
Theoretical foundations (under a logical and

computational point of view) of Fuzzy Description

Logics and their application as ontology

representation languages

Marco Cerami
PhD Thesis

Advisors: F. Esteva, L. Godo, F. Bou
Artificial Intelligence Research Institute

Spanish National Research Council (IIIA-CSIC)
Campus UAB, s/n

Bellaterra, 08193, Spain
cerami@iiia.csic.es

July 18, 2012

Contents

Foreword xi

Abstract xiii

1 Introduction 1

2 Preliminaries 3
2.1 Mathematical Fuzzy Logic . 3

2.1.1 Propositional logic . 5
2.1.2 Modal logic . 16
2.1.3 First order predicate logic 18

2.2 (Classical) Description Logic . 24
2.2.1 A little bit of history . 24
2.2.2 Syntax . 29
2.2.3 Semantics . 30
2.2.4 Reasoning . 31

3 Fuzzy Description Logic 35
3.1 Syntax . 35

3.1.1 Concepts . 35
3.1.2 Knowledge bases . 38

3.2 Semantics . 39
3.2.1 Witnessed, quasi-witnessed and strongly witnessed inter-

pretations . 40
3.3 The Hierarchy of basic FDL languages 42
3.4 Reasoning tasks . 42
3.5 Reductions . 44

3.5.1 Reductions between axioms 44
3.5.2 Reductions between reasoning tasks 48

3.6 Relation to first order predicate logic 51
3.6.1 Concepts . 51
3.6.2 Fuzzy axioms . 55
3.6.3 Reasoning tasks . 57

3.7 Relation to multi-modal logic . 57

iii

iv Contents

3.7.1 Concepts . 58
3.7.2 Fuzzy axioms . 61
3.7.3 Reasoning tasks . 63

4 Decidability 65
4.1 Witnessed satisfiability and Lukasiewicz logic 65

4.1.1 Quasi-witnessed satisfiability and product logic 67
4.2 Concept subsumption . 79
4.3 Knowledge base consistency in Lukasiewicz logic 80

4.3.1 Undecidability of general KB satisfiability 82
4.3.2 Knowledge Base consistency w.r.t. finite models 87

5 Computational complexity 91
5.1 Concept satisfiability . 91

5.1.1 The infinite-valued case 91
5.1.2 The case of Ln . 95
5.1.3 The general case of finite-valued FDLs 103

6 Related works 115
6.1 Historical remarks . 115
6.2 Other reasoning tasks . 121

6.2.1 Subsumption . 121
6.2.2 Knowledge base consistency 122
6.2.3 Concept satisfiability w.r.t. knowledge bases 122
6.2.4 Entailment . 123
6.2.5 Best entailment degree . 123
6.2.6 Best satisfiability degree 124

A 125

Chapter 1

Introduction

1

Chapter 2

Preliminaries

This work is the result of applying results in Mathematical Fuzzy Logic in order
to generalize the framework of Classical Description Logics to the fuzzy and
many-valued cases. Even though these two formalisms are, strictly speaking,
not part of the central subject of this work, nevertheless we need to define them,
in order to develop the rest of the work and improve its understandability. In
the present chapter we present these two formalisms and provide the results that
we need for the overall development of the main matter of this work. On the one
hand, in Section 2.1 we provide an overview on Mathematical Fuzzy Logic. On
the other hand, in Section 2.2 we provide an overview on Classical Description
Logics.

2.1 Mathematical Fuzzy Logic

What we call Mathematical Fuzzy Logic is a recent paradigm that aims to treat
vague reasoning by means of formally defined many-valued and fuzzy logic sys-
tems. This paradigm has not been thought as we nowadays know it, rather it is
the result of a process that began in ancient times.

The suspect that vague sentences and predicates can lead to an unusual
behavior of the reasoning process was already present since the IV century b.C.
when, according to the tradition, the greek philosopher Eubulides from Mileto
proposed what is known as the sorite paradox (or, in modern english, the heap
paradox). There exist several formulations of such paradox (at least two for each
vague predicate), we report here a version that is quite close to the original one:

• 10.000 sand grains are a heap.

• If we take a sand grain away from a sand heap,
the result keeps being a heap.

• 1 sand grain is a heap.

3

4 Chapter 2. Preliminaries

At first sight it can seem a linguistic trick. Nevertheless, this paradox can
be formalized. If we consider, for every natural n such that 1 ≤ n ≤ 10.000, the
proposition:

pn= “n sand grains are a heap,”

we can formalize the paradox in the following form:

` p10.000

` p10.000 → p9.999

` p9.999

` p9.999 → p9.998

` p9.998

...

` p2

` p2 → p1

` p1

As we can easily see, when we try to express it formally, if we consider the
above sentences as either true or false, it keeps being a paradox.

As happened with other ancient paradoxes, also for sorite paradox there had
been to wait a long time before a solution could be found and this solution needed
a widening of the classical bi-valued framework. In modern times, the first person
who thought in terms of three-valued logic has been C. S. Peirce in a manuscript
of year 1909, but he did not make it public. The birth of many-valued logics is,
indeed, attributed to J. Lukasiewicz, who, in 1920 starting from philosophical
considerations about the problem of contingent future events, defined the first
three-valued logic and published the result in [Lukasiewicz, 1920]. Subsequently
and jointly with A. Tarski, in [Lukasiewicz and Tarski, 1930] he defined a logic
whose propositions are valued in the real unit interval [0, 1]. A couple of years
after, in order to prove that Intuitionistic Propositional Logic has no finite lineal
model, K. Gödel defined in [Gödel, 1932] a class of lineal algebras of every finite
cardinality. Considering the class of semantics defined by Gödel in his paper,
M. Dummet, in [Dummett, 1959] defined axiomatically a logical calculus and
proved its completeness with respect to that class of semantics. The last one of
the basic many-valued logics had to wait until year 1996 to be defined. In that
year, in fact, P. Hájek, L. Godo and F. Esteva proposed in [Hájek et al., 1996]
an axiomatic system whose semantics is the product between real numbers in
the real unit interval [0, 1] and called it Product Logic.

Beyond the context of many-valued logics, L. A. Zadeh defined, in
[Zadeh, 1965], the notion of fuzzy set. Zadeh’s definition of fuzzy set is based on
a generalization of the range of the set characteristic function to the real unit
interval [0, 1]. Set operations are also generalized to the operations of min{x, y},
max{x, y} and 1 − x for intersection, union and complementation respectively,

2.1. Mathematical Fuzzy Logic 5

where x and y are the images of the generalized characteristic functions of two
different sets over the same individual element. Following the intuition, the
subset relation has been defined as true between two fuzzy sets when the instan-
tiation of the subset by means of every domain element is less or equal than the
instantiation of the superset by means of the same element.

In the logic system behind Zadeh’s set theory the semantics chosen for the im-
plication operator was the so-called Kleene-Dienes implication. This operation is
the straightforward generalization of the semantics of the classical material im-
plication, i.e. max{1−x, y}, where x and y are the evaluations of the antecedent
and the consequent of the implication respectively. Nevertheless, this semantics
for the implication gives rise to the lack of the classical correspondence between
implication and subset/superset relationship. Indeed, given two fuzzy sets C and
D, with such semantics, the fact that C ⊆ D is no more equivalent to the fact
that, for every individual element x belonging to the domain, C(x)⇒ D(x) = 1,
as it would be desirable. A way to overcome this shortcoming is, as it began
to become clear during the ’80s (see, for example [Alsina et al., 1983]), the use
of a class of operations over the real unit interval coming from the theory of
probabilistic metric spaces, called t-norms. Using a t-norm, as a semantics for
the intersection, and its residuum, as a semantics for the implication, in fact,
solves the above mentioned problem and provides a mathematically well-founded
background for fuzzy set theory.

At the end of the ’90s P. Hájek, considering all these researches, in his work
[Hájek, 1998b], defined what nowadays is known as Mathematical Fuzzy Logic,
that is, fuzzy logic with a strong mathematical background based on t-norms.
Thanks to this new framework, great advancements on the subject have been
done until the present day. The interested reader can find in [Cintula et al., 2011]
an exhaustive survey on the matter.

In the rest of this Section we will provide the definitions of fuzzy logics under
the propositional, modal and first-order points of view as well as the results that
we need in order to easily develop the central subject of this work.

2.1.1 Propositional logic

In this section we introduce the fuzzy propositional logics we are going to use
and their underlying semantics. Even though propositional logic is not a central
matter in this work it is important to introduce them for two reasons. The
first is that modal logic, which we will introduce in a subsequent section and
which is a notational variant of ALC-like languages, is defined as an expansion
of propositional logic. The second reason is that the algebraic semantics of the
fuzzy propositional logics here considered, called MTL-chains, are the algebras
of truth values of the FDLs considered in our framework and, therefore, they
deserve special attention in order to understand the central part of this work.

6 Chapter 2. Preliminaries

Syntax

There are several ways to provide a syntactical definition of a logic. In this work
we consider one among the most common, that is the so-called Hilbert style
calculus. Given a finite set of propositional connectives s = {?1, . . . ?i}, called
signature, each one with its arity, and a denumerable set of propositional variable
V ar = {p1, p2, . . .}, the set of s-formulas, denoted by Fms is built inductively
in the following way:

1. each propositional variable is a formula,

2. each 0-ary connective is a formula,

3. if ϕ1, . . . , ϕj are formulas and ? ∈ s is a j-ary connective, then ?(ϕ1, . . . , ϕj)
is a formula.

Notice that, since in our context we will make use of propositional connectives
that are at most binary, we will, in general, use the notation ϕ ? ψ, instead of
the above prenex notation, in which the same formula should be denoted by
?(ϕ,ψ). Given two formulas ϕ,ψ and a propositional variable p (not necessarily
occurring in ϕ) the substitution of p for ψ in ϕ, denoted by ϕ[ψ/p] is the formula
obtained by replacing every occurrence of p in ϕ for formula ψ. Given a set of
formulas T and a formula ϕ, an inference rule, denoted by:

T
ϕ

is a rule that allows to obtain formula ϕ[ψ/p] from the set of formulas
{χ[ψ/p] | χ ∈ T}, for every formula ψ and propositional variable p. A de-
duction of a formula ϕ from a set of formulas T by means of a finite set Rules of
inference rules is a finite sequence 〈ϕ1, . . . , ϕk〉 of formulas where ϕ = ϕk and,
for each i with 1 ≤ i ≤ k, either ϕi ∈ T or ϕi is obtained from a subset of
{ϕ1, . . . , ϕi−1} by applying an inference rule from Rules. We say that a formula
ϕ is deducible from a given set of formulas T (denoted T ` ϕ) by means of a
finite set of inference rules Rules if there exists a deduction of ϕ from T by
means of Rules.

Given a set of formulas T , called axioms and a finite set of inference rules
Rules, a propositional logic L is usually defined in the literature in two different
ways:

• either as the set of formulas that are deducible from T by means of Rules,
which is usually called the set of theorems of L,

• or as the set of pairs 〈T ′, ϕ〉, where T ′ is a set of formulas and ϕ is a formula
deducible from T ∪ T ′ by means of Rules; this set of pair is usually called
the deducibility relation of L.

2.1. Mathematical Fuzzy Logic 7

Since both the above sets1 are infinite and uniquely identified by means of
T and Rules (even though they are not always decidable), it is usual to define
a propositional logic through a set of axioms and a set of inference rules. In the
remainder of this section we are going to define in this way the propositional
versions of the logics that fall within the scope of the present work.

MTL and its axiomatic extensions The logic MTL has been defined in
[Esteva and Godo, 2001] over the signature sMTL = {⊗,∧,→,⊥}, where ⊗ is
called strong conjunction, ∧ weak conjunction,→ implication and ⊥ is a constant
symbol. This logic has been axiomatized with the following set of axioms:

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(A2) (ϕ⊗ ψ)→ ϕ

(A3) (ϕ⊗ ψ)→ (ψ ⊗ ϕ)

(A4) ϕ⊗ (ϕ→ ψ)→ (ϕ ∧ ψ)

(A5) (ϕ ∧ ψ)→ ϕ

(A6) (ϕ ∧ ψ)→ (ψ ∧ ϕ)

(A7a) (ϕ→ (ψ → χ))→ ((ϕ⊗ ψ)→ χ)

(A7b) ((ϕ⊗ ψ)→ χ)→ (ϕ→ (ψ → χ))

(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(A9) ⊥ → ϕ

And its unique rule of inference is Modus Ponens (MP):

ϕ,ϕ→ ψ

ψ

From the primitive connectives it is possible to define more, in particular:

ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)
ϕ ≡ ψ := (ϕ→ ψ)⊗ (ψ → ϕ)
¬ϕ := ϕ→ ⊥
> := ⊥ → ⊥

In this work we are going to deal with axiomatic extensions of MTL.
The logic SMTL2 is the axiomatic extension of MTL by axiom:

(S) ϕ ∧ ¬ϕ→ ⊥ (strictness)

1Clearly, the first definition is a particular case of the second, namely when T ′ = ∅.
2SMTL means strict MTL in the sense that (ϕ ∧ ¬ϕ)↔ 0 is a theorem. Algebraically this

property is called “pseudo-complementation” and denoted as (PC) in some more algebraic
works like [Galatos et al., 2007].

8 Chapter 2. Preliminaries

The logic IMTL (Involutive MTL) is the axiomatic extension of MTL by
axiom:

(Inv) ¬¬ϕ→ ϕ (involutive negation)

The logic BL has been defined in [Hájek, 1998a] as the axiomatic extension
of MTL by axiom:

(D) ϕ ∧ ψ → ϕ⊗ (ϕ→ ψ) (divisibility)

Note that, in presence of divisibility, weak conjunction turns out to be a
definable connective and is defined as:

ϕ ∧ ψ := ϕ⊗ (ϕ→ ψ)

So, BL formulas, as well as the formulas of each among its axiomatic exten-
sions, can be defined over the signature sBL = {⊗,→,⊥}.

The logic SBL is the axiomatic extension of BL by axiom (S), or, equivalently,
it is the axiomatic extension of SMTL by axiom (D).

Product logic has been defined in [Hájek et al., 1996] and it can be seen as
the axiomatic extension of SBL by axiom:

(Π) ¬¬χ→ (((ϕ⊗ χ)→ (ψ ⊗ χ))→ (ϕ→ ψ)) (simplification)

Hence Product Logic is the axiomatic extension of SMTL by axioms (D) and
(Π).

Gödel logic is the axiomatic extension of BL (or either SBL or SMTL) by
axiom:

(Id) ϕ→ (ϕ⊗ ϕ) (idempotence)

Finally, Lukasiewicz logic is the axiomatic extension of BL by axiom (Inv)
or, equivalently, the axiomatic extension of IMTL by axiom (D).

Each one of the above mentioned propositional calculus, except for Prod-
uct Logic, has finitely valued extensions. In the literature does not exist any
work which provides an axiomatic system for these logics. Nevertheless, in
[Cintula et al., 2011] (pp. 404-407) is reported an equational characterization
of the varieties generated by finite BL-chains that can give an hint on how these
logic should be axiomatized. We are not reporting these results here, since we
are rather interested in their semantics.

Language expansions Besides the axiomatic extensions in this work we are
going to consider some language expansions of MTL and its extensions. Lan-
guage expansions of a given propositional logic L are logics obtained by adding
new connectives to its signature. Clearly, once a new connective has been intro-
duced, it is necessary to add new formulas to the set of axioms of L in order to
settle down the behavior of the new connective.

Involutive negation In the case that the definable negation is not in-
volutive, that is, when the logic considered is not an extension of IMTL, an

2.1. Mathematical Fuzzy Logic 9

CPL

(EM)
kkkkkkk

kkkkkkkkk (EM)
RRRRRRR

RRRRRRRR (EM)
YYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYY

Π

(D)

(Π)
SSSSSSSSS

SSSSSSSS

G

(Id)
llllllll

lllllll (PL)

 L

(Inv)
yy

yy
yy

yy
yy

y

yyyyyyyyyy

(D)

SBL

(D)

(S)
RRRRRRR

RRRRRRRR

IPL

ΠMTL

(Π)
SSSSSSS

SSSSSSS

(Π)+(S)
GG

GG
GG

GG
GG

G

GG
GG

GG
GG

GG
G

BL

(D)
yyyyyyyyyy

yyyyyyyyyySMTL

(S)

IMTL

(Inv)
eeeeeeeeeeeeeee

eeeeeeeeeeeeeeee

MTL

Figure 2.1: The hierarchy of fuzzy logics

interesting expansion is the one obtained by adding an involutive negation as an
extra connective. This logic, which we will denote by L∼, is obtained from L, as
is done in the context of Intuitionistic logic (see [Monteiro, 1980]) or in the con-
text of Gödel logic (see [Esteva et al., 2000]), by adding a new unary connective
∼ and the axioms:

(A∼1) ∼∼ϕ↔ ϕ

(A∼2) ∼(ϕ ∨ ψ)↔ (∼ϕ ∧ ∼ψ)

(A∼3) ¬ϕ→ ∼ϕ

Notice that in these logics we can define a connective of strong disjunction
in this way:

ϕ⊕ ψ := ∼(∼ϕ&∼ψ)

Baaz Delta operator Another interesting connective that can be added to
the signature of a given logic L is the unary connective4. The resulting proposi-
tional calculus, which we will denote by L4, were introduced in [Hájek, 1998b] as
the expansions of L by the unary connective 4, satisfying the following axioms,
introduced in [Baaz, 1996] in the framework of Gödel Logic:

(A41) 4ϕ ∨ ¬4 ϕ,

10 Chapter 2. Preliminaries

(A42) 4(ϕ ∨ ψ)→ (4ϕ ∨4ψ),

(A43) 4ϕ→ ϕ,

(A44) 4ϕ→44 ϕ,

(A45) 4(ϕ→ ψ)→ (4ϕ→4ψ).

and the necessitation inference rule:

ϕ

4ϕ

Truth constants An expansion that is particularly interesting in relation
with Fuzzy Description Logics is the one obtained by adding truth constants to
the signature of a given logic L. The resulting logic, which we denote by Lc, is
defined by adding the following sets of formulas and inference rules to the set
of axioms that define L (for more information about t-norm based fuzzy logics
with truth constants see for instance [Esteva et al., 2007]).

The Book-keeping axioms:

(Ac1a) r ◦ s↔ r̄ ? s̄

(Ac1b) ◦ r ↔ ? r̄

for ? being any binary or unary connective and ◦ its corresponding truth
function from the algebra of truth values that is the semantics of L (see Section
2.1.1).

The Witnessing axiom:

(Ac2)
∨
i=1,...,n(ϕ↔ r̄i)

The rule:

r̄n−1 ∨ ϕ
ϕ

Semantics

Given a logic L, a fundamental task is that of deciding whether a given set
of formulas T and a formula ϕ in the language of L belong to its deducibility
relation. Even though deducing a formula from a set of formulas is a quite simple
task, deciding whether there is such a deduction is not. Defined like it has been
done in the previous section it is indeed an undecidable problem. In order to
prove its decidability in the case of propositional logic it has been necessary to
introduce the concept of semantics.

Since G. Boole in the XIX century, semantics and, in particular, algebraic
semantics, has become a fundamental part of the study of propositional logic.
Providing a logic L with an algebraic semantics means finding a class of alge-
bras that “works like” the set of formulas of L. In order to achieve this result a

2.1. Mathematical Fuzzy Logic 11

class of algebras has to be defined whose operations can be “translated” into the
signature of L and into whose operations the signature of L can be translated.
Moreover, it has to be proven that such translation “well relates” the sets of for-
mulas of L in which we are interested (namely the theorems and the deducibility
relation) with a distinct subset of the domain of the algebra of truth values. The
proof of this last fact is usually called Completeness Theorem in the case of the
set of theorems and Strong Completeness Theorem in the case of the deducibility
relation. Algebraic semantics are nowadays a very powerful tool in the study of
logic, until the point that, sometimes, logics are defined from classes of algebras
and not the contrary.

Within the framework of propositional fuzzy logic two kinds of algebraic
semantics have been considered, namely the general and the standard semantics.
Considering the general semantics means working with a given class of algebras,
while considering the standard semantics means working with the algebra of
that class whose domain is the real unit interval [0, 1]. Nevertheless, it has
been proved that, in the case of the propositional calculus, these two kinds of
semantics are indeed complete with respect to the same logical calculus.

In this section we are going to introduce the classes of algebras that are
the semantics of the logics defined in the previous section and to report some
interesting results. As we will see later on, the structures that we are going to
define are fundamental for the understanding of the present work because they
turn out to be the algebras of truth values in which description concepts will
take their values.

General semantics: the class of MTL-algebras and its subclasses An
algebra A is a structure composed by a nonempty set A, called the domain or
universe of A and a set of operations s called (as in the case of propositional
logic) signature, such that, for every x1, . . . , xj ∈ A and each j-ary operation
◦ ∈ sA, it holds that ◦(x1, . . . , xj) ∈ A. A class of algebras K is usually defined
through a finite set of equations that are supposed to be true in every algebra
belonging to K and in no algebra not belonging to K. Definitorial equations are
expressions of the form:

(∀x)(∀y)(x = y)

where x, y ∈ A and ◦ ∈ sA. Following the tradition in MFL, we will use the
expression:

x ≈ y

in order to abbreviate the former one.

A lattice is an algebra3 A = 〈A,∨,∧〉 with two binary operations ∨ and ∧,
called join and meet, which satisfies the following equations:

3For further information about lattices, the interested reader can find in
[Burris and Sankappanavar, 1981] a clear and exhaustive overview.

12 Chapter 2. Preliminaries

(E1) x ∨ y ≈ y ∨ x

(E2) x ∧ y ≈ y ∧ x (commutativity)

(E3) x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z

(E4) x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z (associativity)

(E5) x ∨ x ≈ x

(E6) x ∧ x ≈ x (idempotence)

(E7) x ≈ x ∨ (x ∧ y)

(E8) x ≈ x ∧ (x ∨ y) (absorption)

In a lattice A an order relation can be defined between every two elements
a, b ∈ A, in the following way:

a ≤ b ⇐⇒ a ∧ b = a ⇐⇒ a ∨ b = b

For every subset X ⊆ A, an upper bound of X is an element x ∈ A such
that, for every element y ∈ X, it holds that y ≤ x; a lower bound of X is an
element x ∈ A such that, for every element y ∈ X, it holds that x ≤ y; the least
upper bound or supremum of X (denoted sup(X)) is an element x ∈ A such
that x ≤ y for every upper bound y of X, if, moreover, sup(X) ∈ X, we call it
the maximum of X (denoted maxX); the greatest lower bound or infimum of X
(denoted inf(X)) is an element x ∈ A such that x ≥ y for every lower bound y
of X, if, moreover, inf(X) ∈ X, we call it the minimum of X (denoted minX).

A lattice A is bounded if inf(A) and sup(A) always exist; it is complete if,
for every subset X ⊆ A, inf(X) and sup(X) always exist. Clearly, if a lattice is
complete, it is bounded as well.

A monoid is an algebra A = 〈A, ∗, 1〉, where:

• ∗ is an associative binary operation,

• 1 ∈ A is the neutral element of operation ∗, in the sense that, for every
x ∈ A, it holds that x ∗ 1 = 1 ∗ x = x.

A monoid A is commutative if operation ∗ is.
We say that an algebra A = 〈A,∧,∨∗ ⇒, 0, 1〉 is a bounded commutative

integral residuated lattice if:

• 〈A,∧,∨, 0, 1〉 is a bounded lattice where 0 = inf(A) and 1 = sup(A),

• 〈A, ∗, 1〉 is a commutative monoid,

• there exists a unique binary operation ⇒ satisfying for all a, b, c ∈ [0, 1]
the following condition (called residuation):

a ∗ b ≤ c if and only if a ≤ b⇒ c,

2.1. Mathematical Fuzzy Logic 13

the operator ⇒ is called the residuum of the operation ∗ and it is defined
as

x⇒ y = max{z ∈ [0, 1] | x ∗ z ≤ y}.

An MTL-algebra A = 〈A,∧,∨, ∗,⇒, 0, 1〉 is a bounded commutative integral
residuated lattice which satisfies the equation:

(PL) (x⇒ y) ∨ (y ⇒ x) ≈ 1 (pre-linearity)

An IMTL-algebra A= 〈A,∧,∨, ∗,⇒, 0, 1〉 is a MTL-algebra which satisfies
the equation:

(Inv) x ≈ (x⇒ 0)⇒ 0 (involutive negation)

An SMTL-algebra A= 〈A,∧,∨, ∗,⇒, 0, 1〉 is a MTL-algebra which satisfies
the equation:

(S) x ∧ (x⇒ 0) ≈ 0 (strictness)

A BL-algebra A= 〈A,∧,∨, ∗,⇒, 0, 1〉 is an MTL-algebra which satisfies the
equation:

(D) x ∧ y ≈ x ∗ (x⇒ y) (divisibility)

A Π-algebra A= 〈A,∧,∨, ∗,⇒, 0, 1〉 is an SMTL-algebra which satisfies the
equations (D) and:

(Π) ((z ⇒ 0)⇒ 0)⇒ (((x ∗ z)⇒ (y ∗ z))⇒ (x⇒ y)) ≈ 1 (simplification)

A Gödel-algebra A= 〈A,∧,∨, ∗,⇒, 0, 1〉 is a BL-algebra which satisfies the
equation:

(Id) x ≈ x ∗ x (idempotence)

An MV-algebra A= 〈A,∧,∨, ∗,⇒, 0, 1〉 is a BL-algebra which satisfies (Inv)
or, equivalently, an IMTL-algebra which satisfies (D).

Moreover, if any of these algebras is linearly ordered, we say that it is an
MTL-chain (respectively SMTL-chain, Π-chain and so on).

All the logics defined in these preliminaries are algebraizable in the
sense of Blok and Pigozzi (see [Garc̀ıa–Cerdaña et al., 2005]) and their alge-
braic semantics are the varieties of the corresponding MTL-algebras. More-
over all of these logics are chain-complete (what is called “semilinear” in
[Cintula and Noguera, 2010]) in the sense that they are strong complete for eval-
uations over the chains of the corresponding variety.

A propositional evaluation is a mapping e : FmL → A such that:

• e(⊥) = 0,

• e(>) = 1,

• for every pair of formulas ϕ,ψ ∈ FmL, every logical connective ? ∈ sL and
its respective algebraic operation ◦ ∈ sA, it holds that:

14 Chapter 2. Preliminaries

e(ϕ ? ψ) = e(ϕ) ◦ e(ψ)

Under a semantic point of view, the notions of theorems and deducibility
relation are substituted by those of tautologies and consequence relation, but
can be defined the concept of r-satisfiability as well. Given a set of formulas Γ
and a formula ϕ, we say that:

• ϕ is an L-tautology (denoted �L ϕ) if, for every L-algebra A and every
propositional evaluation e : FmL → A, it holds that e(ϕ) = 1,

• ϕ is a logical consequence of Γ (denoted Γ �L ϕ) if, for every L-algebra A
and every propositional evaluation e : FmL → A such that e(ψ) = 1, for
every ψ ∈ Γ, it holds that e(ϕ) = 1,

• ϕ is r-satisfiable if there exists a L-algebra A, a value r ∈ A and a propo-
sitional evaluation e : FmL → A such that e(ϕ) = r.

Standard semantics A natural semantics for the MTL logic and its axiomatic
extensions is the evaluation over the real unit interval, i.e. over the MTL-chains
whose lattice reduct is [0, 1] with the usual order. These chains, called “standard
chains” are related to a special kind of operation called “t-norms”.

Definition 1. A t-norm is a binary operation ∗ on the real unit interval [0, 1]
that is associative, commutative, non-decreasing in both arguments and having
1 as neutral (unit) element.

The property:

x ∗ ∨(X) ≈
∨
y∈X{x ∗ y}

called “left continuity” of a t-norm is a sufficient and necessary condition for
the existence of the residuum of the t-norm ∗. Using this residuum, the following
result characterizes standard chains.

Proposition 2. A structure 〈[0, 1],∧,∨, ∗,⇒, 0, 1〉 is a standard MTL-chain if
and only if ∗ is a left-continuous t-norm and ⇒ is its residuum. This structure
will be denoted from now on by [0, 1]∗. Moreover a standard chain satisfies
divisibility (Hence it is a BL-chain) if and only if the t-norm is continuous.

In [Jenei and Montagna, 2002] it is proved that MTL is strong standard com-
plete (strong complete for evaluations over the standard chains), i.e. for any set
of formulas Γ ∪ {ϕ} and any evaluation e over a standard chain,

Γ `[0,1]MTL ϕ iff e(ϕ) = 1 for any evaluation e such that e(γ) = 1 for all γ ∈ Γ.

This result is not automatically translatable to axiomatic extensions of MTL.
It is easily extended to SMTL and the standard SMTL-chains but not to BL
and the standard BL-chains (hence neither to its axiomatic extensions). If L is
either BL or SBL or Lukasiewicz or Product or Gödel logic only the finite strong
standard completeness results are valid, i.e. for any finite set of formulas Γ∪{ϕ}
and any evaluation e over a standard L-chain,

2.1. Mathematical Fuzzy Logic 15

Γ `[0,1]L ϕ iff e(ϕ) = 1 for any evaluation e such that e(γ) = 1 for all γ ∈ Γ,

An interesting result for Lukasiewicz, Product and Gödel logics is that the
corresponding standard-chains are all isomorphic4. The most used representative
of standard chains of these three logics (unique up to isomorphisms), are the ones
defined by the so-called Lukasiewicz, product and minimum t-norms and their
residua (collected in Table 1).

∗ Minimum (Gödel) Product (of real numbers) Lukasiewicz
x ∗ y min(x, y) x · y max(0, x+ y − 1)

x⇒ y

{
1, if x ≤ y
y, otherwise

{
1, if x ≤ y
y/x, otherwise

min(1, 1− x+ y)

x⇒ 0

{
1, if x = 0
0, otherwise

{
1, if x = 0
0, otherwise

1− x

Table 2.1: The three main continuous t-norms.

Let I be a bounded set and, for every i ∈ I, let Ai = 〈Ai,∧,∨, ∗i,⇒i, 0, 1〉
be chain. Suppose that, for every i, j ∈ I, Ai ∩ Aj = ∅. We define the ordinal
sum of these chains as the chain:⊕

i∈I Ai = 〈
⊕

i∈I Ai, ∗,∧,∨, 0, 1〉

where the domain is:⊕
i∈I Ai =

⋃
i∈I{Ai \ {1}} ∪ {>}

with lineal order defined by the condition:

a ≤ b ⇐⇒

{
either a, b ∈ Ai and a ≤i b
or a ∈ Ai, b ∈ Aj and i < j

and, for every a, b ∈
⊕

i∈I Ai,

a ∗ b =

{
a ∗i b, if a, b ∈ Ai
a ∧ b, otherwise

Once defined what an ordinal sum is, we can report an important
result about continuous t-norms, the Mostert-Shields Theorem, proved in
[Mostert and Shields, 1957].

Theorem 3. Every continuous t-norm is the ordinal sum of either Lukasiewicz,
product or Gödel t-norm.

4In fact for Gödel logic there is only one standard chain while for Lukasiewicz and Product
there are infinite different but isomorphic ones.

16 Chapter 2. Preliminaries

From the previous results seems natural the definition of the logic of a (con-
tinuous) t-norm.

Definition 4. We say that a logic (called L(∗)) is the logic of a continuous
t-norm ∗ if it is an axiomatic extension of BL which is finite strong standard
complete with respect to evaluations over the standard chain [0, 1]∗, i.e. for any
finite set of formulas Γ ∪ {ϕ} and any evaluation e over [0, 1]∗,

Γ `L(∗) ϕ iff e(ϕ) = 1 for any evaluation e such that e(γ) = 1 for all γ ∈ Γ.

2.1.2 Modal logic

In this section we introduce the framework of modal logic. It is important
because, as we will see, modal language is a notational variant of the description
language mainly considered in this work. For this reason, we will consider the
general framework of multi-modal language of which the usual modal language
is a particular case.

Modal Logic was already known and studied in ancient times by the Aris-
totele’s school. In its modern version it has been defined by C. I. Lewis and C.
H. Langford, who, in [Lewis and Langford, 1932] established a modern notation,
gave sets of axioms for some logical system and provided a matrix-like truth-
functional semantics for those systems. Further studies, due, above all, to E. J.
Lemmon (see [Lemmon, 1957, Lemmon, 1966a, Lemmon, 1966b]) introduced an
algebraic semantics for Lewis and Langford Systems.

Nevertheless, the real cornerstone in the study of Modal Logic has been the
work of S. Kripke, who, in [Kripke, 1963, Kripke, 1965], defined what is nowa-
days known as Kripke-style semantics, based on a particular kind of relational
structures, called Kripke frames. This kind of structures gave a clear and well-
defined semantics to modal systems, allowing great advancements in the study
of Modal Logic, also under the syntactic and computational points of view.

Syntax

Given a propositional signature s, a multi-modal signature s2 is obtained by
adding a non-empty finite subset of the set of unary modal connectives {2n,3n |
n ∈ N}. From this new signature, the set of modal formulas Fms2 is built
recursively applying the same rules as for propositional formulas, but in the new
multi-modal language.

So, a modal system L2 is defined as an expansion of a given propositional
logic L by means of a set of modal connectives. The set of axioms that defines
L2 is built from the set of axioms that defines L by adding the axioms that
define the behavior of the modal connectives and the inference rules of L2 are
the inference rules of L plus some other inference rule.

Within the classical framework, several modal system are known that expand
the Classical Propositional Calculus and, for many of them it is known whether
they are axiomatic extension of other modal systems. An exhaustive study of
Modal Logic in the classical framework can be found in [Blackburn et al., 2001].

2.1. Mathematical Fuzzy Logic 17

Within the framework of many valued logics, the study of modal expansions
is much more recent and some advances have been done in [Bou et al., 2011b]
for the case of finite-valued logics.

Semantics

As we said, a notion that has become fundamental for the study of Modal Logic,
under a semantic point of view, is that of Kripke frames and Kripke models.
In this work we consider a many-valued generalization of the classical notion of
Kripke model following the one provided in [Bou et al., 2011b].

Definition 5 (Kripke frames and models). Given an algebra Tand m ∈ N, a
T-valued Kripke frame is a tuple F = 〈W,R1, . . . , Rm〉, where

• W is a non-empty crisp set, called domain or set of possible worlds,

• for every 1 ≤ i ≤ m, Ri is a binary relation (called accessibility relation)
valued in T; i.e., it is a mapping Ri : W ×W → A.

A Kripke frame is said to be crisp if, for every 1 ≤ i ≤ m, the range of Ri
is included in {0, 1}. The class of all T-valued frames will be denoted by Fr and
the class of crisp frames by CFr. A Kripke T-model is a pair M = 〈F, V 〉, where
F is an T-valued Kripke frame and V is a mapping V : V ar×W → A assigning
to each propositional variable and each world in W a value in A. The map V
can be uniquely extended to a map, which we also denote by V , assigning to
each pair formed by a formula ϕ ∈ Fms2 and a world w ∈W an element of Tin
such a way that:

• V (?(ϕ1, . . . , ϕn), w) = ◦(V (ϕ1, w), . . . , V (ϕn, w)), for every n-ary proposi-
tional connective ? ∈ s and its truth function ◦ ∈ sT;

• V (r, w) = r ∈ A for each truth constant r ∈ s;

• for each 1 ≤ i ≤ m, V (2iϕ,w) = infw′∈W {Ri(w,w′)⇒ V (ϕ,w′)};

• for each 1 ≤ i ≤ m, V (3iϕ,w) = supw′∈W {Ri(w,w′) ∗ V (ϕ,w′)}.

In the following definition we define a list of problem that can be asked about
a many-valued modal logic, some of them are equivalent to reasoning tasks in
Fuzzy Description Logic.

Definition 6. Consider a formula ϕ ∈ Fms2 an algebra Tand r ∈ A, then:

• given a Kripke T-model M = 〈F, V 〉 and w ∈W , we say that w r-satisfies
ϕ (denoted M, w r ϕ) if V (ϕ,w) = r;

• we say that a Kripke T-model M = 〈F, V 〉 locally r-satisfies ϕ (denoted
M |=r

l ϕ) if there exists w ∈ W such that M, w r ϕ; in this sense we say
that ϕ is locally r-satisfiable if there is a Kripke T-model M which locally
r-satisfies it;

18 Chapter 2. Preliminaries

• we say that a Kripke T-model M = 〈F, V 〉 globally r-satisfies ϕ (denoted
M |=r

g ϕ) if infw∈W {V (ϕ,w)} ≥ r; in this sense we say that ϕ is globally
r-satisfiable if there is a Kripke T-model M which globally r-satisfies it;

• we say that ϕ is a local consequence of a set of formulas Γ ⊆ Fms2 (denoted
Γ |=l ϕ) if, for every Kripke T-model M = 〈F, V 〉 and w ∈ W , if w
1-satisfies every formula in Γ, then w 1-satisfies ϕ;

• we say that ϕ is a global consequence of a set of formulas Γ ⊆ Fms2

(denoted Γ |=g ϕ) if, every Kripke T-model which globally 1-satisfies every
formula in Γ, globally 1-satisfies ϕ as well; M = 〈F, V 〉 and w ∈ W , if w
1-satisfies every formula in Γ, then w 1-satisfies ϕ;

• we say that ϕ is r-valid in the frame F (denoted F |=r ϕ) if it is globally
r-satisfied in every Kripke T-model based on F; in this sense, given a class
K of frames, we write K |=r ϕ to mean that ϕ is r-valid in every frame in
that class.

The set of the formulas that are 1-valid in every frame of a class K is denoted,
in [Bou et al., 2011b] by Λ(K,T). In [Bou et al., 2011b, Section 4.2] axiomatiza-
tions for the sets Λ(K, Ln) and Λ(K, Lcn) (the expansion of the previous language
by truth constants) are given for K = Fr, and K = CFr.

Besides these sets of valid formulas, we will consider, for each m ∈ Ln, the
sets Satm(Fr, Ln), Satm(Fr, Ln,∆), etc. of modally m-satisfiable formulas.

2.1.3 First order predicate logic

Syntax

In order to define what a predicate logic is, we have, previously, to define what
a predicate language is.

Definition 7. A predicate signature s is compound by a countable set of relation
symbols (also called predicates) P1, . . . , Pn, . . ., each one with arity ≥ 1, a count-
able set of function symbols f1, . . . , fn, . . ., each one with its arity, a countable
set of constant symbols c1, . . . , cn, . . ., that are 0-ary function symbols.

Given a countable set V ar of individual variables, the set of Terms over a
predicate signature is defined inductively as follows:

• every variable x ∈ V ar is a term,

• every constant c ∈ s is a term,

• if t1, . . . , tn are terms and f ∈ s is an n-ary function symbol, then
f(t1, . . . , tn) is a term.

Now, let l be a propositional language, as defined in Section 2.1.1, then the
set of symbols l∀ := l ∪ {∀,∃} is a first order language. The set Fml∀,s of
Formulas over a first order language l∀ and a predicate signature s is defined
inductively as follows:

2.1. Mathematical Fuzzy Logic 19

• ⊥ and > are formulas,

• if t1, . . . , tn are terms and P ∈ s is an n-ary predicate, then P (t1, . . . , tn)
is a formula (called atomic formula),

• if ϕ1, . . . , ϕn are formulas and ? ∈ l is an n-ary logical operator, then
?(ϕ1, . . . , ϕn) is a formula,

• if ϕ(x) is a formula, then (∀x)ϕ(x) and (∃x)ϕ(x) are formulas.

As usual a variable that does not fall within the scope of a quantifier is said to
be free, otherwise, it is said to be bound. The notation ϕ(x1, . . . , xn) means that
the variables that are free in ϕ are among x1, . . . , xn. We say that a formula that
has no free variable is closed, otherwise it is open. Given a term t and a formula
ϕ(x1, . . . , xn), we denote by ϕ(x1, . . . , xn)[t/x1] the result of substituting every
occurrence of variable x1 for t in ϕ(x1, . . . , xn).

Following [Hájek, 1998b], given a propositional residuated logic L, we define
the first order logic associated with L (denoted by L∀), as follows:

Definition 8. L∀ is the first order logic such that:

1. its set of formulas is FmL∀ := FmlL∀,s where s is an arbitrary predicate
signature,

2. it is axiomatized by means of the following set of axiom schemata:

(P) the axioms resulting from the axioms of L after the substitution of
propositional formulas by formulas of the new predicate language.

(∀1) (∀x)ϕ(x)→ ϕ(t), where t is substitutable for x in ϕ.

(∃1) ϕ(t)→ (∃x)ϕ(x), where t is substitutable for x in ϕ.

(∀2) (∀x)(χ→ ϕ)→ (χ→ (∀x)ϕ(x)), where x is not free in χ.

(∃2) (∀x)(ϕ→ χ)→ ((∃x)ϕ(x)→ χ), where x is not free in χ.

(∀3) (∀x)(χ ∨ ϕ)→ (χ ∨ (∀x)ϕ(x)), where x is not free in χ.

3. its rules of inference are Modus Ponens (MP) and generalization (G): From
ϕ infer (∀x)ϕ(x).

All the logics considered so far enjoy two important properties.

Definition 9. 1. We say that a logic L enjoys the Local Deduction Theorem
(LDT , for short) if for each theory T and formulas ϕ,ψ, it holds that
T, ϕ ` ψ iff there exists a natural number n such that T ` ϕn → ψ, where
ϕn = ϕ ? . . . ? ϕ, n times.

2. We say that a logic L enjoys Delta Deduction Theorem (∆DT , for short) if,
for each theory T and formulas ϕ,ψ, it holds that T, ϕ ` ψ iff T ` ∆ϕ→ ψ.

20 Chapter 2. Preliminaries

3. We say that a logic L enjoys Invariance under Substitution (Sub, for short)
if, for every formulas ϕ,ψ, χ and every formula ζ occurring in χ, it holds
that ϕ ≡ ψ ` χ[ϕ/ζ] ≡ χ[ψ/ζ].

Next we recall the definition of core fuzzy logic given in
[Cintula and Hájek, 2006] and that of strict core fuzzy logic, given in
[Cerami and Esteva, 2011].

Definition 10. 1. We say that a logic L is a core fuzzy logic if it is finitary,
enjoys LDT , Sub and expands MTL.

2. We say that a logic L is a strict core fuzzy logic if it is finitary, enjoys
LDT , Sub and expands SMTL.

3. We say that a logic L∆ is a ∆-core fuzzy logic if it enjoys ∆DT , Sub and
expands MTL∆.

Semantics

From a semantic point of view first order models are compound of a set of
elements, an algebra of truth values and an assignation function.

Definition 11. A first order structure for a given predicate language Γ is a
pair (A,M), where A is an L-chain and M=(M, (PM)P∈Γ, (fM)f∈Γ, (cM)c∈Γ),
where:

1. The set M , called domain, is a non-empty set,

2. for each predicate symbol P ∈ Γ of arity n, PM is an n-ary A-fuzzy relation
on M , i.e. an n-ary function PM : Mn → A,

3. for each function symbol f ∈ Γ of arity n, fM is an n-ary (crisp) function
on M and

4. for each constant symbol c ∈ Γ, cM is an element of M .

The truth value ‖ϕ‖A,Mv of a predicate formula ϕ in a given model v is defined
as follows.

Definition 12. Let Γ be a predicate language, A an L-chain and (A,M) a first
order structure, then a first order assignation v is a mapping v : V ar → M .
As usual each assignation, defined on the set of individual variables, extends
univocally to a first order assignation (that we will denote by v as well) satisfying,
for every terms t1, . . . , tn and each n-ary function f ∈ Γ, that v(f(t1, . . . , tn)) =
fM(v(t1), . . . , v(tn)). To denote that assignationv assigns objects a1, . . . , an to
variables x1, . . . , xn, we will write v([a1/x1], . . . , [an/xn]).
Moreover, each assignation v, defined on the set of individual variables yields a

first order model ‖·‖(A,M)
v : FmL∀ → A such that:

2.1. Mathematical Fuzzy Logic 21

1. for each n-tuple of terms t1, . . . , tn and each n-ary relation P ∈ Γ, it holds

that ‖P (t1, . . . , tn)‖(A,M)
v = PM(v(t1), . . . , v(tn)) ∈ A,

2. if ϕ1, . . . , ϕn are formulas, ? ∈ sL∀ an n-ary logical connec-

tive and ◦ ∈ sA its truth function, then ‖?(ϕ1, . . . , ϕn)‖(A,M)
v =

◦(‖ϕ1‖(A,M)
v , . . . , ‖ϕn‖(A,M)

v).

3. if ϕ(x1, . . . , xn) is a formula with n free variables and v is a first order
assignation such that v(xi) = ai and ai ∈M , for 1 < i ≤ n, then we have

that ‖(∀x1)ϕ(x1, x2, . . . , xn)‖(A,M)
v = infa∈M{‖ϕ(a, a2, . . . , an)‖(A,M)},

4. if ϕ(x1, . . . , xn) is a formula with n free variables and v is a first order
assignation such that v(xi) = ai and ai ∈M , for 1 < i ≤ n, then we have

that ‖(∃x1)ϕ(x1, x2, . . . , xn)‖(A,M)
v = supa∈M{‖ϕ(a, a2, . . . , an)‖(A,M)}.

Clearly, depending on the model, the infimum and supremum of a set of
values of formulas do not necessarily exist and, in this case we will say that a
given quantified formula has an undefined truth value. Following [Hájek, 1998b],
we will say that if, for a given model v, both infima and suprema of sets of values
are defined for every formula, then v is a safe model. Moreover, if, for a given
first order structure (A,M), each assignation v, defined in it, is safe, we will say
that (A,M) is a safe structure.

From now on and for simplicity, we will omit the name “safe” before the first
order structures, i.e., when we speak about a first order structure (A,M), we
implicitly mean a safe first order structure (A,M).

The notions of tautologies, logical consequence and r-satisfiability are defined
in the usual way.

The witnessed model property In recent times first order Fuzzy Logic has
been deeply studied. Generalizing the classical case, the value of a universally
(existentially) quantified formula is defined as the infimum (supremum) of the
values of the results of replacing the quantified variable by the interpretation
of a term of the language in a first-order model. Notice that in the context
of Classical Logic, as well as every finitely valued logic, infima and suprema
turn out to be minima and maxima, respectively. However, when we move
to infinitely valued logics, this is not the case, the infimum or supremum of
a set of values C may be an element c /∈ C, i.e., a quantified formula may
have no witness. Following these ideas, Hájek introduced in [Hájek, 2007a],
[Hájek, 2007b] the notion of witnessed model, i.e., a model in which each quanti-
fied formula has a witness and proved that this is an important property because
it implies a limited form of finite model property for certain fragments of pred-
icate fuzzy logic (see [Hájek, 2005]). Moreover, Cintula and Hájek introduce
in [Cintula and Hájek, 2006] the so-called witnessed axioms that, added to any
first-order core fuzzy logic, give a logic complete with respect to witnessed mod-
els. Subsequently they prove that these axioms are derivable in Lukasiewicz
first-order Logic, showing that L∀ is complete with respect to witnessed models
(we will say that L∀ has the witnessed model property).

22 Chapter 2. Preliminaries

Witnessed models have been firstly defined in [Hájek, 2005] in the following
way:

Definition 13. For any structure (A,M), a formula (∀y)ϕ(y, x1, . . . , xn) is A-
witnessed in M if, for each assignation c1, . . . , cn ∈ M , to x1, . . . , xn, there is
c ∈ M such that ‖(∀y)ϕ(y, c1, . . . , cn)‖A,M = ‖ϕ(c, c1, . . . , cn)‖A,M. Similarly
for (∃y)ϕ(y, x1, . . . , xn). M is A-witnessed if all quantified formulas are A-
witnessed in M.

Within the framework of classical predicate logic, where the first order struc-
tures are evaluated on a two element chain, there is no need of making a dif-
ference between witnessed and non witnessed models, because every model is
indeed witnessed, and the same holds for every finite-valued logic. The need of
speaking about witnessed models arises when we move to infinite-valued logics,
since we can meet sets of truth values whose infima (resp. suprema) is not an
element of the set. Later on, in [Cintula and Hájek, 2006], Hájek and Cintula
consider the following couple of axioms (called witnessed axioms) already given
by Baaz in [Baaz, 1996]:

(C∃) (∃y)((∃x)ϕ(x)→ ϕ(y)),

(C∀) ((∃y)(ϕ(y)→ (∀x)ϕ(x))).

They prove that each first order core fuzzy logic L∀, extended with this cou-
ple of axioms (denoted L∀w), is complete with respect to the witnessed models
evaluated over L-chains. Moreover, in [Cintula and Hájek, 2006] it is proved
that Lukasiewicz predicate logic is the only logic of a continuous t-norm equiv-
alent to its witnessed axiomatic extension, i.e., (C∃) and (C∀) are theorems of
 Lukasiewicz predicate Logic. As a consequence of this fact Lukasiewicz is the
only infinite-valued logic of a continuous t-norm which is complete with respect
to witnessed models, i.e. it satisfies the witnessed model property.

The quasi-witnessed model property Neither Gödel, nor Product first-
order Logic share witnessed model property because witnessed axioms are
not theorems of these logics. In fact no other first-order logic of a con-
tinuous t-norm enjoys this property, since it is related to continuity of the
truth functions, a property that only Lukasiewicz logic has. Nevertheless, in
[Laskowski and Malekpour, 2007] it is proved that Product Predicate Logic en-
joys a weaker property, what we call quasi-witnessed model property. Quasi-
witnessed models5 are models in which, whenever the value of a universally
quantified formula is strictly greater than 0, then it has a witness, while exis-
tentially quantified formulas are always witnessed.

5These models are called “closed models” in [Laskowski and Malekpour, 2007] but we de-
cided, after some discussions with colleagues, to use the more informative name of “quasi-
witnessed models”. We take into account the fact that the name “closed” is used in mathe-
matics and logic in different contexts with different meanings and could induce some confusion.

2.1. Mathematical Fuzzy Logic 23

Definition 14. Let Γ be a predicate language and (A,M) a first-order structure,
then we say that a Γ-formula ϕ(x, y1, . . . , yn) is A-quasi-witnessed in M if:

1. For each tuple c1, . . . , cn of elements in M there exists an element a ∈ M
such that ‖(∃x)ϕ(x, c1, . . . , cn)‖(A,M) = ‖ϕ(a, c1, . . . , cn)‖(A,M).

2. For each tuple c1, . . . , cn of elements in M either
‖(∀x)ϕ(x, c1, . . . , cn)‖(A,M) = 0, or there exists an element b ∈ M
such that ‖(∀x)ϕ(x, c1, . . . , cn)‖(A,M) = ‖ϕ(b, c1, . . . , cn)‖(A,M).

We say that a first-order structure (A,M) is quasi-witnessed if for each
formula and for every assignation v of the variables on M the formula is quasi-
witnessed.

In [Cerami and Esteva, 2011] we introduced both the so-called strict core
fuzzy logics and the following quasi-witnessed axioms (generalizations of the
witnessed axioms of Hájek-Cintula to cope with quasi-witnessed models):

Definition 15. Let L∀ be any strict core first-order logic, we denote by L∀qw
the axiomatic extension of L∀ by the following axiom schemata called, from now
on, “quasi-witnessed axioms”:

(C∃) (∃y)((∃x)ϕ(x)→ ϕ(y)),

(ΠC∀) ¬¬(∀x)ϕ(x)→ ((∃y)(ϕ(y)→ (∀x)ϕ(x))).

These quasi-witnessed axioms are a modification of the witnessed axioms
given above. The first one, (C∃), is a witnessed axiom and the second one says
that the witnessed axiom (C∀)(∃y)(ϕ(y) → (∀x)ϕ(x)) is valid in a structure
(A,M) only when the truth value of (∀x)ϕ(x) is different from 0, i.e., when
‖¬¬(∀x)ϕ(x)‖(A,M) = 1. In the same paper, we proved, following the style of
[Cintula and Hájek, 2006] that, if we add quasi-witnessed axioms to any first-
order strict core fuzzy logic, the resulting logic enjoys the quasi-witnessed model
property. From this result, the one in [Laskowski and Malekpour, 2007] about
the completeness of Product first-order Logic with respect to quasi-witnessed
models, follows as a corollary. Moreover, we proved that quasi-witnessed axioms
are tautologies in no logic of a continuous t-norm, but Product and Lukasiewicz
predicate logics.

∆-strict fuzzy logics Again in [Cerami and Esteva, 2011] we studied the ex-
pansion of first order strict core fuzzy logics by ∆ operator. We gave the following
so-called ∆-quasi-witnessed axioms6:

Definition 16. We denote by L∆∀∆qw the axiomatic extension of L∆∀ by the
following axiom schemata called, from now on, “∆-quasi-witnessed axioms”:

(C∆∃) (∃y)∆((∃x)ϕ(x)→ ϕ(y)),

6Throughout this section L∆ will denote the extension of a ∆-core fuzzy logic by the
strictness axiom (S).

24 Chapter 2. Preliminaries

(ΠC∆∀) ¬¬(∀x)ϕ(x)→ ((∃y)∆(ϕ(y)→ (∀x)ϕ(x))).

We proved, as in [Cintula and Hájek, 2006], that the extension of a logic L∆∀
by means of these axioms, is complete with respect to quasi-witnessed mod-
els, but not with respect to models that are embeddable into a quasi-witnessed
model (like the extension of a strict core fuzzy logic by the usual quasi-witnessed
axioms). So, it makes sense to say that these extensions are the logics of quasi-
witnessed models.

2.2 (Classical) Description Logic

This work proposes a generalization of Classical Description Logic (DL) to the
many-valued and fuzzy case. In order to make a confrontation of the new general-
ized framework with the old one, we briefly introduce in this section the classical
framework on DL. For an exhaustive presentation of the subject, the reader is
invited to read the general Handbook of Description Logic [Baader et al., 2003]
and the more recent paper [Baader et al., 2008].

2.2.1 A little bit of history

Description Logics, as we nowadays know them, are the result of at least 30
years of research on the field of knowledge representation. This research did not
begin within the DL framework, rather arrived to this framework through an
evolution process of older formalisms such as frame-based systems and KL-ONE
based systems.

Frame-based systems

DLs are considered an evolution of frame-based systems that were systems based
on the old idea that human mind can be represented in its totality by a more or
less comprehensive program. For this fact one of the main features (and, as it
became evident later, weaknesses) of these old systems was that of considering
formal logic as a useless limitation. The main examples of frame-based systems
are Quillian’s Semantic networks and Minsky’s Frame systems.

Semantic networks Semantic networks have been defined in the ’60s by M.
R. Quillian in [Quillian, 1967] with the aim of giving a model of the way human
memory works. The program that Quillian defines can be roughly divided into
three parts:

• The first part is a memory model that works like a linked vocabulary. For
each word definition in the vocabulary there is a plane containing a type
node for the word defined by the definition and a token node for every
other word appearing in the definition. The plane contains as well links
between the type node and the token nodes and between token nodes that
describe the structure of the definition. These links are of different types,

2.2. (Classical) Description Logic 25

depending on which kind of word (noun, verb, etc.) the linked token
node represents and are conditioned by the adverb that introduce them.
Between planes there are other kinds of links that relate the token nodes
in a given plane to the type nodes of the planes where the definitions of
the token nodes in the first plane lie. Once a significative amount of of
definition have been introduced, a net-like structure is obtained. Within
this structure, for every word can be identified what Quillian denotes by
full word concept, that is, the set of type and token nodes that can be
reached following all the links from the type node representing a given
word. Clearly two words can lie within the full word concept of each other
and there can have circular link paths.

Figure 2.2: Example of Quillian’s plane

• Semantic networks are not just a linked vocabulary since the second part
of the program, called search program allow to look for hidden relations
between words. Among the queries that can be done to the search program
there are (a) the set of words that lie in the full word concept of two given
words, (b) whether a word appears in the full word concept of another
word or (c) which modifier a word appears in the definition of another
word with.

• The third part of the program is a sentence generator. The sentence gen-
erator utilizes the work done by the search program on the data provided

26 Chapter 2. Preliminaries

by the memory model. It was thought to express sentences as close as it
was possible to the natural language, for this reason its aim was not that
of infer hidden logical consequences from the data provided in the memory
model.

Frame Systems Frame systems have been defined in the ’80s by M. Minsky
in [Minsky, 1981] with the aim of explaining the way people face new and known
challenges by using mental frames, that in natural language can be denoted as
nothing more than mental stereotypes. Frames, according to Minsky, are data
structures that represent stereotyped situations. At the higher levels of a frame
there are nodes that do not changes with the instantiation of a situation, while at
the lower levels there are empty nodes that can be filled up either with contingent
information or with other frames. People use mental frames not only in order
to act in a given situation, but, above all, to act fast, since there is no need to
compute how to behave every time the same situation (or a similar one) is faced.
When either a new situation or an old one with new features is faced, is when
preexisting frames are either modified or substituted by new ones. Since, when
a frame has to be used, it is important that the nodes in the lower levels have
already been filled up, Minsky’s frame systems are often considered an example
of default reasoning.

Formally a frame system is a set of frames that consider the same situation
seen from different points of view. Among the reasoning services of frame systems
there are: (a) subsumption between frames, in order to give specific situations a
more general meaning, (b) search of slot fillers, in order to add information to a
given situation. there is no standard semantics, but a number of expert system
based on this formalism have been done. As an example we provide the notation
used in the KEE system.

Frame systems had procedural and descriptive aspects. The semantics of
procedural aspects was not very clear. For this reason, it is difficult to compare
them with other formalisms. About the descriptive aspects, despite the fact
that Minsky presented his formalism as an alternative to logic-based formalisms,
already since the ’70s there were ways to express frames in first order sentences.

KL-ONE based systems

Frame-based systems were formalisms based on researches about human cogni-
tive behavior. In this sense, given a memory model, their goal was to obtain a
program that imitates human mental skills, e.g. natural language understanding.
For this reason these systems were thought in a way that they could support
language ambiguity and this fact made them far from based on formal logic,
when their authors were not explicitly against the use of logic.

During the second half of ’70s began to have researches that evidenced the
limits of frame-based systems. Among those limits we can find the following
ones:

• it was not so clear what the systems had to compute (see [Woods, 1975]),

2.2. (Classical) Description Logic 27

Figure 2.3: Example of KEE Knowledge Base

• there was not a simple way to give these system a clear formal semantics,

• most aspects of these systems can be formalized by means of first order
logic and it seems that the contributions of frame-based systems is not so
novel (see [Hayes, 1977]).

Despite neither the first version of KL-ONE, developed by R. J. Brachman in
[Brachman, 1979], was based on formal logic, nevertheless this new representa-
tion system brought some significative novelty with respect to the old framework
of frame-based systems. We report some of them:

• it includes the skill of extract implicit conclusions from given knowledge,

• it gives the user the possibility of defining new complex concepts and roles,

• it introduces the difference between individual concepts and generic con-
cepts,

• the difference between the concept definitions with sufficient and necessary
condition and those with just necessary ones is studied ,

• classification (computation of the hierarchy of subsumptions) and realiza-
tion (computation of the more specific atomic concept) are added to the
reasoning tasks,

Besides these novelties, KL-ONE had some weaknesses that became evident
quite early. Among those weaknesses we can find the lack of a clear formal
semantics and the fact that the algorithms for deciding classification and real-
ization were incomplete. In order to overcome the weaknesses of KL-ONE it has
been proposed, as guidelines for new systems, (a) the fact of thinking the system
under the point of view of functionality, i.e. the reasoning services provided to
the user, more than under the point of view of the mere concept representation;

28 Chapter 2. Preliminaries

(b) a clearer distinction between the knowledge representing relations among
concepts and that representing assertion about individuals. These new guide-
lines were taken into account to build the systems KRIPTON and KANDOR.

Description Logics

Besides the weaknesses that KL-ONE-like system presented, they brought a new
way to see knowledge representation systems. On the one hand, in fact it has
been adopted the so-called functional approach, that consisted in putting the
attention on the services provided by the KR systems, more than on the way it
represents knowledge. This change of perspective can be seen at the origin of the
growing interest that, since the ’80s, researchers put on decision algorithms and
their complexity. On the other hand, the need of a clear semantics can be seen
at the origin of the fact that systems began to be more and more logic-based
and an unambiguous Tarsky-style semantics was adopted.

The fact of putting attention on the reasoning tasks and on the logical lan-
guage of the systems allowed to think about those systems in a more abstract
way as clearly defined description languages, even though no necessarily there
was actual program behind the language. This means, as well, that the lan-
guages are now quantitatively comparable, mainly under two points of view: the
computational complexity of reasoning, on the one side, and the expressivity of
the language, on the other. Since the ’80s, the history of proper DL systems
is, indeed, characterized by the tradeoff between complexity and expressivity of
the language and the search of a fair equilibrium between these two features has
been the main fuel of the great advancements that research in DL have seen
since then.

The DL systems of the ’80s, like BACK and LOOM, used so-called struc-
tural subsumption algorithms. These kinds of algorithm perform a comparison
in the syntactic structure of two given concept description after having trans-
formed them in a suitable normal form. Structural subsumption algorithms
are relatively efficient when applied to very inexpressive languages, as proven
in [Brachman and Levesque, 1984]. Nevertheless, in more expressive languages
these algorithms turn out to be incomplete. Further researches of the same
period, like [Brachman and Levesque, 1985], allowed by the use of abstract lan-
guages, revealed that expressivity improvements increase intractability of the
reasoning tasks. In particular, [Nebel, 1990] revealed that reasoning in presence
of a Terminological Box is a computationally intractable problem in itself.

The ’90s saw the introduction of a new kind of algorithm: the tableau based
algorithms (see, for example, [Hollunder et al., 1990]). These kind of algorithm
revealed to be complete also for quite expressive DLs and allowed a systematic
study of complexity of reasoning in various DLs, in particular, those related with
logical languages (see [Donini et al., 1992, Schmidt-Schauss and Smolka, 1991]).
Moreover, they are suitable to be highly optimized in such a way that they
can lead to a good practical behavior of the system. In the same period the
relationships between DLs and classical modal logics ([Schild, 1991]), on the one
hand and with fragments of classical first order logic ([?]) are investigated.

2.2. (Classical) Description Logic 29

Nowadays very expressive DL systems are utilized as the reasoning engines
of the Semantic Web and for knowledge representation in medical and bio-
informatic data bases.

2.2.2 Syntax

Knowledge is represented in DL systems through the construction of concept
descriptions by means of a machinery that consists of a set NA of concepts
names, a set NR of role names, a set NI of individual names, and a set of
concept and role constructors. The difference between description languages
consists in the set of concept and role constructors utilized to build up concept
descriptions and each of these sets is denote by a sequence of letters. In what
follows we briefly introduce, by means of syntactic rules, the symbology used
to denote each constructor, the name of the constructor and the letter used to
denote the language that utilizes that constructor.

Concept constructors

Given a variable for atomic concept A ∈ NA, a variable for role name R ∈ NR
and variables for complex concepts C,D, a concept description is inductively
built in accordance with the following syntactic rules:

C,D −→ ⊥ empty concept FL0

> universal concept FL0

A atomic concept FL0

C uD conjunction FL0

∀R.C value restriction FL0

∃R.> restricted existential quantif. FL−
¬A atomic complementation AL
¬C complementation C
C tD disjunction U
∃R.C existential quantification E
≥ nR unqualified
≤ nR number N
= nR restriction
≥ nR.C qualified
≤ nR.C number Q
= nR.C restriction
{a} nominals O
d concrete domains (D)

Role constructors

Given variables for complex concepts R,S and a variable for functional role name
f ∈ NR, a role description is inductively built in accordance with the following
syntactic rules:

30 Chapter 2. Preliminaries

R,S −→ R atomic role FL0

R+ transitive role R+

R∗ reflexive-transitive role S
U universal role S
R− inverse role I
R u S role intersection R
¬R role complementation H
R t S role union H
R ◦ S role composition
f functional role (feature) F

Note that the language name S denotes ALC plus reflexive-transitive roles.

2.2.3 Semantics

An interpretation is a pair I = (∆I , ·I) consisting of a nonempty set ∆I (called
domain) and of an interpretation function ·I that assigns:

1. to each individual a an element aI ∈ ∆I such that aI 6= bI if a 6= b
(Unique Name Assumption, different individuals denote different objects
of the domain),

2. to each atomic concept A a subset AI ⊆ ∆I of the domain set,

3. to each role R a binary relation RI ⊆ ∆I ×∆I on the domain set.

Moreover, the interpretation function is inductively extended to complex
concepts and roles as follows:

⊥I = ∅
>I = ∆I

(¬C)I = ∆I \ CI
(C uD)I = CI ∩DI
(C tD)I = CI ∪DI
(∀R.C)I = {a ∈ ∆I | ∀b ∈ ∆I , RI(a, b)→ CI(b)}
(∃R.C)I = {a ∈ ∆I | ∃b ∈ ∆I such that RI(a, b) ∧ CI(b)}
(≥ nR)I = {a ∈ ∆I | |{b ∈ ∆I | RI(a, b)}| ≥ n}
(≤ nR)I = {a ∈ ∆I | |{b ∈ ∆I | RI(a, b)}| ≤ n}
(= nR)I = {a ∈ ∆I | |{b ∈ ∆I | RI(a, b)}| = n}

(≥ nR.C)I = {a ∈ ∆I | |{b ∈ ∆I | RI(a, b) ∧ CI(b)}| ≥ n}
(≤ nR.C)I = {a ∈ ∆I | |{b ∈ ∆I | RI(a, b) ∧ CI(b)}| ≤ n}
(= nR.C)I = {a ∈ ∆I | |{b ∈ ∆I | RI(a, b) ∧ CI(b)}| = n}

{a}I = {aI} ⊆ ∆I

UI = ∆I ×∆I

(R−)I = {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}
(¬R)I = ∆I ×∆I \RI

(R u S)I = RI ∩ SI
(R t S)I = RI ∪ SI
(R ◦ S)I = RI ◦ SI

2.2. (Classical) Description Logic 31

Moreover, allowing transitive, transitive-reflexive or functional roles, means
that:

• there exists a subset NR+ ⊆ NR of the set of role names such that, for
each R ∈ NR+ and a, b, c ∈ ∆I , it holds that, if (a, b), (b, c) ∈ RI , then
(a, c) ∈ RI as well,

• there exists a subset NR∗ ⊆ NR of the set of role names such that, for each
R ∈ NR∗ and a, b, c ∈ ∆I , it holds both that, if (a, b), (b, c) ∈ RI , then
(a, c) ∈ RI and (a, a) ∈ RI ,

• there exists a subset NF ⊆ NR of the set of role names such that, for each
f ∈ NF and a ∈ ∆I , it holds that |{b ∈ ∆I | (a, b) ∈ fI}| ≤ 1.

Some straightforward consequences of the semantics of constructors are that:

• ALE ,ALU ⊆ ALC,

• if DL is a description language, then DLF ⊆ DLN ⊆ DLQ.

• if DL is a description language, then DLR ⊆ DLH.

2.2.4 Reasoning

As said before, besides the description of the world, a fundamental service pro-
vided by DL systems is that of inferring hidden conclusions from known premises.
In this section we give an account of the syntax and semantics of the premises
and the types of conclusions that can be inferred from those premises.

Knowledge bases

Given a description language DL and two DL concepts C,D, a general concept
inclusion (GCI) (or inclusion axiom) is an expression of the form:

C v D

An interpretation I satisfies an inclusion axiom C v D if CI ⊆ DI .
An equivalence axiom is an expression of the form:

C ≡ D

which, in the classical case, is an abbreviation for the pair of axioms C v D
and D v C. An interpretation I satisfies an equivalence axiom C ≡ D if
CI = DI .

A finite set T of GCIs is called a terminology or TBox. An axiom of the
form A ≡ C, where A is a concept name, is called a definition. It is said that
a concept name A directly uses a concept name B in a TBox T if there is a
definition A v C ∈ T such that B occurs in C. Furthermore, it is said that a
concept name A uses a concept name B if B is in the transitive closure of the
relation of directly using with respect to A. A TBox T is called definitorial or
acyclic if:

32 Chapter 2. Preliminaries

• it contains only definitions,

• it contains at most one definition for each concept name occurring in it,

• no concept name occurring in it uses itself.

Given a description language DL, a DL concept C, a role R and two indi-
viduals a, b ∈ NI , a concept assertion axiom (or assertion) is an expression of
the form:

C(a)

An interpretation I satisfies an assertion C(a) if CI(aI) 6= ∅.
A role assertion axiom is an expression of the form:

R(a, b)

An interpretation I satisfies a role assertion R(a, b) if RI(aI , bI) 6= ∅.
A finite set of concept and role assertion axioms is called ABox. An ABox is

said to be local if just an individual a appears in each assertion.
Given a description language DLH and two DLH roles R,S, a role inclusion

axiom is an expression of the form:

R v S

An interpretation I satisfies a role inclusion axiom R v S if RI ⊆ SI . A
finite set of role inclusion axioms is called RBox.

Finally a knowledge base K consists of a TBox, an ABox and an RBox, each
one possibly empty.

Main inference problems

Consider a knowledge base K = (T ,A,R), a pair of concepts C,D, a pair of
roles R,S and a pair of individuals a, b, then we can define the main reasoning
tasks considered in the literature.

• C is satisfiable if there exists an interpretation I such that CI 6= ∅.

• K is consistent if there is an interpretation I that satisfies every axiom in
assertion axiom in A and every inclusion axiom in T ∪R. In this case we
say that I is a model of K

• C is satisfiable with respect to K if there exists a model I of K such that
CI 6= ∅.

• ConceptD subsumes concept C with respect toK (in symbols K |= C v D)
if, in every model I of K, it holds that CI ⊆ DI .

• Two concepts C,D are equivalent with respect to K (in symbols K |= C ≡
D) if, in every model I of K, it holds that CI = DI .

2.2. (Classical) Description Logic 33

• An individual a is an instance of C with respect to K (in symbols K |=
a : C) if, in every model I of K, it holds that aI ∈ CI .

• A pair of individuals a, b is an instance of R with respect to K (in symbols
K |= (a, b) : R) if, in every model I of K, it holds that (aI , bI) ∈ RI .

Note that, due to the classical semantics, in DL languages where all the
boolean operators are present, each one of the above reasoning problems can be
reduced to knowledge base consistency.

Complexity

The study of the computational complexity of the reasoning tasks is fundamental
In Description Logics and it has worked, since the beginning of the research on
DL, as an engine for the improvements made on this subject. For many languages
the complexity classes they belong to have been identified and often a systematic
study of what causes the increment of complexity has been undertaken. Here
we summarize some important results in the literature.

Sat. Unsat. Sat. acyclic KB Sat. w.r.t. KB Subs.

FL− PTIME
AL co-NP EXPTIME PTIME
ALI PTIME
ALN PSPACE PTIME
ALNI PTIME co-NP
ALE NP co-NP PSPACE NP

FL−E NP NP
ALR NP NP
ALER NP NP
ALU co-NP co-NP
ALC PSPACE PSPACE PSPACE
ALEN PSPACE
ALUR PSPACE
ALNR PSPACE
ALCNR PSPACE
ALCH NEXPTIME
ALCNO NEXPTIME
ALCNR NEXPTIME

Table 2.2: Important complexity results in classical DL

The result about FL− refers just to a PTIME hardness and
is from [Brachman and Levesque, 1984]. The results about AL from
[Schmidt-Schauss and Smolka, 1991]. The results about ALI and ALNI are
from available in [Donini et al., 1999]. The ones about ALN , ALU , ALUR,

34 Chapter 2. Preliminaries

ALNR and ALCNR are from [Donini et al., 1997]. The result about ALE is
from [Donini et al., 1992]. The NP-hardness results for ALR, ALER, FL−E ,
are proven in [Donini et al., 1997], while the NP membership results for the same
languages are proven in [Donini et al., 1992]. Complexity of concept satisfiability
w.r.t. acyclic axioms for language AL can be found in [Buchheit et al., 1994],
[Calvanese, 1996] and [Buchheit et al., 1998] and the same result for the lan-
guage ALE in [Calvanese, 1996] both with respect to acyclic and general ax-
ioms. The result for ALC is from [Schmidt-Schauss and Smolka, 1991]. The
result for ALEN is from [Hemaspaandra, 1999]. The result for ALCH is from
[Lutz and Sattler, 2001]. The complexity of concept satisfiability w.r.t. gen-
eral KBs refers to cyclic definitions and it is found in [Küsters, 1998]. The
result for ALCNO is from [Tobies, 2001]. The result for ALCNR is from
[Buchheit et al., 1993].

Chapter 3

Fuzzy Description Logic

In this chapter we introduce the fuzzy generalization of Description Logics. We
introduce our proposal for a syntax and semantics of Fuzzy Description Logics
up to the language that, in the classical case, would correspond to ALC. We
discuss the consequences that these choices have on the hierarchy of basic FDL
languages. Moreover, we provide a translation from ALC-like concepts to fuzzy
first order formulas and prove that it preserves the meaning of the involved
concepts. We also provide a translation from ALC-like concepts to Fuzzy multi-
Modal Logic formulas and vice-versa and, again, prove that it preserves the
meaning of the expressions involved.

3.1 Syntax

In this section we introduce the syntax of concepts and fuzzy axioms. In what
folloes, we assume that the algebra of truth values T is a complete chain.

3.1.1 Concepts

In the present work we will keep the symbols t, u, ¬, ⊥, and > to denote the
constructors of weak disjunction, weak conjunction, residuated negation, empty
and universal concepts, respectively. Moreover, as in [Cerami et al., 2010b], the
following symbols for the new propositional constructors will be adopted:

• � for strong disjunction,

• � for strong conjunction,

• A for residuated implication,

• ∼ for strong complementation,

• a symbol r for each r ∈ T \ {0, 1},

• N for Monteiro-Baaz operator.

35

36 Chapter 3. Fuzzy Description Logic

The classical signature can be maintained in a multi-valued framework, how-
ever here they will denote fuzzy sets and fuzzy relations. A description signature
is a tuple D = 〈NI , NA, NR〉, where:

• NI = {a, b, . . . } is a countable set of individual names,

• NA = {A,B, . . . } is a countable set of atomic concepts or concept names,

• NR = {R,S, . . . } is a countable set of atomic roles or role names.

The logical symbols are: a subset of the propositional constructors considered
above, plus the quantifiers ∀,∃. We will keep using the point “.” and parenthesis
“(” and “)” as auxiliary symbol with the usual syntax.

The language considered in the present work will be called IALCE . Given
A ∈ NA, and R ∈ NR, a complex concept in the language IALCE is inductively
defined in accordance to the following syntactic rules:

C,D −→ ⊥ empty concept FL0

> universal concept FL0

r constant concept FL0

A atomic concept FL0

C �D strong conjunction FL0

∀R.C value restriction FL0

∃R.> restricted existential quantif. FL−
∼A atomic complementation AL
NC delta operator D
C A D implication I
C uD weak conjunction I
∼C complementation C
C �D strong disjunction U
∃R.C existential quantification E

The notation proposed here is thought in order to maintain, as much as possi-
ble, the similarity with classical DL notation while, at the same time, introducing
the notation used in the framework of MFL. So:

• The language FL0 is, as in the classical case, with

– the empty concept ⊥,

– the universal concept >,

– the strong conjunction �,

– the value restriction ∀,
– the constant concepts r,

as concept constructors. The choice of the symbol � for strong conjunction
is due to the aim of maintaining a notation that is sometimes in MFL. The
presence of constant concepts r in language FL0 is due to the fact that it
contains already the classical constant concepts ⊥ and >.

3.1. Syntax 37

• The language FL− is built, as in the classical case, by adding the restricted
existential quantification ∃R.> to FL0.

• The language AL is built, again, as in the classical case, by adding the
atomic complementation ∼ A to language FL−. In this case, we will use
the symbol ∼ for complementation, as for languages that include ALC,
because it is traditionally used in MFL to denote the involutive negation.

• We introduce the symbol D for languages that have Delta operator N.

• We prefix the symbol I in those that have implication A.

• Languages XU are those that contain strong disjunction �.

• The name for languages that include the unrestricted existential quantifi-
cation ∃R.C will be maintained in XE as in the classical case.

Note that residuated negation ¬, weak conjunction u and weak disjunction
t are present in languages that include IAL because, if the algebra of truth
values T is a BL chain, these operators are definable from the implication A and
either the strong conjunction � or the empty concept ⊥. In fact:

• The constructor of weak conjunction u is definable from the implication
and the strong conjunction in the following way:

C uD := C � (C A D).

In MTL logic weak conjunction is a primitive connective, for this reason
we present it as a primitive concept constructor. Nevertheless, in order
to maintain the uniformity of the naming system for FDL languages, we
can adopt the convention that the weak conjunction constructor u is in-
troduced in languages that include IAL.

• The constructor of weak disjunction t is definable from the implication
and the weak conjunction in the following way:

C tD := ((C A D) A D) u ((D A C) A C).

• The constructor of residuated negation ¬ is definable from the implication
and the empty concept in the following way:

¬C := C A ⊥.

Hence, these operators are abbreviations in language IAL and in every lan-
guage expanding it.

38 Chapter 3. Fuzzy Description Logic

3.1.2 Knowledge bases

In the classical framework it is enough to state or deny a given axiom C v D
in order to express that this formula is true or not. In our framework we are
rather interested on reasoning on partial truth of formulas. With truth constants
in the language we can handle graded inclusion axioms in addition to graded
assertion axioms, as usually done in the literature on FDL (see, for example
[Straccia, 2004a], [Cerami et al., 2010b]). A graded axiom, either inclusion, like
〈C v D ≥ r〉, or assertion, like 〈C(a) ≥ r〉, is meant to state either a bound (ei-
ther upper or lower) or an exact value for the inclusion or the assertion involved.
Moreover the bound can be meant to be strict or not.

The first place where fuzzy axioms have been defined this way is
[Straccia, 1998], since in previous papers the notion of fuzzy axioms
was not considered. In [Straccia, 1998], just non-strict lower bound
axioms are considered. In [Straccia, 2001] have been introduced ax-
ioms stating a non-strict upper bound as well, but strict bound axioms
are not considered. Since then, some works on FDL consider strict
bound axioms, like [Straccia, 2004a, Stoilos et al., 2005a, Straccia, 2006,
Bobillo and Straccia, 2010] and some others do not consider strict bound
axioms, like [Straccia, 2004b, Straccia, 2005b, Bobillo and Straccia, 2007,
Cerami et al., 2010b, Bobillo et al., 2011, Baader and Peñaloza, 2011a,
Borgwardt and Peñaloza, 2011c, Cerami et al., 2012].

A fuzzy concept inclusion axiom (or fuzzy inclusion) is an expression of one
of the following four forms:

〈C v D ≥ r〉 non-strict lower bound inclusion axioms (3.1)

〈C v D ≤ r〉 non-strict upper bound inclusion axioms (3.2)

〈C v D > r〉 strict lower bound inclusion axioms (3.3)

〈C v D < r〉 strict upper bound inclusion axioms (3.4)

where C,D are concepts and r ∈ T .

A fuzzy concept assertion axiom (or fuzzy assertion) is an expression of one
of the following four forms:

〈C(a) ≥ r〉 non-strict lower bound assertion axioms (3.5)

〈C(a) ≤ r〉 non-strict upper bound assertion axioms (3.6)

〈C(a) > r〉 strict lower bound assertion axioms (3.7)

〈C(a) < r〉 strict upper bound assertion axioms (3.8)

where C is a concept, a is an individual constant and r ∈ T .

Finally, a fuzzy role assertion axioms (or fuzzy role assertion) is an expression
of the form:

〈R(a, b) ≥ r〉 role assertion axioms (3.9)

3.2. Semantics 39

where R is an atomic role, a, b are individual constants and r ∈ T . Note that for
roles we only consider non-strict lower bound role assertions 〈R(a, b) ≥ r〉. This
is due to the fact that in the literature are not considered other kind of axioms
but these.

As in the classical case, a KB for the languages that fall within the scope of
this work has two components: TBox and ABox.

A fuzzy TBox for an FDL language is a finite set of fuzzy inclusions. A fuzzy
ABox is a finite set of fuzzy assertions and role assertions. A fuzzy KB is a pair
K = 〈T ,A〉, where the first component is a fuzzy TBox and the second one is a
fuzzy ABox.

3.2 Semantics

A fuzzy interpretation is a pair I = (∆I , ·I) consisting of a nonempty (crisp) set
∆I (called domain) and of a fuzzy interpretation function ·I that assigns:

1. to each concept name A ∈ NC a fuzzy set, that is, a function AI : ∆I → T,

2. to each role name R ∈ NR a fuzzy relation, that is, a function RI : ∆I ×
∆I → T,

3. to each individual name a ∈ NI an object aI ∈ ∆I such that aI 6= bI

if a 6= b (Unique Name Assumption, different individuals denote different
objects of the domain).

The semantics of complex concepts is inductively defined as follows:

⊥I(x) := 0
>I(x) := 1
rI(x) := r

(∼ C)I(x) := 1− CI(x)
(NC)I(x) := 4CI(x)

(C �D)I(x) := CI(x) ∗DI(x)
(C uD)I(x) := min{CI(x), DI(x)}
(C �D)I(x) := CI(x) YDI(x)
(C A D)I(x) := CI(x)⇒ DI(x)

(∀R.C)I(x) := infy∈∆I{RI(x, y)⇒ CI(y)}
(∃R.C)I(x) := supy∈∆I{RI(x, y) ∗ CI(y)}

Hence, for every complex concept C we get a function CI : ∆I → [0, 1].

From the semantics of concepts we can define the semantics of fuzzy ax-
ioms. We say that a T-interpretation I satisfies the axioms 3.1, 3.1, 3.3 and 3.4
respectively, if

40 Chapter 3. Fuzzy Description Logic

inf
x∈∆I

{CI(x)⇒ DI(x)} ≥ r (3.10)

inf
x∈∆I

{CI(x)⇒ DI(x)} ≤ r (3.11)

inf
x∈∆I

{CI(x)⇒ DI(x)} > r (3.12)

inf
x∈∆I

{CI(x)⇒ DI(x)} < r (3.13)

We say that a T-interpretation I satisfies the axioms 3.5, 3.6, 3.7 and 3.8
respectively if

CI(aI) ≥ r (3.14)

CI(aI) ≤ r (3.15)

CI(aI) > r (3.16)

CI(aI) < r (3.17)

We say that a T-interpretation I satisfies the axiom 3.9, if

RI(aI , bI) ≥ r (3.18)

3.2.1 Witnessed, quasi-witnessed and strongly witnessed
interpretations

In the literature have been considered different kinds of interpretations. In the
definitions that we propose there is no restriction on the kind of interpretation
considered, as it has been done in the first works on FDL. In [Hájek, 2005]
the notion of witnessed interpretation has been introduced. Since then most
researchers preferred to restrict the reasoning tasks to witnessed interpretations
because it seems a quite natural restriction and reasoning tasks so restricted
have a very good computational behavior.

Definition 17 (Witnessed interpretation, [Hájek, 2005]). An interpretation I =
(∆I , ·I) is witnessed in case that

(wit∃) for every concept C, every role name R and every a ∈ ∆I there is some
b ∈ ∆I such that

(∃R.C)I(a) = RI(a, b) ∗ CI(b),

(wit∀) for every concept C, every role name R and every a ∈ ∆I there is some
b ∈ ∆I such that

(∀R.C)I(a) = RI(a, b)⇒ CI(b).

3.2. Semantics 41

Notice that, in Definition 17, we do not ask every formula to be witnessed,
just the ones that are the semantics of quantified concepts. In this sense, a wit-
nessed interpretation is not just an FDL interpretation obtained by translating
a witnessed model (M,T) defined for first order logic in Section 2.1.3 to an FDL
interpretation IM, as done in Section 3.6, because it is restricted to certain kinds
of formulas.

Following the definition of closed model from
[Laskowski and Malekpour, 2007], in [Cerami et al., 2010a] the notion of
quasi-witnessed interpretation has been introduced.

Definition 18 (Quasi-witnessed interpretation, [Cerami et al., 2010a]). An in-
terpretation I = (∆I , ·I) is quasi-witnessed when it satisfies condition (wit∃)
and

(qwit∀) for every concept C, every role name R and every a ∈ ∆I either
(∀R.C)I(a) = 0 or there is some b ∈ ∆I such that

(∀R.C)I(a) = RI(a, b)⇒ CI(b).

Again, in Definition 18, we do not ask every formula to be quasi-witnessed,
just the ones that are the semantics of quantified concepts. In this sense, a
quasi-witnessed interpretation is not just an FDL interpretation obtained by
translating a closed model (M,T) defined for first order logic in Section 2.1.3
to an FDL interpretation IM, as done in Section 3.6. They are rather a gener-
alization of witnessed interpretations.

In [Baader and Peñaloza, 2011b] the notion of strongly witnessed interpreta-
tion has been introduced.

Definition 19 (Strongly witnessed interpretation,
[Baader and Peñaloza, 2011b]). An interpretation I = (∆I , ·I) is strongly
witnessed when it satisfies conditions (wit∃), (wit∀) and

(swit∀) for every pair of concepts C,D, there is some b ∈ ∆I such that

inf
x∈∆I

{CI(x)⇒ DI(x)} = CI(b)⇒ DI(b)

In this case too, in Definition 19, we do not ask every formula to be strongly
witnessed, just the ones that are the semantics of quantified concepts. In this
sense, a strongly witnessed interpretation is not just an FDL interpretation ob-
tained by translating a quasi-witnessed model (M,T) defined for first order logic
in Section 2.1.3 to an FDL interpretation IM, as done in Section 3.6. They are
rather a generalization of witnessed interpretations.

This further restriction to the notion of witnessed interpretation is
not so much used because, if T is a continuous chain, it imposes too
strict constraints to the interpretations considered. Moreover, as said in
[Baader and Peñaloza, 2011b], “it does not capture the spirit of fuzzy concept
inclusions”, since “it is not really necessary that the infimum of the values for
the residuum is indeed reached”. On the other hand, if T is a finite chain, it is
straightforward that every interpretation I is strongly witnessed.

42 Chapter 3. Fuzzy Description Logic

3.3 The Hierarchy of basic FDL languages

Due to the above defined semantics, in our framework the languages ALE and
IAL are not strictly contained in ALC. This is due to the fact that, in most
many-valued logics, implication is not definable from conjunction and negation
(neither the residuated negation, nor the involutive one). Moreover, the existen-
tial quantifier is not definable from the universal one by means of the negation
(neither the residuated negation, nor the involutive one) in the same way as it
is done in classical DL.

Since in our framework we do not have the same possibility of reducing
languages like in the classical case, the hierarchy of basic languages obtained
is more cumbersome. The new hierarchy of basic languages can be represented
as in Figure 3.1, that shows the partially ordered set of inclusions among the
languages obtained by successively adding a basic operator or another. Strong
union is definable from strong intersection and strong negation by a De Morgan
law, i.e., as

C �D :=∼ (∼ C� ∼ D)

Hence, the language ALU is strictly contained in the language ALC.
Notice that the supremum of the poset in Figure 3.1 will be called in our

framework IALCE , instead of ALC, as in the classical case.

Notice that the general hierarchy in Fig. 3.1 can be simplified when we deal
with (either finite- or infinite-valued) Lukasiewicz Logic. In this case, indeed, the
fact that the residuated negation is involutive implies that E and U are definable
by duality from value restriction and the strong conjunction, respectively, by
means of the involutive negation as is usually done in classical DL and the same
holds for the constructor of implication. Thus, in the case of FDLs based on
 Lukasiewicz Logic, the languages ALCE , IALC, IALCE coincide with ALC.

3.4 Reasoning tasks

Among the reasoning tasks that can be defined in a multi-valued framework we
find the generalization of the ones that are usual in a classical framework. Being
the logic many-valued, these tasks can be considered in their graded versions.
In addition to these reasoning tasks in the literature have been defined more
tasks which are proper of a multi-valued framework and that we report in the
following list. In what follows, let r ∈ T .

• Different notions of the concept satisfiability task have been considered
in the literature:

– it can be meant as lower bound r-satisfiability, that is, the problem
whether, for concept C, there exists a T-interpretation I and an
object a ∈ ∆I such that CI(a) ≥ r, in this case we say that concept
C is ≥ r-satisfiable;

3.4. Reasoning tasks 43

ALε

AL	

IAL	

IALU	

IALC	

ALU	

ALC	

IALε ALUε	

ALCε	
 IALUε

 IALCε

+ε +I	

+U	

+C	

Figure 3.1: Hierarchy of basic languages

– it can be meant as exact value r-satisfiability, that is, the problem
whether, for concept C, there exists a T-interpretation I and an
object a ∈ ∆I such that CI(a) = r, in this case we say that concept
C is r-satisfiable. In the particular case when r = 1, we will simply
say that C is satisfiable.

– it can be meant as positive satisfiability, that is, the problem whether,
for concept C, there exists a T-interpretation I, an object a ∈ ∆I

and a truth value s ∈ T with s > 0, such that CI(a) = s, in this case
we say that concept C is positively satisfiable or consistent.

Notice, however, that depending on the chain T considered, the notions of
≥ r-satisfiability and r-satisfiability may not make sense when r < 1. It
is well known (see [Hájek, 1998b]) that, if there is a valuation e from the
set of propositional formulas to a Gödel or product chain T such that, for
a formula ϕ, it holds that e(ϕ) = r < 1, then it can be found a valuation
e′ such that e′(ϕ) = r′ with 1 > r′ 6= r. So, in what follows, we will speak
about 1-satisfiability and positive satisfiability in the case of Gödel and
product chains. The notions of ≥ r- and r-satisfiability will be used only
when T is a Lukasiewicz chain.

• Concept r-subsumption is the problem whether, given concepts C,D,
for every T-interpretation I and every a ∈ ∆I , it holds that CI(a) ⇒

44 Chapter 3. Fuzzy Description Logic

DI(a) ≥ r, in this case we say that concept D subsumes concept C in a
degree greater or equal to r (or that D r-subsumes C).

• Fuzzy knowledge base consistency is the problem whether, for a given
fuzzy KB K = 〈T ,A〉 there is a T-interpretation I such that, for every
fuzzy inclusion of type 3.1, 3.2, 3.3 and 3.4 occurring in T , every fuzzy
assertion of type 3.5, 3.6, 3.7 and 3.8 and every fuzzy role assertion of type
3.9 occurring in A, in-equations 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17
and 3.18 respectively hold; in this case we say that the KB is consistent
and that I satisfies K, in symbols I |= K.

• Concept r-satisfiability with respect to a knowledge base is the
problem whether, for a given fuzzy concept C and a fuzzy KB K, there is
a T-interpretation I which, on the one hand, satisfies K and, on the other,
satisfies C to a degree greater or equal to r; in this case we say that C is
r-satisfiable w.r.t. K.

• Entailment of an axiom by a knowledge base is the problem whether,
for a given fuzzy axiom ϕ and a fuzzy KB K, every T-interpretation I
which satisfies K, also satisfies ϕ; in this case we say that K entails ϕ, in
symbols K |= ϕ.

• The best satisfiability degree of a concept with respect to a KB
(defined in [Straccia and Bobillo, 2007]) is the problem of determining, for
a given fuzzy concept C and a fuzzy knowledge base K, which is the supre-
mum of the r ∈ T with respect to which C is ≥ r-satisfiable with respect
to K; that is, bsd(K, C) = supI|=K{supx∈∆I{CI(x)}}.

• The best entailment degree of an axiom with respect to a KB
(defined in [Straccia, 2001]) is the problem of determining, for a given
(non-fuzzy) axiom ϕ = C v D or ϕ = C(a) and a fuzzy knowledge base
K, which is the supremum of the r ∈ T with respect to which 〈ϕ ≥ r〉 is
entailed by K; that is, bed(K, ϕ) = sup{r : K |= 〈ϕ ≥ r〉}.

3.5 Reductions

In the classical framework it is usual to consider reductions between reasoning
tasks in order to apply procedures, that have been designed for a given task, to
other tasks that are reducible to the given one. In this section we will study not
only what kinds of reduction between reasoning tasks are achievable within the
FDL framework, but also when some types of axioms can be reduced to other
ones. In this way, in some cases, the rules for writing axioms can be simplified.

3.5.1 Reductions between axioms

Since in FDL there is the possibility of considering a graded notion of subsump-
tion, equivalence and assertion, there are obviously more types of fuzzy axioms

3.5. Reductions 45

in FDL than crisp axioms in classical DL, as we have seen in Section 3.1.2. A
question that naturally arises is, then, whether those types can be reduced, that
is, whether there are axioms that can be defined in terms of other axioms, as
it is done in classical DL for the case e.g. of the equivalence axioms, that can
be expressed as a conjunction of inclusion axioms. In this section we will con-
sider some cases that depend neither on the FDL language considered nor on
the particular algebra of truth values adopted as a semantics, as well as cases
that depend either on the language or on the algebra of truth values.

Reductions that depend neither on the language nor on the algebra
of truth values

In the literature are often considered exact value axioms 〈C v D = r〉 and
〈C(a) = r〉 as well as equivalence axioms 〈C ≡ D B r〉. Here we explain why we
are not considering them in our framework.

Exact value axioms Axioms of types:

〈C v D = r〉, 〈C(a) = r〉

are abbreviations for the simultaneous presence of non-strict lower and upper
bound axioms, i.e. axioms 3.1 and 3.2 in the first case, and axioms 3.5 and 3.6
in the second case. In other words, the knowledge base K ∪ {〈C v D = r〉} can
be substituted by the knowledge base K ∪ {〈C v D ≥ r〉, 〈C v D ≤ r〉}. The
same holds for axioms 〈C(a) = r〉.

Fuzzy equivalence axioms As in the classical framework, the constraints
expressed by means of equivalence axioms can be expressed by means of the
simultaneous presence of two fuzzy inclusion axioms. This means that the
knowledge base K ∪ {〈C ≡ D B r〉} can be substituted by the knowledge base
K ∪ {〈C v D B r〉, 〈D v C B r〉}, with r ∈ T and B∈ {≥, >,=}. This is due
to the convention that the satisfiability of a set of axioms is the same as the
satisfiability of the weak conjunction of these axioms. This convention exploits
the good behavior that weak conjunction presents with respect to quantifiers.
In fact, for every concepts C and D, r ∈ T and every interpretation I, it holds
that:

I |= 〈C ≡ D ≥ r〉

⇐⇒ infx∈∆I{(C(x)⇒ D(x)) ∗ (D(x)⇒ C(x))} ≥ r

⇐⇒ infx∈∆I{min{C(x)⇒ D(x), D(x)⇒ C(x)}} ≥ r

⇐⇒ min{infx∈∆I{C(x)⇒ D(x)}, infx∈∆I{D(x)⇒ C(x)}} ≥ r

⇐⇒ both infx∈∆I{C(x)⇒ D(x)} B r and infx∈∆I{D(x)⇒ C(x)} ≥ r

⇐⇒ both I |= 〈C v D B r〉 and I |= 〈D v C ≥ r〉

46 Chapter 3. Fuzzy Description Logic

and the same holds true with a strict lower bound > or an equality =, instead
of a non-stricu lower bound.

If B∈ {≤, <}, then it is enough with adding just one of the two fuzzy inclu-
sions 〈C v D B r〉 and 〈D v C B r〉 to K.

Notice that, if, for giving a semantics to the simultaneous presence of more
axioms, a strong conjunction is used, instead of the weak one, equivalence axioms
can not, in general, be re-defined by means of two inclusions. Under Lukasiewicz
semantics, for example, the infimum of an equivalence does not need to take the
same value of the strong conjunction of the infimums of two inclusions. Consider
indeed the signature D = 〈NC〉, where NC = {A,B}. Moreover, consider the
interpretation I, where:

• ∆I = {a, b},

• AI(a) = 0.5, AI(b) = 0.8, BI(a) = 0.6, BI(b) = 0.5,

Then, on the one hand, infx∈∆I{(AI(x) ⇒ BI(x)) ∗ (BI(x) ⇒ AI(x))} =
0.7. But, on the other hand, infx∈∆I{AI(x) ⇒ BI(x)} ∗ infx∈∆I{BI(x) ⇒
AI(x)} = 0.6.

Reductions that depend on the language

In languages that are enough expressive, the number of axioms proposed in
Section 3.1 can be made smaller. Here we see when and how this can be achieved.

Fuzzy assertion axioms In every language that contains language IFL0CD
(that is, every language that contains truth constants, implication concept con-
structor A, Delta operator N and involutive negation ∼) every fuzzy assertion
axiom can be rewritten in terms of a non-strict lower bound assertion axiom
〈C(a) ≥ r〉. We provide the rewriting case by case:

• Axioms of type 〈C(a) ≤ r〉 can be rewritten as 〈∼ C(a) ≥ 1− r〉.

• Axioms of type 〈C(a) > r〉 can be rewritten as 〈¬ 4 (C A r)(a) ≥ 1〉.

• Axioms of type 〈C(a) < r〉 can be rewritten as 〈¬ 4 (r A C)(a) ≥ 1〉.

• Axioms of type 〈C(a) = r〉 can be rewritten as 〈((r A C)� (C A r))(a) ≥
1〉.

This means that we can consider just fuzzy assertion axioms of type 〈C(a) ≥
r〉, because every other type of fuzzy assertion axiom can be rewritten in terms
of this type of axioms.

3.5. Reductions 47

Reductions that depend on the algebra of truth values

Lower bound fuzzy axioms In every language that contains language
IFL0C (that is, every language that contains truth constants, implication con-
cept constructor A and involutive negation ∼) and when the algebra of truth
values T is a discrete chain, it is possible to reduce upper bound inclusion axioms
to lower bound concept assertions. In fact, for every concepts C and D, r ∈ T ,
every interpretation I and an individual name a, it holds that:

I |= 〈C v D ≤ r〉

⇐⇒ infx∈∆I{C(x)⇒ D(x)} ≤ r

⇐⇒ 1− infx∈∆I{C(x)⇒ D(x)} ≥ 1− r

⇐⇒ supx∈∆I{1− (C(x)⇒ D(x))} ≥ 1− r

⇐⇒ I |= 〈∼ (C A D)(a) ≥ 1− r〉

In the same way the result can be proven for < and >. In FDLs does not exist
a way to express an upper bound inclusion axiom 〈C v D ≤ r〉 as a lower bound
inclusion axiom 〈C ′ v D′ ≥ r′〉. This is due to semantic considerations. If the
algebra of truth values T is a discrete chain, an upper bound inclusion axiom
states that there is an T-interpretation I and a domain object a ∈ ∆I such
that CI(a)⇒ DI(a) ≤ r. Hence, upper bound inclusion axioms are quite non-
standard axioms, because, differently from usual axioms, they have an existential
flavour. The exact value inclusion axiom 〈C v D = r〉 is the conjunction of the
lower bound inclusion axiom 〈C v D ≥ r〉 and the upper bound inclusion axiom
〈C v D ≤ r〉. Hence, what it expresses is that, for every interpretation I, not
only for every a ∈ ∆I it holds that (C A D)I(a) ≥ r, but also that there indeed
exists one element b ∈ ∆I such that (C A D)I(b) ≥ r. It is worth notice that
the satisfiability of an exact value inclusion axiom 〈C v D = r〉 is equivalent to
the satisfiability of axiom 〈C v D ≥ r〉 in a strongly witnessed interpretation.
This is indeed different from expressing that a given inclusion C v D shall have
exactly value r for every object of every interpretation. This last constraint can
be expressed as the conjunction of the axioms:

• 〈C v D ≥ r〉,

• 〈> v∼ (C A D) ≥ 1− r〉.

Strict upper bound fuzzy axioms From the considerations made about
lower bound inclusion axioms and the fact that in general

I |= 〈C v D > r〉 ⇐⇒ I 2 〈C v D ≤ r〉

we easily obtain that, when T is a discrete chain, in every language that contains
language IFL0C it holds that

I |= 〈C v D > r〉 ⇐⇒ I 2 〈∼ (C A D)(a) ≥ 1− r〉

48 Chapter 3. Fuzzy Description Logic

where a is a new individual name. The same is true for strict lower bound
assertions.

Strict bound inclusion axioms When the complete chain T is a finite chain,
it is possible to reduce strict bound axioms to non-strict ones. This is due to
the fact that, with a finite set of truth values, if a truth value is strictly greater
than a given value r ∈ T , then it is greater or equal to the lower truth value
greater or equal than r. Note that, when T is a finite linearly ordered set, there
is always such a value. So, let I be an FDL interpretation, T = {r1 < . . . < rn}
and 1 ≤ i ≤ n, then:

• I |= 〈C v D > ri〉 ⇐⇒ I |= 〈C v D ≥ ri+1〉,

• I |= 〈C v D < ri〉 ⇐⇒ I |= 〈C v D ≤ ri−1〉,

Smaller syntax for fuzzy axioms

Resuming what explained in the previous subsections, in every language that
contains language IFL0C and under a discrete chain of truth values, the set of
fuzzy axioms needed in order to define every other fuzzy axiom is the following:

〈C v D ≥ r〉, 〈C(a) ≥ r〉, 〈R(a, b) ≥ r〉 (3.19)

This means that for every knowledge base K there exists another knowledge
base K′ where just axioms in 3.19 occur.

3.5.2 Reductions between reasoning tasks

Within the classical framework, every reasoning task can be polynomially re-
duced to knowledge base (in)consistency (see [Baader et al., 2008, pag. 142]).
In this section we will see which reductions can be performed in FDLs. In this
case, again, we will consider cases that depend neither on the FDL language
considered nor on the particular algebra of truth values adopted as a semantics,
as well as cases that depend either on the language or on the algebra of truth
values. Moreover, we will consider reductions to reasoning tasks other than KB
consistency that will be useful in the following chapters.

Reductions to KB consistency that depend neither on the language
nor on the algebra of truth values

• Concept r-satisfiability and≥ r-satisfiability can be both reduced to knowl-
edge base consistency. Deciding whether a concept C is r-satisfiable
(≥ r-satisfiable, respectively) is the same as deciding whether the ABox
A = {〈C(a) = r〉} (ABox A = {〈C(a) ≥ r〉}, respectively) is consistent,
where a is an individual name. Concept positive satisfiability, as well, can

3.5. Reductions 49

be reduced to knowledge base consistency, but in a different way. Decid-
ing whether a concept C is positively satisfiable, is the same as deciding
whether the TBox T = {〈C v ⊥ ≥ 1〉} is unsatisfiable.

• Concept r-satisfiability with respect to a knowledge base can be reduced to
knowledge base consistency. Deciding whether a concept C is r-satisfiable
with respect to knowledge base K is the same as deciding whether knowl-
edge base K ∪ {〈C(a) ≥ r〉} is consistent, where a is a new individual not
appearing in K.

• The best satisfiability degree of a concept with respect to a KB can be
reduced to a family of knowledge base consistency problems. In fact, by
the previous item, determining the best satisfiability degree of concept C
w.r.t. knowledge base K is the same as determining which is the greater
value r such that K∪{〈C(a) ≥ r〉} is consistent, where a is a new individual
not appearing in K.

Reductions to KB consistency that depend on the language

• In every language that contains language IFL0C (that is, every language
that contains the implication concept constructor A and the involutive
negation ∼), the entailment of an axiom by a knowledge base K can be
reduced to knowledge base consistency. In the case of this reasoning task,
the way the reduction is performed, depends on the type of axiom entailed.

– K entails axiom 〈C v D ≥ r〉 iff, for every s ∈ T such that s > 0,
K ∪ {〈¬(r A (C A D))(a) ≥ s〉} is inconsistent, where a is a new
individual not appearing in K.

– K entails axiom 〈C v D > r〉 iff concept ∼ (C A D) is not ≥ 1 − r-
satisfiable with respect to knowledge base K iff K∪〈∼ (C A D)(a) ≥
1− r〉 is inconsistent.

– K entails axiom 〈C(a) ≥ r〉 iff K∪{〈¬(r A C)(a) ≥ 1〉} is inconsistent.

– As we have seen in Section 3.5.1, strict bound fuzzy assertion axioms
like 〈C(a) > r〉 and 〈C(a) < r〉 need the presence of the Delta opera-
tor N in order to be re-written as non-strict lower bound fuzzy asser-
tion axioms. Nevertheless, entailment of such axioms by K, can be
reduced to knowledge base consistency without the need of N. It is, in-
deed, easy to see that K entails axiom 〈C(a) > r〉 iff K∪{〈C(a) ≤ r〉}
is inconsistent, iff K ∪ {〈∼ C(a) ≥ 1− r〉} is inconsistent. The same
holds for axioms 〈C(a) < r〉 and 〈C(a) ≥ r〉.

• The best entailment degree of a fuzzy axiom with respect to a KB can be
reduced to a family of knowledge base consistency problems. In fact, by
the previous item, determining the best entailment degree of an axiom ϕ
w.r.t. knowledge base K is the same as determining which is the greater
value r ∈ T such that:

50 Chapter 3. Fuzzy Description Logic

– knowledge base K ∪ {〈¬(r A (C A D))(a) ≥ 1〉} is inconsistent, if
ϕ = C v D,

– knowledge base K∪{〈¬(r A C)(a) ≥ 1〉} is inconsistent, if ϕ = C(a),

Reductions to KB consistency that depend on the algebra of truth
values

• When the complete chain T = {r1 < . . . < rn} is a finite chain, in every
language that contains language IFL0C (that is, every language that con-
tains the implication concept constructor A and involutive negation ∼),
the concept r-subsumption problem is reduced to concept lower bound un-
satisfiability. In fact, deciding whether concept D ri-subsumes concept C
is the same as deciding whether concept ∼ (C A D) is not ≥ 1 − ri−1-
satisfiable.

• When T is a finite chain deciding whether a concept C is positively satisfi-
able, is the same as deciding whether the same concept is ≥ r2-satisfiable,
where r2 is the smaller element of T strictly greater that 0.

• When T is a strict chain (i.e., the residuated negation is the Gödel one) de-
ciding whether a concept C is positively satisfiable, is the same as deciding
whether the concept ¬¬C is 1-satisfiable.

Reductions among satisfiability notions

• In a language with truth constants, the ≥ r-satisfiability can be easily
reduced to r-satisfiability, since, for every concept C and r ∈ T , it holds
that

C is ≥ r-satisfiable ⇐⇒ r A C is 1-satisfiable.

• The problem of positive satisfiability, as well, can be reduced to 1-
subsumption, that, as we will see later on in Section 4.2, is a decidable
problem. In fact, for every concept C it holds that

C is consistent ⇐⇒ C is not 1-subsumed by ⊥.

• If the complete chain T is finite, then both problems can be reduced to
r- satisfiability without the help of truth constants or a reduction to sub-
sumption. In fact, for every concept C and r ∈ T , it holds that

C is ≥ r-satisfiable ⇐⇒ there is r′ ∈ T such that r′ ≥ r and C is
r′-satisfiable

and

3.6. Relation to first order predicate logic 51

C is positively satisfiable ⇐⇒ C is ≥ rn−1-satisfiable,

where rn−1 is the lower truth value strictly greater than 0. The finiteness
of T , gives us the decidability of the problem. Nevertheless the previous
reductions remains clearly the more efficient, since they need just one 1-
satisfiability or 1-subsumption test instead of one r-satisfiability test for
each truth value greater than r or 0.

Reducing KB consistency

• Knowledge base consistency can be easily reduced to concept r-
satisfiability w.r.t. a knowledge base. Let, in fact, K be a knowledge
base, then:

K is consistent ⇐⇒ concept > is satisfiable w.r.t. K.

• Knowledge base consistency can be reduced to the entailment of an axiom
by a knowledge base. Let, in fact, K be a knowledge base, then:1

K is satisfiable ⇐⇒ K 2 〈⊥(a) ≥ 1〉
⇐⇒ K 2 〈> v ⊥ ≥ 1〉.

3.6 Relation to first order predicate logic

In [Borgida, 1996], Borgida provides a translation of DL concepts into first or-
der classical logic. The relationship between FDL and first order fuzzy logic has
been firstly described in [Tresp and Molitor, 1998]. A more systematic inves-
tigation on this subject has been undertaken in [Garćıa-Cerdaña et al., 2010]
and [Cerami et al., 2010b], where it is investigated the idea, presented in
[Hájek, 2005] of a Fuzzy Description Logic tightly related to Mathematical
Fuzzy Logic. In [Tresp and Molitor, 1998], [Garćıa-Cerdaña et al., 2010] and
[Cerami et al., 2010b] FDL is indeed presented as a fragment of MFL. Here we
will present a quite different way to obtain the same translation and prove that
it preserve the meaning of the expressions involved by defining their respective
semantics from each other, according to the following schema:

3.6.1 Concepts

Given a description signature D = 〈NI , NC , NR〉, we define the first order sig-
nature sD = {c1, c2, . . .} ∪ {P1, P2, . . .}, with i = |NI |, j = |NC ∪ NR| and
where

• {c1, c2, . . .} := NI is a set of constant symbols,

• {P1, Pj , . . .} := NC ∪NR is a set of unary and binary predicates.

1The argument is by U. Straccia

52 Chapter 3. Fuzzy Description Logic

FDL //_________
OO

��

FOLOO

��
FDL interpretations // FO structures

Figure 3.2: Relations to FOL

Let l be the propositional language of an extension L of MTL logic and V ar
a countable set of individual variables. Then, for every concept name A ∈ NC ,
every role name R ∈ NR and every x, y ∈ V ar, we can define the translations

τx : NC → Fml∀,sD

and

τx,y : NR → Fml∀,sD

of concept and role names, respectively, into the set of atomic first order formulas
of the logic L∀, in the following way:

τx(A) := A(x)
τx(⊥) := ⊥,
τx(>) := >,
τx(r) := r,

τx,y(R) = R(x, y)

This translation can be inductively extended over the set of complex concept
in the following way:

τx(¬C) := ¬τx(C),
τx(∼ C) := ∼ τx(C),
τx(NC) := 4τx(C),

τx(C �D) := τx(C)⊗ τx(D)
τx(C uD) := τx(C) ∧ τx(D)
τx(C �D) := τx(C)⊕ τx(D)
τx(C tD) := τx(C) ∨ τx(D)
τx(C A D) := τx(C)→ τx(D)
τx(∀R.C) := (∀y)(τx,y(R)→ τy(C)), with y 6= x
τx(∃R.C) := (∃y)(τx,y(R)⊗ τy(C)), with y 6= x

Notice that as a result of such translation, we obtain first order formulas
τx(C) with only one free variable, x.

3.6. Relation to first order predicate logic 53

Next we show, in Lemmas 20 and 22 that the translation preserves the same
meaning of the original expression through a definition of a first order structure
and of an FDL interpretation from each other.

Let I = (∆I , ·I) be an FDL interpretation, then we can define the first order
structure MI = (MI , {PMI : P ∈ NC ∪NR}, {cMI : c ∈ NI}), where:

• MI := ∆I ,

• for each concept name A ∈ NC , AMI is the unary function AMI : MI → T ,
such that, for every a ∈MI , it holds that AMI (a) = AI(a),

• for each role name R ∈ NR, RMI is the binary function RMI : MI×MI →
T , such that, for every a, b ∈MI , it holds that RMI (a, b) = RI(a, b),

• for each individual a ∈ NI , aMI is an element of MI , such that aMI = aI .

Lemma 20. Let C be an T-IALCE concept. Then ‖τx(C)‖(T,MI)
v([a/x]) = CI(a),

for every object a ∈ ∆I .

Proof. The proof is by structural induction on complex concepts.

• For concept names and constant concepts it is straightforward by defini-
tion.

• Suppose that the statement holds for concepts C and D. Then ‖τx(C �

D)‖(T,MI)
v([a/x]) = ‖τx(C)⊗τx(D)‖(T,MI)

v([a/x]) = ‖τx(C)‖(T,MI)
v([a/x]) ∗‖τ

x(D)‖(T,MI)
v([a/x]) =

CI(a)∗DI(a) = (C�D)I(a). In the same way the statement can be proved
also for constructors u,�,t,A,∼,N and ¬.

• Suppose that the statement holds for the role name R and

for concept C. Then ‖τx(∀R.C)‖(T,MI)
v([a/x]) = ‖(∀y)(τx,y(R) →

τy(C))‖(T,MI)
v([a/x]) = infy∈MI{‖τx,y(R)‖(T,MI)

v([a/x]) ⇒ ‖τ
y(C)‖(T,MI)}v([a/x]) =

infy∈∆I{RI(a, y) ⇒ CI(y)} = (∀R.C)I(a). In the same way the state-
ment can be proved also for concept ∃R.C.

So, for every T-IALCE concept C we have that ‖τx(C)‖(T,MI)
v([a/x]) = CI(a).

On the other hand, let M be a first order structure such that sD = sM , then
we can define the interpretation IM = (∆IM , ·IM), where:

• ∆IM = M ,

• for each concept name A ∈ NC , AIM is the unary function AIM : ∆IM →
T , such that, for every a ∈ ∆IM , it holds that AIM(a) = AM(a),

• for each role name R ∈ NR, RIM is the binary function AIM : ∆IM ×
∆IM → T , such that, for every a, b ∈ ∆IM , it holds that RIM(a, b) =
RM(a, b),

54 Chapter 3. Fuzzy Description Logic

• for each individual a ∈ NI , aIM is an element of ∆IM , such that aIM = aM.

As a straightforward consequence of the definitions of MI and IM, we have
the following lemma.

Lemma 21. For every T-interpretation I and every first order structure (T,M)
it holds that

• I = IMI ,

• M = MIM .

From Lemma 21 and Lemma 20 we can prove a further consequence.

Lemma 22. Let C be an T-ALC concept. Then CIM(a) = ‖τx(C)‖(T,M)
v([a/x]), for

every object a ∈M .

Proof. From Lemma 20 we have that CIM(a) = ‖τx(C)‖(T,MIM)

v([a/x]) . From

Lemma 21 we have that ‖τx(C)‖(T,MIM)

v([a/x]) = ‖τx(C)‖(T,M)
v([a/x]). So, CIM(a) =

‖τx(C)‖(T,M)
v([a/x]).

Remark 23. The first order language considered could be built by means of a
set of just two variables. The limitation to just two variables is enough in order
to define the translation only for the kind of first order formulas that correspond
to IALCE concept. In fact, in case of nested quantifier, like in the concept:

∀R.∃R.∀R.A

we have that the translation is

τx(∀R.∃R.∀R.A) = (∀y)(R(x, y)→ (∃x)(R(y, x)⊗ (∀y)(R(x, y)→ A(y))))

whose meaning, with respect to a structure (M,T) is

infy∈M{RM(x, y)⇒ supx∈M{RM(y, x) ∗ infy∈M{RM(x, y)⇒ AM(y)}}}

and, since the inner variable “y” is closed, when a value for the outer function
“inf” has to be calculated, this variable falls outside its scope.

Moreover, in case of conjugated quantified concepts, like

(∀R.A)� (∃R.B)

we have that the translation is

τx((∀R.A)� (∃R.A)) = (∀y)(R(x, y)→ A(y))⊗ (∃y)(R(x, y)⊗B(y))

whose meaning, with respect to a structure (M,T) is

infy∈M{RM(x, y)⇒ AM(y)} ∗ supy∈M{RM(x, y) ∗BM(y)}}}

where each appearance of variable “y” is closed inside the scope of a different
quantifier and, for this reason, it does not fall inside the scope of the other
quantifier.

3.6. Relation to first order predicate logic 55

3.6.2 Fuzzy axioms

First of all, we utilize the translation τx(·), introduced in Section 3.6.1 in order
to obtain a corresponding translation τ from fuzzy axioms to first order formulas.

Let x be an individual variable, then, for the fuzzy inclusion axioms, the
translation is defined as follows:

τ(〈C v D ≥ r〉) := r → (∀x)(τx(C)→ τx(D)),

τ(〈C v D ≤ r〉) := (∀x)(τx(C)→ τx(D))→ r,

τ(〈C v D > r〉) := ¬4 ((∀x)(τx(C)→ τx(D))→ r),

τ(〈C v D < r〉) := ¬4 (r → (∀x)(τx(C)→ τx(D))),

For the fuzzy assertion axioms, the translation is defined as follows:

τ(〈C(a) ≥ r〉) := r → τx(C)[a/x],

τ(〈C(a) ≤ r〉) := τx(C)[a/x]→ r,

τ(〈C(a) > r〉) := ¬4 (τx(C)[a/x]→ r),

τ(〈C(a) < r〉) := ¬4 (r → τx(C)[a/x]),

For the fuzzy role assertion axioms, the translation is defined as follows:

τ(〈R(a, b) ≥ r〉) := r → τx,y(R)[a/x, b/y]

As for concepts, here again it is possible to show that the translation preserves
the meaning of the original expressions, through the same translation between
first order structures and FDL interpretations given in Section 3.6.1.

Lemma 24. Let 〈ϕ B r〉 be a fuzzy axiom, with B∈ {≥,≤, >,<}. Then a T-
interpretation I satisfies 〈ϕ B r〉 if and only if (T,MI) 1-satisfies τ(〈ϕ B r〉).

Proof. Let 〈ϕ B r〉 be a fuzzy axiom and I a T-interpretation, then

• If 〈ϕ B r〉 = 〈C v D ≥ r〉, then I satisfies 〈C v D ≥ r〉 if
and only if infx∈∆I{CI(x) ⇒ DI(x)} ≥ r. By Lemma 20, we have
that r ≤ infx∈∆I{CI(x) ⇒ DI(x)} = infx∈∆I{‖τx(C)‖(T,MI) ⇒
‖τx(D)‖(T,MI)} = infx∈∆I{‖τx(C) → τx(D)‖(T,MI)} = ‖(∀x)(τx(C) →
τx(D))‖(T,MI). So, since the residuated implication → defines an order,
we have that structure (T,MI) satisfies r → (∀x)(τx(C) → τx(D)) =
τ(〈C v D ≥ r〉). In the same way can be proved that the statement holds
for axioms of type 〈C v D ≤ r〉.

• If 〈ϕ B r〉 = 〈C v D > r〉, then I satisfies 〈C v D > r〉 if and only
if infx∈∆I{CI(x) ⇒ DI(x)} > r. Hence infx∈∆I{CI(x) ⇒ DI(x)} � r
i.e. I does not satisfy axiom 〈C v D ≤ r〉. By the previous result
we have that (T,MI) does not satisfy τ(〈C v D ≤ r〉) = (∀x)(τx(C) →
τx(D))→ r. Then ‖(∀x)(τx(C)→ τx(D))→ r‖(T,MI) < 1 and, therefore,
‖¬ 4 (∀x)(τx(C) → τx(D)) → r‖(T,MI) = 1. In the same way can be
proved that the statement holds for axioms of type 〈C v D < r〉.

56 Chapter 3. Fuzzy Description Logic

• If 〈ϕ B r〉 = 〈C(a) ≥ r〉, then I satisfies 〈C(a) ≥ r〉 if and only if

CI(aI) ≥ r. By Lemma 20, we have that r ≤ CI(aI) = ‖τx(C)‖(T,MI)
[aMI /x] =

‖τx(C)[a/x]‖(T,MI). So, since the residuated implication→ defines an or-
der, we have that structure (T,MI) satisfies r → τx(C)[a/x] = τ(〈C(a) ≥
r〉). In the same way can be proved that the statement holds for axioms
of type 〈C(a) ≤ r〉.

• If 〈ϕ B r〉 = 〈C(a) > r〉, then I satisfies 〈C(a) > r〉 if and only if
CI(aI) > r. Hence CI(aI) � r i.e. I does not satisfy axiom 〈C(a) ≤ r〉.
By the previous result we have that (T,MI) does not satisfy τ(〈C(a) ≤
r〉) = τx(C)[a/x] → r. Then ‖τx(C)[a/x] → r‖(T,MI) < 1 and, therefore,
‖¬4 τx(C)[a/x]→ r‖(T,MI) = 1. In the same way can be proved that the
statement holds for axioms of type 〈C(a) < r〉.

• If 〈ϕ B r〉 = 〈R(a, b) ≥ r〉, then I satisfies 〈R(a, b) ≥ r〉 if and
only if RI(aI , bI) ≥ r. By the definition of (T,MI), we have that

r ≤ RI(aI , bI) = ‖τx,y(R)‖(T,MI)
[aMI /x,bMI /y] = ‖τx,y(R)[a/x, b/y]‖(T,MI).

So, since the residuated implication → defines an order, we have that
structure (T,MI) satisfies r → τx,y(R)[a/x, b/y] = τx,y(〈R(a, b) ≥ r〉).

So, for every fuzzy axiom 〈ϕ B r〉 it holds that a T-interpretation I satisfies
〈ϕ B r〉 if and only if (T,MI) satisfies τ(〈ϕ B r〉).

Remark 25. In FDLs where the residuated negation is Gödel negation, as well
as in FDLs based on finite-valued Lukasiewicz Logic there is no need of operator
4 in order to translate strict axioms, since this operator is definable within the
language either as:

4x := ¬ ∼ x

or as:

4x := xn−1

Let ϕ be an axiom and r ∈ T . If the residuated negation is Gödel, then we have
that

τ(〈C v D > r〉) := ¬¬ ∼ ((∀x)(τx(C)→ τx(D))→ r),

τ(〈C v D < r〉) := ¬¬ ∼ (r → (∀x)(τx(C)→ τx(D))),

τ(〈C(a) > r〉) := ¬¬ ∼ (τx(C)[a/x]→ r),

τ(〈C(a) < r〉) := ¬¬ ∼ (r → τx(C)[a/x]),

If n is the cardinality of T , we have that

τ(〈C v D > r〉) := ¬(((∀x)(τx(C)→ τx(D))→ r)n−1),

τ(〈C v D < r〉) := ¬((r → (∀x)(τx(C)→ τx(D)))n−1),

τ(〈C(a) > r〉) := ¬((τx(C)[a/x]→ r)n−1),

τ(〈C(a) < r〉) := ¬((r → τx(C)[a/x])n−1),

3.7. Relation to multi-modal logic 57

3.6.3 Reasoning tasks

Now we can utilize the translation τx(·), introduced in Section 3.6.1 and extended
to fuzzy axioms in the previous subsection in order to obtain a corresponding
translation of the reasoning tasks. In what follows, let C,D be two IALCE-
concepts and r, s ∈ T .

• For concept r-satisfiability, we can consider the following two problems of
first order logic:

– C is ≥ r-satisfiable if and only if formula r → τx(C) is 1-satisfiable;

– C is r-satisfiable if and only if formula τx(C) is r-satisfiable if and
only if formula r ↔ τx(C) is 1-satisfiable;

– C is positively satisfiable if and only if formula τx(¬C) is not a the-
orem.

• D r-subsumes C if and only if formula r → τx(C A D) is valid.

• A knowledge base K = 〈T ,A〉 is consistent if and only if formula∧
〈ϕBr〉∈T ∪A τ(〈ϕ B r〉) is 1-satisfiable.

• C is r-satisfiable w.r.t. K = 〈T ,A〉 if and only if formula(∧
〈ϕBr〉∈T ∪A τ(〈ϕ B r〉)

)
∧ (r → τx(C)) is 1-satisfiable.

• Knowledge base K = 〈T ,A〉 entails the fuzzy axiom 〈ϕ B r〉 if and only if
formula τ(〈ϕ B r〉) is a logical consequence of the set of formulas {τ(〈ψ B
s〉) | 〈ψ B s〉 ∈ T ∪ A}.

• The best satisfiability degree of a concept C with respect to a KB K =
〈T ,A〉, translated to first order logic, is the problem of determining which
is the higher value r with respect to which formula

(∧
〈ϕBs〉∈T ∪A τ(〈ϕ B

r〉)
)
∧ (r → τx(C)) is 1-satisfiable. With respect to the usual problems in

first order logic, this problem can be considered a family of problem, more
than a single one, that is, one satisfiability problem for each r ∈ T .

• The best entailment degree of an axiom ϕ with respect to a KB K = 〈T ,A〉,
translated to first order logic, is the problem of determining which is the
higher value r with respect to which τ(〈ϕ B r〉) is a logical consequence of
the set of formulas {τ(〈ψ B s〉) | 〈ψ B s〉 ∈ T ∪ A}. Again, with respect
to the usual problems in first order logic, this problem can be considered a
family of problem, more than a single one, that is, one logical consequence
problem for each r ∈ T .

3.7 Relation to multi-modal logic

In [Schild, 1991] it is provided a translation of DL concepts into classical proposi-
tional multi-modal logic. The relationship between FDL and fuzzy multi-modal

58 Chapter 3. Fuzzy Description Logic

logic has been described in [Cerami et al., 2012] for the case of finite-valued
 Lukasiewicz Logic. In that paper the relationship between both formalisms is
obtained through their respective relations with first order predicate logic. Here
we present a generalization of the result in [Cerami et al., 2012] by means of a
more direct translation.

3.7.1 Concepts

Given a description signature D = 〈NI , NC , NR〉, we define the multi-modal
language l2D := l∪{2R,3R | R ∈ NR} over the set V arD = NC of propositional
variables where

• l is the set of propositional connectives of any extension L of MTL logic,

• {2R,3R | R ∈ NR} is a set of unary modal operators.

For every concept name A ∈ NC we can define the translation τ : NC →
V arD from the set of concept names into the set of propositional variables of
the logic L2, in the following way:

τ(A) := pA
τ(⊥) := ⊥,
τ(>) := >,
τ(r) := r,

This translation can be inductively extended over the set of complex concepts
in the following way:

τ(¬C) := ¬τ(C),
τ(∼ C) := ∼ τ(C),
τ(NC) := 4τ(C),

τ(C �D) := τ(C)⊗ τ(D)
τ(C uD) := τ(C) ∧ τ(D)
τ(C �D) := τ(C)⊕ τ(D)
τ(C tD) := τ(C) ∨ τ(D)
τ(C A D) := τ(C)→ τ(D)
τ(∀R.C) := 2Rτ(C)
τ(∃R.C) := 3Rτ(C)

Next we show that the translation preserves the meaning of the original
expression through a definition of a Kripke model from an FDL interpretation.
Let I = (∆I , ·I) be an FDL interpretation, then we can define the T-valued
Kripke model MI = 〈WI , {RMI | R ∈ NR}, VI〉, where:

• WI = ∆I ,

• for each role name R ∈ NR, RMI is a binary T-fuzzy accessibility relation
on WI , i.e. a binary function RMI : WI ×WI → T , such that, for every
a, b ∈WI , it holds that RMI (a, b) = RI(a, b),

3.7. Relation to multi-modal logic 59

• for each element a ∈ WI and for every propositional variable pA ∈ V arD,
it holds that VI(pA, a) = AI(a).

Lemma 26. Let C be an T-ALC concept. Then, for every x ∈ ∆I , it holds that
VI(τ(C), a) = CI(a), for every object a ∈ ∆I .

Proof. The proof is by structural induction on complex concepts.

• For concept names and constant concepts it is straightforward by defini-
tion.

• Suppose that the statement holds for concepts C and D. Then VI(τ(C �
D), a) = VI(τ(C)⊗τ(D), a) = VI(τ(C), a)∗VI(τ(D), a) = CI(a)∗DI(a) =
(C �D)I(a). In the same way the statement can be proved also for con-
structors u,�,t,A,∼,N and ¬.

• Suppose that the statement holds for concept C. Then
VI(τ(∀R.C), a) = VI(2Rτ(C), a) = infy∈WI{RMI (a, y)⇒ VI(τ(C), y)} =
infy∈∆I{RI(a, y) ⇒ CI(y)} = (∀R.C)I(a). In the same way the
statement can be proved also for concept ∃R.C.

So, for every T-IALCE concept C and every a ∈ ∆I it holds that CI(a) =
VI(τ(C), a).

In the case of multi-modal logic it is also possible to provide a translation from
multi-modal formulas into description concepts. Given a multi-modal language
l2 = l ∪ {2i,3i | i ∈ I}, with I countable and a set of propositional variables
V ar = {p1, p2, . . .}, we define the description signature Dl2 = 〈N l2

I , N
l2
C , N

l2
R 〉,

where

• N l2
I := ∅,

• N l2
C := {Ap : p ∈ V ar},

• N l2
R := {Ri : 2i ∈ l2}.

For every propositional variable p ∈ V ar we can define the translation ρ :
V ar → N l2

C from the set of propositional variable into the set of concept names
of the signature Dl2 , in the following way:

ρ(p) := Ap
ρ(⊥) := ⊥,
ρ(>) := >,
ρ(r) := r,

This translation can be inductively extended over the set of complex concepts
in the following way:

60 Chapter 3. Fuzzy Description Logic

ρ(¬ϕ) := ¬ρ(ϕ),
ρ(∼ ϕ) := ∼ ρ(ϕ),
ρ(4ϕ) := Nρ(ϕ),

ρ(ϕ⊗ ψ) := ρ(ϕ)� ρ(ψ)
ρ(ϕ ∧ ψ) := ρ(ϕ) u ρ(ψ)
ρ(ϕ⊕ ψ) := ρ(ϕ)� ρ(ψ)
ρ(ϕ ∨ ψ) := ρ(ϕ) t ρ(ψ)
ρ(ϕ→ ψ) := ρ(ϕ) A ρ(ψ)
ρ(2iϕ) := ∀Ri.ρ(ϕ)
ρ(3iϕ) := ∃Ri.ρ(ϕ)

As a straightforward consequence of the definitions of τ and ρ, we have the
following lemma.

Lemma 27. For every T-ALC concept C and every multi-modal formula ϕ it
holds that:

• ρ(τ(C)) = C,

• τ(ρ(ϕ)) = ϕ.

Again, it is possible to show that the translation preserves the meaning of the
original expression through a definition of an FDL interpretation from a Kripke
model. Let M = 〈W, {R1, . . . , Rn}, V 〉 be a Kripke model, then we can define
the interpretation IM = (∆IM , ·IM), where:

• ∆IM := W ,

• for each concept name Ap ∈ N l2
C , AIMp is the unary function AIMp : ∆IM →

T , such that, for every a ∈ ∆IM , it holds that AIMp (a) = V (p, a),

• for each role name Ri ∈ N l2
R , RIMi is the binary function RIMi : ∆IM ×

∆IM → T , such that, for every a, b ∈ ∆IM , it holds that RIMi (a, b) =
Ri(a, b),

As a straightforward consequence of the definitions of MI and IM, we have
the following lemma.

Lemma 28. For every T-interpretation I and every Kripke T-model M it holds
that:

• I = IMI ,

• M = MIM .

From Lemma 27, Lemma 28 and Lemma 26 we can prove a further conse-
quence.

Lemma 29. Let ϕ be a multi-modal formula. Then, for every w ∈ W it holds
that (ρ(ϕ))IM(w) = V (ϕ,w).

Proof. From Lemma 26 we have that (ρ(ϕ))IM(w) = VIM(τ(ρ(ϕ)), w). From
Lemma 27 we have that VIM(τ(ρ(ϕ)), w) = VIM(ϕ,w). From Lemma 28 we
have that VIM(ϕ,w) = V (ϕ,w). So, (ρ(ϕ))IM(w) = V (ϕ,w).

3.7. Relation to multi-modal logic 61

3.7.2 Fuzzy axioms

First of all, we utilize the translation τ(·), introduced in Section 3.7 in order
to obtain a corresponding translation of the fuzzy inclusion axioms proposed
in Section 3.1.2. In this case, however, we need to use a multi-modal language
that contains the universal modality 2U , as well as Delta operator 4 and truth
constants.

τ(〈C v D ≥ r〉) := 2U (r → (τ(C)→ τ(D)))
τ(〈C v D ≤ r〉) := 2U ((τ(C)→ τ(D))→ r)

τ(〈C v D > r〉) := 2U¬4 ((τ(C)→ τ(D))→ r)

τ(〈C v D < r〉) := 2U¬4 (r → (τ(C)→ τ(D)))

Here again it is possible to show that the translation preserves the meaning
of the original expressions. Note that, in presence of the universal modality 2U
fuzzy axiom satisfiability is obtained as both local and global satisfiability of its
multi-modal translation.

Lemma 30. Let 〈ϕ B r〉 be a fuzzy inclusion or equivalence axiom, with B∈
{≥,≤, >,<}. Then a T-interpretation I satisfies 〈ϕ B r〉 if and only if MI
globally satisfies τ(〈ϕ B r〉) if and only if MI locally satisfies τ(〈ϕ B r〉).

Proof. Let 〈ϕ B r〉 be a fuzzy axiom and I a T-interpretation, then

• If 〈ϕ B r〉 = 〈C v D ≥ r〉, then I satisfies it if and only if
infx∈∆I{CI(x) ⇒ DI(x)} ≥ r. By Lemma 20, we have that r ≤
infx∈∆I{CI(x) ⇒ DI(x)} = infx∈WI{VI(τ(C), x) ⇒ VI(τ(D), x)} =
infx∈WI{VI(τ(C) → τ(D), x)}. Hence, for every x ∈ WI , it holds that
r ≤ VI(τ(C) → τ(D), x) and, therefore, 1 = infx∈WI{r ⇒ VI(τ(C) →
τ(D), x)} = infw∈WI{RU (w, x) ⇒ VI(r → (τ(C) → τ(D), x))} =
VI(2U (r → (τ(C) → τ(D))), w) = VI(τ(〈C v D ≥ r〉), w), for every
w ∈ WI . So, MI both globally and locally 1-satisfies τ(〈ϕ B r〉). In the
same way it can be proved that the statement holds for axioms of type
〈C v D ≤ r〉.

• If 〈ϕ B r〉 = 〈C v D > r〉, then I satisfies it if and only if
infx∈∆I{CI(x) ⇒ DI(x)} > r. Hence infx∈∆I{CI(x) ⇒ DI(x)} � r
i.e. I does not satisfy axiom 〈C v D ≤ r〉. By the previous result we have
that MI satisfies τ(〈C v D ≤ r〉) = 2U ((τ(C) → τ(D)) → r), neither
globally, nor locally. Then VI(2U ((τ(C)→ τ(D))→ r), w) < 1, for every
w ∈ WI and, therefore, VI(2U¬ 4 ((τ(C) → τ(D)) → r), w) = 1. In
the same way can be proved that the statement holds for axioms of type
〈C v D < r〉,.

So, for every fuzzy axiom 〈ϕ B r〉 it holds that a T-interpretation I satisfies
〈ϕ B r〉 if and only if MI satisfies τ(〈ϕ B r〉).

62 Chapter 3. Fuzzy Description Logic

In a language without a universal modality 2U (but with Delta operator 4
and truth constants) we can not obtain multi-modal formulas as a translation of
fuzzy axioms. Nevertheless, their satisfiability with respect to an interpretation
I can be translated to either global or local satisfiability of certain multi-modal
formulas with respect to model MI , depending on what kind of axiom has to be
translated. So, in such a language, a translation of the fuzzy inclusion axioms
can be obtained as follows:

Lemma 31. For every T-interpretation I the following equivalences hold:

1.
I |= 〈C v D ≥ r〉 ⇐⇒ MI |=r

g τ(C)→ τ(D)
⇐⇒ MI |=1

g r → (τ(C)→ τ(D)),

2. I |= 〈C v D ≤ r〉 ⇐⇒ MI |=1
l (τ(C)→ τ(D))→ r,

3.
I |= 〈C v D > r〉 ⇐⇒ MI |=1

g ¬4 ((τ(C)→ τ(D))→ r),
⇐⇒ MI 21

l (τ(C)→ τ(D))→ r

4.
I |= 〈C v D < r〉 ⇐⇒ MI |=1

l ¬4 (r → (τ(C)→ τ(D))),
⇐⇒ MI 2rg τ(C)→ τ(D)

Proof. Let I be a T interpretation, then:

1. We have that I satisfies 〈C v D ≥ r〉 if and only if infx∈∆I{CI(x) ⇒
DI(x)} ≥ r. By Lemma 20, we have that r ≤ infx∈∆I{CI(x)⇒ DI(x)} =
infx∈WI{VI(τ(C), x) ⇒ VI(τ(D), x)} = infx∈WI{VI(τ(C) → τ(D), x)}.
Hence, on the one hand, for every x ∈ WI , it holds that r ≤ VI(τ(C) →
τ(D), x), that is, MI |=r

g τ(C) → τ(D). On the other hand, for every
x ∈WI , it holds that VI(r → (τ(C)→ τ(D)), x) = 1, that is, MI |=1

g r →
(τ(C)→ τ(D)).

2. We have that I satisfies 〈C v D ≤ r〉 if and only if infx∈∆I{CI(x) ⇒
DI(x)} ≤ r. By Lemma 20, we have that r ≥ infx∈∆I{CI(x)⇒ DI(x)} =
infx∈WI{VI(τ(C), x) ⇒ VI(τ(D), x)} = infx∈WI{VI(τ(C) → τ(D), x)}.
Hence, there exists x ∈WI such that VI(r → (τ(C)→ τ(D)), x) = 1, that
is, MI |=1

l r → (τ(C)→ τ(D)).

3. We have that I satisfies 〈C v D > r〉 if and only if infx∈∆I{CI(x) ⇒
DI(x)} > r. Hence infx∈∆I{CI(x) ⇒ DI(x)} � r i.e. I does not satisfy
axiom 〈C v D ≤ r〉. So, by item 2, we have that MI 21

l (τ(C)→ τ(D))→
r. Moreover, since infx∈∆I{CI(x) ⇒ DI(x)} � r, then, by Lemma 20,
we have that r � infx∈∆I{CI(x) ⇒ DI(x)} = infx∈WI{VI(τ(C), x) ⇒
VI(τ(D), x)} = infx∈WI{VI(τ(C) → τ(D), x)}. Hence, for every x ∈ WI ,
it holds that VI(τ(C) → τ(D)) → r, x) < 1, that is, VI(¬ 4 (τ(C) →
τ(D))→ r, x)) = 1. So, MI |=1

g ¬4 ((τ(C)→ τ(D))→ r).

4. We have that I satisfies 〈C v D < r〉 if and only if infx∈∆I{CI(x) ⇒
DI(x)} < r. Hence infx∈∆I{CI(x) ⇒ DI(x)} � r i.e. I does not satisfy

3.7. Relation to multi-modal logic 63

axiom 〈C v D ≥ r〉. So, by item 1, we have that MI 2rg τ(C) → τ(D).

Moreover, since infx∈∆I{CI(x) ⇒ DI(x)} < r, then, by Lemma 20,
we have that r > infx∈∆I{CI(x) ⇒ DI(x)} = infx∈WI{VI(τ(C), x) ⇒
VI(τ(D), x)} = infx∈WI{VI(τ(C)→ τ(D), x)}. Hence there exists x ∈WI
such that VI(r → (τ(C) → τ(D)), x) < 1, that is, VI(¬ 4 (r → (τ(C) →
τ(D)), x)) = 1. So, MI |=1

l ¬4 (r → (τ(C)→ τ(D))).

Differently from the case of first order logic and despite the fact that FDL
interpretations can be a semantics for fuzzy assertions, within the multi-modal
language it is not possible to translate fuzzy assertions like 〈C(a) ≥ r〉. This
is due to the fact that in multi-modal languages there is not a syntactic entity
that can work as a translation for FDL individuals.

3.7.3 Reasoning tasks

Now we can utilize the translation τ(·), introduced in Section 3.7 and extended
to fuzzy axioms in the previous subsection in order to obtain a corresponding
translation of the reasoning tasks. Nevertheless, due to the fact that we can not
obtain a corresponding translation of fuzzy assertion axioms, in the same way,
we can not obtain a translation to multi-modal logic of the problems related
to knowledge bases where the ABox is non-empty. For this reason we will not
consider the knowledge base consistency problem when the ABox is not empty
and will consider problems related to knowledge bases K = 〈T ,A〉, where A = ∅.
In what follows, let C,D be two concepts and r, s ∈ T .

• For concept r-satisfiability, we can consider the following two problems of
first order logic:

– C is ≥ r-satisfiable if and only if formula τ(C) is locally r-satisfiable,
for some s ≥ r, if and only if formula r → τ(C) is locally 1-satisfiable;

– C is r-satisfiable if and only if formula τ(C) is locally r-satisfiable if
and only if formula r ↔ τ(C) is locally 1-satisfiable.

– C is positively satisfiable if and only if formula τ(¬C) is not a theo-
rem.

• D r-subsumes C if and only if formula r → τ(C A D) is valid.

• A knowledge base K = 〈T 〉 is consistent if and only if formula∧
〈ϕBr〉∈T τ(〈ϕ B r〉) is globally 1-satisfiable.

• C is r-satisfiable w.r.t. K = 〈T 〉 if and only if there exists a T-valued
Kripke model M such that both M |=1

g

(∧
〈ϕBr〉∈T τ(〈ϕ B r〉)

)
and M |=r

l

τ(C).

• Knowledge base K = 〈T 〉 entails the fuzzy axiom 〈ϕ B r〉 if and only if
formula τ(〈ϕ B r〉) is a global consequence of the set of formulas {τ(〈ψ B
s〉) | 〈ψ B s〉 ∈ T }.

64 Chapter 3. Fuzzy Description Logic

• The best satisfiability degree of a concept C with respect to a KB K = 〈T 〉,
translated to multi-modal logic, is the problem of determining which is the
higher value r with respect to which there exists a T-valued Kripke model
M such that both M |=1

g

(∧
〈ϕBr〉∈T τ(〈ϕ B s〉)

)
and M |=1

l r → τ(C).
With respect to the usual problems in multi-modal logic, this problem can
be considered a family of problem, more than a single one, that is, one
satisfiability problem for each r ∈ T .

• The best entailment degree of an axiom ϕ with respect to a KB K = 〈T 〉,
translated to multi-modal logic, is the problem of determining which is the
higher value r with respect to which τ(〈ϕ B r〉) is a global consequence of
the set of formulas {τ(〈ψ B s〉) | 〈ψ B s〉 ∈ T }. Again, with respect to
the usual problems in first order logic, this problem can be considered a
family of problem, more than a single one, that is, one logical consequence
problem for each r ∈ T .

Chapter 4

Decidability

Decidability is a fundamental topic in classical DL. In FDL it is a very important
topic as well. The study of decidability in FDL has brought to the generalization
of classical algorithms, as well as to the thinking of new ones. In the fuzzy
framework, however, an important role play also the results on undecidability
for the infinite-valued case in presence of general concept inclusions.

Results and proofs that we published will be exhaustively reported in order
to give an example of how some results have been achieved and what kind of
procedures and proof strategies have been employed in order to achieve those
results. More results existing in the literature will be reported in Section 6.2.

4.1 Witnessed satisfiability and Lukasiewicz
logic

Concept satisfiability is one of the simplest reasoning tasks in FDL and the one
that is more studied in the logical counterpart. Since [Hájek, 2005] the atten-
tion of most researchers focussed on the satisfiability with respect to witnessed
interpretations, that we will call, from now on, witnessed satisfiability.

In [Hájek, 2005] it is proven that concept witnessed r-satisfiability is a de-
cidable problem for a Fuzzy Description Logic restricted to language IALCE ,
based on any t-norm. In order to achieve such result, in [Hájek, 2005] is defined
an algorithm that, given a concept C0, obtains a propositional theory TC0

. We
report the algorithm from [Hájek, 2005] in Definition 33. Before introducing the
algorithm, we need some previous definitions from [Hájek, 2005].

Definition 32. 1. Nesting degree of quantifiers in C (or C(a)) is defined in-
ductively: nest(A) = 0, if A is an atomic concept name; if C and D are con-
cepts, then nest(C�D) = nest(C A D) = max(nest(C), nest(D)); finally,
if C is a concept and R a role name, then nest(∀R.C) = nest(∃R.C) =
nest(C) + 1.

65

66 Chapter 4. Decidability

2. Generalized atoms are quantified concepts, i.e. concepts of the form ∀R.C
or ∃R.C, where C is a propositional combination of concepts and gener-
alized atoms; the latter will be called generalized atoms of C. We will
also use the term generalized atom for instances of quantified concepts,
the context will clarify the precise meaning.

Definition 33 ([Hájek, 2005]Definition 3). Given C0(a0), step 0 just transfers
it to further processing in step 1; the constant a0 has level 0. For i > 0 step i
processes generalized atoms of formulas transferred from step i − 1; they have
the form (QR.C)(b), where Q is ∀ or ∃, R is a role, C a concept with nesting
degree ≤ n − 1 and b is a constant of level i. For each generalized atom α in
question, do the following:

If α is (∀R.C)(b) then produce a new constant dα and the axiom

(∀R.C)(b) ≡ (R(b, dα)→ C(dα))

If α is (∃R.C)(b) then produce dα and the axiom

(∃R.C)(b) ≡ (R(b, dα)⊗ C(dα))

In both cases call the generated axioms witnessing axioms for α and dα a
constant belonging to R, b.

After this is done for all α in question (in the present step) consider each α
once more and do the following:

If α is (∀R.C)(b) and dβ is any constant belonging to R, b and different from
dα, produce the axiom

(∀R.C)(b)→ (R(b, dβ)→ C(dβ))

Similarly for α being (∃R.C)(b), produce

(R(b, dβ)⊗ C(dβ))→ (∃R.C)(b)

After proving that the provided algorithm is correct and complete with re-
spect to the problems considered, Hájek proves that satisfiability, validity and
subsumption with respect to witnessed interpretations coincide with the same
problems with respect to finite interpretations. Hence, when these problems
are restricted to witnessed interpretations, the FDLs considered enjoy the finite
model property and are decidable.

Depending on the complete chain T considered, the witnessed satisfiability
does not need to coincide with the same problem with respect to unrestricted
interpretations, but both notions indeed coincide in some cases:

• If T is a finite t-norm, then, trivially, witnessed satisfiability coincides with
unrestricted satisfiability, for each notion of satisfiability considered.

4.1. Witnessed satisfiability and Lukasiewicz logic 67

• In [Hájek, 1998b, Theorem 5.4.30] it is proven that, if a formula ϕ is not
true in a [0, 1] L-model, then there exists an integer n such that ϕ is not true
in a Ln-model. Using this result and the fact that a formula ϕ is positively
satisfiable iff ¬ϕ is not a theorem, it is easily obtained that unrestricted
positive satisfiability coincides with witnessed positive satisfiability in the
standard Lukasiewicz chain [0, 1] L.

• In [Hájek, 2005, Lemma 3] Hájek proves that, for each r ∈ [0, 1], if a
formula ϕ is r-satisfiable in a [0, 1] L-model, then it is r-satisfiable in a
witnessed [0, 1] L-model.

• In [Cintula and Hájek, 2006] is proven that, with the general Lukasiewicz
semantics, witnessed satisfiability coincides with unrestricted satisfiability,
for each notion of satisfiability considered.

As remarked in [Hájek, 2005] and [Cintula and Hájek, 2006] by means of
counter-examples, in the case of infinite-valued Gödel and product t-norms, there
exist formulas that are satisfiable, but not in a witnessed interpretation.

4.1.1 Quasi-witnessed satisfiability and product logic

In [Cerami et al., 2010a] it is proven that concept quasi-witnessed positive sat-
isfiability is a decidable problem for a Fuzzy Description Logic restricted to
language IALE , based on product t-norm.

We will use the notations Satr and Sat1 to denote the sets of positively
satisfiable and 1-satisfiable concepts, respectively; and we will write QSatr and
QSat1 to denote the same sets restricted to quasi-witnessed interpretations. In
particular, in [Cerami et al., 2010a] has been proven the following theorem.

Theorem 34. The sets QSatr and QSat1 are decidable.

By the completeness result of product first order logic with respect to quasi-
witnessed models reported in Section 2.1.3, we obtain that Satr is a decidable
problem under product general semantics.

In the case of the standard semantics, the landscape is not the same. In
Appendix A it is proven that quasi-witnessed positive satisfiability and unre-
stricted positive satisfiability indeed coincide under the standard product seman-
tics. Hence unrestricted positive satisfiability is a decidable problem in [0, 1]Π.
For the 1-satisfiability problem under standard product semantics, completeness
with respect to quasi-witnessed models and, thus, decidability of language IALE
based on product t-norm are still open problems.

The proof follows the one provided in [Hájek, 2005] for the case of witnessed
interpretations. We report here the whole proof.

The Reduction to the Propositional Case

In order to prove that positive satisfiability in a quasi-witnessed interpretation
is decidable we are going to codify quasi-witnessed interpretations by some finite

68 Chapter 4. Decidability

number of formulas in the propositional product logic; using this finite codifica-
tion we will not know how to recover the same initial interpretation, but we will
be able to build an interpretation with the same associated truth value.

First of all, let us a fix an infinite set Ind = {ai : i ∈ ω}, whose elements will
be called individuals or constants. With a little language abuse, throughout Sec-
tion 4.1.1, an assertion will denote any propositional combination of expressions
of the forms C(a) and R(a, b) where C is a concept, R is a role name and a, b
are individuals. The definitions of the notions of nesting degree and generalized
atoms can be found in Definition 32.

Definition 35 (Labelling). Let C0 be a concept. The labelling function is the
function which associates to every occurrence D of a subconcept in C0 an element
of N≤k (where k = nest(C0)) defined by the conditions:

1. l(C0) is the empty sequence ∅,

2. if D is a propositional combination of concepts D1, . . . , Dn, then l(Di) :=
l(D) for every i ≤ n.

3. if D is ∀R.D′ or ∃R.D′, then l(D′) is the concatenated sequence l(D), n,
where n is the minimum number m such that the sequence l(D),m has
not been used to label any occurrence in C0.

In order to illustrate the notions defined in the last definitions, as well as
further definitions, we propose an example that will be used throughout the
paper.

Example 36. Consider the concept

Example := ∀R.∃R.A u ¬∀R.(∃R.A� ∃R.A)

where A is an atomic concept. Then,

1. concept Example has nesting degree 2.

2. the generalized atoms in Example are: ∀R.∃R.A, ∀R.(∃R.A � ∃R.A) and
∃R.A.

3. the labelling function associated with occurrences in Example is given by
the genealogical tree

A : 1, 1

∃R.A : 1
∀R.∃R.A : ∅

A : 2, 1

∃R.A : 2

A : 2, 2

∃R.A : 2
∃R.A� ∃R.A : 2

∀R.(∃R.A� ∃R.A) : ∅
¬∀R.(∃R.A� ∃R.A) : ∅

Example : ∅

Here we have used the notation D : σ to indicate that the labelling of
occurrence D is the sequence σ.

4.1. Witnessed satisfiability and Lukasiewicz logic 69

Next, for every concept C0 we are going to recursively associate two finite
sets TC0 and YC0 of assertions.

Definition 37 (Algorithm). Given a concept C0, we construct finite sets TC0

and YC0 of assertions. The construction takes steps 0, . . . , n where n is the
nesting degree of the concept C0. At each step some generalized atoms are
processed; and at each step we add some new constants from Ind and some
new formulas to TC0

and YC0
and we transfer some assertions of concepts for

processing in the next step. The assertions produced in step i will have nesting
degree n− i; after step n is completed the algorithm stops.

At step 0, we simply transfer the assertion C0(d) to be further processed
in step 1; and we say that constant d has level 0. For i > 0, step i selects the
generalized atoms in formulas transferred from step i−1 and processes them. We
know that the generalized atoms just selected have the form QR.C(dσ), where
Q ∈ {∀,∃}, R is a role, C a concept with nesting degree ≤ n− i, dσ is a constant
produced in the previous step and σ is the label of the generalized atom we are
considering. For each generalized atom α, at step i we firstly do the following:

• If α is ∀R.C(dσ), then produce a new constant dσ,n and add to TC0
the

assertion

(∀R.C(dσ) ≡ (R(dσ, dσ,n) A C(dσ,n))) t ¬∀R.C(dσ)

• If α is ∃R.C(dσ), then produce a new constant dσ,n and add to TC0
the

assertion:
(R(dσ, dσ,n)� C(dσ,n)) ≡ ∃R.C(dσ)

We will say that dσ,n is a constant associated to R, dσ. Now, we consider
each α of the present step and do the following:

• If α is (∀R.C)(dσ) and dσ,m is any constant associated to R, dσ, then add
to TC0

the assertion

∀R.C(dσ) A (R(dσ, dσ,m) A C(dσ,m))

• If α is (∃R.C)(dσ) and dσ,m is any constant associated to R, dσ, then add
to TC0

the assertion

(R(dσ, dσ,m)� C(dσ,m)) A ∃R.C(dσ)

• If α is (∀R.C)(dσ), then add to YC0 the assertion

¬∀R.C(dσ)� (R(dσ, dσ,n) A C(dσ,n))

Example 38. Following Definition 37, the assertions belonging to TExample
are:

• (∀R.∃R.A(d) ≡ (R(d, d1) A ∃R.A(d1))) t ¬∀R.∃R.A(d),

70 Chapter 4. Decidability

• (∀R.(∃R.A�∃R.A)(d) ≡ (R(d, d2) A (∃R.A�∃R.A)(d2)))t¬∀R.(∃R.A�
∃R.A)(d),

• ∀R.∃R.A(d) A (R(d, d2) A A(d2)),

• ∀R.(∃R.A� ∃R.A)(d) A (R(d, d1) A (∃R.A� ∃R.A)(d1)),

• ∃R.A(d1) ≡ (R(d1, d1,1)�A(d1,1)),

• ∃R.A(d2) ≡ (R(d2, d2,1)�A(d2,1)),

• ∃R.A(d2) ≡ (R(d2, d2,2)�A(d2,2)),

• (R(d2, d2,2)�A(d2,2)) A ∃R.A(d2),

• (R(d2, d2,1)�A(d2,1)) A ∃R.A(d2).

While assertions belonging to YExample are:

• ¬∀R.∃R.A(d)� (R(d, d1) A ∃R.A(d1)),

• ¬∀R.(∃R.A� ∃R.A)(d)� (R(d, d2) A (∃R.A� ∃R.A)(d2)).

As it is said above our aim is to reduce our problem to one in the correspond-
ing propositional calculus. Here we will consider this propositional logic using
as variables the set

Prop := {pR(a,b) : R is a role name and a, b ∈ Ind} ∪

{pC(a) : C atomic or quantified concept and a ∈ Ind}.

We stress that we are taking a concrete fix set as variables. Nevertheless, for
a particular concept C0 it is clear that a finite subset PropC0 of Prop would
be enough. Using that all concepts are indeed propositional combinations of
expressions of the form C(a) and R(a, b), the following definition is meaningful.
This definition tells us that we can look at assertions as propositional formulas
with variables in Prop.

Definition 39. The map pr associates to every assertion a formula in the propo-
sitional logic (with the variables given above) according to the following clauses:

1. pr(A(a)) = pA(a) if A is an atomic or a quantified concept,

2. pr(R(a, b)) = pR(a,b) if R is a role name and a, b ∈ Ind,

3. pr(⊥(a)) = ⊥,

4. pr(>(a)) = >

5. pr((C �D)(a)) = pr(C(a))⊗ pr(D(a)),

6. pr((C A D)(a)) = pr(C(a))→ pr(D(a)).

4.1. Witnessed satisfiability and Lukasiewicz logic 71

If T is a set of assertions, then pr(T) is {pr(α) |α ∈ T}.

Example 40. If TExample is the set defined in the Example 38, then, following

Definition 39, propositional formulas belonging to pr(TExample) are:

• (p∀R.∃R.A(d) ≡ (pR(d,d1) → p∃R.A(d1))) ∨ ¬p∀R.∃R.A(d),

• (p∀R.(∃R.A�∃R.A)(d) ≡ (pR(d,d2) → (p∃R.A�∃R.A)(d2))) ∨
¬p∀R.(∃R.A�∃R.A)(d),

• p∀R.∃R.A(d) → (pR(d,d2) → pA(d2)),

• p∀R.(∃R.A�∃R.A)(d) → (pR(d,d1) → p(∃R.A�∃R.A)(d1)),

• p∃R.A(d1) ≡ (pR(d1,d1,1) ⊗ pA(d1,1)),

• p∃R.A(d2) ≡ (pR(d2,d2,1) ⊗ pA(d2,1)),

• p∃R.A(d2) ≡ (pR(d2,d2,2) ⊗ pA(d2,2)),

• (pR(d2,d2,2) ⊗ pA(d2,2))→ p∃R.A(d2),

• (pR(d2,d2,1) ⊗ pA(d2,1))→ p∃R.A(d2).

On the other hand, propositional formulas belonging to pr(YExample) are:

• ¬p∀R.∃R.A(d) ⊗ (pR(d,d1) → p∃R.A(d1)),

• ¬p∀R.(∃R.A�∃R.A)(d) ⊗ (pR(d,d2) → p(∃R.A�∃R.A)(d2)).

The next and crucial step in the proof is the following result. We leave the
proofs of each one of the directions for the future two sections.

Proposition 41. Let C0 be a concept, and let TC0
and YC0

be the two finite
sets associated by Definition 37. For every r ∈ [0, 1], the following statements
are equivalent:

1. C0 is satisfiable with truth value r in a quasi-witnessed interpretation,

2. there is some propositional evaluation e over the set Prop such that
e(pr(C(d0))) = r, e[pr(TC0

)] = 1, and e[ψ] 6= 1 for every ψ ∈ pr(YC0
).

From now on we will say that a propositional evaluation e is quasi-witnessing
relatively to C0 (quasi-witnessing, for short) when it satisfies that e[pr(TC0

)] = 1,
and e[ψ] 6= 1 for every ψ ∈ pr(YC0

).
As a consequence of this last proposition we are now able to prove Theo-

rem 34. This is so because by Proposition 41 we know that C ∈ QSat1 iff∨
pr(YC0

) is not derivable, in the corresponding propositional calculus, from the
set {pr(C(d0))} ∪ pr(TC0

).
Hence, we have a reduction of this problem to the semantic consequence

problem, with a finite number of hypothesis, in the corresponding propositional
calculus. This problem can be formalized as the problem of deciding, given

72 Chapter 4. Decidability

two propositional formulas ϕ and ψ, whether ψ is a semantic consequence of ϕ,
i.e., whether, each propositional evaluation which gives value 1 to ϕ, also gives
value 1 to ψ. In [Hájek, 2006, Theorem 3] it is proved that such problem is in
PSPACE for the expansion of product logic with truth constants, but, since a
formula without truth constants can be considered as a formula of the expanded
language in which do not appear truth constants, this result also holds for the
product logic without truth constants. Thus, the proof of Proposition 41 is the
only missing step in order to prove Theorem 34.

From DL interpretations to propositional evaluations

The purpose of this section is to show the downwards implication of Proposi-
tion 41. Let us assume that for a given concept C0, there is a quasi-witnessed
interpretation I and an object a such that CI0 (a) = r for some r ∈ [0, 1]. The
following definition tells us a way to obtain a propositional evaluation satisfying
the requirements in Proposition 41.

Definition 42. Let I be a quasi-witnessed interpretation, a an object of the
domain and C0 a concept. Let us consider TC0

, YC0
as the sets of assertions

obtained from the concept C0 by applying Definition 37. We assume that the
individual a0 has been interpreted in I as the object a; for each step, assume
that constants in previous steps have been interpreted in I. For each generalized
atom α processed in that step, do the following:

(∀1) If α = ∀R.C(dσ) and there exists u ∈ ∆I such that RI(dIσ , u)⇒ CI(u) =
infd∈∆I{RI(dIσ , d)⇒ CI(d)}, then interpret the constant dσ,n as u (calling
the expansion of ∆I by these constants again ∆I).

(∀2) If α = ∀R.C(dσ) and there is no u ∈ ∆I such that RI(dIσ , u) ⇒ CI(u) =
infd∈∆I RI(dIσ , d) ⇒ CI(d)}, then choose an element u ∈ ∆I such that
0 < RI(dIσ , u)⇒ CI(u) < 1. Such an element exists since, being I a quasi-
witnessed interpretation, we have, on the one hand, that, for each u ∈ ∆I ,
RI(dIσ , u) ⇒ CI(u) > 0 and, on the other hand, if there was no element
u ∈ ∆I such that RI(dIσ , u) ⇒ CI(u) < 1, then infd∈∆I{RI(dIσ , d) ⇒
CI(d)} = 1 = RI(dIσ , u) ⇒ CI(u) against the supposition. Once chosen
the element u, interpret the constant dσ,n as u (calling the expansion of
∆I by these constants again ∆I).

(∃) If α = ∃R.C(dσ), then choose an element u ∈ ∆I witnessing α and interpret
the constant dσ,n as u (calling the expansion of ∆I by these constants again
∆I).

Finally, for every generalized atom and every atomic formula α, occurring in
T , define eI(pr(α)) = αI .

Using and modifying an example reported in [Bobillo and Straccia, 2009c],
we provide the following instance of the above definition.

Example 43. Consider the interpretation I such that:

4.1. Witnessed satisfiability and Lukasiewicz logic 73

1. ∆I = {a, b, c, e, f} ∪ {ei | i ∈ ω\{0}},

2. there is a binary relation r such that r(b, c) = r(e, f) = 1, r(a, b) =
r(a, e) = 0.5, r(a, ei) = 0.5i, and R(x, y) = 0, when x, y is any other
pair of elements of the domain.

3. there is a unary predicate s such that s(c) = s(f) = 0.5 and s(x) = 0 for
any other element x of the domain.

So, if we take RI = r, AI = s, dI = a, dI1 = b, dI1,1 = c, dI2 = e and

dI2,1 = dI2,2 = f , then it is easy to check that:

1. I is a quasi-witnessed model of concept Example,

2. eI(pr(ϕ)) = 1, for each ϕ ∈ TExample,

3. eI(pr(ψ)) < 1, for each ψ ∈ YExample.

With the following Lemma and Proposition, we are going to prove that all
propositional evaluations obtained in this way are quasi-witnessing.

Lemma 44. Let I be a quasi-witnessed interpretation, C0 a concept, and let
us consider TC0 , YC0 as the sets of assertions obtained from the concept C0 by
applying Definition 37. Then, the propositional evaluation eI is quasi-witnessing
relatively to C0.

Proof. We will show the result considering, case by case, the five kinds of propo-
sition we can find in pr(TC0

) and pr(YC0
).

1. Consider the assertion (∀R.C(dσ) ≡ (R(dσ, dσ,n) A C(dσ,n)))t¬∀R.C(dσ),
then:

(∀1) if, following Definition 42, we have interpreted the constant dσ,n
as an element u ∈ ∆I such that RI(dIσ , u) ⇒ CI(u) =
infd∈∆I{RI(dIσ , d)⇒ CI(d)}, then we have that eI(pr((∀R.C(dσ) ≡
(R(dσ, dσ,n) A C(dσ,n))) t ¬∀R.C(dσ))) = (eI(pr(∀R.C(dσ))) ≡
(eI(pr(R(dσ, dσ,n))) ⇒ eI(pr(C(dσ,n))))) ∨ ¬eI(pr(∀R.C(dσ))) =
((∀R.C)I(dIσ) ≡ (RI(dIσ , d

I
σ,n) ⇒ CI(dIσ,n))) ∨ ¬(∀R.C)I(dIσ) =

(∀R.C)I(dIσ) ≡ (RI(dIσ , d
I
σ,n)⇒ CI(dIσ,n)) = 1.

(∀2) if there is no u ∈ ∆I such that RI(dIσ , u) ⇒ CI(u) =
infd∈∆I{RI(dIσ , d) ⇒ CI(d)}, then, since I is a quasi-witnessed
interpretation, eI(pr((∀R.C(dσ) ≡ (R(dσ, dσ,n) A C(dσ,n))) t
¬∀R.C(dσ))) = (eI(pr(∀R.C(dσ))) ≡ eI((pr(R(dσ, dσ,n))) ⇒
eI(pr(C(dσ,n))))) ∨ ¬eI(pr(∀R.C(dσ))) = ((∀R.C)I(dIσ) ≡
(RI(dIσ , d

I
σ,n) ⇒ CI(dIσ,n))) ∨ ¬(∀R.C)I(dIσ) = ¬(∀R.C)I(dIσ) = 1.

In every case we have that eI(pr((∀R.C(dσ) ≡ (R(dσ, dσ,n) A
C(dσ,n))) ∨ ¬∀R.C(dσ))) = 1.

74 Chapter 4. Decidability

2. Consider the assertion ∃R.C(dσ) ≡ (R(dσ, dσ,n) � C(dσ,n)). Then,
by Definition 42, we have that eI(pr(∃R.C(dσ) ≡ (R(dσ, dσ,n) �
C(dσ,n)) = eI(pr(∃R.C(dσ))) ≡ eI((pr(R(dσ, dσ,n))) ∗ eI(pr(C(dσ,n)))) =
∃R.CI(dIσ) ≡ (RI(dIσ , d

I
σ,n) ∗ CI(dIσ,n)) = 1.

3. Consider the assertion ∀R.C(dσ) A (R(dσ, dσ,m) A C(dσ,m)). Since
(∀R.C(dσ))I = infd∈∆I{RI(dIσ , d) ⇒ CI(d)}, then, by Definition
42 we have that eI(pr(∀R.C(dσ) A (R(dσ, dσ,m) A C(dσ,m)))) =
eI(pr(∀R.C(dσ)) ⇒ (eI(pr(R(dσ, dσ,m)) ⇒ eI(pr(C(dσ,m))) =
(∀R.C)I(dIσ)⇒ (RI(dIσ , d

I
σ,m)⇒ C(dIσ,m)) = 1.

4. Consider the assertion (R(dσ, dσ,m) � C(dσ,m)) A ∃R.C(dσ). Since
(∃R.C(dσ))I = supd∈∆I{RI(dIσ , d)∗CI(d)}, then, by Definition 42 we have
that eI(pr((R(dσ, dσ,m) A C(dσ,m))) A ∃R.C(dσ)) = (eI(pr(R(dσ, dσ,m))∗
eI(pr(C(dσ,m))) ⇒ eI(pr(∃R.C(dσ)) = (RI(dIσ , d

I
σ,m) ∗ C(dIσ,m)) ⇒

∃R.CI(dIσ) = 1.

5. Consider the assertion ¬∀R.C(dσ)� (R(dσ, dσ,n) A C(dσ,n)), then:

(∀1) if, following Definition 42, we have interpreted the constant dσ,n
as an element u ∈ ∆I such that RI(dIσ , u) ⇒ CI(u) =
infd∈∆I{RI(dIσ , d)⇒ CI(d)}, then we have that if, on the one hand,
eI(pr(¬∀R.C(dσ))) = 1, then eI(pr(∀R.C(dσ))) = 0 and, there-
fore, by Definition 37, eI(pr(R(dσ, dσ,n) A C(dσ,n))) = 0. Hence
eI(pr(¬∀R.C(dσ) � (R(dσ, dσ,n) A C(dσ,n)))) = 0 < 1. If, on the
other hand, eI(pr(R(dσ, dσ,n) A C(dσ,n))) = 1, then, by assump-
tion, eI(pr(∀R.C(dσ))) = 1 and, therefore, again, eI(pr(¬∀R.C(dσ)�
(R(dσ, dσ,n) A C(dσ,n)))) = 0 < 1.

(∀2) if there is no u ∈ ∆I such that RI(dIσ , u) ⇒ CI(u) =
infd∈∆I{RI(dIσ , d) ⇒ CI(d)}, then, since I is a quasi-witnessed
interpretation, we have that, necessarily, ∀RI .CI(dIσ) = 0 and,
hence, eI(pr(¬∀R.C(dσ))) = 1. However, since, by Definition 42,
, we have interpreted the constant dσ,n as an element u ∈ ∆I

such that 0 < RI(dIσ , u) ⇒ CI(u) < 1 and, therefore, we have
that eI(pr(R(dσ, dσ,n) A C(dσ,n))) < 1. So, eI(pr(¬∀R.C(dσ) �
(R(dσ, dσ,n) A C(dσ,n)))) < 1.

Hence, for every proposition pr(ϕ) ∈ pr(TC0
), it holds that eI(pr(ϕ)) = 1

and for every proposition pr(ψ) ∈ pr(YC0
), it holds that eI(pr(ψ)) < 1 and,

therefore, eI is a quasi-witnessing propositional evaluation.

Proposition 45. Let I be a quasi-witnessed interpretation, C0(a0) a IALE-
assertion and TC0

, YC0
the sets of assertions produced from C0(a0) applying Def-

inition 37, then, for every α ∈ TC0
∪ YC0

, it holds that eI(pr(α)) = αI .

Proof. We will prove the Lemma by induction on the costruction of α.

1. If α is an atomic formula, it is straightforward from Definition 42.

4.1. Witnessed satisfiability and Lukasiewicz logic 75

2. If α is a generalized atom, it is straightforward from Lemma 44.

3. If α is of the form δ ? γ where δ, γ are either atomic formulas or general-
ized atoms, ? is a concept constructor and ◦ is the respective algebraic
operation, suppose, by inductive hypothesis, that eI(pr(δ)) = δI and
eI(pr(γ)) = γI . Hence, eI(pr(α)) = eI(pr(δ?γ)) = eI(pr(δ))◦eI(pr(γ)) =
δI ◦ γI = (δ ? γ)I = αI .

Hence, for every proposition pr(α) in pr(TC0
∪YC0

), it holds that eI(pr(α)) = αI .
In particular, eI(pr(C0(a0))) = CI0 (aI0).

This finishes the proof of the downwards implication of Proposition 41.

From propositional evaluations to DL interpretations

The aim of this section is to prove the upwards implication of Proposition 41. Let
us assume that there is a propositional evaluation quasi-witnessing relatively to
C0 such that e(pr(C0(d))) = r for some r ∈ [0, 1]. First of all, we provide a way
to obtain a quasi-witnessed interpretation from a quasi-witnessing propositional
evaluation with the above features.

Definition 46. Let C0(a0) be an assertion, TC0
and YC0

the sets of concepts
and axioms produced from C0(a0) applying Definition 37, let pr(TC0), pr(YC0)
be the sets of propositions obtained by applying Definition 39 and let e be a
quasi-witnessing propositional evaluation. Then we define the witnessed part
Iwe of our interpretation Ie as follows:

1. ∆I
w
e is the set of all constants dσ occurring in formulas of T .

2. For each atomic concept A, let:

(a) AI
w
e (dσ) = e(pr(A(dσ))), where σ = l(A), if pr(A(dσ)) occurs in

pr(TC0
),

(b) AI
w
e (dσ) = 0, otherwise.

3. For each role R let:

(a) RI
w
e (dσ, dσ,n) = e(pr(R(dσ, dσ,n))), if pr(R(dσ, dσ,n)) occurs in

pr(TC0
),

(b) RI
w
e (dσ, dσ,n) = 0, otherwise.

In order to illustrate Definition 46, we provide an example of the witnessed
interpretation arising from pr(TExample) and pr(YExample).

Example 47. Let e be a propositional evaluation such that pR(d,d1) = pR(d,d2) =
0.5, pR(d1,d1,1) = pR(d2,d2,1) = pR(d2,d2,2) = 1, pA(d1,1) = pA(d2,1) = pA(d2,2) = 0.5.
As we have seen in the previous section, this is indeed a quasi-witnessing propo-
sitional evaluation. Moreover, following Definition 46, we obtain the following
interpretation:

76 Chapter 4. Decidability

• • •

•

A(d1,1)=0.5

1

OO

•

A(d2,1)=0.5

1???????

__???????
A(d2,2)=0.5

1�������

??�������

•

d1

d

0.5???????

__???????
d2

0.5�������

??�������

We point out that this interpretation, however, is not a model of the concept
Example.

The structure defined in Definition 46 is a witnessed interpretation which
would be enough in case we were only interested on witnessed interpretations.
But in order to encompass all quasi-witnessed interpretations we need the fol-
lowing extension of the above interpretation.

Definition 48. Let C0(a0) be an assertion, TC0
and YC0

the sets of first order
formulas produced from C0(a0) applying Definition 37, let pr(TC0

), pr(YC0
) be

the sets of propositions obtained by applying Definition 39 and let e be a quasi-
witnessing propositional evaluation; finally let Iwe be the interpretation defined
in Definition 46. Then we define the first order interpretation Ie as the following
expansion of Iwe :

1. The domain ∆Ie is obtained by adding to ∆I
w
e an infinite set of new

individuals {diσ|i ∈ ω\{0}}, for each dσ ∈ ∆I
w
e , but not for d.

2. if A is an atomic concept, and pr(A(diσ)) occurs in pr(TC0
), then AIe(diσ) =

(AIe(dσ))i,

3. For each role R:

(a) if R appears in an universally quantified formula, then:

i. if e(pr(∀R.C(dσ))) 6= e(pr(R(dσ, dσ,n) A C(dα))), then:

A. RIe(dσ, d
i
σ,n) = (RIe(dσ, dσ,n))i, for every i ∈ ω\{0},

B. RIe(diσ, d
j
σ,n) = (RIe(dσ, dσ,n))j , for every i, j ∈ ω\{0},

ii. if e(pr(∀R.C(dσ))) = e(pr(R(dσ, dσ,n) A D(dσ,n))), then
RIe(diσ, d

j
σ,n) = (RIe(dσ, dσ,n))j , for every i, j ∈ ω\{0}, if i = j

and RIe(diσ, d
j
σ,n) = 0, otherwise,

(b) if R appears in an existentially quantified formula, then
RIe(diσ, d

j
σ,n) = (RIe(dσ, dσ,n))j , for every i, j ∈ ω\{0}, if i = j and

RIe(diσ, d
j
σ,n) = 0, otherwise.

4.1. Witnessed satisfiability and Lukasiewicz logic 77

In order to illustrate Definition 48, we provide an example of the quasi-
witnessed interpretation arising from pr(TExample) and pr(YExample).

Example 49. Let e be the same propositional evaluation as in the previous
example, then, following Definition 46, we obtain the following interpretation:

. . . • • • • • • • • • . . .

. . . •

d21,1

12

OO

•

d11,1

11

OO

•

d1,1

1

OO

•

d2,1

1///////

WW///////

d2,2

1

OO

•

d12,1

11///////

WW///////

d12,2

11

OO

•

d22,1

12///////

WW///////

d22,2

12

OO

. . .

•

d1

d

0.5@@@@@@@@

__@@@@@@@@

d11d21
d2

0.5

OO
d12

0.51

~~~~~~~~

??~~~~~~~~

d22

0.52
ooooooooooooo

77ooooooooooooo

In this case it is worth pointing out that this interpretation is indeed a model of
Example.

Lemma 50. Let D(dσ) ∈ Sub(C0) and e a quasi-witnessing propositional eval-
uation, then, for each i ∈ ω\{0}, it holds that DIe(diσ) = (DIe(dσ))i.

Proof. The proof is by induction on the nesting degree of C0.

(0) An assertion with nesting degree equal to 0 is either an atomic concept or
a propositional combination of atomic concepts:

1. If C0 is an atomic concept, then it is straightforward from Definition
48.

2. Let C0 = E◦F , where E,F are atomic concepts and ◦ ∈ {⇒, ∗}. Sup-
pose, by inductive hypothesis, that the claim holds for two concepts
E,F , then:

(EIe ◦ F Ie)(diσ) = EIe(diσ) ◦ F Ie(diσ)
= (EIe(dσ))i ◦ (F Ie(dσ))i

= (EIe(dσ) ◦ F Ie(dσ))i

= (EIe ◦ F Ie(dσ))i

(k+1) Let D(dσ) be a generalized atom with nesting degree equal to k+ 1 and
suppose, by inductive hypothesis, that, for each generalized atom E(dσ,n)
with nesting degree equal to k, it holds that EIe(diσ,n) = (EIe(dσ,n))i,
then:

1. If D(dσ) = ∃R.E(dσ), then, by Definition 48, DIe(diσ) =
supd∈∆Ie{RIe(diσ, d) ∗EIe(d) = RIe(diσ, d

i
σ,n) ∗EIe(diσ,n) and, by in-

ductive hypothesis, Definition 37 and Definition 48, RIe(diσ, d
i
σ,n) ∗



78 Chapter 4. Decidability

EIe(diσ,n) = (RIe(dσ, dσ,n))i ∗ (EIe(dσ,n))i = (RIe(dσ, dσ,n) ∗
EIe(dσ,n))i = (DIe(dσ))i.

2. If D(dσ) = ∀R.E(dσ), and e(pr(∀R.E(dσ))) = (R(dσ, dσ,n) A
E(dσ,n)), then, by Definition 48, EIe(diσ) = infd∈∆Ie {RIe(diσ, d) ⇒
EIe(d) = RIe(diσ, d

i
σ,n) ⇒ EIe(diσ,n) and, by inductive hypothe-

sis, Definition 37 and Definition 48, RIe(diσ, d
i
σ,n) ⇒ EIe(diσ,n) =

(RIe(dσ, dσ,n))i ⇒ (EIe(dσ,n))i = (RIe(dσ, dσ,n) ⇒ EIe(dσ,n))i =
(DIe(dσ))i.

3. If D(dσ) = ∀R.E(dσ), and e(pr(∀R.E(dσ))) 6= (R(dσ, dσ,n) A
E(dσ,n)), then, by Definition 48, DIe(dσ) = 0 and, therefore,
by Definition 48, DIe(diσ) = infd∈∆Ie{RIe(diσ, d) ⇒ EIe(d) =
infj∈ω\{0}{RIe(diσ, djσ,n)⇒ EIe(djσ,n) = 0 = (DIe(dσ))i.

Proposition 51. Let e be a quasi-witnessing propositional evaluation, then, for
every assertion α, e(pr(α)) = αIe .

Proof. The proof is by induction on the nesting degree of α.

(0) An assertion with nesting degree equal to 0 is either an atomic concept or
a propositional combination of atomic concepts:

1. If α is an atomic concept, then it is straightforward from Definition
46.

2. Let α = C?D, where C,D are concepts and ? ∈ {A,�}∪{→,⊗} and
let ◦ ∈ {⇒, ∗}. Suppose that the inductive hypothesis holds for two
concepts C,D, then, by Definition 39 we have that, for each concept
constructor ?:
(C ? D)Ie = CIe ◦DIe

= e(pr(C)) ◦ e(pr(D))
= e(pr(C) ? pr(D))
= e(pr(C ? D))

(k+1) Let α be a generalized atom with nesting degree equal to k + 1 and
suppose, by inductive hypothesis, that, for each generalized atom β with
nesting degree ≤ n, occurring within the scope of the quantifier of α, it
holds that e(pr(β)) = βIe .

1. If α = ∃R.C(dσ), then, by Definition 37 we have that e(pr(α)) =
e(pr(R(dσ, dσ,n)� C(dσ,n))) and, by Definition 46 and inductive hy-
pothesis, we have that e(pr(R(dσ, dσ,n)�C(dσ,n))) = RIe(dσ, dσ,n) ∗
CIe(dσ,n). Let d ∈ ∆Ie be any constant different from dσ,n, then
either d is associated to to R, a or not. In the first case, since,
by Definition 37, e(pr(R(dσ, d) � C(d))) ⇒ e(pr(α)) = 1, then
RIe(dσ, d) ∗ CIe(d) ≤ e(pr(α)). In the second case, by Definition
46, RIe(dσ, d) ∗ CIe(d) = 0 ∗ CIe(d) = 0 ≤ e(pr(α)). So, in each
case, e(pr(α)) = RIe(dσ, dσ,n) ∗ CIe(dσ,n) = supd∈∆Ie {RIe(dσ, d) ∗
CIe(d)} = αIe .



4.2. Concept subsumption 79

2. If α = ∀R.C(a) and e(pr(α)) = e(pr(R(dσ, dσ,n) A C(dσ,n))), then,
by Definition 46 and inductive hypothesis, we have that e(pr(α)) =
RIe(dσ, dσ,n) ⇒ CIe(dσ,n). Let d ∈ ∆Ie be any constant different
from dσ,n, then either d is associated to R, a or not. In the first case,
since, by Definition 37, e(pr(α))⇒ e(pr(R(dσ, d) A C(d))) = 1, then
e(pr(α)) ≤ RIe(dσ, d)⇒ CIe(d). In the second case, by Definition 48,
RIe(dσ, d)⇒ CIe(d) = 0⇒ CIe(d) = 1 ≥ e(pr(α)). So, in each case,
e(pr(α)) = RIe(dσ, dσ,n) ⇒ CIe(dσ,n) = infd∈∆Ie {RIe(dσ, d) ⇒
CIe(d)} = αIe .

3. If α = ∀R.C(a) and e(pr(α)) 6= e(pr(R(dσ, dσ,n) A C(dσ,n))),
then, by Definition 37 we have that 0 = e(pr(α)) and, by Def-
inition 46 and inductive hypothesis, we have that e(pr(α)) 6=
RIe(dσ, dσ,n) ⇒ CIe(dσ,n). Again by Definition 37 (look at the
set Y ) we have that RIe(dσ, dσ,n) ⇒ CIe(dσ,n) < 1 and, by the
above assumptions, we have that RIe(dσ, dσ,n) ⇒ CIe(dσ,n) >
0. Since, by Lemma 50, we have that, for each i ∈ ω\{0},
RIe(dσ, d

i
σ,n) ⇒ CIe(diσ,n) = (RIe(dσ, dσ,n) ⇒ CIe(dσ,n))i, then

e(pr(α)) = 0 = infi∈ω\{0}{(RIe(dσ, dσ,n) ⇒ CIe(dσ,n))i} =
infi∈ω\{0}{RIe(dσ, diσ,n) ⇒ CIe(diσ,n)} = infd∈∆Ie {RIe(dσ, d) ⇒
CIe(d)} = αIe .

The result is straightforward for propositional combinations of atomic con-
cepts and generalized atoms with nesting degree equal to k + 1.

In particular, e(pr(C0(a0))) = CIe0 (a0).

This finishes the last step in the proof of Proposition 41, and so the last step
in the proof of Theorem 34.

4.2 Concept subsumption

The same procedures proposed in [Hájek, 2005], for the case of witnessed inter-
pretations and  Lukasiewicz semantics is used to prove decidability of concept
1-subsumption1 for language IALCE under  Lukasiewicz semantics. For the 1-
subsumption problem the reduction is to the propositional entailment problem.
In [Hájek, 2005, Theorem 1] it is indeed stated that a concept C0 is valid iff
pr(TC0) entails pr(C0). This, clearly means that

concept C is 1-subsumed by concept D ⇐⇒ pr(TCAD) entails pr(C A D)

For the case of quasi-witnessed interpretations and product t-norm the pro-
cedure proposed in Section 4.1.1 can be used as well. We will use the notation

1[Hájek, 2005] indeed deals with validity of formulas, but recall that a concept C is r-
subsumed by a concept D if and only if concept > is r-subsumed by concept C A D. So, it is
straightforward that, concept C A D is valid, if and only if > is 1-subsumed by C A D, if and
only if C is 1-subsumed by D.



80 Chapter 4. Decidability

Subs to denote the set of concepts that 1-subsume the top concept >; and we will
write QSubs to denote the same problem restricted to quasi-witnessed interpre-
tations. The reason is, again, that the logical consequence problem is decidable
for Product Logic and, as for positive satisfiability, we can reduce the problem of
deciding whether a concept belongs to QSubs to the logical consequence problem
in propositional Product Logic. In fact, once obtained the sets TC0

and YC0
for

a given concept C0, we have that

C0 ∈ QSubs ⇐⇒ pr(TC0
) entails pr(C0(d0)) ∨

∨
pr(YC0

)

In this way, in [Cerami et al., 2010a] has been proven the following theorem.

Theorem 52. The set QSubs is decidable.

By the completeness result of product first order logic with respect to quasi-
witnessed models reported in Section 2.1.3, we obtain that QSubs is a decidable
problem under product general semantics. In Appendix A it is proven that quasi-
witnessed validity and unrestricted validity indeed coincide under the standard
product semantics. Hence unrestricted validity is a decidable problem in [0, 1]Π.

4.3 Knowledge base consistency in  Lukasiewicz
logic

The suspect that general KB consistency was not a decidable problem with an
infinite (non-idempotent) set of truth values, began when in [Bobillo et al., 2011]
was proved the failure of the finite model property for language IALCE based
on  Lukasiewicz and product t-norm and its decidability kept being suspicious
with [Baader and Peñaloza, 2011a]. Nevertheless, until then, there was no direct
evidence that those problems were undecidable.

The first result on undecidability can be found in
[Baader and Peñaloza, 2011b] for language IALCE based on prod-
uct t-norm with respect to witnessed interpretations. The proof in
[Baader and Peñaloza, 2011b] consists in a reduction of the Post Corre-
spondence Problem (PCP) to the general KB consistency for language
IALCE based on product t-norm. Subsequently, using the same methods
in [Baader and Peñaloza, 2011b] and [Borgwardt and Peñaloza, 2011c], we
achieved an undecidability proof for language IALCE based on  Lukasiewicz
t-norm with respect to witnessed interpretations.

Our proof consists of a reduction of the reverse of the PCP and follows con-
ceptually the one in [Baader and Peñaloza, 2011a, Baader and Peñaloza, 2011b,
Borgwardt and Peñaloza, 2011c]. PCP is well known to be undecid-
able [Post, 1946], so is the reverse PCP, as shown next.

Definition 53 (PCP). An instance ϕ of the Post Correspondence Problem
(PCP) is defined in the following way: let v1, . . . , vp and w1, . . . , wp be two finite
lists of words over an alphabet Σ = {1, . . . , s}. A solution to ϕ is a non-empty



4.3. Knowledge base consistency in  Lukasiewicz logic 81

sequence i1, i2, . . . , ik, with 1 ≤ ij ≤ p such that vi1vi2 . . . vik = wi1wi2 . . . wik .
Given ϕ, the decision problem then is to decide whether a solution to ϕ exists
or not.

For the sake of our purpose, we will rely on a variant of the PCP, which we
call Reverse PCP (RPCP). Essentially, words are concatenated from right to
left rather than from left to right.

Definition 54 (RPCP). An instance ϕ of the Reverse Post Correspondence
Problem (RPCP) is defined in the following way: let v1, . . . , vp and w1, . . . , wp
be two finite lists of words over an alphabet Σ = {1, . . . , s}. A solution to ϕ is
a non-empty sequence i1, i2, . . . , ik, with 1 ≤ ij ≤ p such that vikvik−1

. . . vi1 =
wikwik−1

. . . wi1 . Given ϕ, the decision problem then is to decide whether a
solution to ϕ exists or not.

For a word µ = i1i2 . . . ik ∈ {1, . . . , p}∗ we will use vµ, wµ to denote the
words vikvik−1

. . . vi1 and wikwik−1
. . . wi1 . We denote the empty string as ε and

define vε as ε. The alphabet Σ consists of the first s positive integers. We can
thus view every word in Σ∗ as a natural number represented in base s + 1 in
which 0 never occurs. Using this intuition, we will use the number 0 to encode
the empty word.

Now we show that the reduction from PCP to RPCP is a very simple matter
and it can be done through the transformation of the instance lists to the lists
of their palindromes defined as follows: let Σ = {1, . . . , s} be an alphabet and
v = t1t2 . . . t|v| a word over Σ, with ti ∈ Σ, for 1 ≤ i ≤ |v|, then the palindrome
of v is defined as pal(v) = t|v|t|v|−1 . . . t1.

Lemma 55. Let v1, . . . , vp and w1, . . . , wp be two finite lists of words over an
alphabet Σ = {1, . . . , s}. For every non-empty sequence i1, i2, . . . , ik, with 1 ≤
ij ≤ p it holds that

vi1vi2 . . . vik = wi1wi2 . . . wik
iff

pal(vik)pal(vik−1
) . . . pal(vi1) = pal(wik)pal(wik−1

) . . . pal(wi1) .

(Proof) First we prove by induction on k, that, for every sequence
v = vi1vi2 . . . vik of words over Σ, it holds that pal(v) =
pal(vik)pal(vik−1

) . . . pal(vi1).

• The case k = 1 is straightforward.

• Let v = vi1vi2 . . . vik and suppose, by inductive hypothesis, that
pal(vi1vi2 . . . vik−1

) = pal(vik−1
)pal(vik−2

) . . . pal(vi1). It follows that
pal(v) = pal(vi1vi2 . . . vik−1

, vik) = pal(vik)pal(vik−1
) . . . pal(vi1).

Since the palindrome of a word is unique, we have that, if vi1vi2 . . . vik =
wi1wi2 . . . wik , then pal(vi1vi2 . . . vik) = pal(wi1wi2 . . . wik) and, thus,
pal(vik)pal(vik−1

) . . . pal(vi1) = pal(wik) pal(wik−1
). . . pal(wi1).



82 Chapter 4. Decidability

Corollary 56. RPCP is undecidable.

(Proof) The proof is based on the reduction of PCP to RPCP. For every in-
stance ϕ = (v1, w1), . . . , (vp, wp) of PCP, let f be the function

f(ϕ) = (pal(v1), pal(w1)), . . . , (pal(vp), pal(wp)) .

Clearly f is a computable function. Moreover, ϕ has a solution if and only
if there exists a non-empty sequence i1, i2, . . . , ik, with 1 ≤ ij ≤ p such
that vi1vi2 . . . vik = wi1wi2 . . . wik , that is, by Lemma 55,

pal(vik)pal(vik−1
) . . . pal(vi1) = pal(wik)pal(wik−1

) . . . pal(wi1)

i.e., f(ϕ) has a solution. Therefore, ϕ ∈ PCP has a solution if and only
if f(ϕ) ∈ RPCP has a solution.

4.3.1 Undecidability of general KB satisfiability

We show the undecidability by a reduction of RPCP to KB satisfiability prob-
lems. Specifically, given an instance ϕ of RPCP, we will construct a Knowledge
Base Oϕ that is satisfiable iff ϕ has no solution.

In order to do this we will encode words v from the alphabet Σ as rational
numbers 0.v in [0, 1] in base s+1; the empty word will be encoded by the number
0.

So, let us define the following TBoxes:

T := { V ≡ V1 � V2,W ≡W1 �W2 }

and for 1 ≤ i ≤ p

T iϕ := { > v ∃Ri.>,

V v (s+ 1)|vi| · ∀Ri.V1,

(s+ 1)|vi| · ∃Ri.V1 v V,
W v (s+ 1)|wi| · ∀Ri.W1,

(s+ 1)|wi| · ∃Ri.W1 vW

〈> v ∀Ri.V2, 0.vi〉,
〈> v ∀Ri.¬V2, 1− 0.vi〉,
〈> v ∀Ri.W2, 0.wi〉,
〈> v ∀Ri.¬W2, 1− 0.wi〉,

A v (s+ 1)max{|vi|,|wi|} · ∀Ri.A
(s+ 1)max{|vi|,|wi|} · ∃Ri.A v A } .



4.3. Knowledge base consistency in  Lukasiewicz logic 83

Now, let

Tϕ = T ∪
p⋃
i=1

T iϕ .

Further we define the ABox A as follows:

A := {¬V (a),¬W (a), 〈A(a), 0.01〉, 〈¬A(a), 0.99〉} .

Finally, we define
Oϕ := 〈Tϕ,A〉 .

We now define the interpretation

Iϕ := (∆Iϕ , ·Iϕ)

as follows:

• ∆Iϕ = {1, . . . , p}∗

• aIϕ = ε

• V Iϕ(ε) = W Iϕ(ε) = 0, AIϕ(ε) = 0.01, and for 1 ≤ i ≤ 2, V
Iϕ
i (ε) =

W
Iϕ
i (ε) = 0

• for all µ, µ′ ∈ ∆Iϕ and 1 ≤ i ≤ p

R
Iϕ
i (µ, µ′) =

{
1, if µ′ = µi

0, otherwise

• for every µ ∈ ∆Iϕ , where µ = i1i2 . . . ik 6= ε

– V Iϕ(µ) = 0.vµ, W Iϕ(µ) = 0.wµ

– AIϕ(µ) = 0.01 · (s+ 1)
−

∑
j∈{i1,i2,...,ik}

max{|vj |,|wj |}

– V
Iϕ
1 (µ) = 0.vµ̄ · (s + 1)−|vik |, W

Iϕ
1 (µ) = 0.wµ̄ · (s + 1)−|wik |, where

µ̄ = i1i2 . . . ik−1 (last index ik is dropped from µ, and we assume that
0.ε is 0),

– V
Iϕ
2 (µ) = 0.vik , W

Iϕ
2 (µ) = 0.wik .

It is easy to see that Iϕ is a witnessed model of Oϕ (note that

e.g., (∀Ri.V1)Iϕ(µ) = V
Iϕ
1 (µi)). 2

Moreover, as in [Baader and Peñaloza, 2011a] it is possible to prove that, for
every witnessed model I of Oϕ, there is a mapping g from Iϕ to I.

Lemma 57. Let I be a witnessed model of Oϕ. Then there exists a function
g : ∆Iϕ → ∆I such that, for every µ ∈ ∆Iϕ , CIϕ(µ) = CI(g(µ)) holds for

every concept name C and R
Iϕ
i (µ, µi) = RIi (g(µ), g(µi)) holds for every i, with

1 ≤ i ≤ p.

2However, Iϕ is not a strongly witnessed model of Oϕ.



84 Chapter 4. Decidability

(Proof) Let I be a witnessed model of Oϕ. We will build the function g induc-
tively on the length of µ.

(ε) Since I is a model of Oϕ, then there is an element δ ∈ ∆I such
that aI = δ. Since I is a model of Aϕ, setting g(ε) = δ, we have that
V Iϕ(ε) = 0 = V I(g(ε)) and the same holds for concept W . Moreover,
since I is a model of Tϕ, we have that V I(δ) = (V1 � V2)I(δ) and,

therefore V
Iϕ
1 (ε) = 0 = V I1 (g(ε)) and the same holds for V2, W1 and

W2. On the other hand, we have that AIϕ(ε) = 0.01 = AI(g(ε)), as
well. So, g(ε) = δ satisfies the condition of the lemma.

(µi) Let now µ be such that g(µ) has already been defined. Now, since I is
a witnessed model and satisfies axiom > v ∃Ri.>, then for all i, with
1 ≤ i ≤ p, there exists a γ ∈ ∆I such thatRIi (g(µ), γ) = 1. So, setting

g(µi) = γ we get 1 = R
Iϕ
i (µ, µi) = RIi (g(µ), g(µi)). Furthermore,

by inductive hypothesis, we can assume that V I(g(µ)) = 0.vµ and
W I(g(µ)) = 0.wµ.

Since I satisfies axiom V v (s+1)|vi|·∀Ri.V1, then 0.vµ = V I(g(µ)) ≤
(s + 1)|vi| · (∀Ri.V1)I(g(µ)) = (s + 1)|vi| · infγ∈∆I{RIi (g(µ), γ) ⇒
V I1 (γ)} ≤ (s+ 1)|vi| ·RIi (g(µ), µi)⇒ V I1 (µi) = (s+ 1)|vi| ·V I1 (g(µi)).

Since I satisfies axiom (s+1)|vi|·∃Ri.V1 v V , then 0.vµ = V I(g(µ)) ≥
(s + 1)|vi| · (∃Ri.V1)I(g(µ)) = (s + 1)|vi| · supγ∈∆I{RIi (g(µ), γ) ⊗
V I1 (γ)} ≥ (s+ 1)|vi| ·RIi (g(µ), µi)⊗ V I1 (µi) = (s+ 1)|vi| · V I1 (g(µi)).
Therefore, (s + 1)|vi| · V I1 (g(µi)) = 0.vµ and V I1 (g(µi)) = 0.vµ · (s +

1)−|vi| = V
Iϕ
1 (µi).

Similarly, it can be shown that W I1 (g(µi)) = 0.wµ · (s + 1)−|wi| =

W
Iϕ
1 (µi).

Since I satisfies axioms 〈> v ∀Ri.V2, 0.vi〉 and
〈> v ∀Ri.¬V2, 1− 0.vi〉, it follows that (∀Ri.V2)I(g(µ)) ≥ 0.vi
and (∀Ri.¬V2)I(g(µ)) ≥ 1− 0.vi. Therefore, for RIi (g(µ), g(µi)) = 1

we have V I2 (g(µi)) = 0.vi = V
Iϕ
2 (µi). Similarly, it can be shown that

W
Iϕ
2 (µi) = 0.wi = W I2 (g(µi)).

Now, since I satisfies axiom V ≡ V1 � V2, then, V I(g(µi)) =
V I1 (g(µi)) +V I2 (g(µi)) = 0.vµ · (s+ 1)−|vi|+ 0.vi = 0.vivµ = V Iϕ(µi).

Finally, by inductive hypothesis, assume that

AI(g(µ)) = AIϕ(µ) = 0.01 · (s+ 1)
−

∑
j∈{i1,i2,...,ik}

max{|vj |,|wj |} ,

where µ = i1i2 . . . ik.

Since I satisfies axioms A v (s+ 1)max{|vi|,|wi|} · ∀Ri.A, we have that

AI(g(µ))
≤ (s+ 1)max{|vi|,|wi|} · (∀Ri.A)I(g(µ))
≤ (s+ 1)max{|vi|,|wi|} ·AI(g(µi)) .



4.3. Knowledge base consistency in  Lukasiewicz logic 85

Likewise, since I satisfies axioms (s+ 1)max{|vi|,|wi|} · ∃Ri.A v A, we
have that

AI(g(µ))
≥ (s+ 1)max{|vi|,|wi|} · (∃Ri.A)I(g(µ))
≥ (s+ 1)max{|vi|,|wi|} ·AI(g(µi))

and, thus,

AI(g(µ)) = (s+ 1)max{|vi|,|wi|} ·AI(g(µi)) .

Therefore,

AI(g(µi))

= (s+ 1)−max{|vi|,|wi|} ·AI(g(µ))

= (s+ 1)−max{|vi|,|wi|} ·AIϕ(µ)

= (s+ 1)−max{|vi|,|wi|} · 0.01 · (s+ 1)
−

∑
j∈{i1,i2,...,ik}

max{|vj |,|wj |}

= 0.01 · (s+ 1)
−(max{|vi|,|wi|}+

∑
j∈{i1,i2,...,ik}

max{|vj |,|wj |})

= 0.01 · (s+ 1)
−

∑
j∈{i1,i2,...,ik,i}

max{|vj |,|wj |}

= AIϕ(µi) ,

which completes the proof.

From the last Lemma it follows that if the RPCP instance ϕ has a solution
µ, for some µ ∈ {1, . . . , p}+, then vµ = wµ and, thus, 0.vµ = 0.wµ. Therefore,
every witnessed model I of Oϕ contains an element δ = g(µ) such that V I(δ) =
V Iϕ(µ) = 0.vµ = 0.wµ = W Iϕ(µ) = W I(δ). Conversely, from the definition of
Iϕ, if ϕ has no solution, then there is no µ such that 0.vµ = 0.wµ, i.e., there is
no µ such that V Iϕ(µ) = W Iϕ(µ).

However, as Oϕ is always satisfiable, it does not yet help us to decide the
RPCP. We next extend Oϕ to O′ϕ in such a way that an instance ϕ of the RPCP
has a solution iff the ontology O′ϕ is not witnessed satisfiable and, thus, establish
that the KB satisfiability problem is undecidable. To this end, consider

O′ϕ := 〈T ′ϕ,A〉 ,

where
T ′ϕ := Tϕ ∪

⋃
1≤i≤p

{> v ∀Ri.(¬(V ↔W )� ¬A)} .

The intuition here is the following. If there is a solution for RPCP then,
by the observation before, there is a point δ in which the value of V and W
coincide under I. That is, the value of ¬(V ↔ W ) is 0 and, thus, the one
of ¬(V ↔ W ) � ¬A is less than 1. So, I cannot satisfy the new GCI in T ′ϕ
and, thus, O′ϕ is not satisfiable. On the other hand, if there is no solution to
the RPCP then in Iϕ there is no point in which V and W coincide and, thus,
¬(V ↔ W ) > 0. Moreover, we will show that the value of ¬(V ↔ W ) in all



86 Chapter 4. Decidability

points is strictly greater than A and, as A�¬A is 1, so also ¬(V ↔W )�¬A will
be 1 in any point. Hence, Iφ is a model of the additional axiom in T ′ϕ, i.e., O′ϕ
is satisfiable.

Proposition 58. The instance ϕ of the RPCP has a solution iff the ontology
O′ϕ is not witnessed satisfiable.

(Proof) Assume first that ϕ has a solution µ = i1 . . . ik and let I be a witnessed
model of Oϕ. Let µ̄ = i1i2 . . . ik−1 (last index ik is dropped from µ).
Then by Lemma 57 it follows that there are nodes δ, δ′ ∈ ∆I such that
δ = g(µ), δ′ = g(µ̄), with V I(δ) = V Iϕ(µ) = W Iϕ(µ) = W I(δ) and
RIik(δ′, δ) = 1. Then (V ↔ W )I(δ) = 1. Since (¬A)I(δ) < 1, then

(¬(V ↔ W ) � ¬A)I(δ) < 1. Hence there is i, with 1 ≤ i ≤ p, such that
(∀Ri.(¬(V ↔W )�¬A))I(δ′) < 1. So, axiom > v ∀Ri.(¬(V ↔W )�¬A)
is not satisfied and, therefore, O′ϕ is not satisfiable.

For the converse, assume that ϕ has no solution. On the one hand we know
that Iϕ is a model of Oϕ. On the other hand, since ϕ has no solution,
then there is no µ = i1 . . . ik such that vµ = wµ (i.e., 0.vµ = 0.wµ) and,
therefore, there is no µ ∈ ∆Iϕ such that V Iϕ(µ) = W Iϕ(µ). Consider
µ ∈ ∆Iϕ and i, with 1 ≤ i ≤ p and assume, without loss of generality, that
V Iϕ(µi) < W Iϕ(µi). Then

(V ↔W )Iϕ(µi) = (V Iϕ(µi)⇒W Iϕ(µi))⊗ (W Iϕ(µi)⇒ V Iϕ(µi))

= 1⊗ (W Iϕ(µi)⇒ V Iϕ(µi))

= W Iϕ(µi)⇒ V Iϕ(µi)

= 1−W Iϕ(µi) + V Iϕ(µi)

= 1− (W Iϕ(µi)− V Iϕ(µi))

= 1− (0.wµi − 0.vµi)

≤ 1− 0.01 · (s+ 1)−max{|vµi|,|wµi|}

≤ 1− 0.01 · (s+ 1)
−

∑
j∈{i1,i2,...,ik,i}

max{|vj |,|wj |}

= (¬A)Iϕ(µi) .

Therefore, (¬(V ↔ W ))Iϕ(µi) ≥ AIϕ(µi). As AIϕ(µi)⊕ (¬A)Iϕ(µi) = 1,
it follows that for every µ ∈ ∆Iϕ and i, with 1 ≤ i ≤ p, it holds that
(∀Ri.(¬(V ↔W )�¬A))Iϕ(µ) = 1 and, therefore, Iϕ is a witnessed model
of O′ϕ.

By Proposition 58, we have a reduction of a RPCP to a KB satisfiability
problem. Note that all roles are crisp. Therefore,

Proposition 59. The knowledge base satisfiability problem is undecidable for
 L-ALC with GCIs. The result holds also if crisp roles are assumed.



4.3. Knowledge base consistency in  Lukasiewicz logic 87

4.3.2 Knowledge Base consistency w.r.t. finite models

In this section we address a sub problem of the previous one. That is, deciding
whether a KB has a finite interpretation.

In [Baader and Peñaloza, 2011b] is provided a proof of undecidability for
language IALCE based on product t-norm with respect to strongly witnessed
interpretations. Using the same methods in [Baader and Peñaloza, 2011b] and
[Borgwardt and Peñaloza, 2011c], we achieved an undecidability proof for for
language IALCE based on  Lukasiewicz t-norm with respect to finite interpreta-
tions.

As in [Baader and Peñaloza, 2011b], given an instance ϕ of RPCP, we provide
an ontology Õϕ and prove that it has a finite model iff ϕ has a solution. We

now define a TBox T̃ as follows:

T̃ := { V ≡ V1 � V2,W ≡W1 �W2,

¬(V ↔W ) v max{C1, . . . , Cp} } ,

and TBoxes T̃ iϕ as follows:

T̃ iϕ := { Ci ≡ ∃Ri.>,
> v max{Ci,¬Ci},

(Ci A V ) v (s+ 1)|vi| · ∀Ri.V1,

(s+ 1)|vi| · ∃Ri.V1 v (Ci A V ),

(Ci AW ) v (s+ 1)|wi| · ∀Ri.W1,

(s+ 1)|wi| · ∃Ri.W1 v (Ci AW ),

〈> v ∀Ri.V2, 0.vi〉,
〈> v ∀Ri.¬V2, 1− 0.vi〉,
〈> v ∀Ri.W2, 0.wi〉,
〈> v ∀Ri.¬W2, 1− 0.wi〉 }

Now, let

T̃ϕ = T̃ ∪
p⋃
i=1

T̃ iϕ .

Further we define the ABox Ãϕ as follows:

Ãϕ := {¬V (a),¬W (a),max{C1, . . . , Cp}(a)} .

Finally,
Õϕ := 〈T̃ϕ, Ãϕ〉 .



88 Chapter 4. Decidability

Proposition 60. The instance ϕ of the RPCP has a solution iff the ontology
Õϕ has a finite model.

(Proof) (⇒) Let µ = i1 . . . ik be a solution of ϕ and let suf(µ) be the set of
all suffixes of µ 3. We build the finite interpretation Ĩϕ as follows:

• ∆Ĩϕ := suf(µ),

• aĨϕ = ε,

• V Ĩϕ(ε) = W Ĩϕ(ε) = 0, and for 1 ≤ i ≤ 2, V
Ĩϕ
i (ε) = W

Ĩϕ
i (ε) = 0

• for all ν ∈ ∆Ĩϕ , V Ĩϕ(ν) = 0.vν , W Ĩϕ(ν) = 0.wν

• for all ν, ν′ ∈ ∆Ĩϕ and 1 ≤ i ≤ p

R
Ĩϕ
i (ν, ν′) =

{
1, if ν′ = iν

0, otherwise

• for all ν ∈ ∆Ĩϕ and 1 ≤ i ≤ p,

C
Ĩϕ
i (ν) =

{
1, if iν ∈ suf(µ)

0, otherwise

• for all ν ∈ ∆Ĩϕ and 1 ≤ i ≤ p such that iν ∈ suf(µ)

– V
Ĩϕ
1 (iν) = 0.vν · (s+ 1)−|vi|, W

Ĩϕ
1 (iν) = 0.wν · (s+ 1)−|wi|,

– V
Ĩϕ
2 (iν) = 0.vi, W

Ĩϕ
2 (iν) = 0.wi.

We show now that Ĩϕ is a model Õϕ. Since V Ĩϕ(ε) = 0.vε = 0 and

W Ĩϕ(ε) = 0.wε = 0, then the first two axioms in Ãϕ are satisfied.

Since there is 1 ≤ i ≤ p such that iε = i ∈ suf(µ), then C
Ĩϕ
i (ε) = 1

and, therefore, the third axiom in Ãϕ is satisfied.

We now show that the axioms in T̃ and each T̃ iϕ, with 1 ≤ i ≤ p are
satisfied for every ν ∈ suf(µ). So, let ν ∈ suf(µ)\{µ}. Then there is
1 ≤ i ≤ p such that iν ∈ suf(µ) and, therefore, by the definition of Ĩϕ,

C
Ĩϕ
i (ν) = 1 and R

Ĩϕ
i (ν, iν) = 1. Therefore, (Ci A V )Ĩϕ(ν) = V Ĩϕ(ν)

from which it follows that every axiom in T̃ iϕ is satisfied by Ĩϕ (the

proof is the same as for Iϕ satisfying T iϕ). E.g., note that V Ĩϕ(ν) =

0.vν = (s+1)|vi|·V Ĩϕ1 (iν) and, thus, both (Ci A V ) v (s+1)|vi|·∀Ri.V1

and (s+ 1)|vi| · ∃Ri.V1 v (Ci A V ) are satisfied.

Moreover, for every j 6= i and ν′ ∈ suf(µ), it holds that C
Ĩϕ
j (ν) = 0

and R
Ĩϕ
j (ν, ν′) = 0 and, therefore every axiom in T̃ jϕ is satisfied as

well (note that e.g., (∀Rj .V1)Ĩϕ(ν) = 1). This last argument holds
for µ as well.

3 A suffix of a string t1t2 . . . tn is a string tn−m+1 . . . tn (0 ≤ m ≤ n), which is the empty
string ε for m = 0.



4.3. Knowledge base consistency in  Lukasiewicz logic 89

Finally, consider T̃ϕ. It is easy to check that the first two axioms are
satisfied in every ν ∈ suf(µ). For the third axiom, if ν ∈ suf(µ)\{µ},
then there is 1 ≤ i ≤ p such that C

Ĩϕ
i (ν) = 1 and, then, the axiom

is trivially satisfied. Otherwise, if ν = µ, since µ is a solution for ϕ,

then (¬(V ↔W ))Ĩϕ(µ) = 0 and, then, the axiom is trivially satisfied
as well.

(⇐) For the converse, suppose that ϕ has no solution and let I be a model
of Õϕ. By absurd, let us assume that I is finite and, thus, witnessed.

Now, since I is a model of axioms ¬V (a) and ¬W (a), then there is a
node aI = δ ∈ ∆I , such that V I(δ) = W I(δ) = 0.

Moreover, since I is a model of axioms V ≡ V1�V2 and W ≡W1�W2,
then V I1 (δ) = V I2 (δ) = W I1 (δ) = W I2 (δ) = 0 as well.

Next, we prove by induction that for every n ∈ N there is an element
δin ∈ ∆I such that:

• V I(δin) = 0.vin . . . vi1 ,

• W I(δin) = 0.win . . . wi1 ,

and |{δ, δi1 , . . . , δin}| = n + 1 (all elements are distinct). As a con-
sequence, ∆I cannot be finite, contrary to the assumption that I is
finite.

Case n = 1. Since I is a witnessed model, it satisfies axiom
max{C1, . . . , Cp}(a). So, there is i, such that CIi (δ) = 1. Let
i1 = i. Since I satisfies axiom Ci1 ≡ ∃Ri1 .>, then there is
δ′ ∈ ∆I such that RIi1(δ, δ′) = 1. Let δi1 = δ′. Since I satisfies

axiom (s + 1)|vi1 | · ∃Ri1 .V1 v (Ci1 A V ), then 0 = (1 ⇒ 0) =
(Ci1(δ)⇒ V )I(δ) ≥ (s+ 1)|vi1 | · supδ′∈∆I{RIi1(δ, δ′)⊗ V I1 (δ′)} ≥
RIi1(δ, δi1)⊗ V I1 (δi1) = 1⊗ V I1 (δi1) = V I1 (δi1). Hence, V I1 (δi1) =

0. In the same way it can be proved that W I1 (δi1) = 0.
Since I satisfies axiom 〈> v ∀Ri1 .V2, 0.vi1〉, we have that 0.vi1 ≤
(RIi1(δ, δi1)⇒ V I2 (δi1)) = (1⇒ V I2 (δi1)) = V I2 (δi1).
Since I satisfies axiom 〈> v ∀Ri1 .¬V2, 1− 0.vi1〉, it follows that
1 − 0.vi1 ≤ (RIi1(δ, δi1) ⇒ ¬V I2 (δi1)) = (1 ⇒ ¬V I2 (δi1)) =

¬V I2 (δi1) = 1 − V I2 (δi1) and therefore, V I2 (δi1) ≤ 0.vi1 . So,
V I2 (δi1) = 0.vi1 . In the same way it can be proved that
W I2 (δi1) = 0.wi1 .
Finally, since I satisfies axiom V ≡ V1 � V2, then V I(δi1) =
V I1 (δi1) ⊕ V I2 (δi1) = 0 ⊕ 0.vi1 = 0.vi1 . In the same way it can
be proved that W I(δi1) = 0.wi1 . Moreover, since V I(δ) = 0 6=
0.vi1 = V I(δi1), then δ 6= δi1 and, thus, |{δ, δi1}| = 2, which
completes the case.

Induction step n+ 1. Let n > 1 and suppose, by inductive hypoth-
esis, that, for every j ≤ n, the above conditions hold.
Since ϕ has no solution, then vin . . . vi1 6= win . . . wi1 and,
therefore, by inductive hypothesis, V I(δin) = 0.vin . . . vi1 6=



90 Chapter 4. Decidability

0.win . . . wi1 = W I(δin). Hence (V ↔ W )I(δin) < 1 and,
therefore, ¬(V ↔ W )I(δin) > 0. So, since I satisfies axiom
¬(V ↔ W ) v max{C1, . . . , Cp}, (max{C1, . . . , Cp})I(δin) > 0
follows and, thus, there is i such that CIi (δin) > 0. Therefore, as
I satisfies axiom > v max{Ci,¬Ci}, we have that CIi (δin) = 1.
Now, let in+1 = i.
Since I satisfies axiom Cin+1

≡ ∃Rin+1
.>, then there is δ′ ∈ ∆I

such that RIin+1
(δin , δ

′) = 1. So, let δin+1 = δ′.

Since I satisfies axiom (Cin+1
A V ) v (s + 1)|vin+1

| ·
∀Rin+1

.V1, then 0.vin . . . vi1 = (1 ⇒ 0.vin . . . vi1) = (Cin ⇒
V )I(δin)) ≤ (s + 1)|vin+1

| · infδ′∈∆I{RIin+1
(δin , δ

′) ⇒ V I1 (δ′)} ≤
(RIin+1

(δin , δin+1)⇒ V I1 (δin+1)) = V I1 (δin+1). On the other hand,

since I satisfies axiom (s + 1)|vin+1
| · ∃Rin+1

.V1 v (Cin+1
A V ),

then 0.vin . . . vi1 = (1 ⇒ 0.vin . . . vi1) = (Cin ⇒ V )I(δin) ≥
(s+ 1)|vin+1

| · supδ′∈∆I{RIin+1
(δin , δ

′)⊗ V I1 (δ′)} ≥ (s+ 1)|vin+1
| ·

(RIin+1
(δin , δin+1

) ⊗ V I1 (δin+1
)) = (s + 1)|vin+1

| · V I1 (δin+1
). So,

0.vin . . . vi1 = (s + 1)|vin+1
| · V I1 (δin+1

) and, thus, V I1 (δin+1
) =

(s+1)−|vin+1
| ·0.vin . . . vi1 . In the same way it can be proved that

W I1 (δin+1
) = 0.win . . . wi1 ·(s+1)−|win+1

|. Since I satisfies axiom
〈> v ∀Rin+1

.V2, 0.vin+1
〉, we get 0.vin+1

≤ RIin+1
(δin , δin+1

) ⇒
V I2 (δin+1

) = 1 ⇒ V I2 (δin+1
) = V I2 (δin+1

). Similarly, since
I satisfies axiom 〈> v ∀Rin+1

.¬V2, 1− 0.vin+1
〉, we get 1 −

0.vin+1 ≤ RIin+1
(δin , δin+1) ⇒ ¬V I2 (δin+1) = 1 ⇒ ¬V I2 (δin+1) =

¬V I2 (δin+1
) = 1 − V I2 (δin+1

) and therefore, V I2 (δin+1
) ≤ 0.vin+1

.
So, V I2 (δin+1) = 0.vin+1 . In the same way it can be proved that
W I2 (δin+1) = 0.win+1 .
Finally, since I satisfies axiom V ≡ V1 � V2, then V I(δin+1

) =

V I1 (δin+1
)⊕V I2 (δin+1

) = ((s+ 1)−|vin+1
| ·0.vin . . . vi1)⊕0.vin+1

=
0.vin+1 . . . 0.vi1 . In the same way it can be proved that
W I(δin+1) = 0.win+1 . . . 0.wi1 .
Moreover, since, by inductive hypothesis, for every j ≤ n,
V I(δij ) = 0.vij . . . vi1 6= 0.vin+1

. . . vij . . . vi1 = V I(δin+1
), then

δij 6= δin+1
. Furthermore, as V I(δ) = 0 6= V I(δin+1

), then
δ 6= δin+1 and, thus, |{δ, δi1 , . . . , δin+1}| = n+ 2, which completes
the case.

So, Õϕ has no finite model.

By Proposition 60, we have a reduction of a RPCP to a finite satisfiability
problem. Again, note that all roles are crisp. Therefore,

Proposition 61. The knowledge base finite satisfiability problem is undecidable
for  L-ALC with GCIs. The result holds also if crisp roles are assumed.



Chapter 5

Computational complexity

Dealing with computational complexity of FDLs means, mainly, dealing with
FDLs based on a finite chain T of truth values. This is due to the fact that the
reasoning tasks for FDLs based on infinite algebras either have been proved to
be undecidable problems, or the algorithms used to prove the decidability are
not useful in order to prove complexity bounds.

Results and proofs that we published will be exhaustively reported in order
to give an example of how some results have been achieved and what kind of
procedures and proof strategies have been employed in order to achieve those
results. More results existing in the literature will be reported in Section 6.2.

5.1 Concept satisfiability

In this section we report the existing results on the computational complexity
of the concept satisfiability problem. We will explain why, despite this problem
is decidable in the case of infinite-valued FDLs, its complexity is still an open
problem. For the finite-valued case, we will report the results and expose two
methods for proving such results.

5.1.1 The infinite-valued case

Despite the fact that concept satisfiability is a problem that has been proved to
be decidable for languages IALCE under infinite-valued  Lukasiewics semantics
and IALE under infinite-valued product semantics, its complexity in those cases
is still an open problem. The algorithms used in [Hájek, 2005] for the first case
and in Section 4.1.1 for the second one, utilize a reduction to propositional logic
that is not polynomial. As an example we will take the formula ϕB(m), that is
reported in [Blackburn et al., 2001, p. 384] in order to prove that classical Modal
Logic lacks the polysize model property and will translate it to FDL language
by means of the translation ρ(·) from modal formulas to FDL concepts provided
in Section 3.7.1. For every natural number m, consider a description signature

91



92 Chapter 5. Computational complexity

containing the sets of atomic concepts {A1, . . . , Am} and {B1, . . . , Bm} and the
atomic role R. For any 0 ≤ i ≤ m− 1 define the concepts:

Ci := Ai A (∃R.(Ai+1 �Bi+1)� ∃R.(Ai+1 � ¬Bi+1)) (5.1)

and

Di := (Bi A ∀R.Bi)� (¬Bi A ¬∀R.Bi) (5.2)

Moreover, define ∀Ri.E as a shorthand for

i times︷ ︸︸ ︷
∀R. . . .∀R .E and ∀R(m).E as a

shorthand for E � ∀R.E � ∀R.2E � . . .� ∀R.mE
Now, concept ρ(ϕB(m)) is the conjunction of the following concepts:

(i) A0

(ii) ∀R(m).(Ai A (�i 6=j¬Aj)) (0 ≤ i ≤ m)

(iii) C0 �∀R.C1 �∀R2.C2 �∀R3.C3 � . . .� ∀Rm−1.Cm−1

(iv) ∀R.D1 �∀R2.D1 �∀R3.D1 � . . .� ∀Rm−1.D1

�∀R2.D2 �∀R3.D2 � . . .� ∀Rm−1.D2

�∀R3.D2 � . . .� ∀Rm−1.D2

...

�∀Rm−1.Dm−1

Now, as pointed out in [Blackburn et al., 2001], the size of ρ(ϕB(m)) is
quadratic in m. If we apply the algorithm provided in [Hájek, 2005] or the
one explained in Section 4.1.1, the cardinality of the set Tρ(ϕB(m)) of sentences
that are produced by the algorithm at each step can be calculated by means of
the following observations. Let us denote by |i| the number of generalized atoms
of ρ(ϕB(m)) whose label has cardinality i.

1. At the first step we have that, for each generalized atom E(d) (with l(E) =
∅) of ρ(ϕB(m)) the algorithm deterministically produces a new constant
da and a sentence which says that da is a witness for such D(d). So, for
each generalized atom, we have a new element in Tρ(ϕB(m)).

2. Subsequently, for each new produced constant db which is not a witness
for E, the algorithm deterministically produces a new sentence which says
that db is not a witness for E. Since db turns out to be the witness of a
generalized atom E′(d) of Tρ(ϕB(m)) which share the same label with E,
another sentence will be produced which says that da is not a witness for
E′(d). So, we have that |0|2 new elements are in Tρ(ϕB(m)).



5.1. Concept satisfiability 93

3. After steps 1 and 2 the algorithm produced:

(a) an amount of |0| new constants d1, . . . , d|0|,

(b) an amount of |1| new generalized atoms for each new constant da,
with 1 ≤ a ≤ |0|.

So, since each set of generalized atoms identified by the same new constant
is processed by the algorithm as in step 2, but this does not happen when
two generalized atoms do not share the same new constant, an amount of
|0| · |1|2 is added to Tρ(ϕB(m)).

4. Again, after step 3 the algorithm produced:

(a) an amount of |0| · |1| new constants d1,1, . . . , d1,|1|, d2,1, . . . , d2,|1|, . . . ,
d|0|,1, . . . , d|0|,|1|,

(b) an amount of |2| new generalized atoms for each new constant da,
with 1 ≤ a ≤ |0| · |1|.

So, applying again the process in step 3, we obtain that an amount of
|0| · |1| · |2|2 is added to Tρ(ϕB(m)), and so on until the algorithm processes

the whole concept ρ(ϕB(m)).

So, at the end of the process, when no more generalized atoms are produced
to be further processed, the size of the resulting propositional theory Tρ(ϕB(m))

can be described by function f(m) : N→ N:

f(m) :=
( m∑
i=1

i
)2

+

m∑
i=1

i ·
(( m∑

i=1

i
)
− 2
)2

+

m∑
i=1

i ·
(( m∑

i=1

i
)
− 2
)
·
((( m∑

i=1

i
)
− 2
)
− 3
)2

+

...
m∑
i=1

i ·
(( m∑

i=1

i
)
− 2
)
· . . . ·

((
. . .
((( m∑

i=1

i
)
− 2
)
− 3
)
. . .
)
−m

)2

which can be shown to be strictly greater than function m!, for each m. We
will proof this by induction on m:

1. Consider, as base case, m = 2. In this case we have that m! = 2 · 1 = 2,
while f(m) = (1 + 2)2 + (1 + 2) · ((1 + 2)− 2)2 = 12.



94 Chapter 5. Computational complexity

2. Suppose, by induction hypothesis, that f(m) > m!, we have to show that
f(m+ 1) > (m+ 1)!. We know that each addend in f(m) is a product of
a finite number of factors. Let us denote by Ff(m) the set of factors in the
last addend in f(m), then the function g(j) : {1, . . . ,m} → Ff(m), defined
by:

g(j) =

{∑m
i=1 i, if j = m,(
. . .
((∑m

i=1 i
)
− 2
)
. . .
)
− ((m+ 1)− j), if j < m

is a bijection between the factors in m! and the factors in Ff(m). Since
for every 1 < j ≤ m we have that j > g(j) and, for j = 1, we have that
j = g(j), then Ff(m) > m!.

On the other hand, let us consider the first two factors appearing in Ff(m)

(that is, g(m) and g(m− 1)): since∑m
i=1 i = m·(m+1)

2

and, for m > 3, (∑m
i=1 i

)
− 2 > 2 · (m− 1).

Then

m∑
i=1

i ·
(( m∑

i=1

i
)
− 2
)

(5.3)

>
m · (m+ 1)

2
· 2 · (m− 1) (5.4)

= m · (m+ 1) · (m− 1) (5.5)

> m ·m · (m− 1) (5.6)

,

Now, 5.6 is the product of the last two factors appearing in m! (that is,

g−1(
∑m
i=1 i) and g−1

((∑m
i=1 i

)
− 2
)

), multiplied by m. Then,

Ff(m) > m! ·m

and, therefore,

f(m+ 1)

> f(m) + Ff(m)

> m! +m! ·m
= m! · (m+ 1)

= (m+ 1)!



5.1. Concept satisfiability 95

Hence neither the algorithm provided in [Hájek, 2005] nor the one explained
in Section 4.1.1 are polynomial. On the other hand, the algorithms we are going
to provide in the following sections, do not need to halt in finite time, if the
set of truth values to be checked is infinite. So, characterizing computational
complexity of these algorithms is still an open problem in the case of an infinite
set of truth values.

5.1.2 The case of  Ln

A first step towards understanding the complexity of the concept r-satisfiability
problem in finite-valued fuzzy description logics is the work undertaken in
[Bou et al., 2011a]. The algebra of truth values considered in this work is any
finite  Lukasiewics chain and the language used is that of Modal Logic. Since, as
proved in Section 3.7, there is a close connection between the expressive powers
of the minimal n-valued  Lukasiewicz Modal Logic and the one of the description
logic  Ln-ALC without knowledge base, the result here reported can be trans-
lated to our framework. The result we are going to prove in this section is the
following.

Theorem 62. For every n ∈ N and every r ∈ Ln,

• the set of modally r-satisfiable formulas over Kripke  Ln-models is
PSPACE-complete,

• the set of modally valid formulas over Kripke  Ln-models is PSPACE-
complete.

The same complexity result is attained when we add the Delta operator and/or
the canonical truth constants. And also we get the same complexity when we
only deal with crisp Kripke models.

In the rest of this section we prove this last theorem. Since

• ϕ is modally valid iff ϕ∨ s is not modally s-satisfiable (where s is the
penultimate element of  Ln, i.e., s = n−2

n−1 ), and

• ϕ is modally r-satisfiable iff r ↔ ϕ is modally satisfiable,

it will be enough to prove PSPACE-completeness of the modal satisfiability
problems. It may seem that this trick needs the use of canonical constants
in the language, but by McNaughton theorem (see [Cignoli et al., 2000, Corol-
lary 3.2.8], we can also reduce r-satisfiability to satisfiability without the help of
canonical constants; for example, we notice that

• ϕ is modally 0.75-satisfiable, iff

• ϕ2 ↔ ¬(ϕ2) is modally satisfiable,

Thus, by the inclusion relationships among the sets of modally satisfiable for-
mulas it will be enough to prove that



96 Chapter 5. Computational complexity

• Sat1(Fr,  Lcn,∆) and Sat1(CFr,  Lcn,∆) are in PSPACE,

• Sat1(Fr,  Ln) and Sat1(CFr,  Ln) are PSPACE-hard.

Hence, we get that all sets introduced in Section 2.1.2 are PSPACE-complete.

Satisfiability is in PSPACE

We start giving a PSPACE algorithm for solving Sat1(Fr,  Lcn,∆), and later we will
see that this algorithm can be slightly modified to compute Sat1(CFr,  Lcn,∆). Our
algorithm follows a similar approach to the one given in [Blackburn et al., 2001,
p. 383–388]. We stress the fact that all formulas considered in this section may
contain the Delta operator and truth constants.

Definition 63. Let Γ be a set of modal formulas, and Sub(Γ) be the set of its
subformulas. We define the closure of Γ, in symbols Cl(Γ), as the set

(Sub(Γ) ∪ {2¬σ : 3σ ∈ Sub(Γ)} ∪ {3¬σ : 2σ ∈ Sub(Γ)})+,

where the superscript + refers to the process of deleting all occurrences of two
consecutive negation symbols (i.e., ¬¬). When Cl(Γ) = Γ we will say that Γ is
closed.

Note that if Γ is finite, then so is Cl(Γ).

Definition 64. Let Γ be a closed set of modal formulas. We define the sequence
(Γ0,Γ1, . . . ,Γdeg(Γ)) by the recurrence

• Γ0 := Γ,

• Γr+1 := {ψ : 3ψ ∈ Γr} ∪ {ψ : 2ψ ∈ Γr}.

The family of modal levels of Γ is the set Γ◦ := {Γ0,Γ1, . . . ,Γdeg(Γ)}.

Note that, for every r, deg(Γr) ≤ deg(Γ)− r. In particular deg(Γdeg(Γ)) = 0.

Definition 65. Let Γ be a closed set of formulas. A Hintikka function over
some Γr ∈ Γ◦ is a mapping H : Γr → Ln such that

1. H is a homomorphism of non modal connectives (which includes the Delta
operator and truth constants),

2. H(3ψ) =∼ H(2¬ψ), for each 3ψ ∈ Γr,

3. H(2ψ) =∼ H(3¬ψ), for each 2ψ ∈ Γr.

It is said that H is an atom if there exists a Kripke model M = 〈W,R, V 〉 and a
world w ∈W such that, for each formula ψ ∈ Γ, it holds that H(ψ) = V (ψ,w).

Lemma 66. Let H : Γr → Ln and H ′ : Γr+1 → Ln be two Hintikka functions,
then:



5.1. Concept satisfiability 97

min{H ′(ψ)⇒ H(3ψ) : 3ψ ∈ Γr} =
= min{H(2ϑ)⇒ H ′(ϑ) : 2ϑ ∈ Γr}.

Proof. For every formula 3ψ ∈ Γr it is obvious that

H ′(ψ)⇒ H(3ψ) =∼ H(3ψ)⇒∼ H ′(ψ) =
= H(¬3ψ)⇒ H ′(¬ψ) = H(2¬ψ)⇒ H ′(¬ψ).

Then, using that 3ψ ∈ Γr iff 2¬ψ ∈ Γr (by Definition 63), we get that
min{H ′(ψ) ⇒ H(3ψ) : 3ψ ∈ Γr} = min{H(2¬ψ) ⇒ H ′(¬ψ) : 2¬ψ ∈ Γr}.
From this fact, it easily follows that min{H ′(ψ) ⇒ H(3ψ) : 3ψ ∈ Γr} =
min{H(2ϑ)⇒ H ′(ϑ) : 2ϑ ∈ Γr}.

Definition 67. Let H : Γr → Ln be a Hintikka function, k ∈ Ln and 3ψ ∈ Γr.
We say that a Hintikka function H ′ : Γr+1 → Ln is induced by 3ψ and k-related
to H (in symbols, H ′ ∈ H3ψ,k) if the following conditions hold:

• H(3ψ) = k ∗H ′(ψ),

• for each 2ϑ ∈ Γr, H(2ϑ) ≤ k ⇒ H ′(ϑ).

Lemma 68. Let Γ be a closed set of formulas, Γr ∈ Γ◦ and H a Hintikka
function over Γr. If H is an atom, then for every 3ψ ∈ Γr, there is some
k ∈ Ln and some H ′ ∈ H3ψ,k such that H ′ is an atom.

Proof. Let H be an atom over Γr and 3ψ ∈ Γr. Then, by Definition 65, there
exist a Kripke model M = 〈W,R, V 〉 and w ∈W such that V (3ψ,w) = H(3ψ).
Hence there exists w′ ∈ W such that V (3ψ,w) = R(w,w′) ∗ V (ψ,w′). Let
H ′ : Γr+1 → Ln be the Hintikka function defined by H ′(ϕ) = V (ϕ,w′), for
every formula ϕ ∈ Γr+1. It is obvious that H ′ is an atom. Take k = R(w,w′),
then H(3ψ) = V (3ψ,w) = R(w,w′) ∗ V (ψ,w′) = k ∗ H ′(ψ) i.e., H and H ′

satisfy the first condition of Definition 67. On the other hand, for each 2ϑ ∈ Γr,
we have that V (2ϑ,w) = min{R(w,w′′) ⇒ V (ϑ,w′′) : w′′ ∈ W}, and hence
H(2ϑ) = V (2ϑ,w) ≤ R(w,w′) ⇒ V (ϑ,w′) = k ⇒ H ′(ϑ). So, there is k ∈ Ln
such that H ′ ∈ H3ψ,k.

Definition 69. Let Γ be a finite closed set of formulas, H be a Hintikka function
over Γ0, and H be a family of Hintikka functions with domains (denoted by dom)
belonging to Γ◦. We say that H is a witness set generated by H on Γ when

1. H ∈ H,

2. if I ∈ H and 3ψ ∈ dom(I), then there is some k ∈ Ln and some J ∈ I3ψ,k
such that J ∈ H,

3. if J ∈ H and J 6= H, then there are I0, . . . , Ir ∈ H satisfying I0 = H,
Ir = J , and for each 0 ≤ i < r, there are a formula 3ψ ∈ dom(Ii) and an
element k ∈ Ln such that Ii+1 ∈ Ii3ψ,k.



98 Chapter 5. Computational complexity

Lemma 70. Let Γ be a finite closed set of formulas, and H be a Hintikka
function over Γ0 (i.e., Γ). Then, H is an atom iff there is a witness set generated
by H on Γ.

Proof. Let Γ be a finite closed set of formulas, and H a Hintikka function over
Γ0.

(⇒) We proceed by induction on the nesting degree of the set dom(H).

(0) If deg(Γr) = 0 and H is an atom, then H = {H} is a witness set
generated by H on Γ0.

(d) Let deg(Γr) = d and H be an atom over Γr. Suppose, by inductive
hypothesis, that, for each Γs ∈ Γ◦ such that deg(Γs) < d and each
Hintikka function H ′ over Γs, it holds that, if H ′ is an atom, then
there is a witness set generated by H ′ on Γs. Since H is an atom over
Γr, then, by Lemma 68, for each 3ψ ∈ Γr there exist k ∈ Ln and
an atom Iψ ∈ H3ψ,k over Γr+1. Since the degree of Γr+1 < d, then,
by inductive hypothesis, each atom Iψ generates a witness set Iψ on
Γr+1. So, the set

H = {H} ∪
⋃

3ψ∈Γr

Iψ

is a witness set generated by H on Γ.

(⇐) Suppose now that there is a witness set H generated by H on Γ, then we
have to show that there exists a model which satisfies H. So, define the
model M = 〈W,R, V 〉, where:

– W = H,

– R(I, I ′) =



min{I ′(χ)⇒ I(3χ) : 3χ ∈ dom(I)},
if I ′ ∈ I3ψ,k for some k ∈ Lcn and

some 3ψ ∈ dom(I)

0, otherwise,

– for each variable p ∈ V ar and I ∈ H, let V (p, I) = I(p).

On the one hand, since for each I ∈ H, dom(I) contains a finite number
of formulas of the form 3ψ, then, by Definition 69, each element of the
model has a finite number of R-successors. On the other hand, whenever
I ′ ∈ I3ψ,k, then deg(dom(I ′)) < deg(dom(I)) and, therefore, the depth of
the model is finite as well (it is indeed equal to deg(Γ)).

To end the proof, we have to show that, for every formula ϕ ∈ Γ, it holds
that V (ϕ,H) = H(ϕ). In order to achieve this result we will prove by
induction that for each I ∈W , it holds that V (ϕ, I) = I(ϕ). So, let I ∈W
and ϕ ∈ dom(I), then:



5.1. Concept satisfiability 99

– If ϕ = p is a propositional variable, then, by definition of V , we have
that V (p, I) = I(p).

– If ϕ is a propositional combination of variables or modal formu-
las, since H is a Hintikka function, by Definition 65 it holds that
V (ϕ,H) = H(ϕ).

– Let ϕ = 3ψ and suppose, by inductive hypothesis, that for each
J ∈W such that deg(dom(J)) < deg(dom(I)) and for each formula χ,
it holds that V (χ, J) = J(χ). By Definitions 67 and 69, we have that
there exists J ∈ I3ψ,k, for a k ∈ Ln, such that, for each 2ϑ ∈ dom(I),
we have that I(2ϑ) ≤ k ⇒ J(ϑ), then, by residuation, k ≤ I(2ϑ)⇒
J(ϑ), for each 2ϑ ∈ dom(I) and, therefore, by Lemma 66 and the
construction of M, k ≤ min{I(2ϑ) ⇒ J(ϑ) : 2ϑ ∈ dom(I)} =
min{J(χ) ⇒ I(3χ) : 3χ ∈ dom(I)} = R(I, J). So, by Definition 67
and the inductive hypothesis, I(3ψ) = k ∗ J(ψ) ≤ R(I, J) ∗ J(ψ) =
R(I, J)∗V (ψ, J) ≤ max{R(I, I ′)∗V (ψ, I ′) : I ′ ∈W} = V (3ψ, I). On
the other hand, let I ′ ∈W be such that I ′ ∈ I3χ,k′ for a 3χ ∈ dom(I)
and k′ ∈ Ln, then, by the construction of M and inductive hy-
pothesis, I(3ψ) ≥ I(3ψ) ∧ I ′(ψ) = (I ′(ψ) ⇒ I(3ψ)) ∗ I ′(ψ) ≥
min{I ′(ϑ) ⇒ I(3ϑ) : 3ϑ ∈ dom(I)} ∗ I ′(ψ) = R(I, I ′) ∗ V (ψ, I ′).
Hence I(3ψ) ≥ max{R(I, I ′) ∗ V (ψ, I ′) : I ′ ∈ W} = V (3ψ, I). So,
V (3ψ, I) = I(ψ).

So, for each formula ϕ, V (ϕ,H) = H(ϕ) and, then, H is an atom over
Γ.

Next we consider the algorithm Witness(H,Γ) given in Figure 5.3.
This algorithm returns a boolean, and is very close to the one given in
[Blackburn et al., 2001] for the minimal classical modal logic.

if H is a Hintikka function and Γ = dom(H)
and for each subformula 3ψ ∈ dom(H) there are
k ∈ Ln and a Hintikka function I ∈ H3ψ,k such that
Witness(I, dom(I))

then
return true

else
return false

end if

Figure 5.1: The Algorithm Witness(H,Γ)

Lemma 71. Let Γ be a finite closed set of formulas, and H : Γ → Ln. Then,
Witness(H,Γ) returns true if and only if H is a Hintikka function over Γ that
generates a witness set in Γ.



100 Chapter 5. Computational complexity

Proof. Let Γ be a finite closed set of formulas, and H : Γ→ Ln.

(⇒) Suppose that Witness(H,Γ) returns true, we proceed by induction on the
degree of Γ.

(0) If deg(Γ) = 0 and Witness(H,Γ) returns true then, H is a Hintikka
function over Γ, and hence H = {H} is a witness set generated by H
on Γ.

(d) Let deg(Γ) = d and suppose, by inductive hypothesis, that for each
set Γ′ of formulas such that Γ′ ⊆ Γ and deg(Γ′) < d and each function
H ′ : Γ′ → Ln, it holds that, if Witness(H ′,Γ′) returns true, then H ′

is a Hintikka function over Γ′ that generates a witness set in Γ′. If
Witness(H,Γ) returns true then, on the one hand, H is a Hintikka
function over Γ. On the other hand, for each formula 3ψ ∈ Γ, there
are k ∈ Ln and I ∈ H3ψ,k such that Witness(I,Γ′), where Γ′ ∈ Γ◦

is such that deg(Γ′) = d − 1. Since deg(Γ′) < d, and Witness(I,Γ′)
returns true, then, by inductive hypothesis, I is a Hintikka function
over Γ′ that generates a witness set Iψ in Γ′. So, the set

H = {H} ∪
⋃

3ψ∈Γ

Iψ

is a witness set generated by H on Γ.

(⇐) Suppose that H is a Hintikka function over Γ that generates a witness set
in Γ, we proceed by induction on the degree of Γ.

(0) If deg(Γ) = 0 then it is enough that H is a Hintikka function over Γ
for Witness(H,Γ) to return true.

(d) Let deg(Γ) = d and suppose, by inductive hypothesis, that for each
set Γ′ of formulas such that Γ′ ⊂ Γ and deg(Γ′) < d and each function
H ′ : Γ′ → Ln, it holds that, if H ′ is a Hintikka function over Γ′ that
generates a witness set in Γ′, then Witness(H ′,Γ′) returns true. So,
if H is a Hintikka function over Γ that generates a witness set H in Γ,
then, by Definition 69, we have that, for each formula 3ψ ∈ Γ there
are k ∈ Ln and I ∈ H3ψ,k ∩ H. Then we have that I is a Hintikka
function over Γ′ that generates a witness set in Γ′, where Γ′ ∈ Γ◦ is
such that deg(Γ′) = d−1. Hence, since deg(Γ′) < d, then, by inductive
hypothesis, Witness(I,Γ′) returns true. So, Witness(H,Γ) returns
true.

Theorem 72. Sat1(Fr,  Lcn,∆) is in PSPACE.

Proof. Let ϕ be a modal formula. By Lemmas 70 and 71, we have that ϕ
is r-satisfiable iff there is a Hintikka function H : Cl(ϕ) → Ln such that
H(ϕ) = m and Witness(H,Cl(ϕ)) returns true. Thus we need to prove



5.1. Concept satisfiability 101

that Witness can be given a PSPACE implementation. Consider a non-
deterministic Turing machine that guesses a Hintikka function H over Cl(ϕ)
and runs Witness(H,Cl(ϕ)), then we need to prove that this machine runs in
NPSPACE and, by an appeal to Savitch’s Theorem we will achieve the desired
result. The key points of the implementation are the following:

1. As pointed out in [Blackburn et al., 2001], encoding a subset Γ of Cl(ϕ)
requires spaceO(|ϕ|) (here |ϕ| refers to the length of the encoding of ϕ). On
the one hand, each element of a function H : Γ→ Ln can be represented as
an ordered pair 〈ψ, i〉 ∈ Γ× Ln and, on the other hand, |H| = |Γ|. Hence,
if j = max{|r| : r ∈ Ln}, then encoding a Hintikka function requires space
bounded above by |ϕ|+ j · |ϕ|, that is space O(|ϕ|).

2. For each subformula 3ψ ∈ dom(H), whether there are k ∈ Ln and a Hin-
tikka function I ∈ H3ψ,k, can be checked separately. Given a subformula
3ψ ∈ dom(H), the value k ∈ Ln and the Hintikka function I ∈ H3ψ,k

to be checked can be selected by non-deterministic choice. Note that, al-
though the size of the set H3ψ,k can be in O(n|3ψ|), for a given function I,
we do not need to check every element of H3ψ,k to see whether I ∈ H3ψ,k,
since we only need to test if I satisfies the conditions of Definition 67 and
this can be done within space linear on the size of I.

Hence, by the previous points, every time algorithm Witness is applied to a
function H and its domain Cl(ϕ), a subformula 3ψ ∈ dom(H) is selected and
a k ∈ Ln and I ∈ H3ψ,k are non-deterministically chosen, the space needed is
in O(|ϕ|). So, since deg(ϕ) recursive calls are needed until we meet a Hintikka
function I whose domain contains no modal formula and deg(ϕ) ≤ |ϕ|, the
amount of space required to run the algorithm is O(|ϕ|2). Moreover, to keep
track of the subformulas that have been checked by the algorithm, it is enough
to implement two kinds of pointers to the modal operators occurring in the
representation of ϕ: one pointer to indicate that, for a given subformula 3ψ ∈
dom(H) it has been fully checked whether there is k ∈ Ln and a Hintikka
function I ∈ H3ψ,k such that Witness(I, dom(I)) and the other pointer when
the same has not yet been fully checked.

Theorem 73. Sat1(CFr,  Lcn,∆) is in PSPACE.

Proof. It is easy to see that the same algorithm given in Figure 5.3, but replacing
k ∈ Ln with k ∈ {0, 1}, computes Sat1(CFr,  Lcn,∆).

Satisfiability is PSPACE-hard

Here we will prove that the four problems pointed out at the end of Section 5.1.2
are PSPACE-hard.

The PSPACE-hardness of the set Sat1(CFr,  Ln) is proved by using a polyno-
mial reduction into the problem of satisifiability for classical Kripke models.

Theorem 74. Sat1(CFr,  Ln) is PSPACE-hard.



102 Chapter 5. Computational complexity

Proof. Let us consider the mapping tr from classical modal formulas into our
modal formulas defined by

• tr(p) = p& (n−1). . . &p, if p is a propositional variable,

• tr(⊥) = ⊥,

• tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2),

• tr(ϕ1 → ϕ2) = tr(ϕ1)→ tr(ϕ2),

• tr(3ϕ) = 3 tr(ϕ).

This translation is clearly polynomial (because essentially we are only replacing
variables), and by induction on formulas it is easy to check that for all modal
formulas ϕ, it holds that

• ϕ is modally satisfiable in a classical Kripke model, iff

• tr(ϕ) is modally satisfiable in a crisp Kripke model.

By the PSPACE-hardness of classical modal logic ([Ladner, 1977]) the proof
finishes.

Unfortunately, for the case of the set Sat1(Fr,  Ln), the authors do not know
how to get the PSPACE-hardness by a reduction from the classical case. Such
a reduction can be obtained by the mapping tr′ defined like tr except for the
condition

• tr′(3ϕ) = (3 tr′(ϕ))n−1,

but this reduction is not polynomial. Thus, in order to prove our next theorem
we need to go into the details of codifying quantified Boolean formulas QBF (it
is well known that validity of QBF is PSPACE-complete). Since we essentially
use the same ideas that are used in the classical modal case (see the proof given
in [Blackburn et al., 2001, Theorem 6.50]), we will not go into all the details of
the proof.

Theorem 75. Sat1(Fr,  Ln) is PSPACE-hard.

Proof. Let us consider β a QBF formula. By the proof given in
[Blackburn et al., 2001, Theorem 6.50], it is well known how to define
(see [Blackburn et al., 2001, p. 390] a classical modal formula f(β) such that

• β is valid, iff

• f(β) is modally satisfiable in a classical Kripke model.

The formula f(β) can also be seen as one of our modal formulas, and it is quite
straightforward to check that for the formulas of the form f(β) it happens that

• f(β) is modally satisfiable in a classical Kripke model, iff



5.1. Concept satisfiability 103

• f(β) is modally satisfiable in a Kripke  Ln-model.

This fact is based on the properties stated at the end of Section 2.1.2.

To finish this section let us point that when our language has the Delta
operator, this last proof can be simplified quite a lot just by realizing that the
reduction tr′ can be somehow converted into one that is polynomial; this is so
because

∆ϕ↔ ϕn−1

is a valid formula.

5.1.3 The general case of finite-valued FDLs

The proof given in Section 5.1.2 can not be straightforwardly generalized to
the case of every finite-valued IALCE , because some steps relies on the good
behavior of  Lukasiewicz negation with respect to the quantifiers. So, in this
section we will consider directly the satisfiability problem in the general setting
of finite-valued IALCE . This gives us also the possibility of proposing a new
procedure based on the one presented in Definition 33.

In rest of the present section, instead of talking about r-satisfiability we will
use the terminology “modally r-satisfiable” (see Definition 76) because we will
keep the terminology r-satisfiable for the case that we consider propositional
assignations.

Definition 76. (Modal r-satisfiability in IALCE) A concept C is said to be
modally r-satisfiable in case that there is an interpretation I and an object
a ∈ I such that CI(a) = t.

Next we define the main computational problem we deal with in this paper,
together with its parametrized versions. It is worth saying that we are not only
considering a different computational problem for every finite MTL-chain T,
we also consider one computational problem which can be understood as the
uniform version of the ones parametrized by T.

Definition 77. The computational problem Satisf is the following one:

Input: (T, C, r) where T is a finite MTL-chain, C is a concept of IALCE and
r ∈ T .

Output: Yes/No depending whether C is modally r-satisfiable or not.

Moreover, for every finite MTL-chain T, the computational problem SatisfT is
the one obtained by fixing the finite MTL-chain in the previous problem.

We can think on the elements of T as truth values. Our interest in the present
section is on finite MTL chains, and so we will always assume that the lattice
part of T is fixed in the sense that T is the set {0, 1

n−1 , . . . ,
n−2
n−1 , 1} (for some

natural number n ≥ 2) and that 0 < 1
n−1 < . . . < n−2

n−1 < 1. In particular, n will
always refer to the cardinal of T .



104 Chapter 5. Computational complexity

The assumption on the lattice part of T that we have adopted above makes
that the input T, in the uniform problem, can be simply codified as its cardinal
n and the tables of the t-norm and its residuum.

The main statement on the present section is the following theorem.

Theorem 78. Satisf is PSPACE-complete.

The rest of the section is devoted to give the proof of the membership in
PSPACE is done. The proof that concept modal r-satisfiability for finite-valued
IALCE is PSPACE hard is the same proof we provided for Theorem 74 for the
case of IALCE based on  Ln. So, we will not repeat it here.

Notation. For the sake of clarification sometimes we will use · to mean the
concatenation of strings, but in most cases we will just juxtapose the symbols
we want to concatenate.

PSPACE upper bound

In this section we are going to prove that Satisf is in PSPACE. In particu-
lar, this implies that each one of the parametrized satisfiability problems by
a finite MTL-chain T also belongs to PSPACE. In order to achieve this re-
sult, we will prove that the algorithm given in [Hájek, 2005] can be given a
PSPACE implementation. Our proof follows the same pattern as the proofs in
[Blackburn et al., 2001] and [Bou et al., 2011a], but here we do not make use of
Hintikka sets or functions, like in the cited papers.

Preliminary definitions Several technical definitions will be needed later to
prove PSPACE membership. We state these definitions now.

Definition 79.
An occurrence of a subconcept D in C is determined by the occurrence of

a constructor or of an atomic concept. We will use to mark the occurrence
considered.

It is worth noticing that every concept is equivalent to a propositional com-
bination of atoms (i.e., generalized atoms and atomic concepts). Here by propo-
sitional combination we allow the use of all constructors except ∀R and ∃R.

In the next definition we provide a labeling system that is a modification
of the one given in Definition 35. It is crucial for the proof to give such a
modification because it allows to recursively define the domain of the interpre-
tation that possibly satisfies a given concept in a way that the labeling function
provided in Definition 35 does not do. Given a concept description C, our la-
beling system assigns each occurrence of a subconcept of C a number that gives
an account of the syntactic structure of C. It is closely related to what in
[Schmidt-Schauss and Smolka, 1991] is called the skeleton of a constraint sys-
tem, and it is worth emphasizing that the labelling is defined on occurrences
(not on subconcepts).



5.1. Concept satisfiability 105

Definition 80 (Labeling). Let C be a concept. A labelling function (label
for short) lC(·) is the function which associates to every occurrence D of a
subconcept in C a string of symbols in NR ∪ N defined by the conditions:

1. lC(C) is the empty sequence ε,

2. if D is a propositional combination of concepts D1, . . . , Dj , then lC(Di) :=
lC(D) for every i ≤ j.

3. if D is ∀R.D′ or ∃R.D′, then lC(D′) is the concatenated sequence lC(D) ·
Ri, where i is the minimum non-zero number j such that the sequence
lC(D) ·Rj has not been used to label any occurrence in C.

We will denote by ΛC the set of labels of all occurrences in C. Given λ ∈ ΛC ,
we define path (λ) as the finite sequence of symbols in NR obtained by deleting
in the sequence λ the symbols from N, and we will refer to it as the role path of
λ. We define the length of λ, in symbols |λ|, as the number of symbols in the
sequence path (λ).
For every atomic role R ∈ NR, we introduce the binary relation ≺R among labels
by the condition λ ≺R λ′ in case that path (λ′) is path (λ) ·R. And the relation
≺ is defined as

⋃
{≺R: R ∈ NR}.

It is worth saying that for every concept C, there are labellings lC . For the
sake of simplicity, whenever in the future we have a fixed concept C, we will
write l instead of lC .

Example 81. Let us consider the concept Example_2 defined as

∃S.
(
∃R.A→ ∃R.(∀R.A� ∃S.A)

)
.

Then, we can consider the following labels:

l
(
∃S.
(
∃R.A→ ∃R.(∀R.A� ∃S.A)

))
= ε

l
(
∃S.
(
∃R.A→ ∃R.(∀R.A� ∃S.A)

))
= S0

l
(
∃S.
(
∃R.A→ ∃R.(∀R.A� ∃S.A)

))
= S0R0

l
(
∃S.
(
∃R.A→ ∃R.(∀R.A� ∃S.A)

))
= S0R1

l
(
∃S.
(
∃R.A→ ∃R.(∀R.A� ∃S.A)

))
= S0R1R0

l
(
∃S.
(
∃R.A→ ∃R.(∀R.A� ∃S.A)

))
= S0R1S0

We remind the reader that we follow the above convention to use to denote
occurrences.

From the above introduced labeling system, we are going to define the set
of individuals employed to build an interpretation for a given concept C. Thus,
from now on we assume that C and a labelling l are fixed. The individuals we
have talked about are the ones introduced in the following definition.



106 Chapter 5. Computational complexity

Definition 82. The set ΣC is defined as the set

ΣC := {λ1 · . . . · λs : s ∈ N, λ1 ≺ λ2 ≺ . . . ≺ λs}

formed by sequences of labels. For the case s = 0 we have that ε ∈ ΣC . Given
σ = λ1 · . . . ·λs ∈ ΣC , we define the length of σ, in symbols |σ|, as the number s.
And we define its role path path (σ) as path (λs). Following the same pattern,
we will write σ ≺R σ′ and σ ≺ σ′ when the corresponding relation holds between
λs and λ′s′ .

It is straightforward that |σ| = |λs|. In the rest of the paper we will sometimes
refer to the elements of ΣC as constants. The underlying idea is that the set
ΣC of constants is indeed the domain of an interpretation that modally satisfies
the concept C. Unfortunately, the cardinality of ΣC might be not polynomial
on the size of concept C.

The next two definitions are very similar to ones stated in [Hájek, 2005].
They give an account of how to make a partition of the theory obtained by
applying Hájek’s algorithm to a given concept. The theory we consider in the
following definitions is a propositional one (non-modal) over the set V ar of
variables defined as

{B(σ) : B occurrence of an atom in C and σ ∈ ΣC} ∪

{R(σ, σ′) : R ∈ NR, σ, σ′ ∈ ΣC and σ ≺R σ′}.

We will use the notion of assertion to denote expressions B(σ) where B is an
occurrence of an atom in C and σ ∈ ΣC . For every formula ϕ obtained from the
set V ar of variables using propositional operators (i.e., non-modal) we define
V arϕ as the set of variables appearing in ϕ. Analogously, we can consider V arΦ

for any set of such formulas.

Definition 83. Let B(σ) be an assertion such that B is the occurrence of a
generalized atom in C. Then the Hájek set HC(B(σ)) is defined distinguishing
the following two cases.

(∀) if B = ∀R.D, then HC(∀R.D(σ)) is the following set of formulas:

– ∀R.D(σ) ≡
(
R(σ, σ · l(D)) A D(σ · l(D))

)
,

– ∀R.D(σ) A
(
R(σ, σ · l(E)) A D(σ · l(E))

)
, for each occurrence E of a

generalized atom occurring in C such that path (l(E)) = path (l(D));

(∃) if B = ∃R.D, then HC(∃R.D(σ)) is the following set of formulas:

– ∃R.D(σ) ≡
(
R(σ, σ · l(D))�D(σ · l(D))

)
,

–
(
R(σ, σ · l(E))�D(σ · l(E))

)
A ∃R.D(σ), for each occurrence E of a

generalized atom occurring in C such that path (l(E)) = path (l(D)).



5.1. Concept satisfiability 107

The formula in HC(B(σ)) having the connective ≡ as main connective will be
called the main formula of HC(B(σ)). The formula B(σ) will be called the head
of each one of the elements in HC(B(σ)); and we will call the body to the formula
lying on the opposite side of the head.

Definition 84. Let C be a concept and σ ∈ ΣC . Then, the Hájek theory HC(σ)
of σ is the set:

HC(σ) :=
⋃
{HC(D(σ)) : path (σ) = path (l(D)),

D occurrence of a generalized atom}

The next simple definition will be heavily used in the future in order to give
to each Hájek theory of a given concept C a self-standing status as well as to
make a bridge between the model that is claimed to satisfy concept C and the
algorithm which says that there exists one.

Definition 85. Let e : V arHC(σ) → T and e′ : V arHC(σ′) → T be mappings
for some σ, σ′ ∈ ΣC . Then, we say that e and e′ are mutually consistent if they
assign the same value to common elements, that is, if e[V arHC(σ)∩V arHC(σ′)] =
e′[V arHC(σ) ∩ V arHC(σ′)].

Witness sets and satisfiability We now define what is a Witness set in the
new framework. Since, following [Blackburn et al., 2001], this structure is used
as a bridge structure between a model that is supposed to satisfy a given concept
C and a procedure that decides whether such a model exists, we will use again
the name used in Definition 69, but adapting the notion to the new framework.

Definition 86. Let C be a concept, let σ ∈ ΣC , let e : V arHC(σ) → T be a

mapping such that e(HC(σ)) = 1 and let W ⊆
⋃{

Func
(
V ar(HC(σ′)), T

)
:

σ′ ∈ ΣC
}

(where Func(A,B) refers to the mappings from A into B). We say
that W is a witness set generated by e if:

1. e ∈ W,

2. for every e′ ∈ W with e′ : V ar(HC(σ′)) → T , if a generalized atom E
appears in the body of a formula in HC(σ′), then there is a mapping
e′′ ∈ W such that e′′ : V ar(HC(σ′ · l(E)))→ T , e′′σ′·l(e)(HC(σ′ · l(E))) = 1,

and e′ and e′′ are mutually consistent.

3. for every e′ ∈ W with e′ : V ar(HC(σ′)) → T , there are e0, . . . , ek ∈ W
such that:

• e0 = e,

• ek = e′ and k = |σ′|,
• for every 0 < i ≤ k, ei overlaps with ei−1,

• for every 0 < i ≤ n, there is σi ∈ ΣC , such that ei : V ar(HC(σi))→
T , σi−1 ≺ σi, and ei(HC(σi)) = 1 (here we consider σ0 := ε).



108 Chapter 5. Computational complexity

The next lemma will allow us to show that the concept C is satisfiable if and
only if there exists a mapping e which generates a witness set on it.

Lemma 87. Let C be a concept. For every σ ∈ ΣC , every D1, . . . , Di oc-
currences in C, and every r1, . . . , ri ∈ T , if path (σ) = path (l(D1)) = . . . =
path (l(Di)) then the following statements are equivalent.

1. there is an interpretation I and an individual a ∈ I such that DI1 (a) = r1,
. . . , DIi (a) = ri,

2. there is a mapping e : V arHC(σ)∪{D1(σ),...,Di(σ)} → T , such that
e(D1(σ)) = r1, . . . , e(Di(σ)) = ri, and e generates a witness set.

Proof. (1⇒ 2) : This is rather easy since every interpretation can be considered
as a family of mappings satisfying the desired properties.

(2⇒ 1) : Suppose that there is a mapping e : V arHC(σ)∪{D1(σ),...,Di(σ)} → T ,
such that e(D1(σ)) = r1, . . . , e(Di(σ)) = ri, and e generates a witness set. Then
we have to show that there exists an interpretation I and an individual a ∈ I such
that DI1 (a) = r1, . . . , DIi (a) = ri. So, define the interpretation I = (∆I , ·I),
where:

• ∆I = ΣC ,

• RI(σ, σ′) =


eσ(R(σ, σ′)), if R(σ, σ′)

occurs in HC(σ)

0, otherwise

• for every atomic concept A and σ ∈ ΣC , define AI(σ) = eσ(A(σ)), if A(σ)
occurs in HC(σ) and AI(σ) = 0, otherwise.

Now we have to show by induction on concepts, that, for every occurrence
E of a subconcept of C and every σ ∈ ∆I , EI(σ) = eσ(E(σ)).

• If E is an atomic concept, it holds by definition of I.

• If E is a propositional combination of concepts, this is trivial.

• Let E = ∀R.F . On the one hand, by Definition 69 and Definition 83, it
holds that eσ(HC(σ)) = 1 and:

eσ(∀R.F (σ))

= eσ(R(σ, σ · l(F )))⇒ eσ(F (σ · l(F )))

= eσ(R(σ, σ · l(F )))⇒ eσ·l(F )(F (σ · l(F )))

= RI(σ, σ · l(F ))⇒ F I(σ · l(F ))

On the other hand, again by Definition 69 and Definition 83, it holds that,
for every generalized atom G such that path (l(G)) = path (l(F )):



5.1. Concept satisfiability 109

eσ(∀R.F (σ))

≤ eσ(R(σ, σ · l(G)))⇒ eσ(F (σ · l(G)))

= eσ(R(σ, σ · l(G)))⇒ eσ·l(G)(F (σ · l(G)))

= RI(σ, σ · l(G))⇒ F I(σ · l(G))

So, eσ(∀R.F (σ)) = minx∈∆I{RI(σ, x)⇒ F I(x)} = (∀R.F )I(σ).

• Let E = ∃R.F and suppose that F I(σ) = eσ(F (σ)), for every σ ∈ ΣC . On
the one hand, by Definition 69 and Definition 83, it holds that eσ(HD(σ)) =
1 and:

eσ(∃R.F (σ))

= eσ(R(σ, σ · l(F )))) ∗ eσ(F (σ · l(F )))

= eσ(R(σ, σ · l(F ))) ∗ eσ·l(F )(F (σ · l(F )))

= RI(σ, σ · l(F )) ∗ F I(σ · l(F ))

On the other hand, again by Definition 69 and Definition 83, it holds that,
for every generalized atom G such that path (l(G)) = path (l(F )):

eσ(∃R.F (σ))

≥ eσ(R(σ, σ · l(G))) ∗ eσ(F (σ · l(G)))

= eσ(R(σ, σ · l(G))) ∗ eσ·l(G)(F (σ · l(G)))

= RI(σ, σ · l(G)) ∗ F I(σ · l(G))

So, eσ(∃R.F (σ)) = maxx∈∆I{RI(σ, x) ∗ F I(x)} = (∃R.F )I(σ).

Hence, for every concept E and every σ ∈ ∆I , it holds that EI(σ) = eσ(E(σ)).

Using the occurrence C itself and the constant ε we get the following corollary.

Corollary 88. Let C be a concept and r ∈ T . The following statements are
equivalent.

1. C is modally r-satisfiable,

2. there is a mapping e : V arHC(ε) → T , such that e(C(ε)) = r and e gener-
ates a witness set on C.



110 Chapter 5. Computational complexity

Write down HC(σ) ∪ {D1(σ), . . . , Di(σ).
if there is a mapping eσ : V arHC(σ)∪{Dj(σ)|1≤j≤i} → T such that eσ(Dj(σ)) =
rj , for 1 ≤ j ≤ i and eσ(HC(σ)) = 1 then

if for every j ≤ i such that deg (Dj) = 0 then
return true

else
return the following list of strings

(σ · l(E1), 〈E1, r11〉, . . . , 〈Ek, r1k〉),
...
(σ · l(Ek), 〈E1, rk1〉, . . . , 〈Ek, rkk〉),

where {E1, . . . , Ek} are the occurrences in the body of HC(σ) and,
for every 1 ≤ l,m ≤ k, eσ(Em(σ · l(El))) = rlm .

end if
else

return false
end if

Figure 5.2: Algorithm NodeC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉)

Witness sets and procedures Let us now consider the procedure
NodeC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) given in Figure 5.2. This procedure takes as in-
put a string made by an element σ ∈ ΣC and a set of pairs 〈D1, r1〉, . . . , 〈Di, ri〉,
where, for 1 ≤ j ≤ i, Dj is the occurrence of a concept in C and rj is a
truth value, and has three possible outputs: true, false or a list of strings
(σ ·l(E1), 〈E1, r11

〉, . . . , 〈Ek, r1k〉), . . . , (σ ·l(Ek), 〈E1, rk1〉, . . . , 〈Ek, rkk〉) each one
of these strings having the same nature than the input.

What it is interesting is that in case that path (σ) = path (l(D1)) = . . . =
path (l(Di)), then also the strings obtained as output satisfy this equality re-
quirement.

This procedure will be later used as a subroutine by the algorithm
WitnessC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) (see Figure 5.3) in order to check for the r-
satisfiability of a given concept C. For this reason it is parametrized with a
concept C which does not appear within the input string.

Now we check that the time needed by algorithm
NodeC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) to reach an answer is non-deterministically
polynomial on the length of the input.

Lemma 89. Algorithm NodeC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) is in NPTIME.

Proof. Let C be a concept, σ ∈ ΣC , D1 . . . , Di occurrences of subconcepts of
C such that path(l(Dj)) = path(l(Dj+1)) = path(σ), for 1 ≤ j < i and let us
denote, for short, the input σ, 〈D1, r1〉, . . . , 〈Di, ri〉 by ϕ. First of all we need
to see which is the size of HC(σ) with respect to the size of the input. As
we can see from Definition 83, given a generalized atom E(a), the size of a
single formula appearing in a Hájek theory HC(E(a)) is at most 2 · |E| (here



5.1. Concept satisfiability 111

|E| refers to the length of the encoding of E). Since, for every generalized atom
E appearing in the input ϕ, it holds that |E| ≤ |ϕ|, then the time needed
to write down a single formula appearing in HC(E(a)) is in O(|ϕ|). Again
Definition 83 says us that, for every generalized atom QR.E, with Q ∈ {∀,∃},
appearing in the input ϕ, such that |l(QR.E)| = |σ|, the number of formulas
in HC(QR.E(σ)), is the number of all the generalized atoms QP.F appearing
in the input ϕ, such that path(l(QP.F )) = path(σ) and P = R, which is less
than |ϕ|. Hence, for every generalized atom QR.E appearing in the input ϕ,
such that path(l(QR.E)) = path(σ), the number of formulas in HC(QR.E(σ)),
the time needed to write HC(QR.E(σ)) is in O(|ϕ|2). By Definition 84, we have
that, in order to calculate the size of HC(σ), we need to sum the sizes of theories
HC(E(σ)), of generalized atoms E appearing in the input such that |l(E)| = |σ|.
Since the number of such generalized atoms is less that |ϕ|, then the time needed
to write down HC(σ) is in O(|ϕ|3).

Furthermore, it is easy to see that the size of HC(σ) ∪ {Dj(σ) | 1 ≤ j ≤ i}
is constant on the size of HC(σ) ∪ {Dj(σ) | 1 ≤ j ≤ i} (the constant factor
depending on the encoding of the mapping ·). Since, as we have seen, the size
of HC(σ) ∪ {Dj(σ) | 1 ≤ j ≤ i} is in O(|ϕ|3), so is the size of HC(σ) ∪ {Dj(σ) |
1 ≤ j ≤ i}.

It is well-known (see [Hähnle, 2001]) that satisfiability for propositional finite-
valued logics is an NP-complete problem. Hence, answering whether for a given
mapping eσ from V arHC(σ)∪{Dj(σ)|1≤j≤i} to T it holds that eσ(Dj(σ)) = rj , for
1 ≤ j ≤ i and eσ(HC(σ)) = 1 is a task that can be accomplished in an amount
of time that is polynomial on the cardinality of the set V arHC(σ)∪{Dj(σ)|1≤j≤i}.
Therefore, the time needed to accomplish this task is still polynomial on the
size of ϕ. Moreover, we will need to write down a possible solution to the
above problem in the form eσ(E1(σ1)) = r1, . . . , eσ(Em(σm)) = rm, where
E1(σ1), . . . , Em(σm) ∈ V arHC(σ)∪{Dj(σ)|1≤j≤i} and r1, . . . , rm ∈ T . It is easy
to see that the time needed to write down such a solution is constant in the size
of V arHC(σ)∪{Dj(σ)|1≤j≤i} (the constant factor depending on the encoding of the
truth values).

Finally, when the output is not simply a boolean, it is just part of
the above mentioned solution re-written in a different form. That is, in-
stead of writing eσ(E1(σ1)) = r1, . . . , eσ(Em(σm)) = rm, it will be written
(σ1, 〈E1, r1〉, . . . , 〈Em, rm〉), . . . , (σm, 〈E1, r1〉, . . . , 〈Em, rm〉). Hence, the time
needed to write down the output, too, is polynomial on the size of ϕ.

Next we consider the algorithm WitnessC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) given in
Figure 5.3. This algorithm always returns a boolean, and is very close to the
one given in [Blackburn et al., 2001] for the minimal classical modal logic and
in [Bou et al., 2011a] for the finite-valued  Lukasiewicz modal logic.

Lemma 90. Let C be a concept. For every σ ∈ ΣC , every D1, . . . , Di oc-
currences in C, and every r1, . . . , ri ∈ T , if path (σ) = path (l(D1)) = . . . =
path (l(Di)) then the following statements are equivalent.

1. WitnessC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) returns true,



112 Chapter 5. Computational complexity

if NodeC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) returns true then
return true

end if
if NodeC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) returns a list of strings and for each
string σ · l(Ej), 〈E1, rj1〉, . . . , 〈Ek, rjk〉 in this list, it holds that WitnessC(σ ·
l(Ej), 〈E1, rj1〉, . . . , 〈Ek, rjk〉) returns true then

return true
else

return false
end if

Figure 5.3: Algorithm WitnessC(σ, 〈D1, r1〉, . . . , 〈Di, ri〉)

2. there is a mapping e : V arHC(σ)∪{D1(σ),...,Di(σ)} → T , such that
e(D1(σ)) = r1, . . . , e(Di(σ)) = ri, and e generates a witness set.

Proof. The proof is done by induction (but decreasing the step): first of all we
consider the case that |σ| = deg (C), and then we show that if we know the
statement for all σ′ with |σ′| = l + 1 then we also know it for the case that
|σ| = l.

The initial case is very simple looking at the code of our program. Let us
consider now the induction step.

(1 ⇒ 2): Suppose that Witness(ε, 〈C, r〉) returns true, we proceed by induc-
tion on the degree of C.

(0) If deg (C) = 0, then HC(ε) is empty. Since Witness(ε, 〈C, r〉) returns
true, then e is a mapping over C(ε) such that e(C(ε)) = r and
W = {e} is a witness set generated by e on C.

(d) Let deg (C) = d and suppose, by inductive hypothesis, that, for each
σ ∈ ΣC , each occurrences D1, . . . , Di of concepts occurring in C
such that |l(Dj)| > |l(C)| and each r1, . . . , ri ∈ T , it holds that, if
Witness(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) returns true, then there is a map-
ping eσ : V arHC(dσ)∪{Dj(σ)|1≤j≤i} → T such that eσ(Dj(σ)) = rj ,
for 1 ≤ j ≤ i and eσ(HC(σ)) = 1 which generates a witness set Wσ

on D1, . . . , Di. Now, suppose that Witness(ε, 〈C, r〉) returns true,
then:

1. On the one hand, Node(ε, 〈C, r〉) returns a list of strings
{l(Dm), 〈D1, rm1

〉, . . . , 〈Dk, rmk〉 | 1 ≤ m ≤ k} (remember that
deg (C) > 0 by hypothesis) and, hence, there is a mapping e on
HC(ε) ∪ {C(ε)} such that C(ε) = r and e(HC(ε)) = 1.

2. On the other hand, for each string
l(Dm), 〈D1, rm1

〉, . . . , 〈Dk, rmk〉 in the output of Node(ε, 〈C, r〉),
it holds that Witness(l(Dm), 〈D1, rm1〉, . . . , 〈Dk, rmk〉) returns
true.



5.1. Concept satisfiability 113

Hence, by inductive hypothesis, for each occurrence Dm ap-
pearing in the output of Node(ε, 〈C, r〉), there is a map-
ping el(Dm) : V arHC(l(Dm))∪{Dm(l(Dm))|1≤m≤k} → T such that
el(Dm)(Dm(l(Dm))) = rm, for 1 ≤ m ≤ k and el(Dm)(HC(l(Dm))) = 1
which generates a witness set Wl(Dm) on Dm. Moreover, since
the truth values r11

, . . . , rkk are those appearing in the output of
Node(ε, 〈C, r〉), then e overlaps with each el(Dm). So, the set:

W = {e} ∪
⋃
{Wl(D) : D occurrence in C with |l(D)| = |l(C)|+ 1}

is a witness set generated by e.

(2 ⇐ 1): Suppose that e is a mapping which generates a witness set W on C.
We proceed by induction on the degree of C.

(0) If deg (C) = 0, then it is enough that e be a mapping over C(ε), such
that e(C(ε)) = r, for Witness(ε, 〈C, r〉) to return true.

(d) Let deg (C) > 0 and suppose, by inductive hypothesis, that, for each
σ ∈ ΣC , each occurrences D1, . . . , Di of concepts occurring in C such
that |l(Dj)| > |l(C)| and each r1, . . . , ri ∈ T , if a mapping eσ :
V arHC(σ)∪{Dj(σ)|1≤j≤i} → T , such that eσ(Dj(σ)) = rj , for 1 ≤ j ≤
i and eσ(HC(σ)) = 1, generates a witness set Wσ on D1, . . . , Di,
then Witness(σ, 〈D1, r1〉, . . . , 〈Di, ri〉) returns true. Now, if e is a
mapping which generates a witness set W on C, then, by Definition
69, for each occurrence of a generalized atom D occurring in C such
that |l(D)| = |l(C)|+ 1, there is a mapping el(D) : V arHC(l(D)) → T
mutually consistent with e and such that el(D)(HC(l(D))) = 1.

Let ol be the transitive closure of the mutually consistent relation
between mappings, then the set

{e′ ∈ W | el(D) ol e
′}

is a witness set generated by el(D) on D. Hence, by in-
ductive hypothesis, for each generalized atom Dj occurring in
C such that |l(Dj)| = |l(C)| + 1, for 1 ≤ j ≤ i,
there is a mapping el(Dj) : V arHC(l(Dj)) → T such that
Witness(l(Dj), 〈D1, el(Dj)(D1(l(Dj)))〉, . . . , 〈Di, el(Dj)(Di(l(Dj)))〉)
returns true. So, Witness(ε, 〈C, r〉) returns true.

Corollary 91. Let C be a concept and r ∈ T . Then Witness(ε, 〈C, r〉) returns
true if and only if there is a mapping e : HC(ε) ∪ {C(ε)} → T such that
e(C(ε)) = r that generates a witness set.

Main result Combining Corollaries 88 and 91 we easily obtain the following
result.

Theorem 92. The problem Satisf is in PSPACE.



114 Chapter 5. Computational complexity

Proof. Corollaries 88 and 91 tell us that the algorithm in Figure 5.3 does what
we want. It only remains to see that this algorithm belongs to PSPACE.

Let C be an IALCE concept. By Lemma 87 and Lemma 90 we have that
C is r-satisfiable if and only if there is a partial propositional evaluation e :
pr(HC(ε)) → T such that Witness(ε, 〈C, r〉) returns true. Hence we need to
prove that Witness can be given a PSPACE implementation. Consider a non-
deterministic Turing machine that guesses a strings σ, 〈D1, r1〉, . . . , 〈Di, ri〉 and
runs Witness(σ, 〈D1, r1〉, . . . , 〈Di, ri〉), then we need to prove that this machine
runs in NPSPACE and, by an appeal to Savitch’s Theorem, we will achieve the
desired result.

Algorithm Witness is a recursive algorithm and, at every recursive call,
subroutine NodeC is triggered over one of the strings σ, 〈D1, r1〉, . . . , 〈Di, ri〉
obtained from a previous triggering of NodeC . The choice of the string to be
processed by NodeC at every successive step can be done by non-deterministic
guess.

Due to the overlapping of mappings eσ, for σ ∈ ΣC , at every appli-
cation of subroutine NodeC on a string σ, 〈D1, r1〉, . . . , 〈Di, ri〉, the only in-
formation needed is the output obtained by subroutine NodeC on strings
σ′, 〈D′1, r′1〉, . . . , 〈D′i, r′i〉, for every σ′ that is a prefix of σ. So, at each step,
the remaining information can be deleted.

Intuitively, ΣC can be represented as a tree and the only information that
is needed at each step is the one lying in the path from the root to the present
step. At every successive recursive call the modal degrees of concepts D1, . . . , Di

is strictly less than the modal degrees of concepts processed at the previous
call and at most deg (C) recursive calls are needed until we meet a Hájek set
without generalized atoms in the bodies of formulas. So, the maximum amount
of information to be retained in memory is the output of subroutine NodeC
multiplied by deg (C). On the one hand, deg (C) is at most lineal on the size
of C and, therefore, of the input. On the other hand, by Lemma 89 the space
needed to run subroutine NodeC and to write down its input is polynomial on
the size of the input. Hence the amount of space needed by algorithm Witness
is polynomial on the size of the input.



Chapter 6

Related works

In this chapter we give report the process that brought to the choice of a t-norm-
based semantics and how research on FDL arrived to the kind of syntax here
proposed, that has evident differences with the classical case.

Moreover we give a brief account on the main results that traced the limits of
decidability in FDLs. For each reasoning task we will report the results existing
in the literature for different semantics.

6.1 Historical remarks

Since the first articles on FDL, it was evident that generalizing the formalism of
DL to the fuzzy framework consists in generalizing its semantics. A first step in
this sense is that of generalizing the semantics of atomic concepts and roles from
crisp to fuzzy sets and relations respectively and the semantics of subsumption to
the inclusion between fuzzy sets. Nevertheless this does not mean there is a wide
agreement on how to generalize the semantics of complex concepts and, since
the beginning of the research on FDL, several solutions have been proposed.

The first attempt in this direction is the one of [Yen, 1991]. At that
time the notation reported in Section 2.2.2 had not been fully adopted in
the DL community and [Yen, 1991] has been thought as a generalization of
[Brachman and Levesque, 1984] where the so-called Term Subsumption Lan-
guages (TSL) is developed. The language studied in [Yen, 1991], denoted
“FT SL−”, takes, as concept constructors, conjunction (: andC1, . . . , Cn), value
restriction (: allRC), restricted existential quantification (: someR>), modi-
fiers :NOT, :VERY, :SLIGHTLY, etc. and an ancestor of concrete domains.
The semantics underlying this first proposal was called test score semantics (see
[Zadeh, 1982]). This name just means that scores (what we nowadays call “truth
values”) are assigned to concepts after performing tests to the system. However,
what is interesting, under our point of view, in the semantics used in [Yen, 1991],
are the truth functions used to calculate the truth values of complex concepts,
in particular:

115



116 Chapter 6. Related works

• It is suggested to use the min function to compute the value of a conjunc-
tion (: andC1, . . . , Cn) of concepts. Besides this suggestion, the author
not only recognizes that any other t-norm can be used as the semantics of
conjunction, but also that both lower and upper bounds for conjunctions
can be computed considering min and  Lukasiewicz t-norms as upper and
lower bounds respectively.

• The semantics of value restriction (: allRC) is defined in two alternative
ways. Through a fuzzy implication operator, as is done nowadays, and
through the notion of conditional necessity from possibility theory. The
author, however adopts the second option.

The main result in [Yen, 1991] is the decidability proof for the concept sub-
sumption problem of the FDL presented and, for it, a structural subsumption
algorithm has been used.

The semantics defined in [Yen, 1991] was enough general to leave open the
adoption of a truth function for conjunction. Nevertheless, [Yen, 1991] was in-
spired by practical purposes and his goal was providing a more refined tool for
knowledge representation.

Later on, [Tresp and Molitor, 1998] has a more theoretic fashion. The evo-
lution of the notation towards a logical-like abstraction, that can be seen in the
DL community, influenced [Tresp and Molitor, 1998], which utilizes the same
modern notation reported in Section 2.2.2. The language studied in this work
was called ALCFM (the subindex FM stands for infinitely many truth values). It
presents, as concept constructors, conjunction u, disjunction t, value restriction
∀R.C, existential quantifier ∃R.C and manipulators (what we call modifiers)
MiC. The authors of [Tresp and Molitor, 1998] utilize a translation of the FDL
language to fuzzy first order logic and provide a semantics to fuzzy first order
logic that, through the translation, turns out to be the semantics of the FDL
language, in accordance with the following schema in Figure 6.1.

FDL //

&&NNNNNNN FOLOO

��
FO structures

Figure 6.1: Relations to FOL in [Tresp and Molitor, 1998]

The choice of the truth functions for the logical connectives falls on min
and max for conjunction and disjunction, respectively. The semantics for the
existential quantifier is the one provided in Section 3.1.1 and it is the first place
where it has been defined this way. This work is also the first in defining the
semantics for value restriction ∀R.C by means of the so-called Kleene-Dienes
implication, that is defined on [0, 1] in the following way:



6.1. Historical remarks 117

x⇒ y := max{1− x, y}

which is a straightforward generalization of the classical one. In particular, if
I is an FDL interpretation, the semantics of value restriction ∀R.C, based on
Kleene-Dienes implication, is defined in the following way:

(∀R.C)I(x) = infy∈∆I{max{1−RI(x, y), CI(y)}}

Finally, for the semantics of manipulators MiC, unary function on [0, 1] were
used, as in the framework of fuzzy edges (see [Cintula et al., 2011] for details).

The main result in [Tresp and Molitor, 1998] is the decidability proof for the
concept subsumption problem of the FDL presented and, for it, a structural
subsumption algorithm has been used.

Until [Tresp and Molitor, 1998], the research on FDL had been quite limited,
but in the same year Straccia published his first work on FDL, [Straccia, 1998].
The language studied in this work is called (and, indeed, it is) ALC and the
semantics adopted is the same as the one used in [Tresp and Molitor, 1998],
plus a unary function that gives the semantics to concept complementation and
that is defined as:

¬x := 1− x

The set of operations that includes min{x, y},max{x, y},max{1 − x, y}
and 1 − x on the real unit interval is commonly denoted with the name of
Zadeh’s semantics. The strength of [Straccia, 1998] and of its journal version
[Straccia, 2001], is that they set up a clear syntax and semantics, very close to
the classical ones and relate each other without the intermediate step of first
order logic, like in [Tresp and Molitor, 1998]. In this way Fuzzy Description
Logic is set up as an autonomous discipline with a clearly defined syntax an
semantics. The main result proved in [Straccia, 2001] is the reduction of fuzzy
ALC to classical ALC that allows to prove decidability for every reasoning task
considered. Later, in [Straccia, 2004b], the same author considers also the more
general framework of semantics based on lattices that are supposed to be not
necessarily chains. These works, indeed, opened the door to the possibility of
expanding the language in order to cover the advances that had been done in
the classical framework. A fuzzy semantics for concrete domains was introduced
in [Straccia, 2005c]. A semantics for unqualified number restriction, role hier-
archies, inverse and transitive roles was introduced in [Stoilos et al., 2005a]. A
semantics for nominals was introduced in [Stoilos et al., 2005b]. A semantics for
qualified number restriction was introduced in [Bobillo et al., 2007].

However, due to the absence of a residuated implication, an FDL based
on Zadeh’s semantics is too weak and it can lead to counter-intuitive conse-
quences. This fact has been pointed out in [Hájek, 2005], where the example
of the assertion “all hotels near to the main square are expensive” is presented
in order to highlight the consequences of using Kleene-Dienes implication in
the semantics of value restriction. Such assertion can be formally expressed
as ∀hasNear.Expensive(MainSquare). Here we will further develop Hájek’s
example. Consider the following fuzzy ABox HOT ELS:



118 Chapter 6. Related works

• 〈hasNear(MainSquare,Hotel_1) = 0.9〉,

• 〈hasNear(MainSquare,Hotel_2) = 0.5〉,

• 〈hasNear(MainSquare,Hotel_3) = 0.1〉,

• 〈Expensive(Hotel_1) = 0.9〉,

• 〈Expensive(Hotel_2) = 0.5〉,

• 〈Expensive(Hotel_3) = 0.1〉,

This ABox HOT ELS indeed depicts the ideal situation imagined by Hájek,
where “for each hotel the degree of its being near to the main square equals the
degree of its being expensive” and where “there is at least one hotel which is
near to the main square in degree 0.5”. In this ideal situation the truth value
of assertion ∀hasNear.Expensive(MainSquare) should be 1, because hotels are
at least as expensive as they lie near the main square. Now, if its truth value
is calculated using the truth function of any residuated implication, its value is
indeed 1. In spite, using the truth function of Kleene-Dienes implication, the
result is different. In fact, in every interpretation I that is a model of HOT ELS,
we have that:

(∀hasNear.Expensive(MainSquare))I

= infx∈∆I{NearI(MainSquareI , x)⇒ ExpensiveI(x)}

≤ inf{max{1− 0.9, 0.9},max{1− 0.5, 0.5},max{1− 0.1, 0.1}}

= inf{0.9, 0.5, 0.9}

= 0.5

So, the truth value of assertion ∀hasNear.Expensive(MainSquare), using
Kleene-Dienes implication, is at most 0.5 in a model of HOT ELS, against the
intuition, reflected in HOT ELS, that its truth value should be 1. But the
example can go beyond this situation. Consider, in fact, the ABox HOT ELS ′
obtained by adding to HOT ELS the following set of assertion:

• 〈hasNear(SideSquare,Hotel_1) = 0.1〉,

• 〈hasNear(SideSquare,Hotel_2) = 0.4〉,

• 〈hasNear(SideSquare,Hotel_3) = 0.4〉,

In this new situation the truth value of assertion
∀hasNear.Expensive(SideSquare) should be no higher than the value
of assertion ∀hasNear.Expensive(MainSquare), because SideSquare lies
very from the more expensive hotel (Hotel_1) and there is one hotel whose
degree of being near is higher than its degree of being expensive (Hotel_3).



6.1. Historical remarks 119

Indeed, in the situation depicted by ABox HOT ELS, the main square is
the square that has near the more expensive hotels and the side square is
the one that lies nearer to the cheaper hotels. For this reason, it appears
counter intuitive the possibility that SideSquare can be an instance of concept
∀hasNear.Expensive in a degree higher than SideSquare. Again, if its
truth value is calculated with the use of the truth function of any residuated
implication, its value is indeed strictly less than 1. In spite, using the truth
function of Kleene-Dienes implication, the result can be higher than the truth
value of ∀hasNear.Expensive(MainSquare). In fact, there is at least an
interpretation I that is a model of HOT ELS ′, and where we have that:

(∀hasNear.Expensive(SideSquare))I

= infx∈∆I{NearI(SideSquareI , x)⇒ ExpensiveI(x)}

= inf{max{1− 0.1, 0.9},max{1− 0.4, 0.5},max{1− 0.4, 0.1}}

= inf{0.9, 0.6, 0.6}

= 0.6 > 0.5

So, the truth value of assertion ∀hasNear.Expensive(SideSquare) is
greater than that of ∀hasNear.Expensive(MainSquare) in at least one model
of HOT ELS ′, against the intuition, reflected in HOT ELS ′, that hotels should
be more expensive around the main square.

For this reason, Hájek proposes, in [Hájek, 2005], a more general framework
based on Mathematical Fuzzy Logic. With the only exception of [Yen, 1991],
the operation min is the only function adopted as a semantics for the con-
junction operator until [Hájek, 2005]. In this new framework, not only the
semantics of conjunction is a t-norm, but it is also recovered the idea, firstly
proposed in [Tresp and Molitor, 1998], of a tight relation between FDL and
first order fuzzy logic that, in the meanwhile, had been defined in the gen-
eral framework of Mathematical Fuzzy Logic (MFL) developing the basic ideas
of [Hájek, 1998b]. The main result proved in [Hájek, 2005] is the reduction of
fuzzy ALC to the corresponding propositional calculus, that allows to prove
decidability for concept satisfiability and subsumption. The new framework
proposed in [Hájek, 2005] inspired several successive works on FDL. Among the
ones that consider a t-norm-based semantics we can find [Straccia, 2005c] and,
more recently, [Cerami et al., 2010a] and [Baader and Peñaloza, 2011b]. Among
the ones that deepen the relationships between FDL and MFL we can find
[Garćıa-Cerdaña et al., 2010], [Cerami et al., 2010b] and [Cerami et al., 2012].

The new framework proposed in [Hájek, 2005] supposed also a re-thinking
about the notation used in FDL. Indeed, the use of the same notation of DL for
FDL has been based on the fact that, in order to generalize DLs to the multi-
valued framework, it seemed enough to generalize the semantics of concepts and
roles to fuzzy sets and fuzzy relations. With this idea it is obvious that the same



120 Chapter 6. Related works

concept constructors (and, with them, the same formal languages) could be
maintained in a multi-valued framework. This formalization worked indeed well
when the semantics adopted as underlying truth value algebra was the Zadeh’s
semantics. But, since [Hájek, 2005], some researchers on FDLs began to adopt
a residuated lattice on [0, 1] as algebra of truth values. However, adopting a
multi-valued framework and maintaining the same notation as in the classical
case, could produce a slight confusion. This is due to several reasons related to
differences between the classical and the multi-valued framework. Commonly,
with some exceptions, such differences include the following items:

1. two kinds of conjunctions can be considered in the multi-valued framework,
with different mathematical properties, and the same holds for disjunction,

2. implication is, in general, not definable from other connectives,

3. the quantifiers are not definable from each other by means of the equiva-
lence ∃R.C ≡ ¬∀R.¬C,

4. the disjunction is not definable from the residuated negation ¬C := C → ⊥
and the conjunction u.

All these items must be taken into account both when choosing the symbols
denoting the constructors of our description languages and when building the
hierarchy of fuzzy description languages, as we will see later on. As an example
recall that, in classical DLs, ALE is strictly contained in ALC, while within
many fuzzy DLs, by item 3 above, this is not the case.

Before moving to basic languages like those already existing in classical DLs,
we find worth discussing the case of implication. In classical DL, no language
has a primitive concept constructor for implication, even though implication is
often implicitly used. This is due to the fact that the implication is definable
from conjunction and negation. Nevertheless, in the logic MTL and many of its
extensions, implication is in general not definable from other connectives. The
first time that the concept constructor → for the implication is included in the
definition of the language as a primitive connective has been in [Hájek, 2005].
Its introduction allows to utilize a concept constructor that is not otherwise de-
finable, even if quite useful in order to define, in BL and its extensions, other
concept constructors like those for weak conjunction (whose semantics and sym-
bol are the minimum and u respectively), weak disjunction (whose semantics and
symbol are the maximum and t respectively) and residuated negation (whose
definition is C → ⊥).

Another issue that could take great advantage from the use of a residuated
implication is the semantics of concept subsumption. Since the first works on
FDL, in fact, the semantics for subsumption of concept is defined by means of
the inclusion between fuzzy sets, that is, concept C is subsumed by concept
D if and only if, for every interpretation I and every x ∈ ∆I , it holds that
CI(x) ≤ DI(x) = 1. If the truth function of the implication is the residuum of
the truth function of the conjunction, this is equivalent to say that concept C →



6.2. Other reasoning tasks 121

D is valid or, equivalently, that concept ¬(C → D) is not positively satisfiable.
If, otherwise, the truth function of the implication is max{1 − CI(x), DI(x)}
the above relation between inclusion and implication does not hold anymore.
As an example, consider two concepts A and B. As a matter of fact, their
conjunction AuB is always subsumed by both concepts, that is, AuB v A. In
Zadeh’s semantics, in fact, for every interpretation I and every x ∈ ∆I , it holds
that (A uB)I(x) = min{AI(x), BI(x)} ≤ AI(x). Nevertheless, when the truth
function of the implication is max{1−AI(x), BI(x)} it is not true that concept
(A u B) → A is valid. As a counter-example to the relationship between the
notion of fuzzy set inclusion based on the order ≤ and Kleene-Dienes implication,
consider interpretation I where:

• ∆I = {a},

• AI(a) = BI(a) = 0.5,

then,

((A uB)→ A)I(a)

= max{1−min{AI(a), BI(a)}, AI}
= max{1−min{0.5, 0.5}, 0.5}
= 0.5

As we can see from the example of interpretation I, for every instance, con-
cept A u B is less or equal that concept A, but concept (A u B) → A is not a
valid concept.

The advantage of considering a residuated implication, however not only
consists in the fact that it behaves well with the inclusion between fuzzy concepts,
but, above all, that by means of a residuated implication it is possible to define
a graded notion of subsumption. By defining the semantics of subsumption as:

(C v D)I := infx∈∆I{(C → D)I(x)}

we are not just able to say whether concept C is totally subsumed in concept D,
but, when it is not the case, we can also give a truth value to this subsumption.
This is indeed a great increment in expressivity.

6.2 Other reasoning tasks

6.2.1 Subsumption

The decidability of concept 1-subsumption for language IALCE based on
finite De Morgan lattices can be easily obtained from the results in
[Borgwardt and Peñaloza, 2011b]. Despite in that work it is proved the de-
cidability of the concept 1-subsumption w.r.t. an acyclic1 TBox, concept 1-
subsumption is a particular case concept 1-subsumption w.r.t. a knowledge
base, indeed the one in which the knowledge base is empty.

1See Section ??.



122 Chapter 6. Related works

6.2.2 Knowledge base consistency

As we will see later on, the general KB consistency problem is undecidable under
infinite-valued  Lukasiewicz and product semantics. Nevertheless, imposing some
restriction to the TBox it can be proven decidable. In the following subsection
we provide the results existing in the literature about decidability for KBs with
empty or acyclic TBoxes and undecidability for general KBs.

The decidability of general knowledge base consistency for language IALCE
based on finite De Morgan lattices can be easily obtained from the results in
[Borgwardt and Peñaloza, 2011b]. Despite in that work it is proved the decid-
ability of the concept r-satisfiability w.r.t. a knowledge base problem, knowledge
base consistency can be easily reduced to concept r-satisfiability w.r.t. a knowl-
edge base, as we have seen in Section 3.5.2.

6.2.3 Concept satisfiability w.r.t. knowledge bases

The problem of concept r-satisfiability w.r.t. knowledge bases
has been recently addressed in [Borgwardt and Peñaloza, 2011a] and
[Borgwardt and Peñaloza, 2011c]. In both papers the language considered
is the one that here is called ALCE , the algebra of truth values T is a (not
necessarily linear) De Morgan lattice and the knowledge base has empty
ABox. In [Borgwardt and Peñaloza, 2011c] it is proved that the problem of
concept r-satisfiability w.r.t. a knowledge base with empty ABox is undecid-
able when the De Morgan lattice T is infinite and has not been fixed. On
the other hand, if T is finite, the same problems tuns out to be decidable.
In[Borgwardt and Peñaloza, 2011b], moreover, it is proved that the problem of
concept r-satisfiability w.r.t. a knowledge base with acyclic TBox is decidable
when the De Morgan lattice T is finite.

The decidability of the concept r-satisfiability problem w.r.t. knowledge
bases with empty TBoxes for IALCE under infinite-valued  Lukasiewicz t-norm
can be easily proved from Theorem ?? and the reduction from the problem of
concept r-satisfiability w.r.t. knowledge bases to the problem of knowledge base
consistency provided in Section 3.5.2.

The decidability of the concept r-satisfiability problem w.r.t. knowledge
bases with acyclic TBoxes for IALCE under infinite-valued  Lukasiewicz t-norm
can be easily proved from Theorem ?? and the reduction from the problem of
concept r-satisfiability w.r.t. knowledge bases to the problem of knowledge base
consistency provided in Section 3.5.2.

The undecidability of the concept r-satisfiability problem w.r.t. knowledge
bases with general TBoxes for IALCE under infinite-valued  Lukasiewicz or for
IALE under product t-norm can be easily proved from Proposition 61 and Corol-
lary 5 in [Baader and Peñaloza, 2011b] respectively and the fact that the prob-
lem of knowledge base consistency can be reduced to the problem of concept
r-satisfiability w.r.t. knowledge bases, as we have seen in Section 3.5.2.



6.2. Other reasoning tasks 123

6.2.4 Entailment

As long as we know, the entailment of an axiom by a knowledge base has not
yet been directly faced. In[Borgwardt and Peñaloza, 2011b] a similar problem is
addressed. There it is, indeed proved that the problem of concept 1-subsumption
w.r.t. a knowledge base with acyclic TBox is decidable when the algebra of truth
values T is a finite De Morgan lattice. In the case of an infinite set of truth values
we can obtain some result as consequences of the (un)decidability of knowledge
base consistency.

The decidability of the entailment of an axiom by a knowledge base with
empty TBoxes for IALCE under infinite-valued  Lukasiewicz t-norm can be easily
proved from Theorem ?? and the reduction from the problem of entailment of
an axiom by a knowledge base to the problem of knowledge base consistency
provided in Section 3.5.2.

The decidability of the entailment of an axiom by a knowledge base with
acyclic TBoxes for IALCE under infinite-valued  Lukasiewicz t-norm can be easily
proved from Theorem ?? and the reduction from the problem of entailment of
an axiom by a knowledge base to the problem of knowledge base consistency
provided in Section 3.5.2.

The undecidability of the entailment of an axiom by a knowledge base with
general TBoxes for IALCE under infinite-valued  Lukasiewicz or for IALE un-
der product t-norm can be easily proved from Proposition 61 and Corollary 5
in [Baader and Peñaloza, 2011b] respectively and the fact that the problem of
knowledge base consistency can be reduced to the entailment of an axiom by a
knowledge base, as we have seen in Section 3.5.2.

6.2.5 Best entailment degree

In the case of the best entailment degree of an axiom by a knowledge base, the
reduction from the best entailment degree problem to knowledge base consis-
tency provided in Section 3.5.2 is not useful in order to obtain decidability, since
a continuous family of KB consistency problem is obtained this way. Neverthe-
less, for the case of  Lukasiewicz t-norm, as we have seen in Sections ?? and ?? the
method to decide KB consistency consists in obtaining a system of in-equations
CF . It is well known that, for a system of in-equations both minimization and
maximization problems of a variable are decidible. Hence, the best entailment
degree problem of an axiom by a knowledge base with empty or acyclic TBoxes
for IALCE under infinite-valued  Lukasiewicz t-norm has to be reduced to an
optimization problem for KB consistency. In [Bobillo and Straccia, 2008a] it
is showed that given K = 〈T ,A〉, we can compute bed(K, C(a)) as the mini-
mal value of x such that 〈T ,A ∪ {〈¬C(a), 1− x〉}〉 is satisfiable. Similarly, for
C v D, we can compute bed(K, C v D) as the minimal value of x such that
K = 〈T ,A∪ {〈C(a), x1〉} ∪ {〈D(a), x2〉}〉 is satisfiable under the constraints ex-
pressing that x1 ⇒ x2 ≤ x, x1 ∈ [0, 1] and x2 ∈ [0, 1], where a is new individual.
Hence, the best entailment degree problem of an axiom by a knowledge base with
empty or acyclic TBoxes for IALCE under infinite-valued  Lukasiewicz t-norm is



124 Chapter 6. Related works

decidable.
The undecidability of the best entailment degree of an axiom by a knowl-

edge base with general TBoxes for IALCE under infinite-valued  Lukasiewicz or
for IALE under product t-norm can be easily proved from Proposition 61 and
Corollary 5 in [Baader and Peñaloza, 2011b] respectively and the fact that the
problem of knowledge base consistency can be reduced to the entailment of an
axiom by a knowledge base, as we have seen in Section 6.2.4. The result is, thus,
obtained from the fact that the entailment problem is a particular case of the
best entailment degree problem.

6.2.6 Best satisfiability degree

The best satisfiability degree of a concept w.r.t. a knowledge base has been
proved decidable for language IALCE based on finite De Morgan lattices in
[Borgwardt and Peñaloza, 2011c]. In the case of FDLs based on infinite com-
plete chains, the reduction from the best satisfiability degree problem to knowl-
edge base consistency provided in Section 3.5.2 is not useful in order to obtain
decidability, since a continuous family of KB consistency problem is obtained
this way. Nevertheless, for the case of  Lukasiewicz t-norm, are still worth the
considerations made in Section 6.2.5 for the case of the best entailment degree.
This time a solution to the best satisfiability degree bsd(K, C) is determined by
the maximal value of x such that 〈T ,A ∪ {〈C(a), x〉}〉 is satisfiable.

The undecidability of the best satisfiability degree of a concept w.r.t. a knowl-
edge base with general TBoxes for IALCE under infinite-valued  Lukasiewicz or
for IALE under product t-norm can be easily proved from Proposition 61 and
Corollary 5 in [Baader and Peñaloza, 2011b] respectively and the fact that the
problem of knowledge base consistency can be reduced to the satisfiability of a
concept w.r.t. a knowledge base, as we have seen in Section 6.2.4. The result is,
thus, obtained from the fact that the concept satisfiability w.r.t. a knowledge
base is a particular case of the best satisfiability degree problem.



Appendix A

In this appendix we prove, in Theorem 97, that the first order logic given by
[0, 1]Π coincides with the one given by its one-generated subalgebra, that is
quasi-witnessed. The result of Theorem 97 has been previously published in
[Cerami et al., 2010a]. It is necessary in order to prove that general tautolo-
gies and positively satisfiable formulas coincide with standard tautologies and
positively satisfiable formulas.

Recall that an one-generated subalgebra of [0, 1]Π is the subalgebra of [0, 1]Π
whose domain is {a0, a1, a2, . . .} ∪ {0}, for a ∈ (0, 1).

In [Hájek, 1998b, Theorem 5.4.30] the author proves that [0, 1]L-tautologies
coincide with the common  Ln-tautologies for n ≥ 2, i.e., coincide with the com-
mon tautologies of the finite subalgebras of [0, 1] L. In [Esteva et al., 2010] the
authors prove that the result is not valid for a logic of a t-norm different from
 Lukasiewicz. But Hájek’s result can be read in another way since  Ln are the
one-generated subalgebras of [0, 1] L whose generator is a rational number. What
we prove in this appendix is that this reading of Hájek’s result can be generalized
to First Order Product Logic.

In order to prove this result we first prove some lemmas and provide some
definitions. Firstly we prove the following lemma that uses only residuation
condition, and thus it is also true for any MTL-chain (prelinear residuated chain).

Lemma 93. In any Π-chain the following inequalities hold:

1. (x⇔ x′) ∗ (y ⇔ y′) ≤ (x⇒ y)⇔ (x′ ⇒ y′),

2. (x⇔ x′) ∗ (y ⇔ y′) ≤ (x ∗ y)⇔ (x′ ∗ y′),

3. infi∈I{xi ⇔ yi} ≤ infi∈I{xi} ⇔ infi∈I{yi},

4. infi∈I{xi ⇔ yi} ≤ supi∈I{xi} ⇔ supi∈I{yi}.

Proof. The proofs are easy consequences of residuation property

x ∗ y ≤ z iff x ≤ y ⇒ z. (res)

In particular we point out that x ∗ (x⇒ y) ≤ y. Next we prove each one of the
items.

125



126 Appendix A.

1. By symmetry it is enough to prove that (x′ ⇒ x) ∗ (y ⇒ y′) ≤ (x⇒ y)⇒
(x′ ⇒ y′); and this is a consequence of residuation.

2. By symmetry it is enough to prove that (x ⇒ x′) ∗ (y ⇒ y′) ≤ (x ∗ y) ⇒
(x′ ∗ y′); and this is a consequence of residuation.

3. Since we are considering a chain, we can suppose, without loss of gen-
erality, that infi∈I{yi} ≤ infi∈I{xi}. Thus, infi∈I{xi} ⇔ infi∈I{yi} =
infi∈I{xi} ⇒ infi∈I{yi}. It is obvious that it is enough to prove that

inf
i∈I
{xi ⇒ yi} ≤ inf

i∈I
{xi} ⇒ inf

i∈I
{yi},

and this is an easy consequence of residuation because for every i ∈ I,

inf
i∈I
{xi ⇒ yi} ∗ inf

i∈I
{xi} ≤ (xi ⇒ yi) ∗ xi ≤ yi.

4. Without loss of generality we can assume that supi∈I{yi} ≤ supi∈I{xi}.
Thus, supi∈I{xi} ⇔ supi∈I{yi} = supi∈I{xi} ⇒ supi∈I{yi}. It is obvious
that it is enough to prove that

inf
i∈I
{xi ⇒ yi} ≤ sup

i∈I
{xi} ⇒ sup

i∈I
{yi}.

This is true because if a = infi∈I{xi ⇒ yi}, then for every i ∈ I,

a ∗ xi ≤ yi;

and hence,
a ∗ sup

i∈I
{xi} = sup

i∈I
{a ∗ xi} ≤ sup

i∈I
{yi}.

The proof we give for Theorem 97 is based on a continuity argument, and
resembles the one given in [Hájek, 1998b, Theorem 5.4.30]. The main difference
is that while Hájek introduces a distance between models on the same domain,
in this paper we consider a dual notion, which we call similarity and denote by
S. In the case of  Lukasiewicz, since the duality, there is no essential difference
between considering a distance or a similarity, but this is not the case for Product
Logic, where it is crucial to consider a similarity.

Definition 94 (Similarity). Let Γ be a predicate language with a finite number
of predicate symbols P1, . . . , Pn, and let M,M′ be two models over [0, 1]Π on the
same domain M such that rPi and r′Pi are the interpretations of the predicate
symbols in M and M′ respectively.

1. For each predicate symbol P ∈ Γ with arity ar(P ), we define

S(rP , r
′
P ) := inf

a∈Mar(P )
{rP (a)⇔ r′P (a)}

= inf
a∈Mar(P )

{min{rP (a), r′P (a)}
max{rP (a), r′P (a)}

}



127

2. Moreover, we define

S(M,M′) := S(rP1 , r
′
P1

) ∗ . . . ∗ S(rPn , r
′
Pn).

Definition 95. We define the complexity τ(ϕ) of a formula ϕ as follows:

1. τ(ϕ) = 0, if ϕ is atomic or ⊥,

2. τ(ϕ ∗ ψ) = 1 +max{τ(ϕ), τ(ψ)}, if ∗ ∈ {→,⊗},

3. τ(Qx ϕ) = τ(ϕ), if Q ∈ {∀,∃}.

This complexity captures the number of nested propositional connectives in the
formula.

Lemma 96. Assume Γ is a predicate language with n predicate symbols. Let M
and M′ be two first order structures over [0, 1]Π on the same domain M , and let
ϕ be a first order formula. Then, for all ε ∈ [0, 1),

if S(M,M′) > n·2τ(ϕ)√
ε, then,

for each evaluation v, (‖ϕ‖M,v ⇔ ‖ϕ‖M′,v) ≥ ε.

Proof. It is enough to prove that if M differs from M′ only by the interpretation
of one predicate symbol P , then

(Cϕ) for all ε ∈ [0, 1), if S(M,M′) > 2τ(ϕ)√
ε, then,

for each evaluation v, (‖ϕ‖M,v ⇔ ‖ϕ‖M′,v) ≥ ε.

We show that this condition (Cϕ) holds by induction on the length of the formula
ϕ.

• If ϕ is either atomic or ⊥, then it is obvious.

• Let us suppose ϕ = ψ?χ with ? ∈ {→,⊗}, and S(M,M′) > 2τ(ϕ)√
ε. Then,

S(M,M′) > max{ 2τ(ψ)
√√

ε, 2τ(χ)
√√

ε}. Using the inductive hypothesis for√
ε, we get that

(‖ψ‖M,v ⇔ ‖ψ‖M′,v) ≥
√
ε,

(‖χ‖M,v ⇔ ‖χ‖M′,v) ≥
√
ε.

Hence, by the first two items in Lemma 93 we get that

(‖ϕ‖M,v ⇔ ‖ϕ‖M′,v) ≥
√
ε ∗
√
ε = ε.

• Let us suppose that ϕ = Qxψ, with Q ∈ {∀,∃}, and S(M,M′) > 2τ(ϕ)√
ε.

Then, S(M,M′) > 2τ(ψ)√
ε. By the inductive hypothesis we get that

(‖ψ‖M,v ⇔ ‖ψ‖M′,v) ≥ ε for each evaluation v. Hence,

infv{‖ψ‖M,v ⇔ ‖ψ‖M′,v} ≥ ε.

By the last two items in Lemma 93 it follows that



128 Appendix A.

(‖ϕ‖M,v ⇔ ‖ϕ‖M′,v) ≥ ε.

Hence, the lemma is proved.

We are now ready to prove the main result of the present Appendix.

Theorem 97. A first-order formula ϕ is a [0, 1]Π-tautology if and only if it is
a tautology in any one-generated subalgebra of [0, 1]Π.

Proof. The result is an obvious consequence of the previous lemma. Suppose
that ϕ is not a [0, 1]Π-tautology, then there is a structure M and an evaluation
v such that ‖ϕ‖M,v < ε for some ε < 1. Take s ∈ (0, 1) such that sn > n·2τ(ϕ)√

ε,
and denote by 〈s〉 the subalgebra of [0, 1] generated by s. For every predicate
symbol P , let r′P (a) be min{t ∈ 〈s〉 | t ≥ rP (a)}. Now we define the structure
M′ = (M, r′P1

, . . . , r′Pn) over the algebra 〈s〉. An easy computation shows that

S(rP , r
′
P ) ≥ s for every predicate symbol P ; hence, S(M,M′) ≥ sn > n·2τ(ϕ)√

ε.
By Lemma 96, (‖ϕ‖M,v ⇔ ‖ϕ‖M′,v) ≥ ε. This together with the fact that
‖ϕ‖M,v < ε implies that ‖ϕ‖M′,v 6= 1. This finishes the proof.



Bibliography

[Alsina et al., 1983] Alsina, C., Trillas, E., and Valverde, L. (1983). On some
logical connectives for fuzzy set theory. Journal of Mathematical Analysis and
Applications, 93:15–26.

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and
Patel-Schneider, P. (2003). The Description Logic Handbook – Theory, Inter-
pretation and Application. Cambridge University Press.

[Baader et al., 1994] Baader, F., Franconi, E., Hollunder, B., Nebel, B., and
Profitlich, H. (1994). An empirical analysis of optimization techniques for
terminological representation systems or: Making KRIS get a move on. Ap-
plied Artificial Intelligence. Special Issue on Knowledge Base Management,
4:109–132.

[Baader et al., 2008] Baader, F., Horrocks, I., and Sattler, U. (2008). Descrip-
tion logics. In van Harmelin, F., Lifshitz, V., and Porter, B., editors, Handbook
of Knowledge Representation, pages 135 – 179. Elsevier.

[Baader and Peñaloza, 2011a] Baader, F. and Peñaloza, R. (2011a). Are fuzzy
description logics with general concept inclusion axioms decidable? In Pro-
ceedings of Fuzz-IEEE 2011, volume to appear.

[Baader and Peñaloza, 2011b] Baader, F. and Peñaloza, R. (2011b). Gcis make
reasoning in fuzzy dl with the product t-norm undescidable. In Proceedings
of the 24th International Workshop on Description Logics (DL 2011).

[Baaz, 1996] Baaz, M. (1996). Infinite-valued gödel logic with 0-1-projections
and relativizations. In Hájek, P., editor, Gödel’96: Logical foundations of
mathematics, computer science and physicsi, volume 6 of Lecture Notes in
Logic, pages 23–33. Springer-Verlag.

[Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001).
Modal logic. Number 53 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge.

[Bobillo et al., 2011] Bobillo, F., Bou, F., and Straccia, U. (2011). On the failure
of the finite model property in some fuzzy description logics. Fuzzy Sets and
Systems, 172(1):1–12.

129



130 Bibliography

[Bobillo et al., 2007] Bobillo, F., Delgado, M., and Gómez-Romero, J. (2007).
Optimizing the crisp representation of the fuzzy description logic SROIQ.
In Proceedings of the 3rd ISWC Workshop on Uncertainty Reasoning for the
Semantic Web (URSW 07). CEUR Workshop Proceedings.

[Bobillo and Straccia, 2007] Bobillo, F. and Straccia, U. (2007). A fuzzy de-
scription logic with product t-norm. In Proceedings of the IEEE International
Conference on Fuzzy Systems (Fuzz-IEEE-07), pages 652–657. IEEE Com-
puter Society.

[Bobillo and Straccia, 2008a] Bobillo, F. and Straccia, U. (2008a). fuzzyDL: An
expressive fuzzy description logic reasoner. In 2008 International Conference
on Fuzzy Systems (FUZZ-08), pages 923–930. IEEE Computer Society.

[Bobillo and Straccia, 2008b] Bobillo, F. and Straccia, U. (2008b). On qualified
cardinality restrictions in fuzzy description logics under lukasiewicz seman-
tics. In Magdalena, L., Ojeda-Aciego, M., and Verdegay, J. L., editors, Pro-
ceedings of the 12th International Conference on Information Processing and
Managment of Uncertainty in Knowledge-Based Systems, (IPMU-08), pages
1008—1015.

[Bobillo and Straccia, 2009a] Bobillo, F. and Straccia, U. (2009a). Extend-
ing datatype restrictions in fuzzy description logics. In Proceedings of the
9th International Conference on Intelligent Systems Design and Applications
(ISDA-09), pages 785–790. IEEE Computer Society.

[Bobillo and Straccia, 2009b] Bobillo, F. and Straccia, U. (2009b). Fuzzy de-
scription logics with fuzzy truth values. In Carvalho, J. P. B., Dubois, D.,
Kaymak, U., and Sousa, J. M. C., editors, Proceedings of the 13th World
Congress of the International Fuzzy Systems Association and 6th Conference
of the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT
2009), pages 189–194.

[Bobillo and Straccia, 2009c] Bobillo, F. and Straccia, U. (2009c). Fuzzy de-
scription logics with general t-norms and datatypes. Fuzzy Sets and Systems,
160(23):3382–3402.

[Bobillo and Straccia, 2010] Bobillo, F. and Straccia, U. (2010). Representing
fuzzy ontologies in owl 2. In Proceedings of the 19th IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE 2010), pages 2695–2700. IEEE
Press.

[Borgida, 1996] Borgida, A. (1996). On the relative expressiveness of description
logics and predicate logics. Artificial Intelligence, 82:353–367.

[Borgwardt and Peñaloza, 2011a] Borgwardt, S. and Peñaloza, R. (2011a). De-
scription logics over lattices with multi-valued ontologies. In Proceedings of
the Twenty-Second International Conference on Artificial Intelligence, pages
768–773.



Bibliography 131

[Borgwardt and Peñaloza, 2011b] Borgwardt, S. and Peñaloza, R. (2011b). Fi-
nite lattices do not make reasoning in ALCI harder. In Proceedings of URSW
2011, volume 778, pages 51–62. CEUR Workshop Proceedings.

[Borgwardt and Peñaloza, 2011c] Borgwardt, S. and Peñaloza, R. (2011c).
Fuzzy ontologies over lattices with t-norms. In Proceedings of the 24th Interna-
tional Workshop on Description Logics (DL-11). CEUR Electronic Workshop
Proceedings.

[Bou et al., 2011a] Bou, F., Cerami, M., and Esteva, F. (2011a). Finite-valued
lukasiewicz modal logic is pspace-complete. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence, pages 774–
779.

[Bou et al., 2011b] Bou, F., Esteva, F., Godo, L., and Rodŕıguez, R. (2011b).
On the minimum many-valued modal logic over a finite residuated lattice.
21(5):739–790.

[Brachman, 1979] Brachman, R. J. (1979). On the epistemological status of
semantic networks. In Findler, N. V., editor, Associative networks, pages
3–50. Academic Press.

[Brachman and Levesque, 1984] Brachman, R. J. and Levesque, H. J. (1984).
The tractability of subsumption in frame based description languages. In
Proceedings of AAAI-84, Austin, TX, pages 34–37.

[Brachman and Levesque, 1985] Brachman, R. J. and Levesque, H. J., editors
(1985). Readings in Knowledge Representation. Morgan Kaufmann, Los Altos,
CA.

[Buchheit et al., 1994] Buchheit, M., Donini, F. M., Nutt, W., and Schaerf,
A. (1994). Terminolological systems revisited: Terminology = schema +
views. In Proceedings of the 12th National Conference on Artificial Intelli-
gence (AAAI’94), pages 199–204, Seattle.

[Buchheit et al., 1998] Buchheit, M., Donini, F. M., Nutt, W., and Schaerf, A.
(1998). A refined architecture for terminological systems: Terminology =
schema + views. Artificial Intelligence, 99(2):209–260.

[Buchheit et al., 1993] Buchheit, M., Donini, F. M., and Schaerf, A. (1993). De-
cidable reasoning in terminological knowledge representation systems. Journal
of Artificial Intelligence Research, 1:109–138.

[Burris and Sankappanavar, 1981] Burris, S. and Sankappanavar, H. P. (1981).
A course in universal algebra. Springer Verlag, New York.

[Calvanese, 1996] Calvanese, D. (1996). Reasoning with inclusion axioms in
description logics: Algorithms and complexity. In Proceedings of the 12th Eu-
ropean Conference on Artificial Intelligence (ECAI’97), pages 303–307. John
Wiley and Sons.



132 Bibliography

[Cerami and Esteva, 2011] Cerami, M. and Esteva, F. (2011). Strict core fuzzy
logics and quasi-witnessed models. Archive for Mathematical Logic, 50(5-
6):625–641.

[Cerami et al., 2010a] Cerami, M., Esteva, F., and Bou, F. (2010a). Decidability
of a description logic over infinite-valued product logic. In Lin, F., Sattler,
U., and Truszczynsky, M., editors, Proceedings of the Twelfth International
Conference on Principles of Knowledge Representation and Reasoning, pages
203–213. AAAI Press.

[Cerami et al., 2012] Cerami, M., Esteva, F., and Garc̀ıa–Cerdaña, A. (2012).
On fintely valued fuzzy description logics: The  lukasiewicz case. In Proceedings
of the 14th International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems, page to appear, Catania.

[Cerami et al., 2010b] Cerami, M., Garćıa-Cerdaña, A., and Esteva, F. (2010b).
From classical description logic to n-graded fuzzy description logics. In So-
brevilla, P., editor, Proceedings of the FUZZ-IEEE 2010 Conference, pages
1506–1513, Barcelona. IEEE.

[Cignoli et al., 2000] Cignoli, R., D’Ottaviano, I. M. L., and Mundici, D. (2000).
Algebraic foundations of many-valued reasoning, volume 7 of Trends in Logic—
Studia Logica Library. Kluwer Academic Publishers, Dordrecht.

[Cintula and Hájek, 2006] Cintula, P. and Hájek, P. (2006). On theories and
models in fuzzy predicate logic. The Journal of Symbolic Logic, 71:863–879.

[Cintula and Hájek, 2006] Cintula, P. and Hájek, P. (2006). On theoties and
models in fuzzy predicate logic. Journal of Symbolic Logic, 71:863–880.

[Cintula et al., 2011] Cintula, P., Hájek, P., and Noguera, C., editors (2011).
Handbook of Mathematical Fuzzy Logic, 2 volumes. College Publications.

[Cintula and Noguera, 2010] Cintula, P. and Noguera, C. (2010). Implicational
(semilinear logics I: a new hierarchy. Archive for Mathematical Logic, 49:417–
446.

[Donini et al., 1992] Donini, F. M., Lenzerini, M., Nardi, D., Hollunder, B.,
Nutt, W., and Spaccamela, A. (1992). The complexity of existencial quantifi-
cation in concept languages. Artificial Intelligence, 53:309–327.

[Donini et al., 1997] Donini, F. M., Lenzerini, M., Nardi, D., and Nutt, W.
(1997). The complexity of concept languages. Information and computation,
134:1–58.

[Donini et al., 1999] Donini, F. M., Lenzerini, M., Nardi, D., and Nutt, W.
(1999). Tractability and intractability in description logics. Technical report.

[Dummett, 1959] Dummett, M. (1959). A propositional calculus with denumer-
able matrix. Journal of Symbolic Logic, 24:97–106.



Bibliography 133

[Esteva et al., 2007] Esteva, F., Gispert, J., Godo, L., and Noguera, C. (2007).
Adding truth-constants to logics of continuous t-norms: axiomatization and
completeness results. Fuzzy Sets and Systems, 158(6):597–618.

[Esteva and Godo, 2001] Esteva, F. and Godo, L. (2001). Monoidal t-norm
based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Sys-
tems, 124(3):271–288.

[Esteva et al., 2000] Esteva, F., Godo, L., Hájek, P., and Navara, M. (2000).
Residuated fuzzy logics with an involutive negation. Archive for Mathematical
Logic, 39(2):103–124.

[Esteva et al., 2010] Esteva, F., Godo, L., and Noguera, C. (2010). Expanding
the propositional logic of a t-norm with truth-constants: completeness results
for rational semantics. Soft Computing, 14:273–284.

[Galatos et al., 2007] Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007).
Residuated Lattices: an algebraic glimpse at substructural logics. Elsevier.

[Garc̀ıa–Cerdaña et al., 2005] Garc̀ıa–Cerdaña, A., Noguera, C., and Esteva, F.
(2005). On the scope of some formulas defining additive connectives in fuzzy
logics. Fuzzy Sets and Systems, 154:56–76.

[Garćıa-Cerdaña et al., 2010] Garćıa-Cerdaña, A., Armengol, E., and Esteva, F.
(2010). Fuzzy description logics and t-norm based fuzzy logics. International
Journal of Approximate Reasoning, 51(6):632–655.

[Gödel, 1932] Gödel, K. (1932). Zum intuitionistischen aussagenkalkul. Anzeiger
Akademie der Wissenschaften Wien, Math. Naturwiss. Klasse, 69:811–824.

[Hähnle, 2001] Hähnle, R. (2001). Advanced many-valued logics. In Gabbay,
D. M. and Guenthner, F., editors, Handbook of Philosophical Logic, 2nd Edi-
tion, volume 2. Kluwer, Dordrecht, Holland.

[Hähnle, 2001] Hähnle, R. (2001). Tutorial: Complexity of many-valued logics.
In Proc. 31st International Symposium on Multiple-Valued Logics, Warsaw,
Poland, pages 137–146. IEEE CS Press, Los Alamitos. Invited Tutorial.

[Hájek, 1998a] Hájek, P. (1998a). Basic fuzzy logic and BL-algebras. 2:124–128.

[Hájek, 1998b] Hájek, P. (1998b). Metamathematics of Fuzzy Logic. Kluwer
Academic Publisher.

[Hájek, 2005] Hájek, P. (2005). Making fuzzy description logic more general.
Fuzzy Sets and Systems, 154:1–15.

[Hájek, 2006] Hájek, P. (2006). Computational complexity of t-norm based
propositional fuzzy logics with rational truth constants. Fuzzy Sets and Sys-
tems, 157:677–682.



134 Bibliography

[Hájek, 2007a] Hájek, P. (2007a). On witnessed models in fuzzy logic. Mathe-
matical Logic Quarterly, 53(1):66–77.

[Hájek, 2007b] Hájek, P. (2007b). On witnessed models in fuzzy logic ii. Math-
ematical Logic Quarterly, 53(6):610–615.

[Hájek et al., 1996] Hájek, P., Godo, L., and Esteva, F. (1996). A complete
many-valued logic with product-conjunction. Archive for Mathematical Logic,
35:191–208.

[Hayes, 1977] Hayes, P. J. (1977). In defense of logic. In Proceedings of the 5th
International Joint Conference on Artificial Intelligence (IJCAI 77).

[Hemaspaandra, 1999] Hemaspaandra, E. (1999). The complexity of poor man’s
logic. In Gerbrandy, J., Marx, M., de Rijke, M., and Venema, Y., editors,
Essays dedicated to Johan van Benthem on the Occasion of his 50th Birthday.
Amsterdam University Press.

[Hollunder et al., 1990] Hollunder, B., Nutt, W., and Schmidt-Schauss, M.
(1990). Subsumption algorithms for concept description languages. In Pro-
ceedings of the 9th European Conference on Artificial Intelligence (ECAI’90),
pages 348–353, London. Pitman.

[Horrocks, 1998] Horrocks, I. (1998). Using an expressive description logic: Fact
or fiction? In Proceedings of the 8th International Conference on the Princi-
ples of Knowledge Representation and Reasoning (KR-98).

[Horrocks and Sattler, 1999] Horrocks, I. and Sattler, U. (1999). A description
logic with transitive and inverse roles and role hierarchies. Journal of Logic
and Computation, 9(3):385–410.

[Horrocks et al., 2000] Horrocks, I., Sattler, U., and Tobies, S. (2000). Rea-
soning with individuals for the description logic SHIQ. In MacAllester, D.,
editor, Proceedings of the 17th International Conference on Automated De-
duction (CADE-17), number 1831 in Lecture Notes in Artificial Intelligence,
pages 482–496. Springer Verlag.

[Horrocks and Tobies, 2000] Horrocks, I. and Tobies, S. (2000). Reasoning with
axioms: Theory and practice. In Proceedings of the 7th International Con-
ference on Principles of Knowledge Representation and Reasoning (KR-00),
pages 285–296. Morgan Kaufman.

[Jenei and Montagna, 2002] Jenei, S. and Montagna, F. (2002). A proof of stan-
dard completeness for esteva and godo’s logic mtl. Stucia Logica, 70:183–192.

[Jeroslow, 1989] Jeroslow, R. G. (1989). Logic-based Decision Support. Mixed
Integer Model Formulation. Elsevier, Amsterdam, Holland.

[Kripke, 1963] Kripke, S. (1963). Semantical analysis of modal logic I: Normal
modal propositional calculi. 9:67–96.



Bibliography 135

[Kripke, 1965] Kripke, S. (1965). Semantical analysis of modal logic II. Non-
normal modal propositional calculi. In et al., J. W. A., editor, The Theory of
Models, Studies in Logic and the Foundations of Mathematics, pages 206–220.
North-Holland, Amsterdam.

[Küsters, 1998] Küsters, R. (1998). Characterizing the semantics of terminolog-
ical cycles in ALN using finite automata. In Proceedings of the 6th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR’98), pages 499–510.

[Ladner, 1977] Ladner, R. E. (1977). The computational complexity of provabil-
ity in systems of modal propositional logic. SIAM J. Comput., 6(3):467–480.

[Laskowski and Malekpour, 2007] Laskowski, M. C. and Malekpour, S. (2007).
Provability in predicate product logic. Archive for Mathematical Logic,
46:365–378.

[Lemmon, 1957] Lemmon, E. J. (1957). New foundations for lewis modal system.
The Journal of Symbolic Logic, 22.

[Lemmon, 1966a] Lemmon, E. J. (1966a). Algebraic semantics for modal logic
i. The Journal of Symbolic Logic, 31.

[Lemmon, 1966b] Lemmon, E. J. (1966b). Algebraic semantics for modal logic
ii. The Journal of Symbolic Logic, 31.

[Lewis and Langford, 1932] Lewis, C. I. and Langford, C. H. (1932). Symbolic
Logic. Dover Publications.

[ Lukasiewicz, 1920]  Lukasiewicz, J. (1920). O logice trojwartosciowej. Ruch
Filozoficzny, 5:170–171.

[ Lukasiewicz and Tarski, 1930]  Lukasiewicz, J. and Tarski, A. (1930). Unter-
suchungen über den aussagenkalkul. Comptes Rendus de la Societ’e des Sci-
ences et des Letres de Varsovie, 23:1–21.

[Lutz and Sattler, 2001] Lutz, K. and Sattler, U. (2001). The complexity of
reasoning with boolean modal logics. In Wolter, F., Wansing, H., de Rijke,
M., and Zakharyaschev, M., editors, Advances in Modal Logics, volume 3.
CSLI Publications.

[Minsky, 1981] Minsky, M. (1981). A framework for representing knowledge. In
Haugeland, J., editor, Mind Design. MIT Press.

[Monteiro, 1980] Monteiro, A. (1980). Sur les algèbres de Heyting simétriques.
Portugaliae Mathematica, 39:1–237.

[Mostert and Shields, 1957] Mostert, P. S. and Shields, A. L. (1957). On the
structure of semigroups on a compact manifold with boundary. Annals of
Mathematics. Second Series, 65:117–143.



136 Bibliography

[Nebel, 1990] Nebel, B. (1990). Terminological reasoning is inherently in-
tractable. Artificial Intelligence, 43(2):235–249.

[Post, 1946] Post, E. L. (1946). A variant of a recursively unsolvable problem.
Bulletin of The American Mathematical Society, 52:264–269.

[Quillian, 1967] Quillian, M. R. (1967). Word concepts: A theory and simulation
of some basic capabilities. Behavioral Science, 12.

[Schild, 1991] Schild, K. (1991). A correspondence theory for terminological
logics: Preliminary report. In IJCAI, pages 466–471.

[Schmidt-Schauss and Smolka, 1991] Schmidt-Schauss, M. and Smolka, G.
(1991). Attributive concept descriptions with complements. Artificial In-
telligence, 48(1):1–26.

[Stoilos et al., 2005a] Stoilos, G., Stamou, G., Pan, J. Z., Tzouvaras, V., and
Horrocks, I. (2005a). The fuzzy description logic f-SHIN. In Proceedings of
the 2005 International Workshop on Uncertainty Reasoning For the Semantic
Web.

[Stoilos et al., 2005b] Stoilos, G., Stamou, G., Pan, J. Z., Tzouvaras, V., and
Horrocks, I. (2005b). Fuzzy OWL: Uncertainty and the semantic web. In
Proceedings of the 2005 International Workshop of OWL.

[Stoilos et al., 2007] Stoilos, G., Stamou, G., Pan, J. Z., Tzouvaras, V., and
Horrocks, I. (2007). Reasoning with very expressive fuzzy description logics.
Journal of Artificial Intelligence Research, 30:272–320.

[Stoilos et al., 2006] Stoilos, G., Straccia, U., Stamou, G., and Pan, J. Z. (2006).
General concept inclusions in fuzzy description logics. In Proceedings of the
17th Eureopean Conference on Artificial Intelligence (ECAI-06), pages 457–
461. IOS Press.

[Straccia, 1998] Straccia, U. (1998). A fuzzy description logic. In Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI-98), pages
594–599, Madison, USA.

[Straccia, 2001] Straccia, U. (2001). Reasoning within fuzzy description logics.
Journal of Artificial Intelligence Research, 14:137–166.

[Straccia, 2004a] Straccia, U. (2004a). Transforming fuzzy description logic into
classical description logics. In Proceedings of the 9th European Conference on
Logics in Artificial Intelligence (JELIA-04), volume 3229 of Lecture Notes in
Computer Science, pages 385–399. Springer Verlag.

[Straccia, 2004b] Straccia, U. (2004b). Uncertainty in description logics: a
lattice-based approach. In Proceedings of the 10th International Conference on
Information Processing and Managment of Uncertainty in Knowledge-Based
Systems (IPMU-04), pages 251–258.



Bibliography 137

[Straccia, 2005a] Straccia, U. (2005a). Description logics with fuzzy concrete
domains. In Bachus, F. and Jaakkola, T., editors, 21st Conference on Uncer-
tainty in Artificial Intelligence (UAI 05), pages 559–567, Edinburgh, Scotland.
AUAI Press.

[Straccia, 2005b] Straccia, U. (2005b). Fuzzy alc with fuzzy concrete domains.
In Proceeedings of the International Workshop on Description Logics (DL 05),
pages 96–103, Edinburgh, Scotland. CEUR.

[Straccia, 2005c] Straccia, U. (2005c). Fuzzy description logics with concrete
domains. Technical Report 2005-TR-03, Istituto di Scienza e Tecnologie
dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy.

[Straccia, 2006] Straccia, U. (2006). A fuzzy description logic for the semantic
web. In Sanchez, E., editor, Fuzzy Logic and the Semantic Web, Capturing
Intelligence, chapter 4, pages 73–90. Elsevier.

[Straccia and Bobillo, 2007] Straccia, U. and Bobillo, F. (2007). Mixed Inte-
ger Programming, General Concept Inclusions and Fuzzy Description Logics.
Mathware and Soft Computing, 14(3):247–259.

[Tobies, 2001] Tobies, S. (2001). Pspace reasoning for graded modal logics. Jour-
nal of Logic and Computation, 11(1):85–106.

[Tresp and Molitor, 1998] Tresp, C. and Molitor, R. (1998). A description logic
for vague knowledge. Technical report, Aachen University of Technology.

[Woods, 1975] Woods, W. A. (1975). What’s in a link: Foundations for semantic
networks. In Bobrow, D. G. and Collins, A. M., editors, Representation and
Understanding: Studies in Cognotive Science. Academic Press.

[Yen, 1991] Yen, J. (1991.). Generalizing term subsumption languages to fuzzy
logic. In Reiter, R. and Myopoulos, J., editors, Proc. of the 12th Int. Joint
Conf. on Artificial Intelligence (IJCAI’91), pages 472–477.

[Zadeh, 1965] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8:338–
353.

[Zadeh, 1982] Zadeh, L. A. (1982). Test-score semantics for natural languages.
In Proceedings of the 9th Conference on Computatuinal Linguistics, pages
425–430, Prague.


	Introduction
	Preliminaries
	Mathematical Fuzzy Logic
	Propositional logic
	Modal logic
	First order predicate logic

	(Classical) Description Logic
	A little bit of history
	Syntax
	Semantics
	Reasoning


	Fuzzy Description Logic
	Syntax
	Concepts
	Knowledge bases

	Semantics
	Witnessed, quasi-witnessed and strongly witnessed interpretations

	The Hierarchy of basic FDL languages
	Reasoning tasks
	Reductions
	Reductions between axioms
	Reductions between reasoning tasks

	Relation to first order predicate logic
	Concepts
	Fuzzy axioms
	Reasoning tasks

	Relation to multi-modal logic
	Concepts
	Fuzzy axioms
	Reasoning tasks


	Decidability
	Witnessed satisfiability and Łukasiewicz logic
	Quasi-witnessed satisfiability and product logic

	Concept subsumption
	Knowledge base consistency in Łukasiewicz logic
	Undecidability of general KB satisfiability
	Knowledge Base consistency w.r.t. finite models


	Computational complexity
	Concept satisfiability
	The infinite-valued case
	The case of Łn
	The general case of finite-valued FDLs


	Related works
	Historical remarks
	Other reasoning tasks
	Subsumption
	Knowledge base consistency
	Concept satisfiability w.r.t. knowledge bases
	Entailment
	Best entailment degree
	Best satisfiability degree


	

