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Foreword

Usually the IITA monographs are enhanced publications of the theses of our PhD
students. This one is an exception. Its author did it when a mature researcher.
However it is not what one could expect: a recollection of research done along
the years. It is new research planed and done within the aims, form and lim-
its of a PhD thesis. In fact,the excellent balance between problem definition,
solutions proposed and empirical evaluation of results makes this monograph a
paradigmatic PhD thesis in its own field. This field is pragmatics of design for
computational logic: the research of techniques and tools to automate design
of executable formal specifications. This is crucial to making formal specifica-
tions actually useful in practical applications and therefore should should be
understood in the context of the effort to relate formal methods and engineering
practices.

The first part of the monograph links with previous work by the author
in structural synthesis of logic programs. However new proposals for process
editing and diagramatic specification are presented. The second part presents
an innovative system of design by refinement. It is the first to combine set-based
refinement, for high level design, with techniques editing, for low level design.
It opens many possibilities of further research. I hope readers feel the challenge
of this kind of research and I am sure they will enjoy this extremly well written
thesis.

Bellaterra, June 2000

Jaume Agusti
ITTA, CSIC
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Abstract

This thesis presents novel uses of structural synthesis methods for Horn clause
specifications which are executable as logic programs. These methods apply to
the early design and refinement of these specifications - a stage which has been
identified as crucial to the adoption of formal specification methods in practical
applications.

Two methods of automated design are described. The first employs a dis-
tributed form of design in which a number of specialised tools independently
construct parts of a specification and share design information via a shared
language. Empirical evaluation of this system reveals a number of difficulties
stemming from the loose integration between tools and the lack of a framework
for incremental refinement of the specification. The second system addresses
some of these problems by providing a system of refinement applicable to prob-
lems which can be viewed as transformations on sets of axioms. In this system,
all Horn clauses express relations over sets of axioms (themselves Horn clauses).
This allows early specifications to be defined by constraining these sets. Ini-
tially, these specifications are refined by a system of rewrites on inequalities
between the sets. Subsequently, specifications are given detail by introducing
task-specific skeletal definitions to describe the means of relating elements of
sets, and by adding argument slices to carry additional information through the
specification.

The methods described in the thesis and supported by the LSS and HANSEL
systems have been tested empirically on non-trivial specification tasks, including
a reconstruction of one of the experimental tools and the design of models similar
to examples taken from the KADS knowledge engineering method.
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Part 1

Background






Chapter 1

Problem Definition

This thesis is primarily concerned with methods which assist in the early design
and refinement of logic programs. The motivation for the research is, however,
broader because the problems of early design for logic programs are shared, and
are arguably more severe, in the rest of the formal specification community. A
recent survey into factors inhibiting the uptake of formal methods in industry
[Cleland and MacKenzie, 1995] identifies the following problems:

e The process of applying formal methods to problems does not correspond
to existing design processes. Designers want to produce code (or at least
executable specifications) quickly and use these to help guide further de-
sign. Many existing formal methods make it too slow to devise and revise.

e Most engineers lack basic training in the mathematics needed to apply
formal specification methods from scratch, and, if training is supplied, it is
difficult to predict which engineers will adapt well to this form of thinking.
A substantial part of the difficulty stems not from the mathematics itself
but in using it appropriately for particular kinds of problem.

e For those not intimately involved with formal methods there appears to be
a plethora of competing methods. Simply selecting the specialised method
appropriate to a task is ineffective because there are too many competitors
and the selection criteria are seldom defined.

e Project managers view formal methods as “all or nothing” solutions. The
initial investment in resources is so high that if they do not deliver high
benefits there may not be time or money to shift to conventional design
methods, thus jeopardising entire projects.

The root of these problems appears to be in the way formal specification
is supported in early design - an issue which has received surprisingly little
attention. One reason for this omission is that conventional formal specification
methods concentrate on training practitioners in the use of the formal language,
under the assumption that deep understanding of the language gives the freedom

3



4 Chapter 1. Problem Definition

to use any design method which the language allows. This may be effective
for very small specifications but is unsatisfactory for larger specifications where
software process managers may require explicit styles of description and methods
of refinement to be followed in order to control, assess and audit design choices
at a level higher than the formal language itself. Free-style design can also be
difficult if more than one designer is involved because it can be difficult to relate
and amalgamate the designs produced in different ways by different people,
even if the formal specification language is shared. Examples of these sorts of
problems, taken from projects in which the author was involved, are given in
[Robertson, 1998b].

Most conventional software engineering methods, and some requirements en-
gineering methods, require different views of the design to be produced at appro-
priate stages in the design process. These are connected together, either tightly
or loosely depending on the method and design stage, and together provide a
framework for communicating different forms of information between stages of
the design lifecycle. We know that it is possible to introduce formal methods into
existing lifecycles, normally with the aim of clarifying the links between design
stages but these efforts tend to be shaped by the established lifecycle into which
formality is being absorbed [Robertson and Agusti, 1999]. This thesis looks at
the problem from the opposite perspective: taking a commonly used style of
computational logic and exploring how the pragmatics of design in that logic
inspire certain kinds of lifecycle model.

This type of study can never be confined purely to formal theory because
judgement about what constitutes a plausible lifecycle model is subjective. Al-
though we may use abstract theory to generate forms of design lifecycle we must
then present evidence that relates these to lifecycles accepted as standard in
particular domains. We also need to show that tool support is possible for the
design stages we invent, since a key reason for formality in design is automation
and this requires that tools can be built.

It is impossible to explore the entire space of possible lifecycles, even for a
single computational logic, so this thesis considers two contrasting approaches.
To make the comparison between approaches more direct the specifications con-
structed in each are in the same formal notation - Horn clauses - and are executed
as Prolog programs.

The first approach uses a logic to provide a standard description language
for partially completed specifications and uses this language to communicate
between a number of self-contained design tools in a system called LsS. This
provides a loosely constrained design process where the decisions about when
and where each tool is used are not prescribed by the formal framework. As
an example of this, imagine that we are building a specification for a patient
processing system. Some parts of this, such as the overall sequencing of stages
in processing, might conveniently be represented as a block and arrow diagram.
Other stages, such as the general diagnostic procedure, might best be visualised
as a way of allocating patients to particular diagnostic categories. Other stages
might be viewed in a more algorithmic style. The problem of coordinating these



different views is tackled by translating each into a shared formal language. We
work through this sort of example in detail with LSS in Chapter 6.

The second approach takes the opposite view, where specifications in a logic
are developed using a framework (supported by a tool named HANSEL) which
determines when and where particular design decisions are made. This sort of
framework is best applied when we have a form of high level description for
early design which covers the entire problem and which we can use to structure
refinement - essentially top-down design. An example from the knowledge en-
gineering world is in task modelling where we begin with a high level, overall
description of a standard task (such as a style of diagnosis) and progressively
flesh this out. We look at examples from one such method using the HANSEL
system in Chapter 12.

A note on terminology. In this thesis we use the word “specification” to
refer to the sets of Horn clauses constructed by our design systems. Often these
specifications are executable but we do not refer to them as “programs” because
at some design stages (particularly in HANSEL) they may be far from what is
normally considered an executable program. This is different from the use of
“specification” in deductive synthesis (see Section 2.1), where the “specifica-
tion” is a description of the property desired of a program and a program is
constructed deductively from that specification. In the HANSEL system we make
use of properties of our sets of Horn clauses but we refer to these as “proper-
ties of a specification” rather than “a specification of a program” because our
use of properties is not for deductive synthesis and the clauses to which they
apply are not always executable programs. The purpose of our specifications is
usually to describe idealised models of systems or processes. When doing this,
we sometimes talk about the “model”, meaning our specification of the model.
In Section 2.4.3 we encounter yet another use of “specification”: in providing
domain-specific descriptions of problems which are used to guide the synthesis
of specifications appropriate to these problems. To emphasise this purpose we
sometimes refer to this form of specification as a “problem description”.

The structure of the main thesis follows the chronology of the research.
Part II describes the first, diverse style of design, embodied in the LSS toolset.
In it, we first introduce the approach (Chapter 3); then define the formal con-
cepts needed by the design tools (Chapter 4); then describe the tools which were
built to perform this sort of design using the given formal concepts (Chapter 5);
then give a worked example to explain how the tools work together (Chapter 6);
finally evaluating the toolset by bringing in earlier evaluations on related tools
and performing a case study using LSS to reconstruct a substantial logic pro-
gram. The evaluation reveals a number of problems with the highly distributed
style of design in LSS - stimulating investigation into the second, more rigidly
structured approach of the HANSEL system in Part III. The structure of this
part follows that of Part II: an introduction (Chapter 8) followed by formal
concepts (Chapter 9) then an overview of the HANSEL tools (Chapter 10) then a
worked example which revisits an specification developed with Lss (Chapter 11)
and finally an evaluation(Chapter 12) in which early design models from an es-



6 Chapter 1. Problem Definition

tablished knowledge-based systems design method are compared to analogous
specifications developed in HANSEL.

The principal questions addressed in this thesis, from the perspective of logic
programming, are:

e Is a Horn clause language supplemented by techniques descriptions (ob-
tained through direct manipulation and structure editing) an effective
means of sharing design knowledge in a loosely coordinated design frame-
work ?

e We know from earlier research [Robertson et al., 1994] that close links can
be made between set-based refinement and logic programming. Can we
harness these links to give a methodical system of refinement which is
inspired by logic programming.

e The point of coordination in specification design is to obtain design pro-
cesses which parallel those of conventional software engineering. One of the
key elements of this process is that commitments made in design phases
are checked in subsequent verification phases. Can the use of formal refine-
ment in design give routes for easily obtaining some kinds of verification
information?

e Can we invent tools which assist in design in the styles described above?
In particular, can we reconcile the tension between the diversity of descrip-
tion styles and forms of automation found in a system like LSS with the
uniformity of method and automation found in systems like HANSEL.

In Chapter 13 we return to these questions when summarising the contribu-
tions of this thesis.



Chapter 2

Related Work

One of the contributions of this thesis is to pull together a number of strands
of research. This means that the amount of related work is potentially very
large. To bound the discussion, we explore each strand starting close to the
work of the thesis and charting the area around this, with sparse references
to more distantly related research. In [Robertson and Agusti, 1999] we give a
broad-ranging exploration of the variety of methods and tools related to this
research.

2.1 Synthesis of Logic Programs from Specifica-
tions

The majority of research on synthesis of logic programs assumes that an initial
specification is provided and the task is then to build an appropriate program for
it. For this to be of practical value it has to be more effective in the chosen do-
main for people to conceive initial specifications (and then derive programs) than
it is to design their programs by conventional means. Experience from within
the algebraic specification community suggests that there are serious problems
in arranging for this to happen, even for systems embodying powerful notions
of refinement. To quote [Sannella and Tarlecki, ming] talking about their expe-
riences with Extended ML:

“Actually writing specifications of programs that use higher-order
functions, exceptions, partial functions, etc. is difficult and the re-
sulting specifications are hard to read. Worse, the specifications of
simple total first-order functions need to include boring conditions
that rule out exceptions and partiality. Finally, actually developing
programs from specifications is hard work.

This thesis is part of the minority of work currently exploring answers to
these sorts of problems relevant to logic programming. It is therefore intended
to be complementary to the majority of work in synthesis of logic programs from

7



8 Chapter 2. Related Work

specifications which we summarise below, taking [Deville and Lau, 1994] as our
guide:

e Constructive synthesis: builds a program for a specification by performing
a constructive proof of the specification and extracting from that proof a
program for computing the relations contained in the specification.

e Deductive synthesis: derives a program as a logical consequence of a spec-
ification by applying logically sound deduction rules to it, the correctness
of the resultant program with respect to the specification being established
through the correctness of the deduction rules.

e Inductive synthesis: derives a program from incomplete information, typ-
ically in the form of examples. The aim is to produce a compact program
which covers the examples in a way which is “natural” with respect to
some acceptance criteria.

o Structural synthesis!: builds a program from a collection of schematic com-
ponents, giving particular design strategies which are expressed as struc-
tural changes to the program. The emphasis here differs from that of the
approaches above in that the choice of schematic component is often a
pragmatic one, tempered by what is acceptable in a domain of application
(see [Robertson and Agusti, 1998]).

The method of design used in this thesis is structural synthesis.

2.2 Views of Lifecycles

One of the reasons why it is difficult to express specifications in logic is that
it is both abstract and flexible, so there are many different ways of describing
similar problems. This is also true for traditional programming languages and
for the sorts of knowledge representation languages used in the knowledge-based
systems community. These communities, however, have developed numerous
methods for assisting in the design of software in important domains and/or for
standard classes of task. Usually these promote a particular view of the design
lifecycle, starting from early requirements or architectural features and perhaps
extending through to verification, validation and maintenance. This broader
view of design, essential in traditional software engineering but largely ignored
in logic programming, is important to this thesis, so we introduce it here.

A vast literature exists on software lifecycles but, for simplicity, we give only
examples directly relevant to the remainder of the thesis. First, an example of
a standard lifecycle model from mainstream software engineering is given (Sec-
tion 2.2.1); then a design method from the knowledge engineering community
is compared to it (Section 2.2.2); then we introduce the notion of distributed
specification central to the LsS system (Section 2.2.3); and finally discuss the
use of logic programs in testing (Section 2.3).

1 Classified under “Informal Methods” in [Deville and Lau, 1994]



2.2. Views of Lifecycles 9

2.2.1 A Lifecycle from Software Engineering

There is no single, standard lifecycle model for software design but one which is
common is the “V” model, shown in Figure 2.1. This is used in software design
standards such as IEC 61508 Functional Safety: Safety Related Systems which is
a new European standard for design of programmable electronic systems used in
safety-critical systems. The basic idea is that design commitments are made (and
documented) on the way down the left arm of the “V” and these commitments
are scrutinised on the way up the right arm of the “V” (the dotted lines on
the figure illustrate this transfer of information from design to validation and
verification).

Requirements @ -~ —~-~"~"-"~""“"~--~-----2 - Validated system

Architecturedesign @C------------ Verified architecture
System specification @ - -~ - 2 Verified application

Application

Figure 2.1: A “V” lifecycle model

The design stages in Figure 2.1 commence by establishing requirements for
the system to be built - documenting these in a form which can be validated
once the system is completed. In the next design phase the architecture of the
system is described, which commits designers to the general style of problem
solving that the system will exhibit and which will later be verified to establish
that this style has been followed appropriately. The system specification is then
written in a way which can be verified with respect to the application (through
some mixture of testing, proof or informal argument). The human process of
following this sort of lifecycle can be complex, with many of the stages being re-
visited as requirements shift and lessons are learned from early implementations
of an application. The purpose of a lifecycle model is to provide a framework
for keeping this form of complex design process under control.

2.2.2 A Design Method from Knowledge Engineering

Lifecycle models are traditionally associated with mainstream software engi-
neering. By contrast, knowledge engineering has been slow to develop analogous
form of control on design processes. The reasons for this are a matter of debate.
One reason might be that knowledge engineering is a newer form of design than
software engineering, so strong lifecycle models have not had time to mature.
Another reason might be that the domains to which knowledge engineering is
applied are often loosely constrained and uncertain, so the style of design is often
driven by prototyping and experimental programming which can be carefully or-
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ganised but often are not. A third reason might be that many knowledge based
systems are small by software engineering standards and it is therefore possible
to concentrate on the artifact being built rather than on the process through
which it is engineered.

Whatever the causes, the current situation is that the de facto only com-

monly used lifecycle models for design of knowledge based systems are those of
the KADS method [Wielinga et al., 1992a],[Schreiber et al., 1993],
[Tansley and Hayball, 1993], [Wielinga et al., 1992b]. Many subtly different in-
terpretations of this method exist but the main method involves four layers of
abstraction. At the lowest level, the domain layer contains concepts and rela-
tions specific to the domain of application. Above this, the inference layer gives
a declarative description of the problem solving processes used. On top of that,
the task layer provides a procedural interpretation of the inference layer. Finally,
the strategy layer connects together the problem solving tasks. Central to this
arrangement is a library of interpretation models, which provide configurations
of inference functions and knowledge roles appropriate to particular types of
task. Once an interpretation model is identified, it is then adapted and instan-
tiated in order create the inference layer of the KADS model. To assist users in
classifying interpretation models by task, a hierarchy of tasks is provided. The
leaf nodes represent particular interpretation models, while other nodes divide
the interpretation models into subsets of related tasks.

One of the interpretation models is an assessment task. This is shown in Fig-
ure 2.2 in the diagrammatic style normally used in KADS for these models. The
boxes in this diagram represent knowledge roles: types of knowledge which are
the inputs and/or outputs to inference functions (shown as ovals). This diagram
is intended to be matched against the task being performed in some particular
domain of application, with appropriate instantiations and (if necessary) adjust-
ments being made to suit the problem in hand. Suppose, for example, that our
task was to write an expert system for assessing the suitability of applicants for
a job. We could match this task to the diagram in Figure 2.2 as follows:

e The case description matches to the applicants CV.

e The abstract case description is then a description of the key abilities and
weaknesses of the applicant (abstracted from the case description).

e The ideal case is a stereotypical “ideal” CV.

e In the context of which we specify, as the norm, the key abilities required
for the job.

e The abstract case description is then matched against the norm to obtain
a comparison of the candidates abilities against those ideally required for
the job, yielding a decision class.

The instantiated interpretation model for assessment is shown in Figure 2.3.
We shall return to this example in Section 12.1 as part of the evaluation of
the HANSEL system.
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Case description System model

Abstracted case compare case

Decision class

Figure 2.2: KADS inference structure diagram for an assessment task(adapted
from [Tansley and Hayball, 1993] page 294).

Applicant’'s CV Ideal CV

compare case

Strengths/weaknesses Key abilities

Suitability report

Figure 2.3: KADS assessment model instantiated to a job application.
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There have been attempts to build automated design systems for part of
the KADS lifecycle or for lifecycles similar to that of KADS. The (M L)? system
[van Harmelen and Balder, 1992] used different order-sorted logic to describe the
domain specific component of models; related this to standard forms of inference
by a meta-logic (in predicate calculus) describing how the domain knowledge
might be used; and described how tasks should be performed using dynamic
logic. A subset of the full system was mechanised, essentially by restriction
to Horn clauses, so it is possible sometimes to obtain executable specifications
from this system. The MIKE system [Angle et al., 1998] takes a different view
by taking inspiration from the layered style of design in KADS but using its
own (related) style of specification which makes it easier to produce executable
specifications. Essentially, MIKE design begins by drawing an initial model
containing nodes and links similar to a KADS interpretation model; the next
level allows inference methods, described in a logic, to be introduced for the
components of the structural model; then to these inference methods are added
definitions of the algorithms and data structures required to execute them. Both
(M L)? and MIKE move away from logic programming in an attempt to tame the
difficulties of early design through more sophisticated representation languages.
However, it is not clear that this route makes for easier design because, even
if it is in theory possible to describe knowledge engineering problems elegantly
in such languages, designers must understand the more sophisticated languages
in order to choose appropriate representations. In this thesis we attempt to
remain close to Horn clauses for specification, although in the HANSEL system
we extend this through set-based refinement. In Chapter 12 we shall return
to KADS viewed from the perspective of HANSEL and shall draw similarities
between some KADS models and HANSEL specifications.

2.2.3 Distributed Tasks United by a Shared Language

The LSS system of Chapters 3 to 7 was stimulated by the Explore system de-
scribed in [Fuchs and Fromherz, 1994]. Both Explore and Lss allow different
parts of a specification to be described using different tools, some graphical and
some textual. The LSS system makes more use of techniques editing as a way
of interchanging partially described specifications, where in Explore the inter-
change language is the Explore/L language which is an object-oriented variant
of Prolog. The Explore system makes more use of schema based transformations
on completed specifications to turn them into efficiently executable programs -
LSS pays little attention to this design stage in order to avoid repeating the work
of Explore.

2.3 Testing

Although this thesis is not about software testing one of the advantages of the
use of formality in design lifecycles is that information relevant to testing can
be carried automatically from early design stages to later ones (see Sections 9.3
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and 9.7). The way in which we currently use this information is comparatively
straightforward: test instances are obtained from executing the specification and
it is left to the person doing the testing to determine whether these tests succeed,
either by calling them as normal Prolog goals or by other means. Much more
sophisticated forms of analysis exist for logic programs. Two of relevance to this
thesis are:

e Verification systems which can be applied directly to logic programs and
derive information relevant to testing. A recent example, given in
[Le Charlier et al., 1999], performs a variety of analyses for features such
as modes, types and termination.

e Systems which give declarative descriptions of testing methods and thus
help to automate the process of testing. An example appears in
[Gorlick et al., 1990], where a method is described for using logic programs
to specify tests. These test specifications can be run in two “directions”;
either as a generator of tests which conform to the specification or as a
validator that the specification meets a given test.

This thesis is complementary to forms of analysis like those above because
the method of accumulating properties during design, described in Sections 9.3
and 9.7, gives a way of obtaining information during design which would not
always be derivable by analysis of the logic program and which might be useful
in testing regimes. If one agrees with [Perry, 1995] that “the biggest problem
with testing is boredom” then it seems useful to build mechanisms for acquiring
testing information into automated design tools because this helps reduce the
tedium of defining test goals by hand for every predicate. On the other hand, we
cannot expect to acquire all appropriate tests in this way so our claim to assist
in this area is modest.

2.4 Systems of Formal Design for Specifications

Many of the tools described in this thesis design specifications directly, either
by editing a specification directly in its basic formal language or by editing
graphical symbols with direct correspondence to the underlying formal language
or by using a pseudo-English translation of the formal language. This section
describes other research in this area, concentrating on logic programming editors.

2.4.1 Design Based on Structure Editing

A structure editor is a design tool which allows specifications (or programs) to
be built directly in the formal specification language using syntactic components
appropriate to that language. The advantages of a structure editor are that
these components may be large, saving time in adding them, and if they are well
chosen then they may easily be selected and combined. The LSS techniques editor
(Section 5.1) and the HANSEL specification window (Section 10.1) are structure
editors.
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Within logic programming there has been a variety of attempts to produce
structure editors, each of which makes different choices of structural component
and editing style. These systems can be split into those which are based on
maintaining certain properties throughout editing (a minority) and those which
don’t (the majority). The LSS and HANSEL systems do not guarantee proper-
ties of specifications during editing, although HANSEL generates properties for
retrospective testing.

An example of a structure editor intended to guarantee termination of recur-
sive specifications is the Recursion Editor [Bundy et al., 1991]. This starts from
a basic recursion schema and extends this by applying edit commands which
perform structural changes such as adding an additional argument to the pred-
icate. Each of these changes adds appropriate subgoals and additional cases
to ensure that the predicate being constructed will be terminating when it is
completed. The price paid for this guarantee is that only a limited class of logic
programs can be described. It is also claimed in [Whittle, 1998] that the way
in which termination is guaranteed, through guaranteed correct transformation
rules, makes it difficult to extend the system by adding new transformations be-
cause the potential interactions with earlier transformations must be considered
each time a new editing operation is added. An antidote to this is to maintain
a proof of termination during the editing and to have the editing operations
manipulate this proof, with the corresponding program being extracted from
it. This is the approach used in the CYNTHIA editor [Whittle, 1998] which
is a descendant of the Recursion Editor but constructs functional programs (in
ML) rather than logic programs. To our knowledge, neither the Recursion Edi-
tor nor CYNT HI A has been applied to significantly sized applications, although
CYNTHI A was tested on a sample of four novice ML programmers. Similarly to
the experiments with techniques editing reported in Section 7.1.1, these novices
made fewer errors when using the structure editor. The termination checking
was reported to “have only a limited benefit in program writing” but this may
have been because of the limited scope of the experiments.

Many of the more general purpose logic program structure editors, which do
not guarantee properties during editing, were inspired by the notion of step-
wise enhancement originating in Sterling’s group [Kirschenbaum et al., 1989,
Sterling and Kirschenbaum, 1993]. The essence of this method is described in
Section 4.1. The early work (such as [Kirschenbaum et al., 1989]) concentrated
more on the benefits of fixing the flow of control (via choice of skeleton) prior to
transformations which were guaranteed not to disturb the flow of control, thus
making certain forms of predicate combination easier. Later work gave greater
emphasis to design method (see [Naish and Sterling, 1997] for example). As the
basic principle became more widely applied it was adapted for other purposes
and tested in application domains. Some examples of this are:

e In [Plummer, 1990] a method of designing Prolog programs from param-
eterisable structures called “cliches” is described. The basic idea is that
a library of template definitions is provided and by instantiating these
variables we get refinements of the templates. In this sense, the idea is
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a version of the notion of parameterised programming [Goguen, 1989]. In
practice the choice of cliches is quite close to those in many techniques
editors.

e Gegg-Harrison provided a classification of “schemata” (similar to skele-
tons) for Prolog list processing predicates [Gegg-Harrison, 1989] and de-
scribes a method for using these to introduce recursion to novice program-
mers and for guided debugging [Gegg-Harrison, 1991].

e A simple techniques editor for novice programmers was built by the au-
thor [Robertson, 1991]. This is of historical interest only, since it was an
ancestor of the TEd and LSS editor.

e The TEd editor [Bowles et al., 1994, Bowles and Brna, 1993]) was used in
an extensive evaluation of techniques editing with novice programmers,
summarised in Section 7.1.1. This has libraries of skeletons and extensions
which are simpler than many other such editors (including those described
in this thesis) but had a comparatively sophisticated interface targeted at
supporting novice programmers. In its final version, this included an ana-
logical mechanism for relating problem features to solved examples from a
case library and using these to offer appropriately instantiated skeletons.

e The TeMS system [Castro, 1999] is a highly domain-specific implementa-
tion of a techniques editor which assists ecological experts in the construc-
tion of a class of population dynamics models. It is not strictly a structure
editor because the ecologists describe problem features without editing the
specification of a population model directly. It is included here to make
the point that when such systems become domain-specific they may move
away from direct structured editing to a more layered form of specification
in which the language of initial problem description differs from that of
the final specification (see Section 2.4.3).

2.4.2 Design Based on Direct-Manipulation Graphical In-
terfaces

Structure editing, as described in the previous section, manipulates specifications
directly in the textual formal language of the specification. It is, however, pos-
sible to manipulate specifications through diagrammatic representations which
have a direct correspondence to the textual formal language of the specification.
We refer to these as direct-manipulation graphical interfaces. In some cases this
correspondence can be tight in the sense that whatever is drawn in the diagram-
matic language has a corresponding, unique translation into the textual formal
language. This is the case for the Lss Process Editor (Section 5.2) and Recur-
sion Editor (Section 5.3). In other cases the correspondence may be looser in the
sense that only diagrams which have reached some defined stage of completion
are translatable to the textual formal language. We know that it is possible to
build direct-manipulation graphical interfaces to generic forms of logic (this is
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done for Horn clauses in [Agusti et al., 1998]) but it is more common in prac-
tice to build such interfaces for narrower subsets of a formal language, with the
chosen subset often determined by the task or the domain of application.

The use of this style of formal description is now common (see
[Stasko et al., 1998] for a compilation of some recent research) but the fact that
most systems are task or domain-specific makes it difficult to give a definitive
guide to the area. Within logic programming itself graphical interfaces have
(arguably) been more deeply explored in debugging programs (most notably
[Eisenstadt and Brayshaw, 1988]) than in designing them. A notable exception
is the Explore system
[Fuchs and Fromherz, 1994] (introduced in Section 2.2.3) which provided a num-
ber of direct-manipulation graphical editors (for example for state transition
networks and for user interface specification) that translated to a specification
in a specification language derived from Prolog. The graphical tools in Explore
went beyond those in LSS in providing a bi-directional mapping between dia-
gram and specification, rather than a uni-directional mapping from diagram to
specification. In principle, bi-directional mappings should be possible in Lss but
we have not explored this sufficiently to be sure whether the benefit gained from
this sort of flexibility is worth the additional cost in developing the mappings.

2.4.3 Design Separating Problem Description from Speci-
fication

The design systems of Sections 2.4.1 and 2.4.2 rely on human designers being
able to describe their problems directly in a language (graphical or textual)
which gives an adequate specification of the solution to it. Sometimes this may
not be practical because the designers do not have sufficient background in the
specification language to be able to describe their problem in those terms. A
solution to this problem is to give designers a simpler, often domain-specific, lan-
guage in which to describe their problems and use this to control the generation
of an appropriate specification. In a sense, the early stages in HANSEL definition
are like this because they begin with definitions using set inequalities, which
might be viewed as an early problem description language, and these are refined
into Horn clause specifications. There are, however, other ways of obtaining a
separation between problem description and specification.

e A domain-specific formal language can be used for problem description,
with domain-specific synthesis being used to connect this to structural
synthesis of specifications. One of the earliest examples of this was the
MECHO system [Bundy et al., 1979], which constructed a domain-specific
problem description by parsing example mechanics problems stated in nat-
ural language and used this to select and instantiate a set of appropriate
equations which were then passed to an equation solver for solving the
problem. This performed well on the very narrow range of mechanics prob-
lems upon which it was targeted but was not extended beyond these. At
around the same time experiments were being conducted in domain-specific
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synthesis of programs, an early landmark being [Barstow et al., 1982]. A
descendant of MECO, the ECO system [Robertson et al., 1991], reformu-
lated the basic idea of MECO to more general program synthesis. The
ECO problem description language was a simple form of sorted logic which
was manipulated by selecting domain-specific templates (the domain was
a branch of ecological modelling) and using these to guide the construction
of logic programs describing ecological simulation models.

e The problem description can be viewed as a specification for which an ap-

propriate program is generated through deductive proof. A recent example
of this is the Amphion system [Lowry et al., 1994],
[Lowry and Van Baalen, 1997] which has been used, in different incarna-
tions, to generate programs for solving domain-specific problems such as
solar geometry. The basic idea in this type of system is that problems, de-
scribed via a domain-specific graphical interface, are represented as spec-
ifications of the form VI.30.C; A...A C,, where each C is a predicate
application or an equality defining a variable through a function appli-
cation. A deductive theorem prover is used to generate an application
program for the problem specification, using domain-specific proof tactics
to control the search. Although Amphion is driven by deductive synthesis,
so strictly it has no place in our survey of structured synthesis systems,
we justify including it here as an example of similar attitudes to problem
description being adapted to different methods of synthesis.

Both of the solutions described above rely for their effectiveness on domain-
specificity. This makes it possible to acquire problem descriptions more readily
from domain experts (via domain-specific interfaces) and allows the problem of
automated generation of a solution from a distantly related problem description
to be tamed by using domain-specific generation methods. A more detailed dis-
cussion of domain-specific specification methods appears in [Robertson, 1996b)
and a more detailed summary of some domain-specific declarative specification
systems appears in [Fuchs and Robertson, 1996].

2.5 Set-Based Refinement for Logic Programs

The early stages of design in the HANSEL system of Chapters 8 to 12 rely on
the use of specifications expressed as logic programs relating sets of axioms
via set inequalities between the theories represented by those axioms. This
is introduced technically in Section 9.1, and developed further in Section 9.2.
Central to this approach is the idea that many forms of problem solving can be
viewed as manipulations of theories. One way of describing this is by expressing
early specifications using Horn clauses where variables refer to axiom sets and
set inequalities in the bodies of the clauses place constraints on the theories of
those axiom sets. For example, the clause p(S1, 52) « 7(S1) D 7(52) says that
the relation p holds between axiom sets S1 and S2 if the theory of S1 includes
that of §2. The mechanism of refinement used in the early stages of HANSEL
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design uses rewrites on these inequality subgoals to add detail to the specification
- 50 in the example above we would refine 7(S1) O 7(S2) but would not alter
p(S1,52), except by the addition of arguments.

An alternative, more radical, view is to represent the Horn clauses them-
selves as inequalities and to view synthesis as set-based refinement of whole
clauses (not just their subgoals). This provides a highly flexible form of refine-
ment (see [Levy, 1994] for a generic rewriting system and theoretical results)
and extends other expressive styles of specification, such as Lambda-calculus
(see [Levy et al., 1991] for an example of this sort of extension). It is this flexi-
bility and expressive power, however, which has made such languages difficult to
harness for realistically sized synthesis tasks because it appears to be difficult for
those who have not been immersed in the mathematics of the languages to adapt
to this style of specification. In our earlier work [Robertson et al., 1994] we de-
fined a simplified refinement language following some of the ideas of [Levy, 1994]
but with a final translation from our inequality expressions to standard Horn
clauses. The basic idea is that the Prolog clauses are obtained by a transla-
tion from inequalities between sets of results obtainable from given argument
positions in predicates. For example, the inequality:

D : diagnosis(S, D) D D1 : diagnosis(S1 : hypothesise(S, S1),D1)

might be used to denote that the set of results for the diagnosis, D, of diseases
based on given symptoms, S, includes the set of diagnoses, D1, from hypothe-
sising on those symptoms. This translates to the Horn clause:

diagnosis(S, D) < hypothesise(S,S1) A diagnosis(S1,D)

In [Robertson et al., 1994] we use the inequality definitions to supply a refine-
ment lattice within which designers may navigate and select inequalities at levels
of detail appropriate to their problem. These are then translated to Horn clauses.
It would, in theory, be possible to combine this notion of refinement (or related
notions of refinement expressed using higher order functions as described in,
for example, [Uschold, 1990, Naish and Sterling, 1997]) with the refinement of
inequalities between theories currently used in HANSEL. In practice, this intro-
duces yet another level of mathematical sophistication into a framework which is
already highly demanding of designers. It is not clear whether the combination
of refinement methods would simplify or complicate matters.

This concludes our discussion of related work. We have introduced the four
main approaches to synthesis of logic programs and identified the one closest
to the work of this thesis: structural synthesis. We then explained why some
notion of lifecycle is necessary in synthesis and described three contrasting views
of lifecycles. The third of these, based on distributed tasks united by a shared
language, is the motivation for the work described in the next part of this thesis.
One benefit of having a lifecycle is that information may be obtained automat-
ically in early stages of design with the intention of using it later, for example
in testing. We briefly summarised some systems which perform testing in logic
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programming. We then looked more closely at systems for designing specifica-
tions, concentrating on those using structural synthesis. Finally, we introduced
the idea of set-based refinement which will feature later in this thesis, comparing
it to a related form of refinement used previously by the author and others.
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Chapter 3

Overview of the LSS
Distributed Design Model

The aim of LSS is to allow diverse styles of description to be used when represent-
ing different parts of a problem. This is done by constructing editing tools which
are targeted at particular styles of description and have interfaces which rein-
force that style. The tools do not interact directly with each other. Instead, they
communicate through a shared formal language. Thus, one tool may construct a
partial description and save it in the shared language, with this description then
being read by another tool which may extend or refine it. This has the practical
advantage that new tools can be added to LSS without the cost of building inter-
faces between them and the existing tools. This motivation is similar to that for
the use of interlinguas in knowledge sharing (see [Uschold and Gruninger, 1996]
for an overview).
The tools currently in LSS can be split into three groups:

e Those concerned with designing new predicates in different styles. The
current set of these is:

The techniques editor : describes predicates in a style which requires
the partial program describing the flow of control first to be selected
and then for it to be extended one argument at a time. This is
described in detail in Sections 4.1 and 5.1.

The process editor : allows designers to edit diagrams representing pro-
cess sequences in a box and arrow notation and automatically converts
these into Definite Clause Grammar (DCG) specifications, which in
turn have a direct translation to normal Horn clauses. This is de-
scribed in detail in Sections 4.2 and 5.2.

The diagrammatic recursion editor : gives a diagrammatic style of
description for partial definition of simple recursive predicates, which
can be refined using the techniques editor. This is described in detail
in Section 5.3.

23
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The window editor : allows designers to “sketch” visual descriptions of
windows and their components (edit fields, buttons, etc. and anno-
tate these with links showing parts of the interaction between them
(e.g. that a button click in one window creates another window).
This description is then translated automatically into a partial Pro-
log definition of the interface predicates, which can be refined using
the techniques editor.

e Those which transform existing predicate definitions into equivalent def-
initions which are more compact and/or more efficient computationally.
Only one early prototype tool is in this group:

The transformation editor : gives a menu of basic forms of correct-
ness preserving transformations which the designer can apply to the
predicates constructed by other editors.

e Those which provide a commentary on specifications which have been built
by one or more of the other tools. The current set of these are:

The overview editor : displays the call graph for a specification - nodes
being predicate names and links connecting each predicate to the
other predicates which it calls as subgoals.

The argument editor : is a graphical editor for a semantic network in
which the links are labelled from a small set of argument primitives
(e.g. “supports” or “objects to”) in the style of IBIS argumenta-
tion nets [Conklin and Begeman, 1988]. Some of the nodes in the
network can point to predicate definitions, allowing the argument
network to be used to describe part of the debate underlying the de-
sign of selected predicates. This is similar to the editor described in
[Ramesh and Luqi, 1993].

EDITING TOOLS

‘ Process editor ‘ ‘ Diagrammatic recursion editor

Techniques history /‘,
i ~

Figure 3.1: The LSS design model

More detailed overviews of LSS can be found in [Robertson, 1996a], which
explains the idea of this form of distributed design, and in [Robertson, 1998a],
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which describes some of the empirical testing of the system (summarised in
Section 7.2. This thesis concentrates on the design of new specifications rather
than on correctness preserving transformations or retrospective commentaries on
designs so in the following chapters we focus our attention on this group of tools.
We also wish to avoid lengthy discussion of the window editor because it does
not go significantly beyond the capabilities available in commercially available
dialogue generators, other than by its ability to produce specifications which can
be refined by a techniques editor. Therefore Chapters 4, 5 and 6 are confined
to discussing the techniques editor, process editor and diagrammatic recursion
editor.






Chapter 4

Formal Concepts

The Lss toolset uses as its language of interchange between tools either standard
Horn clauses or Horn clauses of the sort used in a form of techniques editing,
resembling normal Horn clauses but with some additional varieties of subgoal
to allow partial definitions of predicates. This is described in Section 4.1. All
of the tools produce restricted classes of Horn clause definitions, as described in
Chapter 5. One of the tools does this via Definite Clause Grammar notation,
standard with most Prolog systems, and in Section 4.2 we explain how this
relates to the description of a particular kind of process model.

4.1 Skeletons and Extensions

The basic idea of skeletons and extensions in logic programming comes from
the observation that many designers think of part of the predicate as being
responsible for the flow of control of the program during execution, with other
parts building on top of this. The former is the skeleton of the predicate and
the latter are extensions of that skeleton. For example, a predicate count(L,C)
which finds the cardinality, C, of list, L might be defined as:

count([],0) (4.1
count([H|T],N) <« count(T',Nt) A Nis Nt+1 (4.2)
The skeleton for this is:
count([]) (4.3)
count([H|T]) <+ count(T) (4.4)

and the extension is a transformation which adds the second argument as a
counter:

count count([],0
count([H|§£B + count(T) = count([H|T(][,]N§ « count(T,Nt) A N is Nt+ 1(4'5)

27
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We can generalise these notions by using partially defined predicates where
the identity of the subgoals which test or update variables is undefined. Instead
the appropriate subgoals contain placeholders which are of the form:

e T(X) if a test should be performed on variable X.
e U(X,Y) if variable Y is derived from variable X .
In our cardinality example, the general skeleton corresponding to clauses 4.3

and 4.4 might be:

P(X) « T(X) (4.6)
P(H|T) « P(T) (4.7)

and the general transformation corresponding to expression 4.5 might be the
following, where each ¢; is a possibly empty conjunction of subgoals.

PX) + ¢
P(G’l) — ¢2P(G’2)¢3

N P(X,F) « ¢1 A TF) (4.8)
P(G1,N) +« $2P(G2,Nt) A U(Nt,N)p3
This gives a way of structuring the design of predicates. We first select
and instantiate a skeleton. In the example, we would select the skeleton given
by clauses 4.6 and 4.7 and instantiate P to count and 7(X) to X = []. We
then apply the extension defined in expression 4.8 to this skeleton giving the
transformation:

count(X) < X =] N count(X,F) « X =[] A T(F) (4.9)
count([H|T]) « count(T) count([H|T],N) < count(T,Nt) A U(Nt,N)

and finally we instantiate 7(F') to F' = 0 and U(Nt, N) to N is Nt+1, giving
the equivalent of clauses 4.1 and 4.2. This style of construction is the basis for
the LSS techniques editing tool described in Section 5.1 and is related to the
use of HANSEL skeletons and argument slices in Section 9.5. A more lengthy
introduction appears in Chapter 6 of [Robertson and Agusti, 1999].

4.2 Definite Clause Grammar Related to Pro-
cesses

One of the aims of Lss is to provide tools for constructing restricted classes of
logic programs, using design paradigms that originate in logic programming but
which can be interpreted in terms of a domain-specific task. An example of this
is where the task is to represent a process consisting of alternative sequences
of steps which can be composed hierarchically. As we go through the sequence
we may observe certain events that happen as a consequence of the process.
for instance, in defining order processing in a business model we might want to
represent two alternative sequences:
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e An invoice is raised for the customer but subsequently cancelled; or
e An invoice is raised for the customer and subsequently filled.

and be able to report on completion of either one of these sequences that the
appropriate events had taken place.

There is a natural parallel between this sort of task and Definite Clause
Grammar (DCG) notation, with each sequence being represented as the parsing
steps in the body of a DCG rule and the observed events being the elements of
the sequence generated by the DCG. Our invoice processing example might then
be represented as:

process_invoice(Customer) = raisesinvoice(Customer, N), (4.10)
[invoice_raised(Customer, N)],
cancel_invoice(Customer, N),
[invoice_cancelled(Customer, N)]

process_invoice(Customer) = raisesinvoice(Customer, N), (4.11)
[invoice_raised(Customer, N)],
fill_invoice(Customer, N),
[invoice_filled(Customer, N)]

where process_invoice(Customer) is the DCG for a sequence of events ob-
served in processing an invoice for a Customer; raise_invoice(Customer, N) is
the sequence for raising an invoice numbered N; cancel_invoice(Customer, N)
is the sequence for cancelling order N; and fill invoice(Customer, N) is the
sequence for filling invoice N. We can also place conditions on the execution
of parts of the sequence by enclosing them within curly braces, as in standard
DCGs. This direct analogy between non-deterministic sequential processes and
DCGs is the basis for the visual interface of the LSS process editor of Section 5.2.

This completes our discussion of the key formal concepts underpinning the
Lss system. In the next chapter we introduce the tools which enable designers
to use these formal concepts in describing specifications.






Chapter 5

Tools Based on Different
Paradigms

Chapter 3 gave an overview of the LSS toolset and Chapter 4 introduced the
formal concepts, beyond those of conventional logic programming, used by the
system. We now look in more detail at three of the editors used in LSS explaining
how the visual interface provided by the tool enables predicates to be designed in
the formal styles described in chapter 4. We make the examples in this chapter
as simple as possible so that they convey the essence of each editor. Chapter 6
gives a larger example in which the editors share information in order to describe
a larger problem.

5.1 Techniques Editor

Section 4.1 described the basic idea of techniques editing. Appendix B gives
the library of skeletons currently used in LSS. There is no consensus on the
ideal set of skeletons (see Section 2.4.1 for some examples) because the choice
of these depends on the task in hand. The current library has, for flexibility, a
set of skeletons for general forms of recursion (Appendix B.2) and, for ease in
describing commonly occurring special cases, sets of skeletons for recursion on
lists (Appendix B.3) and for recursion using arithmetic counters (Appendix B.4).
We now show how the techniques library is applied to build a basic predicate,
factorial(X, F), which describes a recursive calculation of the factorial, F for
a given number, X. The flow of control of this predicate is established by
recursion on X so our first step is to select an appropriate definition of this from
the library of skeletons. We choose skeleton 3 from Appendix B.2, giving us the
initial definition shown in clauses 5.1 and 5.2 of Figure 5.1. The display above
these in the figure shows the editor at this stage in design. Its edit field shows
the current predicate definition and above this are the edit controls which we
shall use later to extend the definition.

The lines in Figure 5.1 beginning with labels <1> and <2> correspond to the
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factorial

accumulator
accumulator_pair

carry—through
1]

factorial (X} if
<1 > PERFORMA TEST ON []
factorial (X} if
< 2> DBTAIN Y FROM [%]
factorial (¥}

factorial(X) <+ T(X) (5.1)
factorial(X) <« U(X,Y) A factorial(Y') (5.2)

Figure 5.1: Techniques editor tool example - first step

subgoals T(X) and U(X,Y’) respectively. The menu shown opposite the Id label
above the edit field allows these subgoals to be instantiated to the appropriate
test and update: in the first case 7{X) becomes X = 1 and in the second case
U(X,Y) becomes Y is X —1. This takes us to the definition shown in Figure 5.2.

The menu at the top left of Figure 5.2 gives a list of the extensions which
can be performed on this definition. We want the value of the factorial to be
accumulated as we recurse down the sequence of integers established by the
skeleton. Therefore we choose the accumulator extension. This operates in a
similar way to the example of Section 4.1, adding an additional argument which
is tested in the base case and carried up through the recursion via an update
subgoal. The resulting definition is shown in Figure 5.3.

Finally, we instantiate the test and update subgoals in the definition: T{F)
becoming F' = 1 and U(P, F) becoming F is PxX. This completes our definition
of factorial.

5.2 Process Editor

Section 4.2 described the use of Definite Clause Grammar (DCG) notation for
describing a form of non-deterministic sequential process. We now explain how
a diagrammatic notation is used to describe these DCGs. An artificial example
is used in this section for simplicity but Chapter 6 contains a more realistic
example. One of the principles underlying this editor is that every graphical
description produced in the editor (even the earliest ones) have a translation into
the underlying DCG notation, so we can view the developing logical description
as we change the graphical one.



5.2. Process Editor 33

factorial

accumulator—pair
carry_through

factorial(1) iy
factorial (%) if ]
Yis®-1

factorial (¥}

factorial(1) (5.3)
factorial(X) <« Yis X —1 A factorial(Y) (5.4)

Figure 5.2: Techniques editor tool example - second step

factorial

accumulator_pair
carry_through

factorial( 1, F} if

<1+ INSTAMTIATEF
factorial (%, F) if

Yisk-1

factorial (¥, P}

<2 OBTAIMF FROM [P]

factorial(1,F) <« T(F) (5.5)
factorial(X,F) <+ YisX—1 A factorial(Y,P) A U(P, F) (5.6)

Figure 5.3: Techniques editor tool example - third step
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factorial

accumulator_pair
carry_through

factorial{1, 1} ity

factorial (¥, F) if |
YisH-1
factarial (¥, P)

Fis P*5

factorial(1,1) (5.7)
factorial(X,F) <+ YisX —1 A factorial(Y,P) A Fis PxX (5.8)

Figure 5.4: Techniques editor tool example - final step

The editor uses a separate window for each DCG predicate. Figure 5.5 shows
the window for a DCG called process. It contains two subsequences: subprocessl
and subprocess2 which we introduced by adding the two boxes shown in the
diagram.

process

subprocessi ‘ ‘ subprocess?

process =  subprocessl (5.9)
process = subprocess2 (5.10)

Figure 5.5: Process tool example - first step

Subsequences are connected by links. Figure 5.6 shows the initial two subse-
quences connected to a common preceding subsequence, initial _process.

Similarly, we can describe convergences between processes by linking to a
common successor sequence. Figure 5.7 converges on a subsequence called
process, which is the same as the the DCG window name so we now have a
recursive DCG which requires process to contain an initial_process, followed by
either subprocessl or subprocess2, followed by a further process.

We may want to define arguments to the DCG which are used to pass infor-
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process

initial_process

‘ subprocess1 ‘ ‘ subprocess2 ‘

process = initial _process, (5.11)
subprocessl

process = initial _process, (5.12)
subprocess2

Figure 5.6: Process tool example - second step

process

initial_process

‘ subprocessi ‘ ‘ subprocess2 |

process = inetial_process, (5.13)
subprocessl,
process

process = initial _process, (5.14)
subprocess2,
process

Figure 5.7: Process tool example - third step
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mation around during processing. This is done graphically using an ellipse to
represent each argument name and links connecting it to the appropriate predi-
cates. In Figure 5.8 we have added the arguments Input (which is intended as
an input argument to the head of the process DCG) and New (derived from
initial process and an input to the recursive call of process). Notice that in
the translation we assume that Input is an argument to the head of the DCG
because no link goes from a box to it (instead it is linked to three boxes).

SI==—————— process

process(Input) = initial _process(Input, New), (5.15)
subprocessl(Input),
process(New)

process(Input) = initial _process(Input, New), (5.16)
subprocess2(Input),
process(New)

Figure 5.8: Process tool example - final step

Other components of the DCG are the observed events in the process (cor-
responding to the items within square brackets in the DCG, as explained in
Section 4.2) and conditions on clauses expressed as normal Prolog subgoals (cor-
responding to the subgoals within curly brackets in a DCG). These are added
textually via windows which pop up when either a link or a box are clicked,
allowing the additions to be placed at appropriate points in the sequence. This
completes our introduction to the process editor.

5.3 Diagrammatic Recursion Editor

Section 5.1 described the techniques editor, which requires skeletal definitions to
provide the basis for specification refinement. One way of viewing the diagram-
matic recursion editor is as a way of defining a class of skeletons.

The form of editing done in this tool is, in one sense, more primitive than
comparable diagrammatic editors. In particular, it constructs only a partial
specification of a predicate, whereas the GraSP system [Agusti et al., 1998] can
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represent complete Horn clause specification via more sophisticated use of similar
graphical notation. In another sense the diagrammatic recursion editor is more
sophisticated than GraSP because the partial specifications it produces can be
loaded into the techniques editor of Section 5.1 and completed there. This allows
a diagrammatic description of the overall structure of the recursive predicate,
switching to textual description for the fine detail.

The mechanism of diagram construction in this editor is similar to that of
the process editor (see Section 5.2) but the translation between diagrammatic
symbols and formal notation is different. As before, each window defines a
predicate. Within the window there must be a box drawn with a thick line
which represents the head of the predicate. We shall call this the head box. The
predicate is assumed to have an output argument and each box drawn within the
head box allows the derivation of that output argument from its corresponding
argument (via an update in the notation used in Section 5.1). Additional boxes
drawn outside the head box describe predicates which are part of the conditions
needed to derive the output of the head box but which do not directly derive
the output. Instead, variables in these boxes (represented as circles) are linked
to other boxes, denoting that the variables are arguments to the corresponding
predicates. Figure 5.9 shows a diagram describing an ancestor example. The
basic recursive structure of the definition is emphasised by focusing on the thick
lined box which shows that the output of ancestor can either be from parent
(the base case) or from ancestor itself (the recursive case). The other boxes give
the additional conditions: that the ancestor may be the parent of the person
appearing as the argument to ancestor or the ancestor of the parent of the
person appearing as the argument to ancestor.

If we now use the techniques editor of Section 5.1 to instantiate all the tests
(71 ...75) to be unifications between the pairs of variables (e.g. T1({X2,X1})
becomes X5 = X7) then our logic program is:

ancestor(X1,Xe) <  person(Xi)A (5.19)
parent(X1, X4)A
ancestor(X4, Xe)

ancestor(X1,X4) <  person(Xi)A (5.20)
parent(X1,X4)

This completes our introduction to the diagrammatic recursion editor, and
to all the LSS tools of relevance to this thesis. The next chapter demonstrates
how they can be used together.
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IE O=——— ancestor
|:| ancestor
O parent ancestor
EL\] E &
person

ancestor(X1,Xe) <+  person(Xa2)A (5.17)
Ti({ X2, X1})A
parent(X1, X3)A
T2({X3, Xa})A
ancestor(Xa, Xs5)A
T3({X5, X6}))
ancestor(X1,X4) <+  person(Xa2)A (5.18)
Ta({ X2, X1})A
parent(X1, X3)A
75({X3, Xa}))

Figure 5.9: Diagrammatic recursion tool example
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Worked Example

To illustrate how the LSS toolkit works we give a scenario in which a sim-
ple diagnostic system is built. The example is similar to the one used in
[Robertson, 1996a]. As a starting point for the scenario we give the following
informal problem description:

A basic model of patient processing is when we have a group of
patients, each of whom is either diagnosed and given an appropriate
prescription or is referred for tests. Diagnosis is performed on each
patient, based on his or her symptoms, by revising a set of hypotheses
until these cover a sufficient subset of symptoms observed in the
patient. Those patients which cannot be diagnosed are referred for
tests. The interface to our basic processing system allows selections
to be made from a menu of patient names and lists in a window the
prescriptions and referrals.

We start by describing the overall processing using the process editor of Sec-
tion 5.2. The screen snapshot of Figure 6.1 shows the stage where the basic
process stages have been charted. The process begins by choosing a patient and
ends by recursing. In between, we either go through diagnosis followed by treat-
ment or referring the patient for tests. This translates to DCG expressions 6.1
and 6.2. Next we must add to the process definition the arguments needed to
control it. To choose a patient we must know the set of patients being processed
and we will identify the patient we wish to treat next, plus the remainder of
patients left to be processed. Diagnosis for the selected patient will produce
some diagnostic result, from which the subprocess of treatment produces a pre-
scription.

By adding these arguments we construct the diagram shown in Figure 6.2,
which translates to DCG expressions 6.3, 6.4 and 6.5.

Next, we consider how to describe the diagnostic procedure. We build this
using the diagrammatic recursion tool introduced in Section 5.3. This tool pro-
duces normal Prolog clauses, not DCG clauses, so we must construct (by hand)
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process_patients

choose_patient

refer_for_tests

process_patients

process_patients = choose_patient,
diagnose,
treatment,
process_patients

process_patients = choose_patient,
refer_for_tests,
process_patients

(6.1)

(6.2)

Figure 6.1: Early process diagram for our scenario
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process_patients =————————

Patients I Patient
= -

refer_for_tests

process_patients

O
*u
*o
N\
B
Q
H
[

process_patients(Patients) = choose_patient(Patients, Patient, Rest) A
diagnose(Patient, Diagnosis) A
treatment(Diagnosis, Prescription) A
[recommendation(Patient, Prescription)] A
process_patients(Rest)

process_patients(Patients) = choose_patient(Patients, Patient, Rest) A
refer_for_tests(Patient) A
[referred(Patient)] A
process_patients(Rest)

process_patients([]) = []

(6.3)

(6.4)

(6.5)

Figure 6.2: Final process diagram for our scenario
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a clause which links the DCG for diagnose to the Prolog goal for diagnosis.
This is:

diagnose(Patient, Diagnosis) = {diagnosis(Patient, Symptoms, Hypotheses, Diagnosis)} A
[diagnosed(Patient, Diagnosis))
(6.6)

where the additional two arguments in diagnosis are the hypothesis and
symptoms sets which are adapted when performing the diagnosis.

We now describe diagnosis using the diagrammatic recursion tool. We be-
gin with a basic recursive diagram with the head box containing one base case
(covered) and one recursive case. This is shown in Figure 6.3.

I}
L

diagnosis

diagnosis
covered diagnosis

S0 0O

diagnosis(X1) <« covered(X2)A (6.7)
Ti({X2, X1}))
diagnosis(X1) <+  diagnosis(Xa2)A (6.8)

T2({X2,X1}))

Figure 6.3: Diagrammatic recursion tool scenario - first step

We then introduce the first input argument to diagnosis, which is the patient
to be diagnosed. This is an argument to both the head and recursive call of
diagnosis, as shown in Figure 6.4.

Finally, we add the remaining arguments shown in Figure 6.5. The symptoms
and hypotheses predicates generate sets of symptoms and hypotheses or tests
these depending on whether the appropriate variables are instantiated, and the
revise predicate revises the set of hypotheses for the given patient.

If we now use the techniques editor of Section 5.1 to instantiate all the tests
except T4 to be unifications between the pairs of variables (e.g. T1({X2,X1})
becomes X, = X;). Test T4 needs a more complex test because it must protect
against the set of diagnoses being empty. It therefore becomes X; = Xg A
not(Xs = []) our logic program is:

diagnosis(X1,Xe, X3,Xg) <« hypotheses(X3)A (6.13)
patient(X1)A
symptoms(Xe)A
covered(Xs, Xe, Xg)A\
not(Xg =[])
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FIe==————— diagnusis ="——————

diagnosis
covered diagnosis

e

Y

e,

diagnosis(X1,Xa) <« patient(X2)A (6.9)
Ti({X2, X1 })A
covered(X3)A
T2({X3, Xa})

diagnosis(X1,X4) <«  patient(X2)A (6.10)

Ta({X2, X1 })A
diagnosis(X1, X3)A
Ta({ X3, Xa})

Figure 6.4: Diagrammatic recursion tool scenario - second step

diagnosis(X1,Xe, X3,X10) < hypotheses(X3)A (6.14)
patient(X1)A
symptoms(Xe)A
revise(X1, Xe, X3, Xg)A
diagnosis(X1,Xe, Xg, X10)

Renaming the variables and re-ordering the first three subgoals, purely for
readability, gives us:

diagnosis(P,S,H,D) <«  patient(P) A symptoms(S) A hypotheses(H) A (6.15)
covered(H, S, D)A
not(Xs = [])

diagnosis(P,S,H,D) <«  patient(P) A symptoms(S) A hypotheses(H) A (6.16)
revise(P, S, H,Hr) N\
diagnosis(P, S, Hr, D)

Which can be transformed for efficiency by the transformation tool mentioned
in Chapter 3 (but not described in detail in this thesis) into:

diagnosis(P,S,H,D) <«  patient(P) A symptoms(S) A hypotheses(H) A (6.17)
( covered(H, S, D)A v
not(Xs = [])
revise(P, S, H, Hr) A
( diagnosis(P, S, Hr, D) )
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diagnosis

[diagnosis
covered diagnosis

patient C,\f

diagnosis(X1, X6, X3,Xg) < hypotheses(Xa)A (6.11)
Ti({ X2, X3})A
patient(X4)A
T2({X4, X1 })A
symptoms(Xs)A
Ts({ X5, Xe A
covered(Xs, Xe, X7)A\
Ta({X7,Xs})

diagnosis(X1, Xe, X3,X10) <  hypotheses(X2)A (6.12)
T5({Xz2, Xs})A
patient(X4)A
Te({X4, X1})A
symptoms(Xs)A
Tr({X5, Xe})A
revise(X4, X¢, X3, X7)A
Ta({X7, Xa})A
diagnosis(X1, Xe, Xz, Xg)A
To({X9, X10})

Figure 6.5: Diagrammatic recursion tool scenario - final step
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Finally, we use the techniques editor of Section 5.1 to define the way in which
covering sets of hypotheses may be generated. We begin by choosing skeleton 18
from Appendix B.3, which traverses a list, choosing one or other of the two
recursive clauses for each element depending on a test on that element in each
clause. This is shown in Figure 6.6.

covered
accumulator it
accumulator_pair
carry_through
)
covered([]} it
covered( [H| T3 if
<1 > PERFORM & TEST ON [H]
covered(T)
covered([H| TI) if
<2 PERFORM & TEST OM [H]
covered(T)
=
covered([]) (6.18)
covered([H|T]) <«  Ti(H) A (6.19)
covered(T)
covered([H|T|) <«  T2(H)A (6.20)
covered(T)

Figure 6.6: Techniques editor tool scenario - first step

We then apply the carry_through extension from the menu at top left in
Figure 6.6. This threads an argument through the predicate to carry the symp-
tom information. We also instantiate 71 (H) to plausible_conclusion(S, H) and
instantiate T2(H) to not(plausible_conclusion(S, H)). The resulting definition
is shown in Figure 6.7.

Next we apply an accumulator extension from the menu top left in Figure 6.7.
This adds an argument which passes the final diagnosis back up the recursion,
having instantiated it in the base case.

Finally we instantiate the updates which we introduced with the accumulator
extension. In the base case, where the list of hypotheses is empty, we want the
set of diagnoses also to be empty so 7(D) becomes D = [|. In the recursive
cases we want only hypotheses which are plausible conclusions to be added so
U>(P, D) becomes D = [H|P] and U3 (P, D) becomes D = P. This gives us the
final specification shown in Figure 6.9.
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covered

accumulator_pair
carry_through

covered{[], 5}

covered{[H| T], S} if
plausible_concluzion(3, H}
covered(T, 5)

covered{[H| T], 5} if
not plausible_conclusion( s, H)
cavered{T, 5)

covered([], S)

(6.21)

covered([H|T]|,S) <  plausible_conclusion(S,H) A (6.22)
covered(T, S)

covered([H|T],S) <«  not(plausible_conclusion(S, H)) A (6.23)
covered(T, S)

Figure 6.7: Techniques editor tool scenario - second step
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covered

accumulator_pair
carry_through

covered{[], S, D) if
<1 » INSTANTIATE [
covered{[H| T1,5, D} if
plausible_concl usion{S, H)
covered(T,5, P}
< 2> OBTAIN D FROM [P]
covered{[H| T1,5, D} if
not plausible_conclusionds, H}
covered(T, 5, P}
<3 > OBTAIN D FROM [P]

covered([],S,D) <« T(D) (6.24)

covered([H|T],S,D) <«  plausible_conclusion(S, H) A (6.25)
covered(T, S, P) A
Uz (P7 D)

covered([H|T],S,D) <«  not(plausible_conclusion(S, H)) A (6.26)
covered(T, S, D) A
Us (P7 D)

Figure 6.8: Techniques editor tool scenario - third step
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covered

accumulator_pair
carry_through

covered([], 5, [1)

covered([H| T1, 5, [H| P13 if
plausible_conclusiont s, H}
covered(T, 5, P}

covered([H| T], 5, D} if
not plausible_conclusion(S, H)
covered{T, 5, D}

covered([], S, [])

(6.27)

covered([H|T],S,[H|P]) <«  plausible_conclusion(S,H) A (6.28)
covered(T, S, P)

covered([H|T],S,D) <+  not(plausible_conclusion(S, H)) A (6.29)
covered(T, S, D)

Figure 6.9: Techniques editor tool scenario - final step
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Having come through this and the previous two chapters the reader should
now understand the formal basis for the LSS system; have a feeling for the inter-
face to each tool; and appreciate how the tools can work together on a design.
In the next chapter we consider how effective this form of design can be.






Chapter 7

Evaluation

Effective use of heterogeneous toolsets like LSS requires that individual tools
are accessible to target groups of designers and that large specifications can be
assembled using combinations of tools. Section 7.1 explores the first require-
ment, using evidence from evaluations of techniques editors which were designed
specifically for particular groups of designers. Section 7.2 addresses the second
requirement through a case study in which LSS was used to re-implement one of
its own tools - a moderately large task by logic programming standards. Finally,
Section 7.3 highlights problems emerging from our use of LSS which motivated
the construction of the HANSEL system.

7.1 Independent Evaluations of Techniques Ed-
itors

Techniques editing is an approach to design which can be described indepen-
dently of the interface style used by designers when editing. Many different
styles of interfaces are possible and these vary depending on the domain in
which the editor is to be used. Usability tests depend crucially on getting this
match right. This section describes two such tests, conducted on two different
techniques editors which the author helped to construct. The first was used by
novice programmers and the second was used by experts in ecological modelling.

7.1.1 Evaluation of a Techniques Editor for Novice Pro-
grammers

The most extensive evaluation of a techniques editor of which we have knowledge
which was undertaken by psychologists at the University of Loughborough, using
a techniques editor (named TEd) implemented by a group including the author!.

IThe principal engineer of this editor was A.Bowles and the rest of the team consisted of
P.Brna and H.Pain.
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The techniques used by this editor were simpler than the ones provided by the
Lss editor because the target designers were novice programmers. The interface
was also different, in general giving fewer options at each stage in editing and
making smaller changes to the design at each step. Nevertheless, the basic
approach to design is similar between TEd and the LSS techniques editor so
the lessons learned from the Loughborough evaluation are instructive for LSS.
A detailed report of methods and results appears in [Ormerod and Ball, 1996].
We summarise this below.

The method used in evaluation was to compare three groups of different
students (each group containing ten or more). These students were all Prolog
novices and were taking an introductory course in the design of basic recur-
sive Prolog programs as part of their undergraduate degree. To protect against
anomalies caused by differences in basic aptitude for Prolog all the students were
pre-tested in designing elementary, non-recursive Prolog programs. The groups
were then supported in their course in different ways. The first (“traditional”)
group were given a normal introductory course, using a standard text editor and
a commercial Prolog environment. The second (“manual techniques”) group
were taught about techniques explicitly, in a style which encouraged them to
approach the problem as if they were to use a techniques tool, but they used
the standard editor and commercial environment. The third (“automated tech-
niques”) group were taught techniques explicitly and used TEd exclusively to
design their programs. Each of the three groups was tested on six problems
and three forms of quantitative results were obtained for each student on each
problem: the number of technique selection errors for each group; the frequency
of errors of different types; and time taken to find a solution.

In general, the “manual techniques” group performed little better than the
“traditional” group on any of the measures, and tended to make slightly more
errors. The “automated techniques” group, however, made approximately half
as many errors as the other groups and produced solutions more quickly for most
of the problems (although this difference is statistically significant at P < 0.05
for only two of the problems). Although this at first sight appears encouraging
for techniques editing there is a caveat with important consequences for L.SS. The
advantages of tool support were greatest for “routine” problems where careful
thought was not needed to devise the design of the solution to the problem.
For more complex tasks it appeared that the benefit from tool support became
a smaller proportion of the total time taken to solve the problem, so the tool
became less valuable. There was also anecdotal evidence that students using
TEd became dependent on the tool, making it difficult for them to shift later
to a traditional Prolog design environment. In short, the evidence of this study
is that a techniques editor can improve novice programming performance but
it is unclear whether these benefits remain significant as novices become more
experienced and tackle more challenging problems. This raises the issue of what
it is like to use this sort of technology to tackle larger problems. We turn to this
issue in Section 7.2.
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7.1.2 Evaluation of a Techniques Editor for Expert Eco-
logical Modellers

The TeMS system described in [Castro, 1999] applies techniques editing methods
to a highly domain-specific problem: assisting ecological experts to construct
animal population dynamics models. This sort of task is different from generic
techniques editors like those used in LSS and in the evaluation of Section 7.1.1
because the skeletons and extensions used as building blocks for the specification
are larger and are domain specific (for example, logistic growth of a population
is a basic component in TeMS). The reason for this is to bring the editing
operations of the editor closer to concepts which ecological experts (with no
training in logic) are likely to understand. The evaluation of TeMS is relevant to
LSS because it gives an indication of the likely benefits which might accrue from
including more specific varieties of tools such as the techniques in the toolset.
TeMS was evaluated primarily by presenting fifteen experimental participants
with a standard modelling problem; observing them as they used TeMS to try to
solve it; and obtaining feedback through interviewing and a questionnaire. All
the participants had substantial ecological modelling experience and most were
trained in ecology to postgraduate level. Only three had experience of Prolog
and none had experience of techniques editing or TeMS.

The modelling problem given to the experimental participants was a textual
description of a scenario which, essentially, involved an animal population di-
vided into age classes which is invaded by a predator population - the task being
to predict the change in the age structure of the prey over a given time span.
This would have been beyond the ability of the participants to program quickly
by conventional means but they all produced models to their satisfaction within
the time allotted by the experiment (20 minutes) so TeMS certainly made it
faster for them to produce appropriate code. Furthermore, the subjects claimed
that the modelling approach was clear and that the models produced were, on
the whole, well structured. This enthusiasm seems impressive but it must be
remembered that TeMS builds a narrow class of programs and therefore it can
engage in a highly domain-specific dialogue with designers. Thus, it gives a use-
ful marker for the degree of acceptability which we could hope to achieve with a
highly targeted system built on top of this generic design method. There were
also points on which TeMS showed signs of weakness, although none of these
appeared to be insurmountable. In particular, there was felt to be some loss of
the broader picture of the whole of the developing model when working on a
part of it under TeMS control. This resonates with problems experienced in LSS
(see Section 7.3.2).

7.2 Tackling a Large Example using LSS
The evaluations of the previous section raise confidence that tools of the sort

used in LSS can produce modest but measurable increases in the quality of spec-
ifications for target groups of designers, and that highly specialised tools can
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make this sort of technology accessible to experts in domains far removed from
logic programming. There remains, however, the issue of whether a collection
of these tools (each of which normally builds a limited part of a specification)
can work together in an effective way to build large programs. This issue was
explored by attempting to use LSS to build one of its own tools: the techniques
editor. Details of this evaluation appear in [Robertson, 1998a] and we summarise
the main points in this section.

The aim of the evaluation was to take a substantial piece of existing Prolog
code, which had been written using a normal text-based editor, and reconstruct
it using Lss. This does not allow any conclusions about how well LSS assists in
problem formulation or in its appropriateness for target groups of designers. It
does help to identify problems in managing the interaction between LSS tools,
contributing to the critical analysis of Section 7.3.

The Lss techniques editor code was chosen for this case study because it is
moderately large and complex by logic programming standards. It consists of
85 predicate definitions, each of which varies in length from 2 to 68 lines of code
(a total of approximately 850 lines). A wide variety of definitional styles appear
(including “impure” styles such as failure-driven iteration) and the number of
arguments for predicates varies from 0 to 8, so each predicate differs significantly
from others in its structure. Roughly a quarter of the lines of code control the
techniques editor interface. Although the LSS interface specification tool is not
described at length in this document it was used in the reconstruction and all
the interface code was included in the case study. Neither the techniques editor
code nor the LSS tools were adapted during the evaluation and the temptation
to force Lss tools into tasks to which they are unsuited was avoided.

Of the 85 predicates used in the techniques editor, 49 could be reconstructed
using the LSS tools. This is an encouraging result because the code for the
techniques editor was written without any thought of reconstructing it in this
way. Of the 36 predicates which were not reconstructed by Lss, 10 of these
could have been reconstructed but were ignored because they were too simple to
warrant the use of a special-purpose tool - they were predicates of two or three
lines which are easier to define by hand. The remaining 26 predicates resisted
re-construction because they did not fit the paradigm of design of any of the LSS
tools - either by not having an obvious skeleton for use in the techniques editor;
or by not having the DCG-based structure required by the process tool; or by not
having the recursive structure demanded by the diagrammatic recursion editor.

The general results described above appear encouraging but the case study
revealed a number of problems with Lss. These are:

e There are recurring patterns of design which could have been represented
within the LSS toolset but weren’t. An example is in defining the interface
code, which was done by using the interface tool to produce the code for
generating the appropriate display objects and the techniques editor for
filling the “gaps” left by the interface tool. These gaps are primarily the
callbacks which occur upon selecting an active window component (such
as a button or a menu item) and in many cases they have a standard
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structure. These standard structures, however, are not available in any of
the current LSS tools.

e A tool is present in the LSS system for performing correctness-preserving
transformations to predicates, but it is merely an early prototype and
provides only a small set of transformations. The current transformation
tool was useful in some cases (particularly in packing together two or more
clauses with a common sequence of subgoals into a single clause with the
single common sequence and the other non-shared goals as disjuncts) but
could have done more had it been better equipped.

e The libraries of skeletons and extensions in the techniques editor are small,
simple and generic. A surprising number of the predicates in the case study
could be reconstructed from these libraries but it was more time consuming
to build them from small, generic components than it would have been
from larger, more specialised ones. Adding more varieties of skeleton and
technique is straightforward in theory but has practical limitations because
the more we add the larger becomes the library and the longer it takes to
browse through it. The current library contains less than 30 skeletons
and, at a rough guess, the upper limit for browsing might be 100 so some
extension is possible but not a great deal, unless a more sophisticated
browsing system were invented.

e The process tool and the diagrammatic recursion editor were not used at
all in the recursion. The main reason for this is that they are intended
to assist in early conceptualisation of specifications and are not the most
direct way to reconstruct a specification which is already known precisely.
Although these tools could have been used for some of the predicates it
was necessary in this experiment to adhere to the requirement that the
most appropriate tool be used for the task in hand.

In addition to the problems above, there are a number of general problems
with the distributed style of specification used in LSS which emerged from this
and other smaller experiments with the toolset. These are the subject of the
next section.

7.3 Problems with LSS

7.3.1 Choice of Style

One of the advantages of a diverse set of design tools is that it allows a choice
of styles in which to describe a problem. This is normally achieved at the cost
of restricting the range of specifications which each tool can describe. The most
extreme example of this is the Process tool (Section 5.2) which synthesises only
Definite Clause Grammars, so must always generate predicates with the addi-
tional pair of arguments obtained by translation from DCG clauses to standard
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Prolog. For example, the translation of DCG clauses 5.9 and 5.10 from Figure 5.5
is:

process(S;, Sy) <«  subprocessl(S;,Sy)

—_ o~
~
.

process(S;, Sy) <  subprocess2(Si,S2) 7.2)

A problem with tools which are restrictive in this way is that designers may
not always be able to predict whether they are too restrictive for the problem in
hand. Suppose that we want to make the choice of whether to use clause 7.1 or
clause 7.2 be determined by some test on the input sequence (S;). The extended
predicate might look like this:

process(S;, Sy) < test(S;) A subprocessl(S;,Sy)
process(S;, Sy) < not(test(S;)) A subprocess2(S1, Sa)

,\
R
oW

The problem is that clauses 7.3 and 7.4 cannot be defined by the Process
tool because it gives no access to the variables in the last two arguments of the
predicate. These are generated automatically via the standard DCG to Prolog
translation mechanism. The only way in the Process tool to obtain the control
added in clauses 7.3 and 7.4 is to duplicate the input sequence as an additional
argument to the DCG, which is then:

process(S;) = {test(S.)}, subprocessl (7.5)
process(S;,Sf) = {not(test(S}))}, subprocess2 (7.6)

This translates to the Prolog clauses:

process(S;, S;,Sy) <« test(S;) A subprocess1(S;,Sy) (7.7)
process(S;, S;,Sf) <« mot(test(S;)) A subprocess2(Si,S2) (7.8)

Although this is a solution it is an inelegant one, since it requires us to
maintain two versions of the input sequence and keep these in synchrony during
the execution of the program. The Process tool really should not be used for
this sort of specification but the representational requirement which made it
inappropriate might not have been identified early in the design.

7.3.2 Maintaining an Overview

The use of Prolog as a lingua franca between tools means that there are no
syntactic translation problems between parts of the specification which have
been designed in different styles. Unfortunately, this does not absolve us from
the need to understand the semantics of each predicate which must interact with
the one we are defining. The distributed tools give no assistance with this. For
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example, there is nothing to prevent a designer from implementing subprocessl,
called as a goal from clause 7.1 in either of the following ways:

subprocess1(S;,Sy) < SfisS;+1 (7.9)
subprocessl1(S;,Sy) < Sy =[a]S;] (7.10)
subprocess1(S;,Sy) < process(S;, Sf) (7.11)

Definition 7.9 is wrong because it introduces a type error, so this might be
prevented by using a typed language instead of Prolog. Definition 7.10 is likely
to be wrong because it makes Sy larger, rather than smaller as we would expect
from the way it is called as a subgoal of clause 7.1. Definition 7.11 may not be
wrong but it raises potential problems of non-termination because it introduces
a mutual recursion with clause 7.1. The reason we can see these difficulties is
that we know pertinent information about the design of all of the predicates.
The problem is that, in the worst case, we may have to study all of the predicates
in order to be sure that we have the relevant information. If so, then we lose the
modularity of design which is one of the advantages of the distributed design
method.

7.3.3 Saying Less

Communication between LSS tools is through Prolog clauses which may contain
update and test goals used in techniques editing. This is the language of output
for all the tools and, as such, it is close to conventional Prolog. The problem
with this language of communication is that it allows only crude descriptions
of partially developed designs. For example, if a designer wishes to transport a
definition of a simple list traversal program between tools then this can be done
either using the full specification, which might be:

p([) (7.12)
p([H|T]) <« test(H) A p(T) (7.13)

or it can be done using a specification which does not commit to the choice
of test on H:

o([) (7.14)
p([HIT]) « T(H) A p(T) (7.15)

or it can be expressed more generally by leaving open the relationship be-
tween the arguments in the head and recursive subgoal.

p(S) « T(9) (7.16
p(S1) +  U(S1,S2) A p(S2) (7.17)
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We know there are other ways of describing this specification which cannot
be expressed in the LSS communication language. For example, we could say
that the recursive subgoal always takes a set? which is no larger than the set in
the head of the clause. Formally, this might be:

p(S) <«  T(9) (7.18)
p(51) «  S12S2A p(S2) (7.19)

This is less restrictive than the partial program defined by clauses 7.14
and 7.15 because the inequality between sets need not be achieved only by re-
moving the first element from the set. It is more restrictive than the partial
program defined by clauses 7.16 and 7.17 because it tells us more about the
sort of relation we must have during the recursion. These sorts of shades of
meaning in communication are not achievable in the LSS toolset, regardless of
the sophistication of individual tools.

7.3.4 Transformations Over Many Predicates

The LSS tools focus on individual predicates as the units of design. This is a
common assumption in logic programming - the idea being that we make sure
we define each predicate correctly and, since there are no global variables to
create hidden interactions between predicates, the correct definitions can simply
be combined. Module systems make this sort of combination even safer by
clarifying the points of interaction between groups of predicates and preventing
unanticipated use of predicates internal to a module. The self-contained nature
of each predicate is one of the strengths of logic programming but there is a
problem in assuming that each LSS tool can manipulate individual predicates
independently from those in other tools, as the following example demonstrates.

Suppose that LsS is being used to build a simple program which currently
consists of the definition of predicate p which was given in clauses 7.12 and 7.13
and the predicate g below, which calls p.

9(X) « p(X) (7.20)

The definition of p is not completed and, using a techniques editor, we add
a second argument to it, changing it to:

p(LF) « TIF) (721)
p([H|T),F1) <« test(H) N p(T,Fa2) N U(F>,F1) (7.22)

The problem is that clause 7.20 is now out of step with the extended version
of p. Ideally, we would like to revise this clause automatically by adding the
extra argument to its subgoal and perhaps even adding a test to remind the
designer that attention should be paid to it. The resulting clause might be:

2The argument in this example is a list, not a set, but the distinction isn’t important here.
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¢(X) « p(X,Y) A T(Y) (7.23)

This sort of change is difficult to perform automatically in a distributed
toolset like LSS because the choice of revision is not unique. In our example
there is a second possible revision to ¢ which is:

(X)) «p(Y,X) A TY) (7.24)

This alternative is possible because there is no way of knowing whether the
p(X) in clause 7.20 was intended to refer to the first argument of p (which
appeared originally in clauses 7.12 and 7.13) or to the second argument of p
(which was added in clauses 7.21 and 7.22).

7.3.5 Maintaining Properties During Use and Revision

Interaction between the design of predicates is not only through changes in arity
but also through expectations of the properties of those predicates. For example,
the following is a predicate, u(S), which recurses over set S via the relation, r,
and terminates when S is empty:

u([]) (7.25)
u(S1) <«  7(S1,S2) A u(S2) (7.26)

Termination of this predicate depends on r, with the most obvious termi-
nation property being that r(S;,S2) should ensure that S is no larger than
S1. The problem is that LSS does not communicate information about desir-
able properties between tools, so there is nothing to stop r being defined as (for
example):

r(S1, [a[S1]) (7.27)

We can spot this as a bad design decision only because we have been told a
property which r must possess in order to satisfy the needs of u. The LSS tools
provide no mechanism for describing or deriving such properties. Nor does LSS
have the ability to communicate property information between tools.

This completes our evaluation of LSS and, with it, the part of this thesis which
concerns distributed forms of design. We have shown that, in the right hands,
this form of design can be used for significantly sized tasks. There are, however,
problems associated with the architecture which leave it weak in some important
areas. In the next part of this thesis we concentrate on these problems, which
are related primarily to the need for a stronger notion of lifecycle uniting the
design tools.
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Chapter 8

Overview of the HANSEL
Lifecycle Model

HANSEL is intended to be applied to problems which can be idealised as oper-
ations over sets of axioms, some of these sets being inputs to the specification
and the others being outputs. Early refinement in HANSEL is purely in terms of
these sets, abstracting away from their contents. Later refinement puts in place
the mechanisms needed to access and change elements of these sets. This, and
its link to subsequent testing, produces a form of lifecycle which is unlike those
of conventional software engineering but which is analogous to some aspects of
those conventional lifecycles.

Figure 2.1 of Section 2.2 shows a diagram of the “V” lifecycle model from
software engineering. The key idea in this form of lifecycle is that commitments
made in the design stages (on the descending arm of the “V”) are carried across
to be used in validation and verification studies (on the ascending arm of the
“V”). The aim of HANSEL is to demonstrate parallels to this sort of design style
using logic for design stages and automating the transfer of a limited range of
commitments, which in the case of HANSEL are properties of the specifications at
each stage. The objective is not to describe an entire lifecycle model to compete
with those in industrial software process control. This would be a huge and (ar-
guably) fruitless undertaking because it would require formal representation of
parts of the process, such as requirements analysis, which are highly resistant to
formal treatment. Our objective is much more modest: to show that while stay-
ing close to comparatively simple notions of formal specification and refinement
we can develop routes of transfer of some commitments from design to testing,
and that use of formality allows the transfer to be automated.

Having made clear that the analogy must be drawn with caution, Figure 8.1
shows the diagram of Figure 2.1 re-interpreted for HANSEL. The descending arm
of the “V” shows the stages of refinement of a HANSEL specification: an initial
template is chosen from a library; then it is refined using a set based notation;
this is used to cue the introduction of skeletal definitions for the predicates in
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the specification; and once these have been fully fleshed put we have an exe-
cutable! specification in Prolog. Refinement through these stages is done using
an interactive design tool which (automatically and behind the scenes) records
properties of the specification which are implied by the chosen refinement steps
and which can be used to test the executable specification (the ascending arm
of the “V”). The dotted arrows on the diagram represent this transfer of testing
information. Notice that there is no dotted line from the very highest level of de-
sign to testing the validity of a template. This is because the properties carried
across in the current HANSEL inplementation are related closely to the structure
of the executable specification and there is a big gap between the information
obtained from testing these properties and higher level considerations of validity
of the overall design.

Initial template Validity of template

Set-based specification @ - -~ --------- Testing properties of inequalities

Skeletal definitions @ - - - - Testing properties of skeletons

[ J
Executable specification

Figure 8.1: The HANSEL lifecycle model

On descending through the levels of specification in HANSEL a designer moves
from generic to domain-specific forms of description. The highest levels of ini-
tial templates and set-based specification are task-independent and domain-
independent. The skeletal definitions of the next level are task-specific but
domain-independent. The final details supplied to form an executable specifica-
tion are domain-specific. This means that although the highest levels of HANSEL
and its framework for design are general the lower levels are not. Having said
this, the sorts of tasks described in the current library of skeletal definitions are
flexible enough to cover a wide variety of problems. The strategy in HANSEL
has been to make refinement steps as general as possible without making them
so general that they offer little pragmatic support for designers. This is a ques-
tion of balance — we could have more support by reducing the generality of the
refinements. If HANSEL were to be made into a practical tool we believe this
sacrifice of generality would be necessary but the aim of this thesis is to provide
an adaptable tool for experiment, not to build a development system.

HANSEL is a comparatively small system but it possesses a number of novel
features which we shall describe in detail in later chapters. These are:

Representation of specifications using constraints on theories. The spec-
ifications constructed by HANSEL are unusual because they consist of pred-
icates which relate sets of axioms. Each axiom set is itself a restricted set

THANSEL does not guarantee that the specification is executable. In particular, the order-
ing of goals in the body of a clause may not be the right one for a standard Prolog interpreter.
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of Horn clauses (see Appendix A for the restrictions). This means that we
have to think of specifications as manipulations on sets of clauses rather
than taking the more conventional view of logic programs as relations be-
tween objects in some universe of discourse. In return for this shift in view
we are able to treat the axioms of theories themselves as objects which may
be manipulated. This is important when, within the deductive framework
of logic programming, we need to specify problem solving methods which
are not purely deductive. Such situations are frequent - for example when
we hypothesise causes for events or when we partition an inconsistent set
of axioms into separate consistent subsets.

Merging techniques-based design with set-based refinement. When au-
tomating the design of specifications there is always a tension between the
desire to provide a general, abstract system capable of dealing with a broad
range of problems and the need to give guidance in appropriate forms of
design for specific tasks. The set-based refinements used in HANSEL early
design are an example of the former, while the skeletons and extensions
used in HANSEL later design are an example of the latter. We have found a
direct and simple way of integrating these, by having refinements to set in-
equalities introduce “hooks” for the introduction of binary relations, then
using skeletons to define these relations and then extending from binary
to n-ary relations through the addition of argument slices.

Association of properties with refinements in a lightweight style. The
dominant methods of formal design within the logic programming commu-
nity are based on constructive and deductive synthesis (as described in
Section 2.1). The most attractive way of performing this sort of design is
to begin by specifying the properties which a logic program should possess
and then use these to construct a program which satisfies exactly these
properties. The fundamental problem with this approach is that describ-
ing appropriate properties for non-trivial problems, and knowing that we
have described all properties which are relevant to our problem, is difficult,
time-consuming and boring (see quote in Section 2.1). A more lightweight?
approach, with greater similarity to conventional software engineering, is
to associate properties with structural features of the design (so we engage
from the beginning in structural synthesis as described in Section 2.1) and
use these either to guide structural choices (not covered in this thesis but
see Section 14.2) or to assist in retrospective testing (addressed in this
thesis in a limited way). In doing this we sacrifice the guarantee that the
logic programs we produce are correct with respect to those properties.
The gain is that we can be selective in the properties we associate with
structural changes, making it possible to confine our attention to those
which we think are useful rather than those which we were obliged to
include because we were locked into a method which required guarantees.

2A discussion of the benefits of lightweight uses of formality in design appears in
[Robertson, 1995]



66 Chapter 8. Overview of the HANSEL Lifecycle Model

A direct route from design to a limited automated testing. The HANSEL
system allows properties to be associated with structural features of a logic
program in a way which need not intrude on structural synthesis. The de-
sign tool itself does not make use of this information (although it could,
as outlined in Section 14.2). We do, however, demonstrate a direct means
of making use of property information to generate test conditions for the
logic programs produced by HANSEL. This goes nowhere near far enough
to provide a convincing testing regime for these sorts of programs but it
is an additional weapon in the armoury of designers and the method for
generating test conditions is automatic, via a simple meta-interpreter, thus
placing little overhead on designers.

In Chapter 9 we explain the formal concepts upon which HANSEL is based.
We then summarise, in Chapter 10, how these formal methods are combined
in the HANSEL tool. This paves the way for Chapter 11 which gives a short
worked example of HANSEL being applied to part of the problem on which we
demonstrated Lssin Chapter 6. Finally, we show some examples in Chapter 12
of HANSEL at work on more realistic problems.



Chapter 9

Formal Concepts

This chapter describes the formal system on which HANSEL is based. Section 9.1
defines what is meant by “axiom” set and “theory”, which are the building blocks
of early specifications. Section 9.2 introduces the use of Horn clauses contain-
ing set expressions as an early specification language. Section 9.4 describes the
system of rewrite rules which is used in early refinement of these specifications.
Section 9.5 explains how a form of “skeleton” notation (related to that of Sec-
tion 4.1) is used to connect more detailed definitions into early specifications.
Finally, Section 9.3 explains how properties (used in the ascending arm of the
lifecycle model of Chapter 8) are associated with clauses and with predicates.

9.1 Axiom Sets and Theories

An axiom set is a set of Horn clauses without negation. For example
{P(X,Y) « ¢(X) AN 7(Y),q(a) < true,r(b) < true} is a valid axiom set but
{p(X) « ¢(X)} and {p(X) « —q(X)} are both invalid as axiom sets. The
HANSEL predicates which manipulate axioms sets do not commit to a particular
data structure for representing them but, where this needs to be done for ex-
planation or for execution of the specifications we shall enclose such sets within
curly brackets as in the examples above.

We write 7(S) to denote the theory for an axiom set, S. This contains all
the Horn clauses which can be deduced from S. For example,
T({p(X,Y) + ¢(X) A r(Y),q(a) < true,r(b) + true}) is the set: {p(X,Y) «
a(X) Ar(Y),p(X,b) « ¢(X),p(a,Y) < 7(Y),p(a,b) < true,q(a) « true,r(b) «
true}. These theory definitions are used exclusively in early specification, where
they are related by inequalities over the sets they represent. The theory sets
themselves are never derived, since they need not be finite, but the inequality
definitions are consistent with the sets. For example, 7({p(s(X)) < p(X),p(i)})
is the infinite set {p(i), p(s(i)), p(s(s(0))), -} and 7({p(s(X))  p(X),p(i), a})
is the infinite set {q, p(i), p(s(2)), p(s(s(7))), ...} but we can reason with inequal-
ities such as 7({p(s(X)) « p(X),p(5)}) C r({p(s(X)) « p(X),p(i), q}) without
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enumerating the elements of those theories.

9.2 Horn Clauses Using Inequalities between The-
ories

We shall be using inequalities between theories, as described above, as a basis
for refinement of early specifications. This works only for specifications which
can be expressed as definitions over axiom sets. We now introduce this concept;
explain by example the class of specification problems that it covers'; and relate
it to the refinement rules which appear in detail in Section 9.4.

The Horn clauses used in HANSEL are standard (see Appendix A for the per-
mitted syntax), except that they may contain as subgoals a number of reserved
expressions denoting relations between theories. These are used to describe the
constraints imposed by these subgoals and are part of the system of refinement
described in detail in Section 9.4. We motivate this form of design using a sim-
ple example. Suppose that we want to specify a method for hypothesising a
diagnostic theory given a set of permitted observations and a set of diagnostic
rules describing how symptoms may be inferred from causes. We shall define a
predicate diagnosis(Observations, T heory, DiagnosticT heory), where:

e Observations is an axiom set describing the permitted observations. For
our example, this might be:

{(oil . warning_light « true), (engine_dead + true)}

e Theory is an axiom set containing the diagnostic rules. For our example,
this might be:

(oil warninglight < no_oil), (engine_dead < no_spark),
(no_oil <+ broken_sump),
(no_spark + broken_wiring), (no_spark <+ bad_plugs)

e DiagnosticT heory is a diagnostic theory which allows at least one of the
symptoms in the Theory to be deduced by adding one or more of the
axioms in Observations. One instance of this for our example is:

(0il warninglight < no_oil), (engine_dead < no_spark),
(no_oil <+ broken_sump),
(no_spark <+ broken_wiring), (no_spark < bad_plugs),
(engine_dead < true), (broken_wiring <+ true)

where engine_dead <+ true is a symptom appearing in Observations (above)
and broken_wiring < true is a potential cause which, when added to the
T heory allows us to deduce that symptom.

We are discussing here the coverage possible in theory, not what we obtain in practice
with a support tool, which we discuss in Chapter 12.
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Without saying exactly how diagnostic theories are derived, we can give
a high level description of key relations between axiom sets in terms of set
inequalities. In the base case, we know that the final diagnostic theory must
include the current theory. In the recursive case, we want to reduce the size of
the observation theory as we go down through the recursion (so we “use up”
observations) and we want to increase the size of the current diagnostic theory
(by adding observations to it). Formally this is:

diagnosis(Observations, Theory, DiagnosticTheory) <

7(Theory) C 7(DiagnosticTheory) (9.1)
diagnosis(Observations, Theory, DiagnosticT heory) <
T(Observations) D T7(RemainingObservations)A (9.2)

7(Theory) C 7(NewTheory)A
diagnosis(RemainingObservations, NewTheory, DiagnosticT heory)

We now can add a little more detail by describing the kind of relation which
we will use to satisfy the inequalities above. This involves a classification of
types of binary relation that we describe in detail in Sections 9.4.2 and 9.4.3
but is sketched here. The inequality in clause 9.1 is satisfied by a relation which
generates from the theory new axioms which are hypothesised causes and adds
these to the theory to get the final theory. The first inequality in clause 9.2 is
satisfied by a relation which removes axioms from the observation set; while the
second inequality in clause 9.2 is satisfied by a relation which adds axioms to
the theory set. Formally this is:

diagnosis(Observations, Theory, DiagnosticTheory) <

Theory =5’ CausesA (9.3)
union(Theory, Causes, DiagnosticT heory)

diagnosis(Observations, Theory, DiagnosticT heory) <
Observations " “~5"° RemainingObservationsA

Theory add NewTheoryA
diagnosis(RemainingObservations, NewTheory, DiagnosticT heory)

(9.4)

Finally we can be specific about our choice of predicates for the relations
introduced above. The relation in clause 9.3 is defined as abductive infer-
ence from Theory to obtain Causes consistent with that theory. The first
relation in clause 9.4 is defined as a predicate that generates a singleton set,
ChosenQbservations, containing an element from Observations (and generat-
ing each element on backtracking). The second relation in clause 9.4 is defined
simply by making the NewT heory be the union of the C'hosenObservations
and the Theory.

diagnosis(Observations, Theory, DiagnosticTheory) <
diagnostic_hypotheses(Theory, Causes)A (9.5)
union(Theory, Causes, DiagnosticT heory)

diagnosis(Observations, Theory, DiagnosticT heory) <
select_observations(Observations, ChosenObservations, RemainingObservations) A\
union(Theory, ChosenObservations, NewTheory)A
diagnosis(RemainingObservations, NewT heory, DiagnosticT heory)
(9.6)
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This example illustrates two of the basic concepts underpinning HANSEL.
These are:

e Specifications are described as Horn Clauses which manipulate sets of ax-
ioms, appearing as arguments to the goals in these clauses.

e Inequalities between sets are used to anchor sequences of refinement, end-
ing in conventional Horn clause specifications, which no longer contain
inequalities.

A third basic concept in HANSEL is described in the next section. It is that the
properties of expressions (such as inequalities) appearing in earlier specifications
can help us to check whether we have made appropriate design choices in later,
more detailed specifications.

9.3 Use of Properties in Testing

Figure 9.1 illustrates the method used to assist in testing logic programs pro-
duced by the HANSEL system. At the start of the method we use the HANSEL tool
(which we summarise in Chapter 10) to produce a logic program and associated
properties which we expect to hold for the program. We then use an execution
system (currently a simple meta-interpreter described in Section 9.7) to answer
queries from the program and, in the process of doing this, generate a set of test
properties relevant to each query. These are instances of the properties originally
associated with the logic program. These test properties are then passed to a
testing system (currently a standard Prolog interpreter) to determine whether
or not they can be established from the logic program.

HANSEL design system

‘ Logic program ‘ ‘ Properties ‘

Execution system
Property tests

Testing system
Property violations

Figure 9.1: Overview of the HANSEL testing method
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There are two main limitations to this testing method. The first is insur-
mountable: we derive tests from executing the specification to produce instances
of existentially quantified goals so we only generate those tests which correspond
to each particular execution. In other words, we need to choose the right goals
to get revealing tests. The second limitation is flexible: although there is no
difficulty in generating tests for complex properties it can sometimes be difficult
to prove whether or not these properties hold. In the current version of HANSEL
we simply use Prolog to test for property violation (see Section 12.3 for exam-
ples). We could have used a more sophisticated theorem prover but this strays
into specialist areas outside this thesis.

HANSEL recognises two types of property: properties which apply to variables
in individual clauses, which we call “clause properties” and properties which
apply to predicates, which we call “predicate properties”. Later in this chapter,
clause properties are associated with rewrites in Section 9.4; predicate properties
are associated with skeletons in Section 9.5; and a basic mechanism for using
properties in testing is defined in Section 9.7. In Section 12.3 we explain how
this method is used on the examples of Chapter 12. The difference between
clause and predicate properties is best explained by an example.

The predicate, sort_segments(L1, L2), is given a list, L1, which may contain
elements which are integers and generates the list, L2, which is identical to L1
except that the segments of L1 which are integers are sorted in ascending order
within that segment. For example, sort_segments([4,3,5,a,b,2,1,c], L2) instan-
tiates L2 to [3,4,5,a,b, 1,2, c]. We might define it as follows; where sort(S, Ss)
is true when Ss is the sorted version of S, and append is the normal list con-
catenation predicate. The definition of sort_segments uses segment to find each
integer segment in turn (skipping over any non-integers in the recursion via the
third clause). segment(L, S, R) is true if S is an unbroken sequence of integers
from the first element of L to the first non-integer in L, with R being the rest
of the elements in L.

sort_segments([],[])
sort_segments(L1,L2) <+  segment(L1,S,R) A
sort(S, Ss) A
sort_segments(R, L3) A
append(Ss, L3, L2)
sort_segments([H|T|,[H|R]) <«  mnot(integer(H)) A (9.9)
sort_segments(T, R)

—

©
» N
z =

segment(L, S, R) < segmentl(L, S, R) A (9.10)

not(S = [])
segment1([],[],[]) (9.11)
segmentl([H|T1],[H|T2],R) <«  integer(H) A (9.12)

segmentl(T1,T2, R)
segmentl([H|T),[],[H|T]) <+  not(integer(H)) (9.13)
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Suppose that we have written only the definition of the sort_segments clauses
(i.e. clauses 9.7 to 9.9) and we intend to give the task of writing segment
to someone else. We would like to specify formally (either partially or fully,
according to our degree of rigour) what segment should do and we would like to
place constraints on the way the clauses of sort_segments are used, to protect
it against misuse. Our partial specification of segment(L, S, R) might require
that S contains only integers and that there shouldn’t be an integer as the first
element of R (if so, we haven’t got all of the segment in S).

VL, S, R.segment(L, S, R) — ( (VXs.Xs €S — integer(Xs)) A )

not(AXr,T.(R = [Xr|T] A integer(Xr))) (9.14)
By checking the definition of segment against this requirement we can pre-
vent some incorrect definitions. For instance, if it is defined simply as:

segment([H|T],[H],T)

then we can demonstrate that this does not meet the requirement of expres-
sion 9.14 by showing that the negation of the property can be proved for instances
such as segment([1,2],[1],[2]) which succeed according to the (incorrect) pred-
icate definition. A proof for this example, done by hand for the purposes of
explanation only, is given below. In Section 12.3 we describe the form of proof
we actually allow in the current version of HANSEL which, as we mentioned
earlier, relies on the standard Prolog interpreter.

(VXs.Xs €S — integer(Xs)) A ))

not (VL’S’ R.segment(L, 5, R) — ( not(AXr, T.(R = [Xr|T] A integer(Xr)))

VXs5.Xs €S —integer(Xs)) A
3L, 5, R.segment(L, S, R) A ’wt( not(EI(Xr,T.(R: T A irgtegl)r(Xr))) )
0 )
segment([1, 2], [1], [2]) not(not(3Xr, T.([2] = [Xr|T] A integer(Xr))))

+
3IXr, T.([2] = [X7r|T] A integer(Xr))
.T
2] = [2][]] A integer(2)

This use of predicate properties gives a way of preventing some ways in which
segment might be incorrectly defined but does not give complete protection.
One particularly nasty form of incorrect definition is to allow segment to return
as its third argument, R, a list which is not smaller than the input list, L1,
because this may create an infinite recursion in sort_segments, which relies for
termination on a well founded ordering from L1 through R to the empty list.
This mistake is easy to make because if we simply omit from the definition of
segment in clause 9.10 the test that S is not empty, giving:

segment(L, S, R) <+ segmentl(L, S, R)

then this is capable of generating infinite recursions for goals such as
sort_segments([a], X ), since a subgoal in solving this goal is segment([al, [], [a]),
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which would (correctly) have failed in the original definition. We could pro-
tect against this by defining another predicate property for segment but it is
(arguably) more natural to associate the requirement with the clause where the
recursion occurs. We write this as a binary predicate hansel_clause(C,T) where
C is a clause in the specification and 7 is a set of properties required to hold
for any instance of C' used to solve a goal. For our example, the appropriate
definition of this is:

hansel_clause(  sort_segments(L1, L2) < segment(L1,S, R) A
sort(S,Ss) A
sort_segments(R, L3) A (9.15)
append(Ss,L3,L2),
{3X.X € L1 A not(X € R)} )

Notice that variables are shared between the clause (in the first argument)
and its properties (in the second argument). Constraints like this one come into
effect when clauses are used to solve goals, hence instantiating properties. For
instance, if the goal sort_segments([a], X) is matched to the head of the clause in
expression 9.15 and we have solved its first subgoal using the erroneous definition
of segment given above then the entire expression (including the property) is
instantiated to:

hansel_clause( sort_segments([a], L2) + segment([a],[],[a]) A
sort([], Ss) A
sort_segments([a], L3) A
append(Ss, L3, L2),
{3X.X € [a] A not(X € [a])} )

At this point we can see there is a problem because the instantiated property
cannot be satisfied: 3X.X € [a] A not(X € [a]) has no solution. This system
of clause properties (like expression 9.15) and predicate properties (like expres-
sion 9.14) is flexible, since properties can be associated either with predicates
or with the variables in any clause of a predicate. It raises an issue, however,
of what to do with the properties which we represent. Section 9.7 describes a
simple use of properties in testing.

9.4 Refinement Rules

Having introduced in Section 9.2 the basic idea of specification refinement in
HANSEL, we now describe the system of rewrites currently used to refine predicate
definitions. Along with each rewrite is a set of properties which we anticipate
that testers might wish to check in verifying the specification. Rewrites are
divided into groups associated with each set-related operator. Section 9.4.1
describes the rewrites from generic relations to theory equalities and inequalities.
Sections 9.4.2, 9.4.3 and 9.4.4 describe rewrites from equalities, specialisation
inequalities and generalisation inequalities, respectively. Sections 9.4.5 and 9.4.6
describe rewrites for element selection and addition expressions.

Notice that properties associated with rewrites are not required to be com-
plete in the sense that they fully specify all relevant properties of the rewritten
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expression. By allowing partiality we give designers of the rewrites the chance
to stipulate just those properties which seem of greatest importance. We also
do not require designers of rewrites to consider the entire rewrite system when
choosing properties of a particular rewrite rule - each is described individually.
This introduces some redundancy because later rewrites may include properties
defined for earlier ones — for example the property associated with Rewrite 1
(below) also appears in Rewrite 12 (below) even though it can only be reached
via Rewrite 1.

Throughout this section, variables beginning with the letter S refer to axiom
sets and variables beginning with the letter X refer to elements of those sets.
Each rewrite is accompanied by an informal description of the intuition behind
it. In these description we use the phrase “S1 specialises to S2” when the
theory of S1 is a superset of the theory of S2 (7(S1) D 7(S2)) and the phrase
“S1 generalises to S2” when the theory of S1 is a subset of the theory of S2
(1(S1) C 7(52)). Notice that the direction of inequalities matters because when
introducing predicates to manipulate the axiom sets we assume that the first
set in the pair deriving from an inequality is an input to the predicate. Thus
7(S1) D 7(52) will be refined differently from 7(52) C 7(S1) despite the fact
that these two expressions have the same semantics. This is the reason why
there are separate (symmetrical) sets of refinements for theory specialisation
(Section 9.4.3) and for theory generalisation (Section 9.4.4).

9.4.1 Refinements from General Relations to Theory Com-
parators

The main role of refinements in this section is to allow generic relations, which
denote only that two axiom sets interact, to be rewritten into inequalities or
equalities between axiom sets. To allow for the possibility that the interaction
between axiom sets may not be in either of these forms there is also a rewrite
to an unconstrained binary relation, allowing us later to introduce a skeleton
directly to relate the axiom sets.

Rewrite 1 If we have a general relation between S1 and S2 then S1 might
specialise to S2. If so, we expect anything provable from S2 to be provable from
S1.

Rewrite : S1= 852 = 7(S1) D 7(52)

Properties : {VX.S2+ X — S1+ X}

Rewrite 2 If we have a general relation between S1 and S2 then S2 might
specialise to S1. If so, we expect anything provable from S1 to be provable from
S2.

Rewrite 1 S1= 82 = 7(52) D 7(S1)

Properties : {VX.S1+X — S2+ X}

Rewrite 3 If we have a general relation between S1 and S2 then S1 might
generalise to S2. If so, we expect anything provable from S1 to be provable from
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S2.
Rewrite : Sl=S2 = 7(S1) C7(52)
Properties : {VX.S1FX — S2+ X}

Rewrite 4 If we have a general relation between S1 and S2 then S2 might
generalise to S1. If so, we expect anything provable from S2 to be provable from
S1.

Rewrite : S1= 82 = 7(52) C7(S1)

Properties : {VX.S2F X — S1+ X}

Rewrite 5 If we have a general relation between S1 and S2 then S1 might equal
S2. If so, we expect anything provable from S1 to be provable from S2 and vice
versa.

Rewrite i S1x 82 = 7(S1) =7(52)
Proverti VX.S1F X = S2F X,
ropertes VX.S2F X - S1+ X

Rewrite 6 If we have a general relation between S1 and S2 then this may be
via general relations to a third set, S3.

. Sl~ S3A
Rewrite : Sl~52:>( $3 ~ 2 )

Properties : {}

Rewrite 7 A general relation between S1 and S2 might be obtained through a
predicate directly relating S1 and S2.

Rewrite : S1la~8S2 = S1 uncon}s\arained 59
Properties : {}

9.4.2 Refinements of Theory Equalities

The refinements of this section allow equalities between axiom sets to be defined
either in terms of a pair of inequalities or by direct comparison of the sets. In
direct comparison we distinguish between the case where the sets have the same
elements but with no commitment to ordering of those elements (denoted by
equal(S1,52) below) and the case where the two sets have identical data struc-
tures (denoted by identical(S1,S2) below). The latter case is provided because
it is common when writing specifications to want to say that two variables are
identical, in which case HANSEL automatically binds the two variables into a sin-
gle variable and the identical(S1,52) subgoal disappears from the specification.
This is considerably neater than accumulating numerous explicit set equalities
in the bodies of clauses.

Rewrite 8 An equality between S1 and S2 may be established by showing that
S1 specialises to S2 and S1 generalises to S2. If so, we expect anything provable
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from S1 to be provable from S2 and vice versa.

Rewrite  : 7(S1) =7(52) = ( Ti?;i)gchég)A )
VX1.S1F X1 — S2F X1, _}

Properties { VX2.52F X2 - S1+ X2

Rewrite 9 An equality between S1 and S2 may be established by showing that
S1 and S2 contain the same elements. If so, we expect any element of one set
to appear in the other.

Rewrite : 7(S1) =7(52) = equal(S1,52)
{ VX1.X1€ S1— X1€ 52 }

Properties VX2.X2 € S2 - X2 € 51

Rewrite 10 An equality between S1 and S2 may be established by showing that
S1 and S2 are identical data structures.

Rewrite : 7(S1) =7(52) = identical(S1,52)
Properties : {}

9.4.3 Refinements of Theory Specialisation

In this section we deal with refinements of specialisation relations between axiom
sets. The first four of these rewrites introduce “hooks” for predicate definition

via skeleton introduction (the hooks being the S1 L 53 expressions). The
rest are consistent with standard set theory. Notice that it would have been
possible to extend this set of rewrites (and their duals in the next section) with
rewrites to inequalities between interpretations? of the axiom sets, since these
are always subsets of the corresponding theory. This, however, introduces yet
another subtlety into the refinement process so we leave it for further work.

Rewrite 11 A specialisation from S1 to S2 may be established by a predicate
which creates a new set, S3, by adding axioms which are logical consequences of
S1 to S1 (thus not changing its theory), then showing that S3 specialises to S2.
If so, we expect everything provable from S1 to be provable from S3 and vice
versa; we expect S3 to contain an element which is not in S1; and we expect
everything provable from S2 to be provable from S3.

expand

: . S1 7~ S3A
Rewrite = 7(51) 27(52) = ( 7(53) 2 7(S2) )

VX1.S1F X1 S3+ X1,
VX2.93F X2 - S1+ X2,
3X3.X3 € 53 A not(X3 € S1),
VX4.52F X4 - S3+ X4

Properties

2 An interpretation being the set of ground goals deducible from the set of Horn clauses.
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Rewrite 12 A specialisation from S1 to S2 may be established by a predicate
which restricts the theory of S1 to give S2. If so, everything provable from S2
should be provable from S1 and there should be something which is provable from
S1 but not S2.

specialise

Rewrite : 7(S1) D 7(S2) = S1 "~ 52
Provertics - VX1.82F X1 — S1+ X1,
TOPETHES 1 1 3X2.51F X2 A not(S2F X2)

Rewrite 13 A specialisation from S1 to S2 may be established by o predicate
which removes axioms from S1 to give S2. If so, there should be some element
of S1 which is not in S2 but all elements of S2 should be in S1.

Rewrite : 7(S1) D 7(S2) = S17°R8 82
{ VX1.X1€ 82— X1e€ S1, }

Properties 3X2.X2 € S1 A not(X2 € 52)

Rewrite 14 A specialisation from S1 to S2 may be established by removing
from S1 a subset of it, S3, which is determined by some predicate. If so, the
elements in S3 should appear in S1 but not in S2, and all the elements of S2
should appear in S1.

subset

. S1 7~ S3A
R t : S1) D 7(52) =
ewrite 7(S1) 2 7(52) remove(S3,51,52)

VX1.X1€ 53— X1e€ S1,
Properties : VX2.X2€ S3 — not(X2 e 52),
VX3.X3 € 52 » X3 € S1)

Rewrite 15 A specialisation from S1 to S2 may be established by showing that
an intermediate set, S3, is a specialisation of S1 and that S3 specialises to S2.
If so, we expect anything provable from S3 to be provable from S1 and anything
provable from S2 to be provable from S3.

. . 7(51) D 7(S3) A
Rewrite : 7(S1) D 7(52) = 7(S3) D 7(52)
{ VX1.83F X1 — S1+ X1, }

Properties VX2.52F+ X2 = S3F X2

Rewrite 16 A specialisation from S1 to S2 may be established by showing that
S2 is the union of two sets, S3 and S4, which are independent specialisations
of S1. If so, anything provable from S3 or S4 should be provable in S1 and S2
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should contain exactly those elements that appear in either S3 or S4.

7(S1) D 7(S3) A
Rewrite : 7(S1) D 7(52) = 7(S1) D 7(S4) A )
union(S3,.54,52)
VX1.53F X1 — S1F X1,
VX2.54F X2 — S1F X2
Properties : VX3.X3€ 53— X3e€ 52,
VX4.X4€ S4 - X4 € S2,
VX5.X5€ 52 = (X5€ 83 V X5 € S4)

Rewrite 17 A specialisation from S1 to S2 may be established by showing that
S1 equals S2. If so, anything provable in S1 should be provable in S2 and vice
versa.

Rewrite : 7(S1) D 7(52) = 7(S1) =7(52)
{ VX1.S1F X1 — S2F X1, }

Properties VX2.52 - X2 — S1F X2

9.4.4 Refinements of Theory Generalisation

In this section we deal with refinements of generalisation relations between axiom
sets. These are the duals of the refinements in Section 9.4.3.

Rewrite 18 A generalisation from S1 to S2 may be established by a predicate
which creates a new set, S3, by adding azioms to S1 without changing its theory,
then showing that S3 generalises to S2. If so, we expect everything provable from
S1 to be provable from S3 and vice versa; we expect S3 to contain an element
which is not in S1; and we expect everything provable from S3 to be provable
from S2.

: : 5125 53 A
Rewrite ¢ 7(S1) C 7(S2) = (S3) C 1(52) )
VX1.S1F X1 — S3F X1,
VX2.53F X2 S1F X2,
3X3.X3 € S3 A not(X3 € S1),
VX4.53F X4 — S2F X4

Properties

Rewrite 19 A generalisation from S1 to S2 may be established by a predicate
which enlarges the theory of S1 to give S2. If so, everything provable from S1
should be provable from S2 and there should be something which is provable from
52 but not S1.

Rewrite : 7(S1) C7(52) = S1 gemerglise go
VX1.S1+ X1 - S2+ X1, }

Properties { 3X2.52F X2 A not(S1F X2)
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Rewrite 20 A generalisation from S1 to S2 may be established by a predicate
which adds azioms to S1 to give S2. If so, there should be some element of S2
which is not in S1.

Rewrite : 7(S1) C7(S52) = S1 2452

VX1.X1€ 81— X1€ 852,
3X2.X2 € S2 A not(X2 € S1)

Rewrite 21 A generalisation from S1 to S2 may be established by adding to S1
a new aziom set, S3, which is determined by some predicate. If so, S3 should
be non-empty; no element of S3 should appear in S1; and S2 should contain
exactly those elements which are in S1 and S3.

Properties

. S1 %5 S3 A
Rewrite : 7(S1) C7(82) = ( union(S3, 91, 52) )
3X1.X1 € 53,
VX2.X2€ S3 = not(X2 € S1),
Properties : VX3.X3€ 83— X3€S52,

VX4.X4€ 51— X4€ 82,
VX5.X5€ 52— (X5€ 51 v X5 € S3)

Rewrite 22 A generalisation from S1 to S2 may be established by showing that
an intermediate set, S3 is a generalisation of S1 and that S3 generalises to S2.
If so, we expect anything provable from S1 to be provable from S3 and anything
provable from S3 to be provable from S2.

Rewrite : 7(S1) C 7(S2) = ( Tif;;)gg:(_fg;)/\ )
{ VX1.81+ X1 — S3+ X1, }

Properties VX2.53F X2 = S2F X2

Rewrite 23 A generalisation from S1 to S2 may be established by showing that
S2 is the intersection of two sets, S3 and S4, which are independent generali-
sations of S1. If so, anything provable from S1 should be provable in S3 and in
S4; and S2 should contain exactly those elements that appear in both S3 or S4.

7(81) C 7(S3) A
Rewrite : 7(S1) C7(52) = 7(81) C 7(S4) A
intersection(S3, 54, 52)
VX1.S1F X1 - S3F X1,
VX2.51F X2 — S4F X2,
VX3.(X3€ S3 A X3€94) — X3 €S2,
VX4.X4€ 52— (X4 € 83 A X4 € S4)

Properties

Rewrite 24 A generalisation from S1 to S2 may be established by showing that
S1 equals S2. If so, anything provable in S1 should be provable in S2 and vice
versa.

Rewrite : 7(S1) C7(52) = 7(S1) =7(52)
VX1.81F X1 — S2+ X1, }

Properties - { VX2.92F X2 - S1+ X2
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9.4.5 Refinements of Element Selection

The refinements of this section are all rewrites for the expression S(X1, 51, 52)
which denotes that an element, X is selected from axiom set S1 to give the
remaining axioms S2. These expressions do not appear in the rewrites of Sec-
tions 9.4.1 to 9.4.4, so they do not arise in the early stages of HANSEL design.
They appear in the definitions of skeletons, as we shall show in Section 9.5.
We supply three sorts of selection: by taking the first element of the axiom
set; by taking some element from the set (regardless of position); and selecting
some element which passes a test, 7{X) (see Section 4.1 for a discussion of test
subgoals).

Rewrite 25 If we wish to select an element, X, from S1 to give S2 then we
might select the first element of S1.

Rewrite : 8(X,81,52) = select_first_element(X,S1,52)
Properties : {}

Rewrite 26 If we wish to select an element, X, from S1 to give S2 then we
might select any element of S1.

Rewrite 1 S(X,81,52) = select_some_element(X,S1,52)
Properties : {}

Rewrite 27 If we wish to select an element, X, from S1 to give S2 then we
might select any element of S1 which satisfies some test.

Rewrite : S§(X,81,52) = (
Properties : {}

select_some_element(X,S1,52) A )
T(X)

9.4.6 Refinements of Element Addition

The refinements of this section are duals of those in Section 9.4.5. They all are
rewrites for the expression A(X1,51,52) which denotes that an element, X is
added to axiom set S1 to give the larger axiom set S2.

Rewrite 28 If we wish to add an element, X, to S1 to give S2 then we might
add the first element of S1.

Rewrite : A(X,S81,52) = add_element_first(X,S51,52)
Properties : {}

Rewrite 29 If we wish to add an element, X, to S1 to give S2 then we might
add any element of S1.

Rewrite : A(X,S81,52) = add_element_somewhere(X,S1,52)
Properties : {}
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Rewrite 30 If we wish to add an element, X, to S1 to give S2 then we might
add any element of S1 which satisfies some test.

Rewrite : A(X,S51,82) = (
Properties : {}

add_element_somewhere(X,S1,52) A )
T(X)

9.5 Skeletons for Axiom Sets

Some of the rewrites of Section 9.4 introduce into clauses subgoals of the form

514 S2, where S1 and S2 are axiom sets and R is the type of relation which
holds between them. These are the “hooks” to which we attach binary predi-
cates, and HANSEL assists in defining these predicates by providing a library of
partially completed definitions intended to provide the basic flow of control of
the relation. We call these “skeletons” because the aim is similar to the partial
programs by the same name used in Section 4.1 - although in HANSEL they are
being used within a different design method and are defined over axiom sets
rather than the usual Prolog data structures.
Each skeleton is described using the following three components:

Parameters : A term of the form (P,S1,S52,Rs), where P is the predicate

name; S1 and S2 are the left and right hand sides of the relation S1 & 52
which the skeleton is defining; and Rs is a list of predicate names used as
subgoals in the skeleton.

Code : A set of Horn clauses defining the partial specification supplied by the
skeleton.

Properties : A set of properties associated with the skeleton.

Skeletons are instantiated through their parameters, with the instantiations
being propagated through the code and properties via shared variable names.

Parameters S1 and S2 are instantiated by matching to the relation S1 &g 2, and
the other parameters are instantiated by the designer via a dialogue described
in Section 10.4. Skeletons are partial specifications because they may contain
HANSEL expressions which need further refinement® and they may be extended
by adding argument slices, as described in Section 10.6.

Since skeletons are task or domain specific it is necessary to have a methodical
way of populating the library of skeletons. Section 9.5.1 summarises the main
groups of skeletons currently in the HANSEL library. Section 9.5.2 shows how one
of these groups was designed, explaining how a particular class of skeletons and
their properties is covered methodically.

3In particular the expressions S(X,S,Sr) or A(X, S, Sa) are used to denote that some
predicate should select an element from or add an element to set S, as described in detail in
Sections 9.4.5 and 9.4.6.
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9.5.1 Groups of Skeletons

The skeletons in HANSEL are task specific and are organised into groups around
standard types of logic programming task, each understood as a relation between
the given axiom set in the first argument of the binary relation and the derived
axiom set in the second argument. Full definitions appear in Appendix C. The
current groups of tasks are:

Traversal through all the elements of a set (Appendix C.1) where the re-
lation applies a mapping from the first set to the second set by mapping
each element of the first set individually. An example of this type of skele-
ton (which is skeleton 2 in Appendix C.1) is:

P(51,52) «+ empty(S1)A
empty(S2),

P(S1,52) « S&i(X1,S1,T1)A
R(X1,X2)A
P(T1,T2)A
A1 (X2,T2,52),

P(S1,52) « 85(X1,51,T1)A
not(R(X1, X2))A
P(T1,T2)A
Ay(X1,T2,52)

which maps each element, X1, of S1 which satisfies R(X1,X2) to an
element, X2 of S2 and if X1 does not satisfy R(X1,X2) then X1 itself
appears in S2. An instance of this skeleton is a predicate pseudonyms
which maps each name in a set, represented as a list, to the pseudonym for
that name if it exists or to the original name if a pseudonym does not exist.
An instance of the skeleton above for this (with P bound to pseudonyms
and R bound to has_pseudonym) is:

pseudonyms(S1,52) + empty(S1)A
empty(S2),

pseudonyms(S1,52) + S1(X1,51,T1)A
has_pseudonym(X1, X2)A
pseudonyms(T1,T2)A
A1(X2,T2,52),

pseudonyms(S1,52) + S»(X1,51,T1)A
not(has_pseudonym(X1, X2))A
pseudonyms(T1,T2)A
Ay(X1,T2,52)

If we then refine the selection and addition subgoals using Rewrites 25
and 28; then define select_first_element(X, S1,S52) as S1 = [X1|52]; then
define add_element_first(X,S1,52) as S2 = [X1|S1] we end up with the
following changes to subgoals:
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S1(X1,51,T1) becomes S1 = [X1|T1].
A1(X2,T2,52) becomes S2 = [X2|T2].
S2(X1,51,T1) becomes S1 = [X1|T1].
A(X1,T2,52) becomes S2 = [X2|T2].

and if these unifications are pushed into the head of each clause we have a
conventional list traversal.

pseudonyms([],[])
pseudonyms([X1|T1],[X2|T2]) « has_pseudonym(X1, X2)A
pseudonyms(T1,T2)
pseudonyms([X1|T1], [X1]|T2]) + not(has_pseudonym(
pseudonyms(T1,T2)

X1,X2))A

Searching through some of the elements of a set (Appendix C.2) where
the relation considers some of the elements of the first set, eventually find-
ing one where a mapping to the second set can be obtained. An example
of this skeleton (which is skeleton 15 in Appendix C.2) is:

P(S1,52) « Si(X1,S1,T1A
R(X1)A
singleton(X1,S52),

P(S1,52) « S»(X1,S1,T1)A
not(R(X1))A
P(T1,52)

which selects elements of set S1 until one is selected which satisfies the test
R(X1), in which case S2 is the singleton set containing X1. An instance
of this skeleton is a predicate search_for_integer which searches a set,
represented using a list, for the first integer found. We can derive this
from the skeleton following a procedure similar to that for the previous
example, the result being:

search_for_integer([X1|T1],[X1]) « integer(X1)
search_for_integer([X1|T1],52) < not(integer(X1))A
search_for_integer(T1,52)

Applying deductive inference to a set (Appendix C.3) where a system of
deductive inference is applied to the first axiom set, allowing one or more
instances of a selected goal to be obtained and either be added to the first
set or independently form the second set. An example of this skeleton
(which is skeleton 24 in Appendix C.3) is:

P(51,52) «+ R(S1,G)A
deduce(D,S1+ G)A
singleton(G, S3)A
union(S3,51,52)
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which selects a goal, G, relevant to axiom set S1 and finds a proof of G
from S1 using deductive system D, adding the instantiated goal to S1 to
produce S2. This link to deductive systems is explained in more detail in
Section 9.6.

Applying abductive inference to a set (Appendix C.4) where a system of

abductive inference is applied to the first axiom set, allowing the axioms
necessary to conclude one or more instances of a selected goal to be ob-
tained and either be added to the first set or independently form the second
set. An example of this skeleton (which is skeleton 28 in Appendix C.4)
is:

P(51,52) « R(S1,G)A
abduce(A, S1F G, Ae)A
union(Ae, S1,52)

which selects a goal, G, relevant to axiom set S1 and finds, using abductive
inference system A, a set of additional axioms, Ae, needed to prove G from
S1, adding these new axioms to S1 to give S2. Further details of the link
to abductive systems are given in Section 9.6.

Applying a relation directly to a set (Appendix C.5) where a relation maps

the first set, in total, to one or more elements of the second set. An example
of this skeleton (which is skeleton 34 in Appendix C.5) is:

P(S1,52) « R(S1,X)A
singleton(X, S3)A
union(S3, 51, 52)

which constructs set S2 by adding to set S1 the element, X, obtained by
solving R(S1,X). Since this is a skeleton in a “catch-all” group of tasks,
it can be used to obtain similar effects to other, more specific, forms of
skeleton. For instance, the deduction skeleton described earlier can be

obtained using the generic skeleton above and defining R as:
R(S1,X) « R1(S1,X) A deduce(D, S1+ X).

9.5.2 Constructing a Group of Skeletons

The previous section summarised the groups of skeletons currently in the HANSEL
library. We now examine the first of those groups in more detail to explain how
it was populated. This group concerns predicates which map elements of a given
set onto elements of a derived set. The completed group of skeletons appears in
Appendix C.1. The sorts of mappings we consider on elements are either single
mappings via relation R from element X1 to element X2, written R(X1,X2)
in the skeleton definitions, or exhaustive mappings of R from X1 to the Set of
corresponding X2 elements, written setof(X2, R(X1,X2), Set) in the skeleton
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definitions. Later in this section we depict single mappings using the picture
and exhaustive mappings using the picture =3. In some skeletons the mapping
relation need not hold for all elements, in which case we can either choose to
carry the original element across to the new set or leave it behind. We depict
these situations as and = respectively.

Given that these are the forms of element mapping that we allow and that
our skeletons will apply these by traversing the set, there are twelve possible
combinations, which we depict in Figure 9.2. There are two subgroups of these:
on the left are the ones where the mappings between elements place only the
mapped elements in the derived set (so a single mapping R(X1,X2) places
X2 in the derived set if X1 is in the given set); on the right are the ones where
mappings place both original and mapped elements in the derived set (so a single
mapping R(X1, X2) places both X1 and X2 in the derived set). Within each of
these subgroups we have a split between single mappings (numbers 1, 2 and 9 in
the first group and 5, 6 and 11 in the second) or exhaustive mappings (numbers
3, 4 and 10 in the first group and 7, 8 and 12 in the second). Within these
smaller subgroups we can have either a mapping for every element; for some
elements with non-mapped elements carried across; or for some elements with
non-mapped elements left out. This gives us skeletons 1 to 12 in Appendix C.1.

y
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s s
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Figure 9.2: Different forms of traversal skeleton

We now look at these skeletons more formally, with the aim of assigning
properties to them and using these properties to raise our confidence that we
have considered all the possibilities for this type of task. To structure our analysis
we can divide these properties into two groups: those which might hold if we
observe an element in the given set (which we name S1) and those which hold
if an element belongs to the derived set (which we name S2). We consider each
of these in turn:

For an element (X1) of the given set (S1) there are three sets of constraints:

e A mapping, R, may hold from X1 to X2 and this must either put
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X2 into S2 or put both X1 and X2 into S2. Formally:

X1eS1 — 3X2.R(X1,X2) A X2€ 52 (9.16)
X1€eS81 — 3X2.R(X1,X2) A X1€852 A X2€ S52(9.17)

All the skeletons in the group must satisfy either constraint 9.16 or
constraint 9.17. In Figure 9.2 the group on the left satisfies con-
straint 9.16 while the group on the right satisfies constraint 9.17.

e A mapping, R, may not hold from X1 to X2, in which case we may
or may not require X1 to appear in S2. Formally:

X1€S1 — not(AX2.R(X1,X2)) A X1€852 (9.18)
X1€S1 — not(AX2.R(X1,X2)) (9.19)

We can combine either constraint 9.18 or 9.19 disjunctively with either
of constraints 9.16 or 9.17.

e If a mapping holds from X1 to X2 (as per the constraints above)
then we may require it to be exhaustive. Formally:

X1€ 81— (VX2.R(X1,X2) > X2 € 52) (9.20)

This constraint applies only when we know a mapping exists so it can
be combined only with constraint 9.16 or constraint 9.17.

For an element (X2) of the given set (S2) there are two sets of constraints:

e A mapping may exist which put X2 there by applying R to some X1
in S1 and, if so, X1 may or may not appear in S2 along with X2.
Formally:

X2€52 — 3IXLR(X1,X2) A X1€S1 (9.21)
X2€52 — 3IXLR(X1,X2) A X1€S1 A X1 € 52(9.22)

Constraint 9.21 applies only if constraint 9.16 applies. Constraint 9.22
applies only if constraint 9.17 applies.

e A mapping may not exist but X2 appears in S1. Formally:
X2€ 52— not(3X1.R(X1,X2)) AN X2€ 51 (9.23)

This constraint applies only if constraint 9.17 or 9.18 applies and is
disjunctive with either constraint 9.21 or constraint 9.22.

The conditions stipulated above allow only twelve combinations of constraints
9.16 to 9.23. Each of these corresponds to one of the twelve skeletons described
on the diagram of Figure 9.2. The table below shows the combinations, the
left column giving the constraints on X1, the middle column giving the corre-
sponding constraints on X2 and the right column identifying the skeleton which
should satisfy the constraints.
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| Constraint on X1 € S1 | Constraint on X2 € 52 | Skeleton |

9.16 9.21 1
9.16 v 9.18 921V 9.23 2
9.16 v 9.19 9.21 9
9.16 A 9.20 9.21 3
(9.16 A 9.20) V 9.18 9.21 v 9.23 4
(9.16 A 9.20) V 9.19 9.21 10
9.17 922V 9.23 5
9.17 v 9.18 922V 9.23 6
9.17 v 9.19 9.22 vV 9.23 11
9.17 A 9.20 922V 9.23 7
(9.17 A 9.20) V 9.18 922V 9.23 8
(9.17 A 9.20) V 9.19 922V 9.23 12

The final step is to define the partial program for each skeleton, such that it
performs the mapping sketched in Figure 9.2 and satisfies the properties given
above. As an example we choose skeleton 2 from Appendix C.1, the definition of
which was discussed earlier in Section 9.5.1. This is the leftmost box in Figure 9.2
and, by assembling the constraints given in the table above, its properties are:

IX2.R(X1,X2) A X2 € §2
X1eSl — v (9.24)
not(3X2.R(X1,X2)) A X1€ 52

IX1.R(X1,X2) A X1€ S1
X2€82 — v (9.25)
not(3X1.R(X1,X2)) A X2€ S1)

These properties require for each element of S1 that:

o If the mapping relation, R, from X1 to X2 holds then X2 appears in S2.
This can be ensured by defining a recursive clause which under the given
conditions selects each appropriate X1 from S1 and adds the corresponding
X2 to S2. Formally:

P(S1,52) + S1(X1,51,T1)A (9.26)
R(X1,X2)A
P(T1,T2)A
A1 (X2,T2,52),

o If the mapping relation, R, doesn’t apply to X1 then X1 itself appears in
S2. This can be ensured by defining a recursive clause which under the
given conditions selects each appropriate X1 from S1 and adds it to S2.
Formally:

P(51,82) «+ &»(X1,51,T1HA (9.27)
not(R(X1, X2))A
P(T1,T2)A
A>(X1,T2,52)
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Finally, we need to define the base case where no elements appear in S1, which
is:
P(S51,52) « empty(S1)A (9.28)
empty(S2),

These clauses give the partial specification for skeleton 2 as it appears in Ap-
pendix C.1.

9.6 Specialised Sets of Inference Rules

One of the devices used to give flexibility to some of the skeletons summarised in
Section 9.5 is to define general purpose deduction or abduction predicates which
take as an argument a “flag” identifying a set of inference rules to be used in
the deductive or abductive reasoning. This gives a way of separating specialised
forms of inference relevant to different parts of a specification while retaining a
standard approach to applying the inference rules.

All use of deductive proof rules is through the predicate deduce(F,S + X)
which is true if there is a deductive proof of X from axiom set S using the
inference rules indexed by F'. This is the case if there is a deduction rule of type
F' which can establish S F X given conditions, C', and sub-proofs, Sp, and C
holds and all of the subproofs are obtainable (via recursive application of the
deduction definition to each sub-proof).

deduce(F, Proof) < deduction_rule(F, Proof,C,Sp)A (9.29)
CA
deduce_subproofs(F, Sp)

deduce_subproofs(F,[]) (9.30)

deduce_subproofs(F,[Proof|T]) <  deduce(F,Proof)A (9.31)
deduce_subproofs(F,T)

How one defines each set of deductive rules depends on the problem to be
solved but there is a basic set which gives a deductive behaviour typically de-
scribed for pure logic programs and therefore particularly appropriate to the
axiom sets used in HANSEL. It has four rules: the first saying that the atom
true is always provable; the second proving a conjunction of goals if subproofs
exist for each of the conjuncts; the third giving a proof of X if a clause exists in
the axiom set which allows it to be deduced from Y and Y can be deduced as
a sub-proof; and the fourth allowing built-in predicates to be considered true if
they can be satisfied directly by the Prolog system.

deduction_rule(basic, A - true, true, []) (9.32)
deduction_rule(basic, AF (X1 A X2),true,[AF X1, AF X2]) (9.33)
deduction_rule(basic, AF X,(X «Y) € A [AFY)) (9.34)
deduction_rule(basic, A - X, (system_predicate(X) A X),[]) (9.35)
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Use of abductive inference rules is done similarly to that for deductive rules,
but is a little more complex because abductive rules must generate axioms which
could be added to the given axiom set to establish a given goal. Our abductive
inference rules are thus of the form abd_rule(F,S + X, E,C1,Sp,C2) where F
is the type of abduction rule; S F X is the proof which the rule makes possible
through generation of new axioms, F; C1 is a pre-condition which must hold for
the rule to apply; and C2 is a post-condition which is used to construct E if the
sub-proofs in Sp can be established. The mechanism used to apply abduction
rules (similar to that for deductive rules) is then:

abduce(F, Proof,E) < abd_rule(F, Proof, E,C1,Sp,C2)A (9.36)
C1A
abduce_subproofs(F, Sp)A
Cc2
abduce_subproofs(F,[]) (9.37)
abduce_subproofs(F,[(Proof,E)|T]) <+  abduce(F,Proof, E)\ (9.38)

abduce_subproofs(F,T)

As for deduction, the choice of rules depends on the problem in hand but
clauses 9.39 to 9.42 give a basic set. The first rule gives an empty abduction set
for the atom true, representing a goal which is deducible without evidence. The
second rule allows us to add X < true to axiom set S if we wish to prove unit
goal X and there is no clause capable of deducing X in S. The third rule allows
us to add the abduced axiom sets for goals X1 and X2 if we are trying to solve
a goal which is the conjunction of X1 and X2. The fourth rule allows us to add
the abduced axioms for Y if the goal we are looking for is X and Y would allow
X to be concluded from the clauses in the axiom set, S.

abd_rule(basic, A & true,[], true, [|, true) (9.39)
not(X = (C1,C2)) A
abd_rule(basic, S + X,[(X « true)], not(X = true) A , [, true) (9.40)
not((X < P) € S)
(S+ X1,E1),
(S + X2, E2)
X«Y)eSA
not(Y = true)

abd_rule(basic, S F (X1 A X2), E,true, [ } ,union(E1, E2,E)) (9.41)

abd_rule(basic, S+ X, E, ( ( ) , [((SFY,E)], true) (9.42)

9.7 A Meta-Interpreter for Producing Tests

Section 9.3 introduced the use of properties associated with clauses and predi-
cates in verifying that designs have been used correctly. Section 9.4 gives exam-
ples of properties associated with rewrite rules and Section 9.5 gives examples of
properties for skeletons. We shall show in Chapters 11 and 12 how these are ac-
cumulated along with the specification. This section gives a straightforward way
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of using them, thus instantiating the “Execution system” element of Figure 9.1
in Section 9.3.

One way of using properties associated with predicates and clauses is in
testing. Testing of logic programs involves running the programs to determine
whether or not they give the expected answers on sets of test goals. By includ-
ing property information in testing, we have the opportunity to check not only
whether the answers were right but also that they were obtained in ways which
conform to the expected use of the predicates (as indicated by their properties).
We can know what the appropriate instances of the properties are by replicating
the proof procedure of the solver used to execute the logic program and ensur-
ing that this collects all the properties relevant to that particular execution of
the program. An easy way to do this for Horn clause programs is by using a
meta-interpreter, such as the one defined in clauses 9.43 to 9.47 for the predicate
solve(G, T) below, where G is a given goal and 7 is a set of properties relevant
to the testing of that goal which have been accumulated during its solution. This
meta-interpreter is designed so that the solution of G is performed in a similar
way to standard meta-interpreters for pure Prolog (see for example Chapter 19
of [Sterling and Shapiro, 1986]) and the appropriate tests, instantiated through
the solution of goals in the proof tree, are accumulated in 7 without influencing
the search during proof. This is similar to the standard way in which informa-
tion such as explanations of proofs are accumulated in meta-interpreters (again,
see Chapter 19 of [Sterling and Shapiro, 1986]). To make the formal definitions
more compact we have used functional representations for set union in the defi-
nitions below, which are otherwise normal Prolog.

solve((A A B),TaUTy) <« solve(A,Ta)A (9.43)
solve(B, Tp)

solve((A V B),T) <«  solve(A,T)V (9.44)
solve(B, T)

solve(X,T) <«  hansel_clause((X < P),Tz)A (9.45)

solve(P, Tp)A
T =Tz UTp U{T|hansel_prop(X,T)}

solve(X,T) <  not(hansel_clause((X < P),T"))A (9.46)
not(external(X))A
clause(X, P)A
solve(P, Tp)A
T = Tp U {T|hansel_prop(X,T)}

solve(X,{}) <«  external(X)A (9.47)
X

This method of test collection via meta-interpretation is similar to that used
for checking specifications against ontological constraints in
[Kalfoglou and Robertson, 1999]. The main difference is that in
[Kalfoglou and Robertson, 1999] the tests associated with subgoals in a proof
are executed while the proof is being performed. This has the advantage of be-
ing parsimonious, since only those tests which reveal problems need be returned
when the proof is complete. However, it has the disadvantage of requiring the
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tests to be decidable in sufficiently short computation times that the overhead on
the computation of the main proof is not excessive. This was practical for the on-
tological constraints which were the subject of [Kalfoglou and Robertson, 1999
but is impractical for many of the tests which are generated by HANSEL for ex-
ample those which require that everything provable from one axiom set should
be provable from another. Too much computation is involved for these to be
performed during the execution of a specification. It is therefore a better policy
to use the meta-interpreter simply to return all the tests and use a separate
(possibly interactive) system to deal with proving or disproving them. This is a
significant piece of research in its own right because the proofs may not be triv-
ial and connecting them to the original design in a way which conveys meaning
to designers is non-trivial. This topic is outside the scope of this thesis but is
discussed briefly in Section 12.5.1.

We have now completed the introduction to the formal basis for HANSEL. In
the next chapter we describe the way we have implemented it as a design tool.






Chapter 10

The HANSEL Structured
Design Method

Figure 10.1 gives an overview of the interaction between the main windows in
the current HANSEL system. The details of each window are given in the corre-
sponding sections below. At the centre of the interaction is the main specification
window (Section 10.1, which records the current state of the specification and
from which all other windows are accessed. The first window accessed from the
main window is normally the choice of initial templates (Section 10.2), which
offers a menu of specifications expressed at the highest level of generality. This
is normally followed by choice of refinements (Section 10.3) where a menu of
refinements is offered for selected subgoals in the main specification window. At
the lowest level of detail is the choice of skeletons (Section 10.4) which allows
standard skeletal definitions to be selected for predicates appearing as subgoals
in the main specification window. Some refinements introduce the need for sub-
goals which apply a test to a variable (Section 10.5). No window is shown in
Figure 10.1 for adding an argument to a predicate (Section 10.6) because this
happens without interaction upon pressing the “Add slice” button accompanying
each defined predicate.

10.1 Specification Window

Figure 10.2 shows the main specification window in HANSEL. On the right is a
window showing the current specification. On the left is a collection of controls,
including the usual controls for quitting the system, clearing the specification,
undoing each edit, saving the specification, plus the following controls which
need more detailed explanation:

e The “New predicate” button is used to introduce a new predicate, with
the name given in the edit box to its right. In Figure 10.2 the predicate
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Choice of initial templates

Choice of refinements

Figure 10.1: How the HANSEL windows interact

example has been added and has been specified at the highest level using
an initial template (see Section 10.2).

The “New argument” button is used to add an argument to a predicate
appearing as a subgoal in the specification but which does not have a
definition in the specification (i.e it is an externally defined predicate).
This simply adds an additional argument to every occurrence of the named
predicate along with a subgoal to test that variable (see Section 10.5).

The “Rename” button renames the given variable name in the given pred-
icate to some new name. The new name is not allowed to be a name
currently used in the predicate, thus preventing variables being unified
“covertly”. Instead, they must be renamed “overtly” by using equality in
the refinement choices (Section 10.3). This design choice is arguable - it is
often convenient to use renaming to identify variables but unconstrained
renaming can be used to change the semantics of the specification radically.

The “Copy clause” button makes a duplicate of a chosen clause in the
given predicate. This is most commonly used immediately after selecting
an initial template, since the initial templates have only a single base and
recursive clause, and some problems require several of these.

The specification displayed on the right side of Figure 10.2 corresponds to

the formal expression:

example(Setl, Set2) <« Setl ~ Set2

example(Set3, Setd) <«  Setd ~ Seth A
example(Setd, Setd)
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Add slice

example (Set1,Set2) if

i(Set1) <o i{Set2)

example (Set3, setd) if

i(Set3) <<>> i{Set5) | and

example (Set5, setd)

Figure 10.2: The main specification window

In the display, the subgoals corresponding to Setl ~ Set2 and Set3 ~ Setb
appear as buttons. This makes it easy to see where are the “gaps” in the current
specification. Clicking on one of these buttons prompts for refinements for the
appropriate subgoal: a menu like the one in Section 10.3 if the rewrite rules
of Section 9.4 apply; a window like the one in Section 10.5 if the subgoal is a
general test; or a window like the one in Section 10.4 if the subgoal stipulates a
relation to be defined. Above each predicate appears a button named “Add slice”
which, when clicked, adds an additional argument slice to that predicate (see
Section 10.6). As the specification develops we accumulate properties associated
with the rewrites and skeletons we select. Designers can choose whether or not
they wish to see these properties displayed in the specification window. In the
examples of this thesis we chose not to display them because they are discussed
in the accompanying text.

10.2 Initial Templates

Figure 10.3 shows the window in which initial templates are chosen for a named
predicate (in this case the name is example). The templates are shown as a
scrolling menu, where clicking the “Select” button beside a template selects
that template. The current version of HANSEL has only three general templates
which can be adapted by duplicating clauses (see previous section) but this can
be adapted to suit the domain. The definitions in each template are shown as
they will appear in the specification.

10.3 Applying Refinements

Section 10.1 explained that clicking on a subgoal in the main specification win-
dow which is capable of refinement by the rewrites in Section 9.4 will present a
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Add slice
example (Setl, Set2) if

i(Set1) <<>> i(Set2)

Audd slice
example (Setl, Set2) if

i(Set1) <<>> i(Set2)

example (Set3, Setd) if

i{Setd) «<>> I(Set5) | and

example (Seth, Setd)

Hdd slice
example (Setl, Set2) if

i(Setl) <<>» i(Set2)

example (Set3, Setd) if

i(Setd) <>> i(Set5) | and

example (Seth, Set6) and

i(Set6) <<>» i(Setd)

Figure 10.3: Choice of initial templates
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menu of those refinements. An example, appears in Figure 10.4. This has been
generated by matching the left-hand side of rewrite rules 11 to 17 of Section 9.4.3
and using a simple text template to give a less formal looking description of the
rewrite. For instance, the menu item second from the top in Figure 10.4 is gen-
erated from rewrite 15 of Section 9.4.3, with the generated text describing the
transitivity introduced by that refinement.

Setl is equal to Set2

Find some set smaller than Setl which is larger than Set2

Make SetZ from the union of two sets smaller than Setl

Expand Setl and show that Set? is inside the expansion

Introduce a relation which removes axioms from Setl to give Set2

Introduce a relation which specialises Setl to Set2

Find a subset of Setl and remove it to give Set?

Figure 10.4: Refinements for Setl D Set2

10.4 Introducing Skeletons

If the subgoal clicked in the main specification window (Section 10.1) is of the

form S1 -5 52, denoting that a predicate needs to be defined to relate S1 and
52, then a window offering choices of skeletons for predicate definition is shown,
as in Figure 10.5. In the top row of buttons in this window are buttons allowing
the predicate either to be identified with an existing predicate (a menu of these
appears when that button is pressed) or stipulated as an external predicate (in
which case the given name appears in the subgoal but no definition of it is
added to the specification). Each of the other rows in the window describe a
class of skeletons, parameterised through the edit fields in the corresponding
row (see Section 9.5). There is a row for each of the skeleton groups identified
in Section 9.5.1. The interface is flexible to allow for changes to the library
of skeletons: if new groups of skeletons are added the window automatically
produces the additional rows.
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- Existing precicate | | Extemal Predicate 1|
:Eiel;l.en;u';;/e;saju Relation name: g“““““““““‘“““““‘“““““ Mapping relation W«»«M
: . name:

Selection

| Element search | Relation name: relation/test
: name:

s Selection P
{ Element search with test | Relation name: relation/test(1) tes1(2) name:
i name: B

H . . Name of relation .
| Detuction | Relation name: S s Deduction type:

H . Name of relation . .
| Abduction | Relation name: o Abduction type:

i . . Mapping relation (=
| Generic relation | Relationname: [ [FEY

Figure 10.5: Skeleton choice window

10.5 Refining General Tests

If the subgoal clicked in the main specification window (Section 10.1) is of the
form T(S), denoting that some test may be applied to axiom set S, then the
window shown in Figure 10.6 appears. This gives three ways of refining the test:
by relating the axiom set to some other set currently mentioned in the clause
containing the test (top row of the window); by choosing a predicate already
appearing in the specification (middle row) or by making the test be a unary
predicate placing a type restriction on the set (lower row). In the example of
Figure 10.6 the test was T(Set3) and it appeared in a clause containing sets Setl
and Set2 so the menu of possible relations to other sets contains Setl ~ Set3
and Set2 ~ Set3. Only one predicate has been defined, ezample of arity 2, so
this is given as an existing predicate with an edit field for each of the variable
names which should appear in the rewrite for the test (these are checked to
ensure that at least one of them is the set being tested and the others are sets
mentioned in the clause).

10.6 Extending Skeletons

At the end of Section 10.1 we saw that each predicate in the main specification
window has above it a button named “Add slice” which, when clicked, adds an
additional argument slice to that predicate. This requires no additional window
to be created because the additional argument and the subgoals required to
connect it to the rest of the clause are added automatically. In each non-recursive
clause the additional subgoal is a test on the argument. In each recursive clause
the additional subgoal is a relation between the argument name in the head and
the argument name in the recursive subgoal. The new argument is always added
in the position before the last argument of the predicate, following the convention
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i(Setl) << i(Set3)
i(Set2) <<>> i(Setd)

Existing relation

Test restricting the type of set

Figure 10.6: Test refinement window

that the last argument of a predicate is normally the output of the predicate so
we shouldn’t push it further to the left as we add slices. For example, if we add
an argument slice to the predicate:

p(X,X) « qX)
p(X,Z) « r(X,)Y) A p(Y,2)

then the resulting definition is:

p(X,4,X) « q(X) A Ti(4)
p(X,Al,Z) «— T(X,Y) A\ p(Y,AQ,Z) A Al NAQ

This is a simpler mechanism for extension than we needed in the techniques
editor of Lss which had three different forms of extension. This is because the
general relation A; ~ Az which is available in HANSEL but not in LSS allows a
single form of extension which is general enough to subsume the three in LsS.
One might argue that more specific forms of extension are beneficial because
they make useful conceptual distinctions. In HANSEL we have chosen the most
parsimonious solution in the knowledge that others are legitimate.
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Worked Example

To illustrate HANSEL in use we develop in this chapter a version of the patient
processing example which we used in Chapter 6 to demonstrate the LSS Process
tool. This example is not ideally suited to HANSEL because it makes little use of
the notion of axiom sets as arguments, which is what gives HANSEL its versatil-
ity, but it has the advantage of familiarity. The scenario begins by selecting a
template describing the overall pattern of recursion for the predicate, as shown
in Figure 11.1. The predicate takes two arguments: the theory describing the
patients and the theory describing the results. In the base case (clause 11.1)
the patient theory is related to that for the results. We also have two identi-
cal recursive clauses (11.2 and 11.3) which connect the theories in the heads of
the clauses to new theories in the recursive subgoal. These will be the clauses
which drive the processing of patients, with one case dealing with subsets of
patients which can be diagnosed and the other dealing with patients which must
be referred for tests.

Our next step (shown in Figure 11.1 is to replace the generic relations in
the template with more specific relations. In the base case we choose simply to
introduce an external predicate which is expected to define the relation. In the
recursive cases we introduce inequalities between the theories corresponding to
each axioms set. For Patients we stipulate that the theory taken down through
the recursion (as RestPatients) is a specialisation of the original patient theory.
By contrast the Results theory is a generalisation of the RestResults theory.
Intuitively, the set of relevant information about patients gets smaller as we go
down through the recursion, while the set of things we can conclude about the
results gets larger as we go back up through the recursion.

We then refine the inequality between Patients and RestPatients in each
recursive clause. Our choice is to select a subset of Patients and remove that
from the original set to give RestResults. This introduces a new axiom set,
Subjects, which describes the patients to be diagnosed or referred. This step is
shown in Figure 11.3.

Our next step is to define the relation for choosing patients. This is done by
selecting a skeletal definition for searching a set recursively, terminating when an
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R —

Add slice

process_patients(Patients,Results) if

i{Patients) <<>» i(Results)

process_patients (Patients,Results) if

i{Patients) <<>» i(RestPatients) § and

process_patients(RestPatients,RestResults) and

i{RestResults) <<>» i(Results)

process_patients (Patients,Results) if

i(Patients) <<>> i(RestPatients) { and

process_patients(RestPatients,RestResults) and

w Sete 0 [RestResults

i( ) <<>> i(Resuits)

predicate [pracess_paiients
- predicate {process_patients

clause number {7

File name: :

Ontology:

process_patients(Patients, Results) +  7(Patients) = 7(Results) (11.1)
process_patients(Patients, Results)  + T(Patients) ~ 7(RestPatients)A (11.2)
process_patients(RestPatients, RestResults)A
7(RestResults) = T(Results)
process-patients(Patients, Results) — T(Patients) & T(RestPatients)A (11.3)
process-patients(RestPatients, RestResults)A
T7(RestResults) & T(Results)
Figure 11.1: HANSEL first scenario - first step
process_patients (Patients,Results) if
—! completed_processing(Patients,Results)
process_patients(Patients,Results) if
e
process_patients (RestPatients, RestResults) and
i << i(Results)
M process_palients Pprocess_patients(Patients,Results) if
i(Patients) »> i(RestPatients) | and
process_patients(RestPatients, RestResults) and
i <« ifResults)
predicate [process_paients
predicate [process_patients
ause number |
File name:
Ontology:
process_patients(Patients, Results) <+  completed_processing(Patients, Results) (11.4)
process_patients(Patients, Results) e T(Patients) 2 T(RestPatients)A (11.5)
process_patients(RestPatients, RestResults)A
7(RestResults) C 7(Results)
process_patients(Patients, Results) <« r(Patients) D r(RestPatients)A (11.6)

process_patients(RestPatients, RestResults)A
T(RestResults) C 7(Results)

Figure 11.2:

HANSEL first scenario - second step
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Add slice
nrocess_patients(Patients,Results) if
completed processing(Patients,Results)
process_patients(Patients,Results) if
Subjects is a subset of the axioms in Patients and
remove(Subjects, Patients, RestPatients) and
process_patients(RestPatients,RestResults) and
[ el | I,
A ————_y T oo 0 g_patients(Patients, Results) if
- Subjects is a subset of the axioms in Patients and
remove (Subjects, Patients, RestPatients) and
1 to [Subjects process_patients(RestPatients,RestResults) and
=3 e =
predicate {process_patients

- predicate {process_patisnts

clause number

“ File name: |
Ontology:

process_patients(Patients, Results) <+ completed_processing(Patients, Results) (11.7)
. . . subset .
process_patients(Patients, Results) Patients *“3" SubjectsA (11.8)

remove(Subjects, Patients, Rest Patients)A
process_patients(RestPatients, RestResults)A
T(RestResults) C T(Results)
. . . subset )
process_patients(Patients, Results) Patients °"~s " SubjectsA (11.9)

remove(Subjects, Patients, Rest Patients)A
process_patients(RestPatients, RestResults)A
T(RestResults) C r(Results)

Figure 11.3: HANSEL first scenario - third step

axiom describing a patient is found (skeleton 15 in Appendix C). Thus the set of
Subjects is a singleton set containing the axiom found during search through the
Patients set. Figure 11.4 shows the state of the system after these refinements.

We now turn to the inequality between RestResults and Results. This
should make Results at least as large as RestResults so we stipulate a relation
which generates new axioms consistent with RestResults and add these to it to
obtain Results. This is shown in Figure 11.5.

Finally, we introduce externally defined predicates to perform the diagnosis
and refer patients for tests. This gives us the complete definition shown in
Figure 11.6.

We are now at the same stage in our discussion of HANSEL as we were at the
end of Chapter 6 when discussing 1ss. Chapter 9 introduced the formal basis
for the method and the current chapter has demonstrated how the tools within
HANSEL interact during design. In the next chapter we assess the effectiveness
of HANSEL on some larger problems and compare it to LSS.



104 Chapter 11. Worked Example

=

process_patients{Patients, Results) if
completed_processing(Patients, Results)
process_patients(Patients,Results) if
choose_patients (Patients, Subjects) and
remove (Subjects, Patients, RestPatients) and
process_patients(RestPatients, RestResults) and
i ) << i{Results)
process_patients(Patients,Results) if
choose_patients (Patients, Subjects) and

refer_for_tests remove (Subjects,Patients, RestPatients) and

process_patients(RestPatients, RestResults) and
w 0 i(RestResults) << i{Results)
predicate [process_patients
Add slice

precicatey | oce s RD et B choose_patients(Patients, Subjects) if
clause number select(X,Patients, Ty and

patient () and

singleton(x, Subjects)

choose_patients(Patients, subjects) if
select(X,Patients, Ty and

not (patient(X)) and

choose_patients (T, subjects)

process_patients

process.patients(Patients, Results) <+ completed_processing(Patients, Results) (11.10)

process-patients(Patients, Results) — choose-patients(Patients, Subjects)A (11.11)
remove(Subjects, Patients, Rest Patients)A
process-patients(RestPatients, RestResults)A
7(RestResults) C T7(Results)

process_patients(Patients, Results) <+ choose_patients(Patients, Subjects)A (11.12)
remove(Subjects, Patients, Rest Patients)A
process_patients(RestPatients, RestResults)A
T(RestResults) C r(Results)

choose_patients(Patients, Subjects)  + S(X, Patients, T)A (11.13)
patient(X)A
singleton (X, Subjects)
choose_patients(Patients, Subjects) <+ S(X, Patients, T)A (11.14)
not(patient(X))A

choose_patients(T, Subjects)

Figure 11.4: HANSEL first scenario - fourth step
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- A to iReferrals

process_patients(Patients,Results) if

process patients(Patients,Results) if

process_patients(Patients,Results) if

Add sl

completed processing(Patients,Results)

choose_patients(Patients, Subjects) and

remove (Subjects, Patients, RestPatients) and

process_patients(RestPatients,RestResults) and
Diagnoses contains new which could be aded to

union(Diagnoses, RestResults, Results)

choose_patients (Patients, Subjects) and
remove (Subjects, Patients,Restpatients) and
process_patients(RestPatients,RestResults) and

predicate firocess. paients

predicate {process paents
clause number

File name:
Ontology:

choose_patients (Patients, Subjects) if

choose_patients(Patients, Ssubjects) if

Referrals contains new i which could be aded to
wnion(Referrals,RestResults,Results)

Aad slice

select(X,Patients,T) { and

patient (X) and
singleton (X, Subjects)

select(X,Patients,T) | and
not (patient (x)) and
choose_patients(T, Subjects)

process_patients(Patients, Results) + completed_processing(Patients, Results)

process_patients(Patients, Results) <+ choose_patients(Patients, Subjects)A

remove(Subjects, Patients, Rest Patients)A

process_patients(RestPatients, Rest Results)A
RestResults """ DiagnosesA

union(Diagnoses, RestResults, Results)

process_patients(Patients, Results)  + choose_patients(Patients, Subjects)A

remouve(Subjects, Patients, Rest Patients)A
process_patients(RestPatients, Rest Results)A
RestResults "~2" ReferralsA
union(Referrals, Rest Results, Results)

Plus choose_patients/2 as in Figure 11.4.

(11.15)
(11.16)

(11.17)

Figure 11.

HANSEL first scenario - fifth step
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select(X,Patients,T) and

File name: patient (¥) and
- singleton (X, Subjects

select(X,Patients,T) | and

not (patient (X)) and

process_patients(Patients,Results) i
completed_processing{Patients,Results)
process_patients(Patients,Results) i
choose_patients(Patients, Subjects) and
remove (Subjects, Patients, RestPatients) and
process_patients(RestPatients,RestResults) and
diagnose (RestResults, Subjects,Diagnoses) and
u [ et union(Diagnoses, RestResults, Results)
process_patients(Patients,Results) if
_W choose_patients(Patients, Subjects) and
i remove (Subjects,Patients,Restratients) and
process_patients(RestPatients, RestResults) and
_ to refer_for_tests(RestResults,Subjects,Referrals) and

predicate [iiese v union(Referrals, RestResults,Results)

choose_patients (T, Subjects)

if

clause number [~ choose_patients(Patients, Subjects) if

) )
@il choose_patients (Patients, Subjects) if

process_patients(Patients, Results)

process_patients(Patients, Results)

process_patients(Patients, Results)

completed_processing(Patients, Results) (11.18)

choose_patients(Patients, Subjects)A (11.19)
remove(Subjects, Patients, Rest Patients)A
process_patients(RestPatients, Rest Results)A
diagnose(RestResults, Subjects, Diagnoses)A
union(Diagnoses, Rest Results, Results)

choose_patients(Patients, Subjects)A (11.20)
remove(Subjects, Patients, Rest Patients)A
process-patients(RestPatients, RestResults)A
refer-for-tests(Rest Results, Subjects, Referrals)A
union(Referrals, Rest Results, Results)

Plus choose_patients/2 as in Figure 11.4.

Figure 11.6: HANSEL first scenario - sixth step
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Evaluation

Unlike some of the work described in Chapter 7, the HANSEL tool was not built
with the aim of being easy for a particular group of people to use. On the
contrary, it was built to be as generic as possible and experience suggests that this
makes it unlikely to be accessible to specification designers without training them
in the general (and therefore abstract) theory on which it is based. Nevertheless,
there are empirical issues which are germane to the current HANSEL tool. These
are:

e To what extent can examples from established (possibly informal) design
methods be described using HANSEL? The empirical issue here is whether
the sort of design method which HANSEL supports is one which might
actually occur. We evaluate this by tackling examples from the KADS
design method in Sections 12.1 and 12.2.

e The degree to which HANSEL prescribes how to tackle a design problem.
If we take a particular description of a problem, not expressed in a formal
language, then it is clear that HANSEL can describe this problem in different
ways but how different might these be in practice 7 We give an example
of this in Section 12.2 by taking the same KADS inference model and
specifying it in two different ways in HANSEL.

Finally, there is the more general issue of the benefits obtained by having
a formal lifecycle of the sort used in HANSEL compared to the distributed style
of specification described in Chapters 3 to 7. To assess this, we return, in
Section 12.4, to the problems raised in Section 7.3 when evaluating the Lss
system.

12.1 An Example from KADS: Assessment

Figure 12.1 shows the diagrammatic inference structure for an assessment task.
This takes as inputs a case description (describing the situation being assessed)
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and a system model (describing the principles used in classifying situations in
the chosen domain). The output of the assessment task is a description of the
decision class to which the case has been assigned. To obtain this, the case
description is selectively generalised to obtain appropriate features which are
compared to norms selected from the system model.

Case description System model

select norms

Decision class

Abstracted case

Figure 12.1: KADS inference structure diagram for an assessment task(adapted
from [Tansley and Hayball, 1993] page 294).

12.1.1 Deriving an Assessment Model

We begin by selecting the simplest initial template provided in HANSEL, which
states that assessment relates a case description to a decision class.

assessment(CaseDescription, DecisionClass) <

7(CaseDescription) ~ 7(DecisionClass) (12.1)

We then refine this by applying Rewrite 6 to say that the relationship between
the case description and decision class is through an abstracted case.

assessment(CaseDescription, DecisionClass) <
T(CaseDescription) ~ 7(AbstractedCase)A\ (12.2)
T(AbstractedCase) ~ 1(DecisionClass)

Now we apply Rewrite 3 to say that the abstracted case is a generalisation
of the case description. This introduces the property given in expression 12.4,
which requires anything provable from the case description to be provable from
the abstracted case.

assessment(CaseDescription, DecisionClass) <
7(CaseDescription) C 7(AbstractedCase)A (12.3)
T(AbstractedCase) ~ 1(DecisionClass)

VX.CaseDescription - X — AbstractedCase - X (12.4)
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The relation between abstracted case and decision class cannot be classified
as a specialisation or as a generalisation so we simply introduce a new predicate
to describe the appropriate relation.

assessment(CaseDescription, DecisionClass) <
7(CaseDescription) C T7(AbstractedCase)A\ (12.5)
compare_case(AbstractedCase, DecisionClass)

We now add the missing knowledge sources from the KADS diagram of Fig-
ure 12.1. These are the system model, used in selecting the norm from the
abstracted case, and the norm itself. The system model is an input to the as-
sessment predicate so it is added as an extra argument slice to the predicate
(with T2(SystemModel) added automatically to supply the “hook” for connect-
ing the system model to other arguments in the predicate if necessary). The
norm is used in comparing the case so it is added as an additional argument to
compare_case (with T;(Norm) added automatically to enable it to be related
to other axiom sets).

assessment(CaseDescription, SystemModel, DecisionClass) <
7(CaseDescription) C 7(AbstractedCase)A\
Ti(Norm)A (12.6)
compare_case(AbstractedCase, Norm, DecisionClass)A
T2(SystemModel)

The tests we just introduced are now refined. The first is rewritten to a
relation between the system model and the norm. The second simply checks
that the system model is of the appropriate type.

assessment(CaseDescription, SystemmModel, DecisionClass) <
7(CaseDescription) C 7(AbstractedCase)A\
7(SystemModel) ~ T(Norm)A (12.7)
compare_case( AbstractedCase, Norm, DecisionClass)A
system_model (SystemM odel)

We intend the norm to be a specialisation of the system model (since our idea
of a norm is that it describes a set of features which can be deduced from the
system model) so we apply Rewrite 1 to introduce the appropriate inequality.
This introduces the property given in expression 12.9, which requires anything
provable from the norm to be provable from the system model.

assessment(CaseDescription, SystemModel, DecisionClass) <
7(CaseDescription) C 7(AbstractedCase)A
7(SystemModel) D T(Norm)A (12.8)
compare_case(AbstractedCase, Norm, DecisionClass)A
system_model (SystemM odel)

VX.Norm F X — SystemModel - X (12.9)

Notice that this property is specific to clause 12.8 and HANSEL actually stores
the clause and its properties together in a single predicate, hansel _clause(C,T),
where C' is a clause in the specification and 7 is a set of properties required to
hold for any instance of C used to solve a goal) as described in Section 9.3. Pack-
aging the clauses together in this way makes it a little more clumsy to read them
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so we keep them separate in the examples of this chapter but the correspondence
between variables is important when we generate instances of properties for test-
ing in Section 12.3. Thus, the variables Norm and SystemM odel in clause 12.8
and property 12.9 (above) form a connection between these two expressions dur-
ing testing in Section 12.3. The same principle holds for other clause properties
in this chapter.

We now commit to introducing a relation for generalising from the case de-
scription to the abstracted case and a relation for specialising the system model
to obtain the norm. This is done by applying rewrites 19 and 12. As a conse-
quence, we introduce properties 12.11 and 12.12 which have the effect of tight-
ening the constraints already given by properties 12.4 and 12.9.

assessment(CaseDescription, SystemModel, DecisionClass) <

eneralise

CaseDescription gens AbstractedCaseN

SystemM odel speciglise NormA (12.10)
compare_case(AbstractedCase, Norm, DecisionClass)A\
system_model(System M odel)

3X.SystemModel - X A not(Norm b X) (12.11)
3X.AbstractedCase - X A not(CaseDescription - X) (12.12)

Our next step is to introduce skeletal definitions for the generalisation and
specialisation relations of the previous step. These correspond to the abstract
and select_norms ovals in the diagram of Figure 12.1. We intend that the
abstract predicate should generalise from a case description to an abstracted case
by applying all the generalisations possible to each axiom in the case description.
Therefore we choose Skeleton 7 for this relation. The select_norms predicate is
intended to filter the system model for parts of it establishing the norm, so we use
Skeleton 9 for it. In selecting these skeletons we also introduce properties 12.19
to 12.22.
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assessment(CaseDescription, SystemModel, DecisionClass)
abstract(CaseDescription, AbstractedCase)\
select.norms(SystemModel, Norm)A (12.13)
compare_case(AbstractedCase, Norm, DecisionClass)A\
system_model(SystemM odel)

abstract(CaseDescription, AbstractedCase) <
empty(CaseDescription)A (12.14)
empty(AbstractedCase)

abstract(CaseDescription, AbstractedCase) <
S(X, CaseDescription, T)A
setof(X1, generalisation(X, X1), Set)A

abstract(T, T1)A (12.15)
A(X, Set, Setl)A
union(Setl, T'1, AbstractedCase)
select_norms(SystemModel, Norm) «
empty(SystemM odel) A (12.16)

empty(Norm)

select_norms(SystemModel, Norm) «
S1(X, SystemModel, T)A
relevant(X, X1)A (12.17)
select_norms(T, T1)A
A(X1,T1, Norm)
select_norms(SystemModel, N orm) <
S2(X, SystemModel, T)A\
not(relevant(X, X1))A
select_norms(T, Norm)

(12.18)

abstract(CaseDescription, AbstractedCase) —
generalisation(X1, X2) A
3X2. X1 € AbstractedCase A
X2 € AbstractedCase
A
generalisation(X1, X2') —
X2' € AbstractedCase )

VX1.X1 € CaseDescription —

VX2
( (12.19)

abstract(CaseDescription, AbstractedCase) —
generalisation(X1, X2) A
JX1. X1 € CaseDescription A
X1 € AbstractedCase
\
not(IX1.generalisation(X1, X2)) A
X2 € CaseDescription

VX2.X2 € AbstractedCase —

(12.20)

select_norms(SystemModel, Norm) —
IX2.relevant(X1,X2) A X2 € Norm
VX1.X1 € SystemModel — \%
not(3X2.relevant(X1, X2))
(12.21)
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select_norms(SystemModel, Norm) —

VX2.X2 € Norm — ( X 1l.relevant(X1,X2) A X1 € SystemModel ) (12.22)

The skeletal definitions introduced in the previous step require elements to
be selected from and added to sets but do not commit to the means of selection
or addition. We now stipulate that the first elements of appropriate sets should
be selected or added in each case.

assessment(CaseDescription, SystemModel, DecisionClass) «
abstract(CaseDescription, AbstractedCase)A\
select_norms(SystemModel, Norm)A (12.23)
compare_case( AbstractedCase, Norm, DecisionClass)A\
system_model(System M odel)

abstract(CaseDescription, AbstractedCase) <
empty(CaseDescription)A (12.24)
empty(AbstractedCase)

abstract(CaseDescription, AbstractedCase) <
select_first_element(X, CaseDescription, T)A
setof(X1, generalisation(X, X1), Set)A

abstract(T, T1)A (12.25)
add_element_first(X, Set, Setl)A
union(Setl, T'l, AbstractedCase)
select_norms(SystemModel, Norm) «+
empty(SystemM odel) A (12.26)

empty(Norm)

select_norms(SystemModel, Norm) «
select_first_element(X, SystemModel, T)A\
relevant(X, X1)A (12.27)
select_norms(T, T1)A
add_element_first(X1,T1, Norm)

select_norms(SystemModel, Norm) <«
select_first_element(X, SystemModel, T)A
not(relevant(X, X1))A
select_norms(T, Norm)

(12.28)

Finally we account for the remaining connection in the diagram in Figure 12.1
which requires select_norms to take the abstracted case into account. We do this
by adding an additional argument slice to select-norms (with this automatically
adding to assessment an additional variable in the select_-norms subgoal) and
carrying this through as an additional argument to the relevant relation which
determines how select_norms filters the axioms.
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assessment(CaseDescription, SystemModel, DecisionClass)
abstract(CaseDescription, AbstractedCase)\
select.norms(SystemModel, AbstractedCase, Norm)A (12.29)
compare_case(AbstractedCase, Norm, DecisionClass)A\
system_model(SystemM odel)

abstract(CaseDescription, AbstractedCase) <
empty(CaseDescription)A (12.30)
empty(AbstractedCase)

abstract(CaseDescription, AbstractedCase) <
select_first_element(X, CaseDescription, T)A
setof(X1, generalisation(X, X1), Set)A

abstract(T, T1)A (12.31)
add_element_first(X, Set, Setl)A
union(Setl, T'1, AbstractedCase)
select_norms(SystemModel, AbstractedCase, Norm) <«
empty(SystemModel) A (12.32)

empty(Norm)

select_norms(SystemModel, AbstractedCase, Norm) <«
select_first_element(X, SystemModel, T)A
relevant(X, AbstractedCase, X1)A (12.33)
select_norms(T, AbstractedCase, T1)A
add_element_first(X1,T1, Norm)

select_norms(SystemModel, AbstractedCase, Norm) <
select_first_element(X, SystemModel, T)A
not(relevant(X, AbstractedCase, X1))A
select_norms(T, AbstractedCase, Norm)

(12.34)

12.1.2 Running the Assessment Model

Our instance of the assessment model is now complete, in the sense that the
predicates corresponding to elements of the diagram in Figure 12.1 are defined.
There are, however, a number of predicates which HANSEL left undefined. These
refer to parts of the design where we make commitments to the contents of axiom
sets and decide on the data structures used to represent them. We choose the
standard Prolog list data structures for set representation and give below the
definitions of each of the missing predicates.
An empty set is represented by the constant ’[]’.

empty([]) (12.35)

The first element of a set corresponds to the head of a list.

select_first_element(X, [X|T],T) (12.36)

Elements are added to the head of a list.

add_element_first(X, T, [X|T]) (12.37)

An axiom, H <+ B is relevant to a given Case if there is an axiom in the
case which unifies with H (roughly speaking, the case talks about H).
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relevant((H <+ B),Case,(H + B)) < (H + B1) € Case. (12.38)

We have the following library of domain specific generalisations from an
axiom in the case description (first argument) to an additional axiom in the
abstracted case (second argument). The first three of these give axioms which
we can add if the case gives the age of a person, allowing the person to be
classified as young, middle aged or old. The next two allow a person who leads
a research group to be classified as having experience and management skills.

generalisation ( g;gz(;;’(g)) :Z;Zgé,m), N1 < 30) ) (12.39)
generalisation ( E?rfiid(jl(e,_];[;ea)tg)ui,age(X, N1),N1 > 30, N1 < 50) ) (12.40)
generalisation ( gz;];((;(()’ Z)a:ez?,e])\f,l), N1 > 50) ) (12.41)

generalisation ( &(;a;;)dei'_zge;zoczgi(())(()) : izzz)s,_group(X)) ) (12.42)
generalisation( Elrzzz‘zg;:z%fs)k:l_lst(;;); leads_group(X)) ) (12.43)

Finally, we define the way in which a norm is compared to an abstracted
case, Ac, giving us axioms describing a decision class. This is done by having
the decision class contain each axiom in the norm which can be deduced from
the abstracted case.

compare_case(Ac, [(H < P)|T),[(H < P)|R]) <«  deduce(basic,Act+ H)A  (12.44)
compare_case(Ac,T, R)

compare_case(Ac,[(H < B)|T],R) <  not(deduce(basic, Act+ H)){12.45)
compare_case(Ac, T, R)
compare_case(Ac, [],[]) (12.46)

We can now run our logic program by calling an appropriate assessment
goal. For example, we might have a case where dave is aged 36 and leads a
research group, and a system model which requires us to look for middle aged
people with management skills. Our goal is:

assessment(

(age(dave, 36) <« true), } [ (middle_aged(X) «+ true), D)
) ( )

(leads_group(dave) < true) management_skills(X) < true),

and this gives the decision classification confirming that dave does indeed
have all the skills stipulated in the system model:

D = [(middle_aged(dave) < true), (management_skills(dave) < true)]
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12.2 An Example from KADS: Qualitative Pre-
diction

The aim of this section is to demonstrate how different HANSEL specifications
can be designed from the same (informal) starting point. Figure 12.2 shows the
diagrammatic inference structure for a qualitative prediction task. The basic
idea of this task is to allow envisionments of the qualitative behaviour of a
system, given an initial state description and envisioning the predicted behaviour
at some later time. This involves the instantiation and computation of influence
relations to augment the state (top of the diagram) and the derivation of new
landmark values and influences to produce the predicted state (lower part of the
diagram).

instantiate 1

Influence relation
State description

Augmented state

instantiate 3

Influences

instantiate 2

‘ Parameter values 1 ‘ ‘ Parameter values 2 ‘

transform

Predicted state

Figure 12.2: KADS inference structure diagram for a qualitative prediction
task(adapted from [Tansley and Hayball, 1993] page 318).
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A classic qualitative simulation example is a spring anchored at one end which
is modelled qualitatively in terms of the position of its free end; the directional
velocity of its free end; and the directional acceleration of its free end. The
landmark values for each of these parameters are:

Position : Positive when fully extended. Zero when at rest. Negative when
fully compressed.

Velocity : Positive when travelling in the direction of extension. Zero when
not moving. Negative when travelling in the direction of compression.

Acceleration : Positive when accelerating in the direction of extension. Zero
when not accelerating. Negative when accelerating in the direction of
compression.

The continuous change of position, velocity and acceleration as the spring
oscillates is shown by the cycles in the diagram on the left of Figure 12.3'. The
numbered stages in this diagram indicate the approximate points at which a
significant qualitative change has occurred. We map these to the transitions be-
tween qualitative states shown on the right. For example, at state number 5 the
spring’s position is negative, its velocity is zero and its acceleration is positive.
The examples of Section 12.2.1 and Section 12.2.2 use HANSEL to construct a two
different models capable of generating this sort of behaviour: the first taking a
simpler route than the one suggested in the KADS diagram of Figure 12.2 and
the second conforming more closely to the KADS diagram.

\1 \2 \3 \4 \5 \6 \7 \8 \1 8 1 2
pos L position pos position pos position pos
& N Lo m velocity pos > velocity zero —>1 velocity neg
g 20T L i acceleration neg acceleration neg acceleration neg
8 I I I I I ) I I I
| || i |
R R 7 3
2 Pos| W position zero position zero
g z600 velocity pos velocity neg
> neg M o acceleration zero acceleration zero
R R
c b 6 5 4
pos
% Lo m Lo position neg position neg position neg
%5 26810 ]/% Lo (\}\} velocity pos ~— velocity zero [~ velocity neg
gneg| acceleration pos acceleration pos acceleration pos
I I I I I I I I I

Figure 12.3: Example behaviour of an oscillating spring

IMore sophisticated simulations are possible, for example modelling of damped oscillations
through the invention of new landmark values, but we do not consider these here.
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12.2.1 Deriving the First Qualitative Prediction Model

We begin by choosing a basic recursive template, in which the base case relates
the current state to the predicted state and the recursive state relates the current
state to the next state and from there to the predicted state.

gp(State, Predicted) < 7(State) ~ 7(Predicted) (12.47)

gp(State, Predicted) <«  7(State) ~ 7(NextState)A (12.48)
gp(NextState, Predicted)

We then rewrite our general relations to inequalities, with the predicted state
being included in the current state in the base case (rewrite 3) and the next state
including the current state in the recursive case (rewrite 1). This introduces
properties 12.51 and 12.52.

gp(State, Predicted) < 7(State) D 7(Predicted) (12.49)

gp(State, Predicted) <  7(State) C 7(NextState)A (12.50)
gp(NextState, Predicted)

VX.State - X — NextState - X (12.51)

VX.Predicted - X — State - X (12.52)

Next we commit to relations for specialising the current state in the base case
(rewrite 12) and generalising the current state in the recursive case (rewrite 19).
These introduce properties 12.55 and 12.56.

specialise

gp(State, Predicted) <« State = ~»  Predicted (12.53)
gp(State, Predicted) <«  7(State) generglise T(NextState)\ (12.54)

gp(NextState, Predicted)

3X.State H X A not(Predicted - X) (12.55)

3X.NextState - X A not(State - X) (12.56)

We now define the generalisation of the state in the recursive case using
skeleton 25, which introduces the predicate attribute_goal to determine the goal
used to derive the new landmark for an attribute of the system and applies
an appropriate form of deduction (basic) exhaustively to obtain all the new
attribute landmarks. The skeleton introduces properties 12.60 to 12.62.
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gp(State, Predicted) <« State specighise predicted (12.57)
gp(State, Predicted) <«  envision(State, NextState)\ (12.58)

gp(NextState, Predicted)

envision(State, NextState) < attribute_goal(State, Goal)A\
setof(Goal, deduce(basic, proof(State, Goal)), Set)A
union(Set, State, NextState)
(12.59)

envision(State, NextState) —

VX1.X1 € State — X1 € NextState (12.60)

envision(State, NextState) —
3AG.attribute_goal(State, G) AN YX.((X = G A deduce(D, State - G)) - X € NextState)
(12.61)

envision(State, NextState) —
VG.G € NextState — (G € State V (attribute_goal(State, G) A deduce(D, State - G)))
(12.62)

Finally, we define the specialisation of the current state to the predicted state
in the base case using skeleton 9, which allows only attributes of the state to be
passed through to the final state (the test determining this mapping being the
is_attribute subgoal). The skeleton introduces properties 12.69 and 12.70.

gp(State, Predicted) <  final_attributes(State, Predicted) (12.63)

gp(State, Predicted) <+  envision(State, (NextState)A (12.64)
gp(NextState, Predicted)

envision(State, NextState) < attribute_goal(State, Goal)\
setof(Goal, deduce(basic, proof(State, Goal)), Set)A
union(Set, State, NextState)
(12.65)

final_attributes(State, Predicted) <«  empty(State)A (12.66)
empty(Predicted)

final_attributes(State, Predicted) <«  select_first_element(X, State, T)A (12.67)
is_attribute(X, X1)A
final_attributes(T, T1)A
add_element_first(X1,T1, Predicted)

final_attributes(State, Predicted) <  select_first_element(X, State, T)A (12.68)
not(is_attribute(X, X1))A
final_attributes(T, Predicted)
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final_attributes(State, Predicted) —
3X2.is_attribute(X1, X2) A X2 € Predicted (12.69)
VX1.X1 € State — \ ’
not(3X 2.is_attribute(X 1, X2))

final_attributes(State, Predicted) —

VX2.X2 € Predicted — ( 3X1.4s_attribute(X1,X2) A X1 € State ) (12.70)

12.2.2 Running the First Qualitative Prediction Model

To run the qualitative model we must supply the definitions for the predicates
not built directly in HANSEL. The definitions of empty, select_first_element
and add_element_first are identical to those in Section 12.1.2 (clauses 12.1.2,
12.1.2 and 12.1.2). To design the other predicates we must decide how axioms
describing attributes will be represented and how the deduction mechanism for
deriving new states will work. The first of these tasks is straightforward. We use
the expression att(A,V,S) to denote that attribute A has value V in state S,
where S is either init (denoting the initial state) or s(S’) denoting the successor
state of state S’. The predicate used to select appropriate attribute expressions
is then:

is_attribute((att(A, V,S) < true), (att(A,V, S) « true)) (12.71)

and the predicate used to choose an appropriate goal for deriving an at-
tribute’s landmark value in the next state is:

attribute_goal(State, att(A, V, s(S))) < last_state_step(State, S) (12.72)

where last_state_step(State, S) is true if state S is the latest state currently
appearing in the axiom set, defined below as the state expression S for which
there exists no attribute with a successor state (s(.5)).

last_state_step(State, S) «
(att(A,V,S) < true) € State A not((att(Al, V1,s(S)) < true) € State)
(12.73)

Finally, we must define the proof rules for deducing new landmark values
for attributes. These are the basic deduction rules of Section 9.6 (clauses 9.32
t0 9.35).

We can now generate qualitative behaviours corresponding to the example in
Figure 12.3 by finding solutions to the goal given in expression 12.74 below. The
axiom set in the first argument of the ¢gp goal contains four kinds of information.
The first three clauses define the initial state of the spring (corresponding to the
state on the left in Figure 12.3). The next three clauses define transition rules
which derive values for attributes in successor states from attribute values in the
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current state - for example, the first of these says that the position of the end
of the spring in successor state, s(S), will be determined by a transition, trans,
on its current position and velocity. These transition definitions are given in
the next nine clauses - for instance, the first of these says that if a value (e.g.
position) is positive and its derivative (e.g. velocity) is positive then the value
stays positive. Finally come the clauses defining the qualitative opposing values
between position and acceleration at the next landmark.

gp([ (att(position,pos,init) < true), (12.74)

(att(velocity, zero, init) < true),

(att(acceleration, neg, init) < true),

(att(position, P, s(S)) < att(position, Pp,S)A
att(velocity, Vp, S)A
trans(Pp,Vp, P)),

(att(velocity, V, s(S)) < att(velocity, Vp, S)A
att(acceleration, Ap, S)A\
trans(Vp, Ap,V)),

(att(acceleration, A, s(S)) < att(position, Vp, S)A

qneg(Vp, A)),

(trans(pos, pos, pos) < true),

(trans(pos, zero, pos) < true),

(trans(pos,neg, zero) < true),

(trans(zero, pos,pos) < true),

(trans(zero, zero, zero) < true),

(trans(zero,neg,neg) < true),

(trans(neg, pos, zero) < true),

(trans(neg, zero,neg) < true),

(trans(neg, neg,neg) < true),

(gneg(pos,neg) « true),

(gneg(pos, zero) < true),

(gneg(zero, pos) < true),

(gneg(zero,neg) « true),

(gneg(neg, zero) « true),

(gneg(neg, pos) « true)], X)

The goal above will generate solutions for the predicted state (X), start-
ing with the immediate successor state and enlarging to each future state on
backtracking. The elements corresponding to a cycle through the diagram in
Figure 12.3 are:
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[ (att(position, pos, s(s(s(s(s(s(s(init))))))))

att(velocity, pos, s(s(s(s(s(s(s(init)))))))) « true),

att(acceleration, neg, s(s(s(s(s(s(s(init)))))))) < true),
)

(
att(position, zero, s(s(s(s(s(s(init))))))) « true),
)

))) « true),
)

(att(

(att(

i

(att(velocity, pos, s(s(s(s( (s(init))))))) « true),
(att(acceleration, zero, s(s(s(s(s(s(init))))))) « true),
(att(position, neg, s(s(s(s(s(init)))))) < true),
(att(velocity, pos, s(s(s(s(s(init)))))) < true),
(att(acceleration, pos, s(s(s(s(s(init)))))) « true),
(att(position, neg, s(s(s(s(init))))) < true),
(att(velocity, zero, s(s(s(s(init))))) « true),
(att(acceleratzon,pos s(s(s(s(init))))) < true),
(att(position, neg, s(s(s(init)))) « true),
(att(velocity, neg, s(s(s(init)))) « true),
(att(acceleration, pos, s(s(s(init)))) < true),
(att(position, zero, s(s(init))) < true),
(att(velocity, neg, s(s(init))) < true),
(att(acceleration, zero, s(s(init))) < true),
(att(position, pos, s(init)) « true),

(att(velocity, neg, s(init)) <« true),
(att(acceleration, neg, s(init)) + true),
(att(position, pos,init) < true),

(att(velocity, zero, init) « true),
(att(acceleration, neg, init) < true)]

12.2.3 Deriving the Second Qualitative Prediction Model

Section 12.2.1 describes a simple and direct way of describing a basic qualitative
prediction in HANSEL but the specification we designed has few points of contact
to the KADS diagram of Figure 12.2. For example, there are no subgoals in the
definition of ¢p in clauses 12.63 and 12.64 which refer explicitly to the creation
of new landmark values so we cannot connect this part of the KADS diagram to
the HANSEL design. This happened because we pushed the details of landmark
revision into a single predicate (envision) which performs all the updating of
state information in one sweep. This is an elegant solution (arguably, it is more
elegant than the KADS diagram) but it is worth comparing it to a design which
attempts to put more of the details of landmark revision at the top level of
design of gp. We begin with the same template that we used in Section 12.2.1.

gp(State, Predicted) < 7(State) ~ T(Predicted) (12.75)

gp(State, Predicted) <  7(State) = T(NextState)A (12.76)
gp(NextState, Predicted)

We now diverge from the design in Section 12.2.1 because we wish to talk
about changes to the landmarks, not just changes to the state. We introduce
these by two applications of rewrite 6.
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gp(State, Predicted) <« 7(State) = 7(Predicted) (12.77)

gp(State, Predicted) <+  7(State) ~ 7(Landmarks)A (12.78)
7(Landmarks) ~ 7(NewLandmarks)A
T(NewLandmarks) ~ T(NextState)A\
gp(NextState, Predicted)

Now we can say more about chain of relations which we introduced. Using
rewrite 2 we constrain the landmark values appearing at the start of the subgoal
sequence in the recursive clause to be a subset of those obtainable from the
current state. Using rewrite 3 we say that the next state, carried down through
the recursion, contains the new landmarks. This introduces properties 12.81
and 12.82

gp(State, Predicted) <« 7(State) ~ 7(Predicted) (12.79)

gp(State, Predicted) <«  7(State) D 7(Landmarks)A (12.80)
T(Landmarks) ~ 7(NewLandmarks)A
T(NewLandmarks) C T(NextState)A
gp(NeztState, Predicted)

VX.NewLandmarks - X — NextState - X (12.81)

VX.Landmarks = X — State - X (12.82)

We next commit to a relation for specialising the state to give landmark
values. This introduces property 12.85.

gp(State, Predicted) <« 7(State) =~ 7(Predicted) (12.83)

specialise

gp(State, Predicted) <«  State ~ ~» ~ LandmarksA (12.84)
T(Landmarks) ~ 7(NewLandmarks)A
7(NewLandmarks) C 7(NextState)A
gp(NeztState, Predicted)

3X.State - X A not(Landmarks + X) (12.85)

Following this line of design a step further, we apply skeleton 9 (defining
the predicate find_landmarks) to select landmark information from the current
state. The skeleton introduces properties 12.91 and 12.92.
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gp(State, Predicted) <« 7(State) = 7(Predicted) (12.86)

gp(State, Predicted) <« findlandmarks(State, Landmarks)A (12.87)
7(Landmarks) ~ 7(NewLandmarks)A
T(NewLandmarks) C T(NextState)A\
gp(NeztState, Predicted)

find_landmarks(State, Landmarks) <  empty(State)A (12.88)
empty(Landmarks)
find_landmarks(State, Landmarks) <+  Si1(X, State, T)A (12.89)

is_landmark(X, X1)A
findlandmarks(T,T1)A
A(X1,T1, Landmarks)

find_landmarks(State, Landmarks) <+  S2(X, State, T)A (12.90)
not(islandmark(X, X1))A
findlandmarks(T, Landmarks)

find_landmarks(State, Landmarks) —
3X2.islandmark(X1,X2) A X2 € Landmarks
VX1.X1 € State — \
not(3X2.is_landmark(X1, X2))
(12.91)

findlandmarks(State, Landmarks) —

VX2.X2 € Landmarks — ( 3XLis landmark(X1,X2) A X1 € State ) 1292)

We now turn to the relation establishing new landmarks from the current
landmark set. This cannot be refined via a set inequality, since the new landmark
set may be entirely different from the old one, so we introduce a relation directly
using skeleton 1. The new predicate (new_landmarks) maps each landmark to
a new one. It introduces properties 12.97 and 12.98.

gp(State, Predicted) 7(State) ~ 7(Predicted) (12.93)

F
gp(State, Predicted) <«  findlandmarks(State, Landmarks)A (12.94)
newlandmarks(Landmarks, NewLandmarks)A
7(NewLandmarks) C 7(NextState)A\
gp(NeztState, Predicted)

newlandmarks(Landmarks, NewLandmarks) <«  empty(Landmarks)A (12.95)
empty(NewLandmarks)

newlandmarks(Landmarks, NewLandmarks) <«  S(X,Landmarks,T)A (12.96)
newlandmark(X, X1)A
newldandmarks(T, T1)A
A(X1,T1, NewLandmarks)

newlandmarks(Landmarks, NewLandmarks) —
VX1.X1 € Landmarks — ( 3X2.new landmark(X1,X2) A X2 € NewLandmarks )
(12.97)
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newlandmarks(Landmarks, NewLandmarks) —
VX2.X2 € NewLandmarks — ( 3X1l.newlandmark(X1,X2) A X1 € Landmarks )
(12.98)

Our next step is to commit to a relation generalising from the new landmarks
to the next state (rewrite 19). This introduces properties 12.101 and 12.102.

gp(State, Predicted) < 7(State) ~ 7(Predicted) (12.99)
gp(State, Predicted) <« findlandmarks(State, Landmarks)A (12.100)
newlandmarks(Landmarks, NewLandmarks)A
generalise

NewLandmarks ~ NextStateN
gp(NextState, Predicted)

VX1.NewLandmarks = X1 — NextState - X1 (12.101)
3X2.NextState - X2 A not(NewLandmarks - X2) (12.102)

Continuing with this part of the design, we introduce a predicate,
replace_landmarks, for the generalisation from landmarks to new state, using
skeleton 1. This replaces all the new landmarks in the state. The skeleton
introduces properties 12.107 and 12.108.

gp(State, Predicted) <+ 7(State) ~ 7(Predicted) (12.103)

gp(State, Predicted) <+  findlandmarks(State, Landmarks)A (12.104)
newlandmarks(Landmarks, NewLandmarks)A\
replace landmarks(NewLandmarks, NextState)A
gp(NextState, Predicted)

replacelandmarks(NewLandmarks, NextState) <+  empty(NewLandmarKpr105)
empty(NextState)

replacelandmarks(NewLandmarks, NextState) <«  Si1(X, NewLandmark§lZ)A6)
replacelandmark(X, X1)A
replacelandmarks(T,T1)A
A1(X1,T1, NextState)

replace_landmarks(NewLandmarks, NextState) —
VX1.X1 € NewLandmarks — ( 3X2.replacelandmark(X1,X2) A X2 € NewtState )
(12.107)

replacelandmarks(NewLandmarks, NextState) —
VX2.X2 € NextState — ( IX1.replacelandmark(X1,X2) A X1 € NewLandmarks )
(12.108)

The skeletal definition for new_landmarks is intended to produce new land-
marks from the current ones but, form the KADS diagram of Figure 12.2 we
know that it also should take into account the information defining influences
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between attribute values. We therefore add an additional argument slice to
new-landmarks, which automatically introduces additional tests to that predi-
cate (these have already been rewritten in the specification below) and an addi-
tional test to gp.

gp(State, Predicted) <« 7(State) ~ T(Predicted) (12.109)
gp(State, Predicted) <  findlandmarks(State, Landmarks)A (12.110)
TUn fluences)A

new landmarks(Landmarks, In fluences, New Landmarks)A\
replacelandmarks(NewLandmarks, NextState) A
gp(NextState, Predicted)

new landmarks(Landmarks, In fluences, NewLandmarks) <
empty(Landmarks)A
empty(New Landmarks)A (12.111)

in fluence_set(In fluences)
new landmarks(Landmarks, In fluences, NewLandmarks) <

S(X, Landmarks, T)A

newlandmark(X, X1)A (12.112)
newldandmarks(T, In fluences, T1)A

A(X1,T1, NewLandmarks)

We then rewrite the test introduced into gp by the argument slice for
new_landmarks as a general relation between the tested set (Injfluences) and
the current state.

gp(State, Predicted) <« 7(State) ~ T(Predicted) (12.113)

gp(State, Predicted) <  find-landmarks(State, Landmarks)A (12.114)
T(State) ~ 7(Influences)A
new landmarks(Landmarks, In fluences, New Landmarks)A\
replacelandmarks(NewLandmarks, NextState) A
gp(NextState, Predicted)

Continuing this line of design, we constrain the influences to be included in
the state (rewrite 2). This introduces property 12.117.

gp(State, Predicted) <« 7(State) ~ T(Predicted) (12.115)

gp(State, Predicted) <  findlandmarks(State, Landmarks)A (12.116)
7(State) D 7(Influences)A
new landmarks(Landmarks, In fluences, New Landmarks)A\
replacelandmarks(NewLandmarks, NextState) A
gp(NextState, Predicted)

VX.Influences - X1 — State - X1 (12.117)

We then commit to a specialisation relation between current state and influ-
ences (rewrite 12), introducing property 12.120.
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gp(State, Predicted) <« 7(State) ~ T(Predicted) (12.118)
gp(State, Predicted) <+  findlandmarks(State, Landmarks)A (12.119)
State specigtise InfluencesA
new landmarks(Landmarks, In fluences, New Landmarks)A\
replacelandmarks(NewLandmarks, NextState) A
gp(NextState, Predicted)
3X2.State - X2 A not(Influences - X2) (12.120)

This specialisation relation is then defined as a filtering operation
(find_in fluences) over the current state by applying skeleton 9. This introduces
properties 12.126 and 12.127.

gp(State, Predicted) <« 7(State) ~ T(Predicted) (12.121)
gp(State, Predicted) <+ findlandmarks(State, Landmarks)A (12.122)
find_in fluences(State, In fluences)A
newlandmarks(Landmarks, In fluences, New Landmarks)A
replace_landmarks(NewLandmarks, NextState) A
gp(NextState, Predicted)
find_in fluences(State, In fluences) <  empty(State)A (12.123)
empty(In fluences)
find_in fluences(State, In fluences) <« S1(X, State, T)A (12.124)
is_in fluence(X, X1)A
find_in fluences(T, T1)A
A(X1,T1, Influences)
find_in fluences(State, In fluences) <«  Sa(X, State, T)A (12.125)
not(is_in fluence(X, X1))A
find_in fluences(T, In fluences)

find_in fluences(State, In fluences) —

VX1.X1 € State —+ ( \%

dX2.is_in fluence(X1,X2) A X2 € Influences )

not(3X2.is_in fluence(X 1, X2))
(12.126)

findin fluences(State, In fluences) —
VX2.X2 € Influences — ( 3X1.is_influence(X1,X2) A X1 € State )

(12.127)

We now turn to the base case of ¢p, where we constrain the predicted state
to be included in the current state (rewrite 1). This introduces property 12.130.
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gp(State, Predicted) <« 7(State) D T(Predicted) (12.128)

gp(State, Predicted) <+  findlandmarks(State, Landmarks)A (12.129)
find_in fluences(State, In fluences)A
new landmarks(Landmarks, In fluences, New Landmarks)A\
replacelandmarks(NewLandmarks, NextState) A
gp(NextState, Predicted)

VX.Predicted - X1 — State - X1 (12.130)

Following on from this, we further commit to a specialisation relation between
current and predicted state (rewrite 19). This introduces property 12.133.

specialise

gp(State, Predicted) < State = ~  Predicted (12.131)

gp(State, Predicted) <«  findlandmarks(State, Landmarks)A (12.132)
find_in fluences(State, In fluences)A\
new landmarks(Landmarks, In fluences, New Landmarks)A\
replacelandmarks(NewLandmarks, NextState) A
gp(NextState, Predicted)

VX.Predicted - X — State - X (12.133)

The form of specialisation we choose between current and predicted state is
simply the find_landmarks predicate which we have already built - in other
words the final prediction will be whatever landmarks are in the current state.
The final HANSEL definition for this form of qualitative prediction is given by
clauses 12.134 to 12.146 below.

gp(State, Predicted) <

findlandmarks(State, Predicted) (12.134)

gp(State, Predicted) <
findlandmarks(State, Landmarks)A
find_in fluences(State, In fluences)A
new landmarks(Landmarks, In fluences, Landmarks, NewLandmarks)A\
replacelandmarks(NewLandmarks, State, NextState) A
gp(NextState, Predicted)
(12.135)

findlandmarks(State, Landmarks) <+  empty(State)A (12.136)
empty(Landmarks)

findlandmarks(State, Landmarks) <  select_first_element(X, State, T)A (12.137)
islandmark(X, X1)A
finddandmarks(T, T1)A
add_element_first(X1,T1, Landmarks)

findlandmarks(State, Landmarks) <  select_first_element(X, State, T)A (12.138)
not(is_landmark(X, X1))A
findlandmarks(T, Landmarks)
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new-landmarks(Landmarks, In fluences, AllLandmarks, NewLandmarks) <
empty(Landmarks)A
empty(New Landmarks)A (12.139)
influence_set(Influences)A\
landmarks_set( All Landmarks)

new-landmarks(Landmarks, In fluences, AllLandmarks, NewLandmarks) <
select_first_element(X, Landmarks,T)A
new landmark(X, In fluences, AllLandmarks, X1)A (12.140)
new landmarks(T, In fluences, AllLandmarks, T1)A
add_element_first(X1,T1, NewLandmarks)

replacelandmarks(NewLandmarks, NextStateNextState) <
empty(NewLandmarks)A (12.141)

empty(NextState)
replace landmarks(NewLandmarks, State, NextState) «

select fzrst element(X, NewLandmarks,T)A
replace_landmark(X, X1, State, NewState)/\ (12.142)
replace_landmarks(T, NewState, T1)A

add_element_first(X1,T1, NextState)
replace._ landmarlcs(NewLandmarks State, NextState) <

select_first_element(X, NewLandmarks, T)A

not(replace_landmark(X, X1, State, NewState))/\ (12.143)
replacelandmarks(T, State, T1)A

add_element_first(X,T1, NextState)

find_in fluences(State, In fluences) < empty(State) A\ (12.144)
empty(Influences)

find_in fluences(State, In fluences) <+ select_first_element(X, State, T)A (12.145)
isanfluence(X, X1)A
find_in fluences(T,T1)A
add_element_first(X1,T1, Influences)

find_in fluences(State, In fluences) <  select_first_element(X, State, T)A (12.146)
not(is_in fluence(X, X1))A
find_in fluences(T, In fluences)

12.2.4 Running the Second Qualitative Prediction Model

As in Section 12.2.2, we must supply the definitions for the predicates not built
directly in HANSEL in order to run the qualitative model. The definitions of
empty, select_first_element and add_element_first are identical to those in
Section 12.1.2 (clauses 12.1.2, 12.1.2 and 12.1.2). To design the remaining pred-
icates we first need to decide on the forms of expressions which we need in the
axiom sets. These can be similar to those from our previous example (in Sec-
tion 12.2.2) but can be simplified because our new qualitative simulator replaces
old with new landmarks at each stage in the recursion rather than simply adding
them to the set of axioms, so the landmarks don’t need to have an argument
denoting the state to which they belong. Thus a landmark is denoted by the
expression att(A,V), where A is the attribute name and V is its value. The
clauses determining the next value for an attribute are also adaped to be in the
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form next_att(A,V) < P where the conclusion of the clause is the value, V, for
attribute, A, in a successor state and P is the condition in the current state. All
other elements of the axiom set are as given in Section 12.2.2.

We need to add predicates for identifying which axioms in our state descrip-
tion are landmarks and which are used in determining influences. The former is
straightforward, since landmarks are all clauses of the form att(A,V) « true.
The latter is similarly straightforward, since the information we need is described
by the next_att, trans and gneg predicates. The new predicates we need here
are therefore as given below.

islandmark((att(A, V) < true), (att(A, V) « true)) (12.147)

is_in fluence((next_att(A, P) < B),(next_att(A, P) < B)) (12.148)
isinfluence((trans(V1,V2,V3) « true), (trans(V1,V2,V3) « true)) (12.149)
is_in fluence((gneg(V, D) < true), (gneg(V, D) < true)) (12.150)

Finally, we need predicates which replace old with new landmarks in the
current state and which generate a new landmark from a state. The first of
these requires simply that the old landmark be removed from the state to which
the new one will be added. The second is similar to the envision predicate
defined in clause 12.59 of Section 12.2.2, in that it applies the basic deduction
proof rules (clause 9.32 to 9.35) to obtain the new landmark. It differs from
envision by having to take the union of landmark and influence axioms as the
basis for deduction, and by applying deduction ot a copy of that axiom set rather
than to the original so as to avoid instantiatign variables in transition clauses
between states.

replace landmark((att(A, V) < true), (att(A, V) < true), State, NewState) «

remove((att(A, V1) « true), State, New State) (12.151)

new-landmark((att(A, V) < true), In fluences, Landmarks, (att(A, V1) < true)) <
union(In fluences, Landmarks, State) A
copy-term(State, Statel)A
deduce(basic, proof(Statel, next_att(A, V1)))
(12.152)

We can now generate qualitative behaviours corresponding to the example
in Figure 12.3 by finding solutions to the goal given in expression 12.153 below,
which is similar to expression 12.74 in Section 12.2.2.
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gp([ (att(position, pos) < true), (12.153)

(att(velocity, zero) < true),

(att(acceleration, neg) < true),

(next_att(position, P) < att(position, Pp)A
att(velocity, Vp)A
trans(Pp, Vp, P)),

(next_att(velocity, V) «— att(velocity, Vp)A
att(acceleration, Ap)A
trans(Vp, Ap,V)),

(next_att(acceleration, A) < att(position, Vp)A

gneg(Vp, A)),

trans(pos, pos,pos) < true),

trans(pos, zero,pos) < true),

trans(pos, neg, zero) < true),

trans(zero, pos,pos) < true),

trans(zero, zero, zero) « true),

trans(zero,neg,neg) < true),

trans(neg, pos, zero) < true),

trans(neg, zero,neg) < true),

trans(neg,neg,neg) < true),

gneg(pos, zero) < true),

gneg(zero,pos) < true),

gneg(zero,neg) < true),

gneg(neg, zero) < true),

gneg(neg, pos) + true)], X)

(
(
(
(
(
(
(
(
(
(
(
(
(
(

Unlike the example of Section 12.2.2, the solutions obtained are for the cur-
rent set of landmarks only, not all the landmarks up to the current point. Nev-
ertheless, we get the same simulation of behaviour, corresponding to Figure 12.3
by generating successive sets of landmarks on backtracking, as shown in sequence
below.

[(att(position, pos) < true), (att(velocity, zero) < true), (att(acceleration, neg) < true)]
[(att(position, pos) « true), (att(velocity, neg) < true), (att(acceleration, neg) < true)]
[(att(position, zero) « true), (att(velocity, neg) <+ true), (att(acceleration, zero) « true)]
[(att(position, neg) < true), (att(velocity, neg) < true), (att(acceleration, pos) < true)]
[(att(position, neg) < true), (att(velocity, zero) < true), (att(acceleration, pos) < true)]
[(att(position, neg) < true), (att(velocity, pos) < true), (att(acceleration, pos) < true)]
[(att(position, zero) < true), (att(velocity, pos) < true), (att(acceleration, zero) < true))
[(att(position, pos) <« true), (att(velocity, pos) < true), (att(acceleration, neg) < true)]

12.3 Using the Example Properties for Testing

The three examples of this this chapter have yielded numerous properties which
can be instantiated by running tests using the meta-interpreter of Section 9.7.
This is capable of instantiating the properties but deliberately avoids prescribing
how to prove them. In this section we give an example of how to do this using
Prolog. First, each property is translated from its current predicate calculus
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definition into an equivalent Prolog goal, using Lloyd-Topor transformations
[Lloyd, 1985]. For example property 12.20 is translated into the Prolog goal:

abstract(CaseDescription, AbstractedCase) A
X2 € AbstractedCase N

not generalisation(X1, X2) A
not X1 € CaseDescription N\
X1 € AbstractedCase

The full set of properties translated in this way appears in Appendix D. All
of the terms in these translated properties are either predicates defined in the
specifications or correspond to the normal Prolog connectives, with the exception
of two terms which we define here:

e The expression X € S is defined as the normal recursive definition of list
membership in Prolog (since all of the examples use Prolog lists as the
data structure to represent axiom sets.

e The expression S F X is defined in terms of the sets of deductive inference
rules discussed in Section 9.6. We do this by connecting to clause 9.29
using the definition:

S+ X « deduce(F,S + X) (12.154)

where the flag used to choose a specific set of proof rules, F', is left as a
variable to permit any set of deductive proof rules to be used.

We can now check for contradictions to any of the instances of the properties
accumulated in the examples of this chapter by taking the negation of the cor-
responding Prolog goal from Appendix D and attempting to solve it in Prolog.
If we succeed then we have a refutation of the property and a potential problem
in our specification.

12.3.1 Results of Testing the Examples

We applied the testing procedure described above to the three examples of Sec-
tions 12.1, 12.2.1 and 12.2.3. This involved running the tests described earlier
for the programs of those sections, using the meta-interpreter of Section 9.7 to
accumulate test instances for appropriate properties. We then attempted to sat-
isfy those test instances using normal Prolog, as described above. As expected,
most of the tests succeeded but there where two surprises:

e Some of the tests on the qualitative simulation programs of Sections 12.2.1
and 12.2.3 were non-terminating. The cause of this was the need to
satisfy instances of goals such as propertyl2.81 which contain univer-
sally quantified goals to be proved from an axiom set via the deduc-
tive proof rules. In translating these to Prolog we converted them into
negated existential goals, using the equivalence: VX.P(X) — Q(X) <
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not(3IX.P(X) A not(Q(X))) Solving these goals in standard Prolog re-
quires exhaustive search for an instance of the goal, with negation as failure
being used to assume its falsity in the absence of a solution. The problem is
that if we attempt exhaustively to generate instances of X for a goal such
as State F X, where State is an axiom set from our qualitative simulation
examples, then we may be able to generate new instances indefinitely as we
simulate further and further forward in time. This creates our problem of
non-termination. Rather than attempt to fix the problem by making our
test harness more sophisticated we simply left out the offending properties.

In the assessment example of Section 12.1 we obtained one unexpected
failure to preserve property 12.11. The instance of this property which
caused the problem was:

(middle_aged(dave) < true),
3X. { (management_skills(dave) < true) FXA
} (12.155)
)

not( (middle_aged(dave) < true),
(management_skills(dave) < true)

This problem occurs because the property was created by the introduction
of a specialisation relation between System M odel and Norm in the partial
program described by clause 12.10. The expectation was that the Norm
would always be more specific than the System M odel but it turns out that
for simple system models the norm is the same. Thus we have a breached
property but it is not an error.

What would happen if we really do have an error in the program? To demon-

strate this we altered clause 12.31 of the final specification in Section 12.1 to:

abstract(CaseDescription, AbstractedCase) <
select_first_element(X, CaseDescription, T)A
setof(X1, generalisation(X, X1), Set)A
abstract(T, T1)A
union(Set, T1, AbstractedCase)

All we have done is to stop the element X, from which we performed a

generalisation, being added to the AbstractedCase. When we now run the
example and check its property instances, as before, we generate the following
three property instances which cannot be satisfied. To make these simpler to
read we write C in place of the case description instance:

{(age(dave, 36) <+ true), (leads_group(dave) < true)}

and A in place of the abstracted case description:

(middle_aged(dave) < age(dave, B) A B > 30 A B < 50),
old(dave) + age(dave,C) A C > 50),

young(dave) < age(dave, D) A D < 30),
experienced(dave) < leads_group(dave)),
management_skills(dave) + leads_group(dave))

(
(
(
(

Our three unsatisfied properties are then:

VXCHX - AF X (12.156)
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IX.AF X A not(C + X) (12.157)

abstract(C, A) —

XlecCA

generalisation(X1,X2) A
X1le A

3X1 (
VX2.X2€ A~ Vv (12.158)

not(3X1.generalisation(X1, X2)) A
X2ecC

Property 12.156 is an instance of clause property 12.4. It originated in an
early design stage when we stipulated that the abstracted case description should
be at least as large as the case description. Its failure tells us that this is not
the case, creating a problem in the assessment predicate. Property 12.157 is an
instance of clause property 12.12. It originated a little later in the description
of the assessent predicate, when we decided to use a generalisation relation be-
tween the case description and the abstracted case. Its failure tells us that the
relation we are using to actually do this isn’t yielding the more general axiom
set we expected. Property 12.158 is an instance of property 12.20. It was intro-
duced along with the skeleton for abstract. Its failure tells us that the mapping
expected to be implemented by this skeleton has not been preserved. This is, in-
deed the root of our problem, because our alteration to abstract stopped it from
including in the abstracted case all the original elements of the case description
along with those obtained through the generalisation mapping. This, in turn
led to failure of the clause properties.

We have just demonstrated an example of using properties accumulated dur-
ing design to find potential problems when programs are altered. This does
not, however, tell us how effective such mechanisms might be in practice. Effec-
tiveness depends on the errors we trap being the ones which are pivotal to the
quality of design. Even if they are pivotal, effectiveness also depends on being
able to move swiftly from detecting violated properties to finding the source of
the problem. This is seldom as easy as we have made it appear in this exam-
ple. Thus, there are still substantial obstacles to be overcome before this sort of
method becomes of practical use.

12.4 Return to Problems of Section 7.3

The development of the HANSEL system was stimulated by problems experienced
with the distributed style of design used in the LSS system. Section 7.3 sum-
marises these problems under five subsections, which we now re-visit to consider
whether HANSEL gives any improvement in these areas.
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12.4.1 Choice of Style (from Section 7.3.1)

A problem experienced in LSS is that each tool requires designers to adopt a
narrow style of description and normally is only able to produce a limited class of
Horn clause specifications. One must know in advance of using the tool whether
its style of description suits the problem in hand. The HANSEL system avoids
this problem in one sense by having a uniform style of description: there is only
one choice of descriptive style. Unfortunately, this doesn’t solve the problem
completely because the single style of description used in HANSEL, although
more general than the LSS tools still requires the designer to adopt a particular
view of problem description (initially in a set-based style and refining to the use
of skeletons and extensions). We know from the examples in this thesis that
numerous problems can be made to fit this mould but it is not clear whether it
is a convenient style of description.

Evaluations of related systems, such as techniques editors (Section 7.1), sug-
gest that to connect to problem domains it is necessary to provide domain-
specific templates and refinements which domain experts recognise readily. This
could be done with HANSEL but we would then be back to the LSS situation
with multiple tools and the problem of selecting them. Nevertheless, the ex-
plicit lifecycle model which HANSEL provides might make this less of a problem
than in LSS because there is already a natural division into tools corresponding
to the refinement tasks of Figure 10.1. If specialisation of HANSEL takes place by
specialising each of these tools, while keeping the refinement framework intact,
then the selection of tools could be easier because only a few would apply at
each refinement stage.

12.4.2 Maintaining an Overview (from Section 7.3.2)

Perhaps the largest problem of distributed design systems, and of formal knowl-
edge sharing in general, is keeping track of the “big picture” of a large design
when working on a small portion of it. The LSS system attempts to do this simply
through sharing specifications between tools in a standard formal language, but
this language only describes what each tool has done. It does not describe the
overall design into which each part of the specification must fit. The overview
tool in Lss does allow the structure of predicates in a large design to be viewed
but only after the design has been completed, so overall coordination in LSS is
retrospective.

The refinement framework in HANSEL takes the opposite view. The entire
design is coordinated from the beginning and new definitions can only be added
if gaps exist in the developing specification. Furthermore, the properties which
are associated with refinements allow the appropriateness of design choices to
be tested during verification of the design. Earlier in this this chapter we gave
examples of properties being accumulated during HANSEL design and in Sec-
tion 12.3we gave examples of their use in testing. The incorrect subprocessl
definitions in clauses 7.9, 7.10 and 7.11 of Section 7.3.2 could be detected by
requiring the following properties to hold for variables S; and Sy of clause 7.1
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in section 7.1:

o If we require that Sy is a set then the type error introduced in clause 7.9
can be detected.

o If we require that VX.X € Sy — X € S; then we detect the error intro-
duced by clause 7.10.

o If we additionally require that 3X.X € S; A not(X € Sy) then we force
subprocessl to make the argument driving recursion in process smaller,
hence protecting against the possibility of non-termination introduced by
clause 7.11.

The price we pay for his sort of coordination in HANSEL is that we must adopt
its style of coordination. There is also an interface limitation since the way this
is presented is by having a central specification which is viewed by designers and
from which all the refinements are coordinated. There is a human limit on the
size which this specification can reach before it becomes impractical to view it,
in the same way that it is impractical to view the whole of a large conventional
program in a single file.

12.4.3 Saying Less (from Section 7.3.3)

All of the Lss tools describe specifications with Horn clauses which may con-
tain open test and update subgoals, as described in Section 4.1. This gives a
narrow repertoire of concepts for representing stages in precision of definitions.
The HANSEL system extends this repertoire by including notions of set inequal-
ity, allowing it to express intermediate stages in design like the ones given in
clauses 7.18 and 7.19 of Section 7.3.3.

The ability to perform refinement in this way comes at a price: the specifi-
cations which it is appropriate for HANSEL to construct are those for which it is
possible to think initially about the problem in terms of relations between sets.
It would, therefore, be inappropriate to use HANSEL, for example, to define the
meta-interpreter of Section 9.7 because this problem does not invite us to think
about it in a set-based style.

12.4.4 Transformations Over Many Predicates (from Sec-
tion 7.3.4)

With the exception of its retrospective overview tools, which are not concerned
with designing new specifications, the LSS tools are fixated on individual predi-
cates. This makes it vulnerable to adaptations of the specification where changes
in one predicate should be reflected in adaptation of others. The example given
in Section 7.3.4 involved the addition of an argument slice to one predicate,
which requires that argument to appear in all subgoals which call that predicate.
HANSEL copes with this type of problem because it has a central specification
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(so the appropriate change can be rippled through the specification) and a for-
mal notation which allows the newly introduced variables to be flagged by tests
which, through the refinement mechanism, allow them to be connected to other
variables in the clauses where they were added.

Of course, HANSEL cannot adapt to all interactions between predicate defini-
tions because some of them may not be as direct as the example. For instance,
we might make a change in the definition of a predicate which had the effect of
restricting the kind of axiom set it could deal with. In some circumstances it
might be useful to test that the axiom set concerned is of the appropriate form
before calling the predicate but it is difficult to predict whether this is necessary
and, if it is, what the check should be. However, the use of properties associ-
ated with refinements allows at least some retrospective checking that properties
required by one part of the design are preserved by others.

12.4.5 Maintaining Properties During Use and Revision
(from Section 7.3.5)

LSS gives no mechanism for describing properties of predicates so it cannot test
whether these hold of the design. HANSEL allows properties to be associated with
clauses and predicates so it provides an expressive way of recording this type of
information along with design steps. It also gives a framework for accumulating
properties at no additional cost to the designer as a specification is built, and
Section 9.7 demonstrates how simple meta-interpretation methods can use these
definitions to generate tests relevant to particular executions of the specification.
This is clearly an improvement over LSS but problems remain. The mechanism
by which the testing information supplied by HANSEL is fed back into re-design
when requirements have been violated is not yet understood, although it seems
likely that routes exist (see Section 12.5.1).

A further problem, first raised in Section 12.3.1, concerns properties (like the
one in the example of Section 7.3.5) which relate to the termination of predicates.
There is no problem in recording appropriate properties in HANSEL but there
could be a problem in generating test instances of those properties by execution
of the specification using a meta-interpreter like the one in Section 9.7, since we
are most interested in the properties related to non-termination of predicates
exactly when the predicate does not terminate. In this case our simple meta-
interpreter will not yield test instances. One solution to this problem is to use
more sophisticated meta-interpreters which ensure termination (e.g. by imposing
a depth limit on proofs).

12.5 New Problems Raised by HANSEL

The HANSEL framework solves some of the problems observed in LSS but it is
not all good news. To conclude our evaluation we discuss two problems which
are raised by the move to a more tightly integrated form of lifecycle.
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12.5.1 Managing Requirements Expressed as Properties

It is easy in HANSEL to accumulate numerous properties for clauses and predi-
cates when building designs. One of its advantages is that designers need not
even be aware that these are being accumulated - they come for free as an adjunct
to the design method. Nevertheless, to be useful they must at some stage become
visible to human engineers. In the current system this is intended to happen
in testing (see Section 9.7) where examples are used to execute the specifica-
tions, and as predicates and clauses are used in the execution the corresponding
instances of properties are collected. This raises two problems:

e A large number of instances of properties can be generated. For example,
the specification of Section 12.2.3 contains 17 properties and in each test we
perform on the specification these are likely to be instantiated several times
(perhaps tens of times for recursive clauses where the recursion is deep).
Therefore, it is possible to generate hundreds of instances of properties for
moderately sized tests. Checking all of these is time consuming, even when
done automatically.

e Even if all the properties can be checked there is the problem of deciding
what to do about those which are refuted by the specification. The means
of obtaining a refutation of a property in the current system is simply
to prove the negation of the property (see Section 9.7) but the instance
obtained for this goal is not guaranteed to give sufficient information to
pinpoint the source of the problem, since a problem detected in one part
of the specification may be a knock-on effect of an error made elsewhere.
Even if the source of the error can be determined, this is unlikely on its
own to determine how the specification might be revised to correct it.

In short, HANSEL is good at generating properties of specifications but gives
no support in interpreting the results of testing them. It can be used to find
potential problems but does not tell us for sure where the errors leading to those
problems originate, nor does it offer corrective advice.

12.5.2 Adapting the Refinement Framework to Domains
of Application

The HANSEL system of refinement has been made as general and task-independent
as possible so that we could concentrate on the abstract aspects of this kind of
formal lifecycle. It is rare, however, that such abstract frameworks become
popular with requirements or software engineers because they demand an un-
derstanding of formal concepts outside of the normal experience of these groups
of people. Consequently, it is unrealistic to expect HANSEL as it currently exists
to be used in application domains. One way of adapting it so that it might be
used would be to make its refinement rules and skeletons domain-specific while
retaining the overall framework. This is technically possible, since the libraries of
refinements and skeletons can easily be adapted without altering the other parts
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of the system. We do not know, however, whether the resulting system would
then be close enough to the understanding of some significantly sized group of
designers or whether we would need further adaptations to the framework it-
self, and the interface in particular, to bring it close enough to styles of design
understood in that domain.

This sort of experiment in restricting an abstract framework to a domain has
not been attempted in HANSEL but an estimate of the potential for success can
be obtained from experience of building similar systems. The lessons from these
are:

e Adaptation of abstract design methods to domains of application takes
significant amounts of time, with much of the effort going into tradi-
tional knowledge engineering tasks of identifying the forms of domain
knowledge which must be represented in the method and describing it in
ways which suit both method and human designers. In the ECO project
[Robertson et al., 1991] the abstract method of design was based on pa-
rameterisable components which were used within an interactive synthe-
siser to construct a class of population dynamics models. Much of the three
man-years spent on that part of the project was used in understanding how
to describe the domain in a way suited to this form of representation. The
TeMS system summarised in Section 7.1.2 tackled a similar problem using
techniques editing and required a similar investment of effort in knowledge
acquisition and representation.

e It is possible in theory to make the refinement libraries of an automated
synthesiser domain specific without altering the interface used to apply
them, but in practice the interface is often changed significantly to con-
form to the expectations of designers in the target domain. The TeMS
system (Section 7.1.2) could have used a generic techniques editor to con-
struct much of the specification which it synthesises but, instead, it has
a domain-specific user interface which interacts with the generic forms of
techniques application used inside the system. This effect, of a generic
synthesis mechanism sandwiched between a domain-specific user interface
and domain-specific refinement libraries, occurs because domain experts
want the design method to be familiar as well as the design knowledge.

e A more positive consequence of the item above is that, if appropriate user
interfaces and refinement libraries can be devised then basic methods of
formal synthesis often do transfer between domains, so the core technical
ideas persist. Examples of this appear in Chapter 5 of
[Robertson and Agusti, 1999]. Therefore, for HANSEL we expect that the
core framework of refinement and skeleton application might transfer into
target domains but that the user interface and refinement /skeleton libraries
would need to be adapted.
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Chapter 13

Contributions of this
Research

The overall aim of the work reported in this thesis is to explore the relationship
between pragmatic styles of design and a formal specification language. This is a
boundless topic so we confined our attention to a specific formal language: Horn
clauses made executable through Prolog. We also chose two contrasting styles of
design: the first viewing design as a distributed activity in which different tools
communicate via a shared language; the second viewing design as a centrally
controlled process in which choice of tool is determined by previous design steps
and information useful in verifying designs is derived as an integral part of the
process. We now summarise the main technical contributions of the thesis in
Section 13.1 and, in Section 13.2, summarise how the research relates to the
general questions raised at the end of Chapter 1.

13.1 Main Technical Contributions

The technical innovations of this thesis emerged as part of the exploration of
pragmatics in early design and were therefore driven by practical need rather
than the urge to explore a particular aspect of theory. We summarise the main
results below, following the chronology of the thesis.

e Novel forms of design tool were developed in the LSS system. The means of
coordination between tools (via a shared language) is not new but, to the
best of our knowledge, the program described in Section 7.2 is the largest
yet built with the assistance of this kind of system, thus setting a practical
target for other implementations. The contributions from individual tools
are:

— One of the earliest implementations of a techniques editor which is
usable for significantly sized design tasks (Section 5.1).
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— A tool allowing a diagrammatic representation of sequences to be
translated into Definite Clause Grammar clauses, allowing this form
of logic program to be built visually by direct manipulation (Sec-
tion 5.2).

— A tool allowing graphical representation of recursive logic programs,
with an automatic translation to partial predicate definitions suitable
for completion by a techniques editor (Section 5.3).

o The HANSEL system is the first to combine set-based refinement, for high
level design, with techniques editing, for lower level design (Chapter 10).
In doing this, it was necessary to invent: a set of generic rewrite rules for
the high-level refinements (Section 9.4); a library of task-specific skeletons
(Section 9.5); and a means of introducing more sophisticated systems of
proof beyond those described in the skeleton library (Section 9.6).

e The set-based representation used in the early stages of HANSEL design
uses Horn clauses defined over axiom sets which themselves contain Horn
clauses (Section 9.2). This gives a flexible, abstract and compact form of
specification which is related to other systems of set refinement but is used
here in a novel way. The evaluation examples of Chapter 12 are, to our
knowledge, the first instances of this form of set based refinement being
used to describe early knowledge engineering models.

e The use of meta-interpretation to generate test examples (Section 9.7) is
not new but combining this with a refinement system which associates
properties with clauses (Section 9.3) is novel and provides an additional
link between early specification and later testing.

13.2 Return to the Questions of Chapter 1

Having described the technical contributions of this thesis, we now return to the
broader questions raised in Chapter 1.

13.2.1 Sharing Design Knowledge Using Techniques-Based
Specifications

Chapter 3 gives an overview of the LSS system which is an example of a system
containing numerous different tools, each targeted at a particular style of design.
A particular style of representing partial specifications (originating in techniques
editing) was used uniformly to give a language of interchange between design
tools. This made a number of interactions between tools possible, when they
would have been impossible using normal logic programs. The window editor
and diagrammatic recursion editor, in particular, are only able to produce partial
programs which must be refined using the techniques editor.

In the evaluation of Lss (Chapter 7) it was shown that, although substantial
specifications can be built using this system, it contains a number of weaknesses.
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It is not always easy to see which tool suits which specification problem. It can
be difficult to get a sense of the overall specification when working with an indi-
vidual tool on a small part of it. The notion of partiality which we obtain using
the techniques-based notation does not describe some of the shades of mean-
ing which might be useful. The assumption that tools can focus on individual
predicates ignores commonly occurring interactions between predicates during
design. There is no mechanism for sharing, along with the partial descriptions
of the specifications, information about the properties we expect our completed
specifications to possess.

In summary, our contribution here is to have shown that a distributed design
system based on a conventional form of techniques editing can build substantial
specifications, expressed as logic programs, but it does not provide many of
the facilities which we would expect from a well integrated software engineering
process.

13.2.2 A Refinement System for Coordinating a Class of
Designs

Many systems of formal refinement exist but these are normally far removed
from conventional logic programming. Our aim was to supply some of the coor-
dination which was lacking in LSS while staying close to forms of representation
and computation familiar from logic programming. In the HANSEL system we
invented a way of doing this for problems that can be described using predicates
which manipulate sets of Horn clauses (without negation). This gives a simple
style of refinement where early designs are composed from set inequalities and
are refined into normal logic programs via a generic library of rewrite rules and
a task-specific library of skeletons. The evaluation of Chapter 12 shows how this
form of coordinated design can be applied to tasks inspired by a conventional
high-level methodology for designing knowledge-based systems, although we do
not claim that it is a replacement for these. The basic method of description
and refinement is given in Chapter 9. We claim that this style of formal refine-
ment gives a novel combination of existing methods of set-based specification,
techniques editing and association of properties with predicates.

The framework for refinement in HANSEL is generic but the library of skeletons
is task-specific. It is necessary to have a methodical way of constructing such
libraries. In Section 9.5.2 we demonstrate how part of the current library was
defined in a methodical way, using the properties associated with skeletons to
help map out the space of possibilities for a precisely defined task. This sort
of methodical population of task-specific libraries is a subject which is often
ignored in modelling methods but is important in ensuring adequate coverage of
a class of problems.

13.2.3 Accumulating Test Goals During Refinement

In conventional refinement systems the closest relatives to HANSEL properties
are algebraic specifications normally used to supply the first step in synthesis,
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with predicate definitions being synthesised in response to properties described
by the designer. The HANSEL system inverts this view. It takes Horn clauses
(expressing early designs) as the starting point and gives a means of accumu-
lating properties as an integral (but hidden) part of design. This means that
the synthesis is more like simple structural editing of a logic program, with the
accumulated information about properties being used for testing rather than to
direct synthesis. The basic mechanisms for this are described in Chapter 9 and
shown in action in Chapter 12. We claim that this has not been done before in
this sort of refinement framework. It opens an interesting area of research into
the interaction between design and verification in logic-based systems.

Having given a means of accumulating properties of specifications it is also
necessary to have a means of testing them. There are many possibilities for doing
this and difficult problems which remain to be addressed (see Section 12.5.1) but
we have taken advantage of our close connection to logic programming to enable
automated testing using a simple form of meta-interpreter and conversion of
properties to Prolog goals (Sections 9.3, 9.7 and 12.3).

13.2.4 Tools Supporting Distributed and Coordinated De-
sign of Logic Programs

As vehicles for experimentation we built two design systems: LSS (described in
chapters 3 to 7) and HANSEL(described in chapters 8 to 12). These are novel in
themselves: LSS being the only system of which we are aware which attempts the
design of logic programs using a collection of specialised but interacting tools;
HANSEL being the only system in existence with its particular mixture of set-
based refinement and techniques editing. We make no claims that these systems
will be easily used by designers - on the contrary, we believe that the only route
to wider use of such tools is through producing more domain-specific versions of
them. Nevertheless, we were able to demonstrate that specifications which are
substantial (by logic programming standards) could be built using these tools
(see Chapters 7 and 12).

In building the interfaces for LSS and HANSEL we chose two contrasting routes.
In LSS we attempted where possible to use graphical notations focussed on a
particular specification task. These could be diverse because we assumed no in-
teraction between tools other than through the interchange language. In HANSEL
we used a uniform textual style of description which is close to the underlying
formal language, since the task of developing a unifying textual/graphical lan-
guage seemed beyond our resources. Nevertheless, some integration of textual
and graphical notations already occurs in HANSEL because the menus used in
choosing skeletons use graphical summaries of the skeletons, like the ones in
Section 9.5.2, to summarise the behaviour expected from these components.

This concludes our summary of contributions of research. In the next, and
final, chapter we look forward to further work.
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Future Work

In earlier chapters we flagged a variety of areas where there were unsolved prob-
lems or where there were unexplored possibilities for further research. In this
concluding chapter we touch upon those areas which we believe would merit
further study.

14.1 Appropriate Choice of Properties

The HANSEL design system is not predicated on the existence of complete sets
of properties for each structural feature introduced into the specification. This
allows it to operate somewhere in between structure editors such as techniques
editors, where properties are seldom used explicitly in the design process, and
constructive synthesis systems (see Section 2.1), where design requires all prop-
erties to be given. Where HANSEL sits between these two extremes depends on
how comprehensively properties are related to structural refinements. This flex-
ibility is a feature of this style of design, allowing greater or lesser emphasis to
be given to properties according to taste. There is, however, benefit in develop-
ing more rigorous methods for choosing properties, other than simply allowing
designers of refinements to invent them as they see fit.

Perhaps the most obvious area where there is room for improvement is in
being parsimonious with the assignment of properties to refinements, given the
properties assigned to earlier refinements. In the current system, some proper-
ties of early refinement steps are replicated in later refinements. For example,
Rewrite 17 of Section 9.4.2 introduces the property VX2.52 F X2 — S1+ X2
but this rewrite applies to a specialisation of the form 7(S1) D 7(S52). To have
reached this point we must have applied one of the other rewrites which intro-
duced the specialisation (one of rewrites 1, 2, 8, 11, 15 or 16). Any of these
would already have introduced the same property. It might be helpful to have
methods of narrowing the set of properties associated with each refinement to
just those specific to it, and not subsumed by earlier properties. This might be
done by checking of refinement libraries prior to design or by checking during
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design.

14.2 Making Better Use of Properties

Sections 9.3, 9.7 and 12.3 describe how the properties accumulated during design
in HANSEL may be used to generate tests for logic programs, with the implemen-
tation of these tests being done using a normal Prolog interpreter. This has the
advantage of simplicity but is only one of many possible uses for these sorts of
properties. We could make better use of them in both testing and in guiding the
design.

The current system of testing is primitive because it provides no help in
selecting appropriate tests, determining whether difficult tests are satisfied or
interpreting the results of tests. The problems in each of these areas are:

e The test instances generated by the meta-interpreter of Section 9.7 depend
on the right test queries being given to the logic program. Selecting the
appropriate test cases is a notoriously difficult problem because the cases
should ideally trap all errors at minimal cost in analysis, but we don’t
know exactly what the errors are and we are seldom certain of the cost of
analysis.

e We currently use a standard Prolog interpreter to check the test instances
with respect to the logic program. In Section 12.3 we noted that there
are problems in doing this because we have no guarantee that there will
be a terminating proof for every test. We cannot solve this problem in
general, unless we limit the range of properties we consider, but we could
use more robust and more powerful proof methods. For some kinds of
application it might even be possible to connect to recent work in model
checking (see [Heitmeyer et al., 1996] for an example of model checking of
system requirements).

e The properties currently used in HANSEL are sometimes difficult to read,
especially when translated into standard Prolog queries. This, and the fact
that failures of tests don’t necessarily reveal the sources of errors, means
that even if the tests suggested by HANSEL find anomalies we may not
be able to figure out from these failures where the problem lies. Even if
we find the problem, we may not choose the appropriate re-design to get
around it. This problem, in its totality, is extremely difficult but the fact
that we know a great deal about the structures which contribute properties
(and hence give rise to failed tests) might give some insight into strategies
for re-design.

Our decision not to use properties to guide design but only to use them
for retrospective testing was made for reasons of expediency. There was not
time to explore both issues and testing seemed more in need of attention than
design. Nevertheless, there is great scope for making use of the properties at-
tached to rewrites and skeletons in order to guide design. In particular, it would
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be possible to check the compatability of properties when giving menus of op-
tions for refinements. For example, a property associated with Rewrite 3, which
introduces a generalisation from S1 to 52, is: VX.S1F X — S2+ X. If we
satisfy this relation between S1 and S2 using Skeleton 15 (in Appendix C),
which forms S2 from an appropriate element of S1, then we add the property:
3AX1.X1€ S1 A R(X1) A singleton(X1,S52) We would then have two proper-
ties which, if S1 contains more than one element, would be inconsistent. It might
be more effective to detect these potential inconsistencies during design rather
than catching them in later testing, since designers might have fewer choices to
make and the complexity of testing might be lowered. This takes us back to our
earlier remarks about the tension between design constained by properties ver-
sus design audited by testing. Some balance should be possible but the current
version of HANSELIs at the latter extreme.

14.3 Making More Use of Specialised Inference
Methods

In Section 9.6 we described how sets of inference rules specialised to particular
forms of inference could be connected to the refinement system in the same way
as skeleton definitions. The idea is to describe “families” of inference methods
using sets of proof rules and then supply a single interpreter for each family of
proof rules. This allows variants of inference methods to be produced by altering
the proof rules, while the proof strategy (as defined by the interpreter) remains
the same. We showed how basic forms of deduction and abduction can be
described in this way but this is only a tiny proportion of what is possible. These
families are very large in themselves and, beyond them, other major families
of inference methods are noticeable by their absence - in particular induction
methods for generalising axiom sets are not included. There is much scope for
extending this part of the system.

Before investing this effort, however, it would be necessary to understand in
greater depth how designers could control the use of this sort of refinement. For
the other skeletons, such as those for traversal or search, there is an obvious
style of explanation for each family of skeletons (we explained this for a group
of traversal skeletons in Section 9.5.2). The more flexible method of defining
skeletons using proof rules allows diverse variants to be described through small
changes in the proof rules. Organising all of this in a way which can be explained
methodically to designers is a difficult task.

14.4 Restricting HANSEL to Domains and Tasks

The most effective uses of logic based methods in early design seem to be those
which are specialised to particular tasks or domains. The MECO, ECO and
Amphion systems of Section 2.4.3 and the TeMS system of Section 7.1.2 are
specialised to domains. Most of the techniques editors of section 2.4.1 are focused



148 Chapter 14. Future Work

on particular tasks or target groups of designers. The LSS system acknowledges
this by having task-specific tools (such as the process editor of Section 5.2). The
HANSEL system is, within the limits of its early specification language, domain
and task independent in the early stages of design and, even in the later stages of
skeleton application, is specific to particular forms of logic program design rather
than to concepts which are directly meaningful in a target domain. This makes it
unlikely that HANSEL could be applied in domains of application without some
form of tuning to those domains, as has been the case for the other systems
mentioned above.

The ideal way of adapting HANSEL to a domain would be by adapting the
libraries of initial templates, rewrite rules and skeletons, while leaving the overall
framework for applying these intact. Technically, this is straightforward because
the libraries are modular components of the system and the rest of the framework
is general for libraries of these sorts. Instead of the generic initial templates cur-
rently used in HANSEL we might provide more specific ones, in which more design
decisions had been made (in effect, starting further down the refinement chain).
Instead of general rewite rules we might provide more specific ones. Instead of
the abstract forms of skeleton in the current system we might supply a library of
domain-specific skeletons. The main threat to this ideal is whether the general
framework (which governs the overall method of design) would really transfer
without change to a new domain if given appropriately adapted libraries. We do
not know if this would happen, and evidence from other systems is inconclusive.
Optimistic news comes from systems such as Amphion which have been used in
different domains but in Amphion the development of a problem description is
done in a separate phase from the construction of a program for that descrip-
tion. In HANSEL the designer interacts all the way through the construction of
a specification, since the design steps are not sufficiently constrained by domain
information to be performed automatically. The TeMS system was an attempt
to build a domain-specific synthesiser based on techniques editing. It brings
more pessimistic news, since a considerale part of the effort in developing TeMS
was in building user interface and problem description mechanisms specific to its
target domain. Without building experimental systems it is difficult to predict
whether a domain-specific version of HANSELwould be more like Amphion or
TeMS.
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Appendix A

HANSEL Syntax

The syntax of HANSEL specifications is given below. Essentially, it is standard
Horn clause syntax without disjunction (for simplicity) and allowing only vari-
able names in argument positions (to avoid committment to data structures for
axiom sets). A number of special forms of subgoal are introduced as refinement
terms.

e A HANSEL specification is a set of Horn clauses as defined below.

e A Horn clause is either a single unit term or is of the form H < B, where
H is a unit term and B is either a unit term; a refinement term; or a
conjunction of unit and refinement terms.

e A conjunction is written C; A...A C,, where each C is a unit term.

A unit term is written P(Ay,...,A,), where P is an atom and each A is
a variable name.

Variable names are words beginning with an upper case character.

Atoms are words beginning with a lower case character.

A refinement term is one of the following, where X, S1 and 52 are variable
names:

— A general relation, written S1 = S2.

— A specialisation relation, written S1 D S2.

— A generalisation relation, written S1 C S2.

— A relation goal, written 2} s2.

— A selection relation, written S(X, S1,,)S2.

— An addition relation, written A (X, S1,,)S2.

— A test, written 7(S1).
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All variables in HANSEL specifications, with the exception of those appearing
in the first argument of selection and addition relations, refer to axiom sets. The
data structure used to contain an axiom set is not prescribed by HANSEL allowing
different data structures to be used according to taste, although the most likely
is a Prolog list. HANSEL does prescribe the syntax of axioms within axiom
sets. This is given below. Essentially, it is standard Horn clause syntax without
disjunction (for simplicity) and without meta-logical predicates and negation (to
preserve monotonicity when refining axiom sets).

e An axiom within a HANSEL axiom set must be of the form H + B, where
H is a unit goal and B is either a unit goal or a conjunction of unit goals.

e A conjunction is written C; A...A Cp, where each C is a unit goal.
e A unit goal is one of the following:

— The atom true.
— A term of the form P(A4,,...,A,), where P is an atom and each A
is an argument term.

e An argument term is one of the following:

— An atom.
— A variable name.

— A term of the form P(A4;,...,A,), where P is an atom and each A
is an argument term.



Appendix B

Current Set of LSS
Skeletons

This chapter contains the library of skeletons currently used in the LSS techniques
editor. When selected in the editing tool the variable P in the definitions below is
instantiated to the given predicate name. The functor name F', which appears in
expressions such as F'(Left, Right) in skeleton 4 is instantiated in the editor. In
particular, it can be instantiated to the ’.” operator used in Prolog as the functor
for internal representation of lists, giving .(Left, Right) which is equivalent in
Prolog to [Left|Right]. This means that many of the skeletons in Section B.2

subsume those of Section B.3.

B.1 Basic Skeletons

LSS Skeleton 1 Basic fact.
P(X) (B.1)

LSS Skeleton 2 Basic rule.
P(X) « T(X) (B.2)

B.2 General Forms of Recursion

LSS Skeleton 3 Recursion via tests and update.

P(X) « TX) (B.3)
P(X) « UXY) AN PY) (BA4)
LSS Skeleton 4 Recursion on the right of a binary term.
P(X) +« Ti(X) (B.5)
P(F(Left,Right)) <« T2(Left) A P(Right) (B.6)
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LSS Skeleton 5 Recursion on the left of a binary term.

P(X) « Ti(X)
P(F(Left,Right)) <« T2(Right) A P(Left)

LSS Skeleton 6 Double recursion on a binary term.

P(X) « TX)
P(F(Left, Right)) <« P(Left) N P(Right)

LSS Skeleton 7 Selective recursion on a pair of arguments.

P(X,Y) « Ti(X) A TIY)
P(F(A,B),Term) <+« T2(A) A P(B,Term)
P(Term,F(A,B)) « T3(A) A P(Term,B)

LSS Skeleton 8 And-or decomposition of term.

P(X) « TIX)

P(F(Left, Right)) <« P(Left)

P(F(Left, Right)) <« P(Right)
P(F(Left,Right)) <« P(Left) A P(Right)

LSS Skeleton 9 A wvanilla meta-interpreter.

P(X) « TX)
P(or(Left, Right)) <« P(Left)
P(or(Left, Right)) <« P(Right)
P(and(Left, Right)) <« P(Left) A P(Right)
P(Goal) + U(Goal, SubGoal) AN P(SubGoal)

B.3 Recursion on Lists
LSS Skeleton 10 List search.

P(X) « Ti(X)
P(H|T]) « T:(H) A P(T)

LSS Skeleton 11 List traversal.

()
P(H|T]) « TH) A P(T)



B.4. Counters

LSS Skeleton 12 List search and traversal.

P
P(X) « Ti(X)
P(H|T]) « T(H) A P(T)

LSS Skeleton 13 List double recursion.

P(X) « TX)
P([H|T]) « P(H) A P(T)

LSS Skeleton 14 Selective recursion on a pair of lists.

P(X)Y) « Ti(X) ATY)
P([H|T),Term) <« T2(H) A P(T,Term)
P(Term,[H|T]) < T3(H) A P(Term,T)

LSS Skeleton 15 And-or decomposition of a list.
P(X) + TX)

P(H[T)) « P(H)
P(HIT) « P(T)
P([H|T)) « P(H) A P(T)

LSS Skeleton 16 Mapping all elements of a list.

P, )
P([Ha|Ta),[HYTH)) « U(Ha,Hb) A P(Ta,Tbh)

LSS Skeleton 17 Mapping some elements of a list.

P,
P([Ha|Ta],[HbTH)) <« U(Ha,Hb) A P(Ta,Tb)
P([Ha|Ta),List) < T(Ha) N P(Ta,List)

LSS Skeleton 18 List binary split.

P
P(H|T) « Ti(H) A P(T)
P(H|T) <« T.(H) A P(T)

B.4 Counters

LSS Skeleton 19 Generic counter.

P(X) « TIX)
P(X) « YisF(X,N) A P(Y)
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LSS Skeleton 20 Decrementing counter.

P(X) « YisX—-1A PY) (B.50)
LSS Skeleton 21 Incrementing counter.

P(X, X) (B.51)
P(X)Y) +« X<Y A ZisX+1A P(Z,Y) (B.52)
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Current Set of HANSEL
Skeletons

C.1 Traversal Skeletons

Skeleton 1
parameters : (P, S1,52,[R])
P(51, $2) + empty(S1)A
empty(S2),
code P(S1, 82) « S(X1, 81, T1)A
: R(X1, X2)A
P(T1, T2)A
A(X2, T2, S2)
) X1€ 81— ( 3X2.R(X1,X2) A X2 € S2
properties { X2 € S2 — IX1.R(X1, X2) A X S1 ; }
Skeleton 2
parameters (P, S1,82,[R])
P(S1,S2) « empty(S1)A
empty(S2),
P(51,52) « S81(X1,S51,T1)A
R(X1, X2)A
B ] P(T1, T2)A
coae : Aj(x2, T2, 52),

not(R(X1, X2))A
P(T1, T2)A

{ P(S1,82) « So(X1,81,T1)A J
As(X1, T2, S2)

3IX2. R(X1, X2) A X2 € 52
X1¢€ 51— ( v )
) not(3X2.R(X1, X2)) A X1 € 52
properties 3IX1.R(X1, X2) A X1 € S1
X2 € 52 — v
not(3X1.R(X1, X2)) A X2 € S1)
Skeleton 3
parameters : (P, S1,52,[R])
P(S1,52) « empty(S1)A
empty(S2),
code : P(S1,52) « S(X1,51,T1)A

setof(X2, R(X1, X2), Set), P(T1, T2)A
union(Set, T2, S2)

IX2.R(X1, X2) A X2 € S2
" . X1€ 81— A
properties i VX2.R(X1, X2) - X2 € 52
)

X2 € 82— ( 3X1.R(X1,X2) A X1€ S1
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Skeleton 4
parameters
code
properties
Skeleton 5
parameters
code
properties
Skeleton 6
parameters
code
properties
Skeleton 7

parameters

code

properties

Appendix C. Current Set of HANSEL Skeletons

(P, 51, S2, [R])
P(S1,82) «+ empty(S1)A
empty(S2),
P(S1,82) «+ 81(X1,51,T1)A
setof(X2, R(X1, X2), Set)A
P(T1, T2)A
union(Set, T2, $2),
P(S1,52) « So(X1,51,T1)A
not(R(X1, X2))A
P(T1, T2)A
A(X1,T2,52)
3AX2.R(X1, X2) A X2 € 52)
A
X1€ S1— ( vx2' rR(x1, x2') - x2' € 52 )
A\
not(3X2.R(X1,x2'"7)) A X1 € 52
3IX1.R(X1, X2) A X1 € S1 )

X2 € 52 — v
not(IX1.R(X1, X2)) A X2 € S1)

(P, 51, 52, [R])
P(S1,82) « empty(S1)A
empty(S2),
P(S1,82) « S(X1,S51, T1)A
R(X1, X2)A
P(T1, T2)A
A1(X1, T2, S3)A
A (X2, S8, S2)
X1le Sl — ( dX2.R(X1,X2) A X1€ S2 A X2€ 52 )
IX1.R(X1,X2) A X1€ S1 A X1€ S2
X2 € 52 —» \Y%
not(IX1.R(X1, X2)) A X2 € 51)

(P, 51, 52, [R])
P(S1,S2) «+ empty(S1)A
empty(S2),
P(S1,82) « S1(X1,S51,T1)A
R(X1, X2)A
P(T1, T2)A
Aq(X1, T2, S3)A
Aq (X2, 3, S2),
P(S1,82) « S9(X1,81,T1)A
not(R(X1, X2))A
P(T1, T2)A
Az (X1, T2, S2)
IAX2.R(X1,X2) A X1 € S2 A X2€ S2
X1 € S1 — \%
not(IX2.R(X1, X2)) A X1 € S2
IX1.R(X1,X2) A X1€ S1 A X1€ S2 )

X2 € S2 — \
not(IX1.R(X1, X2)) A X2 € §1)

(P, S1, S2, [R])
P(S1,52) « empty(S1)A
empty(S2),
P(S1,82) + §(X1,51,T1)A
setof (X2, R(X1, X2), Set)A
P(T1, T2)A
A(X1, Set, S3)A
union(S3, T2, S2)
IX2.R(X1,X2) A X1 € S2 A X2€ S2
X1 € S1— A
vx2' . R(X1, x2') - x2' € S2
IX1.R(X1,X2) A X1€ S1 A X1€ S2
X2 € S2 — v
not(3X1.R(X1, X2)) A X2 € S1)
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Skeleton 8
parameters : (P, S1, S2,[R])
P(S1,S2) « empty(S1)A
empty(S2),
P(S1,S2) « S1(X1,S1, T1)A
setof(X2, R(X1, X2), Set), P(T1, T2)A
4 A1(X1, Set, S3)A
coae union(S3, T2, S2),
P(S1,S2) «+ Sg(X1,S1, T1)A
not(R(X1, X2))A
P(T1, T2)A
Ag(X1, T2, S2)
3IX2.R(X1,X2) A X1 € S2 A X2€ S2
AN
X1€ S1— ( vx2' . rR(x1, x2') - x2' € 52 )
) v
properties not(IX2.R(X1, X2)) A X1 € 52
IX1.R(X1,X2) A X1 € S1 A X1€ 52
X2 € 52— v
not(IX1.R(X1, X2)) A X2 € S1)
Skeleton 9
parameters : (P, S1,52,[R])
P(51,52) + empty(S1)A
empty(S2),
P(S1,S2) « S1(X1, S1, T1)A
R(X1, X2)A
code  : P(T1, T2)A
A(X2, T2, S2),
P(S1,S2) « Sg(X1,S1,T1)A
not(R(X1, X2))A
P(T1, 52)
IX2.R(X1,X2) A X2 € S2
) . X1€ 81— v
properties  : not(3IX2.R(X1, X2)) )
X2 € 82> ( 3X1.R(X1,X2) A X1€ S1 )

Skeleton 10

parameters : (P, S1,S52,[R])
P(S1,S52) « empty(S1)A
empty(S2),
P(S1,82) «+ 81(X1,51,T1)A
setof(X2, R(X1, X2), Set)A
code  : P(T1, T2)A
union(Set, T2, S2),
P(S1,82) « S8o(X1,51,T1)A
not(R(X1, X2))A
P(T1, S2)
( IX2.R(X1, X2) A X2 € 52 )
A

X1€ S1 — vx2' rR(x1, x2') - x2' € 52
A\

properties
not(IX2.R(X1, X2))
X2 €S2 - ( AX1.R(X1,X2) A X1 € S1 )

Skeleton 11

parameters : (P, S1, 52, [R])
P(S51,52) « empty(S1)A
empty(S2),
P(S1,52) « §1(X1,S51,T1)A
R(X1, X2)A
P(T1, T2)A
A1(X1, T2, S3)A
Ao(X2, 53, 52),
P(S81,82) « 8g(X1,81,T1)A
not(R(X1, X2))A
P(T1,52)
IX2.R(X1,X2) A X1 € S2 A X2 € 52

code

X1€ 81— v

ropertics not(IX2.R(X1, X2))

prop AX1.R(X1,X2) A X1€ S1 A X1€ S2
X2 € S2 — v

not(IX1.R(X1, X2)) A X2 € S1)
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Skeleton 12

parameters

code

properties

Skeleton 13

parameters

code

properties

Skeleton 14

parameters

P(S1, S2) «

code

l P(S1, S2) «

properties {

P(S1, S2) «
P(S1, S2) «

X1€ 51— (

X2ES2—><
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(P, 81, §2, [R])
P(S1, S2) «

empty(S1)A

empty(S2),

§1(X1, 81, T1)A

setof(X2, R(X1, X2), Set)A

P(T1, T2)A

A(X1, Set, S3)A

union(S3, T2, S2),

So(X1, 81, T1)A

not(R(X1, X2))A

P(T1, 52)

IX2.R(X1,X2) A X1€ S2 A X2 € S2 )
A

vx2' rR(x1, x2') - x2' € 52
A\

not(IX2.R(X1, X2))
AX1.R(X1,X2) A X1€ S1 A X1€ 82 ) J

v
not(IX1.R(X1, X2)) A X2 € S1)

(P, S1, 82, [R])

(P, S1, S2, [R])
P(S1, S2) «

X1 € S1 —

X2€ 82— ( YYY )

P(S1, 82) « empty(S1)A
empty(S2),

S1(X1, 81, T1)A
R(X1)A

P(T1, T2)A

A(X1, T2, S2), J

P(S1, §2) «

P(S1, S2) « 8o(X1,S1,T1)A

not(R(X1))A

P(T1, 52)

(R(X1) A X1 € S2) V not(R(X1))

X1€ S1 —»
X2 € S2 —» R(X1) A X1 € S1 )

'}

empty(S1)A

empty(S2),

§1(X1, 51, T1)A

setof(X1, R(X1), Set)A

P(T1, T2)A

union(Set, T2, $2),

So(X1, 51, T1)A

not(R(X1))A

P(T1,52)

(R(X1) A X1€ S2) AVX.(X =X1 A R(X)) = X € 52
v

not(R(X1)

/]

C.2 Search Skeletons

Skeleton 15

parameters

code

properties

Skeleton 16

parameters

code

properties

(P, S1, S2, [R])
P(S1,82) « 8§1(X1,51,T1)A

R(X1)A

singleton (X1, $2),

So(X1, 51, T1)A

not(R(X1))A

P(T1, 52)

IX1.X1 € S1 A R(X1) A singleton(X1, 52)

{ VX2.X2 € S2 - R(X2) A X2 € S1 }

P(S1, S2) «

(P, 51, §2, [R])

{

P(S1,52) « S§1(X1,S1,T1)A

not(R(X1))A

singleton(X1, S2),
So(X1, 51, T1)A

R(X1)A

P(T1, 52)

A not(R(X1)) A singleton(X1, S2)
— not(R(X2)) A X2 € S1

P(S1, 52) «

3X1.X1 € S1
VX2.X2 € §2
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Skeleton 17

parameters : (P, S1,52,[R])
P(51,52) « S81(X1,51, T1)A
R(X1, X2)A
4 . singleton(X2, S2),
code i P(S81,82) « 8g(X1,51,T1)A
not(R(X1, X2))A
P(T1, 52)
{ 3X1,X2.X1€ S1 A R(X1,X2) A singleton(X2, S2) }

properties ¥X2.X2 € 52 - IX1L.R(X1,X2) A X1 € S1

Skeleton 18

parameters : (P, S1,52,[R])
P(S1,52) « S1(X1,S1,T1)A
setof(X1, R(X1), 52),
code  : P(S1,82) «+ So(X1,81,T1)A
not(R(X1))A
P(T1, S2)
{ aAxX1.X1 € S1 A vx1' (X1 = X1 A R(X1')) - x1' € 52) }

properties VX2.X2 € 52 - R(X2) A X2 € S1

Skeleton 19

parameters : (P, S1,S2,[R])
P(S51,S82) « &§1(X1,81, T1)A
setof(X2, R(X1, X2), S2),

code  : P(51,S2) « So(X1,51, T1)A
not(R(X1, X2))A
P(T1, 52)
. X IX1.X1 € S1 A vX1/ (X1 =X1 A 3X2.R(X1/, X2)) - X2 € S2)
properties  : { VX2.X2 € S2 » AX1.R(X1,X2) A X1¢€ S1 }

Skeleton 20

parameters : (P, S1,S2,[R1, R2])
P(S1, 82) « &1(X1,81,T1)A
RI1(X1)A
4 . singleton(X1, S2),
coce # P(S1, 82) « 8o(X1,81,T1)A
R2(X1)A
P(T1, 52)

properties

IX1.X1 € S1 A R(X1) A singleton(X1, S2)
VX2.X2 € 52 - R(X2) A X2 € S1

Skeleton 21

parameters : (P, S1, 52, [R1, R2])
P(S1, §2) « S§1(X1, 81, T1)A
R(X1, X2)A
code X singleton(X2, S2),
: P(S1, 82) « So(X1,S1,T1)A
R2(X1)A
P(T1, 52)
{ 3X1,X2.X1 € S1 A R(X1,X2) A singleton(X2, S2) }

properties VX2.X2 € S2 - 3X1.R(X1, X2) A X1 € S1

Skeleton 22

parameters : (P, S1,S52,[R1, R2])
P(S1,52) « &1(X1,S1,T1)A
setof(X1, R(X1), S2),
code : P(S1,52) « So(X1,S1,T1)A
R2(X1)A
P(T1, S2)
{ AX1.X1 € S1 A vXx1'.((X1' =X1 A R(X1")) = X1’ € 52) }
VX2

properties

S2 — R(X2) A X2 € S1

Skeleton 23

parameters : (P, S1,52,[R1, R2])
P(S1,82) « &1(X1,51,T1)A

setof(X2, R(X1, X2), 52),

code  : P(S1,82) « S5(X1,51,T1)A
R2(X1)A
P(T1, 52)

v . AX1.X1 € 51 A vX1'.((X1' = X1 A 3X2.R(X1',X2)) - X2 € 52)

propertres VX2.X2 € §2 » IX1.R(X1,X2) A X1 € S1
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C.3 Deduction Skeletons

Skeleton 24

parameters

code

properties

Skeleton 25
parameters

code

properties

Skeleton 26

parameters

code

properties

Skeleton 27

parameters

code

properties

(P, 51, 52,[R, D])

P(S1,52) « R(S1,G)A

deduce(D, S1F G)A
singleton (G, S3)A
union(S3, S1, $2)

VX1.X1 € S1 — X1 € S2
3G.R(S1,G) A deduce(D, S1+ G)
VG.G € S2 - G € S1V (R(S1,G) A deduce(D, S1+ G))

(P, 51, §2, [R, D])

P(S1,S2) « R(S1,G)A
setof (G, deduce(D, S1 F G), S3)A

union(S3, S1, S2)

VX1.X1 € S1 —» X1 € S2
AG.R(S1,G) A VX.(X = G A deduce(D,S1+ G) = X € S2)
VG.G € S2 - G € S1V (R(S1,G) A deduce(D, S1F G))

(P, S1, §2, [R, D])

P(S1,S2) « R(S1,G)A

deduce(D, S1 F G)A
singleton(G, S2)

(81,G@) A deduce(D,S1+ G) A singleton(@, S2)
€ S2 - (R(S1,G) A deduce(D, S1F @))

(P, 51, 52, [R, D])

P(S1, S2) « R(S1,G)A
setof(G, deduce(D, S1+ G), §2)

3G.R(S1,G) A VX.((X = G A deduce(D,S1F G)) - X € S2)
VG.G € S2 = (R(S1,G) A deduce(D, S1+ G))

C.4 Abduction Skeletons

Skeleton 28

parameters : (P, S1,S2,[R, A])

code P(51,52) «+ R(S1,G)A

abduce(A, S1 F G, Ae)A
union(Ae, S1, S2)

VX1.X1 € S1 —» X1€ S2

properties

Skeleton 29

parameters : (P, S1,S52,[R, A])

3G .R(S1,G) A abduce(A,S1+ G,Ae) AN VX.(X € Ae - X € S2)
VX2.X2 € S2 — (

X2 € S1v

code  : P(S1,S2) « R(S1,G)A

setof(G, abduce(A, S1+ G, Ae), S3)A
union(S3, 51, S2)

VX1.X1 € S1 = X1€ 82

properties

X2 € S1v

}

J

3G, Ae.(R(S1,G) A abduce(D, S1F G, Ae) A X2 € Ae) )

3G.R(S1,G) A ¥YX.(X =G A abduce(D, S1+ G, Ae) = (X! € Ae = X' € 52))
VX2.X2 € S2 —»

3G, Ae.(R(S1,G) A abduce(D, S1F G, Ae) A X2 € Ae)
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Skeleton 30

parameters : (P, S1,S2,[R, A])
code P(S1,52) « R(S1,G)A
abduce(A, S1F G, S2)
" . 3G.R(S1,G) A abduce(D, S1F G, S32)
properties i VX2.X2 € S2 — 3G.(R(S1, @) A abduce(D,S1F+ G, Ae) A X2 € Ae)

Skeleton 31

parameters : (P, S1,52,[R, A])

code  : P(S1,52) « R(S1,G)A
setof(G, abduce(A, S1 F G, Ae), S2)
X =GA

properties Xoe Ae

3G.R(S1,G) A VX, Xe. | abduce(D,S1F G, Ae)A — Xe € 52
VX.X € S2 > 3G.(R(S1,G@) A abduce(D,S1+ G, Ae) A X € Ae)

C.5 General Relation Skeletons
Skeleton 32

parameters : (P, S1,52,[R])
code  : P(S1,52) « R(S1,X)A
singleton(X, 52)
) ) 3IX.R(S1, X) A singleton(X, S3)
properties  : { VX.X € S2 = R(S1, X) }
Skeleton 33
parameters : (P, S1,82,[R])
code : {P(S1,82) « setof(X, R(S1, X), $2)}

properties VX.R(S1,X) —» X € S2

IX.R(S1,X) A X € S2
VX.X € S2 - R(S1, X)

Skeleton 34

parameters : (P, S1,52,[R])

code : P(S1,52) « R(S1, X)A
singleton (X, S3)A
union(S3, S1, S2)

AX.R(S1,X) A X € S2

properties VX.X € 51 » X € 52

VX.X € §2 » R(S1,X) V X € S1

Skeleton 35

parameters : (P, S1, 52, [R])

code  : P(S1, S2) « setof(X, R(S1, X), S3)A
union(S3, 51, S2)
3IX.R(S1,X) A X € S2
VX.R(S1,X) = X € S2
VX.X € S1 — X € S2
VX.X € S2 — R(S1,X) vV X € S1

properties






Appendix D

Prolog (Goals for Example
Properties

Corresponding to property 12.4:

not(CaseDescription - X A not(AbstractedCase - X))

Corresponding to property 12.9:

not(Norm = X A not(SystemModel F X))

Corresponding to property 12.11:

SystemModel F X A not(Norm F X)

Corresponding to property 12.12:

AbstractedCase - X A not(CaseDescription - X)

Corresponding to property 12.19:

abstract(CaseDescription, AbstractedCase) N
X1 € CaseDescription A
generalisation(X1, X2) A
X1 € AbstractedCase N
X2 € AbstractedCase
AN
not(generalisation(X1, X2') A not(X2' € AbstractedCase))

not
not

Corresponding to property 12.20:

169

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)
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abstract(CaseDescription, AbstractedCase) A
X2 € AbstractedCase A
generalisation(X1, X2) A
X1 € CaseDescription A
not X1 € AbstractedCase
not v
not(generalisation(X1, X2)) A
X2 € CaseDescription

(D.6)

Corresponding to property 12.21:

select_norms(SystemModel, Norm) A
X1 € SystemModel A
not relevant(X1,X2) A X2 € Norm (D.7)
not \%
not(relevant(X1, X2)))

Corresponding to property 12.22:

X2 € Norm A
relevant(X1,X2) A X1 € SystemModel )

select_norms(SystemModel, Norm) A
not (D.8)
not (

Corresponding to property 12.51:

not(State H X A not(NextState - X)) (D.9)

Corresponding to property 12.52:

not(Predicted - X A not(State - X)) (D.10)

Corresponding to property 12.55:

State - X A not(Predicted - X) (D.11)

Corresponding to property 12.56:

X € NextState N not(X € State) (D.12)

Corresponding to property 12.60:

X1 € State A not(X1 € NextState) (D.13)

( envision(State, NextState) A )
not
Corresponding to property 12.61:

envision(State, NextState) A

not { . attribute_goal(State, G) A (D.14)
not((X = G A deduce(D, State - G)) A not(X € NextState))

Corresponding to property 12.62:
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not not G € NextState A
not(G € State V (attribute_goal(State, G) N deduce(D, State - G)))
(D.15)

envision(State, NextState) A )

Corresponding to property 12.69:

final_attributes(State, Predicted) N
is_attribute(X1, X2) A X2 € Predicted
X1 € State Anot \
not(is_attribute(X 1, X2))

(D.16)

Corresponding to property 12.70:

ot ( final_attributes(State, Predicted) A ) (D.17)

X2 € Predicted A not ( is_attribute(X1,X2) A X1 € State )

Corresponding to property 12.81:

not(NewLandmarks - X A not(NextState - X)) (D.18)

Corresponding to property 12.82:

not(Landmarks - X A not(State - X)) (D.19)

Corresponding to property 12.85:

State - X A not(Landmarks F X) (D.20)

Corresponding to property 12.91:

find_landmarks(State, Landmarks) A
X1 € State A
not islandmark(X1,X2) A X2 € Landmarks (D.21)
not \%
not(islandmark(X1, X2))

Corresponding to property 12.92:

X2 € Landmarks A
( isdandmark(X1,X2) A X1 € State )

find_landmarks(State, Landmarks) A
not (D.22)
not

Corresponding to property 12.97:

X1 € Landmarks N\
new_landmark(X1,X2) A X2 € NewLandmarks )

new landmarks(Landmarks, NewLandmarks) A
not (D.23)
not (

Corresponding to property 12.98:
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newlandmarks(Landmarks, NewLandmarks) A
not X2 € NewLandmarks A (D.24)
not ( new landmark(X1,X2) A X1 € Landmarks )
Corresponding to property 12.101:
not(NewLandmarks - X1 A not(NextState - X1)) (D.25)
Corresponding to property 12.102:
NextState - X2 A not(NewLandmarks - X2) (D.26)
Corresponding to property 12.107:
replace landmarks(NewLandmarks, NextState) A
not X1 € NewLandmarks A (D.27)
not ( replacelandmark(X1,X2) A X2 € NewtState )
Corresponding to property 12.108:
replace landmarks(NewLandmarks, NextState) A
not X2 € NextState A (D.28)
not ( replacelandmark(X1,X2) A X1 € NewLandmarks )
Corresponding to property 12.117:
not(Influences - X1 A not(State - X1)) (D.29)
Corresponding to property 12.120:
State - X2 A not(Influences - X2) (D.30)
Corresponding to property 12.126:
find_in fluences(State, In fluences) A
X1 € State A
not isanfluence(X1,X2) A X2 € Influences (D.31)
not \
not(is_influence(X1, X2))
Corresponding to property 12.127:
find_in fluences(State, In fluences) A
not X2 € Influences A (D.32)
not ( isinfluence(X1,X2) A X1 € State )
Corresponding to property 12.130:
not(Predicted - X1 A not(State - X1)) (D.33)

Corresponding to property 12.133:

not(Predicted - X A not(State - X)) (D.34)









