order Unification can be reduced
to Context Unification with tree-regular constraints (see Corollary 6.14).
In this reduction, the tree-regular constraints have been used to avoid vari-
able capture and loss of linearity in the instantiations of context variables.

6. When we try to apply the reduction of Context Unification to Word Uni-
fication with regular constraints, to the broad case of Context Unification,
we are forced to extended Conjecture 5.22 to Conjecture 6.23 to deal also
with tree-regular constraints. We have also shown that satisfiability of
rank-bound tree-regular constraints can be reduced to satisfiability of reg-
ular constraints over traversal sequences.

Then, we have focussed on the Constraint Language for Lambda Structures,
a constraint formalism to talk about lambda structures that is currently used for
semantic modelling of ambiguous sentences. We have shown that a part of this
language can be reduced to Context Unification with tree-regular constraints.

7. Mainly we have reduced Parallelism and Lambda-binding constraints to
Context Unification with tree-regular constraints. These tree-regular con-
straints ensure that the non-intervenance property of the satisfiable paral-
lelism and lambda-binding constraints problems, is not violated in the
translated context unification problem (see Theorem 7.19). This non-
intervenance property has been introduced for the first time in this thesis.

8. In fact, this property is expressed in First-order Dominance formulae,
a sublanguage of the Second-Order Dominance formulae, which are also
proved to be satisfaction equivalent to tree-regular constraints, even when
considered with parallelism constraints (see Theorem 7.30). This Second-
Order Dominance Logic has been introduced for the first time in this thesis.

9. To complete the reduction we have shown that Parallelism with tree-
regular constraints and Context Unification with tree-regular constraints
are equivalent modulo polynomial time reductions (see Theorem 7.37).

160 Chapter 8. Conclusion

8.2 Future Work

The main line of our future work is to prove the conjectures stated in this thesis:
Conjecture 5.22 and Conjecture 6.23. Proving these conjectures would imply
decidability of Context Unification, decidability of Linear Second-Order Unifica-
tion, decidability of Parallelism and lambda binding constraints, and decidability
of Parallelism and tree-regular constraints. Obviously this does not seem to be
an easy task.

Some other questions that we consider interesting to investigate are:

1. The decidability of traversal systems. Notice that showing their decidabil-
ity would directly imply decidability of Context Unification.

2. The definition of the precise fragment of Context Unification with prac-
tical interest for linguistical applications. Our belief is that a fragment
where “overlapping” between distinct occurrences of the same variable is
forbidden, is decidable and subsumes and generalises the “well nested frag-
ment” of the Constraint Language for Lambda Structures defined in Erk
and Niehren (2003).

3. The expressivity of Context Unification equations, as it has been done for
Word Unification equations by Karhumäki et al. (1997).

4. The possible applications of Context Unification and of Context Matching
in programming languages. In this sense, the work of Schmidt-Schauß and
Stuber (2002) relating Context Matching with XML queries could be an
starting point. Another possibility is to study the possible applications of
Linear Higher-Order Matching in program transformations like de Moor
and Sittampalam (2001) and Sittampalam and de Moor (2001), do with
general Higher-Order Matching in the MAG system.

5. We have not been able to translate all the features of the Constraint Lan-
guage for Lambda Structures into Context Unification with tree-regular
constraints. We would like to investigate also if anaphoric binding con-
straints can also be expressed in Context Unification. We also leave as
further work the study of how the group parallelism and beta reduction
extensions are related with Context Unification.

6. We would also like to improve the signature simplification for Second-Order
and for Context Unification to just one binary function symbol and just
one 0-ary constant symbol.

Bibliography

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J. (1998). Explicit
Substitutions. Journal of Functional Programming 1(4), 375–416.

Althaus, E., Duchier, D., Koller, A., Mehlhorn, K., Niehren, J. and
Thiel, S. (2003). An Efficient Graph Algorithm for Dominance Constraints.
Journal of Algorithms 1(48), 194–219. Special Issue of SODA 2001.

Andrews, P. B. (1981). Theorem Proving through General Matings. Journal
of the ACM 28, 193–214.

Baader, F. and Siekmann, J. H. (1993). Unification Theory. In Handbook
of Logic in Artificial Intelligence and Logic Programming. Oxford University
Press, Oxford, UK.

Baader, F. and Snyder, W. (2001). A Proof Theory for General Unification.
In Handbook of Automated Reasoning, volume 1, chapter 8, 445–532. Elsevier
Science Publishers and MIT Press.

Backofen, R., Rogers, J. and Vijay-Shanker, K. (1995). A First-order
Axiomatization of the Theory of Finite Trees. Journal of Logic, Language,
and Information 4, 5–39.

Barendregt, H. P. (1984). The Lambda Calculus - It’s Syntax and Semantics.
North-Holland, Amsterdam.

Baxter, L. D. (1977). The Complexity of Unification. PhD Thesis, University
of Waterloo.

Benzmüller, C. and Kohlhase, M. (1998a). Extensional Higher-Order Res-
olution. In Proceedings of the 15th International Conference on Automated
Deduction (CADE-15), volume 1421 of LNAI, 56–71. Springer, Berlin.

Benzmüller, C. and Kohlhase, M. (1998b). LEO: A Higher-Order Theorem
Prover. In Proceedings of the 15th International Conference on Automated
Deduction (CADE-15), volume 1421 of LNAI, 139–143. Springer, Berlin.

Bjorner, N. and Muñoz, C. (2000). Absoulte Explicit Unification. In Pro-
ceedings of the 11th International Conference on Rewriting Techniques and
Applications (RTA’00), volume 1833 of LNCS, 31–46. Norwich, UK.

161

162 BIBLIOGRAPHY

Bodirsky, M., Erk, K., Koller, A. and Niehren, J. (2001). Beta Reduction
Constraints. In Proceedings of the 12th International Conference on Rewriting
Techniques and Applications (RTA’01), volume 2051 of LNCS, 31–46.

Cervesato, I. and Pfenning, F. (1997). Linear Higher-Order Pre-Unification.
In Proceedings of the 12th Annual Symposium on Logic in Computer Science
(LICS’97), 422–433. IEEE Computer Society Press, Warsaw, Poland.

Church, A. (1940). A simple theory of types. Journal of Symbolic Logic 5,
56–68.

Colmerauer, A. (1988). Final Specifications for PROLOG-III. Technical
Report P1219(1106), ESPRIT.

Comon, H. (1991). Disunification: a Survey. In Computational Logic: Essays
in Honor of Alan Robinson. MIT Press.

Comon, H. (1992a). Completion of Rewrite Systems with Membership Con-
straints. In International Colloquium on Automata, Languages and Program-
ming (ICALP’92), volume 623 of LNCS. Vienna, Austria.

Comon, H. (1992b). On Unification of Terms with Integer Exponents. Technical
Report 770, L. R. I., Univ. Paris-Sud.

Comon, H. (1998). Completion of Rewrite Systems with Membership Con-
straints. Journal of Symbolic Computation 25(4), 397–453.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D.,
Tison, S. and Tommasi, M. (1997). Tree Automata Techniques and Appli-
cations.

Comon, H. and Jurski, Y. (1997). Higher-Order Matching and Tree Automata.
In Proceedings of the 11th Workshop on Computer Science Logic (CSL’97),
volume 1414 of LNCS, 157–176. Springer-Verlag.

Courcelle, B. (2000). The monadic second-order logic of graphs XIII: Graph
drawings with edge crossings. Computational Intelligence 244(1-2), 63–94.

Dalrymple, M., Shieber, S. M. and Pereira, F. C. N. (1991). Ellipsis and
Higher-Order Unification. Linguistics and Philosophy 14(4), 399–452.

Darlington, J. L. (1971). A Partial Mechanization of Second-order Logic.
Machine Intelligence 6, 91–100.

Darlington, J. L. (1973). Automatic Program Synthesis in Second-Order
Logic. In Proceedings of the 3rd International Joint Conference on Artificial
Intelligence (IJCAI’73), 537–542. William Kaufmann, Standford, CA.

Degtyarev, A. and Voronkov, A. (1996). The undecidability of simulta-
neous rigid E-unification. Theoretical Computer Science 166(1–2), 291–300.
Note.

BIBLIOGRAPHY 163

Diekert, V., Matiyasevich, Y. and Muscholl, A. (1997). Solving Trace
Equations Using Lexicographical Normal Forms. In International Colloquium
on Automata, Languages and Programming (ICALP’97), 336–346. Bologna,
Italy.

Doner, J. (1970). Tree Acceptors and Some of Their Applications. Journal
of Computer System Science 4, 406– 451. Received December 1967, Revised
May 1970.

Dougherty, D. J. and Wierzbicki, T. (2002). A Decidable Variant of
Higher-Order Matching. In Proceedings of the 13th International Conference
on Rewriting Techniques and Applications (RTA’02), volume 2378 of LNCS,
340–351. Springer-Verlag.

Dowek, G., Hardin, T. and Kirchner, C. (2000). Higher-Order Unification
via Explicit Substitutions. Information and Computation 157, 183–235.

Dowek, G. (1992). Third-Order Matching is Decidable. In Proceedings of the
7th Annual Symposium on Logic in Computer Science (LICS’92), 2–10. IEEE
Computer Society Press, Santa Cruz, California.

Dowek, G. (1993). A Unification algorithm For Second-Order Linear Terms.
Manuscript.

Dowek, G. (1994). Third order matching is decidable. Annals of Pure and
Applied Logic 69(2–3), 135–155.

Egg, M., Koller, A. and Niehren, J. (2001). The Constraint Language
for Lambda Structures. Journal of Logic, Language, and Information 10(4),
457–485.

Egg, M., Niehren, J., Ruhrberg, P. and Xu, F. (1998). Constraints over
Lambda-Structures in Semantic Underspecification. In Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics and the 17th
International Conference on Computational Linguistics (ACL’98), 353–359.
Montreal, Quebec, Canada.

Erk, K., Koller, A. and Niehren, J. (2002). Processing Underspecified
Semantic Representations in the Constraint Language for Lambda Structures.
Journal of Research on Language and Computation 1, 127–169.

Erk, K. and Niehren, J. (2000). Parallelism Constraints. In Proceedings of
the 11th International Conference on Rewriting Techniques and Applications
(RTA’00), July 10-12, volume 1833 of LNCS, 110–126. Springer, Norwich,
UK.

Erk, K. and Niehren, J. (2003). Well-Nested Parallelism Constraints for
Ellipsis Resolution. In Proceedings of the 11th Conference of the European
Chapter of the Association of Computational Linguistics, 115–122.

164 BIBLIOGRAPHY

Farmer, W. M. (1988). A unification algorithm for second-order monadic
terms. Annals of Pure and Applied Logic 39, 131–174.

Farmer, W. M. (1991). Simple Second-Order Languages for wich Unification
is Undecidable. Theoretical Computer Science 87, 173–214.

Felty, A., Gunter, E., Miller, D. and Pfenning, F. (1990). λProlog.
In Proceedings of the 10th International Conference on Automated Deduction
(CADE-10), volume 449 of LNAI, 682–681. Springer-Verlag, Kaiserslautern,
FRG.

Gallier, J. H. and Snyder, W. (1990). Designing Unification Procedures
Using Transformations: A Survey. Bulletin of the EATCS 40, 273–326.

Ganzinger, H., Nieuwenhuis, R. and Nivela, P. (2001). Context Trees.
In Proceedings of the 1st International Conference on Automated Reasoning
(IJCAR 2001), volume 2083 of LNCS, 242–256. Siena, Italy.

Gardent, C. and Kohlhase, M. (1996). Higher-Order Coloured Unification
and Natural Language Semantics. In Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics (ACL’96), 1–9. Association
for Computational Linguistics, Morgan Kaufmann Publishers, San Francisco.

Goldfarb, W. D. (1981). The Undecidability of the Second-Order Unification
Problem. Theoretical Computer Science 13, 225–230.

de Groote, P. (2000). Higher-order linear matching is NP-complete. In Pro-
ceedings of the 11th International Conference on Rewriting Techniques and
Applications (RTA’00), volume 1833 of LNCS, 127–140. Springer-Verlag.

Gutiérrez, C. (1998). Satisfiability of word equations with constants is in
exponential space. In Proceedings of the 39th Annual Symposium on Foun-
dations of Computer Science (FOCS’98): proceedings: November 8–11, 1998,
Palo Alto, California, 112–119. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA.

Gutiérrez, C. (2000). Satisfiability of equations in free groups is in PSPACE.
In Proceedings of the 32nd annual ACM Symposium on Theory of Computing
(STOC’00): Portland, Oregon, May,, 21–27. ACM Press, New York, NY,
USA.

Hindley, J. R. and Seldin, J. P. (1986). An Introduction to Combinators
and the λ-calculus. Cambrigde University Press.

Horton, R. (1945). Erosional development of streams and their drainage basins;
hydrophisical approach to quantitative morphology. Bulletion of Geological
Society of America 56, 275–370.

Huet, G. (1973a). A Mechanization of Type Theory. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence (IJCAI’73), 139–146.
William Kaufmann, Standford, CA.

BIBLIOGRAPHY 165

Huet, G. (1973b). The Undecidability of Unification in Third-Order Logic.
Information and Control 22(3), 257–267.

Huet, G. (1975). A Unification Algorithm for Typed λ-Calculus. Theoretical
Computer Science 1, 27–57.

Huet, G. (1976). Résolutions d’Équations dans des Langages d’ordre 1,2,...,ω.
Thèse d’État, Université de Paris VII.

Jaffar, J. (1990). Minimal and Complete Word Unification. Journal of the
ACM 37(1), 47–85.

Jensen, D. C. and Pietrzykowski, T. (1976). Mechanizing omega-order type
theory through unification. Theoretical Computer Science 3(2), 123–171.

Karhumäki, J., Plandowski, W. and Mignosi, F. (1997). The Expressibility
of Languages and Relations by Word Equations. In Automata, Languages and
Programming, 24th International Colloquium, volume 1256 of LNCS, 98–109.
Springer-Verlag, Bologna, Italy.

Knight, K. (1989). Unification: A Multidisciplinary Survey. ACM Computing
Surveys 21(1), 93–124.

Knuth, D. E. and Bendix, P. B. (1967). Simple Word Problems in Universal
Algebras. In Computational Problems in Abstract Algebra, 263–298. Pergamon
Press, Oxford. Appeared 1970.

Koller, A. (1998). Evaluating Context Unification for Semantic Underspecifi-
cation. In 3rd ESSLLI Student Session (ESSLLI ’98), August 17-28, 188–199.
Saarbrücken, Germany.

Koller, A., Niehren, J. and Treinen, R. (1998). Dominance Constraints:
Algorithms and Complexity. In Proceedings of the 3rd International Confer-
ence on Logical Aspects of Computational Linguistics (LACL’98), December
14-16. Grenoble, France.

Kościelski, A. and Pacholski, L. (1995). Complexity of Makanin’s Algo-
rithm. Technical report, Institute of Mathematics, Polish Academy of Sci-
ences.

Kościelski, A. and Pacholski, L. (1996). Complexity of Makanin’s Algo-
rithm. Journal of the ACM 43(4), 670–684.

Kowalski, R. A. (1974). Predicate Logic as Programming Language. In Infor-
mation processing 1974; proceedings of IFIP congress 1974, 569–574. North-
Holland.

Levy, J. (1996). Linear Second-Order Unification. In Proceedings of the 7th In-
ternational Conference on Rewriting Techniques and Applications (RTA’96),
volume 1103 of LNCS, 332–346. New Brunsbick, New Jersey.

166 BIBLIOGRAPHY

Levy, J. (1998). Decidable and Undecidable Second-Order Unification Prob-
lems. In Proceedings of the 9th International Conference on Rewriting Tech-
niques and Applications (RTA’98), volume 1379 of LNCS, 47–60. Tsukuba,
Japan.

Levy, J. and Agust́ı, J. (1996). Bi-rewrite Systems. Journal of Symbolic
Computation 22(3), 279–314.

Levy, J., Schmidt-Schauß, M. and Villaret, M. (2004). Monadic Second-
Order Unification is NP -complete. In Proceedings of the 15th International
Conference on Rewriting Techniques and Applications (RTA’04), volume 3091
of LNCS, 55–69. Aachen, Germany.

Levy, J. and Veanes, M. (1998). On Unification Problems in Restricted
Second-Order Languages. In Annual Conference of the European Association
of Computer Science Logic (CSL’98). Brno, Czech Republic.

Levy, J. and Veanes, M. (2000). On the Undecidability of Second-Order
Unification. Information and Computation 159, 125–150.

Levy, J. and Villaret, M. (1998). Complexity Study of some Classes of Con-
text and Second-Order Unification Problems. Twelfth International Workshop
on Unification, (UNIF’98).

Levy, J. and Villaret, M. (2000). Linear Second-Order Unification and Con-
text Unification with Tree-Regular Constraints. In Proceedings of the 11th In-
ternational Conference on Rewriting Techniques and Applications (RTA’00),
volume 1833 of LNCS, 156–171. Norwich, UK.

Levy, J. and Villaret, M. (2001). Context Unification and Traversal Equa-
tions. In Proceedings of the 12th International Conference on Rewriting Tech-
niques and Applications (RTA’01), volume 2041 of LNCS, 169–184. Utrecht,
The Netherlands.

Levy, J. and Villaret, M. (2002). Currying Second-order Unification Prob-
lems. In Proceedings of the 13th International Conference on Rewriting Tech-
niques and Applications (RTA’02), volume 2378 of LNCS, 326–339. Copen-
hagen, Denmark.

Loader, R. (2003). Higher-Order β Matching is Undecidable. Logic Journal of
the IGPL 11(1), 51–68.

Lucchesi, C. L. (1972). The Undecidability of the Unification Problem for
Third-Order Languages. Technical Report CSRR 2059, Dept. of Applied Anal-
ysis and Computer Science, Univ. of Waterloo.

Makanin, G. S. (1977). The problem of solvability of equations in a free
semigroup. Math. USSR Sbornik 32(2), 129–198.

BIBLIOGRAPHY 167

Martelli, A. and Montanari, U. (1976). Unification in linear time and space:
A structured presentation. Internal Report B 76-16, Istituto di Elaborazione
della Informazione, Pisa, Italy.

Miller, D. (1991a). A Logic Programming Language with Lambda-
Abstraction, Function Variables, and Simple Unification. Journal of Logic
and Computation 1(4), 497–536.

Miller, D. (1991b). Unification of Simply Typed Lambda-Terms as Logic
Programming. In Proceedings of the 8th International Logic Programming
Conference, 255–269. MIT Press, Paris, France.

Miller, D. (1992). Unification Under a Mixed Prefix. Journal of Symbolic
Computation 14(4), 321–358.

Miller, D. and Nadathur, G. (1986). Some Uses of Higher-Order Logic in
Computational Linguistics. In Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistics (ACL’86), 247–255. Association for
Computational Linguistics, Morristown, New Jersey.

Miller, D. and Nadathur, G. (1987). A Logic Programming Approach to
Manipulating Formulas and Programs. In Proceedings of the 5th International
Conference and Symposium on Logic Programming, 379–388. IEEE, Computer
Society Press, San Francisco.

Miller, D., Nadathur, G., Pfenning, F. and Scedrov, A. (1991). Uniform
Proofs as a Foundation for Logic Programming. Annals of Pure and Applied
Logic 51, 125–157.

Milner, R. (1978). A Theory of Type Polymorphism in Programming. Journal
of Computer and System Sciences 17, 348–375.

Montague, R. (1988). The Proper Treatment of Quantification in Ordinary
English. In Philosophy, Language, and Artificial Intelligence: Resources for
Processing Natural Language, 141–162. Kluwer, Boston.

de Moor, O. and Sittampalam, G. (2001). Higher-order matching for pro-
gram transformation. Theoretical Computer Science 269(1–2), 135–162.

Müller, M. and Niehren, J. (1998). Ordering Constraints over Feature Trees
Expressed in Second-Order Monadic Logic. In Proceedings of the 9th In-
ternational Conference on Rewriting Techniques and Applications (RTA’98),
volume 1379 of LNCS, 196–210. Tsukuba, Japan.

Nadathur, G. and Miller, D. (1998). Higher-Order Logic Programming. In
Handbook of Logic in Artificial Intelligence and Logic Programming, volume 5,
chapter 8. Oxford University Press.

Niehren, J. (2002). Personal Communication.

168 BIBLIOGRAPHY

Niehren, J. and Koller, A. (2001). Dominance Constraints in Context Uni-
fication. In Logical Aspects of Computational Linguistics (LACL’98), volume
2014 of LNAI, 199–218.

Niehren, J., Pinkal, M. and Ruhrberg, P. (1997a). On Equality Up-to
Constraints over Finite Trees, Context Unification, and One-Step Rewriting.
In Proceedings of the 14th International Conference on Automated Deduction
(CADE-14), volume 1249 of LNCS, 34–48. Townsville, North Queensland,
Australia.

Niehren, J., Pinkal, M. and Ruhrberg, P. (1997b). A Uniform Approach to
Underspecification and Parallelism. In Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics and the 8th Conference of the
European Chapter of the Association for Computational Linguistics (ACL’97),
410–417. Madrid, Spain.

Niehren, J., Tison, S. and Treinen, R. (2000). On rewrite constraints and
context unification. Information Processing Letters 74(1-2), 35–40.

Niehren, J. and Villaret, M. (2002). Parallelism and Tree Regular Con-
straints. In Proceedings of the 9th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning: (LPAR’02), volume 2514 of
LNCS, 311–326. Tbilisi, Georgia.

Niehren, J. and Villaret, M. (2003). Describing Lambda Terms in Context
Unification. In 4th International Workshop on Inference on Computational
Semantics (ICOS-4). Nancy, France.

Nieuwenhuis, R. and Rubio, A. (2001). Paramodulation-based theorem prov-
ing. In Handbook of Automated Reasoning, volume 1, chapter 7, 372–444.
Elsevier Science Publishers and MIT Press.

Nipkow, T. (1993). Functional Unification of Higher-Order Patterns. In Pro-
ceedings of the 8th IEEE Symposium on Logic in Computer Science (LICS’93),
64–74. Montreal, Canada.

Padovani, V. (1995). Decidability of All Minimal Models. In Types for Proofs
and Programs, International Workshop (TYPES’95), volume 1158, 201–215.
Springer-Verlag.

Padovani, V. (2000). Decidability of Fourth-Order Matching. In Mathematical
Structures in Computer Science, volume 10(3), 361–372. Cambridge University
Press.

Paulson, L. C. (1990). Isabelle: The Next 700 Theorem Provers. In Logic and
Computer Science, 361–386. Academic Press.

Paulson, L. C. (1993). Introduction to Isabelle. Technical Report UCAM-CL-
TR-280, University of Cambridge, Computer Laboratory.

BIBLIOGRAPHY 169

Pietrzykowski, T. (1973). A Complete Mechanization of Second-Order Type
Theory. Journal of the ACM 20(2), 333–365.

Pinkal, M. (1995). Radical Underspecification. In 10th Amsterdam Colloquium,
587–606. University of Amsterdam, Amsterdam, The Netherlands.

Plandowski, W. (1999a). Satisfiability of word equations with constants is in
NEXPTIME. In Proceedings of the 31st annual ACM Symposium on Theory
of Computing (STOC’99), 721–725. ACM Press, New York, NY, USA.

Plandowski, W. (1999b). Satisfiability of word equations with constants is in
PSPACE. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS’99), 495–500. IEEE Computer Society Press, New
York City, USA.

Plotkin, G. (1972). Building in Equational Theories. In Machine Intelligence,
volume 7, 73–90. Edinburgh University Press, Edinburgh, Scotland.

Prehofer, C. (1995). Solving Higher-Order Equations: From Logic to Pro-
gramming. Ph.D. thesis, Technische Universität München.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution
principle. Journal of the ACM 12(1), 23–41.

Robinson, J. A. (1969). Mechanizing Higher-Order Logic. Machine Intelligence
4, 151–170.

Robinson, J. A. and Wos, L. (1969). Paramodulation and Theorem-proving
in First-Order Theories with Equality. Machine Intelligence 4, 135–150.

Salvati, S. and de Groote, P. (2003). On the complexity of Higher-Order
Matching in the Linear λ-calculus. In Proceedings of the 14th International
Conference on Rewriting Techniques and Applications (RTA’03), volume 2706
of LNCS, 234–245. Springer-Verlag.

Schmidt-Schauß, M. (1996). An algorithm for distributive unification. In
Proceedings of the 7th International Conference on Rewriting Techniques and
Applications (RTA’96), volume 1103 of LNCS, 287–301. New Jersey, USA.

Schmidt-Schauß, M. (1998). A decision algorithm for distributive unification.
Theoretical Computer Science 208, 111–148.

Schmidt-Schauß, M. (1999a). Decidability of Bounded Second-Order Unifica-
tion. Technical Report Frank-report-11, FB Informatik, J.W. Goethe Univer-
sität Frankfurt.

Schmidt-Schauß, M. (1999b). A Decision Algorithm for Stratified Context
Unification. Technical Report Frank-report-12, FB Informatik, J.W. Goethe
Universität Frankfurt.

170 BIBLIOGRAPHY

Schmidt-Schauß, M. (2001). Stratified Context Unification Is in PSPACE.
In Proceedings of the 15th Workshop on Computer Science Logic (CSL’01),
volume 2142 of LNCS, 498–512.

Schmidt-Schauß, M. (2002). A Decision Algorithm for Stratified Context
Unification. Journal of Logic and Computation 12, 929–953.

Schmidt-Schauß, M. (2004). Decidability of Bounded Second-Order Unifica-
tion. Information and Computation 188(2), 143–178.

Schmidt-Schauß, M. and Schulz, K. U. (1998). On the Exponent of Period-
icity of Minimal Solutions of Context Equations. In Proceedings of the 9th In-
ternational Conference on Rewriting Techniques and Applications (RTA’98),
volume 1379 of LNCS, 61–75. Tsukuba, Japan.

Schmidt-Schauß, M. and Schulz, K. U. (1999). Solvability of context equa-
tions with two context variables is decidable. In Proceedings of the 16th In-
ternational Conference on Automated Deduction (CADE-16), volume 1632 of
LNAI, 67–81.

Schmidt-Schauß, M. and Schulz, K. U. (2002a). Decidability of Bounded
Higher-Order Unification. In Proceedings of the 16th Workshop on Computer
Science Logic (CSL’02), volume 2471 of LNCS, 522–536.

Schmidt-Schauß, M. and Schulz, K. U. (2002b). Solvability of Context
Equations with Two Context Variables is Decidable. Journal of Symbolic
Computation 33(1), 77–122.

Schmidt-Schauß, M. and Stuber, J. (2002). On the complexity of linear and
stratified context matching problems. In Complexity in Automated Deduction,
volume 02-08 of DIKU technical reports, (unpaginated).

Schubert, A. (1998). Second-order unification and type inference for Church-
style polymorphism. In Conference Record Symposium on Principles of Pro-
gramming Languages, 279–288. ACM Press.

Schulz, K. U. (1991). Makanin’s algorithm for word equations — Two improve-
ments and a generalization. In Word Equations and Related Topics, number
572 in LNCS, 85–150. Springer, Berlin-Heidelberg-New York.

Schulz, K. U. (1993). Word Unification and Transformation of Generalized
Equations. Journal of Automated Reasoning 11(2), 149–184.

Shieber, S., Pereira, F. and Dalrymple, M. (1996). Interaction of Scope
and Ellipsis. Linguistics & Philosophy 19, 527–552.

Siekmann, J. and Szabó, P. (1984). Universal Unification. In Proceedings 7th
International Conference on Automated Deduction (CADE-7), Napa Valley
(California, USA), volume 170 of LNCS, 1–42. Springer-Verlag, Napa Valley
(California, USA).

BIBLIOGRAPHY 171

Sittampalam, G. and de Moor, O. (2001). Higher-Order Pattern Match-
ing for Automatically Applying Fusion Transformations. In Symposium on
Programs as Data Objects, volume 2053 of LNCS, 218–237.

Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional
topography. Bulletion of Geological Society of America 63, 1117–1142.

Thatcher, J. W. and Wright, J. B. (1967). Generalized Finite Automata
Theory with an Application to a Decision Problem of Second-Order Logic.
Mathematical Systems Theory 2(1), 57–81.

Venturini-Zilli, M. (1975). Complexity of the Unification Algorithm for first-
Order Expressions. Calcolo XII, Fasc. IV 423–434.

Zaionc, M. (1986). The Set of Unifiers in Typed Lambda-Calculus as Regular
Expression. In Proceedings of the 1st International Conference on Rewriting
Techniques and Applications (RTA’85), volume 202 of LNCS, 430. Springer-
Verlag, Berlin-Heidelberg-New York.

172 BIBLIOGRAPHY

Index

(τ, λ), 124
A, 103
A-unification, 4
B, 103
C, 43
E-unification, 3
Q, 101
Qfin, 139
Qf , 101
R, 79
RkΣ, 79
Rq , 110
V , 138
Xall, 150
[], 74
: , 121
= , 121
⊥ , 121
�
∗ , 121

�
+ , 121

AextV
, 141

∆, 101
domainτ , 138
equφ, 132
Vnode, 125
NF(), 77
Φ, 133
Φ′(), 115
Φ(), 83
Πn, 74
proj(), 134
root(), 121
root(,), 134
Vset, 138
Σφ, 133
Σ, 20

Σ′, 103
ΣL, 62
ΣΠ, 75
Σc, 61
ΣV , 140
ΣΠ, 75
α-equivalence, 23
α-extension, 140
α(), 126
arity(), 20
β-equivalence, 23
β-redex, 23
β-reduction, 23
βη-long normal form, 23
bindf (,), 132
◦, 25
rank(), 74
rank(A), 109
C(), 61
Dom(), 21
ε, 74
≡, 79
≡b, 82
=λ, 22
η, 145, 150
η-equivalence, 23
η-expansion, 23
η-redex, 23
η-reduction, 23
extα(), 140
external−bindere(,), 134

L̂, 62
inside(,), 134
L, 62
lam(), 123
lamu(), 129

173

174 Index

λ-Prolog, 8
λ-abstraction, 20
λ-calculus, 19
λ-equivalence, 22
λ-term, 20

linear, 39
order, 20
size, 20
typed, 20

λ(), 123, 124
λ−1(), 124
d e, 147
b c, 150
7→, 21
A, 101
AA,B , 104
L(A), 101
Listsof (B), 103
T , 19
T (,), 88
T (Σ,X), 20
W , 79
X , 20
|=, 127
µ, 126
namese, 133
nodes−τ (), 122
nodesτ , 121
nodesτ (), 122
no−free−vare, 134
no−hang−bindere(), 134
ν, 126
φ, 126
ψ, 138
Range(), 21
π/π1, . . . , πn, 122
σ|A, 21
∼, 123
intervenef (,), 132
| |, 20
stepA(,), 139
τ.π, 121
τ , 121
τ(), 20, 121
→, 19

→β, 23
→η, 23
transA,B(), 103
[]e, 133
trav(), 75
tree(), 138
treee(,), 136
?=, 25
?=cu , 102
?=lsou , 102

var, 123
varu, 129
V ar(), 20
~x, 102
̂ , 62
ξ, 138
b~x, 103
c(), 123
cz, 103
ch(), 140
e(), 132
eV , 150
fρ, 75
nG, 27
o(), 19
p(), 134
pX , 104
qX , 104
t|p, 74
@, 57, 61, 123
1-in-3-SAT, 53

α|V , 127

anaphoric binding, 120
application, 20

explicit, 57
argument, 20
arity, 20
automated theorem proving, 7

beta reduction constraints, 120
binder, 20
bounded higher-order unification, 6,

52

Index 175

bounded second-order unification,
6, 52

common instance, 25
Comon’s restricted case, 48
constant symbols, 20
constants, 20
constraint language for lambda

structures, 14, 119
context, 43
context matching, 53
context unification, 5, 44

currying, 57
decidable fragments, 48
perspectives, 43, 45
stratified, 50

context unification with tree-regular
constraints, 102

context variable, 43
arity, 45

correspondence function, 123
curried signature, 61
currying function, 61
currying terms, 61
cycle, 50

decurried form, 24
disjointness relation, 121
distributive unification, 50
disunification, 1
dominance constraint, 125
dominance constraints, 14
dominance relation, 121

ellipses, 13
equation, 25
equations system, 25

size, 25
explicit unification, 58
exponent of periodicity, 49

first-order dominance formula, 126
first-order unification, 1, 34
flexible, 29
functions, 20

Goldfarb numbers, 27

graph representation, 128
group parallelism constraint, 120
group parallelism constraints, 154

Haskell, 11
hat, 62
head, 23
higher-order β-matching, 37
higher-order logic programming, 8
higher-order matching, 36

currying, 68
higher-order patterns, 28
higher-order unification, 6, 25
Hilbert’s tenth problem, 27
hole, 43
holes, 122

instance, 22
common, 25

intervenance, 129
Isabelle, 8

labeling function, 62
labeling relation, 121
lambda binding constraint, 126
lambda binding constraints, 126
lambda structure, 124
language

order, 24
linear higher-order matching, 53
linear second-order matching, 53
linear second-order unification, 6, 39
linear second-order unification pro-

cedure, 41

MAG, 11
matching, 1

context, 53
higher-order, 25, 36, 53
linear higher-order, 53
linear second-order, 53
second-order, 25

matings, 2
monadic, 28
monadic second-order dominance

logic, 138

176 Index

monadic second-order unification,
28, 35

natural language semantics, 12
node variables, 125
non-intervenance, 129
non-intervenance property, 130
non-touching variables, 64

parallel lambda binding axioms, 124
external binder, 124
internal binder, 124
no hanging binder, 124

parallelism constraint, 126
parallelism constraints, 14, 126
parallelism relation, 123
parametric terms, 35
paramodulation, 3
Pascal, 10
pattern, 34
permutation, 74
pre-unification, 32
program synthesis, 9
program transformation, 9
Prolog, 2

rank, 72
rank-bound conjecture, 83

extended, 115
rank-bound tree-regular constraint,

114
regular constraint, 79

rank-bound, 79
regular search trees, 33
renaming, 25
resolution, 2
rigid, 29
root, 121

scope ambiguity, 12
second-order unification, 6, 25

currying, 57
decidable fragments, 28, 34
infinitary, 29
procedure, 29
undecidability, 27

undecidable fragments, 28
second-order unification procedure

completeness, 32
soundness, 32

segment, 122
sequence, 75

k-bound traversal, 78
normal traversal, 77
rank, 76
traversal, 75
width, 76

signature, 20
extended, 75
extended labels, 140
labeled, 62

simple equations, 28
simply typed λ-calculus, 19
simultaneous rigid E-unification, 28
Snobol, 9
solved state, 29
stratified context unification, 50
strict dominance, 121
substitution, 21

application, 22
composition, 25
context, 44
domain, 21
extension, 21
ground, 22
linear, 39
more general, 25
range, 21
renaming, 25
restriction, 21
size, 22
word, 79

subterm, 20

term, 43
closed, 20
curry form, 57
first-order, 21
position, 74
rank, 72, 74
second-order, 21

transformation rule, 29

Index 177

elimination, 31
flexible-flexible, 31, 41
flexible-rigid, 30
identification, 32
imitation, 31, 41
iteration, 31
projection, 30, 41
rigid-rigid, 30
simplification, 30, 31, 41

traversal equation, 79
permutation-bound, 82

traversal sequence, 75
permutation-bound, 82

traversal system, 79
permutation and rank-bound,

82
rank-bound, 79

tree, 121
tree automaton, 101

rank-bound, 109
tree node, 121
tree structure, 121
tree-regular constraint, 102, 137

rank-bound, 114
tree-regular language, 101

rank-bound, 114
two context variables fragment, 51
type, 19

atomic, 19
order, 19

typed λ-term see λ-term, 20

unarise, 46
underspecified semantic representa-

tion, 14
unification, 1, 25

bounded higher-order, 52
bounded second-order, 52
context, 44
explicit, 58
finitary, 26
first-order, 34
higher-order, 25
infinitary, 26
linear second-order, 39
monadic second-order, 35

nullary, 26
pattern, 34
problem, 26
second-order, 25
unitary, 26
word, 48

unifier, 25
minimal complete set of most

general, 26
most general, 25

variable, 20
bound, 20
capture, 21, 129
context, 43
free, 20
fresh, 22

variable assignment, 126

word equation, 79
word unification, 4, 48
word unification with regular con-

straints, 50

XML, 53

Z-context unification, 52

