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Foreword

Negotiation among autonomous agents has been highlighted as one of the most
promising areas for the deployment of multi-agent applications. This Ph. D.
is the final outcome of a long list of research publications on the definition of
models for negotiation. These publications have had a notable importance in the
agents research community, and some of them have had a large impact and are
quite well referenced. On the practical side his participation in the development
of ADEPT, a system widely cited as a paradigmatic example of Agent-mediated
Electronic Commerce, has provided the author with the necessary intuitions to
guide the decisions taken in the different stages of his work. In this Ph. D. he
focuses on fundamental issues of the field such as negotiation methods, tactics,
strategies, and agent infrastructures. He proposes a novel tactic to deal with
imperfect knowledge of the opponents preferences that is experimentally shown
to be of great practical interest. Although arriving to Artificial Intelligence
from a background on Psychology he has proved during the development of his
Ph. D. very good programming skills and has made sound experimental work.
Our collaboration with the author during the last years has proven very fruitful
scientifically and personally. We wish the reader an enjoyable experience when
reading the book.

Bellaterra, 2002

Nick Jennings and Carles Sierra
University of Southampton & IITA, CSIC
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Abstract

Multi-agent systems are a new computational approach for solving real world,
dynamic and open system problems. Problems are conceptualized as a collec-
tion of decentralised autonomous agents that collaborate to reach the overall
solution. Because of the agents autonomy, their limited rationality, and the dis-
tributed nature of most real world problems, the key issue in multi-agent system
research is how to model interactions between agents. Negotiation models have
emerged as suitable candidates to solve this interaction problem due to their de-
centralised nature, emphasis on mutual selection of an action, and the prevalence
of negotiation in real social systems.

The central problem addressed in this thesis is the design and engineering of
a negotiation model for autonomous agents for sharing tasks and/or resources.
To solve this problem a negotiation protocol and a set of deliberation mechanisms
are presented which together coordinate the actions of a multiple agent system.

In more detail, the negotiation protocol constrains the action selection prob-
lem solving of the agents through the use of normative rules of interaction. These
rules temporally order, according to the agents’ roles, communication utterances
by specifying both who can say what, as well as when. Specifically, the presented
protocol is a repeated, sequential model where offers are iteratively exchanged.
Under this protocol, agents are assumed to be fully committed to their utterances
and utterances are private between the two agents. The protocol is distributed,
symmetric, supports bi and/or multi-agent negotiation as well as distributive
and integrative negotiation.

In addition to coordinating the agent interactions through normative rules,
a set of mechanisms are presented that coordinate the deliberation process of
the agents during the ongoing negotiation. Whereas the protocol normatively
describes the orderings of actions, the mechanisms describe the possible set of
agent strategies in using the protocol. These strategies are captured by a ne-
gotiation architecture that is composed of responsive and deliberative decision
mechanisms. Decision making with the former mechanism is based on a linear
combination of simple functions called tactics, which manipulate the utility of
deals. The latter mechanisms are subdivided into trade-off and issue manipu-
lation mechanisms. The trade-off mechanism generates offers that manipulate
the value, rather than the overall utility, of the offer. The issue manipulation
mechanism aims to increase the likelihood of an agreement by adding and re-
moving issues into the negotiation set. When taken together, these mechanisms
represent a continuum of possible decision making capabilities: ranging from
behaviours that exhibit greater awareness of environmental resources and less to
solution quality, to behaviours that attempt to acquire a given solution quality

xvii



independently of the resource consumption.

The protocol and mechanisms are empirically evaluated and have been ap-
plied to real world task distribution problems in the domains of business process
management and telecommunication management.

The main contribution and novelty of this research are: i) a domain inde-
pendent computational model of negotiation that agents can use to support a
wide variety of decision making strategies, ii) an empirical evaluation of the
negotiation model for a given agent architecture in a number of different ne-
gotiation environments, and iii) the application of the developed model to a
number of target domains. An increased strategy set is needed because the de-
veloped protocol is less restrictive and less constrained than the traditional ones,
thus supporting development of strategic interaction models that belong more
to open systems. Furthermore, because of the combination of the large number
of environmental possibilities and the size of the set of possible strategies, the
model has been empirically investigated to evaluate the success of strategies in
different environments. These experiments have facilitated the development of
general guidelines that can be used by designers interested in developing strate-
gic negotiating agents. The developed model is grounded from the requirement
considerations from both the business process management and telecommunica-
tion application domains. It has also been successfully applied to five other real
world scenarios.

xviii



Chapter 1

Introduction

The topic of this thesis is interaction, a temporary or permanent coupling be-
tween deliberating entities in a distributed system. The entities of interest
in this thesis are digital and inhabit a digital system. The focus of atten-
tion is how to computationally model interactions among these digital enti-
ties. The need for such models is seen in the current explosion of auction
portals ([AuctionBot, , eBay, , Amazon, , i2, , Rodriguez et al., 1997]), which
together with standardized communication enabling infrastructures such as
the WWW, Java and the Knowledge Query Manipulation Language (KQML,
[Neches et al., 1991, Finin and Fritzson, 1994]), allow multiple buyers and sell-
ers, across organizations (business-to-business), as well as individuals (customer-
to-customer or business-to-customer), to enter electronic institutions and trade
with one another for goods, resources or services, in open and real time elec-
tronic market places. In particular, the subject of this thesis is an extension of
the current e-commerce technology to bi-lateral interactions/tradings between
autonomous computational units called agents that represent buyers and sell-
ers. Specifically, this work engineers an electronic negotiation framework for
interactions in electronic commerce between autonomous agents that bargain for
multi-dimensional goods called services. Here this computational-based trading
is referred to as agent based electronic commerce of services.

Electronic commerce is just one exemplar of a system that incorporates inter-
action between computational components. The problem of modeling such inter-
actions in a distributed computational system was first framed within the Dis-
tributed Artificial Intelligence (DAI) community. DAI is concerned with under-
standing and modeling action and knowledge in a collaborative and distributed
enterprise consisting of a number of agents [Gasser, 1991]. Distribution of intel-
ligence among a set of agents is seen as necessary when [Bond and Gasser, 1988]:

e knowledge or activities are inherently distributed (e.g medical diagnosis or
traffic control)

e there is a need for fail-soft degradation through distribution of control



2 Chapter 1. Introduction

e there is a need to compute solutions to large scale problems given bounded
computational resources

e there is a need for reliability, a distributed system can provide cross-
checking of solutions and triangulation of results

e there is a need for the integration of existing legacy systems

e there is a need for expert development of separate units through modular
knowledge acquisition and management

e the design of a monolithic system is too problematic and costly and in-
stead the costs involved in the development of a large number of simple
communicating units is more effective

e there is a need for a greater adaptive power by allowing alternative so-
lutions to be formed from units which have different logical, semantical,
temporal or spatial perspectives

e central processing may be too slow compared to enhanced speed through
parallel computation

These benefits have been observed in the wide variety of real world prob-
lems to which DAT solutions have been applied. These include: prob-
lems in manufacturing (YAMS [Parunak, 1987]), process control (elec-
tricity transportation, ARCHON [Jennings et al., 1996a], nuclear industry
[Wang and Wang, 1997], spacecraft control [Schwuttke and Quan, 1993],
[Ingrand et al., 1992], climate control [Clearwater et al., 1996]), telecom-
munication systems (feature interaction [Griffeth and Velthuijsen, 1994],
service management [Faratin et al., 2000a],  [Busuoic and Griffits, 1994],
network management [Adler et al., 1989],[Rao and Georgeff, 1990]), air
traffic control [Ljungberg and Lucas, 1992], traffic and transport man-
agement  ([Burmeister et al., 1997],  [Fischer et al., 1996]),  information
filtering and  gathering  ([Sycara et al., 1996, Chen and Sycara, 1998,
Etzioni, 1996, Liberman, 1995, Kautz et al., 1997]),  electronic  com-
merce ([Chavez and Maes, 1996, Krulwich, 1996, Doorenbos et al., 1997,
Tsvetovatyy et al., 1997]), business process management ([Faratin et al., 1998,
Jennings et al., 2000a, Jennings et al., 2000b, Huhns and Singh, 1998]), enter-
tainment [Grand and Cliff, 1998], and medical care ([Hayes-Roth et al., 1989,
Decker and Li, 1998]).

These problem domains are suitable for DAI technology (also known as agent
technology [Bond and Gasser, 1988]) because they exhibit one or more of the
above features. For example, a manufacturing process is inherently a distributed
system where production chains, or its components, can be represented as com-
putational agents whose capabilities are captured using plans, and who share
these capabilities through negotiation. Similarly, control systems can detect, di-
agnose and remedy problems if control subprocesses are delegated to agents that
not only provide cross checking of results, but also form solutions to problems



from different and novel perspectives and exhibit graceful degradation in case of
node(s) failure(s).

Although distribution can be beneficial, it gives rise to the following questions
that need to be addressed [Bond and Gasser, 1988]:

1.

How to formulate, represent, decompose and allocate the problem and how
to synthesis the results among a group of intelligent agents.

. Sub-problems may interact which requires the agents to communicate and

interact. If interaction is required then the problem arises of how to model
the language and the protocol of this interaction.

. how to achieve global coherency from local processing. That is, how to

ensure that agents act coherently in making decisions or taking actions,
reasoning about the non-local effects of local decisions and avoiding harm-
ful interactions.

. If there is a need for interaction and coordination, then how should agents

represent and reason about the actions, plans and knowledge of other
agents.

. How are agents to recognize and resolve and/or synthesize disparate view

points on a sub—problem. These conflicts can be caused either by uncer-
tainty in the world, different reasoning procedures or limited resources.

. How to actually engineer and constrain practical DAI systems through the

design of platforms and methodologies.

Each of the above problems emphasize different facets and perspectives of a DAI
system. The first problem is the central problem in DAI and is centered on the
problem the system is designed to solve in a distributed manner. In addition,
distributed problem solvers need coordination (the third problem), agent com-
munication languages (the second problem), and agent reasoning mechanisms
(fourth and fifth problems). Finally, there is a need to engineer a distributed
system that implements the solutions to the above problems. As Gasser notes,
the solutions to these problems are not independent:

...different procedures for communication and interaction have impli-
cations for coordination and coherent behaviour. Different problem
solving and task decompositions may yield different interactions or
agent-modeling requirements. Coherent, coordinated behaviour de-
pends on how knowledge disparities are resolved, which agent resolves
them, etc [Gasser, 1991].

Given this, it can be seen that the coordination issue is a quintessential prob-
lem in DAT [Decker, 1995]. To this end, the contribution of this thesis is the
development of a formal model of agent reasoning that attempts to address the
coordination problem.
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1.1 Aims of the Research

The central aim of this thesis is a formal specification and evaluation of a co-
ordination framework for computational units, called agents, that buy and sell
services from one another and operate in either open or closed distributed sys-
tems (defined below). Here a coordination framework is defined as a collection
of three components:

1. the public rules of behaviour specifying the permissible actions agents can
take in the course of interactions

2. the subject of interactions
3. the deliberation mechanism that assists agents in making decisions

These components roughly specify when to interact, what to interact over and
how to interact, respectively. The major contribution of this work s a formal
model of the third component. This component will be referred to as a wrapper
layer because it is seen as supplementing an asocial domain problem solver with
additional functionality that the domain problem solver was not designed for in
the first place, i.e. to interact. The wrapper can also be thought of as a “plug
and interact” module of systems that need to interact with other systems.

The subject of agent interactions are services. Services capture and rep-
resent in an abstract way, similar to methods in object oriented paradigm
[Coad and Yourdon, 1991], the local capability of agents in performing tasks.
There are numerous examples of services in the real world which individuals
need. Database validation, financial forecasts, medical diagnosis, fault predic-
tion are but a few examples where the capability of an agent is represented as
services it can provide to others who need it. Services, in a similar manner to
methods, are reusable for other types of problems that require the expertise of
that agent. However, agents differ from objects in that their services can not
be invoked by a simple procedure call because, as will be shown below, they are
assumed to be autonomous. Therefore, the agent must be persuaded to perform
its service(s). Access to services in real social systems is gained through vari-
ous means such as long term contracts (for example, companies often have long
term contracts with companies that provide fiscal forecast information) or con-
ventions of organizations (for example, access to shared and public services such
as medical expertise, is still determined not by who can pay most, but on need
basis). However, the type of persuasion considered in this thesis is negotiation:

Definition 1 a process by which a joint decision is made by two or more par-
ties. The parties first verbalize contradictory demands and then move towards
agreement by a process of concession making or search for new alternatives
[Pruitt, 1981].

In summary, the aim of this thesis is the development of a coordination frame-
work that specifies: i) the public rules of behaviour during the negotiation,
ii) the services which agents “produce” and “consume” and iii) the deliber-
ation mechanisms that the agents use during negotiation. This coordination
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framework is designed for both closed and open systems. In this thesis, a
closed agent system (also referred to as a Distributed Problem Solving (DPS)
system [Yang and Zhang, 1995, Durfee and Rosenschein, 1994]) is characterized
by a central designer(s) undertaking the following steps in the system design
methodology:

1. definition of the global problem(s)

2. mapping and assigning subproblems and resources, either dynamically at
run-time or statically at design-time, to agents

3. central configuration of all the agents, specifying their agent’s behaviour
in the course of interactions

4. using an agent communication language to allow the agents to solve the
problems in stepl

This methodology is problem centered (step 1); a central designer creates a fixed
and static society of computational agents (step 2), who interact repeatedly
(exchanging goals, plans or information) using a communication language (step
4), to collectively solve a well structured and objective global problem. Agents
are often homogeneous in architecture, languages and reasoning (step 3), and
are cooperatively motivated to help one another to solve the global problem at
hand. This benevolent agent attitude directly follows from the assumption in
closed systems that agents share a common goal. Thus agents cooperate with one
another because they are aware of the fact that they share a common goal. Any
conflicts are subjective, arising as a consequence of an incomplete or incorrect
local view of the world, rather than objective contradictory interests.

Conversely, an open agent system [Hewitt and de Jong, 1984] (also
referred to as a Multi-Agent System, MAS [Bond and Gasser, 1988,
Durfee and Rosenschein, 1994, Durfee and Lesser, 1989]) is characterized
by a number of designers undertaking the following steps in the system design
methodology:

1. either defining the global problem or allowing the problem to dynamically
emerge

2. nominating/selecting (pre-existing) autonomous agents to enter interac-
tions

3. configurating of your agent(s)

4. using an agent communication language to allow the agents to identify
conflicting issues and solve problems in stepl

Open environments are better characterized as encounters, where pre-existing
agents come together infrequently to solve a problem, trade goods, or, alterna-
tively, where problems emerge dynamically “on the fly” in the course of interac-
tions. This interaction centered, as opposed to problem centered, stance means
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that the agent society is more dynamic. Agents can come and go. There is no
globally shared goal(s), hence the motivations in interactions are more selfish.
There is a large degree of uncertainty about the other agents. The agents them-
selves are heterogeneous in architecture, languages and reasoning procedures.
The problem structure itself is ill defined, no objectively correct solution exists
and instead preferences are given more importance. Under these circumstances,
assumptions about the system (such as agents, resources, information and goals)
are not only difficult to make, but may also often be invalid.

The characterization of agents as selfishly and autonomously pursuing multi-
ple goals has a number of important implications. The pursuit of individual goals
is beneficial in that it decouples agents from one another. Thus, self interest,
as a behaviour guideline, encourages separation between individual and group
problem solving. This is useful when an agent is vulnerable to the malicious
behaviour of others, or when there is a need to reduce the influence of agents
who have erroneous information or deliberation models. Also the assumption
in MAS that agents may have multiple, and at least partially, conflicting goals
produces social dilemmas or real conflict, which cannot be resolved simply by
increasing the awareness of an agent through information exchange. Finally, the
autonomy assumption means that agents can create and pursue their own goals
in a self-interested manner. The decision of whether to adopt the goals of oth-
ers is based on whether these adopted goals contribute to changing the current
world state into a personal desired and motivated state.

This thesis aims to develop a specification of a coordination framework (the
rules, objects and deliberation components of interactions) that can operate in
both closed and open systems; usable by both a closed system designer, to de-
fine each agent’s interaction capabilities (step 3 in the closed system design), or,
alternatively, by an open system participant who would like his/her agent to in-
teract with other pre-existing agents, designed by other designers (step 3, in open
system design). Thus, the coordination framework should be easily configurable
and applicable to different types of systems. This configurability is motivated
by the principles of re-usability and flexibility. Re-usability is achieved by i)
making as few commitments to the agent architecture as possible, ii) dissociat-
ing interaction decisions from the protocol of interactions and iii) emphasizing
the notion of services. Flexibility, in turn, is sought by avoiding unreasonable or
strong assumptions that limit the applicability of the framework to a single do-
main or agent architecture. Specifically, this requirement amounts to the design
of a framework that does not assume the agent is unbounded in computational
resources or information [Bond and Gasser, 1988]. This is because real world
environments are often characterized by uncertainty and limited computational
resources which need to be devoted to solving the domain problem the agent
was actually designed for in the first place. In fact, interaction is an added cost
to the agent in not only computation, but also communication. Additionally,
not only can communication be expensive, but it can also be unreliable. Pro-
longed communication may also cause non-terminal chains of beliefs and goals
updates because as the length of communication increases so does the chain
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of beliefs and goals that support the deliberation in the course of interactions
[Huhns and Stephens, 1999].

Therefore, the aim is to design and engineer a re-usable and flex-
ible computational coordination framework for both open and closed dis-
tributed and multi-agent systems. Like computational auctions [Varian, 1992,
Vulkan and Jennings, 1998, Sandholm, 1999], where agents interact and trade
with one another according to normative rules of an electronic institution
[Rosenschein and Zlotkin, 1994], a computational negotiation framework is
sought that permits individual agent designers to specify negotiation strategies
for the trading of services, for both closed and open systems, given the rules of
interactions. As will be shown, auctions are computationally different to negoti-
ation and a different framework of negotiated interactions is necessary (sections
3.1.8, 3.2.8). The stance adopted in this thesis is that the framework should
formally, and minimally, represent:

o the set of agents involved in negotiation
e the conflict object(s)
e the public rules of interaction

o the strategic resolution decisions available to an agent

Note the last aim—specification of the strategic choices an agent has in conflict
resolution. This relates to the “configuration” step in both the open and closed
agent system design methodology (step 3). A framework, as opposed to a unique
solution, is sought that makes available to agent designers different types of ne-
gotiation decision strategies. In this sense, the framework is descriptive and the
designer is free to “configure” the agent according to some objective. However,
in order to assist the designer, the developed resolution strategies are empirically
evaluated in a number of environments (see chapter 5).

1.2 Functional Architecture of the Coordination
Framework

The above requirements are captured in the functional architecture of the co-
ordination framework/system shown in figure 1.1.1 The coordination system
consists of:

e the coordination deliberation module (the coordination model, the service
description and the agent knowledge bases AM (Acquaintance Model) &
SM (Self Model), defined below, in figure 1.1)—together these modules are
referred to as the negotiation wrapper.

e the communication protocol (agent communication protocol).

IThe terms interaction and coordination will be used interchangeably throughout the thesis.
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The communication functionality of the coordination system is supported by the
interaction enabling infrastructure (labelled middle-ware [Coulouris et al., 1994,
Brenner et al., 1998] in figure 1.1). The negotiation wrapper is seen as assist-
ing the domain problem solver in interactions. The domain problem solver is
informally defined as an autonomous entity that has knowledge (represented as
the domain information model in figure 1.1) about the domain in which it oper-
ates, but that needs the assistance of others (as services) in solving its problems.
The coordination architecture, based on ARCHON [Jennings et al., 1996a], is

Agent negotiation Agent
wrapper
? e Coordination
Servi ce ok
Provi si oni ng Savice
Description
N L
: Agent A -
;ortr)llaln Communication MiddleWare grortr;lan el
=== oblem F|---F| Jamme [ F-r---r-| Poblem |1~
1™ Solver Language ] Solver ]
[ P
Domain Domain
Information Information
Mode Mode
Service Commitment
Execution Moce

Figure 1.1: Functional Specification of the Interaction System

divided into two parts, representing the service provisioning and service execu-
tion phases of agent activities (shown as the division marked by the dotted line
in figure 1.1). Service provisioning is defined as the processes involved in procur-
ing the necessary resources required to perform an activity. Service execution,
in turn, is defined as the actual performance of the provisioned activity. This
division expresses the differences between the processes involved in provisioning
a service from those involved in its execution. The processes involved in provi-
sioning are procurement processes involving scheduling local actions, identifying
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those actions/tasks that can not be performed locally, contacting the appropriate
service provider(s), followed by negotiating the required service. The processes
involved in service execution are more like management activities involving mon-
itoring the agreed service execution plan (circle marked Commitment Model in
figure 1.1) and initiating recovery procedures when execution has failed or is
predicted to fail. The division between these two types of processes is informally
captured as the service life-cycle (depicted as the service provisioning service ex-
ecution cycle in figure 1.1). The service life-cycle consists of firstly provisioning
and then executing a service. Another episode of service provisioning may be
initiated if the current execution fails. The focus of this work is on a negotiation
model for the service provisioning phase. Therefore, the subsequent exposition
will concentrate solely on the service provisioning phase of the life-cycle.

Figure 1.1 shows two domain problem solvers, and their associated domain
information models (the boxes labelled, Domain Problem Solver and Domain In-
formation Model respectively). The negotiation wrapper is depicted as an oval
that is connected to the domain problem solver. The exposition of the negoti-
ation wrapper will concentrate on the internal processes and structures of the
agent on the right hand side (the circle containing three boxes labelled AM &
SM, Coordination Model and Service Description). Assume for now that this
agent is the client of a service. Only one agent will be discussed because the
negotiation deliberation component of the wrapper does not make any assump-
tions about the architecture of the other interacting agent. Thus, heterogeneous
agents can inter-operate, as long as they obey the rules of the protocol specified
by the Agent Communication Language. In fact, from the perspective of a very
simple agent (unable to model others), the other agent can simply be viewed
as a black box (box labelled with a question mark) that receives inputs, in the
form of messages, and generates outputs, again in the form of messages.

Furthermore, note that the domain problem solver is separated from the
wrapper layer by a Service Description layer. A service description is defined
as an enumeration of the dimensions of a service (or identification of the issues
involved in the provisioning of a service) and the specification of preferences
the domain problem solver has over each of these identified dimensions. This
description of a service is then “handed” to the wrapper to provision. This
design philosophy is also shared by the work of Kraus:

There are two aspects to the development of agent architectures:
what is the architecture of each agent and how do they intercon-
nect, coordinate their activities and cooperate. There are many ap-
proaches to the development of a single agent. ... We provide a sep-
arate module for the strategic negotiation, and thus, we are willing
to adopt any definition or model of a single agent. Our only assump-
tion is that the agents can communicate with each other and that
our negotiation module can be added to the agents [Kraus, 2000].

The domain problem solver initiates service requests with the wrapper via
this service description layer (link labelled A) during the service’s provisioning
phase, describing the issues involved in negotiation as well as the domain problem
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solver’s preferences over these issues. Successful negotiation with the other server
agent will result in a contract that is then passed back to the domain problem
solver from the wrapper (link labelled B). During, or previously, to the service
request, both the domain problem solver and the coordination module read and
write to their information models, labelled Domain Information Model and AM
& SM respectively. The AM & SM are the wrapper’s repositories for knowledge
about itself and others in its environment respectively [Jennings et al., 2000Db].
The SM maintains information such as the services it can provide, the resources
available to perform it, and its current schedule of activities. In its acquain-
tance model (AM), the agent stores information about the existence and known
capability of other agents.

The above view of provisioning is agent-centric, concentrating on the inter-
nals of the agent. However, there are also inter-agent processes and structures
involved. All inter-agent communication is physically routed via a suite of mid-
dleware services that assist distributed computation (box labelled Middle Ware).
These services, possibly provided by other agents, may include: yellow and white
page directory services, assisting agents in locating one another; platforms for
message routing services (such as DAIS [DAIS, 1984] or ORBIX [orbix, 2000]);
authentication services; security services; mediation services and brokerage ser-
vices (see [Vogel, 1996] for a full description of middleware services). The imple-
mented middleware architecture for communication of this research has been a
combination of DAIS [DAIS, 1984] and the FIPA Open Source routing platforms
[FIPA-OS, 2000].

Finally, the syntax and pragmatics of messages are checked against the nor-
mative rules of the communication protocol, stored in the agent communication
language component of the coordination system, and correct messages are sent
via the middleware to the intended recipient. Otherwise an error is flagged and
the sender is notified of the divergence from the rules of the protocol.

The details of the negotiation wrapper (the coordination module and its
associated information models and service description), and the agent commu-
nication language modules of the architecture are revisited in more depth in
chapters two, three and four. What constitutes an agent is discussed next, prior
to an in-depth discussion of focused concepts such as coordination, interaction
and negotiation.

1.3 Agents and the Coordination Problem

An agent definition is presented in this section followed by an in-depth exami-
nation of the problem of coordination, its definitions, rationale, properties and

types.

1.3.1 Agent Definition

Agents, rather than a group of agents, are the kernel of the investigation reported
in this work. The term agent, however, has been the subject of much debate
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recently, ranging from definitions that allow the inclusion of almost all possible
objects, to definitions which only permit a very closed set of possibilities as candi-
dates for agency (see [Russell and Norvig, 1995, Maes, 1995, Hayes-Roth, 1995,
Wooldridge and Jennings, 1995] for some definitions).

In this work, an agent is defined as a combination of the domain problem
solver and the wrapper (where the latter component is concerned with providing
interaction capabilities and communication knowledge for the former):

agent = domain problem solver + wrapper

The domain problem solver is assumed to be capable of symbolically representing
and reasoning about its internal state utilizing its domain knowledge. Reactive
agents [Brooks, 1991] are therefore excluded from this research. The domain
problem solver is also assumed to be autonomous. Stated simply, autonomy
means that the agents operate without the direct intervention of humans or
others, and that they have some kind of control over their actions and internal
state [Castlefranchi, 1995]. In this work, autonomy amounts to the wrapper
having local control in selecting its strategies in negotiation. Indeed, autonomy
is a necessary condition for negotiation since agents cannot be made or ordered
to perform task(s) by other peer agents.?

Finally, agents are assumed to be capable of being both self or group moti-
vated when making decisions at the interaction phase of their problem solving.
In this thesis selfishness is informally defined as the achievement of one’s goal(s)
independently of the other(s) goals. On the other hand, group motivated deci-
sions are defined as achievement of one’s own goal(s), but in a manner that is
helpful to others’ goal(s). This local and global goal motivational stances of an
agent are given more concrete definitions in terms of maximization of individual
and social welfare in proceeding chapters when quantitative models of negoti-
ation are introduced. The choice of which attitude to adopt is not hardwired
into the agent architecture, rather it is a function of the agent’s environment.
As was seen in section 1.1, the motivations of agents have been one of the key
features that has been used in order to differentiate DPS from MAS.

1.3.2 The Coordination Problem

In this section, the concept of coordination is examined from a DAI perspective
(see chapter 3 and [Decker, 1995], [Kraus, 1997b], [Walton and Krabbe, 1995]
for a more detailed treatment from other related fields). This exposition will lay
the foundations for introducing different models of coordination in subsequent
chapters.

2 Autonomy is often a feature of the organizational structure of the society. Thus, whereas
a peer can not order other peers to perform a task, in a master-slave relationship orders are
permitted, and often practiced in real social systems, to ensure coordinated actions that incur
little or no communication and deliberation load [Scott, 1987].
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Definitions of Coordination

Holt informally defines coordination as “a kind of dynamic glue that binds tasks
together into a larger meaningful whole” [Holt, 1988]. More specific definitions
place the main emphasis on the outcome of coordination in creating collective
actions. For example, Bond and Gasser define coordination to be:

a property of interaction among some set of agents performing
some collective activity [Bond and Gasser, 1988].

This definition is centered on the outcome of coordination. However, it is too
abstract to be of any use operationally. For example, the notion of collective
activity alludes to the existence of a shared goal to act collectively, since for col-
lective activity agents must share the goal to collaborate with one another in the
first instance [Bratman, 1990]. Such goals are explicitly included in definitions
by Singh and Malone:

The integration and harmonious adjustment of individual work ef-
forts towards the accomplishment of a larger goal [Singh, 1994].

The act of managing interdependencies between activities performed
to achieve a goal [Malone and Crowston, 1990].

That is, with these views, coordination is the process of aligning and adjusting
agents’ actions to manage interdependencies, where success leads to achieving
some global system-goal. Although the concept is given a more concrete def-
inition in terms of both outcome (“goal”) and the processes involved, terms
such as “work efforts” or “integration” or “management” do not constrain dif-
ferent interpretations. For example, which entity is responsible for managing
the interdependencies—the individuals or a centralized controller? Likewise, it
is not clear what is the object of “work effort”; an agent’s goals, plans or de-
sires, or some other construct? The following two definitions offer an alternative
perspective on coordination, emphasizing a local, rather than a central, locus of
coordination:

Coordination, the process by which an agent reasons about its local
actions and the (anticipated) actions of others to try and ensure the
community acts in a coherent manner,. .. [Jennings, 1996], p.187.

and additionally, a process whose domain of operation is the satisfaction of
preferences:

. a solution to a coordination problem constitutes an equilibrium, a
compromise that assures somehow “maximal” attainment of different
interests of all involved individuals [Ossowski, 1999].

The process of coordination is also central to Jennings’ definition. However,
whereas the previous definitions were ambiguous about how it was achieved, in
this definition, coordination is actively brought about via local, rather than some
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centralized, explicit reasoning process of each agent. Likewise, Ossowski’s defini-
tion emphasizes the local locus of control in coordination. However, in addition
to this, the “work effort” is the conflicting interests of individuals that need to
be resolved in coordination. As will be shown in later chapters, Ossowski’s defi-
nition belongs to game theoretic models of coordination that emphasize notions
of solutions and equilibrium (an emergent property that is coordination).

Finally, whereas all the above definitions are based on achieving collective
actions, Huhns argues that although coordination is a property of collective
actions, it is not an all or nothing property. Rather it can exhibit degrees of
satisfaction:

. a property of the system of agents performing some activity in
a shared environment. The degree of coordination is the extent
to which they avoid extraneous activity by reducing resource con-
tention, avoiding live-lock and deadlock, and maintaining applicable
safety conditions [Huhns and Stephens, 1999], p.83.

The definition of coordination is made more complex because the perspec-
tive of the definition needs to be unambiguously determined. Generally, when
the system of agents is viewed from a behaviouristic perspective (by observ-
ing the behaviour of the system only), then it is difficult to assess whether
agents have engaged in coordinated action [Jennings, 1996]. Agents may have
indeed coordinated their actions, but the resulting system behaviour may be in-
coherent, due to erroneous models, lack of information or insufficient resources.
Conversely, the system may exhibit coherent collective actions, but the agents
did not actually intend to coordinate their actions (see [Searle, 1990] for a de-
scription of the problem). For these reasons, some researchers in the field have
proposed that a satisfactory definition of coordination cannot be based on be-
haviourism alone [Castlefranchi and Conte, 1997]. Instead, a satisfactory theory
of coordination must account for and be based on intentional attitudes such
as beliefs as well as higher order attitudes (or pro-attitudes) such as inten-
tions and desires of the agents [Dennett, 1987, Castlefranchi and Conte, 1997,
Wooldridge and Jennings, 1995].

In general, the definitions all share the point that the outcome of coordination
is coherent, collective actions. However, there is no consensus over how, and by
whom, coordination is achieved, nor what is the object of coordination. The
proposed definitions are informally summarized as:

the coordination problem consists of composing (relating, harmoniz-
ing, adjusting, integrating) some coordination objects (tasks, goals,
decisions, plans) with respect to some coordination process, which
solves the coordination problem by composing co-ordination objects
in line with the coordination direction [Ossowski, 1999].

This view of coordination will be used as the working definition throughout
this work. Finally, in this work a distinction is made between processes that help
bring about coordinated action and the processes that maintain coordination.
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This distinction is reflected in real social systems where the processes that bring
about “signing of a deal” are separate from processes that maintain “honour-
ing of deals” [Scott, 1987]. The work reported here is primarily an attempt to
address the processes necessary for achieving coordination, although structures
are provided to assist the second stage of coordination.

Rationale for Coordination

Coordination is needed when there are interdependencies between agents’
actions, between local actions and some global criteria that needs to be
satisfied, or when there are differences in expertise or levels of resources
[Bond and Gasser, 1988, Huhns and Stephens, 1999].  Action dependencies
[Bond and Gasser, 1988] occur when the local actions of one agent directly or in-
directly have an effect on the actions and plans of others. [Jennings, 1996] gives
the following examples to illustrate interdependency between agents. Action de-
pendencies arise when the local activities of agents contribute to the solution of a
larger problem (e.g. building a house), there is a need to coordinate each individ-
ual action, since the local decision of one agent directly impacts actions of other
community members. Interdependencies in activities may also arise when there
is contention for resources in problem solving (e.g. a hammer may be needed
by two agents simultaneously to perform their tasks or a bridge that must be
used by two convoys of trucks traveling in opposite directions). Likewise, local
actions may need to satisfy some global criteria (e.g. the budget for building a
house cannot exceed £30000). Furthermore, in many types of problems no one
agent has sufficient competence, resources or information to achieves its goal(s)
(e.g. successful diagnosis of a disease often involves many different sources of
expertise, information and equipment). Generally, coordination in most of these
contexts closely resembles a distributed optimization problem used for order-
ing individual tasks, selecting who and how to accomplish them, as well as the
resources needed for their satisfaction [Decker, 1995, Ossowski, 1999]. Another
view is that the outcome of coordination can be divided into three basic classes,
reflecting decisions at three levels: specification of what goals or objectives to
achieve (creating shared goals); planning of how to achieve them (expressing po-
tential sets of tasks to achieve goals); scheduling of when to perform the actions
(task assignment, shared schedules and resource allocation) [Decker, 1995].

In the above cases, coordination functions to inform local activities. Coordi-
nation is an informing process for the types of problems that have concerned
the classic distributed planning community, where interdependencies exists
among agents’ activities [Durfee, 1998, Durfee and Lesser, 1989, Georgeff, 1983,
Corkill and Lesser, 1983, Durfee et al., 1988]. Thus the source of conflict is the
lack of knowledge in producing effective local actions. In such cases, coordina-
tion is used as a method of informing individual agents of the plans of others,
who then integrate their partial plans into a coherent global plan. Furthermore,
agents are assumed to be helpful and the informing process assists agents in
cooperatively synthesizing a solution to the given problem.

However, agents may not always cooperatively agree to perform a task when
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asked by other agents. They may need convincing. This is necessary when the
helpful assumption is dropped and the object of coordination is the individual
preferences of agents. For example, agents may no longer share the same goal,
and instead they may have goals that are mutually exclusive. For example,
a buyer wants to buy a good at a low price, whereas a seller wants to sell
at a high price. Alternatively consider the example of two trucks wanting to
simultaneously cross a bridge that can only support one truck crossing at a
time. In both examples there are no shared goals. In fact, the goals of the
agents are mutually exclusive. The goals of an individual may also be mutually
exclusive (e.g. company A wants to increase wages to satisfy its workers, but
also wants to cut down on expenditure). In such cases, coordination may involve
more than informing others of plans or goals (one truck driver can not simply
state its intention that it intends to use the bridge first. It must convince the
other driver of this schedule). Indeed, under the non-cooperative assumption
even the validity of information can not be taken at face value since agents may
be untruthful [Rosenschein and Zlotkin, 1994].

In such contexts, coordination is needed because of conflicts of interests. In
the case of helpful agents, coordination resembles a distributed optimization
problem (optimally ordering tasks, resourcing, assigning and scheduling of tasks
to agents). In the case of selfish agents, a coordination mechanism is needed
that more closely resembles a distributed conflict resolution problem because
optimization of activities and resources may be an intractable problem given
that information may be incorrect (selfish agents may be untruthful about the
information they communicate), uncertain (information is not publicly available
hence agents have to make uncertain decisions about actions of others) and
partial (no one agent has a complete view of the overall problem). Therefore,
optimization of the overall problem becomes intractable. The problem then
becomes how to resolve each individual’s preferences in the collective activity.

Finally, even if coordination is not needed (actions are independent and re-
sources are plentiful) it may still be beneficial if agents coordinated. For example,
information discovered independently by one agent can be transmitted to others
which can be used to reduce the complexity of their search [Decker, 1995]. As
will be shown in section 3.2.1, negotiation based on this assumption has been
popular with the work of Rosenchein and Zlotkin.

Properties of Coordination

The properties, or characteristics, of coordination are closely related to the def-
inition of coordination from section 1.3.2, and are meant to capture, in some
objective way, what the system as a whole should exhibit for it to be consid-
ered coherent. Operational definitions of what is a coherent action have yielded
several criteria along measurable objectives such as solution quality, efficiency,
clarity and graceful degradation [Bond and Gasser, 1988]. Specifically, a coor-
dinated system must [Corkill and Lesser, 1983]:
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e ensure all the necessary overall problems are included in the activities of
at least one agent—coverage

e permit interactions between activities to be developed and integrated into
an overall solution—connectivity

e ensure the above objectives are achieved within the available computa-
tional and resource limitation— capability

Malone, in addition to the above, proposes flexibility and efficiency tradeoff cri-
teria for evaluating the success of coordination [Malone, 1990]. This criteria can
be used to differentiate one type of system that is highly structured, with formal-
ized procedures for all possible eventualities, to systems that are loosely coupled
structures that depend on massive amounts of informal communication and mu-
tual adjustments to adapt to rapidly changing and complex environments.

Finally, quantitative models of coordination specify properties for both the
outcome and the process of coordination. In these models, which will be de-
scribed in more detail in chapter three, satisfactory coordination should be ef-
ficient (either in the speed of convergence to coordinated behaviours or in the
quality of the coordinated outcome, or both) and stable (where the individual’s
strategy of interaction is self enforcing and deviations from this are irrational
[Binmore, 1992]). Additionally, the coordinating process itself should not treat
individuals differently. This symmetric treatment of agents is a desirable prop-
erty because a coordination solution that treats one agent more preferentially
than another is unlikely to be adopted by the agent who fares worse. Fur-
thermore, to maintain the benefits of the distribution (section 1), it should be
distributed, requiring no central decision maker [Rosenschein and Zlotkin, 1994].
These properties are then used as a benchmark to evaluate different coordination
solutions [Rosenschein and Zlotkin, 1994].

1.3.3 Types of Coordination

There are numerous different types of coordination techniques (where each type
differs in its rationale, methodology and effects). Therefore, for comparison
purposes, Walton and Krabbe defined the following interaction set based on
the initial context and the joint and individual aims of the concerned parties:
[Walton and Krabbe, 1995] 3

e Persuasion—Persuasion begins with the identification of a conflict and a
mutual adoption of the goal to resolve this conflict. The primary motiva-
tion of each agent is to modify the belief of the opponent while avoiding
revision of the agent’s own beliefs. However, each agent implicitly acknowl-
edges the willingness to modify its own beliefs.

e Inquiry—In inquiry the aim of each agent is the shared aim of all agents,
which is to substantiate or derive a proof for a claim.

30nly the relevant classes of interactions are included here. See [Walton and Krabbe, 1995]
for a more formal treatment of these and other types of interactions.
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e Deliberation—Deliberation is not initiated from a conflict, but is rather
directed from a need for action. The aim of deliberation is to jointly arrive
at a decision or form a plan of action. Like negotiation and persuasion,
deliberation is a non-cooperative interaction in that agents attempt to
reach a plan of action or decision which benefits themselves.

e Negotiation—The interaction type used for the problems addressed in this
research is negotiation which, like persuasion, but unlike deliberation, is
initiated from a conflict of interests. Furthermore, similarly to persuasion,
negotiation is motivated by a need to make a deal while selfishly maximiz-
ing personal goals. However, whereas the aim of a persuasion dialogue is to
reach an agreement, in negotiation dialogue it is not a necessary condition
to reach a settlement—other than agreeing to a particular deal. Thus the
beliefs of each agent may still remain diametrically opposite at the end of
negotiation. It is in this sense that negotiation is viewed throughout this
thesis.

The object of interactions, in this research, over which agents have conflicts
is called a service. In service-oriented negotiation, one agent (the client) requires
a service to be performed on its behalf by some other agent (the server).

A service is a solution to a problem. It is formulated and assigned to agents
who then act as experts in solving that type of problem. Examples include diag-
nosing a fault (performing a task), buying a group of shares in the stock market
or allocating bandwidth to transmit a video-conference (gaining access to a re-
source). Agents that then require that expertise must interact (or negotiate) with
agents who own the expertise. Thus solutions to problems are accessed via a com-
putational economy, where the activities of interest are described in terms of the
production and consumption of services [Mullen and Wellman, 1995]. Services
partially capture what Malone calls the “fundamental components of coordina-
tion”, the allocation of scarce resources and the communication of intermediate
results [Malone, 1990]. In this thesis, a service is an abstraction of an agent’s
capabilities to perform both tasks and provide resources. As will be shown in
proceeding sections, a considerable number of models of negotiation have been
developed for either the problem of task allocation (for example, the Contract
Net Protocol, see section 3.2.3), where negotiation is viewed as connecting and
gaining access to capabilities of other agents (such as security expertise), or
resource allocation, where negotiation is establishing usage rights to a shared
resource that is owned mutually (such as a bridge). This dichotomy is princi-
pally due to the process that maps the given problem into a MAS (this process
will be referred to as agentification). Generally, although tasks are assigned to
agents, the associated resources necessary to perform the tasks can either be mu-
tually or privately owned. In either case, agents must interact with one another
and establish usage rights of tasks as well as of mutually or privately owned
resources. Note, that the choice of agentification (assignment of services and
resources to achieve these services) directly influences the coordination wrapper,
in terms of coverage, connectivity and capability of the agents to the problem
(see section 1.3.2). For example, an inappropriate assignment of resources to
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an agent to perform the service will reduce the effectiveness of the negotiation
wrapper. This is because if the resources to perform a service s are provided by
several other agents, then the agent that wants to provide s to another agent
must engage in a number of other negotiations with providers of resources for s.

To achieve one of the aims of this research (a domain independent negotiation
wrapper) the process of agentifying the problem must not only assign individual
tasks to agents, but must also assign the resources necessary to perform the
tasks. Thus, ownership is assigned over both tasks and resources and specifies
the roles of an individual over a service, specifying whether the agent is a provider
or consumer of a service. Access to these services is then achieved through
trading/bargaining over the service and its multiple features, such as its price,
quality, start-time, as well as other service features.

Moreover, in service-oriented contexts, negotiation involves determining a
contract under certain terms and conditions. A contract is informally defined
as:

a statement of the rights and obligations of each party to a trans-
action or transactions. A contract, familiarly envisaged, is a for-
mal written statement of the terms of the transaction or relation-
ship: a house purchase or a pop star’s deal with a record company
[Bannock et al., 1992].

Thus, agents negotiate for services, defined as multi-dimensional goods, and
successful negotiation results in agreements in the form of contracts.

As will be shown in later chapters, the characterization of objects of inter-
action as services permits abstraction and decoupling of coordination reasoning
from the problem domain at hand. The latter problem is handled by the do-
main expert who then specifies the service(s) it requires and its preferences over
the service(s) to the wrapper. Contracts, in turn, ezplicitly model commitments
made at the end of successful interactions.

An agent’s motivation was a central classification criteria in the above coordi-
nation taxonomy. As was shown previously, this attribute has been instrumental
in classifying DAI approaches and their techniques into closed (DPS) and open
(MAS) system paradigms. Two application domains, one an example of a closed
system and the other of an open system, are presented next. The domain prob-
lems of these two applications have been instrumental in grounding the research
direction of this thesis and have been fully implemented as systems of multiple
interacting agents.

1.4 Exemplar Problem Domains

This section presents two application domains, business process manage-
ment (section 1.4.1) and telecommunication service management (section
1.4.2), that have jointly motivated and grounded the design of the in-
teraction wrapper. These two application domains can be viewed as
typical real-world exemplars of applications that are well suited to an
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agent-based approach (i.e. they exhibit a number of the features de-
scribed in section 1).  See [Jennings et al., 2000a, Jennings et al., 2000b,
Jennings et al., 1998, Faratin et al., 1998, Sierra et al., 1997,
Norman et al., 1996, Jennings et al., 1996d, Jennings et al., 1996¢|, for
publications on the business process management (ADEPT) project
and [Faratin et al., 2000b, Faratin et al., 1999b, Faratin et al., 2000a,
Sierra et al., 1999] and [Faratin et al., 1999a] for publications on the telecom-
munication service management project. In addition to these application
domains, the developed wrapper:

1. has been deployed in a European Union project (ESPRIT 27064),
called CASBA (Competitive Agents for Secure Business Applications)
[CASBA, 2000]. CASBA is an e-commerce marketplace where agents buy
and sell items (travel packages for example, as well as business to busi-
ness applications). Here the wrapper has been used to model the decision
making functionalities of the agents.

2. has been used to demonstrate negotiation within Service Impact Analysis
and Service Level re-negotiation within Nortel Networks (property of Nor-
tel Networks, hence no public document exists for referencing). Service
impact negotiation relates to network level negotiation for the provision-
ing of resources for the network to recover from the impact of a failure.
Agents representing different nodes within the network negotiate using
the wrapper to recover from the network failure. The wrapper has also
been used to dynamically re-provision telecommunication service failures
with the affected customer at the service level. Agents representing the
service provider and effected customers utilize the negotiation wrapper to
re-negotiate the committed Service Level Agreement to enable a continued
service.

3. has been incorporated as a generic component into the agent framework
used within Nortel for developing multi-agent systems. The wrapper tech-
nology within the agent framework has been used to construct a number
of concept demonstrators, including:

(a) Security Negotiation: utilizing the negotiation wrapper to enable the
required security level to be established between calling parties de-
pending on their individual requirements.

(b) Shuffle project [Shuffle, 2000]. The wrapper is also intended to be
used in the European Union’s Fifth Framework Project Shuffle (An
agent based approach to controlling resources in UMTS networks).
The aim of the project is to use negotiating agents in a resource
configuration system that dynamically allocates radio and associated
fixed network resources in third generation mobile communication
systems. Third generation mobile systems are seen as being the tech-
nology to bring the new broadband services being developed for the
Internet (and for broadband networks in general) to the mobile user.
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However, providing flexible, higher bandwidth services in a mobile
environment leads to increased complexity in resource control and re-
source management because of the variable bandwidth requirements
of the applications, the new radio architecture and the varying de-
mands on the fixed part of the infrastructure. Such complexity re-
quires the use of sophisticated control and management techniques.
Negotiating agent technology is intended to be used to manage this
complexity.

Together these seven applications of the wrapper to diverse domains from busi-
ness process management, to security levels for telecommunication management,
to travel agency, procedurally demonstrate the flexibility and re-usability aims
of this research. The expertise of agents (management of sub-processes of a
business or management of a telecommunication infrastructure or network secu-
rity) is bought and sold as services to and by agents, to satisfy either individual
goals (for example, buying any commodity, such as security expertise for per-
sonal purposes) or some joint goal (for example, to collectively manage, through
buying and selling of services, sub-processes of a business). In all these cases,
the negotiation wrapper can be “configured” to “connect” a buyer to a server
of a service independently of what is being bought and sold. The details of
how it is configured are deferred until later chapters, but, informally, agents are
configured by specifying the issues over which they negotiate, their preferences
over these issues, and the behaviours the designer wants the agents to exhibit
in the course of negotiation in order to achieve these preferences. A protocol is
then used to allow agents to communicate and solve (or “connect”) either their
individual or their joint problems.

1.4.1 Business Process Management—ADEPT

The initial scenario is the British Telecom (BT) business process of providing a
quotation for designing a network to provide particular services to a customer
(figure 1.2)*. The overall process receives a customer service request as its input
and generates as its output a quote specifying how much it would cost to build
a network to realize that service. It involves up to six agent types: the sales
department agent, the customer service division agent, the legal department
agent, the design division agent, the surveyor department agent, and the various
agents who provide the out-sourced service of vetting customers. All negotiations
are centered on a multi-attribute object, where attributes are, for instance, price,
quality, duration of a service (see [Jennings et al., 1996b] and section 2.2.1 for
more details). The process is initiated by the sales agent which negotiates with
the CSD agent (mainly over time, but also over the number of invocations and the
form in which the final result should be delivered) for the service of providing a
customer quote. The first stages of the Provide_Customer_Quote service involve
the CSD agent capturing the customer’s details and vetting the customer in

4The negotiations between the agents are denoted by arrows (arrow head toward client)
and the service involved in the negotiation is juxtaposed to the respective arrow.
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Figure 1.2: Agent system for BT’s provide customer quote business process

Vet_Customer

terms of their credit worthiness. The latter sub-service is actually performed
by one of the VC agents. Negotiation is used to determine which VC agent
should be selected—the main attributes negotiated over are the price of the
service, the penalty for contract violation, the desired quality of the service and
the time by which the service should be performed. If the customer fails the
vetting procedure, then the quote process terminates. Assuming the customer is
satisfactory, the CSD agent maps their requirements against a service portfolio.
If the requirements can be met by a standard off-the-shelf portfolio item, then
an immediate quote can be offered based on previous examples. In the case
of bespoke services, however, the process is more complex. The CSD agent
negotiates with the DD agent (over time and quality) for the service of designing
and costing the desired network service. In order for the DD agent to provide this
service, it must negotiate with the LD agent (over time) and perhaps with the
SD agent. The LD agent checks the design to ensure the legality of the proposed
service (e.g. it is illegal to send unauthorized encrypted messages across France).
If the desired service is illegal, then the entire quote process terminates and the
customer is informed. If the requested service is legal, then the design phase can
start. To prepare a network design, it is usually necessary to have a detailed
plan of the existing equipment at the customer’s premises. Sometimes such plans
might not exist and sometimes they may be out of date. In either case, the DD
agent determines whether the customer site(s) should be surveyed. If such a
survey is warranted, the DD agent negotiates with the SD agent (over price and
time) for the Survey Customer_Site service. On completion of the network
design and costing, the DD agent informs the CSD agent, which informs the
customer of the service quote. The business process then terminates.
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1.4.2 Telecommunication Service Management

The FIPA Agent Communication Technologies and Services (FACTS) telecom-
munication management problem was part of the ACTS programme of the
Fourth framework of the European Community [FACTS, 1998]. The problem
scenario is based on the use of negotiation to coordinate the dynamic provision-
ing of resources for a Virtual Private Network (VPN) used for meeting scheduling
by end users. A VPN refers to the use of a public network (such as the Internet)
in a private manner. This service is provided to the users by service and network
providers. The scenario is composed of a number of agents that represent the
users, the service providers and the network providers (see figure 1.3).

@ RPCA4
RPCA2 IPCA RPCA5

User Level
Negotiation

@

Service Level
Negotiation

Network Level
Negotiation

NPD NAP2 NPAN

Figure 1.3: Nortel Network’s FACTS Scenario

Individuals using the system are represented by user agents that are collectively
referred to as Personal Communication Agents or PCAs. PCA agents are com-
posed of IPCA and RP(CAs; the Initiating PCA represents the user who wants to
initiate the meeting and the Receiving PCAs represent the party/parties that are
required to attend the meeting. Interactions between PCAs can be multilateral
(involving one IPCA and multiple RPCAs) and are centered around negotiation
over meeting scheduling. Each agent negotiates on behalf of their user and has
the goal of establishing the most appropriate time and security level (see below)
for the service requested by the IPCA. The set of issues over which PCAs negoti-
ate are: [Service T'ype, Security, Price, Start_Time, Duration]. Service Type
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denotes the choice of the service (e.g. video, audio or mixture of both). Price
is the share of the price the agents should pay for the service. Start Time and
Duration are the time the service will commence and its length, respectively.
Security encodes the privacy of the meeting and is represented by both the
method of security (e.g. in the order of value to PCAs: Entrust, Verisign or
Microsoft) and the level of the security method (again in the order of value:
confidentiality, integrity and authentication).

The requirements of the IPCA and the RPCAs are constrained by what re-
sources are available at the network level. For example, the network may be
heavily loaded at the time the service is required by the PCAs. Since the net-
work is only visible to the IPCA through the Service Provider Agents (SPAs),
the threads of IPCA and RPCAs negotiation are executed in parallel with nego-
tiations between IPCA and SPAs. Note however that the interactions between
IPCA and SPA directly influence the meeting scheduling negotiations between
IPCA and RPCAs. In fact, PCAs agents often have to make trade-off between
issues given the constraints at the network level. For example, in cases of high
network load the SPA may offer PCAs alater Start_Time for a longer Duration.
Furthermore, only bilateral negotiation is assumed between IPCA and SPAs.
However, each SPA can make agreements with IPCA for services and then out-
source these commitments by initiating negotiation with other SPAs. The set of
issues in the negotiation between IPCA and SPAs is the same as that between
IPCA and RPCAs except there is the additional element Participants (the list of
users, represented by RPCAs, specified to be included in the requested service).

Either concurrently, or after the service is provisioned between IPCA
and SPA, multiple threads of negotiation are initiated between the SPA
and the Network Provider Agents, NPAs, that manage the infrastructure
and low level aspects of the IP network. These threads of interaction
are multilateral since each NPA manages only a subset of the IP net-
work.  Therefore, the SPA must negotiate with a number of NPAs in
order to secure resources for the services it provides to IPCA. The set
of issues in the thread of negotiation between SPA and NPAs includes:
[Quality_of _Service, Security, Participants, Price, Start_Time, Duration)].
Here Quality_of _Service, or QoS, represents the “goodness” of the service
from an agent’s perspective. QoS is often discussed as if it were composed of a
number of sub issues such as, the Bandwidth (capacity of the link), the latency
(delay imposed by the network on packets), the jitter (maximum time deviation
acceptable during transmission), the availability (percentage of time over which
the service is required) and packetloss (percentage of total packets lost during
lifetime of the provisioned service). Additionally, the sub issues that represent
the QoS can change in the course of negotiation. For example, negotiation over
QoS may begin with concerns over only the Bandwidth capacity of the link, but
later include packetloss if the client of a service requires a higher service quality.
Alternatively, sub issues may be removed from the set of issues that define
QoS. For example, the SPA may remove jitter from the set of QoS negotiation
issues with NPAs if the end users have agreed to hold a video-conference at a
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geographically close location (since jitter will no longer be a concern).

Additionally, these agents operate in a highly dynamic environment: ser-
vices need to be updated, new ones come on line, old services are removed and
currently agreed services fail. Customer’s requirements may also change: new
services may be required, services may be required sooner or later than initially
anticipated or higher quality may become more important. In all of these cases,
negotiation is the means of managing this complexity. New services become can-
didates of provisioning, those effected by the failed services can be re-provisioned,
and service conditions can be dynamically configured or reconfigured.

1.4.3 Characteristics and Assumptions of Problem Do-
mains

The following negotiation characteristics can be observed in the scenarios above.
These characteristics form part of the requirements that need to be adequately
modeled and which will be used as a benchmark for analysis of other related
approaches to similar problems (chapter 3). Moreover, it is believed that these
characteristics are likely to be common to a wide range of service-oriented ne-
gotiations between autonomous agents because these features are identified at a
sufficiently abstract level (such as presence or absence of time limits or organi-
zational structure) to be applicable to most complex and real-time interaction
problems.

The main feature of the above scenarios relates to the design of open and
closed systems, mentioned in section 1.1. A distributed system is either formed
centrally by a designer, or else created dynamically through encounters. In the
above two scenarios, the set of BT agents in the ADEPT system and the SPAs
and NPAs in the FACTS scenario, represent a closed system. These agents have
been created centrally by designer(s) according to some MAS design method-
ology (see [Jennings et al., 2000b] for the methodology for creating ADEPT
agents). On the other hand, the design of, and the interactions between, the
VC agents and the BT agents in the ADEPT system, and the IPCAs with the
SPAs, in the FACTS scenario, is not a centralized process. In fact these agents
can, and do, freely enter and leave interactions (for example, in a deregulated
telecommunication industry where customers can choose amongst a wide range
of service providers, SPA agents are unlikely to encounter the same PCA agents).
As will be shown below, this open versus closed design directly influences agent
interactions along a number of dimensions such as: different agent architectures,
languages and reasoning procedures, varying certainty levels, autonomy, motiva-
tions and conflict types, different patterns of temporal persistancy (or the period
an agent is “alive” in a negotiation), and different frequency of encounters. It
is precisely for these reasons that no single coordination mechanism can be de-
signed that solves this type of problem. Rather, the emphasis of this thesis is
on a configurable negotiation framework.

In more detail, what can be said about the two domains above are:
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e There are roles. Individual agents can be both clients and servers for
different services in different negotiation contexts.

e Interactions can be either amongst group members (e.g. the BT agents or
the PCAs) or individuals from different organizations (e.g. VC and CSD
agents). The organization of agents has four closely related implications:

— conflict types: The conflict between individual and system goals
determines the style of interaction. Three types of conflict can be
identified within the above two domains. Some negotiations involve
entities within the same organization (e.g. between the CSD and DD
agents) where agents share the goal of the organization. Hence, the
types of interactions are generally cooperative in nature. Other ne-
gotiations are inter-organizational and purely competitive—involving
self interested, utility maximizing agents (e.g. between the VC agents
and the CSD agent, or between the PCA and the SPA agents). Fi-
nally, agents may share the same system goal but have different in-
dividual preferences (e.g. the scheduling of meetings by the PCAs
requires resolution of different preferences even though individuals all
agree that they want to meet).

— motivation types: Note also that a single agent may enter differ-
ent types of conflict scenarios. For example, the style of negotiation
between the CSD agent (or IPCA) against DD (or RPCAs) is coop-
erative in nature, whereas the CSD (or IPCA) negotiations with VC
(or SPAs) may be more selfish. Therefore the attitude of the agents
is not fixed.

— autonomy: The solution to problems, especially in inter-
organizational contexts, is based on mutual selection of outcomes.
Therefore no single agent has control over the other in terms of the
selection of the final choice.

— uncertainty types: Some groups of agents often negotiate with one
another for the same service (e.g. the CSD and DD agents), whereas
other negotiations are more open in nature (for example, the set of VC
agents changes frequently and hence the CSD agent often negotiates
with unknown agents).

e Negotiations can range over a number of issues (e.g. price, duration and
start time). Each successful negotiation requires a range of such issues to
be resolved to the satisfaction of both parties. Agents may be required
to make trade-offs between issues (e.g. faster completion time for lower
quality) in order to come to an agreement or dynamically change the set
of issues involved in negotiation.

e Agsthe agents are autonomous, the factors which influence their negotiation
stance and behaviour are private and not available to their opponents
(especially in inter-organizational and open settings). Thus, agents do not
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know what utilities their opponents place on various outcomes, they do
not know what reasoning models they employ, they do not know their
opponent’s constraints and they do not know whether an agreement is
even possible at the outset (i.e. the participants may have non-intersecting
ranges of acceptability).

e Since negotiation takes place within a highly intertwined web of activity
(the business process or a video-conference schedule), time is a critical
factor. Timings are important on two distinct levels: (i) the time it takes
to reach an agreement must be reasonable; and (ii) the time by which
the negotiated service must be executed is important in most cases and
crucial in others. The former means that the agents should not become
involved in unnecessarily complex and time consuming negotiations—the
time spent negotiating should be reasonable with respect to the value of
the service agreement. The latter means that the agents sometimes have
hard deadlines by which agreements must be in place (this occurs mainly
when multiple services need to be combined or closely coordinated).

e The quantity of a particular resource has a strong and direct influence
on the behaviour of agents, and, moreover, the correct appreciation of
the remaining resources is an essential characteristic of good negotiators.
Resources from the client’s point of view relate directly to the number of
servers engaged in the ongoing negotiation; likewise from the server’s point
of view. Thus, the quantity of resource has a similar effect on the agents’
behaviour as time.

These features (or characteristics) will be used as the basis for a critical
evaluation of related approaches and finally for the design of the negotiation
wrapper itself.

1.5 Contributions of the Research

The work reported here is a formalization and engineering of an interaction wrap-
per that can be configured for use by asocial agents that need to interact with
other agents in a number of different environments. It is an engineering endeavor
because the wrapper’s coordination model utilizes and integrates models from
artificial intelligence and economics. Techniques from these disciplines have been
used to design a strategic negotiation framework in environments characterized
by direct and structured interactions between two agents, who have conflicting
preferences over multiple issues, and where time and computation are bounded
and information is uncertain. The majority of current multi-agent systems have
tended to model indirect interactions between one to many (auctions) or many
to many (markets), where the agents are simple and the institution, as the me-
diator, controls and, at times, specifies the strategies of interactions.

More specifically, this shift in emphasis towards direct and strategic interac-
tions between autonomous agents has necessitated:
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employing extant communication knowledge so that agents can understand
and interact with the rules of the protocol. This knowledge is modeled as
an agent communication language which normatively specifies the syntax,
semantics and pragmatics of possible utterances.

developing a novel coordination architecture for strategically selecting ac-
tions given the normative rules of the protocol. The communication lan-
guage above is knowledge “poor”, leaving the decisions about when to
use the protocol and what information to transmit to the designer. How-
ever, the currently available decision models that the designer could use
to guide decision making in such situations often make unrealistic assump-
tions about the agent (such as perfect information or unlimited compu-
tational resources). In contrast, the developed coordination wrapper is
based on the realistic assumptions that agents have limited information
about their world and their reasoning capability is constrained by time
and computational limitations. This relaxation of the strong assumptions
has meant that the developed model only aims to compute satisfiable,
rather than optimal, solutions.

The major contributions of this thesis, implemented as a decision archi-
tecture within the wrapper, are:

1. A more in-depth description of the environment of multi issue nego-
tiation that agents can use for decision making. This description rep-
resents: the negotiation issues, their importance, their reservations,
the agent’s preference over the issues, time deadlines and conversation
threads. The presented model incorporates more negotiation concepts
than previously proposed systems, thereby allowing richer reasoning
mechanisms.

2. Two fully developed and novel offer generation algorithms, called re-
sponsive and trade-off mechanisms, which together search the space
of possible negotiation outcomes. Another novel, but as to date unde-
veloped, mechanism is the issue-set manipulation mechanism which
performs a different type of search.

The responsive mechanism is the computationally simplest algorithm.
It generates offers based on the negotiation context such as the time
remaining in negotiation, the current resource usage levels in negoti-
ation or the behaviour of the other agent. The mechanism generates
offers solely on these factors and independently of the benefits that
can be gained by both parties. In this sense it can be seen as a selfish
mechanism.

The trade-off and issue-set manipulation algorithms are computation-
ally more complex and demand relatively more information about the
other agent in generating offers than the responsive algorithm. The
trade-off algorithm generates, unlike the responsive algorithm, offers
that have the same benefit to the agent as previously, but that may
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be more beneficial to the other agent than the previous offer. This
decision is uncertain because an agent does not know the evalua-
tion function of its opponent. Fuzzy decision techniques are provided
that support uncertain decision making during trade-off negotiations.
Since the search for mutually more beneficial outcomes is computa-
tionally more complex than its responsive algorithm counterpart, the
trade-off algorithm is considered as a more cooperative process. This
is because an agent that implements such an algorithm will have to
dedicate more computational resources to decision making than it
would for the corresponding responsive algorithm.

The issue-set manipulation model is also computationally more com-
plex than the responsive mechanism (because of this increased com-
putational complexity, this algorithm, together with the trade-off al-
gorithm, constitute what is termed as the deliberative components
of the wrapper). Issue-manipulation operates by dynamically chang-
ing the set of negotiation issues by adding and/or removing issues
at negotiation time. The model has been developed to escape ne-
gotiation deadlocks by removing “noisy” issues that are obstructing
the progress of negotiations, or by adding new issues into the ne-
gotiation that may increase the benefit to both parties. Again these
evaluations are uncertain and are supported by fuzzy decision making
techniques. The issue-set manipulation is the least developed com-
ponent of the wrapper architecture and, unlike the responsive and
trade-off algorithms, still requires the specification of an algorithm
given the developed formal model.

In summary, all three mechanisms are decentralized. The responsive
mechanism is novel because it formally models a concession protocol
based on the environment of the agent. This allows agents to ex-
plicitly reason about how to concede in negotiation. The novelty of
the trade-off mechanism is that, for the first time, it formally models
this important negotiation mechanism. Furthermore, although the
trade-off mechanism is computationally more complex than the re-
sponsive mechanism, it is nonetheless tractable. Finally, the issue-set
manipulation mechanism formally models another type of negotiation
decision mechanism that has to date not been addressed elsewhere.

. A meta-strategy model that guides the decision making about which

of the available negotiation algorithms to use. Given that there are
three choices of methods to generate offers in negotiation, another
level of decision making is required to make the choice about which
technique to apply. This level of decision making is referred to as a
meta-strategy. Decisions about which algorithm to use in generating
an offer can be based on a number of internal or external factors to
the agent, for example, the history of interactions, the time limits and
so on. An important decision criteria is based on the fact that the
responsive and deliberative components of the wrapper can imple-
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ment both selfish or cooperative behaviours, respectively. Whereas
in traditional DPS the attitude of the agent is hardwired into the
protocol, moving towards open environments requires decoupling this
strategic decision from the protocol. In some environments it may be
beneficial to be selfish and follow the agent’s own goals, whereas in
other cases being cooperative is more beneficial. This novel way of
coupling strategies of interactions to environments and goals via meta-
strategies, rather than the protocol itself, also results in a wrapper
that is more domain independent than other traditional DPS proto-
cols.

The requirement that the wrapper is operational in both open and closed en-
vironments has resulted in a need to develop a coordination framework that is
reusable. Re-usability is achieved by separating the wrapper from the domain
problem solver layer of an agent through a service layer. The domain expert
can then develop domain dependent code for the problem at hand, but use this
service layer to achieve effective coordination when problems interact with other
autonomous entities. Designers can then build agents without significant exper-
tise in the development of coordination strategies.

Furthermore, the designer is provided with not only a coordination frame-
work, but also a preliminary empirical evaluation of its components. This eval-
uation can be used to guide the selection of strategies in a wide range of en-
vironments. Such evaluation is needed because the wrapper is only a formal
description of possible strategic negotiation behaviour and there is no way to
predict which strategy is best for a given environment. This can only be achieved
by empirically evaluating the developed coordination framework in a number of
environments.

1.6 Structure of the Thesis

The remainder of the thesis is structured as follows. The requirements defined
in section 1.4.3, as well as additional considerations, are given a more detailed
treatment in the next chapter. These requirements are considered, and intro-
duced, as elements that need to be modeled in negotiation which then serve
as inputs into the wrapper layer. This chapter also elaborates on some of the
assumptions made in the main body of this work. Economically and compu-
tationally motivated coordination models are then introduced in chapter three
and critically evaluated for their appropriateness for the problems and require-
ments mentioned above. Next, in chapter four, the developed negotiation model
is presented, followed by an empirical evaluation of its behaviour in a number of
different environments in the penultimate chapter. Finally, chapter six presents
the conclusions reached and outlines some potential future directions of this
research.






Chapter 2

Components of a
Negotiation Wrapper

The aim of this chapter is to define the scope of the research and justify the work-
ing assumptions. The scope of the research is presented through a description of
the elements of interaction that need to be captured in the negotiation wrapper,
as well as the dependency relationship(s) between these elements. This analysis
and specification is in part grounded in the two application domains described
in the previous chapter, and in part from the re-usability and flexibility require-
ments. The activities involved in the design of a wrapper are divided into: i) the
identification of the important elements of negotiation that need to be captured,
followed by ii) the formal or informal modeling of the identified issues. This
chapter expands on the first phase of the design process. The following chapter
(chapter 3) is a review of attempts to model them.

The choice of which negotiation factor(s) to model and which to omit has
a direct impact on the applicability of the wrapper, in terms of not only the
adequacy of the computed solution, but also the computability of the solution
itself. In real world interactions, there are a large number of factors that directly
influence the process and outcome of negotiation, including:

e the symmetry of agents in information and resources. Agents are in a
symmetric context when they both have the same information and resources
[Gibbons, 1992]. When this symmetry is broken, the relationship between
the agents is often qualitatively transformed [Raiffa, 1982]—the agent that
has more information and/or resources can exert a larger influence on the
direction the final outcome will take; the agent is said to have more “power”
[Corfman and Gupta, 1993].

e whether there are hard or soft deadlines. As was discussed in the previous
chapter, time deadlines are important in a negotiated settlement. Hard
deadlines represent absolute and inflexible time schedules by which some
activity must be completed by. On the other hand, the achievement of an
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activity within a soft deadline is less absolute and more flexible.

e the protocol of interaction. The protocol of the interaction defines the
language and rules of interaction between the agents. Negotiation protocols
will be expanded on in more depth in this chapter.

e the strategies of interactions. A strategy is informally defined as an indi-
vidually (or locally) chosen action of an agent given the rules of group (or
global) behaviour. It is strategic because the agent can have a number of
choices of the actions that will result in the achievement of a goal. This
multiple choices of actions leads to agents having preferences and behaving
strategically over which action to take.

e the rationality of the agents. The term rationality is informally de-
fined as making appropriate decisions, or “doing the right thing”
[Russell and Wefald, 1991]. The rationality of an agent is defined with
respect to the type of agent that is being designed. For example, ra-
tionality of a cognitive agent is defined in terms of what actions are
legitimate given the agent’s current beliefs, desires and intentions (the
so called BDI architecture [Bratman, 1990, Cohen and Levesque, 1990,
Rao and Georgeff, 1991]. The rationality of an economic agent, on the
other hand, is defined in terms of maximization of the agent’s prefer-
ences, modeled as a utility function, over states of the world [Kreps, 1990,
Gibbons, 1992, Binmore, 1992]. Agents in this thesis are economic and
thereby abide by the latter principle of rationality.

o the possibility of coalitions. Coalition refers to interactions between differ-
ent groups of agents [Sandholm, 1999], as opposed to “monolithic” agents
that only represent themselves and not others [Raiffa, 1982].

e the risks and uncertainty. Uncertainty arises because agents seldom
have full access to the entire information about their world. This
lack of information can be due to either “laziness” (too much to be
known in the world), declarative ignorance (limited knowledge of the
domain—for example, chemical science has no complete theory of the
science), or procedural ignorance (consequences of effects of actions are
unknown) [Russell and Norvig, 1995]. Risks, in turn, characterize the
attitude of the decision maker in choices (or what is called lotteries
[von Neumann and Morgernstern, 1944]) between a sure outcome and an
expected (or uncertain) outcome [von Neumann and Morgernstern, 1944].

The benefit of formalizing all the issues involved in negotiation is that the
behaviour of the system is likely to be more predictable. However, the object of
consideration of this research is only a subset of the aforementioned issues. This
is because the benefit gained from formalizing all of the issues is offset by the
computational difficulties they incur on coordination (for example, the informa-
tion required or the amount of time it takes to reach a solution). Therefore, the
first stage of the design of the negotiation wrapper (which issues to model) has
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been constrained by the inclusion and consideration of only the most important
negotiation issues. In the main, these have been derived from the general, as
opposed to problem/domain specific, properties of the two scenarios described
previously and the configurability requirement of the wrapper for use in differ-
ent types of domains. These issues can be roughly categorized into cognitive
(or informational), affective (or choice) and conative (or action) [Kiss, 1992].
The chapter can also be viewed as a description of the following coordination
components of figure 1.1:

e the set of possible inputs (motivations, section 2.1.2, issues, section 2.2.1,
information, section 2.2.6),

e the set of possible outputs (action and strategies, section 2.1.3, contracts,
section 2.2.5)

e the set of possible environments (the agent society, section 2.1.1, protocols,
section 2.1.3, time deadlines, section 2.2.7, bounded rationality, section
2.2.8, commitments, section 2.2.5)

To define the scope of this research and justify the working assumptions,
the exposition is structured along two dimensions; the characteristics of the
society of agents (section 2.1), and its interactions (section 2.2). The former is
a description of the issues involved in modeling interactions from a multi-agent
perspective, and the latter is the set of issues involved in modeling interaction
from an agent-centric perspective.

2.1 Characteristics of the Society

Kraus presents a classification of coordination methods for multi agent systems
that is based on i) the size of the society, ii) the motivations of the agents and
iii) the presence or absence of a protocol of interaction [Kraus, 1997b]. These
criteria, and additionally the frequency of interactions, are used below to define
the scope of the research and the underlying assumptions about the agent society.
The frequency of interactions is an important criteria that helps to distinguish
a closed from an open system, and, as will be shown below, directly influences
other factors in interactions like learning, reputations and trust.

2.1.1 Society Size

One of the aims of this research is to develop a negotiation technology for direct
interactions amongst two agents (bi-lateral negotiation), as opposed to large
scale societies requiring coordination mechanisms such as organizations, mar-
kets, auctions, voting or social decision schemes (see [Corfman and Gupta, 1993]

INote that nothing will be mentioned about the middleware component of figure 1.1. Issues
involved at this level of coordination include synchronicity of the messages and control protocols
[Parunak, 1999, DAIS, 1984, Mowbray and Zahavi, 1995, OMG, 1996] which themselves are
technologies that facilitate coordination.
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for an overview of the different decision mechanisms from bargaining, so-
cial welfare, organization, marketing and psychological disciplines). Bargain-
ing models, defined and explained in depth in the next chapter, are in the
main designed for bi-lateral negotiations [Gibbons, 1992] (Nash is an excep-
tion [Nash, 1950]). These models describe interactions between economically
rational agents that attempt to maximize some utility. Market and auction
mechanisms also model economically rational agents, but are only adequate for
large number of agents [Sandholm, 1999]. Social decision schemes (e.g. plurality,
majority, proportionality), are also inappropriate for bi-lateral negotiations be-
cause they need to form a decision based on agreements of more than two agents
[Laughlin, 1980, Laughlin and Earley, 1982]. Coordination techniques for large
groups must also model the possibility of coalition [Kahan and Rapoport, 1984,
Shehory and Kraus, 1995, Sandholm and Lesser, 1997] and differential power
[Binmore et al., 1984] amongst members.

Since the focus of this work is interaction between few agents, bargaining
models are the most appropriate candidate mechanism (or at least, as will be
shown, its solution criteria, protocols and quantitative modeling tools) for build-
ing the coordination model component of the negotiation wrapper in figure 1.1.
As will be shown below, the preferences of individuals and the rules of interac-
tions are central in these models. Although the work reported here is exclusively
on the design, engineering and evaluation of the framework for bi-lateral nego-
tiation, the framework has nonetheless been designed so that its extension to
multi-lateral negotiations should not be problematic. This is achieved via mod-
ular design of the negotiation mechanisms that generate offers for bi-lateral ne-
gotiations. Multi-lateral negotiation is then achievable through concurrent rea-
soning over multiple independent threads (defined in section 4.2.3) of bi-lateral
negotiations. Thus, the stance taken in this work is that bi-lateral negotiation
is an appropriate first case assumption, which is extendible to multi-lateral ne-
gotiations. In fact, as will be shown in the next chapter, bi-lateral negotiation
is a harder problem to solve than multi-lateral negotiation whose solution can
be found in the form of auction or market mechanisms.

2.1.2 Society Motivations

Agents act in order to achieve some goal(s). The agent is then said to be mo-
tivated to achieve a given set of goals [Russell and Norvig, 1995]. Individual
motivations of agents to achieve their own goals (or local goals) directly influ-
ences the nature and outcome of negotiations when local goals of agents interact.
The importance of an agent’s motivation is best illustrated by an abstract game
called the Prisoner’s Dilemma (figure 2.1).2 There are two players in this game
and each has a choice of defecting or cooperating. Each player receives a payoff,
or utility, that determines how good, in some subjective way, the outcome is for
the player. This payoff is often taken to mean the degree of satisfaction of the

2The game is actually a demonstration of the principle of trust [Raiffa, 1982], and has been
applied to a large class of problems in political sciences, biology, computer science, psychology
and philosophy. See [Axelrod, 1984] for a full description.
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| | cooperate | defect ||

cooperate 3,3 0,5
defect 5,0 1,1

Figure 2.1: The Prisoner’s Dilemma Game

agent’s preferences, modeled as a utility function. The combination of individ-
ual payoffs then defines the group welfare (also called social or global welfare),
according to some combination function. The respective payoffs for each player
are shown as row and column entries. If the agents are cooperative and cared
only for the equity of the group then they should both choose to cooperate, since
the sum of the individual payoffs (the group welfare) is greatest when they both
cooperate (3 + 3). However, individually the only rational move is for an agent
to defect, resulting in higher individual payoffs (5), but a lower group welfare
(5+ 0 or 0+ 5). Hence the dilemma.

Thus, motivation is an important element of agent design that strongly af-
fects the outcomes of negotiation. This point was discussed in the previous
chapter in the description of the differences between DPS and MAS. This dis-
tinction is also acknowledged in the social sciences, where an agent’s attitude
is a function of whether it belongs to an organization or not. Agents in an or-
ganization exist to perform a function that is externally formed and controlled.
Agents not belonging to any organizations (primary, as opposed to, institutional
agents [Faris, 1953]), on the other hand, are more self motivated and are not
centrally controlled. Thus a different organizational status in turn motivates the
attitude of an agent towards interactions. Members of an organization are more
likely to be concerned about the benefit of the group choice than their own pref-
erences. Conversely, an agent participating in negotiation and not belonging to
an organization is more likely to place greater emphasis on its own preferences.

As will be shown in more detail in the next chapter, there are two choices of
bargaining models that individually model different types of agent motivations.
The decisions and processes involved in negotiation when an agent’s preferences
are important (i.e. self motivated) are better modeled by non-cooperative bar-
gaining models. On the other hand, agents that care about equity (or welfare)
of the others are better modeled using cooperative bargaining models.

2.1.3 Protocols: Normative Rules and Languages

Computational agents require ordered and structured interactions
[Bond and Gasser, 1988]. Such structuring is needed because in the absence of
any normative rules of public behaviour, interactions lead to chaotic dynamics
where agents can send messages that cannot be understood or the message is in-
appropriate given the history of the current interaction. The term “normative”
states prescriptive rules of behaviour [Rosenschein and Zlotkin, 1994] (what
ought to be), as opposed to descriptive observation of behaviour (what is).
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Throughout this work, the term “protocol” refers to these high level normative
rules of public behaviour. The protocol of interaction (also referred to as the
“resolution protocol”) must specify three aspects of public behaviour:

e the permissible content of interactions; the objects agents exchange with
one another.

e the permissible process of interactions; when and how to exchange the
above objects of exchange.

e the language of interaction; the language to use in exchanges.

The choice of a protocol directly influences the uncertainties involved in ne-
gotiation (section 2.2.6) and the quality of the outcome. Quality of an outcome
is defined in more depth in section 2.2.3, but generally it refers to the degree
of satisfaction of either or both agents’ aspiration levels. Also shown, in later
sections, is the relationship of how quality of an outcome is directly effected by
the content of negotiation when more than one goal needs to be resolved. In par-
ticular, different resolution protocols can be used to differentially specify rules of
interactions to reach settlements. For example, in multi-issue negotiations (also
called integrative negotiations [Raiffa, 1982]) the protocol must specify whether
agents can generate offers over “packages” of issues, or alternatively over sub-
packages, or reach a settlement on the most important issue first, then try and
resolve other issues one by one [Raiffa, 1982]. These different possibilities, each
implemented by a different protocol, have a direct influence on the outcome qual-
ity. For example, consider bi-lateral negotiation over two issues. In an issue by
issue resolution protocol, depending on the strategies of both agents (see section
2.2.4 for a definition of strategies), one agent may gain very little in negotiation
on both issues. However, in a package resolution protocol, a loss on the first
issue and a simultaneous gain on the second may result in a better outcome for
that agent.

Furthermore, there is a need to constrain the process of negotiation, other-
wise agents may fail to synchronize their utterances, dispatching and receiving
utterances randomly. For example, rules must specify who must begin the ne-
gotiation round (as will be shown in section 2.2.5 who starts first again directly
influences the outcome of negotiation), whether negotiation is a turn taking,
sequential alternating round of offers and counter-offers, or whether the resolu-
tion mechanism is a mediated one-shot simultaneous offer whose mid point of
intersection is chosen by a third party as the final settlement, or a one-shot take
it or leave it (divide the pie or ultimatum game [Gibbons, 1992]) from one agent
to another. The quality of the solution, itself possibly a function of the costs
to reach the solution and the number of rounds in negotiation, and the benefits
gained either individually or collectively, is directly dependent on the chosen pro-
tocol of interaction. For example, if the quality of a solution is a function of the
number of messages exchanged between agents, then clearly a single-shot proto-
col is more “efficient” than the sequential iterated protocol. As will be shown in
the next chapter, the majority of game theory models attempt to achieve speed
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of resolution by constraining agents’ choices of strategies through the design
of negotiation protocols that, although they can be iterative, are, nonetheless,
single-shot (or instant) when agents act rationally.

In addition to normatively specifying the permissible content and process of
interactions, a protocol must specify the language of the interaction. The lan-
guage of interaction is a model of the syntax and semantics of utterances that
agents can make during their interactions [Finin and Fritzson, 1994]. The syntax
of the agent communication language functions to distinguish messages based on
grammatical forms, and adherence to this syntax assists comprehension of mes-
sages. The semantics of utterances, on the other hand, distinguishes messages
based on their intrinsic meaning, which can be informing, querying, request-
ing or ordering [Cohen and Perrault, 1979, Werner, 1989]. Furthermore, there
is a need to map the terms and concepts of the individual agents into a shared
representation (or a common ontology [Gruber, 1994, Huhns and Singh, 1997,
Guha and Lenat, 1990]) for successful coordination and communication.

All of these design choices can be dictated by the designer(s) for a closed
system. However, in more open environments there is possibly a need for a pre-
negotiation phase where agents come to mutual agreements over not only the
rules and language of interactions, but also, as will be shown below in section
2.2.2; the set of issues that need to be resolved (or the content of negotiation)
and their resolution protocol.

2.1.4 Frequency of Interactions

When agents interact with one another, they do so either anonymously (as
drivers on a highway) or their identity must be known (as dealers in a stock
exchange). The issue of identity is particularly important if interactions are re-
peated. The possibility of repetition of encounters directly influences the type
of models that can be used for modeling interactions. A model may be sensitive
to whether agents meet again or not. For example, in repeated interactions,
models are needed that can capture an agent’s ability to learn others’ strate-
gies and/or their preferences [Zeng and Sycara, 1997, Bui et al., 1996]. Further-
more, in repeated interactions, reputations become important. Kreps and Wil-
son have shown that early in the interaction history, agents attempt to acquire
a reputation of being “tough” or “benevolent” [Kreps and Wilson, 1982]. They
demonstrated this “reputation effect” where agents take actions that appear in-
dividually costly but yield a reputation that is beneficial later. Milgrom and
Robert identified information uncertainty and repeated actions with the possi-
bility of observing past behaviours as the two factors that lead to the emergence
of a reputation [Milgrom and Roberts, 1982].

Although repeated interaction is a realistic possibility, especially in closed
systems, the negotiation model developed in this work is for single encounter in-
teractions. This is for two main reasons. Firstly, the number of issues involved in
the modeling of interactions is already large. Therefore, as a first case assump-
tion, a model of negotiation is sought that adequately describes and predicts
the core elements of negotiation. Once achieved, this assumption can then be
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relaxed and the developed model updated (possibly with multi-agent learning
algorithms, to account for repeated interactions). Secondly, although possible,
interactions in open systems are unlikely to be repeated. Agents have an incen-
tive to enter and leave different electronic communities with evolving degree of
services provided by each community.? For these two reasons, the simplifying
assumption that interactions are isolated is made.

2.2 Characteristics of Interactions

Having defined the characteristics of the agent society, this section presents the
set of issues involved in modeling interaction from an agent-centric perspective.

2.2.1 Object of Negotiation—Issues

The design of the wrapper must firstly include what agents exchange with
one another in the course of negotiations—that is, the content, or object, of
communication. In classical DPS, negotiation objects may be plans, goals
or information. In other explicit coordination models, these objects may be
other high level constructs such as intentions, arguments or, justifications
[Kraus et al., 1998, Parsons et al., 1998]. However, since agents in this work
are viewed as buyers and sellers of services, the objects of negotiation are of-
fers and counter offers over a set of service issues. Issues represent various
dimensions of a service production or consumption. Services are represented as
multi-dimensional goods, since complex services in the real world are seldom
adequately described in terms of a single feature. Pricing is one method of
describing goods using a single issue. However, although useful for describing
commodities, a decision maker is presented with a random choice in the face of
two or more equally priced services. Other dimensions of a good must be pro-
vided to the decision maker in order to differentiate the goods and better support
allocation decisions of the good (see section 3.2.9 for arguments against pricing).
For example, a banking service is not just defined in terms of the interest rates
it offers, but also its loan schemes and/or repayment methods. Likewise, access
to a shared resource, such as parallel computers, may be described in terms of
features such as job waiting length, speed or memory limits. Issues therefore
describe features of a domain, which may be qualitative in nature (e.g. repay-
ment schemes) or quantitative (e.g. waiting length of the que) with discrete or
continuous domain values respectively.

Generally speaking, issues are rarely viewed as equally important. For exam-
ple, a banking service provider may deem the interest rate more important than
the repayment scheme or memory usage may be more important than CPU usage
on a parallel computer. Issues also have reservation values associated with them.

3For example, although convenient, it is not necessary for an individual to buy weekly
groceries from the same store all the time. Better offers, the possibility of Internet shopping
and other factors may give sufficient incentive to the consumer to break the routine of going
to the same store and buy products from varied vendors.
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For example, there is a maximum amount of memory a user may be permitted
to utilize on a parallel computer. Conversely, there is a minimum interest rate
that the institution will not consider economically viable for a lending policy.
Generally, for autonomous agents, these reservation values can be viewed as con-
straints associated with the issues that typically represent the limitations placed
on:* the resources needed to produce a service, together with their usage sched-
ule (e.g. quality, number or volume, delivery time); the information required for
executing a service and the information produced as the output at the end of
the service execution; the penalty for decommiting from an agreed contract; or
the price of a service. Issues, importance levels and reservation values are highly
domain typed (domain specific in nature), reflecting dimensions of the problem
at the level of the domain problem solving. Therefore, these factors are viewed
as inputs (originating from the domain problem solver) into the coordination
model.

Once formulated, these issues, their relative importance and their satisfac-
tion constraints must be represented to the negotiation wrapper by the domain
problem solver. The task of the wrapper is then informally defined as the goal to
achieve the satisfaction of the issues, given their constraints, or the maximiza-
tion of some satisfaction function when interacting with other agents for service
provisioning. More formally, the decision problem P of the negotiation wrapper
is described by the tuple:

P = (I,C,Criteria) (2.1)

where I is the set of negotiation issues, C is their associated constraints and
Criteria is a set of cost/benefit functions for each issue that the wrapper must
minimize/maximize respectively. Negotiation, then, is viewed as a process of
settling disputes over each of the issues in the set I when the satisfaction of
an agent’s goal interact negatively with the satisfaction of the others’ goals.
As mentioned earlier, goals interact because the fulfillment of one goal has a
negative effect on the fulfilment of another agent’s goal, due to exclusive goal
state desired by two or more agents (e.g. a buyer wants to buy a service at a
low price and a seller wants to sell at a high price).

2.2.2 Issue Set Identification and Modification

The above discussion assumed that agents shared the same goal set I, and that
conflict resolution arises due to a conflict of preferences over goals. However,
before goal satisfaction can commence, agents have to identify which goals are
actually in conflict:

...these (coordination techniques) presuppose that the agents already
know what they are “arguing” about, and what remains to be done
is to settle the “argument”. It is my contention that, in many do-
mains, a substantial part of the negotiation effort is involved in fig-
uring out what needs to be settled. As our computational agents are

4This is a possible set of constraints because issues may vary in different domains.
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increasingly applied in dynamically evolving worlds (like on the In-
ternet), capabilities for identifying who needs to negotiate and over
what, rather than having these predefined by the system developers
or users, will come to the fore [Durfee, 1998].

Therefore, in addition to resolving conflicting goals (section 2.1.3), the resolu-
tion protocol must generate a unified and mutually agreed upon set of issues
for the agents to negotiate over in the first place. This requirement can be
captured by a protocol that includes a pre-negotiation phase, where agents enu-
merate, discuss and select which of their goals are in conflict and need to be
resolved. Furthermore, since in an open system the space of possible concerns
can evolve continuously, the negotiation protocol must specify whether this mu-
tually agreed upon set of issues is static or can be added to or deleted throughout
the negotiation phase. For example, the inclusion of issues into the negotiation
set is often permitted and functions as a “side-payment” altering the dynamics
of the negotiation [Binmore and Dasgupta, 1989]. Likewise, “noisy” issues may
be removed either because they jeopardize successful negotiations, thus helping
escape local minima in the negotiation dynamics, or because “negotiating over
the root causes of numerous disagreements can sometimes be more cost-effective
than negotiating over each individual disagreement separately” [Durfee, 1998].

2.2.3 Solution Quality

The quality of an outcome measures how good the outcome is from the perspec-
tive of either the individual or the society (individual and joint welfare respec-
tively). Consideration of the quality of the wrapper’s output (a contract to the
domain problem solver) must be considered in the wrapper design process for
two reasons.

Firstly, as was discussed in section 2.1.2, the motivations of the domain
problem solver can be either self or group interested (selfish and benevolent
respectively), corresponding to increasing the individual or the groups’ quality
of the final outcome respectively. This motivational stance can then be used
by the wrapper as a decision criteria about how to behave in negotiation. For
example, in the context of a minimum task load and plentiful computational
resources, the domain problem solver may prefer solutions from the wrapper
that increases the satisfaction of all parties involved in negotiation (the problem
solver is motivated by joint welfare). Alternatively, under time pressures or
where there is a large task load, a domain problem solver may be satisfied with
a lower individual solution quality (the problem solver is motivated by task
completion). Therefore, a notion of solution quality is needed that objectively
measures the outcome of negotiations from both a local individual perspective
and a global social perspective. As will be shown later, the quality of a solution
is closely linked to the boundedness of an agent (see section 2.2.8).

Another justification for having a measure of solution quality, independently
of the motivations of the domain problem solver, is that the joint welfare can be
increased directly as a consequence of describing services in a multi-dimensional
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manner. Quantitative models (see chapter three) often distinguish between zero-
sum and non-zero sum games [Gibbons, 1992] (or distributive and integrative
negotiations respectively [Raiffa, 1982]). Zero-sum games are defined as games
where the addition of the individual payoffs for an outcome sum to zero. More
formally. Let I be the set of n agents. Let S be the space of joint strategies,
S =51,...,8, (for example, defect,defect strategies in the Prisoner’s dilemma
described in section 2.1.2), each agent choosing from a finite set of individual
strategies S; = 041,...,0:mn (again, the strategy choices are defect, cooperate in
the Prisoner’s dilemma). Let P be a set of payoff functions P; for each player
i, each of which is of the form P; : S — IR (the prison sentences issued in the
Prisoner’s dilemma, described section 2.1.2). Then a zero-sum game is defined
as:

Vo €S.) Pio)=0

i=1

where the payoffs always sum to zero. Poker is a classic example of a zero-
sum game because whatever money is won by one agent is necessarily lost by
the others. It follows that in a two player zero-sum game the interests of the
agents are in conflict and self interested agents will attempt to maximize their
minimum payoff (maximin criteria of rationality—a player takes an action and
the opponent reacts with its best action, which due to the nature of the zero-sum
game, results in the minimum outcome for the player [Binmore, 1992]).

There are also constant sum games where the agents’ payoffs always sum
to a fixed constant ¢ [Binmore, 1992]. It can be shown that any constant-sum
game can be changed into an equivalent zero-sum game by simply subtracting
the constant ¢ from all of one of the player’s payoffs [Binmore, 1992].

In non-constant sum games (or integrative bargaining), on the other hand,
the interests of the agents are not totally antagonistic. A non-constant sum
game is defined as:

n

Jo,0 € S.ZH(U) # ZPi(a’)

i=1 i=1

where at least one strategy combination is better from the view point of the
group. This allows agents to search for mutually more satisfactory outcomes
(called “win-win” bargaining [Raiffa, 1982]). In integrative negotiation involving
a number of issues it is no longer true that if one party gets more the other
necessarily has to get less; they both can get more [Raiffa, 1982].

Therefore, some objective measure(s) of the quality of outcomes can serve
as a benchmark in (empirically) analyzing the performance of the developed
negotiation reasoning mechanism(s), given that theoretically multi-issue nego-
tiations should result in better global outcomes than purely conflicting single
issue negotiations.
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2.2.4 Decisions, Actions, Strategies and Rationality

Given the desired goal state, the wrapper’s coordination module is then faced
with the task of how to transform the current world state to the goal state, in such
a way as to not only satisfy, either fully or partially, its own goal(s), but perhaps
also the goal(s) of others involved in the interactions. This task can either be
viewed as problem solving or decision making [Laughlin, 1980]. This distinction
expresses a division between coordination tasks that involve the construction
of resolution alternatives that are demonstrably correct and tasks that involve
decision making when no objectively correct answer exists and the resolution
process emphasizes the selection of alternatives based on an agent’s preferences.
Problem solving coordination tasks are better modeled using an argumentation
based mechanism [Walton and Krabbe, 1995], requiring explicit communication
of high level objects like justifications, arguments and beliefs (see section 2.2.1),
where arguments and justifications serve to modify others’ beliefs (recall the
taxonomy of different types of coordination techniques, such as persuasion, ar-
gumentation and negotiation, based on their differential rationale, methodology
and effects). Decision making coordination tasks, on the other hand, are bet-
ter modeled by a negotiation mechanism, where the objects of communication
are preferences/demands over goals. The task of the negotiation wrapper in
this body of work is decision making since no objectively correct answer ex-
ists, and the object of coordination is an agent’s goals and its preferences over
these goals. As will be shown in the next chapter, this decision problem has a
solution in bargaining models of game theory, where the problem reduces to rep-
resenting preference relationships quantitatively as utilities, that satisfy (rather
than cause) the preferences [von Neumann and Morgernstern, 1944]. Rational
behaviour then consists of acting as though to maximize this utility function.

Furthermore, due to the privacy of information and the uncertainties involved
in negotiation (see section 2.2.6), the conflict resolution protocol is likely to be
iterative, involving more than one round of negotiations. If agents had perfect
information and unlimited computational capabilities, then a resolution could be
arrived at immediately [Kraus, 1997a]. However, resolution may not be imme-
diate in uncertain and computationally bounded environments [Kraus, 1997a].
Thus agents are faced with a problem of constructing a sequence of actions (called
a strategy). The notion of a strategy is closely tied to the protocol of interac-
tion, where strategies are taken to mean the individual, private, and centrally
uncontrolled, usage of permissible actions available given the protocol rules of
interaction. The decision problem is further complicated by strict constraints
on the decision mechanisms such as computational or informational limitations.
This latter point is described in more detail in section 2.2.8. In this sub-section
the concept of actions and strategies are described in more detail.

The task of a coordination wrapper is the formulation of individual actions
for the agent throughout the negotiation and the specification of how to combine
these individual actions in the course of negotiation into a coherent strategy that
achieves the goal of resolving the conflict, while respecting i) the normative rules
of the protocol and ii) the bounded nature of the domain problem solver.
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In negotiation, actions can be roughly divided into evaluatory and offer gen-
eration decision categories. Specifically, during negotiation the coordination
module of the wrapper must make the following decisions:

1. what is the range of acceptable agreements?
2. what initial offers should be sent out?

3. what counter offers should be generated?

4. when should negotiation be abandoned?

5. when is an agreement reached?

The first point represents the set of possible outcomes, determining individ-
ually acceptable (or individually rational) settlements of the conflict over the
issues. Note that these settlement regions are closely linked to the notion of par-
tial and complete fulfillment of goals, represented as utility values. This range
of possible agreements is formally represented in section 3.1.4. An important
assumption in this work is that this set of acceptable agreements is indepen-
dent of the existence of outside options, a central assumption of non-cooperative
game theory also (see chapter three). An agent is said to have an outside op-
tion if in the course of negotiation with one agent it has already established,
possibly a tentative, agreement with another agent. The process and outcome
of negotiation is directly influenced when agents have outside options, giving
greater power to those with more valuable outside options because they can
legitimately threaten to leave negotiations [Corfman and Gupta, 1993]. How-
ever, rather than modeling the influence of an agent over decisions (its power),
throughout this work the range of acceptable agreements is bounded to zero
utility at the minimum (the conflict outcome [Zlotkin and Rosenchein, 1992]).
Thus, all negotiation decisions are made with respect to a failure reference point
(no fulfilment) specified by this conflict outcome that determines agents’ payoffs
in cases of failure to reach a resolution.

Given the range of acceptable agreements and the information history of in-
teraction, the chain of decisions between points two to five above then constitutes
an agent’s strategy. The set of resolution strategies available can be classified
into the following strategies:®

e log-rolling: where each agent slightly relaxes its constraints [Pruitt, 1981].
This strategy is also often referred to as a concession strategy
[Pruitt, 1981].

e bridging: involving the development of a completely new solution that
satisfies only the most important constraints [Pruitt, 1981].

e unlinking: involving overlooking weak interactions among constraints
[Pruitt, 1981].

5Note that the presented strategy list is for iterative protocols. There are a whole wealth
of strategies according to the type of protocol [Binmore, 1992].
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e pursuing goals independently: where each agent pursues its goal(s) without
taking into consideration the goal(s) of others [Sycara, 1987].

e anti-planning: where an agent forms a plan to prevent another agent from
fulfilling its goal(s) or prevents others from interfering with its own plans
[Schank and Abelson, 1977]. An agent persuading another agent to aban-
don its goals is an example of one anti-planning strategy.

The above is not an exhaustive list of strategies that an agent can follow
throughout negotiation, but rather enumerates a set of likely courses of actions
open to an agent. Further resolution strategies can be composed by combining
individual strategies into what will be referred to as meta-strategy, in response
to the intrinsic or extrinsic conditions of an agent. For example, due to the
lack of an immediate deadline or the perceived importance of the given goal,
the negotiation wrapper may select a course of action that implements an anti-
planning strategy. However, in the course of negotiation the chosen strategy may
lead to a deadlock and necessitate a change of strategy to a log-rolling strategy.
Thus, the wrapper is required to not only initiate a strategy, but also monitor
and, if required, reassess its applicability, given that the agents’ tasks and goals
may change in the course of negotiation.

2.2.5 Commitments

Once a conflict has been resolved, it is desirable to ensure these resolutions are
kept by all parties. Commitments function to provide this stability of resolu-
tions. Commitments are inextricably linked to the notion of trust and different
coordination mechanisms model trust differently. For example, in cooperative
domains agents implicitly trust one another, since it is common knowledge that
agents share a common goal and personal preferences can be overridden. Non-
cooperative models of negotiation, on the other hand, implicitly model trust
through a notion of equilibrium (see next chapter), specifying a strategy for each
agent where deviation from these strategies is individually irrational. Hence,
trust is self enforcing.

The problem of trust is nicely shown in the simple game shown in figure
2.2 by Raiffa. This game also demonstrates the role of commitments in more
quantitative models of negotiation [Raiffa, 1982]. The game is an abstraction of
Camp David negotiations between Israel and Egypt.

There are two players Mrs. Shee and Mr. Hee, playing a game that consists
of an alternating offer protocol between the two players. The permissible moves
in this game are up or down and Mrs. Shee is given the control to move first.
Then it is the turn of Mr. Hee to move either up or down. The respective
payoffs of each player are shown on the right hand side of the figure. Suppose
the game is played only once, the players are fully informed of the rules of the
game and the outcome scores, and there is no communication. Mrs. Shee might
think as follows. “If T choose down then we both get 0.5 If T choose up, then he

6This line of reasoning assumes that agents can make inter-personal payoff comparison, an
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PayOffs
Mrs. Shee Mr. Hee
Up
1 1
U
p Mr. Hee
D
own 1 2
Mrs. Shee
Down 0 0

Figure 2.2: Commitment Game

will certainly choose down, since he would rather get 2 than 1. Hence if I choose
up Tll get -1. ’'m better off choosing down (maximizing the minimum loss, or
maximin, strategy). It is too bad we cannot talk to each other and agree that
we both should choose up”. Now assume that the players can communicate,
but that now the agreements are non-binding, or non committal. The game
might then be played as follows. Mr. Hee might say, “it doesn’t make sense
for you to choose down. If we both choose up then we’ll get 1”. She might
respond: “True. But how do I know that you won’t switch to down later on,
when I have committed to up?”. Her problem is whether she can trust him. His
intentions may indeed be to commit himself to up, now, but later on, due to some
unforeseen event, he may be forced to choose down when she has chosen up.”
After explaining her fears of his switch she then proposes to Mr. Hee that “I’'m
going to choose the down alternative, unless you can take some binding action
now to reduce that payoff of 2 units to a value below 1”7 (called free disposal by
economists, [Binmore, 1992]).

The dynamics of the game are altered if the game is repeated an infinite
number of times. She would then know that if his response to her choice of
up was down, then in the next stage she will choose down.® This outcome also
underlines the importance of repeated interactions, described in section 2.1.4.

assumption that will be returned to in the next chapter.

"This example nicely shows the role of turn taking in negotiation, since clearly the person
that moves first is at a disadvantage. This is another issue which a protocol of interaction
must take into account.

8However, the game is complicated in cases where there is a finite number of iterations and
both players know this number. This can lead to backward induction reasoning resulting in
playing down. The discussion of this point is a divergence, but details of the game can be
found in the actual example by Raiffa [Raiffa, 1982], p. 199.
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This simple game shows the central role commitments play in joint activity. As
Lesser notes:

The ability to appropriately bound the intentions of agents and to
create and sufficiently guarantee the commitments of agents to ac-
complish certain tasks is at the heart of efficient, organized behaviour
[Lesser, 1998]

Commitments, in DAI, are viewed as pledges to undertake a certain course
of action [Jennings, 1996]. In classical distributed planning, it provides a certain
degree of predictability to the agents, so that they can take the future courses
of actions of others into account when there are interdependencies, resource
conflicts or global constraints.

When proposals are fully binding, agents cannot retract a proposal once it
has made it. Therefore agents need to make sure they “look” before they “leap”
[Durfee, 1998]. However, commitments can also be temporally bounded and
different coordination mechanisms are based on different time scales where the
commitments may be valid. For example, organizations, a coordination mech-
anism, model commitments via the notion of roles, which are static and long
term [Carley and Gasser, 1999]. When agents agree to play a role within an
organization they commit themselves to comply with the behaviour that the
role and their relationships imply [Ossowski, 1999]. On the other hand, in the
multi-agent planning paradigm, agents commit to behave in accordance with the
generated joint plan of future actions and interactions. However, since plans can
change, due to unforeseen events occurring in a dynamic environment, successful
execution of a multi-agent plan can not be a priori assumed. Instead agents must
re-plan and commitments must be managed. In such contexts, commitments can
be managed through a notion of conventions [Jennings, 1993] which i) constrain
the conditions under which commitments should be reassessed and ii) specify the
associated actions that should be undertaken. Conversely, a negotiation mech-
anism for coordination can be based both on short or long term commitments,
where the process dynamically generates commitments between agents. In cases
of failures, commitments can be re-negotiated; thus either amending the original
commitment or generating a new commitment.

Commitments, and their temporal validity, become increasingly important in
cases of selfish agents. Commitments in such cases have been modeled quantita-
tively (from game theory) by conditioning the commitment to a contract (called
contingency contracts [Sandholm, 1999]) on the probabilistically known future
events—that is, the obligations of the contract are made contingent on future
events [Raiffa, 1982]. If this approach is adopted, then Sandholm identifies two
issues that need to be addressed for modeling commitments for automated and
selfish agents [Sandholm, 1999]. Firstly, contingency contracts may be good for
a small number of events, but there may be a potentially combinatorial explosion
in the number of events in real world problems that need to be conditioned on.
It is often practically impossible to enumerate all possible relevant future events
in advance. Secondly, the verification of the occurrence of an event among selfish
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agents is problematic, because events may only be observable by a single agent
which may have an incentive to lie. Thus, to be viable, a contingency contract
needs a mechanism to correctly detect and verify events that is not manipulable,
complicated or costly.

2.2.6 Information

An essential component of any decision making is information. Information
is informally defined as knowledge about all those factors, both intrinsic and
extrinsic to the decision maker, which affects the ability of an individual to make
choices in any given situation [Young, 1975]. These factors correspond to the
contents of the Self and Acquaintance components of the wrapper in figure 1.1
respectively. As mentioned earlier, in most DPS systems negotiation protocols
are used to inform agents of the plans and goals of other agents. Indeed, if
agents held complete knowledge of the goals, actions and interactions of other
agents then coordination would not be needed (removing the problem mentioned
in section 1), since agents would know exactly the current and future state of
other agents. However, the perfect knowledge assumption is often invalid in real
world contexts. This means it is necessary to include mechanisms within the
wrapper for handling sources of uncertainty over the plans, goals and actions of
other agents during interactions. The aim of this section is to elaborate on the
sources and solutions to the uncertainty problem in coordination.

Uncertainty and Incomplete Information

The availability of information involving choices among alternatives is central to
an individual’s choice. However, in negotiation the availability of information
about the potential choices of other agents introduces a further degree of com-
plexity into an individual’s decision making process. The most important source
of uncertainty in negotiation is the beliefs of the other agent(s), and, as will be
shown below, these uncertainties directly influence the processes and outcomes
of interactions. If an agent is economically rational, as modeled in this thesis,
then the goal of the agent is to maximize its utility. What is uncertain is how
(what strategy) agent(s) take to achieve their goal.

A condition for coherence of a multi-agent system and conflict avoidance is
reasoning about the non-local effects of local decisions (see section 1.3). However,
if the behaviour between two member of a group involving a choice of action is
contingent on that individual’s estimates of the actions (or choices) of others in
the group, then the actions of each of the relevant others are based on a similar
estimate of the behaviour of group members other than itself. This is referred
to as strategic interaction (SI). As Rapoport notes:

strategic behaviour will occur whenever two or more individuals all
find that the outcome associated with their choices are partially con-
trolled by each other [Rapoport, 1964].
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Most rational decision making models have often ignored the issue of uncertainty
by assuming perfect information [Young, 1975]. The models therefore assume
the environment of the decision maker is fixed or else treat it as if it were fixed.
The environment of a decision maker is fixed by assuming that either the values
that describe the environmental variables are fixed (e.g. sunny 365 days or a
probability distribution) or by appealing to the law of large numbers (e.g. if
there are a large number of individuals involved in a given activity, such as
the economy, then each individual is perceived as insignificant [Young, 1975]).
However, whereas the concept of information is reasonably straightforward in
choice situations involving a decision making environment which is fixed, or can
be treated as such, the concept itself becomes ambiguous under conditions of
strategic interactions and consequently negotiation, since negotiation is strategic
itself.

Single Agent Information Requirements—Fixed Environment

Even if no strategic interactions occur, the rational decision models identify the
following information requirements for a decision maker [Young, 1975]:°

1. a set of alternative outcomes

2. a set of preferences over outcomes

3. an attitude towards risk

4. a set of mechanisms for uncertainty management

The first requirement amounts to the problem of identifying the decision maker’s
context by specifying a range of distinct alternatives which the individual must
choose from. Normally this is solved in deductive models by assuming that
these outcomes are given on an a priori basis [Gibbons, 1992]. However, this
assumption leads to two further difficulties. Firstly, in some contexts the set
of alternative outcomes can be infinitely large. For example, there can be an
infinite division of a cake, or a dollar, or any divisible good. This problem is
addressed in more depth in section 2.2.8. Secondly, the assumption abstracts
away all the problems associated with shifts (by adding or removing alternatives)
in the range of alternatives, a context that is realizable if agents are permitted
to alter the set of issues involved in negotiation, thereby modifying the possible
set of outcomes.

The second requirement is that the decision maker must also have a complete
knowledge of its own preference orderings or utility function. That is, the indi-
vidual must be able to create a confidence ranking of all the alternatives in its
environment in terms of its preference. Furthermore, it is assumed that if each
alternative represents a certain outcome, the decision maker needs to: i) only
specify its preference ordering in ordinal terms and ii) these preference ordering

9Much of the following exposition is classic game theory basics and the reader is referred
to text books such as [Gibbons, 1992] for a more in-depth exposition of the concepts.
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are transitive and consistent over time [Gibbons, 1992]. However, the presence of
uncertainty makes it impossible to characterize decisions perfectly. Therefore,
the decision maker needs information about the probabilities associated with
various outcomes in order to make a rational choice. Thus the decision maker
describes its environment in terms of fixed probabilities and therefore specifies
its preference orderings in cardinal terms.

Finally, in cases where it is not possible to calculate the probabilities in ordi-
nal or cardinal terms, the decision maker requires knowledge of some technique(s)
for handling uncertainty. However, problems of this kind are difficult to deal with
when the phenomena are intrinsically non-iterative because the decision maker
cannot even attempt to calculate probabilities in terms of empirical frequencies
[Young, 1975]. A possible solution is to assume that the individual makes subjec-
tive probabilities. Subjective probabilities is a distribution that characterize and
agent’s degree of belief [Russell and Norvig, 1995]. However, this abstracts away
the question of how individuals obtain specific values for subjective probabili-
ties especially with respect to events that are non-iterative. One-off encounters
between agents in an open system are likely to be non-iterative, where agents
meet, interact and disappear.

Dyad Information Requirements—Dynamic Environment

The problem of dealing with and managing information is extensive even when
the environment is fixed. However, the introduction of strategic interactions
expands the set of information requirements for a decision maker (section 2.2.6)
to include information describing the probable choices of others. This, in turn,
introduces additional problems for an agent in i) identifying others upon whose
choice its own choices are contingent and ii) acquiring information about the
probable behaviour of these individuals.

One solution to the latter problem is to remove strategic interactions
altogether by forming confident expectations through acquiring information
[Young, 1975]. For example, an agent may confidently expect (the derivation
of which will be explained below) that the other agent will call back when their
call was cut off, so there is no need to call. Then when a decision maker discovers
its choices are interdependent, it should, at best, acquire sufficient information
about the relevant other(s) to form accurate predictions of their choices, or, at
least, form confident expectations concerning their probable behaviour. Then the
decision maker’s choice problem becomes a game against nature [Young, 1975].
Complications caused by strategic interactions would no longer exist since the
choices of other(s) would no longer be contingent on its choices. Thus the agent
would be able to treat its decision making environment as if it were fixed. How-
ever, this is only logically possible, since the concept of strategic interaction
means, by definition, that the choices of others will depend on the choices of
the decision maker. To eliminate strategic interactions, the decision maker is
assumed to require to know:

1. the range of alternatives available to others
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2. their preference orderings over these alternatives

3. the probability distribution affecting the other individual’s choices and
attributable to nature rather than the presence of strategic interactions

4. others’ reaction to, and techniques for, coping with strategic interactions
since they are facing the same prediction problems

Furthermore, it is assumed that the decision maker knows the identity of
the others and that they are rational. However, in open digital systems an
individual is fortunate if it can identify others yet alone know points one to
four above [Cranor and Resnick, 2000]. Even if rational decision models can
cope with the first three points above, the problem still remains that other
individual’s efforts to cope with strategic interactions will be contingent on the
behaviour of other(s) whose efforts in turn depend on the first individual. This
is commonly referred to as the out guessing regress problem and its occurrence
makes the procedures of forming accurate predictions or confident expectations
impossible [Luce and Raiffa, 1957]. 10

However, decision makers are capable of making choices under conditions of
strategic interactions in the real world—whenever a decision maker does make a
choice he automatically eliminates or reduces the strategic aspects of interaction
[Young, 1975]. Therefore, in designing a negotiation wrapper, one can look for
models which accurately explain and predict the actual problem solving processes
involved in strategic decision making since real social systems have developed
solutions to the SI problem.

There are several methods for handling strategic interactions in the real world
that can be implemented by a computational protocol. One such mechanism is to
make the decision of all the participants sequential rather than simultaneous (or
independent and the encounter is restricted to a single move [Gibbons, 1992]).
Sequential interactions permit agents to evaluate their beliefs, given an observa-
tion. SI can also be eliminated or reduced by formulating subjective estimates
of the probable choices of other(s). If successful, then the agent fixes its decision
making environment and the SI problem is removed. However, the formulation
of subjective estimates raises two other problems. Firstly, as mentioned above,
in some contexts it may be inappropriate to assign probabilities to outcomes
that are infinitely large, such as division of a dollar. Secondly, formulation of
subjective probabilities leads to “silent out-guessing” [Young, 1975]. A designer
of a negotiating agent may use any number of heuristics in making these esti-
mates, but the result will be highly subjective because they will be based on
guesses about the probable choices of others, whose choice will, in turn, depend
on guesses about the probable choices of the first. Therefore, the process of
formulating subjective estimates will involve some silent out-guessing.

10In fact, if one decision maker is irrational, by ignoring the fact that its choices are de-
pendent on other(s) (i.e behaves in a very stylized fashion), then there exists a chance that
a rational individual can accurately predict the irrational individual’s behaviour and hence
escaping out-guessing regress [Young, 1975].
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Uncertainty in decision making can also be handled by attempts to manip-
ulate the decision making environment [Young, 1975]. More specifically, the
choices of others are made more predictable by gaining as much influence or
leverage over their behaviour as possible [Pruitt, 1981]. Under complete control,
the behaviour of others is predictable so the problem of SI disappears. An agent
can gain control of others either through a pre-specified organizational structure
or via various manipulation tactics (such as lying) in the information others
utilize in their decision making processes [Rosenschein and Zlotkin, 1994]. The
effectiveness of the latter tactics, however, must take into account that others
may also be using such tactics in manipulating the agent’s information set. SI
can also be overcome through organizational typologies that have formal struc-
tures and communication channels. Simon quotes an illustrative example which
demonstrates the role of organizations in decision making: It is not reason-
able to allow the production department and the marketing department in the
widget company to make independent estimates of next year’s demand for wid-
gets if the production department is to make the widgets that the market de-
partment is to sell. In matters like this, and also matters of product design, it
may be preferable that all the relevant departments operate on the same body of
assumptions even if....the uncertainties might justify quite a range of different
assumptions. In facing uncertainty, standardization and coordination, achieved
through agreed-upon assumptions and specifications, may be more effective than
prediction [Simon, 1996].

Therefore uncertainty is absorbed by the organizational structure through
coordination. In the work reported here, the protocol of interaction is for bi-
lateral negotiation, where there is no organizational structure. Furthermore, the
protocol treats each agent symmetrically, meaning that no one agent has direct
control over another. Therefore no one agent can control, or has more power
over, the other(s), thereby influencing their decision making.

SI can also be resolved by transforming a given relationship qualitatively
[Young, 1975]. That is, some third party can strategically intervene by imposing
a settlement of the issues. Judicial and governmental enforcement mechanisms
are two examples in the real world where the settlement is through the inter-
vention of a third party who imposes its will on the participants rather than a
settlement based on the activities of the individuals themselves. Under these
conditions, so far as the individuals are concerned, there is no longer any SI.
However, the mechanism is no longer negotiation since negotiation ordinarily
refers to the settlement of the situation involving SI through the activities of the
original participants themselves. Situations involving interdependent decision
making can be partially transformed, as above, but without producing a deter-
minate solution for the issues. Arbitration and facilitation are such mechanisms,
where negotiation interacts with such transforming procedures [Cross, 1969).

Alternatively, an agent engaged in SI may attempt to acquire additional in-
formation about the other agent(s). Although not directly solving the SI problem
(because the choices of other(s) will still depend on choices of the agent no mat-
ter how much effort is directed towards computing probable behaviours), this
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procedure may help in the formulation of subjective estimates or the selection
of specific strategies in the negotiation. In addition to this feed forward (predic-
tion of the future through expectation formation to deal with uncertain future
events), an agent can also use feedback to correct for unexpected or incorrectly
predicted actions of other(s). Therefore, adaptive decision making can remain
stable even through large fluctuations in the environment through a feedback
control.

Finally, note that the choice of an uncertainty handling method, implemented
by a protocol, also directly influences the solution quality (section 2.2.3) and the
efficiency of the protocol. For example, a single move sequential protocol may
result in lowering the quality of outcomes (a single move prevents search for
“win-win” outcomes), but may be more efficient in terms of speed. Conversely,
an iterated sequential protocol may result in better outcomes, but at the expense
of lower efficiency. A designer of a negotiation protocol must therefore be aware
of these tradeoffs between solution quality, the efficiency of the protocol and the
amount of information it assumes agents have about one another in reaching
agreements.

2.2.7 Time

As noted in the previous chapter (section 1.4.3) time is a significant fac-
tor in decision making.!! Indeed, time is an important feature of all com-
plex and distributed systems [Bond and Gasser, 1988]. Classic AI theories
are limited in modeling such systems because they emphasized not only sin-
gle agents, but also static and atemporal environments, where the only source
of change was the agent, operating in a predictable and static environment
[Russell and Norvig, 1995]. However, complex systems are characterized by in-
teracting subcomponents, operating in real time and dynamic environments.
Thus, theories are needed that not only model multi-agents, but also their op-
eration in dynamic and temporal environments.

Time affects the process of negotiation in two ways. Firstly, decision pro-
cesses are affected quantitatively by time:

....the passage of time has a cost in terms of both dollars and the sac-
rifice of utility which stems from the postponement of consumption,
and it will be precisely this cost which motivates the whole bargain-
ing process. If it did not matter when parties agreed, it would not
matter whether they agreed at all [Cross, 1969].

Therefore, time manipulates the preferences of the agents through their at-
titudes to time-dependent costs. Secondly, time also influences the qualitative
nature of interactions, by constraining and limiting the computational and com-
municational resources needed for interaction. Since interdependent activities

1IWhen the United States negotiated with the North Vietnamese toward the close of the
Vietnam War, the two sides met in Paris. The first move in the negotiation was taken by the
Vietnamese: they leased a house for a two year period [Raiffa, 1982].
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are temporally sequenced (for example the design process of BT), activities of
individuals are often subject to soft or hard time limits that directly influence
the rationality of an agent. Rationality, or the ability to “do the right thing” (see
section 2.2.8), requires computation and communication resources. However, if
time limits must be met for joint activities then conflicts must be resolved and
agreements reached within these time limits. This must be achieved with limited
computational and communication resources; agents do not have infinite time
to reach agreements. Thus, the presence of different time limits requires both
simple and communicatively less expensive coordination decision mechanisms,
and more complex mechanisms that take more time and may be more costly
in communication. As will be shown in the next chapter, the issue of time has
been central to formal game theoretic models of negotiation, that specify optimal
behaviour, instantly attainable by agents.

2.2.8 Bounded Rationality

Another source of uncertainty in decision making relates to the local complexity
of computation. In chess, for example, the size of the state space of the game
(moves by both players) is 35!%0 [Marsland and Schaeffer, 1990]. Hence, there
is no time to compute the exact sequences of actions. Instead, one has to guess
(make uncertain decisions) and act before being certain of which action to take.
This trade-off between accuracy and time costs is also reflected in negotiation
decisions, where agents are time bounded and mechanisms are needed that re-
spect this constraint. The aim, therefore, is to produce good, rather than optimal
solutions.

The complexity of computation is shown in the ADEPT negotiation scenario,
for the DD agent, the client of the survey_customer_site service, over two issues,
(price and quantity). Associated with each issue is the reservation value of that
issue, representing the constraint for an issue’s value. Let these reservations be
represented as the pair [min, maz]—1,20] and [2,10] for price and quantity
respectively.!? Finally, offers over the pair of issues (or contracts) are evaluated
in terms of utility to the client of the contract. The decision problem of an
agent is then to generate a contract that maximizes the utility of the contract.
The environment of this decision problem is represented as a utility state-space
problem in figure 2.3. The initial state may be the contract offer (1.0,10.0),
corresponding to maximal satisfaction of the agent’s preferences, or utility of
1.0. This is one possible starting offer because an agent can offer any contract
with different utility values according to its strategy. The final state in figure 2.3
can be any of the states that correspond to where negotiation has terminated
successfully or unsuccessfully (not shown in figure 2.3 because the final state is
mutually selected by the two agents).

Agents traverse the graph of the state-space using the state-space operators
(actions). Operators can be: i) concede on utility (shown as dashed arrows

12Concepts such as reservation values and utility are given a formal semantics in proceeding
chapters.
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in figure 2.3), ii) to demand exactly the same contract corresponding to the
same utility state (called boulware and shown as the dash-dot-dot arrows), or
alternatively, iii) demand the same utility but of a contract that is different
to the previously offered one (shown as solid arrows in figure 2.3). A path is
then any sequence of actions (concession or demand) leading from one state to
another. The path cost is the cost of moving from one state to another and the
goal-test is the evaluation to determine whether the agent is at the goal state or
not. The goal state is an agreement that maximizes either the individual or the
group utility according to the agent’s motivations (see section 2.1.2). Given this
problem (defined by the initial state, operators, paths, path-cost and goal-test),
search algorithms can then be designed that select a sequence of actions that
lead to a desired state.

However, a search algorithm for the above contract negotiation has to operate
with two sources of uncertainty. Firstly, the client has missing information
about what the server (SD) agent will offer. Therefore it cannot formulate a
certain sequence of actions in the possible state-space. In fact, the client is
unaware whether an agreement is even possible, since the information about the
overlap of reservation values between the client and the server is not publicly
known. In addition to this, since price and quantity are continuous variables,
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the range of possible values for each issue is infinite. This uncertainty over the
overlap of the reservation values and the continuous valued nature of the issues
means that the solution to the negotiation may lie at any depth. Likewise,
the breadth of the state-space adds to search complexity. The branching factor
(the number of sibling states from a parent state) in general is infinitely large.
This combination of i) the infinite depth of the state-space, ii) the branching
factor as the number of issues is scaled up from two and iii) the presence of
time deadlines in negotiation leads to computational uncertainties about what
is the best strategy. Game theory attempts to solve this search problem by
assuming agents are rational (thus allowing pruning of segments of the search
tree, such as alpha-beta pruning used in parlor games [Knuth and Moore, 1975])
and supplementing this assumption with protocols that: i) constrain interactions
(for example, a sequential, one round protocol can reduce the depth of the search
tree to one level deep), ii) supply the agents with additional knowledge so as to
better direct the search, or iii) eliminate the need for search on behalf of the
agent altogether by publically supplying all the agents with the information
about which strategies are optimal.

Computation, in general, functions to reach decisions that are better than no
computation (such as randomness) or that result in successful outcomes. How-
ever, different computations have different costs, as well as different likelihoods
of resulting in successful outcomes. Thus, in addition to developing search al-
gorithms there is also a need for reasoning about computation (meta-reasoning
[Russell and Wefald, 1991]). Russell and Wefald call this meta-level rationality
(or P3)—the capacity to optimally select the combination of action and computa-
tion as opposed to perfect rationality (or Py )—the capacity to generate successful
behaviour given available information [Russell and Wefald, 1991]. The evalua-
tion of which search should be implemented can then be delegated to a meta-level
reasoner whose decisions can be based on factors such as the opponent’s per-
ceived strategy, the on-line cost of communication, the off-line cost of the search
algorithm (or its path cost), the structure of the problem or the optimality of
the search mechanism in terms of completeness (finding an agreement when one
exists), the time and space (measured as memory requirements) complexity of
the search mechanism, and the solution optimality of the mechanism when more
than one agreement is feasible. The combination of this evaluation function and
a description of the permissible mechanism state transitions can then be used
by a meta-level reasoner to select amongst the available set of mechanisms.

2.3 Summary

The key issues in the design of a negotiation wrapper architecture were infor-
mally identified in this chapter. These issues relate to how the size of a society
(section 2.1.1), the motivation (section 2.1.2) and the frequencies of the encoun-
ters (section 2.1.4) of the individual agents constrain the choice of models of
negotiation. Also discussed was the relationship between the normative rules,
the content and the language requirements of an agent communication proto-
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col (section 2.1.3) and the computational considerations of how the choice of
this protocol influences the quality of final outcome (section 2.2.3), the levels
of uncertainties (section 2.2.6) and the commitments made (section 2.2.5). The
nature and the role of the object, or issues, of negotiation were also outlined
(section 2.2.1) as were the problems of their identification and modification (sec-
tion 2.2.2). The decision making of the individual agent was then presented
(section 2.2.4) and shown to be a highly uncertain activity, requiring various un-
certainty management methodologies, supported by different protocols (section
2.2.6). Decision making was also shown to occur under time restrictions (section
2.2.7) and limited computational capability of the decision maker (section 2.2.8).

The adopted position in this research over these key issues is to develop a
decision architecture for the negotiation wrapper that:

e supports one-off bi-lateral negotiations. Many-to-many, many-to-few and
one-to-many negotiations have been successfully modeled through market,
voting and auction mechanisms. Computational models of bi-lateral ne-
gotiation lag behind. As a simplifying assumption, agents are assumed to
meet only once.

e supports both selfish and benevolent types of attitudes corresponding to
maximization of individual and global welfare (or solution quality) respec-
tively.

e supports the requirements of an iterated and sequential integrative nego-
tiation protocol. This protocol is chosen because information is assumed
to be private and negotiation over “packages” transforms fully conflicting
games into partially conflicting ones, where agents can search for better
joint outcomes (increased global solution quality). Furthermore, the wrap-
per decision architecture must support the permissible modification of the
“package” during the course of negotiation.

e supports a wide range of negotiation strategies given that agents are not
only under time, information and computational constraints, but they have
different motivations. These strategies are introduced as mechanisms and
function to direct the agents’ negotiation decision making. One mecha-
nism, a depth-first strategy (see figure 2.3), is formally presented as re-
sponsive mechanism (see chapter three), where the depth visited is a func-
tion of concession rate, which itself is a function of the resources left in
negotiation, the time limits in negotiation and the behaviour of the other
agents. Other more complex search strategies (not shown in the figure 2.3)
implement a combination of depth-first and breadth-first strategies. This
mechanism, called the trade-off mechanism, searches for contracts that
have the same utility as a given state node, but which may lie at different
depths or breadths of the utility state-space. Thus, the trade-off mecha-
nism can explore other nodes’ siblings, as opposed to the siblings of the
given node alone. Finally, a mechanism, called the issue-set manipulation
mechanism, is also provided that re-formulates the problem by changing
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the branching factor through the addition or retraction of issues in the
negotiation. As will be shown later, each mechanism also implements a
different goal-test function that evaluates whether a goal state has been
reached or not.

e supports full and short term committed contracts. The contracts are re-
negotiable. The contracts may also function as representations for other
commitment honoring coordination models during the service execution life
cycle (see commitment model in figure 1.1). Thus, the choice of whether to
initiate re-negotiation or enact other recovery processes as directed by the
commitment model, is left to the domain problem solver (possible models
of which choice to make may be based on a decision theoretic cost benefit
analysis of re-negotiation versus the execution of some model of commit-
ment). The contract representation also supports both commitment failure
recovery during the service execution and service provisioning phases.

Against this background, the aim of this research is to instantiate these

selected issues and associated simplification assumptions into a practical negoti-
ation framework that successfully solves the problems of the two target domains.
Moreover, this framework should be configurable so that it can be evolved into
other domains with a minimal amount of effort. The assumptions, methodology
and solutions of the research reported here are compared next in the follow-
ing chapter with game theoretic bargaining models of negotiation and selected
computational models of the issues identified in this chapter.
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Related Work

In the previous chapter a set of important cognitive (informational), affective
(choice) and conative (action) issues involved in negotiation were identified and
emphasized. The second phase of the wrapper design is the modeling of these is-
sues. To this end, this chapter critically reviews candidate models of these issues,
in particular analyzing their application adequacy and assumptions, for the task
of modeling the wrapper system. The content of this chapter will be concerned
with models of negotiation utilized by the wrapper (coordination module and the
associated information models, figure 1.1). This emphasis on the negotiation,
rather than the communication, aspects of coordination is because the com-
munication aspect of this research is not novel. Communication protocol such
as the Knowledge Query and Manipulation Language (KQML) and the Founda-
tion for Intelligent Physical Agents (FIPA [FIPA97, 1997]) agent communication
language (ACL) have been proposed as two solutions to the agent communica-
tion problem. KQML is a language and a protocol for exchanging information
[Neches et al., 1991, Finin and Fritzson, 1994, Huhns and Stephens, 1999] and
FIPA ACL is also, like KQML, a language that allows agents to communicate
between themselves using messages (communicative acts). However, whereas
the semantics of the KQML performatives were described informally by natural
language descriptions, the FIPA ACL was designed to carry a clearer seman-
tics. The communication protocol of this thesis is simply a set of primitives and
associated rules for their usage.

The subject of negotiated coordination has received an in-depth treatment
from a number of diverse fields, such as social welfare theory [Arrow, 1950],
social psychology [Pruitt, 1981], economics (see section 3.1 below), marketing
[Curry et al., 1991], organizational theory [Carley and Gasser, 1999], operation
research [Shehory and Kraus, 1995], and more recently DAT (see section 3.2 be-
low). However, for the reasons presented in the previous chapter, only decen-
tralized models will be reviewed here.

Furthermore, since the concern of this work is negotiation for two agents,
as opposed to large scale societies, coordination models such as market mech-

59



60 Chapter 3. Related Work

anisms,! voting and auctions are excluded from the review process (see
[Sandholm, 1999] for a comprehensive review of these mechanisms). The class
of coordination models of particular interest in this work are bargaining models
which are derived from Game Theory. Game theoretic models of bargaining are
discussed in section 3.1, followed by DAI extensions of these models for compu-
tational systems, in section 3.2. Finally, the overall adequacy of both approaches
is discussed in section 3.3.

3.1 Game Theoretic Models of Bargaining

The central focus of economic models is the rational allocation of scarce
resources through coordination mechanisms such as markets or bargaining
[Binmore and Dasgupta, 1989]. The class of models which are of direct rel-
evance to this research are the micro economic models of Game Theory (as
opposed to macro models which model perfect competition [Gibbons, 1992])
which replace the coordination mechanism of the market by individual bargain-
ing in imperfect competition situations such as bilateral monopolies (one seller
(monopoly) and one buyer (monopsony)) and oligopolies (few large suppliers
[Bannock et al., 1992]).

The aims (section 3.1.1) and representative key concepts of game theory
(sections 3.1.2,3.1.3, 3.1.4, 3.1.5, 3.1.6 and 3.1.8) are discussed in the sections
below, before a general discussion of the theory of games is presented. Due to the
enormity of the discipline, only the underlying assumptions of the classic models
are discussed and evaluated.? A concrete, and highly relevant, model is then
presented in section 3.1.7 to illustrate some of the specifics of this approach.
With the exception of this case study, little attempt is made to cover actual
solutions for given problems since the object of the analysis is to determine the
adequacy of the underlying assumptions of the models.

3.1.1 Aims of Game Theory

In game theory an agent is viewed as an individual, a firm or some more complex
organization. A game is informally defined as the rules of an encounter between
players, who have strategies and associated payoffs (see section 3.1.5 for a formal
treatment of games). For example, the rules of driving specify drivers of the
cars (the players) and a choice of actions open to the agents (to drive on the
left or right hand-side). An agent then formulates its strategy given its beliefs or
knowledge of the other agent’s action. The selected strategies result in payoffs.
For example, the games where both agents drive on the left or one drives on the
left and the other on the right hand side of the road will result in payoffs of no

!Furthermore, since services in this work are unique (as opposed to being an unrestricted
number of commodities) and are not infinitely indivisible, the general equilibrium of market
mechanisms cannot be used [Varian, 1992, Kreps, 1990].

2An explanation of standard game theory terms and concepts can be found in any of the
classic text books such as the highly entertaining [Binmore, 1992] or [Gibbons, 1992], both of
which are referenced extensively in this chapter.
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crash and crash respectively. Given these rules, the object of game theory is to
analyze what are the players’ best choices—either both drive on the left or both
on the right hand side. As will be shown formally below, the elements of a game
are players, actions, information, strategies, payoffs, outcomes and equilibria.
The players, actions and the outcomes are then collectively called the rules of
the game. A player then selects a strategy with the available information at
hand given the rules of the game. The selected strategy then results in a payoff.

The motivation of an agent (or collection of agents) is reductionist in nature.
An agent is an optimizer of some function, be it genetic prosperity or maximiza-
tion of profit [Binmore, 1990]. The aim of game theory models is to provide a
general explanation of data based on a set of assumptions. Concerned by the
prediction, explanation and design of economic systems, game theory models
are motivated by the necessity to demonstrate that a complex system can be
described and predicted without recourse to some hidden variable or indivisible
hand [Binmore, 1990].> Its practitioners assert that the models do not claim
that this is the way the world is or must be, but rather the models describe
how the world could be [Binmore, 1990]. It is this emphasis on informed design
of systems (rather than heuristic approaches to modeling interactions) which
has attracted recent interest in designing computational systems based on game
theoretic models [Binmore and Vulkan, 1997, Zlotkin and Rosenchein, 1992,
Rosenschein and Zlotkin, 1994, Rosenchein and Genesereth, 1985,
Zlotkin and Rosenchein, 1996, Sandholm, 1996, Vulkan and Jennings, 1998,
Vulkan and Jennings, 2000, Kraus and Lehmann, 1995, Kraus et al., 1995,
Shehory and Kraus, 1995, Ephrati and Rosenschein, 1994, Ito and Yano, 1995].

The methodological stance of classic game theory is essentially testing the
internal logic of the economic models through “mind experiments” using factual
and counter-factual cases and simply ignoring the realizability or realism of the
hypothesis; there is no need to verify or refute a theory’s conclusions as long as
it is logically consistent [Binmore and Dasgupta, 1989].

3.1.2 Game Theory Versus Social Choice Theory

Game theory (strictly speaking, cooperative game theory, see section 3.1.3)
is closely related to social choice theory [Arrow, 1950], [Guillbaud, 1966],
[Rosenchein and Genesereth, 1985], [Genesereth et al., 1986]. However, game
theory is concerned with:

e the benefit of the individual rather than the group: Social choice theory
specifies how the group should behave so that its actions are consistent
with some postulate of rationality. In game theory, on the other hand, the
rationality principle is imposed on the individual, not the group. Thus,
social choice theory seeks to determine the expected group utility function,

3 Adam Smith believed that individuals in a society pursued their own goals and the greatest
benefit to the society came from people being free to do so. Each individual was “led by an
indivisible hand to promote an end which was no part of his intention” [Smith, 1776].
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whereas game theory seeks first to determine the individual benefits for
each alternative, before determining the group’s benefit.

o modeling the conflict point: The conflict point plays a central role in game
theory. It occurs where players can either break-off negotiation and receive
the conflict benefit or continue to reach a deal whose benefit is relative to
this conflict point. Consequently, the notion of threats becomes an impor-
tant concept that needs to be modeled. A conflict outcome is not needed
for a theory that is concerned with how a group should behave as a single
unit. Another important consequence of the conflict point is that it (to-
gether with the assumption that agents’ cardinal utilities really represent
ordinal preferences, thus making it possible to transform local utilities—
the so-called invariance assumption see [Nash, 1950]) eliminates the need
to make interpersonal comparison of benefits. Interpersonal comparison of
benefits informally means that agents can reason about other’s benefits—
for example, “for agreement A I will receive a benefit of X and the other
agent will receive the benefit Y”. In social choice theory, a single group
decision requires an exogenous specification of the relative weights of each
individual, implying the need for interpersonal comparison among agents
[Harsanyi, 1968]. Therefore, social choice models require more informa-
tion.

In this thesis the importance of the individual’s rationality is, like game theory
models, given primary status because agents are assumed to be selfish. How-
ever, and again similar to game theory models, decision mechanisms have been
developed that also consider the group’s welfare, but only when the individual’s
welfare for a given outcome has been determined.

3.1.3 Cooperative Versus Non-Cooperative Models

Coordination in game theory can be analyzed from two perspectives. One per-
spective assumes that the players of a game mistrust one another and try to
maximize their own benefit irrespective of others (recall the Prisoner’s Dilemma
game, section 2.1.2). Conversely, the other perspective assumes that the agents
make binding agreements to coordinate their strategies. These perspectives are
known as non-cooperative and cooperative games respectively. In cooperative
games there is a possibility of pre-play negotiations where a joint course of action
is agreed on for the ensuing game. As will be shown later, this pre-negotiation
communication phase eliminates the problem that occurs when multiple strate-
gies are all the best strategy to use, referred to as multiple equilibria in coopera-
tive games [Gibbons, 1992]. Nash suggested (in what has become to be referred
to as the Nash program [Nash, 1951]), that the analysis of the game should start
by embedding the original pre-negotiation game within a larger game in which
the possible negotiation steps appear as formal moves in the expanded game.
The most suitable coordination model on which to have the design of the
negotiation wrapper is the non-cooperative model. This is for two main reasons.
Firstly, there is no pre-negotiation communication in the problem domains of
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this research. Secondly, and more importantly, cooperative models concentrate
on the outcomes of negotiation. Because of this they are unable to: i) model
the negotiation process and ii) predict the time of agreements. Instead they
concentrate on the desired properties of the outcome alternatives. However,
since the agents in this research have to operate under time constraints, they
need a model of the process of negotiation.

Despite its deficiencies, cooperative game theory is nevertheless beneficial to
this research because it has produced a number of outcome criteria that formalize
the quality of the outcome. These criteria can be used to evaluate the optimality
of the designed search mechanisms. Optimality in these models is described in
terms of equity (how good an outcome is in its distribution of benefits and losses
to the group) and efficiency (if there is another group outcome that an individual
member would prefer over the current one). Sandholm states that the problem of
negotiation can be computationally viewed as two related optimization problems;
one is how to optimize local decisions and the other is how to optimize a global
criteria [Sandholm, 1996]. Social welfare, and game theories have both produced
a number of solutions to this tradeoff problem (called the impossibility problem
[Arrow, 1950]) which can be used to evaluate the performance of the wrapper
(see section 2.2.3). However, for the reasons given in section 3.1.2, welfare theory
models are less appropriate than game theoretic models since the goal of this
research is the design of a wrapper coordination mechanism for the individual
agents, rather than the group.

Finally, as will be seen below, computational models of negotiation in
MAS are grounded in both cooperative and non-cooperative bargaining mod-
els. Therefore, both types of bargaining models will be reviewed first to assist
review of the computational models .

3.1.4 The Theory of Cooperative Games

Cooperative models are also known as aziomatic theories, where axioms reflect
the desirable properties of solutions [Gibbons, 1992]. A solution in game the-
ory is generally taken to mean agents’ strategies are in equilibrium; one agent’s
strategy is the best response to the other’s strategies, and vice versa (see sec-
tion 3.1.5 for a formal definition). Then, outcomes, rather than the processes,
that satisfy these axioms are sought. Non-cooperative theories are also known
as strategic bargaining theories since in non-cooperative models the bargaining
situation is modeled as a game and the outcome is based on an analysis of which
of the players’ strategies are in equilibrium.

The Nash bargaining solution is the most popular solution concept in cooper-
ative models [Nash, 1950]. In the problems considered, there are two agents who
have to negotiate an outcome o € O, where O is the set of possible outcomes. If
they reach an agreement, then they each receive a payoff dictated by their utility
function defined as U; : O — IR,i € [1,2]. A utility function U represents the
preference relation > of an agent over the set of outcomes O [Binmore, 1992]. If
they fail to reach a deal, they receive the conflict payoff, U;(0confiict). The set of
possible outcomes and the conflict point ¢ (payoffs (0,0)) is shown in figure 3.1.
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The space of feasible outcomes (call this B) is bounded by the Pareto Optimal
line [Debreu, 1959]. Formally, pareto optimality is defined for a bargaining game
(B, ¢) (the pairs formed by the set of feasible outcomes and the conflict point) as
follows. Suppose there are two outcomes b and d such that they both belong to
the feasible set, b € B,d € B. If U;(d) > U;(b), for i = [1, 2], then the negotiators
never agree on b whenever another available outcome d is better for at least one
of the agents. This is formally represented as a function that given the game
defined by the pair B and ¢ does not select b—f(B, c) # b. Note the assumption
here, that agents must be able to know and be able to communicate that d is
better than b. One implication of pareto optimality is that a deal should always
be reached since c is not pareto optimal. Pareto optimality is a useful evaluation
criteria of different negotiation outcomes because it takes a global perspective of
the efficiency of the mechanism in terms of global good (see argument in section
3.1.3). In the remaining part of this section, two measures of equity of outcomes
will be reviewed.

The outcome region B is bounded because the pareto optimal line represents
outcomes that dominate all possible feasible outcomes (i.e. outcomes on the
pareto optimal line are the best). However, agents can negotiate on an altered
outcome set in a number of ways. Firstly, more solution points in area B can
be represented by extending pure strategies to mized strategies. Assume agents
a and b have choices of actions, s1,s2 and t1,ts respectively. A pure strategy is
then pairings such as (s1,t1),(s1, t2),(s2, t1),(s2, t2)—a pure strategy is the action
of one player given the other’s action ( [von Neumann and Morgernstern, 1944],
[Binmore, 1992], p. 175). A mixed strategy, on the other hand, is achieved by
a lottery, where strategies are selected from a probability distribution. In the
example above this means that agent a, for example, plays strategy s; and so
with a probability of say 0.3 and 0.7 respectively, given that b has played ¢; for
example. Given that strategies can be specified with a certain probability, the
set of outcomes is now expanded from the original pure strategy case. Another
way of changing the set B is to allow agents to change their payoff values before
the game starts (i.e. “burn some money” — free disposal, section 2.2.5). Alter-
natively, agents may be permitted to sign types of contracts that specify some
transfer of utility from one agent to another after the game (“side payments”—
use of pure strategies followed by transfer of 0.5 utility, for example, from agent 1
to agent 2). These three choices can help agents to expand the set of agreements
which are not present in the original representation of the problem.

Given the above solution points, payoffs and strategies the key ques-
tion of cooperative game theories is “what will rational agents choose”—
what von Neumann and Morgenstern termed the feasible bargaining set
[von Neumann and Morgernstern, 1944]. A bargaining set is individually ratio-
nal and pareto optimal. An agreement is individually rational if it assigns each
agent a utility that is at least as large as an agent can guarantee for itself from
the conflict outcome ¢—if 0 >= ¢. They argued that the outcome was indeter-
minate, since any point on the pareto optimal line is as good as another. That
is all that can be said.
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Figure 3.1: Outcome space for a pair of negotiating agents.

The aim of other cooperative theories, on the other hand, is to specify axioms
that lead to the selection of a single point on the pareto optimal line, given
the bargaining problem (B,c).* Three popular solutions are: Nash Solution
[Nash, 1950], Reference Outcome, [Raiffa, 1982] [Gupta and Livine, 1988] and
Kalai-Smorodinsky, [Kalai and Smorodinsky, 1975]. The latter solution concept
is not expanded on here since the wrapper evaluation is adequately achieved via
the first two solution concepts (referred to [Kalai and Smorodinsky, 1975] for an
exposition). The Nash solution is based on four axioms that must be satisfied
[Nash, 1950]:

o Invariance under affine transformation. That is, the particular chosen
scale of the utility function ought not change the outcome, only the num-
bers associated with the outcomes. This axiom is used to prevent the need
to make interpersonal comparisons in utility, since negotiators may want
or need to transform their utility functions. For example, if one agent has
£20 in the bank, and evaluates the deal that gives it £z as having a utility
20 + x, while another agent evaluates such a deal as having z, it should
not influence the Nash solution. That is, a change of origin does not affect
the solution.

e Symmetry. Also known as the anonymity axiom. This states only the util-
ities associated with feasible outcomes and the conflict outcome determine
the final outcome. No other information is required to select an outcome,
and switching the labels of agents does not affect the outcomes.

o Independence of irrelevant outcomes. It states that if some outcomes o are
removed, but o* is not, then o* is still the solution.

e Pareto efficiency. As mentioned above, this axiom states the maximum
amount of utility that can be reached. Note, this is the maximum attain-

4The process of how to actually reach this point is of no concern to cooperative game
theorists.
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able amount and not a complete aspiration achievement by both parties
(point referred to as utopia in figure 3.1 because any gains by one agent
above this line result in a loss to another and therefore will not be selected.
Indeed, utopia can not be the maximum of the gains because of this conflict
of interest—one’s gain is the other’s loss.

The unique solution that satisfies the above axioms is the Nash solution, defined
as:

0" = argmax|Ui(0) — U1(¢)][U2(0) — Uz(¢)] (3.1)

This corresponds to the points that maximize the product of individual utili-
ties for a deal, relative to the conflict payoff ¢ [Nash, 1950].° When individual
utilities calibrate an agent’s preferences over certain alternatives, or what is
called a value function, as opposed to an agent’s preferences over uncertain al-
ternatives (see [Raiffa, 1982], [Luce and Raiffa, 1957] for an account of risk-less
and risky utility functions respectively), the multiplicative form of the Nash
solution represents the concern for equity—the product of the value gains is
maximized more for more equal individual gains. Thus if each agent agrees
to the four axioms above, then each is motivated by proportionate cooperation
[MacCrimmon and Messick, 1976]. Consequently, both should choose the Nash
solution as the outcome. However, if only one agent is not motivated by this
proportionate cooperation principle then the the choice of the two agents is not
the Nash solution.

The Nash solution is the most popular solution point to the bargaining prob-
lem. The other is the reference point. This is also observed in experimen-
tal bargaining problems where a prominent outcome is used by negotiators to
anchor a point in the set of outcomes B [Raiffa, 1982]. The negotiators can
then use this anchorage / reference point as point of improvement to the final
point [Raiffa, 1982]. This point can be used either as a commonly agreed on
starting-point, a credible final point, or simply a focal point [Schelling, 1960],
[Roth, 1985]. In multi-issue negotiations, the mid point of each issue of both
agents’ reservation can serve as such a reference point, from which negotiators
may attempt to jointly improve [Pruitt, 1981], [Raiffa, 1982]. For example, if
the price of a service being discussed between two agents is between £0 (free)
and £40 (the buyer preferring values towards 0 and the seller preferring prices
closer to 40), then the reference point is £20 for the issue price.

Gupta and Livne’s solution formally represents a reference point by replacing
the conflict point as an outcome which both parties should attempt to improve
jointly [Gupta and Livine, 1988]. The solution proposed by Gupta and Livne is
a point that lies on the pareto optimal line and connects this reference point with
the maximum achievement of each party’s aspiration levels (utopia, see figure
3.1). This reference outcome has been shown to be appropriate for concession

5This is referred to as the regular Nash bargaining solution. A generalized Nash bar-
gaining solution also exists and this models the “bargaining powers” of both agents. See
[Binmore, 1992], page 181 for properties of this solution.
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models (log-rolling [Wilson, 1969], [Coleman, 1973], [Raiffa, 1982]) of integrative
multi-issue negotiations [Gupta, 1989], making it a highly relevant evaluation
criteria of the wrapper.

There are other proposed solution points in the space of possible outcomes B
which will not be discussed here (see [Corfman and Gupta, 1993]). The choice
of which solution concept to choose for determining an outcome has itself been
problematic, because they are all based on a set of simple and plausible axioms
(see [Damme, 1986] for postulates that provide some solution to this indeter-
minacy problem). Indeed, problems arise (empirically supported in social psy-
chology findings [Roth, 1995]) if each agent is motivated by a different solution
concept / social motive. Thus, if designers of different agents are motivated by
different social motives, then a difficulty arises over which solution concept to
use in axiomatically resolving the conflict. Designers would have to agree a pri-
ori on a solution concept and the agents would need to be bound to this solution
concept independently of their environment. As will be shown below, this is the
approach adopted by some computational models of negotiation using principles
of mechanism design (see section 3.1.8).

Furthermore, it is interesting to note that the cognitive (motivational) fac-
tors of agents are implicitly embedded within the solution concept. Thus a
pair of agents who select the Nash solution are motivated by the principle of
proportionate cooperation. Alternatively, selection of the reference point as a
tentative solution to be improved upon indicates the motivation of agents to
mutually search for better outcomes. The assumption in the work reported here
is that the social motivations of agents should be explicitly represented, and
reasoning over which social motive to choose from is a dynamic function of the
task-environment of the agent, changing depending on its computational, com-
municational or task load. The reason for this choice is best illustrated by the
following quote:

. the distinction between self-interested (competitive) agents that
are trying to optimize their own local performance and cooperative
(benevolent) agents that are trying to optimize overall system per-
formance is important but not an overriding factor in the design
of coordination mechanisms for complex agent societies that oper-
ate in open environments. In fact, I feel agents that populate such
societies will use performance criteria that combine both local and
nonlocal perspectives and that these performance criteria, in terms
of the balance between local and nonlocal performance objectives,
will change based on emerging conditions. Thus, I see this distinc-
tion between self-interested and cooperative agents blurring in the
next generation of large and complex multi-agent systems. The ba-
sis of this view is that agents that operate in these complex societies
and open environments will have to cope with a tremendous amount
of uncertainty, due to limited computational and communicational
resources, about how to best perform their local activities ... These
factors will lead to self-interested agents behaving in more cooper-
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ative ways so that they can acquire useful information from other
agents and help other agents in ways which will eventually improve
their local performance. In turn, cooperative agents will behave in
more self-interested ways given the costs of understanding the more
global ramifications of their actions, as a way of optimizing overall
performance of the society. [Lesser, 1998]

As will be shown later, non-cooperative models are more appropriate for the
computational modeling of the negotiation process. Nonetheless, the axiomatic
models provide a set of useful tools for analyzing the performance of the wrap-
per. Cooperative bargaining models lead to further difficulties because they do
not consider the computational difficulties involved in the computation of some
of the above solution concepts. These computational difficulties are discussed
below in the cases of negotiation over a single and multiple issues. Figure 3.2 a)
represents the pareto optimal line and Nash bargaining solution involving only
a single issue (distributive bargaining). When only one issue is involved, all the
possible outcomes lie on the pareto-optimal line—the feasible set. Furthermore,
because of the conflicting linear value functions of each agent, the sum of each
outcome is 1 (called zero-sum games [Gibbons, 1992]).6 The point that maxi-
mizes the product of the individual utilities (the Nash bargaining solution) is
easily computed as the mid point (and most equitable) of both agents’ value
function (i.e (0.5,0.5)). The situation is made more complex when multiple is-
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(pareto-optimal line)

J
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Agent 2
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Figure 3.2: Outcome space for a pair of negotiating agents for linear value
function and a) single issue and b) multiple issues.

sues are involved. This is important for the types of domains considered in this
research where negotiation is over multi-dimensional services. Due to multiple
issues, each having a different importance level and linear value function, the
outcomes are transformed to a non-constant sum game (where the sum of the

6The preferences of agents in the work reported here are modeled as a linear additive value
function for each negotiation issue. The details of the function and its behaviour are deferred
until the next chapter.
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individual values for an outcome does not necessarily add up to 1). It is pre-
cisely for this reason that agents can look for “win-win” outcomes, improving
on the outcome. The pareto-optimal line for integrative bargaining is shown
in figure 3.2 b. The only points on this line where the sums of the individual
values add to 1 is at the point of connection to the z and y axis. Different
points along the pareto-optimal line then do not necessarily add to 1 and do not
necessarily have the same addition.” More importantly, outcomes of negotiation
can now lie below the pareto-optimal line because agents may attach different
importance weightings to each of the issues. Thus, an agent who places a lower
importance on one issue than another, but possibly more on yet another issue,
can result in outcomes that lie below the pareto-optimal line. Compare this
to the distributive bargaining case, where the outcome of a negotiation had to
be on the pareto-optimal line (due to the conflicting linear value functions and
the importance weighting of value 1, the sum of individual values has to add to
1). Furthermore, the Nash bargaining solution is no longer at (0.5,0.5), because
the pareto-optimal line has moved from the constant sum line to another point.
Indeed (0.5,0.5) can now be viewed as the focal point.

There are a number of computational implications in integrative bargaining.
Specifically, whereas the maximization of the sum of the individual values is
computationally straightforward, the same is not true of the computation in-
volving the maximization of the product of the utilities (or the Nash bargaining
solution). The Nash bargaining solution is inadequate in cases of multiple issues
because its computation becomes intractable in the presence of multiple issue
reservation values and weights. The maximization problem then becomes max-
imization of a quadratic function with restrictions (the reservation values of an
issue), where the solution to the quadratic function may violate the restrictions.
It is a quadratic problem because the individual utilities of agents are linear:

max (Z wh Uf(o)) (Z wi U (o))
i=1 i=1

Numeric methods, such as active sets, can handle such problems
[Luenberger, 1973]. However, with this method as the number of issues increases
then so does the complexity of the computation involved in solving the quadratic
problem. Therefore, active sets become unlikely candidates for computing the
Nash solution for bargaining problems involving large number of issues.

To summarize, in this section the theory and assumptions of cooperative
games were briefly reviewed. It was shown that although impractical for model-
ing the processes of negotiation, cooperative game theory has nonetheless pro-
duced: i) a formal definition of the possible space of outcomes and how this space
can be represented and transformed and ii) a number of global evaluation cri-
teria (such as pareto-optimality, Nash, reference and Gupta-Livne solutions), a
number of which will be used in the empirical evaluation phase of this research.

"Note, the argument is true for a pair of perfectly opposing linear utility functions. The
introduction of non-linearity changes the cardinality of values along the pareto-optimal line,
meaning that the sum of the individual utilities that lie on the line do not add up to 1.
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Finally, the last section discussed the effect of bargaining problems involving
more than one issue on: i) some of the global measures and ii) the computations
involved in finding a solution. Implicit in the above arguments was the avail-
ability of information in making social decisions. For example, to compute the
reference point, or outcomes that actually lie on the pareto-optimal line, agents
have to know the utilities the other agent places on all the set of outcomes. The
treatment of information in game theory is discussed in the next section.

3.1.5 Complete Information Games

The theory of complete information is not directly relevant to the research re-
ported here. In this research it is assumed that information is private in interac-
tions. Nonetheless, the theory of complete information is reviewed here because
it formally represents some important concepts (such as Nash equilibrium) and
assumptions of game theory (such as the rationality and common knowledge of
agents). Furthermore, the exposition will provide a framework for better under-
standing a number of computational models of negotiation, reviewed in section
3.2, which are a natural extension of complete information cooperative games.

von Neumann and Morgenstern [von Neumann and Morgernstern, 1944]
classified games into games of complete and incomplete information.? In games
of complete information the players are assumed to know all the relevant
information—that is, they have knowledge of:

1. The rules of the game: The rules, or the protocol of interaction, are a
specification of when an agent may act, the actions available at these per-
missible times and the information concerning the history of the game
until the current decision point. A player then formulates a strategy for
the game, given the rules.

2. The players of the game: A player is specified by: a) their preferences:
represented as payoffs or a utility function. The utility functions are de-
fined on the set of possible outcomes of the game. b) their beliefs: formally
represented by a subjective probability distribution over a set of possible
states of the world. It is the combination of the chosen strategies and the
states of the world which determine the outcome of the game. States of
the world are attributed to chance moves.

More formally, a game is described in normal form as:

Definition 2 The normal form representation of an n-player game specifies the
player’s strategy spaces S, ..., S, and their payoff functions ui,...u,. The game
is then denoted by G = (S1, ..., Sn; U1, - Un)

Game theory then predicts a unique solution to the game (such as the Nash
bargaining solution) as to what each agent will choose. However, in order for

8Games of incomplete information are also referred to as “asymmetric information” in the
game theory literature [Gibbons, 1992].
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this prediction to be true, it is necessary for each agent to be willing to choose
the strategy predicted by the theory. Thus, the predicted strategy for each agent
must be the agent’s best response to the predicted strategies of the other agents.
Rationality is then the adherence to this self-enforcing property (because no
single agent wants to deviate from its predicted strategy), while at the same
time maximizing its expected utility.

In a game of complete information, all the above are common knowledge
[Aumann, 1976]. The implication is that not only does each agent know it,
but also that each agent knows that each agent knows it, that each agent
knows that each agent knows that each agent knows it, and so on ad infinitum
[Mertens and Zamir, 1985]. In addition to this, in a game of complete informa-
tion the information need not be perfect. For example, chess is a game of perfect
information, where for each decision node each agent always knows the complete
history of the game. Conversely, in a game like poker an agent has imperfect
information about the history of the game thus far; a player does not know what
cards other players hold when at a decision node.

Although the players have common knowledge about the state of the world,
their subjective beliefs about what strategy the other player is following are de-
termined by the analysis of the game. The question of which analysis is the ap-
propriate one is itself problematic [Binmore and Dasgupta, 1986]. In particular,
the infinite regress problem means that all strategies appear equally reasonable
[Luce and Raiffa, 1957]. Infinite regression allows reasoning of the kind, “if I
believe, that he believes, that I believe, that he believes, etc.”, which, in turn,
makes all possible strategies candidates for selection. To overcome these diffi-
culties, three additional requirements, representing the nature of rationality, are
needed:

e ¢) A rational player quantifies all uncertainties using a subjective proba-
bility distribution. The player then maximizes its utility given this distri-
bution. Thus the subjective probability distribution is common knowledge
to all the other players.

e d) All rational players are computationally equivalent. Thus if one player
is given the same information as another, then it can duplicate its rea-
soning process. This does not mean that an agent knows everything (is
omniscient); rather, the agent is infinitely capable of introspecting other
agent’s reasoning.

e ¢) Rationality of players is common knowledge. In game theory, rationality
requires that an agent maximizes its utility and each agent will necessarily
select an equilibrium strategy when choosing independently and privately.

The implications of assumptions d) and e) are that it is common knowledge that
the players are rational (what is referred to as consulting the same game theory
book which contains all the commonly held assumptions such as the rationality
and beliefs of agents as conventions [Binmore, 1992], p. 484). Taken together,
it is possible to show that assumptions a) to e) sanction any choice of pair of
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strategies which are not in equilibrium. In economics, an equilibrium is defined
to occur when the actions of an agent are consistent given the actions of others
[Gibbons, 1992]. There are numerous equilibria concepts in game theory, each
stricter in sanctioning possible strategies, but the most popular one is the Nash
equilibrium.® This is formally defined as:

Definition 3 In the n-player normal-form game G = (St, ..., Sp;u1,..-uy), the
strategies (s%,...,s:) are a Nash equilibrium if, for each player i, s} is
player i's best response to the strategies specified for the n — 1 other players,
(8, -s 8715 Sip1s s S0):

* * * % * * * * *
Wi(8T 5381 1,51, 5141s+++>5n) = Wi ST, 87 1,581,854 15+++55n)

for each feasible strategy s; € S;. That is, s} mazimizes:

gleagf ui(si RS S;—l: Si, S:—i—l: s 7347;,)

Assumption e) enables plan recognition which, in turn, supports assumption d)
and without it an agent is incapable of predicting other agent’s behaviour. The
assumption states that all agents are rational in that: a) they are utility max-
imizers and b) they will independently choose an equilibrium strategy. Under
assumption d), a rational agent can only model (or predict) the behaviour of
another rational agent. However, if assumption e) is violated, in that an agent
chooses a non-equilibrium strategy (and hence behaves irrationally by deviating
from the Nash equilibrium) then the rational agent can no longer predict the be-
haviour of the irrational one because of the violation of assumption d). However,
the rational agent can derive more utility (by deviating from Nash equilibrium)
if it can model this irrationality on the part of the other agent (using another
assumption, say d*). As Luce and Raiffa [Luce and Raiffa, 1957], have argued:

Even if we were tempted at first to call a Nash non-conformist “ir-
rational”, we would have to admit that his opponent might be “irra-
tional” in which case it would be “rational” for him to be “irrational”.

Therefore, if the rationality assumptions, included to solve the infinite regress
problem, are violated, then the outcome of interaction is indeterminate since
any non-Nash pair of strategies can be chosen. However, the knowledge that
agents are all perfectly rational, or the assumption on the part of the agent
that other agents are also rational (consult the same game theory book), does
substantially reduce the decision problem of the agent to one of selecting the
strategy that is known to be in equilibrium independently of what the other
agent does. As will be seen in section 3.2, a similar notion of perfect rationality
is also developed in computational models of negotiation where agent designers
are provided with negotiation protocols that have known equilibrium strategies.

9Not to be confused with Nash bargaining solution which was defined in section 3.1.4.
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This fact is publicly known and deviation from it is irrational. Therefore, an
agent designer can design his/her agent to behave independently of the other’s
choices.

3.1.6 Games of Incomplete Information

The arguments above concentrated on models of complete information which
are suitable for games like chess. However, in real environments agents seldom
know as much as the above models assume. What is also required are models of
decision making with uncertainty over both the rules of the game as well as the
preferences and beliefs of others. Such models are highly relevant to the domain
of this research, once again, because of the privacy of information assumption.

Harsanyi developed a model which represents optimal behaviour given the
fact that an agent has incomplete information about its world [Harsanyi, 1955].
Since uncertainties over the rules of a game can be expressed as uncertainties
over the payoffs, assumption b) is the most fundamental assumption which needs
to be relaxed. If assumption b) is relaxed, then the agents are no longer certain
as to the type of the other players. To know an agent’s type is to have complete
knowledge of its preferences and beliefs. Each agent then only knows for certain
its own type and its uncertainties of the other agent’s type may be expressed as
a probability distribution over the set containing all possible types.

Given the above, an agent’s uncertainty over the types of others is modeled
by introducing a chance move at the first step of the game where nature selects
the type of the player of the ensuing game with a probability distribution which
is common knowledge to all players. Then, before the game begins, each agent
updates its belief about the type of all others, given it has been chosen using
Bayes rule. The introduction of the move by nature at the first step converts
the game of incomplete information to a game of imperfect information, where
at some point in the game the player with the move does not know the complete
history of the game thus far.

In essence, uncertainty is dealt with by assuming that the agents have a
certain limitation on the form of their utility functions. Thus, there exists a
known set of all possible utility functions. Each agent is then assigned a type
based on which of those utility functions it is currently using. Other agents
then update their beliefs about the type of others by acquiring information in
the process of interaction. Then the choice problem reduces to a point that is
fundamentally the same as a game against nature (for example, probability that
it will rain tomorrow, given that it is sunny today) as in a traditional single-agent
decision making situation.

3.1.7 Non-Cooperative Games

Non-cooperative models are also known as strategic bargaining theories, where
the bargaining situation is modeled as a game, and the outcome is based on
an analysis of which of the players’ strategies are in equilibrium. This type
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of model was first motivated by Harsanyi [Harsanyi, 1956], but is best repre-
sented through the Sequential Alternating Protocol (SAP) ([Rubinstein, 1982],
[Rubinstein, 1985b], [Osborne and Rubinstein, 1990]). The SAP, unlike the co-
operative models, models the process of negotiation, one of the requirements of
the problem domains of this research. The complete information version of the
game is described first, followed by the incomplete information one.

There are two players 1 and 2, whose task is to divide $1, and receive the
share they each agree to. If they fail to agree, they get the conflict payoff of
$0. The bargaining process is normatively specified by the sequential alternating
protocol where player 1 makes an initial offer of its share for the dollar at stage
0. Player 2 immediately accepts or rejects the offer. If the offer is rejected, then
player 2 makes a counter-offer at 7 = 1. This process is repeated until either a
successful settlement is reached or else both players receive the conflict payoff.
In cases of successful outcomes, the payoff to player 1(player 2) is computed as
the share of the dollar agreed at stage t, modified by a discount factor 6; (67).
The discount factor represents the incentive to reach an agreement early and 47,
62 < 1. Thus in round one the dollar is worth 1, in round two it s worth 4, in
round three it is worth 62, and so on. A strategy is then a specification of the
proposal/reply at each stage of the game as a function of the history to that
point.

Since the dollar is an infinitely divisible good, any division of the dollar is
a Nash equilibrium. A stronger equilibrium solution was introduced by Rubin-
stein to solve the indeterminacy problem, called the subgame perfect equilibrium
[Rubinstein, 1982]. Subgame perfect equilibrium sanctions commitments to con-
tingent courses of action that would result in lower payoff to a player if the con-
tingency did actually arise. For example, a threat by player 1 to walk off from
negotiation if it did not receive 90 cents of the dollar is not credible, because if
player 2 did offer 10 it would not be in the interest of player 1 to enforce the
threat. Thus subgame perfect equilibria effectively prunes the search tree on the
assumption that the other agent is rational (see section 2.2.8).

In the above model the subgame-perfect equilibrium is unique and agree-
ments are immediate with player 1 receiving share (1 — d2)/(1 — 6102), while
player 2 receives the share 1 — ((1 — d,)/(1 — 0102)). Thus the more impatient
an agent (the larger the value of §), the smaller the final payoff.

For example, consider a finite version of the divide the dollar game with
61 = 62 = 0.9. Table 3.3 shows the offer’s maximal claim that are acceptable
to the other agent. Assume that in the last round (T') agent 2 would accept
$0. However, in the next to last round, 2 can keep 0.1, because it knows this is
how much 1 will lose if it waits till the next round (1 — d; * 1). This reasoning
continues backwards and the process terminates when the time limits of the
game has been reached.

Problems occurs when the protocol permits an infinite rounds of bargaining
and non-discounted offers. Under such circumstances any splits of the dollar is
Nash equilibrium. However, as mentioned above, Rubinstein showed that for
an infinite game where offers are discounted then a solution does exist and it is
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Round | 1’s share | 2’s share | Offerer

T-3 0.819 0.181

2
T-2 0.91 0.09 1
T-1 0.9 0.1 2
T 1 0 1

Figure 3.3: Maximal acceptable claims of an offerer for a finite game

reachable within the first step of the protocol. The proof is as follows. Let the
maximum and minimum agent 1 can get in any round be denoted as A4; and
ay respectively. Conversely, let By and by denote the maximum and minimum
agent 2 can get in any round respectively. The proof consists of showing A; = a4
and By = by. If agent 1 makes the first offer then the maximum it can claim of
the dollar has to satisfy the inequality:

A <1—byd, (3.2)

That is, the maximum agent 1 can claim on its turn for agent 2 to be indifferent
between accepting and refusing is what remains of the dollar once the discounted
minimum of agent 2 has been allocated to 2. Conversely, the minimum agent 1
can claim on its turn has to satisfy the inequality:

ay 2 1-— 3252 (33)

To see this, suppose 1 offers 2 an offer that violates this inequality, z < 1 — B2ds.
Let x < y <1 — Bady. Then since 1 — y > Bsd2, a demand of y by 1 at time 0
will be accepted by 2, because if 2 refuses y then the maximum 2 can get in the
next time step is Bads which is less than 1 — y. Thus 2 gets more by accepting
1 —y at time 0 than waiting until the next round. It follows that it can not be
optimal for 1 to demand an offer  which will be rejected when another demand
y exists which will be accepted at time 0. This logic is used to show agreements
are reached instantly.

Two further inequalities are then needed to compute the final share each
agent receives. These inequalities are derived by exchanging the roles of the
agents, giving the requirements of the maximum and minimum demands (B,
and b respectively) of agent 2 as:

B2 S 1-— a151 (34:)

by >1— A1, (3.5)
Substituting 3.5 for bs in 3.2 gives:

A <1 —0byb <1— 52(1 — A151) =1—0y + A10109
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Therefore
1— 89
A< ——= .
LS T e (3.6)
Similarly, by substituting 3.4 for B, in 3.3 we get:
ag >1-— Bsydo >1-— (52(1 — a161) =1— 62 +a16162
Therefore
1— 6,
> 2 3.7
= 1- 51(52 ( )

Therefore, since a; and A; are the minimum and maximum demands of agent 1,
then a1 < A;. Thus 3.6 and 3.7 and the corresponding inequalities for Bs and
be imply that:

1-—4, by = By = 1-—4,
1— 6102 1— 6102

The above model not only addresses some of the key issues identified in chap-
ter two (the protocol of interaction, time, strategies, commitments and costs),
but it also has the desirable property that agreements are immediate. How-
ever, the SAP’s adequacy is weakened for application to the problems of this
domain because there are possibilities of inefficient delays and deadlocks when
information is incomplete. In the SAP, the problem of incomplete information
in a service market would be addressed by specifying a seller and a buyer type
(see section 3.1.6), where the seller’s type represents the lowest price value for
which the seller is willing to sell a service, and the buyer’s type represents the
highest price the buyer is prepared to pay for the service. Each agent is certain
about its type and the uncertainty over the other’s type is represented by either
a continuous distribution or discrete probabilities (e.g. a buyer with a high or
low price valuation). These distributions are common knowledge. Uncertain-
ties can then either be two sided [Fudenberg and Tirole, 1983], [Perry, 1986] or
one-sided [Cramton, 1991], [Admati and Perry, 1987].

As a consequence of these uncertainties there is no subgame-perfect equilib-
rium. The analysis is instead made using the stronger equilibrium concept of
sequential equilibria [Rubinstein, 1982], where in addition to specifying a strat-
egy, each uncertain player’s belief must be specified given every possible history.
Then, a sequential equilibrium is a set of strategies and beliefs such that for every
possible history each player’s strategy is optimum given the other’s strategy and
its beliefs about other’s valuation. Beliefs are made consistent by using Bayes
rules. Since agents are bound to the protocol of communication that permits
only the transmission of offers and counter offers, the process of learning other’s
types through Bayes rule typically requires multiple stages, leading to delays in
reaching agreements. However, if the other agent’s behaviour is off the equilib-
rium path, then Bayesian updating is not possible since these off equilibrium
paths are assigned zero probability. This may result in incentives for agents to

a1=A1=
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deviate from the equilibrium to increase the number of possible outcomes. Out
of equilibrium behaviour cannot be ruled out in games of both sided uncertainty
and a sequential alternating protocol (this problem is solvable for one-sided un-
certainty and a protocol where the uninformed agent makes all the offers and
the informed agent either accepts or rejects offers [Vincent, 1989)]).

In addition to the above properties, the results from non-cooperative
models of the negotiation process are highly sensitive to the particular as-
sumptions made about the bargaining process [Sutton, 1986]. For exam-
ple, two-sided versus one-sided uncertainty ([Fudenberg and Tirole, 1983] and
[Sobel and Takahashi, 1983] respectively), finite horizon versus infinite horizon
time limits ([Fudenberg and Tirole, 1983] and [Rubinstein, 1985a] respectively),
possibility of strategic delays [Admati and Perry, 1987], different bargaining
costs [Perry, 1986], different offer patterns (alternating versus uninformed player
makes all the offers [Rubinstein, 1985a] and [Cramton, 1991] respectively), all re-
sult in a different process of bargaining. For example, the SAP protocol can be
altered to allow strategic delays where the players are allowed to make offers
at any time after some minimum time between offers has passed. This leads to
agents strategically delaying their offers which is interpreted as a signal of the
position of the delaying agent [Admati and Perry, 1987]. Consequently, different
outcomes are selected.

In summary the SAP is a more operational protocol for computational pur-
poses than cooperative game theoretic models of negotiation. Not only does it
model the protocol of interaction, but it also includes the time of reaching agree-
ments, strategies and commitments in interaction. However, small variations in
this protocol, and non-cooperative models in general ([Binmore, 1992] page 196)
result in the protocol selecting different outcomes. Nonetheless, as will be shown
in section 3.2.2, the SAP has been usefully extended by Kraus to solve a number
of computational problems.

3.1.8 Mechanism Design

In addition to its explanatory purposes, game theory models are used for
the design and implementation of organizations, or of an activity within
an organization, where the participants do not share the same goals but
there exist opportunities for mutual cooperation as well as real conflict (see
[Marschak and Radner, 1972] for a theory of the team who share a common
goal). Previous sections have concentrated on two different perspectives of how
to model interactions between agents. The aim of this section is to discuss how
such models can be used to design and implement interacting systems, an ac-
tivity highly relevant to computational systems.!? Indeed, the best example of
mechanism design is the various types of auctions that exist on the Internet.
Additionally, as will be shown in section 3.2, mechanism design has also been

10Mechanism design can be thought of the problem of design a system that implements
a game theory text book, containing the assumptions and implications of the theory. For
example, a mechanism is designed such that the players in that mechanism commonly know
what the most rational strategy is.
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heavily used to design computational negotiation protocols that have certain
useful features. Therefore, this section will briefly introduce the key concepts
that will assist in later exposition.

The problem of designing and implementing activities is referred to as the
“implementation problem” or mechanism design where the designer’s preferred
negotiated outcome (in terms of some criteria such as social or individual
welfare) is derivable from a given specification of the rules of the game (see
[Rosenschein and Zlotkin, 1994]). It is called a mechanism because what is be-
ing designed is not a specific game (concrete utilities), but a “game form” (utility
types). In general, the aim of mechanism design is to create a society of agents
who are engaged in a cooperative venture for mutual gains. Rules, laws and
regulations (or protocols) are used to define a game which specifies the feasible
set of negotiated solutions and eliminate individuals’ feasible set of actions. As
will be shown in section 3.2.1, mechanism design has been central to compu-
tational models of negotiation in MAS, by constructing games whose equilibria
have some centrally desired properties(s). However, since the computational
models of coordination in MAS come from mechanism design, the principles are
described in this section.

The problem of mechanism design is formulated in game-theoretic terms as
the principle agent(s) problem [Binmore, 1990]. The most popular application
of the principle-agent problem is auctions (see [Sandholm, 1999]), where the
principle is a seller of some good and the agent(s) can be one or more buyers.
The problem then is reformulated as one of devising a selling mechanism that
satisfies some features such as efficiency and individual rationality (see section
3.1.4), given that the seller does not know the reservation values of the buyers.
Because the principle cannot observe the hidden reservations, the problem is
sometimes called hidden type, borrowing from Harsanyi’s theory of incomplete
information (section 3.1.6). 1 This lack of knowledge is addressed by devising
incentive schemes that reward the agents that submit bids that are at their true
reservation values.

In summary, the principle attempts to induce the agents to behave in a
certain manner using a mechanism M. However, the principle does not know
the types of agents, but it is common knowledge how chance selects the agents
for each buying role. The principle’s choice of M then serves as a rule of the
game G. The agent’s actions in G then determine an outcome o. Given that
the agents are rational, then the principle will be offered a choice of outcome o
in G that is Nash equilibrium. This o is then said to be implementable for the
principle—it can get o if it wants it by selecting mechanism M. The decision
of whether or not an outcome is implementable is simplified through another
principle called the revelation principle [Binmore, 1992]. If a mechanism asks an
agent what its type is, then it is a direct mechanism. Then based on the declared
type the mechanism generates some outcome. If the agents are not asked what

11 The Principle-agent problem is studied under the subject of moral hazards [Binmore, 1992],
because the principle is taking a risk if it relies on the morals of agent(s) to carry out what
they committed to in a contract. In the literature, moral hazards are also called hidden action
and adverse selection problems [Binmore, 1992].
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their type is, then mechanism is called indirect. The revelation principle then
states that whatever can be done with an indirect mechanism can also be done
with a direct mechanism (called incentive compatible). Thus any social function
implemented by an indirect mechanism can also be implemented by a direct one
where agents have an incentive to declare their true types.

This simple principle that “f something can be done, then it can be done by
Just asking people to reveal their true characteristics” [Binmore, 1992] is useful
in designing optimal mechanisms—to decide what outcomes are implementable,
it is only necessary to consider outcomes that are implementable by a direct
mechanism. As will be shown in section 3.2.1, a number of MAS have used
these principles of mechanism design for the design of computational models of
negotiation.

3.1.9 An Evaluation of Game Theory

Game theory has proved useful in modeling social phenomena in disciplines
such as economics, political theory, evolutionary theory, moral philosophy, so-
cial psychology and sociology. The reasons for this success have been its
[Castlefranchi and Conte, 1997]: i) conceptualization of a synthetic, meaningful
and formal prototypical context as games which are open to experimental anal-
ysis; ii) its ability to predict and explain these games in a manner which does
not rely on post-hoc explanation, but rather uses formal and sound notions; and
iii) identification and conceptualization of a host of social problems such as free-
riding, cheating, reciprocation, coalition formation, reputation and emergence of
norms. The first two contributions are highly relevant to the research reported
here because the formal elements of game theory permit unambiguous model-
ing of the decision making involved in negotiation. In addition to providing a
“modeling language” the theory provides formal concepts such as Nash solution,
pareto-optimality and reference point that can be used to empirically evaluate
the developed components of the negotiation wrapper.

In addition to the above, the impact of game theory within DAT has been
to [Castlefranchi and Conte, 1997]: iv) challenge the benevolence assumption as
well as notions of common problem, social goal and global utility; v) demonstrate
that cooperation can emerge from local utilities; and vi) quantify the costs and
benefits associated with actions (e.g communication, exchange and formation of
groups as coalition). This emphasis of game theoretic models on local preferences
makes them highly appropriate for modeling the type of tasks faced by the
wrapper (section 2.2.4). Recall that the task of the negotiation wrapper in
this body of work is decision making since no objectively correct answer exists
(tasks where an objectively correct answer exists are termed problem solving
[Laughlin, 1980]). In decision making tasks, the object of coordination is an
agent’s goals and its preferences over these goals.

However, game theory models have generated considerable debate
as to their efficacy and the theory’s usefulness in guiding the design
of an agent [Castlefranchi and Conte, 1997, Fishburn, 1981, Simon, 1996,
Zeng and Sycara, 1997, Binmore, 1990]. An adequate evaluation of game the-
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ory, due to the enormity of the discipline, is beyond the scope of this thesis.
Therefore, only a few select problems relevant to this research are presented
below.

The greatest criticism of game theory from the perspective of the objectives
of this thesis is its rationality assumption that i) beliefs are common knowledge,
and ii) individuals are optimizers and computationally unbounded.

e The first assumption is appropriate for games such as chess where the
choices of the individuals, and their interactions, are written into the rules
of the game. Players motivations are also common knowledge—each prefers
to win. However, in the real world there is no rule book which describes
how individuals actually acquire beliefs. The assumptions are based on an
“ideal” world in which beliefs deduced rationally from a common prior can
be common knowledge. Yet, the world is not “ideal”—there are imperfec-
tions in our knowledge.

e The assumption that individuals are optimizers has also been critically
challenged. The question of what is optimal, in game theory models, is in-
dependent of actual human behaviour—the question is reformulated from
one of how do people actually behave to how should people behave given
that each individual were to maximize his utility. Cognitively inspired
modelers and designers state that game theory only models a subset of
the cognitive makeup of an agent. In particular, economic rationality is
not a model of rationality in general but only one of a large subset of hu-
man goals [Castlefranchi and Conte, 1997]. The subjective expected util-
ity model [von Neumann and Morgernstern, 1944] rules out decisions and
behaviours which may be perfectly rational but which are economically
irrational. For example, to persevere in an investment which has a lower
utility than another investment (sunk costs) may be subjectively rational
if the agent desires to avoid public admission of failure. Cognitive scien-
tists claim that game theory does not consider the entire set of an agent’s
goals when formulating the criteria of rational behaviour. This observa-
tion is supported by the fact the theory is experimentally unsupported
[Roth, 1995].

e Related to the above point, is the concern that the theory is one of be-
haviourism and that it excludes from the models any deliberative interven-
tion. The theory models the actions of an agent given its information set,
whereas a satisfactory theory of cooperation requires the modeling of the
agent’s cognition, especially its goals, motivations and intentions rather
than the knowledge only. Furthermore, the theory is silent with regards to
the contents of preferences, their legitimacy, their nature and their social
desirability [Fishburn, 1981].

e In addition, most of the models described above assume perfect computa-
tional rationality (assumption d in section 3.1.5). Under this assumption,
no computation is required to find mutually acceptable solutions within the
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feasible range. Furthermore, this space of possible deals is assumed to be
fully known by the agents, as are the potential outcome values. Generally,
the theory is silent with respect to the actual computational rationality of
the agents [Simon, 1996]. To know a solution ezists is not to know what
the solution 4s. Chess is a classic example of this point. The game has a
solution—a strategy for white or black which is either a win or a draw, but
the search is computationally complex. Game theory models are of type
P, (the capacity to generate successful behaviour given available informa-
tion), whereas a more satisfactory model of rationality may be of type P
(the capacity to optimally select the combination of action and compu-
tation as opposed to perfect rationality—see section 2.2.8). The perfect
rationality of all agents, although useful in designing, predicting and prov-
ing properties of a system, is not altogether useful in system design since
it:

— does not exist (physical mechanisms take time to process informa-
tion and select actions). Hence the behaviour of real agents cannot
immediately reflect changes in the environment and will generally be
sub-optimal [Simon, 1982]

— does not provide for the analysis of the internal design of an agent;
one perfectly rational agent is as good as another. Therefore, what
is required are different agent architectures that implement different
search mechanisms, capable of heuristically exploring a set of possible
outcomes, under both limited information and computation assump-
tions.

In particular, as Sandholm notes,

future work should focus on developing methods where the cost
of search (deliberation) for solutions is explicit, and it is decision-
theoretically traded off against the bargaining gains that the
search provides. This becomes particularly important as the
bargaining techniques are scaled up to combinatorial problems
with a multi-dimensional negotiation space as opposed to combi-
natorially simple ones like splitting the dollar [Sandholm, 1999].

e The theory is a closed system. It has failed to generate a gen-
eral model governing rational choice in interdependent situations
[Zeng and Sycara, 1997]. Instead, the discipline has produced a number
of highly specialized models applicable to specific types of inter-dependent
decision making (e.g. the von Neumann-Morgenstern solution to two-
person). As Binmore notes:

...conclusions (of non-cooperative models) only apply to one spe-
cific game. If the details of the rules are changed slightly, the
conclusions reached need no longer be valid [Binmore, 1992], p.
196.
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Classical game theorists claim that the models are prescriptive and consequently
cannot invalidate themselves if they were universally adopted by all players (if all
agents consulted the same game theory text book—if other agents play according
to the theory’s prescription then the behaviour prescribed to the agent is already
optimal). However, even though the internal logics of the models may be true,
the models still remain a poor description of the world.

Other game theorists have addressed some of the above criticisms by re-
placing prescriptive (or eductive) models of rationality, based on omniscient un-
bounded decision makers, by descriptive (or evolutive) models which are based
on myopically simple agents [Smith, 1982], [Axelrod, 1984], [Binmore, 1990],
[Ito and Yano, 1995]. The theory has also been criticized for its characteriza-
tion of individuals as logical and rational agents. Rational theories (or what
Binmore calls eductive models [Binmore, 1990]) are inappropriate for the equi-
librium existence and selection problems. The former problem appears in games
where the determination of equilibria is problematic and, conversely, the latter
problem occurs for types of games that have multiple equilibria [Gibbons, 1992].
Some game theorists claim that the indeterminacy of deciding which strategies
are in equilibria is the result of assuming that the process that brings about equi-
librium is a logical and rational process, rather than a “myopic tdtonnenment”
(or blind groping) process, similar to evolutionary mechanisms [Binmore, 1990].
For such theorists, rational behaviour is itself the subject of selection and one
that has survived after less successful ones have been eliminated. In humans, the
process that brings about equilibrium is very complex, employing coordination
mechanisms such as thinking and signaling [Binmore, 1990]. However, although
complex, rational behaviour does exhibit imperfections due to its assuming an
infinite capability to reason (perfectly rational). Therefore, it is a mistake to
take it for granted that decision makers are perfectly rational !? and as Binmore
notes [Binmore and Dasgupta, 1986]:

...the most important equilibrating mechanisms, as in animal biology,
are those which operate through the short-sighted and mechanical
adjustment of strategies in the indefinitely repeated play of a game.

There exists a vast literature on the equilibria selection problem which is be-
yond the scope of the discussion here (see [Gibbons, 1992] for an introduction
to the problem). It is generally accepted that if the equilibrating mechanism is
a rational and conscious process then the choice of which equilibria to select is
determined by negotiation among the players of that game [Nash, 1951]. Con-
versely, if rational behaviour has been made by unthinking evolutionary forces
then the selection problem becomes a meaningless problem since the choice of the
actual equilibrium observed is due to random fluctuations in the equilibrating
process.

The individual s merely a strategy which is subjected to survival criteria in
a population of other strategies. The problems associated with the prescriptive

12Even professional economists can not be relied on to behave rationally in the simplest of
bargaining games [Guth et al., 1982].
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models are eliminated by replacing the agents with simple stimulus-response
machines—the beliefs, motivations and abilities of the agents are no longer an
issue and the equilibrating mechanisms is no longer the reasoning process of
the agents but an evolutionary process. Under this methodology rationality
itself is a candidate for change. However, the solution is bought at a cost.
Descriptive models may address the above problems but they may be too specific
by assuming far too much that can be justified, as well as generating dynamic
systems that are too complex to analyze.

An additional problem raised is the level of complexity of the agents in the
generated descriptive models. For example, even single celled organisms can
learn from their experience. Therefore any descriptive model must take into
consideration not only the learning aspect of the agent but also the level of
complexity of the learning involved (for example, should agents be modeled
as learners of other’s learning process). Learning rules have been suggested
as a possible strategy candidate [Smith, 1982], [Axelrod, 1984] and the criteria
of how complex these learning rules are delegated to the principle of bounded
rationality, since increasing the complexity of an individual incurs costs (search
and management) which, in turn, imposes a constraint on the models of the
individual. This bounded rationality will constrain the complexity of the agent.

As was mentioned at the beginning of this section, the approach adopted in
this work is to adopt the formal game theoretic constructs such as protocols,
outcomes, utilities, and strategies (represented computationally as permissible
state-space transitions, terminal states given paths from an initial state, traver-
sal strategies, state utilities and path selection strategy, respectively in search
algorithm terminology), as well as solution concepts such as pareto-optimality,
Nash bargaining solution and reference point. However, for computational and
informational reasons, the assumption that rationality is selection of outcomes
that are optimum (lie on the Pareto optimal line) is relaxed. Agents operate in
dynamic and uncertain environments, where, at best, even the identity of the
other agents is uncertain, let alone the assumption that there is common knowl-
edge of the prior distribution of others’ types. The combination of uncertainty
and computational boundedness of physical systems, results in a sub-optimal
heuristic search that may not be able to select feasible outcomes on the pareto-
optimal line. Under such contexts, there is a tradeoff between solution quality
and the computational and informational requirements—the optimality of the
search outcome will be a function of the certainty levels and the computational
efforts.

The computational and domain specificity problems of game theory have
also been one of the central concerns of DAI models of negotiation. To this end,
a number of key representative computational models from this paradigm are
discussed in the following section.
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3.2 Computational Models of Negotiation

This section is a description of the class of models which this research is primarily
concerned with, namely computational agents that use negotiation to further co-
ordination. Sections below describe in more detail models from a mainly MAS
perspective (with the exception of the Contract Net Protocol, section 3.2.3,
which belongs to the Cooperative Distributed Problem Solving paradigm). The
presented work below can be viewed as proposals for the design of negotiation
protocols that are progressively less restrictive on the agents and where interac-
tions become more direct.

3.2.1 Domain Theory of Negotiation

The application of mechanism design (see section 3.1.8 above) to different types
of computational domains has been central to the work of Rosenchein and
Zlotkin, [Rosenschein and Zlotkin, 1994]. The main idea behind this body of
work is that protocols of interaction can be designed that are self-enforcing and
that have certain desirable properties for different domains. These properties can
then be used by agent designers as a standard of interaction. The assumptions
of this body of work are as follows:

1. Expected Utility Maximizers: individual decisions are rational only if
they maximize the expected utility of an agent.

2. One-off Negotiation: Agents’ current actions are not dependent on fu-
ture encounters. This independence of histories on the current encounter
is common knowledge.

3. Inter-agent Comparison of Utility: Agents, or the designers of agents,
have a means of transforming others’ utility into a common utility.

4. Symmetric Abilities: All agents are capable of performing the same set
of actions. Also, the cost associated with each action is independent of the
agent carrying out the action. Costs are specified as a part of the agent’s
utility function.

5. Binding Commitments: Designers design their agents to keep all their
commitments.

6. No Explicit Utility Transfer: Agents cannot explicitly transfer utility
between one another—there is no side payment (section 3.1.4). Utility is
however transferred implicitly as agreements.

Based on these assumptions the authors use the principles of mechanism design
to construct protocols of interaction:

We are interested in social engineering for machines. We want to
understand the kinds of negotiation protocols, and punitive and in-
centive mechanisms, that would cause individual designers to build
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machines that act in particular ways. Since we assume that the
agents’ designers are basically interested in their own goals, we want
to find interaction techniques that are “stable”, that make it worth-
while for the agent designer not to have his machines deviate from
the target behaviour [Rosenschein and Zlotkin, 1994], p. 4-5.

The function of a protocol is the specification of the set of possible deals agents
can make together with the sequences of permissible offers and counter-offers.
Properties of protocols are then analyzed so as to guide agent designers’ decisions
about which protocol to use for different domains. The properties the authors
suggest are (note the similarity with the axioms of Nash bargaining solution,
section 3.1.4):

1. efficiency: agreements should be either Pareto-Optimal or globally opti-
mal. The latter is achieved when the sum of the agents’ utilities is maxi-
mized.

2. stability: no agent has an incentive to deviate from the strategy specified
by the protocol— “the strategy that agents adopt can be proposed as part
of the interaction environment design” [Rosenschein and Zlotkin, 1994], p.
21.

3. simplicity: related to the two points above is the property that the pro-
tocol should make low computational and communication demands on the
agent. If a protocol is simple, then fewer system resources are used up by
the negotiation. Hence simplicity increases efficiency. Similarly, simplicity
is achieved when a protocol is stable, since the agent does not need to spend
a significant amount of resource in thinking about the optimal strategy.
The optimal behaviour has been publicly provided by the protocol and the
best thing the agent can do is to carry out this optimal suggestion.

4. distributed: the protocol is not centralized.

5. symmetric: the protocol should not favor one agent over another. Sym-
metry implies that the outcome of the negotiation will not be affected if
an agent was replaced by another of exactly the same type.

The efficiency property of a protocol relates to the social welfare function that
it implements, here it is the sum of the agents’ utilities. Requiring that the
sum of the utilities be maximized reduces the number of possible outcomes and
rules out many social behaviours. However, Arrow’s impossibility theory remains
(section 3.1.3)—even though some outcomes are ruled out, there are still multiple
outcomes that maximize the social welfare (equity), but each agent prefers a
different social outcome (efficiency). This is represented in figure 3.4, where
each of the three hypothetical points maximize the sum of the individual utilities.
The point shown by the utility vector (0.3,0.9) is preferred by player 2, since it
gives more weight to player 2. Conversely, the point at utility vector (0.9,0.3)
is preferred by player 1, since it gives more weight to player 1. Therefore, each
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Figure 3.4: Three Outcomes That Maximize the Sum of the Utilities.

agent prefers a different outcome. Negotiation, then, is defined as reaching an
agreement over the division of the group utility. The regular Nash bargaining
solution (section 3.1.4) is used to solve this fairness problem, resulting in the
selection of point (0.6,0.6). '* If there is more than one Nash solution (recall
that the Nash bargaining solution maximizes the product of the deal) then the
protocol will select the deal that maximizes the sum and the product of the
utilities. Finally, if there is more than one deal that maximizes the product
and the sum of the utilities, then the protocol randomly selects one deal. The
authors then concern themselves with the class of protocols that satisfy these
efficiency criteria. They refer to this type of protocol as Product Maximizing
Mechanisms or PMMs—or the Nash bargaining solution. !4

The stability property of the protocol is its ability to select and maintain
equilibrium strategies. This is a highly advantageous property for open societies
where malicious agents can enter with their own strategies and attempt to extract
the best deal for themselves (what economists call extracting the entire surplus
from the interactions [Binmore, 1992]). However, if strategies are stable then
they are the best responses irrespective of the private strategies of others and
the protocol is immune to attack [Smith, 1982].

The simplicity property is derived directly from the revelation principle intro-
duced in section 3.1.8. Strategies are simple because PMM protocols are direct,
giving agent designers the incentive to declare their utility types (see incentive
compatibility in section 3.1.8).

Given this set of properties, an agent designer is then told that for domain
D: protocol Prl is distributed, symmetric, stable, simple but inefficient; and
Pr2 is distributed, symmetric and stable, but more efficient and complex. The
novelty of the approach is this domain theory of negotiation, which can be used

13Note these different solution points on this efficient line (such as (0.3,0.9) or (0.9,0.3)) can
be selected using the generalized Nash bargaining solution which models the power, or weight,
of the negotiators [Binmore, 1992].

14 A mechanism, in their terms, is both the protocol and the strategy.
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for classifying interaction types and assisting designers to choose the appropriate
negotiation protocols. The domains they suggest are:

e Task Oriented Domains (TOD): Agents in TOD attempt to achieve
their tasks, which do not interact with other agents’ tasks. However, bene-
fits can be gained by all parties under certain task redistribution patterns.
These are inherently cooperative domains, where agents attempt to find
mutually beneficial task distributions.

e State Oriented Domains (SOD): SOD represents classic AI problem
domains, where agents attempt to move the world from an initial state
to a goal state. In comparison to TOD, real conflict is possible in SOD
because the agents have different goals and there may be no single goal
state that mutually satisfies all the agents.

¢ Worth Oriented Domains (WOD): In WOD agents can express a
desirability scale, or worth function, to potential outcomes. In both TOD
and SOD agents can only wholly satisfy their goals (in TOD a goal is
completion of tasks, in SOD a goal is a state an agent wishes to reach); they
cannot relax their initial goals to reach an agreement. In WOD, however,
a continuous worth function (as opposed to the binary functions of TOD
and SOD) allows agents to compromise on their goals, and even increase
the overall efficiency of the agreements. Negotiation is then cooperative.

Overall, agents can compromise and reach deals over how much work they do
(TOD), which final state they reach (SOD), as well as how much worth they ex-
tract from the deals. In the types of problems considered in this research, agents
do have conflicting goals and conflict resolution is assumed to be a concession
over demands. Indeed, some of the most interesting results from integrative
bargaining come from the ability of agents to concede and/or make demand on
goals.

Evaluation of Domain Theory

The work of Rosenchein and Zlotkin has been pioneering in its contribution to-
wards the design of protocols of negotiation for MAS. In addition to being the
first to apply cooperative game theoretic models and mechanism design to com-
putational agents, the domain theory of negotiation has been particularly useful
in guiding the design of different negotiation protocols for different domains.
However, in adopting the Nash solution and principles of mechanism design the
approach inherits the criticisms raised in section 3.1.9.

More specifically, a domain theory of negotiation is a step towards developing
a general theory of negotiation (one of the criticisms outlined above in section
3.1.9), but, like most game theoretic models, at the cost of making further
assumptions that are unrealistic. For example, the fourth assumption above
states that agents have the same ability. This allows the modeling of symmetric
interactions where negotiation is seen as the optimal sharing or swapping of a
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set of tasks (in TOD), or the desired final states (in SOD) or worth (in WOD).
Worth in WOD is shared implicitly when an agent “agrees to do more work in a
joint plan that achieves both agents’ goals, he increases the utility of the second
agent” [Rosenschein and Zlotkin, 1994], page 150. However, in the domains of
interest of this research, agents do not have symmetric abilities and they cannot
trade off worth with tasks. In fact, agents interact and negotiate for services
which they themselves cannot perform in the first place. Negotiation then is not
about swapping, but rather delegating tasks to other agents to perform. The
worth of a goal can no longer be traded off against tasks.

There may also be circumstances when the social function (or the global util-
ity) cannot be maximized due to not only the uncertainty and computational
boundedness of agents, but also the structure of the problem domain. One pos-
sible way to increase the global utility function (but not maximize it, again due
to privacy of information or computational limitations of agents) is to search for
“win-win” outcomes in integrative bargaining, involving more than one negotia-
tion issue, as opposed to distributive bargaining over, for example, tasks, states
or worth only. As mentioned earlier, real world problems are seldom described
with preferences over a single issue. Furthermore, in the domains targeted by
this research, agents cannot exchange tasks. These two points taken together
mean that the protocols developed by Rosenchein and Zlotkin are inappropriate
for the problem addressed in this thesis—the global maximization of utility by
the PMM protocol depends on the exchange of tasks, states or worths. There
is a need for other search mechanisms that solve problems that do not just in-
volve exchange and that attempt to increase the social welfare. For the above
reasons, the generality of the domain theory is restricted to domains that are
characterized by the trading of the goals (or tasks, states or worth).

Furthermore, the assumptions that the cost of an action is independent of the
agent that carries it out and that each agent has sufficient resources to potentially
handle all of the tasks of all agents are unrealistic. These assumptions are clearly
violated in real world problems such as scheduling (see section 3.2.4 below for
an in-depth discussion) where agents are endowed with different tasks, resources
and costs to achieve them. The implications and consequences of asymmetry
for a general domain theory are themselves research questions and ones that the
authors do not address. The modeling of cost and its assymetric nature has been
one of the central contributions of the work of Sandholm (section 3.2.4).

Finally, the authors use principles from mechanism design to transform di-
rect to indirect interactions, in a similar manner to auctions. The declaration of
preferences or any information to a principle (either an auctioneer or the proto-
col) achieves some desirable properties such as efficiency, simplicity and stability,
thereby addressing the bounded rationality problem of agents since agents don’t
need to out-guess others’ strategies or engage in costly deliberations for strategy
selection. Thus agent designers know what the optimal strategy is for a given
domain and they program such behaviours into their agents. In this way, the
protocol is restrictive; agents are free to choose any strategy they wish, but the
best strategy is public knowledge and deviations from it are irrational. However,
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mechanism design is ineffective if agents, or their designers, fail to agree to de-
clare their types to a protocol designer. Incentive mechanisms can be constructed
to implement a direct mechanism only after the designers have agreed to reveal
their types. This is in effect a pre-negotiation negotiation among the designers.
The theory is not applicable if there are no such agreements between the design-
ers themselves. Interactions therefore need to be direct, and mechanisms are
needed that assist agents in the direct interactions with one another when their
preferences are private knowledge. The authors do not assess the implications on
the behaviour of protocols when the assumption that agents, or their designers,
can compare other agent’s utilities (assumption three) is violated. Agents may
refuse to reveal their utilities.

3.2.2 Non-Cooperative Computational Negotiation

A number of key principles from mechanism design (section 3.1.8) and non-
cooperative models (section 3.1.7) for problems that involve time and resource
restrictions in worth oriented domains have been central to the work of Kraus;
see [Kraus, 1997b, Kraus, 2000] for an overview of this body of work and
[Kraus and Wilkenfeld, 1995, Kraus and Wilkenfeld, 1993, Kraus et al., 1995,
Kraus and Lehmann, 1995, Kraus, 1997a] for details of the models. In this body
of work, strategic models of negotiation have been applied to bilateral and multi-
lateral negotiations, single and multiple encounters, complete and incomplete
information in negotiations, as well as the impact of time on the utility of deals.
The contribution of this body of work is its ability to:

e provide the agent with domain dependent utility functions that take into
consideration the passage of time and the costs of negotiation. In the work
described in the previous section, “the source of the utility function or
the preferences of the agents, ..., was rarely discussed. It was assumed
that each agent knows its utility function (and has some knowledge of its
opponents’ utility function). However, a designer of an automated agent
is required to provide the agent with a utility function or a preference
relation. Without doing so, formal models cannot be used for automated
agents” [Kraus, 2000].

e model power relationships. In the types of problems considered by Kraus,
in the process of negotiation one agent can gain while another loses utility.
Therefore, “the stronger agent may be able to “force” the other agent to
reach an agreement which is best for it, among the deals that are possible”
[Kraus, 2000].

e models strictly conflicting preferences, where agents’ preferences are dia-
metrically opposite. For example,“if two agents need the same resource
at the same time, and each would like to use it as much as possible, then
their preferences are conflicting” [Kraus, 2000].

e tackle the computational problems of “developing low complexity tech-
niques for searching for appropriate strategies” [Kraus, 1997b], p. 84.
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In more detail, Rubinstein’s strategic sequential alternating model (section 3.1.7)
has been modified to provide a unified solution to both task and resource allo-
cation problems. These modifications include the modeling of: i) the way time
influences the preferences of agents, ii) the discrete, as opposed to continuous,
outcomes, and iii) the possibility that both agents can opt out of the negotiation
as well as their preferences for doing so. The model is evaluated by the amount
of time it takes to reach deals, as well as the efficiency, '® simplicity and stability
of the deals.

Agents’ preferences over the time of the outcome are achieved by building
time-dependent preferences into their utility functions. Moreover, Kraus argues
that whereas formal theories all acknowledge the importance of a utility function,
none of the actually provide any such function. This makes them unoperational;
a designer of an automated agent is required to provide the agent with a utility
function or a preference relationship. The actual utility function is likely to be
domain dependent, but Kraus identifies three categories [Kraus, 2000]:

1. Fixed loses/gains per time unit: U(o,t) = U(o,0) + t.C;, where o
is an outcome, t is the current time in negotiation, O is the set of possible
of outcomes, and C; is the cost/gain to agent i. Each agent has a utility
function that carries a cost gain or loss, due to delays, for each period
of negotiation.!'® Costs may be communication load, negotiation costs,
resource storage costs or task execution costs, and gains can be the usage
of the resource which is the subject of negotiation.

2. Time constant discount rate: U(o,t) = 6:U%(0,0), where 0 < §; < 1.
Similar to the SAP where each agent has a fixed time discount rate that
modifies the utility of an outcome.

3. Finite-horizon models with fixed losses per time unit: Ui(o,t) =

Ui(o,0).(1 — t/ J/\\f) —t.C for t SJ/\\f,C € R, where ]Qf is a finite number
of steps in negotiation. Like the previous case, there is a constant gain or
loss over time during the negotiation process. However, the utility function
also quantifies the gains after the end of the negotiation, when the outcome

A
of the negotiation is valid for V periods and at each time step after the
end of negotiation the agents can gain U*(o, O).

It is these preferences over time, together with agents having the option to opt
out, that motivate them towards reaching deals. However, since time plays
no important role in the agent’s utility models described in the domain theory
of negotiation, presented in the previous section, new strategies are provided.
Strategies are, like classic strategies, any function that maps the history of the
negotiation to a next move, specifying what the agent has to do next. At each
turn of an agent to respond, a strategy specifies i) which offer to make, and ii)

15Efficiency in this work is viewed not in terms of pareto-optimality. Rather, in resource
allocation problems an efficient outcome is one where the resource is not in use only when no
agent in the group needs the resource.

16The range of these utility functions are not in the interval [0, 1].
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whether to accept or reject an offer or alternatively opt out of negotiation. It
is this evaluation component of the strategy that is different from the strategies
presented in the previous section where time is taken into account.

Given the possible set of outcomes and the agents’ utility functions, an agent’s
strategy is then analyzed using subgame perfect equilibrium (for games of perfect
information) and sequential equilibria (for games of incomplete information)
as solutions (see section 3.1.7) that any agent will necessarily select if it was
rational. Given this property of the non-cooperative model, a mechanism (or
the rules of the alternating sequential protocol) is designed that is incentive
compatible with selecting the subgame perfect equilibrium strategy for games of
perfect information and sequential equilibria strategy for games of incomplete
information.

Another major contribution of this body of work is an implementation that
addresses the issue of the complexity involved in having to compute strategies,
rather than having the equilibrium strategy publicly known [Lemel, 1995]:

The drawback of the game theory approach is that finding equilib-
rium strategies is not mechanical (computational): an agent must
somehow make a guess that some strategy combination is in equilib-
rium before it tests it and there is no general way to make the initial
guess [Kraus, 1997a], p. 48.

The implementation solution Kraus proposes is to store strategies in libraries
represented as AND/OR trees where the internal nodes consist of conditions
(such as the possibility of opting out of negotiation, the cost of negotiation, the
time left in negotiation or the number of negotiators) and the strategies are
stored in the leaves of the tree. These strategies, in turn, consist of compiled
functions with variables, some of which are already instantiated during the search
in the tree, and others of which are instantiated during the execution of the
function.

Evaluation of the Non-cooperative Computational Negotiation Model

One of the key driving forces of agreements in the work of Kraus is the time
and cost consideration in negotiation. The agent’s decision problem is formu-
lated as the selection of an offer that maximizes the utility given the time and
costs involved. However, although useful, no model of time or cost consideration
is provided. Even if such models were provided, they are likely to be domain
dependent reflecting the concerns of the domain. Furthermore, “building” into
the agents’ utility functions additional deliberation factors can result in func-
tions that are over complicated and difficult to design and analyze. This task
is not easy for an agent designer who is not an expert in utility theory. In-
stead, what is required for a flexible and configurable negotiation wrapper are
utility functions that are domain independent. To achieve this, simpler utility
functions are sought that evaluate the worth of the offer independently of the
time and cost considerations. These considerations, and indeed any other envi-
ronmental consideration(s) such the behaviour of the other agent, are delegated
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to other agent’s deliberation mechanisms. These mechanisms then generate of-
fers, each possibly having a different worth to the agent, based on a number of
environmental considerations. In this manner a single generic utility function
can be provided to the designer inside the negotiation wrapper who can then
add additional mechanisms in a modular fashion without affecting the utility
function.

Finally, in this thesis only the protocol of the SAP is used to model the
process of negotiation, because the assumption that agents “consult the same
game theory book” (see section 3.1.5) is not a valid assumption and also because
small variations in the parameters of the SAP (brought about by making different
set of assumptions) lead to indeterminacy of equilibrium strategies and inefficient
delays (see section 3.1.7).

3.2.3 The Contract Net Protocol

The contract net protocol (CNP) is a classic example of a DPS system (coop-
erative solution synthesis through a decentralized, loosely coupled collection of
problem solvers—see section 1.3) used for the task distribution phase of cooper-
ative problem solving [Smith, 1980]. Therefore, it does not belong to the class
of quantitative models of bargaining, although its operation closely resembles a
market-like mechanism. The protocol focuses on the traditional problem of how
to resolve disparate viewpoints in task allocation problems in a simulated dis-
tributed sensor network for acoustic interpretation. Nonetheless, it is included
here because: i) it was traditionally the first negotiation protocol in DAI, ii) it
models contracts and iii) its extension by Sandholm (section 3.2.4) brings it into
the class of quantitative models of negotiation.

The CNP was motivated by the problem that distribution by its very nature
requires supplying problem solvers with only a limited local view of the prob-
lem. However this conflicts with the desire to achieve global effects (solution to a
problem). Therefore, coordinated activity within the system cannot be guaran-
teed. To overcome this problem, the CNP solution was derived as a mechanism
that extends across the network nodes and that can be used as the foundation for
cooperation and organization. Cooperation is designed into the system through
a communication protocol which facilitates and organizes communication among
entities and a problem solving protocol which organizes the group of problem
solver’s activities. The two protocols bring about form and content respectively;
how to communicate and what to solve. The discussion below will center mainly
around the problem solving protocol because it is the most relevant model for
the decision processes involved in the negotiation wrapper.

The CNP consists of a collection of nodes, referred to as contract net, where
each node in the net may take on the role of a manager, responsible for monitor-
ing the execution and processing the result of a task, or a contractor, responsible
for the actual execution of the task. Roles can be adopted dynamically by all
nodes at runtime, therefore nodes are not a prior: tied to any particular control
hierarchy. The negotiation process is then initiated by the generation of a new
task by a node. That node announces the newly generated task using a task
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announcement message and becomes the manager of that task. Other nodes in
the network evaluate their level of interest in the announced task with respect to
their specialized resources (e.g. hardware). If the task is of sufficient interest, a
node then submits a bid which indicates the execution capabilities of the bidder.
The manager may receive several bids for a single task and it then selects one or
more of the bids (based on the information regarding the execution capabilities
disclosed in the bid). The selected nodes then assume responsibility for the ex-
ecution of the task and each is called a contractor for that task. The contractor
may need to subdivide the task into sub-tasks and become the manager for these
tasks. The manager may also terminate contracts and the contractor can inform
its manager of either the partial or completed state of its task(s).

Sandholm compares the CNP to a directed government contracting scheme,
where “each party is allowed to make one bid for each announcement it receives,
and the bids of the other parties are not revealed to it. The negotiations are
directed in the sense that an announcement is not sent to all other agents—only
to likely contractees” [Sandholm, 1996].

The description above, although simplistic, has a number of important con-
tributions. Firstly, commitments are explicitly represented as contracts—a con-
tract is an explicit agreement between nodes. Furthermore, compared to the
game theoretical models of section 3.1 the process of negotiation is also explic-
itly represented in the protocol:

...establishing a contract is a process of mutual selection. Avail-
able contractors evaluate task announcements until they find one of
interest; the managers then evaluate the bids received from poten-
tial contractors and select the ones they determine the most appro-
priate. Both parties to the agreement have evaluated the informa-
tion supplied by the other and a mutual selection has been made
[Smith, 1980].

In summary, the CNP framework provides a mechanism for coordinated be-
haviour that is symmetric (that is both the caller, or manager, and the respon-
dent, the contractor, have a selection to make) !7 through: i) the concept of
negotiation as a mechanism for interaction, ii) a common language shared by all
nodes and iii) the announcement-bid-award sequence of messages which offers
some support for cooperation since due to incomplete knowledge, the messages
give a node an understanding of who else has the relevant information.

Evaluation of the CNP

The CNP provides a coordination architecture which is distributed and addresses
a number of factors described in chapter two. It has been applied to job dis-
patching among machines within a manufacturing plant [Parunak, 1987], alloca-
tion of computational jobs among processors in a network [Malone et al., 1988]

17Symmetric autonomy of both parties (or bi-directional selection of caller and respondent)
was first modeled in PUP6 [Lenat, 1975] which viewed selection as a discussion between the
caller and potential respondents.
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(where the choice of processor is based on expected completion time), and to
distributed meeting scheduling [Sen, 1994]. However, the protocol has a number
of limitations which are borne out of the fact that it belongs to CPS system. In
particular, cooperation is an integral part of the protocol. There cannot be any
conflict between the agents to start the CNP. Furthermore, in non-cooperative
domains the search for acceptable solutions may be more elaborate than two
messages—negotiation, especially in uncertain and open environments, is an it-
erative process of search for possible agreements. In addition to this, the CNP is
a theory of the system architecture and is silent with respect to the agent archi-
tecture. This latter problem was addressed by the work of Sandholm, described
next.

3.2.4 The Contracting and Coalition Model of Negotiation

A decision theoretic agent architecture for the CNP that solves some of the
limitations of the CNP was proposed by Sandholm. Additionally, he developed
a game theoretic negotiation mechanism that normatively and quantitatively
solves the computational difficulties of game theory (the problem of bounded
rationality of selfish agents). Sandholm notes that:

the traditional CNP is not an off-the-shelf mature technology
that can be applied to different domains as is. The protocol really
includes an enormous numbers of design alternatives. ... For exam-
ple, previous work on the CNP has not addressed the risk attitude
of an agent toward being committed to activities it may not be able
to honor, or the honoring of which may turn out to be unbeneficial.
Additionally, in previous CNP implementations, tasks have been ne-
gotiated one at a time. This is insufficient, if the effort of carrying out
a task depends on the carrying out of other tasks. The framework
is extended to handle task interactions, among other methods, by
clustering tasks into sets to be negotiated over as atomic bargaining
items. ... . Finally, the question of local deliberation scheduling in
the negotiations has not been discussed earlier, .... The hypothesis
is that distributed contracting can be developed into an efficient—in
terms of results and computational complexity—interaction mecha-
nisms for self-interested agents whose rationality is bounded by lim-
ited computational resources [Sandholm, 1996], p. 67-68.

From this, it can be seen that commitments to, and the efficiency of contracts
given the computational boundedness of agents are the main concerns of the
work. The type of problem considered for negotiation is the distribution of
agents’ tasks. However, tasks can be achieved by other agents and each agent has
assymetric costs (compare to the work of Rosenchein and Zlotkin, section 3.2.1,
where an agent’s task set could also be performed by other agents. However,
costs are not assumed to be symmetric). Given that agents have differing costs
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and are capable of performing others’ tasks, a task reallocation mechanism '8

can be prescribed that is beneficial to all agents through cost savings.

Concrete domains that influenced the design of, Sandholm’s negotiation
mechanism were the distributed wvehicle routing problem, the production
planning and scheduling problem in manufacturing, and meeting scheduling
[Sandholm, 1996]. The second scenario is expanded below to better illustrate
not only the contributions and drawbacks of this quantitative line of work, but
also the limitations of the symmetric cost assumption made by Rosenchein and
Zlotkin’s domain theory (section 3.2.1).

In the manufacturing production planning and scheduling problem, an agent
has a set of tasks (such as manufacturing operations and setup operations) and
a set of resources (such as machines, people and storage area). The problem
then is the scheduling (planning the assignment of tasks to resources for given
time windows) for the execution of the tasks on the resources. The problem
structure has many cost functions (e.g. minimization of lateness of jobs or
completion time). These cost functions, also referred to as objective functions by
Sandholm, are subject to constraints such as the order in which tasks can feasibly
be executed or the resource capacity. The combination of the objective functions
and the constraints define a constrained optimization problem. Furthermore,
different manufacturing enterprises can handle the same operations. Therefore,
there are potential savings that can be achieved by negotiation. Another feature
of the considered domains is that different enterprises may behave cooperatively
or selfishly.

In summary, the features of the problems considered are:

e problems are combinatorially difficult. The solution costs and feasibility
of the task distribution problems limit the rationality of agents, since they
cannot locally compute the costs and benefits associated with delegating
or accepting tasks to other agents exactly.

e the asymmetric costs among agents for handling others’ tasks often makes
it beneficial (individually rational) to reallocate tasks among agents.

e individual members (companies in the case of manufacturing or centers
in the case of vehicle distribution routing) can form virtual enterprises by
joining together and cooperatively, although the intention of each individ-
ual is selfish, taking care of production or delivery tasks more economically
than if performed individually.

e agents can be selfish or cooperative in task allocation. Cooperative agents
attempt to maximize social welfare, measured as the sum of the agent
utilities. They are willing to accept task distribution allocations that lower
their individual utility but increase the utility of the group. Selfish agents,
on the other hand, want to maximize their own profit without regards

181n this subsection, mechanism is interchangeably referred to as protocol and (reallocation)
algorithm.
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for other distribution centers or manufacturing companies involved in the
virtual enterprise.

The second feature is where Sandholm’s work diverges from that of standard
game theory. This is because his notion of individual rationality is different
from the game theory concept of individual rationality as maximization of pay-
off. For Sandholm, an agent may reject an individually rational contract if it
believes it will be better off waiting for a more beneficial contract that cannot
be accepted if the former contract is accepted. Likewise, an agent may accept
a non individually rational contract in “anticipation of a synergic later contract
that will make the combination beneficial” [Sandholm, 1999], p. 237.

Given these features, Sandholm presents a negotiation model that addresses
three areas of negotiation: contracting, coalition formation and contract exe-
cution. In contracting negotiations (referred to as the contracting protocol),
agents iteratively reallocate tasks amongst themselves to reach a globally more
desirable solution. Whereas in contracting all the agents work in one large coali-
tion, in coalition formation game theoretic normative models are used to analyze
the stability of coalitions of agents (the so called “virtual enterprises”) where
task allocation and problem solving are “pooled to occur centrally within each
coalition”. Finally, in contract execution an exchange mechanism is developed
that solves the problems that occur in honoring task execution in environments
where agents may “vanish easily, and the connection between the agent and the
real world party it represents is often hard to detect”. In this thesis negotiation
is in the main between two agents, thus coalitions of large numbers of agents
are not possible. Therefore, the coalition protocol is not relevant to the research
reported here. Likewise, in this research the problem of contract execution is
not addressed. All that is said is that there are execution monitoring protocols
(or a commitment model (commitment model in figure 1.1, section 1.2)) that can
be added to the service execution phase of the service life cycle, that assists in
the execution phase. Coordination mechanisms are sought for only the service
provisioning phase. Although it is acknowledged that negotiation can be suc-
cessfully applied to service execution, the object of this thesis is focused on the
provisioning phase. For these reasons, only the contracting contribution of the
work is detailed below.

Contracting negotiation, developed as the Transport Cooperation Net (TRA-
CONET [Sandholm, 1996]), addresses the CNP problem mentioned earlier;
namely how to formally model announcing, bidding and awarding decisions in-
volved in the contracting of tasks [Sandholm, 1996, Sandholm, 1993]. These
decisions are based entirely on marginal costs for performing a task. Marginal
costs are formally presented below, but informally they represent the difference
between the total cost of having to perform another agent’s task as well as agent’s
own task and the set of agent’s own tasks. Agents pay one another to perform
tasks. Because decisions are based purely on the marginal costs (defined next)
analysis (as opposed to the CNP where agents freely perform the tasks of others)
this pricing mechanism generalizes the CNP to work for both cooperative and
selfish agents.
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Sandholm defines the task allocation problem as follows [Sandholm, 1999],
p- 234. The task allocation problem is defined by a set of Tasks T', a set of
agents A, a cost function ¢; : 27 — IR U {oo} (or the cost agent i incurs by
handling a subset of tasks) and the initial allocation of tasks among the agents
(Tjmt .. ,Tﬁ}ft), where Ui aT{"" = T, and T{"*NT;™* = ( for all i # j. Given
this definition, the decision schemes for computing offers are as follows. When
an agent makes an announcement for a task, it tries to buy some other agent’s
capability to perform a task. In announcing, an agent specifies the maximum
price it is willing to pay for its task(s) to be carried out. Call this pannounce
When agents make a bid for an announced task, the agents try and sell their
services at a bid price, uttered in a bid. Call this p?*?. Given an announcement
and a bid, a reward is then a contract between two agent, details of which are
described below. Then, an agent 4 will make an announcement if:

pannounce — C;‘emove (TGTLHOUTLC€|Ti)

where cfemeve(Temmounce|T,) ig agent 4's marginal cost for removing the task set
Tennounce from all of its tasks T;:

c;‘emove (Tannounce|Ti) — Cz (Tz) _ cz (Tz m Tannounce)

where ¢;(T;) is the cost of optimally achieving all the tasks T for agent ¢ and
T; = T{", Sandholm suggests the use of approximation schemes for computing
ciemove (Tannounce| To) since it is intractable for most types of problems.

When an announcement has been received by an agent, an agent sends out
a bid, p%, if the maximum announced price p2""°unc¢ is higher than the price
that the task will incur on the agent to perform it. Bidder j bids according to:

pbid — clqdd (Tannounce |TJ)

where cdd(Tennmounce| ;) is agent j's marginal cost for adding the task set
Tennounce to all of its current tasks T7:

C?dd(TannouncelTj) =¢; (Tj U Tannounce) —cj (Tj)
Again, marginal costs are computed using an approximation method. Finally,
the awarding price, p®?%"¢ is computed using a new task set of the announcer,
T,. This is because the task set of i may have changed within the window of
announcing the tasks and waiting to receive all bids. p®*%"¢ is computed as:

award __

p c

1
remove announce
(T IT3)

If p?ward i greater than the lowest bid, the task is awarded to the least expensive
bid and “by convention” the contract takes place by the awarder paying the
bidder the price (p* + pawerd) /2.

The protocol (or, as Sandholm refers to it, the algorithm) is as follows. Ini-
tially each agent computes a solution to the tasks in its own task set (referred to
as the local optimization problem). Then, each agent can potentially negotiate
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with other agents to take on some of its task or, alternatively, take on some of
their tasks for a price. Note, that agents in Sandholm’s work are allowed to
make side payments for the task allocation problem through payments, whereas
for agents in Rosenchein and Zlotkin’s work no side-payment is allowed. Ne-
gotiation is then the exchange of task sets that are profitable (i.e. at a lower
cost—referred to as individually rational). The task redistribution protocol is
then an iterative exchange mechanism that increases the global utility of agents
by traversing a sequence of task allocation configurations among agents. At ev-
ery step of the iteration, an agent computes a feasible solution for the tasks it
has been allocated (a feasible solution consists of an agent assigning resources
for the tasks allocated). The task re-allocation procedure is a real-time, anytime
hill-climbing algorithm. It is real-time because at each iteration a price equilib-
rium has to be reached in the task set exchanges before the next iteration—after
each contract is made the exchange of tasks and payments are made immedi-
ately. It is anytime because the algorithm can be terminated at any point in
time and a solution is available that is both individually rational to all the agents
and is globally better than the initial solution if each agent carried out its tasks
individually. It is hill-climbing because at each iteration a global solution closer
to the optimum is reached (in a distributed manner). In comparison, the PMM
protocols of Rubinstein and Zlotkin are not anytime. Agents first reveal their
costs for all possible task distributions. Then the PMM selects the allocation
that maximizes the sum of the utilities and assigns payoffs according to the Nash
bargaining solution. This is not anytime because all task allocations have to be
evaluated before any agreement is reached.

Contracts in a contracting protocol are given search operator semantics by
Sandholm. That is, if the task reallocation (or contracting) protocol is inter-
preted as a global hill-climbing algorithm, then contracts can be interpreted as
its search operators. The search for a global optimum is also made more efficient
by supplying the contracting protocol with different contract types. Rather than
negotiating over single tasks, one at a time, Sandholm shows that a hill-climbing
algorithm can reach an optimal task allocation, in a finite number of steps, when
agents combine clustering, swap and multi-agent contracts into a single contract
called an OCSM-contract. O contracts are over a single task (as in the original
CNP) and they are shown to lead the reallocation algorithm into local minima
— where contracts are individually rational (agents are better off with the con-
tract), but are not globally optimum. In cluster contracts, C contracts, a set of
tasks is contracted from one agent to another, whereas in § contracts a pair of
agents swap tasks. Finally, in multi-agent M contracts, tasks are exchanged be-
tween multiple agents. It is also shown that when used individually, or in pairs
or threes, these contract types are insufficient for the maximization of global
utility. However, when each individual contract type is applied simultaneously
(called OCSM-contract) they:

e allow the algorithm to hill-climb from a task-allocation to any other task
allocation with a single contract

e bring about the existence of a sequence path from an individually rational
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OCSM-contract to the optimal one.

e allow the algorithm to reach the optimal allocation in a finite number of
contracts, for any sequence of contracts. This result means that i) no
central processor is required to select the contract sequence and ii) agents
can accept any OCSM-contract that is individually rational, and need not
wait for more profitable contracts.

e the algorithm need not backtrack, since there are no local minima.

These properties are achieved because with OCSM-contracts there are no local
minima, since the global optimum can be reached with a single contract.

The above contracting protocol has been extended to handle partial com-
mitment contracts [Sandholm, 1996, Sandholm, 2000]. Informally, partial com-
mitments represent tentative, as opposed to absolute, agreements to perform
the agreed task(s) (see section 2.2.5). The contracting protocol described above
consists of, like the CNP, a single round announcement, bid and award because
all offers are fully binding. An iterative contracting protocol, called the leveled
commitment protocol, is also presented. Under this protocol, commitments are
not fixed and are themselves made a negotiation item. This new protocol allows
unilateral decommitment at any point in time, as opposed to conditioning the
contract on possible future events, as is done in contingency contracts (see sec-
tion 2.2.5). Agents negotiate over decommitment penalties, one for each agent,
and if an agent wants to decommit then it does so through the payment of the
decommitment penalty specified in the agreed contract. It is also shown that
selfish rational agents are reluctant to decommit because there are no incentives
to do so. Therefore, it is to the best interest of even selfish agents to honour
their commitments.

The computational boundedness of agents is given a treatment in the anal-
ysis and empirical evaluation of methods for decreasing the local computational
costs. Sandholm identifies three categories of tradeoffs which in some contexts
are guaranteed to reduce the cost of computation. Firstly, agents can trade-
off the complexity of marginal cost computations (discussed above) against the
monetary risk. That is, agents can use different cost approximation schemes to
make bids and awards while their previous bids are still pending. It is shown
that some approximation schemes lower computational costs whereas others do
not. Alternatively, agents can tradeoff obtaining more precise marginal cost
estimations (and save computation) against being able to participate in mul-
tiple negotiations simultaneously. However, it is shown that this tradeoff only
works in some contexts. Finally, agents can reduce their computational costs by
trading off sending messages early on against waiting for more incoming offers.

Evaluation of the Contracting and Coalition Model of Negotiation

The contracting protocol presented by Sandholm computationally models the
process of negotiation, rather than analyzing the optimal outcomes. This com-
putational model thus supports the design and implementation of autonomous



100 Chapter 3. Related Work

negotiating agents. The negotiation model differs along several dimensions from
the one proposed by Rosenchein and Zlotkin in that their protocol resulted in
negotiation reaching an outcome in a single round and assumed: i) agents were
able to optimally compute their decision problems without any costs, ii) there
were no side-payments, iii) negotiation was bi-lateral involving only two agents,
and iv) the costs and capabilities of agents were symmetric. Sandholm’s con-
tracting protocol, on the other hand, is iterative and because of the complexities
of the problems he assumes agents cannot compute their local optimization prob-
lem exactly. Furthermore, side-payments are allowed (through payment for task
re-allocation). Negotiation is also extended from bi-lateral to multi-lateral in-
teractions, in a market-like context, where agents buy and sell tasks from one
another. Finally, different agents carry different costs and capabilities, therefore
the symmetric assumption has been dropped.

However, the developed contracting protocol can only operate given an ex-
isting configuration of task allocations. Indeed, hill-climbing is the process of
ascending some objective function once a configuration of tasks has already been
reached. Thus, the contracting protocol of Sandholm can be used to re-allocate
already existing task configurations but not to allocate, or configure, tasks in the
first instance.

The CNP is further extended in the leveled commitment protocol by allowing
iteration in interactions. In the problem domains of this thesis, it is this the
iterative exchange of offers and counter-offers, due to informational uncertainty
and the nature of preferences, that clearly mark interactions. Since iterations
are both communicatively and computationally costly, then not only do agents
need mechanisms to reason about the cost and benefit of continued negotiation,
but the design of an interaction protocol must take this added complexity into
consideration.

In addition to an interaction protocol, Sandholm provides a formal model
of the decisions involved in agents announcing, bidding and awarding tasks.
This extends the original CNP with a formal agent architecture. However, as
was shown in some of the target problem domains of this thesis (section 1.4),
negotiation decisions are richer than just considerations of costs alone. A richer
agent architecture is required that formally accounts for more decision factors
such as the time limits of negotiation (similar to the work of Kraus section 3.2.2)
or the behaviour of the other agents (especially in environments where there are
uncertainties in the what an agent knows about the other(s)).

The combination of contract types into OCSM-contracts (where agents can
allocate tasks via combining the allocation of a single task, a set of tasks, swap
tasks or share tasks with other agents), helps agents to escape local minima and
reach the global optimum re-allocation in a number of steps. However, although
tractable for small numbers of tasks and agents, the hill-climbing algorithm may
take a large and impractical number of contract iterations for large number of
tasks and agents. '° Furthermore, although representing OCSM-contracts is

19Sandholm found that the TRACONET algorithm took “multiple hours of negotiation
on five Uniz machines” for a large-scale real world distributed vehicle routing problem
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tractable as the scale of the problem increases, the same is not true for searching
a contract that increases the social welfare [Sandholm, 1999]. As the scale of the
task set increases:

. the evaluation of just one contract requires each contract party
to compute the cost of handling its current task and the tasks al-
located to it via the contract. With such large problem instances,
one cannot expect to reach the global optimum in practice. Instead,
the contracting should occur as long as there is time, and then have
a solution ready: the anytime character of this contracting scheme
becomes more important [Sandholm, 1999], p., 237.

The inability to escape local minima in negotiation is acknowledged in this the-
sis (detected as deadlocks in a contract’s utility dynamics). However, in this
thesis, agents negotiate over atomic services, or O-contracts. This is because
of the agentification process that assigns services to agents (section 1.1). There
may only be a single service provider for the types of problems considered in this
research (e.g. cost_and_design service provided by agent DD in the ADEPT sce-
nario, section 1.4.1), excluding the possibility of M-contracts. Likewise, an agent
may not be capable of performing another agents’ tasks (e.g. a user agent, IPCA
agent, cannot perform the tasks/services of a telecommunication service provider
agent SPA, section 1.4.2). This excludes the possibility of swaps in contracts
(S-contracts). Finally, since each service is usually performed by a unique agent,
different tasks cannot be clustered and assigned to a single agent (excluding the
possibility of C-contracts). For example, the service Provide_Customer_Quote
is performed by a single autonomous agent who is the only agent that has neces-
sary domain expertise and resources to solve the problem(s). For these reasons,
a decision mechanism is required that helps escape local minima in the task allo-
cation algorithm. No analysis is provided as to the computational implications of
the contracting protocol when the problem domain is scaled up, not in terms of
the number of tasks, but in terms of the number of issues involved in integrative
bargaining (when agents negotiate not just over the price of a task/service but
also its quality and delivery time). Multiple issue negotiation is an important
feature of the types of problem domains of this thesis.

3.2.5 The Persuader System

The PERSUADER system was developed to model adversarial conflict resolu-
tion in the domain of labour relations which can be multi-agent, multi issue,
and single or repeated negotiation encounters [Sycara, 1987]. The system uses
both case-based reasoning (CBR) and multi-attribute utility theory (MAUT)
for conflict resolution problems [Sycara, 1987, Sycara, 1989]. PERSUADER is
different to the CNP in that negotiation is modeled as an incremental modifi-
cation of solution parts (rather than composition of partial solutions) through
proposals and counter-proposals. The model, with its iterative nature, is used

[Sandholm, 1993].
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to narrow the difference between the parties involved, takes into consideration
changing environments, and models social reasoning (by modeling other parties’
beliefs) as well as belief modification of parties.

The system represents and reasons about three types of agents: a company,
the union and the mediator. The latter agent’s task is to engage in parallel
negotiations with the parties when conflicts arise. Specifically, the mediator
generates an initial compromise which both the union and the company evaluate
from their own perspective. If the initial solution is acceptable to both parties
then the process is terminated. Otherwise the mediator’s task is transformed
into considering whether to change the proposal or whether to attempt to change
the belief of the disagreeing parties using persuasive argumentation (as defined
in section 1.3.3).

In this context, negotiation is viewed as an iterative process since the par-
ties entering negotiation have disparate goals. This “distance” in their goals is
iteratively reduced to zero. To do this, agents must have the capacity to predict
and evaluate whether new proposals do actually narrow the difference. Fur-
thermore, agent communication is directed towards those parts of the proposal
which are acceptable or unacceptable which implies that agents must be able to
evaluate their plans and possibly modify or construct new ones based on this
feedback. In addition to this deliberative component of negotiation, agents must
also be reactive since the world changes constantly. That is, the expected goals
and behaviours of other agents may change (through irrationality for example—
note, the mechanisms are designed to handle irrational behaviour, unlike game
theoretic models). Finally, since negotiation is viewed as a narrowing of the dif-
ferences between goals and since agents are unwilling to give up their own goals,
then they must be convinced to do so. Therefore negotiation requires persuasive
argumentation.

Evaluation of the PERSUADER System

The PERSUADER system models both the iterative process of negotiation and
the multi-issue nature of interactions. Therefore, these two features of the system
capture some of the problem requirements of this thesis. However, mediation is
unsuitable for the problem domains of this research since negotiation is a mutual
selection of outcomes. Furthermore, in the problem domains of this research, it
is not necessary for the agents to have similar beliefs at the end of negotiation.
For example, inter-organizational agents may have diametrically opposed beliefs
at the end of negotiation over the price of a service; the motivation of the
Vet_Customer agents is to maximize price while the Customer_Service_Division
agent seeks to minimize price and although they may settle on an agreed price,
their goals have not changed. Therefore persuasion (operating over beliefs) is
not a necessary condition for coordination in this problem domain.

In this and sections above, coordination models were presented that succes-
sively modeled the nature of interactions in open systems, where protocols of
interactions are less normative and more descriptive and informal. The next
three sections reviews other DAI models of negotiation that, although more de-
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scriptive in nature, have nonetheless design features that are relevant to the
problem and the approach of this thesis.

3.2.6 Constraint Directed Negotiation

Constraint Directed Negotiation (CDN [Sathi and Fox, 1989]) is an algorithm
that belongs to the class of negotiation models that represent the decision making
in negotiation as a constraint satisfaction process. It was developed by Sathi and
Fox for the problem of resource re-allocation and is the precursor of the model
presented in the next sub-section by Barbuceanu and Lo. Resource reallocation,
or the adjustment of initial resources, is performed through the buying and
selling of resources between agents. The authors have applied CDN to the real
world problem of workstation requirements within an engineering organization
[Sathi and Fox, 1989]. There, resources are workstations used by each group
within the organization and as projects change so do the requirements of the
groups. Therefore, the initial allocations of the resources have to be adjusted to
reflect the new requirements.

The central concern of CDN is not so much with the communication proto-
col, but rather with the decisions, or the resolution mechanisms, involved that
provide the content of communication. That is, “what is communicated about
an agent’s bargaining position and how their positions are to be changed over
time”. The mechanism the authors suggest is the constraint directed negotiation
where the constraints represents agents’ objectives together with their utilities.
Constraints are used for both offer generation and offer evaluation. At the con-
flict point the agents then negotiate either by modifying the current solutions or
the constraints until a compromise is reached. “Thus joint solutions are gener-
ated through a process of negotiation, which configures or reconfigures individual
offerings” [Sathi and Fox, 1989], p. 166. The authors argue that because in the
problem of resource reallocation there are many dependencies amongst the con-
straints of many agents (closely resembling the distributed planning problem),
then a theory that only models how constraints affect individual offers, such
as game theory, is inadequate (e.g. under market mechanisms an agent a sells
resource S; to agent b for £12 and agent ¢ sells to agent a resource Ss for £20).
What is required is a theory that can model multiple constraints that are con-
ditional upon multiple offers (e.g. agent a offers resource S; to agent b if agent
c allows access to a over resource S3). The authors claim that in the latter case
there is a need for more cooperative mediator-driven negotiation. They propose
a distributed constraint mechanism to solve this type of cooperative problems.

In CDN the negotiation process is seen as a directed search in the problem
space. The problem state is defined first, followed by an evaluation of states
and finally generation of new solution states. Agents can make either simple
transactions involving the selling and buying of a resource from one group to
another. Alternatively, agents can make cascades involving open or closed chains
of buying and selling between two or more groups. The problem state is then
defined as a set of transactions and cascades that are formed by pairing buy and
sell bids for resources.
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These problem states are then evaluated using constraints. The authors
elaborate on the contents of constraints, their classification hierarchy and a
methodology for evaluating them. The content of constraints are represented
as attributes of a resource, where each resource is described as a set of attribute-
value pairs. The requirement(s) of agents then place restrictions on the attribute
value. These restrictions are then classified into three constraint types (see
[Sathi and Fox, 1989], p. 169). The evaluation of offers involves firstly giving
each constraint, or restriction on values, an importance and a utility function
that represents preferences agents have about the offered transaction over the
given constraint. Furthermore, the utilities are thresholded to represent minimal
acceptability condition. Offered attribute values below this threshold are con-
sidered a violation of the constraint. Furthermore, in the resource reallocation
problem most of the constraints are qualitative in nature. For example, an agent
may own a Unix box and may require a Mac instead for a project. The agent may
specify the buy and sell bids as conditional, one of their three classifications of
constraint types, meaning that the Unix box is sold by the agent unless the agent
receives a bid for the Mac. Therefore, the utility functions represent the ordinal
preferences of the agents. Finally, an offer is evaluated over the total set of con-
straints by combining the individual utilities of all the sub-constraints. The com-
bination policy they use are the elimination by aspects and lexicographic semi-
order [Tversky, 1969, Payne, 1976, Svenson, 1979, Johnson and Payne, 1985].
Agents then use these strategies to identify their favorite alternatives. The elim-
ination by aspects combination strategy works by comparing the utility of each
constraint with the corresponding utilities on other constraints. Offers with the
lowest utilities on any constraint are eliminated from the consideration. This
process continues until only one offer remains. This strategy is particularly well
suited for qualitative constraints. Lexicographic semi-order is similar to elimi-
nation by aspects. However the method of elimination is different. It works by
examining each constraint of an offer and eliminating those offers that have a
lower value than a dominant alternative. The strategy is applied by using the
elimination process operations on first the most important constraint, followed
by less important constraints.

Given the overall utility of the offer, derived from using the elimination by
aspects and lexicographic semi-order strategies, an agent evaluates the offer as:
i) acceptable (the offer is above the threshold on all constraints but is not better
(or what they call dominate) every other offer, ii) dominant (the offer is above
the threshold on all constraints but s better (or what they call dominate) than
every other offer or iii) unacceptable (the offer is below a threshold of at least
one constrain).

Constraints are also used to generate solution states. Offers are generated
via satisfaction and relaxation of constraints and are based on a set of qual-
itative operators which are motivated by human negotiation problem solving
[Pruitt, 1981]. The operators, or search strategies, are:

e composition (bridging)—composition occurs when a new option is devel-
oped by combining together two existing alternatives which satisfy both
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parties’ most important constraint. Sometimes in such cases both parties
receive all they were seeking due to discovery of a good composition.

e reconfiguration (unlinking)—when good composition agreements are not
available, one or both of the agents must make selective changes in their
offer. As the authors state “reconfiguration is the process of regrouping
the bundle of negotiated goods”. For example, consider an agent m who
requires a Unix box running LaTeX Version 3.14159 (Web2C 7.3.1). As-
sume that agent n is offering a Unix box but with FrameMaker v.5.01 as
the only word processing tool. The Unix box is therefore reconfigured by
n to satisfy m's requirements at a cost to n.

o relaxation (log-rolling)—is defined as when an agent ignores a specific con-
straint on an unacceptable alternative. For example, if negotiation involves
five issues {i1,42,13,%4,95} between two agents a and b, and if a values
{i4,15} more than b who in turn values {i1,42,43} more, then a protocol
can be agreed that a concedes on, and possibly violates the constraints
of, {i1,42,i3} and b concedes on {i4,i5} where considerable benefits can
be gained by both parties. As the authors state “relaxation provides an
approximate technique for selecting transactions or cascades that perform
the best on the most important constraints for each individual”.

Typically, a good solution is found that maximizes the number of bids satisfied
by composing and reconfiguring bids iteratively and not on simple pair-wise
exchanges.

Evaluation of the Constraint Directed Negotiation

The CDN is novel in the manner it integrates informal models of negotiation,
inspired by human negotiation problem solving, with AI techniques. The work
presented in this thesis closely resembles the CDN in many respects. The conflict
resolution mechanism of CDN is relevant to the problem domains of this thesis.
The algorithm emphasize the importance of preferences of agents over multi-
ple constraints, explicit representation of strategies as search operators, time
deadlines and privacy of information in negotiation. For this reason the CDN
shares many features with the developed coordination framework. The decision
mechanisms of both systems are presented as evaluatory and offer generation
processes.

However, both the evaluatory and the generation mechanisms of CDN do
not model some of the requirements of the domains of this thesis. In CDN
the constraints are qualitative in nature, whereas in the domains of this thesis
constraints, represented as limitations on issue-value pairs that are exchanged
between agents, can be both quantitative and qualitative. Therefore evaluatory
utility functions are required that model preferences of agents for both types of
constraints. The possibility of offers that contain both qualitative and quantita-
tive issues means that an evaluation utility function is required that can represent
the combined preferences of an agent over the constraints and is likely to include,
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because of the quantitative issues, arithmetic operations to consolidate the re-
sult of each individual utility, rather than elimination by aspect or lexicographic
semi-order strategies. Furthermore, the accuracy of the two presented consolida-
tion strategies is highly dependent on the distribution of the importances agents
place on constraints; the further apart the importances of two agents on a con-
straint, then the combination of the two strategies is sufficient to identify the
agreement set [Johnson and Payne, 1985]. Furthermore, sometimes it may be
useful to model the preferences of agents as a whole for a set of offers. Compli-
cations with the two chosen strategies arise if such policies need to consolidate
the preferences across agents [Johnson and Payne, 1985]. Simple quantitative
additive models are better suited for such tasks [Corfman and Gupta, 1993].

Furthermore, the CDN reconfiguration and relaxation search operators suit
the problems of this domain. Reconfiguration, the process of regrouping the
bundle of negotiated goods, is applicable when issues are added and removed
during negotiation. Likewise, violation of constraints in order to search for
other types of agreements is reflected in the need for agents to make trade-offs,
lowering the acceptability constraint of one issue and simultaneously increasing
the acceptance level of another issue. Composition, the search for alternatives
by combining together two existing alternatives which satisfy both parties’ most
important constraint, is not a feature of the problem domains of this research
because agents do not know, and are assumed to be unwilling to provide, con-
straint importance information to other agents necessary for composition. How-
ever, although relevant the authors do not provide any formal specification of
the algorithms that implement these search operators. Therefore, not only are
they inspired by informal theories, but they can not be operationalized due to a
lack of any formal models. One of the contributions of this thesis is the formal
modeling and empirical analysis of three algorithms that implement constrained
search.

3.2.7 The Constraint Optimization and Conversational
Exchange Negotiation Engine

Optimization ~ methods, multi-attribute  utility =~ theory = (MAUT
[Keeney and Raiffa, 1976,  Luce and Raiffa, 1957]) and  conversational
models are integrated into a single “Negotiation Engine” (NE)
([Barbuceanu and Lo, 2000] 2°). The NE models more adequately, than
the CDN, the multi-issue nature of negotiation, agents’ goals and preferences,
goal modification as well as the communicative elements of negotiation. In
addition, the engine shares a common design philosophy as the coordination
framework design of this thesis. It works by describing the local decision
problems of agents as a multi-attribute decision problem and formulated as
constrained optimization. Then, this constrained optimization problem solver

20This work complements both the CDN algorithm (section 3.2.6) and the PERSUADER
(section 3.2.5) and was initiated from criticisms raised against the sole focus of auction tech-
nology on price of the commodity [Guttman and Maes, 1998, Doorenbos et al., 1997].
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is used by each local domain problem solver to find best solutions from their
local perspectives. The best solution found is then communicated using a
conversation interaction technology. If the received offer is not acceptable, then
a constrained relaxation protocol is used to generate the next available best
solution. Thus, the aim of the NE is to integrate both the local reasoner and
the interaction system. The latter is part of the conversation technology that
includes [Barbuceanu and Fox, 1997]: i) conversation plans, ii) conversation
rules, iii) actual conversations and iv) situation rules. Conversation plans
describe both how an agent acts locally, and, interacts with other agents by
means of communication actions. Conversation rules, in turn, specify the
permissible states (including the initial and final states) of the conversation
plans. The execution state of the conversation is maintained in actual con-
versations. Finally, situation rules assist an agent with decisions about which
conversations to instantiate. The conversation plans, conversation rules and
the actual conversations conversation components of the NE can be used for
normative communication models of the ACL component of the coordination
framework (figure 1.1) of this research. Situation rules are similar to the service
description language (SDL) developed in the ADEPT project for specifying
the local service execution plans of each agent [Jennings et al., 2000a]. Further
similarities lie with the design philosophy of the conversation technology. It
can be used for not only representing and executing a structured patterns of
agent interaction, but also as a “scripting language”. The NE provides API-s,
using its conversational and reasoning language (described below), for the local
reasoner to construct both models of the situation and goals and reason about
interactions with other agents. These API-s can be seen as interfaces between
the wrapper and the local problem solver and the agent and the ACL in figure
1.1. For example, the local problem solver can interact with the wrapper using
the service description language and the wrapper interacts with other agents
via the ACL interface.

The MAUT and constraint optimization elements of the reasoning component,
of the NE are discussed next. In NE an agent behaves to achieve its goals. Goals
can be: either composed (containing other (sub) goals) or atomic (immediately
executable); either controllable (goal is under the control of the agent) or non-
controllable (part of the agent’s plan, but agent has to obtain the commitment of
the agent controlling these goals for their achievement); either “on” (is achieved)
or “off” (is not achieved). Agents then attach preferences, or utilities, towards
the achievement or non-achievement of these goals. Thus agents are utility
maximizers. Utilities not only model the preference of an agent, but also, as
the authors claim, quantify the influences between agents where the utility of
non-controllable goal describes in “some way” the power that the other agent
has on the agent needing the goal. The final element of the language of the
decision model is the agent roles. Roles describe the goals an agent controls and
the goals it needs and function to form a strategic coalition formation, choosing
who to involve when needing to achieve a certain task.

Given this language of decision making (goals, utilities and roles), the decision
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problem of an agent, P, is formulated as a constraint optimization problem:
P = (G,C,U, criterion)

where G = {gi,...,9n} is a network of n goals, C = {c¢,...,cn}
is a set of constraints of the form on(g;),0f f(gx) or an implication on
both sides of which there are conjunctions of on-off constraints, U =
{(91,Uon(91): Uoss(91)s - - -5 (91, Uon(91), Uogs(g1) } is a utility list consisting of a
set of goals with either associated on/off utilities and criterion € {maz, min}
which is either a maximization or minimization optimization criterion. The over-
all utility of the labeled goal network G, Util(L,G), is computed as the sum of
the “on” labeled goals, plus sum of the “off” labeled goals (called the additive
scoring model [Keeney and Raiffa, 1976)), where L : G — {on, off} is a function
that maps each goal in the goal network with either an “on” or “off” label .
Thus, solution P is a labeling L such that Util(L,G) is either maximized or
minimized, according to the criterion.

The authors then show that the above labeling problem P that maximized
(minimizes) utility is equivalent to the satisfiability (MAXSAT) problem in op-
timization [Barbuceanu and Lo, 2000], p.241. Two optimization algorithms are
provided within the NE that operate over the same representation of the goal
network to solve this optimization problem of an agent. One is a stochastic
search based algorithm that is incomplete and not guaranteed to find a solution,
but performs well on large scale problems both in terms of time and its ability to
actually find a solution [Selman et al., 1992, Jiang et al., 1995] and another the
branch and bound search algorithm that is complete and guaranteed to find the
optimal solution [Mitten, 1970]. The latter algorithm operates by maintaining
the utility of the current best solution. If the utility of another explored partial
solution does not exceed the utility of the current best solution then that partial
solution is dropped and another partial solution is explored. The decision mech-
anism supplied in the NE also allows for the integration of the two algorithms,
using, for example, a random search first for a number of runs and then using
the best solution from the random search as a bound constraining the branch
and bound algorithm to find a better solution.

The reasoning procedures are extended by a multi-attribute utility theoretic
language within the NE that support optimization of search for utilities over
multiple issues. Specifically, agents share a set of negotiation issues, or what
the authors call the attributes of negotiation, defined as A = {ay,...,a,}. The
domain of an attribute a;, D,,, is an interval [, h], where [ and h are integers
or reals, describing the range of values that the attribute can take. Agents then
interact by exchanging multi-attribute specifications. The assumption made is
that the agents share both the attribute list and the domain of each attribute.
Furthermore, for each attribute a; there is a utility function U,, : Dy, — [0,1]
and agents have opposing interests over each issue, expressed as different direc-
tions over the maximization U,, for each agent. Another important assumption
the authors make is that utility function of an agent has the form shown in figure
3.5, where the domain of the attributes can be decomposed into a set of disjoint
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Figure 3.5: Exemplar Utility of an Attribute a;.

sub-intervals that cover the entire domain, such that on each sub-interval the
utility is constant. Figure 3.5 shows an example of an attribute whose domain
values between 70 and i1, for example, have the same utility to the agent (rep-
resented as the horizontal utility line). It follows that fewer sub-intervals, at
the extreme where there is only one sub-interval corresponding to equal utility
across all domain values of the attribute (the agent values all solutions of the
issue equally), then the easier the resolution of that issue. Then for each sub-
interval [i;,i;41] an atomic goal g, is created which is on iff the value of a; is
in the interval [i1,4;41). Furthermore, the authors assume that although agents
have different valuations over different ranges of an attribute’s domain, they
nonetheless have further acceptability constraints about what attribute values
are acceptable (thresholded utilities of CDN perform the same function 3.2.6).
For example, in figure 3.5 only values between [i3,i4] may be acceptable to an
agent. Given the above a MAUT problem of the NE is then the assignment
of on-off labels to the goals of the problem that satisfy the limits of all of the
attributes’ domains as well as their acceptability constraints. This solution the
authors call the deal. Also, an optimal solution is one that has maximum utility
for the agent. A deal acceptable to both agents is one where for each attribute
a; the acceptable set of values for the two agents have a non-empty intersection.
An example of such a deal is shown in figure 3.5. Assume there are two agents
A and B. Further assume that figure 3.5 shows the utility for values of attribute
a; for agent A. Now assume that [i3, 4] is the set of acceptable values for A (this
utility is the result of A having goal g3—on(g3)) and [j1, ja] is the set of accept-
able values for B. Then [is, j2] is the non-empty intersection for attribute a;.
This intersection solution represents a possible agreement between the agents,
because each solution contains ranges of values acceptable to each agent.

The sequences of local decision making and communication of the offers are
as follows. At the first time step each agent represents its problem as a MAUT
problem, defining attributes, goals, constraints and utilities. Then each agent
specifies its acceptable solution which defines the interval of acceptable values for
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each of the issues. After defining the problem the first best solution is computed
by solving the initial problem using the branch and bound algorithm. The
branch and bound algorithm can support a concession protocol by searching for
lower utility solutions. Lower utility solutions are generated by over-constraining
the problem, achieved by negating the previous best solution and then adding
this new constraint to the goal network. The best solution is communicated to
the other agent at the end of each iteration of the algorithm. If the proposed
solution is acceptable to the other agent then the process terminates successfully.
Alternatively, the other agent may communicate the fact that it can not find
any more new solutions to the part. When both of the agents can not search
for any new solutions, then negotiation terminates unsuccessfully. Otherwise,
the agent that can generate new solutions continues to generate and propose
them. Finally, the offered deal by the other agent is checked for intersection
with the agent’s own last offer. Negotiation terminates successfully if such an
intersection exists, otherwise the agent searches for other solutions to propose
and the process continues. The process ends when a mutually acceptable deal
has been found or else no more solutions exists.

Evaluation of the Constraint Optimization and Conversational Ex-
change Negotiation Engine

The NE is closely related to the work reported here and models many of the
features and requirements of the problem domains of this thesis. It models both
the communication aspects of interaction (through the conversation technology)
and complex local decision mechanisms, and a formal goal network represen-
tation language, that account for some of the requirements of this thesis such
as: i) multiple issues ii) constraints of agents over these issues iii) conflicting
preferences of agents and iv) a concession protocol that is guaranteed to find a
solution if one exists. Furthermore, this protocol is interleaved with a stochastic
search algorithm that is scalable to large problems and assists the concession
protocol with new search locations. These two search protocols, as well as their
combination, represents two strategies agents can use to reach agreements.

However, the concession protocol is guaranteed to find a solution because
of the assumption that the agents share the same domain specification of the
attribute (or issue interval). Given that the interval value of agents are exactly
the same, and it is only the acceptability constraints that differ, then it naturally
follows that a solution must exist. Although this assumption is useful for system
analysis, an approach also adopted in the evaluation phase of this thesis, it is
nonetheless a strong assumption that is not applicable to the type of problem
domains of this thesis. Agents do not necessarily share the same intervals over
each and all of the issues in negotiation. Indeed, negotiation can fail when there
exists no such intersection.

Furthermore, no formal model of how utility theory is used to model power
of agents or how roles can be used to form strategic coalitions. In addition
to this, and more importantly, it is not clear, and the authors do not make
any reference to the fact, that the developed negotiation, like the CDN above,



3.2. Computational Models of Negotiation 111

protocol models interactions amongst cooperative agents only. This can be seen
in the conversational protocol described above where agents truthfully reveal
that they can not generate any more solutions. The assumption of truthful
revelation is strong especially among open system agents that may be selfish
and have incentives to lie about their negotiation positions in order to maximize
their own welfare.

3.2.8 Multi-dimensional Service Negotiation as an English
Auction

Vulcan and Jennings have applied the principles of mechanism design to model
(as an English auction, see [Binmore, 1992]), the one-to-many service negotia-
tion between the CSD and the VC agents for the Vet _Customer service in the
ADEPT scenario [Vulkan and Jennings, 1998]. The English auction has been
modified to handle service negotiation over multi-dimensional private value ob-
jects.? Services are described by the tuple (p,3), where p is the price of the
service and s are the additional issues of a service. A service buyer’s preferences
are then defined by a linear utility function us(3) — p, that increases with in-
creasing quality of the service. p is the price of the service and is restricted to a
maximum value. A service seller’s preferences, on the other hand, are defined by
the cost function ¢4(3) + p. The preferences of the buyers and sellers of services
are also conflicting, meaning that the preferences of both agents over each issue,
move in the opposite directions.

In addition to a service client (or what they call a service seeker) initiating
the auction, the authors propose a pre-auction protocol (as well as incentive
conditions and the required auction knowledge for an agent to initiate an auction)
where the service providers can hold an auction amongst themselves. The winner
of the auction then approaches the service-seeker with a “take-it-or-leave-it”
offer. Analysis is provided, in terms of dominant strategies 22 that result in
outcomes that are efficient (increase the sum of the individual utilities and are
fast). Agents then need store, as knowledge, only these dominant strategies
(hence, individually rational) of the resulting protocol.

However, modeling a part of the ADEPT business process as an English
auction has a number of limitations. Firstly, an English auction models one-to-
many interactions, where a single auctioneer (or a service buyer here) interacts
with a number of buyers (or a service seller).2? Because it is an open-cry auction,
all the valuations of agents are publicly “heard”. This may be regarded as
undesirable by, for instance, a Vet Customer organization who does not, for

21 A private value object is an object, or a service in this case, whose worth depends solely
on an agent’s own preferences. See [Binmore, 1992] for an explanation of other value type
auctions.

22 A dominant strategy is a strategy that yields an expected payoff which is higher than other
strategies whatever the behaviour of other agents and the state of the world. Note that using
dominant strategies eliminates the need for agents to condition their strategies on beliefs.

23Note that the principles and results of mechanism design still apply in-spite of the reversal
of labels.
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competitative reasons, want to reveal its valuation to other Vet Customer service
providers. Instead it may prefer to enter a more “private” dialogue in the form
of one-to-one negotiations. The public revelation of valuations in an English
auction also leads to possibility of collusions between auction buyers, resulting
in lower revenue for the auctioneer [Rasmusen, 1989]. The example below from
[Sandholm, 1996] and [Rasmusen, 1989] illustrates these collusion possibilities.
Let buyer agent ¢ have a valuation of 20 and all the rest of buyers have a
valuation of 18 for the service on offer. Further assume that the bidders collude
by agreeing that ¢ will bid 6 and all the rest bid 5. If one of the other buyers
exceeds 5 then ¢ can observe this and will go as high as 20 and the cheater
will not gain anything from breaking the coalition. Therefore, collusions are self
enforcing in an English auction. Although collusions in an open environment
are technically difficult to electronically implement, since agents will have to
identify one another and agree to form a coalition, they are nonetheless possible
and hard to detect electronically. This is especially true in virtual worlds where it
is relatively inexpensive to create virtual identities. Furthermore, the auctioneer
itself can profit from collusions, by placing agents representing it in the auction,
who then stimulate the market by unfairly raising the bids.

In spite of these technical difficulties electronic auction houses have pro-
vided the technological foundations of the recent rise in electronic commerce for
business-to-business, business-to-customers and customer-to-customer applica-
tions ([eBay, , AuctionBot, , i2, , Amazon, , FishMarket, ]). However, auctions,
although popular, are also qualitatively problematic. Technically an auction is
profitable for the auctioneer in the short term because of the winner’s curse
[Binmore, 1992] which is where the winning bid for a good occurs above the
good’s market price. Therefore, in the long term a buyer is likely to be dissat-
isfied with paying for a good above its market valuation. This is more likely
to be true for business-to-customer or business-to-business types of electronic
commerce applications [Guttman and Maes, 1998]. Furthermore, some auctions
(such as the English auction) may require a critical number of bidders before
they can commence. Coupled with the communication latencies involved, bid-
ders, or agents representing them, may have to make bids over several days. This
problem is exacerbated when a buyer’s bid is not the winning bid, requiring the
bidder to restart the whole process of bidding once again. Apart from technical
limitations, auctions “pit” the buyer against the seller and they tend to focus
solely on the price of a good. Auctions are generally viewed as hostile exchange
environment, where the buyers are pitted against the sellers, where neither party
considers the long term relationships and the benefits that may actually in-
crease profit for both. This type of relationship is more likely to occur between
businesses and their customers or other businesses. Paying exclusive attention
to price also hides from the consumer important information about the added
value of a good by a seller, resulting in an undifferentiated and homogeneous
representation of sellers [Guttman and Maes, 1998, Doorenbos et al., 1997].
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3.2.9 Kasbah Electronic Agent Marketplace

For some of the reasons above, negotiation technology has been proposed as an
alternative solution to auctions as the next generation of e-commerce products
[Guttman and Maes, 1998]. Below, one representative e-commerce negotiation
solution, called Kasbah [Chavez and Maes, 1996, is briefly reviewed. Kasbah
depart from normative game theoretic approaches to negotiation, hence is less
formal, sometimes heuristic, ad hoc and are user, as opposed to protocol, cen-
tered.

Kasbah is a multi agent system application for electronic commerce
[Chavez and Maes, 1996]. It is an electronic agent marketplace where agents
negotiate to buy and sell goods and services on behalf of the user. The motiva-
tion behind Kasbah is to assist users in electronic shopping:

by providing agents which can autonomously negotiate and make the
“best possible deal” on the user’s behalf [Chavez and Maes, 1996).

The system itself is a hosted web site where users visit to buy and sell goods.
Users create buying or selling agents which interact in a marketplace. The mar-
ketplace itself provides a common language for the agents as well as a yellow
pages service. The agents are simple, in that “they do not use any AI or ma-
chine learning techniques”, share no common goal, have diametrically opposite
aims and are autonomous [Chavez and Maes, 1996]. However, motivated by ac-
ceptance by the user, the system is designed to allow the user to have a certain
degree of control over the agents. The selling user, for example, can define the
goal of the agent by specifying: i) the desired date to sell the item by, ii) the
desired price, and iii) the lowest acceptable price. The reverse is true for the
buyer. These parameters define an agent’s goal and the achievement of this goal
is modeled heuristically as the strategy to begin offering the item at the desired
price and if it is not accepted then the selling agent lowers the price. The price is
iteratively reduced with the constraint that the price is at the lowest acceptable
price when the desired date is reached 24. How the agent decreases, or increases
in the case of a buyer, its offer is modeled as one of linear, quadratic or cubic
decay functions.

Kasbah addresses some of the issues mentioned in chapter two and is an
attempt to actually engineer a real world application. The system models time,
actions and strategies involved in negotiation. However, the system fails to
properly address the issues of commitments and uncertainty mentioned in the
previous chapter. The bounded nature of agents is omitted from the model
by developing very simple agents, which incur minimal computational costs.
The majority of the computationally demanding tasks are not delegated to the
agent, but rather remain at the user level. Therefore the agents are only semi-
autonomous, since Kasbah only models a subset of the decision making which
is involved in negotiation—the user makes the other decisions. Furthermore,
the decisions that are delegated to the agents (called strategies in Kasbah) are

24The reverse is true for the buyer agent
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severely limited to only three and even their selection is not autonomous, but
again, is made by the user. Also no formal account or analysis is given of what
exactly is the “best possible deal” or the likelihood of outcomes given strategies
of agents.

The problem of introducing multiple issues into a negotiation is also not ad-
dressed in Kasbah. Scaling the problem to multi-dimensional scales influences
not only the computational complexities of the search for solutions, but also
raises the problem of the representation of preferences. Negotiation search al-
gorithms are needed whose domain is constrained by the specification of user’s
preferences over a multi-dimensional space. These constraints can be restrictions
over the content or the process of negotiation. Content constraints specify pref-
erences over the types of outcomes preferred by a user. These constraints can
either be hard constraints, such as “I am willing to pay between £20 and £40
for a service” or soft constraints, such as “quality of a service is more impor-
tant than its price”. Therefore, in multi-issue negotiation a more sophisticated
methodology is required to capture and represent user’s preferences, which are
ultimately delegated to the agents who interact with one another on behalf of
the user. Constraints on the process of negotiation, on the other hand, specify
the preference of a user about the style of negotiation such as the concession
rate. Kasbah agents can only concede on offers. With multi-issue negotia-
tion agents can also spend time searching for win-win outcomes. Therefore
the agent, or the user, has more choices of behaviours when multi-issues are
considered. Furthermore, in Kasbah the user makes the choice of concession
rate. This contrasts with the prescriptive game theoretic models of negotiation
where the decision making of the agents are normatively bounded to rational
choices that are known to be optimal decisions. Kasbah belongs more to the
descriptive models of choice whose aim is to describe how individual actually
do, rather than should, behave. These models range from behavioural negoti-
ation heuristics [Pruitt, 1981, Fisher and Ury, 1981, Kraus and Lehmann, 1995)
that provide guidelines for negotiation decision making, to models that describe
decisions as evolving in response to the negotiation environment [Binmore, 1990,
Matos et al., 1998, Oliver, 1994].

3.3 Assessment of Related Work

Features of the computational models covered in this chapter are summarized
in figures 3.6 and 3.7 along some of the important dimensions identified in the
previous chapter.

It can be seen from the table that the problem of bi-lateral negotation has
recieved little attention from the computational community. Furthermore, little
or no work has addressed the problem of repeated protocols, reasoning about
uncertainties or commitments during negotiation.

The protocol of this thesis needs to be designed for highly structured in-
teractions between two agents only. Therefore, game theoretic models are an
appropriate candidate for the problem of coordination. These models are not
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Number of Agents Number of Issucs | Commitment | Uncertainty Time Limits | Agents Bounded |
Domain Theory N 1 No No No No
Kraus N 1 No Yes Yes No
CNP N 1 No No No No
Sandholm N 1 Yes Yes No Yes
Persuader N N No No Yes No
CDN N N No No Yes No
NE N N No No No No
Multi-issue Auction N N No No No No
Kasbah 2 1 No No Yes No
Wrapper 3 N No Yes Yes Yes

Figure 3.6: Comparison Matrix of Computational Models of Negotiation: I

ic Cooperative(C) / Selfish(S) | Protocol [ Encounters |
Domain Theory Yes C &S one-shot one-off
Kraus No S one-shot on-off
CNP No C one-shot one-off
Sandholm Yes S & C iterative one-off
Persuader No S & C iterative one-off
CDN No C iterative one-off
NE No [§] iterative one-off
Multi-issue Auction No S one-off & iterative one-off
Kasbah No S iterative one-off
Wrapper No C &S iterative one-off

Figure 3.7: Comparison Matrix of Computational Models of Negotiation: II

only analytically useful, but they also have several desirable properties. However,
there are a number of criticisms of these models with regards to the requirements
of the target domains of this research (section 3.1.9). In addition to these crit-
icisms, the operational mapping of game theory models into DAI environments
introduces further difficulties. As Kraus notes, in order to apply these models a
designer must [Kraus, 1997b]:

e choose a strategic bargaining model

e map the application problem to the chosen model’s nomenclature

identify equilibrium strategies

develop simple search techniques for appropriate strategies

provide utility functions

Although choosing a strategic bargaining model and mapping it to an applica-
tion may not be too difficult, game theory requires that all the agreements be
known in advance before equilibrium strategies can be proven. The theory’s ba-
sic assumptions also mean that most game theoretic models do not consider the
computational and communication complexities which are important in practi-
cal applications. Furthermore, multiple issues are not adequately represented in
game theoretic models.

Informal models such as CDN and Kasbah, on the other hand, are benefi-
cial in that there is no need to build models of interactions from scratch—there
already exists a large body of research which has developed over a number of
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years in other disciplines such as behavioral and social sciences. However, infor-
mal models have a different set of limitations. Again, as Kraus notes, applying
informal models to DAT problems can be done in two ways [Kraus, 1997b]

e develop heuristics for cooperation based on informal models (e.g.
[Kraus and Lehmann, 1995]) or

e apply informal models to DAI problems after formalizing the models (for
example through logics [Kraus et al., 1998])

However, there is a need for evaluation techniques such as simulations or empir-
ical analysis in both cases above since informal models do not formally analyze
the behaviour of the system (unlike game theoretic models).

The aim of this chapter has been to show that the general requirements of the
target domains together with the need for developing a flexible decision mech-
anism have meant that the negotiation wrapper cannot be adequately modeled
using normative game theoretic models. Instead, these requirements have meant
adopting a more descriptive approach that provide decision heuristics. However,
an agent is cast (having preferences) and described (a utility maximizer) and
analyzed (in terms of Nash, pareto-optimality and reference solutions) in the
nomenoculture of game theory, but their decision making are based on informal
and descriptive models. Therefore, because of the limitations of informal mod-
els mentioned above, the developed model is empirically evaluated to discover
properties of the wrapper (see chapter 5).

When viewed operationally the developed coordination framework (the pro-
tocol, services and the reasoning models, see figure 1.1) is normative in that the
agent is required to adopt the protocol of interaction specified by the communica-
tion language, but is free to adopt any decision strategy (or any implementation
of the wrapper) to execute within the protocol. This means that a game theoretic
agent can interact with a heuristic rule based agent using the framework. They
differ in what decision schemes they use to implement the negotiation wrapper.
However, for evaluation purposes a descriptive approach is adopted, where the
interaction protocol and a set of strategies is imposed on the agent.



Chapter 4

A Service-Oriented
Negotiation Model

A formal account of the developed coordination framework is the subject of this
chapter. This formalization specifies two protocols of interaction (section 4.1)
and three negotiation decision making mechanisms (section 4.2). This formal-
ization is intended to model the important issues identified in chapter two and
addresses the criticisms of the related approaches described in chapter three.
The context in which the service-oriented negotiations take place has already
been described in the first chapter (section 1.4).

4.1 Interaction Protocols

A protocol of interaction is required because sub-problems interact during do-
main problem solving and agents therefore have to communicate and interact
(section 1.3). A protocol of interaction can also reduce the uncertainties in-
volved in strategic interactions (section 2.2.6). Thus protocols of interaction as-
sist agents in their problem solving. The computations involved in such problem
solving can usefully be categorized into on-line and off-line. Off-line computa-
tions are the processes involved in the local deliberation phase of what to offer
and are presented in section 4.3. On-line computations, on the other hand, are
the processes involved in the communication of the deliberated offer itself. The
on-line computations, as well as the knowledge required for computation, are
discussed in this section. There are two protocols: one for negotiation proper
and the other for issue manipulation. Two protocols are needed because the
language and rules of interactions differ when agents are exchanging contracts
during negotiation to when they communicate about which issues should be in-
cluded or retracted from the current set of issues in negotiation. The negotiation
protocol is described first.

117
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Prenegotiation |

Issue protocol

withdraw(b,a,®)
withdraw(a, b,@)

@ Initial state

Final state
Figure 4.1: The Negotiation Protocol.

4.1.1 The Negotiation Protocol

The design of the protocol of interaction has been motivated by the normative
models of coordination such as game theory (see chapter 3).! Agents’ inter-
actions are constrained by the rules of a normative structure which specifies
their interactions independently of their roles. The interaction is modeled as an
alternating sequence of offers and counter-offers (sections 3.1.7, 3.2.3) which ter-
minates with either a commitment by both parties to a mutually agreed solution
or else terminates unsuccessfully. The protocol (figure 4.1) starts with a dialogue
to establish the conditions for the negotiation. These conditions are mutually
satisfied in this pre-negotiation phase and must specify the set of initial issues
(see section 2.2.2) as well as a shared meaning of the not only these issues but
also the meaning of the conversation terms of the ensuing interaction (the prim-
itives shown in figures 4.1 and 4.2). Additionally, during this pre-negotiation
phase agents may agree on which role will begin the negotiation, acting as the
initiator of the protocol, while the other role becomes the responder to the role
who initiated the negotiation.?

INote that a norm refers to prescriptive rules of the game (in the game theoretic sense).
2In cases of no agreement the conflict may be resolved through randomly selecting which
which role will be the initiator and which role will be the responder.
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Then, the agent who was selected to make the first offer proceeds to make the
first offer for contract ¢ (transition from state 1 to state 2 or 3—the or transition,
representing who starts the negotiation, is shown in figure 4.1 as the arc joining
the two possible proposals given state 1). Note the protocol is for integrative
negotiation, where agents negotiate over packages, rather than individual issues.
After that, the responding agent can make a counter-offer (see section 4.4) or
a trade-off (see section 4.5.2) (moving to state 2 or 3 depending on who was
the initiator). The initiating agent can in turn make a new counter-offer or a
new trade-off (going back to state 2 or 3). Since the information models of the
other agent(s) (such as the reservation values, the weights and preferences of
each issue) are not publicly known, offers may be outside the mutual zone of
agreement. Additionally, even though offers may be within a zone of agreement,
they may nonetheless fail to meet the current aspirational demand of the other
agent. For example, if an (seller) agent is demanding a price over £20 for a
service, with price reservation values of [10,30], and the other (buyer) agent
has offered £15, then although the offer is within the reservation values of the
seller, the buyer’s offer fails to meet the current aspirational needs of the seller.
Therefore, agents may iterate between states 2 and 3, taking turns to offer new
contracts. In either of these two states, one of the agents may accept the last
offer made by the opponent (moving to state 4) or withdraw from the negotiation
(moving to state 5). Agents always withdraw from the negotiation process when
the negotiation deadline has been reached.

While in state 2 or 3, agents may start an ellucidatory dialogue to establish
a new set of issues to negotiate over (see section 5.2.3 for more details). This
transition to the issue manipulation sub-protocol is represented in figure 4.1 by
the primitive newset to the issue protocol. The execution of the negotiation
protocol is resumed when either the agents have agreed to a new set of issues
(represented in figure 4.1 by the accept primitive from the issue sub-protocol
back to the negotiation protocol where negotiation resumes with a new set of
issue) or else when then agents have failed to come to an agreement over a new
set of issues (represented in figure 4.1 by the withdraw primitive from the issue
sub-protocol back to the negotiation protocol where negotiation resumes with
the same issue set as before).

This negotiation protocol is a natural extension of the contract net protocol
(section 3.2.3) permitting iterated offer and counter-offer generation and per-
mitting the modification of the set of issues under negotiation. The presence of
time deadlines guarantees termination of the protocol.

4.1.2 Issue Protocol

As mentioned in section 2.2.2, agents may not share the same goal set at the
outset of negotiation. Alternatively, agents may identify an issue that they
both agree on in the course of negotiation. Conversely, there may be a need
to introduce a new issue(s). Therefore, there is a need for a protocol that
normatively specifies how the set of issues in negotiation can be amended.

The protocol for establishing a new set of negotiating issues (figure 4.2) is
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isomorphic to the negotiation protocol described in figure 4.1, with the exception
that the meaning of the primitives and the content of this protocol (a new set of
issues) are different to the negotiation protocol of figure 4.1. Additionally, the
choice of the initiator of this sub-protocol is strategically determined by the agent
who wishes to initiate this sub-protocol while executing the negotiation protocol.
The pre-negotiation phase is omitted (since the current set of issues has already
been agreed). The object of negotiation, contract ¢, is replaced by a new set of
issues S, and primitives propose and trade-off are replaced by newset—a request
for a new set of issues to be included in to the negotiation. Each negotiating
agent can start a dialogue over a new set of issues S where the numbers reflect
the same state as the main negotiation protocol. Thus, if agent a starts the
issue manipulation dialogue with the utterance newset(a,b, S) while in state 3
in the negotiation protocol, in figure 4.1, then this results in the transition from
state 3 to state 2 in the sub issue-manipulation protocol in figure 4.2). Each
agent can then either propose a new set (transition from state 3 to 2, or 2 to 3,
depending on who started the dialogue), accept the other’s proposed set (state 4)
or withdraw and continue with the original set (state 5). An agent’s strategical
choice of the protocol usage is captured in the wrapper deliberation architecture
(section 4.3). However, before the deliberation architecture is formally specified,
first the meaning and rules of communication are informally presented in the
next section, followed by the basic building blocks of the formalization (section
4.2).

Normative Rules of the Protocol

Communication among the agents using the protocol follows a set of normative
rules represented as simple if-then rules. The content of the messages used in the
agent communication language (ACL, shown in figure 1.1, section 1.2) is shown in
figures 4.3 and 4.4 and consists of: one of a limited number of primitive message
types, the identity of the sender and the recipient (both agent identifiers), and the
service concerned through the set of negotiation issues that describe the terms
and conditions of service production and consumption. Additional information,
and not shown in figure 4.3, may be included (such as the message number) that
facilitates conversation management. However, figures 4.3 and 4.4 depicts the
main requirements of the communication protocol.

The first three primitives (can-do, not-capable and capable) are used in the
pre-negotiation state of the protocol. They provide “connection” capabilities,
functioning to initiate negotiation for a service that is actually provided by a
seller and is required by a buyer. Note that in this research the performative
can-do means capable of as opposed to it is permitted to.

The agents then enter negotiation proper and use the remaining communi-
cation primitives to provision services. The next four primitives are messages
that agents utter when using the negotiation protocol described in figure 4.1,
and the last three are messages belonging to the issue manipulation protocol
described in figure 4.2. The meaning of each of these primitives is described in
the column entitled semantics. Rules, in turn, represented as contexts in figure
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newset(b,a,S)

newset(a,b,S)

withdraw
withdraw

Figure 4.2: The Issue Manipulation Protocol.

4.4, specify the usage of the above primitives which all agents must adhere to
during negotiation.
The building blocks of the formalization are introduced next.

4.2 A Bilateral Negotiation Model

This section presents the developed model for representing agents’ knowledge
about services. This model includes: i) the set of negotiation issues, their reser-
vation values and importances as well as the domain problem solver’s preferences
over each issue (section 4.2.1), ii) the roles agents can adopt in service-oriented
negotiation (section 4.2.2), and iii) the thread of offers and counter-offers ex-
changed in negotiation (section 4.2.3). The role of this model is to support the
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[Action [ Content [ _Semantics
can-do (a,b,s) Empty Sender a asks if the recipient b is, in principle, able to
provide the service s.

not-capable Empty- a informs b that it is not capable of s.

(a,b,3)

capable (a,b,s) Empty. a informs b that, in principle, it is capable of s.

propose A single con- a proposes to b that b performs service under the condi-

(a,b,8) tract informa- tions specified in contract by ¢ and communicates that
tion object. the contract under the terms of ¢ has a lower utility to

a than the previous offered contract under previous con-
tract terms.

trade-off A single con- a proposes to b that b performs service under the condi-
(a,b,9) tract informa- tions ¢ described in the contract that is on the table and
tion object. communicates that the contract under the terms ¢ has

equal utility to a than the previous offered contract with
the terms.

accept (a,b,0) Empty- @ accepts to performing the service under the contract ¢
that is on the table.
withdraw (4,b) | Bmpty. 2 wishes to terminate the negotiation.
newset (4,5,5) A single con- a proposes to b that b performs service under a new set of
tract informa- | conditions S.
tion object.
accept (a,0,5) Empty- @ accepts negotiation dialogue over the service under a
new contract conditions §.
withdraw (a,b) | Empty. 7 rejects a mewset of service conditions and resumes ne-
gotiation dialogue over the service under the old contract
conditions.

Figure 4.3: The Communicative Rules

Action I Context
can-do (a,b,s) Message can be sent by any agent at pre-negotiation phase.
not-capable (a,b,s) Used by a only in response to a can-do action at pre-negotiation phase.

capable (a,b,s) Used by a only in response to a can-do action at pre-negotiation phase.
propose (a,b,¢) Used only in response to either an action of type propose or trade-off or start of initial state
trade-off (a,b,0) Used only in response to either an action of type propose or trade-off.
accept (a,b,¢) Used only in response to either an action of type propose or trade off.
withdraw (a,b) Used only in response to either an action of type propose or trade-off.
newset (a,b,S) Used only in response to either an action of type propose, trade-off or newset
accept (a,6,5) Used only in response to an action of type newset.

withdraw (a,b) Used only in response to an action of type newset.

Figure 4.4: The Context of the Communicative Rules

decision making functionalities of the wrapper during multi-attribute bilateral
negotiation.

4.2.1 Issues, Reservations, Weights and Scores

The aim of this section is to formally represent issues. This representation will
serve as a data structure during the negotiation process. An informal example
of multi-issue negotiation is presented first, followed by a formal treatment.
The object about which agents negotiate is referred to as a contract (¢ in
figure 4.1). Contracts represent the bid (or offer) on the table during negotiation
and the final contract at the end of a successful negotiation. The contract
structure is derived almost exactly from the types of legal contract which are
often used to regulate current business transactions [Jennings et al., 2000a].
Figure 4.5 is a sample contract from the BT business process management
domain (section 1.4.1). The contract contains both an identification and a ne-
gotiation part. The identification part is shown in figure 4.5 by the slots ser-
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vice_name, contract_id, Server_agent and client_agent. These features function
to uniquely identify the contract under negotiation. The negotiation part is rep-
resented by the remaining slots and describe the actual issues agents negotiate
over. Note that the any ambiguity over both the meaning and the value of both
the identification and the negotiation issues is assumed to have been resolved
at pre-negotiation phase of interaction. For example, it is assumed that both
agents know the meaning of the contract attribute price and also have a common
value (dollars for example). The attributes of this sample contract are described
next.

The service_name is the service to which the agreement refers and contract_id
is the contract’s unique identifier (covering the case where there are multiple
agreements for the same service). Server_agent and client_agent represent the
agents who are party to the agreement. Delivery_type identifies the way in which
the service is to be provisioned—services can be provisioned in two different
modes depending on the client agent’s intended pattern of usage and the server
agent’s scheduling capabilities: (i) one-off: the service is provisioned each and
every time it is needed and the agreement covers precisely one invocation; (ii)
on-demand: the service can be invoked by the client on an as-needed basis within
a given time frame (subject to some maximum volume measurement). The con-
tract’s scheduling information is used for service execution and management—
duration represents the maximum time the server can take to finish the service,
and start_time and end_time represent the time during which the agreement is
valid. In this case, the agreement specifies that agent CSD can invoke agent DD
to cost and design a customer network whenever it is required between 09:00
and 18:00 and each service execution should take no more than 320 minutes.
The agreement also contains constraints such as the volume of invocations per-
missible between the start and end times, the price paid per invocation, and
the penalty the server incurs for every violation. The penalty mechanism, in a
similar manner to the leveled commitment protocol of Sandholm (section 3.2.4),
models commitments (see section 2.2.5). client_info specifies the information the
client must provide to the server at service invocation (in this case CSD must
provide the customer profile) and reporting_policy specifies the information the
server returns upon completion.

These issues are formally specified next. Let ¢ (i € {a,b}) represent the
negotiating agents and j (j € {1,...,n}) the issues under negotiation. The set of
issues in real world negotiations is assumed to be finite. Let D’ = [min}, max}]
be the intervals of values for quantitative issue j acceptable by agent i. Values
for qualitative issues, in turn, are defined over a fully ordered domain — Dj. =
{q1,---,qn)- However, because qualitative issues do not have interval values they
can not be handled in a similar fashion to quantitative issues. The solution to this
problem is to redefine ming or max§ of a qualitative issue as the maximum and
minimum score of the issue. The notion of a score is introduced below, but a score
informally means the utility of the issue’s value. The exposition of the model
only concentrates on quantitative issues. The extension of the current model
that formally models qualitative issues can be found in [Matos et al., 1998].
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| Contract Name | Instantiated Values |
service_name: cost_&_design_customer_network
contract_id: al001
server_agent: DD
client_agent: CSD
contract_delivery_type: on-demand
duration: (minutes) 320
start_time (GMT): 9:00
end_time (GMT): 18:00
volume (per invocation): 35
price: (per costing) 35
penalty (per lateness): 30
client_info: customer _profile
reporting_policy: customer_quote

Figure 4.5: Sample Contract

Here the formalism is restricted to considering issues for which negotiation
amounts to determining a value between an agent’s defined delimited range.
Each agent has a scoring function VJZ : D; — [0, 1] that gives the score agent i
assigns to a value of issue j in the range of its acceptable values. For convenience,
scores are kept in the interval [0, 1].

The next element of the model of an issue is the relative importance that
an agent assigns to each issue under negotiation. w; is the importance of issue
J for agent i. The weights of agents are normalized, i.e. ), i<n w; =1, for
all i in {a,b}. With these elements in place, it is now possible to define an
agent’s scoring function® for a contract—that is, for a value z = (x1,...,2,) in
the multi-dimensional space defined by the issues’ value ranges:

Vi(z) = Z w;VJZ(acJ) (4.1)

1<j<n

The additive scoring system is, for simplicity, a function V* that either in-
creases or decreases monotonically. The additive scoring function is a model
of how an agent can consolidate individual preferences over each issue into a
single preference. The advantages of this model, in comparison to elimination
by aspects and lexicographic semi-order models, were discussed in section 3.2.6.
In addition to these, if both negotiators use such an additive scoring function,
Raiffa showed it is possible to compute the optimum value of z (see [Raiffa, 1982],
p.164). Furthermore, the individual utility functions that are consolidated by
the additive scoring system need to be reversible (denoted as V{l) because, as

3Non-linear approaches to modeling utility could be used if necessary, without affecting the
basic ideas of the model.
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will be shown in section 4.5.2, the trade-off mechanism requires a mapping back
from a score of an issue to its value.

As an illustration of the above model consider the following example. Let the
set of negotiation issues for a server agent a consist of {price, volume}—the price
required to provide the service and the number of service instances attainable
by a. In addition to this, let a have the following values [ming,.;.., mazy,.;..] =
[10,20] and [ming jume> MAZE jumel = [1,5]- Also assume a views the price as
more important than the volume by assigning a higher weight to price, where
(W ice, Wootume) = (0-8,0.2). Finally, let the value of an offer z, for an issue j,

Vi (z;), be modeled as a linear function:

. a
Tprice —MIN

a (.’E . ) —_ price
i rice) — a . a
price \""P MAT e "M, e
. a
Ve (.CL' ) =1 Tvolume ~MWMyolume
volume \*volume) = maz? —min2

volume volume

Now consider two contracts, (11,5) and (15,2), offered by a client b to the
server a. Given the above parameters for a, the value for the first offered price
by bis (11 — 10/20 — 10) = 0.1, while the value for the first requested volume
is (1 —(5—1/5—1) = 0. The total value for the offered contract is the sum of
the weighted values for each individual issue (namely, 0.8%0.140.2*0=0.08). By
the same reasoning, the value of the second contract from b is 0.55. Since the
rational action is to maximize utility, a prefers the second contract offered by b.

4.2.2 Agents and Roles

In service-oriented negotiations, agents can undertake two possible roles that
are, in principle, in conflict. Hence, for notational convenience two subsets of
agents are distinguished 4, Agents = ClientsU Servers. Roman letters are used
to represent agents; ¢, ¢, ¢z, . . . will stand for clients, s, s1, 82, . .. for servers and
a,ai,b,d,e,... for non-specific agents.

In general, clients and servers have opposing interests, e.g. a client wants
a low price for a service, whereas the potential servers attempt to obtain the
highest price. High quality is desired by clients, but not by servers, and so
on. Note that roles carry information. Thus, whereas an agent may not know
the exact type of the other agent (its preferences), it can reasonably assume
the direction of change of the preferences of the other, according to its role.
For example, increasing offers for the value of price are valued less by a buyer
and more by a seller. Therefore, in the space of negotiation values, negotiators
represent opposing forces in each one of the dimensions. In consequence, the
scoring functions verify that given a client ¢ and a server s negotiating values for
issue j, then if z; > y; then (VF(z;) > Vi(y;) iff Vi (z;) < V{7(y;)). However,
in a small number of cases the clients and service providers may have a mutual
interest for a negotiation issue. For example, Raiffa cites a case [Raiffa, 1982,

4The subsets are not disjoint; an agent can participate as a client in one negotiation and
as a service provider in another.
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pg. 133-147] in which the Police Officers Union and the City Hall realize, in the
course of their negotiations, that they both want the police commissioner fired.
Having recognized this mutual interest, they quickly agree that this course of
action should be selected. Thus, in general, where there is a mutual interest,
the variable will be assigned one of its extreme values. Hence, these variables
can be removed from the negotiation set. For instance, the act of firing the
police commissioner can be removed from the set of issues under negotiation
and assigned the extreme value “done”.

4.2.3 Iteration of Offers: Threads

Once the agents have determined the set of variables over which they will ne-
gotiate (possibly using the issue-manipulation protocol, section 4.1.2), the ne-
gotiation process between two agents (a,b € Agents) consists of an alternate
succession of offers and counter offers of values for these variables (figure 4.1).
This continues until an offer or counter offer is accepted by the other side or one
of the partners terminates negotiation (e.g. because the time deadline is reached
without an agreement being in place). Negotiation can be initiated by clients or
Servers.

The vector of values proposed by agent a to agent b at time ¢ is represented
as z!_,, and the value for issue j proposed from a to b at time ¢ by z__,[j].
For convenience, the model assumes that there exists a common global time
(the calendar time) represented by a linearly ordered set of instants, namely
Time, and a reliable communication medium introducing no delays in message
transmission (so transmission and reception times are identical). The common
time assumption is not too strong in application domains where offer and counter
offers frequencies are not high.

Definition 4 A Negotiation Thread between agents a,b € Agents, at time
tn, € Time, noted Xéj_,b, is any finite sequence of length n of the form
(s

bomiz al ) with t,te ... < t, where:

1. t;41 > t;, the sequence is ordered over time,

2. For each issue j, ¢ _,[j] € D%, where D} = [min?,max?] for quantitative
issues, ;cztfab] € D;? with i = 1,3,5,..., and optionally the last element of
the sequence is one of the particles {accept, withdraw}.

A negotiation thread is active at time t,, if last(XZj_)b) ¢ {accept,withdraw},

where last() is a function returning the last element in a sequence.

An offer is assumed to be valid (that is, the agent that uttered it is commit-
ted) until a counter offer is received. If the response time is relevant, it can be
included in the set of issues under negotiation. For notational simplicity, it is
assumed that t; corresponds to the initial time value, that is #; = 0. In other
words, there is a local time for each negotiation thread, that starts with the
utterance of the first offer.
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4.3 Responsive and Deliberative Mechanisms

The negotiation and issue protocols, described in section 4.1, do not prescribe
an agent’s behaviour; an agent is free to instantiate any valid traversal path
according to its strategy. In the next section the wrapper decision architecture
is presented, which once instantiated by a negotiating agent designer, assists
an agent in performing off-line computations about the decisions involved in
negotiation.

As mentioned in section 2.2.4, agents need to address the following evaluatory
and offer generation decision problems: what initial offers should be sent out?,
what is the range of acceptable agreements?, what counter offers should be
generated?, when should negotiation be abandoned? and when is an agreement
reached? These decision problems are formally addressed in this chapter by
developing a generic model of negotiation for the wrapper.

The offer generation components (or what is referred to as the mechanisms) of
the architecture are distinguished from one another by the following properties:

1. the computational and informational cost the mechanism incurs on the
agent

2. the social benefit of the mechanism for the community of agents that are
negotiating

The first property is a feature which distinguishes this work from many of
the game theory models. The provisioning of a service is a real time process.
Thus services are required within tight scheduling windows and a negotiation
mechanism must respect the agent’s time limits. Furthermore, negotiation is
only a single element of the agent’s deliberations. Other agent modules need
deliberation resources. Therefore, the negotiation wrapper must not consume
too much of the agent’s resources. Agents are also informationally, as well as,
computationally bounded.

The second property relates to the concern for the design of a mechanism
that achieves some measure of social (or global) welfare from local processing.
Using these properties, different mechanisms can be distinguished that are con-
cerned with the individual utility of the outcomes without concern for the social
welfare, and ones that produce outcomes that are both individually and jointly
preferred by the agents. For example, if a deal is required very soon then nego-
tiation between the IPCA and SPA agents is driven by concern for a deal that
is perhaps not socially optimal but one that is agreeable by both agents. On the
other hand, for reasons of global goodness (or social welfare) of the system, if
there is time to negotiate then the same negotiation between the IPCA and a
SPA may involve both agents searching for deals that are not only individually
rational, but may also be beneficial to the other agent. Additionally, in compar-
ison to the former search, the latter search is likely to be more computational
and informationally costly.

Given these properties, three mechanisms have been developed, namely re-
sponsive, trade-off and issue manipulation mechanisms, which differentially im-
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plement these properties. Figure 4.6 describes the execution model of the agent’s
reasoning during negotiation. Given the negotiation deadline (t%,,.), the oppo-
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Figure 4.6: Functional View of the Agent Architecture.

nent’s last offer (z}_,,) and the agent’s last offer (z°~),) the responsive and

trade-off mechanisms simultaneously compute a new offer (z*_,,) while the is-
sue manipulation mechanism may generate a new set of negotiation issues. The
mechanism’s evaluatory component ([7¢sponsive ftrade—off pissue—man ip figyre
4.6) then makes the decision to either accept (accept) or reject (withdraw) the
opponent’s last offer z¢_, ,, or offer the opponent a new contract (:cfll _,p) in the
case of responsive and trade-off mechanisms or a new set of issues ({S}) in the
case of issue-manipulation. The final choice of which mechanism’s suggestion
to offer is handled by the meta-strategy module (section 4.7). The processes
involved in each mechanism are described next.

4.4 The Responsive Mechanism

Responsive mechanisms generate offers and counter offers through linear combi-
nations of simple functions, called tactics. Tactics generate an offer, or counter
offer, for a single component of the negotiation object (or issue) using a sin-
gle criterion (time, resources or the behaviour of other agents). These criteria
are motivated by an agent’s computational and informational boundedness. For
example, the time limits and the resources used in negotiation so far, directly
constrain the granularity of the search for an outcome. With increasing time
limits or on-line costs, an agent may prefer deals of lower score than ones that
are higher in score but which may be unattainable given the time and resource
constrains. Likewise, uncertainty of others can in the simplest way be handled
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by reproducing other’s behaviour [Axelrod, 1984]. A more sophisticated uncer-
tainty handling methodology is presented later, but the reproduction of others’
behaviour has proven to be a highly successful, and computationally simple, in-
teraction strategy [Axelrod, 1984]. Different weights in the linear combination
allow the varying importance of the criteria to be modeled. For example, when
determining the values of an issue, it may initially be more important to take
into account the other agent’s behaviour than the remaining time. In which
case, the tactics that emphasize the behaviour of other agents will be given
greater precedence than the tactics which base their value on the amount of
time remaining.

However, agents need to monitor and be responsive to their changing envi-
ronment. Therefore, to achieve flexibility in negotiation, the agents may wish
to change their ratings of the importance of the different criteria over time. For
example, remaining time may become correspondingly more important than the
imitation of the other’s behaviour as the time by which an agreement must be
in place approaches. This modifying behaviour is referred to as a strategy and
it denotes the way in which an agent changes the weights of the different tactics
over time. Thus, strategies combine tactics depending on the history of negoti-
ations and the internal reasoning model of the agents, and negotiation threads
influence one another by means of strategies (see section 4.4.3).

4.4.1 Evaluation Decisions

When agent a receives an offer from agent b at time ¢, xi _,, (represented as y
in figure 4.6), it has to rate the offer using its scoring function. If the value of
Vea(zt_,,) is greater than the value of the counter offer agent a is ready to send
at the time ' when the evaluation is performed, that is z%_,, with #' > t (¢’ >y
in figure 4.6), then agent a accepts. Otherwise, the counter offer is submitted by
the mechanism to the meta-strategy component. Expressing this concept more
formally:

Definition 5 Given an agent a and its associated scoring function V*, a's in-
terpretation (1) at time t' of an offer zt_,  sent at time t < t', is defined
as:

withdraw(a,b) Ift' > t% e

Lo (§ af ) = 3 aceept(a,b,xh ) Ve(a),) 2 V()
offer(a,b,zt ;)  otherwise
where xt_, is the contract that agent a would offer to b at the time of the

interpretation and t%, ... is a constant that represents the time by which a must

have completed the negotiation.

The result of I7esPonsive (¢! gl . ) is one of the primitives specified in the nego-
tiation protocol (figure 4.1 section 4.1.1). The primitive offer is used to extend

the current negotiation thread between the agents with a new offer z% ., (¢
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in figure 4.1). The primitives accept and withdraw terminate the negotiation.
The evaluation function can also be viewed as representing the goal-test func-
tion of section 2.2.8 that evaluates whether a goal state has been reached or not
(an agreement in the form of cross-over in offers). This interpretation formula-
tion also allows modeling of the fact that a contract unacceptable today can be
accepted tomorrow merely by the fact that time has passed.

4.4.2 Offer Generation Decisions—Tactics

In order to prepare a counter-offer, xf; _p, agent a uses a set of simple functions
called tactics, that generate new values for each variable in the negotiation set.

The following families of tactics have been developed:

1. Time dependent. If an agent has a time deadline by which an agreement
must be in place, these tactics model the fact that the agent is likely to
concede more rapidly as the deadline approaches. The shape of the curve
of concession, a function depending on time, is what differentiates tactics
in this set.

2. Resource dependent. These tactics model the pressure in reaching an
agreement that the limited resources—e.g. remaining bandwidth to be al-
located, money, or any other—and the environment—e.g number of clients,
number of servers or economic parameters—impose upon the agent’s be-
haviour. The functions in this set are similar to the time dependent func-
tions except that the domain of the function is the quantity of resources
available instead of the remaining time.

3. Behaviour dependent or Imitative. In situations in which the agent is
not under a great deal of pressure to reach an agreement, it may choose
to use imitative tactics to protect itself from being exploited by other
agents. In this case, the counter offer depends on the behaviour of the
negotiation opponent. Another function of this tactic family is to provide
default behaviours when there is uncertainty about what action to take
(see section 2.2.6). The imitation of others’ behaviour can thus serve as
a default action when an agent is uncertain about what to do next. The
tactics in this family differ in which aspect of their opponent’s behaviour
they imitate and to what degree the opponent’s behaviour is imitated.

This set of tactics is motivated by the domain characteristics of many types
of problems mentioned in section 1.4.3, where the time and resources of an
agent and the behaviour of other agents are key features. Unlike the models
of chapter three, these tactics explicitly motivate rationales for concessions or
demands, based on a number of environmental and behavioural characteristics.
They determine how to compute the value of an issue (price, volume, duration,
quality, ...), by considering a single criterion (time, resources, ...). The set of
values for the negotiation issue are then the range of the function and the single
criterion is its domain.
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Given that agents may want to consider more than one criterion to compute
the value for a single issue, the generation of counter proposals is modeled as a
weighted combination of different tactics covering the set of criteria. The values
so computed for the different issues will be the elements of the counter proposal.
5 For instance, if an agent wants to counter-propose taking into account two
criteria: the remaining time and the previous behaviour of the opponent, it
can select two tactics: one from the time dependent family and one from the
imitative family. Both of these tactics will suggest a value to counter propose
for the issue under negotiation. The actual value which is counter proposed will
be the weighted combination of the two independently generated values.

To illustrate these points consider the following example. Given an issue
Jj, for which a value is under negotiation, an agent a’s initial offer corresponds
to a value in the issue’s acceptable region, (i.e in [min?,max?]). For instance,
if a's range is [£0, £20] for the price p to pay for a good, then it may start
the negotiation process by offering the server £10 —what initial offer should be
chosen is something the agent can learn by experience. The server, agent b, with
range [£17, £35] may then make an initial counter-offer of £25. With these two
initial values, the strategy of agent a may consist of using a (single criterion) time
dependent tactic which might make a reasonably large concession and suggest
£15 since it does not have much time in which to reach an agreement. Agent b, on
the other hand, may chose to use two criteria to compute its counterproposal—
e.g a time dependent tactic (which might suggest a small concession to £24 since
it has a long time until the deadline) and an imitative tactic (which might suggest
a value of £20 to mirror the £5 shift of the opponent). If agent b rates the time
dependent behaviour three times as important as the imitative behaviour, then
the value of the counter-offer will be (0.75%24) 4 (0.25x20) = £23. This process
continues until the agents converge on a mutually acceptable solution. The
origin, and subsequent evolution of these relative weightings may be the result
of expert domain knowledge, experience derived from previous negotiation cases,
or conditional on other factors.

It should be noted that not all tactics can be applied at all instants. For
instance, a tactic that imitates the behaviour of an opponent is only applicable
when the opponent has shown its behaviour sufficiently. For this reason, the
following description of the tactics pays particular attention to their applicability
conditions.

Time Dependent Tactics

In these tactics, the predominant factor used to decide which value to offer next
is time, t. Thus these tactics consist of varying the acceptance value for the
issue depending on the remaining negotiation time (an important requirement
in the target problem domains—section 1.4.3), modeled as the above defined
constant t2 ... The initial offer is modeled as being a point in the interval of

values of the issue under negotiation. Hence, agents define a constant £$ that

5Values for different issues may be computed by different weighted combinations of tactics.
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when multiplied by the size of the interval, determines the value of issue j to be
offered in the first proposal by agent a.

The value to be uttered by agent a to agent b for issue j is modeled as the
offer at time ¢, with 0 < ¢ < 7., by a function o} depending on time as the
following expression shows:

2t = { ming + af (t)(maz§ — ming) If V* is decreasing

a—b min} + (1 — af(t))(maz — ming) If V;* is increasing
A wide range of time dependent functions can be defined simply by varying
the way in which a$(?) is computed. However, functions must ensure that
0 < aj(t) <1, af(0) = &} and af(t},,,) = 1. That is, the offer will always
be between the value range, at the beglnmng it will give £} as a result and when
the time deadline is reached the tactic will suggest to offer the reservation value®.
Two families of functions with this intended behaviour are distinguished: poly-
nomial and exponential (naturally, others could also be defined). Both families
are parameterized by a value 8 € IRT that determines the convexity degree (see
Figure 4.7) of the curve. These two families of functions were chosen because
of the very different way they model concession. For the same large value of 3,
the polynomial function concedes faster at the beginning than the exponential
one, then they behave similarly. For a small value of 3, the exponential function
waits longer than the polynomial one before it starts conceding:

¢ Polynomial: of(t) = &% + (1 — ﬁ?)(%)%

min(t,t
¢ Exponential: af(t) = e(l_w)ﬁlnn

In comparison to Kasbah (section 3.2.9) that only models three offer generation
functions, these families of functions represent an infinite number of possible
tactics, one for each value of 5. However, to better understand their behaviour
they are classified, depending on the value of 3, into two extreme sets showing
clearly different patterns of behaviour. Other sets in between these two could
also be defined:

1. Boulware 7 tactics [[Raiffa, 1982], pg. 48]. Either exponential or
polynomial functions with 8 < 1. This tactic maintains the offered value
until the time is almost exhausted, whereupon it concedes up to the reser-
vation value®. The behaviour of this family of tactics with respect to 8 is

6The reservation value for issue j of agent a represents the value that gives the smallest

score for function V“ The function V“ depends on the reservation value for agent a and issue
j—the range [mm] maz?]. If V2 is monotomcally increasing, then the reservation value is
mm;l, if it is decreasing tile reservation value is maz%.

"Lemuel Boulware was a vice-president of the General Electric Company, who rarely made
concessions in wage negotiations. His strategy was to start with what he deemed to be a fair
opening bid and held firm throughout the negotiations.

8Besides the pattern of concession that these functions model, Boulware negotiation tactics
presume that the interval of values for negotiation is narrow. Hence, when the deadline is

reached and a(t%,,,) = 1, the offer generated is not substantially different from the initial one.
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easily understood taking into account that limg_,o+ e
e 1

k¢ and limg o+ 59 + (1 — k) (MR tmas) )5 = 2.

The Boulware tactics can be selected as a technique to handle uncertainty

(see section 2.2.6); when others’ preferences are unknown, then one pos-

sible strategy is to remain firm and demand the same throughout the
negotiation.

. Conceder [[Pruitt, 1981], pg. 20]. Either exponential or polynomial
functions with 8 > 1. The agent quickly goes to its reservation value. For

: a
(1— m"‘nt(‘?tmam))ﬁ In N?

maz

similar reasons as before, we have limg_,; €
; min(ttn o)\ 5 _
11m5_>+00 K/‘? + (]. - H?)(ﬂi)ﬁ =1.

max

=1 and

Resource-dependent tactics are similar to the time dependent ones. Indeed,
time dependent tactics can be seen as a type of resource dependent tactic in
which the sole resource considered is time. Whereas time vanishes constantly
up to its end, other resources may have different patterns of usage. Time and
resource dependent tactics are also similar in that they are both an attempt to
model bounded rationality (see section 2.2.8), in that they attempt to generate
successful outcomes given the available information and computational resources.
Resource dependent tactics are modeled in the same way as time dependent ones;
that is, by using the same functions, but by either: i) making the value of ¢%

max
dynamic or ii) making the function « depend on an estimation of the amount of

a particular resource.
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Dynamic Deadline Tactics

The dynamic value of ¢%,,. represents a heuristic about the quantity of resources
that are in the environment. The scarcer the resource, the more urgent the
need for an agreement. In the target application domains, the most important
resource to model is the number of agents negotiating with a given agent and how
impatient they are to reach agreements. On one hand, the greater the number
of agents who are negotiating with agent a for a particular service s, the lower
the pressure on a to reach an agreement with any specific individual. While on
the other hand, the longer the negotiation thread, the greater the pressure on a
to come to an agreement. Hence, representing the set of agents negotiating with
agent a at time t as: N%(t) = {i|X},,,is active}, the dynamic time deadline for
agent a is defined as:
o IN*@®)?

a —

fmas = 1S X ]
where p® represents the time agent a considers reasonable to negotiate with a
single agent and |X},,,| represents the length of the current thread between i
and a. Notice that the number of agents is in the numerator, so quantity of time
is directly proportional to it, and averaged length of negotiation thread is in the

denominator, so quantity of time is inversely proportional to it.

Resource Estimation Tactics

The resource estimation tactics generate counter-offers depending on how a par-
ticular resource is being consumed. Resources could be money being transferred
among agents, the number of agents interested in a particular negotiation, and
also, in a similar way as before, time. The required behaviour is for the agent to
become progressively more conciliatory as the quantity of resource diminishes.
The limit when the quantity of the resource approaches nil is to concede up to
the reservation value for the issue(s) under negotiation. When there is plenty of
resource, a more Boulware behaviour is to be expected. Formally, this can be
modeled by having a different computation for the function a:

— - “(t
a?(t) — KZ? + (1 _ Ii;)@ resource®(t)

where the function resource®(t) measures the quantity of the resource at time ¢
for agent a. Examples of functions are:

o resource®(t) = |[N°(t)]

_ e N
e resource®(t) = :“am

e resource®(t) = min(0,t — t%,,.)

In the first example, the number of negotiating agents is the resource. That is,
the more agents negotiating the less pressure to make concessions. The second
example models time as a resource in a similar way as in the previous section.
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The more agents, the less pressure, and the longer the negotiations the more
pressure. Finally, the last case also models time as a resource, but in this case
the quantity of resource decreases in a linear fashion with respect to time.

Behaviour Dependent Tactics

This family of tactics compute the next offer based on the previous attitude of
the negotiation opponent. These tactics have proved important in co-operative
problem-solving negotiation settings [Axelrod, 1984], and so are useful in a sub-
set of the problem contexts (see Section 1.4.3). Like Boulware tactics, these
tactics can also be selected for as a technique for handling uncertainty. How-
ever, whereas Boulware tactics handle the uncertainty of strategic interaction
by ignoring the behaviour of the opponent, these tactics condition their actions
on the observed behaviour of the other(s).

The main difference between the tactics in this family is in the type of im-
itation they perform. One family imitates proportionally, another in absolute
terms, and the last one computes the average of the proportions in a number of
previous offers. Hence, given a negotiation thread

tn—2s ,tn—2641 tn—25+2 tn—2 _tn—1
{ b—a ' Ta—rb »Yb—a 1o Tpg a—>b7$b—>a}

with § > 1, the following families of tactics are distinguished:

1. Relative Tit-For-Tat: The agent reproduces, in percentage terms, the
behaviour that its opponent performed é > 1 steps ago. The condition of
applicability of this tactic is n > 24.

tn
Ty e 1] gl
1_271_):54_2[] a%b

ot .
z,"% 7] = min(mazx(

[7], minj), maz})

2. Random Absolute Tit-For-Tat: The same as before but in absolute
terms. This means that if the other agent decreases its offer by £2, then
the next response should be increased by the same £2. Moreover, a com-
ponent is added which modifies that behaviour by increasing or decreasing
(depending on the value of parameter s) the value of the answer by a ran-
dom amount. This random element is introduced to enable the agents to
escape from a loop of non-improving contract offers, or a local minima in
the social welfare function (meaning that the contracts being exchanged
have the same utility to both agents). M is the maximum amount by which
an agent can change its imitative behaviour. The condition of applicability
is again n > 24.

ot . - .
ajé[J] mm(ma:c( aab[ﬂ]"‘( 25[.7] a:Hz ])+

(=1)°R(M), min$), maz})

where
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_J 0 It V{ is decreasing
T\ 1 If Vis increasing

and R(M) is a function that generates a random value in the interval
[0, M].

3. Averaged Tit-For-Tat: The agent computes the average of percentages
of changes in a window of size v > 1 of its opponents history when deter-
mining its new offer. When v = 1 the behaviour is similar to the relative
Tit-For-Tat tactic with § = 1. The condition of applicability for this tactic

isn > 2v.
tn—2'y .
tn . . x Il tn—1y- .
w13 = min(mas (222t ], ming), masf)
b—a

Different tit-for-tat tactics were designed to empirically evaluate, similar to
the tournament games of Axelrod [Axelrod, 1984], the relative success of different
manners in reproducing behaviour of others.

4.4.3 Strategic Reasoning—Strategies

The aim of agent a’s negotiation strategy is to determine the best course of
action (see section 2.2.4) which will result in an agreement on a contract z while
keeping V'* as high as possible. However, maximization of the scoring function
(a task of the wrapper) must consider changes in the agent’s environment. This
task-environment coupling is needed because an agent’s behaviour should change
as the environment changes (hence the name responsive for the mechanism). In
practical terms, this equates to how to prepare a new counter offer, taking into
consideration a number of ever changing factors.

In the model, an agent has a representation of its mental state containing in-
formation about its beliefs, its knowledge of the environment (for example, time
or resources), and any other attitudes (desires, goals, obligations or intentions)
the agent designer considers appropriate?. The mental state of agent a at time
t is noted as M St. The set of all possible mental states for agent a is denoted
as MS,.

When agent a receives an offer from agent b, it becomes the last element in
the current negotiation thread between the agents. If the offer is unsatisfactory,
agent a generates a counter offer. As discussed earlier, different combinations of
tactics can be used to generate counter offers for particular issues. An agent’s
strategy determines which combination of tactics should be used at any one in-
stant (this concept is similar to the concept of mixed strategies in game theoretic
models [Gibbons, 1992]).

9There is no prescription of a particular mental state, but rather this work aims towards
an architecturally neutral description to ensure maximum generality for the model.
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Definition 6 Given a negotiation thread between agents a and b at time t,,

X'n.,, over domain D = Dy x...x Dy, with last(X'7,,) = zi", , and a finite set

of m tactics'® T* = {r;|r; : MSq = D}icp1,m)], o weighted counter proposal,

:ci"j;, is a linear combination of the tactics given by a matriz of weights I’Z"j;
Y1 M2 oo Vim
Ft"“ B Y21 VY22 .- V2m
a;}b - . . . .
Y1 VYp2 .-+ Ypm

defined in the following way:

wty ] = (T3 * T (M S +)) [, 4]
where (T*(MSe+' )i, j] = (r(MSZ )], vji € [0,1] and for all issues 7,
2?;1 Yis = 1.

The weighted counter proposal extends the current negotiation thread as
follows (e is the sequence concatenation operation):

tn tn tn
Xa(—j-bl = Xa(—)b * xa—t;
Many-party negotiations are modeled by means of a set of interacting negotiation
threads. The way this is done is by making a negotiation thread influence the
selection of which matrix I' is to be used in other negotiation threads. Thus,

Definition 7 Given a,b € Agents, o Negotiation Strategy for agent a is
any function f such that, given a’s mental state at time t,,, M Si», and a matriz
of weights at time t,, FZ’;,), generates a new matriz of weights for time t,y1,
i.e.

Ftn+1 _ f (Ftn

a—b a—b?

MSt) (4.2)

A simplistic example of the application of the model would be to have a matrix
T built up of Os and 1s and having T“t!, =T? , for all ¢. This would correspond
to using a fixed single tactic for each issue at every instant in the negotiation.
Consider another example of when a weighted combination, as opposed to binary
and static weighting, could be useful. The example involves negotiation between
the VC (Vet Customer agent) and the C'SD (Customer Service Department
agent) for the Vet_Customer service, taken from the ADEPT application (sec-
tion 1.4.1). For simplicity assume that there is only a single issue, the price
of the service. Further assume that both agents are currently under no time
pressure to reach an agreement. Given these conditions then both agents may
begin negotiation by assigning a value of 1 to the Boulware tactic and 0 to all

10This definition uses the natural extension of tactics to the multi-dimensional space of
issues’ values.
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others. However, after the exchange of a number of offers and an increase in time
pressure to reach a deal, one (or both) of the agent(s) may begin to reduce the
weighting of the Boulware tactic and begin to place higher weighting on the Con-
ceder tactic (believing that concession may result in an agreement being reached
sooner rather than later in the negotiation). This example informally shows the
usefulness of strategies in modeling a smooth transition from a behaviour based
on a single tactic (e.g. Boulware, because the agent has plenty of time to reach
an agreement) to another one (e.g. Conceder, because time is running out).
Smoothness is obtained by changing the weights affecting the tactics progres-
sively (e.g. from 1 to 0 and from 0 to 1 in the example). The current model has
been extended to include the evolution of strategies [Matos et al., 1998].

4.4.4 Functional Architecture of the Responsive Mecha-
nism

The above model is a generic description of the components of the responsive
mechanism. It is generic because there can be an infinite number of tactics (and
their corresponding strategies)—the model does not commit to any particular
agent architecture by specifying that an agent’s decision mechanism should be
described through N tactics and their corresponding strategies. However, for
practical purposes agent architectures are needed that commit to a concrete
instantiation, and follow from, this generic model. A responsive agent archi-
tecture has been developed to empirically evaluate the behaviour of different
tactics and strategies (described in the next chapter), and which can be used
as the responsive mechanism component of the negotiation wrapper shown in
figure 1.1.

The overall architecture of this responsive mechanism is shown in figure 4.8.
The boxes labeled Ezpo/Poly, resource and tit-4-tat represent the time, resource
and behaviour dependent tactics respectively. The unfilled ovals represent the
input parameters into both the tactics and, possibly, the strategy. The latter
inputs are the possible set of inputs because in the formal model nothing is said
about the actual mental state of the agent. The output of each tactic (the of-
fer suggested by each tactic, represented as x},, ., x}, for the contract offer
suggested by the time, resource and behaviour dependent tactics respectively)
is represented as filled ovals. The agent’s strategy then modifies the weights
attached to each tactic (represented by boxed ovals, labeled wiq, w,q and wpq,
for weights of the time, resource and behaviour dependent tactics respectively).
The final offer, filled oval labeled z', is then computed as the summation of in-
dividual offers from the tactics, after being modified by their strategy selected
weights, represented as the x+ operation. The value of this final offer, repre-
sented as filled oval labeled V' ('), is computed as the linear sum of all the issue’s
weighted values, represented by the box +w; *V(z}). The responsive mechanism
was developed as a set of simple functions that solves the decision making prob-
lems of an agent given its limited information and computational capabilities.
The decision mechanism of the wrapper was then extended by two more com-
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tit-4-tat @

Figure 4.8: Functional View of the Responsive Mechanisms. Ovals depicts data
structures, boxes processes, and arrows, flow of information

plex (deliberative) mechanisms, namely an issue trade-off mechanism (section
4.5.2) and an issue manipulation mechanism (section 4.6). These deliberative
mechanisms are discussed next.

4.5 The Trade-off Mechanism

The responsive mechanism implements an iterated search for a contract with a
value that is acceptable to both parties. The mechanism can be used to model
iterative concession over the score of the contract by an agent (based on a number
of environmental factors, such as the deadline or the amount of computational
resources used), until a point of intersection (or what will be referred to as a cross
over of offers) occurs between the value of the offered contract and what the agent
is about to offer. Although this mechanism proved useful in a number of real-
world applications [FIPA97, 1997, Jennings et al., 2000a], cross over evaluation
is inefficient in that it fails to find joint gains, reaching outcomes that lie closer
to the pareto-optimal line [Gibbons, 1992]. In particular, the mechanism cannot
discriminate between contracts that have different scores for the issues, but which
have the same overall score [Corfman and Gupta, 1993]. Therefore, possible
joint gains are missed. To improve the efficiency of the outcome, while respecting
the information and computational constraints, a trade-off mechanism has been
designed that searches for potential joint gains. The interpretation component of
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this mechanism is described first in section 4.5.1 followed by the offer generation
mechanism in section 4.5.2.

4.5.1 Trade-off Mechanism Evaluation

The evaluation of a contract from the trade-off mechanism perspective involves:

withdraw(a, b) Ift>1,.,
rirade-offy ot ) =3 accept(a,b,al,,)  EV(a),) > Vel
trade-off(a, b,z _,,) otherwise

where the content of the primitive trade-off (a:g _p Or ¢ in figure 4.1) is com-
puted by the function given in equation 4.4. Note the similarity between the
trade-off and responsive mechanism (section 4.4.1) evaluation function. In both
interpretations, negotiation terminates unsuccessfully for the same reason; when
the end time of the negotiation has been reached. However, the interpretation
functions do differ. Negotiation terminates successfully in the responsive mech-
anism when the value of the offered contract is higher than the one the agent
is about to send out (xtl). Negotiation terminates successfully in the trade-off
mechanism when the value of the offered contract is higher than the previous
offer of the agent (z!~1). This is because, as will be shown, the trade-off mech-
anism can only hill-climb (in utility landscape) in the direction of higher utility
for the agent performing the trade-off. Therefore, the offered contract, from the
other agent, has to have a lower utility to the agent performing the trade-off.
Likewise, any mechanism must respect the time deadlines of negotiation. As will
be shown in this section, the real difference between the two interpretations are
the mechanisms involved in generating the primitives offer and trade-off.

In spite of the similarities between responsive and trade-off interpretations
(and as will be shown below in section 4.6.1) the evaluation components of each
mechanism are functionally separated from one another (see figure 4.6). This
separation of concerns between the interpretation component of each mechanism
and its respective offer generation component allows differential and modular
reasoning interpretation policies to be adopted for each mechanism according to
the requirements of the agent designer.

4.5.2 Trade-off Mechanism Offer Generation

In the responsive mechanism, agents propose a series of contracts that have
diminishing score to themselves. However, in choosing to make a trade-off nego-
tiation action an agent is seeking to find a contract that has the same score as its
previous proposal, but which is more acceptable to (has higher score for) its ne-
gotiation opponent. Therefore, when an agent implements a trade-off mechanism
it behaves as though it is motivated to search for types of outcomes that increase
joint gains. The next section presents the developed solution to the problem of
how to reason about “more acceptable” contracts given the uncertainty of the
opponent’s preferences.
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Fuzzy Similarity

The computation involved in making a trade-off over issues in negotiation is
likely to be more costly than the simple responsive mechanisms described above.
However, an agent may be cooperatively motivated to increase the joint gains
over an outcome given the costs involved. For example, two agents can engage
in a more elaborate search of the space of possible outcomes if one or both are
under no time pressures to reach an agreement soon. Furthermore, the trade-off
mechanism must select a contract that increases the likely score of the opponent,
given that the agent does not know its preferences. This means that the agent
(call this a) in negotiation with another agent (call this b) must be provided
with a mechanism to:

1. select a subset of contracts all of which have the same utility as a’s previous
offer x

2. select from this subset a contract (z') that agent a believes (represented
by the predicate B?) is most preferable by b over z

That is, B*(Vy(z') > Vi(z)) and Vy(z) = V4(z'). It therefore follows from the
combination of this belief and the fact that agent a believes the proposition
B*(V(z") + Vi (2') > Vo(z) + Vi(x)) (2' increases the joint utility). The prob-
lem being addressed in this section is how to model the agent’s uncertain belief
(predicate B?) in the second step of the mechanism’s operation. A number of
alternatives were considered (section 2.2.6) and the solutions from game theory
(section 3.1.6) enumerates the various possible choices in modeling uncertainties.
Computing conditional probabilities and formulating subjective expected utility
appears a reasonable methodology for handling the uncertainties involved. How-
ever, as noted in section 2.2.6, the approach is problematic. Firstly, assigning
prior probabilities is practically impossible for the types of problems addressed
here (where there can be an infinitely large set of outcomes and the outcome set
itself can change dynamically in the course of negotiation through the inclusion
and retraction of issues). Even if assigning prior probabilities was practically
achievable for interactions that are repeated (hence permitting the use of prob-
ability update mechanisms such as Bayes rule [Russell and Norvig, 1995]), the
same is not true for encounters in an open system—the prior probabilities may
simply be wrong, exacerbated by the one-off nature of encounters, preventing
the update of prior distribution. Secondly, as mentioned previously, the for-
mulation of decisions based on subjective expected utility introduces the silent
out-guessing problem—the agent designer’s choice of probabilities is based on
guesses about the probable choices of others, whose choice in turn is dependent
on the guesses about the probable choices of the first.

Therefore a solution is sought that is simple and applicable to types of prob-
lems present in both closed and open systems. The heuristic employed in this
thesis is not to directly model the likely choice of the other, but rather, to select
the contract that is most “similar” or “close to” to the opponent’s last proposal
(since this may be more acceptable to the opponent). That is, the heuristic mod-
els the domain and not the other agent. The agent can then use this domain
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model to induce the possible default preferences of the other. For example, if the
seller has demanded a payment of £20 for a service then a client of the service
can heuristically assume that the seller will prefer an offer of £18 to £10 because
the former is closer, or more similar, than the latter to the initial demand by
the seller.

The concept of fuzzy similarity can be used to compute similarity
[Zadeh, 1971]. This shift in emphasis from the probable choices of others to
the closeness of two contracts means that any theory that makes the same onto-
logical commitments as logic (such as probability theory, where facts are either
true or not and probabilities represent the degree of belief) is inappropriate.
However, when modeling concepts such as closeness, tallness or heaviness a dif-
ferent logic is required that models the degree of truth—a sentence is “sort of”
true. Most people would hesitate to say whether the sentence “Carles is tall” is
true or not, but would more likely say “sort of”. Note, this is not an uncertainty
about the external world (we are sure how tall Carles is), rather it is a statement
about the vagueness or uncertainty over the linguistic term “tallness” or simi-
larity /membership of a class prototype. However, an important point to note is
that the use of fuzzy similarity and probability are not exclusive. Indeed, the
agent can use the heuristic of fuzzy similarity to derive the prior probabilities
of the other’s choices from the domain and then update these prior probabili-
ties in the course of interactions using Bayes rule. Thus, fuzzy similarity can
be used to “bootstrap” decision mechanisms that operate on the basis of choice
distributions.

The next section describes in more detail the notion of similarity and the
developed algorithm for performing such trade-offs.

Trade-offs: A Formal Model

An agent will decide to make a trade-off action when it does not wish to decrease
its aspirational level (denoted ) for a given service-oriented negotiation. Thus,
the agent first needs to generate some/all of the potential contracts for which it
receives the score of . Technically, it needs to generate contracts that lie on the
iso-value (or indifference) curve for 6 [Raiffa, 1982]. An iso-value corresponds to
fixing one of the z or y values in the pair (z,y) in figure 3.1 and then selecting an
iso-value amounts to considering only contracts on that line. Because all these
potential contracts have the same value for the agent, it is indifferent amongst
them. Given this fact, the aim of the trade-off mechanism is to find the contract
on this line that is most preferable (and hence acceptable) to the negotiation

opponent (since this maximizes the joint gain). More formally, an iso-curve is
defined as:

Definition 8 Given an aspirational scoring value @, the iso-curve set at level 0
for agent a is defined as:

1504(8) = {z | V*(z) = 0} (4.3)

From this set, the agent needs to select the contract that maximizes the joint
gain. A trade-off is then defined as:
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Definition 9 Given an offer, z, from agent a to b, and a subsequent counter
offer, y, from agent b to a, with 8 = V*(z), a trade-off for agent a with respect
to y is defined as:
trade-off,(z,y) = arg max {Sim(z,y)} (4.4)
2€i504(0)
where the similarity, Sim, between two contracts is defined as a weighted com-
bination of the similarity of the issues:

Definition 10 The similarity between two contracts x and y over the set of
issues J is defined as:

Sim(z,y) = > _ wiSim;(z;,y;) (4.5)
JjEJ

with > jeswj =1 and Sim; being the similarity function for issue j. These
weights may represent the level of importance the agent believes the opponent
places on issues. For example, an oil company negotiator, in negotiation with an
ecologist, may safely assume that the pollution risks are weighted more impor-
tantly by an ecologist than the oil production costs when reasoning about what
deal to offer.

Following the results from [Valverde, 1985], a similarity function that sat-
isfies the axioms of reflexivity, symmetry, and t-norm transitivity can always
be defined as a conjunction (modeled, for instance, as the minimum) of ap-
propriate fuzzy equivalence relations induced by a set of criteria functions
hi. In fuzzy set theory, t-norm, or triangular norms, play a central role by
providing generic models for intersection and union operations on fuzzy sets
[Pedrycz and Comide, 1998]. A criteria function is a function that maps val-
ues from a given domain into values in [0,1]. Correspondingly, the similarity
between two values for issue j, Sim;(z;,y;) is defined as:

Definition 11 Given a domain of values Dj;, the similarity between two values
Tj,Y; € D]' 18:

Simj(zj,95) =\ (hi(z;) & hi(y;)) (4.6)
1<i<m
where {h1,...,hm} is a set of comparison criteria with h; : Di — [0,1] and

¢ is an equivalence operator. Concrete criteria functions are given in section
5.4.1 and 1— | h(z;) — h(y;) | is used as the equivalence operator (since this is a
straightforward measure of the absolute distance between two points).
Consider the example of colours in order to illustrate the modeling of similar-
ity in a given domain. D gours = {yellow, violet, magenta, green, cyan,...}. In
order to model how ‘similar’ two given colours are, different perceptive criteria
can be considered. For instance, there are ‘warm’ colours and ‘cold’ colours.
With respect to this criterion, yellow and orange are more similar that yellow
and violet. Related to the ‘warmness’ of colours, Newton [Newton, 1972] estab-
lished in 1666 the proportionality factors between colours that determine which
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should be the size of painted surfaces in order to be in perceptual equilibrium.
For instance, yellow has luminosity 9 and violet luminosity 3. This means that
if we paint two squares, one in yellow and one in violet, their surfaces have to be
in relation 1 to 3 in order for the result to be in ‘equilibrium’, that is, the yellow
square must be one third of the violet square in size. Another relevant perceptual
criterion of colours is their visibility. There are various physiological character-
istics of the human visual field, distribution of cones and rods, that ensure some
colours are better perceived when moving away than others [Marr, 1982]. Green
is the colour with the worst visibility and yellow and cyan are those with the
best visibility. Other criteria like memory or dynamicity have also been studied.
These criteria can then be used to model the colour example as (functions are
presented extensively as sets of pairs (input, output)):

hy = {(yellow,0.9), (violet,0.1), (magenta,0.1), green, 0.3), (cyan,0.2), ...}

hi = {(yellow,0.9), (violet,0.3), (magenta, 0.6), green, 0.6), (cyan,0.4), .. .}
hy = {(yellow, 1), (violet,0.5), (magenta, 0.4), green,0.1), (cyan, 1),...}

where h¢, by and h, are the comparison functions corresponding to temperature
(warm is 1, cold is 0), luminosity (maximum is 1, minimum 0) and visibility
(again maximum is 1 and minimum 0) respectively. With these functions and
using min as conjunction, the following can be obtained through simple arith-
metic:

SimcolouT (yellowa green) =
min(1— | hi(yellow) — hy(green) |,
1— | hi(yellow) — hy(green) |,
1— | hy(yellow) — hy(green) |)
=min(0.4,0.7,0.1) = 0.1

or,

Simorour (cyan, violet) = min(0.9,0.9,0.5) = 0.5

The Trade-off Algorithm

The trade-off algorithm we consider here is defined over the class of linearly
additive utility functions. We acknowledge that restriction to a linear utility
model limits the applicability of the algorithm. However, we also note that
the assumption of linearity is restricted to the algorithm and not the heuristic
model itself. Tt is perfectly consistent with the heuristic model to design other
trade-off algorithms for other non-linear utility functions (see [?] for non-linear
distributed search algorithms).

This algorithm performs an iterated hill-climbing search in a landscape of
possible contracts. The search starts at the opponent’s offered contract and
proceeds by generating a set of contracts that lie closer to the iso-curve (repre-
senting the agent’s aspiration level). The contract that maximizes the similarity
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to the opponent’s last offering is selected at the end of each iteration. The al-
gorithm repeats, starting from the contract selected at the previous step, until
the iso-curve is eventually reached.

Figure 4.9: Schema of the trade-off algorithm with N =3 and S = 3.

The algorithm is shown schematically in figure 4.9. It starts at contract y,
the opponent’s last offer, and moves towards the iso-curve (the solid marked line
corresponding to the agent’s aspiration level §) associated with x, the agent’s last
offer. This approach to the iso-curve is performed sequentially in S steps (three
in figure 4.9). Each step starts by randomly generating N contracts (three, one
filled and two patterned ovals in figure 4.9) that have a utility E greater than the
contract selected in the last step yJ (or y® = y if it is the first step) for the agent
making the trade-off. Here N is referred to as the number of children. Each new
contract yIt1 so generated satisfies the constraint V(yit1) = V(yd) + E, and
they all have the same utility to the agent making the trade-off (shown as the
dotted line connecting all the children at each step). From the generated child
contracts, the one that maximizes the similarity with respect to the opponent’s
contract y is selected (shown as the filled oval in figure 4.9). This contract then
becomes the parent of the next set of children. E is computed as the overall
difference between the value of x and y divided by the number of steps. That
is, £ = w The overall effect of the algorithm is to sequentially explore
a subset of the possible space of contracts and select for the next step the one
that maximizes the similarity with respect to the other agent’s contract offer.
This search terminates when a contract x' is generated that lies on the iso-curve
of x.
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Figure 4.10 presents the part of the algorithm responsible for generating a
new trade-off contract. This algorithm will thus be invoked N times at each step
in order to compute the best trade-off contract (giving SN calls in total). The
algorithm generates children by splitting the step gain in utility, £, randomly
among the set of decision variables under negotiation.

The algorithm shows only the computations involved in making a single step,
of size F, towards the iso-curve specified by x. It functions as follows. Firstly, the
maximum utility that can be gained for each decision variable, either qualitative
or quantitative, is computed as the difference between the full aspiration of the
agent’s preferences and the utility of the decision variable’s value in the contract
that is being modified V?(y!) (line 1). Note, at the first step of the algorithm’s
iteration, y® will be the opponent’s offered contract. Each weighted individual
utility gain is then summed to determine the overall weighted amount of utility
that can be gained (line 2). Next, because the “consumption” of this utility gain
has a random element (line 5), a degree of tolerance is included to guarantee the
convergence of the algorithm!! (line 3). The process of consumption of the total
available utility (computed in line 2) begins by allowing each decision variable
to consume a random amount (line 5) within the limits of the interval computed
in line 1 for the quantitative decision variables or by randomly selecting one of
the possible finite increments for qualitative decision variables. The store of the
current total amount consumed E,, is then updated as the addition of the old
store and a linear weighted sum of each of the individually consumed utilities
(line 6). The total amount that can be consumed is then recomputed given the
newly consumed amount (line 7). If the amount consumed is less than the total
amount E, the process of consumption continues until the maximum (E or the
step size in figure 4.9) is reached. Finally, the utility gained by each decision
variable is remapped to actual values that correspond to the new utility (line
9). In the case of qualitative decision variables V, '(u) must be interpreted
as a function that selects a qualitative value ¢ € D; that satisfies V;(q) = w.
Given that we assume a partial order we may have more than one value ¢ with
valuation u. If this is the case, we chose one randomly. The algorithm guarantees
by construction that there is at least one qualitative value with valuation wu.

Algorithmic Complexity

When analysing the complexity of the trade-off algorithm the first thing to note
is that it includes a call to a random number generator inside the main loop (step
5). This has a direct impact on the number of iterations, and hence on the time
the algorithm will take. Assuming the random number generator is probabilistic
in nature, a ‘big-O’ analysis of the complexity cannot be made [Aho et al., 1985].
However, what can be computed is an “average case” assuming that the random
generator is perfect.

11 As the convergence is asymptotic to the value V(y) + Emaqaz, if we had a situation with
Emar = E we could not guarantee reaching the iso-curve. Also, the search process reaches
the iso-curve within epsilon distance if there is at least one decision variable over a continuous
domain. Price at least plays this role in service-oriented negotiation domains.
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inputs: y'; /* last step best contract. y° =y */
E; /* step utility increase */
Vi(); /* value scoring functions for the decision variables */
wy; /* importance weights for the decision variables */
Output: y/*+; /* child of 7 */
begin

for each decision variable i do
if ¢ is discrete

(1) then E@ = {Au(qg)lq € Ds, Ayu(q) =Vi(g) — Vz(yf) > 0}
(1) | else E;:=[0,1-Vi(y])]
endfor;

(2) Enae = Ez w; - max (Ez),
(3) 6:=0.01- Enqe;
if (Emez > E + 0) then
begin
(4) k:=0;E,:=0;
while (E, < E) do

k:=k+1;
for each decision variable ¢ do
if (B, < E)
then if i is qualitative
(5) then r¥ i= random({A.(@)|Au(a) € Fi, Au(q) < E=E2} U {0})
(5) else rf := min(random(E;), E;iE" )
else rf :=0;
(6) E, :=E,+w; ¥
if 7 is qualitative
(7) then B, := {Au(a)la € Di, Aula) = Vi(@) = (Vi) + Loy r) >0}
(7) else E; := [0, max (E;) — r}]
endfor
endwhile;
for each decision variable ¢ do
(8) E; := E;?:l rl;
9) vt =V (Vi) + i)
endfor
end

else raise error no step can be per formed
end

Figure 4.10: Contract generation part of the trade-off algorithm
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Let n be the number of negotiation issues. Steps 1, 5, 6, 7, 8, and 9 all
need a time which is O(n) (1 <4 < n). The time used by the algorithm will be
proportional then to the number of iterations, k, of the while loop, multiplied by
the cost of each iteration (which, as said, is O(n)). That is, it will be proportional
to kn. The possible magnitude of k is derived next. The while loop will terminate
when FE,, becomes bigger than E. It is known that before entering the loop for
the first time Epqp = Y, w;E; and Epq, > E + 4. E, is the weighted addition
of the portions r} generated by each iteration. On average, and assuming perfect
random number generation, at every iteration F, will be incremented by half
of each issue’s maximum potential utility gain given to the random generator,
that is, ), E2 Thus, in the first iteration, the algorithm will consume a half

of Epae, ie. Ep =043, wi% which is % In the second, a half of the

remaining amount, that is a half of Zme= E’Z”. In general, the algorithm

2
Emas Emax

consumes =52 at step k and leaves =zi2= for the next step. That is, E, at
step kis B, = Epaz — % The average value for k£ can then be computed
as a function of the difference between E,,,, and E. Given that the algorithm
stops when E,, > E, have E 4, — % > FE, that is, Eper — E > % The
step before had gz‘_“f > E,... — E. Taking this latter inequality, it is easy to
see that k < 1+ logEmEa”ﬁ. As E,,,. — E > § is considered to be true, then

k<1l+ log%. A policy to decide which value to assign to & could be to fix
its value as a percentage of E,,,,. For instance, making § a 1% of E,,; would
mean that k < 1+ log(mki’"ﬁ, that is k < 1+ log100 < 8; eight iterations on
average. Summarizing, if § is fixed as a percentage ¢ of E, 45, it can be see that
the average number of iterations is k = 1 + log:. Thus, on average the total
time of the algorithm is proportional to (1 + log¢)n.

, l.e.

Thus, the average time the algorithm takes to complete is linear with respect
to the number of issues in the negotiation. This linearity is a desirable property
of the algorithm considering one of the aims of this research has been to develop
decision mechanisms that respect the computational limitations of the agents.
The trade-off mechanism can grow in complexity, although only linearly, with
growing number of issues. However, an agent can reason explicitly about the
time costs of engaging in trade-off negotiation given knowledge of the above
analysis that the complexity grows linearly with the number of issues. Therefore,
as complexity grows then agents can reason about what course of action to
take. For example, if during the negotiation the number of issues grows to such
an extent that the trade-off computation becomes too costly, then an agent
wanting to implement a trade-off may use the issue-manipulation mechanism to
remove some issues. This reduces the costs involved in the trade-off deliberation.
Generally, the complexity levels of the trade-off algorithm can be used as triggers
for initiating issue-manipulation mechanism that may help reduce the complexity
of the trade-off algorithm. This decision can be made by the meta-strategy
component of the agent architecture (section 4.7).
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4.5.3 A Trade-Off Scenario

To illustrate our model consider the example of a car-dealer (of name b) negoti-
ating the purchase of a car. Assume agent a enters the garage and receives the
initial proposal x = (green, £27000,10weeks) for a deal on buying a car of a
given model (over decision variables = {colour, price, delivery}). Clearly, the
first decision variable is a qualitative one with the same domain as the colour ex-
ample introduced before, and the other two are quantitative. Agent a responds
to this proposal with a counterproposal y = (yellow, £21000, 0weeks) The point
now is what could be a potential answer from the dealer using our trade-off tech-
nique? To answer this, we have to specify domains, weights, valuation functions
and the similarity function for the car dealer:

Db = {yellow, violet, magenta, green, cyan, red}

colour
DY e = [£18000, £35000]
Dietivery = [Qweeks, 16weeks]
We assume the following valuation functions (V2, .. is extensionally defined,
and the other two are linear functions):
VY our = {(yellow,0.5), (violet,0.2), (magenta,0.3),
(green,0.8), (cyan,0.3), (red,0.8)}
Vb . (Z‘ . ) — zpm-ce—l 000
zzrzce price 3301()‘0—18000
Vdelivery(xdelivery) =1
Finally, we assume the following weights: wcoiour = 0.1, Wprice = 0.8,

Wdelivery = 0.1.

Similarity for price and delivery will each be based on a single criteria: ‘low
price’ (Ip) and ‘low delivery’ (1d) respectively. These will also be modelled as
linear functions:

1— 2 2 e[0,40000] 1- & z€l0,28]
_ 20000 ) — 28 )
hip() = { 0 otherwise hia(z) = { 0 otherwise

With all these elements, we can exemplify the working of the algorithm. First
of all, from the car dealer’s perspective, contracts x and y have different values:
Vb(x) =0.1-0.8+0.8- ggjg +0.1- Jg = 0.558. This value represents the car
dealer’s aspiration level §. The value of agent’s a offer is V°(y) = 0.19. Now if
we run the algorithm for one step, S = 1, and three children per step, N = 3, it

could generate the following trade-offs:

x1 = (yellow, £28132,5weeks),
xg = (red, £26568,12weeks),
x3 = (violet, £28506, Tweeks)
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All of them verify, by construction and because we are running the algorithm
for just one step, that V®(x1) = V’(x2) = V®(x3) = 6. Now, the trade-off
algorithm selects the one with highest similarity with respect to the offer made
by agent a, that is contract y, using the car dealer’s decision variable weights.

Sim(y,x1) = 0.1 - Simcorour(yellow, yellow)+
0.8 - Sitmprice(£21000, £28132)+
0.1 - Simgerivery (Qweeks, Sweeks)
=01-14+0.8-0.821+0.1-0.82
= 0.839

Sim(y,x2) = 0.1 - Simcorour (yellow, red)+
0.8 - Simppice(£21000, £26568)+
0.1 - Simgerivery (Oweeks, 12weeks)
=0.1-0.83+0.8-0.861+0.1-0.571
= 0.828

Sim(y,x3) = 0.1 - Simcorour(yellow, violet)+
0.8 - Simprice (£21000, £26568)+
0.1- Simgerivery (Oweeks, Tweeks)
=0.1-0.27+0.8-0.812+0.1-0.75
=0.751

Given these values, the algorithm would chose x; as the trade-off to offer to
customer a. That is, x' = (yellow, £28132, 5weeks)

4.6 The Issue Set Manipulation Mechanism

The other deliberation mechanism is the issue set manipulation. One motivation
behind the design of this mechanism has been the need to escape the problem
of local minima in the social welfare function. This can be achieved through
restructuring the problem. Recall that a local minima in the social welfare func-
tion refers to the negotiation context where the utility of the exchanged contracts
is the same as the previous step—the agents are exchanging the same contracts,
hence the joint utility of the possible deal given the exchanged contract, or the
social welfare function, is constant.

At other times it is not the need to escape local minima that motivates mod-
ification of the issues involved in negotiation, but rather agents preferences over
dimensions of services that can be substituted, removed or added to. Note that
whereas the trade-off mechanism operates over the complementary dimensions
of a service, the issue-set manipulation operates over the dimensions of a ser-
vice that are modifiable [Topkis, 1988]. For example, in the telecommunication
scenario (section 1.4.2), agents negotiate over a static set of issues, informally
defined as core issues. However, the negotiation between SPAs and NPAs addi-
tionally consists of offers over non-core issues. For example, a SPA may begin
QoS negotiation with a NPA specifying only Bandwidth. However, subsequently
NPA may decide to include into the QoS negotiation a packetloss issue with a
high value if SPA has demanded a high capacity Bandwidth. Alternatively, SPA
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may decide to remove the Bandwidth issue from the QoS negotiation with NPA
if IPCA has changed its demand from a high quality video service to a standard
audio service. Similarly, as shown in the example of agreement over the firing
of the police commissioner by both the police office union and city hall (section
4.2.2), issues can also be removed when agents agree to their resolution.

4.6.1 Issue Manipulation Evaluation

The evaluation of a contract from the perspective of the issue manipulation
mechanism is defined as:

withdraw(a, b) Ift >t

max

I(llssue—manlpulate(t’xi_m) =< accept(a,b,zt ) TEV(SE,,)>VSE,,)
newset(a, b, S) otherwise

where the content of the primitive newset (S in figure 4.2) is computed by the
functions given in equations 4.7 that expand or equations 4.8 and 4.9 that reduce
the set of negotiation issues (section 4.6.2). Note the similarity between this
evaluation and the responsive (section 4.4.1) and trade-off mechanism’s (section
4.5.1) evaluation functions. It terminates successfully if the utility of the new set
of issues (and their corresponding values) is greater than the newset the agent
is about to offer.

4.6.2 Issue Set Manipulation: A Formal Model

Negotiation processes are directed and centered around the resolution of conflicts
over a set of issues J. This set may consist of one or more issues (distributed and
integrative bargaining respectively). For simplification, the ontology of the set
of possible negotiation issues, J, is assumed to be shared knowledge amongst the
agents. It is further assumed that agents begin negotiation with a pre-specified
set of “core” issues, J°"¢ C J, and possibly other mutually agreed non-core set
members, J7¢°7¢ C J. Alterations to J¢°"¢ are not permitted since some features
such as the Price of services are mandatory. However, elements of J7°"¢ can be
altered dynamically. Agents can add or remove issues into J7¢°"¢ as they search
for new possible, and up to now unconsidered, solutions.

If J? is the set of issues being used at time ¢ (where Jt={j1,--,dn}), J=J*
is the set of issues not being used at time ¢, and zt_,, = (z[j1],...,z[jn]) is a's
current offer to b at time ¢, then issue set manipulation is defined through two
operators: add and remove.

The add operator assists the agent in selecting an issue j' from J — J¢, and
an associated value z[j'], that gives the highest score to the agent.

Definition 12 The best issue to add to the set Jt is defined as:

add(J') = arg n}a}gt{ ma:l:(y Ve(zt e z[4])} (4.7

where o stands for concatenation.
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An issue’s score evaluation is also used to define the remove operator in a similar
fashion. This operator assists the agent in selecting the best issue to remove from
the current negotiation set J?.

Definition 13 The best issue to remove from the set J* (from a's perspective),
is defined as:

remove(J') = arg  max {V%(z)} (4.8)
jieJiiJCOT‘e

with = (2'[j1],. .., 2" [ji—1], 2 [Ji1], ' [Jn])

The remove operator can also be defined in terms of the aforementioned sim-
ilarity function (section 4.5.2). This type of similarity-based remove operator
selects from two given offers z, from agent a to b, and y, from agent b to a, which
issue to remove in order to maximize the similarity between x and y. Therefore,
compared to the previous remove operator, this mechanism can be considered
as more cooperative:

Definition 14 The best issue to remove from a's perspective from the set J' is
defined as:

remove(J') = arg  max {sim(z',y")} (4.9)
jieJt_JCG’!‘E

! !

with = (z[j1]s-- > z[fie1)s [Jit1)s - - - 2[In])s and y =
(y[j1]= s 7y[ji—1]7 y[ji-i-l]: s 73/[.7”])

It is not possible to define a similarity-based add operator since the introduction
of an issue does not permit an agent to make comparisons with the opponent’s
last offer (simply because there is no value offered over that issue).

Another computational requirement of these mechanisms is the need for
an agent to dynamically recompute the issue weights. The re-computation of
weights is defined by first specifying the importance of the added issue, I;, with
respect to the average importance of other issues. That is, the weight the new
issue should have in the set of issues with respect to the weight of the other
issues— I; = w;/(_;c s wi/n), where n is the new number of issues.Then:

Definition 15 The weight of added issue j, w;, is defined as:
I

(n—1)+1;

U); = (1 —wj)wi Vi e {il,...,in},i #7J

w; =

where w; is the importance of the issue j, n is the new number of issues, w; is
the old weight for issue ¢ and w} is its new weight after the inclusion of issue j.
Thus computation of w} attempts to “fit” in the weights of other issues within
the “space left over” when the new issue has been included.

Re-computation of weights when an issue is removed in turn is defined simply
as re-normalizing the remaining weights:
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Definition 16 The weight of the remaining issues i after an issue j has been
removed is defined as:
1

!
wi = w;
ol—wy

Agents deliberate over how to combine these add and remove operators in a
manner that maximizes some measure such as the contract score. However, a
search of the tree of possible operators to find the optimum set of issues may
be computationally expensive because the size of the search tree can grow to
combinatorially large sizes. This problem is not addressed in this thesis and
is postponed for future work by implementing anytime algorithms that pro-
duce closer to optimal search results when given increasingly more time, but
nonetheless produce, possibly sub-optimal, results when they are stopped any-
time [Aho et al., 1985]. Then given these algorithms and the negotiation time
limits it is possible to compute a, possibly sub-optimal, solution that increases
some measure such as the contract score or social welfare.

4.7 The Meta Strategy Mechanism

The fact that there are three potential choices of mechanisms to use for gener-
ating a proposal poses another decision problem for the agent, namely which to
use. This decision is referred to as the meta-strategy of the agent since the pro-
cess involves making decisions about which of the decisions should be selected
for the generation of the proposal. Recall the argument from section 2.2.8 for
the need to develop not only computationally tractable search algorithms that
can traverse problem state-spaces that may be deep with wide branching fac-
tors (figure 2.3) and can operate under strict time limits, but also the need for
reasoning mechanisms about these different algorithms. This meta reasoning is
needed because each algorithm carries different costs and benetfits.

Another role of a meta strategy in negotiation, apart from a cost and benefit
analysis of each mechanism in a given environment, can be described through an
example that shows different “negotiation dances” [Raiffa, 1982] implemented by
the responsive and trade-off mechanisms (figure 4.11). Issue manipulation dy-
namics are not represented since the behaviour of this mechanism is to alter the
space of possible deals. The filled ovals are the values of the offered contracts
from agent 1 to agent 2 from agent 1’s perspective, and the unfilled ovals rep-
resent the converse, the value of the offered contracts from agent 2 to agent 1
from agent 2’s perspective. The filled oval at (0.5,0.5) represents the reference
point (section 3.1.4).

Figure 4.11 A represents one hypothetical execution trace where both agents
generate contracts with the responsive mechanism. Each offer has lower util-
ity for the agent who makes the offer, but relatively more utility for the other
(movement towards the reference point). This process continues until the sec-
ond condition of the responsive evaluation function (section 4.4.1) of one of

the agents is satisfied (V*(z}_,,) > V®(z%_,,))referred to as the cross-over in
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Figure 4.11: Negotiation Dances.

utilities earlier. The responsive mechanism can select different outcomes based
on the rate of concession adopted for each issue (the angle of approach to the
reference point in figure 4.11 A). Although in figure 4.11 A this final outcome is
hypothetically represented as the reference point, it will be concretely shown in
the next chapter that this is not necessarily the case if each agent assigns a differ-
ent rate of concession according to the weight of the issues involved—responsive
mechanisms can also reach better deals than reference.

Figure 4.11 B represents another hypothetical execution trace where both
agents now generate contracts with the trade-off mechanism. Now each offer has
the same utility for the agent who makes the offer, but relatively more utility for
the other (movement towards the pareto-optimal line). The trade-off mechanism
searches for outcomes that are of the same utility to the agent, but which may
result in a higher utility for the opponent. This is schematically shown in figure
4.11 as a line of approach directed towards the pareto-optimal line. Once again,
this is a simplification for purposes of the exposition—an offer generated by
agent 1 may indeed have decreasing utility to agent 2 (arrow moving away from
the pareto-optimal line) if the similarity function being used does not correctly
induce the preferences of the other agent.

A meta strategy (figure 4.11 C) is then one that combines either “dance”
towards an outcome. One rationale for the use of a meta-strategy mentioned
above is reasoning about the costs and benefits of different search mechanisms.
However, an additional rationale, observable from the example shown in figure
4.11 B, is to escape from the local minima of the social welfare function. If the
social welfare function is taken to be the pareto-optimal line, which maximizes
the sum of the individual utilities, then, because of the privacy of information
(an important feature of many domains, section 1.4.3), agents can not make
an interpersonal comparison of individual utilities in order to compute whether
their offers do indeed lie on, or are approaching, the pareto optimal line which
measures the global goodness of offers.!? Given that the position of offers with

12Tndeed, another protocol may be to allow one agent to exchange points on its iso-curve
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respect to the pareto-optimal line can not be compared and the fact that the
evaluation function of the trade-off mechanism (section 4.5.1) only terminates
when the time runs out or there is a cross-over of utilities, then the agents enter a
loop of exchanging the same contract with one another. That is they remain in a
local minima. A solution is therefore needed to escape this local minima. Figure
4.11 C shows one such solution where the local minima is escaped by both agents
switching to a responsive mechanism and conceding utility. This concession may,
as shown in figure 4.11 C, indeed satisfy the second condition of the trade-off
evaluation function where offers cross-over in utilities (thereby terminating the
negotiation process). Alternatively, agents may resume implementing a trade-
off algorithm until such a cross-over is eventually reached or time limits are
passed. Alternatively, the meta-strategy may change the problem state-space
by implementing the issue-manipulation mechanism which changes the set of
possible outcomes through adding or removing issue(s).

The above example shows how different combinations of mechanisms, by ei-
ther both or the individual agents, leads to different final outcomes. For instance,
a meta strategy which continuously switches between responsive and trade-off
mechanisms creates a contract score trace that is similar to an ever decreasing
step function. Conversely, a meta strategy that only permits the responsive
mechanism to generate contracts results in a contract score trace which may
(depending on the parameters of the responsive mechanism) decrease in a lin-
ear fashion. Note, that at the first time step in its negotiation an agent must
choose the responsive mechanism. It then has a choice of other mechanisms in
the course of negotiation. This is because the trade-off mechanism must have a
previous contract to compute the iso-contract curve.

In general, the evaluation of which search should be implemented is delegated
to a meta-level reasoner whose decisions can be based on factors such as the op-
ponent’s perceived strategy, the on-line cost of communication, the off-line cost
of the search algorithm (or its path cost), the structure of the problem or the
optimality of the search mechanism in terms of completeness (finding an agree-
ment when one exists), the time and space complexity of the search mechanism,
and the solution optimality of the mechanism when more than one agreement
is feasible. A formal treatment of a meta-strategy is postponed for future work.
However, the contributions of this work with respect to the meta-strategy are
the identification of the computational role and rationale of meta-strategies in
the dynamics of negotiation processes that often involve uncertainties and com-
putational boundedness. Furthermore, the role and effect of candidate meta-
strategies are also empirically analyzed in the next chapter.

and let the other agent select the one that maximizes its utility [Raiffa, 1982]. However, this
protocol assumes agents will not only reveal their preferences, but will also do so honestly
(assumptions which are not made in this thesis).
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4.8 Summary

A formal decision architecture of the wrapper framework and two protocols of
interactions were presented in this chapter. The decision architecture is based
on three mechanisms: responsive, trade-off and issue set manipulation. The
rationale for their design was provided in terms of computational, information
and motivational states of an agent. The responsive mechanism is computation-
ally simple and requires only minimal information about the state of the other
agent. An agent that implements a responsive strategy is motivated by pressing
environmental needs to terminate negotiation and reach an agreement that has
lower social welfare or joint utility. Conversely, deliberative mechanisms (trade-
off and issue set manipulation) may increase the social welfare—hence an agent
that implements a deliberation mechanism is said to be motivated by concern for
social welfare. However, these mechanisms are computationally more complex
and their operations require more information about their opponent.

The next chapter empirically analyses the behaviour of a number of concrete
agent architectures that directly follow from the presented generic model. The
aim of these experiments is to test the behaviour of the responsive and trade-off
mechanisms in a number of different environments. Empirical analysis of the
issue set manipulation mechanism is deferred to future work, since algorithms
must first be designed.



Chapter 5

Empirical Evaluation

This chapter is a description of the evaluation phase of the research. The model
presented in the previous chapter defines and formalizes a range of negotiation
behaviours which can be implemented by the wrapper. However, which of these
behaviours will be successful in which negotiation contexts cannot be predicted
from the theoretical model alone. This is because: a) the developed model only
specifies a negotiation framework that can be “tuned” to the needs of a negoti-
ating agent designer, b) there are a large number of interrelated variables within
the wrapper and a broad range of situations that need to be considered, and c)
some parts of the model are heuristic in nature (for example, a meta-strategy
that engages in trade-off mechanism always until a local minimum in the social
welfare function is detected is a decision heuristic whose efficacy across different
types of environments can not be determined a priori; see section 3.3). The de-
signer who uses the wrapper needs additional information about the interaction
profiles of the components of the wrapper and it is the “tuning” of these profiles
which produces the results. Therefore the approach adopted in this research has
been to empirically evaluate representative components of the wrapper with the
final aim of determining the most successful behaviours in various types of situ-
ations. The experiments reported here are exploratory studies [Cohen, 1995]. In
such studies, general hypothesis are formed that state the underlying intuitions
about causal factors. Experiments are then conducted by creating a simula-
tion “laboratory” that generates data, the observation of which either supports
or refutes these general hypothesis. Manipulation studies, on the other hand,
are more specific and investigate the system via detailed causal hypothesis. As
Cohen notes, exploratory experiments help us to “find needles in the haystack,
whereas manipulation experiments put the needles under the microscope, and tell
us whether they are needles and whether they are sharp” [Cohen, 1995], p.6.

157
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5.1 The Experiment Set

Three sets of experiments are reported in this chapter. One set relates to the
empirical evaluation of the responsive mechanism of the wrapper (sections 5.3,
and 5.4), other to the trade-off mechanism (section 5.5) and final one to the
meta-strategy mechanism (section 5.6). For the reasons outlined in section 4.8,
the issue-manipulation mechanism is currently excluded from the analysis. The
responsive experiments are divided into two complementary sections. In the first
section (section 5.3) the investigation is focused on determining the behaviour
and inter-dependencies of the responsive model’s basic constituent elements,
namely tactical decision making. This analysis will then lay the foundation for
subsequent experimental work reported in section 5.4 which investigates strate-
gic decision making. Throughout this chapter the former experiments will be
referred to as either non-strategic or pure-strategy experiments because tactics
are assigned a binary weight value for v;; of either 0 or 1, and this value is static
throughout the negotiation thread. Alternatively, the latter experiments will be
referred to as strategic, since the tactics’ weights can be assigned any value in
the interval [0, 1]. Strategic experiments are further subdivided into static strat-
egy and dynamic strategy experiments, for experiments where the weight of a
tactic is static throughout the negotiation or dynamically modified in the course
of negotiation, respectively. Section 5.5 reports on the experimental procedure
and outcomes of the empirical evaluation of the trade-off mechanism. Finally,
section 5.6 details the empirical evaluation of the meta strategy mechanism.

Before this, however, the next section discusses the foundational principles
of the design of the experiments.

5.2 Experimental Design Principles

A negotiation context can involve many issues and parties with different agent
aspiration levels and time limits. To handle this environmental complexity exper-
imental design consideration, together with a number of simplifying assumptions,
are necessary for empirical analysis of the negotiation model that is embedded
in such a complex environment. Experimental design principles define and cat-
egorize the variables of the “laboratory”. These design principles are expanded
on in this section.

Experimental variables can either be independent or dependent [Cohen, 1995].
Independent variables are defined as those variables whose values are under the
control of the experimenter. Dependent variables, in turn, are defined as those
variables whose values are not under the control of the experimenter. Instead,
the values of these are observed by the experimenter as measurements. The type
of either of these variables must be one of the following: i) categorical, ii) ordinal
or iii) interval [Cohen, 1995]. With categorical variables, the measurement (for
dependent variables) or assignment process (for independent variables) desig-
nates a category label to the variable. For example, the categorical dependent
variable outcome can be assigned a value Accept or Withdraw after making a
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measurement. Ordinal variables, on the other hand, can be ranked, but the
distances between these points are meaningless. For example, the time deadline
of negotiation for the experiments, t%, ., is designed as an ordinal independent
variable which can be assigned values long, medium and short term. Distances
between ordinal scales are meaningless (it can not be said that the difference
between long and short is equal to medium). Finally, with interval (or ratio)
scales both the distances between variable points and the ratios between data
sets are meaningful. For example, distances in the amount of utility a mecha-
nism procures for an agent can be compared not only in a single trial but also
across trials. A condition for ratio scale parameters is that the zero point is
known.

Variables can also be transformed by mapping from one scale into another.
Mapping information from one scale into another enables i) analysis of the types
of environments and ii) statistical operations that were previously inaccessible
(see description below for examples). Transformation of scale is useful because
it can be used as a data abstraction tool since it allows analysis of groups,
or types, of environments rather than individual, concrete environments. For
example, transformation of negotiation deadlines from an interval scale into a
ranked ordinal scale is an abstraction tool that ignores the actual differences
within and across the groups of variables long, medium and short term deadlines
and instead emphasizes the differences in rankings. Members that have a long
term negotiation deadline have values for ¢,,,, that are higher than short term
members. Nothing is said about their magnitudes.

5.3 Non-Strategic Experiments

The aim of this set of experiments is to investigate the behaviour of individ-
ual tactics (non-strategic) for decision making in a number of environments. A
knowledge of how individually different pure tactics behave in different environ-
ments can then be captured as decision guidelines for the responsive strategic
decision making component of the wrapper.

The experiments involve selecting a particular tactic, generating a range of
random environments, then allowing the agent to negotiate using the chosen
tactic against an opponent who employs a range of other tactics. Various exper-
imental measures related to the negotiations are then recorded. In particular,
section 5.3.1 defines the experimental environments and the tactics, section 5.3.3
describes the experimental measures, section 5.3.2 defines the experimental pro-
cedure, section 5.3.4 describes the experimental hypotheses and discusses the
results, and finally section 5.3.4 summarizes the results and conclusions reached.

5.3.1 Experimental Independent Variables

The experimental independent variables are discussed in this section. In pure-
strategy experiments, independent variables are defined in terms of i) environ-
ments of negotiation (section 5.3.1) and ii) the tactics available for decision mak-
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[ Variable Name | Variable Scale | Variable Ranges Variable Transformation

Agent categorical 12, oo} categorical={player,opponent}
177 categorical {1, oo} categorical={price}
w? categorical 10, 1] categorical=1
k% interval [0, 1] ordinal={high,low}

[ming, mawy] Tnterval 10, =01, [0, oo 1] ordinal={full-overlap,no-overlap}

e interval 1, oo] ordinal={large,low}

ordinal={boulware,linear,conceder,
Tactics categorical {time, resource, behaviour} | impatient,steady,patient,relativetitfortat,
randomtitfortat,averagetitfortat}

Figure 5.1: Pure Strategy Experimental Independent Variables

ing (section 5.3.1). The complete set of independent variables is shown in figure
5.1. The assignment of values to independent variables is under the control of
the experimenter who is constrained by limiting the complexity of analysis. The
variable scale denotes the type of the variable (either categorical or interval),
variable range denotes the set of possible values available which can be assigned
to the variable and variable transformation denotes the mapping from one scale
to another.

Environments

Environments, in these experiments, are characterized by the number of agents
they contain, the issues which are being discussed, the deadlines by when agree-
ments must be reached and the expectations of the agents. Since there are
infinitely many potential environments (infinite number of agents and issues),
selecting a representative and finite subset of environments is necessary to find
a means of assessing an agent’s negotiation performance. To this end, experi-
ments are conducted between only two agents, categorically labelled as client
and server, negotiating over only a single issue, price. The last simplification is
relaxed in the next set of experiments where agents negotiate over a number of
issues. Since there is only one issue, its weight (wj) can only be assigned the
value of 1. The position of the initial offer on the reservation values (k%, section
4.4.2) is transformed from an interval independent variable to an ordinal scale
of high and low initial offers (see section 5.3.4 for details of the transformation).

The negotiation interval, [mm?, mam?], is also an interval valued independent
variable whose scale is infinite. To overcome this problem, an agent’s reservation
values are transformed to an ordinal scale whose actual scale is computed as
follows. The difference between the agent’s minimum and maximum values, for
price, is computed using two variables: % (the length of the reservation interval
for an agent a) and ® (the degree of intersection between the reservation intervals
of the two agents; ranging between 0 for full overlap and 0.99 for virtually no
overlap). In this case, for each environment, the independent variable min¢,_, .. is

TiCcC€e
assigned value 10 (ming,.;., = 10), @ is set to 0 (® = 0), 6 is randomly selected
between the ranges of {10, 30} for both agents, and the negotiation intervals are
computed as maz® = min® + 0°;min® = 0°® + min®; max® = min® + 0°. Note,
these values for computing the interval lengths of the interval value are chosen
arbitrarily because the scoring function of the offers models the ordinal and not
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Tactic Family Tactic Name | Abbreviation | Tactic Ranges | Description
T?me—dependent Bofjlware B BE {0.01,0.2} Increased rate of approach
Time dependent Linear L B=1.0 to reservation as 8 increases
Time-dependent Conceder C B € {20.0,40.0}
Resource-dependent Impatient IM p=1,n=1 B
D i f h
Resource-dependent Steady ST p € {1,5}, n=1 ecreasing rate of approac
- to reservation as p increases
Resource-dependent Patient PA p € {5,110}, n =1
Behaviour-dependent Relative tit for tat RE §=1 Percentage imitation of
last two offers
Behaviour-dependent Random tit for tat RA §=1m € {1,3} Fluctuating absolute
imitation of last two offers
Behaviour-dependent Average tit for tat AV 5 =2 Average imitation of
last four offers

Figure 5.2: Experimental Tactic Key

the cardinal relationships between the reservation values.!

The independent variable t¢, ., which assigns the negotiation deadline of the
experiments for each agent, is transformed from the interval to an ordinal scale
of short and long term deadlines. This transformation facilitates the analysis
of outcomes in groups of deadlines, ignoring the differences within a group and
emphasizing the differences across the groups. The group long term deadlines is
defined as samples within the values of 30 — 60 ticks of a discrete clock. Short
term deadlines are defined as samples within values 2 — 10 ticks of a discrete
clock.

Given this situation, the experimental environment is uniquely defined by the

following variables: [t5, ., t5 .0y K, K5, MINS mazx min maz

Cc 8 8 ]
mazx? “max? price’ price’ price’ pricel”

Tactics

The second simplification involves selecting a finite range of tactics, since the
model allows for an infinite set (e.g the range of 3 is infinite which means there
are infinitely many time dependent tactics). For analytical tractability, the
tactics are divided into nine groups (see figure 5.2); three each from the time,
resource and behaviour dependent families. An equal number for each family is
chosen to ensure the results are not skewed by having more encounters with a
particular type of tactic. The three members of the time-dependent family are
chosen to correspond to behaviours that concede in time in a boulware, linear and
conceder fashion. These categories of behaviours are chosen since they represent
extreme behaviours (boulware and conceder) as well as an in-between control
rate (linear) which concedes linearly. These categories of time-dependent tactics
correspond to the transformation of interval values for § into the ordinal scale
0.01—0.2 for the boulware category, 1.0 for the linear category and 20—40 for the
conceder category. The three members of the resource-dependent family are also
chosen that correspond to a decreasing rate of concession as the rate of resources
used increases. These categories of resource-dependent tactics correspond to the

INote the server’s minimum reservation value is never lower than the client’s minimum.
This is because degenerate negotiations in which offers are immediately accepted are not
interesting. This method of generating reservation values also means a deal is always possible
since there is always some degree of overlap.
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transformation of interval values for p into the ordinal scale 1 for the impatient
category, {1,5} for the steady category and {5,10} for the patient category.
Finally, the three members of the behaviour-dependent family are also chosen to
correspond to the different types of imitation according to the given sub-family
parameters.

5.3.2 Experimental Procedure

The experimental procedure consists of sampling each tactic group for every en-
vironment since the subject of interest is the behaviour of tactic families rather
than single, concrete tactics. For each environment ey, k indexes the environ-
ments, two matrices are defined to represent the outcomes of the client, gameg*,
and the server, gameS*, when playing particular tactics. The client’s tactics are
indexed by the rows i and the server’s by the columns j, so gameg*[i, j] is the
outcome of the client when playing tactic i against a server playing tactic j. Each
tactic plays against all other tactics in each environment, hence 1 <i,5 < 9.

To produce statistically meaningful results, the experimental measures de-
scribed below are averaged over a number of environments and summed against
all other tactics for each agent. Therefore this analysis is based on the per-
formance of a tactic family across all other tactic families. The precise set of
environments is sampled from the parameters specified in section 5.3.1 and the
number of environments used is 200. This ensures that the probability of the
sampled mean deviating by more than 0.01 from the true mean is less than 0.05.
The experiments were written in Sicstus3.7.1 Prolog and ran on SunOs 4.5 Unix
machines.

5.3.3 Experimental Dependent Variables

To evaluate the effectiveness of the tactics, the following measures are considered
which calibrate: i) the intrinsic benefit of the tactic family to an agent (section
5.3.3); ii) the cost adjusted benefit which moderates the intrinsic benefit with
some measure of the cost involved in achieving that benefit (section 5.3.3) and
iii) the performance of the intrinsic utility relative to a control condition (section
5.3.3).

Intrinsic Agent Utility

The intrinsic benefit is modeled as the agent’s utility for the negotiation’s final
outcome, in a given environment, independently of the time taken and the re-
sources consumed [Russell and Wefald, 1991]. This utility, US*, is calculated for
each agent for a price = using a linear scoring function:2
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2The simplicity of this utility function is acknowledged, but the intention here is to inves-
tigate the properties of the model and not the utility functions per se. The role of the utility
function is evaluated in section 5.5
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If no deal is made in a particular negotiation, then the value zero (the conflict
point, see section 3.1.4) is assigned to both Uf* and Ug*. However, by defining
the utilities in this manner no distinction can be made between deals made at
reservations and no deals. Therefore in certain experiments the intrinsic utility
is only computed for cases in which deals are made.

The outcome of the negotiations, as presented in the previous subsection,
is represented in the matrix gamel*. Hence the utility for a client ¢ when
negotiating using a tactic ¢ against a server s using tactic j in environment ey
is U2 (gamee>[i, j)).

Cost Adjusted Benefit

In addition to knowing the intrinsic utility of a tactic to an agent, the relationship
between an outcome’s utility and the costs involved in achieving it is also useful
information in making strategic or meta-strategic decisions about the costs of
a given mechanism (see argument in section 4.7). The type of cost considered
in these experiments is on-line, as opposed to off-line cost, because the former
are more machine or resource independent than the latter. For example, calcu-
lating the off-line computational cost of a mechanism may require calibration of
performance with respect to memory usage, speed and time which is machine
architecture dependent. On-line costs, on the other hand, are not dependent on
the architecture of the agent, but rather the load the agent’s reasoning process
places on the communication infrastructure.

The cost adjusted benefit (B) of tactic pairs 4 and j in environment ey is
defined as follows:

Bek i, j] = Ugtli, 4] — C3*[i, 4]

To define the on-line cost function, C, the notion of a system is introduced.
A system, in these experiments, is a set of resources that can be used by the
agents during their negotiations. The usage of these resources is subject to a tax
T which is levied on each message communicated between the agents. Therefore,
the greater the communication between the agents, the greater the cost to the
agents. So:

Cer i, j] = Cg*i, j] = tanh(| Xc; 5, | * T)

where | X, ;| is the length of the thread at the end of negotiation between a
client using tactic 4 and a server using tactic j, tanh is an increasing function
that maps the real numbers into [0,1] and 7 determines the rate of change of
tanh(). 7 is sampled between the ranges of [0.001,0.1]. In short, the greater the
taxation system, the more costly the communication and the quicker the rate at
which the cost rises to an agent for each message.

The system utility, on the other hand, is coarsely defined as the total number
of messages in negotiation which indirectly measures the communication load the
tactics incur at the agent level.



164 Chapter 5. Empirical Evaluation

Experimental Controls

The control conditions for these experiments are based on the arguments from
cooperative game theory, presented in section 3.1.4. The outcome attained by
a pair of tactic families is compared with the regular Nash solution (equation
3.1 and figure 3.2 A, section 3.1.4), implemented by a protocol in which agents
declare their true reservation prices (an incentive compatible and direct protocol,
section 3.1.8) at the first step of negotiation and then share the overlap in the
declared reservation values. This choice is both fair (i.e. is Nash) and pareto
optimal (in that the outcome is beneficial to both agents and any deviation
results in an increase in utility for one at the cost of a decrease in utility to the
other). For example, consider a client agent ¢ and a server agent s having price

reservation values [ming,.;..,mazx;,;..| and [min; ..., maz,,.;..| respectively and

price’ price’ price
MaTy,;0e > MiNG,.;... The control outcome O for a given environment ey, is then
defined as:
c S
O = ma$price + mznpm'ce
B 2

Applying the definitions of utility presented earlier, the utility of the control
game, Uk (O ), for agent a can then be computed. Given this, the compara-
tive performance of agents using the responsive mechanism of the wrapper with
respect to the one shot protocol, is defined as the difference between the in-
trinsic agent utility and the utility the agent would have received in the control
protocol:

Gainl*[i, j] = UZ*(gamel*[i, j]) — U (O°*)

5.3.4 Hypotheses and Results

The experiments considered here relate to two main components of the negotia-
tion model: i) the amount of time available to make an agreement, ¢t2 . and ii)
the relative value of the initial offer, k. These two factors are chosen because
the parameters which influence the behaviour of the tactics (with the exception
of resource-dependent tactics for N number of agents) are dependent on the
available time limits and the initial offers, rather than the number of agents,
the number of issues, their weights or their reservation values (note that these

variables are constant in these experiments).

To test the effects of varying deadlines on agreements, the experiments are
classified into environments where the time to reach an agreement is large (sec-
tion 5.3.4) and those where it is small (section 5.3.4). Likewise for initial offers;
there are environments in which the initial offer is near the minimum of the
agent’s reservation values and those where it is near the maximum (section
5.3.4). The reservation values are computed as described in section 5.3.1 with
0° = 0° = 30 and & = 0 (refer to figure 5.2 for the key to the experimental
tactics). Each abbreviation is further postfixed by the agent’s role (e.g BC and
BS denote a client and a server playing tactic B respectively).
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Long Term Deadlines

The hypotheses about the effect of long term deadlines are:

Hypothesis 1: In environments where there is plenty of time for
negotiation, tactics which slowly approach their reservation values
will gain higher intrinsic utilities than those which have a quicker
rate of approach. However, they will make fewer deals.

Hypothesis 2: The utility to the system will be high when tactics
have long deadlines since large numbers of offers will be exchanged.
Consequently, there will be a large difference between a deal’s intrin-
sic and cost adjusted utilities.

Concrete values need to be provided for the experimental variables to evaluate
these hypotheses. In this case, an environment with long term deadlines is

defined as one in which the values of ¢, and tJ,,, are sampled within thirty
and sixty ticks of a discrete clock. Note that t$,,, > ¢ ., and 5., < &3 ..

are permitted. Since high values of k® over-constrain the true behaviour of
tactics, the value of k is set to 0.1 for both agents. In each environment, the
order of who begins the negotiation process is randomly selected.? Considering
hypothesis 1 first. It was predicted that a tactic which approaches reservations
at the slowest rate (i.e a Boulware) should attain the best deals. However, from
figure 5.3.A the observation is that the most successful tactics are Linear, Patient
and Steady. These tactics are characterized by the fact that they concede at a
steady rate throughout the negotiation process. The next most successful group
are the behaviour dependent tactics. Note, these imitative tactics never do
better than other tactics; the best they do is gain equal utility to the best tactic
[Axelrod, 1984]. The worst performing tactics are Conceder and Impatient, both
of which rapidly approach their reservation values.

The observation that Boulware tactics make significantly fewer deals than
all the other tactic families (figure 5.3.C) helps explain Boulware’s unexpectedly
poor performance. Taking this into account, the average intrinsic utility for only
those cases in which deals are made (figure 5.3.B) was examined. This shows
that when Boulwares do make deals, they do indeed receive a high individual
utility (as predicted).

It is hypothesized that the reason why Boulware tactics perform poorly is
caused by the imitating responses of the behaviour dependent tactics, thereby
effectively increasing the numbers of Boulwares in the population. To test this,
the final average intrinsic utility for deals only of Boulware tactics is compared
across: i) all other tactics and ii) all other tactics apart from behaviour dependent
tactics. It is found that the success of Boulware tactics increased by 10% in the
latter case.

3The initiator of a bid is randomly chosen because in earlier experiments it was found that
the agent which opens the negotiation fairs better, irrespective of whether the agent is a client
or a server. This is because the agent who begins the negotiation round reaches a2 , = =
before the other agent, hence deriving more intrinsic utility. See section 2.2.5 for further

arguments concerning the (dis)advantages of the opening bid.



166 Chapter 5. Empirical Evaluation

o
°

°

©
T
1

0.9

°
®
T
1

0.8

°

2
T
1

0.7

o
>
T

0.6

- 05
- 04
- 03
- 02
- 01 HH
L R 00 L S A A e
CagneRLY 299gyuggoe
fiRzsEzx ©9=z254
cs
C

100 1.0

o
o
T

o
<
Average Intrinsic Utility

Average Intrinsic Utility

oooo
g 2 g 3
Y

Y S —
cCcH

CSH

we

v

= e =11 0.9

= 4 0.7

0.6

0.5

0.4

% of Deals Made
T
Average Intrinsic Utility

Figure 5.3: Average Intrinsic Utilities and Deals Made for Pure-Strategy Experi-
ments in Long Term Deadlines: A) Average Intrinsic Utility For Both Deals And
No Deals, B)Average Intrinsic Utility For Deals Only, C) Percentage of Deals
Made, D) Average Intrinsic Utility For Both Deals and No Deals for Increasing
Values of 3.

From these observations, it can be concluded that the initial hypothesis does
not hold because of the composition of the tactic population. It is predicted
that in an environment in which there is plenty of time to reach a deal, Boul-
ware should rank higher than tactics that approached reservation values quickly.
However, for Boulwares to prosper in the experimental environment, they should
adopt a value for 8 which is between 0.7 and 1.0 (figure 5.3.D).

Moving onto the second hypothesis. Figure 5.4.A confirms the results for
the first part of this hypothesis; the tactic that uses the most system resource
is Boulware and the least is Conceder. In addition, although Boulware tactics
have higher intrinsic agent utilities than conciliatory tactics (Conceder and Im-
patient), when the the cost of communication is taken into consideration the
converse is true (figures 5.4.B). This accords with the intuitions in the second
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Figure 5.4: Average Non-Intrinsic Utilities and Control Utilities for Pure-
Strategy Experiments in Long Term Deadlines: A) Average System Utility,
B)Average Cost Adjusted Utility, C) Comparisons to Control.

part of hypothesis 2. The cost adjusted utilities of the remaining tactics are
approximately similar. The reason for this is that cost adjusted benefit, which
is the product of the intrinsic utility and a function of the number of exchanged
messages, is sensitive to large fluctuations in the product and assigns similar
utilities to non-extreme values.

Finally, it can be observed that the comparison of the tactics with respect to
the controls follows the same broad pattern as the intrinsic agent utility (figure
5.4.C). Steadily conceding type tactics (Linear, Steady and Patient) on average
perform better than the controls, the conciliatory types (Conceder and Impa-
tient) perform worse. This is to be expected, since the closer the tactic’s selected
deal to the deal which is the mid-point of the reservation intersection (intrinsic
utility of 0.5—because of the complete overlap of the reservation values), the
closer to zero the differential between the intrinsic utility and the control utility
becomes. As can be seen from figure 5.3.A, the only tactics which approach or
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exceed an average intrinsic utility of 0.5 are those which concede at a steady
rate.

Short Term Deadlines

Changing the environmental setting can radically alter the successfulness of a
particular family of tactics. Therefore, an experiment is carried out to investigate
the behaviour of tactics in cases where deadlines are short. For this case, the
hypotheses are:

Hypothesis 3: When there is a short time frame to negotiate, tac-
tics which quickly approach their reservation vaelues will make more
deals.

Hypothesis 4: Since deadlines are short, the number of messages

exchanged to reach a deal will be small. Consequently the system

utility will be low.
In this context, short term deadlines are obtained by sampling values for ¢¢ .
and t%,,. between two and ten ticks of a discrete clock. The remainder of the
experimental setup is as before. Figure 5.5 shows the results obtained for these
experiments. The first observation is that for most tactics, the overall intrinsic
utility, the system utility and the number of deals made (figures 5.5 A, C and
B respectively) are significantly lower than the respective measures for the long
deadline experiments. A lower system utility is expected since fewer messages
can be exchanged in the allocated time. Note that since Conceder and Impatient
are quick to reach agreements, their utilization of system resources is indepen-
dent of the time constraints. Also, because fewer messages are exchanged, the
agents pay less tax and, consequently, keep a greater percentage of their derived
intrinsic utility (figure 5.5.D). These findings are all in line with the predictions
in hypothesis four. However, the other measures require further analysis.

With long term deadlines, most tactics, apart from Boulware, make deals
approximately 90% to 95% of the time, whereas with short term deadlines only
Conceder makes anything like this number. This reduction is either because
the tactics are insensitive to changes in their environment (e.g resource depen-
dent tactics) or because they have a slow rate of approach to reservation values
(e.g Boulware). Time insensitivity means the other tactics fail to make many
deals when interacting with these tactics. Because the length of the thread is
independent of the deadline, the resource dependent tactics cannot distinguish
between short and long term deadlines. This claim is supported by the observa-
tion that Impatient gains equivalent intrinsic utility independently of deadlines
(figure 5.5A). Furthermore, resource dependent tactics are differentiated with
respect to u, the amount of time an agent considers reasonable for negotiation.
If an agent does not reason about deadlines and erroneously assumes a value for
o which is close to or above t,,45, then it will be unsuccessful in environments
where deadlines are important. The relatively low intrinsic utility of Patient
and Steady (ranked 9th and Tth respectively—figure 5.5A) supports this claim.
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When the deadline is long, resource dependent tactics with g > 1 gain large
intrinsic utility because they approach reservation values in a steady way. How-
ever, the same behaviour in short term deadlines is less successful. The imitative
tactics also exhibit a reduction in average intrinsic utility. This is to be expected
since these tactics imitate the relatively larger rate of concession of other tactics
(especially time dependent tactics) when the deadline is shorter.

Hypothesis three is supported by the relative reductions in intrinsic utility
for Boulware, Steady and Patient and by the comparative increase for Conceder
and Impatient. Whereas in long term deadlines, Boulware, Steady and Patient
ranked higher than the conciliatory tactics, the reverse is true for short term
cases. With short term deadlines, tactics that quickly approach their reservation
values gain higher intrinsic utility than those which are slower.
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Again, it is observed that the dominant tactic is one which concedes at a
steady rate (i.e Linear), suggesting that the best tactic, independent of time
deadlines, is one that approaches reservation values in a consistent fashion.
The behaviour dependent tactics also gain relatively high utilities in both cases,
ranking third and fourth for short and long term deadlines respectively. Thus,
whereas most tactics have large fluctuations in rankings across environments,
the behaviour dependent family maintains a stable position, indicating its gen-
eral robustness and usefulness in a wide range of contexts. This is because these
tactics stick firm to avoid exploitation and reciprocate concession.

Initial Offers

In the formal model, an agent’s reservation values are private. This means no
other agent has any knowledge of where in the range of acceptable values an
opponent begins its bidding process, nor where it is likely to end. Given this
constraint, an agent must decide where in its reservation ranges it should begin
its negotiation offers. That is, what should be the value of k* in the face of this
uncertainty? To help answer this question, the following hypothesis is formed:
4

Hypothesis 5: When the deadline for agreements is not short, mak-
ing initial offers which have values near the mazimum of Up,.;.. leads
to deals which have higher intrinsic agent utilities than initial offers
near the minimum of US,.;... In other words, a server that starts bid-
ding close to maxy,.;.. is more likely to end up with deals that have a
higher utility than a server who starts bidding close to min? The

price*
converse is true for the client.

To test this hypothesis, both agents are allowed to have reasonably long dead-
lines, t5,,, = t5,,. = 60, and k¢ is made a constant at 0.1 (i.e the client is
cautious in its first offer). Therefore, the single independent variable is k?,
which is sampled between the values [0.01,0.2] for high initial price offers and
[0.8,0.99] for low initial offers. All other environmental variables are chosen as
in previous experiments. Figure 5.6 confirms the prediction that a server which
begins bidding at values near the maximum of U}, (figure 5.6.A) has a higher
average intrinsic utility than a server that begins bidding at values near the
minimum of U}, ;.. (figure 5.6.B). Moreover, if x° is close to k¢ (the client starts
bidding at low values and the server begins with high offers), then both agents
gain equivalent utility in most cases and take many rounds of negotiations before
a deal is found (figure 5.6.C). This is because the tactics begin their negotiation
at some distance from the point in the negotiation space where bids have values
which have a mutually acceptable level.

Conversely, if k° is not close to k¢ (both the client and server start bidding at
low values), then the client benefits substantially more than the server. This is

because the initial offers of the server are now immediately within the acceptance

4Note: U*

3 C
price inCreases and U

. decreases with increasing price offers.
price
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level of the client (confirmed by the number of messages exchanged before a deal
is reached (figure 5.6.D)). Thus, the client gains relatively more utility than a
server, since the initial offers of both agents are low and deals are made at low
values.® The influence of k on the behaviour of tactics can be further explained
from the observations shown in figure 5.7. k° is used by all tactics for generating
the initial offer but, for exposition purposes, only the results with respect to the
Boulware tactic family are discussed (since this offers the greatest difference in
behaviour). When x° is low, Boulwares have a lower percentage of deals relative
to other tactics (figure 5.7.A). Conversely, when x* is high, Boulware almost
equals all other tactics in the percentage of deals they make (figure 5.7.B). This

5When & is distinctly different from x€ there is little differentiation among intrinsic utilities.
This is why k* = 0.1 for both agents in sections 5.3.4 and 5.3.4.
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is because at low values of k*, the shape of the acceptance level for Boulware
is almost a step function, whereas when x* is high it is a straight line near to
or at min®. Thus a server playing a Boulware tactic makes a small number of
high utility deals when the acceptance levels tend towards being a step function
(compare figures 5.7.A and 5.6.A), but makes larger number of lower utility deals
when the acceptance level is almost a straight line (figures 5.7.B and 5.6.B).
Therefore, as the value of k increases, the likelihood of a deal increases, but the
utility of the deal decreases.

Summary of Non-Strategic Experiments

It has been formally shown elsewhere that agents are guaranteed to converge
on a solution in a number of very constrained situations (e.g. when two agents
implement a time-dependent tactic, then the negotiation over an issue is guar-
anteed to converge if there is an overlap in the joint reservation values of that
issues) using the tactical component of the wrapper’s responsive mechanism
[Sierra et al., 1997]. The aim of the sections above was to extend these results
empirically and to evaluate the non-strategic part of the responsive mechanism
of the wrapper in a wider range of circumstances. To this end, a number of basic
hypotheses were defined about negotiation using the tactical component of the
wrapper. In particular, with respect to tactics the following were discovered: (i)
irrespective of short or long term deadlines, it is best to be a linear type tactic,
otherwise an imitative tactic; (ii) tactics must be responsive to changes in their
environment; and (iii) there is a tradeoff between the number of deals made and
the utility gained which is regulated by the initial offers.

The aforementioned results confirmed (and rebutted!) a number of basic pre-
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dictions about negotiation using the tactical component of the wrapper. Next,
the analysis is extended to strategic interactions.

5.4 Strategic Experiments

The aim of the previous experiments was to investigate the effects of non-
strategic decision making. The aims of the experiments in this subsection are
to empirically explore the causal relationships between strategic decision making
on the dynamics and outcomes of negotiation. The overall aim is to empirically
evaluate the postulate that consideration of a number of environmental factors
and changes of these considerations (or dynamic strategies), lead to better ne-
gotiation outcomes than considering a number of environmental outcomes but
not changing this initial consideration (static strategies). In addition to this,
it is postulated that static strategies, in turn, leads to better negotiation out-
comes than considering only one environmental factor (pure strategies). As will
be shown below, better outcomes are defined as ones that maximize the joint
utility of outcomes (a global measure). Therefore, from a global perspective,
dynamic strategies > static strategies > pure strategies, where > is should be
read as the “better” operator.® Furthermore, the objective of the experiment is
to show that changing of strategies per se is more beneficial than non-adjustment.
Therefore, the objective is not to analyze the behaviour of different types of f()
given in equation 4.2, but rather the relative performance of a single strategic
decision making compared to a non-strategic decision making.

The methodology of the experiments is similar to previous experiments—
evaluation of a number of hypotheses in various types of environments as opposed
to concrete cases. To this end, sections 5.4.1 introduce the data abstraction
methodology and statistical methods necessary for definition of environments.
Section 5.4.2 then defines the experimental measures, section 5.4.3 details the
experimental procedures and, finally, section 5.4.4 presents the hypotheses and
the discussion of results.

5.4.1 Experimental Independent Variables

This section introduces the set of experimental independent variables for the
strategic experiments that are under the control of the experimenter. Like the
non-strategic experiments, the set of experimental independent variables col-
lectively define the environment of negotiation (section 5.4.1) and the tactics
available for decision making (section 5.4.1). However, in the experiments re-
ported in this section there is an additional set of variables, the strategy variables
(section 5.4.1), which define the available strategies in negotiation. These ex-
perimental independent variables are introduced in figure 5.8. As before, the
assignment of values to these variables is under the control of the experimenter

SNote, strictly speaking only the dynamic strategies are strategies as defined in section
4.4.3. However, for terminological simplicity throughout this chapter static consideration of
one or a number of environmental factors will be referred to as strategies.
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[ Variable Name__| _Variable Scale_| Variable Ranges

Variable Transformation ]

Agent categorical 12, 1 categorical—{player,opponent}
{77 categorical 11, o} categorical—={price,quality,time,penalty}
wy Interval 10, 1] Categorical={[0.1,0.5,0.25,0.15],(0.5,0.1,
0.05,0.35] }
[min;l, maz;-l] interval [[0, o], [0, co]] ordinal={perfect,partial}
T Interval 1, oo] ordinal={large,low]
Tactics categorical {time, resource, behaviour} categorical={boulware,linear,

conceder,titfortat}
im Tnterval 10, 1] categorical={perfect,partial,imperfect,

uncertain,market}

categorical {1, o7

< Tnterval [0, 0.5] value=0.1

5 interval [0, 1] categorical={tough,linear,conceder,
titfortat}

Figure 5.8: Strategy Experimental Independent Variables

whose main objective is to choose values for these variables that lower the com-
plexity of the analysis. Note, in general throughout the experiments the actual
concrete values of the independent variables mean very little in themselves. It is
the relative relationship of an independent variable’s value with respect to oth-
ers that is important. Therefore, throughout the following exposition the actual
values of independent variables are no longer justified and their values should
be interpreted in comparison to other dependent variable values.

Environments

In these experiments, like the previous pure-strategy experiments, an environ-
ment is defined by the number of agents, the number of issues involved in negoti-
ation, the deadlines to reach a settlement and the aspiration levels of agents. In
these experiments negotiations are conducted between only two agents, categori-
cally labelled as player and opponent. However, in the pure-strategy experiments
agents negotiate over multiple quantitative issues {price, quality, time, penalty}.
The set of negotiation issues is expanded from one to four so as to facilitate a
comparative analysis with the results of the trade-off mechanism experiments
(which requires a minimum of two issues, section 5.5). This analysis is also
restricted to quantitative issues, because the behaviour of both the responsive
and trade-off mechanisms are less smooth with qualitative issues. This, in turn,
masks the underlying behaviour of the model. For example, concession over
qualitative issues produces scoring function outputs that are “bumpy”, contain-
ing discrete points (since qualitative issues are naturally discrete valued objects).
Likewise, the trade-off of a qualitative issue with a quantitative one often pro-
duces a transfer of score from one issue to another which may require the in-
troduction of an auxiliary issue into the trade-off consideration to accommodate
the correct score that needs to be transfered in trade-off. For example, consider
a client of a service negotiating over a quantitative issue price and a qualita-
tive issue colour. Let the reservation values of the issue price be [10,20], with
score value ranges between [0,1] , dictated by a continuously decreasing scoring
function for increasing values over price. Let the reservation values of colour be
[red, blue, green] with an associated score of [0.8,0.4,0.1] respectively. Let the
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MiNprice = 10, Maxprice = 20
minquality = 57ma$quality =30
MiNime = 20, MaTiime = 50

minpenalty = 17ma$penalty =10 (51)

previous offer of the agent about to make a trade-off offer be [20, green]. Further
assume that the iso-value is set at § = 0.3 (section 4.5.2), meaning that a score
of 0.3 must be re-distributed among the two issues. One such re-distribution
may be to decrease the score on the issue price by 0.1 (thus the agent should
offer less than 20 for the next offer over price) and increase the score on colour
by 0.2. However, an increase of 0.2 to the score of colour will map to an offer
of between green and blue, which is not permitted. Another issue may have
to be introduced to accommodate this residue score. Alternatively, the loss in
score over price can be computed given the gains that can be obtained from
colour. However, this last solution is not satisfactory since it gives higher prece-
dence to qualitative issues, and fails in cases where offers straddle, or are close
to, the reservation values. Again, this masks the behaviour of the mechanisms
and since the aim of the experiments is to analyze the underlying mechanisms,
agents negotiate over quantitative issues only.

The other independent variables are as follows. The importance level for each
negotiation issue is assigned concrete values {0.1,0.5,0.25,0.15} for the player
and {0.5,0.1,0.05,0.35} for the opponent. These weights are chosen because
they allow comparative analysis of results with trade-off mechanisms, since they
permit operation of the latter mechanism. For practical purposes, similar to
pure-strategy experiments, the issues’ interval values are converted from an in-
terval to an ordinal scale which specifies both the length of the interval for each
issue and the degree of overlap between the respective interval values for each
issue (see section 5.3.1 for a more in-depth discussion of the methodology for
computing interval values). The type of intervals considered in these experi-
ments are those where the lengths of the interval values are equal and perfectly
overlapping for each issue for both agents and are assigned the following values:
Again, similar to pure-strategy experiments, the length of the interval value for
each issue is chosen arbitrarily because the score of the offers models the ordinal
and not the cardinal relationships between the interval values. Furthermore, to
simplify the overall problem and reduce the complexity of analysis, the same
interval values are assigned to both agents (hence a perfect overlap in interval
values). The implication of this design are: i) that in bi-lateral negotiations
between agents that both use a linear scoring function the reference point (or the
most equitable outcome) is exactly at the mid point of an issue’s interval value,
with a score of exactly 0.5 for each agent and ii) a deal always exists. Note,
that the actual concrete values for the intervals are insignificant and any values
that obey the perfect overlap requirement will suffice. If one or both agents
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implement a non-linear scoring function then this mid point must “shift” along
the utility scale. Fixed interval values with perfect overlap permits analysis of
results with respect to a known reference point. Sampling interval values and
the degree of overlap leads to a more complicated analysis of results because the
location of the reference point can only be ascertained on an average basis.

The independent variable t%, .., is assigned the same values as the previous
pure-strategy experiments. The group long term deadlines is defined as samples
within the values of 30 — 60 ticks of a discrete clock. Short term deadlines are

defined as samples within 2 — 10 ticks of a discrete clock.

Tactics

The other independent variables that are subject to transformation are the re-
sponsive tactics. To reduce the complexity of the analysis task, experiments are
conducted using only the time-dependent and behaviour-dependent tactics (since
time is a resource and time-dependent families model time sufficiently). The pa-
rameters of these tactics are randomly sampled. The same three members of the
time-dependent family are chosen as for the pure-strategy experiments (figure
5.2); these correspond to behaviours that concede in time in a boulware, linear
and conceder fashion. Again, to reduce the complexity of the experiments, only
the relative-titfortat sub-family (section 4.4.2) is chosen to represent behaviour-
dependent tactics. This category is defined as the transformation of interval
values for ¢ into concrete value of 1. That is, relatively mimicking every last
offer of the other agents. When the length of the negotiation thread is below
0 (i-e insufficient offers have been exchanged between the agents) the titfortat
default behaviour is to be a conceder with a g value that is sampled within
values of [1.0,3.0]—a conceder tactic that is more conceder than a linear, but
within certain limits of concession. A concrete tactic is chosen for each negoti-
ation experiment by sampling within the range of the specified ordinal scale of
that tactic.

Strategies

In these experiments an agent’s strategy amounts to i) the initial assign-
ment of relative importance weights for all issues (or computing the ma-
trix 0, see section 4.4.3) given the four experimental categories of tactics
T € {boulware,linear, conceder, titfortat}, and ii) the modification of this initial
consideration. An element of the I matrix is indexed by 7;;, the weight of tactic
j for an issue i. A row of the I matrix is indexed by +;, the tactics weight array
for an issue i. The relative differences in the assignments of values to each of
7vi;j in the 7; array defines the agent’s strategy for an issue in negotiation. For
continence these strategies are labelled as follows. Given a set of tactics j € {T'},
a strategy for the issue 4 in negotiation can be one of the following;:
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e tough: where j = boulware and -;; is assigned a higher weighting than
other tactics k, j # k

e linear: where j = linear and v;; is assigned a higher weighting than other
tactics k, j # k

e conceder: where j = conceder and +y;; is assigned a higher weighting than
other tactics k, j # k

o titfortat: where j = titfortat and v;; is assigned a higher weighting than
other tactics k, j # k

As a simplification, the same strategy is applied to all issues. That is, the ~;
arrays for all the issues are the same. For example the I' matrix:

boulware linear conceder titfortat

price 1 0 0 0
quality 1 0 0 0
time 1 0 0 0
penalty 1 0 0 0

specifies a strategy that assigns the boulware tactic the highest weight for all
issues. Again, this simplification is intended as a measure to reduces the to-
tal number of free experimental variables and hence reduce the complexity of
analysis. Therefore, the exposition will be described with reference to a single
issue only (vy; array). Application of the same strategy to each issue throughout
the negotiation can serve as a base-case for future experiments that are more
complicated and whose analysis is made more accessible from the base-case re-
sults. Note also, that the strategy label is derived from the highest weighted
tactic, not to be confused by the tactic itself. Thus, a ; array with a value of
[0.7,0.1,0.1,0.1] denotes a tough strategy. Conversely, a +; array with a value
of [0.1,0.7,0.1,0.1] denotes a linear strategy, and so on. Since the aim of these
experiments is to evaluate the differences between non-strategic and strategic
decision making, the agents’ strategies are evaluated in three classes of experi-
ments:

e pure strategies
e mixedl strategies
e mixed?2 strategies

The differences between the classes of experiments are defined by i) the magni-
tude of the initial T® matrix and ii) the presence or absence of change in this
initial T® matrix. A pure strategy simply consists of the assignment of binary
values for +;; to the available tactic set. For example, for each issue a pure
and tough strategist in the experiment consists of assignment to the tactic set
{boulware, linear, conceder, titfortat} the +; array values [1,0,0,0] which does
not change throughout the negotiation. Likewise, a pure and conceder strate-
gist in the experiment would consist of +; assignment [0,0,1,0] to all issues
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which does not change throughout the negotiation. Therefore, pure strategies
are the same as the base experiments where an agent’s strategy consists of a
static assignment of value 1 to one of the available tactic independent variables
corresponding to the desired strategy.

A mixed1 strategy, on the other hand, consists of the assignment to the same
tactic set of continuous, as opposed to binary, 7;; values which also do not change
throughout the negotiation. For example, a value of [0.8,0.066,0.066,0.066] for
all issues in I' denotes a mixedl tough strategist. Thus, whereas pure strate-
gies model the use of a single tactic in generating an offer, mixed strategies
use a combination of tactics to generate offers (see section 4.4.3). Unlike pure
strategies, because y;; is an interval valued variable, with the constraint that
vij € [0,1] and }_ ;.7 vij = 1.0 for all 4, there can be an infinite number of
values of «y;; that implement the given strategy. However, the value of 7;; has to
obey an additional constraint that its value is within the range [0.25,0.9]. This
constraint restricts the range of possible values of +;; for a given strategy to be
below a pure-strategy (hence 0.9 and not 1.0) and above the level where the
tactic has equal weighting with the other tactics (since there are four tactics,
the lower bound of the constraint is 0.25). For example, a +; array value of
[0.8,0.066,0.066,0.066] specifies a tougher mixed]1 strategist than a comparative
~v; value of [0.5,0.166,0.166,0.166]. In the former case, the boulware tactic has
more of an input into the decision of the next offer generation than the other
tactics, whereas in the latter case the other tactics have relatively more of an
input in the decision making. Thus a tactic’s influence on the final decision
can range from no influence to fully dictating the decision (the case for a pure
strategy). Therefore, to investigate different initial magnitudes of 7;;, the de-
gree of a tactic’s magnitude/decision strength is made an independent variable
25, defined as the initial strength of the 7?]- of issue ¢ for tactic j at time 0.
Assignments of initial values for each Q;; (for each issue and each tactic) then
define T, the initial strategy of an agent at time 0 for all issues.

A mixed2 and tough strategist is similar to a mixedl strategy, but now the
initial T'° array is dynamically modified throughout the negotiation. For exam-
ple, a tough mixedl strategy for an issue may correspond to the 7Y array value
of [0.8,0.066,0.066,0.066] (the agent considers the time factor to be important
and does not change this consideration). However, these initial values of the )
array are subject to change throughout the negotiation in the case of mixed2
experiments. Thus mixed2 strategies model not only the combination of tactics
for generating an offer (same as mixed1 strategies), but also the transition in this
combination during the course of negotiation (see section 4.4.3). This transition
is formally specified as the f() function (equation 4.2) that maps T'i» to I'n+1,
where t,, denotes the current time. However, like interval valued variables, there
can be an infinite number of such mappings. In the case of these experiments the
modification of the initial ' for all issues 4 is dictated by the following policy
(equation 5.2) based on the notion of similarity (see equation 4.6):
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If 0.9 < sim(z,y) < 1.0 then increase(y; poutware, )
If 0.7 < sim(z,y) < 0.9 then increase(Y; titfortat, A)
If 0.4 < sim(z,y) < 0.7  then increase(Viinear, A)

If 0.0 < sim(z,y) < 0.4 then increase(i conceder, )

(5.2)

where x and y are the agent’s and the opponent’s last offer respectively, and
sim(x,y) is the similarity between the two contracts. There can be any number
of modification policies, but rule 5.2 is chosen because it is simple and easily
adjustable for experimental purposes (through modification of either the condi-
tions of the rule or the action of the rule). Furthermore, since the objective of
the experiment is to show that changing of strategies per se is more beneficial
than non-adjustment, any reasonable rule which implements a modification of T’
would suffice.

The modification rule encodes the heuristic that if the agent believes that
the two contracts ¢ and y are very close then it should adopt a more boulware
strategy (since large changes, by being conceder, for example, may move the
point of cross over of offers to positions where deals are less beneficial). On the
other hand, if the two contracts ¢ and y are believed to be dissimilar then a
conceder strategy should be adopted since movements in concessions may lead
to the approaching of the zones of cross over of offers. In between these two
extremes, a linear and titfortat strategy should be adopted. Since for most
strategies (especially with long term deadlines) the initial offers in negotiation
are unlikely to be near the cross over of an issue interval (recall the results in
section 5.3.4), the overall effect of the rule is to initiate a rate of concession
to the crossover and then begin to lower this rate as crossover is approached.
However, the consequence of rule 5.2 is to change the strategy of the agent
independently to a new state, making the behaviour of mixed2 strategies an
experimental variable that can not be manipulated. To overcome this problem,
another variable (A) is added that modifies the behaviour of the rule under the
control of the experimenter. The effect of A is to regulate the amount existing
strategies change (i.e. it is a form of “resistance” to change). Thus, whereas the
initial magnitude of the I'® matrix completely defines mixed1 strategies, mixed2
strategies are defined by both the initial magnitude of I'° and the dependent
variable A, which specifies the percentage of change permitted to the initial I'
matrix by rule 5.2. For example, a tough strategy for an issue i can be defined
as 7Y = [0.8,0.066,0.066,0.066] in mixedl experiments. The same strategy in
mixed2 experiments is then defined as a combination of the initial 7? array,
[0.8,0.066,0.066,0.066] and the degree to which this tough strategy is allowed to
be changed by rule 5.2. The degree of modification is given in percentile form,
where the given v;; is increased by the specified percentile. The amount increased
is removed equally from all other tactics, since ) jer Yis = 1.0 (section 4.4.3).
Thus a A value of 80% over would specify a tougher mixed2 negotiator than a
value of 5%, because a 80% change modifies to a greater extent the initial value
of the tough strategy (0.8) than a 5% change. It should be noted that higher
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numbers for A result in dynamics of change in T' that quickly reach the state
where they are pure strategies.

The weights used for the similarity computation for the precondition of
the update rule (simfuj in figure 5.8, equation 4.5 and section 4.5.2) are
[0.25,0.25,0.25,0.25], reflecting the agent’s uncertainty about the other agents’
issue importance evaluation (see section 5.5 for an explanation of other choices).
The choice of criteria function (h§ in figure 5.8) is likewise infinite. The discrim-
inatory power—the magnitude of the difference between the input and output—
of the criteria function (equation 4.6) is set so that it exhibits two properties.
Firstly, that it has more discrimination within the issues’ interval values (as
compared to values outside this range), since all of the negotiation will take
place in this region. Thus, maximal discrimination should be between an issue’s
min and mazx values. This interval value requirement is parameterized by the
independent variable e. When ¢ is low, the function should be maximally dis-
criminative for values within the issue’s interval limits (mutatis mutandis when
€ is high). Secondly, different discriminatory power within the interval range is
also desired, to support different similarity measures for different issues (for gen-
erality and extension of these functions to trade-off experiments). For example,
for one issue it may be desirable to have maximal discrimination at the center
of the interval values, whereas for another issue maximal discrimination may be
desired at the extremes of the interval values. This requirement is parameterized
using the variable &. When « is high, more discrimination is placed towards the
maximum of the interval values (mutatis mutandis when it is low). The following
function satisfies these two requirements:

1
h(z) = ;atan

2|z —min|| x—min
r — min max — min

L 1) tan(w(% - e))] + 7 (653)

Figure 5.9 shows the effect of varying e. Thus the discrimination power of the
function decreases with increasing values of €. In these experiments, in order
to be quite discriminatory, € is fixed at 0.1 for all issues. For all issues, «
values are fixed to be equal: aPrice = qauality — gtime — grenalty — 1 gg a9
to have linear criteria functions (h}s), having equal discrimination power across
the issue’s interval values. € and a are made constant to reduce the number of
free variables in the experiments. However, normally the setting of values for e
and « reflects the agent’s domain knowledge.

The values for the ; array used for the strategy of each issue for each ex-
periment class are shown in figures 5.11, 5.12, 5.13 and 5.14, corresponding to
benchmark, increased €2;; for the opponent, increased );; for the player and
decreased ();; for both the opponent and the player respectively. Recall that an
increase (or decrease) in the initial values of an issue i strategy for tactic j at
time 0 (77;) across experiments is denoted as an increase (or decrease) in ;.
Note also that the top row of each experiment class denotes the strategies of the
player and the bottom row of each experiment class denotes the strategy of the
opponent. The benchmark experiments are included to establish a comparison
criteria on the effect of increasing either the opponent's or the player's 'y?j, or,
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Figure 5.9: Criteria Functions For An Issue Min = 10, Maxz = 20

conversely, decreasing both agent’s '7% levels, on the dependent variables. Fol-
lowing the same indexing convention as before, A;; is the value tactic j can be
changed for issue 7. Furthermore, A; arrays and +; arrays are identical for each
issue [price, quality, time, penalty].

It may be useful for the forthcoming discussion of results to imagine different
tactics as different forces that attempt to “move” the score of the contract to a
mutually acceptable point, the contract score at the cross over of offers. Figure
5.10 presents this analogy schematically, for one issue (for example price). Imag-
ine the agent is a client. Therefore lower prices are preferred to higher prices. A
boulware tactic therefore attempts to generate prices that are distributed close
to the minimum, whereas on the other extreme a conceder tactic generates price
offers that reach the maximum quicker. Other tactics generate offers on this
minimum maximum continuum. A pure-strategy can then be envisaged as a
mechanism that views a single force to reach the focal point. A mixedl strategy,
on the other hand, can be envisaged as considering a combination of forces to
reach this convergence point. This is shown in figure 5.10 as the resultant force,
the dotted line labeled mized. The exact combination mixture (where the resul-
tant line lies) is controlled by ;. A mixed2 strategy can then be envisaged as a
resultant force that not only considers a combination of forces, but also modifies
the considerations as the environment changes. Note that there can be an infinite
number of mixed1 resultant forces (mixtures) in between the tough and conceder
strategies, corresponding to infinite values for ;. However, whereas a mixed1
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Figure 5.10: Analogy of Tactics As Forces.

is a concrete selection and adherence to only one of these infinite possibilities,
a mixed2 strategy also permits the “movement” of the resultant (the diagonal
line in figure 5.10) along the tough-conceder axis (controlled by the independent
variable A). Figure 5.11 shows values for the experimental independent variable
v; array that are used as a benchmark for the other experiments which manip-
ulate Q; (the magnitude of the initial strategy, or 7?) for an issue i. For pure
experiments, the strategies are simply assigned the value of 1.0 for the appro-
priate strategy for both the player and the opponent. In mixedl experimental
classes, the value of the dominant tactic ({tough, linear, conceder, titfortat}) is
assigned a value proportionally higher (three times) than the rest of the other
tactics. Again, it is the ordinal, rather than cardinal, relationship between the
variables that is of interest. The value of the dominant tactic is computed to
be in the range [0.25,0.9] (as discussed in section 5.4.1). Since the values of the
independent variables shown in figure 5.11 form the evaluation benchmark for
the experiments that manipulate €2;;, the 7;; for mixedl of the dominant tactic
J is set to 0.5 (within the constraint [0.25,0.9]).

The remaining 7; array for the other tactics is simply computed as the dis-
tribution of the residue weights according to the policy (1 — ;;)/3. This policy
is chosen because the aim of the experiments is to evaluate the relative and not
the absolute differences in v; array. Mixed2 strategies, as mentioned above, are
defined in terms of the two independent variables: initial 7; array and the per-
centage permissible change of this value A; by the weight update rule 5.2. The
initial y;; for the dominant tactic of the strategy is set at 0.625 and the values of
A; array are, respectively, set to [5,25, 50, 40] for boulware, linear, conceder and
titfortat strategies. These values reflect the relative persistence of the initial ~;
array in the course of negotiation. That is, for all issues, at each step in negoti-
ation, a tough strategy permits only a 5% change t0 Ypouiware, & linear permits
relatively more changes to Yjineqr, conceder most of all, and titfortat in between
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linear and conceder strategies. The value of 7% for mixed2 experiments is higher
than mixedl experiments (0.625 and 0.5, respectively). A higher value for 'y?j
is chosen because the update rule (especially in the case of conceder strategies)
can reduce 'y?j too quickly to below mixed1 levels, thereby making it difficult to
discriminate the results of mixedl and mixed2 experiments. Thus the strategy
in the mixed2 experiment classes is defined through the magnitude of the initial
fy% and the relative permissible changes to this value through A;;.

Note that the strategies of both the player and the opponent are constant
and the same for all the experimental classes in the benchmark experiments.
Generally, results are sought for types of environments. Therefore, «y;; should
ideally have been statistically sampled, allowing evaluation of contexts where -;;
is not fixed. However, this methodology is not adopted because one of the aims of
the experiments is to investigate the effect of Q; (or the strength of the strategy)
on the dependent variables. To investigate the effect of €);, the -y;; distribution
would have to be divided into bin sizes over the interval [0.25, 0.9] (corresponding
to the constraint above). Collecting values of +;; into small bin sizes and then
statistically sampling each bin size would have resulted in distributions of ~;;
with similar values since the bin size is significantly small.

The independent variables shown in figures 5.12 and 5.13 show the experi-
mental variables where the isomorphism between the player and opponent bench-
mark strategies is broken. Together with the independent variables shown in
figure 5.14, these environments directly evaluate the effect of varying ;. These
variables are assigned these values to investigate the effect of either the opponent
or the player increasing the value of ; respectively. Note that since pure strate-
gies are binary valued variables they cannot be included in 2; experiments.
Thus, in figure 5.12 the player dependent variables are unmodified from the
benchmark experiments shown in figure 5.11. However, the values of 7;; and
A;; are increased for the opponent. +;; of the dominant tactic is increased from
0.5 to 0.8 (€2;; = 0.3). The implication of this change is that the opponent in
this environment is much more tough, linear, conceder or titfortat in its strate-
gies. Likewise, the value of A;; is relatively higher than the benchmark case,
resulting in strategies that allow rule 5.2 to more freely modify v;; according to
the distance to crossover in offers. Figure 5.13 shows the converse of 5.12, where
the dependent variables for the opponent are the same as the benchmark case
in figure 5.11 and it is the player that has increased magnitude of strategy.

Finally, the effect of varying Q; for both the player and the opponent from
the benchmark is shown in figure 5.14. -;; is decreased from 0.5 to 0.3 resulting
in strategies that, although they are still defined as strategies, have nonetheless a
lower influence on the final decision. This allows other tactics to have relatively
more strength (than the benchmark case) in the final decision. Likewise, A;; for
the mixed2 experiment class is uniformly lowered to a 5% level for all strategies,
resulting in an environment where the «y; array is modified smoothly across all
strategies.
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[_Eazpcriment Class | tough [ _lincar [ _conceder [ titfortat ]
| pure [ 11,0,0,0] [ 10,1,0,0] [ 10,0,1,0] [ 10,0,0.1] |
[ 13,0,0,07 [ 10,1,0,0] [ 10,0,1,0] [ 10,0,0,1] ]
mixedl [ 10.5,0.166,0.166,0.166] [ [0.166,0.5,0.166,0.166] [ 10.166,0.166,0.5,0.166] [ [0.166,0.166,0.166,0.5] |
[ 10-5,0.166,0.166,0.166] | [0.166,0.5,0.166,0.166] | 10.166,0.166,0.5,0.166] | [0-.166,0.166,0.166,0.5] |
[0.625,0.125,0.125,0.125] [0.125,0.625,0.125,0.125] [0.125,0.125,0.625,0.125] [0.125,0.125,0.125,0.625]
mixed?2 A=5 A=25 A=50 A=40
[0.625,0.125,0.125,0.125] [0.125,0.625,0.125,0.125] [0.125,0.125,0.625,0.125] [0.125,0.125,0.125,0.625]
A=5 A=25 A=50 A=40
Figure 5.11: Benchmark Strategy Experiments
[_Eazpcriment Class | tough [ lincar [_conceder [ titfortat

mixedl [ 10.5,0.166,0.166,0.166] | [0.166,0.5,0.166,0.166] | [0.166,0.166,0.5,0.166] | [0.166,0.166,0.166,0.5]
[ 10-8,0.06,0.06,0.06] [ 10.06,0.8,0.06,0.06] [ 10-06,0.06,0.8,0.06] [ 10-06,0.06,0.06,0-8]
[0.625,0.125,0.125,0.125] | [0.125,0.625,0.125,0.125] | [0.125,0.125,0.625,0.125] | [0.125,0.125,0.125,0.625]
mixed2 A=5 A=25 A=50 A=40

[0.8,0.066,0.066,0.066]
A=10

[0.066,0.8,0.066,0.066]
A=40

[0.066,0.066,0.8,0.066]
A=100

[0.066,0.066,0.066,0.8]
A=80

Figure 5.12:

player With Benchmark Strategy And opponent With Increased

[ Ezperiment Class_|

tough

T Tincar

conceder

titfortat

J
mixedl [ [0.8,0.06,0.06,0.06] [ [0.06,0.8,0.06,0.06] [ [0.06,0.06,0.8,0.06] [ [0.06,0.06,0.06,0.8] |
| [0.5,0.166,0.166,0.166] | [0.166,0.5,0.166,0.166] | [0.166,0.166,0.5,0.166] | [0.166,0.166,0.166,0.5] |
[0.8,0.066,0.066,0.066] [0.066,0.8,0.066,0.066] [0.066,0.066,0.8,0.066] [0.066,0.066,0.066,0.8]
mixed?2 A=10 A =40 A =100 A =80
[0.625,0.125,0.125,0.125] [0.125,0.625,0.125,0.125] [0.125,0.125,0.625,0.125] [0.125,0.125, 0 125 0.625] |
Figure 5.13: opponent With Benchmark Strategy And player With Increased

[_E=periment Class

[ tough [

Tnear I

conceder I

titfortat

mixedl [ 10.3,0.23,0.23,0.23] [ [0.23,0.3,0.23,0.23] [ [0.23,0.23,0.3,0.23] [ [0.23,0.23,0.23,0.3] |
[10.3,0.23,0.23,0.23] | [0.23,0.3,0.23,0.23] | [0.23,0.23,0.3,0.23] | [0.23,0.23,0.23,0.3] |
[0.3,0. 23 0. 23 0.23] [0.23,0.3,0.23,0.23] [0.23,0.23,0.3,0.23] [0.23,0. 23 0 23,0.3]
mixed2 A=5 =

[03023023023]

[0.23,0.3,0.23,0.23]
A

[0.23,0.23,0.3,0.23]

[02302302303]

Figure 5.14: Strategies For Both Agents Decreased €;;

| Variable Name | Variable Scale | Variable Ranges |

cycles interval 1, tmaz]
Ve (outcome) interval [0,1]
Ve(reference) value 0.5
V(pareto) interval [0,1]

Figure 5.15: Experimental Dependent Variables
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5.4.2 Experimental Measures

The previous section described the independent variables that can be manipu-
lated by the experimenter and their effects observed on the dependent variables.
Figure 5.15 shows the experimental dependent variables, one calibrating the
process of negotiation (cycles), and three others for measuring the outcome of
negotiation. Each dependent variable are described in more depth in the sections
below.

Communication

A much simpler form of on-line cost, compared to the pure-strategy experi-
ments, is defined by the independent variable Cycles. Cycles calibrates the
total number of messages exchanged in the course of a single negotiation run
of the experiment (or the communication message load a strategy places on an
agent). This simple form of on-line cost is used to disassociate the costs from
the intrinsic utility of the strategy (methodology of the pure-strategy experi-
ments) so that the agent can make decisions about the communication cost of
the strategy, rather than the resulting cost-adjusted utility. The statistics used
for C'ycles are simply the average number of messages exchanged for a strategy
pairing across all experimental runs.

Intrinsic Utility

Outcome is the categorical variable that measures the final outcome of negotia-
tion in terms of success (Accept) or failure (Withdraw). Given an outcome the
intrinsic utility of a deal, V*(outcome), is the individual agent utility of the deal.
The form of the utility function is the same as the one given in pure-strategy
experiments reported in section 5.3.3, defined as the linear scoring function:

Vi (z) = Z wi Vi (x;)

1<j<n

where z is the outcome, n is the total number of issues, and the value of the
individual issue j to agent a, V}*(z;), is computed as:

a W if decreasing
V} (xJ) - :cj—min]“- ip . .
- if increasing

— e i a
ma:z:]- msz

max Zj

where increasing and decreasing refer to the direction of change in score as the
value of that issue increases. For example, increasing the price of the service
decreases the score for a client, but increases it for a seller. Like Cycles, the
statistics for V%(z) are simply the average utility of the deal when using a
strategy across all experimental runs.
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Experimental Controls

The analysis of the observed average utility data distribution will be made
with respect to three reference points: i) the constant-sum line (see section
2.2.3), ii) the reference point and iii) the pareto-optimal line. See figure 3.1
for an explanation of each of these points. Recall from section 2.2.3 that the
significance of the constant-sum line is that outcomes that lie on this line
result in individual agent utility whose joint score adds up to 1.0—that is
Vrlayer (outcome) + VOPPOe™ (outcome) = 1.0. This line is used as a control
because outcomes that lie on it represent distributive bargaining situations and
conversely, integrative bargaining for the outcomes that lie above it. Indeed,
in negotiation over a single issue (distributive negotiation) the sum of utilities
of an outcome has to be equal to 1 when the scoring functions of both agents
are linear—an outcome with a utility of 0.8 for one agent determines the max-
imum the other agent can receive for this outcome is 0.2. In fact, for single
issue negotiations the constant-sum line is the pareto-optimal line—there is no
other deal that both agents prefer without one agent being worse off. It is by
introducing multiple issues that the sum of individual utilities can be different
to 1.0. Therefore the strategies could be evaluated with respect to the integra-
tive and distributed bargaining dimension. However, as will be shown below,
the experimental choice to assign the same I' matrix to each issue results in
the responsive mechanism selecting, at best, outcomes that lie on the constant-
sum line, and, at worst, outcomes that lie below this line. The constant-sum
line is included, together with the pareto-optimal line, for comparative analy-
sis of the results obtained with the trade-off mechanism. Note, for multi-issue
and differentially weighted issues, outcomes can lie below the constant-sum line,
representing outcomes whose joint utility is lower than 1.0.

Outcomes that lie on the constant-sum line represent one set of possible dis-
tributions of utilities, or ways of “dividing the utility pie”. These outcomes are
not equitable (recall that equitable is defined as equal distribution of utilities)—
a utility distribution of (0.8,0.2) and (0.1,0.9) both equivalently maximize the
sum of the individual utilities, but the first outcome is more favorable for the first
agent and the second outcome is more favorable for the second agent. As men-
tioned in section 3.1.4, the Nash point is an equitable outcome, computed as the
deal that maximized the product of the final utilities (see figure 3.1). However,
recall the argument presented in section 3.1.4 against the use of the Nash solution
for multi-dimensional negotiation—whereas computation of the Nash solution is
straightforward for distributive (or single issue) negotiations (the Nash solution
was the control measure in the previous non-strategic experiments), the same
is not true for integrative negotiations involving different importance levels and
intervals for each issue. For these reasons, the Nash solution control outcome
is replaced with the reference outcome, simply computed as the intersection at
the mid point of each agent’s interval value for all issues. Unless stated other-
wise, the reference point for a pair of linear scoring functions is specified as the
utility coordinate point (0.5,0.5) and is constant in the experiments because the
interval values of agents overlap perfectly and do not change.
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The Pareto-optimal measure is included for comparative analysis of data
across the responsive and trade-off experiments. Pareto-optimality (V*(pareto))
is computed as the outcome that maximized the sum of the deals. Five pareto-
optimal outcomes are computed and a line that joined the utility value points
of these five deals is used as a control line of the closeness of the experimental
outcome to a pareto-optimal outcome (see [Raiffa, 1982], pp.163-165). The first
pareto optimal deal is simply a value of 1 for the player and 0 for the opponent,
(1,0). The second is the converse (0,1). The third pareto optimal outcome is
computed by selecting the values for each issue z; in negotiation that maximizes
the combined value of all the issues for both agents:

Z(w;)layer % V(-,L_?layer)) + Z(w;pponent % V(Z_;pponent))
where w; is the weight of issue j. The fourth pareto optimal outcome is computed
by selecting the values for each issue which maximizes player utility plus half
the opponent utility. This gives the opponent less weight:

Z(wflayer " V(mglayer)) +05 Z(w;pponent * V(xzpponent))
The final pareto optimal contract is computed by selecting the values for each
issue that maximizes player utility plus twice the opponent utility. This gives
the opponent more weight:

Z(w;_)layer % V(mglayer)) +2 Z(w;pponent % V(m?pponent))

The pareto-optimal line, in turn, is indicated in the figures of results as the solid
line that connects these five points.

Where appropriate, statistical averages and standard deviation of averages
across strategies will be given, respectively, to represent the center of the den-
sity and the variation of a group of outcome distributions with respect to the
reference point. For example, four different strategies that result in a sum total
utility average of 0.5 and a standard deviation of 0.0 identify a distribution of
different strategy outcomes which lie exactly on the reference point. Variations
in the averages then indicate the distance of the final average outcome from the
reference and the standard deviation measures the degree of variation of the
averages from the reference point. Averages and standard deviations of a group
of strategies will be presented only for the opponent since the distribution of
outcomes for the player is simply one minus the average of the distribution of
the opponent.

5.4.3 Experimental Procedure

The experimental procedure consists of games between each pairing of player and
opponent strategies (tough, linear, conceder, titfortat) for each of the ) settings
in figures 5.11, 5.12, 5.13 and 5.14 and for each of the experiment classes (pure,
mixed1, mixed2). This procedure is shown algorithmically in figure 5.16.
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Q; := {[0.5, 0.5],[0.5,0.8], [0.8,0.5], [0.3, 0.3] }; /* number of changes */

/* in magnitude of strategy */
strategyP'®¥e" := {tough, linear, conceder, tit fortat}; /* player’s strategy */
strategy°PP°™e"t .= {tough, linear, conceder, tit fortat}; /* opponent’s strategy */
class := {pure, mizedl, mived2}; /* classes of experiments */

N; /* number of experimental runs */
k:=| class [;m :=| Q |;p :=| strategyP'®¥°" |; 0 :=| strategy°PP°me™ |;
l:=0;n:=0;i:=0;7 :=0;r :=0; N := 300

begin

(1) reference := argmax,{VP'*V" (x) VPP ()}

2)  pareto := argmaz,{VF*V (x) + VoPPOment(z)};

3) while(l<k)dol:=1+1;

4) while(n <m) do n:=n+1;

5) while(s <p)doi:=i+1;

6) while(j <o) doj:=j+1;

7) while(r < N)dor:=7r+1;

8)  envpiayer = sample(thiil™", Bloulunrer Bronbeder Blinear > Otit fortar);

—— opponent .
9) €NWopponent = Sa’,'nple(t‘mflz 1ﬂboulware’ conceder ) Mlinear ’6titfortat )ﬂ

10) controly :=[0.25,0.25, 0.25,0.25]; controls := random(0,1);

11)  first := random(player, opponent);

12) pairs}; = (strategy?lay”,strategy;’pponem)

3

(
(
(
(
(
(
(
(
(
(
(
(13) (threadi;, outcomes;) := play(pairsy;, first, envplayer, eMVopponent , cONtrol, controls);
(
(
(
(
(
(
(
(
(
(
(

opponent opponent opponent gsopponent

)

14) W;Player — VplayeT (outcomefj);
15) ‘/;g'opponent — Vopponeni (outcomefj);
16) cycles}; := length(thread];);
17) endwhile
. layer
18) T =N Vi :ppo{zzevn;t
19) 6;);;ponent — Ei\::l V;S
20) cycles;; = >y cyclesi; /N;
21) endwhile
22) endwhile
23) endwhile

24) endwhile

/N;

Figure 5.16: Experimental Procedure Algorithm
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Two strategies are paired to begin negotiation by selecting initial Q; levels for
all issues for both the player and opponent for each type of experiments (line 12).
A game then consists of playing the player strategy against the opponent strat-
egy N times (line 13) On each run fiTSt, /Bboulware; /Bconcederaﬂlineara Fcontrols?
and Ositfortar (Where first is the agent that proposes the first contract and
Teontrois2 is a random sampling of +;;, described more below) are sampled for
each agent (lines 8,9, 10 and 11). N is set at 300 runs which means that the prob-
ability of the sampled mean deviating by more than 0.01 from the true mean is
less than 0.05. At the end of each run, the depedent variables VP!2¥¢T (outcome),
yopponent (outcome) and cycles are measured (lines 14, 15 and 16). After N
runs, the averages for all the dependent variables are computed (lines 18-22).
Note the difference in the analysis between these experiments and the previous
pure-strategy experiments reported in section 5.3. In the latter set of experi-
ments the analysis was at the collective level, where the final average measure
of dependent variable (such as utility) of a strategy was summed and averaged
across all other strategies. However, the analytical unit of this set of experiments
is the average of dependent variable measure for a pair, rather than a collection
of strategies.

For the mixedl experimental class there are two additional opponent strate-
gies for each of the player strategies, corresponding to the controls (line 10).
The player in the mixedl experimental class plays not only against the opponent
strategy, but also a controll opponent (where the opponent’s strategy is simply
the ~; array [0.25,0.25,0.25,0.25] for all issues and all tactics) and a control2
opponent (which corresponds to a random sampling of T'). Controll is included
to evaluate the performance of various mixedl strategies against a strategy that
behaves linearly across all tactic sets and thus reflects an opponent that is un-
certain about which strategy to choose. Note that the I' matrix of Controll
is almost the same as the I' matrix of both agents in experiments where  is
decreased linearly for both agents (mixedl strategies in figure 5.14). Therefore,
these controls are only significant in other experimental 2; levels. Control2, on
the other hand, is included to evaluate the performance of strategies against a
random benchmark. Controls are not possible for the pure experimental class
since the values of v;; are binary. Mixed2 strategies do not encounter any other
control strategies either since the aim of these experiments is to show that mod-
ification of strategies per se is better than non-modification. Thus, the best
one can achieve is interactions between a mixed2 strategy and a highly stylized
negotiator (mixedl and pure strategies in these experiments), as opposed to a
random or another purposeful mixed2 strategist.

The experiments are also restricted to games between similar experimental
class (see figure 5.17). Thus strategies are evaluated for cases when both the
player and the opponent are pure, mixedl or mixed2 strategists. Encounters
between, for example, a pure player and a mixedl or a mixed2 opponent (and
vice-versa) are excluded because the generated data set in the latter case would
be very large. In the former case, the number of generated data points is 224
(number of player strategy * number of opponent strategy * number of Q; exper-
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| | pure | mizedl | mized? |

pure ®
mixed1 [
mixed2 ()

Figure 5.17: Experimental Class Execution Order

iments= ((4%4%4)+ (4%6%4)+ (4%x4%4))). In the latter case the generated data
set is of size 736 making the analysis complex. The experiments were written
in Sicstus3.7.1 Prolog and ran on HP Unix parallel machines at the Centre de
Supercomputacié de Catalunya CESCA (Barcelona), utilising four CPUs, TMB
of memory and lasted 1112.41 seconds.

5.4.4 Hypotheses and Results

The experimental hypotheses and results are presented in this section. Because
the aim of the experiments is to investigate the benefits of dynamic strategic
decision making over static and pure strategies (and not necessarily the causal
relationship between a given strategy type and a combination of any number of
dependent variables), results are presented and discussed for each experimental
class (pure, mixedl and mixed2) and their effects on the individual dependent
variables: i) the final average utilities for outcomes, ii) the communication load
and iii) the number of successful outcomes. Thus the aim is not so much an
analysis of the effects of, for example, a pure-strategy on the final average utility
of an outcome and its relationship with the communication costs, but rather the
differential effects of pure, mixedl and mixed2 strategies on a single dependent
variable, in this example, the final average outcome. Note, that all the hypothe-
ses for the effects of strategies on final average utilities will be quantitatively
represented as the relationship between the expected outcome utilities and i)
the reference point representing the maximum joint gain that is also equitable
and ii) the constant-sum line outcomes representing maximum joint utility that
may not be equitable.

Before presenting the individual hypotheses and results a side-effect, observ-
able in all of the forthcoming data, is identified, directly resulting from the choice
of assigning the same ~y; array to all the issues. For example, a tough strategy
specifies a tough strategy for all the issues in negotiation. The observation from
all the data is that the best joint outcome any combination of strategies, in ei-
ther pure, mixed1 or mixed2 experimental classes, can attain is a contract score
at the mid point of the cross over of the agents’ interval values (or the reference
point), independently of the pairing of strategies. This is so for the following
reason. The independent variable [min$, maz$] of both agents has been designed
to be perfectly overlapping, for all the issues [price, quality, time, penalty]. The
weights of the player and opponent for each of the issues are [0.1,0.5,0.25,0.15]
and [0.5,0.1,0.05,0.35], respectively. These weights mean that the player views
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quality to be the most important issue, followed by time, followed by penalty
and finally, least important issue, price. The opponent, on the other hand, views
price as the most important, followed by the penalty, followed by the quality
and finally time. Given these interval values, importance weights and the linear
scoring function of section 4.2.1, the value of the reference point [15,17.5, 35, 5.5]
(mid point of each issue, section 5.4.1) for the player is computed as:

(0.1 %0.5) + (0.5 % 0.5) + (0.25 % 0.5) + (0.15% 0.5) = 0.5

It is trivial to show that the same score (0.5) will result for the opponent for the
same reference point [15,17.5,35,5.5]. Now consider another contract, X ', in
the space of possible deals, [18,20, 35, 5.5]. This contract will be more beneficial
to both agents, because:

velaver (X' = (0.1 % 0.2) + (0.5 % 0.6) + (0.25 * 0.5) + (0.15 x 0.5) = 0.52

yorponent X'y — (0.5 % 0.8) + (0.1 % 0.4) + (0.05 % 0.5) + (0.35 % 0.5) = 0.64

Thus increasing the values for the issues price and quality from the reference
contract values to the X' contract value is more beneficial to both agents (i.e
moving north-easterly in the direction of the pareto-optimal line). However,
in these experiments the responsive mechanism is a concession protocol which
can not support increase in utility scores where agents begin the negotiation
from the reference point and then move towards more pareto-optimal contracts.
Furthermore, agents are assumed to be unaware of one another’s interval values,
making the computation of the reference contract ([15,17.5,35,5.5]) impossible.
One way agents can reach X I, or better, is to select one outcome from the space
of possible outcomes. Next the agents assign a different I' matrix to each issue.
In this example this means that the player concedes more on the price and less on
quality of a service. Conversely, the opponent can concede more on quality than
on price. The combination of these two I' matrices means different concession
rates on different issues in such a way as to reach X ', or better. However, this
policy of making strategic decisions (assigning +; arrays for each issue) dependent
on the weight of an issue (for example, a more important issue will be assigned a
higher +;; value to boulware tactic) is not adopted in the experiments because,
as was mentioned in section 5.4.1, of the need to control the number of free
experimental independent variables. Indeed, these experiments are viewed as
base-case strategic experiments which form the basis for the design of future
strategic experiments.

Pure-Strategy Utility Results

The effects of a pure-strategy on the set of dependent variables has already been
discussed in section 5.3. However, the methodology of analysis is different (see
section 5.4.3) hence the experiments are repeated here in these new environments
for comparative reasons.

The expectation for the results of these experiments are summerised by the
following hypothesis:



192 Chapter 5. Empirical Evaluation
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Figure 5.18: A) Key For Pure and Mixed2 Strategy Pairings. First Entry of
Label Specifies The opponent Strategy And The Second The player. B) Key
For Mixedl Strategy Pairings. First Entry of Label Specifies The opponent
Strategy And The Second The player.

Hypothesis 7: Pairings of two pure strategies that approach their
interval values less quickly will result in final average outcomes that
are lower in joint wutility than pure strategy pairs where at least one
strategy approaches the interval faster.

The hypothesis states the intuition that an encounter between, for example, two
tough strategies will result in a group utility that is worse than when at least
one of the strategies concedes (since concession increases the other’s share of
the utility). For the discussion of average utility results see figure 5.18 A for
the key of each strategy pair for the average utility data for pure and mixed2
experiments and figure 5.18 B for mixedl experiments (which include the two
control conditions).

Figures 5.19 A and B show the observed average outcome utilities for the
player (z axis) and the opponent (y axis) of the pure-strategy benchmark ex-
periments with the independent variables shown in figure 5.11.

The first observation is that the argument in section 5.4.4 (that because the
~; arrays for each issue are the same the responsive mechanism can not do better
than outcomes lying on the constant-sum line) is supported by the observations
of outcome utilities in both short term and long term environments. No strategy
pair does significantly better than the reference point, by moving north easterly
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Figure 5.19: Comparative Final Joint Average Utility For Pure Strategies. A)
Average Intrinsic Utility For Short Term Deadline, B) Average Intrinsic Utility
For Long Term Deadline.

towards the pareto-optimal line, independently of the time limits.

Hypothesis 7 is also supported by the observed data in figure 5.19. The data
in figure 5.19, A is clustered into roughly four groups. The first group (shown as
groupl), are the best outcomes, in that they are closest to the reference point,
thus resulting in a more equal distribution of final utilities. groupl members are
the strategy pairings (linear,linear), (conceder,conceder) (titfortat,titfortat),
(linear, titfortat), and (titfortat, linear). These strategies correspond to the cases
where both agents adopt a concessionary approach to the cross over of the in-
terval values. The group’s total mean and standard deviation is 0.485 and 0.04
respectively (recall that outcomes with a perfect coincidence with the reference
point will have a mean and standard deviation of 0.5 and 0.0 respectively). The
observed standard deviation of groupl statistically represents the tightest cluster
of these outcomes around the reference point in figure 5.19, A.

The next two groups of outcomes, group 2 and group 3, also lie on, or
close to, the constant-sum line, but the distribution of individual outcomes
is less uniform compared to groupl. group2 members are the strategy pair-
ings (tough, conceder), (linear, conceder), (titfortat, conceder), which lie on the
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north west sector of the outcome grid (resulting in higher valued outcomes for
the opponent, since only the player is conceder in all their strategies). Con-
versely, mirroring group2 outcomes is group3, whose members are the strategy
pairings (conceder, tough), (conceder, linear), (conceder,titfortat). These lie on
the south east sector of the outcome grid resulting in higher valued outcomes
for the player, since opponent is conceder in all its strategies.

Finally, group4 is the clustering of outcomes that do not lie on the constant-
sum line (south west sector of the outcome grid) and occur with the strategy
pairings (tough,tough), (tough, linear), (tough, titfortat), (titfortat,tough) and
(linear, tough). group4 outcomes are the worst outcomes because they result in
final joint average utilities that are lower than all other outcomes. These four
groups of observations support hypothesis 7 —in groups 1,2 and 3 there is at
least one strategy that approaches its interval faster than the others. However,
in group4 both are either tough or imitate a tough strategy or are linear.

Roughly four groups are once again observed when the environment is
changed from short term to long term deadlines, figure 5.19, B. However, this
time there are less members in groupd—(tough,linear) and the converse mem-
ber (linear, tough) now belong to group2 and group3 respectively. This further
supports the stated hypothesis since group4 is now purely composed of tough
strategies. However, although a strategy that approaches its interval value slowly
does individually badly, collectively (similar methodology as the previous tactic
experiments, when the results are averaged across all other strategies) there is an
increase in final average utility. Results show that, for example, a tough player
strategy gains an average of 5% of utility when utilities are averaged across all
other strategies in long term deadlines. It is interesting to note that the perfor-
mance of a tough strategist is lowered when more time is given for negotiation
when encountering a titfortat strategist. Statistically the total average of out-
lying data decreased from 0.247 to 0.182 with a standard deviation of 0.067.
This result is explained by the fact that the titfortat strategy is a conceder until
it can begin to imitate other’s responses. Therefore, under short term dead-
lines the strategy concedes (hence moves closer to constant-sum line), whereas
in longer term deadlines it has more opportunity to imitate the other’s strategy
(tough in this consideration) and as such becomes tough too (hence a deal is
only possibly reached in the last few moments of negotiation). This pushes the
outcomes further away from the constant-sum line. In general, for all the exper-
iments described below noticeable effects of time limits on strategies are more
observable for data that calibrate the process (the costs of communication) and
less on the outcome of negotiation. Note, this is not to be confused with the
observation of the previous pure-strategy experiments where there was a signif-
icant difference across deadlines. As was shown in the results of group4 in long
term deadlines, the collective final average utility of a strategy when summed
and averaged across all other strategies (methodology of the pure-strategy ex-
periments) does increase. However, the analytical unit of these experiments are
average joint utilities for a pair, rather than a collection of strategies.
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Mixed1 Strategy Utility Results

The expectations for the results of these experiments are summerised by the
following hypotheses:

Hypothesis 8: A weighting policy that allows all tactics an input
into the decision making results in a larger number of outcomes that
are closer to being equitable, than one that only considers a single
tactic.

Hypothesis 9: The more equal this weighting of each of the tactics
for both agents: i) the more equitable the final outcome and ) the
fewer the number of outcomes that lie off the constant-sum line. That
is, variation of tactic weightings by either party results in less fair
outcomes and more outcomes that lie off the constant-sum line.

Hypothesis 8 states the intuition that in decision making a combination of tactics
(a mixed] strategy) is better than a single tactic (pure-strategy). The argument
is as follows. In the given set of tactics (or “forces”), boulware, linear, conceder
and titfortat, two (linear and conceder) concede at different rates (possibly
three, titfortat given the other is a conceder or linear) and one (possibly two—
titfortat encountering a boulware) does so at a relatively much slower rate.
Therefore, if equity, or some fair joint utility, is required then, as was shown
in the results of the previous section, only encounters between a few pairs of
pure concessionary strategies will achieve this expectation. Indeed, overall, en-
counters between all of the pure strategies will lead to outcome utilities that
have a distribution within the space of possible deals that is more variable since
the outcomes between agents will be based on individual tactics. For example, a
pairing of tough and tough pure-strategies will result in a final joint utility that
is significantly different to a pairing of conceder, conceder pure-strategies. Vari-
ability in the final average utilities is to be expected (since some pure strategies
will reach the reference point, but encounters between others will not). On the
other hand, encounters in mixedl strategies are expected to be comparatively
less varied, since they are no longer between unique tactics, but a combination
of tactics. For example, to reach a fair solution an agent in mixed1 experiments
does not have to “wait to meet” an agent who is adopting a pure conceder or
linear strategy; conceder and linear pure strategies are present, to some degree,
in all mixed1 strategies of the other agents.

The expectation over the effects of this relative weighting of a tactic compared
to the other tactics () is given in hypothesis 9. This hypothesis captures
the expectation that the more equal the weighting of all the tactics by both
agents (a resultant force that lies equally between the tough and conceder tactics,
by both agents) then the more likely the final outcome is to be an equitable
one. This is expected because when the distribution of tactic weights are less
varied by both agents, then when these two agents meet the boulware, titfortat
component of their strategy pairs are more resistant to concession. However,
this resistance is compensated for by the conceder, linear, titfortat components
which approach the cross over of offers at a quicker rate. Derivable from this
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argument is the expectation that inequality in the weight of tactics, by either
party, should result in more variation of outcomes, similar to pure strategies—
departure from an equal weighting of tactics, by either party, should result in
outcomes that resemble more closely the results from pure-strategies. Variation
in these experiments will be quantified with respect to the reference point and
the departure of outcomes from the constant-sum line.

Figure 5.20 shows the final average agent utilities for mixedl strategies in
short term deadlines. Figure 5.20 A represents the observed final average utility
outcomes for the benchmark player and opponent independent variables (figure
5.11). Compared to the pure-strategy results of figure 5.19, two patterns can be
observed from the collected data that support hypothesis 8. Firstly, the center of
the distribution of outcomes is closer to the reference outcome. Statistically the
center of the distribution of points lying on or close to the constant-sum line is
of a higher value of 0.479 with a lower standard deviation of 0.0077 as compared
to a standard deviation of 0.25 for the points in the pure experiments. Almost
all the points lie on the constant-sum line—compared to pure strategies, the
number and magnitude of points lying off the constant-sum line is much lower
(there are no longer any groups of outcomes). Specifically, the largest magnitude
“breakaway” is for encounters between a tough player and a tough opponent.
Other previously breakaway outcomes ((tough, titfortat), (titfortat,tough) and
(linear, tough)) are much closer to the constant-sum line and the reference point
than the results observed for pure experiments. Therefore, in such an environ-
ment, a combination of tactics (hypothesis 8) does indeed appear better than
using a single tactic in generating offers in responsive mechanisms. Thus agents
do not have to wait to “meet” a concessionary strategy to reach fair deals since
all strategies have some degree of concession incorporated in them.

Hypothesis 9 is tested by changing the environment from a benchmark player
and opponent to an opponent with a higher Q value (figure 5.20 B, as specified
by the independent variables of figure 5.12). Two patterns are observable in the
collected data. Firstly, the center of the distribution moves away from reference
point towards the player in the south easterly direction (this increase of the dis-
tribution variation along the constant-sum axis will be referred to as “elasticity”
of data points). The overall direction of the observed shift is towards higher util-
ities for the player. Statistically this corresponded to the total average of points
lying on or close to constant-sum line value of 0.436 with a standard deviation
of 0.11. Thus the outcomes that lie on the constant-sum line are of relatively
higher value to the player. This pattern is expected from hypothesis 9 since
with higher €2 values the opponent is more concessionary for conceder strategies
(linear, conceder, tit fortat). This means that a shift should occur away from
the opponent reference point and towards the player.

The second observation is that the change in the environment (increased
Q; for the opponent) produces more breakaway final outcome utilities from the
constant-sum line than the benchmark experiments. Furthermore, the obser-
vation closely resembles the outcome distribution of pure-strategy experiments,
supporting the second part of hypothesis 9—unequal weightings of tactics by
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Figure 5.20: Comparative Average Utility For Mixedl Strategies in Short Term
Deadlines. A) Benchmark B) Opposition Increased €2, C) Player Increased
D) Both Decreased ;.

either agent result in more outcomes that lie off the constant-sum line. Again,
like the pure experiments the breakaway points consist of encounters between a
tough opponent and a tough, linear or titfortat player.

Hypothesis 9 is given symmetric support when the player has a higher
value and the opponent is specified by the benchmark values. This environment
is described by the independent variables in figure 5.13. Results are shown in
figure 5.20 C, the converse of 5.20 B. Once again, there is an elasticity of data
points, but in an opposite manner to the previous environment. However, the
relative movements are more towards the opponent this time (opponent statis-
tical average for outcomes lying on or close to the constant-sum line increased
from 0.436 to 0.51 with a standard deviation of 0.109). As before, the only
breakaway points are encounters involving a tough player.

Hypothesis 9 is positively supported when both agents’ environments are
changed from the benchmark environment to one where the value of € is de-
creased (from the benchmark level) to a level where all other tactics have more
of an input in decision making (independent variables shown in figure 5.14).
The final outcomes across all strategies almost converge to the reference point
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Figure 5.21: Comparative Final Joint Average Utility For Mixedl Strategies in
Long Term Deadlines. A) Benchmark B) Opposition Increased €, C) Player
Increased Q; D) Both Decreased €2;.

(figure 5.20 D), corresponding to a total final joint average utility of 0.497
with a standard deviation of 0.015, the lowest standard deviation in the re-
sults thus far. Thus, the more equal the weighting of all tactics, by both agents,
the more closer the final agreement is to the mid-point of the intervals. This
is because some tactics function to reach the minimum of the interval values
(conceder, linear), whereas others function to remain at the maximum of inter-
val values (tough, titfortat). The resultant position reached is the mid-point of
the interval.

Overall, the results imply the causal relationship that i) a combination of tac-
tics outperforms pure strategies and ii) a near equal combination of the possible
set of tactics by both agents results in better social outcomes (figure 5.20,D)
than a differential combination policy of tactics (figure 5.20, A, B, C).

Figure 5.21 shows the same set of experimental environments as figure 5.20,
but now the deadline to reach an agreement is extended from a short to a longer
term. For the benchmark cases the outcomes further support hypothesis 8 and
9. The results are now more evenly distributed along the constant-sum line
and with less breakage (with the exception of (tough,tough) encounters) than
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short term deadlines (summed total average of 0.51 with a standard deviation
of 0.096). The implications of this observation are that: i) when given enough
time to negotiate, the strategies are almost uniquely distinguished by the solution
point they reach (hence a more even distribution of outcomes) and ii) the sum of
these deals are all almost 1.0. Whereas in pure-strategy experiments an increase
in time deadline (figure 5.19 A and B) does not significantly increase the sum of
the joint outcomes (resulting in outcomes that lie below the constant-sum line),
the same change in the environment results in better joint outcomes.

The same elasticity pattern is observed as previously when either the
opponent or the player negotiates with higher Q values, shown statistically by
an increase in average utility for the opponent from 0.414 (standard deviation
of 0.079) to 0.50 (standard deviation of 0.13) between figures 5.21 B and C re-
spectively. Once again, the outlying outcomes are encounters between strategies
that are slower to reach the cross over point of offers.

Finally, once again the best outcomes are observed when both agents’ envi-
ronment are changed from the benchmark environment to one where the value
of Q is decreased (from the benchmark level). Again, the final outcomes across
all strategies almost all converge to the reference point (figure 5.21 D), corre-
sponding to a total final joint average utility of 0.499 with a standard deviation
of 0.017. These combined observations shown in figures 5.20 D and 5.21 D im-
ply that outcomes cannot be distinguished when both agents adopt an almost
equal weighting of possible tactics (low values of Q for strategy magnitudes).
This means that outcomes are independent of the strategies the agents select
(a collapse of all points on to the reference). This is because all strategies in
this environment are defined as an almost equal weighting of tactics, where the
difference between the weightings for each strategy is insignificant. Hence all
strategies are almost equal with small variations (shown in the data by the
magnitude of the standard deviation of the results). The expectation for this
result is stated in hypothesis 8; in this environment the point of the crossover
between the offers is reached by almost equally combining the suggestions of all
tactics. Thus whereas the boulware tactic may suggest different offers, its input
is approximately only one quarter or, at maximum, a third of the final deci-
sion ([0.23,0.3], see figure 5.14). On the other hand, the concessionary tactics
may suggest concession rates that are very different to a boulware tactic, but
nonetheless they are also only a quarter or a third part of the final decision. The
overall effect of the strategies in this environment is an equal integration of the
suggestions of different tactics into a single concession rate. In so doing, each
of the individual differences between tactics are ignored and a new combined
concession rate is computed. As will be shown later, this hypothesis, that in
this environment strategies integrate different concession rates into a single con-
cessionary rate, is supported by an almost constant communication load across
all strategy pairings shown in figure 5.26.
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Mixed2 Strategy Utility Results

The expectation for the results of these experiments are summerised by the
following hypothesis:

Hypothesis 10: Modification of a strategy during the course of ne-
gotiation will result in higher valued and fairer social outcomes than
non-modification.

This hypothesis states that the combination of i) considering a number of tac-
tics in decision making and ii) modifying this consideration, should result in
outcomes that maximize the equity joint utility of the outcome. This is ex-
pected because the update rule should change the weights of each tactic in such
a way as to reach the cross over in the contract score according to how close the
offers are to one another. Thus, at the beginning of negotiation it is expected
that offers are dissimilar. The degree of dissimilarity in turn depends on the
starting position of the resultant shown in figure 5.10 (or the initial I" matrix).
However, the resultant is incrementally adjusted (according to rule 5.2 whose ac-
tions are dependent on the evolving similarity between offers) towards the tough
end of the spectrum (2) by both agents as offers become more similar to one
another. This process continues until offers converge. Thus, if both agents are
implementing rule 5.2 for update of weights and their interval values are per-
fectly overlapping, then final outcomes should be closer to the reference point
than mixedl strategies. The observed final joint average utility outcomes are
shown in figure 5.22 for dynamic strategies (mixed2) in short term deadlines.
The overall observation for all the Q variations (independent variables shown
in figures 5.11, 5.12, 5.13, 5.14) is that all of the outcomes are distributed on
the constant-sum line with no breakaway points. The average of the utility dis-
tributions along the constant-sum line are now 0.50,0.489,0.533 and 0.488 for
benchmark, opposition, player and both decreased 2 levels respectively, with
standard deviations of 0.0866,0.123,0.10 and 0.035 respectively. The same av-
erages for mixedl strategies were 0.479,0.384,0.436 and 0.497 for benchmark,
opposition, player and both decreased 2 levels respectively. The combined ob-
servations that there are no outlying breakaway outcomes (hence all outcomes
are maximized) and there is an increased final joint average utility distribution
around the reference point (hence higher equitable outcomes) gives support to
hypothesis 10. Thus, changing strategies in short time deadlines results in better
joint outcomes than a mixedl strategy. For example, a tough mixedl strategy
throughout the negotiation results in breakaway points, but changing from being
concessionary to a tough type strategy resulted in better social outcomes.
Finally, figure 5.23 shows the results for the same set of environments but
for longer term deadlines. Once again there are no breakaway outcomes with
average distributions along the constant-sum line values of 0.509,0.448,0.557
and 0.499 for benchmark, opposition,player increased {2 and both decreased
Q) levels respectively, with standard deviations of 0.04,0.082,0.089 and 0.0012.
The interesting point to note is that when all tactics are weighted almost equally
by both agents (figure 5.23 D), the final outcomes converged exactly to the



5.4. Strategic Experiments 201

A B
10 10
09- 0.9-
0.8+ 0.8
—_ 1
=074 < 071
§ ] 1
s 067 06 <1
054 051
g% L4 ] b
T 0.4 * 0.4+ |
5 oal ] 1
@ 031 0.3 *
0.2- 0.2-
0.14 0.14
N Y
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
C D
10 10
09- 091
08- 081
£ 07 071
T ] | ]
é 08 06
g o5 N 05 1@‘
T 04- “m 04 2
§ 03 03
02- 021
01 011
0.0+ 0.0
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

scor e(player) scor e(player)

Figure 5.22: Comparative Final Joint Average Utility For Mixed2 Strategies in
Short Term Deadlines. A) Benchmark, B) Opponent With Increased Q , C)
Player With Increased 2, D) Both With Decreased ).

reference point (average distribution of 0.499 and standard deviations of 0.0012,
the lowest in the experiments). Thus in environments where both agents weight
their tactics uniformly (figure 5.23 D) the final outcome is independent of the
individual strategies. This result is expected from the combination of hypothesis
9 of mixed1 strategies and the behaviour of the update rule. That is, when both
agents weight each tactic almost equally, then the initial concession rate to the
cross over of values is computed as the combination of both concessionary and
non-concessionary tactics, into a unique concession rate that is the resultant of
the combination. This initial concession rate is then updated by the rule given in
equation 5.2 independently of the type of strategy, selecting a convergence policy
to the cross over of offers which is dependent of the context (the similarity) of
negotiation.

Pure-Strategy Cost Results

In this section the hypotheses and observations over the dependent variable
cycles are presented for the pure strategies. Recall that, unlike the previous
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Figure 5.23: Comparative Final Joint Average Utility for Mixed2 Strategies in
High Time Deadlines. A) Benchmark B) Opposition Increased Q;, C) Player
Increased Q; D) Both Decreased €2;.

pure-strategy experiments reported in section 5.3, the analytical unit of these
experiments is average cost for a pair of strategies, rather than a collection of
strategies.

The dependent variable cycles directly measures the communication load
a strategy incurs during the negotiation. The results for mixedl and mixed2
strategies are presented in the two subsequent sections. Due to legend space
restrictions, the strategy labels on the x axis have been abbreviated to b,l,c,t
for tough, linear, conceder and titfortat strategies.

The intuitions and expectations about the communication load of a pure
strategy are captured by the following hypothesis:

Hypothesis 11: Pure strategies that concede comparatively less
slowly will result in correspondingly higher communication costs.

This hypothesis is simply based on the fact that some tactics (boulware or
titfortat when it encounters a boulware) approach the minimum of the interval
values less slowly, thereby prolonging the negotiation thread. The support for
hypothesis 11 is given in the observed results of figure 5.24 A and B, showing
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Figure 5.24: Communication Loads For Pure Strategies. A) Short Term Dead-
lines B) Long Term Deadlines.

the observed communication load for different pure-strategy pairings in short
and long term deadlines respectively. The first support for the hypothesis is
deduced from the inverse observation that encounters between any strategy and
a conceder result in fewer exchanges of offers than other combinations, indepen-
dently of the environment. Furthermore, more offers are exchanged in longer
term deadlines. However, whereas in most pairings the amount of communica-
tion increases with increasing time limits, encounters with a conceder result in
almost constant communication load. That is, encounters with a conceder result
in the same number of offer exchanges independently of the time limits. Finally,
positive confirmation of hypothesis 11 is obtained with the observation that the
highest number of offers exchanged is between the tough and titfortat pairings,
the same pairings in the final joint average utility observed data that exhibited
breakaway patterns from the constant-sum line (figure 5.19). Taken together,
these results indicate that encounters between pure strategies that have a slower
rate of approach to the interval values not only result in poorer social outcomes,
but also incur a high communication overhead.

Mixed1 Strategy Cost Results

The intuitions and expectations about the communication load of a mixedl
strategies are captured by the following hypothesis:
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Hypothesis 12: In the general case, a strategy that combines tactics
will result in an increased number of negotiation rounds. Specifically,
the amount of communication used is a function of the amount of
mixture involved between tactics that reach intervals slowly or rapidly.

The above hypothesis is based on the expectation that when only a single tactic
is selected for generation of offers (a pure-strategy) then, as confirmed in the
previous section, those tactics that have a slower concession rate to the interval
values will result in a higher number of offer exchanges. However, when tac-
tics with a different concession rate to the interval values are combined, then
the number of exchanges will generally be greater than the pure strategy case.
A higher number of exchanges are expected because concessionary tactics are
now combined, to some degree, with less concessionary tactics like boulware and
titfortat. Therefore, since each strategy has an element of less concessionary be-
haviour then more communication is to be expected. This is a general hypothesis
since the specific number of offers exchanged depends on the “amount of this
mixture” (or I' matrix) policy of the strategy. The overall expectation is that
fewer exchanges of offers are likely when both agents “move” the resultant force
(figure 5.10) of their tactic combination from a boulware tactic to a conceder
tactic.

Figure 5.25 A, B, C and D show the observed results for the communication
load of pairings of mixed1 strategy types in short term deadlines (for benchmark,
opposition, player increased (; levels and both decreased Q; levels respectively).
Hypothesis 12 is not supported in short term deadlines. The observed data
suggests, similarly to pure strategies, that in short term deadlines virtually all
the encounters between all the different types of strategies take the same number
of cycles to complete. This is also observed for mized2 experiments (see figure
5.27 A, B, C and D) which are described in the next section. This result is due to
the small window of opportunity constraining the time within which strategies
must reach a deal (this sub-hypothesis is supported by the observation that
in comparatively longer term deadlines strategies are differentiated, see figure
5.26). Because this “window” is small all strategies use almost all of the limited
time to search for deals. A short term deadline is defined as 2 — 10 ticks of
a discrete clock. Therefore, strategies have on average 4 ticks of a clock to
reach a deal. As shown in figure 5.25, nearly all strategies “consume” this
available time. Therefore, a better differentiator of strategies in short term
deadlines is not the communication load of the strategies, but rather the number
of deals reached or their utilities, or a combination of both. This result is carried
over to other strategies, where in short term deadlines the number of cycles in
negotiation is independent of not only the pairings of the strategies within a
given type of strategy (pure, mixedl or mixed2), but also across different types
of strategies. Therefore, communication load can not be used as a decision
criteria in short term deadlines. The agent may rely instead on other relevant
criteria such as the intrinsic utility of the outcome or the number of successful
deals reached. For example, if the utility of deals is used as a decision criteria for
which strategy to select then, as shown by the results in figure 5.22, a mixed2
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Figure 5.25: Communication Loads For Mixed1 Strategies in Short Term Dead-
lines. A) Benchmark B) Opposition Increased €, C) Player Increased Q; D)
Both Decreased €

strategy can lead to better social outcomes. A significant effect of strategy
pairings on the communication load is observed in patterns of data for longer
term deadlines for both mixedl and mixed2 experiment types (figures 5.26 and
5.28 respectively). The claim that the number of exchanges in a mixedl strategy
will generally be greater than the pure-strategy case is supported by an increased
total average number of cycles across all strategies. Quantitatively, the total
average number of cycles across all strategies are 17.18 for pure strategies (figure
5.24 B) and 22.58 for benchmark mixedl strategies (figure 5.26 A). Hypothesis
12 is further supported by the observations when the opponent (or conversely
the player) had a higher Q; level than the benchmark environment (figure 5.26
B and C respectively). This environment tests the proposition that the specific
number of offers exchanged depends on the “amount of mixture” involved (or
I’ matrix) policy of the strategy. Compared to the benchmark case, increasing
vij (moving towards a +;; array distribution that resembles more closely the
pure-strategy ;;), causes tactics that approach their interval quickly (or slowly)
to decrease (or increase) the communication loads. For example, increasing the
vi; of a conceder tactic from the benchmark case results in a lower number
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Figure 5.26: Communication Loads For Mixed1 Strategies in Long Term Dead-
lines. A) Benchmark B) Opposition Increased €, C) Player Increased Q; D)
Both Decreased ;.

of exchanges in negotiation (figure 5.26 B). Conversely, increasing the v;; of
a boulware tactic from the benchmark case results in an increased number of
exchanges in negotiation (figure 5.26 B). Note also that the latter encounters
are the group of pairings that exhibited breakaway from the constant-sum line
(figure 5.21 B).

The results of mutual and uniform integration of concessionary tactics with
less concessionary tactics by both agents in long term deadline environments is
shown in figure 5.26 D. The expectation that the communication load of mixed1
strategies specifically depends on the amount of “mixture” of tactics is positively
supported in figure 5.26 D, where an equal combination of concessionary and non-
concessionary tactics result in an increase in communication costs of conceder
type strategies and a decrease in communication costs of tougher strategies.

Mixed2 Strategy Cost Results

The intuitions and expectations about the communication load of mixed2 strate-
gies are captured by the following hypothesis:
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Figure 5.27: Communication Loads For Mixed2 Strategies in Short Term Dead-
lines. A) Benchmark B) Opposition Increased €, C) Player Increased Q; D)
Both Decreased ;.

Hypothesis 13: In the general case, dynamically changing strategies
in the course of negotiation, according to some subjective function,
will result in fewer negotiation rounds than static strategies.

Hypothesis 13 has essentially the same form as hypothesis 12. However, the dif-
ference in the prediction is that in the general case a mixed2 strategy will result
in fewer exchanges of offers. That is, in the types of environments considered in
these experiments, the modification of the I" matrix according to some subjective
function (here the perceived closeness between offered contracts) should result in
fewer exchanges of offers since the interval values of agents are perfectly overlap-
ping. If the interval values are perfectly overlapping and agents begin their offers
at the maximum of their interval values, then subsequent offers should quickly
become more similar when at least one agent makes a concession. Offers become
similar quickly because the update rule 5.2 gives higher weightings to concession-
ary tactics when offers are not close to one another. In essence the update rule
modifies the behaviour of each strategy with another tactic (concessionary or
retaliatory) according to the perceived closeness of offers. If distances between
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Figure 5.28: Communication Loads For Mixed2 Strategies in Long Term Dead-
lines . A) Benchmark B) Opposition Increased €2, C) Player Increased Q; D)
Both Decreased ;.

contracts are large then a tactic that concedes is given higher importance. As
the offers approach one another the similarity between offers increases, resulting
in a higher weighting for boulware tactics. The overall effect of these two rates
of approach is to quickly approach the mid-point of the intervals, followed by a
slower rate of concession until a cross over of offers occurs. In a mixedl strategy,
on the other hand, the rate of approach to mid-point is constant. For example,
a tough strategy in mixedl consists of approaching the interval at a rate that
is constant and slow. This should naturally result in more exchanges of offers
than an equivalent tough mixed2 strategy whose behaviour is to concede initially
(because contracts are dissimilar—rule 5.2), but become tough as offers become
more similar.

The observations and explanation of the results for the short term deadline
environment (figure 5.27) have already been described in the section above. Fig-
ure 5.28 shows the final observed communication results for the mixed2 strategies
with long term deadlines. The comparative data for benchmark cases of mixed1
and mixed2 (figures 5.26 A and 5.28 A, respectively) supports hypothesis 13. For
example, a tough mixed2 strategy engages in less communication than an equiv-
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alent tough mixedl strategy. In general, a mixed2 strategy reaches an outcome
in fewer rounds of negotiation. Statistically the final sum average of commu-
nication cycles for all benchmark mixedl strategies (the general case) is 22.75,
compared to the final sum average of 16.3 for the benchmark mixed2 strategies.
This pattern is also repeated for cases when ; of either the opponent or the
player is increased, figures 5.28 B and C respectively. Finally, there is no signif-
icant observed difference in communication usage between mixedl and mixed2
strategies when both agents weight the tactics smoothly and almost equally (fig-
ures 5.26 D and 5.28 D respectively). This result, in combination with others
shown in figure 5.28 A, B and C, suggests that when tactics are mixed equiv-
alently, offers are closer to the mid-point of the cross over (supported by the
final joint utility observations in figure 5.23 A, B, C and D, where the final out-
comes are very close to the reference point). Hence the update rule modifies all
strategies slowly (a boulware tactic) until cross over is achieved. This suggest
that deliberation over which combination of tactics to use will result in better
social outcomes (figure 5.23 A, B, C and D) than a static policy, and this can
be achieved at the same communication cost.

Summary of Strategic Experiment Results

The above results for the three experimental classes confirm the initial propo-
sition of the experiments—that dynamic strategies > static strategies >
pure strategies, for the experimental dependent variables intrinsic utility and
cycles.

The utility results show that decision making using pure strategies, when
viewed from a global perspective (the equity or maximization of joint utilities
represented by the reference point), results in the most variable set of utility
outcomes. However, when tactics are mixed, but constant (mixedl strategy),
there are significantly lower variations in final average utilities. Furthermore, a
more equal weighting by both agents results in final outcomes that most increase
the maximization of equitable outcomes. In sum, as the mixture of tactics is
made more equal by both agents, then the closer the final outcome gets to the
reference point. Finally, changing this initial consideration (mixed2 strategy)
results in the highest maximization of equitable outcomes.

Once again the variability of the communication load of the strategy is high-
est in the pure case. This can be seen by the fact that conceder pure strategies
result in less communication load and, conversely, a tough strategy results in
relatively more communication. In the case of mixedl strategies, on the other
hand, this variability in communication across strategies becomes dependent
on the amount of mixture of the tactics. Thus the results show that when an
agent places higher weighting on concessionary tactics, the communication load
is minimal (also independently of time limits). Conversely, almost all of the
communication resource is used by agents when they place more weight on the
less concessionary tactics. Medium communication load, and less variability
across strategies, is observed when both agents weight each tactic equally. Fi-
nally, a dynamic strategy according to the policy that the concession tactic be
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given more weight when offers are not similar to one another, results in the least
overall communication resource usage.

Overall the implications of these results, from the perspective of configuring
an agent, using the wrapper with the current set of available tactics, is that the
agent designer should expect the following;:

e Pure-strategies have the largest effect on the interactions. Specifically, if
an agent is configured to interact with a pure-strategy then variability
should be expected in: i) the final utility of outcomes, with only a few
combinations of pure-strategies resulting in better social outcomes, and ii)
the overall communication costs.

e If an agent is configured to interact with a mixed and static strategy then
the designer should expect: i) less variability in the final utility of outcomes
with relatively more pairings of mixed strategies resulting in better social
outcomes, but ii) with a higher overall communication cost than pure-
strategies because concessionary and non-concessionary tactics are now
mixed (thereby increasing the overall communication cost).

o If an agent is configured to interact with a mixed and dynamic strategy
(given by the update rule 5.2) then the designer should expect: i) the least
variability in the final utility of outcomes with relatively more pairings of
mixed strategies resulting in better social outcomes than pure or static
strategies and ii) an invariant, and almost average, overall communication
cost when compared with pure or static strategies.

5.5 Trade-off Experiments

The previous two sections empirically investigated the behaviour of the respon-
sive mechanism. In this section the trade-off component of the wrapper is em-
pirically evaluated. The aim of these experiments is to evaluate the kernel of the
trade-off algorithm (presented in section 4.5.2) by investigating its parameters in
generating a single offer. Therefore these experiments are intended to discover
the behaviour of the algorithm and assist negotiating agent designers by provid-
ing guidelines about the possible outputs of the algorithm given the inputs that
need to be supplied by the designer. This input is the information an agent has
about the other agent and it needs to be provided by the designer as knowledge
in the acquaintance model (AM) component of the wrapper, shown in figure 1.1.
These experiments will be referred to as single-offer experiments.

The next section, in turn, reports on the experiments that evaluate the pro-
cess of negotiation when agents use a combination of, through the use of meta-
strategies, trade-off and responsive mechanisms. The process of both agents
solely making trade-offs can not be investigated because negotiation will always
be unsuccessful. Making trade-offs means offers have non-diminishing scores,
hence cross over of offers, a condition for accepting an offer, can not occur.
Therefore the designer of an agent is provided with a higher level interaction
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analysis of the behaviour of the trade-off mechanism when it interacts with a
combination of other mechanisms. These latter experiments are referred to as
the meta-strategy experiments.

Whereas the aim of the single-offer experiments is to investigate the kernel
of the trade-off algorithm, in the meta-strategy experiments the subject of the
investigation is the dynamics of the trade-off algorithm when interacting with
other mechanisms.

5.5.1 Experimental Independent Variables

The experimental independent variables are reported in this section. Both the
single offer and meta-strategy experiments share a common set of independent
variables, therefore, to avoid repetition in the next section, the set of shared
independent variables is presented in section 5.5.1 below. Next the independent
variables unique to the single-offer experiments are presented in section 5.5.1.

Experimental Independent Variables for Both Single-Offer
and Meta-Strategy Experiments

The negotiation environment is left unaltered from the dependent variables de-
scribed in the strategy experiments (figure 5.8) in order to assist the compar-
ison of the results between the trade-off and meta-strategy experiments with
the responsive experiments, presented earlier in section 5.4.4. Briefly, the envi-
ronment in the single-offer and meta-strategy experiments consists of bi-lateral
negotiations between agents categorically labelled as player and opponent, who
negotiate over multiple quantitative issues [price, quality,time, penalty]. The
interval values for these issues are perfectly overlapping (see equation 5.1). The
player assigns [0.1,0.5,0.25,0.15] and the opponent assigns [0.5,0.1,0.05, 0.35]
as the importance of these issues.

The other input variables of the trade-off algorithm are the discriminatory
power and the magnitude of the difference between the input and output of
the criteria function (equation 4.6). The criteria function used (equation 5.3)
is the same as the one presented for the responsive I' update rule 5.2. Like
the responsive experiments, € is also fixed at 0.1 for all issues in order to be
quite discriminatory. Also, different o values are fixed to be equal for all issues,
aPrice = qauality — glime — gpenalty — 1 g5 a5 to have linear criteria functions
(h%s), having equal discrimination power across the issue’s interval values.

Single-Offer Experimental Independent Variables

The independent variables that are specific to the single-offer experiments are:

1. the number of children generated at each step in hill-climbing to the iso-
curve (N in the trade-off algorithm, section 4.5.2)

2. the number of steps taken to reach the iso-curve (S in the trade-off algo-
rithm, section 4.5.2)
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3. the information that is available to an agent regarding the importance
(or weight) the opponent places on each issue in computing the contract’s
value (equation 4.5) and

4. the opponent's and player's last offers (x and y in equation 4.4).

Values for the first and second variables control the amount of search performed
by the trade-off algorithm. Experiments are run where the number of children
are selected from the set {5,100,200}. The number of steps to the iso-curve
is selected from the set {1,40}. The concrete numbers for both the number of
children and the number of steps to the iso-curve individually signify very little.
However, the significance of these values is the relative relationship between
them. Thus more computation is involved when the trade-off algorithm generates
200 rather than 5 children at each iteration, or when it takes a larger number
of steps to the iso-curve. The expectation, as will be shown below, is that more
computation should result in better outcomes.

The third independent variable attempts to calibrate the relationship be-
tween the performance of the trade-off algorithm (in particular, how similarity is
computed) given an agent’s subjective estimates of the likely importance weight-
ings of the other agent. This subjective estimation over others’ weights is stored
as information in the A M component of the wrapper. Thus, to compute whether
two offers are similar, an agent has to make some subjective, and possibly incor-
rect, decision about how the other views the importance of an issue. Specifically,
in single-offer experiments an agent can have either perfect, partial, imperfect
or uncertain information on how the other agent weights the issues that are in-
put into its similarity function (equation 4.5). The agent chosen to perform the
single-offer tradeoff is the player. Then, in experiments with perfect informa-
tion, the algorithm, in computing similarity, is given the opponent's weights for
different issues (i.e. [0.5,0.1,0.05,0.35], cardinally correct information). Partial
information games are where the algorithm is given the correct order of impor-
tance but not the actual issue weights (i.e. [0.7,0.09,0.01,0.2], ordinally cor-
rect information). Imperfect games represent the situation where the algorithm
is given incorrect information about the other’s weights (i.e. [0.1,0.2,0.5,0.2],
incorrect information). Finally, uncertain information games represent cases
where the algorithm is given undifferentiated weights for each issue, in this case
[0.25,0.25,0.25,0.25]. The output of the trade-off algorithm can then be assessed
when supplied with different types of information.

The final independent variables in these experiments are the input contracts
z and y (see equation 4.4) representing the player's and the opponent's last
offer respectively. Given the interval values in equation 5.8, contract z is set to
[15,28,25,8] and y to [18,10,45,3]. Given each agent’s weights and their linear
scoring function (described in section 5.4.2), the agent’s valuation of these two
contracts are:

yPlaver () = 0.835, VPIOYer (1)) = 0.195

Vopponent(z,) — 0344, Vopponent (y) =0.8
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meaning that negotiation can continue since there is no cross over of offers yet,
each agent still prefers their own offer over the other’s latest offer.

5.5.2 Experimental Procedure

The experimental procedure consists of inputting two contracts, representing
z and y, into the algorithm under different combination of the other three in-
dependent variables (number of children, number of steps to the iso-curve and
the information levels) and observing the utility execution trace of the algo-
rithm for an offer from the player to the opponent. All input contracts (z
and y) are subject to the general constraint that V?/%¥e"(y) < VPlver () and
yopponent () < Yopponent(y)  This ensures trade-off is possible by ruling out
all those contracts that are already of a higher value to either party. A con-
trol set is also generated by choosing the preferred child randomly at each step
approaching the iso-curve (as opposed to using the similarity criteria).

5.5.3 Hypotheses and Results

The hypothesis in a single-offer experiment is given in terms of the input and
output of the trade-off algorithm. The input is the set of importance weights
of the other agent (perfect, partial, imperfect and random) and the output is a
contract that has the same score to the agent, but some other score to the other
agent. Specifically, the hypothesis is:

Hypothesis 15: The greater the exploration of the space of possible
deals, the better the output of the algorithm from the perspective of
the other agent.

Furthermore, the quality of the algorithm’s output (the score of the
contract to the opponent) is directly dependent on the quality of in-
formation input—the better the information, the better the outcome
quality.

The hypothesis simply states the intuition that a more refined search of the
possible space of contracts should result in selecting and offering a contract that
has more value to the other agent. Furthermore, this search should be directly
affected by the information the algorithm has about the other’s issue importance
rankings.

Figure 5.29 and the top row of figure 5.30 show the results of varying, under
different information inputs, the number of children generated in single-offer
experiments when the number of steps to the iso-curve is set to 40. The bottom
row of figure 5.30 represents the case where the number of children is set to
100, but the trade-off algorithm computes the iso-contract in a single step. The
dot-dash line represents the execution trace of the random control, the solid line
emanating from y the similarity based trade-off execution trace, and the line
joining (0,1) to (1,0) the pareto-optimal line. The output of the algorithm, z
is shown in figures 5.29 and 5.30 as an unfilled circle and square for the algorithm
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Figure 5.29: Tradeoff Algorithm Experiment: Data for 5 Children in 40 Steps
(First Row) and 100 Children in 40 Steps (Second Row). A) & E) Perfect
Information, B) & F) Imperfect Information, C) & G) Partial Information, D)
& H) Uncertain Information.

that selects the next child in each step based on similarity or random criteria
respectively.

Three major patterns are observed that directly and indirectly support hy-
pothesis 15. Direct support is given by the first observation that when moving
to the iso-curve if the space of possible contracts is not explored sufficiently, 5
children (figure 5.29 top row) or 1 step (figure 5.30 bottom row), then the gains
of the opponent are at best insignificant and at worst negative. More specifically,
only when the player has perfect information about the opponent’s evaluations
and the trade-off mechanism operates in 1 step with 100 children will the mech-
anism improve the offer (from the opponent’s perspective) (figure 5.30 E). The
next best contract for the opponent is when it has the same value as x (figure
5.29 A). All other contracts generated by the player when not fully exploring the
search space (figures 5.29 B,C,D and 5.30 F) have lower value to the opponent
than z.

However, the opponent’s benefit increases as the algorithm performs more
search (from 5 to 200 children in 40 steps—figure 5.29 top row [5 children],
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Figure 5.30: Data For 200 Children in 40 Steps (First Row), and 100 Chil-
dren in 1 Step (Second Row). A) & E) Perfect Information B) & F) Imperfect
Information, C) & G) Partial Information, D) & H) Uncertain Information.

bottom row [100 children], and figure 5.30 top row [200 children]). Thus, gener-
ating more children does indeed increase the utility of the opponent. However,
the data suggests there is a point above which generation of more children does
not increase the utility of the opponent. This is observed in the lack of any
significant difference between perfect and partial information outcomes within
either the 100 and 200 children (40 steps) result categories (compare figures
529 E, F, G and H with 5.30 A, B, C and D). Furthermore, the expectation,
as stated by hypothesis 15, that the more accurate the information about the
weights of the opponent are, the better the contract score for the opponent is
supported by the observation that the utility to the opponent is indeed increased
when the algorithm is increasingly supplied with more correct information about
the opponent's weights (seen as increasing utility) from incomplete to uncertain
information classes. However, the hypothesis is rebutted for perfect and par-
tial information cases (compare 5.29 E with G or 5.30 A with C). This lack
of significant differences between contracts selected under perfect and partial
information conditions indicates that the algorithm requires only partial order-
ing information, rather than perfectly cardinal orderings, in order to compute
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outcomes that are better for the opponent. This is because the absolute dif-
ferences in magnitude between the perfect and partial information classes is
small ([0.5,0.1,0.05,0.35] — [0.7,0.09,0.01, 0.2] = [0.2,0.01,0.04, 0.15]), resulting
in input variables that are not significantly different. The chosen value for the
partial weight estimation can not be made significantly different from the per-
fect weight estimation values because the actual values of the partial estimates
are constrained both at the upper and lower limits by the perfect and uncertain
weight estimation values.

Positive support about the relationship between the quality of the input and
the resultant output is given in the final observation that, for all environments
and variable combinations, imperfect information (figure 5.29 B and F, and figure
5.30 B and F) results in significantly poorer outcomes for the opponent than all
the other information classes. This is only to be expected since the search is
directed towards erroneous directions when the information supplied about the
other agent is incorrect.

Note, in nearly all cases, the similarity based trade-off out performs the policy
of randomly selecting a child for the next step towards the iso-curve. However
this pattern does not hold for the cases of reaching the iso-curve in one step under
partial and uncertain information environments (figure 5.30 G and H). Given an
offer is generated in 1 step, this is due to chance, rather than randomness being
a better strategy in this type of environment (supported by the consistently
poor performance of the random selection strategy in the experiments where the
number of steps to the iso-curve is set to 40, figure 5.29 C, D, G and H, and 5.30
C and D).

In summary, these results indicate that unless agents know, at least par-
tially, the importance the other agent attaches to an issue, then the best policy
for computing trade-offs is to assign uncertain weightings to all issues. These
weightings can then be updated by some learning rule towards partial or perfect
information models, since a) information models are private and b) erroneous
predictions can result in poorer outcomes. Furthermore, engaging in trade-off
negotiation, particularly with a high search factor by both parties, results in
higher joint gains.

5.6 Meta-Strategy Experiments

The aim of these experiments is to empirically evaluate the influence of meta-
strategies that individually use or combine a trade-off mechanism and a respon-
sive mechanism on:

1. the dynamics of negotiation (section 5.6.2) and
2. the outcome (section 5.6.2) of negotiation

Recall from section 4.7 that a responsive mechanism implements a depth-first
strategy in the negotiation state-space (figure 2.3), where the depth visited is
a function of concession rate, which itself is a function of the resources left in
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negotiation, the time limits in negotiation and the behaviour of the other agents.
Conversely, the trade-off mechanism can explore other parent nodes’ siblings, as
opposed to the siblings of a child node alone. A meta-strategy is then one that
combines either search strategy towards an outcome (see figure 4.11). The aim of
these experiments is to empirically capture the outcome and dynamic patterns
of the wrapper when a combination of mechanisms are used for interactions.
These patterns can then be used to form decision rules which agent designers
can use to guide them in the selection of meta-strategies.

Two types of experiments are reported below. The aim of the first class of
experiments is to analyze the process of different meta-strategy decision making
(namely section 5.6.1). Therefore, the execution trace of the different meta-
strategies are observed for a single run of an experiment. Consequently only a
single outcome is observed. The aim of the second set of experiments, similar
to the strategy experiments reported in section 5.4, is to analyze the effect
of different meta-strategy decision making models on the final averaged joint
utilities across a number of different environments 5.6.1. These observed final
averaged utilities can then be used to deduce general statements about the meta-
strategy experiments rather than their behaviour in a single run. Again this
information is a useful guideline for agent designers because it can be used to
assess the general behaviour of the given meta-strategy set.

5.6.1 Meta-Strategy Experimental Variables

The environment of these experiments is equivalent to the previous single-offer
experiments. Briefly, the environment consists of bi-lateral negotiations between
agents categorically labelled as player and opponent, who negotiate over mul-
tiple quantitative issues [price, quality,time, penalty]. The interval values for
these issues are perfectly overlapping (see equation 5.1). The player assigns
[0.1,0.5,0.25,0.15] and the opponent assigns [0.5,0.1,0.05,0.35] as the impor-
tance of these issues.

In addition to the variations in the types of environments, new variables are
needed that define meta-strategies. The first offer of both agents is generated
using the responsive mechanism, since the trade-off mechanism requires at least
one offer from the opponent. After that, an agent faces a choice of which mecha-
nism to select. Since there can be an infinite number of meta strategies (as many
as the potential sequences of choices between responsive and trade-off types of
counter-proposals), the meta strategies considered in these experiments are lim-
ited to the set {responsive, smart, serial, random}. A responsive meta-strategy
simply selects the responsive mechanism for generating an offer throughout ne-
gotiation. This is included to compare the trade-off mechanism against an agent
that always concedes on utility. The parameters of the responsive mechanism
are set to produce concession behaviours, since being responsive often involves
concessions in the light of environmental needs (e.g. time, resources and be-
haviours). A smart strategy consists of deploying a trade-off mechanism until the
agent observes a deadlock in the average closeness of offers between both agents,
as measured by the similarity function. That is, the distance between the offers
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is not reducing. Under these circumstances, the value of the previously offered
contract, V%(x), is reduced by a predetermined and arbitrary amount, here 0.05,
thereby lowering the input value of 8 into the trade-off mechanism. This value
is chosen as a concession rate that is relatively lower than the concession rate
of the responsive mechanisms. Thus, a concession in smart meta-strategy is a
more “cautious” concession than its responsive counterpart. A serial strategy
involves alternating between the trade-off and responsive mechanisms. Finally,
the random meta-strategy randomly selects between the two mechanisms and
functions as the control meta-strategy.

Process Oriented Experimental Independent Variables

The aim of the process oriented meta-strategy experiments is to investigate the
dynamics, or a single execution trace, of different meta-strategies. Therefore, the
sampling of independent variables is meaningless since the process is observed
for only one execution trace. Thus the independent variables for responsive and
trade-off mechanisms, as well as the associated time limits, are constant.

In these experiments the parameters of the responsive mechanism are set as
follows. The tactics [boulware,linear, conceder, titfortat] are set to [0.5,1,5,1]
for both agents. These values reflect representative members of each tactic
class. For example, the value of 8 for a boulware tactic can range from values
of 0 (being very tough) to 1.0 (being almost conceder). Therefore, the value of
0.5 represents an average tough tactic. There is only one member of each of
linear and titfortat tactics and the limits of the conceder tactic are taken to be
between 1.0 (least conceder) to 10 (the most).

The other element of the responsive mechanism, the strategy, is set as fol-
lows. Agent strategies are of type mixed2 (section 5.4). The initial value of the
weighting of the tactics (I’ matrix corresponding to the initial strategy) is set
to [0.7,0.1,0.1,0.1] for both agents. Therefore, both agents initially place more
weighting on the boulware tactic. A mutual tough initial strategy is chosen
because, as will be shown below, agents in subsequent iterations of negotiation
modify this initial strategy by a policy that places less weight on the boulware
tactic and more on the conceder tactic. Therefore, to prevent a fast approach
to the interval values (large movement towards 0 along the x axis of the score
for the player, for example, in figure 5.23), and hence quick agreements, the
initial strategy is made to be tough, thereby allowing the trade-off mechanism
to operate (at higher utility values—operating at 6 values towards 1.0 along the
x axis of the score for the player, for example, in figure 5.23).

The modification policy is simply slowly increasing the importance of the
conceder tactic as the thread of negotiation increases. Note, this policy is dif-
ferent to the one reported in the previous section (section 5.4) that conceded
or remained firm according to the similarity between offers. The policy is that
at each iteration the weighting of the conceder tactic is increased by 30% and,
correspondingly, the weights of the other tactics are uniformly lowered. Thus,
both agents begin negotiation as tough strategist, but end up placing increasing
importance on the conceder tactics. Therefore, the modification policy is chosen
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independently of the others’ offers and is dependent on the length of the thread.
This policy is chosen because the overall required behaviour of the responsive
mechanism is concessionary, because the combination of a concessionary mecha-
nism and a trade-off mechanism, through a meta-strategy, can equally implement
the similarity based strategy modification policy. The chosen policy will always
concede because the thread of the negotiation always increases.

The parameters of the trade-off mechanism are set as follows. The explo-
ration factor of the trade-off experiment, defined by the two independent vari-
ables number of children and number of steps to the iso-curve, are made a con-
stant at 100 children and 40 steps respectively. The supplied similarity weights
to the trade-off algorithm of each agent are set to be [0.25,0.25,0.25,0.25] (cor-
responding to uncertainty of the others’ issue weightings). These values are
chosen based on the previous observations in the trade-off experiments (section
5.5) that such a weight selection results in significant utility increases for the
other agent (see the results shown in figure 5.29). Finally, the time limit of the
both agents is set to 20 ticks of a discrete clock.

Outcome Oriented Experimental Variables

The aim of the previous experiments is to calibrate the dynamics of negotiation
when agents interact with one another using either one or both of the devel-
oped responsive and trade-off mechanisms in a single type of environment. This
knowledge is useful for developing an understanding of the processes involved in
each of the mechanisms, but is less informative about the behaviour of a meta-
strategy in different types of environments. These experiments aim to provide
such an analysis by, in a similar fashion to the previous strategy experiments
(section 5.4), shifting the focus of attention to the outcome, rather than the
process, of negotiation in types of environments. However, once again, in order
to control the number of free independent variables that can be sampled, and
allow some comparison with the process-oriented experiments above, the vari-
ables of the opponent are chosen to have the same values as the process-oriented
experiments (section 5.6.1) and the variables of the player are sampled.

More specifically, the parameters of the responsive mechanism are as follows.
The same update rule is used as for the process-centered experiments. However,
the parameters of the tactics are now sampled for the player. The 8 parameter
of the boulware tactic is sampled within the interval [0.01,0.2] (more boulware
than previous process-oriented experiments). The linear and titfortat tactics
can not be sampled (since these tactics can only take on a value of 1.0). A
conceder tactic is sampled within the interval [20,40] (more conceder than pre-
vious process-oriented experiments). Therefore, whereas the previous process-
oriented experiments evaluate the average representatives of a tactic class, in
these experiments more extreme tactic members are evaluated for completeness
by choosing a player that is more boulware or conceder.

In turn, the parameters of the trade-off mechanism are as follows. The explo-
ration factor, defined by the two independent variables number of children and
number of steps to the iso-curve, is once again made a constant at 100 children
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and 40 steps respectively, for the opponent. However, the number of children
generated at each step in the trade-off algorithm for the player is now sampled
between the ranges of [100,200] and the exact number of steps chosen is within
the range [40,80]. These values are chosen so that, on average, the player is
made to perform more of an elaborated search of the space of the possible out-
comes. Finally, the time limit of the opponent is set to 20 and sampled within
the ranges of [30,60] for the player. Higher time limits and a greater explo-
ration rate are chosen for the player to allow the trade-off mechanism to search
for better deals.

The number of environmental samplings is set to 400. This ensures that the
probability of the sampled mean deviating by more than 0.01 from the true mean
is less than 0.05. The experiments were written in Sicstus3.7.1 Prolog and ran
on HP Unix parallel machines at the Center de Supercomputacio de Catalunya
CESCA utilizing four CPUs, 9MB of memory and lasted 1954 seconds.

5.6.2 Hypotheses and Results

Finally, the expectations and observed results of the process and outcomes of
meta-strategy experiments are presented in the following two subsections.

Meta-Strategy Process Hypotheses and Results

Hypothesis 16: The more the space of possible deals is explored
jointly, the better the joint outcome. However, higher joint utili-
ties are gained at the expense of greater communication between the
agents.

The hypothesis essentially states the expectation that a pair of smart meta-
strategies should select final outcomes that have a higher joint value than other
types of meta-strategies. This is expected because a smart meta-strategy is
essentially a trade-off strategy that only concedes a small amount (0.05 in this
case) when a deadlock is detected. All other experimental meta-strategies have
an element of concession involved in them (since the variables of the responsive
mechanism have been chosen to behave in a concessionary fashion). Thus any
meta-strategy that selects a responsive mechanism in the course of negotiation
(all pairs of meta-strategies except [smart,smart]) should result in joint utility
execution traces that “move” south westerly, away from the pareto-optimal line.
Furthermore, meta-strategies that engage more in search for higher joint utilities
and less on concessions should result in higher communication loads. This latter
expectation is based on the intuition that a responsive mechanism generates
contracts that successively approach the point of cross over in offers faster than
the trade-off mechanism. Hence it is to be expected that a meta-strategy that
selects the responsive mechanism should reach acceptable deals quicker than one
that is smart.

Figure 5.31 presents the data for the meta-strategy experiments investigating
the process of mechanism selection. Individual offers between the player and
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Figure 5.31: Dynamics of Negotiation Process for Meta Strategies, Pairs Denoted
as Meta-Strategy of the player, Meta-Strategy of the opponent: A) smart v.
smart, B) smart v.serial, C) smart v. random D) smart v. responsive, E)
serial v. serial, F) serial v. responsive, G) random v. random, H) random v.
responsive.

the opponent are depicted as circles and squares respectively. The sequences of
offers are joined by a solid line for the player and a dotted line for the opponent.
The final agreement is depicted as the offer where the circle and square meet.
The communication load is simply the addition of the numbers of circles and
the squares.

The observed rank ordering, in figure 5.31, across meta-strategy pairings
over the summed joint utility gained for the final outcome directly supports
hypothesis 16. The highest joint gain is achieved in negotiations between
two smart meta-strategies. In this case, the final outcome is closer to the
pareto-optimal line than any other meta-strategy pairing, implying that such
a pairing of meta-strategies results in outcomes that are most beneficial to
both parties. The remaining rankings for player, opponent pairings of meta-
strategies are then [smart,serial], [serialserial], [smart,random], [smart,responsive],
[serial,responsive], [random,responsive], [random,random] with respective joint gains
of 1.27,1.18,1.146,1.11,1.076, 1.06,0.99. In general, the higher joint utilities oc-
cur when at least one of the agents is smart. The random meta strategists, as
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expected, perform worst.

Hypothesis 16 is further supported by the observation of the number of mes-
sages exchanged between agents using different meta-strategies (recall that in
these experiments the number of messages exchanged between agents is sim-
ply the addition of the individual messages exchanged in figure 5.31). This
indirectly measures the communication load a meta-strategy places on the
agents. As predicted by hypothesis 16, the observed pattern is almost the
reverse for the joint value outcomes above; with a [smart,smart] pairing in-
curring the highest communication cost (reaching a deal at 19 rounds (re-
call that the time limits allowed are 20 ticks of a discrete clock, followed by
[random,random], [smart,responsive], [smart,random], [smart,serial] (14 rounds), [se-
rial,serial] (13 rounds), and [serial,responsive] (12 rounds). This observation sup-
ports the intuition that higher joint utilities are gained through greater search,
which, in turn, involves more communication between the agents.

Meta-Strategy Outcomes Hypotheses and Results

The hypothesis for these experiments is the same as the process-oriented exper-
iments, namely:

Hypothesis 17: On average, the more the space of possible deals
is explored jointly, the better the joint outcome. However, on aver-
age higher joint utilities are gained through greater communication
between the agents.

That is, the aim of these experiments is to show that in the long run, or on
average and independently of the type of environment, better exploration of the
space of possible deals should result in higher joint outcomes. The expectation
of the outcome-oriented experiments is no different than the experiments that
did not involve sampling the types of environments. In the average case, those
meta-strategies that involve more search will result in better outcomes, but at
the cost of increased communication.

Figure 5.32 supports the expectation over the joint utility part of the hypoth-
esis. The key to the meta-strategy pairing is amended with the total summed
average of the joint utility the pairing achieved. As expected, pairings of a meta-
strategy that compute counter-offers using the responsive mechanism lead to the
worst joint outcomes (joint utility of 1.0, the outcome lying on the constant-sum
line—see supporting data in strategic experiments, section 5.4). Only moderate
joint gains above 1.0 are achieved when the meta-strategy of one of the agents is
not purely a responsive one ([smart,responsive]: joint utility outcomes of 1.12,
[serial,responsive]: joint utility outcomes of 1.08, [responsive,random]: joint util-
ity outcomes of 1.06). At the other extreme, joint utility of outcomes is best
maximized (outcomes lying closer to the pareto-optimal line), as expected, when
agents use a smart meta-strategy. More specifically, the best outcome is achieved
for a [smart,smart] meta-strategy with joint utilities of 1.42. In between these
two extremes lie the outcomes that are, in the main, due to the interactions with
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Figure 5.32: Final Average Utility Outcomes for Meta Strategies Pairings.

one agent whose meta-strategy is serially switching between a trade-off and a
responsive mechanism (the interval of joint utility outcomes of 1.15 to 1.24).

Once again, the meta-strategies that result in higher joint outcomes, as pre-
dicted by hypothesis 17, are achieved at the expense of higher communication
costs (figure 5.33). The meta-strategy pairing [smart,smart] results in an average
number of communication rounds of 19.48 (note, the proximity of this to the time
limit of the opponent, whose deadline is fixed at 20 ticks of a clock). Conversely,
interactions between two responsive meta-strategies resulted in poorer joint out-
comes (figure 5.32), but at a relatively lower communication cost (10.16).

In summary, the results from the single execution trace of the trade-off al-
gorithm (section 5.5) and the meta-strategy experiments (section 5.6) indicate
that a better exploration of the space of the possible set of outcomes leads to
agreements that are higher in joint gains. Furthermore, this increased search
results in: i) higher joint outcomes on each iteration of the algorithm (section
5.5), across a single run in a unique environment (section 5.6.2) or across multiple
environments (section 5.6.2) and ii) higher communication costs.
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5.7 Summary

In this chapter, three components of the developed negotiation wrapper (the
responsive, trade-off and meta-strategy mechanisms) were empirically evaluated
by conducting a series of exploratory experiments. These experiments were
conducted to: i) test the intuitions about the underlying causal relationships
between both the model’s key variables and the agent’s environment and ii)
provide some guidelines for how the wrapper can be “tuned” by a designer of
a negotiating agent. However, manipulation experiments are needed that test
more concrete causal hypothesis and result in better data models. Nonetheless,
the exploratory experiments reported in this chapter help “tune” some of the
parameters of the mechanisms through exploration of a subset of the space of
possible variable ranges, through different combination of agent architectures
and environments. The experimental agent architectures, or the choice of which
decision mechanism to use for decision making, was restricted to responsive
(tactics/pure, static strategic/mixedl and dynamic strategic/mixed2), trade-off
and a number of different meta-strategies that selected different combination of
mechanisms. The experimental environments were in turn motivated by some
of the features and requirements of the two target domains identified in section
1.4.3 such such time limits, certainty levels and number of issues.
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Hypothesis one to eight summarize the expectations of outcomes and the
processes of negotiation when simple tactic (pure) agent architectures interact in
short or long term deadlines. In these experiments the expectation that tactics
which reach reservation values more slowly will perform better was rebutted.
In fact, it was found that the success of a tactic is a function of not only the
composition of the population, but also appropriateness of the tactics to respond
to changes in the environment. Indeed, tactics that approached the reservation
values of an issue more slowly (more Boulware) did make high value deals but
this benefit was reduced due to the lower number of successful deals made as
well as the communication costs involved, specially when the population includes
imitative tactics that “magnify” the toughness profile of the population. In fact,
the best tactics were the ones that linearly approached their reservation values.
Also confirmed was the expectation that such simple agents, which consider
only a single environmental criteria, will result in more varied distribution of
outcomes around the most equitable outcome point (hypothesis seven). In fact,
simple agent architectures perform best (maximize their joint utilities) only in
encounters between two pure strategies that give higher weighting to tactics that
approach the reservation of an issue in a linear fashion.

Hypothesis eight to fourteen, on the other hand, summarize the expectations
of outcomes and the processes of negotiation when more complex (static strate-
gies/mixedl and dynamic strategies/mixed2) agent architectures interacted in
short or long term deadlines. The expectation in this set of experiments was
that if the mixing between different tactics of both agents is more “smooth” (or
the more equal the contribution of each individual tactic to the computation of
a new overall concession rate), and if the method of computation of the new
concession rate is performed intelligently according to some objective function
(such as the similarity between the exchanged contracts), then the more equi-
table the final outcome for both parties. Indeed, variations by either party from
these parameter settings results in distribution of outcomes that although maybe
locally more equitable are less jointly equitable.

Hypothesis fifteen captured the expectations of outcomes and the processes
of negotiation when an agent implemented a trade-off algorithm in long term
deadlines (a more complex agent architecture than the responsive mechanism).
The aim of this experiment was to evaluate whether a relationship exists between
the complexity of the search of the space of possible deals and the quality of the
outcome (from the perspective of the opponent) and if so whether this relation-
ship is affected by the uncertainties involved in trade-off negotiation. Indeed,
results confirmed the expectations of such a relationship where a more refined
search of the possible space of contracts did resulted in selecting and offering a
contract that had more value to the other agent. Furthermore, this search was
directly affected by the information the algorithm had about the other’s issue
importance rankings where better information (less uncertainties) resulted in
better contracts to be selected.

Finally, the expectation that either on a single case (hypothesis sixteen) or
the average case (hypothesis seventeen) the most equitable outcomes should be
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reached when both agents intelligently search the space of possible contracts
using both the responsive and the trade-off mechanism (the most complex agent
architecture) according to some objective function. This objective function (the
similarity function) implemented the meta-strategy and directed the negotiation
search by selecting the trade-off mechanism when the objective function was be-
ing maximized and the responsive mechanism when the local minima of the
objective function was reached. These expectations were confirmed by the ob-
servations where it was found that a pair of smart meta-strategies reached deals
closer to the pareto-optimal line than combination of any other non-intelligent
combination of meta-strategies.

The implications of these results for the designer of the negotiating agent is
deferred to section 6.2.1.



Chapter 6

Conclusions and Future
Work

The conclusions and the directions for future work, derived in the main from the
identified weaknesses, are jointly presented in this final chapter. However, the
work reported here is reviewed first.

6.1 Review of the Thesis

This thesis has presented a solution for the problem of coordination among
two autonomous agents that need to interact with one another. The solution
addresses two sets of requirements identified in the first chapter: i) the require-
ments of the actual problem that the coordination system should achieve (section
1.4.3) and ii) the requirements that arise in designing of a coordination system
(section 1.1).

The first requirement has been how to coordinate domain problem solvers
that need the services of one another in their local problem solving. This
interaction problem was defined for each individual agent as the tuple P =
(I,C, Criteria) (equation 2.1). I is the set of issues that describe features of a
service. C' describes the constraints of each of these features (such as its impor-
tance level, its reservation values and an agent’s preferences over the values it can
take, as well as other environmental constraints such as the time and resources
available for negotiation). Criteria is then defined in terms of the principle of
individual rationality. The rationality principle adopted in this thesis was the
maximization of some utility function. The agent interaction problem was then
defined as the mutual and strategic selection of values for I that respect C' and
satisfy Criteria for each party given the normative protocol of interaction. Fur-
thermore, this solution has to be mutually derived without knowledge of others’
sets of constraints and also with limited computational resources. For this rea-
son, the satisfaction, rather than the optimization, of Criteria is considered to
be sufficient. Conflicts were then defined as when the local criteria of each agent
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negatively interact. The proposed solution to this constrained search has been
to design a coordination framework that consists of: i) a protocol that assists
the agents in the communication (or on-line) phase of their interaction problem
solving and ii) a set of mechanisms that assists the agents in their deliberation
(or off-line) phase of their interaction problem solving. Agents then use these
two components of the coordination framework to solve their interaction prob-
lem by representing and iteratively reasoning and exchanging offers over services
as issue-value pairs. The novelty of the research reported here is in the delibera-
tion mechanisms for multi-dimensional conflicts. Multi-dimensional interactions
require reasoning over a larger set of agent constraints compared to single dimen-
sion. These novel aspects were driven by the requirements outlined in section
1.4.3 where it was shown that the target problem domains of this research, and
the real world in general, are multi-dimensional in nature. Likewise, each of the
dimensions have constraints attached to them and agents need to reason about
these constraints explicitly. For instance, some dimensions of a problem are more
important than others and a search for a solution is often based on such rela-
tionships. For example, the log-rolling strategy [Pruitt, 1981] searches for new
solutions by violating the constraints of the least important issues and further
constraining the constraints of more important issues. The multi-dimensional
nature of the interaction also indirectly leads to the requirement that agents are
able to combine their preferences over each of the individual dimensions. Thus,
agents require a model that supports the consolidation of preferences over each
issue into a single preference.

The main contribution of this thesis is the developed deliberation component.
Three mechanisms were presented that, given the problem specification (the is-
sues, their constraints and criteria), search in a distributed and autonomous
fashion (important domain requirements, section 1.4.3) for individually accept-
able assignment of values to each dimension of negotiation. When individual
assignments are in conflict, detected by a set of evaluation functions, then agents
use one or more of the decision options to resolve them. The first mechanism
presented was the responsive mechanism which implements various degrees of
concession (from no concession to full concession) according to the agent’s cur-
rent environment. This mechanism was designed to model concessionary be-
haviours according to how much negotiation time and resources were available
(both requirements mentioned in section 1.4.3). Additionally, the mechanism
models decisions based on the behavioural profile of the other agent, another
important feature of the target domains. The concession mechanism is compu-
tationally simple (involving the execution of simple functions, called tactics, and
the assignment and modification of importance weights to each tactic, called a
strategy). Furthermore, it requires a minimal amount of information about the
choices of the other(s); decisions are conditioned on the environment of the agent
and minimally (through the behaviour-dependent tactics) on the choices of the
other(s). Indeed, the only assumption made about the other(s) is that conflicts
arise because the other agent has an opposing preference ordering over increasing
domain values for all issues. This information is inferred by the roles agents play
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in interaction (e.g. a seller prefers higher prices to lower ones and for a buyer
the reverse is true). Thus the mechanism is based on the realistic assumptions
that: i) the agent is not omniscient and/or ii) super logical. Rather, an agent’s
knowledge about the choices of the other(s) is highly limited and its reasoning
capabilities are bounded. These features of the mechanism were factored into
the design process for the flexibility requirement of the wrapper (see below).

The other novel decision components of the coordination framework are the
trade-off and issue-manipulation mechanisms (since they are computationally
more complex than the responsive mechanism). The trade-off mechanism was
developed to model cooperative reasoning over conflicts, defined as interactions
where at least one of the agents is motivated by the intention to increase the
social welfare function (globally rational outcomes that aim to make both agents
better off), but achieves the current aspiration level over its preferences (i.e. is
locally rational, satisfying the local criteria specified over each issue). This con-
trasts with the responsive mechanism that models more selfish reasoning, defined
as interactions where agents are not interested in increasing the social welfare
function, but rather only in satisfying their own preferences. The responsive
and trade-off mechanisms jointly address the requirement, identified in section
1.4.3, for different types of motivations over conflict. The issue-manipulation
mechanism, in turn, was developed to not only assist agents in escaping local
minima in the search of the social welfare function, but also because the nature
of the problem naturally involves modification of the set of negotiation issues at
run time due to dynamically changing domain requirements (section 1.4.2).

Both the trade-off and issue-manipulation mechanisms are a novel way of
agents individually searching the space of possible deals. However, in compari-
son to the responsive mechanism, such searches require more information to be
supplied about the other agent and involve more deliberation about the other
agent’s preferences. A fuzzy similarity technology has been developed to handle
these requirements. Although a formal model of the issue-manipulation mech-
anism was developed, its implementation by an algorithm and the analysis of
the algorithm’s resulting computational complexity is deferred to future work.
However, a novel trade-off algorithm was developed that implements a fuzzy sim-
ilarity based trade-off negotiation and its complexity was shown to be linearly
proportional to the number of issues. This computational tractability is a desir-
able property that fits with the key assumption of this work that the agents are
computationally bounded. The use of fuzzy similarity also satisfies the flexibility
objective with regards to the informational requirement of the agent, because
the technique is used to model the uncertainty of an agent’s beliefs over the pref-
erences of the other agents’ as fuzzy relationships between values of the domain,
and not the other agents’ actual preferences. This means that the agents do not
have to make interpersonal comparisons of preferences when making trade-offs,
a task that requires full knowledge of the other agent’s preferences.

When taken together, each of the mechanisms addresses a subset of the re-
quirements identified in section 1.4.3. For example, the responsive mechanism
can implement a selfish attitude in interactions, but is inappropriate for search-
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ing the solution space of possible outcomes in a more cooperative manner. How-
ever, whereas the trade-off mechanism is capable of performing such a search,
it is computationally more costly than the responsive mechanisms. Given this,
what is required is meta-reasoning about the various trade offs involved in the
use of each mechanism for the generation of offers. This meta reasoning can
then be used by an agent to address the changing requirements of the agents
accordingly. Thus, the meta-strategy may select the trade-off mechanism for
generating service contracts to agents that belong to the same organization, but
select the responsive mechanism with a low concession rate for service negoti-
ations with agents that are from different organizations. Thus reasoning over
different features of interactions (cooperative versus selfish interactions, com-
putationally simple v.s more complex search, long v.s short term negotiation
deadlines and low or high domain resource levels, which collectively form the
set of requirements enumerated in section 1.4.3) can be modeled through a tem-
porally changing combination of mechanisms as meta-strategies. A meta level
deliberation mechanism was informally presented that implements such offer
generation strategies over the available mechanism choices.

The developed wrapper incorporating the responsive, trade-off and meta-
strategy mechanisms was then empirically evaluated in a number of different
environments. Evaluation was needed to: i) develop and test exploratory hy-
potheses about the causal relationship between the large number of mechanisms
variables and the agent’s environment, ii) assist the designer of a negotiating
agent in “tuning” of the framework for given environments and iii) to validate
the efficacy of the heuristic aspects of the model (for example, a meta-strategy
that always involves the trade-off mechanism until a local minimum in the social
welfare function is detected is a decision heuristic whose efficacy across differ-
ent types of environments can not be determined a priori). For these reasons,
the wrapper was empirically evaluated across a number of environments. In
experiments involving interactions among two agents both using the responsive
mechanism the largest variability in the results were observed if pure strategies
are chosen to generate offers. The best results were obtained for strategic agents
that modeled the generation of offers as a combination of tactics and modified
this combination consideration in the course of negotiation. The intuitions about
the trade-off mechanism, or a meta-strategy that frequently selects the trade-off
mechanism, were also confirmed. The trade-off mechanism experiments found
that the implementation of such strategies does indeed increase the social welfare
function in more than one type of environment, but at an increase in communi-
cation costs, signifying that the search takes longer to converge on a mutually
acceptable deal. Deals are made more quickly if the responsive mechanism is
used, but the social welfare function is poor considering that higher joint utilities
can be gained through the multi-dimensional nature of the problem.

In addition to satisfying the requirements of the target domains, the de-
veloped negotiation wrapper also addresses many of the desiderata that were
identified in the design of a coordination system (section 1.1). The design re-
quirements were introduced as the configurability requirement or the reusability
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and flexibility of the developed coordination framework for use across both open
and closed distributed systems. The flexibility of the developed coordination
framework has already been discussed above. Reusability has also been factored
into the framework design by:

e making as few commitments to the domain problem solvers’ architecture
as possible. Interaction problem solving is separated from local domain
problem solving by functionally separating the negotiation wrapper from
the local domain expert. Thus the wrapper can be seen as providing so-
cial knowledge to the local asocial domain problem solver. The interface
between these two modules supports low level information about the re-
quirements of the domain problem solver (the service(s) it requires, the core
and auxiliary features of the service(s), its constraints and satisfaction cri-
teria over each of these features). The wrapper does not have control over
or access to any of the operations of the domain problem solver.

e designing both cooperative and selfish decision making mechanisms into
the agent’s decision making architecture. In DPS systems agents are as-
sumed to be cooperatively motivated in interaction. Conversely, in MAS
agents are assumed to be selfishly motivated in interactions. Therefore,
in both approaches a single agent attitude is hardwired into the decision
making architecture. However, the interaction attitude of an agent ought
to be a function of its environment. For example, as was seen in the tar-
get domains of this thesis, the same agent can enter two different types of
interactions where one is cooperatively motivated and the other is more
selfish. Therefore the agent (more correctly, the agent designer) needs to
be supplied with both types of decision making facilities.

e emphasizing the notion of services. Services are, like objects in the object-
oriented paradigm, a representation of the capabilities of the local domain
problem solver in providing problem solving expertise. Thus, like objects,
services are reusable across different problem solving episodes.

This configurability of the coordination framework has been guided by the re-
quirement to design a library of different negotiation decision making strategies
which the agent designer can then implement in their agents. The designer is free
to configure his/her agent for interaction according to their prevailing objectives
(such as strategies for increasing the social welfare function or for achievement
of local objectives). This descriptive design approach contrasts with the pre-
scriptive models of game theory where the most rational strategy of a game is
analyzed and prescribed to the agent. In the latter case, however, it was shown
that such models often make unrealistic assumptions. Therefore, the approach
taken in this thesis has been to describe and empirically analyze the possible set
of behaviours that can arise when more realistic assumptions are adopted. The
designer of an agent is then free to choose a strategy that best suits his/her prob-
lem. This configurability claim has been procedurally demonstrated in the suc-
cessful application of the coordination framework to seven different application
domains, ranging from business process management to electronic commerce.
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6.2 Discussion

Coordination has been identified as one of the most central problems in DAI
(section 1). For this reason the research, including the work reported here, has
produced a large number of proposals for coordination protocols. The coordina-
tion problem was informally introduced as a process that consists of composing
(relating, harmonizing, adjusting, integrating) some coordination objects (tasks,
goals, decisions, plans) with respect to some coordination process, which solves
the coordination problem by composing co-ordination objects in line with the co-
ordination direction [Ossowski, 1999]. This general view of coordination was
given a more concrete interpretation through development of the negotiation
wrapper. The composition process is achieved locally by each agent through
implementing one, or a combination, of the proposed mechanisms. Agents then
use these mechanisms, together with a communication protocol, to compose and
exchange multi-issue contracts (the coordination objects) that increases either
the local or global utility (the coordination direction).

6.2.1 Guidelines for the Negotiating Agent Designer

The empirical evaluation of the mechanisms also resulted in a number of findings
that can be used to formulate general guidelines for agent designers wishing to
use the negotiation wrapper. The aim of the experiments was the exploration of
a subset of the space of possible variable ranges, through different combination
of agent architectures and environments. Recall that an agent architecture is a
particular instantiation of the agent that follows from the model described in
chapter four. Thus given the negotiation model an agent designer can design a
very simple negotiating agent where the meta-strategy selects only one mecha-
nism. For example, the the designer may choose only the responsive mechanism
for the design of his/her agent. Further simplification can be made when the de-
signer chooses a responsive mechanism that is composed of a single tactic. These
choices result in an agent that requires no meta-strategic (since the responsive
mechanism is always selected) or strategic decisions (no f(), or pure strategy,
since there exists only a single tactic). Such a simple agent is best represented
by a Kasbah agent. As this example shows, an agent designers is then free to
compose increasingly more complex agents by choosing different meta-strategies,
tactic sets or strategic update functions. Additional complexities arise when ne-
gotiation environments are also taken in considerations.

Therefore the aim of the experiments reported in this chapter was to evaluate
which architecture-environment(s) leads to (un)successful outcomes. If two agent
designers are motivated by some global system evaluation criteria, such as the
sum of the joint utilities (maximized by the pareto-optimal line) or the reference
point, then the following guidelines can be derived from the observations in these
experiments.

e An agent designer who implements a simple agent architecture (responsive
and pure strategy) should expect interactions that prolong the possibilities
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of joint gains. This is because simple agents may fail to respond appro-
priately to changes in their environment. This conclusion was indirectly
confirmed by the unexpected success of linear tactics.

A more complex agent architecture (responsive and strategic) was then
evaluated in a number of different environments. It was found that the
outcomes, both in terms of utilities and costs, for a strategic and responsive
agent is a function of:

— the composition of the responsive agent architecture—the number
and types of tactics

— the initial parameters of each individual and joint architecture

— and the joint local modification of these parameters by both agents

The first guideline states the agent designer should be aware that the
type and number of tactics of a responsive agent affects the outcome and
process of negotiation. Thus a tactic set should be selected that adequately
represents a range of desired behaviours. For example, a tactic set of
mainly Boulwares will result in tough negotiator independently of strategic
decisions. Conversely, an agent’s behaviour will be concessionary if the
domain of operations of the strategic reasoner is a tactic set with g >
1 (corresponding to tactics that quickly reach their reservation values).
Therefore, to be responsive in different environments an agent requires
appropriate set of tactics.

An agent designer using the developed model must also set the initial
values of the strategic reasoner. The initial value of weights of the tactic
set corresponds to a slightly more complex agent who reasons about a
number of environmental factors by computing a new concession rate. It
was shown that better social outcomes follow when both agents engage
in computing a new concession rate based on a number of environmental
factors. In fact better social outcomes should be expected if agent designers
can jointly agree on the same set of tactics and strategy for their initial
settings.

However, most equitable outcomes should be expected with even more
complex agents as shown when a responsive agent interacted with another
responsive agent and both compute a new concession rate, given a set
of environmental factors, according to some objective function. An agent
designer who selects a strategy similar to a fixed (mixedl) strategy for
his/her agent should expect an undirected search for a solution. However,
best social outcomes follow when agents engage in directed search accord-
ing to some objective function (in this case the closeness between successive
offers). That is intelligent adjustment (or search), rather than constant ad-
herence to the same environmental considerations, should result in better
social outcomes.
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e For more complex agent architectures that involve trade-off negotiation,
the task of the agent designer is transformed from specifying “tunings”
that affect local problem solving to “tunings” that affect the problem solv-
ing of the other agent. That is, the problem of the agent designer using
the trade-off mechanism is to represent information about the other agent
(as beliefs in the AM). It was empirically shown that this uncertainty is
best addressed if the designer does not attempt to guess the information of
the other agent (unless completely sure), but rather assigns an uncertainty
to the agent’s belief about the other agent (note the similarity with the
argument, of strategic interactions presented in chapter two). Indeed, al-
though not shown, better results should be expected if this uncertain belief
is sequentially updated in the course of negotiation (learning implemented
as Bayesian updating).

e If time and computation are resourceful or there is a need for increasing the
social welfare of the outcomes, then a more complex agent architectures
that involve strategically selecting between the responsive and trade-off
mechanisms should be expected to perform better. In particular, best so-
cial outcomes should be expected if the search for a solution is intelligently
directed by an objective function that selects the trade-off mechanism when
the objective function is being maximized and the responsive mechanism
when the local minima of the objective function are reached. That is, the
more intelligent the meta-reasoning about which mechanism to select, the
more the social welfare function is maximized.

6.2.2 Limitations of the Current Work

The contribution of this thesis has been a proposal for a computational model
of decision making for negotiating agent that has been empirically evaluated.
However, this proposal only models a subset of the issues identified in chapter
two. Much more work is required to develop richer interaction protocols that
adequately model a more elaborate concept of coordination that is applicable
to a wider set of problems. In particular, the following limitations need to be
addressed:

e development of an issue-manipulation algorithm
e the current negotiation model does not handle qualitative issues
e better models of other agents are needed

e the current bi-lateral protocol is inadequate in capturing inter-
dependencies among complex activities

6.3 Future Work

The proposals for future work are derived from the limitations of the work pre-
sented above and is based on addressing some of the additional issues identified
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in chapter two. In particular, the future work is categorized into extensions to
the:

e decision making level

interaction protocol level

evaluation level and

application level

6.3.1 Extensions of Decision Making

The decision making functionality of the negotiation wrapper adequately mod-
els individual agents’ decision choices over actions and strategies given the in-
formation, time and computational constraints involved. However, three future
directions of research still need to be addressed: i) developing an issue-set ma-
nipulation algorithm, ii) modeling of qualitative issues and iii) a methodology
for modeling other agents.

Although a formal model of how the set of negotiation issues can be ma-
nipulated, no algorithms have been developed. This is clearly an important
direction of future research. Furthermore, the presented model has concen-
trated on resolution of quantitative issues where movements along the utility
function of an issue is continuous. However, all mechanisms need to be extended
to deal with the introduction of qualitative issues that have an associated non-
continuous utility function. Some work has already been carried out to extend
the responsive mechanism to handle non-continuous domain for qualitative issues
[Matos et al., 1998]. However, the trade-off or issue-manipulation mechanisms
still need to be extended.

There are two choices of approach that address the current weaknesses in
modeling of other agent. On the one hand, mechanisms can be developed within
the negotiation wrapper itself that assist the agent in modeling the other(s),
given the current single shot, sequential alternating protocol of interaction. Al-
ternatively, the current decision mechanisms could be supplied with an alterna-
tive interaction protocol that allows the agents to learn and develop a model
of one another. Which of these approaches to handling uncertainty of the oth-
ers’ is best is seen as an empirical question that needs to be tested for given
environments and types of problems.

If the first approach is adopted, then one proposal for modeling others is to
develop other types of utility functions that model an agent’s attitude towards
risks (risk taker, neutral or aversive [Binmore, 1992]). Although not directly
modeling other agents’ decisions, a utility function that takes into account an
agent’s attitude towards uncertain events, given a sure event, does indirectly
model other(s) by modeling the expected utility an agent will gain given the un-
certainty of others’ choices. Although this approach has weaknesses, identified
in chapter two, it is a reasonable choice of an extension because: i) the modi-
fications to the proposed model to handle this addition are minimal, requiring
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the design of utility functions that model agent’s preferences in risky environ-
ments and ii) to be a Bayesian agent, or to compute the expected utility of a
deal, requires supplying agents with an a priori probability distribution of the
likely outcomes. Recall that the source of these a priori distributions has been a
criticism leveled against the Bayesian approach. However, similarity measures,
modeling the problem domain and not an agent, can be used as the a priori
distribution in such cases.

6.3.2 Extensions of the Protocol

In some situations, however, the initial a priori distribution may simply be
wrong. The solution to this problem is closely related to the second approach
proposed above to better model the other agent—that is the current decision
mechanisms can be supplied with an alternative interaction protocol that sup-
ports learning. Then if interactions are repeated, a Bayesian agent can update
the similarity induced a priori distributions given the evidence it gains from
interaction.

The currently proposed set of mechanisms can also be appended by other
mechanisms to better handle the uncertainty of others’ actions, even if the first
choice is not adopted; i.e. the decision mechanisms of the wrapper are kept
without any alterations. In particular, what is needed is to append to the cur-
rent set of decision mechanisms learning algorithm(s) that assist the agent in
better “tuning” each of the wrapper’s decision mechanism parameters. For in-
stance, learning algorithms can be used in the responsive mechanism to modify
not only parameters of the individual tactics (e.g. 8 or ¢ of the time-dependent
and behavior-dependent tactics respectively), but also the agent’s strategy (f()
that modifies the I matrix, section 4.4.3). Likewise, learning algorithms can be
useful in approximating values for the weights the other agent(s) place on each of
the issues ({W}). Such knowledge is useful for the operation of all of the mech-
anisms.! For instance, as was empirically shown in the trade-off experiments
(section 5.5.3) better approximations of others’ weights results in an increase in
the social welfare function. A better knowledge of other agents’ attached im-
portance to each issue is highly relevant information in making trade-offs. This
information can also be usefully utilized in the issue-set manipulation mecha-
nism for making decisions about which issues to add or remove. Finally, learning
algorithms can be applied at the meta-strategy level to condition the selection
of the most appropriate mechanism to the history of previous interactions. For
example, the trade-off mechanism may have resulted in higher success frequen-
cies than other mechanisms in the course of previous interactions between two
given agents. More sophisticated learning can involve an agent learning which
mechanism to select from the relationship between the features of the current
interaction with those of previous interactions with other agent(s). The exten-
sion of the current model with such Case-Based reasoning learning algorithms

I This knowledge, again although possibly incorrect, can nonetheless be revised and updated
in subsequent interactions given the outcome of the past interactions.
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[Kolodner, 1993] is natural because the developed similarity technology can be
used to model such relationships between the present and the past cases.

However, as noted in section 2.1.4, the replacement of a single-shot with a
repeated interaction protocol has a number of significant consequences on the
agent architecture. Although agents can benefit from learning in a repeated
interaction protocol, additional mechanisms must also be designed to support
reasoning in such environments. Repeated interactions have been extensively
studied in game theory [Axelrod, 1984] due to their role in resolving multiple
equilibria problems through the development of systems of conventions. Thus,
if a game has multiple equilibria and if agents interact repeatedly, then they can
decide on a single equilibria as a convention (driving on the left or right is an
example of such a convention). An example of how agents’ reasoning changes
in a repeated game was briefly introduced in section 2.2.5. There, it was shown
that the dynamics of negotiation altered in repeated games. In particular, the
stability of Mrs Shee’s strategy of action (up) depended on her observation of
Mr. Hee’s strategy choice. Thus, an agent’s current choice is dependent on the
future choices of others. Agents must therefore reason about this type of action
contingency given the reputation of other(s) and how much the agent can trust
them from their commitment history.

Another extension to the protocol is also necessary not only when the fre-
quency of interactions is considered, but also when the size of the agent society
is considered an important factor to model (section 2.1.1). The size of the soci-
ety becomes important when the types of problems considered are not just re-
stricted to the resolution of conflicting preferences between only two parties, but,
rather, extends to a number of agents performing distributed problem solving in
a group. As it stands, the proposed coordination framework is inappropriate for
the latter types of problems. In order to solve this type of problem, the coor-
dination framework needs to be modified so that multiple agents can exchange
not offers over services, but plans, goals or other meta-attitudes such as inten-
tions [Dennett, 1987]. The evaluatory components of the decision mechanisms
can then be used to evaluate plans, goals or intentions from a local perspec-
tive. However, plan, goal or intention generation mechanisms would need to be
designed to generate offers over plan, goal or intention alternatives. New mecha-
nisms are therefore needed because the input into the current set of mechanisms
needs to be changed from an issue (together with its associated reservation val-
ues, weights and preferences) to a higher level structures such as plans, goals
or intentions which are composed differently and exhibit different properties to
issues. Therefore, other reasoning mechanisms are required that generate offers
over higher level representations.

Multi-lateral negotiations also open up the possibility of extending the
wrapper to model coalitions where a collection of agents form a group
to perform or achieve a common objective [Kahan and Rapoport, 1984,
Sandholm and Lesser, 1997, Shehory and Kraus, 1995]. For example, buyers in
a market economy often form large coalitions to reduce sellers’ prices. The
problem then is how to modify or adapt the current wrapper so that agents can
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reason about coalitions. One such solution may be to allow agents to form a
group using some coalition forming algorithm (coalition formation has been ex-
tensively studied in game theory [Kahan and Rapoport, 1984, Binmore, 1985,
Sandholm and Lesser, 1997, Shehory and Kraus, 1995]). Then the reasoning
about the interactions between the agent representing the coalition and the
other agents (one-to-many interactions) can be directed by the wrapper deci-
sion mechanisms. However, the suggestion here is to increase the social welfare
function of the coalition by supplying within the wrapper adaptive algorithms
that assist the representative agent to dynamically modify the reservation values
of each of the issues given multiple offers from a number of other agents. The
suggestion is that the wrapper can be used to reason not about how to form
a coalition, but how to behave on behalf of the coalition. Note also that this
functionality can be applied in normal one-to-many service negotiations. Work
is currently underway to investigate multi-lateral protocols and negotiation de-
cision strategies for design of an exchange system where N number of sellers
engage in parallel negotiations with a single buyer for the procurement of a ser-
vice. Decision functions are currently being developed that generate offers based
on simultaneous consideration of many threads of negotiation.

6.3.3 Extensions to the Evaluation Work

The penultimate proposal for future work is to further evaluate the developed
coordination framework. Although the wrapper has been empirically tested
in a number of environments, this evaluation has nonetheless been carried out
within a limited environment (e.g. interactions are only amongst agents that
adopt the same wrapper architecture). Thus, the observed results are only valid
for two agents that utilize a wrapper architecture. Although control measures
were included and the results were compared to optimal solutions, it would be
interesting to perform comparative evaluation of the performance of an agent
utilizing an agent architecture derived from the proposed negotiation model and
one that utilizes some other architecture. This comparative study can then be
used to benchmark the performance standard of different architectures with re-
spect to the optimal solutions. One possibility of performing such a comparative
evaluation is the submission of the architecture (or its output as a strategy) to
market competitions such as the Trading Agent Competition held at ICMAS
2000 [TAC, 2000] where trading agents bid to buy and sell goods, in order to
maximize a given objective based on the goods bought and sold and the prices
of the exchanges. In such cases, the coordination framework can then be used as
a “laboratory” to test which of the possible set of strategies are likely to perform
the best in the competition.

6.3.4 Extensions to Other Application Domains

Finally, another line of future work is to extend the application of the coordina-
tion framework to other types of problems. The configurability requirement has
been one of the central design concerns of the framework. As was shown in the
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first chapter, its application to seven different domains has procedurally demon-
strated the configurability claim. However, further evaluation of this claim is
required. Specifically, better metrics are required that test the applicability of
the framework to different domains. Indeed, such an evaluation is intended
to be carried out in a future application of the framework at The Center for
Coordination Sciences at MIT. The aim of this project is to use the developed
coordination framework for system recovery in cases when exceptions occur, such
as the failure of a single agent, corrupted or invalid information within the sys-
tem or erroneous execution schedules. In such cases agents can enter negotiation
to either prevent predicted future failures or recover from failures that have oc-
curred [Dellarocas and Klein, 2000]. Because exceptions can occur across mamny
different types of domains then domain problem solvers require social interac-
tions to recover from such failures. Thus the configurability of the framework (as
well as the benefits of negotiating agent technology in comparison to traditional
methods) can be evaluated more objectively.
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