
Efficient and convergent natural gradient based
optimization algorithms for machine learning

by

Borja Sánchez López,

supervised by

Dr. Jesús Cerquides Bueno

and tutored by

Dr. Maite López Sánchez

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in the

Departament de Matemàtiques i Informàtica

Universitat de Barcelona

2022

A mi madre, a mi hermana

iii

iv

Acknowledgments

Gracias Jesús por todas las oportunidades que me has brindado sin pestañear, incluyendo este

proyecto en el que sinceramente me embarqué únicamente para poder seguir investigando con-

tigo. De ti, he aprendido en todos los aspectos, tanto profesionales como personales.

Gracias Jordi y Andrés, por poder discutir ideas de la tesis con vosotros y nutrirme de

vuestro conocimiento e intuición.

Gracias a mi madre Pilar, a Aldara, a Kate y a Jordi por vuestro apoyo y paciencia. He

podido contar con vosotros en momentos duros, y habéis inclinado la balanza a nuestro favor.

Más allá de ser indispensables para cualquier logro que cosechemos, me alegro de teneros

conmigo. Mama y Aldara, os debo quien soy, miles de risas y la confianza de quien es querido.

Kate, mis momentos son mejores contigo cerca, Ya tebe kohayu. Jordi, me gustarı́a seguir

abordando proyectos demasiado grandes, que alimentan mi ilusión y me reconfortan por el

tiempo bien invertido. Os quiero.

v

vi

Abstract

Many times Machine Learning (ML) is casted as an optimization problem. This is the case

when an objective function assesses the success of an agent in a certain task and hence, learning

is accomplished by optimizing that function. Furthermore, gradient descent is an optimization

algorithm that has proven to be a powerful tool, becoming the cornerstone to solving most ML

challenges. Among its strengths, there are the low computational complexity and the conver-

gence guarantee property to the optimum of the function, after certain regularities on the func-

tion. Nevertheless, large dimension scenarios show sudden drops in convergence rates which

inhibit further improvements in an acceptable amount of time. For this reason, the field has

contemplated the natural gradient to tackle this issue.

The natural gradient is defined on a Riemannian manifold (M, g). A Riemannian manifold

is a manifoldM equipped with a metric g. The natural gradient vector of a function f at a point

p in (M, g) is a vector in the tangent space at p that points to the direction in which f locally

increases its value faster taking into account the metric attached to the manifold. It turns out that

the manifold of probability distributions of the same family, usually considered in ML, has a

natural metric associated, namely the Fisher Information Metric (FIM). While natural gradient

based algorithms show a better convergence speed in some limited examples, they often fail in

providing good estimates or they even diverge. Moreover, they demand more calculations than

the ones performed by gradient descent algorithms, increasing the computational complexity

order.

This thesis explores the natural gradient descent algorithm for the function optimization

task. Our research aims at designing a natural gradient based algorithm to solve a function

optimization problem, whose computational complexity is comparable to those gradient based

vii

and such that it benefits from higher rates of convergence compared to standard gradient based

methods.

To reach our objectives, the hypothesis formulated in this thesis is that the convergence

property guarantee stabilizes natural gradient algorithms and it gives access to fast rates of

convergence. Furthermore, the natural gradient can be computed fast for particular manifolds

named Dually Flat Manifold (DFM), and hence, fast natural gradient optimization methods

become available.

The beginning of our research is mainly focused on the convergence property for natural

gradient methods. We develop some strategies to define natural gradient methods whose con-

vergence can be proven. The main assumptions require (M, g) to be a Riemannian manifold

and f to be a differentiable function onM. Moreover, it turns out that the Multinomial Logistic

Regression (MLR) problem, a widely considered ML problem, can be adapted and solved by

taking a DFM as the model. Hence, this problem is our most promising target in which the

objective of the thesis can be completely accomplished.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Figures xv

List of Algorithms xvii

1 Introduction 1

1.1 Function optimization . 2

1.2 Background . 2

1.3 Research questions . 6

1.4 Contributions . 8

1.5 Thesis structure . 9

2 Preliminary 11

2.1 A brief introduction to the stochastic process 12

2.1.1 Stochastic process definition . 12

2.1.2 Almost sure convergence, filtration and conditional expectation 14

2.1.3 The director process . 16

2.2 Optimization methods on Euclidean space . 17

ix

2.2.1 Gradient Descent . 18

2.2.2 Adagrad . 19

2.3 A brief introduction to Riemannian Manifolds 20

2.3.1 Smooth Manifold . 21

2.3.2 Riemannian Manifold . 22

2.3.3 Conjugate connection Manifold . 25

2.3.4 Dually flat Manifold . 26

2.3.5 Example: Exponential Family . 29

2.4 Optimization methods over a Riemannian manifold 30

2.4.1 Natural gradient descent . 31

2.4.2 Mirror descent . 32

2.5 Stochastic optimization . 33

2.5.1 The stochastic optimization problem 33

2.5.2 Stochastic optimization methods . 34

2.5.3 Maximum likelihood problem . 36

2.5.4 Stochastic gradient descent . 37

2.5.5 Stochastic natural gradient descent . 38

2.6 Multinomial logistic regression . 39

2.7 Convergence theorems . 40

3 Manifold optimized descent 43

3.1 Preliminary study on natural gradient descent 43

3.1.1 Computational complexity symptoms 44

3.1.2 Divergence symptoms in a toy example 44

3.2 Manifold optimized descent . 46

3.2.1 Computational complexity . 48

x

3.2.2 Maximum entropy gradient descent 48

3.3 Experiments . 49

3.3.1 MEGD solving the die problem . 50

3.3.2 MOD solving the die problem . 51

3.4 Comments . 53

4 Convergent stochastic natural gradient descent 55

4.1 Convergent stochastic natural gradient descent 56

4.1.1 CSNGD convergence proof . 57

4.2 Experiments . 59

4.3 Comments . 61

5 Dual stochastic natural gradient descent 63

5.1 MLR generative model. The joint distribution 64

5.1.1 Dually flat parametrization of the joint distribution 65

5.2 Fast natural gradient of the log-loss . 66

5.3 Dual stochastic natural gradient descent . 67

5.4 Computational complexity of Natural Gradient 69

5.5 Computational complexity of discrete DSNGD 70

5.5.1 Example . 71

5.5.2 Discrete DSNGD linear computational complexity proof 72

5.6 Discrete DSNGD and convergence . 73

5.6.1 Generalizing Sunehag et. al. variable metric stochastic approximation

theory . 74

5.6.2 Discrete DSNGD convergence proof 75

5.7 Experiments . 78

5.8 Comments . 81

xi

6 Convergence of stochastic processes that resemble to conservative vector fields 83

6.1 Director process and learning rate bound constraints 83

6.1.1 Locally bounded stochastic process 85

6.2 Main result . 87

6.3 Expected direction set . 87

6.3.1 Essential expected direction set . 88

6.4 Vector field half-spaces and stochastic processes. Resemblance. 90

6.4.1 The half-space of a vector field . 92

6.4.2 Resemblance between a stochastic process and a vector field 93

6.5 Proof of main result . 94

6.5.1 Resemblance to conservative vector fields and convergence 94

6.6 Reinterpretation of convergence theorems . 96

6.6.1 Reinterpretation of Bottou’s convergence theorem 96

6.6.2 Reinterpretation of Sunehag’s convergence theorem 97

6.7 Comments . 99

7 Conclusion 101

A Appendix: Natural gradient 105

A.1 Proof of theorem 2.3.1 . 105

B Appendix: Dual stochastic natural gradient descent 107

B.1 Proof of Proposition 5.1.1 . 107

B.2 Proof of Proposition 5.1.2 . 110

B.3 Proof of Proposition 5.2.1 . 110

B.4 Proof of Proposition 5.4.1 . 111

B.5 Proof of Proposition 5.4.2 . 113

xii

B.6 Proof of Proposition 5.5.1 . 114

B.7 Proof of Theorem 5.6.1 . 115

B.8 Proof of condition C.2 in Theorem 5.6.2 . 116

B.9 Proof of condition C.4 in Theorem 5.6.2 . 117

C Appendix: Convergence of Stochastic process 119

C.1 Proof of Corollary 6.3.1 . 119

C.2 Bottou’s Resemblance . 120

C.3 Sunehag’s Resemblance . 120

Bibliography 123

Acronyms 131

Index 133

xiii

xiv

List of Figures

1.1 Two parametrizations of S2 and the gradients at p associated to each

parametrization. 4

3.1 KL-Divergence of estimations per iteration of SGD and SNGD on the die prob-

lem. 45

3.2 KL-Divergence of estimations per iteration of SGD, SNGD and MEGD on the

die problem. 50

3.3 Logarithm of the KL-Divergence of estimations per iteration of MOD with dif-

ferent eras on the die problem.. 51

3.4 KL-Divergence of estimations per iteration of MOD with eras = 1000, SGD,

SNGD and MEGD on the die problem. 52

4.1 KL-Divergence of estimations per iteration of CSNGD, SGD and SNGD on the

die problem. 60

4.2 KL-Divergence of estimations per iteration of ML, SGD and CSNGD on the

die problem. 61

5.1 Zt and ζ∗t sequences obtained in DSNGD where X = {0} and Y = {0, 1, 2} . 69

5.2 Median of KL-Divergences of estimations per iteration of SGD and DSNGD on

the MLR problem. 80

6.1 Path of stochastic process Z = (X, γ) . 85

xv

6.2 Set of vectors U and its convex vector subspace C(U) in R2 89

6.3 Shaded area representing Hε(u) . 92

6.4 A stochastic process Z that ε-resembles to X at η from T on, since vector set

EDSZ(η, T) of all expected directions ofZ at η after time T belongs toHε(X)(η) 94

xvi

List of Algorithms

1 Gradient descent . 19

2 Adagrad . 20

3 Natural gradient descent . 31

4 Mirror descent . 32

5 Stochastic gradient descent . 38

6 Stochastic natural gradient descent . 39

7 Manifold optimized descent . 47

8 Maximum entropy gradient descent . 49

9 Convergent stochastic natural gradient descent 57

10 Maximum likelihood estimator (die problem) 60

11 Dual stochastic natural gradient descent . 68

xvii

xviii

1 Introduction

In recent years our world is evolving at a dramatic and unstoppable speed in many aspects due to

the impact that computers have brought on civilization. We work with the increasing presence

of computers and automated processes, we have at our disposal a world of information on the

internet and we even communicate differently, utilizing social networks. The number of tasks

that computers can perform for us increases. And, of course, we also solve problems differently.

The branch of research known as Artificial Intelligence (AI) has emerged from this techno-

logical revolution. Surprisingly, AI is a science that lacks an accepted definition. As explained

in (Stuart Russell, 1995), history has produced four main conceptions about what AI aims to

understand and reproduce: systems thinking like a human, systems acting like a human, sys-

tems thinking rationally, and systems acting rationally. The reference states that a system or an

agent is just something that perceives and acts. AI in this thesis is related to systems that act

rationally, that is, “acting so as to achieve one’s goals, given one’s beliefs”.

Learning is an attribute of our intelligence, and computers are capable of recreating it arti-

ficially. This thesis is centered on Machine Learning (ML) branch, “a subfield of AI concerned

with programs that learn from experience” (Stuart Russell, 1995). In particular, we are in-

terested in incremental learning, in which the agent updates its old knowledge acquired from

experience as new information arrives. For example, if after some tries, we end up hitting the

inner bull’s eye constantly, we learned the task of throwing darts satisfactorily. The experience

is processed and learned following the steps of an algorithm.

Algorithms can be implemented and automated by a computer. This means that many so-

lutions are nowadays learned and found by systems. Different representations or models or the

different suitable algorithms are some of the common topics treated in ML. Great results of such

1

research allow surprising advances in practical problems such as in the image classification task

in (Li et al., 2012), video recommendation from (Covington et al., 2016) or numerous examples

in health and life sciences for analyzing nominal qualitative response variables appearing in

(Daniels and Gatsonis, 1997; Bull et al., 2007; Biesheuvel et al., 2008; Leppink, 2020).

1.1 Function optimization

In a problem-solving situation, this thesis notates by M the set of all candidates, with an S

the solution set which is the subset ofM of candidates solving the problem, and by f a func-

tion going fromM to R, often called expected error function or loss function, that judges the

performance of solution candidates towards solving the problem.

Moreover, some assumptions about such problem-solving elements are made. The first one

is about setM. This set is assumed to behave locally as an open set of Rk for some positive

integer k. This means that moving through setM can be done as if it was done through Rk.

When this happens, it is said thatM is a smooth manifold. This assumption can be imposed in

a huge amount of cases, including most ML challenges.

The second assumption is imposed to function f . It is assumed to be a differentiable R

valued function on the manifold M. Furthermore, we assume that the lower the value of f

at p, the better candidate p is. Therefore, learning how to properly execute a task translates

into minimizing f . Hence set S in such a scenario is identified by lower values in f . This

assumption is widely considered in ML. The faster the function f is minimized, the sooner S

is reached, and hence the more successful the learning process is. From here, research in ML

tries to figure out clever and clever ways to minimize such functions f . Just to clarify, this work

poses the task of learning in ML as a function optimization problem.

1.2 Background

Learning in AI is in general accomplished by function optimization algorithms. Algorithms in

this thesis are stochastic processes that determine, after previous candidates and possibly some

random phenomena, which candidate should be considered next. An iteration is the process

2

elapsed between two consecutive candidates, and it is crucial to establish what computations

need to be completed in every iteration so the algorithm adequately optimizes a function f .

If an agent is learning through an algorithm, then function f is minimized by the successive

candidates or estimations of the solution given by the algorithm, until good enough estimates

are found.

We assume that the function to minimize f is differentiable onM. Therefore the gradient

becomes available. The gradient is the cornerstone of nowadays optimization in ML. The reason

is intuitive: the gradient points towards the steepest ascent. Therefore, the opposite of the

gradient reveals the direction where the function locally decreases its value faster. This idea is

first presented by Cauchy.

The most used and standard algorithm is the Gradient Descent (GD) first appearing in

(Cauchy, 1847) (see Algorithm 1). It is simple and cheap in terms of computational complexity

but it is often enough to achieve proper solutions in ML. Its strength consists of its low com-

putational complexity, allowing many more iterations for the training process in comparison

to other algorithms. However, harder problems are tackled every day, where effective learning

is demanded. By effective we mean that the information acquired in every iteration from the

candidate and its value in f needs to be applied to the learning process as much as possible.

It is at this point that GD shows limitations. When the problem is more complex, GD often

drops its convergence speed to the solution set demanding infeasible many iterations and an

insane amount of time to effectively learn the task and provide a solution. Moreover, it highly

depends on hyper-parameters which can be difficult to tune and it is vulnerable to the plateau

phenomenon (Fukumizu and Amari, 2000; Dauphin et al., 2014) and ill-conditioning (Gill et al.,

2019; Saarinen et al., 1993). The literature proposes many modifications and enhancements to

GD seeking effectiveness of the training process. Chapter 2 explores some of these algorithms

in more detail. Most modifications derive from GD but our interest lies in the natural gradient

technique.

To understand the natural gradient it is necessary to meet Riemannian manifolds. To see the

definitions related to this mathematical object see our revisiting in section 2.3 or see (do Carmo,

2013). Intuitively, a Riemannian manifold consists of equipping a manifoldM with a metric

tensor g. The Riemannian manifold (M, g) then allows to correctly capture the curvature of

3

M. For example, a sphere locally resembles R2 however local metrics differ from those in R2.

Just notice that angles of a triangle drawn on a sphere do not sum up π
2 , for instance. This in

particular exposes that the gradient of a function expressed in a given parametrization may be

dependent on the parametrization itself in a Riemannian manifold. Indeed, to be convinced of

this fact, consider the next simple example. The simplex S2 is a 2-dimension manifold defined

by points in R3 whose coordinates are positive and sum up to 1, or formally S2 = {(x, y, z) ∈

R3 | x, y, z ≥ 0, x+y+z = 1}. The simplex can be seen in its ambient space in figure 1.1b as a

triangle in a 3-dimensional space. Since the simplex is a 2-dimension manifold (it is a surface),

this means that it can be represented by a system of coordinates of dimension 2. For example,

it is possible to project the simplex along the y axis to obtain a parametrization of S2. Or a

projection along the x axis would do it too. These 2 parametrizations appear in Figure 1.1a.

Define now the function fz(x, y, z) = z over the simplex. Maximizing this function is

equivalent to climbing up the simplex to the peak, where the z coordinate is highest and the

value of the function reaches its maximum value equal to 1. In Figure 1.1, points of the manifold

are colored, identifying better candidates with darker points. Observe in the same figure the

gradient of fz at some point p in the two different parametrizations.

x

z

p

y

z

p

(a) Gradients of fz at p in different parametrizations

x

z

y

p

(b) Gradients in S2

Figure 1.1: Two parametrizations of S2 and the gradients at p associated to each parametriza-

tion.

Both vectors are obtained by just writing the function with respect to the corresponding

parametrization and then computing the partial derivatives to form the gradient. In both cases,

this yields the vector (0, 1) in the corresponding bases. In figure 1.1b the reader can see that

both gradients are different. It is relevant to observe that none of these two gradients is pointing

4

to the truly steepest ascent. Intuitively, to climb the simplex as fast as possible, the appropriate

direction is the one pointing directly to the peak, since the z coordinate is increased faster. But

each parametrization in figure 1.1a lacks information and the resulting gradient is a vertical

vector. These misleading vectors that do not really point to the steepest ascent occur even

with the flat manifold S2. Now recall that most important optimization algorithms rely on the

gradient. This means that most function optimization algorithms nowadays do not exploit the

truly ascend direction and their performance strongly depends on the parametrization settled

(see for example (Zaidi et al., 2014)).

The natural gradient at p ∈M of a function f defined in a Riemannian manifold (M, g) is

a vector that points towards the steepest ascent at p taking into account the local metric provided

by g. This is proved in (Amari, 1998), and we also provide a different proof in Appendix A.1.

Great theoretical advantages come along with the natural gradient. This object is uniquely and

well defined, in the sense that it is not parametrization dependent. Moreover, it points to the

truly most ascent direction according to the metric information of the Riemannian manifold.

In ML, often an appropriate metric to equip a manifoldM with is the Fisher Information

Metric (FIM) or Fisher-Rao metric first defined in (Rao, 1945) and worked in detail for example

in (Amari, 2016) and (Nielsen, 2018). FIM is available for manifolds where every point inM

can be related to a family of probability distributions. For instance, in the darts game, different

ways of throwing darts define different probability distributions over the dartboard. Such prob-

ability distributions indicate regions where the dart is most likely to land. Learning the darts

game consists of acquiring a correct intuition of which probability distribution is associated

with every way of dart throwing. For such manifolds, where every element inM determines

a probability distribution family, FIM is a standard metric obeying the most important metric

intuitions of probability distributions as proven in (Čencov, 1982) such as being the only in-

variant metric under canonical sufficient statistics. This kind of Riemannian manifold, where

points within represent probability distributions, is often called a statistical manifold (Amari

et al., 1987; Murray and Rice, 1993; Nielsen, 2018).

From a more theoretical point of view, the advantage of applying the opposite of the nat-

ural gradient to minimize a function in a Riemannian manifold is the independence of the

parametrization. At this point, we have provided no further reasons to use the natural gradi-

5

ent instead of the regular gradient. However, if the function to minimize is related to the metric

of the manifold, then things change. It is proven in (Amari, 1998) that the Natural Gradient

Descent (NGD) algorithm, provided it converges, is Fisher efficient when optimizing the condi-

tional log-likelihood. This means that its convergence speed is as good as it can be. This result

is promising to fix the low convergence speed of gradient variants mentioned before.

Also, both from a theoretical and a practical standpoint, natural gradient optimization meth-

ods carry a weakness, they demand a high order computational cost. Natural gradient based

algorithms scale badly, often discarding them as good enough optimization methods to be ap-

plied in real (large-scale) problems.

Even if theory supports natural gradient variants, in practice it may show the worst results

possible: low convergence speed can be sometimes observed, its computational greed rejects

any option to obtain useful feedback from the algorithm or it even diverges and therefore never

finds the solution, as it is shown in a simple example in (Thomas, 2014). The instability of such

algorithms erases the good theoretical properties of convergence speed. Therefore, if explained

shortly, in practice it turns out that natural gradient based algorithms need more computations

but they often perform way worse than simpler methods. This is the starting point for this thesis.

1.3 Research questions

The general question we address is

Is it possible to take advantage of the local geometry ofM to effectively guide

optimization?

We hypothesize that once convergence is brought to natural gradient algorithms, then high

efficiency is at hand. Moreover, we think that some statistical manifolds allow the definition of

fast natural gradient algorithms. They are known as Dually Flat Manifold (DFM) in (Amari,

2016) and (Nielsen, 2018) and they are often encountered in ML, for example wheneverM is

an exponential family. Such manifolds are the perfect target to build convergent and efficient

natural gradient based optimization algorithms.

6

We have found it necessary to break the main question into 3 concrete and approachable

ones during our research. The first question appeared together with our hypothesis. If conver-

gence is really needed for natural gradient based algorithms to achieve efficiency, it is desirable

to prove the convergence of a natural gradient based algorithm to then assess its performance.

This means we faced the following challenge:

1. Can we generate convergent algorithms close to the natural gradient?

We answered such a question in the positive. Nevertheless, we encountered the astonishing

high computational complexity of natural gradient algorithms. This cost comes from a matrix

inverse demanded in every iteration (or linear system solving). This fact makes such algorithms

impractical for larger and more complex problems. Our main question can be answered only if

the computational costs of a natural gradient based optimization method are drastically reduced,

ideally to linear in the dimension of the manifold. At this point, we put our effort into finding a

response to:

2. Can we make them computationally efficient as well?

Of course, the first question was not just left behind. Our work designing a natural gradient

algorithm with reduced computational complexity aims to fulfill convergence property as well.

We were able to define a fast natural gradient algorithm in a Dually Flat Manifold (DFM) that

we named Dual Stochastic Natural Gradient Descent (DSNGD). However, the convergence

property was not as easy to prove as in our previous work. Since a deeper study was needed to

prove the convergence of our low computational complexity algorithm, we directly asked:

3. What are the key factors determining the convergence of this type of algorithm?

We made some research about the convergence of stochastic processes to tackle this ques-

tion. Here, our strategy consists of making an abstraction of such convergence results and

identifying the generalized properties that lead algorithms to theoretically satisfy convergence.

7

1.4 Contributions

This section relates the questions asked with our best answers and contributions. Before any

question is faced, the first objective was to provide a stabilized natural gradient based opti-

mization method and study its behavior. The algorithm is named Manifold Optimized Descent

(MOD). It reduces the iterations where the metric is updated. This algorithm can be seen as

a mixture of gradient descent variants and natural gradient ones. This study is made for my

master’s thesis in (Sánchez-López, 2018) and this work includes a summary and conclusions

reached from that research. In the experiments run, we observed that MOD stabilizes and

converges to the solution, unlike NGD which often diverges. Moreover, MOD surpasses GD

providing better estimates of the optimum. However, the convergence property of MOD is not

proven and its computational complexity is still high, even if matrix inverse computations are

not performed at every iteration.

The next contribution can be found in (Sánchez-López and Cerquides, 2019). It answers

research question 1. In there, optimization method Convergent Stochastic Natural Gradient

Descent (CSNGD) is presented. CSNGD is defined to imitate Stochastic Natural Gradient

Descent (SNGD) but ensuring the convergence. This algorithm has proven convergence and

it is shown to support our hypothesis: it shows great convergence speed in every scenario where

SNGD does not, or even diverges. Code of experiments can be found in (Sánchez-López and

Cerquides, 2022a).

Research question 2 is addressed in article (Sánchez-López and Cerquides, 2020). We de-

fine a linear complexity order algorithm in a DFM often encountered in ML. The name of the

algorithm is Dual Stochastic Natural Gradient Descent (DSNGD). We even manage to prove its

convergence after our generalization of a result in (Sunehag et al., 2009). Experiments show

great performance compared to standard SGD, where greater rates of convergence of DSNGD

can be observed, supporting our hypothesis. The reader can check and reproduce the experi-

ments in (Sánchez-López and Cerquides, 2022b).

Research question 3 finds an answer in (Sánchez-López and Cerquides, 2021). We created

a new ground theory focused to prove the convergence of stochastic processes. This is useful to

define a wider set of convergent algorithms, including natural gradient based.

8

As a summary, the contributions are listed below:

• MOD algorithm and a preliminary study on natural gradient based optimization methods

in the master’s thesis: (Sánchez-López, 2018).

• Towards answering research question 1, the natural gradient based optimization method

CSNGD, with proof of convergence, shows great behavior and supports our hypothesis in

the paper (Sánchez-López and Cerquides, 2019) and toy problem experiments (Sánchez-

López and Cerquides, 2022a).

• DSNGD facing research question 2 in (Sánchez-López and Cerquides, 2020) with ex-

periments in python in (Sánchez-López and Cerquides, 2022b). The article proves the

convergence and the linear complexity of the algorithm in the discrete case.

• Our answer to research question 3 and the convergence of stochastic processes in

(Sánchez-López and Cerquides, 2021).

1.5 Thesis structure

Apart from this chapter, this work dedicates one chapter to every contribution plus one addi-

tional chapter at the beginning containing the related work and another one at the end with

conclusions and future work. Chapter 2 includes all necessary contents to understand the con-

tributions. It starts with the definition of the stochastic process, the core mathematical object of

study for the thesis. Most relevant gradient descent algorithms are described and commented

on. A brief introduction to Riemannian manifolds is then given and DFM are presented. Then,

some examples of natural gradient based algorithms are shown. The chapter finishes defining

stochastic optimization and stating some useful convergence theorems of stochastic processes

existing in the literature.

Chapter 3 contains preliminary research about natural gradient variants and their behavior.

It summarizes the master’s thesis in (Sánchez-López, 2018), and it studies the strengths of

natural gradient based algorithms and their symptomatic performance issues. Algorithm MOD

helps understand the weaknesses of natural gradient methods. MOD possesses a positive integer

9

hyperparameter eras which determines the frequency of metric updates. The bigger the value

of eras the closer to a gradient based algorithm becomes MOD. If eras has a low value then it

imitates NGD closely, becoming exactly NGD when eras = 1. Hence MOD can be seen as an

adjustable trade-off between GD variants and NGD. This allows us to judge our hypothesis and

it supports it since MOD shows stability for big enough eras, yet having the convergence speed

benefits of natural gradient based algorithms.

The reader can find our first natural gradient based algorithm with proven convergence in

Chapter 4 named CSNGD. To prove it, some useful convergence theorems in the literature are

used, which can be found at the end of Chapter 2. To reduce its high computational complexity,

DFM are considered. In such spaces, matrix inverse computations are saved reducing the com-

plexity order of the algorithm. However, the matrix-vector product still increases the complexity

order up to quadratic. The chapter completely nourishes from (Sánchez-López and Cerquides,

2019).

DFM are worked in more detail in Chapter 5 to create a natural gradient based algorithm to

predict a class variable Y given some feature variables X called DSNGD. The section proves

that the complexity order of DSNGD is linear when X are discrete variables. As explained in

the article (Sánchez-López and Cerquides, 2020), the convergence of the algorithm can not be

deduced from convergence theorems found in the literature. Hence a generalization is stated

and proven, which then ensures the convergence of DSNGD for the discrete case.

Chapter 6 is dedicated to the convergence of stochastic processes, based on (Sánchez-López

and Cerquides, 2021). Research made towards proving DSNGD convergence allowed to gen-

erate a ground theory to prove the punctual convergence of a stochastic process, considering

the resemblance of an algorithm to the half-space of a conservative vector field, in terms of its

expected direction set. All terms are defined and illustrated in the chapter.

The thesis concludes with Chapter 7 that contains the conclusions extracted from the work

done and some challenges left for future work.

10

2 Preliminary

This chapter summarises the main concepts needed to understand our contributions. Recall that

we have posed the learning problem as an optimization problem with the objective function

f . Because of the complexity of the function to optimize f , assume that finding the minimum

must be accomplished by an iterative method. An iterative method or iterative algorithm is a

stochastic process that provides a sequence p0, p1, p2, p3... of refined candidates to optimize a

given function f . If the algorithm is successful, then all candidates after a specific iteration

belong to S. To define an algorithm it is enough to establish the maps deciding which candidate

to consider next, given previous ones and their function values.

We start revisiting stochastic processes in Section 2.1. Afterward, we introduce some of

the standard and most exploited gradient based algorithms nowadays in ML in Section 2.2.

An overview of Riemannian manifolds is later given in Section 2.3, with a special interest

in statistical manifolds carrying the Fisher Information Metric (FIM). The natural gradient,

which is used heavily in Chapters 3,4 and 5, is presented in Section 2.3.2. Next, we give the

definitions of a connection and a dually flat manifold which, together with a key property of

the natural gradient in such spaces, are essential for building Chapter 5. Thereafter, we give the

basic structure of natural gradient based algorithms with some relevant examples in Section 2.4.

Then, Section 2.5 introduces stochastic optimization, pointing out that every previous method

defined has its online version, illustrated with some examples. Section 2.6 briefly introduces

the Multinomial Logistic Regression (MLR) problem, which is the problem faced in Chapter 5.

Finally Section 2.7 states convergence theorems which are the basis of later Chapter 6.

11

2.1 A brief introduction to the stochastic process

The basic mathematical object of the thesis is the stochastic process. For us, an algorithm or

optimization method is nothing else than a stochastic process, often subjected to random phe-

nomena. For this reason, we provide some essential definitions and nomenclature related to

stochastic processes and their convergence. We are not giving an extensive nor detailed intro-

duction to the stochastic process. Instead, we briefly introduce the concepts that are relevant to

the objectives of this thesis. For more information about the topic, the reader can visit (Ross,

1996; Bass, 2011; Billingsley, 1986).

Section 2.1.1 provides definitions regarding stochastic processes which are needed for the

thesis. Right after the stochastic process is defined, we provide the concepts of almost sure

convergence, filtration, and conditional expectation in Section 2.1.2, which are fundamental

for studying the convergence of a stochastic process. Afterward, Section 2.1.3 introduces the

director process and the learning rate, which together define the update direction of consecutive

terms of a stochastic process.

2.1.1 Stochastic process definition

The goal of this section is to give the definition of the stochastic process, which is the main

mathematical object of the thesis. However, we provide some basic concepts needed to under-

stand the definition of a stochastic process.

Definition 2.1.1. Let Ω be a nonempty space. A set F of subsets of Ω is a σ-algebra if following

conditions hold:

i) Ω ∈ F

ii) if A ∈ F then A′ = Ω\A ∈ F

iii) If A1, A2, ... is a countable sequence where Ai ∈ F for all i ∈ N, then ∪iAi ∈ F

Definition 2.1.2. A measurable space is a tuple (Ω,F) where Ω is a non empty space and F is

a σ-algebra on Ω.

12

Definition 2.1.3. Let (Ω,F) and (S,Σ) be two measurable spaces. A F/Σ-measurable func-

tion f : Ω→ S is a function such that

(2.1) (∀A ∈ Σ) f−1(A) ∈ F ,

where f−1(A) = {x ∈ Ω | f(x) ∈ A}.

As abuse of notation, and whenever there is no confusion, an F/Σ-measurable function is

noted as just F-measurable function. A measurable space (Ω,F) can be extended to a prob-

ability space (Ω,F , P) where P is a probability measure on F (see for example (Billingsley,

1986)).

Definition 2.1.4. Let (Ω,F , P) be a probability space and (S,Σ) be a measurable space. A

random variable X is a F/Σ-measurable function where X : Ω→ S.

In this thesis, random variables are defined from a probability space to the measurable

space (S,Σ) where S = Rk (or an open set of Rk) and Σ is the corresponding Borel σ-algebra

(Royden and Fitzpatrick, 1988). Now we are ready to meet the definition of a stochastic process.

Definition 2.1.5. Let (Ω,F , P) be a probability space and (S,Σ) be a measurable space. A

discrete stochastic process is a sequence Z = {Zt}t∈N of random variables indexed by N such

that Zt : Ω→ S.

Stochastic processes usually describe random phenomena sequences. In ML, processes are

used to optimize a function. They are intended to approach the minimum of some function f

with estimation Zt at time t as t moves forward. For the function optimization task, S corre-

sponds to the parameter space and in the case of stochastic optimization, Ω is known as the

sample space. Example 2.1.1 helps to identify these concepts in a toy example.

Example 2.1.1. Assume a coin C = {H,T} with unknown probabilities is tossed providing

observations ω = (ω0, ω1, ω2, ...) where ωi ∈ C. That is, ω ∈ Ω is an infinite sequence of

observations, each of them valued to eitherH or T . The coin is ruled by an unknown probability

distribution P . The objective is to learn this probability distribution given the observations. For

13

this situation, the parameter space is S = (0, 1) ⊂ R, and the sample space Ω is the set of all

possible infinite sequences of observations. One can define the following stochastic process;

Z0 =
1

2
∈ S

Zt+1(ω) =
(t+ 1)Zt(ω) + 1{H}(ωt)

t+ 2
,

(2.2)

where

(2.3) 1A(x) =

1 if x ∈ A

0 otherwise ,

is the indicator function on subset A. Hence Zt(ω) reflects the proportion of H in the sequence

ω up to time t. It is clear that as t goes to infinity, the stochastic process captures P (H) with

higher precision.

2.1.2 Almost sure convergence, filtration and conditional expectation

We are interested in studying the almost sure convergence of Z to a point η ∈ Rk. We provide

the formal definition in Definition 2.1.6.

Definition 2.1.6. A stochastic process Z on the probability space (Ω,F , P) almost surely (a.s)

converges to a point η ∈ Rk if

(2.4) P
[
ω ∈ Ω : lim

t→∞
Zt(ω) = η

]
= 1 .

As an abuse of notation, throughout the thesis, the convergence of a stochastic process

actually refers to the almost sure convergence of a stochastic process to a point, unless otherwise

specified.

The convergence proofs of stochastic processes in this thesis are based mainly on the con-

vergence theorem appearing in (Robbins and Siegmund, 1971). We recall this theorem in Sec-

tion 2.7. To understand this result, concepts such as filtration and conditional expectation need

to be introduced. The reader can check (Billingsley, 1986; Bass, 2011) to expand the concepts

given.

Definition 2.1.7. Let (Ω,F , P) be a probability space. A filtration is a collection of σ-algebras

{Ft}t∈N such that Ft ⊂ F for each t and Fi ⊂ Fj if i ≤ j.

14

Definition 2.1.8. Let (Ω,F , P) be a probability space. A stochastic process Z = {Zt}t∈N is

adapted to a filtration {Ft}t∈N if Zt is Ft-measurable for all t ∈ N.

Definition 2.1.9. Let A be a set of subsets of a nonempty space Ω. The σ-algebra generated by

A denoted by σ(A) is the set of subsets of Ω such that:

i) A ⊂ σ(A)

ii) σ(A) is a σ-algebra

iii) If A ⊂ F where F is a σ-algebra, then σ(A) ⊂ F .

Definition 2.1.9 implies that σ(A) is the smallest σ-algebra containing A and it can be

obtained by the intersection of all σ-algebras containing A (see (Billingsley, 1986)). Moreover,

the concept of σ-algebra generated by a class A allows generating a filtration given a stochastic

process Z defined in a probability space (Ω,F , P) to a measurable space (S,Σ). Define

(2.5) Ft = σ(Z−1
i (A) | i ≤ t, A ∈ Σ) ,

where Z−1
i (A) = {x ∈ Ω | Zi(x) ∈ A}. Then {Ft}t∈N, or simply Ft as an abuse of notation,

is the filtration generated by Z also known as the natural filtration associated to Z. Proving that

{Ft}t∈N is actually a filtration is a straightforward task. By definition, it is also clear that Z

is then adapted to Ft. When there is no confusion, notation Ft in this thesis will refer to the

filtration generated by the stochastic process Z.

Intuitively, every Ft of a filtration is a σ-algebra that classifies the elements of Ω. For

example, if Ω is the set of colors, Ft can gather warm and cold colors into separate and com-

plementary sets. The fact that a random variable Zt is Ft-measurable implies that Zt sends all

warm colors to the same value and all cold colors also to the same value. Zt is then not provid-

ing any additional information about elements of Ω beyond the classification of Ft. Recall that

the sequence Ft of a filtration is increasing, in the sense that Ft ⊂ Ft+1 for all t. Therefore, a

filtration characterizes space Ω with sequentially higher levels of information or classification.

Saying thatZ is adapted toFt whereFt is the natural filtration ofZ implies that the sequentially

increasing information provided by the filtration is the incremental information discriminated

from the sample space by the stochastic process.

15

Definition 2.1.10. Let Z be an integrable random variable on a probability space (Ω,F , P)

and let G be a σ-algebra such that G ⊂ F . The conditional expectation of Z given G is a

random variable noted as E [Z | G] such that:

i) E [Z | G] is G-measurable and integrable

ii)
∫
G E [Z | G] dP =

∫
G ZdP G ∈ G

Denote Et = E [· | Ft] the conditional expectation given a σ-algebra Ft (Bass, 2011). Re-

call that if Z is a random variable in (Ω,F , P) then Et[Z] is in turn a Ft-measurable random

variable.

2.1.3 The director process

The difference between two random variables of a stochastic process is a random variable

known as increment. We say that random variable Ist = Zt+s − Zt with 1 ≥ s ∈ N is an

s-increment at time t. For example, the 1-increments of a stochastic process Z are

(2.6) I1
t = Zt+1 − Zt .

The 1-increments I1
t capture the difference random variable between two consecutive ran-

dom variables of the process. This is useful since most algorithms are defined in terms of their

1-increments. That is, they define the updated variable Zt+1 departing from the actual random

variable Zt as a reference, by

(2.7) Zt+1 = Zt + I1
t .

It is common to factor the 1-increments I1
t into two elements as

(2.8) I1
t = −γt ·Xt ,

where γt is a positive number called the learning rate and Xt is a random variable mostly

characterizing the 1-increments direction. The negative sign is just a convention. We provide a

definition of this decomposition of the 1-increments for their relevance to this thesis.

16

Definition 2.1.11. Let Z and X be stochastic processes and let γ = {γt}t∈N be a sequence of

positive numbers. Then (X, γ) is a decomposition of 1-increments of Z if

(2.9) Zt+1 = Zt − γtXt

Name X the director process of Z and γ the learning rate, and note it by Z = (X, γ).

In this shape, where Z = (X, γ), the stochastic process Z is known as a line search algo-

rithm. As Definition 2.1.11 states, the sequence X = {Xt}t∈N is a stochastic process over the

same probability space of Z and it is named the director process of Z in this thesis. Different

settings of the director process X and the learning rate γt provide different line search algo-

rithms. Throughout the thesis, some of the most used and successful algorithms are shown by

specifying its director processX . The learning rate γt has some generally accepted shapes. The

most common ones are the constant learning rate γt = c or choosing at every iteration a γt low-

ering the function the most possible according to the direction set by the director process when

the function f is known (offline optimization). The most suitable learning rate for stochastic

optimization (online optimization) is a decreasing sequence γt = a
1+b·t , where the function f

can only be approximated after a sequence of observations. Refer to Section 2.5 for this later

case.

2.2 Optimization methods on Euclidean space

This section first states some simplifications done in the optimization problem. Such assump-

tions are usually assumed in ML when an optimization problem is solved by a gradient op-

timization method. Then Section 2.2.1 and Section 2.2.2 provide two main gradient descent

algorithms exploited nowadays, known as GD and Adagrad respectively.

Throughout this thesis, we make the extremely simplifying assumption that f is a differen-

tiable function defined in Rk with a unique global minimum η ∈ Rk. Clearly the function has

the minimum value f(η). The goal is to find a good enough point to optimize f .

This section makes the assumption that f is known. This is the case of offline optimization.

In such a scenario, no sample is observed (Ω = ∅) and we consider Z, and therefore the director

17

processX as well, as just sequences of numbers in Rk. Hence, once Z0 = η0 ∈ Rk is specified,

the whole sequence Zt is uniquely determined independently of any random phenomena. For

the online or stochastic optimization, where Ω is not empty and the stochastic processZ depends

on an outcome of Ω, refer to Section 2.5.

Since the function is differentiable, points whose gradient vanishes are candidates to mini-

mize the function. However, assume the function is too complex to be optimized analytically.

Instead, an iterative method is required. This section introduces standard yet most used opti-

mization algorithms. The reader may want to check (Ruder, 2016) for more algorithms and

extended information about them.

Without a global view of the function, it is often not easy to decide if a given estimation of

the optimum is a decent solution. Hence a stopping condition must be set for an optimization

process, that is, a criterion deciding when the algorithm must stop running iterations and yield

its best estimate of the optimum. The stopping condition can be satisfied when some threshold

on the value of the function is achieved (if for some reason the optimum value is known or

deduced). Or also it can stop the learning process after a specified number of iterations defined

beforehand. The most used stopping condition checks whether the activity of the algorithm

has stopped from a practical point of view: it compares successive estimations (1-increment

values), to compute the distance between updates. If the difference is not significant the stop-

ping condition yields true and the algorithm stops searching for estimates since no significant

improvement is being made between successive updates.

2.2.1 Gradient Descent

The assumption of f being differentiable provides a key tool for the optimization task. It is well

known that the gradient of a function in Rk points towards the greatest local ascent, and that the

opposite of the gradient points towards the greatest local descent. That is, after some estimation

p of the solution, there are better estimations (lowering the value of f) in the opposite direction

of the gradient. Therefore, the gradient becomes a useful tool for the task.

Definition 2.2.1. Let f be a differentiable function. Gradient Descent (GD) is a stochastic

18

process Z = (X, γ) such that

(2.10) Xt = ∇f(Zt) .

See Definition 2.1.11 for the notation used in the definition of GD. As explained in Sec-

tion 2.1.3, the learning rate is often fixed to a constant γt = c for off-line optimization. Choos-

ing a constant c for γt may be critical to the success of the task because too small learning rates

may dramatically drop the convergence speed and too big learning rates can lead to divergence

(Ruder, 2016).

Most used optimization methods nowadays are gradient based, all of them derived from the

work of (Cauchy, 1847) known as the Gradient Descent (GD) algorithm. The reader can find it

in this work as Algorithm 1.

Algorithm 1: Gradient descent
Result: Zt

1 Z0, t = 0;

2 while stopping condition not satisfied do

3 Xt = ∇f(Zt);

4 Zt+1 = Zt − γtXt;

5 t = t+ 1;

6 end

2.2.2 Adagrad

The name of this algorithm stands for adaptive learning rate gradient descent, and it is first

defined in (Duchi et al., 2011). It is gradient based, imitating the director process X of GD.

Instead, learning rate γt is modified according to past iterations and it is not applying the same

learning rate for each parameter. To clearly show this difference, the notation of the learning

rate is changed to Γt, to point out that the learning rate is a diagonal matrix. Each element of

the diagonal contains the learning rate for the associated parameter.

This method stores in the diagonal of Γt the inverse of the square root of past squared

gradients sum. To define this algorithm, let us introduce some notation: Σt denotes the sum of

19

squared gradients up to iteration t and ν(x) = −2
√
x+ εwhere ε ≈ 10−8 is a positive smoothing

term that avoids division by zero.

Definition 2.2.2. Let f be a differentiable function. Adagrad is a stochastic processZ = (X, γ)

such that

Xt = ∇f(Zt) ,

Γt = c · ν(Σt) , c ∈ R+.
(2.11)

The constant c is usually set to 0.01 (Ruder, 2016). Parameters that have been repeatedly

updated have a lower learning rate. It is remarkable that Adagrad does not require tuning the

learning parameter, since it automatically adapts its value according to previous iterations. Al-

gorithm 2 shows Adagrad instructions, where diag(u) of a vector u stands for the diagonal

matrix with u in the diagonal.

Algorithm 2: Adagrad
Result: Zt

1 Z0, t = 0,Σ = 0;

2 while stopping condition not satisfied do

3 Γt = c · ν(Σ);

4 Xt = ∇f(Zt);

5 Zt+1 = Zt − Γt ·Xt;

6 Σ = Σ + diag(Xt) · diag(Xt);

7 t = t+ 1;

8 end

2.3 A brief introduction to Riemannian Manifolds

This section introduces some basic concepts in Riemannian Manifolds needed for the contribu-

tions of the thesis. Since this section is not expected to be an introductory lesson to differential

geometry, and instead, the purpose is to give an overview of the concepts, some rigorous content

is skipped. Basically, nourishment comes from (do Carmo, 2013; Nielsen, 2018; Amari, 2016)

and we recommended to check the references for a deeper understanding on the subject.

20

Let (M, τ) be a second countable Hausdorff topological space. M is a manifold if for

every p ∈ M it locally resembles to Rk, for some positive integer. Therefore, a manifold is

a topological space whose points can be referred to by using coordinate systems of Rk. Such

coordinate systems or parametrizations are homeomorphisms that relate the open sets from both

Rk and τ . The formal definition is given as Definition 2.3.1.

Definition 2.3.1. Let (M, τ) be a second countable Hausdorff topological space. M is a

manifold if for every p ∈ M there exists an open set U ∈ τ and a map φ : U → V such that

p ∈ U , V is an open set of Rk and φ is a homeomorphism. In such a case the dimension ofM

is k.

2.3.1 Smooth Manifold

Differentiable or smooth manifolds are interesting objects since they can inherit properties and

results known of Rk, such as differentiable functions defined onM, the tangent space at a point

p ∈M, vectors, metrics in the tangent space, vector length and angle between vectors.

The pair (U, φ) of definition 2.3.1 is called a chart and the collection of all charts is a

parametrization. This level of abstraction doesn’t give any structure to M, just a coordinate

system in Rk to refer to points inM. Such points in Rk are often called parameters and this

text notes them with η ∈ Rk. An atlas gives a structure to M to obtain a differentiable or

smooth manifold.

Definition 2.3.2. An atlas (resp. Cr-atlas) is a set of charts {(Ui, φi)}i∈I such that ∪iUi =M

and such that for any two pair (Ui, φi) and (Uj , φj) the function φ2 ◦φ−1
1 evaluated in the open

set φ1(U1 ∩ U2) is a smooth function (resp. Cr-function).

An atlas is commonly referred to as a parametrization in ML. From here on, and whenever

there is no confusion, notation is simplified for a parametrization {(Ui, φi)}i∈I and it is noted

as (U, φ) or just φ.

Definition 2.3.3. A smooth manifold is a manifold with an atlas assigned. A Cr-differentiable

manifold is a manifold with a Cr-atlas assigned.

21

The gradient

Observe now that a function f defined in a differentiable manifoldM with the parametrization

φ can be thought as a function from Rk to R as f ◦ φ−1. If f ◦ φ−1
i is a differentiable map

at η = φi(p) ∈ Rk for all charts (Ui, φi) in the atlas where p ∈ Ui, then f is said to be

differentiable at p ∈ M. The function is differentiable inM if it is so at every point. Many

examples and insights appear in the references that help to understand smooth manifolds better.

For a differentiable manifoldM and a differentiable function f defined inM, it is possible

to compute the gradient of f with respect to a parametrization φ, by simply computing the

partial derivatives vector of function f ◦ φ−1 as a function from Rk to R as definition 2.3.4

reads.

Definition 2.3.4. LetM be a differentiable manifold, φ a parametrization and f a differentiable

function defined in M. The gradient of f at η = φ(p) with respect to a parametrization φ

denoted as∇f(η) is

(2.12) ∇f(η) = ∇(f ◦ φ−1)(η), η ∈ Rk .

In the trivial case where the manifold is simply Rk and the parametrization is the identity

map, definition 2.3.4 of the gradient coincides with the well-known gradient of differentiable

real-valued functions in Rk. It is also the mathematical object employed to define the director

process of all gradient based algorithms.

It is relevant to point out that this vector is not well defined since clearly depends on the

parametrization ofM taken. See Figure 1.1 for an illustrative example.

2.3.2 Riemannian Manifold

Since differentiable functions can be defined in a smooth manifold, it is possible to define

directional derivatives at p ∈ M, by means of curves passing through p and considering the

differential at that point. The set of all directional derivatives at p is a vector space of dimension

k, and it is known as the tangent space TpM ofM at p. At this point, one is ready to meet the

definition of Riemannian Manifold.

22

Definition 2.3.5. A Riemannian manifold is a pair (M, gp) where M is a smooth manifold

and gp is a symmetric , bilinear, positive-definite metric tensor in TpM where the metric tensor

depends on the point p, and the function p 7→ gp is differentiable.

The tensor of a Riemannian manifold induces an inner product in the tangent space as

< u, v >gp= gp(u, v) for two vectors u, v ∈ TpM. The inner product defines the length and

the angle properties of vectors in a natural way. When there is no confusion, gp is commonly

just noted as g.

Assume a parametrization (U, φ) is selected. Then for a p ∈ M the tangent space at p

is expressed in the basis {∂φi, 1 ≤ i ≤ n} where ∂φi = ∂
∂φi |p

. Then the matrix Gη with

η = φ(p) such that (Gη)ij = gp(∂φi, ∂φj) is a positive-definite matrix that provides metric

information at point p with respect to the parametrization φ. Note that this matrix depends on

the parameterization (on the atlas) chosen. Again, when there is no confusion, Gη is commonly

just noted as G. The inner product of two vectors u, v ∈ TpM is then expressed in matrix form

as< u, v >gp= uᵀ ·Gη ·v, and lengths and angles in TpM can be defined after it in the ordinary

way.

The natural gradient

In a Riemannian manifold, it is possible not only to differentiate a function but also to measure

vector lengths. So, given a differentiable function f on a Riemannian manifold (M, g), it is

possible to consider all normalized vectors of the tangent space TpM at point p, and ask which

normalized directional derivative (vector) applied to f is higher. This is accomplished by the

natural gradient.

Natural gradient is written as ∇̃f(η) in (Amari, 1998) and it is defined with respect to a

parametrization φ.

Definition 2.3.6. Let (M, g) be a Riemannian manifold, φ a parametrization and f a differ-

entiable function defined in M. The natural gradient of f at η = φ(p) with respect to a

parametrization φ is

(2.13) ∇̃f(η) = G−1
η · ∇f(η), η ∈ Rk .

23

A result appearing in (Amari, 1998) proves that the natural gradient does not depend on the

parametrization and that it points to the true ascent direction of a differentiable function f . We

recall this result as Theorem 2.3.1. Check the reference for the proof, or visit our version of the

proof using only basic concepts of Riemannian manifolds in appendix A.1.

Theorem 2.3.1. The natural gradient is not parametrization dependent. Moreover, let (M, g)

be a Riemannian Manifold, η be a parametrization and f be a differentiable function. Then the

natural gradient of f at η = φ(p) points to the steepest ascent direction of f at p.

Hence, the natural gradient is independent of the parametrization and the opposite direction

of the natural gradient points to the truly local descent direction obeying the metrics. Suddenly

natural gradient possesses great properties for the function optimization task.

The Fisher information metric

For this work, it is of particular relevance a certain kind of Riemannian manifolds. Specifically,

the manifolds whose points represent probability distributions. They are known as statistical

manifolds (Nielsen, 2018; Amari et al., 1987; Murray and Rice, 1993). This section defines the

Fisher Information Metric (FIM), a positive-definite metric tensor first appearing in the work of

(Rao, 1945).

Definition 2.3.7. Let M be a statistical manifold and φ be a parametrization such that η =

φ(p) ∈ Rk is the parameter of a family of probability distributions Pη. The Fisher information

metric (FIM) or Fisher-Rao metric at η is defined by Rk×k matrix

(2.14) Gη = Ez∼Pη [∇η logPη(z) · ∇η logPη(z)
ᵀ] ,

where · stands for the matrix product.

It is a simple exercise (Lehmann and Casella, 2006; Sun and Nielsen, 2016) to prove that

previous definition of FIM is equivalent to

(2.15) Gη = −Ez∼Pη
[
∇2
η logPη(z)

]
.

24

Riemannian manifold (M, g) where g is the FIM is in many senses the most convenient

for statistical manifolds. For example, a manifold whose points are probability distributions is

desirable to equip it with an invariant metric under sufficient statistics, up to re-scaling. It has

been proved that FIM is the only metric capable of that, as shown in (Čencov, 1982; Amari and

Nagaoka, 2000). It is recommended to visit the references for more information on the topic.

The FIM is the only metric used in this thesis, and g is used to refer to that metric and G for

the metric matrix unless otherwise stated.

2.3.3 Conjugate connection Manifold

Two tangent spaces TpM and TqM for different points p, q ∈ M are completely different,

and there is no further information about how they are related, even if they resemble more and

more as points p and q get closer. In fact, a vector v ∈ TpM does not belong to TqM. But if

the projection of v to the space TqM is given for infinitesimally close point q, then a complete

recovering ofM is possible. That is a connection of a Riemannian manifold. For the definition,

let X(M) denote the space of smooth vector fields.

Definition 2.3.8. An affine connection ∇, or covariant derivative operator, or connection, de-

fines the directional derivative∇(X,Y) = ∇XY of a vector field Y according to a vector field

X;

∇ : X(M)×X(M)→X(M)

(X,Y) 7→∇(X,Y) = ∇XY ,

satisfying the following properties;

• ∇fX+gY Z = f∇XZ + g∇Y Z

• ∇X(Y + Z) = ∇XY +∇XZ

• ∇XfY = f∇XY +X(f)Y ,

for all X,Y, Z ∈ X(M) and smooth functions f, g.

25

In particular, given two vectors u, v ∈ TpM, a connection answers how vector v is projected

in the tangent space situated infinitesimally close in the direction u. So, in fact, given the

properties of Definition 2.3.8, it is only necessary to define how basis vectors of tangent space

at p vary in the direction of the same basis vectors. This is accomplished by smooth functions

Γki,j(p) such that

(2.16) ∇∂i∂j =
∑
k

Γki,j∂k .

These functions Γki,j(p) are called the Christoffel symbols. The reader can expand his knowl-

edge about affine connections with (Kobayashi and Nomizu, 1963; Lee, 2018; Calin and

Udrişte, 2014; do Carmo, 2013).

Definition 2.3.9. Let (M, g) be a Riemannian Manifold. Two connections ∇ and ∇∗ are con-

jugate connections with respect to the metric g if and only if for everyX,Y, Z ∈ X(M) smooth

vector fields

(2.17) X < Y,Z >g=< (∇XY), Z >g + < Y, (∇∗XZ) >g .

In such case, the manifold (M, g,∇,∇∗) is said to be a Conjugate Connection Manifold (CCM)

Many interesting properties arise for CCM, for example with the parallel transport, but those

are skipped in this text for the sake of brevity.

2.3.4 Dually flat Manifold

Definition 2.3.10. Let (M, g,∇) be a Riemannian manifold with a connection defined on it.

The Riemman-Christoffel curvature (RC) is defined as

(2.18) R(X,Y)Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y]Z, X, Y, Z ∈ X(M) ,

where [X,Y] = XY − Y X is the Lie bracket of vector fields

A manifold (M, g,∇) is flat if RC vanishes. If moreover, the manifold is a CCM

(M, g,∇,∇∗) then RC curvature also vanishes for the conjugate connection ∇∗ (see theorem

6.5 in (Amari, 2016)). In such case, (M, g,∇,∇∗) is called a Dually Flat Manifold (DFM).

26

DFM construction from a convex function

There is a key result (theorem 6.7 in (Amari, 2016)) that we want to use. To understand it,

this text explains the first two concepts needed which are manifolds derived from Bregman

divergences and the Legendre-Fenchel transform. Both concepts briefly explained next are

worked in more detail in (Amari, 2016; Nielsen, 2018).

Definition 2.3.11. Let F (η) be a convex smooth function defined in an open convex domain E.

The Bregman divergence associated to F is

(2.19) BF (η, η′) := F (η)− F (η′)− (η − η′)ᵀ∇F (η′) .

Definition 2.3.12. Let F (η) be a convex smooth function defined in an open convex domain E.

The Legendre-Fenchel transform of F is

(2.20) F ∗(η∗) := sup
η∈E

ηᵀη∗ − F (η) .

Every Bregman divergence induces a Riemannian Manifold (E, g) where

(2.21) Gη = −∇2
η′BF (η, η′) |η′=η= ∇2F (η) .

For a convex function F (η) a dual parametrization η∗ can be defined, by simply doing η∗ =

∇F (η). Furthermore, it is possible to get back to η parametrization by doing η = ∇F ∗(η∗)

where F ∗ is the Legendre-Fenchel transform of F . As explained in the literature (Amari, 2016),

F ∗ is also convex. That means F ∗ also induces a Riemannian Manifold (E∗, gη∗) where

E∗ ={∇F (η) | η ∈ E} ,

Gη∗ =∇2F ∗(η∗) .
(2.22)

Furthermore, two conjugate connections ∇,∇∗ can be built (section 6.2 in (Amari, 2016)).

These connections are proven to be flat, so (E, gη,∇,∇∗) is a DFM.

The two parametrizations hold the Crouzeix identity;

Id = ∇2F (η)∇2F ∗(η∗)

= GηGη∗ .
(2.23)

Theorem 2.3.2 says that every DFM can always be constructed with a convex function and

the Bregman divergence associated.

27

Theorem 2.3.2 (6.7 in (Amari, 2016)). For a DFM, there exists a Legendre pair of convex

functions F (η), F ∗(η∗) and a canonical divergence given by the Bregman divergence

(2.24) D[η, η′] = F (η) + F ∗((η′)∗)− η · (η′)∗ .

Natural gradient in DFM

Observe that in a dually flat manifold, one can assure Theorem 2.3.3, which can be deduced

after (Raskutti and Mukherjee, 2015).

Theorem 2.3.3. Let (M, g,∇,∇∗) be a DFM. Then there exist η and η∗ two dual parameteri-

zations, and moreover

(2.25) ∇̃f(η) = ∇f(η∗),

where η = η(η∗).

Proof. Since (M, g,∇,∇∗) is a dually flat manifold, the previous theorem ensures the exis-

tence of dual parameterizations η and η∗, and also of a strictly convex function F (η) defined

for all η ∈ E ⊂ Rn such that (M, g) = (E,F) and a function F ∗(η∗) such that

η = ∇F ∗(η∗)

Gη∗ = ∇2F ∗(η∗) .
(2.26)

By the chain rule and Crouzeix’s identity one writes;

∇f(η∗) = ∇2F ∗(η∗)∇f(η)

= Gη∗∇f(η)

= (Gη)
−1∇f(η)

= ∇̃f(η) .

(2.27)

Therefore, above result states that in DFM the natural gradient in η equals the gradient in

η∗.

28

2.3.5 Example: Exponential Family

The exponential family is a parametric family of probability distributions holding some de-

sirable properties, the most important being the existence of sufficient statistics regarding the

Pitman–Koopman–Darmois Theorem (Koopman, 1936). This Theorem basically says that only

for the exponential family there exists a sufficient statistic whose number of scalar components

does not increase with the sample size. This family includes a wide variety of famous sets of

distributions, to list some: normal, exponential, gamma, categorical, Poisson, Dirichlet, beta,

and more.

Exponential family (Wani, 1968) manifold is a well-known example of DFM. We summa-

rize contents about the exponential family appearing in (Amari, 2016). Check the reference for

complete development of the topic.

Let Ω be a set. A Linear Exponential Family (LEF) is a set of probability distributions

{Pη | η ∈ Rk} defined such that;

(2.28) Pη(x) =
expT (x)ᵀη

λ(η)
,

where T : Ω → Rk is a sufficient statistic and λ(η) =
∫
x expT (x)ᵀη < ∞. If T is minimal

(that is, k is the least possible) Equation 2.28 makes LEF a manifold, since φ(η) = Pη makes a

correspondence between Rk and LEF. In such a case, η is called the natural parametrization of

that LEF. Observe that every point in manifold LEF is a probability distribution. It is typical to

enrich such manifolds with the FIM to obtain a Riemannian manifold. This is the only metric

considered from now on for LEF. As can be seen in (Amari, 2016), this Riemannian manifold

is equivalently constructed from the convex function

(2.29) F (η) = log λ(η) .

The Bregman divergence associated after log λ(η) is known as Kullback-Leibler divergence

(KL) and LEF is enriched with two flat conjugate connections, this means that any LEF is

29

actually a DFM. The dual parametrization η∗ is then;

η∗ = ∇F (η) = ∇ log λ(η)

=
∇λ(η)

λ(η)

=

∫
x
T (x)

expT (x)ᵀη

λ(η)

=

∫
x
T (x)Pη(x)

= E[T (x)] .

(2.30)

Reasonably, η∗ is called the expectation parametrization.

2.4 Optimization methods over a Riemannian manifold

The problem slightly changes in this section. The differentiable function f is defined over a

k-Riemannian manifold (M, g) instead of being defined in flat Rk. An atlas or parametrization

φ is assumed on the manifold so f can be seen as a differentiable function that goes from Rk to

R by means of that parametrization. Hence, gradient based algorithms of Section 2.2 can still

be exploited ignoring completely the metric of the space. However, the regular gradient is not

well defined in a Riemannian manifold, which means it varies depending on the parametrization

(see Figure 1.1 or check (Zaidi et al., 2014)). Moreover, the steepest descent is not considered.

The natural gradient is the appropriate theoretical object to use in a Riemannian manifold to

optimize a function since it is well defined and it correctly points toward the steepest ascent.

Nevertheless, the good theoretical properties of natural gradient do not stop parametrization-

dependent gradient based algorithms to be the cornerstone of most ML training processes.

After definition 2.3.6, the computational complexity of the natural gradient may be higher

than that of the gradient: the natural gradient demands a matrix inverse and a matrix-vector

product per iteration. Having to find the inverse of a matrix at every iteration usually makes

algorithms based on natural gradient impractical for large-dimension manifold scenarios. That

is, the natural gradient scales badly as the dimension of the manifold grows. But this is not

the only problem with this kind of algorithms. They often show bizarre behavior and tend to

diverge, as it can be observed in (Thomas, 2014).

30

Since the goal of this thesis is to find natural gradient based algorithms whose previously

mentioned weaknesses are overcame, this section shows some natural gradient based algorithms

which have been widely considered in ML.

2.4.1 Natural gradient descent

Just as GD sets the director process to be the gradient of f , the Natural Gradient Descent (NGD)

in (Amari, 1998) sets it to be the natural gradient of f . Recall the natural gradient is obtained

by multiplying the inverse matrix of G (according to a parametrization) by the regular gradient,

as Theorem 2.3.1 states.

Definition 2.4.1. Let (M, g) be Riemannian manifold of dimension k and let f be a differen-

tiable function defined in (M, g). Let φ be a parametrization of the manifold. Natural Gradient

Descent (NGD) is a stochastic process Z = (X, γ) such that

(2.31) Xt = G−1
Zt
· ∇f(Zt) ,

where Gη stands for the metric matrix at η ∈ Rk in φ parametrization.

See Section 2.1.3 for the notation concerning the director process Z = (X, γ). There are no

further differences. So, assuming a Riemannian manifold (M, g), and that a parametrization φ

has been fixed, the reader can find the instructions in Algorithm 3.

Algorithm 3: Natural gradient descent
Result: Zt

1 Z0, t = 0;

2 while stopping condition not satisfied do

3 Xt = G−1
Zt
· ∇f(Zt);

4 Zt+1 = Zt − γtXt;

5 t = t+ 1;

6 end

31

2.4.2 Mirror descent

This optimization method of (Nemirovskiı̆ and Yudin, 1983) uses two dual parametrizations.

The basic idea behind it is that the authors observed that the gradient is a mathematical object

belonging to the dual space. Hence, the update equation is mixing and adding elements whose

ambient spaces are different. This may be difficult to justify theoretically. But if it is assumed

an invertible map (mirror map) H that relates both dual spaces, then the following recipe can

be derived.

1. Compute the gradient∇f(Zt).

2. Take the actual point Zt to its dual space as Θt = H(Zt).

3. Perform the gradient descent step in the dual Θt+1 = Θt − γt∇f(Zt).

4. Map back the updated point to the ambient space as Zt+1 = H−1(Θt+1).

Mirror descent can be seen as a gradient based stochastic process actually run in the dual

space, where the director process is in fact the gradient in the primal space.

Definition 2.4.2. Let f be a differentiable function, and H a function relating the ambient and

the dual space. Mirror descent is a stochastic process Θ = (X, γ) where

(2.32) Xt = ∇f(H−1(Θt)) .

This different point of view but equivalently algorithm is more suitable for the notation

given in this thesis. Algorithm 4 describes this version.

Algorithm 4: Mirror descent
Result: Θt

1 Θ0, t = 0;

2 while stopping condition not satisfied do

3 Zt = H−1(Θt);

4 Xt = ∇f(Zt);

5 Θt+1 = Θt − γtXt;

6 t = t+ 1;

7 end

32

It is remarkable to see that in a DFM, mirror descent is exactly the natural gradient descent

run in the dual space. Article (Raskutti and Mukherjee, 2015) is dedicated to prove this. The

result is clear since, in a DFM, the mirror map is exactly the linear map defined by the inverse

of the metric matrix. Hence, by Theorem 2.3.3 it is ∇f(Zt) = ∇̃f(Θt) yielding the same

algorithm description as in Algorithm 3 in the dual parametrization.

2.5 Stochastic optimization

This thesis is more interested in stochastic optimization. In this case, the function to optimize

is unknown so the stochastic process is not determined by f , and it depends on an outcome

w ∈ Ω 6= ∅. Every method previously defined can be adapted to a such scenario and become

a stochastic algorithm. But first, it is needed to clarify exactly what the new directions and

conditions are.

Section 2.5.1 defines the optimization problem for the stochastic scenario. We reveal

the probability space of stochastic process Z for the stochastic optimization problem in Sec-

tion 2.5.2. Besides, we state two conditions that are usually assumed on the learning rate

for stochastic optimization that are needed for convergence property purposes. Section 2.5.3

presents the maximum likelihood problem, which is a particular stochastic optimization prob-

lem largely faced in ML. Finally, Section 2.5.4 and Section 2.5.5 define two stochastic opti-

mization methods named SGD and SNGD. These two algorithms are the stochastic version of

Algorithms 1 and 3 respectively. In particular, SGD is the stochastic algorithm solving most

stochastic optimization problems nowadays.

2.5.1 The stochastic optimization problem

As we mentioned at the beginning of this section, for stochastic optimization (Robbins and

Monro, 1951) we assume f is not known. Nevertheless, assume it is possible to obtain an

approximation of f after random phenomena.

Formally, let (Ω,F , P) be a probability space where P is unknown and let l(η, ω) be a

33

known function, usually called loss function, such that

(2.33) f(η) = Eω∼P [l(η, ω)] .

The expectation term in Equation 2.33 is known as the expected risk or expected loss function

(Vapnik, 1991) in the ML branch. We make another assumption about the loss function. Since

this thesis studies gradient descent optimization methods, we need l to be differentiable with

respect to η. Furthermore, we assume that the dominated convergence theorem (see for example

(Dudley, 2002)) can be applied to∇l and then

(2.34) Eω∼P [∇l(η, ω)] = ∇Eω∼P [l(η, ω)] = ∇f(η).

It is theoretically possible to recover f after Equation 2.33, but in practice, it is not, due to

the limitations faced when computing the expectation over the unknown probability P . Never-

theless, a sample of observations can be drawn to approximate the function f . It is common to

approximate it by means of the empirical risk or loss. Let ω = (ω0, ω1, ω2...) be observations

where ωi ∼ P , the empirical risk or loss up to observation m ∈ N is

(2.35) Sm(η) =
1

m

m∑
i

l(η, ωi) m > 1 .

The stochastic optimization problem consists of optimizing the known function Sm as an

alternative to optimizing the unknown function f .

2.5.2 Stochastic optimization methods

We need to state the probability space where the stochastic process Z is defined. Consider the

product probability space

(2.36) (Ω =
∏
t∈N

Ω,F =
∏
t∈N
F , P =

∏
t∈N

P) ,

guaranteed to exist according to the Kolmogorov extension theorem (see for example Theorem

2.4.4 and following examples in (Tao, 2011)) over infinite sequences. The stochastic process

Z is defined in such product probability space of Equation 2.36. This means that after an

infinite sequence of observations ω = (ω0, ω1, ω2, ...) ∈ Ω, the stochastic process Z defines the

34

sequence Z(ω) of points in Rk. In this scenario, the sample of observations ω = (ω0, ω1, ...)

is drawn from P where every ωi ∈ Ω is drawn independently from P . By definition, ωi are

independent and identically distributed with distribution P .

The stochastic process Z is usually written in terms of l because it is the only function

available. The challenge of stochastic optimization is defining Z such that Zt(ω) optimizes f

as t increases, for every ω ∼ P . Numerous methods use function l with different approaches to

update the stochastic process Zt as more observations ωi become available. For this reason, we

assume that the random variables Zt depend only on observations ωi until time i < t, meaning

that

Z0 ∈ Rk ,

Zt(ω) = Zt(ω0, ..., ωt−1) t > 0 .
(2.37)

The learning rate for stochastic optimization

Algorithms suffer another change in order to run it online, concerning the learning rate. The

learning rate γt can not be constant in general, since the director process X in such algorithms

does not tend to 0 as we approach the optimum of f because, commonly, Xt has no global

information about function f . This means that Xt is not shortening the step size, no matter the

estimation quality of Zt. This task is commanded to the learning rate. Hence, the learning rate

is often chosen freely obeying two conditions, which this work refers to it as the learning rate

constraint ∑
t

γ2
t <∞ ,

∑
t

γt =∞.
(2.38)

These conditions are imposed for convergence property reasons (Bottou, 2012; Sunehag et al.,

2009). First summation
∑

t γ
2
t <∞ ensures the limit of γt to be 0 and therefore the method is

encouraged to reduce more and more its update jumps as iterations go on. And after the second

condition
∑

t γt = ∞, the algorithm is able to travel an infinite distance if the director process

allows. This makes it possible to reach any point in the space, even if point Z0 is far away from

a solution point. The most used learning rate for stochastic optimization holding the learning

rate constraint is γt = a
1+b·t for tuned hyper-parameters a and b.

35

2.5.3 Maximum likelihood problem

The maximum likelihood problem is an optimization problem consisting of the maximization

of the likelihood function (or log-likelihood function). That is, let (Ω,F , P) be a probability

space and let ω = (ω0, ω1, ...) ∼ P be a sample drawn from the product probability space.

Also, letM be a statistical manifold with parametrization φ and parameter η ∈ Rk, that is,M

is a family of probability distributions {Pη : η ∈ Rk}. Then the likelihood function up to time

m ∈ N is defined as the probability of the observations assuming that they are generated by the

probability distribution represented by the parameter η;

(2.39) L(η) =

m∏
i

Pη(ωi) .

Since random variables ωi are independent and identically distributed, the likelihood function

is a product of the marginal probabilities. To precisely shape the function as in Equation 2.35,

apply the logarithm to obtain the log-likelihood function

(2.40) LL(η) = logL(η) =

m∑
i

logPη(ωi) .

This is not modifying the solution: the logarithm is a monotone increasing function, and opti-

mizing the log-likelihood function is equivalent to optimizing the likelihood function. Hence,

as a stochastic optimization problem, the maximum likelihood problem sets Sm(η) = LL(η)

with l(η, ω) = logPη(ω) where ω ∈ Ω.

Example 2.5.1. Example 2.1.1 in page 13 describes a maximum likelihood problem situation;

the manifold is the family of categorical distributions of dimension 1 and the function to opti-

mize f can be seen as the KL divergence to the distribution P :

(2.41) f(η) = KL(P , Pη) =
∑

ω∈{H,T}

P (ω) log
P (ω)

Pη(ω)
.

This is because maximizing the KL divergence means finding η such that Pη better approxi-

mates P , which is the goal of example 2.1.1. Observe that maximizing this function is equiva-

lent to minimize

(2.42)
∑

ω∈{H,T}

P (ω) logPη(ω) = Eω∼P logPη(ω) .

36

This function closely relates to Equation 2.33, implying that it is an expected risk function with

(2.43) l(η, ω) = logPη(ω) ,

as in the maximum likelihood problem. Indeed, after ω = (ω0, ω1, ...) ∼ P drawn from the

product probability space, the empirical risk or loss up to time m ∈ N is the log-likelihood

function:

(2.44) Sm(η) =

m∑
i

logPη(ωi) = LL(η) .

In Sections 2.2.1 and 2.4.1 we have introduced GD and NGD respectively. In Sections 2.5.4

and 2.5.5 we provide the stochastic version of those algorithms using the notation given in this

section.

2.5.4 Stochastic gradient descent

The GD has an online version to optimize a function f which is not known, but approximated

by a loss function l and a sequence of observations ω = (ω0, ω1, ω2, ...), with assumptions of

Section 2.5. It requires the assumption that l is differentiable.

Definition 2.5.1. Let l be a differentiable loss function and ω = (ω0, ω1, ω2, ...) ∈ Ω be a sam-

ple drawn from the product probability space. Stocastic Gradient Descent (SGD) is a stochastic

process Z = (X, γ) such that

(2.45) Xt(ω) = ∇l(Zt(ω), ωt) .

X and Z are non-trivial (non-constant) stochastic processes. We mean thatXt and Zt really

depend on a sample ω, unlike the off-line optimization algorithms presented in Section 2.2.

Observe that after Equation 2.34, the conditional expectation up to time t of Xt is

(2.46) EtXt = ∇f(Zt) .

37

Hence SGD is expected to approximate the gradient of f with Xt, as in GD. Asymptotic equiv-

alence between GD and SGD is studied in (Murata, 1998). A complete description of the steps

of SGD is detailed in Algorithm 5.

Algorithm 5: Stochastic gradient descent
Result: Zt(ω)

1 Z0, t = 0, ω = (ω0, ω1, ...);

2 while stopping condition not satisfied do

3 Xt(ω) = ∇l(Zt(ω), ωt);

4 Zt+1(ω) = Zt(ω)− γtXt(ω);

5 t = t+ 1;

6 end

2.5.5 Stochastic natural gradient descent

Similarly as passing from GD to SGD, the optimization method NGD can derive to a natural

gradient algorithm for online optimization.

Definition 2.5.2. Let (M, g) be a Riemannian Manifold of dimension k, let l be a differen-

tiable loss function defined in (M, g) and let φ be a parametrization of the manifold. Let

ω = (ω0, ω1, ω2, ...) ∈ Ω be a sample drawn from the product probability space. Stochastic

Natural Gradient Descent (SNGD) is a stochastic process Z = (X, γ) such that

(2.47) Xt(ω) = G−1
Zt(ω) · ∇l(Zt(ω), ωt) ,

where Gη stands for the metric matrix at η ∈ Rk in φ parametrization.

In general, under same conditions needed for Equation 2.34, the expected value of Xt up to

time t is then

(2.48) EtXt = ∇̃f(Zt) .

38

The reader can find its instructions in Algorithm 6.

Algorithm 6: Stochastic natural gradient descent
Result: Zt(ω)

1 Z0, t = 0, ω = (ω0, ω1, ...);

2 while stopping condition not satisfied do

3 Xt(ω) = G−1
Zt(ω) · ∇l(Zt(ω), ωt);

4 Zt+1(ω) = Zt(ω)− γtXt(ω);

5 t = t+ 1;

6 end

2.6 Multinomial logistic regression

This thesis defines its main optimization method in Chapter 5. Such an algorithm is designed

to solve a particular ML problem, which is the Multinomial Logistic Regression (MLR), briefly

explained in this section.

Classification algorithms predict the value of a discrete variable (class) given some other

variables (features). We use Y for the class variable and X ∈ Ω for the features. We assume

a finite set of classes Y ∈ {1, ..., s}. We are interested in computing the unknown conditional

probability distributions P (Y | X). This is accomplished by optimizing the expected risk

function (Vapnik, 1991).

MLR is a widely used tool for classification. The core assumption (Banerjee, 2007) is that

the log-odds ratio of the class posteriors P (Y | X) is an affine function of the features X ;

(2.49) log
P (Y = k | X = x)

P (Y = h | X = x)
= ηᵀ · T (x) ,

where η ∈ Rk and T (x) ∈ Rk is a statistic. Some relevant examples solving real-world tasks

are (Li et al., 2012) for the image classification branch, (Covington et al., 2016) for video

recommendation tasks, or numerous examples in health and life sciences for analyzing nominal

qualitative response variables, to name some (Daniels and Gatsonis, 1997; Bull et al., 2007;

Biesheuvel et al., 2008; Leppink, 2020).

The justification of MLR goes beyond practical. In statistical decision theory, it is well

known that the choice probability can be derived assuming that (i) the random utilities are

39

independent and identical distributed (i.i.d.) across alternatives and that (ii) their common dis-

tribution is a Gumbel function (Ben-Akiva et al., 1985). Recent results (Tadei et al., 2018) show

that the Gumbel distribution for the choice variables is not necessary and that any distribution

which is asymptotically exponential in its tail is sufficient to obtain the MLR model.

2.7 Convergence theorems

Since our work is lastly focused on the convergence of natural gradient based algorithms, this

section recalls some convergence theorems of algorithms. The notation is translated from the

original sources into the notation already introduced in the thesis.

Theorem 2.7.1 (Bottou’s in (Bottou, 1998)). Let f : Rk → R be a function with a unique

minimum η and Zt+1 = Zt − γtXt be a stochastic process. Then Zt converges to η almost

surely if the following conditions hold;

Bottou resemblance (∀δ > 0) inf
‖Zt−η‖>δ

(Zt − η)ᵀ · Et [Xt] > 0 a.s.

Bottou algorithm bound (∃A,B)(∀t) Et‖Xt‖2 ≤ A+B‖Zt − η‖2 a.s.

Learning rate constraint

The expression Et refers to the conditional expectation given the σ-algebra generated by

Z0, ..., Zt (see Section 2.1.2). Theorem 2.7.1 is a version discussed in (Bottou, 1998) as com-

ments at the end of Section 4.5. We explain briefly the assumptions of Theorem 2.7.1. Bottou

resemblance forces the dot product of the expectation of the director process Xt and the vec-

tor Zt − η to be positive, which implies that the expectation of the update from Zt to Zt+1

is made towards the solution. The Bottou algorithm bound ensures that the expected norm

of Xt is bounded by a linear expression in terms of the distance from Zt to the solution. As

a consequence, the algorithm can not travel an arbitrarily big distance between Zt and Zt+1.

The learning rate constraint is already discussed in Section 2.5.2. These conditions together

guarantee the convergence of the stochastic process Z to the solution point η.

Recall another convergence result that will be very useful throughout the thesis, appearing

in (Sunehag et al., 2009).

40

Theorem 2.7.2 (Theorem 3.2 in (Sunehag et al., 2009)). Let f : Rk → R be a twice differen-

tiable cost function with a unique minimum η and let Zt+1 = Zt− γtBt ·Y (Zt) be a stochastic

process where Bt is symmetric and only depends on information available at time t and Y be a

continuous function from Rk to random vectors. Then Z converges to the η almost surely if the

following conditions hold;
C.1 (∀t) EtY (Zt) = ∇f(Zt)

C.2 (∃K)(∀η) ‖∇2f(η)‖ ≤ 2K

C.3 (∀δ > 0) inf
f(η)−f(η)>δ

‖∇f(η)‖ > 0

C.4 (∃A,B)(∀t) Et‖Y (Zt)‖2 ≤ A+Bf(Zt) a.s.

C.5 (∃a, b : 0 < a < b <∞)(∀t) spec(Bt) ⊂ [a, b]

C.6 Learning rate constraint

where spec(B) are the eigenvalues of matrix B.

Theorem 2.7.2 proves convergence of a certain kind of gradient based algorithms. Intu-

itively, conditions C.1 and C.5 restrict the algorithm to be the well-known SGD modified by

positive definite and symmetric matrices with strictly positive bounds of the eigenvalues. More-

over, condition C.4 bounds the algorithm updates linearly by the function they try to optimize,

similarly to Bottou algorithm bound of Theorem 2.7.1. However, to prove the convergence,

the result requires two more conditions C.2 and C.3 on the function f . These conditions basi-

cally say that f has no saddle points and it has a bounded Hessian matrix.

Convergence Theorems 2.7.1 and 2.7.2 are basically proven after Robbins-Siegmund theo-

rem appearing in (Robbins and Siegmund, 1971). The result is recalled for its relevance to this

thesis.

Theorem 2.7.3 (Robbins-Siegmund). Let (Ω,F , P) be a probability space and F1 ⊆ F2 ⊆

· · · a sequence of sub-σ-fields of F . Let Ut, βt, εt and ζt, t = 1, 2, . . . be non-negative Ft-

measurable random variables, such that

(2.50) E(Ut+1 | Ft) ≤ (1 + βt)Ut + εt − ζt, t = 1, 2, . . .

Then on the set {
∑

t βt <∞,
∑

t εt <∞}, Ut converges almost surely to a random vari-

able, and
∑

t ζt <∞ almost surely.

41

Name the positive variations of a stochastic processZ, the positive difference of consecutive

random variables of the process (that is, when Zt < Zt+1). Intuitively, the main idea behind

Theorem 2.7.3 is that a positive stochastic process converges almost surely if the infinite sum

of positive variations of the process is bounded almost surely (see also (Bottou, 1998)).

42

3 Manifold optimized descent

The natural gradient is a vector that is not parameter-dependent and it points to the steepest

ascent of a function according to a metric established. Moreover, in (Amari, 1998) it is shown

that SNGD is Fisher efficient when solving the maximum likelihood problem assuming that it

converges. This means that using the natural gradient gives asymptotically the best possible

result. Despite the good theoretical properties of natural gradient, the practical behavior, in

general, leaves much to be desired. This chapter evaluates the performance of natural gradient

based algorithms and exposes its weaknesses towards function optimization which are the high

computational complexity and convergence issues.

Finally, the chapter introduces the algorithm MOD first presented as my master’s thesis in

(Sánchez-López, 2018). The description of MOD given in this thesis is a generalization to a

wider set of optimization problems since the reference is restricted exclusively to multinomial

logistic regression problems. Nevertheless, the idea is the same: Creating an adjustable trade-

off algorithm between gradient and natural gradient based algorithms, thanks to a parameter

eras.

3.1 Preliminary study on natural gradient descent

This section exposes two disadvantages of standard NGD, usually spread to other natural gra-

dient based algorithms. These are the high computational complexity and divergence property.

Such two issues are critical enough to discard this kind of algorithm as a solver for real prob-

lems. Recall that the thesis plans to define efficient and convergent natural gradient based

algorithms. Hence, the section introduces the biggest challenges this thesis aims to surpass.

43

3.1.1 Computational complexity symptoms

The computational complexity of the natural gradient is high. According to definition 2.3.6,

the natural gradient demands a matrix inverse computation (or alternatively to solve a linear

system). That is if k is the dimension of the Riemannian manifold (M, g) it needs O(k3)

operations with the Gaussian elimination method for example. In the same definition, a matrix-

vector product can be observed. That makes O(k2) operations more. Both non-linear tasks

make natural gradient descent scale awfully with the dimension of the manifold.

Precisely, if the dimension of the manifold is k, assume that Ak corresponds to the cost of

computing the gradient of f at a given point and that Bk is the cost of inverting a matrix of

dimension k. Then, the computational cost per iteration of NGD is

(3.1) C(NGD) = O(k2) +Ak +Bk .

3.1.2 Divergence symptoms in a toy example

An indicator of the divergence symptoms of natural gradient optimization methods is the identi-

fication of the deficiencies of such algorithms for solving real problems. Indeed, we decided to

run a simple optimization problem to test SNGD. It leads to worse estimations of the optimum

than SGD, even if it performs more operations per iteration. The problem is the die problem,

which consists of finding the best categorical distribution fitting the probabilities of the faces of

a die, by optimizing the KL divergence.

The die problem

A k dimensional die is a categorical probability distributionP over a discrete setD = {1, ..., k}.

The die problem consists of recovering the probability distribution P after a sample of observa-

tions ωi ∼ P . Categorical distributions belong to the exponential family, and hence the natural

parametrization is at hand. Check Example 2.3.5 to recall these concepts. Natural parametriza-

tion is the one considered from now on when solving the die problem, unless otherwise stated.

For natural gradient based algorithms, the metric will be the FIM presented in Section 2.3.2.

44

Access the code of this reproducible experiment and all experiments of this section in (Sánchez-

López and Cerquides, 2022a).

We created 3 groups of random dice, each group representing different scenarios: for the

first group only high entropy dice are considered, the second group is filled with medium en-

tropy dice and finally, the third set contains dice with a low entropy probability distribution.

Entropy is defined to be

(3.2) h(D) = −
∑
i∈D

P (i) logP (i) ,

where the sum is over all faces of the die D and P (i) is the probability of i-th face. Entropy

codifies the uncertainty of the die. The less uncertainty the lower entropy. Hence the first

scenario refers to dice close to a fair die (since a fair die has the highest uncertainty and highest

entropy). As entropy decreases, some faces gather more probability in comparison to others, so

we can be more certain about the result of throwing the die.

Each scenario has 100 dice of the same kind, and every die has 200 faces (that is, k = 199).

Every die is thrown 5000 times. We run classic algorithm SGD and standard natural gradient

algorithm SNGD and plot the median for the 100 similar entropy dice of the KL divergence per

iteration between the actual parameter and the i-th estimation. Following (Bottou, 2012), the

learning rate γt is restricted to γt = a
b+t where a ∈ {10m| − 2 ≤ m ≤ 7} and b ∈ {10m| − 5 ≤

m ≤ 8} were selected to minimize the error (measured as the KL divergence from the real

parameter to the estimated parameter) in the last 10 observations. The results can be observed

in Figure 3.1.

Figure 3.1: KL-Divergence of estimations per iteration of SGD and SNGD on the die problem.

45

Experiments show a small gain for SNGD with respect to SGD in the high entropy scenario,

no gain in the medium entropy scenario, and a clear loss in the low entropy scenario. We argue

that this is due to difficulties in convergence for SNGD which force the selection of learning

rates performing extremely small steps which harden the effectiveness of SNGD. We add the

interquartile range for every method with the shaded area. The interquartile range is thinner for

SNGD, implying that the estimates have lower variance.

3.2 Manifold optimized descent

Manifold Optimized Descent (MOD) is a natural gradient based algorithm appearing in

(Sánchez-López, 2018). It rises from the need of reducing the high computational complex-

ity of NGD and control the divergence trends. The idea behind MOD is to keep using metric

information, avoiding nevertheless its update at every iteration. The number of iterations where

the metric is not updated is determined by a positive integer e (standing for eras). If the algo-

rithm starts at some point Z0 = η0, the first iteration copies a NGD step, that is

(3.3) X0 = G−1
Z0
· ∇f(Z0) ,

where Xt stands for the director process (see section 2.1.3). However, for the next iterations (as

many as eras) the director process is defined as

(3.4) Xt = G−1
Z0
· ∇f(Zt) 0 ≤ t < e.

Observe that the same matrix is used while t < e. Then, at iteration t = e, again a NGD step is

performed, followed by some iterations (as many as eras) where matrix G−1(Ze) is exploited

in the update. This is summarized by Definition 3.2.1.

Definition 3.2.1. Let (M, g) be a Riemannian Manifold of dimension k and let f be a dif-

ferentiable function defined in (M, g). Let φ be a parametrization of the manifold. Manifold

Optimized Descent (MOD) is a stochastic process Z = (X, γ) such that

(3.5) Xt = G−1
Zλe
· ∇f(Zt) λe ≤ t < (λ+ 1)e λ ∈ N ,

where Gη stands for the metric matrix at η ∈ Rk in φ parametrization.

46

In (Sánchez-López, 2018) we recommend starting with the highest entropy point of the

statistical manifold as Z0, where the metric information is as smooth as it can be.

If eras is large (e is large), MOD basically follows gradient steps modified by a constant

matrix for many iterations. Hence, MOD closely relates to a gradient based algorithm. As

positive integer e decreases to 1, MOD gets closer to NGD becomig exactly NGD when e = 1

as it can be seen in Algorithm 7.

Algorithm 7: Manifold optimized descent
Result: Zt

1 Z0, t = 0, eras;

2 while stopping condition not satisfied do

3 M = G−1
Zt

;

4 for e = 0 to eras do

5 Xt = M · ∇f(Zt) ;

6 Zt+1 = Zt − γt ·Xt;

7 t = t+ 1;

8 end

9 end

We defined the offline version of MOD for simplicity, however, the online version can be

derived easily, by redefining the director process. See Section 2.5.2 for the notation employed

in Definition 3.2.2. The reader can check the reference (Sánchez-López, 2018) for a particular

version of SMOD for the MLR problem.

Definition 3.2.2. Let (M, g) be a Riemannian Manifold of dimension k, let l be a differen-

tiable loss function defined in (M, g) and let φ be a parametrization of the manifold. Let

ω = (ω0, ω1, ω2, ...) ∈ Ω be a sample drawn from the product probability space. Stochastic

Manifold Optimized Descent (SMOD) is a stochastic process Z = (X, γ) such that

(3.6) Xt(ω) = G−1
Zλe(ω) · ∇l(Zt(ω), ωt) λe ≤ t < (λ+ 1)e, λ ∈ N,

where Gη stands for the metric matrix at η ∈ Rk in φ parametrization.

47

3.2.1 Computational complexity

Computational complexity per iteration of MOD is lower than that of NGD. The reason is that

MOD is not computing the inverse of a matrix at every iteration, but once in eras. Moreover,

it is necessary to compute the regular gradient and the matrix-vector product. If the dimension

of the manifold is k, assume that Ak corresponds to the cost of computing the gradient of f at

a given point and that Bk is the cost of inverting a matrix of dimension k. Hence, after e many

iterations, the algorithm performed eO(k2) + eAk +Bk operations, corresponding to e matrix-

vector products, e many gradient computations and one inverse matrix respectively. That is, per

iteration, the computational cost of MOD is

(3.7) C(MOD) = O(k2) +Ak +
Bk
e
.

If we assume that Bk ∈ O(k3), in particular, this means that the computational complexity of

MOD can be reduced to quadratic when e = k and Ak has quadratic complexity cost at most.

3.2.2 Maximum entropy gradient descent

A particular setting of MOD explained in (Sánchez-López, 2018) consist on using the matrix

M = G−1
ηm for the director process, where ηm represents the maximum entropy probability

distribution ofM.

Definition 3.2.3. Let (M, g) be a Statistical Manifold of dimension k and let f be a differen-

tiable function defined in (M, g). Let φ be a parametrization of the manifold. Let ηm refer to

the maximum entropy probability distribution of (M, g). Maximum Entropy Gradient Descent

(MEGD) is a stochastic process Z = (X, γ) such that

(3.8) Xt = M · ∇f(Zt) ,

where M = G−1
ηm and Gη stands for the metric matrix at η ∈ Rk in φ parametrization.

In every step, the gradient at Zt is computed and multiplied by the constant matrix M . That

is why this algorithm can not be considered as a natural gradient descent variant, but instead, is

a rescaled parametrization version of GD. This algorithm can be seen as a particular example

48

of MOD where e = ∞, that is, the metric matrix is never updated. Hence, more specifically,

previous algorithm MOD is in fact a trade-off between NGD and MEGD where variable eras

allows the transition between them. MEGD is represented in Algorithm 8.

Algorithm 8: Maximum entropy gradient descent
Result: Zt(ω)

1 Z0 = ηm,M = G−1
ηm , t = 0;

2 while stopping condition not satisfied do

3 Xt = M · ∇f(Zt) ;

4 Zt+1 = Zt − γt ·Xt;

5 t = t+ 1;

6 end

As expected, this algorithm is proven to converge using for example the convergence theo-

rem appearing in (Sunehag et al., 2009) under certain regularities, just as GD does. However,

the computational complexity could possibly be not as low as that of GD, since a matrix-vector

product is demanded at every iteration that increases the complexity order to quadratic.

Also, the stochastic version of MEGD can be easily obtained, as given by Definition 3.2.4.

Definition 3.2.4. Let (M, g) be a Statistical Manifold of dimension k, let l be a differentiable

loss function defined in (M, g) and let φ be a parametrization of the manifold. Let ηm refer

to the maximum entropy probability distribution of (M, g). Let ω = (ω0, ω1, ω2, ...) ∈ Ω be

a sample drawn from the product probability space. Stochastic Maximum Entropy Gradient

Descent (SMEGD) is a stochastic process Z = (X, γ) such that

(3.9) Xt(ω) = M · ∇l(Zt(ω), ωt) ,

where M = G−1
ηm and Gη stands for the metric matrix at η ∈ Rk in φ parametrization.

3.3 Experiments

This section reproduces the die problem described in Section 3.1.2. For the experiments, al-

gorithms SGD, SNGD and on-line MOD (and MEGD) are considered. Two experiments are

49

performed to test the behavior of MEGD and MOD respectively. In the first one, we experi-

mentally show that using only the information provided by the maximum entropy point metric

is enough to greatly surpass the solution quality of standard SGD, at least in such a toy prob-

lem. In the second one, as expected, the reader is able to see the transition of MOD from natural

gradient based SNGD to gradient based MEGD.

3.3.1 MEGD solving the die problem

We first repeat the die problem experiment of Section 3.1.2 including now the algorithm MEGD,

which uses a matrix but never updates it. This can be seen in Figure 3.2.

Figure 3.2: KL-Divergence of estimations per iteration of SGD, SNGD and MEGD on the die

problem.

Figure 3.2 shows that convergence issue of SNGD is not repeated for MEGD. That may

be caused by the fact that MEGD is not a natural gradient based algorithm, and because it is

a proven convergence optimization method. Moreover, it shows better estimations with less

variance compared to SGD, as the interquartile ranges are thinner. Our guess is that even if we

are using only the maximum entropy metric for every point in the space, such a matrix gathers

information of the die (corresponding to most uncertainty), in contrast with SGD which provides

no information at all to the updates. However, no remarkable enhancement is appreciated in the

estimations, nor a better rate of convergence speed is observed.

50

3.3.2 MOD solving the die problem

This section empirically assesses the optimization performance of MOD. We are interested in

watching the transition from gradient based algorithms to natural gradient algorithms, in terms

of convergence and solution quality. Method MOD is perfect for the task since variable eras

controls the trade-off between such two groups of algorithms. Hence for this experiment, we

repeat the die problem running several instances of MOD algorithms with different values for

eras. As a reminder, MOD algorithm with eras equal to 1 is exactly the natural gradient based

SNGD, while MOD instance with eras equal or higher than 5000 (which is the length of the

sample) is the gradient based algorithm MEGD.

Figure 3.3: Logarithm of the KL-Divergence of estimations per iteration of MOD with different

eras on the die problem..

The results of the experiment are given in Figure 3.3 with only the low entropy case in-

cluded. Only MOD algorithm with several values of eras is considered. ’Iterations’ axis and

51

vertical axis together are used to show the error made by estimations along a learning process,

just as Figure 3.2. The axis ’eras’ determines the value of eras employed for MOD. Hence a

cross-section fixing a value for axis ’eras’ presents the learning process of MOD with a such

value of eras. Just to clarify, cross-section corresponding to the plane with ’eras’ fixed to 1

(leftest) is exactly SNGD while cross-section determined by ’eras’ fixed to 5000 (rightest) is

MEGD learning process. The transition of MOD can be appreciated. As eras increases, MOD

improves its estimations, thus lowering the KL divergence. This is the case until eras reaches

the values near 1000. For upper values of eras, the algorithm performs worse, approaching to

MEGD estimates as eras approaches 5000. Figure 3.3 reveals that for eras value fixed around

1000, MOD potentially defines its fastest convergence speed version. To assess this, we add

MOD algorithm with eras = 1000 to Figure 3.2 to compare empirically the rate of convergence

in Figure 3.4.

Figure 3.4: KL-Divergence of estimations per iteration of MOD with eras = 1000, SGD,

SNGD and MEGD on the die problem.

Observe Figure 3.4. With a first glance, the reader may notice that two groups of curves can

be spotted according to their general shape. SGD and MEGD curves are closer to horizontal

lines while MOD and SNGD curves maintain their slope. Realize that this fact classifies gradi-

ent and natural gradient based optimization methods. It is of particular interest pointing out that

natural gradient based algorithm MOD, with a range of values for eras around 1000, reaches

better estimates of the solution than gradient based algorithms SGD and MEGD. But our main

observation relates to the seemingly higher orders of convergence speed exhibited by MOD:

while gradient based algorithms seem to radically reduce their convergence speed by flattening

52

their curve, MOD algorithm keeps a steep curve downside improving over other optimization

methods and promising to enlarge this advantage along more training. Hence, natural gradient

algorithms have the potential to widely overcome gradient based algorithms. Nevertheless, the

behavior of MOD is not always stable. Only for some values of eras, the algorithm seems to

both converge, and also maintain a great convergence speed.

3.4 Comments

This chapter explored some issues that usually discard natural gradient based algorithms as

optimization problem solvers. Those are computational complexity and convergence.

MOD optimization method is not reducing the computational complexity to that of SGD

neither his convergence is proven theoretically. It only makes it to show the potential of natural

gradient based algorithms in our toy experiments.

We wonder whether natural gradient based algorithms can be brought to solve real practical

problems. That is natural gradient based optimization methods whose behavior is stable and

whose computational complexity is reduced significantly. The next chapters of the thesis pursue

the challenging task of creating convergence-proven, computationally efficient algorithms.

53

54

4 Convergent stochastic natural gradient

descent

As explained in Chapter 3, SNGD convergence problems can harm its performance. That chap-

ter proposed a natural gradient based algorithm called MOD to assess and partially overcome

this issue. MOD seems to converge fast for certain values of eras when the metric matrix is

forced to stabilize for several iterations. However, the theoretical convergence of MOD remains

unknown.

The objective of this chapter is to propose a SNGD-like algorithm for optimization on a

Riemannian manifold (M, g) with proven convergence.

Recall that, assuming a parametrization φ is fixed, SNGD update equation is defined by its

director process (see Section 2.5.5):

(4.1) Xt(ω) = G−1
Zt(ω) · ∇l(Zt(ω), ωt) .

where Gη is the metric matrix at η ∈ Rk in φ parametrization.

Current results about convergence with variable metrics (Sunehag et al., 2009) require the

metric matrix Mt = G−1
Zt

to have bounded eigenvalues. This can be shown by proving that Mt

is a convergent sequence of matrices that converges to a positive-definite matrix by continuity

arguments (as we prove in Section 4.1.1). This is easy to prove if we assume the sequence Zt

is convergent, but that is exactly what we aim at proving. The fundamental idea is to eliminate

this direct dependence of Mt and Zt to achieve convergence. To effectively decouple the two

sequences, we redefine Mt.

Section 4.1 explores this idea and develops the theoretical part to then create a new opti-

mization method CSNGD. Furthermore, the proof of convergence of CSNGD is derived from

55

the work of (Sunehag et al., 2009). In Section 4.2, CSNGD solves the die problem of Sec-

tion 3.1.2 in different scenarios of entropy and manifold dimension. The algorithm shows a sta-

ble behavior in every experiment, competing with the maximum a posteriori estimates, which

are known to be the best for such toy problems. The chapter concludes with some comments in

Section 4.3 summarizing the achievements made so far and evaluating the challenges yet to be

faced.

4.1 Convergent stochastic natural gradient descent

The main intuition is as follows; to effectively decouple the sequences Mt and Zt, build Mt

from a different sequence Zt whose convergence can be proven. This new stochastic process

Zt is defined in the same probability space as Zt, and similarly, as with Zt in Equation 2.37, it

must only depend on observations up to time i < t;

Z0 ∈ Rk

Zt(ω) = Zt(ω0, ..., ωt−1) t > 0 .
(4.2)

Thus, the main idea behind Convergent Stochastic Natural Gradient Descent (CSNGD) is to

keep two independent sequences: Zt for which we use an already known convergent estimation

method such as SGD and Zt which is the estimator of the optimum defined by the director

process. See Section 2.5.2 for the notation used in Definition 4.1.1

Definition 4.1.1. Let (M, g) be a Riemannian Manifold of dimension k, let l be a differ-

entiable function defined in (M, g) and let φ be a parametrization of the manifold. Let

ω = (ω0, ω1, ω2, ...) ∈ Ω be a sample drawn from the product probability space. Let Z be

a convergent stochastic process. Convergent Stochastic Natural Gradient Descent (CSNGD) is

a stochastic process Z = (X, γ) such that

(4.3) Xt(ω) = G−1
Zt(ω)

· ∇l(Zt(ω), ωt) ,

where Gη stands for the metric matrix at η ∈ Rk in φ parametrization.

The reader can find the instructions of CSNGD in Algorithm 9.

56

Algorithm 9: Convergent stochastic natural gradient descent
Result: Zt(ω)

1 Z0, ω = (ω0, ω1, ...), {Z0(ω), Z1(ω), ...}, t = 0;

2 while stopping condition not satisfied do

3 Xt(ω) = G−1
Zt(ω)

· ∇l(Zt(ω), ωt);

4 Zt+1(ω) = Zt(ω)− γtXt(ω);

5 t = t+ 1;

6 end

The main difference between SNGD and CSNGD is that instead of using the metric at Zt,

CSNGD uses the metric at Zt, which is known to be a convergent sequence. It is desirable to

choose for Zt a sequence that converges to the solution. This is because Zt converges to the

solution (see Theorem 4.1.1), and then the natural gradient approximation given by equation 4.3

is more accurate as iterations go on and sequences Zt and Zt get closer. Hence, if Zt converges

to the solution, the more iterations, the closer CSNGD is to SNGD. However, CSNGD has a

proven convergence shown in Section 4.1.1.

CSNGD optimization method is originally stated for online optimization, but this contribu-

tion can be trivially exploited for offline optimization as well by just setting

(4.4) Xt = G−1
Zt
· ∇f(Zt) .

4.1.1 CSNGD convergence proof

The main result of this section is the following Theorem.

Theorem 4.1.1. Let f : Rk → R be a twice differentiable function with a unique minimum

η ∈ Rk and let (M, G) be a Riemannian Manifold of dimension k. Then, CSNGD converges to

57

the minimum η almost surely if the following conditions hold

C.2 (∃K)(∀η) ‖∇2f(η)‖ ≤ 2K

C.3 (∀δ > 0) inf
f(η)−f(η∗)>δ

‖∇f(η)‖ > 0

C.4’ (∃A,B)(∀t) Et‖∇l(Zt, ·)‖2 ≤ A+Bf(Zt)

C.6 Learning rate constraint

(4.5)

Before proceeding with the proof, let us analyze the conditions of Theorem 4.1.1. Con-

ditions C.2,C.3 are exactly the same as in Theorem 2.7.2 already commented in Section 2.7.

Condition C.4‘ is a particular case of condition C.4 with Y (Zt) = ∇l(Zt, ·).

Proof. The proof relies on applying the work of (Sunehag et al., 2009). The result needed is

recalled in this thesis in the preliminaries Chapter 2 as Theorem 2.7.2.

To prove Theorem 4.1.1, test that conditions C.1-C.6 in Theorem 2.7.2 are satisfied. As a

matter of notation, realize that

Yt =∇l(Zt, ·)

Bt =G−1
Zt

.
(4.6)

Conditions C.2, C.3 and C.6 are already imposed by Theorem 4.1.1. C.4 is also imposed

since corresponds with C.4’. Condition C.1 is clear by the assumptions on the loss function l

(see Equation 2.34). Thus, we only need to prove condition C.5 to complete the proof. Also

realize that the assumption stated in Theorem 2.7.2 saying that “Bt is symmetric and only

depends on information available at time t” is accomplished, since Zt is known at time t, and

therefore Bt = G−1
Zt

is a real valued, fixed matrix at time t.

C.5 is checked in two steps. First, prove that Bt converges to a positive definite matrix.

Second, prove that condition C.5 is fulfilled.

Since Zt is convergent, say convergent to Z∞, and G−1 is a continuous function, then Bt

converges to B = G−1
Z∞

, which is a symmetric positive definite matrix.

Continue with the second step. Define continuous functions λmin(M) = min spec(M)

and λmax(M) = max spec(M) where spec(M) are the eigenvalues of matrix M . Since B

is a positive definite matrix then Lmin = λmin(B) > 0 and Lmax = λmax(B) > 0. Select

58

ε ∈ R such that 0 < ε < Lmin. Because Bt converges to B and λmin and λmax are continuous,

there exists s such that for every t > s all eigenvalues of matrix Bt belong to interval (Lmin −

ε, Lmax + ε).

Hence,

a = min(Lmin − ε, min
0≤t≤s

λmin(Mt)) > 0

b = max(Lmax + ε, max
0≤t≤s

λmax(Mt)) <∞ ,
(4.7)

fulfill condition C.5, completing the proof of Theorem 4.1.1.

4.2 Experiments

We wonder about the solution quality of CSNGD in the die problem. As shown in Section 3.1.2,

employing the natural gradient to optimize a function may lead to divergence symptoms. How-

ever, CSNGD is convergent by virtue of Theorem 4.1.1. So this point of the thesis is an inflec-

tion point because we are now able to judge the hypothesis of the thesis. All experiments of the

section can be found in (Sánchez-López and Cerquides, 2022a).

If our hypothesis is correct, convergent natural gradient based algorithms, as CSNGD,

should show high efficiency and convergence speed. Therefore, the first experiment consists

of adding CSNGD to the die problem. CSNGD is a good candidate to test whether the conver-

gence property provides stability to natural gradient based algorithms or not. Sequence Zt is

chosen to be the one generated by SGD as it is known to converge.

CSNGD is solving the die problem in Figure 4.1. Our convergent natural gradient algorithm

shows great efficiency. It improves over the other algorithms in every scenario. It is remarkable

that natural gradient based algorithms keep showing a specific shape of the curve (steeper)

different from the flatter curve drawn by gradient based algorithms, as already observed in

Figure 3.4. In fact, MOD can already reach the solution quality of CSNGD. However, a relevant

difference with CSNGD is that CSNGD does not require to tune any parameter, while MOD

requires to locate the appropriate values for eras in order to obtain good results.

We decide to run a wider variety of experiments to test CSNGD with dice of dimensions

49, 199 and 499 and high, medium, and low entropy. Moreover, we added the Maximum Like-

59

Figure 4.1: KL-Divergence of estimations per iteration of CSNGD, SGD and SNGD on the die

problem.

lihood Estimator (MLE) which provides the best estimations as more observations are pro-

cessed. It maximizes the likelihood up to time t. To compute the MLE, we use the expectation

parametrization η∗ of the exponential family, recall Section 2.3.5. If a sample of observations

ω = (ω0, ω1, ...) ∈ Ω is drawn, the MLE algorithm for the die problem is defined by

(4.8) Xt(ω) = Θt(ω)− T (ωt) ,

where γt = 1
1+t . The algorithm is described in more detail in Algorithm 10.

Algorithm 10: Maximum likelihood estimator (die problem)
Result: Θt(ω)

1 Θ0, t = 0, ω = (ω0, ω1, ...);

2 while stopping condition not satisfied do

3 Xt(ω) = Θt(ω)− T (ωt);

4 Θt(ω) = Θt(ω)− 1
t+1Xt(ω);

5 t = t+ 1;

6 end

It turns out that this algorithm for the die problem is equivalent to SNGD run in the dual

space (see proof in (Sánchez-López, 2018)). This also implies that MLE reproduces exactly

the same updates as mirror descent. Figure 4.2 is the result of the experiment. Stability and

60

Figure 4.2: KL-Divergence of estimations per iteration of ML, SGD and CSNGD on the die

problem.

efficiency shown by CSNGD is great, imitating MLE closely. Therefore CSNGD is an op-

timization method that approximates the natural gradient and avoids the divergence issues of

SNGD. Furthermore, the estimations of the solution found by CSNGD in many of the scenarios

tested are close to that of MLE, meaning that the convergence speed is experimentally optimal.

Only on the scenario where dimension is k = 499 and entropy is high, CSNGD behaves closely

as SGD. But it may be caused by the fact that only in this scenario SGD is not flattening its

learning process curve producing great estimations of the solution as well.

4.3 Comments

This chapter has introduced a natural gradient based optimization method called CSNGD. We

have managed to prove its convergence. This is possible thanks to a convergent auxiliary

61

stochastic process Zt which is plugged in the metric matrix, instead of the main sequence Zt,

when computing the natural gradient. This yields a stable sequence of metric matrices which

generates a convergent optimization method.

Experiments reflect great stability for CSNGD with a high convergence speed in every sce-

nario exposed, where different dimensions and entropy levels are considered. This supports our

hypothesis about the convergence and speed convergence of convergent natural gradient based

optimization methods.

However, CSNGD is not efficient, in the sense of computational complexity. The algorithm

scales really badly in the dimension k of the manifold since a matrix inverse (or linear system

solving) is demanded in every iteration. In addition, the algorithm has to perform matrix-vector

products. This fact discards CSNGD to solve high dimensional problems.

The research takes us to the next challenge: defining a convergent natural gradient based

algorithm whose computational complexity order is comparable to that of SGD. Chapter 5 gath-

ers all the knowledge and contributions made so far to face the objective. To that end, the reader

will see that the efficient and convergent natural gradient based algorithm DSNGD is defined at

the expense of some restrictions on the problem to solve.

62

5 Dual stochastic natural gradient descent

In Chapter 4 we define a natural gradient based algorithm called CSNGD and afterward, we

prove its convergence. However, the high computational complexity of the natural gradient is

not addressed. This chapter aims to define a natural gradient based optimization method whose

convergence is proved and whose computational complexity is reduced to that of SGD.

To that end, the chapter has to restrict to a particular learning problem in ML: the Multi-

nomial Logistic Regression (MLR) problem (see Section 2.6). The main assumption of MLR

(Banerjee, 2007) is that the log-odds ratio of the class posteriors P (Y | X) is an affine function

of the features X .

Banerjee in (Banerjee, 2007) proved (Theorem 2) that a class of distributions fulfills the

core MLR assumption if and only if for each value of Y , the class of conditional distributions

P (X | Y) belongs to the same Linear Exponential Family (LEF) (for the definition of LEF see

Section 2.3.5 or visit (Wani, 1968)). Such result is used in Section 5.1 to prove that the class of

joint distributions P (X ,Y) is also a LEF. It is well known that a LEF is a DFM (manifold intro-

duced in Section 2.3.4, or see (Amari, 2016)). Usually, finding the minimum expected risk MLR

parameters is formulated as an optimization problem in Rk which is solved by means of SGD.

Instead, this thesis proposes to formulate the problem as a manifold optimization problem (Hu

et al., 2020), over the manifold (M, g) of probability distributions P (X ,Y) fulfilling the main

assumption of MLR, where the metric equipped is the FIM defined in Section 2.3.2. The joint

distribution is also considered in (Lin et al., 2019) for instance, where dual parameterizations

allow to run a fast SNGD.

The chapter starts by establishing in Section 5.1 that the family of joint distributions

P (X ,Y) satisfying the main MLR assumption is a LEF and hence a DFM. Then, it is possible

63

to rely on duality to provide efficient computation of the natural gradient of the conditional log-

loss function in Section 5.2. Dual Stochastic Natural Gradient Descent (DSNGD) is defined

in Section 5.3. The chapter finishes by providing the convergence and linear computational

complexity results for the case where X is a set of discrete variables.

5.1 MLR generative model. The joint distribution

The next result proves that the the family of joint distributions P (X ,Y) satisfying the core MLR

assumption is a LEF.

Proposition 5.1.1. The log-odds ratio of the class posteriors P (Y | X) is an affine function of

the features X if and only if the joint distribution P (X ,Y) belongs to LEF.

Furthermore, there exists the LEF natural parametrization of the joint distribution

Pη(x, y) =
exp (S(y)ᵀα+ T (x)ᵀβy)

λ(η)

λ(η) =

∫
x

∑
y

exp (S(y)ᵀα+ T (x)ᵀβy) ,
(5.1)

where η = (α, β), α ∈ Rs−1, β ∈ Rs×t, βy is the y-th row of β and

T : Ω→ Rt

S : [1, ...s]→ Rs−1 ,
(5.2)

are sufficient and minimal statistics of X and Y respectively.

The proof of this proposition relies strongly on theorem 2 in (Banerjee, 2007) and can be

found in appendix B.1.

The logistic regression core assumption then translates into assuming P (X ,Y) belongs to

the exponential family, and such space is a well known DFM (Amari, 2016; Nielsen, 2018).

This is convenient for the purpose of this chapter, because, after Section 2.3.4, in a DFM the

costs of natural gradient computations can be highly reduced, based on the property shown by

Equation 2.27. Next, we provide the dually flat parametrization of P (X ,Y).

64

5.1.1 Dually flat parametrization of the joint distribution

We have seen that P (X ,Y) is a DFM and that we can choose the natural parametrization of

Equation 5.1. The conditional probability distributions with η parametrization are

(5.3) Pη(y | x) =
exp (S(y)ᵀα+ T (x)ᵀβy)∑
y exp (S(y)ᵀα+ T (x)ᵀβy)

.

The parameterization of Equation 5.3 can be simplified, by considering Definition 5.1.1.

Definition 5.1.1. Let S be a statistic of a discrete random variable Y = {1, ..., s}. S is a

canonical statistic if

S(i) =es−1(i) for 1 ≤ i < s ,

S(s) =0 ∈ Rs−1 ,
(5.4)

where ej(i) is the i-th canonical vector of dimension j.

With a linear transformation, we can assume that S is a canonical statistic in Equations 5.1

and 5.3, as Proposition 5.1.2 states. Its proof can be found in Appendix B.2.

Proposition 5.1.2. The minimal and sufficient statistic S of Y in the joint distribution can be

transformed into a canonical statistic with a linear transformation.

This implies that we can assume, for the sake of simplicity, that S is a canonical statistic

from now on unless otherwise stated.

As (Amari, 2016) proves, the exponential family manifold is built after the convex function

F (η) = log λ(η) (see the DFM construction from a convex function in Section 2.3.4). In

(Amari, 2016), the author also proves that this Riemannian manifold derived from F (η) has

the FIM metric, as is usually considered for statistical manifolds. Recall that the FIM metric is

defined as

(5.5) Gη = −Ex,y∼Pη
[
∇2 logPη(x, y)

]
.

The dual parametrization η∗ = ∇F (η) can also be considered (see Section 2.3.5). For

LEF, it is called the expectation parametrization and it is shown in this section as Equation 5.6.

65

For more properties of the dual parametrization see (Amari, 2016). To simplify the notation, if

x =
(
x1 · · · xn

)
, we note ∇x =

(
∂
∂x1

· · · ∂
∂xn

)ᵀ
. So for every i ∈ {1, ..., s} write

α∗ = ∇αF (η) =
∑
y

S(y)Pη(y) = EY [S(y)] = (Pη(Y = 1), ..., (Pη(Y = s− 1))ᵀ ,

β∗i = ∇βiF (η) = Pη(Y = i)

∫
X
T (x)Pη(x | Y = i) = Pη(Y = i)EX|Y=i[T (x)] .

(5.6)

Define η∗ = (α∗, β∗) with β∗ = (β∗1 , ..., β
∗
s) the dual parameterization, or equivalently, the

expectation parameters.

Observe that P (Y) is the categorical distribution (since Y is discrete and finite) and there-

fore it is a LEF, where α∗ contains actually the expectation parameters. Moreover

(5.7) θi := θi(α
∗, β∗i) =

β∗i
Pη∗(Y = i)

= EX|Y=i[T (x)] ,

are the expectation parameters of the conditional distribution P (X | Y = i).

5.2 Fast natural gradient of the log-loss

This section allows us to compute the natural gradient of the log-loss function without having

to use the metric matrix directly but using both dual parametrizations instead.

Given (x, y) ∈ X × Y and η ∈ Rk, the log-loss function is defined as

(5.8) l(η, x, y) = − logPη(y | x)

Proposition 5.2.1 reveals ∇̃l(η, x, y) using both dual parametrizations η and η∗.

Proposition 5.2.1. Let l be the log-loss function. Then, if P (X ,Y) is a DFM, it is

(5.9) ∇̃l(η, x, y) = ∇h(η∗, x) · (qY(x, Pη)− es(y))

where

(5.10) qY(x, P) =

P (Y = 1|x)

...

P (Y = s|x)

 ,

66

h(η∗, x) = (logPη∗(Y = 1, x), ... logPη∗(Y = s, x)) and es(k) is the k-th canonical s-

dimensional vector.

The proof of Proposition 5.2.1 is presented in Appendix B.3. Proposition 5.2.1 expresses the

natural gradient of the log-loss function without the need of inverting a matrix, although it makes

use of both dual parametrizations η and η∗. It is an opportunity to define fast natural gradient

based algorithms that avoid inverse metric matrices. An important remark is that the natural

gradient is written as the product of two terms where one of them is clearly bounded (the term

(qY(x, Pη)− es(y))). Hence, divergence symptoms of the natural gradient are possibly created

by the possibly unbounded term ∇h(η∗, x). So it is at our disposal a strategy to create fast

natural gradient based algorithms that are convergent as well: if we control the term∇h(η∗, x),

then the algorithm may stabilize and converge. In Section 5.3 we put into practice these ideas

to define a natural gradient based algorithm named Dual Stochastic Natural Gradient Descent

(DSNGD).

5.3 Dual stochastic natural gradient descent

Dual Stochastic Natural Gradient Descent (DSNGD) aims to solve the MLR optimization

problem using the natural parametrization η of the LEF on X × Y: If (Ω,F , P) is a prob-

ability space where Ω = X × Y and P is an unknown probability distribution, optimize

f(η) = Ex,y∼P [l(η, x, y)] for η ∈ Rk where l(η, x, y) is the conditional log-loss function.

The solution η ∈ Rk to this problem refers to the conditional distributions Pη(Y | X) that

better fits the unknown conditional distributions P (Y|X). To that end, we define a stochastic

natural gradient based algorithm. By looking to the notation introduced in Section 2.5, in this

scenario an observation drawn on the product probability space is of the form ω = (ω1, ω2, ...)

such that ωt = (xt, yt) ∈ Ω for all t ∈ N.

Using Proposition 5.2.1 and assuming that a sample of observations ω = (ω0, ω1, ...) is

drawn from the product probability space, DSNGD is defined in Definition 5.3.1.

Definition 5.3.1. Let (M, g) be the Riemannian Manifold of dimension k where M is the

probability space of joint distributions P (X ,Y) belonging to LEF and g is the FIM . Let l be

67

the conditional log loss function defined in (M, g) and let φ be the natural parametrization of

the manifold. Let ω = (ω0, ω1, ω2, ...) ∈ Ω be a sample drawn from the product probability

space. The Dual Stochastic Natural Gradient Descent (DSNGD) is a stochastic process Z =

(X, γ) such that

(5.11) Xt(ω) = ∇h(ζ∗t (ω), xt) · (qY(xt, PZt(ω))− es(yt)) ,

where {ζt}t∈N is a convergent sequence in the natural parametrization and {ζ∗t }t∈N is the same

sequence expressed in the dual parametrization.

Note that qY(xt, PZt) is a stable term (it only takes values between 0 and 1). Moreover,

DSNGD forces the stability of the ∇h(ζ∗t (ω), xt) term, since ζt is a convergent sequence. This

is the same strategy of CSNGD, and similarly, it is going to ensure the convergence of the algo-

rithm in Theorem 5.6.2. Observe that Equation 5.11 is also well defined when the parametriza-

tion is not minimal, therefore DSNGD can be run in such a general case, where S and T are not

minimal. Steps taken by DSNGD are specified in Algorithm 11.

Algorithm 11: Dual stochastic natural gradient descent
Result: Zt(ω)

1 Z0, ω = ((x0, y0), (x1, y1), ...), {ζ∗0 (ω), ζ∗1 (ω), ...}, t = 0;

2 while stopping condition not satisfied do

3 Xt(ω) = ∇h(ζ∗t (ω), xt) · (qY(xt, PZt(ω))− es(yt));

4 Zt+1(ω) = Zt(ω)− γtXt(ω);

5 t = t+ 1;

6 end

The sequence {ζ∗t }t∈N, or simply ζ∗t as an abuse of notation, can be any sequence in the dual

space whose expression in the natural parametrization {ζt}t∈N is convergent. For example, it

can be constant. Or also, it can be the sequence of estimations provided by SGD, if a such

sequence converges. The resulting algorithm keeps track of two independent sequences; the

main sequence Zt which estimates the solution η to the problem, and the sequence ζ∗t selected

with the convergence constraint and whose space is the dual. For example, assume the trivial

case where X = {0} and Y = {0, 1, 2}. The only conditional probability distribution of the

problem is the Categorical distribution P (Y | X = 0). This space is represented by R2 and its

68

dual space is represented by the simplex S2. Then, the main sequence Zt moves in R2 while

the independent sequence ζ∗t traces its path in S2. Figure 5.1 illustrates iterations followed by

Zt (instruction line 4 of the algorithm) and ζ∗t when running DSNGD for this simple example.

Zt

(a) Zt sequence in R2

ζ∗t

(b) ζ∗t sequence in the dual space S2

Figure 5.1: Zt and ζ∗t sequences obtained in DSNGD where X = {0} and Y = {0, 1, 2}

Recall that the sequence ζ∗t can be chosen freely as long as its dual is convergent. How-

ever, DSNGD is designed a natural gradient based algorithm. The algorithm effectively takes

a natural gradient step only when Zt and ζ∗t refer to the same probability distribution point,

according to equation 5.11 and Proposition 5.2.1. In Section 5.6 there is our proof of DSNGD

convergence to the solution η, and if ζ∗t is selected such that it also converges to the solution,

then both sequences get closer along the optimization process, turning DSNGD steps into more

accurate approximations of natural gradient steps. Therefore, in order to benefit from natu-

ral gradient speed up properties, it is recommended that sequence ζ∗t converges to the solution

η∗ = ∇F (η). For example, this can be accomplished by determining ζ∗t using a maximum a

posteriori estimator of the parameters of P (X ,Y) obtained from data up to t.

5.4 Computational complexity of Natural Gradient

To evaluate the computational complexity of using equation 5.9 we determine an expression of

∇h(η∗, x) with respect to the expectation parameters θy of X given Y already mentioned in

69

Equation 5.7. The following notation is used

(5.12) Ki =

−1

Idi−1
...

−1

 , d(x, y, η∗) =
1− θᵀy∇θy logPθy(x | y)

Pη∗(y)
,

and the proof is shown in Appendix B.4.

Proposition 5.4.1.

(5.13) ∇h(η∗, x) =

∇α∗h(η∗, x)

∇β∗1h(η∗, x)
...

∇β∗sh(η∗, x)

 ,

where

∇α∗h(η∗, x) =Ks · diag(d(x, 1, η∗), ..., d(x, s, η∗))

∇β∗kh(η∗, x) =
∇θk logPθk(x | Y = k) · es(k)ᵀ

Pη∗(Y = k)
.

(5.14)

The complexity analysis of the natural gradient is presented now, and the reader can find

the proof in appendix B.5. The result uses the expectation parameters θy of the conditional

distribution specified in Equation 5.7.

Proposition 5.4.2. The computational complexity of the natural gradient ∇̃l(η, x, y) using

Proposition 5.2.1 is O(s(A + t)) where A is the cost of computing ∇θy logPθy(x | y), s is

the number of classes and t is the dimension of statistic T .

Observe that the manifold dimension is k = s−1+st and therefore, a computation is linear

on the number of the variables of the model if its complexity order is O(k) = O(s(1 + t)) =

O(st). Therefore, the costs of computing the natural gradient can be reduced to linear if the

cost A is low enough, precisely, if sA is at most linear (O(sA) ≤ O(k)). This is the case when

X is discrete and finite, as presented in Section 5.5.

5.5 Computational complexity of discrete DSNGD

This section assumes that space X is discrete, that is X = {1, ...,m} for some m ∈ N. For

simplicity, we assume T to be also a canonical statistic (see Definition 5.1.1). Theorem 5.5.1

70

deduces and proves that the complexity order for discrete DSNGD of one iteration is linear on

the dimension of the parameter η. Let us show a simple example of discrete DSNGD to begin

with.

5.5.1 Example

Let Y = {1, 2} and X = {1, 2} and minimal and canonical statistics S and T . Let η = (α, β)

be the natural parameter and ζ∗ = (α∗, β∗) be the independent dual parameter. Observe that

in this case, α and α∗ are 1-element vectors and β and β∗ are 2 × 1 matrices. In this example,

we complete an iteration of the discrete DSNGD algorithm, following the instructions listed in

algorithm 11.

Let (x, y) = (1, 2) be an observation. Statistics T and S are assumed to be canonical. To

complete instruction line 3 start computing qY(x, PZ) and∇h(ζ∗, x = 1). Using Equation 5.3,

it is

(5.15) qY(x, PZ) =

P (Y = 1 | x)

P (Y = 2 | x)

 = R ·

exp (α1 + β1)

expβ2

 ,

where R = 1
exp (α1+β1)+expβ2

. For the term ∇h(ζ∗, x = 1), use Equation 5.6, then apply the

gradient.

(5.16) h(ζ∗, x = 1) = (log β∗1 , log β∗2)→ ∇h(x = 1, ζ∗) =

0 0

1
β∗1

0

0 1
β∗2

 .

Finish instruction line 3 by computing the approximation of the natural gradient and the director

process that DSNGD uses for the Zt update.

Xt =∇h(ζ∗, x = 1)(qY(x, Pη)− e2(y = 2))

=

0 0

1
β∗1

0

0 1
β∗2

 ·
R · exp (α1 + β1)

(R · expβ2)− 1

=

0

R·exp (α1+β1)
β∗1

(R·expβ2)−1
β∗2

 .

(5.17)

71

The next instruction lines of the algorithm are standard to update the parameter vector

(α, β1, β2) using the director process Xt, so there is no need to go further. If for instance,

the observation obtained is (x, y) = (2, 2), then the approximation of the natural gradient is

(5.18) Xt =

R expα1

α∗1−β∗1
− R−1

1−α∗1−β∗2
−R·expα1

α∗1−β∗1
R−1

1−α∗1−β∗2

 ,

where R = 1
1+expα1

.

5.5.2 Discrete DSNGD linear computational complexity proof

Before analyzing the computational complexity of DSNGD, it is necessary to determine the

generator of ζ∗t sequence. Sequence ζ∗t belongs to the dual space of the LEF distributions on

X × Y , and if S and T are canonical statistics then it implies that ζ∗t are directly the probabil-

ities P (x, y) after Equation 5.6. It is possible to select the well-known maximum a posteriori

estimator with parameter a ∈ R. This estimator is a simple counting of observations over the

discrete space X × Y with a starting assumption of incidence of a for every event x, y. This

estimator is linear and it clearly converges (to the solution).

First, a result similar to Proposition 5.4.1 is stated, taking into account the discreteness

assumption on X . The proof of Proposition 5.5.1 is found in appendix B.6.

Proposition 5.5.1. Let X = {1, ...,m} and let T be a minimal and canonical statistic. Then

∇α∗h(η∗, x) =

0 x 6= m

Ks · diag(1
Pη∗ (x,Y=1) , ...,

1
Pη∗ (x,Y=s)) x = m

∇β∗yh(η∗, x) =
1

Pη∗(x, y)
·

em−1(x) · es(y)ᵀ x 6= m

−1m−1 · es(y)ᵀ x = m

(5.19)

where 1n ∈ Rn is a vector filled with ones at every coordinate.

Now it is possible to analyze the computational complexity of discrete DSNGD. Theo-

rem 5.5.1 proves that DSNGD, just as SGD, is a linear algorithm.

72

Theorem 5.5.1. Let X = {1, ...,m} and let T be a minimal and canonical statistic. Assume

estimator ζ∗ of DSNGD is linear. Then discrete DSNGD iterations have linear complexity order

on the manifold dimension.

Proof. Let k = (s − 1) + s · t be the dimension of the manifold and hence, the dimension of

parameter η. Then O(k) = O(st). Analyze the computational complexity of discrete DSNGD.

That is, analyze the computational cost of instruction line 3 and 4 shown in Algorithm 11.

Complexity of instruction line 3 is given by Proposition 5.4.2, which is O(sA+ st)) where

sA is the cost of computing ∇θy logPθy(x | y) for all y ∈ Y . Observe Equations 5.6 and 5.7

assuming T canonical and write

α∗ = (Pζ∗(Y = 1), ..., Pζ∗(Y = s− 1))ᵀ

θy = (Pζ∗(X = 1 | y), ..., Pζ∗(X = m− 1 | y))ᵀ .
(5.20)

Deduce then that after Proposition 5.5.1 it is O(sA) = O(k).

Instruction line 4 adds k operations coming from the learning rate and Xt product, and k

operations more of vector subtraction. That is a total of 2k operations.

Finally, recall that a linear complexity order estimator is chosen for ζ∗t sequence, implying

we should consider O(k) operations more.

In conclusion, the computational complexity order of DSNGD is

(5.21) O(sA+ st) + 2k +O(k) = O(k) ,

and therefore linear.

5.6 Discrete DSNGD and convergence

This section proves the convergence of the discrete DSNGD. Discrete DSNGD refers to the

case where X = {1, ...,m} for some m ∈ R. Recall Theorem 3.2 in (Sunehag et al., 2009)

introduced in Section 2.7 as Theorem 2.7.2). The section starts by generalizing this result in

Section 5.6.1. This generalization provides enough flexibility so as to be used later to prove the

convergence of DSNGD in Section 5.6.2.

73

5.6.1 Generalizing Sunehag et. al. variable metric stochastic approximation the-

ory

Theorem 2.7.2 is used to prove CSNGD convergence in this thesis, however it can not be used

to prove DSNGD convergence. First, because it requires the vector it follows to be factored as

the product of a symmetric and positive definite matrixBt and a vector Yt that approximates the

gradient (condition C.1). But DSNGD is defined to directly approximate the natural gradient,

without the gradient as reference. And second, even if DSNGD is written as the product of

a matrix and a vector, matrix ∇h(ζ∗t , xt) is not squared. So we need a more general conver-

gence theorem, a result that directly contemplates the director process X assuming no further

factorization of such term.

The main modification with respect to Theorem 2.7.2 is the unification of conditions C.1

and C.3

C.1 (∀t) EtYt = ∇l(ηt)

C.3 (∀δ > 0) inf
l(η)−l(η)>δ

‖∇l(η)‖ > 0 ,
(5.22)

to instead require

(5.23) C.3’ (∀δ > 0) inf
l(Zt)−l(η)>δ

∇l(Zt)TEt [Xt] > 0 .

Theorem 2.7.2 imposes that the expectation of the step taken must be the gradient and that

the norm of the gradient must not approach zero outside any environment of the minimum.

Instead, we impose that the expectation of the step taken must not approach the border of the

half-space which has the gradient as its normal vector, unless we are approaching the minimum

simultaneously. This is a more general condition. Furthermore, condition C.5 on the maximum

and minimum eigenvalues of the matrix Bt can also be removed. In fact, our result can be used

to prove the convergence of algorithms with scaling matricesBt whose spectrum is not bounded

from below by a strictly positive number, as long as the new version of condition C.3’ holds.

The result is formally stated in Theorem 5.6.1. Proof can be found in appendix B.7.

74

Theorem 5.6.1. Let f : Rk → R be a twice differentiable function with a unique minimum η

and Zt+1 = Zt − γtXt. Then Zt converges to η almost surely if the following conditions hold

C.2 (∃K)(∀η) ‖∇2f(η)‖ ≤ 2K

C.3’ (∀δ > 0) inf
l(Zt)−l(η)>δ

∇f(Zt)
TEt [Xt] > 0

C.4 (∃A,B)(∀t) Et‖Xt‖2 ≤ A+Bl(Zt)

C.6 Learning rate constraint

5.6.2 Discrete DSNGD convergence proof

Next, Theorem 5.6.1 is used to to prove DSNGD convergence in the discrete case. That is, we

use it to prove Theorem 5.6.2.

Theorem 5.6.2. Discrete DSNGD with canonical statistics S and T converges almost surely to

the optimum.

The proof consists of showing that conditions C.2, C.3’, C.4 and C.6 of Theorem 5.6.1

hold. Condition C.6 is assumed to hold, by just selecting an appropriate sequence of learning

rates γt. Conditions C.2 and C.4 are proved in Appendices B.8 and B.9 respectively. Proof of

condition C.3’ is shown below.

Proof. Compute the gradient of f(η) (see Equation B.16) and use Proposition 5.2.1 to obtain

Et [Xt] involved in condition C.3’.

∇f(η) =Et [∇l(η, x, y)]

=
∑
x

∇h(η, x)
∑
y

(qY(x, Pη)− es(y))P (x, y)

=
∑
x

∇h(η, x)RY(x, η)

Et [Xt] =
∑
x

∇h(ζ∗, x)RY(x, η) ,

(5.24)

where

(5.25) RY(x, η) = (qY(x, Pη)− qY(x, P))P (x) .

75

Further evolve equation 5.24 to finally multiply ∇f(η)ᵀEt [Xt] and check condition C.3’.

Continue by developing ∇f(η) first, precisely compute ∇h(η, x). To simplify the notation,

decompose∇ = (∇α,∇β1 , ...,∇βs)

∇αh(η, x) = S + u(Pη) · (1, ..., 1) u(P) = −
∑
y

S(y)P (y) ,

∇βyh(η, x) = T (x)es(y)ᵀ + v(y, Pη) · (1, ..., 1) v(y, P) = −
∑
x

T (x)P (x, y) ,

(5.26)

where S is the s− 1× s matrix having S(i) as i-th column. Since (1, ..., 1) ·RY(x, η) = 0 then

∇αf(η) =
∑
x

∇αh(η, x)RY(x, η)

=
∑
x

S ·RY(x, η)

=S ·RY(η) ,

∇βyf(η) =
∑
x

∇βyh(η, x)RY(x, η)

=
∑
x

T (x)es(y)ᵀRY(x, η)

=T ·RX (y, η) ,

(5.27)

where T is the m− 1×m matrix having T (i) as i-th column.

RY(η) =

Pη(Y = 1)− P (Y = 1)

...

Pη(Y = s)− P (Y = s)

RX (y, η) =

(Pη(Y = y | X = 1)− P (Y = y | X = 1))P (X = 1)

...

(Pη(Y = y,X = m)− P (Y = y | X = m))P (X = m)

 .

(5.28)

Now develop EtXt further. Recall that S and T are canonical statistics so plug in Proposi-

76

tion 5.5.1 into Equation 5.24. Decompose Et = (Et,α∗ ,Et,β∗1 , ...,Et,β∗s)

Et,α∗ [Xt] =
∑
x

∇α∗h(ζ∗, x)RY(x, η)

=Ks · diag(d(m, 1, ζ∗), ..., d(m, s, ζ∗)) ·RY(m, η) ,

Et,β∗y [Xt] =
∑
x

∇β∗yh(ζ∗, x)RY(x, η)

=Km · diag(d(1, y, ζ∗), ..., d(m, y, ζ∗)) ·RX (y, η) .

(5.29)

Proceed now to check the condition. Develop the products until obtaining

∇αf(η)ᵀEt,α∗ [Xt] =
∑
y

c(y) ,

∇βyf(η)ᵀEt,β∗y [Xt] =− c(y) +
∑
x

d(x, y, ζ∗)(Pη(y|x)− P (y|x))2P (x)2 ,

(5.30)

where c(y) = d(m, y, ζ∗)(Pη(y)− P (y))(Pη(y|x = m)− P (y|x = m))P (x = m).

Finally,

∇f(η)ᵀEt [Xt] =∇αf(η)ᵀEt,α∗ [Xt] +
∑
y

∇βyf(η)ᵀEt,β∗y [Xt]

=
∑
y

c(y) +
∑
y

−c(y) +
∑
x

d(x, y, ζ∗)(Pη(y|x)− P (y|x))2P (x)2

=
∑
y,x

d(x, y, ζ∗)(Pη(y|x)− P (y|x))2P (x)2 .

(5.31)

Notice in equation 5.31 that ∇f(η)ᵀEt [Xt] is a sum of positive numbers, and it vanishes only

if η = η. Also, since d(x, y, ζ∗) > 1, observe that

∇f(η)ᵀEt [Xt] >
∑
y,x

(Pη(y|x)− P (y|x))2P (x)2 ,

=
∑
y

‖RX (y, η)‖2 .
(5.32)

To finish proving the result, let {ηi}i∈N be a sequence such that

(5.33)
∑
y

‖RX (y, ηi)‖2 −−−→
i→∞

0 ,

77

since every term is positive, then for every y ∈ Y

(5.34) ‖RX (y, ηi)‖2 −−−→
i→∞

0 ,

implying that Pηi(y|x)− P (y|x) −−−→
i→∞

0 for all x, y and that

(5.35) l(ηi)− l(η) −−−→
i→∞

0 .

Hence it’s proven

(5.36) (∀δ > 0) inf
f(η)−f(η)>δ

∑
y

‖RX (y, ηi)‖2 > 0 ,

and therefore, after Equation 5.32, condition C.3’ holds.

5.7 Experiments

This section runs some experiments testing the behavior of our natural gradient based algo-

rithm DSNGD. The purpose is to figure out whether the convergence property and the low

computational complexity of the algorithm are reflected positively in practical problems. As a

comparative reference, we add the fast SGD algorithm. Check the reference (Sánchez-López

and Cerquides, 2022b) to reproduce or inspect the code of the experiments.

The experiment settings are similar to that of Section 4.2: we consider 3 different manifolds

M1,M2,M3 and 3 different scenarios concerning the entropy (high, medium, and low) of the

hidden probability distribution that generates the data.

We define the manifolds used in the experiments. Variables Y and X are discrete. Further-

more, we assume variable X splits into X = (X1,X2, ...,Xq) where Xi is discrete, holding the

Naive Bayes independence assumption;

(5.37) P (Xi,Xj | Y) = P (Xi | Y)P (Xj | Y) ∀i 6= j

If Y is a discrete variable having values in {1, ..., s} we just write Y = s. In the case of

X = (X1,X2, ...,Xq) where Xi = {1, ...,mi} we just write X = (m1,m2, ...,mq). Recall that

78

k stands for the dimension of the manifold. With this notation in mind, the manifolds considered

are

M1

Y = 10

X = (10, 5)

k = 139

, M2

Y = 20

X = (10, 5, 10, 5) ,

k = 539

M3 =

Y = 30

X = (10, 5, 10, 5, 10, 5)

k = 1199

.

(5.38)

The 3 different scenarios are identified with parameters η ∈ Rk generated randomly from the

normal distribution N(0, σ2)k where σ equals to 0.1, 0.5 and 1 for the high, medium and low

entropy scenarios respectively.

For every manifold and every entropy scenario, we run 100 instances. For every instance

η we draw a 107 length sample from Pη. The objective is to optimize the expectation of the

conditional log-loss, which recall it is

f(η) = E(x,y)∼Pη l(η, x, y) ,

l(η, x, y) = − logPη(y | x) .
(5.39)

We consider the median and interquartile ranges of the 100 instances for every case.

For the learning rate selection, we run the algorithms with several learning rate candidates

in 500 iterations over a newly generated sample. The candidate with the best estimations in

the last 10 iterations is then chosen to solve the problem in the 107 length sample. Just as in

Section 3.1.2, the learning rate γt is restricted to γt = a
b+t where a ∈ {10m|− 2 ≤ m ≤ 7} and

b ∈ {10m| − 5 ≤ m ≤ 8}.

These large magnitudes of dimension and sample length can be contemplated in our experi-

ments only because DSNGD is also a linear learning algorithm. Running higher-order methods

such as SNGD would be unfeasible in terms of computational resources.

Figure 5.2 contains the learning process and interquartile range of DSNGD and SGD in the

experiments. Columns represent different entropy scenarios while rows correspond to the man-

ifolds M1,M2 and M3 by their dimensions. Results are promising for our natural gradient

79

Figure 5.2: Median of KL-Divergences of estimations per iteration of SGD and DSNGD on the

MLR problem.

algorithm since DSNGD surpasses SGD in almost every scenario. Only for M3 in the high

entropy scenario standard SGD is able to compete with DSNGD. This may be caused by the

fact that this experiment is the one with more uncertainty. In this scenario, staying in the high-

est entropy neighborhood (equiprobability) determined by 0 ∈ Rk already hits a high-quality

estimator. In this case, there is not much more room left for learning. For the rest of the cases,

we can observe in general that algorithm DSNGD is not only finding better estimators of the

solution by reducing the KL divergence but also the curve is presenting a steeper slope towards

minimizing the error if more data was added to the learning process. In contrast, SGD usually

shows a flat horizontal line meaning that further significant improvements in the quality of the

estimations are impossible to reach in practice. If we take a look at the vertical axis, which is log

scaled, the estimations of DSNGD are about one order of magnitude better than that of SGD.

Furthermore, the interquartile range of DSNGD is thinner, which implies that the algorithm

provides estimations with lower variance.

80

5.8 Comments

Natural gradient based algorithms behave erratically when tested in practical problems. How-

ever, as CSNGD shows, this kind of algorithm may stabilize once convergence is guaranteed.

With this in mind, we defined DSNGD, which approximates the natural gradient at each step

and whose convergence in the discrete case can be proved. To that end, we stated and proved

a general result showing the convergence of interior half-space gradient approximations. Fur-

thermore, we point out that this convergence result may prove the convergence of more general

algorithms since it doesn’t require the expectation of the update’s direction to factor as a sym-

metric positive-definite matrix and the gradient.

The convergence proof of DSNGD was not possible to obtain from the stochastic conver-

gence results in the literature. Instead, our generalization of such convergence theorems is

convenient for proving DSNGD convergence. In order to realize the conditions that lead nat-

ural gradient based algorithms to converge, we decided to continue our research on stochastic

process convergence.

81

82

6 Convergence of stochastic processes that

resemble to conservative vector fields

The hypothesis of this thesis states that a natural gradient based algorithm is stabilized when

a such method has proven convergence. Chapters 3,4 and 5 seem to support this hypothesis.

Natural gradient based algorithms can be understood as stochastic processes. Hence, conver-

gence theorems of stochastic processes are a key tool for defining stable natural gradient based

optimization methods.

This chapter starts generating a ground theory oriented to stochastic process convergence

proofs. Our point of view allows a geometric perception of the conditions that result in conver-

gence property. The stochastic process considered in this chapter holds some bound constraints

on its decomposition of 1-increments, described in Section 6.1. The main contribution of the

chapter is a generalization of convergence theorems and it is stated in Section 6.2. To com-

pletely understand our theorem, Section 6.3 and Section 6.4 define two key concepts, which are

the Expected direction set and resemblance. Afterward, the proof of our theorem is shown in

Section 6.5. Finally, convergence theorems appearing in (Bottou, 1998) and (Sunehag et al.,

2009), recalled in Section 2.7, are deduced as corollaries from our main convergence theorem,

proving this claim in the end of the chapter in Section 6.6. Our main result also proves conver-

gence of the discrete DSNGD of Chapter 5.

6.1 Director process and learning rate bound constraints

This section starts by recalling some basic concepts of stochastic processes and it provides some

properties and definitions that are helpful to study the almost sure convergence to a point of a

stochastic process. Since this section exploits concepts already given in this thesis, we strongly

83

recommend checking first Section 2.1. Moreover, the reader can expand their knowledge about

the topic by visiting (Ross, 1996; Bass, 2011; Billingsley, 1986). Section 6.1.1 defines con-

ditions on the decomposition elements of Z = (X, γ) that we will assume during the whole

chapter.

As a reminder, let (Ω,F , P) be a probability space and (S,Σ) be a measurable space.

A discrete stochastic process on (Ω,F , P) indexed by N is a sequence of random variables

Z = {Zt}t∈N such that Zt : Ω→ S. In this chapter, S = Rk, and Σ is the corresponding Borel

σ-algebra. As random variables are used to describe general random phenomena, stochastic

processes indexed by N are usually used to model random sequences.

Recall Definition 2.1.11 about the decomposition of a stochastic processZ intoZ = (X, γ).

Remember that X = {Xt}t∈N is a stochastic process on (Ω,F , P) called the director process

of Z and γ = {γt}t ∈ N is a sequence of positive numbers named the learning rate.

This way of expressing a stochastic process allows us to define Zt+1 with respect to Zt,

which gives us control of the difference between both values by means of γtX(t), as Figure 6.1

shows. This is really useful if we plan to analyze the convergence of a stochastic process.

The naming of γ as learning rate is commonly used in the ML research branch (Bottou, 1998;

Duchi et al., 2011; Zeiler, 2012; Kingma and Ba, 2015). The director process X determines

the direction Xt at time t of the update Equation 2.1.11 with Zt as reference point, while γt

specifies a certain distance to travel along that direction Xt.

As represented in Figure 6.1, we can think of Zt as the value of the process at time t, while

−γtXt is the vector going from Zt to Zt+1. It is important to remember this since we are

constantly referring to Zt as points in Rk whileXt are managed as direction vectors in Rk. This

distinction is only practical for our purposes.

Stochastic processes in ML, such as SGD are usually expressed by means of their decom-

position of 1-increments, as can be seen in Chapter 2. Another example is the one treated in

(Sunehag et al., 2009) described next.

Example 6.1.1. In (Sunehag et al., 2009), the estimation update of the minimum η is defined

84

Z0

Z1

−γ0X0

Z2

−γ1X1

Z3

−γ2X2
Z4

−γ3X3

Figure 6.1: Path of stochastic process Z = (X, γ)

as

Zt+1 =Zt − γtBt · Yt

γt >0 t ∈ N
(6.1)

where Bt is a matrix in Rk×k known after information Z0, ..., Zt available at time t and Yt =

Y (Zt) where Y is a function mapping each η ∈ Rk to a random variable on the same probability

space (Ω∗,F∗, P ∗).

Y can be thought as a random variable in the product probability space (Equation 2.36) that

depends on previous Zt, such that for every ω ∈ Ω it is Yt(ω) = Y (Zt;ω) = Y (Zt;ωt). So if

Xt = Bt ·Y (Zt), thenZ = (X, γ) is a decomposition of 1-increments ofZ withX = {Xt}t∈N.

6.1.1 Locally bounded stochastic process

We demand some constraints to both factors of Z = (X, γ).

• Condition imposed to γ is the learning rate constraint of Equation 2.38 usually found in

the literature (Bottou, 1998; Sunehag et al., 2009; Sánchez-López and Cerquides, 2019).

• X is locally and linearly bounded by φ : Rk → R if

(6.2) (∃A,B)(∀t) Et‖Xt‖2 ≤ A+B · φ(Zt)

These two constraints are finally combined to present the kind of stochastic processes we

are interested in.

85

Definition 6.1.1. Let Z be a stochastic process and φ : Rk → R be a function. We say that Z

is locally bounded by φ if there is a decomposition of 1-increments (X, γ) with γ holding the

learning rate constraint and X locally and linearly bounded by φ.

Furthermore, if Z0 = η0 a.s. we say η0 is the initial point of Z.

Further on, Z is assumed to be locally bounded by φ where (X, γ) is its corresponding

decomposition of 1-increments, unless otherwise indicated. Examples 6.1.2 and 6.1.3 show

that we can understand the results in (Bottou, 1998; Sunehag et al., 2009) as the almost sure

convergence of some locally bounded stochastic processes. In this thesis, we are interested in

proving the almost sure convergence of a wider set of locally bounded stochastic processes.

Example 6.1.2. In reference (Bottou, 1998), the optimization algorithm is asked to hold ad-

ditional conditions in order to prove its convergence. The reader can recall the convergence

theorem by going to Section 2.7. Some of the conditions are

∑
t

γ2
t <∞,

∑
t

γt =∞

Z0 = η0 ∈ Rk

(∃A,B)(∀t) Et‖Xt‖2 ≤ A+B‖Zt − η‖2 ,

(6.3)

where η ∈ Rk is the optimal point of L. Learning rate constraint is clearly asked. Moreover,

η0 is a starting point. It remains to see if X is locally and linearly bounded by some function

φ : Rk → R. Indeed, define φ(η) = ‖η − η‖2, then the property is easily checked. Hence Z is

locally bounded by φ with initial point η0

Example 6.1.3. Recall Example 6.1.1. Convergence theorem in (Sunehag et al., 2009), which

is added in Section 2.7, demands following conditions;

∑
t

γ2
t <∞,

∑
t

γt =∞

Z0 = η0 ∈ Rk

(∃A,B)(∀t) Et‖Xt‖2 ≤ A+BL(Zt) ,

(6.4)

where L is a function to optimize. For this example, Z is locally bounded by φ with φ = L.

86

6.2 Main result

The objective of this chapter is to prove Theorem 6.2.1, which will be proven in Section 6.5.1.

Theorem 6.2.1. Let Z be a stochastic process on probability space (Ω,F , P) to Rk. Then Z

almost surely converges to a point η ∈ Rk if there is a twice differentiable convex function φ

defined in Rk with unique minimum η and bounded Hessian norm, such that

• Z is locally bounded by φ

• Z resembles∇φ.

There is a concept of the theorem that needs a definition. That is when a stochastic process

resembles a vector field. Sections 6.3 and 6.4.2 fill this gap.

6.3 Expected direction set

We now define one key mathematical object of the chapter named the expected direction set.

It focuses on gathering all directions that the update may take at time t conditioned to Ft.

Before the definition, we provide some concepts and notation. Recall that the notation related

to conditional expectation Et is given in Section 2.1.2.

Random variable Et [Xt] determines all expected directions of Z = (X, γ) at time t that

the stochastic process may follow assuming Ft. For example, if ω ∈ Ω is an observation, then

Et[Xt](ω) ∈ Rk is a vector pointing to the expected update direction departing from point

Zt(ω) given Ft. Denote the expected direction of Z at ω ∈ Ω and time t as

(6.5) DZ(ω, t) = Et [Xt] (ω) .

The expected direction from point η = Zt(ω) of Equation 6.5 depends on ω. That is, the

path followed until reaching η = Zt(ω) ∈ Rk matters. For instance, if ω1, ω2 ∈ Ω are different

observations such that η = Zt(ω1) = Zt(ω2), then possibly DZ(ω1, t) 6= DZ(ω2, t). We

collect all expected directions at η = Zt(ω) and time t in the vector set

(6.6) SZ(η, t) = {DZ(ω, t) | ω ∈ Ω, Zt(ω) = η} .

87

The tools to define the expected direction set at η ∈ Rk after time T ∈ N are given, so we

proceed to its formal definition.

Definition 6.3.1. Let Z = (X, γ). Define the expected directions set of Z at η ∈ Rk after time

T ∈ N as

(6.7) EDSZ(η, T) :=
⋃
t≥T

SZ(η, t) .

With a few words, EDSZ(η, T) is a vector set containing all expected directions (provided

by the director process X) conditioned to Ft for every outcome ω such that Zt(ω) = η where

t ≥ T . In definition 6.3.1, EDS depends on T . That is because to assess the convergence

of an algorithm it is not important to consider all expected directions throughout the process.

For example, if an algorithm converges we can modify randomly all directions of the director

process for just a particular time T ∈ N, and the resulting algorithm still converges. Roughly

speaking, only the tail of a process matters to determine the convergence property. This concept

is better addressed with definition 6.3.2 in the next section.

Example 6.3.1. Assume that Z is SGD. Then, EDSZ(η, T) is a singleton. Indeed,DZ(ω, t) =

∇f(η) is the same vector for all t ∈ N and all ω with Zt(ω) = η and hence SZ(η, t) =

{DZ(ω, t)} with any ω ∈ Ω with Zt(ω) = η. Finally

(6.8) EDSZ(η, T) = {∇f(η)} .

6.3.1 Essential expected direction set

The convergence property of an algorithm relates closely to directions followed after time

T ∈ N as T tends to infinity. Equivalently, directions appearing repeatedly through the whole

optimization process matter, while directions only contemplated for a finite amount of iterations

change nothing, in terms of convergence guarantee. The direction set containing only directions

appearing repeatedly through the whole optimization process is named the essential expected

directions set in this chapter.

To define properly the essential expected directions set, we will use the convex vector sub-

space of a given vector set. Given a vector set U in Rk, let C(U) be the smallest convex vector

subspace containing U . See Figure 6.2 as an illustrative example.

88

C(U)

U

Figure 6.2: Set of vectors U and its convex vector subspace C(U) in R2

Observe that C(U) is always closed, but it is clearly unbounded when U contains vectors

arbitrarily large. Next, we define the essential expected direction set, which may help to identify

divergence symptoms of a stochastic process.

Definition 6.3.2. Let Z = (X, γ). Define the essential expected directions set of Z at η as

(6.9) EEDSZ(η) := ∩TC(EDSZ(η, T)) .

Definition of EEDSZ(η) delimits the smallest subspace where all directions at η tend to.

Clearly, EEDSZ(η) is also convex and closed (possibly empty). Deeper properties of this set

lead to identifying divergence symptoms. For example, if it is empty or unbounded at η, we

face instability of the process at η. To see this, observe the next result. The proof can be found

in Appendix C.1.

Corollary 6.3.1. Let η ∈ Rk. Then EEDSZ(η) is a non empty bounded set if and only if there

exists T ∈ N such that C(EDSZ(η, T)) is bounded.

This result is a corollary because derives from Proposition C.1.1 proven in the Ap-

pendix C.1. Corollary 6.3.1 relates EEDSZ(η) with instability properties of Z. If EEDSZ(η)

is empty or unbounded, then C(EDSZ(η, T)) is unbounded and the algorithm is unstable at η,

since expected directions with arbitrarily large norms exist after enough iterations. Clearly, if

this situation is found for all points near the optimum, the algorithm can not converge to the so-

lution. It is desirable instead that C(EDSZ(η, T)) is compact (bounded) for some T for every

η ∈ Rk, or equivalently, that EEDSZ(η) is compact (bounded) and not empty.

In fact, since we are interested in the case where Z is locally bounded by φ (recall defini-

tion 6.1.1), we can assume that EEDSZ(η) is a nonempty compact set, by virtue of Proposi-

tion 6.3.1.

89

Proposition 6.3.1. Let stochastic process Z be locally bounded by φ. Then C(EDSZ(η, 0)) is

a non empty compact set.

Proof. We know that X is locally and linearly bounded. Hence, applying Jensen’s inequality

(6.10) ‖Et[Xt]‖2 ≤ Et‖Xt‖2 ≤ A+B · φ(Zt)

Let η ∈ Rk and ω ∈ Ω such that Zt(ω) = η for some t ≥ 0. Therefore, every v = Et[Xt](w) ∈

EDSZ(η, 0) has bounded norm by A+B ·φ(η), implying that C(EDSZ(η, 0)) is a non empty

compact set.

Corollary 6.3.2 is a consequence of Proposition 6.3.1 and Corollary 6.3.1.

Corollary 6.3.2. Let stochastic process Z be locally bounded by φ. Then EEDSZ(η) is a non

empty compact set for all η ∈ Rk.

Example 6.3.2. Assume that for every η and T , the expected direction set of Z contains only

one vector, such as SGD. Then EEDSZ(η) = EDSZ(η, T) for any T . Indeed, in the case of

SGD, we have seen in Example 6.3.1 that EDSZ(η, T) = {∇f(η)}. Hence

(6.11) EEDSZ(η) = ∩TC(EDSZ(η, T)) = C({∇f(η)}) = {∇f(η)} = EDSZ(η, T)

6.4 Vector field half-spaces and stochastic processes. Resemblance.

This section defines the main concept of this chapter; the property of resemblance between a

stochastic process and a vector field. The definition highlight some commonalities between

theorems 2.7.1 and 2.7.2. Both of them prove the convergence of stochastic processes that

resemble to particular vector fields. A geometric interpretation and explanation of convergence

theorems conditions is later established in Section 6.5.

Some previous definitions are needed and stated before introducing the main concepts of

the chapter, such as ε-acute vector pair sets and the half-space of a vector field. The section

starts with some basic concepts about vectors.

Definition 6.4.1. Let u, v ∈ Rk be two vectors. The pair (u, v) is acute if u and v form an acute

angle, that is, if uᵀ · v > 0. Furthermore, if uᵀ · v ≥ ε > 0 then (u, v) is ε-acute.

90

Proposition 6.4.1. Let u, v ∈ Rk be two vectors. Then, the pair (u, v) is ε-acute if and only if

there exists a symmetric positive-definite matrix B such that B · u = v and uᵀ ·B · u ≥ ε.

A vector pair set V is a set of vector pairs V = {(ui, vi) ∈
(
Rk
)2 | i ∈ I} where I is an

index set.

Definition 6.4.2. Let V be a vector pair set. V is ε-acute if every vector pair (u, v) ∈ V is

ε-acute.

Vector pair sets holding Definition 6.4.2 can be understood as sets whose vector pairs form

an angle of at most π
2 . The larger ε is in the definition, the bigger the inner product is of all

vector pairs. The next result is a direct consequence of the definition of the ε-acute vector pair

set.

Proposition 6.4.2. Let V be a vector pair set, indexed by I . Then, V is ε-acute for some ε > 0

if and only if;

(6.12) inf
i∈I

(ui,vi)∈V

uᵀi vi > 0

Proposition 6.4.3. Let V be a vector pair set, indexed by I . Then, V is ε-acute for some ε > 0

if and only if there exist a set of symmetric positive-definite matrices B = {Bi | i ∈ I} such

that

inf
i∈I

(ui,vi)∈V

uᵀiBiui > 0

Biui = vi

(6.13)

Proof. Prove first that if there exist a set of matrices B = {Bi | i ∈ I} holding equation 6.13

then V is ε-acute for some ε > 0. Observe that after equation 6.13;

(6.14) inf
i∈I

uᵀi vi = inf
i∈I

uᵀiBiui > 0

Then, proposition 6.4.2 implies that V is ε-acute and finishes this part of the proof.

Now assume that V is ε-acute, prove then that there exist a set of matricesB = {Bi | i ∈ I}

holding equation 6.13. Since V is ε-acute, in particular, the pair (ui, vi) ∈ V is ε-acute for every

i ∈ I . Apply proposition 6.4.1: for every i ∈ I there exists a symmetric positive-definite matrix

Bi such that Biui = vi and uᵀi ·Bi · ui ≥ ε. This finishes the proof.

91

Proposition 6.4.2 and Proposition 6.4.3 provide different properties that equivalently iden-

tify ε-acute vector pair sets.

6.4.1 The half-space of a vector field

The half-space determined by a vector u is the set of vectors that conform to an acute angle

with u. This region clearly occupies half of the total space. Also, the ε-half-space of u with

ε > 0 is the set of vectors v such that the vector pair (u, v) is ε-acute. This object is needed

for afterward defining the half-space of a vector field. We first define these concepts and then

illustrate the ε-half-space of a vector u in Figure 6.3.

Definition 6.4.3. Let u be a vector of Rk. The half-space of u is the set

(6.15) H(u) = {v ∈ Rk | uᵀ · v > 0}

Similarly, the ε-half-space of u with ε > 0 is the set

(6.16) Hε(u) = {v ∈ Rk | uᵀ · v ≥ ε}

u

Hε(u)

ε
‖u‖

Figure 6.3: Shaded area representing Hε(u)

A vector field X over Rk is a function assigning to every η ∈ Rk a vector of Rk, that is

X : Rk → Rk. For example, if f : Rk → R is a differentiable function, we can consider the

vector field consisting of the gradient vectors at each point η. Precisely, denote the gradient

vector field (GVF) as X∇f , where X∇f (η) = ∇f(η).

We are ready to define the half-space of a vector field.

92

Definition 6.4.4. Let X be a vector field over Rk. The half-space of X is a function H(X)

mapping every η to H(X)(η) = H(X(η)). Similarly, the ε-half-space of X with ε > 0 is a

function Hε(X) mapping every η to Hε(X)(η) = Hε(X(η)).

6.4.2 Resemblance between a stochastic process and a vector field

The convergence of any locally bounded process can be proved by comparing the expected

directions set of the algorithm with some vector fields. When the expected directions resemble

to the vector field we compare to, then we can ensure the almost sure convergence to a point

of the stochastic process, after some reasonable conditions. By resemblance, we mean that the

expected directions set after some time T is a subset of the ε-half-space of X, among other things

explained later. Therefore, resemblance asks for every η ∈ Rk that every vector DZ(ω, t) with

t ≥ T and every ω ∈ Ω with η = Zt(ω) form an acute angle with the vector field at X(η).

However, if the vector field sends a specific point η to 0 ∈ Rk, then no direction can be

set by the DZ(ω, t) to form an acute vector pair. Therefore resemblance property is evaluated

outside the neighborhood of these vanished points. That’s why we must consider now the set of

vanished points of a vector field and the neighborhoods around the points of this set.

Formally, let X be a vector field defined in Rk. The set KX is the set of points of Rk that

vanish by X, that is, KX := {η ∈ Rk | X(η) = 0}. Moreover, consider the closed ball centered

on KX of radius δ as Bδ(KX) := ∪η∈KXBδ(η) where Bδ(η) is the closed ball of radius δ

centered on η.

We also use the notation A′ = Rk \ A for the complement set of subset A ⊂ Rk. We say

that Z ε-resembles to X at η from T on if EDSZ(η, T) ⊂ Hε(X)(η). Observe an illustrative

example in Figure 6.4.

This intuition is naturally extended to ε-resemblance at sets when the property is satisfied

for every η in the set. With this in mind, we can define the key concept of this chapter.

Definition 6.4.5. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk. We

say that Z resembles to X from T ∈ N on, if;

(6.17) (∀δ > 0)(∃ε > 0) Z ε-resembles to X at Bδ(KX)′ from T on .

93

η

X(η)

Hε(X)(η)

EDS(η, T)

Figure 6.4: A stochastic process Z that ε-resembles to X at η from T on, since vector set

EDSZ(η, T) of all expected directions of Z at η after time T belongs to Hε(X)(η)

We say that Z resembles to X if there is T ∈ N such that it resembles to X from T on.

Everything is set up to accomplish the goal of this chapter, which is proving the main theo-

rem.

6.5 Proof of main result

The objective of the chapter is within reach now. That is, proving the main Theorem 6.2.1.

6.5.1 Resemblance to conservative vector fields and convergence

Recall main Theorem 6.2.1 and observe that it asks the stochastic process Z to be locally

bounded by some function φ and Z to resemble ∇φ. Therefore, ∇φ is a particular type of

vector field called a conservative vector field. That is a vector field that appears from the deriva-

tion of a function. That is why we understand our main theorem as a convergence result of

locally bounded processes of resemblance to the conservative vector field.

In the theorem statement, it says that φ has a bounded Hessian norm. Similarly to Theo-

rem 2.7.2, it means that ;

(∃K)(∀η) ‖∇2
ηφ(η)‖ ≤ K ′ .

We are ready to prove the main result of the chapter.

94

Proof of main Theorem 6.2.1. Observe that φ is bounded from below. Indeed, η is a minimum

and φ is convex with X(η) = 0 where X = ∇φ. Therefore there exist a constant m ≥ 0 such

that φ(η) +m ≥ 0 for all η. Define ψ(η) = φ(η) +m. Clearly, ∇ψ = ∇φ = X, and therefore

Z resembles to ∇ψ. Moreover, Z is locally bounded by ψ and ψ clearly satisfies the Hessian

norm bound.

From here, the proof follows the steps of Theorem 2.7.2’s proof. Taylor inequality and

Hessian norm bound;

ψ(Zt+1) = ψ(Zt − γtXt)

≤ ψ(Zt)− γtX(Zt)
ᵀXt + γ2

tK‖Xt‖2 ,
(6.18)

where K = K′

2 . Apply expectation conditioned to information until time t and then use that Z

is locally bounded by ψ;

Etψ(Zt+1) ≤ ψ(Zt)− γtX(Zt)
ᵀEt [Xt] + γ2

tKEt
[
‖Xt‖2

]
≤ ψ(Zt)− γtX(Zt)

ᵀEt [Xt] + γ2
tK(A+Bψ(Zt))

≤ (1 + γ2
tKB)ψ(Zt)− γtX(Zt)

ᵀEt [Xt] + γ2
tKA .

(6.19)

Use now that Z resembles to X. Then there exists T such that for every t ≥ T , the term

−γtX(Zt)
ᵀEt [Xt] is negative. All other conditions of Sigmund-Robbins theorem (in (Robbins

and Siegmund, 1971), added in Section 2.7) also hold for the algorithm after time T , thanks to

learning rate constraints. Apply it and deduce that random variables ψ(Zt) converge almost

surely to a random variable (and so does φ(Zt)) and that;

(6.20)
∑
t

γtX(Zt)
ᵀEt [Xt] <∞ a.s .

Prove now that stochastic process φ(Zt) converges almost surely to value φ(η). Proceed by

contradiction. Assume that for δ1 > 0

(6.21) P
[
ω ∈ Ω | lim

t
φ(Zt(w)) ∈ Bδ1(φ(η))′

]
> 0 ,

this implies, by continuity and convexity of function φ, that there exists δ

(6.22) P
[
A = {ω ∈ Ω | lim

t
Zt(w) ∈ Bδ(η)′}

]
> 0 .

95

By resemblance and definition of the limit, there exists T and ε such that EDSZ(η, T) ⊂

Hε(X)(η) for every η ∈ Bδ(η)′. This leads to a contradiction, since using learning rate standard

constraint we have

(6.23)
∑
t≥T

γtX(Zt(ω))ᵀEt [Xt] (ω) >
∑
t≥T

γt · ε =∞ ,

for every ω ∈ A, which has measure different to 0 by Equation 6.22. This clearly contradicts

Equation 6.20.

Hence, φ(Zt) converges almost surely to φ(η) and Zt converges almost surely to η as

wanted.

6.6 Reinterpretation of convergence theorems

Moreover, this section addresses afterward the task of proving that theorems 2.7.1 and 2.7.2 are

particular examples of our main Theorem 6.2.1.

6.6.1 Reinterpretation of Bottou’s convergence theorem

The goal now is to deduce Theorem 2.7.1 as a direct consequence of the main Theorem 6.2.1.

Consider a particular case of main Theorem 6.2.1 where φ(η) = ‖η−η‖2, that reads as follows.

Corollary 6.6.1. Let φ(η) = ‖η − η‖2 and Z be a stochastic process on probability space

(Ω,F , P). Then Z almost surely converges to η if

• Z is locally bounded by φ

• Z resembles∇φ.

Additional conditions to φ, such as Hessian bound or twice differentiability, are not specified

in the corollary since with the particular definition of φ all those conditions are already satisfied.

To see that Corollary 6.6.1 proves Theorem 2.7.1 statement, we need to prove that Theo-

rem 2.7.1 is assuming that Z is locally bounded by φ and that Z resembles ∇φ. Example 6.1.2

already proves that Bottou is assuming that Z is locally bounded by φ. Therefore it remains to

check that Z resembles∇φ. To that end, see Proposition 6.6.1 proved in Appendix C.2.

96

Proposition 6.6.1. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk.

Then Z resembles to X if and only if

(6.24) (∃T ∈ N)(∀δ > 0) inf
η∈Rk\Bδ(KX)
v∈EDSZ(η,T)

X(η)ᵀ · v > 0 .

By taking a look at condition Bottou resemblance of Theorem 2.7.1 and Proposition 6.6.1,

we can deduce from it, that the algorithm Z of the theorem resembles to vector field∇φ.

Corollary 6.6.2. Let Z = (X, γ) be a stochastic process and η ∈ Rk. Then Z resembles to∇φ

with φ(η) = ‖η − η‖2 if and only if Bottou resemblance holds.

6.6.2 Reinterpretation of Sunehag’s convergence theorem

Theorem 2.7.2 is a bit too restrictive, so our main theorem can not directly imply such a result.

Hence, this section starts with a generalization of Theorem 2.7.2.

Theorem 6.6.1 (Generalization of Theorem 2.7.2). Let f : Rk → R be a twice differentiable

cost function with a unique minimum η and let Zt+1 = Zt − γtBtYt a stochastic process where

Bt is defined after information available at time t. Then Z converges to the η almost surely if

the following conditions hold;

C.1 (∀t) EtYt = ∇f(Zt) ηt 6= η

Hessian bound (∃K)(∀η) ‖∇2
ηf(η)‖ ≤ 2K

Sunehag resembance (∀δ > 0) inf
f(Zt)−f(η)>δ

∇f(Zt)
ᵀBt∇f(Zt) > 0

Sunehag algorithm bound (∃A,B)(∀t) E‖BtYt‖2 ≤ A+Bl(Zt)

Learning rate constraint

Theorem 6.6.1 is deduced from main Theorem 6.2.1. Similarly to the previous section, we

provide a version of our main theorem for the case where φ = f is a function that we aim to

minimize.

Corollary 6.6.3. Let f : Rk → R be a twice differentiable cost function with a unique minimum

η and bounded Hessian norm, and let Z be a stochastic process on probability space (Ω,F , P).

Then Z converges to the minimum η of f almost surely if

97

• Z is locally bounded by f

• Z resembles∇f .

The stochastic process described in Theorem 6.6.1 has some more properties, such as Xt =

Bt · Yt. But if we prove that Z of that theorem is locally bounded by f and that Z resembles

∇f , then it is clear that Corollary 6.6.3 implies Theorem 6.6.1. Recall Example 6.1.3, where

we already proved that Z is locally bounded by f . The remaining property is acquired after

Proposition 6.6.2 that we prove in Appendix C.3.

Proposition 6.6.2. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk.

Then Z resembles to X if and only if there exists T such that for every t ≥ T there are ran-

dom vectors Yt to Rk and symmetric and positive-definite random matrices Bt defined after

information available at time t such that

(6.25) Bt · Yt = Xt ,

(6.26) Et[Yt] = X(Zt) Zt(ω) /∈ KX ,

(6.27) (∀δ > 0) inf
η∈Rk\Bδ(KX)

t≥T
ω∈Ω,Zt(ω)=η

X(η)ᵀ ·Bt(ω) · X(η) > 0 .

It is only necessary to put together Proposition 6.6.2 and condition C.1 and Sunehag re-

semblance to finish our objective with Corollary 6.6.4.

Corollary 6.6.4. Let f be a differentiable function and Z = (X, γ) be a stochastic process.

Then Z resembles to∇f if and only if there exist T such that for every t ≥ T there are random

vectors Yt to Rk and symmetric and positive-definite random matrices Bt defined after infor-

mation available at time t such thatBt ·Yt = Xt and conditions C.1 and Sunehag resemblance

hold.

98

Corollaries 6.6.2 and 6.6.4 nicely show the value of Theorem 6.2.1 for proving convergence.

To reinforce this, we notice that the convergence of algorithm DSNGD in Chapter 5 is easily

proved by means of Corollary 6.6.3, by combining both Theorem 6.6.1 and Corollary 6.6.4.

This shows that Theorem 6.2.1 allows proving convergence of a wider set of stochastic pro-

cesses and function optimization methods.

6.7 Comments

We have presented a result that allows us to prove the convergence of some stochastic processes.

We have proven that two useful convergence results in the literature are a consequence of our

theorem. This is made after introducing a new theory that compares the expected directions

of the algorithm to conservative vector fields. If the expected directions at a point η resemble

enough to vector X(η) with ∇φ = X a conservative vector field, then the process is stable at

that point. If this happens for every η ∈ Rk, and in addition, the process is locally bounded by

φ, then the process is globally stable and converges.

Some inspiring paths remain unexplored after this chapter. For example, finding the φ

function is the key to proving convergence, and it is asked to be a convex twice differentiable

function. It is interesting to study how φ can be obtained, for instance as a sum of other convex

twice differentiable functions φi.

Another promising research line is a deeper analysis of EDS and EEDS objects, which

may guarantee the existence of a function φ without the need of finding it. If sufficient condi-

tions are established for a stochastic process to ensure resemblance to some unknown conser-

vative vector field, then φ searching can be dodged. Even proving the non-existence of such

function after a wider study of EDS and EEDS is useful, forbidding the use of our theorem.

It is also interesting to study the reverse implication. Specifically, investigating the con-

ditions that lead to divergent instances based on the theory explained in this chapter. In this

sense, Lyapunov characterization of convergent processes becomes a helpful and key theory,

since great similarities arise between these two techniques.

Furthermore, on many occasions, the function φ to optimize can be established beforehand

(convex and twice differentiable). Therefore the opposite process can be considered, that is,

99

generating a set of stochastic processes that resemble to ∇φ, assuring in consequence the con-

vergence of such candidates.

In (Robbins and Monro, 1951), one finds another relevant convergence result. It assures the

convergence in probability of a stochastic process, instead of the almost sure convergence used

in this chapter. We wonder about the existing commonalities with our theorem, and the possi-

bility to relax the conditions our theorem imposes while ensuring convergence in probability of

a process.

We are currently working on two weaker resemblance properties, that we name weak and

essential resemblance. The intention is to deduce almost sure convergence of a process by only

studying its essential expected direction set (EEDS).

100

7 Conclusion

This thesis tackles the problem of bringing the natural gradient to the function optimization task

efficiently. To that end, we faced the convergence issue and the high computational complexity

usually linked to natural gradient based algorithms.

We started proposing the MOD algorithm, which allowed us to support our hypothesis,

namely: if SNGD is stabilized then high convergence speed is at hand. However, we could not

find a proof of convergence for MOD. Nonetheless, we got encouraged to design CSNGD, a

natural gradient algorithm close to SNGD whose convergence is proven. Automatically, ex-

periments in a toy problem, that we refer to as the die problem in the thesis, reflected really

promising results. CSNGD even competes with MLE, which is arguably the optimum estimator

for this toy example. This contribution also supports our hypothesis: CSNGD has a conver-

gence proof which stabilizes in theory its learning process, and we collect fast convergence

speed in turn. Nevertheless, the computational complexity of CSNGD is higher than that of

standard SGD. Optimization problems in ML nowadays have usually a high number of vari-

ables, and the samples drawn for the learning process are often huge. Hence, fast algorithms

are the only option to face many actual problems, and slower algorithms that scale badly with

manifold dimension, such as CSNGD, are directly discarded as suitable optimization methods.

In order to design fast and convergent natural gradient based algorithms, we found it nec-

essary to delimit the problem we target. We had to restrict to the MLR problem in the joint

distribution manifold, where we proved that it is possible to compute the natural gradient of

the empirical loss function really fast. Applying the knowledge acquired when we designed

CSNGD, we defined a natural gradient based method named DSNGD which is also convergent,

although its convergence proof demanded a generalization of existing convergence results in

101

the literature. Furthermore, our new algorithm is of linear order in the discrete case (when the

feature variables are discrete). This is why we could run high-dimensional experiments with

large samples. We observed how DSNGD outperforms standard SGD in almost every scenario,

except for the scenario where SGD was already obtaining really low orders of error in its esti-

mations. Hence, DSNGD seems to avoid the low convergence ratio in those scenarios in which

SGD does not. Again, our hypothesis is supported, by relating our convergent natural gradient

based algorithms with learning processes with high convergence speed. In addition, DSNGD

answers positively our research main question in this thesis: the natural gradient can be effec-

tively exploited for the function optimization task in ML, although our algorithm can be only

employed for the MLR problem.

Finally, the proof of convergence of DSNGD leads us to unify some convergence theorems

in the literature, by providing a general convergence result. Our convergence result is used to

prove the convergence of DSNGD and it also presents apparently distant convergence theorems

in (Bottou, 1998) and (Sunehag et al., 2009) as particular cases of our main theorem.

This thesis leaves unexplored many research paths. The most tempting ones are probably

concerning algorithm DSNGD. In this thesis, we focus on the theoretical aspects of DSNGD.

We are currently working on a flexible implementation of the algorithm that can be easily set up

for different LEF linked to the conditional distributions P (X | Y), including several commonly

used continuous distributions such as the normal, Poisson and exponential, and also discrete

and mixed distributions attained to naive Bayes conditional independence assumption. For the

continuous case, the constraint issue must be addressed accordingly. Moreover, DSNGD can

potentially be used in high dimensional scenarios due to its low computational complexity. The

benefits of approximating the natural gradient are especially promising in this case since the

parameter space is potentially twisted and using metric information can be crucial for an algo-

rithm’s good performance. In preliminary empirical studies, we are observing how it increas-

ingly outperforms SGD as the manifold dimension grows larger. We plan to compare DSNGD

against the most effective algorithms nowadays, in order to expose its weaknesses and reveal its

strengths.

Research to expand DSNGD to nonlinear exponential families remains open. The algo-

rithm strongly relies on two dual parametrizations, which may complicate the task. Moreover,

102

the approximation of the natural gradient performed by DSNGD is accurate only when both

sequences Zt and ζ∗t refer to the same point. It remains open whether this requirement can be

appropriately fulfilled in other problems.

For the more theoretical part, in the future we plan to study the convergence of continuous

and mixed DSNGD, that is when X is continuous, and in cases where X = (Xd,Xc) is divided

into a discrete and a continuous part.

More questions appear at the end of our research. Our main convergence theorem can lead

to defining new natural gradient based algorithms for different ML optimization problems out of

MLR. This means that maybe fast convergence speed can be obtained by natural gradient based

algorithms for more optimization problems. However, this thesis provides no clue whether nat-

ural gradient can be computed fast in other manifolds or problems outside of the MLR problem.

The theory developed in this thesis related to our main convergence theorem shows some

similarities with the theory of Lyapunov functions and convergence (as in (Bottou, 1998)). In

future work, we also want to figure out exactly what are the differences and similarities between

these two theories. Besides, Lyapunov’s theory may answer what conditions of a stochastic

process characterize the almost sure convergence of the process.

103

104

A Appendix: Natural gradient

A.1 Proof of theorem 2.3.1

Proof. Find the steepest vector ṽ of TpM , that maximizes;

∇f(p)T · v

‖v‖Gp
, v ∈ TpM(A.1)

where ‖ · ‖Gp is the norm function at TpM according to the metric Gp. which can be

rewritten as;

∇f(p)T · v
(< v, v >Gp)

1
2

v ∈ TpM(A.2)

where <,>Gp is the scalar product of vectors at TpM considering the metric. Recall that G

and G−1 are in particular symmetric invertible matrices. Furthermore, G−1 can be seen as an

automorphism in the vector space TpM . So equivalently, find the steepest vector ũ of TpM ,

that maximizes;

(A.3)
∇f(p)TG−1u

(< G−1u,G−1u >Gp)
1
2

and recover the solution to the original problem by doing ṽ = G−1ũ. The previous equation

equals to

(A.4)
∇f(p)TG−1u

((G−1u)TG(G−1u))
1
2

=
∇f(p)TG−1u

(uT (G−1)Tu)
1
2

Recall that G−1 is symmetric and (G−1)T = G−1. So ũ maximizes

(A.5)
∇f(p)TG−1u

(uTG−1u)
1
2

=< ∇f(p),
u

‖u‖G−1
p

>G−1
p

105

By definition of inner product, the solution is ũ = λ∇f(p) with λ ∈ R, which finally implies

that ṽ = G−1ũ = λG−1∇f(p) as wanted.

106

B Appendix: Dual stochastic natural

gradient descent

B.1 Proof of Proposition 5.1.1

Proof. Prove first that if the logg-odds ratio of P (Y | X) is an affine function of X then the

joint distribution P (Y,X) belongs to LEF.

According to theorem 2 in Banerjee (2007), assume that P (X | Y = i) belongs to the same

LEF for all i ∈ Y . Also, since Y is discrete and finite, P (Y) is a categorical distribution and

hence, it belongs to LEF. This means that there exist parameters α ∈ Rs−1 and θi ∈ Rt for all

i ∈ Y such that

Pα(Y = i) =
expS(i)ᵀα∑
y expS(y)ᵀα

Pθi(x | Y = i) =
expT (x)ᵀθi∫
x expT (x)ᵀθi

(B.1)

where S and T are sufficient statistics of Y and X respectively. If θ is the matrix having θi as

i-th row, name η = (α, θ) and write

Pη(Y = i, x) =Pα(Y = i)Pθi(x | Y = i)

=
expS(i)ᵀα∑
y expS(y)ᵀα

expT (x)ᵀθi∫
x expT (x)ᵀθi

=
expS(i)ᵀα+ T (x)ᵀθi∑

y expS(y)ᵀα
∫
x expT (x)ᵀθi

(B.2)

To prove the result, it is enough to find a change of variables from η = (α, θ) to η = (α, β)

satisfying Pη(x, y) = Pη(x, y) where

(B.3) Pη(Y = i, x) =
expS(i)ᵀα+ T (x)ᵀβi∫

x

∑
y expS(y)ᵀα+ T (x)ᵀβy

107

since η is the natural parametrization of a LEF.

In particular, the change of variables has to satisfy that Pη(x | Y = i) = Pη(x | Y = i) and

Pη(y) = Pη(y). Start with the conditional probability and observe that

Pη(x | Y = i) =
Pη(Y = i, x)∫
x Pη(Y = i, x)

=
expS(i)ᵀα+ T (x)ᵀβi∫
x expS(i)ᵀα+ T (x)ᵀβi

=
expT (x)ᵀβi∫
x expT (x)ᵀβi

(B.4)

Last equation matches exactly with Equation B.1 by just setting β = θ. To complete the

change of variables continue by matching Pη(y) = Pη(y).

Pη(Y = i) =

∫
x expS(i)ᵀα+ T (x)ᵀβi∑
j

∫
x expS(j)ᵀα+ T (x)ᵀβj

=
exp (S(i)ᵀα)

∫
x expT (x)ᵀβi∑

j exp (S(j)ᵀα)
∫
x expT (x)ᵀβj

=
expS(i)ᵀα+ logAi∑
j expS(j)ᵀα+ logAj

(B.5)

where Ai =
∫
x expT (x)ᵀβi. Last equation must coincide with Equation B.1. That is

Pη(Y = i) = Pη(Y = i) ⇐⇒ expS(i)ᵀα+ logAi∑
j expS(j)ᵀα+ logAj

=
expS(i)ᵀα∑
y expS(y)ᵀα

(B.6)

To simplify, assume S is canonical. That is S(i) = ei is the i-th canonical vector for all i 6= s

and S(s) = 0 ∈ Rs−1. Note that it is enough to prove that there exists a µ ∈ R such that

S(i)ᵀα+ logAi − µ = S(i)ᵀα, ∀i ∈ Y(B.7)

because as a consequence, Equation B.6 clearly holds. In our case, it is S(i)ᵀα = αi when

i 6= s and S(i)ᵀα = 0, and therefore the solution is

α+

logA1

...

logAs−1

−

1
...

1

 · µ =α

µ = logAs

(B.8)

and the proof is completed when S is canonical.

108

Prove now the result for a general sufficient statistic S. Equation B.7 describes the below

linear equations system

Sα+

logA1

...

logAs−1

−

1
...

1

 · µ = Sα

S(s)ᵀα+ logAs − µ = S(s)ᵀα

(B.9)

where S is the matrix having S(1), ..., S(s− 1) as rows. Since S is a sufficient statistic, assume

without loss of generality that S(1), ..., S(s− 1) are linearly independent vectors, and then S is

invertible. Finally, it is easy to check that the change of variables is

α+ S−1

logA1

...

logAs−1

−

1
...

1

 · µ
 = α

µ =

S(s)ᵀS−1

logA1

...

logAs−1

− logAs

S(s)ᵀS−1

1
...

1

− 1

(B.10)

The converse implication is straightforward. Assuming that P (X ,Y) belongs to LEF, and

therefore assuming Equation B.3, start by expressing the conditional probability distributions

of Y given X in η.

Pη(y | x) =
Pη(x, y)∑
y Pη(x, y)

=
expS(y)ᵀα+ T (x)ᵀβy∑
y expS(y)ᵀα+ T (x)ᵀβy

(B.11)

and compute the log-odds ratio

log
Pη(x | Y = k)

Pη(x | Y = h)
=S(k)ᵀα+ T (x)ᵀβk − (S(h)ᵀα+ T (x)ᵀβh)

=(S(k)− S(h))ᵀα+ T (x)ᵀ(βk − βh)

(B.12)

which is clearly an affine function of features X .

109

B.2 Proof of Proposition 5.1.2

Proof. First prove that we can assume that S(s) = 0: observe that statistics S2 = S−S(s) and

S are equivalent in Equation 5.3 (it also holds in Equation 5.1);

Pη(y | x) =
expS(s)ᵀ · α
expS(s)ᵀ · α

Pη(y | x)

=
exp ((S(y)− S(s))ᵀα+ T (x)ᵀβy)∑
y exp ((S(y)− S(s))ᵀα+ T (x)ᵀβy)

=
exp (S2(y)ᵀα+ T (x)ᵀβy)∑
y exp (S2(y)ᵀα+ T (x)ᵀβy)

.

(B.13)

In fact, all statistics are equivalent under translation. Observe that for this new statistic, it is

S2(s) = 0 ∈ Rs−1. So we can always directly assume that S(s) = 0.

Prove now that if S is a statistic such that S(s) = 0, then S can be converted into a canonical

statistic with a linear transformation. Let S be the matrix of dimension s− 1 having S(i) as i-th

row for 1 ≤ i < s. Assuming that S is minimal and sufficient where S(s) = 0 implies that S

is not singular. Hence we can apply the linear transformations S2 = S−1 · S and α2 = Sᵀ · α

whereby construction, S2 is a canonical statistic because:

S2(i) =S−1 · S = δi=j for 1 ≤ i < s

S2(s) =S−1 · 0 = 0 .
(B.14)

Observe now that

S(y)ᵀ · α =S(y)ᵀ · S−ᵀ · Sᵀ · α

=S2(y)ᵀ · α2,
(B.15)

Therefore, Equations 5.1 and 5.3 yield the same using S2 and α2 instead.

B.3 Proof of Proposition 5.2.1

Proof. First, claim that

(B.16) ∇l(η, x, y) = ∇h(η, x) · (qY(x, Pη)− es(y))

110

Indeed,

∇ logPη(y | x) =∇ logPη(x, y)−∇ log
∑
y

Pη(x, y)

=∇ logPη(x, y)−
∑

y∇Pη(x, y)∑
y Pη(x, y)

=∇ logPη(x, y)−
∑

y Pη(x, y)∇ logPη(x, y)∑
y Pη(x, y)

=∇ logPη(x, y)−
∑
y

Pη(y | x)∇ logPη(x, y)

=∇h(η, x, y)− EY|x[∇h(η, x, y)]

(B.17)

where h(η, x, y) = logPη(x, y). Observe we can rewrite Equation B.17 as;

(B.18) ∇ logPη(y | x) = −∇h(η, x) · (q(x, η)− es(i))

where h(η, x) = (h(1, x, η), ..., h(s, x, η)) implying the claim. From Equation B.16 observe

that

(B.19) ∇̃l(η, x, y) = ∇̃h(η, x) · (qY(x, Pη)− es(y))

Finally, since the conditional log-loss is defined in a DFM, then use the previous equation and

theorem 2.3.3 to finish the proof.

B.4 Proof of Proposition 5.4.1

Proof. To simplify, break∇η∗ = (∇α∗ ,∇β∗1 , ...,∇β∗s) and then it’s clear that

∇h(η, x∗) =

∇α∗h(η, x∗)

∇β∗1h(η, x∗)
...

∇β∗sh(η, x∗)

(B.20)

Start with∇α∗h(η, x∗) expression. Observe that i-th column of∇α∗h(η, x∗) is

∇α∗ logPη∗(Y = i, x) =∇α∗ logPα∗(Y = i) +∇α∗ logPα∗(x | Y = i)

=∇α∗ logPα∗(Y = i) + dα∗θi∇θi logPθi(x | Y = i)
(B.21)

111

where in the last step the chain rule is applied and dα∗θi stands for the Jacobian of θi with

respect to α∗.

Assume the canonical parametrization is used, then according to Equation 5.6 write

(B.22) α∗ =

Pη∗(Y = 1)

...

Pη∗(Y = s− 1)

From equations B.22 and 5.7 obtain

∇α∗ logPα∗(Y = i) =
1

Pα∗(Y = i)

 es−1(i) i 6= s

(−1) i = s

dα∗θi =
−1

Pα∗(Y = i)

 es−1(i) · θᵀi i 6= s

(−1) · θᵀi i = s

(B.23)

where es−1(i) is the i-th canonical s− 1 dimensional vector and 1 =

1
...

1

. From here deduce,

∇α∗h(η, x∗) =K(s−1)×s · diag(d(x, 1, ζ∗), ..., d(x, s, ζ∗))

d(x, y, ζ∗) =
1− θᵀy∇θy logP (x | y)

Pζ∗(y)

(B.24)

The part∇β∗kh(η, x∗) follows the same steps. Observe that i-th column of∇β∗yh(η, x∗) is

∇β∗y logPη∗(Y = i, x) =∇β∗y logPβ∗y (x | Y)

=dβ∗yθi∇θi logPθi(x | Y = i)

=

0 y 6= i

∇θi logPθi (x|Y=i)

Pζ∗ (y) y = i

(B.25)

and therefore the claim is proved.

112

B.5 Proof of Proposition 5.4.2

Proof. Let A be the cost of computing ∇θk logPθk(x | y). Prove first the next claim: the

number of operations required to compute∇ζ∗h(x, ζ∗) is

(B.26) s · (A+ 3t+ 2)− 1

and hence O(s · (A+ t)).

Indeed, use Proposition 5.4.1 to prove the claim. Start with d(x, 1, ζ∗) computation cost.

Terms ∇θk logPθk(x | y) for every y ∈ Y need s · A operations. The cost of computing

Pζ∗(y) for every y ∈ Y is s − 1 according to Equation 5.6 (only the term Pζ∗(s) requires

operations). Obtain term d(x, y, ζ∗) after 2t + 1 operations (2t − 1 for the scalar product of

vectors, 1 for the subtraction in the numerator and 1 last operation for the division). Since this

needs to be done for every y ∈ Y then d(x, 1, ζ∗), ..., d(x, s, ζ∗) is known with s · (2t + 1)

operations. Continue now with the costs of ∇α∗h(x, ζ∗). The term ∇α∗h(x, ζ∗) is obtained

with the product of matrices Ks (which is almost the identity matrix) and a diagonal matrix,

which does not require any operation (it is just a transformation). Finally∇β∗kh(x, ζ∗) demands

for t divisions for every y ∈ Y and therefore for s · t operations. The total amount of operations

needed to compute∇ζ∗h(x, ζ∗) is then

C(∇ζ∗h(x, ζ∗)) = sA+ (s− 1) + s(2t+ 1) + st

= s(A+ 3t+ 2)− 1
,(B.27)

and hence, the claim is proved.

To the previous analysis, add the costs represented by Equation 5.9. That is, analyze the

costs of computing qY(x, Pη) and then the products shown in that equation.

The vector qY(x, Pη) consist on computing Pη(y | x) for every y ∈ Y . Using Equation 5.3,

qY(x, Pη) needs 2t + 1 operations for the scalar products T (x)ᵀβy, 1 subtraction in S(y)ᵀα −

T (x)ᵀβy (recall that S statistic is canonical), then 1 exponentiation and finally 1 division. This

is done for every y ∈ Y . The denominator is the same for every y so it can be computed just

once with s− 1 sums. The total is

(B.28) 2ts+ 5s− 1

113

operations.

Finally, the operations described in Equation 5.9 are 1 for subtraction (qY(x, Pη)− es(y)),

s − 1 for the product ∇α∗h(x, ζ∗) · ∇(qY(x, Pη) − es(y)) and t operations for ∇β∗yh(x, ζ∗) ·

∇(qY(x, Pη) − es(y)) product, where this last product needs to be done for every y ∈ Y . The

total operations for this block it is then

(B.29) s+ s · t

To conclude the proof, the total operations needed is

(B.30) s · (A+ 6t+ 8)− 2

and the complexity order is O(s · (A+ t)).

B.6 Proof of Proposition 5.5.1

Proof. Compute ∇θy logPθy(x|y) and proposition 5.4.1 finishes the proof. Parameters θy =

(θy,1, ..., θy,m−1) are the expectation parameters of the probability distribution Pθy(x|y), which

belong to LEF.

Recall that the canonical statistics S and T are taken and by Equation 5.7 deduce

Pθy(x|y) =

θx,y x 6= m

1−
∑

j θy,j x = m

(B.31)

which clearly implies

∇θy logPθy(x|y) =
1

Pθy(x|y)

em−1(x) x 6= m

-1m−1 x = m

(B.32)

Finally, observe

(B.33) d(x, y, η∗) =
1− θᵀy∇θy logPθy(x | y)

Pη∗(y)
=

0 x 6= m

1
Pθy (x|y)Pη∗ (y) x = m

Substitute the computations in proposition 5.4.1 to finish the proof.

114

B.7 Proof of Theorem 5.6.1

Proof. The proof uses the Robbins-Siegmund theorem as a key tool. The steps taken are closely

inspired by those taken in the proof of Theorem 3.2 in Sunehag et al. (2009).

Compute Taylor’ second order approximation of f(Zt+1), and after condition C.2 apply

Taylor’s inequality

(B.34) f(Zt+1) ≤ f(Zt)− γt∇f(Zt)
ᵀ · Yt + γ2

tK‖Xt‖2

Therefore, applying the expectation conditioned to information at time t obtain

(B.35) Et[f(Zt+1)] ≤ f(Zt)− γt∇f(Zt)
ᵀEt[Xt] + γ2

tKEt‖Xt‖2

Use bound of C.4 to the third term of the right-hand side

(B.36) Et[f(Zt+1)] ≤ f(Zt)− γt∇f(Zt)
ᵀEt[Xt] + γ2

tK(A+Bf(Zt))

Finally, substitute Ut = f(Zt) and arrange terms to match with Equation 2.50

(B.37) Et[Ut+1] ≤ (1 +Bγ2
tK)Ut − γt∇f(Zt)

ᵀEt[Xt] + γ2
tKA

Note that theorem 2.7.3 conditions are satisfied, since condition C.6 implies
∑

t βt =∑
tBKγ

2 = BK
∑

t γ
2 < ∞ and

∑
t εt =

∑
tKAγ

2 < ∞. Hence, the Robbins-Siegmund

theorem ensures that Ut = f(Zt) converges almost surely to a random variable and

(B.38)
∑
t

ζt =
∑
t

γt∇f(Zt)
TEt[Yt] <∞

Now prove that limt f(Zt) = f(η). If f(Zt) converges to some different random variable,

condition C.3, second condition of C.6 and Equation B.38 lead to a contradiction. Indeed, if

limt f(Zt) = v 6= f(η), use condition C.3 and deduce that for a fixed 0 < δ < v − f(η) there

exists an N large enough and ε > 0 such that

(B.39) ∇f(Zt)
ᵀEt [Xt] ≥ ε

115

for all t > N . Therefore, Equation B.38 becomes

∑
t

γt∇f(Zt)
TEt[Xt] =

N∑
t

γt∇f(Zt)
ᵀEt[Xt] +

∑
t>N

γt∇f(Zt)
ᵀEt[Xt]

≥
N∑
t

γt∇f(Zt)
ᵀEt[Xt] +

∑
t>N

εγt

≥ ε
∑
t>N

γt

(B.40)

Second condition in C.6 applied to the right-hand side of the above equation assures that

(B.41)
∑
t

γt∇f(Zt)
ᵀEt[Xt] =∞ a.s.

which contradicts Equation B.38.

Finally, it is only possible that limt f(Zt) = f(η) almost surely as we wanted to prove.

B.8 Proof of condition C.2 in Theorem 5.6.2

Proof. Compute the hessian of

(B.42) l(η) =
∑
x,y

l(η, x, y)P (x, y) ,

where P is the unknown probability distribution in the probability space (Ω = Y × X ,F , P).

The gradient of l(η, x, y) is

∇αl(η, x, y) = S · (qY(x)− es(y))

∇βy′ l(η, x, y) = (qY(x)y′ − δy=y′) · T (x) ,
(B.43)

where S is the matrix having S(i) as i-th column for i ∈ Y . Therefore, the hessian is

∇2
αl(η, x, y) = S · (diag(qY(x))− qY(x) · qY(x)ᵀ) · Sᵀ

∇βy2∇βy1 l(η, x, y) = ∇βy2 qY(x)y1 · T (x)

= −T (x) · T (x)ᵀqY(x)y1(qY(x)y2 − δy1=y2)

∇α∇βy′ l(η, x, y) = ∇αqY(x)y′ · T (x)

= T (x) · (qY(x)− es(y′)ᵀ · Sᵀ .

(B.44)

116

Observe how all matrices in Equation B.44 have their elements bounded once S and T statistics

are fixed, since ‖qY(x)‖ ≤ 1. Therefore

(B.45) ‖∇2l(η, x, y)‖ ≤ 2Kx,y

for some positive numbers Kx,y. Define K = maxx,yKx,y. then finally

‖∇2
ηl(η)‖ =‖∇2

∑
x,y

l(η, x, y) · P (x, y)‖

=‖
∑
x,y

∇2l(η, x, y) · P (x, y)‖

≤
∑
x,y

‖∇2l(η, x, y)‖ · P (x, y)

≤
∑
x,y

2 ·Kx,y · P (x, y)

≤2 ·K
∑
x,y

P (x, y)

=2 ·K

(B.46)

B.9 Proof of condition C.4 in Theorem 5.6.2

Proof. Observe that for any ε and t large enough there exists Axt such that

‖Xt(ω)‖2 = (qY(xt, PZt(ω))− es(yt))ᵀ · h(xt, ζ
∗
t)ᵀh(xt, ζ

∗
t) · (qY(xt, PZt(ω))− es(yt))

≤ Axt‖qY(xt, PZt(ω))− es(yt)‖2

(B.47)

where

(B.48) Axt ≥ ‖h(xt, ζ
∗
t)ᵀh(xt, ζ

∗
t)‖+ ε

This is because ζt converges and because of theorem 5.5.1. Now

‖qY(xt, PZt(ω))− es(yt)‖2 = 1− 2Pηt(yt | xt) +
∑
y

Pηt(y | xt)2

≤ s+ 1

(B.49)

117

therefore ‖Xt‖2 ≤ Axt(s+ 1) and

Et‖Xt‖2 ≤ Et[Axt(s+ 1)]

≤ A′(s+ 1) = A
(B.50)

where A′ = maxxAx and then condition C.4 holds.

118

C Appendix: Convergence of Stochastic

process

C.1 Proof of Corollary 6.3.1

To prove the corollary, it is enough to prove the generic Proposition C.1.1.

Proposition C.1.1. Let Ut ⊂ Rk be non empty, closed and connected sets where Ut+1 ⊂ Ut for

t ∈ N and let V = ∩tUt. Then V is a nonempty bounded set if, and only if, UT is bounded for

some T ∈ N.

Proof. Prove first that if UT is bounded for some T ∈ N, then V = ∩tUt is a non-empty

bounded set. Clearly, V ⊂ UT and, therefore, V is bounded, possibly empty. Observe that Ut

for all t ≥ T is compact and closed. Then V is not empty, by the Cantor’s intersection theorem.

Conversely, prove now that if V is a nonempty bounded set, then there exists T such that UT

is bounded. Assume V is non-empty bounded set, then there exists r > 0, such that V ⊂ Br(0)

where Br(0) is the ball centered at 0 with radius r. Define

R = B2r(0) ∩Br(0)′

U∗t = Ut ∩R ,
(C.1)

where B2r(0) is the closed ball of radius 2r and center 0 and A′ = Rk \A. The sequence U∗t is

of compact and closed subsets, where U∗t+1 ⊂ U∗t and ∩tU∗t is empty. Therefore, by Cantor’s

intersection theorem, there exists T such that U∗T is empty. Then UT ⊂ R′ = B2r(0)
′∪Br(0)).

Ut is connected andR′ it is not, which implies that either UT ⊂ B2r(0)
′
or UT ⊂ Br(0)). Since

V ⊂ UT and V ⊂ Br(0)), then it must be V ⊂ UT ⊂ Br(0) and hence it is bounded as wanted

to prove.

119

C.2 Bottou’s Resemblance

Proposition 6.6.1 is a direct consequence of Proposition C.2.1, that we state and prove below,

and Proposition 6.4.2.

Proposition C.2.1. Let Z = (X, γ) be a stochastic process and X be a vector field over Rk.

For δ > 0 and T ∈ N, define the vector pair set

(C.2) Vδ,T (X, Z) = {(X(η), v) | η ∈ Rk \Bδ(KX), v ∈ EDSZ(η, T)} .

Then Z resembles to X if, and only if,

(C.3) (∃T ∈ N)(∀δ > 0)(∃ε > 0) Vδ,T (X, Z) is ε-acute .

Proof. By definition, Vδ,T (X, X) is ε-acute if, and only if, every vector pair (u, v) in Vδ,T (X, X)

is ε-acute. By definition, such vector pairs (X(η), v) with v ∈ EDSX(η, T) are ε-acute if, and

only if,

(C.4) (∀η ∈ Rk \Bδ(KX)) X(η)ᵀ · v ≥ ε > 0, v ∈ EDSX(η, T) .

Previous equation holds if, and only if, EDSX(η, T) ⊂ Hε(X)(η), η ∈ Rk \ Bδ(KX) as

wanted to prove.

C.3 Sunehag’s Resemblance

The result that translates Theorem 6.6.1 with resemblance concepts is Proposition 6.6.2, that

we prove below.

Proof. After Proposition C.2.1 and 6.4.3 deduce that Z belongs to the half-space of X if, and

only if, there exists T ∈ N such that for every δ > 0 and every t ≥ T there exist symmetric

positive-definite Ft-measurable random matrices Bt, such that

inf
η∈Rk\Bδ(KX)

t≥T
ω∈Ω,Zt(ω)=η

X(η)ᵀ ·Bt(ω) · X(η) > 0 ,

Bt · X(Zt) = Et[Xt] Zt(ω) /∈ KX .

(C.5)

120

This matches with Equation (6.27). Matrix Bt is correctly and uniquely defined for all

t ≥ T and all ω ∈ Ω, such that Zt(ω) /∈ KX. Define Bt = Id the identity matrix if Z(ω) ∈ KX

and also define

(C.6) Yt := B−1
t ·Xt .

Observe that Bt · Yt = Xt and that Equation (6.26) is then met too finishing the proof.

121

122

Bibliography

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 276:

251–276, 1998.

Shun-ichi Amari. Information geometry and its applications, volume 5416. Springer, 2016.

ISBN 978-4-431-55977-1.

Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. Amer-

ican Mathematical Soc., 2000.

Shun-ichi Amari, Ole E Barndorff-Nielsen, Robert E Kass, Steffen L Lauritzen, and CR Rao.

Differential geometry in statistical inference. Lecture Notes-Monograph Series, 10:i–240,

1987. ISSN 07492170. URL http://www.jstor.org/stable/4355557.

Arindam Banerjee. An Analysis of Logistic Models: Exponential Family Connections and

Online Performance. In Proceedings of the 2007 SIAM International Conference on Data

Mining, Proceedings, pages 204–215. Society for Industrial and Applied Mathematics, April

2007. ISBN 978-0-89871-630-6. doi: 10.1137/1.9781611972771.19. URL https://

epubs.siam.org/doi/abs/10.1137/1.9781611972771.19.

Richard F Bass. Stochastic processes, volume 33. Cambridge University Press, 2011.

Moshe E. Ben-Akiva, Steven R. Lerman, and Steven R. Lerman. Discrete Choice Analysis:

Theory and Application to Travel Demand. MIT Press, 1985. ISBN 978-0-262-02217-0.

Google-Books-ID: oLC6ZYPs9UoC.

123

http://www.jstor.org/stable/4355557
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.19
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.19

CJ Biesheuvel, Yvonne Vergouwe, EW Steyerberg, DE Grobbee, and KGM Moons. Polyto-

mous logistic regression analysis could be applied more often in diagnostic research. Journal

of clinical epidemiology, 61(2):125–134, 2008.

Patrick Billingsley. Probability and measure. (Wiley series in probability and mathematical

statistics). Wiley, New York, 2nd edition, 1986. ISBN 0471804789.

Léon Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online

Learning and Neural Networks. Cambridge University Press, Cambridge, UK, 1998. URL

http://leon.bottou.org/papers/bottou-98x. revised, oct 2012.

Leon Bottou. Stochastic Gradient Descent Tricks, volume 7700 of Lecture Notes in Computer

Science (LNCS), pages 430–445. Springer, neural networks, tricks of the trade, reloaded

edition, January 2012.

Shelley B Bull, Juan Pablo Lewinger, and Sophia SF Lee. Confidence intervals for multinomial

logistic regression in sparse data. Statistics in Medicine, 26(4):903–918, 2007.

Ovidiu Calin and Constantin Udrişte. Geometric modeling in probability and statistics, volume

121. Springer, 2014.

Augustin Cauchy. Méthode générale pour la résolution des systemes d’équations simultanées.

Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

Nikolai Nikolaevich Čencov. Statistical decision rules and optimal inference, volume 53 of

Translations of Mathematical Monographs. American Mathematical Society, Providence,

R.I., 1982. ISBN 0-8218-4502-0. Translation from the Russian edited by Lev J. Leifman.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommen-

dations. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16,

page 191–198, New York, NY, USA, 2016. Association for Computing Machinery. ISBN

9781450340359. doi: 10.1145/2959100.2959190. URL https://doi.org/10.1145/

2959100.2959190.

Michael J Daniels and Constantine Gatsonis. Hierarchical polytomous regression models with

applications to health services research. Statistics in Medicine, 16(20):2311–2325, 1997.

124

http://leon.bottou.org/papers/bottou-98x
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/2959100.2959190

Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua

Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex

optimization, 2014.

Manfredo Perdigão do Carmo. Riemannian geometry. Mathematics: theory & applications.

Birkhäuser, Boston Basel Berlin, corrected at 14th printing$h2013 edition, 2013. ISBN 978-

0-8176-3490-2 978-1-4757-2201-7.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159, 07 2011. ISSN 1532-

4435.

R. M. Dudley. Real Analysis and Probability. Cambridge Studies in Advanced Mathematics.

Cambridge University Press, 2 edition, 2002. doi: 10.1017/CBO9780511755347.

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of

multilayer perceptrons. Neural Networks, 13(3):317–327, 2000. ISSN 0893-6080. doi: https:

//doi.org/10.1016/S0893-6080(00)00009-5. URL https://www.sciencedirect.

com/science/article/pii/S0893608000000095.

Philip E Gill, Walter Murray, and Margaret H Wright. Practical optimization. SIAM, 2019.

Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A Brief Introduction to Manifold Op-

timization. Journal of the Operations Research Society of China, 8(2):199–248, June 2020.

ISSN 2194-6698. doi: 10.1007/s40305-020-00295-9. URL https://doi.org/10.

1007/s40305-020-00295-9.

D. P. Kingma and L. J. Ba. Adam: A Method for Stochastic Optimiza-

tion. In Proceedings of the 3rd International Conference on Learning Represen-

tations (ICLR), 2015. URL https://dare.uva.nl/search?identifier=

a20791d3-1aff-464a-8544-268383c33a75.

Shōshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, volume 1.

Interscience Publishers, 1963. ISBN 9780470496473.

125

https://www.sciencedirect.com/science/article/pii/S0893608000000095
https://www.sciencedirect.com/science/article/pii/S0893608000000095
https://doi.org/10.1007/s40305-020-00295-9
https://doi.org/10.1007/s40305-020-00295-9
https://dare.uva.nl/search?identifier=a20791d3-1aff-464a-8544-268383c33a75
https://dare.uva.nl/search?identifier=a20791d3-1aff-464a-8544-268383c33a75

Bernard Osgood Koopman. On distributions admitting a sufficient statistic. Transactions of

the American Mathematical Society, 39(3):399–409, 1936. ISSN 00029947. URL http:

//www.jstor.org/stable/1989758.

John M Lee. Introduction to Riemannian manifolds. Springer, 2018.

Erich L Lehmann and George Casella. Theory of point estimation. Springer Science & Business

Media, 2006.

Jimmie Leppink. Multicategory nominal choices. In The Art of Modelling the Learning Process,

pages 103–110. Springer, 2020.

Jun Li, José M Bioucas-Dias, and Antonio Plaza. Spectral–spatial hyperspectral image seg-

mentation using subspace multinomial logistic regression and markov random fields. IEEE

Transactions on Geoscience and Remote Sensing, 50(3):809–823, 2012. doi: 10.1109/TGRS.

2011.2162649.

Wu Lin, M. E. Khan, and Mark W. Schmidt. Fast and simple natural-gradient variational infer-

ence with mixture of exponential-family approximations. In ICML, 2019.

Noboru Murata. A statistical study of on-line learning. Online Learning and Neural Networks.

Cambridge University Press, Cambridge, UK, pages 63–92, 1998.

Michael K Murray and John W Rice. Differential geometry and statistics, volume 48. CRC

Press, 1993.

A Nemirovskiı̆ and D. Yudin. Problem Complexity and Method Efficiency in Optimization. A

Wiley-Interscience publication. Wiley, 1983. ISBN 9780471103455.

Frank Nielsen. An elementary introduction to information geometry. arXiv:1808.08271 [cs,

math, stat], August 2018. URL http://arxiv.org/abs/1808.08271. arXiv:

1808.08271.

C. R. Rao. Information and accuracy attainable in the estimation of statistical parameters. Bull

Calcutta. Math. Soc., 37:81–91, 1945.

126

http://www.jstor.org/stable/1989758
http://www.jstor.org/stable/1989758
http://arxiv.org/abs/1808.08271

G. Raskutti and S. Mukherjee. The Information Geometry of Mirror Descent. IEEE Trans-

actions on Information Theory, 61:1451–1457, March 2015. ISSN 0018-9448. doi:

10.1109/TIT.2015.2388583.

H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales

and some applications. In Jagdish S. Rustagi, editor, Optimizing Methods in Statistics, pages

233 – 257. Academic Press, 1971. ISBN 978-0-12-604550-5.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of

Mathematical Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL

https://doi.org/10.1214/aoms/1177729586.

Sheldon M Ross. Stochastic Processes, volume 2 of Wiley series in probability and mathemati-

cal statistics. Wiley, 1996. ISBN 9780471120629.

Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis, volume 32. Macmillan New

York, 1988.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,

abs/1609.04747, 2016. URL http://arxiv.org/abs/1609.04747.

Sirpa Saarinen, Randall Bramley, and George Cybenko. Ill-conditioning in neural network

training problems. SIAM Journal on Scientific Computing, 14(3):693–714, 1993.

Borja Sánchez-López and Jesus Cerquides. Convergent stochastic almost natural gradient de-

scent. Artificial Intelligence Research and Development- Proceedings of the 22nd Interna-

tional Conference of the Catalan Association for Artificial Intelligence, 319:54–63, 2019.

Peter Norvig Stuart Russell. Artificial Intelligence: A Modern Approach. Prentice Hall, 1st

edition, 1995. ISBN 0131038052, 9780131038059.

Ke Sun and Frank Nielsen. Relative natural gradient for learning large complex models. arXiv

preprint arXiv:1606.06069, 2016.

Peter Sunehag, Jochen Trumpf, S. V. N. Vishwanathan, and Nicol Schraudolph. Variable Metric

Stochastic Approximation Theory. In Artificial Intelligence and Statistics, pages 560–566,

04 2009. URL http://proceedings.mlr.press/v5/sunehag09a.html.

127

https://doi.org/10.1214/aoms/1177729586
http://arxiv.org/abs/1609.04747
http://proceedings.mlr.press/v5/sunehag09a.html

Borja Sánchez-López. Multinomial logistic regression and stochastic natural gradient de-

scent. Master’s thesis, Universitat de Barcelona, 2018. URL http://hdl.handle.

net/2445/129823.

Borja Sánchez-López and Jesus Cerquides. Dual stochastic natural gradient descent and con-

vergence of interior half-space gradient approximations, 2020. URL https://arxiv.

org/abs/2001.06744.

Borja Sánchez-López and Jesus Cerquides. On the convergence of stochastic process conver-

gence proofs. Mathematics, 9(13), 2021. ISSN 2227-7390. doi: 10.3390/math9131470.

URL https://www.mdpi.com/2227-7390/9/13/1470.

Borja Sánchez-López and Jesus Cerquides. die-problem, 9 2022a. URL https://github.

com/Kissyfur/die-problem.

Borja Sánchez-López and Jesus Cerquides. dsngd, 9 2022b. URL https://github.com/

Kissyfur/dsngd.

Roberto Tadei, Guido Perboli, and Daniele Manerba. A Recent Approach to Derive the Multino-

mial Logit Model for Choice Probability. In Patrizia Daniele and Laura Scrimali, editors, New

Trends in Emerging Complex Real Life Problems: ODS, Taormina, Italy, September 10–13,

2018, AIRO Springer Series, pages 473–481. Springer International Publishing, Cham, 2018.

ISBN 978-3-030-00473-6.

Terence Tao. An Introduction to Measure Theory. Graduate Studies in Mathematics. American

Mathematical Society, 2011.

Philip S. Thomas. Genga: A generalization of natural gradient ascent with positive and negative

convergence results. 31st International Conference on Machine Learning, ICML 2014, 5:

3533–3541, 01 2014.

Vladimir N Vapnik. Principles of risk minimization for learning theory. In Proceedings of the

4th International Conference on Neural Information Processing Systems, NIPS’91, pages

831–838, San Francisco, CA, USA, December 1991. Morgan Kaufmann Publishers Inc.

ISBN 978-1-55860-222-9.

128

http://hdl.handle.net/2445/129823
http://hdl.handle.net/2445/129823
https://arxiv.org/abs/2001.06744
https://arxiv.org/abs/2001.06744
https://www.mdpi.com/2227-7390/9/13/1470
https://github.com/Kissyfur/die-problem
https://github.com/Kissyfur/die-problem
https://github.com/Kissyfur/dsngd
https://github.com/Kissyfur/dsngd

J. K. Wani. On the linear exponential family. Mathematical Proceedings of the Cambridge

Philosophical Society, 64(2):481–483, 1968. doi: 10.1017/S0305004100043097.

Nayyar A Zaidi, Mark J Carman, Jesús Cerquides, and Geoffrey I Webb. Naive-bayes inspired

effective pre-conditioner for speeding-up logistic regression. In 2014 IEEE International

Conference on Data Mining, pages 1097–1102. IEEE, 2014.

Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. arXiv:1212.5701 [cs],

12 2012. URL http://arxiv.org/abs/1212.5701. arXiv: 1212.5701.

129

http://arxiv.org/abs/1212.5701

130

Acronyms

AI Artificial Intelligence. 1, 2

CCM Conjugate Connection Manifold. 26

CSNGD Convergent Stochastic Natural Gradient Descent. xv, 8–10, 55–57, 59–63, 68, 74, 81,

101

DFM Dually Flat Manifold. viii, 6–10, 26–30, 33, 63–66, 111

DSNGD Dual Stochastic Natural Gradient Descent. xv, 7–10, 62, 64, 67–69, 71–75, 78–81,

83, 99, 101–103

FIM Fisher Information Metric. vii, 5, 11, 24, 25, 29, 44, 63, 65, 67

GD Gradient Descent. 3, 8, 10, 17–19, 37, 38, 48, 49

KL Kullback-Leibler divergence. xv, 29, 36, 44, 45, 50–52, 60, 61, 80

LEF Linear Exponential Family. 29, 63–65, 67, 72, 102, 107–109, 114

MEGD Maximum Entropy Gradient Descent. xv, 48–52

ML Machine Learning. vii, viii, xv, 1–3, 5, 6, 8, 11, 13, 17, 21, 30, 31, 33, 34, 39, 61, 63, 84,

101–103

MLE Maximum Likelihood Estimator. 59–61, 101

131

MLR Multinomial Logistic Regression. viii, 11, 39, 40, 47, 63, 64, 67, 101–103

MOD Manifold Optimized Descent. xv, 8–10, 43, 46–53, 55, 59, 101

NGD Natural Gradient Descent. 6, 8, 10, 31, 37, 38, 43, 44, 46–49

RC Riemman-Christoffel curvature. 26

SGD Stocastic Gradient Descent. xv, 8, 33, 37, 38, 41, 44–46, 49, 50, 52, 53, 56, 59–63, 68,

72, 78–80, 84, 88, 90, 101, 102

SMEGD Stochastic Maximum Entropy Gradient Descent. 49

SMOD Stochastic Manifold Optimized Descent. 47

SNGD Stochastic Natural Gradient Descent. xv, 8, 33, 38, 43–46, 49–52, 55, 57, 60, 61, 63,

79, 101

132

Index

1-increments, 16

ε-acute vector pair, 90

ε-acute vector pair set, 91

ε-half-space of a vector, 92

ε-half-space of a vector field, 93

σ-algebra, 12

σ-algebra generated by a class A, 15

Acute vector pair, 90

Adagrad, 20

Affine connection, 25

Algorithm, 12

Almost sure convergence, 14

Bregman Divergence, 27

Canonical Statistic, 65

Christoffel symbols, 26

Conditional expectation given a σ-algebra, 16

Conjugate connection manifold, 26

Conjugate connections, 26

Convergent stochastic natural gradient de-

scent, 56

Die problem, 44

Differentiable manifold, 21

Director process, 17

Discrete DSNGD, 73

Discrete stochastic process, 13

Dual stochastic natural gradient descent, 68

Dually flat manifold, 26

Empirical risk/loss, 34

Entropy, 45

Essential expected directions set of Z at η, 89

Expected direction of Z at ω and time t, 87

Expected directions set of Z at η after time T ,

88

Expected error function, 2

Expected risk/loss function, 34

Filtration, 14

Filtration generated by a stochastic process, 15

Fisher efficient, 43

Fisher information metric, 24

Fisher-Rao metric, 24

Flat Manifold, 26

Gradient, 22

Gradient descent, 18

Half-space of a vector, 92

133

Half-space of a vector field, 93

Kullback-Leibler divergence, 29, 36

Learning rate, 16

Learning rate constraint, 35

Legendre-Fenchel transform, 27

Lie bracket, 26

Line search algorithm, 17

Linear exponential family, 29

Locally and linearly bounded, 85

Loss function, 2, 34

Manifold, 21

Manifold optimized descent, 46

Maximum entropy gradient descent, 48

Measurable function, 13

Measurable space, 12

Mirror descent, 32

Natural filtration, 15

Natural gradient, 23

Natural Gradient Descent, 31

Natural gradient descent, 31

Parametrization, 21

Product probability space, 34

Random variable, 13

Resemblance, 93

Riemann-Christoffel, 26

Riemannian manifold, 23

Smooth manifold, 21

Statistical manifold, 24

Stochastic gradient descent, 37

Stochastic manifold optimized descent, 47

Stochastic maximum entropy gradient descent,

49

Stochastic natural gradient descent, 38

Stochastic optimization, 33

Stochastic process adapted to a filtration, 15

Stopping condition, 18

Tangent space, 22

Vector field, 92

134

	Acknowledgments
	Abstract
	List of Figures
	List of Algorithms
	Introduction
	Function optimization
	Background
	Research questions
	Contributions
	Thesis structure

	Preliminary
	A brief introduction to the stochastic process
	Stochastic process definition
	Almost sure convergence, filtration and conditional expectation
	The director process

	Optimization methods on Euclidean space
	Gradient Descent
	Adagrad

	A brief introduction to Riemannian Manifolds
	Smooth Manifold
	Riemannian Manifold
	Conjugate connection Manifold
	Dually flat Manifold
	Example: Exponential Family

	Optimization methods over a Riemannian manifold
	Natural gradient descent
	Mirror descent

	Stochastic optimization
	The stochastic optimization problem
	Stochastic optimization methods
	Maximum likelihood problem
	Stochastic gradient descent
	Stochastic natural gradient descent

	Multinomial logistic regression
	Convergence theorems

	Manifold optimized descent
	Preliminary study on natural gradient descent
	Computational complexity symptoms
	Divergence symptoms in a toy example

	Manifold optimized descent
	Computational complexity
	Maximum entropy gradient descent

	Experiments
	MEGD solving the die problem
	MOD solving the die problem

	Comments

	Convergent stochastic natural gradient descent
	Convergent stochastic natural gradient descent
	CSNGD convergence proof

	Experiments
	Comments

	Dual stochastic natural gradient descent
	MLR generative model. The joint distribution
	Dually flat parametrization of the joint distribution

	Fast natural gradient of the log-loss
	Dual stochastic natural gradient descent
	Computational complexity of Natural Gradient
	Computational complexity of discrete DSNGD
	Example
	Discrete DSNGD linear computational complexity proof

	Discrete DSNGD and convergence
	Generalizing Sunehag et. al. variable metric stochastic approximation theory
	Discrete DSNGD convergence proof

	Experiments
	Comments

	Convergence of stochastic processes that resemble to conservative vector fields
	Director process and learning rate bound constraints
	Locally bounded stochastic process

	Main result
	Expected direction set
	Essential expected direction set

	Vector field half-spaces and stochastic processes. Resemblance.
	The half-space of a vector field
	Resemblance between a stochastic process and a vector field

	Proof of main result
	Resemblance to conservative vector fields and convergence

	Reinterpretation of convergence theorems
	Reinterpretation of Bottou's convergence theorem
	Reinterpretation of Sunehag's convergence theorem

	Comments

	Conclusion
	Appendix: Natural gradient
	Proof of theorem 2.3.1

	Appendix: Dual stochastic natural gradient descent
	Proof of Proposition 5.1.1
	Proof of Proposition 5.1.2
	Proof of Proposition 5.2.1
	Proof of Proposition 5.4.1
	Proof of Proposition 5.4.2
	Proof of Proposition 5.5.1
	Proof of Theorem 5.6.1
	Proof of condition C.2 in Theorem 5.6.2
	Proof of condition C.4 in Theorem 5.6.2

	Appendix: Convergence of Stochastic process
	Proof of Corollary 6.3.1
	Bottou's Resemblance
	Sunehag's Resemblance

	Bibliography
	Acronyms
	Index

