Algorithms and Heuristics for Total and
Partial Constraint Satisfaction

Javier Larrosa Bondia

Foreword by Pedro Meseguer
Institut d’Investigacié en Intel-ligencia Artificial
Bellaterra, Catalonia, Spain.

Series Editor
Institut d’Investigacié en Intel-ligéncia Artificial
Consell Superior d’Investigacions Cientifiques

Foreword by

Pedro Meseguer

Institut d’Investigacié en Intel-ligencia Artificial
Consell Superior d’'Investigacions Cientifiques

Volume Author

Javier Larrosa Bondia

Institut d’Investigacié en Intel-ligéncia Artificial
Consell Superior d’'Investigacions Cientifiques

Institut d’Investigacid
en Intel-ligéncia Artificial

ISBN: 84-00-07743-1
Dip. Legal: B-42484-98
© 1998 Javier Larrosa Bondia

All rights reserved. No part of this book may be reproduced in any form or by
any electronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without permission in writing from the publisher.
Ordering Information: Text orders should be addressed to the Library of the
IITA | Institut d’Investigacio en Intel-ligencia Artificial, Campus de la Universitat
Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.

Printed by CPDA-ETSEIB.
Avinguda Diagonal, 647.
08028 Barcelona, Spain.

A mus padres,
por transmitirme su confianza e ilusion

A Mari,
por su apoyo incondicional

Contents

FOrewWOrd c.ccuuiiimiiiiiiiiiniieiiinneeeeinneeeeeeruneeeeesssescssssssessnnnnnnsesssnssessssssssees vii
ACKNOWIEAZEIMENES tuuuuiiiiiiiiirerunnureeeereeennueessseieeossessssssnssssesessssnnsnsssssses ix
ADSIIACE ceuuuiiieiniiiititiiiiiiiuiiiittteeeeteeenneereerssseeseersssossssssssssssnnnnnssnnssssssnsnnnns xi
1 INErOAUCHION otvuuiiiuniiiieiiiunierrnniereeeeantersseeerseecsrsssssnsesnnsessnnssssssssssssssnnnsee 1
1.1 MOtIVALION t.eueeciiie e 2
1.2 Scope and Orientation..............couvieiiuriieeeeeeiiieeeeciiieeeee e, 3
1.3 ContribULIONS ..ccvvvieiiiiie e 5
1.3.1 Merging Similar Subproblems............c...ccocvveereennnnnnn... 6
1.3.2 Exploiting Local Consistency Information in
Partial Constraint SatiSfactioncoeeeveeeuueeevneeennnn., 6
1.3.3 Lazy Evaluationcccccevuiiiiiieenniiiiie e 8
1.3.4 Heuristic Search Guidanceccoeeveeeveeeeeneeennnnnnn., 9
1.4 OVEIVIEW covveniiiiii e 10
2 Related WOTK....iiiivuuiiiiimunieriinrieieernnneeseeessecesssnnnessnnnnseesssssssesssssssssees 13
2.1 Preliminaries....cccooeiiiiiiieiiiiiieiee e 13
2.2 Algorithms for Total Constraint Satisfaction...............uevevvnnn. 17
2.2.1 Depth-first Algorithmsccccouvveiiviinieeiiiiieeennnn, 17
2.2.2 Consistency Enforcement Algorithms........................ 18
2.2.3 Look-ahead Algorithms.........ccccccevvvviiiniiieeiiiinnnnn, 27
2.2.4 Look-back Algorithms.........ccccuvvveviiiiiiiiiioieennn.. 31
2.2.5 HEUTISTCS tevunneeiiiii e, 34
2.2.6 Combined approaches..........cccceeevevueeiiririeeeeiereiinenn. 36
2.3 Algorithms for Partial Constraint Satisfaction....................... 37
2.3.1 Depth-First Branch and Boundccccccoeveevvvnnnnnn, 37
2.3.2 Look-aheaduuvviiiiiiiiiiiie e, 38
2.3.3 Improvements to Look-ahead...............cocvvvueeeernnnnnnn, 42
2.3.4 HEUTISTICS tevvuneiiiiiii e, 43
2.4 Algorithms Evaluation..........cococouuueeeeeeeeeiieeeeeeeeeeeeee 44
2.4.1 Theoretical Evaluation................uveeeeeeeeeeeieeeeeeeeinnn, 44
2.4.2 Random Problems.......cccooeeviiiiiieeeiiiiiiiieieeeeeeeenen, 45

2.5 Historical ACCOUNTovviiviiie it e ens 48

2.5.1 Research Trends in 1995cccoiiviiiiiiiiiiiiiiieceneeenes 48

2.5.2 Research progress in 1995-98........cccccovviiiiiiiiiiniinnnnne. 50

3 Subproblem Mergingccccccciiiiiiiiienuiiiiiiiiiiiiiiinineeiiiseitntieeeeaneeee 53
3.1 INtrodUCHION c.ovuitieiiciee e 54
3.2 Previous WOrK....cooiiiiiiiiiiiiiie e 56
3.3 Value Similarity.........ccccoooiiiiiiiiiiiin 62
3.4 Weak Branching.........coooooiii 63
3.5 Application to Total Constraint Satisfactionc...ccoouiin. 65
3.5.1 Forward Checking with Weak Assignments............. 65

3.5.2 Discussion on FCWcocoviiiiiiiiiiiiiiieiieiie e 67

3.6 Application to Partial Constraint Satisfactionc......... 70
3.6.1 Partial Forward Checking with Weak Assignments 70

3.6.2 Discussion on PFCWcooeiiviiiiiiiiiiiieieieeieeeieean, 74

3.7 Experimental Results..........ccociiiiiiiiiiiiiiniiiiiiiiiccieceeec e 75
3.7.1 Correlated Random Problemsc.cccouvvvivniivneinnnn.n. 75

3.7.2 Crossword PUzzles.........ccocouueiiiiiiiiiiiiiiie e, 78

3.8 Conclusions and Future Work..........cccoooviiviiiiiiiiinineecen 85

4 Combining Search with Local Consistency Enforcement in

Partial Constraint SatiSfactioN.....cccceeeeeecencincenerecrncencecacencenesnceosncencaes 91
4.1 INtrOUCHON «.oviiiti e eaes 92
4.2 Previous WOTK.....cooiiiiiiiiee e 93
4.3 Theoretical Results on DAC Usageoooeeviiiuiiiiiiiiiinnnnnn, 98
4.4 Combining DAC with IC........cccccoiniiiiii, 103
4.5 Saving Consistency Checks Associated with DAC................. 106
4.6 Graph-based DAC..............oooo 107
4.7 Reversible DAC.....ccouieiiiiiiiiieiiiieeeeeeeeee e 115
4.8 Maintaining DAC During Searchccooiiiin, 120
4.9 Experimental Results..........cccocoiiiiiiiiiiiiiiiiin, 125

4.9.1 The MAX-CSP Complexity Peak.............cccovvunniinnnnn. 125

4.9.2 Empirical Evaluation of the Improvements on
DAG Usage.....ccceevvviiiiiiiiiiiiiiiiiiie i 129
4.10 Conclusions and Future Work............coiiiiiiiiiiiiniiinene, 132
5 Lazy Evaluation in Partial Constraint Satisfaction......ccccceceeieeerennnnneee 143
5.1 INtroducCtioncuieiiiiiiii e e e e 144
5.2 Previous WOTK...c.oiiiiiiiiiiii i 146
5.2.1 Forward Checking Redundancies............cc..ccooounnnin. 146
5.2.2 Lazy Forward Checkingcccccceeviriininiiriiinieeenneen. 147
5.2.3 Theoretical Resultsc..coovviviiiiiiniiiiiiiiiieceeaen, 151
5.2.4 Practical Significance.............oooviiviiiiiniiiinn . 153
5.3 Lazy Propagation in Partial Constraint Satisfaction.............. 154
5.3.1 Partial Forward Checking Redundancies................. 154
5.3.2 Partial Lazy Forward Checking..........cccoovviiveennunnnnns 157

5.3.3 Theoretical Analysis of PLFC............cccvvvvveireernnnnn.. 160

5.4 Experimental Results..........ccccccoociiiiiinniinnineiecie e, 164

5.5 Conclusions and Future Work..........c.oeeeeeeeeieiieeeeeieieenninn, 165

6 Support-based HeuriStics.cccevruureiiiiiiiiissneeesceseeesessseeeeessssnaeeessnecenns 177

6.1 INErodUCtiON ...ccuuiiiiiiiii e 178
6.2 Labelling Problems and their Relation to Constraint

SAtISTACTION ...ttt e e aaeaeas 180

6.2.1 Labelling Problems..............cccoocivuuiuiiiiinieirieeeeesen, 180

6.2.2 Relationship between Labelling Problems and CSP. 183

6.3 Using Support to Guide Search..........c.ccccceeeeeeiiiiiiiniiiine e, 188

6.3.1 The Role of Heuristics in Search........cccoovvvveveeevennnn. 188

6.3.2 Support-based HeUristics............ceveeeeeiiieieiieeeeeeeeeeena, 192

6.3.3 Heuristics and Local Optimization...............cucu...... 197

6.4 Incremental SUPPOTt........ccoocuvriiiiieiieiiiiiiiiiiieeeeeee e 198

6.5 Comparison with Other Heuristicsccccceveveivriiuvinennn... 200

6.5.1 Variable Selection in CSP.........cccoovvvvuuveeeeieeneeerein, 201

6.5.2 Value Selection in CSP.............cuuvveeeieeeeiieeesiiieeennn. 202

6.5.3 Variable Selection in MAX-CSP.........cccovovvvvuieenne., 203

6.5.4 Value Selection in MAX-CSP......cccevvvvoeiiinneeenann, 204

6.6 Experimental Results............ccccceiviiiiniiiniiinniiiiic e, 205

6.6.1 Total Constraint Satisfaction.............cceeeeevuveeeuvurnnnn.n. 205

6.6.2 Partial Constraint Satisfaction.............ccceeeuvveeuereeinnn.. 207

6.7 Conclusions and Future Work...........cceeeuuueneeeeeeeeeeseeeeeeeennn, 209

7 Experimental Results on the Job-shop Problem..........cccevueeureruervennnne 225

7.1 INEOAUCHON 1vveiieeeiiiiiiiiieie e 225

7.2 Previous WOTK....ooioiiiiiiiieiiiiiiie e oo eee e e 226

7.3 The Job-shop as @ CSPcc.ccovuviiiiiiiiiiiiiiee e 228

7.3.1 CSP Solving Approach l.....ccccccoiveivinierieirererenennnn, 229

7.3.2 CSP Solving Approach 2.......ccccceoveiveviereeveerererennnn, 230

7.4 Support-based Heuristics for the Job-shop...............cc.cevenen... 231

7.4.1 CSP Solving Approach l.........ccccoovvieiivevviiceininennnn. 231

7.4.2 CSP Solving Approach 2........cccceoveivireerieirererenennn, 232

7.5 Experimental Results.......cccoceiiviiiiiueeeeneeeeeoeeeeeeeeeeeenesennnns 233

7.5.1 The Benchmark..............cuuuuuuuueeeeeiieeeeeeeeeeeeeeeeeiiinn, 233

7.5.2 CSP Solving Approach l........cccooiviiivveviieeieeennn. 233

7.5.3 CSP Solving Approach 2........c.cccecevvvereivereiinenennann. 234

7.6 Experimental Results Using Discrepancy Algorithms.......... 234

7.6.1 CSP Solving Approach l.........ccccocvveioeeveiivieeneannnn. 236

7.6.2 CSP Solving Approach 2..........cccecevveveriiiverevierenennann. 237

7.7 CONCIUSIONS ...eeieeiiiiiiiiiiee e 237

8 CONCIUSIONS ceevvuurietnniiiiiiiiniiiiiineeeirrenneiereenueceeesssssesssssssssssssssssnnnnnnnns 239

8.1 CONCIUSIONS ...uuieiiiiiieeiiiie et 240

8.2 Further Research........cccccivvviiiiiiiiiieeeeeeeeee e 242

Appendix: Solving Fuzzy Constraint Satisfaction Problems.................. 245

A.1 Extending Classical CSP...........cooooiiiiiiiiiiieiiiiiiiinceeeeeeee, 245
A.1.1 Fuzzy Modelling of Constraints............c.ccccvvvvvveennnne 246

AL.2 FUzzy CSP...cooiiiiiiiiiiiiiiiiiieieee e 247

A.1.3 The Lexicographic Approachccccccvvvveviiviennnnnne. 247

A.2 FCSP and Branch and Bound.............coooviviiviiiiiniiiieineenn, 248

A.2.1 Lower Bound Approachescccccuvvvevvvreeeernnenennnne 249

A.2.2 Pruning Domain Values..........cccooeeeiniiiiiniiiinnnnn... 250

A.3 Experimental Results.......cccccccoviiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiniee e, 251

PN S OTe3's Uel L3 1) o o K- TR 253
References...ccccciiciiiiciiiinnieiinniniiieiiancasseceesasssscsnccocascenssascescesscsscsncssanse 259

Foreword

This book deals with an old topic in Constraint Satisfaction: the
development of computational methods to solve constraint problems as
efficiently as possible. Because of the intractability of constraint satisfaction,
this is a long-term goal and this book contains some contributions to it.
Total and Partial Constraint Satisfaction have been often considered as
completely different problems. This work takes a common perspective on
both problems, approach that has been shown very fruitful. Original ideas
on constraint processing have been successfully developed for both
problems, and some ideas already considered for total constraint
satisfaction have been adapted into the partial case.

The reader will find here new algorithmic developments, original
extensions of existing, and novel heuristic approaches which have been
shown to be significatively more efficient than previous solving methods
currently in practice. No assumption is taken over the target problems and
only systematic search strategies are used. In this sense, the computational
methods presented here are completely general and can be applied to any
constraint satisfaction problem. Dealing with algorithms, a major issue is
to assess their relative performance. When possible, performance
improvements are given in terms of dominance of structural parameters. If
not, empirical effort measures are presented. Regarding benchmarks, the
binary random model is used, together with some other real problems
such as crossword puzzles-and job-shop scheduling.

Bellaterra, July 1998
Pedro Meseguer
Researcher of the IIIA-CSIC

Acknowledgements

Many people have helped me in this work either directly or indirectly. A
good deal of the ideas presented in this Thesis were conceived within the
IIIA/CSIC walls. I'm much obliged to all its people for letting me share
the charming atmosphere that they have in the lab. In particular, I thank
Francesc Esteva —IIIA head— for letting me use every facility in the
laboratory.

I thank Cupid for not blindly shooting all his arrows and providing
me with connections between LSI/UPGC and IIIA/CSIC. Amalia Duch -
Pablo Noriega and M. Luisa Bonet - Jordi Levy have been excellent
messengers carrying many drafts of this Thesis from Barcelona to
Bellaterra and viceversa. I'm not forgetting Carlos Sierra, another faithful
messenger offering me an excellent 24 hour hand-to-hand courier service.

I'm full of gratitude to my teaching mates. German Rigau, Lluis
Vila, Xavi Burgués and Ramon Sangtiesa have given me their support any
time that I have needed it.

I'm very thankful to Mark Stewart Turnham for doing his best in
ironing the English. His revision was always done under pressure and he
never had the last version of the document. Therefore, I take complete
responsibility for every remaining typo (unless it is a Minnesota idiom).

I thank Thomas Schiex and Gerard Verfaillie. Chapter 4 would
never have been as it is without a fruitful visit to INRA in Toulouse.

Most of this work has been partially funded by the Spanish CICYT
under the projects #TAP93-0451 and TIC96-0721-C02-02.

Last but not least, I'm much obliged to Pedro Meseguer. I thank him
for his wise advise, for not sending me to hell during the many
discussions where I did not want to listen to him, and for cheering me up
every time that I felt dispair. It's been a treat working with him.

Abstract

Many important problems arising in Artificial Intelligence and other
fields of Computer Science can be naturally expressed as a CSP. The task of
finding a CSP solution is called total constraint satisfaction. It may happen
that a CSP has no solution. In that case, it is of interest to search for
assignments that best respect constraints. This situation is often called
partial constraint satisfaction. This Thesis is devoted to the development of
efficient algorithms for total and partial constraint satisfaction.

The central idea of our work is to show that total and partial
constraint satisfaction have many common features that can be successfully
exploited for algorithmic development. In this sense, this Thesis takes a
step forward in the development of algorithms for both total and partial
constraint satisfaction inspired by common key ideas. In this Thesis we
explore a number of directions and develop several algorithms which
outperform state-of-the-art competitors. The main ideas that we have
developed are:

Subproblem merging: we show that depth-first search performs
redundant search when dealing with similar subproblems. We present a
search space transformation which involves the fusion of similar
subproblems. We develop algorithms substantiated on that idea for total
and partial constraint satisfaction.

Combining search with local consistency: the enforcement of local
consistency has been shown to be a fruitful approach for early dead-end
detection in total constraint satisfaction. We develop the same idea for the
partial constraint satisfaction case. We use local consistency information
(DAC counts) to improve the branch and bound lower bound. We present
different algorithms of increasing sophistication.

Lazy computation: different CSP algorithms perform more
computation than strictly needed. In total constraint satisfaction, lazy
computation techniques have been found to be useful in overcoming this
problem. We extend this idea to partial constraint satisfaction and show
that in this case it is even more suitable. We present a lazy algorithm
which avoids performing many of the computations.

Heuristics: although not completely equivalent, heuristics for total and
partial constraint satisfaction can be developed targetting the same goals.
We present a unifying perspective of total and partial constraint
satisfaction in terms of global optimization and use it as a source of
inspiration for heuristic generation. Our heuristics, which are valid for
both the decision and the optimization CSP problem, show to be
competitive with both generic heuristics and specific job-shop techniques.

Chapter 1

Introduction

This Thesis deals with search algorithms for constraint satisfaction
problems. A constraint satisfaction problem (CSP) consists of a set of variables;,
each variable has associated a finite set of possible values (its domain); and
there is a set of constraints restricting the values that variables can
simultaneously take. Solutions are assignments of values to variables
respecting the problem constraints. The task of finding a CSP solution is
called total constraint satisfaction. However, it may happen that a CSP has no
solution. In that case it is of interest to search for assignments that best
respect constraints. This situation is often called partial constraint satisfaction.
Total and partial constraint satisfaction are decision and optimization
problems, respectively. Our work is devoted to search algorithms for both
total and partial constraint satisfaction.

Search has been a central topic of Artificial Intelligence because many
cognition tasks can be naturally expressed as search problems. CSP are a
particular kind of search problems, which have some particularities —such
as having a search space representable by a depth-bounded tree or the
pruning effect of propagating decisions— that CSP-specific search
algorithms take advantage of. Besides, there are many real problems from
very different domains can be expressed as CSP.

Total and partial constraint satisfaction have often been considered
two different research topics focusing on different points. The main
interest on total constraint satisfaction has been the development of
computationally efficient algorithmic techniques for either general or
specific classes of CSP. Regarding partial constraint satisfaction, most
previous research was devoted to the development of frameworks for
problem representation, without forgetting algorithmic contributions in
the case that every constraint is considered equally important.

The central idea of our work is to show that total and partial constraint
satisfaction have many common features that can be successfully exploited for
algorithmic development. In this sense, all the contributions that we present
in this work are either applicable to both total and partial constraint

2 Chapter 1. Introduction

satisfaction, or extend previous work on total constraint satisfaction to
partial constraint satisfaction. The intent of this Thesis is to take a step
forward in the development of algorithms for both classes of problems
inspired by common key ideas.

The structure of this Chapter is as follows. In Section 1.1, we motivate
the development of efficient algorithms for constraint satisfaction. In
Section 1.2, we establish both the scope of our work and the orientation
that we give to it. The contributions of our work are presented in Section
1.3. Finally, we overview this Thesis in Section 1.4.

1.1 Motivation

Constraint satisfaction is gaining a great deal of attention because many
combinatorial problems arising in Artificial Intelligence and other areas
of Computer Science can be expressed in a natural way as CSP. Practical
applications of total and partial constraint satisfaction can be found in a
variety of domains such as scheduling [Minton et al., 92; Zweben and Fox, 94;
Agnese et. al, 95], timetabling [Frangouli et. al., 95; Yoshikawa et al., 96],
propositional reasoning [Selman et al., 96], machine vision, VLSI circuit design, etc.
In the last years, constraint satisfaction has progressed significantlyl.
Because of this progress, constraint-based technology is rapidly gaining
importance in industry. Several companies, such as Renault and British
Telecom, have recently started to exploit this technology [Wallace, 96b]. A
recent article in Byte chose constraint logic programming as the
paradigm [likely to gain most in commercial significance over the mext 5 years
[Pountain, 95].

Regarding computational complexity, total constraint satisfaction is
NP-complete, and partial constraint satisfaction is NP-hard. Therefore, it is
believed that all algorithms for these problems will present an
exponential worst-case behaviour. In this situation, and considering the
practical importance of constraint satisfaction, developing efficient average-
case algorithms is of obvious interest. One has to accept the existence of
perverse problem instances for which these algorithms are not suitable.
However, as better algorithms are developed, larger and more difficult
instances can be successfully considered. Recent advances in constraint
satisfaction techniques are a good example of this claim. While simple
backtracking algorithms are unable to solve oy problems such as the n-
queens, more powerful algorithms developed in recent years have been
successfully applied to a number of medium and large size real domains
[Wallace, 96b].

1Regarding academic research, an annual International conference on constraint
processing was established in 1995, and the specialized scientific journal
Constraints was launched during year 1996.

1.1 Motivation 3

In this document, we present a number of enhancements to
algorithms for total and partial constraint satisfaction. Because of the
computational intractability of the problem, all of them have exponential
time requirements. However, we show that our algorithms outperform
state of the art competitors for sufficiently large and interesting classes of
problems. In that sense, our work contributes to the development of new
algorithms of increasing efficiency which will eventually allow for the
applicability of constraint satisfaction techniques to a broader spectrum of
problems.

To date, most research on constraint techniques has been devoted to
total constraint satisfaction, while partial constraint satisfaction was
considered a secondary goal. This Thesis attempts to partially balance this
situation. It is known that general schemas for optimization, such as
branch and bound, can solve the partial constraint satisfaction problem.
However, we believe that these general schemas can be greatly improved
by developing CSP-specific techniques and integrating them into the
optimization algorithms. In this work, we give evidence of this claim.

In many real constraint problems, solutions have direct economical
impact. Consequently, there often exists an implicit preference criterion
among solutions that can be made explicit by adding new constraints. For
example, consider an airline crew scheduling problem where the task is
the crew assignment for a set of flights (the same person may work on two
different crews, provided their flight do not overlap). Assuming the
company has the necessary staff to fulfil the basic needs, it is of obvious
interest to add new constraints such as restricting the maximum time that
a person must wait between two consecutive flights. In that kind of
situation, the initial decision problem may become overconstrained and
its optimization counterpart becomes of interest. In this work, we
emphasize that partial constraints satisfaction complements total constraint
satisfaction. Therefore, it is of practical interest to develop efficient
algorithms for both tasks.

1.2 Scope and Orientation

The boundaries of this work are established by the following decisions:

1. Practical constraint solving: The final objective of our work is to
contribute to the development of algorithms that can actually be
applied in real domains. In that sense, every idea that we explore
has immediate algorithmic implications that we motivate and
develop. Thus, the end-product of our contributions are specific
algorithms that have been implemented and can be tested on any
CSP.

2. General constraint solvingg We have mentioned that constraint
satisfaction is computationally untractable. One way to circumvent

Chapter 1. Introduction

this intrinsic drawback is to characterize classes of problems that can
be efficiently solved. However, our research does not fall into this
line of work. We do not make any assumption about the problems
that we attempt to solve. In practice, it means that our algorithms
consider a CSP in its explicit form, where the only permitted
operation is to ask about the consistency of a potential assignment.
Therefore, they cannot take advantage of the problem semantics. For
this reason, our methods are motivated in a general-purpose context
and are expected to be applicable to a broad spectrum of domains.
Some evidence of this claim is given in Chapter 7, where it is
shown that our generic methods can be effectively applied in the job-
shop problem.

3. Systematic constraint solving: A different approach to circumvent the
computationally intractability of constraint satisfaction uses
incomplete search schemas (sub-optimal for partial constraint
satisfaction). These algorithms typically attempt to solve problems
using local optimization techniques enhanced with some
stochasticity to break out from local optima. They have been found
very useful for some domains. However, in our work we do not
consider this approach. All our algorithms explore the space of
solutions in a systematic manner. Quoting [Pearl, 85], we are
concerned with algorithms with the two following properties:

(a). Do not leave any stone unturned.

(b). Do not turn any stone more than once.
Because of property (a) our algorithms are complete (optimal, in the
partial constraint satisfaction case).

4. Empirical evaluation: Because of the practical orientation of our work
and the recognized exponential worst-case behaviour of our
algorithms, the assessment of our contributions is mainly supported
by empirical methods. On occasions, we have been able to prove the
superiority of our algorithms by purely theoretical methods showing
that one algorithm cannot perform worse than another. However,
even in those cases, the detected superiority could not be theoretically
quantified. In general, each of our contributions is experimentally
evaluated. In our experiments, we mainly use random binary
problems because they have become the most widely used benchmark
in the CSP community. Random problems have nice properties to
benchmark algorithms (Section 4.2.4). However, we are also aware
of their limitations, especially when exporting conclusions obtained
on random problems to other domains.

5. Binary constraints: In this work, we have decided to restrict our
attention to binary problems (namely, all constraints restrict pairs of
variables). There are different reasons for this decision:

(a). Most previous research on algorithms assumes binary
problems. Thus, most existing algorithms are described under
this assumption.

1.2 Scope and Motivation 5

(b). Algorithmic insights are generally easier to understand for
binary than for n-ary problems.

(¢). Any CSP can be transformed into an equivalent binary CSP
[Rossi et al., 90]. Therefore, binary CSP are, in a sense,
representative of all CSP. However, it has to be mentioned that
transforming a non-binary into a binary CSP produces a
significant increase in the problem size, so the transformation
may not be practical.

(d). Many problems of interest are directly expressed as binary
CSP. Hence, the class of binary CSP is important by itself.

6. Maximal constraint satisfaction: There are many ways in which the
optimization criterion for partial constraint satisfaction can be
defined. Different frameworks associate constraints with specific
semantics in terms of priorities [Schiex, 92], preferences degrees
[Martin-Clouaire, 92], probabilities [Fargier and Lang, 93], or in
terms of algebraic operators [Schiex et al, 95; Bistarelli et al, 95]. In
our work we identify partial constraint satisfaction with MAX-CSP
(¢.e.: to maximize the number of satisfied constraints). Our choice is
substantiated in the following facts:

(a). MAX-CSP is a simple model under which the intuition of
algorithms is easily understood.

(b). MAX-CSP is a general model that does not require constraints to
have special semantics. For this reason, algorithms for MAX-
CSP are more likely to be applicable to other frameworks
(some evidence of this claim is presented in the Appendix,
where we show how MAX-CSP techniques are extended to
fuzzy CSP, where constraints are fuzzy relations).

(¢). MAX-CSP allows the use of the same definition of the problem
for total and partial constraint satisfaction. This is especially
useful in our approach where we attempt to exploit common
features for total and partial constraint satisfaction algorithms.

1.3 Contributions

No matter if they are under or overcostrained, constraint satisfaction
problems have common features that algorithms can take advantage of. For
this reason, many techniques that exploit CSP-specific features can be used
(or adapted) for the different constraint satisfaction tasks. With this idea
in mind, we present total and partial constraint satisfaction and show how
the same general techniques can be fruitfully adapted to both problems.

To introduce the contributions of our work we anticipate that we are
concerned with backtracking-based algorithms. These algorithms do a
depth-first traversal on a search tree such that each tree level corresponds
to a problem variable and different tree nodes correspond to different

6 Chapter 1. Introduction

assignment alternatives. Figure 1.1 shows the search tree corresponding to
a problem with three variables and three values per variable. The
exponential worst-case behaviour of these algorithms comes from the
exponential size of the search tree. In this context, techniques aiming at
an efficient tree traversal are of clear interest. In the following we briefly
describe the contributions of our work.

1.3.1 Merging Similar Subproblems

The first idea we explore is how we can transform the search space to
make it more suitable for a given problem. It may happen that different
values of the same variable have a similar constraining behaviour. In that
case, algorithms that traverse the standard search tree are not appropriate
because they do not take advantage of value similarity. They consider the
similar values as completely different and solve their associated
subproblems independently. As a result, the algorithms duplicate part of
their work.

We show that one efficient way to deal with this situations is to
transform the search space by merging sibling subtrees corresponding to
similar values. In our approach, we temporarily assign more than one
value to the current variable. As a result, we obtain narrower and higher
trees. Figure 1.2 depicts the resulting tree that we obtain with our approach
if we take the three variable problem and merge its two first-level subtrees
into one. Observe that pairs of nodes in Figure 1.1 are merged into a
single node in Figure 1.2. The cost is the addition of an extra level where
the values responsible for the merging are finally disambiguated. We
show that merging subtrees associated with similar values can
significantly reduce the cost of the search. This idea can be seen as an
extention of previous approaches with the same underlying intuition, in
the sense that it is useful for a broader spectrum of situations.

Our approach is suitable for both total and partial constraint
satisfaction. We develop two algorithms, one for each case, that
dynamically merge subtrees when sufficiently similar values are detected
and empirically show that they can greatly increase search efficiency.

1.3.2 Exploiting Local Consistency Information in
Partial Constraint Satisfaction

We say that a node is in a dead-end when the subtree below it does not
contain any problem solution (even a temporary solution in the partial
constraint satisfaction case). When an algorithm falls into a dead-end, it
is condemned to unsuccessfully traverse the corresponding subtree. Thus,
visiting dead-end nodes is a source of inefficiency. There are certain

1.3 Contributions 7

situations where an algorithm can detect that it is visiting a dead-end
node. Then it can abandon this line of search and backtrack to the node's
parent. It is of obvious interest to provide algorithms with powerful dead-
end detection capabilities so they can backtrack soon after falling into
dead-ends. The earlier dead-ends are detected, the fewer nodes the
algorithm has to visit to solve a problem.

In the total constraint satisfaction context, techniques for dead-end
detection involve combining search with local consistency. The idea is to
achieve some level of local consistency at each search state because during
local consistency enforcement the dead-end may be detected. In addition,
if no dead-end is detected, local consistency removes values which will
never appear in a solution, so it produces a smaller subproblem. The
process of enforcing local consistency is usually called the propagation of
the current assignment.

AN N AN
AAANAAAAAA

abc abc abc abc abc abc abc abc abe

Figure 1.1: Search tree of a problem with three variables and three values
per variable.

/’b\ /’C\
AN AN AN A
RAA KRR AAR b ebeoete

abababababab ababald

Figure 1.2: A search tree transformation produced by merging two
subtrees.

8 Chapter 1. Introduction

We have explored the suitability of adapting the same idea in the
partial constraint satisfaction context. We have found that, if algorithms
are enhanced with the use of local consistency information gathered
during a pre-processing step, their performance can be greatly improved.
In addition, we have found that the use of local consistency information
makes apparent a complexity peak in random problems not reported
before. This complexity peak is unnoticeable when no local consistency
information is used.

We present both theoretical and experimental evidence of the
significance that this approach has in algorithmic efficiency.
Furthermore, we have developed a sequence of incrementally more
sophisticated algorithms which outperform previous ones by several orders
of magnitude. Today, our algorithms can be considered among the most
effective for partial constraint satisfaction.

The underlying ideas of these algorithms can be extended to more
general frameworks of partial constraint satisfaction. To support this
claim, we have developed and tested some of them for fuzzy constraint
satisfaction problems (FCSP). FCSP extend MAX-CSP in that it allows the
use of constraints with intermediate satisfaction degrees.

1.3.3 Lazy Evaluation

It is a matter of fact that enforcing local consistency during search is an
efficient approach for early dead-end detection. In general, enforcing
higher levels of consistency produces better dead-end detection. However,
achieving higher levels of consistency requires more computational effort.
Thus, there is a trade-off between the cost of propagation and the gains that
come with it. In this context, it is of practical importance to develop
efficient propagation methods.

Lazy evaluation is a general algorithmic technique which consists in
delaying computation until it is strictly necessary. As a result, no
redundant computations are done at the extra cost of more complex
algorithms. In the total constraint satisfaction context, lazy evaluation has
been successfully applied to propagate the effect of the current assignment.
Using lazy evaluation, the same effect can be obtained avoiding some
redundant computation.

We have explored the applicability of lazy evaluation in partial
constraint satisfaction and have found that this approach is even more
appropriate in this context. The reason is that in algorithms for partial
constraint satisfaction there are more sources of redundant computation.
We have developed a lazy algorithm which avoids performing a good deal
of computation to evaluate the dead-end condition at each visited node. We
have shown that this approach can be naturally combined with other

1.3 Contributions 9

algorithms presented in this work. Thus, their efficiency can be joined.
Our experiments give support to the suitability of the approach.

1.3.4 Heuristic Search Guidance

It has been known for a long time that the order in which variables and
values are considered in depth-first search has a profound impact in
algorithm efficiency. For this reason, variable and value ordering
heuristics have been a pervasive issue in constraint satisfaction (especially
in the total satisfaction case). Most heuristics for variable selection can be
explained in terms of the fail-first principle, which states that variables
should be selected aiming to drive search to a failure. Most value ordering
heuristics can be explained in terms of the succeed-first principle, which
affirms that values should be selected aiming to drive search to success.

We present a new perspective of constraint satisfaction and show its
usefulness for heuristic generation. Our approach is based on the analysis
of the labelling problem, a formalism arising in the field of computer
vision that is closely related to constraint satisfaction. From this analysis,
we extract that total and partial constraint satisfaction can be seen as the
global optimization of the so-called average local consistency function. We
use this point of view as a source of inspiration for variable and value
ordering heuristics. More precisely, we propose the use of gradients to
implement the fail-first and the succeed-first principles. Regarding
variable ordering, we introduce the lowest support heuristic, which selects
variables corresponding to low gradient subspaces. Regarding value
ordering, we introduce the highest support heuristic, which selects values
corresponding to high gradient directions. Since computing gradients is
expensive, we present an approximate version of the heuristics which
avoids the computation of exact gradients.

Comparing our heuristics with other constraint satisfaction
approaches, we believe that our heuristics are more general because they
have deeper foundations (they are based on gradients, which have a well
known topological interpretation), include variable and value orderings
in the same framework, and can be applied to both total and partial
constraint satisfaction.

The suitability of our heuristics is evaluated in the job-shop problem.
We show that our heuristics, which are developed in a general purpose
context, are competitive with specific methods for the job-shop. The interest
of our approach is that it does not include any domain-dependent element
or any parameter that has to be adjusted manually for this particular
domain. In that sense, our generic approach is more robust and more
applicable to other problem instances than specific approaches. Our claim
is based on experimental results on a classical job-shop benchmark that

10 Chapter 1. Introduction

has attracted a considerable amount of research in the job-shop community
from an Al perspective.

1.4 Overview

This thesis is structured in eight Chapters and one Appendix. In Chapter
2, we revise previous work on constraint satisfaction. It contains basic
terminology and some algorithms that will be subsequently used in our
work. Furthermore, it presents some relevant results in the area,
especially those that are related to our work. Regarding total constraint
satisfaction, it covers depth-first search, local consistency, look-ahead and
look-back algorithms, heuristics, and combined approaches. Regarding
partial constraint satisfaction, it covers depth-first branch and bound, look-
ahead algorithms and heuristics. Next, we address the topic of algorithmic
evaluation and discuss some different approaches and the suitability of
using random problems to benchmark algorithms. Finally, we give a
historical account of the research advances that have occurred in parallel to
our work.

Chapter 3 is devoted to subproblem merging. After reviewing
previous work on the subject, we motivate and develop our approach in
general constraint satisfaction terms. Next, we develop FCw, an algorithm
for total constraint satisfaction with merging capabilities and analyze its
behaviour. Then we develop PFCw, its partial constraint satisfaction
counterpart. Finally, we evaluate their performance using random
problems and crossword puzzles.

Chapter 4 is devoted to the combination of local consistency with
search in the partial constraint satisfaction context. After reviewing
previous work, we present theoretical results which show that the use of
local consistency is a major advance over previous algorithms. Then, we
present a set of algorithmic improvements which produce three new
algorithms (PFC-GDAC, PFC-RDAC and PFC-MRDAC) of increasing
sophistication. Finally, we experimentally evaluate our work. The
experimental evaluation has two different parts. First, we examine and
analyze the complexity peak of MAX-CSP that becomes apparent with local
consistency enhanced algorithms. Second, we show that our new
algorithms clearly outperform state of the art competitors on random
problems.

Chapter 5 is devoted to the applicability of lazy evaluation in the
partial constraint satisfaction context. After presenting previous work in
the total constraint satisfaction context, we show the suitability of
extending this approach to partial constraint satisfaction. We present a
lazy algorithm, PLFC, and prove that it never performs worse that its non-
lazy counterpart. Next, we show that lazy evaluation can be easily combined

1.3 Contributions 11

with the algorithms presented in Chapter 4 and evaluate the suitability of
their combination on random problems.

Chapter 6 is devoted to variable and value ordering heuristics for
total and partial constraint satisfaction. In the first part of the Chapter we
introduce the labelling problem and analyze its common points with
constraint satisfaction. As a result, we obtain a unifying view of total and
partial constraint satisfaction in terms of global optimization. In the
second part of the Chapter, we use this optimization perspective of
constraint satisfaction to devise effective variable and value ordering
heuristics. More precisely, we use gradients to guide search. The suitability
of our approach is assessed using random problems.

Chapter 7 presents a case-study of the applicability of the heuristics
described in Chapter 6 to the job-shop problem. In this Chapter, we show
that our heuristics, developed under general purpose motivation, are
competitive with domain-specific techniques. Our claim is supported on the
experimental results obtained on a classical job-shop benchmark.

Chapter 8 gives the conclusions of our work and proposes some lines
of future work.

In the Appendix, we show how some of the algorithms described in
Chapter 4 can be extended to fuzzy constraint satisfaction problems, a more
general framework for partial constraint satisfaction than MAX-CSP.

The Chapters are quite self-contained. Thus, the reader can feel free
to attempt to read this thesis in any desired order. There are two obvious
exceptions: Chapter 2 has to be read first and Chapter 7 must be read after
Chapter 6. Just one hint: if you are systematic when reading it (i.e.: you do
not leave any page unturned) it is less likely that you will get trapped in a
dead-end and it may save you some re-start. However, a nonsystematic
reading may be fun, too.

Chapter 2

Related Work

Constraint Satisfaction is a research topic including many combinatorial
problems arising in Artificial Intelligence and other areas of Computer
Science. Its eminent practical applicability has attracted the interest of the
research community. Currently, it is a very dynamic area of research that
has produced significant advances in the last years. The goal of this
Chapter is to overview part of this progress, especially in those lines of
research that are close to our work. We do not attempt to be exhaustive,
since there is so much to cover that a complete summary would require a
dedicated book. However, we consider that it is sufficient to give a
comprehensive introduction to the state-of-the-art in algorithmic aspects of
constraint satisfaction.

After a brief introduction of basic concepts and notation, the Chapter
is divided into two main parts. The first part is devoted to total constraint
satisfaction and covers local consistency, depth-first algorithms and
heuristics. It also gives a brief summary of results on tractable classes of
CSP. The second part is devoted to partial constraint satisfaction and covers
depth-first branch and bound and heuristics. In addition, we present an
overview on the main issues related with algorithms evaluation. Finally,
we give a historical account of what has been done in parallel to our work.

2.1 Preliminaries

A binary CSP is defined by a set of variables, {X;}, each one taking values
on its associated finite domain {D;}, and a set of binary constraints! {Rij}-
The number of variables is n, the number of constraints is ¢, and we
assume, without loss of generality, a common domain D for all variables,
being m its cardinality. However, we will still use D; when referring to

1We assume that problems are node-consistent, so no unary constraints are
required in the formulation.

14 Chapter 2. Related Work

the domain of X; in order to emphasize their relation. In general, i,5,4,...
will be indexes corresponding to variables, and a,b,c,... will denote values.
A constraint R,'j is a subset of DixDj, containing the permitted values for X;
and X; We associate a consiraint graph with each binary CSP in which
vertices represent variables and arcs connect pairs of constrained variables.
Thus, we can talk about graph concepts associated with a CSP, such as a
variable degree or a problem connectivity.

We will use the arrow, “<”, to denote the individual assignment of
a variable (namely, X;<—a means that value a is assigned to variable X;). In
general, vt will denote the value assigned to X;. An assignment of values to
variables is a set of individual assignments, {X;< vt }, where no variable
occurs more than once. An assignment can be either partial, if it includes
a proper subset of the variables, or total, if it includes every variable. We say
that an assignment is consistent if it does not violate any constraint. A
solution to a CSP is a total consistent assignment. The task of finding a
solution to a GSP or proving that it does not have any is usually referred as
the task of achieving total consistency, or simply solving the CSP.

When a problem is overconstrained, partial constraint satisfaction is
usually of interest. In this work, we associate partial constraint satisfaction
with the problem of finding a total assignment that satisfies the
maximum number of constraints. This problem is usually referred to as
the maximal constraint satisfaction problem (MAX-CSP). Observe that CSP and
MAX-CSP are the decision and optimization versions of the same problem.

Example 2.1:

The n-queens problem has been typically used to illustrate CSP. The
problem consist on placing #» queens on an nxn chess board in such a
way that no two queens attack each other. The n-queens problem can
be represented as a binary CSP where each variable is associated
with a board row, and its assignment denotes the position where
the queen is placed. Thus, {X],..., Xy} is the set of variables, and {1,...,
n} their common domain. Constraints restrict the valid positions for
pairs of queens: Two queens cannot be placed in the same column,
nor in the same diagonal (observe that the problem imposition that
two queens cannot be placed in the same row is already guaranteed
by the representation). Thus, an arbitrary constraint is of the form
R,']' ={(a,b): a= b and lijl # la-bl}. In this particular domain there
is a constraint between every pair of variables. Therefore, the
constraint graph associated with the n-queens problem is a n-vertices
clique.

Consider the 4-queens problem. The following board configuration
represents a problem solution (black dots denote queens), which
corresponds to the total assignment {X] <2, X9<4, Xg<1, X4<3}. It

2.1 Preliminaries 15

is easy to see that it is a solution because it does not violate any
constraint.

X, @

Consider now the 3-queens problem. It is easy to see that it does not
have any solution (this problem is over-constrained). It may be of
interest to find its best total assignment. For this problem, there are
several total assignments that violate one constraint. The following
picture represents one of them, associated with the assignment
{X1<-1, Xo<3, X3<1}. It violates constraint R]g only.

1 2 3

5| @

5| @

Observation 2.1:

1. Solving a CSP is an NP-complete problem.

2. MAX-CSP is NP-hard.

3. From (1) and (2), it is believed that all of the algorithms for these
problems will present exponential worst-case behaviour.

Proof:

1. It is obvious that CSP is an NP problem because we can check
whether a total assignment is a solution or not in polynomial time.
To show that it is NP-complete, observe that the graph colouring
problem, which is NP-complete [Garey and Johnson, 79], can be

16 Chapter 2. Related Work

directly expressed as a CSP. Therefore, solving the CSP is NP-
complete. More details on CSP complexity can be found in [Haralick
and Shapiro, 79].
2. It was shown that CSP is NP-complete. It is clear that MAX-CSP
reduces CSP because we can always find a CSP solution by finding its
best solution and checking whether its distance is zero. Therefore,
MAX-CSP is NP-hard.
The space of possible solutions for a CSP is the set of all total assignments.
This set of assignments can be generated with the following procedure
based on an ordering among variables and domain values. Consider the
first variable and its m possible values; for each value, consider the second
variable and its m possible values (it produces m2 possibilities); for each
combination of values, consider the third variable and its m possible values
(it produces m3 possibilities); an so on. If the process is done for the n
problem variables, it generates a tree such that its leaves form the set of all
possible total assignments in the problem. Figure 2.1 shows this tree for a
problem with 3-variables and 3-values. Observe that each internal node
corresponds to a partial assignment. Following any path from the tree root
to a leaf, each step extends the partial assignment (initially empty)
including one more variable. At each internal node, its associated partial
assignment represents some decisions that have been already taken about
part of the variables. Thus, the internal nodes are CSP subproblems where
only the remaining variables have to be assigned. In this context, solving
a CSP consists in finding a consistent tree leaf, and solving MAX-CSP
consist in finding a leaf satisfying as many constraints as possible. It is
obvious that CSP algorithms can be defined in terms of systematic tree
traversals.

AANAANAAAA
abc abc abc abc abc abc abc abc abec
Figure 2.1: Search tree for a 3-variable 3-values per variable problem.

2.2 Algorithms for Total Constraint Satisfaction 17

2.2 Algorithms for Total Constraint
Satisfaction

2.2.1 Depth-first Algorithms

Depth-first is a general search technique frequently used because of its
polynomial memory requirements. In the CSP context, depth-first search
is particularly adequate because the search space can be naturally expressed
as a tree with bounded depth (the number of variables), so there is no
danger to get lost in an infinite branch. These algorithms traverse the
search tree depth-first, where each visited node is associated with a
consistent partial assignment. They search for a solution by continuously
trying the extension of the current consistent partial assignment into a
total one. At each node an unassigned variable is selected and its values
are sequentially assigned. We say that an algorithm is in a dead-end when
it visits a node that does not have any solution below. A dead-end is
detected at nodes where all values are rejected as candidates for the
assignment extension. When a dead-end is detected, the algorithm
backtracks to previous nodes. During the search, the node that is being
visited is called the current node. Assigned and unassigned variables are
called past (P) and future (F) variables, respectively. The variable that is
being assigned at the current node is called the current variable, and the
value that is being tried at a given time is called the current value. Abusing
notation, we will take P and F as the set of variables or the set of indexes,
depending on the context.

Figure 2.2 shows chronological backtracking (BT), the simplest
algorithm for CSP solving. P and F denote the sets of past and future
variables, respectively. Assg is the current partial assignment and Dom is
the set of future domains. After an initial call
BT({Xy,....,X,,},2,2,D,...,D,}), the algorithm returns ¢rue if the problem is
solvable and false otherwise. If the problem is found to be solvable, the
solution is recorded in a global variable Sol. If the set of future variables is
empty, Assg is a problem solution, so it is recorded (line 2), and the search
is abandoned. Otherwise, a variable is selected (line 5) and the algorithm
sequentially attempts the assignment of its values. If the current value is
consistent with respect to past assignments, a recursive call is made (line
12), so the search continues below the node. Otherwise, the current
assignment is changed.

18 Chapter 2. Related Work

2.2.2 Consistency Enforcement Algorithms

Since detecting when a given problem is solvable is an NP-complete task,
related but weaker properties about the problem may be useful. Local
consistency is a family of increasingly harder properties about the problem
[Montanari, 74; Mackworth, 77; Freuder, 78]. For example, the most basic
concept of local consistency is arc-consistency. It ensures that any value in the
domain of a variable has at least one consistent value among the domain of
any other variable. Path-consistency ensures that given a consistent
assignment involving two variables we can take any additional variable
and consistently extend the assignment to the third variable. In general,
i-consistency [Freuder, 78] ensures that any consistent assignment involving
-1 variables is extensible to include any additional variable forming a
consistent assignment involving ¢ variables. Thus, arc-consistency is 2-
consistency, and path-consistency is 3-consistency. i-strong consistency
[Freuder, 82] ensures that a problem is k-consistent for all k < i.

function BT (P, F, Assg, Dom) returns boolean

1 if (F = J) then

2 Sol := Assg

3 return (true)

4 endif

5 (X;,D;):= select_current_variable and_domain(F, Dom)
6 stop:= false

7 while (D; =& and not stop) do

8 a:= select_current_value(D;)

9 D;:= D;-{a}

10 NAssg:= Assg U {X;<a}

11 if (look back(X;, a, Assg)) then

12 stop:=BT(PU{X;}, F-{X;}, NAssg, Dom-{D;})
13 endif

14 endwhile

15 return (stop)

endfunction

function look back(X;, a, Assg) returns boolean

16 for all (Xj<—vj)EAssg do)

17 if (inconsistent(X;<a, Xj<—v:’) then return (false) endif
18 endfor

19 return (true)

endfunction

Figure 2.2: Chronological Backtracking.

Local consistency enforcement algorithms are polynomial
algorithms that transform a given problem into an equivalent but more
explicit problem by detecting constraints which are implicit in the
problem and adding them explicitly. For example, arc-consistency
algorithms transform a problem into an equivalent arc-consistent one by
removing arc-inconsistent values. Path-consistency algorithms transform a

2.2 Algorithms for Total Constraint Satisfaction 19

problem into an equivalent path-consistent one by adding binary
constraints disallowing pairs of values that cannot be extended to
consistent assignments of three variables. In general, i-consistency
algorithms transform a problem into an equivalent iconsistent one by
adding new constraints of arity 1.

Using local consistency algorithms has two potential benefits:

* Problem simplification: The transformed problem has additional
explicit information. Typically, a search algorithm takes
advantage of it, and improves its efficiency. Nevertheless, in some
cases achieving local consistency may degrade the subsequent
search procedure [Prosser, 93b; Sabin and Freuder, 94].

* Unsolvability detection: during their execution, local consistency
algorithms may detect that a problem is unsolvable.

The complexity of enforcing i-consistency is exponential in ¢
[Cooper, 89]. Considering this high cost, there is a trade-off between the
effort spent in pre-processing and the saving that it may produce.

Regarding binary CSP, arc-consistency —or weaker forms of arc-
consistency— are commonly used to detect and remove unfeasible values
before and during search. They are of interest because they have low time
and space requirements. Path-consistency is not so useful in practice because
it adds constraints to the problem so its structure is changed. Moreover, its
space and time requirements are higher. Higher levels of local
consistency are seldom used because of their prohibitive cost and because
they add constraints of arity greater than two, transforming the problem
into a non-binary one.

Many algorithms for arc-consistency enforcement have been
presented. Starting from Mackworth’s AC-1, AC-2 and AC-3 [Mackworth,
77], a series of increasingly more elaborated algorithms includes: AC-4
[Mohr and Henderson, 86], AC-6 [Bessiére, 94], AC-7 [Bessiére et al., 95].

AC-4 is a well known arc-consistency algorithm. Its worst-case time
requirements are in O(e-m2) which has been shown to be optimum. This
algorithm is based on the concept of support. When two values are
permitted by a constraint, we say that they support each other. Arc-
consistency is held by those problems in which each value of a variable has
at least one supporting value in the domain of each other variable. When
one value does not have any support at some variable, it can be removed
because it cannot belong to any problem solution. AC-4 makes this concept
of support evident by using the following data structures:

* CSupport is an array of counters recording the number of supports that
each value of a variable has from another variable. Thus, CSupportiaj

is the number of supporting values that value a €D; has in D;.

* LSupport is an array of sets which records individual supports. Thus

LSupport;, is the set of pairs (X]', b) such that a €ED; gives support to

them.

20 Chapter 2. Related Work

AC-4 works in two steps. The first step involves the initialization of the
CSupport and LSupport data structures. During the initialization, values not
having support at some variable are pruned from their domain and kept in
Pruned, a set of pruned values. The second step involves the propagation of
the effect of pruned values because their pruning may decrease some other
values support. For each pruned value a €Dj, its set of support is used to access
those values it was giving support to. Then, its counter of supports from Xj is
decremented. If it becomes zero, it means that these values do not have
support from X; anymore, so they are pruned and added to the set of
pruned values that still remain to be propagated. AC-4 is given in Figure
2.3. Given a CSP, arc-consistency is achieved with the following two
imbricated function calls:

(CSupport, New_Domains) := AC-4(ini_structures ({Dj, ...,Dp}))

If some domain is empty after the arc-consistency enforcement, then
the problem is unsolvable. Otherwise, the arc-consistent problem is the
original problem subject to the new domains.

Example 2.2:

Consider the task of enforcing arc-consistency to the 3-queens
problem. If we use AC-4, after the initialization step, the following
support counters are obtained:

1 2 3
CSupport)9=1 | CSupportige=0 | CSupportigg=1
X
CSupportyjg=1 | CSupportigg=2 | CSupport)gg=l
CSupportgyg =1 | CSupportggz=0 | CSupportggg =l
CSupportgyy=1 | CSupporige; =2 | CSupporigg; =1
X3

From this information, we know that values 26D, 2ED9 and 2€Ds3
are unfeasible because all of them have some variable from which
they do not obtain any support. These values are removed and their

2.2 Algorithms for Total Constraint Satisfaction 21

elimination is propagated. Thus, propagating the deletion of 2€D],
CSupportg]] is decremented and it becomes zero. It means that its
only supporting value in X] has been pruned, so 1€D3 becomes arc-
inconsistent and is removed, too. The same thing occurs with 3€Dg3
which is also removed. Then, as a result of propagating the deletion
of 2€D1, Dg becomes empty. It shows that the 3-queens problem is
unsolvable.
A good deal of work has been done on the detection of tractable classes of
CSP. Since the exponential cost of depth-first search is associated with the
number of nodes that it requires to visit (which is exponential in the
worst-case), it is of interest to establish conditions under which the
number of backtrackings can be bounded. The best case occurs when depth-
first solves a problem in a backtrack-free manner. [Freuder, 82] shows that
local consistency can be used to establish sufficient condition for a
backtrack-free search.

Definition 2.1:

Given an arbitrary CSP and an ordering {X7,.., X,} among its
variables, a depth-first search in the CSP is backtrack-free under the
ordering if given a consistent assignment {X1<—v1,..., Xi_1<—vi'1} one
can always find a value for X; which is consistent with the
assignment.
The level of local consistency required to guarantee backtrack-free search
for a given CSP depends on its graph width.

Definition 2.2:

1. Given a graph and a total ordering among its nodes, the width of a
node is the number of adjacent nodes that it has before, with respect
to the ordering.

2. The width of a graph under an ordering is the maximum width of all the
nodes in the graph under that ordering.

3. The width of a graph is the minimum width of the graph under all
possible orderings among its nodes.

The following theorem relates the constraint graph topology with the
level of local consistency required to guarantee backtrack-free search.

22 Chapter 2. Related Work

function ini_structures (Dom)

1 CSupport;,; := 0 for all i,a,j

2 LSupport;, := & for all i,a

3 forall Ry do

4 forall (a,b)ER;; do

5 CSupport;,j = CSupport;.; +1

6 CSupport j,; = CSupport,; +1

7 LSupport;, := LSupport;, U{(Xj,b)}
8 LSupport ;;, := LSupport 3, U {(X;,a)}
9 endfor

10 endfor

11 Pruned := J

12 stop:= false

13 forall R;; while (not stop) do

14 for a €D; if(CSupport;,; = 0) do

15 Pruned := Pruned U {(X;,a)}

16 D;:= D;-{a}

17 endfor

18 for b EDj if(CSupportjbi = 0) do

19 Pruned := Pruned U ((Xj,b))

20 Dj:= D;-{b}

21 endfor

22 if (D; = Qor D; = J) then stop:= true endif
23 endfor

24 return(CSupport, LSupport, Pruned , Dom)

endfunction
function AC-4 (CSupport, LSupport, Pruned, Dom)

1 stop:= empty_ domain(Dom)

2 while (Pruned = @and not stop) do

3 (X;,a):= select_element (Pruned)

4 Pruned := Pruned - {(X;, a)}

5 (CSupport, Pruned , Dom):=

6 propagate del (X;, a, CSupport, LSupport, Pruned, Dom)
7 if (empty_domain(Dom)) stop:= true endif

8 endwhile

9 return(CSupport, Dom)

endfunction

function propagate_del (X;, a, CSupport, LSupport, Pruned, Dom)

10 forall (X;,b) ELSupport;, do

11 C‘Supportjbi 1= CSupport j;,; -1

12 if(CSupportjbi = 0) then

13 Pruned := Pruned U {(X;5,b)}
14 Dj:= D;-{b}

15 endif

16 endfor

17 return(CSupport, Pruned , Dom)

endfunction

Figure 2.3: AC-4 [Mohr and Henderson, 86].

2.2 Algorithms for Total Constraint Satisfaction 23

Theorem 2.1: [Freuder, 82]

Given an arbitrary CSP:

1. A depth-first search ordering is backtrack-free if the level of strong -
consistency in the problem is greater than the width of the
corresponding ordered graph.

2. There exists a backtrackfree depth-first search ordering for the
problem if the level of strong k-consistency in the problem is greater
than the width of the constraint graph.

This theorem suggests that a CSP can be solved by enforcing the
corresponding level of local consistency and proceeding to the backtrack-
free depth-first search. However, it is of practical interest only when
constraint graphs have the lowest width (i.e.: 1). Otherwise, achieving the
level of local consistency required adds new constraints to the graph. This
increases the graph width, so higher levels of local consistency are
required, and so on. This process loops until the local consistency
enforcement does not increase the graph width. If we restrict ourselves to
graphs of width 1, this process does not take place because the degree of
local consistency required (arc-consistency) does not add new constraints,
so the graph width is not modified. This is formalized in the following
observation,

Observation 2.2:

Given an arbitrary CSP, if its associated graph has width 1 (i.e.: the
graph is a tree) and it is arc-consistent, then there is a backtrack-free
search.

Proof:

Since the graph is a tree, order the problem variables in such a way
that for each variable, its parent is always before in the ordering.
Observe that, under this ordering, the graph has width 1. Assign
the first variable with an arbitrary value. Consider variables subject
to the ordering and assign to each one a consistent value with
respect previous variables. This consistent value always exists because
each variable is only constrained with one past variable (width is 1)
and the problem is arc-consistent. Thus, a consistent total
assignment is found without any backtracking.
The first observation shows that tree-like CSP can be solved quite
efficiently. Enforcing arc-consistency in a tree-like CSP using AC-4
(Figure 2.3) has a cost in O(n-m2) because in trees ¢ = n-1. The backtracking-
free instantiation takes O(n-m) steps. Therefore, the whole process can be
done in O(n~m2).
Dechter and Pearl [Dechter and Pearl, 1988] observe that arc-
consistency is stronger than necessary for enabling backtrack-free search

24 Chapter 2. Related Work

in tree-like CSP. They propose the concept of directional arc-consistency,
which is a sufficient condition for backtrack-free search in trees (observe
that directional arc-consistency is sufficient for the proof of Observation
2.2.1). Directional arc-consistency is defined upon a total ordering among
variables.

Definition 2.3:

A CSP is directional arc-consistent under an ordering of the variables if

and only if for every assignment X;< v' there exists a consistent

assignment for every variable Xj which is after X; in the ordering.
Figure 2.4 gives an algorithm for achieving directional arc-consistency. It
is obvious that directional arc-consistency is a weaker condition than full
arc-consistency. Thus, it provides a more efficient method for solving tree-
like CSP.

Example 2.3:

Consider a CSP having three variables (i.e: {Xj, Xo, X3}), three values
per variable (i.e: {a, b, ¢), and the two following constraints:
R19={(8,0), (¢,b) }, Ris={(a,a), (c,a)}. It is easy to see that its constraint
graph is a tree and, under lexicographical order, it has width 1.

Enforcing arc-consistency (using, for instance, AC-4 of Figure
2.3), some values are removed and the following domains are
obtained: Dy ={¢}, D9 ={b}, Ds ={a}. With these domains a backtrack-
free search is guaranteed because the assignment of the first variable
with its only value ¢, is necessarily consistent with the remaining
values of the two other variables.

Enforcing directional arc-consistency (using directional-arc-
consistency of Figure 2.4), fewer values are removed and the following
domains are obtained: D1 ={c}, D9 ={a,b,c}, D3 ={a,b,c}. Assigning
value ¢ to the first variable, we still know that posterior variables
have one consistent value with it, so we can deepen in the tree
knowing that we will not need to undo the assignment.

A completely different line of work searching for tractable classes of CSP
restricts the type of allowed constraints. In the following we give a brief
review of some classes of constraints that have been found useful to
characterize tractable CSP. Consider the following definitions,

Definition 2.4:

A constraint Rij is functional if and only if for all a €ED; (respectively
bED]’) there exists at most one bEDj (respectively a €D;) such that
(a,b)ER,'j.

2.2 Algorithms for Total Constraint Satisfaction 25

Function Directional-arc-consistency (Dom)
for i:=n-1 to 1 do
for j:=n to i+l do
for all a€D; do
if(arc_inconsistent(X;,a,x;)) then D; :=D; -{a} endif

1

2

3

4

5 endfor
6 endfor

7 endfor

8 return(Dom)
endfunction

function arc_inconsistent(X&,a,X}) returns boolean

9 arc_incons:=true

10 for all b €D; while (arc_incons) do

11 if (not inconsistent(X;<a, X;<b)) then arc_incons:=false endif
12 endfor

13 return(arc_incons)

endfunction

Figure 2.4. Algorithm for the achievement of directional arc-consistency.
It assumes lexicographical variable ordering [Dechter and Pearl, 88].

Definition 2.5:

A constraint Rjj is monotonic if and only if there exists a total
ordering on D; and D]' such that,

(a,b)ER;j = ((¢d)ER;; V¢d such that ¢ < a and d = b)

Example 2.4:

The interest of functional and monotonic constraints relies on the
fact that basic arithmetic constraints on the set of natural numbers
are of one of these types. It is easy to see that the following equations
belong to this class:

aX=0bY+c¢

aXsbY+c¢

aX=zbY + ¢

where upper case letters represent variables and lower case letters

represent constants.
A generalization of functional and monotone constraints are row convex
constraints. A constraint can be represented as a (0,1)-matrix defined upon
a total ordering among values. The (a,b) entry on the matrix takes value 1
if the pair of values is permitted by the constraint (note that, in order to
distinguish matrix rows from columns, we assume an order between
variables 7 and j).

26 Chapter 2. Related Work

Definition 2.6:

A constraint R;; is row-convex under a total ordering among values if
and only if at each column of the corresponding matrix all 1's are
consecutive.

Example 2.5:

Consider a simple constraint R19 ={(a,c), (b,a), (b,b), (bc),(c,a)}. This
constraint is row convex under lexicographical order because its
associated matrix does not have any row with non consecutive 1's,

X
a b c
a 0 1 1

Finally, another kind of constraints found useful to characterize tractable
CSP is the class of 0/1/all constraints defined as follows,

Definition 2.7:

A constraint is called 0/1/all if and only if it belongs to any of the

following types:

1. A complete constraint is a constraint Rij ={A x B} for some A C D;
and BC D;.

2. A permutation constraint is a constraint Rij ={(a, ®(a): a EA} for some
A C D; and some bijection w: A— B, where B C D;.

3. A two-fan constraint is a constraint Rij where there exists a EA and
b €B with Rij ={(ax B) U (bx A)}, ACD; and BC Dj.

Example 2.6:

The following picture shows a typical complete constraint,
permutation constraint and two-fan constraint. Solid lines
connecting values indicate permitted values.

2.2 Algorithms for Total Constraint Satisfaction 27

Complete Permutation Two-fan

All these types of constraints have been found useful to characterize
tractable classes of constraints. For instance, [Deville and Van Hentenryck,
91] show that if a CSP is limited to functional and monotonic constraints,
arc-consistency is sufficient to test the problem satisfacibility. The interest
of row-convexity is motivated in [van Beek, 91], where he shows that a
consistent instantiation can be found in a backtrack-free manner in a path-
consistent CSP such that there exists an ordering of the variables and the
domains for which constraints are row-convex. [Cohen et al., 94] show that
if a GSP is limited to 0/1/all constraints, enforcing arc-consistency
produces a problem that can be solved without backtracking. In [Jeavons et
al., 95], it is shown that all known classes of constraints which lead to
tractable problems can be characterized by a simple algebraic closure
condition.

The introduction of functional and monotonic constraints has a
practical impact in the complexity of the procedures achieving arc-
consistency. There is a generic arc-consistency algorithm AC-5 [Deville
and Van Hentenryck, 91], which can be instantiated to reduce AC-3 or AC-
4 algorithms. In addition, when the problem only contains functional or
monotonic constraints, AC-5 can be instantiated to produce an algorithm
of complexity O(e'm). This is a significant improvement over the optimal
algorithm in the general case which has a complexity of O(e-m2).

2.2.3 Look-ahead Algorithms

Search algorithms can be combined with consistency enforcement
algorithms looking for a better dead-end detection, or equivalently,
detecting dead-ends at earlier levels in the tree. The idea is to enforce
local consistency at each node during search. If the current node is in a
dead-end and this is not detected by the search algorithm, achieving some
level of local consistency may lead to its discovery. In this way, search does
not need to unsuccessfully visit deeper nodes of the current subtree. The

28 Chapter 2. Related Work

process of enforcing local consistency is generally called the look-ahead or
the propagation of the current assignment.

In practice, algorithms that perform a limited amount of
propagation (enforce a low level of local consistency) are among the most
effective. Forward checking (FC) [Haralick and Elliot, 80] is a simple, yet
powerful algorithm for total constraint satisfaction. It propagates the effect
of each assignment by pruning from domains of future variables those
values that are inconsistent with the assignment.

Figure 2.5 shows FC. It works like BT, except that future domains
dynamically change. At a given node, only those values consistent with
past assignments remain feasible. Consequently, after each new
assignment, future domains are pruned. When a future domain becomes
empty, FC backtracks because there is no value for one future variable
consistent with the current assignment. The function in charge of value
pruning is look_ahead. It iterates on future domains removing unfeasible
values and returns updated domains.

function FC (P, F, Assg, Dom) returns boolean

1 if (F=J) then

2 Sol := Assg

3 return (true)

4 endif

5 (X;,D;):= select_current_variable_and_domain(F, Dom)
6 stop:= false

7 while (D;#J and not stop) do

8 a:= select_current_value(D;)

9 D;:= D;-{a}

10 NAssg:= Assg U {X;<a}

11 NDom:= look_ahead(X;, a, F-{X;}, Dom-{D;})
12 if (not empty domain(NDom)) then

13 stop:=FC(PU{X;}, F-{X;}, NAssg, NDom)
14 endif

15 endwhile

16 return(stop)

endfunction
function look ahead(X;, a, F, Dom)

17 stop:= false

18 for all D; €EDom while (mot stop) do

19 for all b EDj do

20 if (inconsistent(X;<a, X;<b) then D; := D; -{b} endif
21 endfor

22 if(Dj = (J) then stop:= true endif

23 endfor

24 return (Dom)

endfunction

Figure 2.5: Forward Checking [Freuder and Wallace, 92].

2.2 Algorithms for Total Constraint Satisfaction 29

Example 2.7:

Consider the 4-queens problem and a search state with the following
partial assignment {X]< 2, X9< 4}. At this point, FC has the
following sets of future values: Dg ={1} and D4 ={1,3}. This situation is
depicted in the following board configuration,

1 2 3 4

I' ’ \s
| ‘
v (N

X2 4 I A Y

T L4 P

e | s

1 LS
X3 v |7 s

v :
X4 21 1

r3

Since there is no empty domain, search continues with a new

assignment. If Xg is the new current variable, it only has one

feasible value so the new search state is defined by {X]<2, Xo<4,

Xg<1}. The look-ahead of the current assignment removes value 1

from D4, but does not cause any empty domain because 3€D4 remains

feasible. Since it is the only value left for Xy, it is assigned. The new

assignment {X]<2, Xo<4, Xg<1, X4<3} is a problem solution.
For many years it was believed that performing higher levels of
propagation than forward checking was not cost effective [Kumar, 92].
However, recent research on total constraint satisfaction has contradicted
this belief. In [Sabin and Freuder, 94; Bessiére and Régin, 96] there is
strong experimental evidence of the important savings that maintaining
full arc-consistency during search can produce.

The algorithm that maintains arc-consistency during search,
denoted MAC [Sabin and Freuder, 94], requires more computational effort
than FC at each search state. This additional computation has two
objectives: (7) arc-inconsistent values are filtered, so the subproblem search
space is simplified; (zi) if the propagation process causes an empty domain,
then the subproblem is unsolvable. Given that MAC can prune more values
than FC, it has better dead-end detection capabilities. This causes that
MAC can backtrack in nodes where FC would continue searching below.
In easy problems, MAC is not the most efficient algorithm because the tree
reduction does not pay off the effort of maintaining arc-consistency.
However, on hard problems MAC is considered the most efficient
algorithm. In this case, maintaining arc-consistency is cost effective.

30 Chapter 2. Related Work

Example 2.8:

Consider the 6-queens problem and a search state defined by a
partial assignment {X]<1, X9« 3, Xg3<5}. Forward checking would
be in the following situation,

1 2 3 4 5 6

%@
T “
1
S0 @
T @&
XS 1 |e 1S N
: : ‘)/ \: AN
X ' A IR AN
1 i, s LN
[4 ‘ Y
X5 1 ‘] l‘ s
1 el 0 1 ‘\
1 ’ | 1 N
X6 [‘ 1 1 N

At this point FC would continue search because no dead-end is
detected. In fact, assuming lexicographical variable and value
ordering, FC would need to deepen two more levels in the tree
before detecting the dead-end. On the other hand, if we enforce arc-
inconsistency in the current subproblem, we would have the
following situation,

1 2 3 4 5 6

11 @
T
RN G
1 T
e S N
1 4
s Lo
1 1 A ys \I \\
X 1 1 4
4 1 1 "\ [\s
] " 1, ol s >
X5 1 ,§U‘o R &c& LN .| —<@— empty domain
1 1 1 ﬂ\
] v I 1 \
1 4 1 1 LN
){6 1 4 1 1 A

An arc-consistency algorithm would detect that value b of X5 does not
have any consistent value in X4, so it can be removed. Besides, value

2.2 Algorithms for Total Constraint Satisfaction 31

4 of X5 does not have any consistent value in Xg, so it can also be
removed. Consequently, no value remains feasible for X4, so the
subproblem is arc-inconsistent (and, therefore, unsolvable). Hence,
the algorithm can safely backtrack at this point without further
search.
MAC can be implemented using any arc-consistency algorithm. In Figure
2.6, we present a simple implementation based on AC-4 (namely, MAC-4).
It uses the AC-4 algorithm described in Figure 2.3. MAC-4 receives as
parameters the sets of past and future variables, the current assignment,
and the AC-4 data structures (i.e: CSupport and LSupport). It assumes that the
problem is initially arc-consistent, and all support-based data structures are
properly initialized. It works like forward checking except in two points:
1. The look-ahead returns not only the new domains, but the set of
pruned values (line 11). This set is used as the input of an AC4 call,
which propagates their deletion and enforces arc-consistency at the
current subproblem (line 13).
2. After unsuccessfully attempting an assignment, it has been shown to
be unfeasible subject to the set of past variables. MAG-4 removes that
value and propagates its deletion, enforcing arc-consistency (line 18).

2.2.4 Look-back Algorithms

There are a number of ways in which the basic BT strategy can be
improved. For simplicity, we assume in the following that depth-first
selects variables and values in lexicographical order, and consistency of the
current assignment is also checked with past variables in lexicographical
order.

Backmarking (BM) [Gaschnig, 77] avoids the repetition of some
consistency checks. When BT assigns the current variable X;<a it checks
the consistency of this assignment with past variables {X]< o!,...,
X1} If any of the tests fails, BM records the point of the failure in an
array mcl;q (maximum check level). Consider that the algorithm backtracks up
to variable Xj, deepens in the tree and attempts again the same
assignment X;< @ . In this situation it is known that the current
assignment is consistent with past variables up to mcl;, as far as their
assignment has not been changed. BM avoids the repetition of these
already performed checks. To do this effectively, BM needs an additional
array mbl; (minimum backtrack level) which for each variable records how
far it has backtracked since the last attempt to instantiate this variable.

Backjumping (B]) [Gaschnig, 78], improves BT by making a more
suitable decision of what variable backtrack to. B] only differs from BT at
those nodes where a dead-end is detected. Instead of backtracking to the
most recently instantiated variable, BJ Jjumps to the deepest past variable

32 Chapter 2. Related Work

function MAC-4 (P, F, Assg, Dom, CSupport, LSupport) returns boolean

1 if (F=J) then
2 Sol := Assg
3 return (true)
4 endif
5 (X;,D;):= select_current_variable and_domain(F, Dom)
6 stop:= false
7 while (D;=#Z and not stop) do
8 a:= select_current_value(D;)
9 D;:= D;-{a}
10 NAssg:= Assg U {X;<a}
11 (NDom, Pruned) := look_ ahead(X;, a, F-{X;}, Dom-{D;})
12 if (not empty_domain(NDom)) then
13 (NewCSupport, NDom) := AC-4(CSupport, LSupport, Pruned, NDom)
14 if (not empty_domain(NDom)) then
15 stop:=MAC-4 (PU{X;}, F-{X;}, NAssg,NDom, NewCSupport,
LSupport)
16 endif
17 endif
18 if(not stop and D; #J) then
(CSupport, Dom) := AC-4(CSupport, LSupport, {(i,a)}, Dom) endif
19 endwhile
20 return(stop)
endfunction
function look_ahead(X;, a, F, Dom)
21 Pruned:= &
22 stop:= false
23 for all D; € Dom while (not stop) do
24 for all b €D, do
25 if (inconsistent(X;<a, X;<b) then
26 D; := D; -{b}
27 Pruned := Pruned U (3,b)
28 endif
29 endfor
30 if(D; = O) then stop:= true endif
31 endfor
32 return (Dom, Pruned)
endfunction

Figure 2.6: Basic version of MAC-4.

that the current variable was checked against. The reason is that changing
the assignment made to variables in between does not change the culprit
for the dead-end, so there is no point in visiting those nodes. When the
current variable is not responsible for the dead-end detection, no jump is
done. In that case BJ backtracks chronologically.

Conflict-Directed Backjumping (CBJ) [Prosser, 93a] improves BJ by
following a more sophisticated jumping strategy. The conflict set of a
variable is formed by the past variables with which a consistency check
failed with some value of the considered variable. For instance, if the
current assignment X;<-a is inconsistent with the past assignment
Xp< vk, variable Xk is added to the conflict set of X;. When all values have

2.2 Algorithms for Total Constraint Satisfaction 33

been attempted for the current variable, CBJ jumps to the deepest variable
in its conflict set. This variable is removed from the conflict set of the
current variable, and this new conflict set is added to the conflict set of the
variable it jumps to. With this approach, jumps can be done at those nodes
where backtracking occurs not because a dead-end is detected, but because
all values have already been attempted. In addition, more that one jump
can be done along the same path from a detected dead-end to the root.

Example 2.9: [Kondrak and van Beek, 97]

Consider the 6-queens problem and a node defined by the
assignment {X]<2, Xo<5, X3<3, X4<6, Xr<4}. At this point, Xg is
selected for instantiation, and a dead-end is detected because all its
values are found inconsistent with some past variable. BJ records the
set of variables with which some value of Xg is found inconsistent.

The following picture illustrates the situation and indicates for each
value of Xg the inconsistent past variable.

1 2 3 4 5 6

X5 ®

X5 2 1 3 | 4 2 3

In this situation, BT would backtrack to X5 and would attempt the
assignment X5<5. However, BJ detects that the assignment made to
X5 is not causing the dead-end and jumps to X4, which is the deepest

variable contributing to the detected dead-end. Since no more values
for X4 are left, B] backtracks to X8 and attempts the assignment

{X]1<2, Xo<5, Xg<—4}.

Consider now the node defined by the assignment {X]< 2,
X9<5, X3<3, X4<1, X5<4}. At this point, CBJ records the conflict
set of X5 which is formed by the set of past variables inconsistent

with its previously attempted values. It is easy to see that this conflict
set is {X], X3}. In this situation, Xg is selected for instantiation and a

34 Chapter 2. Related Work

dead-end is detected because all its values are found inconsistent with
some past variable. The conflict set computed for Xg is {X1, X9, X3,
X5}. At this point, BT, B] and CBJ backtrack to X5. However, CBJ
updates the conflict set of X5 producing the new set {X], X9, X3}.
After unsuccessfully attempting the two remaining values of X5, both
BT and BJ backtrack chronologically to X4. But CBJ jumps to X3
because it is the deepest variable in its conflict set. The following
picture illustrates the situation and indicates for each inconsistent
value of X5 and Xg the past variable against which inconsistency is
detected.

1 2 3 4 5 6

2.2.5 Heuristics

Depth-first algorithms for partial and total constraint satisfaction do not
specify the order in which variables and values are selected. It is well
known that these orderings have a dramatic effect on the algorithms'
efficiency [Dechter and Meiri, 94]. Thus, before using any constraint
satisfaction algorithm, a variable and a value ordering heuristic must be
chosen. Heuristics can be grouped into two categories:

* Static orderings: A static heuristic establishes an ordering before search
starts, and maintains this ordering throughout all of the search. Thus,
using static variable and value orderings the search tree has a fixed
structure. Following any path, one finds the same variables at the same
tree levels; traversing any tree level, one finds the same sequence of
values repeated at each subtree.

* Dynamic orderings: A dynamic heuristic makes selections dynamically
during search. Thus, using dynamic variable and value orderings the
next current variable and the order in which its values are assigned is

2.2 Algorithms for Total Constraint Satisfaction 35

decided at each search node. Using dynamic orderings, search trees
are more flexible because one finds different variables assigned at the
same tree level. In addition, values may be attempted in a different
order each time a variable is selected.

A well-known static heuristic involves ordering variables by their
constraint graph degree. The idea is to consider first the most constrained
variables because they are likely to be more difficult to assign.
Inconsistencies are expected to be found at early tree levels, where
recovering from mistakes is less costly. Variables with few constraints
have more freedom in the values they can take, so it is easier to find a
good value for them. With this heuristic their assignment is delayed to
deep tree levels. This static variable ordering, denoted maximum degree
ordering heuristic , has been often used in the literature.

The minimal bandwidth ordering heuristic [Zabih, 90] gives a static order
to variables under which the graph bandwidth is low (the bandwidth of a
node under an ordering is the maximum distance between the node and
any other node adjacent to it; the bandwidth of a graph is the maximum
bandwidth among its nodes). The intuition behind this heuristic is that
constrained pairs of variables are likely to be close. Thus, if the
assignment of one causes a failure in the other, the backtracking will not
be very costly. The main disadvantage of this heuristic is that finding
variable orderings with low bandwidth is computationally expensive.

It is strongly believed in the CSP community that dynamic variable
orderings are more effective than static ones. The most popular variable
ordering heuristic selects the variable with the minimum number of
values in its current domain [Haralick and Elliot, 80]. This heuristic,
denoted minimum domain (MD), is usually applied to look-ahead algorithms
because the actual size of domains is given at no cost. Using probabilistic
methods, Haralick and Elliot show that MD minimizes the expected tree
size. However, it is important to point out that they assume a uniform
probability of finding a good value for every variable. Moreover, the
probability of choosing a good value for a variable is independent of
previous assignments to past variables.

The performance of MD is often improved with the addition of some
information from the graph topology. For instance, [Frost and Dechter,
95] use graph degree to discriminate among variables with the same domain
size; [Bessiere and Régin, 96] select the variable having the lowest ratio
domain cardinality divided by degree in an attempt to combine both dynamic
and static information.

Value ordering heuristics have not attracted the attention of the CSP
community as much. It is generally believed that good values are those
which are more likely to participate in solutions. This idea is developed in
[Dechter and Pearl, 88] where they propose a value ordering heuristic
which relies on a tree-relaxation of the problem to estimate the goodness
of a value. At a given node, the minimum spanning tree of the subgraph
restricted to future variables is computed. This tree-like graph is used as a

36 Chapter 2. Related Work

relaxation of the original problem for which solutions can be found
efficiently (as indicated in Observation 2.2). Assuming that good values for
the relaxed problem are also good values for the original problem, they
sort values by the number of solutions in which they participate.

A different approach for value ordering is followed in [Keng and
Yun, 89; Geelen, 92; Frost and Dechter, 95]. Within the context of look-
ahead algorithm, values are ordered by the pruning effect that they have
on future domains. This approach requires the propagation of each possible
assignment to obtain the size of the resulting domains. For job-shop
problems, [Keng and Yun, 89] sort values by increasing cruciality which is
the sum over future variables of the ratio of values that the assignment
prunes. Cruciality is justified as an impact measurement on the available
resources. In [Geelen, 92] values are sorted by increasing promise which
also uses the ratio of pruned values, but the contribution of each future
variable is multiplied rather than added. Promise is justified as an upper
bound of the number of possible solutions. In [Frost and Dechter, 95] the
cardinality of the resulting domains is added and values are sorted by
decreasing number of surviving values.

2.2.6 Combined approaches

Often times, CGSP techniques do not have to be competitors, but rather can
be combined in a cooperative way. A good example of how different
algorithms can be combined is shown in [Prosser, 93a]. Starting from four
classical algorithms: BJ, CBJ, BM and FC, he develops four hybrid
algorithms: BM-BJ, BM-CBJ, FC-B] and FC-CBJ, which combine features
and take advantage of the best of each one.

In the same way, local consistency algorithms can be combined to
search both as a pre-processing and at each node. MAC is a good example
that was already presented in Section 2.2.3. Another example is MAC-CB]
[Prosser, 95], which is a hybrid of MAC and CBJ.

The same idea can be extended to heuristics because they are usually
justified in an algorithm independent way. Most variable and value
ordering heuristics can be combined. For instance, MD which was
presented in the context of FC, can be applied to any CSP algorithm
[Bacchus and van Run, 95].

2.3 Algorithms for Partial Constraint Satisfaction 37

2.3 Algorithms for Partial Constraint
Satisfaction

2.3.1 Depth-First Branch and Bound

Branch and Bound is an algorithmic schema for optimization problems that
can be used to solve MAX-CSP. It uses the search tree defined in Section
2.1. Using branch and bound terminology, the goal is to find the tree leaf
that minimizes a cost function. In the MAX-CSP case, the cost function is
the number of violated constraints. In the search tree, each node has
associated with it a (possibly inconsistent) partial assignment. The
number of constraints violated by the node assignment is called its
distance. Branch and bound do a depth-first tree traversal. During the
traversal, the algorithm keeps track of the best solution found so far which
is the total assignment with minimum distance in the explored part of
the search tree. Its distance is used as an upper bound of the allowable cost.
In addition, the algorithm wuses the current node distance as an
underestimation of the best solution that can be obtained searching below.
This value is a lower bound of what can be achieved following the current
line of search. Branch and bound is in a dead-end when it visits a node
which does not have any leaf below that improves the current upper bound.
The dead-end is detected when the current lower bound is greater than or
equal to the current upper bound because at this point we know that the
current path cannot lead to a better solution than the current best one. In
this case, branch and bound backtracks to a previous node.

Figure 2.7 shows partial chronological backiracking (PBT), the partial
consistency counterpart of BT. P and F denote past and future variables. dist
is the current assignment distance. Assg is the current assignment. Dom
are future variable domains. From an initial call
PBT({X1,...,X,},D,0,,{D1,...,D,}), the algorithm searches for the best
problem solution, which is reported by means of the global variable
Best_sol. Its distance is kept in another global variable, UB. If the set of
future variables is empty, the current assignment is the best solution found
up to this point, so it is recorded and the upper bound is updated (lines 2
and 3). If there are future variables, one of them is selected (line 5), and
its values are sequentially attempted. For each assignment, the
inconsistencies that it has with past assignments are computed and added
to the current distance (line 10). If the current distance is lower than the
current upper bound a recursive call is made (line 12). Otherwise, the next
value is attempted.

38 Chapter 2. Related Work

procedure PBT (P, F, dist, Assg, Dom)

1 if (F = J) then

2 UB:= dist

3 Best_sol:= Assg

4 else

5 (X;,D;) := select_current_variable_and_domain(F, Dom)
6 while (D; =J) do

7 a:= select_current_value(D;)

8 D;:= D;-{a}

9 NAssg:= Assg U {X;<a}

10 ndist:= dist + cost(X;, a, Assg)

11 if (ndist < UB) then

12 PFC(PU{X;}, F-{X;}, ndist, NAssg, Dom-{D;})
13 endif

14 endwhile

15 endif

endprocedure

function cost(X;, a, Assg) returns boolean

16 cost:=0

17 for all (Xj<—vj)€Assg do)

18 if (inconsistent(X;<a, Xj‘—VJ))) then cost:=cost+l endif
19 endfor

20 return (cost)

endfunction

Figure 2.7: Partial Chronological Backtracking [Freuder and Wallace,
92].

2.3.2 Look-ahead

The forward checking counterpart for MAX-CSP, denoted partial forward
checking (PFC) [Freuder and Wallace, 92], uses forward checking to
improve the lower bound and detect unfeasible future values. PFC look-
ahead keeps for all feasible values of future variables the number of
inconsistencies with previous assignments. The inconsistency count (IC)
associated with value b of variable Xj, icjb, is the number of inconsistencies
that value b has with the current assignment of past variables. The sum of

minimum IC, Emz’nv{icjv}, is a lower bound of the number of
JEF

inconsistencies that will necessarily occur in constraints between past and
future variables if the current partial assignment is extended to a total one
(no matter what values are assigned to future variables). Therefore, it can
be added to the current distance in order to obtain a better lower bound at
the current node. Thus,

distance + Eminv{icj,,} (2.1)

JEF

2.3 Algorithms for Partial Constraint Satisfaction 39

is the lower bound computed by PFC, where distance is the number of
inconsistencies among past variables.

Each assignment is propagated toward future ICs. During the
propagation, ICs are also used to detect unfeasible values. Thus, a future
value b of variable Xj, has the following associated lower bound,

distance + icy, (2.2)

If the lower bound of a future value is greater than or equal to the current
upper bound, it can be pruned because its assignment cannot produce any
solution improving the current upper bound. If the look-ahead produces an
empty domain, the algorithm backtracks. Expression (2.2) was the
pruning condition for PFC as described in [Freuder and Wallace, 92].
However, one should note that a stronger pruning power is obtained if the
following lower bound is used

distance + icy+ Eminv{iskv} (2.3)
kEF-j
As far as we know, no one has previously reported this obvious
improvement on PFC. Nevertheless, it may be the case that some researchers
already include it in their implementations, although still referring to
PFC in the description of their experiments. In this work we take it for
granted.

Example 2.10:

Consider the 3-queens problem. It was shown in Example 2.2 that it
is an overconstrained problem. A search state characterized by the
following assignment {X]< 1, X9< 1} produces the following

situation,

1 2 3
1 @

LR

I N

N

% @ | N

[TS N

L B | Ss ~

| I} ~ <
XS 2 1 1 - IC

where we indicate at future value cells their inconsistency count (IC)
subject to the current assignment. Thus, icg; = 2 because it is
inconsistent with the assignment made to two past variables. The
current assignment has distance 1 because there is a constraint

40 Chapter 2. Related Work

violation between the two past variables. At this point, PFC lower
bound is,

distance + Eminv{icjv} =1+1=2
EF

which means that any extension of the current partial assignment to

a total one, will violate at least two constraints. If the algorithm has

previously found a solution with distance lower than or equal to 2, it

can backtrack at this point.

Figure 2.8 presents PFC. It requires a new parameter /C, which keeps the
current inconsistency counts. At each node, PFC selects one variable and
attempts the consecutive assignment of its feasible values. The new distance
is computed by adding the corresponding IC to the current distance (line
10). Right after attempting a new assignment, the feasibility of the
current value is tested (line 11). It is the last chance for pruning a value
before propagating its assignment. This final feasibility test is required
because there may have been an upper bound decrease at a sibling
subproblem. If the current assignment is feasible, it is propagated to all
feasible future values updating their IC and pruning them if they are
detected to be unfeasible. Procedure look_ahead is in charge of the
propagation. It returns the new domains and IC.

From the algorithm, it may seem as if PFC has two different dead-
end conditions: when the lower bound becomes greater than or equal to
the upper bound (line 11) and when the look-ahead produces an empty
domain (line 13). But it is not so because both conditions are basically the
same thing, as shown in the following observation.

Observation 2.3:

Consider that look-ahead has produced an empty domain in a future
variable X]-. Therefore, the following condition holds for all its
values,

distance + icjb+ Em.inv{ickv} = upper_bound Vb € Dj
kEF-j
particularly, it also holds for the value having the minimum IC,

distance + min,{icy,}+ Eminv{ickv} = upper_bound

kEF-j
Thus, when the look-ahead produces an empty domain, it means
that with the new ICs the lower bound has become greater than or
equal to the upper bound.

2.3 Algorithms for Partial Constraint Satisfaction 41

procedure PFC (P, F, dist, Assg, Dom, IC)

1 if (F = J) then
2 := dist
3 best_sol:= Assg
4 else
5 (X;,D;):= select_current variable and domain(F, Dom)
6 while (D;=J) do
7 a:= select_current_value(D;)
8 D;:= D;-{a}
9 NAssg:= Assg U {X;<a}
10 ndist:= dist + icjg
11 if (ndist + Zminv{ic:,-v} < UB) then
jef={i}
12 (NDom, NIC):= look_ahead(ndist, X;, a, F-{X;}, Dom-{D;}, IC)
13 if (not empty domain(NDom)) then
14 PFC(ndist, PU{X;}, F-{X;},ndist, NAssg, NDom,
NIC)
15 endif
16 endif
17 endwhile
18 endif
endprocedure
function look_ahead(ndist, X;, a, F, Dom, IC)
19 stop:= false
20 for all D;€Dom while (not stop) do
21 for all b €D; do
22 if (ndist + icjp +x€2minv{i0kv} 2 UB) then
={7}
23 Dj:= D; - {b}
24 else_if (inconsistent(X;<a, X;<b)) then
25 icjpr=icyptl
26 if (ndist + iCjb + memv{ickv} = UB) then
kEf={5}
27 D;:= D;~{b}
28 endif
29 endif
30 endfor
31 if (Dy= J) then stop:= true endif
32 endfor
33 return (Dom, IC)
endfunction

Figure 2.8: Partial Forward Checking based on [Freuder and Wallace, 92].

42 Chapter 2. Related Work

2.3.3 Improvements to Look-ahead

Branch and bound effectiveness is strongly related to the quality of its
bounds. One way to enhance PFC is to improve its lower bound adding
information about new detectable inconsistencies. In this way, dead-ends
can be detected at higher tree levels and search does not need to
unsuccessfully visit deeper nodes of the current subtree. A method for
computing higher lower bounds that makes use of local consistency
information was presented in [Wallace, 94]. This approach uses the
concept of directed arc-consistency (Definition 2.3). Given an arbitrary but
fixed variable ordering, the directional arc-inconsistency count (DAC) of a
value b of a variable Xj, dac;p, is the number of variables which are arc-
inconsistent with value b for X] and appear after X] in the ordering. Note
that dacj, is a lower bound of the number of inconsistencies that X; will
have if & is assigned to X]

In Wallace's approach, DAC counts are computed in a pre-processign
step and added to the current node lower bound in the following way,

distance + Eminb{icjb}-e- Eminb{dacjb}

The use of this lower bound requires that branch and bound instantiates its
variables in the same fixed order that was used for DAC computation.

Recently, a new way of improving the lower bound using
information from constraints relating future variables has been presented
[Verfaillie et al., 96]. Their algorithm, denoted russian doll search (RDS),
consists in solving an increasingly larger sequence of subproblems such
that each subproblem is included in the subsequent ones, so information of
smaller subproblems can be exploited. The sequence of subproblems starts
from the initial problem restricted to two variables and ends with the
initial problem with all its variables. At each step, one more variable is
added. When solving a subproblem, the cost of the best solution of the
previous smaller subproblem is used to improve the lower bound in the
following way,

distance + Emin,,{ icjpl + rdsF
JEF
where rdsF is the distance of the best solution of the problem defined by
the set of future variables and the constraints among them. Again, this
method requires the use of a static variable ordering.

2.3 Algorithms for Partial Constraint Satisfaction 43

2.3.4 Heuristics.

In the partial constraint satisfaction context, not much work about
heuristics has been done. Regarding variable orderings, [Freuder and
Wallace, 92] propose a dynamic variable ordering heuristic for PFC in
which the variable having the highest mean of inconsistency counts
among its feasible values is selected first. In [Wallace and Freuder, 93] the
concept of graph width (Definition 2.2) is used. They propose the use of a
maximum node width heuristic, which sequentially select the variable with
the greatest number of constraints in common with variables already
chosen. With this idea, a static ordering among variables is generated.
This ordering is used as a primary criterion which is enhanced with a
second criterion to break ties. The following tie breakers are proposed:
minimum domains, maximum degree and largest mean of arc-
inconsistency counters. A static variable ordering that has been found
effective for random problems is to select variables by forward degree
breaking ties with backward degree [Larrosa and Meseguer, 96]. At a
search state, the forward degree of a future variable is the number of other
future variables with which it is constrained. The backward degree of a
future variable is the number of past variables with which it is constrained.
It should be noted that in MAX-CSP, the dominance between dynamic
and static variable heuristics is still a subject of research?.

Regarding value ordering heuristics, [Freuder and Wallace, 92]
propose to select values by increasing number of inconsistency counts
(using PFC). In [Wallace and Freuder, 93; Wallace, 94], values are
selected by increasing number of arc-inconsistencies. Arc-inconsistencies
are computed prior to the search.

BT = BM
B] = BM-BJ
FC CBJ = BM-CBJ

FC-CB]

Figure 2.9: The hierarchy with respect to the number of visited nodes.

2In this Theses we will present some examples of this affirmation.

44 Chapter 2. Related Work

2.4 Algorithms Evaluation

2.4.1 Theoretical Evaluation

Historically, CSP algorithms have been compared and assessed on an
experimental basis. The limitations of experimental evaluation have often
been recognized [Prosser, 93a]. Experimental evaluation assumes that
algorithmic performance on a reduced number of problem instances will
extrapolate to larger and more practical classes of problems. It is clear that
this is a strong assumption. However, theoretical evaluations have been
found difficult to perform.

In that context, the recent work of [Kondrak and van Beek, 97] is
especially relevant. They show that some classical algorithms can be
ranked according to their efficiency using purely theoretical results.
Basically, they characterize the behaviour of some CSP algorithms by the
formulation of necessary and sufficient conditions for visiting a node. This
characterization enables them to construct a hierarchy of the algorithms
with respect to two standard performance measures: the number of visited
nodes, and the number of performed consistency checks. These
hierarchies indicate that an algorithm will never perform worse than
another with respect to the corresponding search effort parameter. Figure
2.9 and Figure 2.10 depict the hierarchies obtained with respect to the
number of nodes and the number of checks, respectively. Besides the
relationships that are shown explicitly, one should be aware of those that
are implicit in the picture. For pairs of algorithms that are not linked,
there is no dominance between them. For instance, BM performs fewer
consistency checks than FC on the 8-queens problem, but more on a
variation of the problem called the confused 8-queens.

Theoretical comparison of algorithms has its own limitations. For
many pairs of algorithms, one may find examples in which one
outperforms the other, and the way around. In that situation, a theoretical
analysis like the one presented in [Kondrak and van Beek, 97] is not
suitable. Moreover, the importance of showing that one algorithm is better
than another depends very much on the gain ratio, and theoretical
analysis do not usually give this type of information. Therefore, theoretical
and experimental evaluation must be taken as complementary rather than
alternative ways to assess algorithms.

Typically, when different algorithms need to be empirically
compared, a representative benchmark is chosen and the competing
algorithms are tested on it. Their performance is measured in terms of
some search effort parameters. From these experiments, one usually detects
classes of problems for which some algorithm outperforms another. The
superiority of algorithms is therefore assessed in terms of the efficiency

2.4 Algorithms Evaluation 45

gain on the class, and the class generality. For instance, forward checking
is superior to chronological backtracking in most problem classes [Bacchus
and van Run, 95], and MAC is superior to forward checking on hard
random problems [Bessiére and Régin, 96].

BT FC
BM BJ FC-CBJ
BM-BJ CBJ
BM-CB]J
Figure 2.10: The hierarchy with respect to the number of consistency
checks.

2.4.2 Random Problems

It is generally believed that efficiency can be gained by encoding domain
specific knowledge into the problem solver. However, there are good
reasons for studying general algorithms. First, specific algorithms are
costly to develop and tune. Second, specific algorithms have limited
application. Finally, general algorithms can be a start-point for the
development of specialized technics.

Constraint satisfaction algorithms are usually conceived as general
purpose techniques, applicable to a wide range of real problems. For this
reason, there is a tradition of evaluating constraint satisfaction algorithms
using random problems. They offer the following advantages:

* Random problems are easily generated, so experiments can be

performed on large samples.

* It is easy to vary systematically some model parameters and
observe the algorithm's behaviour subject to the change.

* Random problems do not have any domain-dependent bias. One
then expects that conclusions drawn from the experiments will
extrapolate to many different domains.

* Random problems have recently become even more popular after
the discovery of the phase-transition phenomenon. The reason is

46 Chapter 2. Related Work

that now it is easy to characterize and generate average-case
exponentially hard problem instances.

One may think of many different CSP random models. In this work
we will use the well-known four parameter model because it has been used
by most researchers in the CSP community for the last few years [Prosser,
94; Smith, 94]. In this model, random binary CSP are characterized by
four parameters <n, m, p;, po>, where n is the number of variables, m is the
number of values for each variable, p; is the proportion of variable pairs
which are constrained (graph connectivity), and py is the proportion of
forbidden value pairs between two constrained variables (constraint
tightness). When constructing a random instance, we select n(n-1)p; /2 of
the possible variable pairs at random; for each selected pair we establish a
constraint between the corresponding variables. For each constraint, we
choose m?py value pairs at random as the forbidden values for that
constraint. In the following, we use <n, m, p;, po> as the class of random
instances generated in the form described above with fixed =, m, p; and py.
If some parameter is missing it means that this parameter is varying
freely. Using this model, if », m and p; are kept fixed and py is varied,
there is a point at which problems suddenly change from being solvable to
unsolvable. The hardest instances on average occur precisely at this point
(this phenomenon is further discussed in Section 4.9.1).

It must be recognized that using random problems to evaluate
algorithms has some disadvantages, too. We claimed that being domain
independent was a point in favor of random problems. However, it may be
argued the other way around. Their random nature makes random
problems different from any particular domain. Thus, there is a risk of
developing techniques that are specialized for random problems and do
not work so well on particular domains. Specific domains have semantics
behind their constraints which are usually reflected in an underlying
structure at the corresponding CSP. In addition, within their random
structure, random problems are artificially homogeneous. Every variable
has the same number of values in its domain, every constraint has the
same number of nogoods, every variable has the same expected degree,
every value in a domain has the same expected constraining behaviour as
the other values, etc. Such homogeneity does not occur in many real
applications and one has to be aware that the algorithms' performance
may change with different domains.

To conclude, we consider random problems as an appropriate model
to empirically evaluate general purpose techniques and we will use it as
our main benchmark throughout this work. However, we think that
algorithms should not only be tested on random problems. For this
reason, we usually make additional experiments on other domains.

2.4 Algorithms Evaluation 47

2.4.3 Search Effort Measures

When comparing the performance of different search procedures, all of
them having asymptotically equivalent computational requirements, it is
clearly important to consider appropriate computational effort parameters.
There are three measurements frequently used in the literature. However,
all of them have their advantages and disadvantages:

CPU time: The amount of CPU required during search is clearly
relevant to computational effort. However, it is highly environment and
implementation dependent and often times difficult to measure
accurately. Furthermore, mainly due to the development of computers
and networks, in most research laboratories it is difficult to reproduce
the same environment for different executions.

Visited nodes: Since we are concerned with tree search algorithms, we
can evaluate them measuring the number of nodes that they visit. Each
time the algorithm attempts to instantiate a variable, it is counted as a
visited node. The advantage of this measure is that it is both
environment and implementation independent. However, different
algorithms may perform a non comparable amount of work at each
node. For example, simple backtracking performs an O(n) task at each
node that it visits, forward checking complexity at each node is O(nm),
and MAC complexity per node can be up to O(em?). For this reason, the
number of visited nodes is better taken as a measure of the algorithms'
search quality. Obviously, there is a trade-off between the search quality
and the cost of achieving it.

Consistency checks: A consistency check takes place each time that the
algorithm checks whether two values can be consistently assigned to
two constrained variables. Most algorithms are defined in terms of
how they maintain consistency at each node. For this reason, the cost of
visiting each node can be established in terms of the number of
consistency checks that it performs. Consistency checks are probably the
best environment independent measure for computational effort.
However, one should be cautious about taking consistency checks as the
only measurement because different algorithms have different
overhead apart from checking consistency. In addition, it should be
mentioned that sophisticated algorithms use specialized data structures
(such as support-lists in AC-4) to keep some consistency information and
speed up its retrieval. Counting consistency checks may not be
appropriate for these cases. Nevertheless, the number of consistency
checks is the most frequently used measurement and we will use it as
the principal search effort indicator.

48 Chapter 2. Related Work

2.5 Historical Account

The work presented in this dissertation includes results obtained during
the period of time between 1995 and 1998. Because of the area dynamism,
we find that the current state-of-the-art differs significantly from what was
in 1995, when our work was started. For this reason, we believe that it is
important to place our work in its appropriate historical context. In this
Section we summarize what were the hot topics related to our work when it
was started, and what progress has occurred parallel to our research.

2.5.1 Research Trends in 1995

A topic generating controversy in 1995 was the possible superiority of
stochastic algorithms vs. systematic algorithms [Freuder et al, 95].
Traditionally, constraint satisfaction algorithms relied on depth-first
backtracking. These algorithms are systematic because of the following two
properties [Pearl, 85]:

1. Do not leave any stone unturned (namely, they are complete).

2. Do not turn any stone more than once.
The unexpected efficiency of GSAT on difficult SAT problems [Selman et
al., 92] raised the interest toward stochastic nonsystematic algorithms.
These algorithms, inspired by physical and biological metaphors,
consider constraint satisfaction as a cost function on the space of all total
assignments which has to be globally optimized. They have the following
properties (as Dechter indicates in [Freuder et al., 95]):

1. May leave many stones unturned.

2. May turn the same stone multiple times.
Since it was shown that stochastic algorithms can find solutions much
faster than systematic algorithms for some interesting classes of problems,
their intrinsic lack of completeness raised the following question: if
systematic algorithms may require more time than we can wait for, what do we want
completeness for? However, it was also shown that there are problem
instances for which stochasticity perform poorly [Konolige 94]. In
addition, because of their structure, stochastic algorithms are inappropriate
for inconsistent problems.

A second topic generating the interest in the community was the
evaluation of algorithms. The development of new systematic constraint
satisfaction algorithms have been an intense topic of research for the last
twenty years. By the time we started our work, many refinements to the
basic backtracking strategy had been proposed. Some classical ones are:
BM, BJ, GBJ, CBJ, FC, etc. and their combinations: BM-CB]J, FC-B], FC-
CBJ, etc. [Prosser, 93a]. Some more recently developed are: MFC [Zweben
and Eskey, 89; Dent and Mercer, 94], weak-commitments [Yokoo, 94], nogoods-
recording [Frost and Dechter, 94], dynamic-backtracking [Ginsberg, 93], etc.

2.4 Algorithms Evaluation 49

Their number had increased up to the point that it became important to
order them according to their efficiency. A ranking based on a theoretical
basis seemed out of reach. Since all algorithms have an exponential worst-
case behaviour, ordering them according to their average-case
performance on a benchmark was taken as the most reasonable approach.
The problem was to find the appropriate benchmark. Previous evaluations
were performed using foy problems such as the n-queens or the ZEBRA
[Prosser, 93a], and it was accepted that any conclusion drawn from these
experiments need not hold elsewhere because these foy problems are not
representative of the problems that arise in practice. However, the
discovery of the phase-transition on random problems and its associated
average-case exponentially difficult problems provided a new source of
problems to test algorithms on [Frost and Dechter, 94; Bacchus and van
Run, 95]. It has to be accepted that random problems are not necessarily
good representatives of real problems, but they provide an easy way to
generate large samples of similar instances with an expected similar
average-difficulty. The use of random problems has been a major step
forward in constraint satisfaction benchmarking.

Experiments on random problems pointed that FC was one of the
best algorithms for total constraint satisfaction. Enhancing it with
intelligent backtracking (FC-CBJ]) or lazy evaluation (MFC) only provided
slight gains [Bacchus and van Run, 95]. The top position of FC in the
algorithms' ranking reinforced the opinion that propagation is a key
aspect on the effectiveness of algorithms. At this time it was believed that
enforcing a lower level of propagation than arc-consistency was the most
cost-effective overhead in constraint satisfaction [Kumar, 92]. When Sabin
and Freuder [Sabin and Freuder, 94] suggested that maintaining full arc-
consistency during search is often cost effective, the research community
was skeptical about it.

General purpose heuristics for variable and value ordering have been
an accompanying topic of research to that of systematic algorithms.
Nevertheless, it has also attracted a lot of interest by itself. It has been
shown for a long time that the order in which variables are instantiated
strongly affect the size of the search space explored by algorithms.
Dynamic orderings, where the current variable is selected at each node,
are generally better than static orderings. More precisely, the minimum
domain heuristic, already proposed in [Haralick and Elliot, 80] was
believed to be the best variable ordering heuristic [Ginsberg et al., 90;
Dechter and Meiri, 94; Bacchus and van Run, 95]. The question of
choosing the value to use in the instantiation of the selected variable did
not obtain as much attention as variable ordering. Nevertheless, research
on value ordering was still taking part of major conferences [Geelin, 94;
Frost and Dechter, 94]

Since machines become faster and more efficient algorithms are
developed every day, constraint-based techniques can be applied to more
and more real problems. When a real problem is cast in the CSP

50 Chapter 2. Related Work

framework, one often encounters overconstrained problems for which
partial constraint satisfaction is of interest. Generalizing the CSP
framework in order to deal with these situations was an intense topic of
research that included the development of semantics in order to properly
express these over-constrained real problems and their preference
criterion [Shapiro and Haralick, 81; Schiex, 92; Martin-Clouaire, 92;
Fargier and Lang, 93]. Not much work had been done on the algorithmic
aspects of partial constraint satisfaction. The problem was addressed in
[Freuder and Wallace, 92], where they generalize classical CSP
algorithms to partial constraint satisfaction. This initial work pointed that
the partial constraint satisfaction counterpart of FC was also the leading
algorithm. Additional enhancements to partial constraint satisfaction
algorithms included the development of MAX-CSP specific variable
ordering heuristics [Wallace and Freuder, 93] and the use of directed arc-
consistency pre-processing [Wallace, 94].

2.5.2 Research progress in 1995-98

The controversy between systematic and stochastic search is not over, yet.
However, it is understood that each type of algorithms has its advantages
and disadvantages. The suitability of each algorithmic schema probably
depends on the domain where it is to be applied.

Regarding algorithms evaluation, random problems have become
the standard benchmark for general purpose techniques. However, it is
generally accepted that a final assessment of an algorithm requires some
experiments on real domains [Frost et al., 96]. Thus, it is becoming the
norm that new algorithms for CSP be evaluated with both random
problems and some specific domain. Especially relevant in this context is
the recent work of [Kondrak and van Beek, 97] where, for the first time,
some selected algorithms are theoretically ranked.

Regarding our own work, it started on the study of constraint
satisfaction as global optimization. Our first idea was to apply local
optimization techniques, such as the steepest ascent, to solve constraint
satisfaction. Thus, it was close in spirit to that of stochastic search, but more
influenced by hill-climbing than by stochasticity. Since hill-climbing
does not guarantee global solutions, we decided to use hill-climbing advice
inside systematic algorithms, by developing gradient-based variable and
value ordering heuristics [Meseguer and Larrosa, 95; Larrosa and
Meseguer, 95]. Interestingly, in the value ordering context, our intuitions
drove us to very similar ideas of what was proposed in [Keng and Yun, 89;
Geelen, 92; Frost and Dechter, 95]. However, we consider that our
heuristics are more general because they have deeper foundations, include
variable and value orderings in the same framework and can be applied to
MAX-CSP. The next year (96), different variable ordering heuristics were

2.4 Algorithms Evaluation 51

proposed [Bessiére and Régin, 96; Gent et al., 96]. To date, no exhaustive
evaluation of them has been reported.

When we were testing our heuristics on MAX-CSP, we rediscovered
the use of DAC counts to improve PFC lower bound presented by [Wallace,
94]. However, our implementation was making more sensible use of the
available information and provided better performance. These results were
presented in [Larrosa and Meseguer, 96b]. As we were evaluating our
algorithm on random problems, we found out that using DAC could
change the difficulty pattern, so our algorithm (and Wallace's algorithm,
too) could be exponentially better than plain PFC. This surprising result
was presented in [Larrosa and Meseguer, 96a]. The same year, an
alternative algorithm for MAX-CSP, russian doll search, was presented in
[Verfaillie et al., 96]. Since we were not aware of each other's advances, no
comparison could have possibly been done. However, it served to point out
that many doors remain open in the MAX-CSP context. Also in that same
year, Bessiére and Régin provided convincing evidence of the importance
of maintaining arc-consistency could have in difficult total constraint
satisfaction problems [Bessiére and Régin, 96]. Thus, our results, together
with those of [Sabin and Freuder, 94] and [Bessiére and Régin, 96] seem
to be along the same line: enforcing local consistency is a promising
approach for both CSP and MAX-CSP. Very recent work on both CSP
[Debruyne and Bessiére, 97] and MAX-CSP [Larrosa et al., 98] give
additional support to our claim. In [Meseguer and Larrosa, 97] we show
that our techniques for MAX-CSP can be successfully adapted to more
general frameworks of partial constraint satisfaction.

Nowadays, no one would doubt that MAC is the best algorithm for
sufficiently hard problems in the total constraint satisfaction context and
that PFC has been clearly outperformed by DAC-based PFC and PFC-RDS
in the partial constraint satisfaction context. An exhaustive comparison
between DAC-based PFC and PFC-RDS still remains to be done.

Lazy evaluation has been applied to constraint satisfaction in Minimal
Forward Checking (MFC) [Zweben and Eskey, 89; Dent and Mercer, 94;
Bacchus and Grove, 95] and in Lazy Arc Consistency [Schiex et al., 96]. In
both cases, the corresponding non-lazy algorithms were doing more than
needed to achieve their goals, so introducing this technique caused
efficiency improvements. In that context, it was clear that the general idea
of lazy evaluation was suitable in the constraint satisfaction context.
Following that line of research, we have explored its applicability to the
partial constraint satisfaction case and we have found that in this context
lazy evaluation is even more suitable than in the total constraint
satisfaction case. We believe that future efficient implementations of MAX-
CSP algorithms will include some lazyness in their propagation
procedure.

Finally, the idea of subproblem merging can be included into a line
of research started with [Freuder, 91] where the first notions of value
similarity were defined. The algorithmic implications of this concept

52 Chapter 2. Related Work

have motivated a sequel of results [Haselbock, 1993; Bellicha et al., 94]. Our
work on subproblem merging, presented in [Larrosa, 97], can be seen as a
step forward a more flexible notion of value similarity with more practical
applicability.

Chapter 3

Subproblem Merging

Classical CSP algorithms follow a common schema: at each node the
algorithm selects a new variable and sequentally attempts to assign all its
values. This schema is suitable for most problems. However, there are
situations where it causes redundant search. In this Chapter we show one
of these situations, which occurs when problems have different values for
the same variable with a similar constraining behaviour. We show that
the classical search schema does not take advantage of this similarity and
solves the problem inefficiently because it considers these values as
completely different. In this Chapter we develop one efficient way to deal
with this situations. The idea is to transform the search space by merging
sibling subtrees corresponding to similar values. As a result, we obtain
narrower and higher search trees. We show that merging subtrees
associated with similar values can reduce significantly the cost of search.
This idea extends previous approaches with the same insight, in the sense
that it is useful for a broader spectrum of situations. We develop algorithms
for total and partial constraint satisfaction and experimentally show its
suitability.

This Chapter is organized as follows. In Section 3.1, we introduce
and motivate our approach. In Section 3.2, we review previous work related
to our approach. In Section 3.3, we present the concept of value similarity.
We introduce the concept of weak branching and show its merging effect
in Section 3.4. In Section 3.5, we develop and analyze FCw, the FC
extension to weak branching. The same idea is extended to MAX-CSP in
Section 3.6 where we develop PFCw. In Section 3.7, we evaluate the validity
of our approach on random problems and crossword puzzles. Finally,
Section 3.8 contains some conclusions.

54 Chapter 3. Subproblem Merging

3.1 Introduction

In many real-world problems, variable domains may contain values
which have, more or less, the same constraining behaviour. For example,
consider a resource allocation task where a pool of resources have to be
assigned to demanding jobs. Suppose that a given job requires a certain
type of machinery, such as an oven. If there are a number of available
ovens, each one with its own technical features, one can expect that
expressing the problem as a CSP, different ovens having similar features
will be associated with different values which may fit equally (or almost
equally) well to problem solutions.

In tree search algorithms, each node represents a different
subproblem defined by the assignments performed in the path from the
root to the node. Two subproblems are siblings when they differ only in the
value of the last assigned variable. Assigning values that have a similar
constraining behaviour produces similar sibling subproblems. But depth-
first based algorithms do not take advantage of this similarity because
depth-first solves them independently. We claim that solving similar
subproblems without exploiting their similarity is inefficient because part
of the search is duplicated.

Figure 3.1 shows a simple graph coloring problem that illustrates
this idea on total constraint satisfaction. The problem is to assign a color to
each vertex in such a way that adjacent vertices have different colors. Color
choices for each vertex are represented by letters and they appear inside
the vertices. As CSP, vertices are problem variables, colors are values and
arcs represent inequality constraints. Figure 3.1 shows the initial problem
(upper left side) and the three sibling subproblems, S¢, S and S¢, that
forward checking produces if X; is selected and its three values are
assigned. Observe that they are not very different from each other. In
particular, values a and & have a different effect in X3 only, so assigning a
or b to X produces two similar problems that only differ in one value of
X3.

Depth-first based algorithms solve sibling subproblems sequentially
and independently, without taking advantage of their possible similarity.
These algorithms may repeat part of the search when solving different
sibling subproblems. Figure 3.2 shows the search tree that forward
checking traverses when it solves the coloring problem previously
presented (the whole tree is traversed because the problem is unsolvable),
assuming a lexicographical variable and value ordering. The two first
subtrees, corresponding to S?and S% have a large shadowed region formed
by nodes with the same path, except in their first assignment. The reason
for this is that values @ and & produce two similar subproblems. Solving
them independently (as forward checking does) causes a search repetition
in both subproblems. The complete search requires FC to visit 24 nodes.

3.1 Introduction 55

Figure 3.1: A coloring graph problem (left upper corner) and its three
first-level subproblems.

Figure 3.2: Search tree traversed by FC on the coloring problem.

In this Chapter we present a mechanism that is useful when
dealing with problems having similar values. The basic idea is to group
similar values of a variable (we say that they are weakly assigned) and to
treat them as a single value. When all the variables have been assigned,
the compound value is ungrouped. As a result, the associated subtrees are
merged producing narrower search trees. The cost of this approach is a
decrement in the algorithm's dead-end detection ability plus some extra
levels in the tree, required when ungrouping compound values.
Nevertheless, we show that if this idea is applied to sufficiently similar
values, merging benefits surpass extra cost.

56 Chapter 3. Subproblem Merging

Figure 3.3: The merging effect of a weak assignment on the coloring
problem.

Figure 3.3 presents the search tree that FC traverses if a and b values
of Xj are grouped in the coloring problem. Observe that pairs of duplicated
nodes in Figure 3.2 are merged into a single node in Figure 3.3. In this
particular case, the algorithm never reaches the point where the final
decision about Xj has to be taken because dead-ends are always detected
before that point. The number of visited nodes is reduced to 19.

3.2 Previous Work

The importance of detecting values having similar constraining behaviour
was first stressed by Freuder [Freuder, 91]. His work developed the concept
of value interchangeability.

Definition 3.1:

Two values a and b of a CSP variable are fully interchangeable iff:
1. every solution to the CSP containing a remains a solution if a is
replaced by b,
2. every solution to the CSP containing & remains a solution if & is
replaced by a.
In other words, interchangeable values are indistinguishable with respect
to the set of problem solutions. Interchangeable values are redundant in
the sense that one of them can be removed without modifying the problem
solvability. Moreover, the whole set of solutions can still be recovered. If
only one representative of each group of interchangeable values is
maintained, the problem space is simplified. Figure 3.4 shows a simple

3.2 Previous Work 57

graph coloring problem (adapted from [Freuder, 91]) that illustrates this
idea. Colors cand d for vertex Xy are fully interchangeable. For example,
substituting ¢ by d in the solution {Xj<a, Xo<¢, X3<a } produces another
solution.

Figure 3.4: A graph coloring problem with interchangeable values.

Detecting fully interchangeable values does not seem to be an easy
task. For this reason, this basic insight was extended to make it more
useful in practice. Some forms of local interchangeability which are easier
to detect are neighbourhood interchangeability and neighbourhood substitutability.
They are easily defined in terms of the set of supporting values.

Definition 3.2:

Given a CSP and a value a of variable X, the supporting values of a in
variable Xjare defined as,

supporting_values(X;,a, X;)={b :3R,‘j and (a,b) ER,‘]'}

In other words, supporting values are the set of values ais consistent with.
Consider now the following definitions of local interchangeability.

Definition 3.3:

Two values a and b of variable X; are neighbourhood interchangeable iff for
all variable X;

supporting_values(X;,a,X;) = supporting_values(X;, b, X))

Neighbourhood interchangeability is held by those values with exactly the
same constraining behaviour. It is of practical interest because it is a
sufficient condition for full interchangeability that can be efficiently
detected. In the example of Figure 3.4, colors cand d for vertex Xy are
indeed neighbourhood interchangeable. A somehow relaxed form of
neighbourhood interchangeability is neighbourhood substitutability.

58 Chapter 3. Subproblem Merging

Definition 3.4:

Given two values a and b of variable X;, value a is neighbourhood
substitutable for b iff for all variable Xj,

supporting_values(X;, a,X)) 2 supporting_values(X;, b,X;)

Neighbourhood substitutability is one way neighbourhood
interchangeability. It is of practical interest for two reasons: (i) itis a
weaker condition, so it may happen more often in practice, and (i) the
value with smaller support can be removed without modifying the problem
solvability. In the example of Figure 3.4, color c¢for vertex Xo is
neighbourhood substitutable for colors a and &.

Searching for one solution, values which do not modify the problem
solvability can be safely removed. Neighbourhood interchangeability and
substitutability give sufficient conditions for safe value removal and can
produce important problem simplifications. Back to the example of Figure
3.4, we can remove value d because it is interchangeable with value ¢. We
can remove values a and b because they are substitutable by value c. After the
removal, values a and b of variables X; and X3 become interchangeable, so
value b can be removed from both variables. Consequently, we obtain a
trivial problem which requires no search at all to be solved. Figure 3.5
shows the reduction process. It has been shown that detecting and
exploiting local interchangeabilities at a pre-processing step is cost effective
for some CSP.

With the aim of a more practical use of interchangeabilities, the
concept of neighbourhood interchangeability is relaxed to be only
applicable to a single constraint [Haselbock, 93].

e =D

Figure 3.5: A graph coloring problem simplification by means of local
interchangeabilities.

Definition 3.5:

Two values a and b of variable X; are neighbourhood interchangeable with
respect to variable X; iff,

3.2 Previous Work 59

supporting values(X; a,X)) = supporting_values(X;b, X))

Considering interchangeabilities subject to a single constraint has the
interest of providing weaker conditions that will happen more frequently
in practice, as the following example illustrates.

Example 3.1: [Haselbock, 93]

Let variables Xj, Xo and X3 represent three ports of a board where
modules must be mounted on. The available modules have two main
characteristics: their mode (analog or digital, abbreviated as a and d)
and their version number (1 or 2). Thus, domains of variables are
{va1, Va2, va1, vagl-
The following constraints restrict the possible configurations:
R19: the modules mounted on X) and Xo must be of different modes.
R13: the modules mounted on X1 and Xg must have different version
numbers.
From the perspective of Xj, the following assertions are true:
vq1 and v,y are neighbourhood interchangeable with respect
to variable Xp.
vg1 and vg9 are neighbourhood interchangeable with respect
to variable Xo.
v,1 and vy are neighbourhood interchangeable with respect
to variable Xs.
V49 and vgg are neighbourhood interchangeable with respect
to variable Xs.
However, in this simple CSP there is no pair of neighbourhood or
fully interchangeable domain values in Xj.
Following Haselbock's work, [Bellicha et al., 94] uses the concept of local
substitutability subject to a single constraint.

Definition 3.6:

Given two values a and & of variable X;, value a is neighbourhood
substitutable for b with respect to variable X iff,

supporting_values(X; a, X)) 2 supporting_values(X;,b, Xj)

Local interchangeabilities subject to a single variable can be detected in a
pre-processing step with low computational cost. Once they are computed,
they can be exploited during the subsequent search in two different ways
[Haselbock, 93; Bellicha et al., 94]:

1. Consistency checks saving. local interchangeabilities provide dominance
or equivalence conditions which can be used to save consistency
checks. For instance, in a FC-like algorithm, after checking an
assignment X;< a against a future value b of Xj, consistency with
respect to locally interchangeable or substitutable values may be
already known because of the pre-processing. Using this idea, no

60 Chapter 3. Subproblem Merging

search tree reduction is obtained, but computational effort can be

avoided, especially on those contexts where constraint checks are

expensive.

2. Subproblem reductions: During search, algorithms face subproblems
where the task consist on solving the original CSP subject to past
assignments. It may be that some values were not interchangeable,
nor substitutable at the initial problem, but become it at some
subproblems. Then, the subproblem can be simplified by the
appropriated domain reductions.

In [Haselbock, 93; Bellicha et al.,, 94] several algorithms based on this
ideas are presented and evaluated. It is proven that they are cost-effective for
some CSP.

Detecting local interchangeabilities is useful because they indicate
value similarities which depth-first fails to exploit. However, local
interchangeabilities are only some cases of flagrant value similarity.
There are more subtle ways in which values can be similar. For instance,
in the coloring problem of Figure 3.1, there is no pair of neighbourhood
or fully interchangeable domain values. Nevertheless, it was shown in
Figure 3.2 that FC repeats part of the search because % and S? are similar.
A different approach is followed in [Freuder and Hubbe, 95]. The idea
involves the extraction from a problem of those subproblems that are known
to be unsolvable.

Consider the coloring problems of Figure 3.6a and 3.6b. The second
is a subproblem of the first (here we denote subproblem to one in which
domains are proper subsets of the other). This particular subproblem is
unsolvable. Obviously, it would be good to extract it from the original
problem so no search is spent in proving its unsolvability. The following is
the extraction procedure presented in [Freuder and Hubbe, 95]:

abc

Cor—ard)

a. Problem S b. Unsolvable subproblem §’

S S

c. The three components of S minus §’

Figure 3.6. A decomposition example on graph coloring.

3.2 Previous Work 61

Extract (Subproblem, Problem, Decomposition)
Until the Problem matches the largest Subproblem
Pick a variable, X;, whose domain at the Problem does not match
its domain at the Subproblem
Divide the Problem into two subproblems that differ only in that
the domain of X; in one matches the domain of in the target
Subproblem, while the domain of X; in the other contains the
remaining values
Set the Problem to the first of these subproblems
Add the second to the Decomposition
Apply Extract to the updated Problem and Decomposition with the
same target Subproblem
Return the Decomposition

This procedure extracts Subproblem from Problem, producing a Decomposition.
Figure 3.6¢ depicts the decomposition that is obtained if the subproblem of
Figure 3.6b is extracted from the problem of Figure 3.6a. This extraction
mechanism is used in a FC-like algorithm in the following way: before
solving a subproblem, the common part that it has with the largest sibling
problem that has been found unsolvable is extracted, producing a simpler
problem.

Example 3.2:

Consider the coloring problem of Figure 3.1 and its three first level
subproblems. It was shown that S% and S® have a good deal in
common. After solving §? and detecting its unsolvability, it is
reasonable to extract from S$® the common part that it has with
$%(namely, st -(sa NS%). The extraction produces the following
subproblem,

If FC solves the sequence §%, S?-(§2NS%) and S¢, the following
search tree is obtained,

62 Chapter 3. Subproblem Merging

S
¥
Y
¥
KW

—_—
S
S
Q
Q
>~

d

S
)
U
S
S
)

Which requires visiting 22 nodes. Comparing this tree with the
tree produced by the weak assignment of {q,5} to X; (Figure 3.3), one
observes that, for this particular case, a weak assignment produces a
smaller search tree than a subproblem extraction.

3.3 Value Similarity

We say that two values of the same variable are similar when they are
inconsistent with most of the same values of the problem. Thus, similarity
between values is a graded concept based on the intersection of their
supporting values. The more common values they have in their supports,
the more similar they are. Our definition of similarity is deliberately
vague, since we want it to be applicable over a broad class of situations.

Local interchangeabilities, in the sense of [Freuder, 91], are
particular cases of our idea of similarity. Local interchangeable values have
indeed maximal similarity, since they are inconsistent with exactly the
same values. Local substitutable values have a special type of similarity in
which one value dominates the other. However, they require strict
conditions that may not occur very often in practice.

For example, consider a scheduling problem where the starting
time of a set of jobs has to be decided. Consider the CSP representation in
which jobs are variables and feasible start times are their values. For a
given job, assigning its start time to ¢ or #+1 will produce two subproblems
that will not differ much from each other (they will probably only differ
in that the second leaves one more period of time to preceding jobs and
substracts one period of time to successors jobs). Thus, ¢ and #1 are similar
values in a more subtle way that the one detected by local
interchangeabilities. Our approach is appropriate for this more general
idea of value similarity, where strict local interchangeability cannot be
applied.

3.4 Weak Branching 63

3.4 Weak Branching

Standard constraint satisfaction algorithms traverse a tree defined by the
following branching rule. At node § an unassigned variable is selected.
The successors of § are defined by instantiating the current variable to

each value of its domain. We denote by S* the successor of S in which value
a is assigned to the current variable. We refer to this strategy as strong
branching and we say that each subproblem is obtained after the strong
assignment of the current variable.

Using strong branching, there is an equivalence between nodes,
paths and assignments. Throughout this Chapter, unless otherwise
indicated, we assume that algorithms select variables in lexicographical
order. Thus, a node at level % is defined by its path from the root which is
a partial assignment {X;<vk: 1 < k< h} (recall that vk denotes the value
assigned to X;). We refer to paths under the strong branching strategy as
strong paths.

The strong branching strategy is the responsible for the inefficient
treatment that algorithms give to similar sibling subproblems: once a
variable is selected, similar values produce similar subproblems that are
solved independently. Our approach involves detecting these similar values
and, when their variable is selected for instantiation, not to produce a
different node for each similar value, but a unique node that includes all of
them. The decision of what value is finally assigned to that variable is
delayed to later tree levels. As a consequence, all search performed from
this point to the final value splitting is common to all similar values.

To develop this idea we need to weaken the branching strategy and,
instead of generating successors by selecting single values for the current
variable, to allow the selection of groups of values. It requires the following
definition.

Definition 3.7:

Given a node S, its current variable X; and a subset of its domain

QC D; (|Q>1), the weak assignment X~ Q produces a successor node s2,

such that in the subtree below only values in Q are considered for X;.
The use of weak assignments allows for the definition of the weak branching
strategy.

Definition 3.8:

Given a node S and a partition of its current variable domain,
IT={n;}, the weak branching strategy defines the set of successors of S as

Tk Tk . . .
the set {S : n,€II} where S is the node associated with the

64 Chapter 3. Subproblem Merging

assignment X;<-m;. Assignments can be either strong or weak,

depending on the cardinality of m;.

When every subset in the partition has one element, weak branching
becomes strong branching. It is easy to see that weak branching is a
correct branching strategy because: (i) each successor subproblem is smaller
than its parent, so all paths are finite, and (i) no problem solutions are
lost in the transformation. However, using weak branching, the
algorithms traverses quite a different search tree. Paths may have different
nodes associated with (weak) assignments of the same variable.
Consequently, leaves occur at different tree levels, depending on the
sequences of assignments which define their path.

For our purposes, it is enough to allow weak branching in a limited
way. We only allow each variable to be assigned at most twice throughout
a path. The first assignment can be either weak or strong and, if it is
weak, there is a second strong assignment in which a single value for the
variable is finally decided. Using this strategy the concept of path is no
longer equivalent to a partial strong assignment.

Definition 3.9:

A weak path of length h (h < 2n) is a set of assignments, {Xsz—Qp: 1 <

k< h}, such that:

* The first n assignments represent strong or weak
assignments to each problem variable.

* The remaining (h-n) components represent strong
assignments to the variables that were weakly assigned
earlier in the path.

We extend the lexicographical variable ordering assumption to weak
assignments. Thus, if k=< n, Q; represents an assignment (either weak or
strong) to X;. If n < k< 2n, Q) represents a strong assignment to the (k-n)-th
weakly assigned variable.

Therefore, under the weak branching schema search trees have

variable height (bounded by 2n) and two distinguishable areas:

* Compression area: up to level n, nodes represent search states to
which strong and weak assignments are performed. This area is
narrower than the corresponding strong branching search tree,
because weak assignments have fewer successors than strong
assignments.

* Expansion area: because of weak branching in the = first levels, the
addition of new tree levels is required. From level = to level 2n,
nodes represent search states where some weak assignments
done previously are made strong.

We can see the compression area of a weak branching tree as the fusion of
some paths in its corresponding strong branching tree. This fusion is
defined in the following.

3.4 Weak Branching 65

Definition 3.10:

Given two search trees for the same problem, using strong and weak

branching respectively, we define the application fusion from nodes

of the strong branching tree to nodes in the compression area of the

weak branching tree as follows,

fusion({Xg—v% 1 < k< h}) = {Xj=— Q) 1 = k = &}, such that ke Qy
The merging effect of a weak assignment, characterized by the fusion
application, is illustrated in Figure 3.7. It sketches two search trees
associated with the coloring problem of Figure 3.1. The upper tree is built
under strong branching. The lower tree is built under weak branching,
with a single weak assignment X< {a,b}. Observe that the first two
subtrees of the upper tree are merged into a unique subtree in the lower
tree. Moreover, an additional level is required in the bottom tree to assign
a unique value to Xj in the expansion area.

Observation 3.1:

The application fusion is exhaustive, but not injective. Each node in
the compression area of the weak branching tree, defined by a weak
path, {X;<Qs: 1 < k< h}, merges 10111 Qol-.../| Q4] nodes.

Proof:

By definition of fusion, all nodes of the strong branching tree whose
path is in the cartesian product of Q;x Qox...x Q correspond to a
unique node {Xj< Qj: k= h} in the compression area of the weak
branching tree. Obviously, there are 1Q;11Qol-...:| Q| such nodes.

3.5 Application to Total Constraint
Satisfaction

3.5.1 Forward Checking with Weak Assignments

Weak assignments can be easily embedded into algorithms for total
constraint satisfaction adapting the algorithms to follow the weak
branching strategy. With this approach, a search state has three different
sets of variables: past variables (P) which have been strongly assigned,
future variables (F) which have not been considered for instantiation so far
and weakly assigned variables (W) which have been weakly assigned. If
F=O, the current node belongs to the compression area of the search tree.
If F=0, the current node belongs to the expansion area.

66

Chapter 3. Subproblem Merging

We have adapted forward checking to include weak assignments.
The resulting algorithm, FCw, is outlined in Figure 3.8. FCw
distinguishes two cases:

If the set of future variables is not empty (i.e.: the current node is
in the compression area), the current variable is selected among
them (line 6). Its domain is partitioned and each subset is
sequentially assigned. Unit subsets are strongly assigned (line
15) and non unit subsets are weakly assigned (line 18).
Depending on the kind of assignment performed, the current
variable is added to P or W. Each assignment is propagated with
the weak look-ahead function. If the propagation does not produce
an empty domain in F or W, the recursive call is made and
search continues below.

If the set of future variables is empty (the current node is in the
expansion area), the current variable is selected among weakly
assigned variables (line 24). Each value in its domain is strongly
assigned (line 29). Each assignment is propagated with the weak
look-ahead function. If no dead-end is detected, the recursive call
is made.

The weak_look_ahead function propagates the effect of each assignment
toward future and weakly assigned variables. If the current assignment is

. T

X2 a c

Figure 3.7: The merging effect of a weak assignment.

3.5 Application to Total Constraint Satisfaction 67

strong, look-ahead behaves as in the FC case, removing from domains of
future and weak assigned variables those values that are inconsistent with
the current assignment. If the current assignment is weak, look-ahead
removes from non-past domains those values that are inconsistent with all
the weakly assigned values (line 39). It is clear that a weak assignment has a
lower pruning power than the strong assignment of any of its elementary
values. Thus, FCw has a lower dead-end detection power than FC.

The partition_domain function chooses what values are weakly
assigned. It must partition domains into groups of similar values subject to
the current subproblem. This function is domain dependent (see Section

3.7).

3.5.2 Discussion on FCw

Weak assignments have been motivated as a way to merge search subtrees
corresponding to similar values. In this section we show that, if FCw
performs weak assignments of similar values, it can outperform FC. In our
analysis, we compare the number of nodes visited by FCw and FC. Since
both algorithms perform a similar amount of work at each node, the
number of visited nodes can be considered a reasonable parameter to
evaluate search effort.

Weak assignments modify the search tree structure by merging
subtrees. In addition, weak assignments have the additional effect of
modifying the relative order among leaves. Since algorithms stop when
they find a solution, a weak assignment may affect their search efficiency
by changing the relative position of the first solution leaf (for instance, if
the first solution in lexicographical order is {Xj< b, Xo< a, Xg<a,..,
X< a}, a weak assignment X;< {a,b} changes its position from the
m(WI)+1, to the second leaf). We are rather concerned with tree reductions.
For this reason, in our analysis we consider unsolvable problems only.
Doing so, we avoid the influence of the position of the first solution in the
nodes that the algorithm visits. This assumption is realistic when dealing
with non trivial problems because, even when they are solvable,
algorithms spend most of their time proving the unsolvability of
subproblems (observe that, if an algorithm requires visiting v nodes to
solve a problem, in (v-n) visited nodes their corresponding subproblem is
unsolvable).

The relation between nodes visited by FC and FCw is given in the
following observation.

68 Chapter 3. Subproblem Merging

function FCw (P, F, W, Assg, Dom) returns boolean

1 if (F= O and W = J) then

2 sol := Assg)

3 return (true)

4 endif

5 if (F =) then

6 (X;,D;):= select_current_variable and_domain(F, Dom)

7 Il:= partition_domain(D;)

8 stop:= false

9 while (II#J and not stop) do

10 n:= select_current_class (II)

11 IT: =I1-{r}

12 NDom:= weak_look_ahead(X;, m, (FUW)-{X;}, Dom-{D;})
13 if (not empty domain(NDom)) then

14 if (|m|=1) then

15 NAssg:= Assg U {X;<a}

16 stop:= FCw(PU{X;}, F-{X;}, W, NAssg, NDom)
17 else

18 D;:=n

19 stop:=FCw(P, F-{X;}, WJU{X;}, Assg, NDomU{D;})
20 endif

21 endif

22 endwhile

23 else

24 (X;,D;):= select_current_variable and_domain(Ww, Dom)

25 stop:= false

26 while (D; = and not stop) do

27 a:= select_current_value(D;)

28 D;:= D;-{a}

29 NAssg:= Assg U {X;<a}

30 NDom:= weak_look_ahead(X;, {a}, (FUW)-{x;}, Dom-{D;})
31 if (not empty domain(NDom)) then

32 stop:=FCw(PU{X;}, F, w-{X;}, NAssg, NDom)
33 endif

34 endwhile

35 endif

endfunction

function weak_look ahead(X;, m, Vars, Dom) returns set of domains

36 stop:= false

37 for all D; €Dom while (not stop)do

38 for all b €D; do

39 if (VaEn inconsistent(X;<a, X;<b)) then Dj:= D;-{b}endif
40 endfor

41 if(Dj=) then stop:= true endif

42 endfor

43 return (Dom)

endfunction

Figure 3.8: FCw.

3.5 Application to Total Constraint Satisfaction 69

Observation 3.2:

1. If FC visits node S, then FCw visits its fusion node fusion(S) in the
compression area.

2. If FCw visits node § in the compression area, then FC does not
necessarily visit any node in fusion—l(S).

3. FCw may visit nodes in the expansion area.

Proof:

1. When a node is visited by FC, none of its ancestors has produced
an empty domain. Therefore, if FC visits {Xy<—vk: 1 s ks h}, all
future variables have at least one feasible value in their domain
before look-ahead. Let a; (k< j= n) be such a value. By definition,
fusion({Xp—vk: 1 s ks'h}) = {Xp= Qx: 1 = k= h}, such that o*
belongs to Qy . If 0; is consistent with {Xpe—vk: 1 s k< h}, then it
is also consistent with {X;< Qj: 1 < k< h}. Therefore, FCw visits
{Xy=Qp: 1 < k=< h} because assignments previous to X; do not
produce an empty domain.

2. Consider a 3-variable problem with two values per variable (i.e.
D={a,b}) and the following constraints: Rj9={(b,a),(b,b)}and
Ry3={(a,a),(a,b)}. Then, FC detects a deadend after assigning
either a or b to X;. However, FCw does not detect the deadend
after assigning Xj<{a,b}, so FCw will assign Xp. Thus, FCw visits
a X9 node while FC does not visit any.

3. Consider a 3-variable problem with three values per variable (i.e.
D={a,b,c}) and the following constraints: Rj9=R93={(a,a),(b,b)}and
Ry13={(a,b),(b,a)}. It is easy to see that FCw visits the node
{X1<-{a,b}, Xo—{a,b}, X3<a, X1« b}, which belongs to the
expansion area.

From (1) we see how FCw can produce node savings with respect FC. A
node, {Xp< Qy: 1 < ks h}, visited by FCw may merge up to 1Q11-1Qgl-...-| Q}l
nodes visited by FC. Thus, weak assignments are useful when they merge
many nodes visited by FC. From (2) and (3), we see how FCw may visit
more nodes than FC. Since weak assignments decrease the pruning
power, it may turn out that FCw has to go to deeper levels than FC to detect
a dead-end. Thus, weak assignments will provide little or no savings
when weak pruning is much lower than the alternative strong pruning.

We can explain the different performance of FC and FCw as a trade-

off between branching and pruning. FC and FCw branch at different
problem alternatives under the strong and weak branching strategy,
respectively. At each node look-ahead propagates the current assignment
by pruning unfeasible values. Considering dead-end detection, it is
beneficial to follow the strong branching strategy where each decision is
as specific as possible because it allows a stronger propagation which

70 Chapter 3. Subproblem Merging

prunes more values and may anticipate the detection of dead-ends. The
disadvantage of strong assignments is that the search tree width grows
faster with respect to tree levels. Considering the number of visited nodes,
a weak branching strategy makes more general decisions, so each
subproblem merges several strong branching subproblems producing
narrower search trees. The disadvantage of weak branching is a weaker
propagation. Thus, one needs to go deeper in the tree to detect dead-ends.
Nevertheless, when similar values are weakly assigned, they basically
allow the same propagation as if they were strongly assigned. In that
situation a weak assignment is useful because it merges subtrees without
decreasing the algorithm pruning capability.

From this observation, we conclude that the potential efficiency of
FCw depends on its ability to find the right values to be weakly assigned.
Ideally, a weak assignment should be done on a subset of values such that
FC would repeat search for all of them. Similar values are good candidates
for weak assignments because they have similar pruning capability, so it is
expected that they will mostly visit the same nodes.

Finally, we want to mention that assuming a static ordering for
variable and value selection was required to analyze the merging effect of
weak assignments. However, it is not an algorithmic requirement of FCw.
This is especially important from a practical point of view because it is well
known that dynamic variable and value heuristics are much more effective
than static ones in the total constraint satisfaction context.

3.6 Application to Partial Constraint
Satisfaction

3.6.1 Partial Forward Checking with Weak
Assignments

Algorithms for partial constraint satisfaction also follow the strong
branching strategy. They can be adapted to weak branching following an
approach similar to the total constraint satisfaction case. In this Section we
develop the MAX-CSP counterpart of FCw, called PFCw. It appears in
Figure 3.9. For clarity purposes, we have removed some feasibility tests that
PFC includes to avoid some consistency checks.

Like in the FCw case, PFCw distinguishes three sets of variables at
each search state: past (P), future (F) and weakly assigned (W). If the set of
future variables is not empty, the current variable is selected among them.
Its domain is partitioned and each subset is sequentially assigned (either
strongly or weakly). If no future variable is left, the current variable is

3.6 Application to Partial Constraint Satisfaction 71

selected among weakly assigned variables and each value in its domain is
strongly assigned.

Look-ahead propagates the effect of assignments toward future and
weakly assigned variables. It updates IC counts that are used to compute the
lower bound. PFCw uses the following lower bound,

distance + 2 minv{icjv}
JEFUW

which is a straightforward extension of PFC lower bound, with the only
difference that the sum of minima is extended to weakly assigned
variables. However, given that a variable can be first weakly assigned and
later strongly assigned, and both assignments involve look-ahead, this
may cause to record twice in some IC the same constraint violation, which
would render the previous lower bound invalid. To prevent this, look-
ahead is modified to increment IC when it does not produce a duplication.
In PFCw, this is done using an array of booleans, propagated, which
records IC increments associated with weak assignments. More precisely,
if propagatedyy,; takes value true, it means that X; has been previously weakly
assigned (i.e.: X;€W) and its propagation produced an increment of iCjp
This data structure is maintained and used by the look-ahead procedures.
PFCw is shown in Figure 3.9. It has two different look-ahead procedures
presented in Figure 3.10: strong_look_ahead is used to propagate strong
assignments and weak_look_ahead is used to propagate weak assignments.
They work as follows:

* strong_look_ahead: After a strong assignment, X;<a, ICs of values
belonging to future and weakly assigned variables are updated.
Consider an arbitrary value b, of a non past variable X]-. In
general, if this value 1is inconsistent with the current
assignment, its IC is increased (line 5). However, it is not
increased if that constraint violation is already included in some
IC. There are two possibilities:

* X; was previously weakly assigned and the weak
assignment was inconsistent with X;<a. Then, ic;, already
includes that constraint violation. We can detect that
situation (line 2) because propagation;,; was set to true during
the weak assignment of X;.

* X,; was previously weakly assigned and the weak
assignment was inconsistent with X]<— b. Then, icﬂ, already
includes that constraint violation. We can detect that
situation (line 3) because propagation;p; was set to true during
the weak assignment of X;.

* weak_look_ahead: After a weak assignment, X;<x, only ICs of
future variables are updated. If a future value is inconsistent with
all values weakly assigned, its IC is incremented (line 19). This
increment is safe because the weakly assigned variable was
selected among future variables and ICs of future variables do not

72

Chapter 3. Subproblem Merging

procedure PFCw (P, F, W, dist, Assg, Dom, IC)

else

W W NNV W N

e e e
s WM = o

16
17

18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36

37
38

39
40
41
42 endif
endprocedure

if (F = A and W = A) then

UB:= dist
Best_sol:= Assg

if (F m A) then
(Xi,Di):= se

lect_current_variable_and_domain(F, Dom)

P:= partition_domain(Di)

while (P w A

) do

n:= select_current_class(II)
II:=IT-{r}
if (|m|=1) then

NAssg:= Assg U {X;<a}
ndist:= dist + icj,
(NDom, NIC) :=
strong_look_ahead(ndist, X;, =,
F-{X;}, W, Dom-{D;}, IC)
if (not empty domain(NDom)) then
PFCw(PU{X;}, F-{X},
W, ndist, NAssg, NDom, NIC)

endif
else
(NDom, NIC) :=
weak_look_ahead(dist, X;, ®, F-{X;}, W,Dom-{D;},IC)
if (not empty domain(NDom)) then
D;i=n
PFCw(dist, P, F{X;}, wJ{x,},dist, Assg,
NDomU{D,}, NIC)
endif
endif
endwhile
else
(X;,D;):= select_current_variable_and domain(W, Dom)
while (D; =) do
a:= select_current_value(D;)
D;:= D;-{a}
NAssg:= Assg U {X;<a}
ndist:= dist + icj,
(NDom, NIC) :=
strong_look ahead(ndist, X, a, F,
wW-{X;},Dom-{D;}, IC)
if (not empty domain(NDom)) then
PFCw(ndist, PU{X;}, F, w-{x;},
ndist, NAssg, NDom, NIC)
endif
endwhile
endif

Figure 3.9: PFCw.

3.6 Application to Partial Constraint Satisfaction 73

function strong_look_ahead(ndist, X;, a, F, W, Dom, IC)

1 stop:= false

2 for all X €(FUW) while (mot stop) do if (mot propagated;,;) then

3 for all b EDj do if (not propagatedjbl-) then

4 if (inconsistent(X;<a, X;<b)) then

5 icjpr=icyptl

6 Vars:= (FUW)-{X;}

7 if (ndist + icjp + KGZminv{ickv} > UB) then
ars

8 D;j:= Dy-{b}

9 endif

10 endif

11 endfor

12 if (D; = &) then stop:= true endif

13 endfor

14 return (Dom, IC)

endfunction

function weak_look_ahead(dist, X;, m, F, W, Dom, IC)

15 stop:= false

16 for all X,EF while (not stop) do

17 for all b €D; do

18 if (VaErn inconsistent(X;<a, X;<b)) then

19 icjb:=icjb+1

20 propaga tedjblv :=CIERTO;

21 Vars:= (FUWJ{X;})-{x,}

22 if (dist + icjp + kezminv{ickv} = UB) then
ars

23 D;:= D;-{b}

24 endif

25 endif

26 endfor

27 if (D; = J) then stop:= true endif

28 endfor

29 return (Dom, IC)

endfunction

Figure 3.10: Look-ahead procedures, as needed in PFCw.

have any contribution from constraints of other future variables. If
a given IC is incremented, say icjp, then propagatedyy; is set to true
(line 20). It records that icjp has a contribution of a detected
constraint violation between variables X; and X;. ICs of weakly
assigned variables are not updated because X; may have in its ICs
contributions of them.

Like in the FCw case, the partition_domain function chooses those
values to be weakly assigned. It should partition domains into groups of
similar values subject to the current subproblem. Unlike FCw, similarity
with respect to past variables is now required because different values may
have a different level of consistency with respect to past variables. The
actual implementation of this function is domain dependent.

74 Chapter 3. Subproblem Merging

Finally, we want to mention that PFCw can be combined with static
and dynamic heuristics for variable and value selection.

3.6.2 Discussion on PFCw

PFCw solves MAX-CSP traversing a weak branching tree. Thus, each node
visited by PFCw in the compression area of the tree merges a number of
nodes that PFC may require to visit. However, each node visited by PFCw
has a worse lower bound than its corresponding nodes in the strong
branching tree, and therefore, it has a weaker dead-end detection. This is
because of the following two reasons:

°* When a weak assignment is performed, the contribution of the
current variable to the lower bound is the lowest IC among the
weakly assigned values. If these values are strongly assigned, at
each subproblem the current variable has a contribution to the
lower bound greater than or equal to the minimum IC of the
current variable.

* Weak assignments have a lower power to increase ICs than its
corresponding individual strong assignments because ICs are
only increased when values are inconsistent with all weakly
assigned values. Thus, after propagating a weak assignment, the
minimum IC of each non past variable is lower than or equal to
the minimum IC of each non past variable if the values are
strongly assigned.

Therefore, PFCw visits less nodes than PFC when the merging produced
by weak assignments outweighs the additional nodes that it visits because
of its poorer dead-end detection. As in the FCw case, similar values with
respect to future variables are good candidates for weak assignments.
Similar values are mostly consistent with the same values of other
domains, so most IC that would be increased by each strong assignment
are also increased by the weak assignment. Regarding past variables, it is
enough to select values for weak assignment such that they have a similar
number of inconsistencies so their minimum IC is not very different from
their maximum. In summary, weak assignments grouping similar values
with respect to future variables (and with close IC) are good candidates to
merge subtrees without a high decrement in their dead-end detection
power.

As in the total constraint satisfaction case, we can explain the
different performance of PFC and PFCw as a trade off between branching
and pruning. PFC and PFCw branch at different problem alternatives
under the strong and weak branching strategy, respectively. At each
branch, their look-ahead propagates the assignment by pruning unfeasible
values and increasing IC. On the one hand, it is beneficial to follow the
strong branching strategy because it allows a stronger propagation (i.e.

3.6 Application to Partial Constraint Satisfaction 75

more IC are increased) which prunes more values and may anticipate the
detection of dead-ends. The disadvantage of strong assignments is that the
search tree grows faster with respect to tree levels. On the other hand, a
weak branching strategy makes more general decisions, so each
subproblem merges many subproblems obtainable with strong branching,
producing narrower search trees. The disadvantage of weak branching is
that propagation is weaker and one needs to go deeper in the tree to detect
dead-ends. When similar values are weakly assigned, they basically allow
the same propagation as if they were strongly assigned. In that situation a
weak assignment is useful because it merges subtrees without decreasing
the algorithm pruning capability.

3.7 Experimental Results

We have discussed that weak assignments are cost-effective when they
group similar values where similarity depends on the constraining
behaviour of the values. In this section, we make a practical evaluation of
the effect of weak assignments on algorithmic performance. Our
experiments are comprised of two domains: random problems and
crossword puzzles.

3.7.1 Correlated Random Problems

Standard random problems are not appropriate to benchmark FCw and
PFCw because their random nature and their lack of structure makes the
existence of similar values very unlikely. For this reason, we have devised
a different model of random problems where value similarity depends on
a structural parameter which can be varied to obtain different classes of
problems. We call this type of problems correlated random binary problems.
We must mention here that this model is totally artificial and is probably
useless out of the weak assignments context. However, it is a useful tool to
illustrate the effect of weak assignments.

Correlated random binary CSP assume and ordered set of variables
and values. They are defined by five parameters <n, m, p;, py, p>. The
number of variables is n. The number of values per variable is m, which we
assume even. Each value is refered to by their index {1, 2,..., m}. Parameter
p1 is the probability of a pair of variables being constrained (graph
connectivity). Parameters po and p define the problem tightness and value
similarity in the following way: Given a pair of constrained variables (X;,
X)) such that (i<j), po is the probability of the pair of values (a,b) with odd a,
being forbidden (i.e.: (a,b)%Rij). p is the probability of the pair of values
(¢, d) with even ¢, having the same constraining behaviour as (¢1,d).

76 Chapter 3. Subproblem Merging

Figure 3.11 shows how correlated random problems are generated.
Observe that, if p is set to 1, pairs of consecutive values (odd, even) have
exactly the same behaviour with respect to posterior variables (in
lexicographical order). If p is set to 0, pairs of consecutive values (odd, even)
have exactly the opposite behaviour with respect to posterior variables.
Increasingly more similar pairs of values occur as p is increased.

We experimented on the class of <20, 6, 50, p2, p> problems.
Parameter p varied in steps of 1/10 in the range 0.6-1.0. Parameter po
varied in steps of 1/36 in the range 0-1. For each parameter setting,
samples of 100 instances were generated.

We evaluated the effect of performing weak assignments on these
problems in both total and partial constraint satisfaction. Regarding total
constraint satisfaction, we assessed FCw vs. FC. Regarding partial
constraint satisfaction, we evaluated weak assignments on a more
elaborated version of PFC —called PFC-DACl— that improves the basic
version. PFG-DAC is described in Chapter 4. Its refinement including
weak assignments —denoted PFCw-DAG— is straightforward and does
not need any description.

All algorithms tested in this and the following Chapters are
programmed in C and compiled with gce. The -O3 optimization option is
used in all cases. Looking for a fair performance comparison in terms of
CPU time, all algorithms share code and data structures whenever it is
possible. Algorithms are always executed on Sun Workstations either
Ultral or Ultra2. Different experiments may be carried out on different
machines but, obviously, when CPU time is compared, the same computer
is used. To measure CPU time, we use the set_timers and elapsed_time
functions based in the well known [Manchak and van Beek, 94] CSP
library. Finally, randomness is generated using the lrand48 () function.

In these experimetns, all algorithms use lexicographical variable
and value selection. Weak-assignment-based algorithms perform weak
assignments of consecutive pairs of values of the form (a, a+l) where « is an
odd number whenever possible (i.e.: both values are feasible at the time of
the assignment).

Figure 3.12 reports results of executing FC and FCw. Five graphs
show the search cost of solving the problems with the five different values
of p. Each graph plots pg versus the average number of consistency checks
for both algorithms. As was expected, FCw clearly outperforms FC on
problems with high p. As p decreases, the gain given by FCw decreases as
well. FCw seems to start losing its advantage for low tightness problems
before it does for high tightness problems (see plot with p =0.7). There is a
point, when p takes value around 0.65, after which weak assignments start
being counter productive. In this set of experiments, at the problem class

Un fact, we are using PFC-DAC enhanced with the improvement presented in
Section 4.4.

3.7 Experimental Results 7

where FCw produces the highest gain in consistency checks, FCw is about
15 times better than FC in terms of checks.

Figure 3.13 gives results for the same experiment, but now reporting
the number of visited nodes. A very similar behaviour can be observed, the
only difference being that the gain ratio of FCw is greater in terms of
nodes than in terms of checks. This fact is reasonable because weak
assignments perform more checks per node than strong assignments
(compare line 39 of Figure 3.8 with line 20 of Figure 2.5). Regarding
nodes, FCw can be up to 80 times better than FC. Regarding CPU time, the
gain ratio of FCw falls between the gain in terms of checks and the gain
in terms of nodes.

procedure Generate_correlated CSP (n, m, p1, P2, P)

1 for i:= 1 to n-1 do for j:= i+l to n do

2 with probability p; generate constraint(i, j, m, p, p)
3 endfor

endprocedure

procedure generate_constraint(i, j, m, py, p)

4 for a:= 1 to m-1 in steps of 2 do

5 for b:=1 to m do

6 with probability p; add (a,b) to R;g
7 endfor

8 endfor

9 for a:= 2 to m in steps of 2 do

10 for b:=1 to m do

11 with probability p add (a,b) to R;; if and only if (a-1,Db)€ER;
12 endfor

13 endfor

endprocedure

Figure 3.11: Correlated random problems generator.

Figure 3.14 reports results of executing the partial constraint
satisfaction algorithms for p in the range 0.7-1.0. Again, each graph
presents results for each different value of p. Each plot reports the average
number of consistency checks on each problem class, for both algorithms.
As in the previous case, PFCw-DAC outperforms PFC-DAC on problems
with high p. As p decreases, the gain given by PFCw-DAC decreases as
well. Again, tight problems seem to be more appropriate for our approach.
Now the point after which weak assignments start being counter
productive is around 0.75 for loose constraints and around 0.85 for tight
constraints. In this set of experiments, at the problem class where
PFCw+DAC produces the highest gain in consistency checks, PFCw+DAC
is about 8 times better than PFC-DAC.

Figure 3.15 reports the number of visited nodes for the same
experiment. Again, there is a strong correlation between checks and
nodes, although weak assignments provide greater gains in terms of
nodes. Regarding nodes, PFCw-DAC can be up to 40 times better than its
competitor.

78 Chapter 3. Subproblem Merging

These experiments confirm that our approach is suitable on problems
having sufficiently similar values, whose similarity can be detected.
Moreover, we observe that the degree of necessary similarity for weak
assignments to pay off is reasonable. Moreover, they give insight on the
gain that one may expect. From the experiments, we also extract that
performing weak assignments to insufficiently similar values can be
highly counterproductive.

3.7.2 Crossword Puzzles

In the previous Section, we observed that FCw and PFCw can outperform
FC and PFC in problems having sufficiently similar values. However,
correlated random problems are unrealistic and do not show the real
applicability of our approach. For this reason, we performed additional
experiments on a domain where value similarity is both common and
easily detectable. Crossword puzzles are a class of CSP that fulfil these
requirements. In addition, they have already been used as benchmark in
the CSP context [Ginsberg et al., 90].

A crossword puzzle is defined by: (i) a set of variable length words that
we call dictionary and (ii) a two-dimensional grid such that each of its cells
is either white or black. Each consecutive sequence of white cells in the
grid (either horizontal or vertical) defines a slot. Thus, each white cell
belongs to exactly two slots. The problem consist in assigning dictionary
words to horizontal slots in such a way that vertical slots also form
dictionary words.

A crossword puzzle can be expressed as a binary CSPs where variables
correspond to grid slots. For each slot, its domain is the set of dictionary
words that have the appropriate length. Intersecting pairs of slots define
constraints. Each constraint restricts valid combinations of words to those
that have the same letter in the intersecting cell.

The crossword puzzle domain is an interesting benchmark because
of the following reasons,

* Its formulation is simple yet the problem is challenging.

* It is easy to obtain or generate large sets of different problem instances.

* Although being an academic problem, it is of practical interest because
it can be seen as an abstraction of configuration problems where one
has to decide the components of an assembly fulfilling interdependency
restrictions.

An interesting feature about crossword puzzles is that constraints are
implicit in the letters forming the words. More than that, each letter
defines the constraining behaviour of one constraint. Thus, regarding
value similarity, two different words are exactly equivalent with respect to
intersecting slots associated with cells where they have a matching letter
and they are completely different with respect to intersecting slots

3.7 Experimental Results 79

400000+ 250000+
300000 200000+
§ 1500004
S 200000-
S 100000
H*
1000004 50000
0k
Swn O wn O Swn O n O
— N — o
150000~ 125000-
p=0.8 100000
% 100000
3 75000
£
Q
s 50000~
% 500004
25000+,
D, i
SV O O wn O n
- — N N NN
200000
. p=0.6
150000 i
Q P
< 100000 Pl
:; penrennes FCw
50000
00—
o

S n
o on

Figure 3.12: Average number of consistency checks of FC and FCw on five
classes of correlated random problems.

80 Chapter 3. Subproblem Merging

100000 — 50000 —
40000 —
75000 —

30000
50000 —

visited nodes
visited nodes

25000 —

15000

#visited nodes

10000 —

#visited nodes

5000 —

04

25000 =

20000 —

15000 —

10000 —

#visited nodes

5000 -]

Figure 3.13: Average number of visited nodes of FC and FCw on five classes
of correlated random problems.

3.7 Experimental Results 81

40000
30000
£
ot
5 20000
o
B
10000
e,
&
<
Q
o
**

PFC-DAC

o PFCw-DAC

Figure 3.14: Average number of consistency checks of PFC-DAC and PFCw-
DAC on five classes of correlated random problems.

82 Chapter 3. Subproblem Merging

25000 - 10000 —

#visited nodes

#visited nodes

o PFCw-DAC

Figure 3.15: Average number of visited nodes of PFC-DAC and PFCw-DAC
on five classes of correlated random problems.

3.7 Experimental Results 83

associated with cells where they have a non matching letter. For example,
consider a 6x6blank grid. We give consecutive variable names to
horizontal slots in a top-down order (i.e.: Xj,..., Xg) and vertical slots in a
left-to-right order (i.e.: X7,..., X19). Let us suppose that castle, cattle and houses
are three words from the dictionary. Regarding their assignment to Xj,
castle and cattle only have a different behaviour with respect to Xy (Figure
8.16). Thus, their corresponding subproblems will be very similar. On the
other hand, houses has a completely different behaviour with respect to
every constraining variable. Thus, its corresponding subproblem will not
have anything in common with the others. This feature is especially
appropriated for our approach because we can get an idea of how similar
two values are just by checking the number of matching letters.

Crossword puzzles are also interesting because weak assignments
have a clear interpretation in their domain as we show in the following
example. Consider that the 6x6 blank grid example is being solved by
forward checking. After assigning the word castle to X;, the look-ahead
procedure removes from the domains of vertical slots those words which do
not start by the corresponding letter. Thus, the new subproblem is subject
to a decision in which 6 cells have been decided in the grid. After
assigning the word cattle, the new subproblem is subject to a decision in
which 6 cells have been decided (5 of them with the same value as in the
previous case). However, after a weak assignment, Xj<—{castle, cattle}, only
5 cells have been decided, the remaining cell has reduced its set of
possibilities to the pair s/t Thus, if we continue the search after the weak
assignment, as long as we do not assign Xg, all search states are either
valid for Xj< castle and Xj< cattle. Therefore, each strong assignment fixes,
in one go, all cells of the slot; but each weak assignment fixes some cells of
the slot and only reduces the set of possibilities for the rest of cells.

X7 X3 X9 X9 X1 Xpo

C|A |s/T|] T|L |E

Figure 3.16. castle and cattle have a similar constraining behaviour.

84 Chapter 3. Subproblem Merging

In our experiments, we used two differently generated types of
problems: (¢) random crossword puzzles, where each word is randomly
generated using a given alphabet, and (iz) random English crossword
puzzles, where words are randomly selected from an English dictionary.

3.7.2.1 Random Words

This set of experiments was performed using random word puzzles
with square blank grids. We used a three parameter model, where each
puzzle is characterized by a tuple </, m, v> such that:

* [lis the word length and the grid dimension,

* m is the dictionary cardinality,

* v is the alphabet cardinality.

Random instances were generated by selecting m words out of the v!
choices using a uniform probability distribution.

We run FC and FCw on the following problem classes: <5,20-100,5>,
<7,20-100,3> and <9,15-31,2>. For each parameter setting, samples of 100
random instances were generated.

Both FC and FCw used the minimum domain heuristic for variable
selection. Regarding value ordering, values were always selected in
lexicographical order (when weak assignments are performed, the
lexicographical order is extended to the domain partition).

In our implementation of FCw, we classified the dictionary into
groups of similar words in a pre-processing step and use this partition in
the subsequent search. Words were considered similar enough to be
weakly assigned when they had less than three different letters. We arrived to
this value by sampling the dictionaries and observing that less similarity
gave a partition which was too coarse. When providing CPU time, we
always include the time required by this pre-processing.

Using m as the varying parameter, we observed that problems with
small m are overconstrained and do not have any solution. If m is
increased, there is a point after which problems become abruptly
underconstrained and the number of solutions grows very fast. This point
corresponds to a peak in average problem difficulty similar to that observed
in other domains [Cheeseman et al., 1991] (see Section 4.9.1 for a more
comprehensive description). In our three problem classes the rank for m
was chosen to coincide with the peak. Therefore, our experiments were in
hard instances having few solutions or none at all.

Figures 3.17, 3.18 and 3.19 show the results of the experiment on the
three classes, respectively. For each class we provide three plots: one
comparing the number of consistency checks, another comparing the
number of visited nodes and another comparing CPU time. It can be
observed that FCw outperforms FC in all problem classes and for all search
effort measures. The ratio of improvement can be up to 2.2 with respect to

3.7 Experimental Results 85

checks and up to 2.5 with respect to visited nodes and time. The gain seems
to be slightly greater as the grid size grows and the alphabet cardinality
decreases. This fact is understandable because as search trees grow in
depth, weak assignments at high tree levels have a larger merging
power. Observe that gains are greater in terms of visited nodes and CPU
time than in terms of consistency checks. Regarding nodes, the reason is
that weak assignments require a larger number of checks for their look-
ahead. Regarding CPU time, the reason is that weak look-ahead checks
consistency with all values weakly assigned in one go, without any
overhead in between. So weak look-ahead in FCw can perform more
checks per second than standard look-ahead in FC.

3.7.2.2 English Words

In our last experiment on crossword puzzles we use real English words.
Words are taken from WordNet [Miller, 90], a well-known English
dictionary used by the natural language processing research community. As in
the previous case, we use square and blank grids. On this model, each
problem is characterized by two parameters:

1. Grid size.

2. Dictionary cardinality.

A single instance is generated by randomly selecting words of the
appropriated length from the dictionary.

We compared FCw vs FC on 4 x 4 puzzles leaving the dictionary
cardinality as the varying parameter (for each cardinality we generated 50
instances). Like in the previous case, similar words were detected in a pre-
processing step and this clustering was used during the subsequent search.
Words with less that three different letters were considered similar
enough for being weakly assigned. Both algorithms used the minimum
domains variable ordering heuristic and selected values in lexicographical
order.

In this domain we also observe an easy-hard-easy difficulty pattern
where the hardest instances occur at the point where problems change
from being solvable to unsolvable. Figure 3.20 reports average values of the
three search effort parameters on the experiment. As in the previous case,
FCw outperforms FC in all of them. The gain ratio of FCw is about 2.5 in
terms of visited nodes, 2.0 in terms of CPU time and 1.6 in terms of
consistency checks.

3.8 Conclusions and Future Work

For many problem areas it is a matter of fact that some domain values of a
variable behave in the same manner. We have shown that it is

86 Chapter 3. Subproblem Merging

inappropriate to treat them as completely different values because it causes
algorithms to make the same mistakes for all of them.

The notion of local interchangeability captures some of these value
similarities. Nevertheless, it requires strong conditions of equivalence or
dominance among values. Thus, algorithms exploiting local
interchangeabilities may have a limited applicability in practice. We have
presented an approach that is more general in the sense that it does not
require similar values to accomplish any particular condition. The only
requirement is that similarity is based on terms of constraining
behaviour. For instance, in the crossword puzzles domain, no pairs of
values are neither locally interchangeable, nor locally substitutable.
However, we showed that some values are similar in our broader sense.

With our approach we show that a search space transformation is a
suitable technique for dealing with value similarity. More precisely, since
similar values produce similar subproblems and similar subproblems
traverse similar trees, merging their trees causes the algorithm to
traverse them, somehow, simultaneously. As a result, mistakes are not
repeated. Experiments on random correlated problems and crossword
puzzles (both with random and English words) showed the suitability of
our approach.

We believe that our vague notion of value similarity can be
characterized using some distance measurement (i.e.: taking the set of
supporting values and considering common occurrences). If an effective
distance measurement can be found and it can be computed in an efficient
way, the decision of what values are weakly assigned can be done in a
domain independent way. The exploration of these ideas is left for future
work.

3.7 Experimental Results 87

400000

300000 —

200000 —

c. checks

100000 —

15000

10000 —

5000 —

#visited nodes

time (secs.)

100

Figure 3.17: Experimental results on the <5, m, 5> class of random
crossword puzzles. Each plot reports a different search effort measure.

88

Chapter 3. Subproblem Merging

5000000
4000000

% 3000000 -

=
[

$2000000 —
**

1000000 —

0 —~
(]

25

50

757
100

200000

150000

100000 —

#visited nodes

50000 —

50
757

25
100~

30

25 -

20 -

15 —

time (sec.)

10 —

507
757
100

Figure 3.18: Experimental results on the <7, m, 3> class of random
crossword puzzles. Each plot reports a different search effort measure.

3.7 Experimental Results 89

5000000

4000000 —

3000000 —

2000000 —

c. checks

1000000 —

200000

150000 —

100000 —

#visited nodes

50000 -

20

15—

10 -

time (sec.)

Figure 3.19: Experimental results on the <9, m, 2> class of random
crossword puzzles. Each plot reports a different search effort measure.

90

Chapter 3. Subproblem Merging

5000000

4000000 —

3000000 —

2000000 —

c. checks

1000000 -

0

200
300 7
400 7
500]
600
700

25000

20000 —

15000 -

10000 —

#visited nodes

5000 —

200
300
400 7
500
600
700

time (sec.)

0 | I 1 I
o o = = o o
S S S S S =)
Q IS < ey o ~
words

Figure 3.20: Experimental results on 4 x 4 blank grid crossword puzzles
using random selection of English words from WordNet. Consistency
checks, visited nodes and CPU time is reported.

Chapter 4

Combining Search with Local
Consistency Enforcement in
Partial Constraint Satisfaction

When search falls in a dead-end, it is condemned to traverse
unsuccessfully the corresponding subtree. Therefore, it is of obvious interest
to endow algorithms with good dead-end detection capabilities. In total
constraint satisfaction, techniques for early dead-end detection involve
combining search with local consistency. In this Chapter, we explore the
suitability of the same idea in partial constraint satisfaction. In our
approach, we detect constraint violations by means of arc-inconsistencies.
This information is used to improve branch and bound lower bound. We
present three new algorithms of increasing sophistication based on this
idea which outperform their predecessors by several orders of magnitude.
Additionally, we show that the use of local inconsistency information
makes apparent a complexity peak in MAX-CSP not reported before. This
complexity peak is unnoticeable when no local consistency information is
used.

The structure of the Chapter is as follows. After an introduction in
Section 4.1, we present previous work on the use of local consistency
information to improve PFC in Section 4.2. In Section 4.3, we give some
results which show the importance of using local consistency information
in branch and bound. From Section 4.4 to Section 4.8 we introduce a
sequence of incremental algorithmic improvements. In Section 4.9, we
present and analyze the complexity peak of MAX-CSP and provide
experimental support of the efficiency of our algorithms. Finally, in
Section 4.10, we present the conclusions of the Chapter and point out some
future work.

92 Chapter 4. Combining Search with Local Consistency Enforcement

4.1 Introduction

Constraint propagation techniques are often used to detect and remove
unfeasible values both during a pre-processing and during search. The
basic propagation technique involves establishing some form of arc-
consistency (Section 2.2.2). Arc-consistency is of interest in binary CSP
because it removes values that cannot belong to any problem solution with
low space and time requirements. Currently, alternative local consistency
conditions for value removal are subject to research [Debruyne and
Bessiére, 97].

As we already explained in Section 2.2.3, forward checking is a very
popular algorithm in constraint satisfaction. It combines backtrack search
with a limited form of arc-consistency maintenance (at each stage,
constraints between past and future variables are made arc-consistent). For
many years it was believed that performing higher levels of propagation
was not cost effective [Kumar, 92] and FC was considered the most efficient
general algorithm. However, recent research on total constraint
satisfaction has contradicted this belief. In [Sabin and Freuder, 94;
Bessiere and Régin, 96] there is strong experimental evidence of the
important savings that maintaining full arc-consistency during search can
produce.

In this Chapter we develop similar ideas for MAX-CSP. We give
both theoretical and experimental evidence of the importance of using
local consistency information, gathered during a pre-processing step, in
branch and bound algorithms. In the MAX-CSP context, arc-inconsistent
values cannot be removed because arc-inconsistency does not imply
unfeasibility. Nonetheless, detecting an arc-inconsistent value indicates a
necessary constraint violation associated with that value. Information about
local inconsistencies can be used to compute better (higher) lower bounds
during search. High lower bounds allow branch and bound to be more
efficient by a better dead-end detection.

We continue the work started in [Wallace, 94], where the basis on
how to combine PFC with local consistency information was given. Our
contributions are twofold:

1. We provide theoretical evidence of the superiority of branch and
bound algorithms using local consistency information. Roughly, we
show that the polynomial overhead of these algorithms can produce
exponential savings. More precisely, exponentially difficult problems
for PFC, are trivially solved when arc-inconsistency information is
added to its lower bound. Empirical examination of this fact has lead
us to the discovery of a complexity peak on MAX-CSP not previously
reported. We show that the search effort of PFC enhanced with the
use of arc-inconsistency information presents an easy-hard-easy
pattern in average difficulty when solving random binary CSP
instances with increasing tightness. Interestingly, if the algorithm

4.1 Introduction 93

does not use any local consistency information in its lower bound,
the easy-hard-easy pattern does not occur and problems become
increasingly hard. Surprisingly, the easy problems on the right part
are the most difficult problems for plain PFC.

2. We present a set of improvements to the algorithm presented in
[Wallace, 94] which lead to one of the best current algorithms for
MAX-CSP. With our proposed improvements, a more suitable use of
local consistency information is made which causes better lower
bounds and, consequently, an earlier dead-end detection

4.2 Previous Work

As we already explained in 2.8.2, PFC is a forward checking algorithm
for MAX-CSP. It uses look-ahead to propagate inconsistencies of previous
assignments against future values. These inconsistencies are recorded in
the so-called inconsistency counts (IC). Consequently, there is an IC for
each future value recording the number of inconsistencies that it has with
past assignments. These IC are used to compute branch and bound lower
bounds. These lower bounds are used both to detect dead-ends and
unfeasible values.

In the MAX-CSP context, arc-inconsistent values cannot be discarded
because arc-inconsistency does not imply unfeasibility. But detecting arc-
inconsistent values can still be useful because their arc-inconsistencies
indicate necessary constraint violations associated with them. This
information can be used to improve lower bounds. The first approach
proposing the addition of arc-inconsistency information to the lower
bound is due to [Wallace, 94]. Its approach is based on the concept of directed
arc-consistency, first introduced by [Dechter and Pearl, 88] in the context of
total constraint satisfaction (see Section 2.2.2). Directed arc-consistency is
defined upon a total ordering among variables and allows for the
characterization of so-called directed arc-inconsistency counts.

Definition 4.1:

Given a CSP and an arbitrary but fixed variable ordering, the directed
arc-inconsistency count (DAC) associated with value a of variable X;,
dac;,, is defined as the number of variables which are arc-
inconsistent with X;<—a and appear after X; in the ordering.
For simplicity we assume the ordering to be lexicographical. Figure 4.1
shows the algorithm for DAC computation. For each variable X;, the
algorithm iterates on its posterior variables, checks its arc-inconsistencies
and updates DAC.

94

Chapter 4. Combining Search with Local Consistency Enforcement

Example 4.1:

Consider a CSP having four variables (i.e: {X1, Xo, X3, X4}), three
values per variable (i.e:{a, b, ¢) and the following constraints:
R12:{(b’a)}’ Rl3={(a’c)a (b:c)}’ R14:{(a:a)» (C)C)}’ R??):{(C:a)) (C,b)},
Ros={(a,@)} and Rss={(b,8), (5,0 }.

This problem has several arc-inconsistencies. For instance,
regarding constraint Rjg one observes that values ¢ and ¢ of Xi, and
values a and b of Xy are arc-inconsistent. What follows is a pictorical
representation of the constraint where a solid line indicates the
only compatible pair of values. Thus, values not having any solid line
connecting them with the other variable do not have any consistent
value, so they are arc-inconsistent.

Ryg
Dy D2
7)
/ a s a
arc-inconsistent b ‘/ b

/ arc-inconsistent

SN

Arc-inconsistencies imply necessary constraint violations.
Thus, from Ry one knows that any solution including X< a will
violate at least one constraint (R;9). The same reasoning can be done
for Xg<—b. However, constraint violations detected in that way cannot
be added over variables because the sum can include the same
constraint twice. Thus, from Rj;9 one knows that any solution
including {X]<a, Xg9< b} violates only one constraint, although both
values are arc-inconsistent.

One way to circumvent the constraint redundancy when
adding arc-inconsistencies is to give an order to variables. This
order induces a direction for each constraint. If only arc-
inconsistencies subject to the constraint direction are considered,
they can be added without any constraint duplication.

DAC counts are computed under a variable ordering. For each
constraint only arc-inconsistencies of one variable contribute to DAC
counts. Back to constraint Rjg, only arc-inconsistencies of X;
contribute to DAC counts.

4.2 Previous Work 95

a > a
directionally / /
arc-inconsistent \ I b

The following picture illustrates individual directional arc-
inconsistencies that contribute to DAC counts for this problem.
Observe that each constraint only contributes to one variable counts
(¢.e: its first variable in lexicographical order). For this reason X4
does not have any contribution. Each individual DAC is precisely the
number of arrows pointing at its value (i.e: dac, =1, dacyy =1, dacy, =

2, etc.).
D1 D2
¢ g | Rog
b Rig | s
) Ryy) Ry
Dy
a

Directional arc-inconsistencies can be added over variables. Thus,
any solution including Xj<c will violate at least two constraint (Rjo
and Rj3); any solution including X9<-a will violate at least one

96 Chapter 4. Combining Search with Local Consistency Enforcement

constraint (Rg3); and any solution including {X]< ¢, Xo< a} will
violate at least three constraints (Rj9, Rj3and Rys).

DAC can be used to detect necessary constraint violations between
variables, as the following observation indicates.

Observation 4.1:

1. The DAC count associated with value a €D;, dac;,, is a lower bound
of the number of inconsistencies of any total assignment
including X;<a.

2. The minimum DAC associated with a variable X;, min, {dac;,}, is a
lower bound of the number of inconsistencies of any total
assignment including X

3. The sum of minimum DAC associated with the i last variables,
n
2 mz’nv{dacjv} , for an arbitrary ¢, is a lower bound of the number of
=i
inconsistencies of any assignment including the last : variables.

Proof:

The proof of the first two statements is obvious. The third statement
is true because each violated constraint can only contribute once to
the expression because: (i) the expression only considers one DAC
for each variable and (#) each constraint does only contribute to DAC
of its first variable regarding the ordering.

Function ini DAC ()

1 for i:=1 to n do for all aED; do dac;,:=0 endfor endfor

2 for i:=n-1 to 1 do

3 for j:=n to i+l do

4 for all a€D; do

5 if(arc_inconsistent(k},a,X})) then dac; :=dac;,+1 endif
6 endfor

7 endfor

8 endfor

9 return(DAC)

endfunction

function arc_inconsistent(X;,a,X;) returns boolean

10 arc_incons:=true

11 for all b €Dy while (arc_incons) do

12 if (not inconsistent(X;<a, Xj<b)) then arc_incons:=false endif
13 endfor

14 return(arc_incons)

endfunction

Figure 4.1: Algorithm for DAC initialization assuming lexicographical
variable ordering.

4.2 Previous Work 97

Example 4.2:

The following table shows all DAC counts of the previous example.
The last row gives the minimum DAC for each variable.

DAC Xy Xo Xs5 Xy
a 1 1 1 0
1 2 0 0
2 1 1 0
min 1 1 0 0

From DAC, we obtain lower bounds on total assignments. For
example, from dacy=2 one knows that any total assignment
including Xj<c violates at least two constraints (observation 4.1.1).
From the minimum DAC of X; one knows that the assignment of
X; will necessarily violate one constraint (observation 4.1.2). From
the sum of minimum DAC, one knows that any total assignment
violates at least two constraints (observation 4.1.3).
If DAC are computed in a pre-processing step and PFC selects variables for
instantiation in the same order used for DAC computation, DAC counts of
future values can be included in the lower bound. Wallace proposed the
following expression as an alternative to (2.1).

distance + Eminl,{icjv} + Eminv{dacjv} (4.1)
EF EF

The three contributions can be added because they refer to inconsistencies
produced by different constraints: distance refers to violated constraints
among past variables, the sum of minimum IC refers to constraints
between past and future variables, and the sum of minimum DAC refers to
constraints among future variables. Therefore, no constraint is considered
more than once. Moreover, if the current assignment has not been
propagated yet, one may add its DAC count, dac;,, to the lower bound
because inconsistencies between the current and future variables are not
included in IC (see line 11 of Figure 4.2).

Following a similar reasoning, DAC can also be used to increase
the lower bounds of future values. Value b of future variable Xj has the
following associated lower bound,

distance + icy + dacy, + Emin,,{ickl,} + Emin,,{dackv} (4.2)
kEF-j kEF-j

In what follows, we denote LBI(S) and LBI(S, X;, b) the lower
bounds that PFC uses for dead-end detection and future value pruning at
node § (i.e.: expressions (2.1) and (2.3)); and LB2(S) and LB2(S, Xj, b) the
previous lower bounds which include DAC information.

Figure 4.2 presents the first PFC algorithm using DAC. It includes a
new parameter, DAC, which records directed arc-inconsistency counts.

98 Chapter 4. Combining Search with Local Consistency Enforcement

Before search starts, DAC must be computed as indicated in Figure 4.1.
Branch and bound search proceeds in the same way that PFC, but subject to
DAC variable ordering and using the new lower bounds LB2 instead of
LBI (lines 11, 22 and 26). In the following, we will denote this algorithm
PFC-DAC.

Example 4.3:

With the CSP of the previous example, consider a search state
defined by the assignment {Xj<b}. At this point, future variables are
X9, X3 and X4. The look-ahead of the assignment causes the
following inconsistency counts,

1C Xo X3 Xy
a 0 1 1
b 1 1 1

1 0 1
min 0 0 1

at this node, PFC computes the following lower bound LBI,

distance + Eminv{icj,,} =0+1=1
jE12,3,4}
on the other hand PFC+DAC adds DAC information (see previous
example) and computes the following lower bound LB2,

distance + Eminv{icj,,} + Emin,,{dacjv} =0+1+1=2
JE{2,3,4} JE{2,3,4}

which detects one more constraint violation than PFC.

4.3 Theoretical Results on DAC Usage

PFC-DAC was presented as an improvement to PFC whose importance was
only substantiated on a significant performance gain on some classes of
overconstrained problems. Our following results theoretically complement
the experimental evidence of the PFC-DAC advantage over plain PFC. We
show that using DAC information is a major algorithmic enhancement
to PFC which, at the cost of a polynomially expensive pre-process, can do
exponentially better than PFC.

Lemma:

The algorithm presented for DAC computation requires a number of
consistency checks in O (n2m?).

4.3 Theoretical Results on DAC Usage 99

procedure PFC-DAC (P, F, dist, Assg, Dom, IC, DAC)

1 if (F = J) then
2 UB:= dist
3 Best_sol:= Assg
4 else
5 (X;,D;):= select_current_variable_ and domain(F, Dom)
6 while (D;#J) do
7 a:= select_current_value(D;)
8 D;:= D;-{a}
9 NAssg:= Assg U {X;<a}
10 ndist:= dist + icj,
11 if(ndist+ dacj, + ij.nv{icj'v}-r Zminv(dac‘jv} < UB) then
jEF={1} jEF={i}
12 (NDom, NIC) := look_ahead(ndist, X;, a, F-{X;},Dom-{D;}, IC, DAC)
13 if(not empty domain(NDom)) then
14 PFC-DAC(PU{X;}, F-{X;},ndist, NAssg, NDom, NIC, DAC)
15 endif
16 endif
17 endwhile
18 endif
endprocedure
function look_ahead(ndist, X;, a, F, Dom,IC, DAC)
19 stop:= false
20 for all D;EDom while (not stop) do
21 for all b GDj do
22 if (ndist+ icjut daCjb+K€Zm;nV{ickv}+ ke‘zm;nc{dackc} >UB) then
={s} ={5}
23 Dj:= D;-{b}
24 else_if (inconsistent(X;<a, X;<b)) then
25 icjpr=icytl
26 if (ndist+ icjpt daCjb+k€2minv{ickV)+ Zminv(dackv) = UB) then
={7} Kef={7}
27 Dj:= D;-{b}
28 endif
29 endif
30 endfor
31 if(Dj=) then stop:= true endif
32 endfor
33 return (Dom, IC)
endfunction

Figure 4.2: First version of PFC enhanced with DAC information based on

[Wallace,

94] (PFC-DAC). Bold line numbers indicate differences with
respect to PFC.

100 Chapter 4. Combining Search with Local Consistency Enforcement

Theorem 4.1:

For any CSP and using the same variable and value selection, the
number of consistency checks performed by PFC-DAC during search
is no greater than the number of consistency checks performed by
PFC.

Proof:

First, we show that all nodes visited by PFC-DAC are also visited by
PFC. Observe that, because of the common variable and value
ordering, the same search tree is traversed by both algorithms and
in the same order. Hence, when visiting the same node, they have
the same upper bound, the same distance and the same inconsistency
counts for feasible values. Comparing PFC and PFC-DAC lower
bounds (LBI(S) and LB2(S)), it is clear that

distance + Eminv{icjv}s distance + Eminv{icjv} + Emin,,{dacj,,}

therefore, there cannot be a node such that PFC detects a dead-end,
but PFC-DAC does not (recall observation 2.3, where we show that
the empty domain condition for backtracking is also defined by the
lower bound).

Second, we show that at nodes visited by both algorithms, PFC-DAC
never performs more consistency checks than PFC. Note that
consistency checks are only performed during the look-ahead.
Comparing their pruning conditions (LBI(S, X, b) and LB2(S, X,
b)), it is easy to see that,

distance +icj+ Em.inv{ickv} =< distance +icytdaciyt
kEF-j

+ Eminv{ickv}+ Eminv{dack,,}
kEF-j kEF-j
so, PFC-DAC always prunes values at higher tree levels than PFC.
Once a value is pruned, its IC does not need to be updated, so it does
not cost more consistency checks in the search below. Consequently,
PFC-DAC look-ahead will never require more consistency checks
than PFC look-ahead.

Theorem 4.2:

There are CSP instances for which PFC requires to perform a
number of consistency checks exponentially larger than PFC-DAC.

4.3 Theoretical Results on DAC Usage 101

Proof:

At every node, both PFC and PFC-DAC perform at least one
consistency check, but never more than O(n'm) checks. Thus, visiting
an exponential number of nodes requires an exponential number of
checks, while visiting a polynomial number of nodes, requires a
polynomial number of checks. We show that, there exists a CSP
instance for which PFC visits an exponentially large number of
nodes, so it requires an exponentially large number of consistency
checks. For the same instance PFC-DAC only visits a polynomially
large number of nodes. Then, PFC-DAC requires a polynomially
large number of consistency checks (from the lemma, we know that
DAC computation is also done with a polynomial number of checks).
For the sake of clarity, but without loss of generality, we assume that
both algorithms use a lexicographical ordering.

Consider a totally connected problem such that each of its
constraints restricts all possible pairs of values (i.e: Rij= 8 Vij=1,...,
n). For this particular problem, all leaves have a distance of n(n-1)/2.
Thus, after visiting the first leaf, both algorithms set the upper bound
to n(n-1)/2.

Regarding PFC, consider an arbitrary node S in level i. It is
easy to see that its current distance is #(z-1)/2. Besides, all future
values are inconsistent with all past variables, so their IC takes value
. Then, the lower bound LBI(S) is,

distance + Eminu{icjv} =1(#1) /2 + i(n-)
JjEF

It is easy to see that this lower bound is always lower than the upper
bound, except for the tree level before the last one (namely, when :
takes value n-1). Thus, PFC visits every tree node except the leaves (it
only visits the first leaf). It is clear that this is an exponentially
large number of nodes m™ 141, Figure 4.3 gives a visual idea of the
PFC traversal on the totally constrained problem with 3 variables
and 3 values per variable (solid lines indicate the traversed part of
the tree).

Regarding PFC-DAGC, for this particular problem every value is
arc-inconsistent with every variable. Then, dacy, takes value (n-j) for
all j and 4. Consequently, an arbitrary node at level : has the
following DAC contribution,

2 min,{dacp,} = E(n-]) = (nel) (nd)/2
EF JEF
Therefore, the lower bound LB2(S) is,

distance + Eminv{icjv} + Eminu{dacjv} = (1) /2 + i(n-i) +(ne1) (nd)/2

102

Chapter 4. Combining Search with Local Consistency Enforcement

which is equal to the upper bound because
W(#1) /2 +i(nd) + (ne1) (n4) /2 =n(n-1)/2

So, once the initial upper bound is set, the dead-end condition is true
at every node. Then, PFC-DAC moves to the first leaf, sets the initial
upper bound and backtracks all the way back to the root. At each node
on the way back, it tries the remaining values, but the dead-end
condition always holds. Consequently, PFC-DAC visits exactly n-m
nodes which is obviously a polynomially large number. Figure 4.4
gives a visual idea of the traversal for the totally constrained problem
of 3 variables and 3 values per variable.

a b ¢ a b c a b c

A A A A A A A A
|\ N nh n nh nh nh ntoon
A\ FENRY 10\ 70\ 10\ 70\ 1\ 70\ 1\

abc abc abc abc abc abc abc abc abec

Figure 4.3: Tree traversal of PFC on a totally constrained CSP.

a b c
A\ PRAN AN
7 i N 7 1 N
e N 7 N
. 1 N . 1 .
a b 4 a b ¢ a b ¢
A A A A A A A A
NNy ny ooy o0y oy ny oo
LY Sy ey P N o W P Y

abc abc abc abc abc abc abc abc abc

Figure 4.4: Tree traversal of PFC-DAC on a totally constrained CSP.

4.4 Combining DAC with IC 103

4.4 Combining DAC with IC

Our first improvement to PFC-DAC makes a more profitable use of DAC
counts. It is based upon the observation that DAC and IC counts of future
values play a complementary role: IC count backward inconsistencies to
past variables, subject to their current assignment, while DAC count
forward inconsistencies to posterior future variables, independently of
what value is assigned to them. Given that icj and dacj, have contributions
from different sets of constraints, they can be added for each value b,
obtaining the number of constraints that will necessarily be violated if
value b is assigned to variable X; keeping the current assignment

Example 4.4:

Consider the CSP and the search state of the previous example (i.e.:
{X1<—8}). There are two different types of detected inconsistencies on
a future variable. IC indicate inconsistencies of the considered
variable with past variables, while DAC indicate inconsistencies of
the considered variable with future variables posterior to it in the
ordering. The following picture indicates constraint violations
associated to X,

IC Dy DAC
“ Rog
b
R12 R2 4
c

The arrows on the left represent inconsistencies detected by IC. The
arrows on the right represent inconsistencies detected by DAC. For
instance, value b violates one constraint (Rj9) because of the past
assignment {X;< b} and two more because of directional arc-
inconsistencies (Rgg and Rg4). Consequently, as far the current
assignment does not change, value & will necessarily violate three
constraints (Rj9, Rgg and Rgy4). Inconsistencies detected in that way
can also be added over variables because they refer to different
constraints.

IThe algorithm that includes the improvement described in this Section was
presented in [Larrosa and Meseguer, 96b]. In that paper, it was denoted P-
EFC3+DAC2.

104 Chapter 4. Combining Search with Local Consistency Enforcement

Observation 4.2:

Consider an arbitrary node where X; is a future variable. The

following statements are true:

1. Let b be a feasible value of X;. Then, iyt dacy, is a lower bound of
the number of inconsistencies caused by X< b, if the current
partial assignment is extended into a total one that includes X0

2. mingy{ iy + dacjv} is a lower bound of the number of inconsistencies
associated with the assignment of X; if the current partial
assignment is extended into a total one, regardless of the values
assigned.

3. The expression Eminv{icjv+dacjv} is a lower bound of the number of

inconsistencies caused by future variables if the current partial
assignment is extended into a total one, regardless the values
assigned.

Proof:

For the three statements, one can see that each constraint can only
contribute once to the expression. Besides, each contribution reflects
a detected inconsistency (IC capture inconsistencies with past
variables, while DAC capture inconsistencies with posterior future
variables).
Under these considerations, more powerful lower bounds can be computed.
The following expression is a better lower bound associated with an
arbitrary node,

distance + Eminv{icj,,+dacjv} (4.3)
JEF

In the following we will denote this expression LB3(S), where S is the
considered node. As with (4.1), if the lower bound is used before the
propagation, one can add the current assignment DAC, dac,, because its
information has not yet been propagated to IC. In addition, the following
expression can be used during the look-ahead to test the feasibility of a
value b in a variable Xj,

distance + icjp + dacjy, + Emin,,{ 1Cpytdacy,} (4.4)
kEF-j
We will refer to this expression as LB3(S, X;, b).
The use of these new lower bounds is an algorithmic improvement
with respect PFC-DAC, as we indicate in the following observation.

4.4 Combining DAC with IC 105

Observation 4.3:

1. It is easy to see that LB2(S) = LB3(S). Therefore, using LB3(S) branch
and bound never visits more nodes than using LB2(S).

2. Comparing future value lower bounds, it is easy to see that LB2(S, X,
b) = LB3(S, X]-, b). Therefore, using LB3(S, Xj, b) values are always
pruned at higher nodes than using LB2(S, Xj, b).

3. From (1) and (2), we know that using lower bounds LB3(S) and
LB3(S, Xj, b) never causes search to visit more nodes and never
requires more consistency checks. Thus, the algorithm that uses
LB3(S) and LB3(S, X, b) instead of LB2(S) and LB2(S, Xj, b) is always
better in terms of both visited nodes and consistency checks.

Bringing this improvement into practice requires the replacement of
lines 11, 22 and 26 in Figure 4.2 by:

11 if (ndist+ dacjat Zm:inv{daCjV+iij} < UB) then
JEF={}
22 if (ndist+ icjpt dacipt Zm;nv{ickv+dackv} = UB) then
Kef={7}
26 if (ndist+ iCjb+ dacjb'*'keZF;i}”v{ickv*'dackv) =UB) then
=1J

Example 4.5:

Consider the CSP and the search state of the previous example.
Adding DAC to the current future variable IC, we have

IC+DAC X X5 Xy
a 1 2 1
b 3 1 1
c 2 1 1
min 1 1 1

at this point, with LB3(S) the following lower bound is obtained,

distance + Eminv{icjv+dacjv} =0+3 =3
JE12,3,4}
which detects one more violation than PFC+DAC and two more than
PFC.

106 Chapter 4. Combining Search with Local Consistency Enforcement

4.5 Saving Consistency Checks Associated
with DAC

Our second improvement avoids the succesive repetition of consistency
checks corresponding to detected arc-inconsistencies. Consider that we
know that value a € D; is arc-inconsistent with variable X;. This knowledge
compiles, in a sense, m consistency checks because it means that

The use of DAC requires a pre-processing in which some arc-
inconsistencies are detected. If these arc-inconsistencies are individually
recorded, they can be reused during search saving their corresponding
consistency checks. We introduce an additional data structure, GivesDac,
that records the individual contribution of each variables to DAC. Thus, if
GivesDac;q; is true (assuming i<j), it means that X; is arc-inconsistent with
X;<a and, as a consequence, dac;, has a contrlbutlon from X; The
information contained in this data structure is gathered during the pre-
processing step at no additional cost.

If GivesDac;q; is true, each time variable X; becomes current and value
a is assigned to it, look-ahead propagates the assignment toward future
variables. In particular, the current assignment is propagated toward X;.
However, we do not need to check the consistency of the current
assignment against X; because we already know the result (they are
inconsistent). Therefore, a first approach would be to increment by one the
IC of every feasible value of D; without any constraint check. However,
incrementing every IC of feasible values of X;j has exactly the same effect as
incrementing by 1 the current distance and leaving IC unaltered. In
practice, it is more efficient to add dac;, to the current distance and avoid
updating IC corresponding to variables which contributed to dac;,. To do
this, we only need to replace lines 10, 11 and 24 in Figure 4.2 by:

10 ndist:= dist + icj5 + dac;,
11 if(ndist+ Zmlnv(lcjv+dacjv)<UB) then
jef={i}
24 else_if (not(GJ.vesDaciaj) and inconsistent(X;<a, Xj<b)) then

Lines 10 and 11 have the effect of including dac;, to the current distance,
while line 24 avoids redundant updating of IC, whose information is
already reflected in the current distance.

Observation 4.4:

The algorithm that exploits GivesDac to avoid the repetition of known
consistency checks visits exactly the same number of nodes because it

4.5 Saving Consistency Checks Associated with DAC 107

uses the same lower bounds. However, it never performs more
consistency checks.

Example 4.6:

Consider the CSP and the search state of the running example. We
have seen that dacj=1 because Xj;< bis arc-inconsistent to Xj.
Therefore, GivesDacypg=true. If the assignment has been propagated
without updating X4 IC, we have the following situation,

IC X X3 X4
a 0 1 0
b 1 1 0

1 0 0

However, the lower bound remains unaltered if dacy; is added to the
current distance. Thus, the lower bound is,

distance + Eminv{icjv+dacjv} =1+2=3
{3

3.4

which produces the detection of the same number of inconsistencies.

4.6 Graph-based DAC

Originally, [Wallace, 94] discarded the use of full arc-inconsistency counts
(i.e. the arc-inconsistency count associated to value a of variable X; is the
number of variables that are arc-inconsistent with X; < @, with no
ordering restriction) because their sum could record the same
inconsistency twice (see Example 4.1), so they could not be used to compute
lower bounds. Instead, directional arc-inconsistency counts were used
because they do not present this problem. Following the work of [Dechter
and Pearl, 88] on directed arc-consistency, a static variable ordering was
required. However, the only purpose of establishing an ordering among
variables and computing DAC under this ordering is to establish a
direction for each individual constraint. Hence, each constraint can only
contribute to DAC with one out of its two variables. Regarding lower bound
computation, this restriction is arbitrary. Each constraint can only
contribute to DAC in one of its two possible directions (otherwise DAGC
could not be safely added), but the selected direction must not be induced by
a variable ordering.

With this idea in mind, we associate a directed graph, G, with a CSP
in the following way: each problem variable corresponds to a vertex and
each constraint, R;;, defines one edge connecting its corresponding nodes.

108 Chapter 4. Combining Search with Local Consistency Enforcement

The direction of the edge can be either (7,5) or (j,?) and will indicate the
direction in which arc-inconsistencies are checked for DAC inclusion
((j,?) means that Rj; will contribute to DAC of X;). Therefore, such a graph
is not uniquely defined upon a given CSP. Its set of edges will be denoted
by EDGES(G). Given an arbitrary variable X;, we will denote by PREC(i,G)
(respectively SUCC(i,G)) the set of variables X; such that (j,2) (respectively
(4,5)) is an edge of G. We define DIRECTION(4,5,G) to be 1 if (4,j)EEDGES(G),
-1 if (5,2)EEDGES(G), and 0 if there is no constraint between X; and X;.
Given any directed graph G of a CSP, one can define directed arc-
inconsistency counts based on this graph, dac;,(G), in the following way.

Definition 4.2:

Given a CSP and an arbitrary directed graph G, the directed arc-

inconsistency count associated with value a €D, dac;,(G), is the number

of variables in PREC(i,G) which are arc-inconsistent with X; < a.
With this definition, DAC depend on the selected graph. In the
following, we will omit the graph reference when it is clear by the
context.

Example 4.7:

Consider the CSP of the previous examples. If we associate the
following directed graph to it,

we have the following individual contributions to DAC counts.

. Ry (O
a 7R13
b
Riy b
¢ c [_-— R??)

4.6 Graph-based DAC 109

Observe that each constraint only contributes to the variable indicated
by the edge direction of G. For this particular G, Xo does not receive
any DAC contribution (i.e: its DAC counts are zero) because it does
not have any predecessor.

Because of the direction given to each constraint, DAC can be
added over variables without any constraint duplication. For
instance, any solution including Xj< a will violate one constraint
(Ry9); any solution including Xg<a will violate one constraint (R;3);
any solution including {Xj< a, X3< a} will violate two constraints
(R12 and R;3). The following table shows DAC counts subject to

graph G.
DAC(G) Xy X X5 Xy
a 1 0 1 1
b 1 0 1 1
c 1 0 1 1

The sum of minimum DAC gives an initial lower bound of 3
inconsistencies, which is one more inconsistency than when DAC
were computed under lexicographical order.
In Figure 4.5 we show the algorithm for computing DAC subject to a
directed graph. After setting every DAC to 0, it iterates on G edges and
adds individual contributions to DAC subject to the edge direction. Observe
that the previous version of ini_DAC (Figure 4.1) is just a particular case
where G is induced by a variable ordering.
The interest of graph-based DAC is that they can also be used to compute
lower bounds on the number of inconsistencies.

Observation 4.5:

Given a CSP, a directed graph G and its associated DAC, the
following expression is a lower bound of the number of constraints
that any total assignment will violate

n
n,{dac,(G)}
];mm ac]

110 Chapter 4. Combining Search with Local Consistency Enforcement

Proof:

As with lower bounds previously proposed, its correctness is based in
the fact that each constraint can only contribute once to the
expression. In this case, the reason is that graph G is directed with
one edge per constraint, so each individual constraint has an
associated direction under which arc-consistencies are computed.
When graph-based DAC are combined with IC, the situation becomes
more involved. We cannot use the following lower bound during search,

distance + 2 I:m'nv{ icyt+dacy(G)}

because distance, DAC and IC can duplicate information. The problem of
duplicated information arises when the current variable meets forward
edges in G with future variables. Let X;j and X; be two variables such that
(4,)) EEDGES(G) and GivesDacjp; is true. In that situation, dacj, has a
contribution from constraint R;;. We cannot select for instantiation X;
before X; because independently of what value is assigned to X, its
propagation will produce an increment of 1 in icj. But the same
inconsistency is already recorded in dacp, so adding ijptdacy would count
the same inconsistency twice.

The solution to this problem is to compute DAC at each node subject
to the subgraph, GF, associated to future variables only.

distance + E man,{icj,+dacy,(GF) }
JEF
Then, DAC contributions from past variables are discarded. This situation
is illustrated in the following example.

procedure ini DAC (G)

1 for i:=1 to n do for all aED; do dac;,:=0 endfor endfor

2 for all (j,i)EEDGES(G) do

3 for all a€D; do

4 if(arc_inconsistent(X;,a,X;)) then dac;j:=dac;,+1 endif
5 endfor

6 endfor

7 return(DAC)

endprocedure

function arc_inconsistent(Xi,a,Xﬁ) returns boolean

8 arc_incons:=true

9 for all b €D, while (arc_incons) do

10 if (not inconsistent(X;<a, X;<b)) then arc_incons:=false endif
11 endfor

12 return(arc_incons)

endfunction

Figure 4.5: DAC initialization subject to a directed graph.

4.6 Graph-based DAC 111

Example 4.8:

Consider our running example with its DAC computed subject to the
directed graph G previously defined.

DAC(G) | X; Xo X3 X4

a 1 0 1 1
b 1 0 1 1
c 1 0 1 1

Observe that now it is senseless to select variables in lexicographical
order because DAC are not computed subject to it. Let Xy<—a be the
first assignment attempted. After the propagation, the following IC
are computed,

IC X7 X X3
a 0 0 1
b 1 1 1

1 1 1

We cannot combine DAC based on G with these IC because X4 has a
forward edge in G (i.e: (4,1)EEDGES(G)). In this particular case, icjy
and dacj refer to the same constraint violation (Rj4). It is illustrated
in the following picture which shows detected inconsistencies in Dy,

IC Dy DAC

Ryo

R b
14 _ R14

112 Chapter 4. Combining Search with Local Consistency Enforcement

To circumvent that problem, one should use the subgraph, GF, which
only includes future variables. Therefore, it does not include any
DAC contribution from Xj.

©

It produces the following arc-inconsistency counts,

DAC(GF) X, Xo X3

a 1 0 1
b 0 0 1
c 1 0 1

Which do not duplicate any inconsistency so they can be safely

added,
IC+DAC Xy Xo X3
a 1 0 2
b 1 1 2
c 2 1 2
min 1 0 2

giving a lower bound of 3 inconsistencies.

The problem now is that DAC change during search. Each time search
moves to a successor, DAC must be updated removing those arc-
inconsistency contributions caused by the current variable. Interestingly, it
is not necessary to compute DAC from scratch at each node. We can use the
GivesDac structure to detect the situation and decrement redundant DAC. If
X; is the current variable, we must decrement all dacy, such that there is a
forward edge with their variable (i.e: DIRECTION(i,j,G)=1) and X;
contributed to their DAC (i.e: GivesDacjy; is true) because the propagation
will increment their IC producing an information duplication. However,
incrementing icj and decrementing dacj, is irrelevant with respect
branch and bound. Thus, in practice it is more efficient to leave DAC
unaltered and prevent the updating of those IC of future variables whose
DAC has a X; contribution. To do this, we only need to replace line 24 of
Figure 4.2 by:

4.6 Graph-based DAC 113

24 else_if ((DIRECTION(i,j,G)=-1 and not(GivesDaciaj)) or
(DIRECTION(i,j,G)=1 and not(GivesDacjbi))) and
inconsistent (X;<a, Xj<b)) then

The first disjunction is necessary for the improvement presented in
Section 4.5. The second disjunction is necessary to prevent the graph-based
duplication discussed above. In this way it is guaranteed that if we
increment ic, it does not have any contribution already included in dacg.
Consequently, IC and DAC of future values can be safely added to form a
lower bound of inconsistencies for that value.

Observation 4.6:

An additional advantage of this new improvement is that it
unrelates DAC with the variable ordering heuristic. Thus, with this
approach, branch and bound can be combined with dynamic variable
ordering heuristics. This is beneficial because, in general, dynamic
variable orderings are more effective than static variable orderings.
The interest of graph-based DAC is that they generalize the previous
concept of DAC based on a variable ordering. In fact, DAC based on a
variable ordering are equivalent to DAC based on a directed graph where
edges are induced by the ordering. Previous work on DAC usage computed
DAC subject to a variable ordering because, if DAC are computed under
that ordering and branch and bound follows the same ordering for
variable instantiation, the current variable never meets forward edges, so
the problem of redundant information when combining DAC and IC does
not occur. However, we have shown that this problem can be solved by
means of the GivesDac structure, with no computational overhead at all.

In the classical DAC usage one needs to decide a variable ordering
before computing DAC. With this new approach, one needs to decide the
direction of each constraint. Thus, it allows for more freedom in the way
arc-inconsistencies contribute to the lower bound (there is a factorial
number of possible total orderings among variables and an exponential
number of possible directed graphs). An additional advantage of graph-
based DAC is that they do not require the use of static variable ordering,
which was believed to be necessary when using DAC [Wallace, 94; Larrosa
and Meseguer, 96].

The algorithm that includes the improvements introduced in
Sections 4.4-4.6, denoted PFC-GDAC (because of its graph-based DAC), is
presented in Figure 4.6. It assumes a directed graph G, under which DAC
have been computed during a pre-process (as indicated in Figure 4.5).

114 Chapter 4. Combining Search with Local Consistency Enforcement

procedure PFC-GDAC (P, F, dist, Assg, Dom, IC, DAC, G)

1 if (F = J) then
2 UB:= dist
3 Best_sol:= Assg
4 else
5 (X;,D;) := select current_variable_and_domain(F, Dom)
6 while (D;=J) do
7 a:= select_current_value(D;)
8 D;:= D;-{a}
9 NAssg:= Assg U {X;<a}
10 ndist:= dist + icjg + dacjg
1 if (ndist+ Zm;nv(icjv+dacjv) < UB) then
jEf={i}
12 (NDom, NIC):= look ahead(ndist, X;, a, F-{X;},Dom-{D;}, IC, DAC, G)
13 if (not empty domain(NDom)) then
14 PFC-GDAC(PU{X;}, F-{X;},ndist, NAssg, NDom, NIC, DAC, G)
15 endif
16 endif
17 endwhile
18 endif
endprocedure
function look_ahead(ndist, X;, a, F, Dom,IC, DAC, G)
19 stop:= false
20 for all D,EDom while(not stop)do
21 for all b €D; do
22 if (ndist+ icjpt dacjb*)(ﬁz{"’}'}nv{ickv*'dackv) = UB) then
=J
23 Dj:= D;-{b}
24 else_if ((DIRECTION(i,7,G)=-1 and not(GivesDaciaj)) or
(DIRECTION(i,7,G)=1 and not(GivesDacjbi))) and
inconsistent (X;<a, Xj<b)) then
25 icjb:=icjb+1
26 if (ndist+ icjpt dacyph mev(ickv-»dackv} >UB) then
kef?{j}
27 Dj:= D;-{b}
28 endif
29 endif
30 endfor
31 if (D=) then stop:= true endif
32 endfor
33 return (Dom, IC)
endfunction

Figure 4.6: PFC-GDAC. Bold line numbers indicate differences with
respect PFC-DAC.

4.6 Graph-based DAC 115

4.7 Reversible DAC

In the previous Section, we showed that DACs could be computed subject to
a directed graph, instead of a variable ordering. It means that each
constraint has an associated direction under which its arc-inconsistencies
are exploited. In this Section we go one step further. We consider the
dynamic rearrangement of the graph during search, targetting a lower
bound maximization subject to current IC.

Using graph-based DAC, as presented in the previous Section,
requires the choice of the graph before search starts. This decision is
important since it determines those arc-inconsistencies that contribute to
the lower bound during search. Obviously, one would like to find the
optimal graph (i.e.: find a direction for each constraint such that their
directional arc-inconsistencies combined with IC cause the maximal
contribution to the lower bound). However, IC change during search,
while the graph remains static. Therefore, a good graph for some nodes
can be bad for others. Consequently, graph optimality is a dynamic concept
which depends on the visited node.

Example 4.9:

Consider a CSP having three variables, two values per variable and
the following constraints: Rj9={(a,b), (b,a), (b,b)}, R13={(a,a), (a,b),
(b,b)} and Rg3={(a,a)}. Let S be the node defined by the partial
assignment {Xj<a}. It is easy to see that the propagation produces
the following inconsistency counts,

I1C($%) Xo Xs
a 1 0
b 0 0

Regarding DAC contribution, there is only one constraint between
future variables (Rg3). Hence, there are two possible directed
subgraphs for the current future variables (one for each possible
direction of the future constraint). Let Gl denote the graph with edge
(3,2) and G2 denote the graph with edge (2,3).

116

Chapter 4. Combining Search with Local Consistency Enforcement

Gl

O—0
O—O

Each one produces different DAC counts,

pAC(GlH | X X3
a 0 0
b 1 0
DAC(G?) | Xo X3
a 0 0
b 0 1

At this search state, it is more suitable to use DAC based on Gl
because they contribute precisely to the value having the minimum
IC in Xy. Thus, adding IC+DAC increases the lower bound in one
unit. On the other hand, if we use DAC based on G2, they do not
give any advantage over plain IC because their only contribution is
not enough to increase the minimum IC+DAC of Xj.

IC(S%+DAC(GL) | Xo X3
a 1 0
b 1 0
IC(89+DAC(G?) | Xo X3
a 1 0
b 0 1

Consider now a node $% defined by the partial assignment {X;< b}.
S? has the following inconsistency counts,

IC(SY) Xo X
a 0 1
b 0 0

4.7 Reversible DAC 117

In this node, we have the opposite situation. Using DAC based on Gl
is useless because its only contribution cannot increase the
minimum IC+DAC of Xs. On the other hand, using DAC based on
G2, there is a contribution to value b €Xs, which is enough to
increase the lower bound in one unit.

IC(SH)+DAC(GL) | Xo X3
a 0 1
b 1 0

IC(S)+DAC(G?) | Xo X3
a 0 1
b 0 1

The only reason for using the same graph throughout all search is
that its DAC can be used without extra recomputing overhead during
search. However, given that no static graph is globally optimum, one may
think of changing the graph during search. That means giving to each
constraint the direction in which its arc-inconsistencies are more useful,
subject to the current IC. Obviously, changing the graph requires some
additional effort at each search node. There is a trade-off between the cost
of finding a good graph for each node and the search savings that it may
cause.

At each node, one might like to find an optimal directed graph
subject to the current set of future variables and the current IC (i.e. decide
the direction to each individual constraint such that combining its DAC
with the current IC provides the highest lower bound). However, the
number of possible graphs at a given node is exponentially large, and
finding the optimal graph at each search state does not seem to be easily
done in an efficient manner. To circumvent that drawback, we propose a
simpler approach: we will not search for optimality, but only for sub-
optimality. In the following we present a greedy heuristic which searches
for a good graph at each node.

Our approach is based on the concept of reversible DAC (RDAC). The
idea behind it is to reverse the edges of the graph dynamically during
search with the objective of exploiting arc-inconsistencies in the direction
in which they produce a higher contribution to the lower bound. The first
requirement to bring this idea into practice in an efficient way is to detect
all arc-inconsistencies prior to search. Recall that previous algorithms
only search for arc-inconsistencies in the direction induced by the graph
edges. In the following we assume that GivesDac structure has been
initialized recording arc-inconsistencies in both directions (even those
not contributing to any DAC count). Note that this inicialization requires

118 Chapter 4. Combining Search with Local Consistency Enforcement

some additional computation at the pre-processing step. Hence, before
search starts we have,

(GivesDacyj = true <> ¢ €Dy, is arc-inconsistent with X;) Vkcj

With this data structure, reversing an edge and updating DAC counts
accordingly can be done efficiently during search. Let X; and Xj be two
constrained future variables such that (j,k) € EDGES(G). X, may then have
arc-inconsistency contributions from X; in its DAC. If the edge (j,k) is
reversed, we only need to decrease all X; DAC such that GivesDacy,j is true
by one, and increase all X; DAC such that GivesDacjpy, is true by one. Figure
4.7 shows how it can be done. Procedure reverse(j,k,G) removes the edge
(J,k) from G, adds the new edge (k,j) and updates DAC accordingly.

procedure reverse(j, k, DAC, G)

1 EDGES (G) := (EDGES(G)U(k,7))=(7,k)

2 for all c €D, do if (GivesDac).;) then dacy. := dacy. -1 endif endfor
3 for all b €D; do if (GivesDacj,) then dacjp := dacjp +1 endif endfor
4 return(DAC, G)

endprocedure

Figure 4.7 Reversing an edge and updating DAC, as needed in PFC-
RDAC.

In our work we follow a simple, computationally efficient heuristic.
Each node inherits G (and, consequently, its associated DAC) from its
parent. Then, each constraint between future variables is considered: If its
reversal improves the current lower bound, then it is reversed; otherwise
it is not. The process iterates until no local change can possibly improve
the current lower bound. Observe that this is a typical hill climbing
schema for local optimization. It makes local changes (constraint
reversals) as far as they produce an immediate gain. It stops when it gets
trapped in a local optimum. In general, local optima do not imply global
optimality. Thus, our approach does not guarantee the obtention of the best
graph for the current node.

Regarding a single edge reversal, there is a necessary condition for
a reversal to increase the lower bound that can be easily tested.

Observation 4.7:

Let Rj, be a constraint between future variables such that (kR E
EDGES(G). Let bEDjand ¢ €D, denote those values having the
minimum IC+DAC at the current node (i.e: b= arg_min,{dac+ic,} and
= arg_min,{dac,+ic,}). Then,
1. Reversing edge (j,k) does not produce a lower bound gain if in
its current direction it contributes to the DAC of ¢. Or, what is
equivalent,

GivesDackcj = true

4.7 Reversible DAC 119

2. Reversing edge (j,k) does not produce a lower bound gain if, in

the opposite direction it does not contribute to the DAC of b.
Or, what is equivalent,

GivesDacjyy, = false

Consequently, the following expression is a necessary condition for a
reversal producing a lower bound increment that can be efficiently
tested,

GivesDackcj = false and GivesDacjp, = true

Example 4.10:

Consider the previous example CSP. Let {X;< a} be the current

assignment and
O—

the current subgraph subject to future variables. In this situation, we
have the following DAC+IC.

IC+DAC Xo X3
a 1 0

b 0 1
min 0 0
arg_min b a

Which produces a zero lower bound. Values having the minimum
IC+DAC in Xg and X3 are b and a, respectively. Thus, the necessary
condition for reversing the edge (3,2) is,

GivesDacg a9 = false and GivesDacgys = true

or, in words, that the current edge direction does not contribute to
the minimum IC+DAC of Xs, and if it is reversed it contributes to
the minimum IC+DAC of Xj. It is easy to see that this condition
holds so it is reasonable to reverse the edge. The resulting graph is,

(D=—(

which produces the following DAC+IC,

IC+DAC Xo X3
a 1 0

b 1 0
mn 0
arg_min a,b a,b

120 Chapter 4. Combining Search with Local Consistency Enforcement

This new situation allows for the detection of 1 inconsistency.
Observe that now there are two values having the minimum
IC+DAC at each variable. If we test again the necessary condition for
reversing the edge (3,2), depending on what values are selected, the
test will fail or succeed (for instance, if the test is performed using
a€Dg and bEDs it succeeds). However, reversing the edge returns to
the previous situation which decreases the lower bound. This
example proofs that the test is only a necessary condition.
Figure 4.8 shows greedy_opt, the procedure in charge of optimizing the
current directed graph G, subject to the current IC. At each iteration, the
current lower bound is recorded (line 8). It then iterates on the set of
future constraints. For each constraint, we test whether or not reversing it
can produce a lower bound increment following the idea of Observation
4.7 (line 9). If the test succeeds, it is reversed (line 10). If it fails, its
direction is not changed. After each reversal, the new lower bound is
computed. Only when the reversal is not counter-productive (line 11) it is
maintained. If a whole iteration over constraints does not produce any
gain, the procedure stops. It returns the new graph and its associated DAC.
The algorithm that reverses edges searching for a good graph at
each visited node is denoted PFC-RDAC. It only differs from PFC-GDAC
in that after propagating each assignment, procedure greedy_opt performs
the greedy optimization of the lower bound. To do this, an additional line
has to be added to PFC-GDAC.

13b (NG, NDAC):= greedy_opt (G, DAC, F)
and line 14 has to be replaced by:

14 PFC-RDAC(PU{X;}, F-{X;}, ndist, NAssg, NDom, NIC, NDAC, NG)

4.8 Maintaining DAC During Search

All previous algorithms have one feature in common: their DAC counts
are based on arc-inconsistencies that are detected during a pre-process
before search. However, forward checking algorithms prune future values
that are found unfeasible. It may happen that value pruning causes new arc-
inconsistencies which only hold at the current subproblem. Pre-computed
DAC do not include these new arc-inconsistencies because they did not
hold at the original problem. Thus, when branch and bound solves a
subproblem is not using updated DAC with respect to this subproblem.

Our last improvement maintains DAC updated during search by
including contributions of new arc-inconsistencies caused by pruned values.
Updated DAC are always greater than or equal to pre-computed DAC.
Hence, they lead to better lower bounds which increase value pruning.
This new pruning can cause new arc-inconsistencies that are again
reflected in higher DAC. Consequently, a cascade effect that will anticipate
dead-end detection is expected.

4.8 Maintaining DAC During Search 121

function greedy opt(G, DAC,F)

1 stop:= false
2 while(not stop) do
3 save_min:= Zminv{daij+iij}
JEF
4 for all (j,k)EEDGES(G) if (JEF and kEF) do
5 min_j:= minp{dacjpticp}
6 min k:= min.{dacy-+icyc}
7 val_min_j:= argminb{daCjb+iCjb}
8 val min k:= argmin.{dacic+icyc}
9 if (not GivesDacy val_min_k j and GivesD.aCj val_min_j k) then
10 (G,DAC) := reverse(j, k,G)
11 if (miny{dacqjy*ticjy}+miny{dacyy+icyy}<min_j+min_k)then
12 (G,DAC) := reverse(k, 7, G)
13 endif
14 endif
15 endfor
16 if(save_min = zé‘ninv{dacj"ﬁicj-v}) then stop:= true endif
J
17 endwhile
18 return (G, DAC)
endprocedure

Figure 4.8: Greedy optimization of graph G, subject to the current IC.

We will refer to this approach as maintaining directional arc-consistency
(MDAGC) because of its parallelism with maintaining arc-consistency (MAC) in
the total constraint satisfaction context. Observe that both algorithms
follow the same idea: they detect new arc-inconsistencies caused by pruned
values. However, in MAX-CSP arc-inconsistent values cannot be pruned.
They are only recorded and added to DAC counts for lower bound
computation. For this reason, it is enough to detect new arc-inconsistencies
between future variables in the direction indicated by the corresponding
graph edge.

To perform MDAGC, any arc-consistency algorithm (along with the
adequate data structures) can be used. The only requirement is that the
effect of each value removal must be propagated toward future variables,
increasing DAC accordingly. The algorithm that improves PFC-GDAC
maintaining its DAC updated is denoted PFC-MDAC. It only requires the
addition of a function call propagate_del after each value pruning.

Observation 4.8:

PFC-MDAC never causes the algorithm to visit more nodes because
updating DAC always produces higher lower bounds. However,
propagating each value removal causes an overhead during search
which may or may not be cost-effective.

122 Chapter 4. Combining Search with Local Consistency Enforcement

An AC-4 based implementation of propagate_del is given in Figure 4.9. It
receives as input the support-based data structures that are assumed to be
initialized before search. When value & ofXj is removed, the procedure
iterates on the set of values to which the removal may affect (namely, future
values such that there is a forward edge from connecting X; and their
variable, and such that b was giving support to them (line 1)). For each
value, its support is decremented (line 2). If it becomes zero, it means that
their last supporting value at X; has been removed, so their DAC is
incremented (line 3). The only difference between propagating a value
deletion in total constraint satisfaction or in partial constraint satisfaction
is that, in the latter case, those values that become arc-inconsistent have
their DAC increased instead of being pruned.

The LSupport and CSupport data structures are useless when DAC are
not maintained. However, one can observe that CSupport;sj =0 < GrvesDac;qj
=true. Therefore, the GivesDac structure is redundant with the MDAC-4
algorithm.

Maintaining DAC is easily combined with reversible DAC. The
resulting algorithm, PFC-MRDAC, only requires the following two
modifications:

1. RDAC requires the GivesDac structure to be updated with respect to
both directions of each constraint in order to reverse DAC
efficiently. Thus, in MRDAC, where Csupport plays the same role, it
has to be updated in both directions, as well. To do this, one must
modify the propagate_del procedure. Its pseudo-code appears in Figure
4.10. Its difference with Figure 4.9 is that Csupport is updated,
regardless of the edge direction (line 2), but dacg, is only
incremented if new arc-inconsistencies occur in the appropriate
direction (line 3).

2. The second modification is needed because RDAC improves the
lower bound after each look-ahead and it may produce the
unfeasibility of new values. In MRDAGC, it is especially important to
detect and propagate these new removals because it may produce new
DAC contributions. To do this, we add a new function call after the
greedy_opt procedure. This function, prune_values, is in charge of value
deletion once the lower bound has been improved by the greedy_opt
function. It appears in Figure 4.11. It can be seen as a simplified look-
ahead with no IC updating. Observe that iteration continues until a
fix point is reached. This has been found to be useful in practice,
although gains are minor.

For the sake of completeness, PFC-MRDAC —the algorithm that includes
all improvements presented in this chapter— is presented in Figure 4.12.
It assumes graph G, DAC and AC-4 data structures to be properly
initialized before search.

4.8 Maintaining DAC During Search 123

function propagate_del (Xj, b, F, G, CSpport, LSupport, DAC)

1 forall (X, c)ELSupportj, if (DIRECTION(j,k)=1 and X,EF) do

2 C’Supportkcj = CSupportkcj -1

3 if (CSupporty.; = 0) then dacy.:=dacy. +1 endif
4 endfor

5 return(CSupport, DAC)

endfunction

Figure 4.9: AC-4 based propagation of a value removal as needed in PFC-
MDAC.

function propagate del (X5, b, F, G, CSpport, LSupport, DAC)

1 forall (X, c)ELSupport;, if (XEF) do

2 CSupportkcj = CSupport:kcj -1

3 if (CSupporty.; =0 and DIRECTION(j,k)=1) then
4 dacy.i=dacy, +1

5 endif

6 endfor

7 return(CSupport, DAC)

endfunction

Figure 4.10: AC4-based propagation of a value removal as needed in PFC-
MRDAC.

function prune values(ndist, F, Dom, G, CSupport, LSupport, DAC)

1 stop:= false
2 while (not stop) do
3 save_min:= Zminv(daCjV+iij)

JEF
4 for all X,EF while (not stop) do

for all b €D; do
6 if (ndist+ icjpt dacypt ;minv{ickv+dackv}aUB)then
7 D;:= D;-{b}
8 (CSupport, DAC) :=
propagate_del(X;yb,F,G, CSupport, LSupport, DAC)

9 endif
10 endfor
11 if (D;j = @) then stop:= true endif
12 endfor
13 if (save_min = nginv{dacjv"’icjv}) then stop:= true endif
14 endwhile
15 return(Dom, CSupport, DAC)
endfunction

Figure 4.11: Pruning values after a lower bound improvement, as required
in PFC-MRDAC.

124 Chapter 4. Combining Search with Local Consistency Enforcement

procedure PFC-MRDAC (P, F, dist, Assg, Dom, IC, DAC, G, CSupport, LSupport)
1 if (F =) then
2 UB:= dist

3 Best_sol:= Assg
4 else
5 (X;,D;):= select_current_variable_and domain(F, Dom)
6 while (D;=J) do
7 a:= select_current_value(D;)
8 D;:= D;-{a}
9 NAssg:= Assg U {X;<a}
10 ndist:= dist + ic;j, + dacj,
1 if (ndist+ Zm;nv{icjv+dacjv}<us) then
jEF={i}
12 (NDom, NIC,NDAC, NewCSupport) :=
look_ahead(ndist,X;,a, F-{X;}, Dom-{D;}, IC, DAC, G, CSupport, LSupport)
13 if (not empty domain(NDom)) then
13b (NG, NDAC):= greedy_opt (G, NDAC, F)
(NDom, NewCSupport, NDAC):=
13c prune_values(ndist,F, NDom, NG, NewCSupport, LSupport, NDAC)
14 PFC-MRDAC (PU{X;}, F~{X;},ndist, NAssg, NDom, NIC, NDAC, NG,
NewCSupport, LSupport)
15 endif
16 endif
17 endwhile
18 endif
endprocedure

function look_ahead(ndist, X;, a, F, Dom, IC, DAC, G, CSupport, LSupport)
19 stop:= false

20 for all D,EDom while(not stop)do
21 for all b EDj do
22 if(ndist+ iCjb+ dacpt Zmr‘inv{ickv+dackv)zUB)then
ket={7}
23 Dj:= D;-{b}
23b (CSupport, DAC) := prune_values(ndist, F, Dom, G, CSupport, LSupport , DAC)
24 else_if ((DIRECTION(i,3j,G)=-1 and not(GivesDaciaj)) or

(DIRECTION(i, j,G)=1 and not(GivesDacjbi))) and
inconsistent(X;<a, X;<b)) then

25 icjb:=icjb+1

26 if(ndist+ icjp+ dacjp+ Zminv{ickv+dackv)zUB)then
kef={7}

27 Dj:= D;-{b}

27b (CSupport, DAC) :=prune_values(ndist, F, Dom, G, CSupport, LSupport , DAC)

28 endif

29 endif

30 endfor

31 if(Dj= J) then stop:= true endif

32 endfor

33 return (Dom,IC, DAC, CSupport)

endfunction

Figure 4.12: PFC-MRDAC. Bold line numbers indicate differences w.r.t.
PFC-GDAC.

4.9 Experimental Results 125

4.9 Experimental Results

4.9.1 The MAX-CSP Complexity Peak?

In this Subsection, we examine the existence of a pattern in MAX-CSP
average difficulty of problems. We show that the search effort of PFC
enhanced with the use of directed arc consistency counts (DAC) presents
and easy-hard-easy pattern when solving random binary CSP instances.
Interestingly, if the algorithm does not use any local consistency
information in its lower bound, the easy-hard-easy pattern does not occur
and problems become increasingly hard. The peak in the search effort is
related with a sudden change in the number of arc-inconsistencies of
problems.

In recent years, increasing attention has been devoted to the
phenomenon of phase transition appearing when solving different types of
NP-complete problems, such as graph coloring, SAT and binary CSP
[Cheeseman ef al,, 91]. In these problems, the plot of the search effort
shows an easy-hard-easy pattern when varying a certain order parameter.
This pattern reflects a phase transition in the probability of problem
solvability, which passes suddenly from 1 to O varying the order
parameter. Typically, problems in the left-easy part are solvable and they
have many solutions, so it is easy to find one. Problems in the right-easy
part are unsolvable and it is also easy to find it out. The hard part, situated
between the two easy parts and where the phase transition occurs, is
composed of problems which are either solvable or unsolvable with an
approximate proportion of 50% each. In this part, solvable problems have
few solutions, so it is costly to find one, and unsolvable problems have
many almost-solutions, so algorithms have to invest a lot of effort to finally
find that no solution exists.

Regarding binary CSP [Prosser, 94], the complexity peak becomes
apparent when varying constraint tightness. Experiments on the four
parameter model for random problems show that if the number of
variables (n), domain cardinality (m) and graph connectivity (p;) is
maintained and constraint tightness (po) is varied, the most difficult
instances occur precisely at the point where problems suddenly change
from solvable to unsolvable. Figure 4.13 illustrates this phenomenon using
FC on the <10,10,45/45,po> class. For each problem class, the average
number of consistency checks on samples of 50 instances is reported. We

2The discovery of this phenomenon was presented in [Larrosa and Meseguer, 96b]
as a phase transition. Now, we prefer to call it a complexity peak. The reason is that
we do not know whether the peak is related to a sudden change of some problem
property or not.

126 Chapter 4. Combining Search with Local Consistency Enforcement

also show the ratio of solvable problems which presents the behaviour
previously described.

So far, phase transition research on CSP has been limited to the total
constraint satisfaction case. In the following, we show that there is a
complexity peak on MAX-CSP which becomes apparent if DAC are used to
improve branch and bound lower bound. We experimented on the classes
<10,10,p;,po> with the following values for p1: 15/45, 25/45, 35/45 and
45/45. p, varies in steps of one hundredth within the range of
oversconstrained instances (i.e. after the critical point where problems
become unsolvable). For each parameter setting, we generated samples of
50 instances. At each class of problems, we compare PFC vs. PFC-DAC (as
described in Figure 4.2). In this experiment we did not want variable and
value ordering heuristics to distort the algorithms behaviour. For this
reason, variables and values were selected in lexicographical order.

Figures 4.14 and 4.15 report the average number of consistency
checks for these problem classes. Results in terms of CPU time and visited
nodes are omitted because they present exactly the same behaviour. Figure
4.14 shows the results obtained with PFC. We clearly see that the search
effort grows monotonically with tightness and this growth is exponential.
Note that these results are on average: for a given problem instance,
increasing the number of nogoods does not necessarily makes it harder to
solve. In conclusion, no easy-hard-easy pattern is observed for these classes
of problems when solved with PFC.

5000

_' g ——o—— search effort
4] !
000 ko5
3 prob. solvability
8 3000 -
<=
S - 0.5
< 2000 -
1000 1 —0.25
%
0 : Bl ; T e 0
=) [Ye) =} 7] =)
()} e} o~]
p2 x 100

Figure 4.13: Phase transition and associated complexity peak on the
<10,10,1,p9>.

4.9 Experimental Results 127

Figure 4.15 shows the results obtained with PFC-DAC. PFC-DAC
improves PFC lower bound with arc-inconsistency information. This
strategy has little or no effect for low values of p, because every DAC is
likely to be zero. However, DAC efficiency increases for high values of po,
when many constraints between future variables are arc-inconsistent.
When tightness is increased, we observe a substantial decrease in the
search effort required by PFC-DAC with respect to PFC (observe the
difference in the consistency checks scale). More importantly, we observe a
peak in the search effort after which the search cost falls drastically until
it is almost zero for py=1. In addition, the hardest problems for PFC,
located in the neighbourhood of py=1 are extremely easy to solve for PFC-
DAC.

Given that MAX-CSP is an optimization problem, the easy-hard-easy
pattern observed cannot be explained in terms of a phase transition in the
probability of solution. Nevertheless, the observed peak depends on the
evolution of lower bounds with py. For high values of py, there are many
arc-inconsistencies which are reflected in DAC counts. There is a point
after which the number of arc-inconsistencies starts growing very fast.
This causes an abrupt increase of PFC-DAC lower bound, even at the
highest tree levels. It has a drastic effect in the ability of PFC-DAC to
anticipate pruning and produce empty domains. As a result, it causes a
rapid decrease of the search effort required.

We can explain the behaviour of PFC-DAC in terms of upper and
lower bounds. On the left side of the peak there is the region of low and
medium tightness problems, for which the best solution violates none or a
few constraints. On these problems branch and bound soon finds a low
upper bound, such that low lower bounds are enough to prune, making
problems easy to solve. On the right side of the peak there is the region of
very high tightness problems, for which the best solution violates many
constraints, that is, they present high upper bounds. For these problems
DAC are also high, causing high lower bounds at shallow levels of the
tree. As a result, the algorithm can prune efficiently and these problems
are also relatively easy to solve. Around the peak there is the region of
high tightness problems, for which the best solution has an important
number of violated constraints (high upper bounds). However, the sum of
minimum DAC is zero or very low, so branch and bound has to go deep in
the tree to accumulate enough IC to perform pruning.

Figure 4.16 illustrates this situation on the <10,10,1,p9> class. It
depicts the search effort needed by PFC-DAC and the evolution of bounds
with py. Since bounds change during search we can only report some
selected values. Regarding the upper bound, we plot for each class the
average best solution, which is an under-estimation of the upper bound
during search. Regarding the lower bound, we plot its value at the tree
root (that is to say, the sum of minimum DAC), which is an under-
estimation of the lower bound value during search. We can observe that
these selected upper and lower bound grow monotonically when tightness

128 Chapter 4. Combining Search with Local Consistency Enforcement

is increased, but they grow with different rates. The upper bound becomes
different from zero at the point where problems become overconstrained
and, from that point, it grows at a more or less constant rate. The lower
bound takes value zero for low tightness overconstrained problems. There
is a point (around p,=.85) where it suddenly starts growing very fast with
an increasing rate. Both bounds meet at problems having the highest
tightness. Therefore, we can conclude that when PFC-DAC solves easy
problems on the left, it typically has low upper and lower bounds. On the
other hand, when it solves easy problems on the right, it typically has
high upper and lower bounds. Hard problems on the peak cause PFC-DAC
to search with high upper bounds and low lower bounds.

40000000
—— <10,10,15/45 p>>
30000000 o = S <10,10,25/45 pr>
semeweses<10,10,35/45,p0>
2 50000000 s <10,10,45/45 pr>
2
Q
S
« 10000000 -
0 |
[} [} (e} (=) [} [« (e}
<t e} O o~ [e%e] ()} [w]
p2 x 100

Figure 4.14: Average number of consistency checks performed by PFC with
four classes of random problems.

8000000
———— <10,10,15/45 p>>
6000000 o = Gerevaeene <10710125/45,P2> '\‘
P ceeeecne <10,10,35/45 po> I
_«g 4000000 <10,10,45/45 py> ","Y‘ Il'k
J A
* 2000000 — “‘/ Pt
.

p2 x 100

Figure 4.15: Average number of consistency checks performed by PFC-DAC
with four classes of random problems.

4.9 Experimental Results 129

8000000
——— PFC-DAC 5- 40
? 7]
£ 6000000 —) & -8
g e gesernens best distance FYL 30 8
o &4 Rz
S | &
< 4000000 -20
.%
2000000 — - 10 =
0 = ¢ 0
o (==} (=)
<t [>e] (e}

=}
p2 x 100

Figure 4.16: Search effort in terms of checks required by PFC-DAC plotted
against evolution of selected upper and lower bounds for the
<10,10,45/45,p5> class of random problems.

4.9.2. Empirical Evaluation of the Improvements on
DAC Usage.

The second set of experiments endeavours to quantify the importance of our
improvements with respect to PFC-DAC. In these experiments we used the
following classes of random problems,

(@).<10,10,45/45,po> (b). <15,5,105/105,po>
(¢). <15,10,560/105,po> (d).<20,5,100/190,py>
(e). <25,10,37/300,po> (). <40,5,55/780, po>

Observe that (a) and (b) are highly connected, (¢) and (d) are
problems with medium connectivity, and (e¢) and (f) are sparse problems.
For each parameter setting, we generated samples of 50 instances. In this
experiment, search was abandoned if the best solution was not found with
6x107 consistency checks.

Firstly, we analyze the individual contribution of each algorithmic
enhancement presented in Sections 4.4-4.8. With this purpose we solved
problem classes (a) and (e) with a sequence of algorithms that
incrementally incorporate the improvements. These algorithms are:

* PFC-DAC: as described in Section 4.2.

* PFC-DAC-$4: is the algorithm that includes the lower bound
introduced in Section 4.4.

* PFC-DAGC-S5: is the algorithm that includes the detection of
redundant constraint checks.

130 Chapter 4. Combining Search with Local Consistency Enforcement

e PFC-GDAC: as described in Section 4.6.
e PFC-RDAC: as described in Section 4.7.

* PFC-MRDAC: as described in Section 4.8

Regarding variable ordering heuristics, algorithms requiring a
static variable ordering use forward degree breaking ties with backward degree
(FD/BD). The rest of algorithms use minimum domain breaking ties with
graph degree (MD-DG) as dynamic variable ordering. PFC-MRDAC can use
a dynamic variable ordering. However, it used (FD/BD) because we found
that this static ordering was more effective than (MD-DG) for these
problems. Regarding value ordering heuristics, every algorithm selected
values by increasing IC+DAC. In algorithms using graph-based DAC (i.e.:
PFC-GDAC and successors), the initial graph was decided giving to each
constraint the direction that had more arc-inconsistencies.

Figure 4.17 reports the average number of consistency checks for each
algorithm in the two classes of problems. In these plots we do not include
PFC-MRDAC because its AC-4 based propagation to maintain DAC is
performed without consistency-checks. Therefore, a comparison in terms of
checks is not appropriate. It must be mentioned that, in the
<25,10,37/300,po> class, PFC-DAC reaches the upper limit of 6x10'7
consistency checks when solving problem instances in the range 0.90 < po
= 0.98. Therefore, the plot is favoring this algorithm. Figure 4.17 clearly
shows that each algorithm outperforms its predecessors. The algorithm
improvements that have a larger impact in terms of checks are given by
PFC-DAC-S4 and PFC-DAC-S5 for dense problems, and by PFC-DAC-S4
and PFC-RDAC for sparse problems. Our approach gives the most
important benefit at the peak, where the hardest problems for PFC-DAC
occur. The only exception to this behaviour occurs with PFC-GDAC in the
tightest sparse problems. Using a dynamic variable ordering and static
graph-based DAC does not produce a good performance for these problems.

Figure 4.18 reports the number of visited nodes for the same
experiment. Now, we do not plot PFC-DAC-S5 because it does not produce
any saving in term of nodes with respect to PFC-DAC-S4 (see Observation
4.4). Regarding visited nodes, the relative behaviour of algorithms is
basically the same as with consistency checks, but gains are even larger.
The best algorithm, PFC-MRDAC, practically flattens out the complexity
peak. It can be observed that maintaining DAC (PFC-MRDAC), which was
not considered in the previous plot, produces a significant tree reduction
with respect PFC-RDAC.

Finally, Figure 4.19 reports average CPU time (it includes every
algorithm). It can be observed that PFC-DAC-S5 only has a positive effect in
the tightest dense problem. This fact may be surprising because PFC-DAC-
S5 gains in terms of checks were considerable. The reason is that
performing a consistency check in a random problem is only a table look-
up and it can be done very efficiently. Thus, this improvement is almost
unnoticeable for random problems. We believe that its significance will

4.9 Experimental Results 131

become more apparent in domains where consistency checks are more
costly. More importantly, it can be observed that maintaining DAC (PFC-
MRDAC) is not cost effective for dense problems. Although it produces
important tree reductions (Figure 4.18), the overhead required does not pay
off.

Additional experiments aimed at a more exhaustive evaluation of
PFC-GDAC, PFC-RDAC and PFC-MRDAC with respect to PFC-DAC. With
this purpose, the six classes of problems were solved with these four
algorithms. As in the previous experiment, the static and dynamic
variable orderings were FD/BD and MD/DG, respectively. Values were
dynamically ordered by IC+DAC. Like before, PFC-MRDAC uses the static
variable ordering because it was found more effective. In this experiment
CPU time is taken as the main search effort measurement because both
PFG-RDAC and PFC-MRDAC perform an important overhead which does
not perform any consistency check. The number of visited nodes is used to
evaluate the impact of the algorithms to anticipate dead-ends, regardless of
the computational cost of computing their bounds.

Figures 4.20, 4.21 and 4.22 report CPU time for dense, medium and
sparse problems, respectively. It must be mentioned that PFC-DAC reaches
the established search effort limit and abandons search before completing
its traversal in several executions with the medium connectivity and sparse
problems. Therefore, the gains given by our improvements are even larger
than the ones shown in the plots.

Regarding PFC-GDAC, we can observe that it clearly outperforms
PFC-DAC, except for the tightest sparse problems, where the use of a
dynamic variable ordering heuristic does not seem to be suitable. The
largest gain occurs in dense problems where PFC-GDAC is more than 12
times faster than PFC-DAC. We still have not found a satisfactory
explanation for the bad performance that PFC-GDAC has on tight sparse
problems. PFC-RDAC improves PFC-DAC and PFC-GDAC in all problem
classes. The gain grows with problem tightness. PFC-RDAC is more than
4,000 times faster than PFC-DAC on the tightest sparse problems.
Regarding PFC-MRDAC, we observe that maintaining RDAC only pays off
on the tightest instances and on the most sparse problems. Since Figure
4.22 does not show the relative performance of PFC-MRDAC with respect
PFC-RDAC clearly, we present in Figure 4.23 the average CPU time of
these two algorithms on sparse problems. It can be observed that
maintaining DAC on sparse problems produces a significant gain.

Figure 4.24-4.26 report the number of visited nodes for dense,
medium and sparse problems. We observe a similar behaviour as in terms
of time. The only exception is the performance of PFC-MRDAC which
produces an important tree reduction with respect to PFC-RDAC —even
with dense and medium connectivity problems. Therefore, maintaining
DAC anticipates dead-end detection, but it is too costly to pay-off in some
classes of problems. For this reason, we believe that better results will be

132 Chapter 4. Combining Search with Local Consistency Enforcement

obtained with a more sophisticated AC algorithm (i.e.: AC-7 [Bessiére et
al., 95]).

4.10 Conclusions and Future Work

From the work presented in this Chapter, we can conclude that the use of
local consistency information is a major step forward in the development
of efficient branch and bound algorithms for MAX-CSP. We have shown
that even the simplest use of DAC may produce an exponentially large
gain in PFC. We have examined a complexity peak in MAX-CSP when
solving random problems. This phenomenon, not reported before, seems
to be related to the quality of branch and bound lower bound. Furthermore,
we have developed three new algorithms that improve PFC-DAC in a
number of aspects. These new algorithms are among the best existing
approaches for MAX-CSP.

This work also leaves some questions without an answer. Regarding
the complexity peak, a deeper analysis focusing on a good characterization
of the peak is of obvious interest. Considering the new algorithms, we
have found quite surprising that introducing dynamic variable orderings
does not always give an improvement over static variable orderings. This
contradicts traditional wisdom in total constraint satisfaction and requires
further analysis. It is our belief that lower bound quality is the major issue
in branch and bound algorithms for partial constraint satisfaction.
Considering the simplicity of the greedy optimization algorithm
presented in Section 4.7, we think that there is still room for further
improvements. Regarding the algorithm that maintains RDAC updated,
we believe that it can also be improved by moving to more advanced AC
schemas. Finally, an exhaustive comparison between DAC-based
algorithms and Russian Doll Search still remains to be done.

4.9 Experimental Results 133

5000000
+——o=—— PFC-DAC
4000000 s PFC-DAC-S4
«»=w-=-- PFC-DAC-S5
g 30000004 . pRc.GDAC
o = PFC-RDAC
* 2000000 -
1000000
0 DO
=)
<
15000000 p2x 100
10000000 —
g
3
=
Q
3
**
5000000
!
8« zk’?‘;, vv}g: @”.‘—&:&\, ZL ‘Q-,‘ ‘Y/
i»:f_“‘!:—'?“:;::'” oo B gy k“;;‘-?nu
; i :
v o v S
© = o S
p2x 100

Figure 4.17: Average number of consistency checks of different algorithms
on the <10,10,45/45,p5> and <25,10,37/300,p2> classes of problems.

134

Chapter 4. Combining Search with Local Consistency Enforcement

800000
+——oa—— PFC-DAC
decrcregrarnraes PEC-DAC-S4
600000 -
J---e---- PFC-GDAC
é 4-=----- PFC-RDAC
< 400000
3 . PFC-MRDAC
H
200000 2 ey
-~ chﬁ ’*&,0 *
" 0.‘3" 9
> . ‘.
0 - ..:1__ ”W@,ﬂw At 4] ngﬁﬁmﬁﬂﬁ ﬁ.
= =) =) o = = =
<+ Ta} =) ~] =) (=3
p2x 100
2000000
1500000 —
3
e}
o
&
E 1000000 —
H
Y
500000 -
0 --&,.-#::,w .) X“Q"'n 2

AT A TR e By
I

(=)
=)

p2 x 100

Figure 4.18: Average number of visited nodes of different algorithms on
the <10,10,45/45,p> and <25,10,37/300,p2> classes of problems.

4.9 Experimental Results 135

60
——s—— PFC-DAC
50
......... weewn PEC-DAC-S4
40 o s~~~ PFC-DAC-S5
§- -=-=--&«-=== PFC-GDAC
< 304
g e L PFC-RDAC

20 — PFC-MRDAC

10 —

300

200 —

time (secs.)

100 —

i

7%

g o S
W

100

p2 x 100

Figure 4.19: Average CPU time for different algorithms on the
<10,10,45/45,py> and <25,10,37/300,p2> classes of problems.

136 Chapter 4. Combining Search with Local Consistency Enforcement

60
—=—— PFC-DAC <10,10,45/45 p2>
50 i PP e xsexacns PFC-GDAC
404" @-==- PFC-RDAC
. PFC-MRDAC
2 304
g
Py
E 204 R
) e s & ek
e
"lf“‘{ N
. e °‘Q"”.c e
P e e N
_ T
0 | : | | -
o o = o L T !
< "a) s 2 S o 5
p2x 100
200
150 =
~ 100 -
Py
£
50 —
g™ "l--‘\
——(' 0‘"':$"“;t'""° _____
‘——“—‘ e IR o, om o e,
_—-f'“ o7 5% 2 ~°-:®’m:i“
0 = | | l
p2x 25

Figure 4.20: Search effort in terms of CPU time for different algorithms
and two classes of dense problems.

4.9 Experimental Results 137

300
——— PFC-DAC <15,10,50/105 p2>
250 nainens PFC-GDAC
200 07" PFC-RDAC
PFC-MRDAC
Py
E
400
<20,5,100/190 p2>
300
g 2004
Y
E
100
0 i T T
v (e} v [e] v
— — [q\] N

p2x 25

Figure 4.21: Search effort in terms of CPU time for different algorithms
and two classes of medium connectivity problems.

138

Chapter 4. Combining Search with Local Consistency Enforcement

300
———s—— PFC-DAC <25,10,37/300 pF
--------- groensense PFC_GDAC
=<----- PFC-RDAC
200 —
" a PFC-MRDAC
2
rt
E
100 —
A ."‘...,c"
; "J‘}”Aa:::::zz'ﬁg?l&gepﬁﬁz:ilh
0 T T T I]
v o g} [e] el [«)
©~ (e} [>e] (=)} (=)} [}
p2 x 100
800
<40,5,55/780,p2>
600 -
< 400 - 2
) Al
g 5
g §
200
e $
0 —u-——c—o—m i W‘;:g’:-?::ﬁ‘"‘x -
v (e} w [e] wv
— — N (o]
p2x 25

Figure 4.22: Search effort in terms of CPU time for different algorithms
and two classes of sparse problems.

4.9 Experimental Results 139

20

— o PFC-RDAC <25,10,37/300 p2>

® PFC-MRDAC

154

~ 104
e
E
5 -
0 : : | |
v o v o - A
o~ o) o0 4 by S
p2 x 100
30
———o—— PFC-RDAC <40,5,55/780,p2
. PFC-MRDAC
20
o
E
10 -
0 . : 1
) o “ L T
S 0 S "

p2x25

Figure 4.23: Experimental results of PFC-RDAC and PFC-MRDAC on two
classes of sparse problems.

140 Chapter 4. Combining Search with Local Consistency Enforcement

800000
+—a—— PFC-DAC <10,10,45/45 p>>
B S SO PFC-GDAC
600000 -}
{--<---- PFCRDAC
. PFC-MRDAC
S 400000
=}
el
2
200000 -
e Fo3Pe S os
0 e T T cas s bbb boas LT T T
doa : m.
(] (=) (e} o [} [} ()
< w O ~ 0 =) =]
p2x 100
2500000
<15,5,105/105 p2>
2000000 —
2 1500000 —
e}
o
=
kel
2
% 1000000 —
>
H
500000 -
o B s - Y-S gl S
| |
wv (o) wv o wv
— — [\l N

p2x25

Figure 4.24: Average number of visited nodes for different algorithms and
two classes of dense problems.

4.9 Experimental Results 141

2000000
——— PFCDAC <15,10,50/105 p2>
......... s PEC-GDAC
1500000 —
«x~<w ===« PRC-RDAC
. PFC-MRDAC
» 1000000 —
Q
o
o
=]
el
2
> 500000
H*
o“* s u,
oot mgé-«:ow e ?‘
0 Hiﬁ::n“"" “’"‘TM.
o o o O (=) [w]
v \O o~ [~} (=)} o
p2x 100
3000000
<20,5,100/190 ,p2>
2500000 —
2000000 —
3
el
o
(=]
g 1500000 -
H*
1000000 -
500000 =
. S S i . oRS
0 T T
Vo) o \n I a
— — (q\] N

p2x25

Figure 4.25: Average number of visited nodes for different algorithms and
two classes of medium connectivity problems.

142 Chapter 4. Combining Search with Local Consistency Enforcement

2000000
———a—— PFC-DAC <25,10,37/300 p2>
......... g PEC-GDAC
1500000 -
“ewnmpueas PEC-RDAC
-ig a PFC-MRDAC
= 1000000
2
Hh
500000 —
. . @B g ’-:
0_ ':-'x"zue"'a-"tl)"‘i‘-xv?“-ﬁ_.‘r d
v o 'g] [} gl (=)
o~ '] [*e) (@)} [=)) (]
p2 x 100
5000000
<40,5,55/780 ,p2>
4000000 -
8 3000000 -
o
(=]
gl
2
£ 2000000 -
S
1000000 —
0
wv

Figure 4.26: Average number of visited nodes for different algorithms and

p2x 25

two classes of sparse problems.

Chapter 5

Lazy Evaluation in Partial
Constraint Satisfaction

In the previous Chapter, we showed that combining search with local
consistency enforcement is an effective technique for early dead-end
detection. In general, higher levels of local consistency have better dead-
end detection capabilities at the cost of performing more computation at
each node. Obviously, the overhead of propagation has to be outweighed by
its gain. Since the key issue is the trade-off between the propagation cost
and the gains that it brings in the form of tree reductions, it is of much
practical importance to develop efficient methods for propagation.

Lazy evaluation is a general algorithmic technique which consists in
delaying computation until it is strictly necessary. As a result, no
redundant computations are done at the extra cost of more complex
algorithms. In the total constraint satisfaction context, lazy evaluation has
been successfully applied to avoid performing redundant consistency
checks. In this Chapter, we explore the same idea in partial constraint
satisfaction. We show that this approach is even more appropriate in this
context because algorithms for partial constraint satisfaction have more
sources of redundant computation. We present a lazy algorithm which
saves a good deal of consistency checks when computing the dead-end
condition at each visited node. We show that this approach can be
naturally combined with other algorithms presented in this work. Thus,
their efficiency can be joined. Our experiments give support to the
suitability of the approach.

This Chapter is organized as follows. In Section 5.1, we give an
introduction. In Section 5.2, we revise previous work on lazy evaluation in
the total constraint satisfaction context. In Section 5.3, we introduce a lazy
algorithm for MAX-CSP and justify that it never performs more
consistency checks than its non lazy counterpart. In Section 5.4, we provide
experimental evidence of the gains that it produces, combined with both

144 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

DAC and RDS. Finally, in Section 5.5, we give the conclusions of the
Chapter.

5.1 Introduction

As we have seen in the previous Chapter, combining search with local
consistency enforcement is an effective technique for early dead-end
detection. Different forms of arc-consistency can be successfully applied in
solving both total and partial constraint satisfaction. In general, higher
levels of local consistency have better dead-end detection capabilities at the
cost of performing more computation at each node. Obviously, the overhead
of propagation has to be outweighed by its gain, which becomes apparent
in the form of tree reductions. On very easy problems, even the simplest
forms of propagation can be useless because solutions are easily found, or
dead-ends are easily detected. But, on hard problems it is clearly cost-
effective to invest some additional effort at each node which produces an
overall gain.

A good example is found in the total constraint satisfaction context.
Historically, simple backtracking was used for CSP solving. The additional
computational effort of forward checking look-ahead was rapidly accepted
to be cost effective for most non-trivial problems. Lately, it has been shown
that MAC, which performs more propagation than FC, can outperform FC
on sufficiently hard problems. The acceptance of MAC superiority for hard
problems has needed: (i) the development of very efficient arc-consistency
algorithms (i.e: AC-7 [Bessiére et al., 95]), and (#) the use of hard random
problems to benchmark algorithms.

In the partial constraint satisfaction context, there is a clear
parallelism. PFC outperforms look-back schemas for most problem
instances. More than that, we showed in Chapter 4 that the extra cost of
adding arc-consistency information to PFC is, with no doubt, advantageous.
The additional effort of maintaining directed arc-inconsistency counts
updated (MDAC) is beneficial for some very hard overconstrained
instances.

Since the key issue is the trade-off between the propagation cost and
the gains that it brings in the form of tree reductions, it is of much
practical importance to develop efficient methods for propagation.

Lazy evaluation is a general algorithmic technique. The idea behind
it is to delay computation until it is strictly necessary. As a result, no
redundant computations are done at the extra cost of more complex
algorithms. Lazy evaluation has been applied to constraint satisfaction in
Minimal Forward Checking (MFC) [Zweben and Eskey, 89; Dent and Mercer,
94; Bacchus and Grove, 95] and in Lazy Arc Consistency [Schiex et al, 96]. In
both cases, the corresponding non-lazy algorithms were doing more than

5.1 Introduction 145

needed to achieve their goals, so introducing this technique caused
efficiency improvements. Regarding MFC, it was realized that FC look-
ahead was checking every value of every future domain, which is more
than needed to detect empty domains. When a future domain has at least
one consistent value it is not empty, so look-ahead can stop and continue on
another future domain. MFC may save consistency checks when
performing look-ahead on domains of future variables whose assignment
is never attempted.

In this Chapter, we apply lazy evaluation to partial forward checking
obtaining a new MAX-CSP algorithm called partial lazy forward checking
(PLFC). This new algorithm is substantiated by the fact that PFC look-
ahead checks every value in every future domain, which is more than
really needed to detect dead-ends. As long as one value is not pruned its
domain is not empty and it does not cause a dead-end, so look-ahead can
stop there and continue on another future domain. The best candidate to
remain is the value with minimum IC in its domain, so computing this
minimum IC is the amount of look-ahead required on that domain for
dead-end detection. If the value with minimum IC is pruned, all other
values must be pruned as well, so the domain becomes empty and a dead-
end is detected. If the value with minimum IC is not pruned, the domain
is not empty and look-ahead can continue on another domain. PLFC may
save consistency checks when performing look-ahead on domains of future
variables whose assignments are never attempted. PLFC does not prune
future values, except the one with minimum IC in its domain (whose
pruning means a dead-end). A value is tested for pruning when it is
assigned to the current variable. Interestingly, delaying value pruning
until current variable assignment causes it to use bounds better than or
equal to the ones used by PFC for future value pruning, which may save
consistency checks. While savings in look-ahead were expected (because of
the parallelism with FC), savings because of pruning delay is a new effect
not reported previously which reinforces the performance improvement of
the lazy approach. PLFC advantage is proven theoretically, showing that in
terms of checks PLFC never performs worse than PFC with the same
variable and value ordering. Interestingly, PLFC can be directly combined
either with DAC or RDS approaches producing very efficient algorithms.
Experimental results show clear performance improvements in number of
checks and in CPU time.

146

Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

5.2 Previous Work

5.2.1 Forward Checking Redundancies

As we have mentioned, FC look-ahead strategy causes some of the
consistency checks that it performs never to be used. This situation occurs
when FC tries to prune a value of a variable whose assignment is never
attempted because the algorithm always backtracks before the variable is
chosen as the current variable.

Example 5.1:

The following picture represents a graph coloring problem and the
search tree that FC traverses to solve it. At each tree node, we include
the number of consistency checks that FC has performed up to this
point, including the current propagation.

X X

Q ° c (8) b (17)

X3 X4

This particular problem is unsolvable because there is no consistent
assignment including variables {Xj, Xo, X4}. Assigning the first two
variables always produces an empty domain in D4. Observe that all
consistency checks associated with » €EDg are redundant in the sense
that the algorithm never uses them. The reason is that all
propagations find value a €Dg consistent, so when the feasibility of &
€Dg is checked, it is already known that D3 will not become empty.
In addition, the assignment X3 <5 is never attempted because dead-
ends are always detected at the second tree level so its consistency
with respect to past variables is never needed.

FC needs to perform 17 consistency checks to solve the
problem. Three of them are redundant checks associated with & EDg
((b,b)Eng, (C,b)Eng and (C,b)ERQ?,)

5.2 Previous Work 147

This situation in which FC performs redundant consistency checks is
formalized in the following observation.

Observation 5.1:

Let S be a search state where X, <a is the current assignment, and b
is a feasible value of a future variable X;. Assume that FC performs
look-ahead and no domain becomes empty. Consequently, all
consistency checks between the current assignment and feasible
future values have been performed. In particular, the consistency of
(a,b)E€R;; is checked. Suppose that FC proceeds its search below in the
tree and finally backtracks to S satisfying the following two
conditions:

* X has never become the current variable.

e for all detected dead-ends, the domain of X] had at least one

feasible value before b.

In this situation, the consistency check (a,0)ER;; performed in § and
all subsequent checks associated with value & in successor nodes of §
could have been avoided because the algorithm did not make any use
of them.

5.2.2 Lazy Forward Checking

The inefficiency associated to FC greedy pruning was first reported in
[Zweben and Eskey, 89]. In their paper, they present a lazy version of FC
that avoids doing consistency checks until they are absolutely necessary.
The same algorithm was independently developed by Dent and Mercer.
They called it minimal forward checking (MFC) and described it in detail in
[Dent and Mercer, 94]. Finally, in [Bacchus and Grove, 95] MFC is again
considered and additional features about its modus operandi are given.

MFC improves FC exploiting the fact that not all the pruning effort
that FC performs is strictly necessary to determine the existence of a dead-
end. After each assignment, FC checks all future values pruning those
values which are inconsistent with it. If during this process an empty
domain occurs, the algorithm backtracks. Applying the notion of lazy
evaluation, all we need to compute during the propagation is whether an
empty domain occurs or not. Thus, we do not need to check every value. It
is enough to detect one consistent value for each future variable. The rest of
the checks can be delayed until they are strictly necessary. If it turns out
that a dead-end is detected before performing them, we will not have
wasted effort on those checks.

However, with this lazy technique, when a new assignment is
considered we are no longer sure that the current value is consistent with
past assignments. Therefore, one needs to guarantee the consistency of the
current assignment performing backward consistency checks. A naive

148 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

implementation would compute this by checking consistency with all past
variables. But some of this backward consistency may have been previously
proven as part of the lazy look-ahead when the current variable was still a
future variable. In order to avoid the computation of redundant consistency
checks, MFC follows a bookkeeping strategy similar to that of backmarking
[Gaschnig, 77]. It keeps a table, cons_level, that records information on
previously computed consistency. More precisely, if b is a feasible value of a
future variable X, then cons_levelj, = v means that consistency of value & has
been already proven with the first v past variables and their current
assignment. If its consistency has to be checked, it only has to be checked
against past variables after its cons_level count.

MFC appears in Figure 5.1. For simplicity reasons, it is assumed that
variables are assigned in lexicographical order. Consequently, the set of
past and future variables can be replaced by an index i indicating the
current variable. In this algorithm, we also assume that domains and the
cons_level data structure are global variables. At each search state, MFC
selects the current variable and considers the assignment of all its feasible
values. When value a is assigned to X;, MFC performs a two-step procedure.
First, it checks its consistency with respect to past variables after cons_level;,
(line 8). Second, if the previous step is successful, it computes the minimal
amount of checks to establish the empty domain condition (line 9). Thus,
MFC can be seen as a hybrid strategy combining look-back with look-
ahead. The look-back part is similar in spirit to backmarking [Gaschnig,
77]. The look-ahead part is similar to forward checking but following the
lazy approach.

In our implementation, lazy_look_back(k, ¢, max) checks the
consistency of X< ¢ with respect to past variables between its level of
established consistency, cons_levely,, and max. If the test succeeds, then
cons_levely, takes value max and the function returns true. If the test fails
because Xj<c is inconsistent to a past variable X,,, then cons_levely,, takes
value w, value ¢ is pruned from D, (it will not be restored until the current
assignment to X, is changed), and finally the function returns false.

The procedure lazy_look_ahead(i, a) performs the lazy propagation of
X;<—a. It iterates on the set of future variables, searching for one value in
their domain being consistent with past variables. For each value that it
considers, it uses lazy_look_back() to catch up its possibly delayed consistency
checks to past variables. This function returns frue if no empty domain is
detected, false otherwise.

Finally, restore(i, a) is in charge of domain restoration upon
backtracking. It retrieves all values of future domains that were pruned
because of their inconsistency with the current assignment X;<—a. It also
updates cons_level because the current assignment is going to be changed
and all future values whose consistency was checked up to variable X; are no
longer updated. For the sake of simplicity in the code, our implementation
performs consistency checks to retrieve information. However, the same
effect but in a consistency check free manner can be obtained by keeping a

5.2 Previous Work 149
list of pruned values associated with each past variable. In the following we
assume the consistency check free implementation.

Example 5.2:

Consider the graph coloring problem of the previous example. If
MFC solves it, the following search tree is obtained.

b (5) ¢ (10)

1 x

¢ (7) b (13) ¢ (14)

We indicate the accumulated number of checks performed at each
node, including the propagation of the current assignment. After
the first assignment {X;<- 3} , MFC look-ahead leaves the following
domains: Ds ={c¢}, Dg={a, b} and D4 ={c} (we underline values that
may not be feasible with respect to all past variables because their
consistency is not updated). After the second assignment {X;< b,
Xo<— ¢} MFC look-ahead leaves the following domains: D3={a, b} and
Dy= (. So, a dead-end is detected without requiring the delayed test
associated with bEDgy ((b,6)ER;3), so it has been avoided. Next, MFC
backtracks to the first level and attempts a new assignment {X;< ¢}.
Look-ahead leaves the following domains: Do ={b, ¢}, D3={a, b} and
Dy ={b, ¢}, where several tests are delayed. Since there is not empty
domain, a new assignment {X;< ¢, Xo< 8} is attempted. Its look-
ahead retrieves some delayed tests (all except (¢,b)ER;3) and leaves
the following domains: Dg={a, 8} and Dy = . Because of the empty
domain, MFC backtracks and attempts {X;< ¢, Xo< ¢} but when
catches up its delayed check with Xj, it is detected unfeasible. Since
there are no more choices, search is abandoned. Note that FC
performs redundant checks associated with €Dy (see Example 5.1),
which are skipped by MFC.

150 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

function MFC (i, Assg) returns boolean

1 if (i=n+l) then

2 Sol:= Assg

3 return(true)

4 endif

5 stop:= false

6 for all a €D; while (not stop) do

7 NAssg:= Assg U {X;<a}

8 if (lazy_look _back(i, a, Assg, i-1)) then
9 if (lazy_look_ahead(i, a, NAssg)) then
10 stop := MFC(i+l, NAssg)

11 endif

12 restore(i, a)

13 endif

14 endfor

15 return(stop)

endfunction

function lazy look back (k, ¢, Assg, max) returns boolean

16 for j:= cons_level,, +1 to max do

17 cons_levely := j

18 (X5 *—vj) := consult(Assg, j))

19 if (inconsistent(Xy<c, X; <v’) then
20 Dy:= Dy - {c}

21 return (false)

22 endif

23 endfor

24 return (true)

endfunction

function lazy look ahead(i, a, NAssg) returns boolean
25 for j:=i+l to n do

26 exit:=false

27 for all b ELB while (exit=false) do

28 if (lazy_look back(j, b, Assg, i)) then exit:=true endif
29 endfor

30 if(D; = &) then return (false) endif
31 endfor

32 return (true)

endfunction

procedure restore(i, a)

33 for j:=i+l to n do for b:=1 tom do

34 if (cons_level,;=i) then

35 if (inconsistent(X; <b, X; <a) then
36 D; := D; U{b}

37 endif

38 cons_level jp:=i-1

39 endif

40 endfor

endprocedure

Figure 5.1: Minimal forward checking (MFC) [Zweben and Eskey, 89;
Dent and Mercer, 94; Bacchus and Grove, 95].

5.2 Previous Work 151

5.2.3 Theoretical Results

In the following, we analyze the behaviour of MFC comparing it with FC.
The main result, due to [Dent and Mercer, 94], shows that MFC is never
worse than FC in terms of consistency checks. To make it more
comprehensive in our context, and extensible to the partial constraint
satisfaction case, we make our own proof. Consider first the following
observation.

Observation 5.2:

A node visited by FC or MFC is defined by a set of past variables and
its current assignment. From the algorithmic description one
knows that:
1. FC visits a node if and only if:
® past variables are consistent among them,
° the current assignment is consistent with past variables,
* the propagation of the past variables does not produce any
empty domain.
2. If MFC visits a node, then:
® past variables are consistent among them,
* the propagation of the past variables does not produce any
empty domain.
From 1 and 2, it is easy to see that if FC and MFC solve the same
problem with the same variable and value ordering, then:
3. If MFC visits a node, then its parent is visited by FC, too.

Theorem 5.1:

For any CSP, assuming the same variable selection and value
selection orders, the number of consistency checks performed by
MFC is lower than or equal to the number of consistency checks
performed by FC.

Proof:

Consider an arbitrary CSP solved by both FC and MFC. Let
Checks(FC)={chy, chy,...,chy} and Checks(MFC)={ch'y, ch'g,...,ch'y} the
set of checks performed by FC and MFC when solving the problem,
respectively. Each check is defined by a tuple (X,,,v,Xq,w,S) which
means that the test was (v,w)ERM and it occurred at node S. The
node is required to distinguish the different times that FC or MFC
test the consistency of the same pair of values (since we are
concerned with the number of checks, we consider them as different).

152

Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

The proof has the following steps. First, we show that there is
an application from Checks(MFC), to Checks(FC). Second, we show
that this application is injective (namely, two different MFC checks
cannot be associated to the same FC check). Third, we show that this
application is not exhaustive (namely, there are some FC checks to
which no MFC check is associated). Thereafter, the proof is
complete. For the sake of clarity and without loss of generality, we
assume that variables and values are always selected in
lexicographical order.

1. Definition of the application: Consider an arbitrary node, S, being
visited by MFC where the assignment X;<—a is being attempted
and an arbitrary consistency check, (v,w)ERy,, is performed (p<g).
There are two possible places where this constraint check can be
performed:

* During the lazy look-back: in this case X,< v is an

assignment made to a past variable, g is equal to 7 and w is
equal to a. In this case this check is defined by (Xp,v,Xi, a,S)
and corresponds to a unique consistency check (X[,,v,Xi, a,S’)
performed by FC. §"is the ancestor of § where X is the
current variable. We know that FGC visits S’ because all
nodes with successors visited be MFC are also visited by FC
(Observation 5.2.3). We know that FC performs that check
because it does not detect a dead-end (otherwise, MFC would
not visit §) and FC performs the whole propagation when it
does not detect dead-ends.

* During the lazy look-ahead: in this case there are two

additional possibilities.

e It is a forward check: then p is equal to ¢, v is equal to
a, q is a future value and w is one of its feasible values.
In this case this checks is (Xi,a,Xq,w,S) and
corresponds to a unique check (Xi,a,Xq, w,S) performed
by FC during its look-ahead at node §. We know that
FC visits § because if MFC performs look-ahead, the
current assignment has been successfully checked
with all past variables, then all the conditions of FC
for visiting § are fulfilled (Observation 5.2.1). We
know that FC performs that check because, due to its
lazy strategy, the forward checks that MFC performs
are a subset of the forward checks that FC performs at
the same node.

e Itis a backward check (performed during a call to the
lazy look-back function associated to a future value):
then X,<v is an assignment made to a past variable,
q is a future value and wis one of its values. In this
case this check is (X[,,v,Xq, w,S) and corresponds to a
unique check (Xl,,v,Xq,w,S’) performed by FC. §'is the

5.2 Previous Work 153

ancestor of S where XP is the current variable. Again,
we know that FC visits S’ because all nodes with
successors visited be MFC are also visited by FC. We
know that FC performs that check because it does not
detect a dead-end and FC performs the whole
propagation when it does not detect dead-ends.

2. Proof of injectivity: Suppose that the application associates two
different MFC checks, (Xp,v,Xq,w,S’) and (X[,,v,Xq, w,S'"), with the
same FC check (Xp,v,Xpw,S). Without loss of generality we take
(Xl,,v,Xq,w,S’) to be check that occurs before chronologically.
Because of the way the application is built, we know that S’ and S’
belong to the subtree rooted by S. When MFC performs the check
(Xp,v,Xq,w,S), it sets cons_levelqw to value p. MFC cannot perform
any other check associated with the same pair of values until it
backtracks up to X, (see procedure restore in Figure 5.1). Therefore,
MFC does not perform a check (Xp,v,Xq,w,S”) such that S'' is in
the subtree rooted by S.

3. Proof of non exhaustivity: Consider a problem whose first solution in
lexicographical order is the assignment of the first value to all its
variables. In this case, FC performs more checks than MFC.
Therefore, the application is not exhaustive.

5.2.4 Practical Significance

From the previous analysis, we know that MFC never performs worse than
FC regarding consistency checks. Still, it does not indicate the magnitude
of the improvement. Experiments comparing both algorithms with the
same variable and value ordering heuristics show that there is a modest
but significant gain of MFC ranging from 10% to 30% consistency checks.

From a practical point of view, it is mandatory to consider that FC is
generally used with dynamic variable ordering heuristics based on future
domain size. The efficiency of combining FC with domain-based variable
ordering heuristics is nowadays out of the question [Haralick and Elliott,
80; Dechter and Meiri, 94; Bacchus and van Run, 95]. An important
drawback of MFC is that it does not know the true size of future domains,
so it cannot be naturally combined with these heuristics. This
disadvantage is partially overcome in [Bacchus and Grove, 95] where the
minimum remaining values heuristic is also computed in a lazy way.
However, it decreases the power of MFC because it forces the computation of
some consistency checks that otherwise would be delayed. With this
approach, MFC seems to be slightly superior to FC, although no exhaustive
experimental results have been published.

154 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

5.3 Lazy Propagation in Partial Constraint
Satisfaction

5.3.1 Partial Forward Checking Redundancies

PFC, the forward checking counterpart for partial constraint satisfaction,
updates ICs of future values after each new assignment and checks for
feasibility right after each relevant change. There are two different places
where pruning is attempted:

1. Early pruning: each time a value is assigned, feasibility of future
values is checked during look-ahead.

2. Late prunming: when a value is assigned, its feasibility condition is
checked again before propagating it because the upper bound may
have decreased after solving a previous sibling subproblem.

Therefore, given value & of variable X, its feasibility condition is

checked at every visited node where X; is a future variable (early pruning).
In addition, its feasibility is checked again at nodes where X; is the
current variable before attempting the assignment of & (late pruning). As
in the FC case, we have observed that this greedy strategy performs
consistency checks that are not strictly required. Interestingly, PFC has an
additional source of redundant computation associated to its early pruning.

Example 5.3:

Consider again the previous graph coloring problem. It was shown
in Example 5.1, that this problem is overconstrained. If PFC is used
to find its best solution, the following tree is traversed. As in the
previous examples, we indicate at each node the accumulated number
of checks performed including the current propagation. In addition,
at each leaf we indicate its distance which becomes the current upper
bound.

5.4 Experimental Results 155

N

b (6) ¢ (18)
yd o
b(10) ¢ (12) b (2D)

d .

a (10) & (10)

d

b (10) ¢ (10)

For this problem, all consistency checks associated to b EDg are
redundant because PFC never makes use of icg;. The reason is that
ic34 is always zero, so ¢cgp is never the minimum IC of its domain.
Therefore, it never contributes to the lower bound and dead-ends can
be detected without considering it. In addition, the only time Xz <5
is attempted (at node {X; <&, Xo <= b, X3 < b }) the current upper
bound takes value 1 and the current distance is 1, too. Therefore, b
€Dj3 unfeasibility can be detected at this node without taking into
account its DAC. Moreover, this value can not be pruned at its
ancestor nodes ({X; <&} or {X; <= b, X9 < b }) because their current
upper bound was not yet set to 1.

PFC may perform redundant consistency checks when it tries to prune a
value whose assignment is never attempted because the algorithm always
backtracks before its variable is selected. What follows is a generalization
to PFC of Observation 5.1.

Observation 5.3:

Let § be a search state where X; is the current variable, a is its
current value and & is a feasible value of a future variable X] Assume
that PFC performs look-ahead and no dead-end is detected.
Consequently, all consistency checks between the current
assignment and future values are performed. In particular, the
consistency of (a,b)€ER;; is checked. Suppose that PFC proceeds its
search below S in the tree and finally backtracks to § satisfying the
two following conditions:

. X] has never become the current variable,

156 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

e for all detected dead-ends, the domain of X; had at least one
feasible value whose IC was lower than the IC of b,

in this situation, the consistency check (a,b)ER;; performed in § and

all subsequent checks associated with value b in successor nodes of S

could have been avoided because the algorithm did not make any use

of them.
Because of its branch and bound structure, PFC has two bounds associated
with each node that change monotonically during search. The lower
bound grows with the tree level and the upper bound decreases with the
number of visited leaves. The algorithm evaluates the pruning condition of
future values using its current lower and upper bounds. Therefore,
depending on the node where pruning is attempted, a different amount of
inconsistencies with respect to past variables is required. PFC early
pruning is not the most economic strategy for future value pruning in
terms of consistency checks.

Observation 5.4:

Let § be a search state (with P and F past and future variables) where
X; is a future variable and a is one of its feasible values with an IC
greater than the minimum of its domain. Assume that a can be
pruned at S, that is,

distance(S)+ ic;,(S) + Eminb{icjb(S)} = upper_bound(S)
JEF-i
If PFC did not prune value a at S, PFC would reach a successor state S’
(with P' and F' past and future variables), where X, is the current
variable and a the value to instantiate with. At that point, PFC tests
the pruning condition for a, which obviously holds,

distance(S")+ ic,(S") + Eminb{icjb(S’)} = upper_bound(S’)
S

where, for our convenience, we do not include i¢;, in the current
distance. We can make two independent analyses comparing
pruning conditions at S and S*

1. Regarding lower bounds for @ at S and S’, it is easy to see that,

distance(S) + Eminb{icjb(S)}s distance(S') + Eminb{icjb(S/)}
JEF-i EF

that is, the contribution of every variable but X; to lower bound of §' is
greater than or equal to its contribution to lower bound of S.
Therefore, the required contribution from ic;, to satisfy the pruning
condition of aat §’is lower than or equal to the same contribution at
S. So, pruning a at §’ may require to update ic;, against less past
variables than pruning at S, which saves checks.

5.4 Experimental Results 157

2. Regarding upper bounds, S’ is visited after S, so there may have
been an upper bound decrement from S to S’. Then,
upper_bound(S') < upper_bound(S)

Assuming that distance and sum of minimum inconsistency counts

are always computed, pruning at §’ may require an ic;, lower than or

equal to the ic;, required at S. Therefore, pruning a at §’ may require

to update ic;, against less past variables than when pruning at S,

which saves checks.

Analyses 1 and 2 are independent and complementary.

Considering both analyses simultaneously magnifys their effects in

consistency checks saving. In conclusion, PFC future value pruning

does not always use the better bounds to minimize the number of

checks and it may perform more checks that required.
In general, as one delays pruning, better bounds are available. Thus, the
best bounds are at the latest point where a value can be pruned. From this
analysis, we observe that attempting the early pruning of a value b is a
source of redundant consistency checks. On the other hand, late pruning
lacks these inefficiencies because it has the best possible bounds and it is
only attempted if the variable to which & belongs is finally selected.

5.3.2 Partial Lazy Forward Checking

We have described the inefficiency of PFC caused by its early pruning
strategy. In order to diminish it, we have developed an algorithm that
delays pruning and IC updating until they are strictly necessary. This new
algorithm, called partial lazy forward checking (PLFC), is a generalization of
MFC to MAX-CSP. These are its two main features:

1.- Lazy look-ahead:

After each assignment, PFC checks all future values updating their
IC and pruning those values that have become unfeasible. If with this
process some domain becomes empty, then a dead-end is detected
and the algorithm backtracks. However, PLFC exploits that to
correctly detect empty domains it is not necessary to check every
future value. It is enough to perform look-ahead on a future domain
until the value with minimum IC is found. If that value satisfies the
pruning condition, all other values also satisfy it, and the domain
becomes empty. Otherwise, the value with minimum IC remains
unpruned so the domain is not empty. Then, PLFC look-ahead stops
testing this domain and continues on another future domain.
Consequently, PLFC does not prune future values, except for the one
with minimum IC in its domain. PLFC performs the minimum
amount of checks to correctly compute the lower bound. The rest of
checks are delayed until they are strictly necessary.

158 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

2.- Late pruning:

To prevent inefficiencies associated with early pruning, PLFC only
prunes values of the current variable, right before proceeding to their
look-ahead. It may seem that not performing early pruning can cost
consistency checks. However, this is not the case. PLFC only updates
those ICs needed to detect the least inconsistent value of each
variable. It only requires updating the rest of values, at most, up to the
point where their IC surpasses the minimum by one. After that, no
more consistency checks are needed for any value independently of
whether they are feasible or unfeasible.
PLFC appears in Figure 5.2. For simplicity reasons, lexicographical
variable ordering is assumed. Domains, inconsistency counts and the
cons_level structure are global variables. At each search state, PLFC selects
the current variable and considers the assignment of all its feasible values.
When value «a is assigned to X;, it performs a two-step procedure: first, it
catches up delayed consistency checks of a with respect to past variables (line
8). Second, if value ais feasible, the lazy look-ahead computes the minimal
amount of checks to update the lower bound (line 9).

When computing consistency with respect to past variables, some
consistency checks may have been previously performed as part of the lazy
look-ahead when the current variable was still a future variable. In order
to avoid their repetition, we keep a table, cons_level, that records up to what
level the current IC counts are updated. If 4 is a value of a future variable X,
whose current icj, takes value v, then cons_levelp=u means that consistency
of value b has been already checked with the first u past variables and it
has v inconsistencies with them. Procedure lazy_look_back(dist, ¢, a) updates
the number of inconsistencies of X;<—a with respect to past variables (which
is already computed to variables up to its cons_level count). Each time that ic;,
is incremented, feasibility is tested (line 21) and the update only continues
if it succeeds. If the final test succeeds, then cons_Ievel;, takes value 1 and
the function returns true. If during the update, the feasibility test fails after
detecting the inconsistency to a past variable X, then cons_level;, takes
value w and the function returns false.

Function lazy_look_ahead(dist, i, a) performs the lazy upper bound
updating after X;<—a. It iterates on the set of future variables, updating the
IC of the value having the lowest inconsistency with past variables. To do
that, it uses the function update_value_min_IC() which updates IC of
individual variable domains. After each call, the dead-end condition is
checked (line 28) so the updating stops as soon as a the dead-end is
detected. This function returns true if no dead-end is detected, false
otherwise.

Procedure update_value_min_IC(j,2) updates the IC of the value in X]
having the least inconsistencies with past variables, including the current
assignment of X;. Before the call, only one value b having the minimum
IC before the current assignment is guaranteed to be updated up to the 71

5.4 Experimental Results 159

variable. The rest of values have their IC only updated as necessary to know
that they have more inconsistencies with past variables than b (namely, up
to the point where their IC is at least equal to the IC of b). The procedure
updates ICs in the following way. The inconsistency of b with the current
assignment is checked. If they are consistent, we know that b still is the
value with the fewest inconsistencies so the procedure stops. Otherwise, its
IC is incremented and the algorithm selects a new value having a lower
IC than b, and updates its IC until it is increased, or up to the current
assignment. If its IC is not incremented the procedure can stop.
Otherwise, it selects another value having a lower IC and repeats the
process.

Finally, like in the MFC case, we provide the domain restoration
code. Procedure restore(i, a) removes all contributions to ICs of future
domains that was caused by their inconsistency with the current
assignment of X;. It also updates cons_level because the current assignment
to X; is going to be changed and all future values whose consistency was
checked up to variable X; are no longer updated. For clarity purposes, our
implementation performs consistency checks to retrieve information.
However, the same effect —but in a consistency check free manner— can
be obtained by keeping a list of increased ICs associated to each past
variable. In the following we assume the consistency check free
implementation.

Example 5.4:

If the running example coloring problem is solved with PLFC, the
following search tree is traversed,

b (5) ¢ (13)

/l N\ x

b(7) ¢ (10) b (16) ¢ (17)

/] X3

a (7) b (8)

d

b(@8 ¢ (8

3 1

160 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

which saves 4 consistency checks with respect to PFC. The following
tables shows inconsistency counts and cons_level values at node {X;

<d,
IC Xo X3 X4
a 0
b 0 0 0
0 0
cons_level Xo X3 Xy
a 1
b 1 0 1
c 0 0

Observe that each domain has at least one IC updated (with cons_level
taking value 1). This updated IC is guaranteed to have the minimum
IC of its domain (in this case having an updated IC taking value 0
guarantees its minimality).

5.3.3 Theoretical Analysis of PLFC

In this section, we compare PLFC with PFC in terms of consistency checks.
Our main result shows that PLFC never performs more consistency checks
than PFC. Its proof requires the use of the following observation.

Observation 5.5:

A variable and value ordering define a CSP search tree. Each node,
independently of any algorithm, has its associated upper bound, its
distance and its future value inconsistency counts before and after
propagating the current assignment. Considering PFC (and PLFC)
lower bound, we can divide nodes into three groups: (i) nodes whose
current assignment is not feasible before propagating it, (i) nodes
whose current assignment is feasible before propagating it, but
unfeasible after propagating it, and (#¢) nodes whose current
assignment is feasible after propagating it. From the algorithm
description we know that:

e if a node is of type (i) or (éii), then both PFC and PLFC visit it,

* if PFC or PLFC visit a node, then its parent is of type (iii).

5.4 Experimental Results 161

procedure PLFC (i, dist, Assg)

1 if (i=n+1l) then

2 := dist

3 Best_sol:= Assg

4 else

5 for all a €D; do

6 NAssg:= Assg U {X;<a}

7 ndist:= dist + icj,

8 if (lazy_look back(dist, i, a, Assg)) then
9 if (lazy_look_ahead(dist, i, a, NAssg)) then
10 PLFC(i+l, ndist, NAssg)

11 endif

12 restore(i, a)

13 endif

14 endfor

15 endif

endprocedure

function lazy look back (dist, i, a, Assg) returns boolean

16 for j:= cons_level; +1 to i-1 do

17 cons_level; := J

18 (X5 <—Vj) := consult(Assg, j))

19 if (inconsistent(X;<a, X; <v’)) then

20 ic;ai=ica+l
n

21 if (dist + icjg + Eminv{ickv} = UB)) then
=7+1

22 return (false) endif

23 endif

24 endfor

25 return (true)

endfunction

function lazy_ look_ahead(dist, i, a, NAssg) returns boolean

26 for j:=i+l to n do
27 update_value _min_IC(j, i, NAssg)
n
28 if (dist + icj, + Eminv{ickv) = UB)) then return (false) endif
k=141
29 endfor
30 return (true)
endfunction

Figure 5.2: Partial lazy forward checking (PLFC), assuming a
lexicographical variable ordering.

162 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

procedure update value min IC (j, i, NAssg)

31 b:= value_with_min_IC(Dj)

32 stop:=false

33 while (not stop) do

34 k= cons_level j,

35 if (k = i) then stop:=true

36 else

37 ki=k+1

38 cons_leyeljb:=k

39 (X5 <—V]) := consult(Assg, j))
40 if (inconsistent(Xf—b, X5 <v7) then icjpr= icjp +1 endif
41 = value_with_min_IC(Dj)

42 endif

43 endwhile

endprocedure

procedure restore(i, a)

44 for j:=i+l to n do for b:=1 to m do

45 if (cons_level;p=1) then

46 if (inconsistent(Xj@b, Xj <a) then icjp:=ic;,-1 endif
47 cons_leveljb:=i—l

48 endif

49 endfor

endprocedure

Figure 5.2 (cont.): Partial lazy forward checking (PLFC).

Theorem 5.2:

For any CSP, assuming the same variable selection and value
selection orders, the number of consistency checks performed by
PLFC is lower than or equal to the number of consistency checks
performed by PFC.

Proof:

The proof of this theorem has a similar structure to proof of theorem
(5.1). Consider an arbitrary overconstrained CSP solved by both PFC
and PLFC. Let Checks(PFC)={chy, chg,...,ch,} and Checks(PLFC)={ch'],
ch's,...,ch',} the set of checks that FC and MFC perform when solving
the problem, respectively. Each check is defined by a tuple
(X[,,v,Xq,w,S) which means that the test was (v,w)ERM and it
occurred at node S.

As in the total constraint satisfaction case, the proof has the
following steps: First, we show that there is an application from
Checks(PLFC), to Checks(PFC). Second, we show that this application
is injective. Third, we show that this application is not exhaustive.
Thereafter, the proof is complete. For the sake of clarity and without
loss of generality, we assume that variables and values are always
selected in lexicographical order.

5.4 Experimental Results 163

L. Definition of the application: Consider an arbitrary node, S, being
visited by PLFC, where X;< a is being attempted and an arbitrary
consistency check, (v,w)ERM, is performed (p<q). There are two
possible places where this constraint check can be performed:

* During the lazy look-back: in this case, X[,<— v is an
assignment made to a past variable, g is equal to i and w is
equal to a. This check is defined by (Xl,,v,Xi,a,S) and
corresponds to a unique consistency check (X[,,U,Xi,a,S’)
performed by PFC. §’is the ancestor of S where Xy is the
current variable. We know from observation 5.5 that PFC
visits §’ because all ancestors of visited nodes are of type (z)
and nodes of type (i) are always visited by PFC. We know
that PFC performs that check because it is required by PLFC
to check the feasibility of a in S. Consequently, the current
value cannot be pruned by PFC at S’ where worse bound are
available.

* During the lazy look-ahead: in this case, Sis a node of type
(#1) or (éd). There are two additional possibilities.

e It is a forward check: then p is equal to 4, v is equal to
a, q is a future value and w is one of its feasible values.
In this case this checks is (X, a,Xq, w,S) and
corresponds to a unique check (X,',a,Xq,w,S) performed
by PFC during its look ahead at node S. We know
that PFC visits § because PFC visits all nodes of type
(i) and (4ii). We know that PFC performs that check
because, due to its lazy strategy, the forward checks
that PLFC performs are a subset of the forward checks
that PFC performs at the same node.

* It is a backward check (performed during the lazy
update of the lower bound): then Xp< v is an
assignment made to a past variable, q is a future value
and wis one of its values. In this case this check is
(X[,,U,Xq,w,S) and corresponds to a unique check
performed (X,,,v,Xq,w,S’) by PFC. S’ is the ancestor of
S where X[, is the current variable. We know that
PFC visits S’ and performs that check for the same
reasons of the first case.

2. Proof of injectivity: equal to Theorem 5.1.

3. Proof of mon exhaustivity: Consider the situation described in
Observation 5.3. It is easy to see that those redundant consistency
checks performed by PFC are not performed by PLFC. Therefore,
the application is not exhaustive.

164 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

5.4 Experimental Results

Nowadays, the best non-lazy algorithms for MAX-CSP are PFC with DAC
information (Chapter 4) and PFC with RDS [Verfaillie et al., 96]. PLFC
can be easily combined with both algorithms. We have implemented lazy
and non-lazy basic versions of these algorithms. Our lazy implementations
only differ from PLFC in the lower bound that they use which affects lines
21 and 28 of Figure 5.2. For a fair comparison, our non lazy
implementations only differ from PFC in the lower bound which affects
lines 11, 22 and 26 of Figure 2.8. All implementations use min-heaps to
keep domains. Heaps are appropriated data structures for domain keeping
because they require constant time to access the value with minimum IC
(or IC+DAC) and logarithmic time to update them when some IC is
changed. They have been shown to be more efficient than lists in both
PLFC and PFC based implementations.

We have evaluated the validity of our approach using random
overconstrained CSP. On this model, we have performed the following
experiments:

1. PLFC-DAC! vs. PFC-DAC on <10,10,p1,p9> and <15,5,p1,p9> classes,
both using forward degree combined with backward degree (FC-BD) as
static variable ordering [Larrosa and Meseguer, 96] and selecting
values by increasing IC+DAC.

2. PLFC-RDS vs. PFC-RDS on <10,10,p1,p9> and <15,5,p1,p9> classes, both
using FC-BD and selecting values by increasing IC.

3. PLFG-DAC vs. PFC-DAC on <10,m,4/9,9/10>, both using FC-BD, and
selecting values by increasing IC+DAC.

Each data point is averaged over 100 random instances. It is not suitable to
measure visited nodes when comparing lazy and non-lazy algorithms.
The reason is that with the lazy approach algorithms visit more nodes
than with the non-lazy. However, in these extra nodes lazy algorithms
only catch up delayed work that non-lazy algorithms have already done.
For this reason, in these experiments we only report consistency checks
and CPU time.

Experiments (1) and (2) evaluate the performance of PLFC with DAC
and with RDS against the corresponding non-lazy counterparts. Results of
(1) for selected connectivities appear in Figures 5.3-5.10. Considering
checks, PLFC-DAC improves PFC-DAC from 25% to more than 100%. Only
for maximum tightness, PLFC-DAC and PFC-DAC perform the same
number of checks. Considering CPU time, PLFC-DAC improves PFC-DAC
from 25% to more than 130%. It only performs slightly worse than PFC-
DAC for problems with maximum tightness, those without check
improvement. Results of (2) using RDS appear in Figures 5.11-18.

IBoth PLFC-DAC and PFC-DAC include the lower bound improvement described
in Section 4.4.

5.4 Experimental Results 165

Considering checks, PLFC-RDS improves PFC-RDS from 25% to more than
65%. Only for maximum tightness, PLFC-RDS and PFC-RDS perform the
same number of checks. Considering CPU time, PLFC-RDS improvement
over PFC-RDS is similar to the check improvement, although PLFC-RDS
performs slightly worse than PFC-RDS only for problems with maximum
tightness.

From experiments (1) and (2) we conclude that the lazy approach
provides significant gains both regarding number of checks and CPU
time. It seems to be more advantageous when combined with the DAC
approach described in Chapter 4 than with the RDS approach. It may seem
surprising that gains in terms of time are sometimes larger than in
terms of consistency checks. One possible explanation is that non-lazy
algorithms perform more IC propagation toward future values. With our
implementation, heaps have to be ordered after each IC modification.
Therefore, non lazy algorithms may have a larger overhead.

Experiment (3) evaluate the ratio gain of PLFC-DAC with varying
domain size m. Its results appear in Figure 5.19. As it could be expected,
PLFC-DAC ratio gain increases with m. Problems with large m give more
opportunities to PLFC-DAC to save checks because the amount of non
updated values at each domain increases.

5.5 Conclusions and Future Work

In this Chapter we have shown that lazy evaluation techniques can be
successfully applied to partial constraint satisfaction. We have extended
previous work on lazy evaluation in the total constraint satisfaction context
to partial constraint satisfaction. This generalization is especially
appropriate because PFC has more situations than FC where it performs
more checks than really needed. Our algorithm optimizes the work
required to compute the dead-end condition. In addition to save effort
during look-ahead, it improves the way PFC prunes future values because
PLFC uses better bounds than PFC.

Interestingly, PLFC can be directly combined with DAC and RDS
which are the best existing algorithms for MAX-CSP. Since our
experiments show that the lazy approach provides significant
computational gains to both of them, their lazy implementation is
probably the most efficient for MAX-CSP. However, in our experiments we
used a basic version of DAC-based algorithm. A lazy implementation of
the more sophisticated DAC algorithms (PLFC-GDAC, PLFC-RDAGC and
PLFC-MRDAC) remains as future work.

Lazy evaluation appears to be a very fruitful approach in the context of
algorithms for constraint satisfaction and optimization in order to
perform the minimum amount of work at each algorithmic step. It is
expected that this technique can be successfully applied to other constraint

166 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

satisfaction algorithms. We are refering, for instance, about lazy versions
of algorithms that maintain arc-consistency in the total constraint
satisfaction context and lazy algorithms that maintain DAC in the partial
constraint satisfaction context. The exploration of these ideas is left as
future work.

5.5 Conclusions and Future Work 167

6000 0.05
5000 0.04
4000 _
. g 003
3 3000 Z
S E 0.2
s 2000 S
* g
1000 © o001
0 ! ! ! 0 T T
2 = 2 3 8 8 & 2 8 8
p2x 100 p2x 100
PFC-DAC

......... e PLEFC-DAC

Figure 5.3: PFC-DAC vs. PLFC-DAC on the <10,10,15/45,p2> class.

50000 0.4
40000
0.3
30000 =
g < 0.2 4
"520000 g
: :
H*
10000 g 01
0 0
PFC-DAC

......... oo PLEC-DAC

Figure 5.4: PFC-DAC vs. PLFC-DAC on the <10,10,25/45,po> class.

168 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

250000 2.5
200000 2
_ 150000 15
el 8
£ 2
S 100000 <o
Q
s g
50000 0.5
0] I I 0
(=} = = o (=4
O o~ oo (=)} (e}
p2 x 100
PFC-DAC

......... e PLEFC-DAC

Figure 5.5: PFC-DAC vs. PLFC-DAC on the <10,10,35/45,po> class.

2000000 20
1500000 15 -
¥ 1000000 — % 10
& 2
Q ~—
S g
% 500000 - = 5 4
0 0
(] [«
=) o
PFC-DAC

......... ewewe PLFC-DAC

Figure 5.6: PFC-DAC vs. PLFC-DAC on the <10,10,45/45,p9> class.

5.5 Conclusions and Future Work 169

5000 0.04
4000
0.03 -
3000
El g 0.02 -
S 2000 2
13 ©
£
£ =
1600 S 0.01
0 T T 0
v o v
—_— o ()] y— [\l n
p2x25
PFC-DAC P2X25

......... v PLFC-DAC

Figure 5.7: PFC-DAC vs. PLFC-DAC on the <15,5,25/105,p2> class.

150000 1.25
1
., 100000 —
£ ~0.75
5 g
S 5 0.5
* 50000 — E
0.25
0 0

P2x25__ ppc.pac P2x25
......... s PLEFC-DAC

Figure 5.8: PFC-DAC vs. PLFC-DAC on the <15,5,55/105,p2> class.

170

Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

700000

600000
500000

400000

300000

c. checks

200000

100000

0

time (secs.)

Figure 5.9:

8000000

6000000

4000000

c. checks

2000000

Figure 5.10:

p2x25 _ ppc.pAC = P2x25
......... e PLFC-DAC

PFC-DAC vs. PLFC-DAC on the <15,5,75/105,p9> class.

50

40

30

20

time (secs.)

10

20
25

I
v
—

25
prc.DAC P2*

......... e PLFC-DAC

PFC-DAC vs. PLFC-DAC on the <15,5,105/105,p9> class.

5.5 Conclusions and Future Work

15000
«» 10000 -
=
2 Pl
© §
) s
;: 5000 — I
xﬁj
‘v‘*
x""wg
0 | | I
=) =) =) =)
) NS) X

Figure 5.11: PFC-RDS vs. PLFC-RDS on the <10,10,15/45,p9> class.

125000

100000

75000

50000

c. checks

25000

0.125

p2x100 . "PEC.RDS

......... gEnsensense

PLFC-RDS

p2 x 100

0.75

(secs.)

(=]
(9]
1

time

0.25 —

PLFC-RDS

SO
p2x 100

Figure 5.12: PFC-RDS vs. PLFC-RDS on the <10,10,25/45,p9> class.

171

172 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

400000 2.5
2
300000 -
« > 15
] Q
8 Q
£ 200000 - &
° e 1
S E
< 2
100000 — 0.5
0 — , 0 T T T
g 2 2 8 8 @ F & & 8
p2x 100 p2x 100
PFC-RDS

......... e PLEFC-RDS

Figure 5.13: PFC-RDS vs. PLFC-RDS on the <10,10,35/45,po> class.

800000 6
5
600000 —
4
§ 400000 g 3
<= 2
(9] ~—
s g 2
200000 = =
1
0] I I 1 0 I 1 I
= o (=} =] [} S o (=] (=) (]
\O [oo (=)} [} O o~ [*2] [=)} o
p2x 100 p2 x 100
PFC-RDS

......... we PLFC-RDS

Figure 5.14: PFC-RDS vs. PLFC-RDS on the <10,10,45/45,po> class.

5.5 Conclusions and Future Work 173

20000 015
15000 —
2 -~ 0.1 -
g g
£ 10000 g
) o
=)
= 3 0.05
5000 -
0 0
w
o
2
PFC-RDS P2%25

......... oo PLFC-RDS

Figure 5.15: PFC-RDS vs. PLFC-RDS on the <15,5,25/105,p9> class.

300000
250000
200000 —
% 150000 %
2 3
B 2
s 100000 — ©
* & £
50000 4" &%
0
lln Io Vel 0 I 1
- N [o\] wv () v
— o N
p2x 25 p2x25
PFC-RDS

......... e PLFC-RDS

Figure 5.16: PFC-RDS vs. PLFC-RDS on the <15,5,565/105,p9> class.

174 Chapter 5. Lazy Evaluation in Partial Constraint Satisfaction

600000

500000

400000

300000

200000 =

time (secs.)

c. checks

100000

0

25
25

— N

P2X25 __ ppcRDS =~ P2%25
......... w- PLFC-RDS

Figure 5.17: PFC-RDS vs. PLFC-RDS on the <15,5,75/105,p9> class.

2000000 12.5
1500000 - 10
«n /'}7.5
£ 1000000 - 4
g E
S : 5
S £
% 500000 —-e- 5
2.5
0
0 I 1
wv (e v
— [o\] N
2 X 25
PFC-RDS P

......... e PLFC-RDS

Figure 5.18: PFC-RDS vs. PLFC-RDS on the <15,5,105/105,p9> class.

5.5 Conclusions and Future Work 175

1000000
PFC-DAC

750000 —

PLFC-DAC

500000

c. checks

250000

10
0
30
40
50
60

15

time (secs.)

Figure 5.19: PFC-DAC vs. PLFC-DAC on the class <10,m,4/9,9/10>

Chapter 6

Support-based Heuristics

It has been known for a long time that the order in which variables and
values are considered in depth-first search has a considerable impact in
algorithm efficiency. For this reason, several heuristics for variable and
value ordering have been developed. In this Chapter we present a new
perspective of constraint satisfaction and show its usefulness for heuristic
generation. Our approach is based on the analysis of the labelling
problem, a formalism arising in the field of computer vision that is
closely related to constraint satisfaction. From this analysis, we extract that
total and partial constraint satisfaction can be seen as the global
optimization of the so-called average local consistency function. We use
this point of view as a source of inspiration for heuristics. As a result, we
introduce a pair of heuristics for variable and value selection which base
their advice in the gradient of the average local consistency function.

Comparing our heuristics with other constraint satisfaction
approaches, we believe that our heuristics are more general because they
have deeper foundations (they are based on gradients which have a well
known topological interpretation), include variable and value orderings
in the same framework and can be applied to both total and partial
constraint satisfaction

The structure of this Chapter is the following. Section 6.1 is
introductory. In Section 6.2, we define the labelling problem and show its
relation to constraint satisfaction. In Section 6.3, we show how the concept
of support (taken from the labelling problem) can be used to generate
heuristics. In Section 6.4, we present a computationally more efficient
version of the heuristics. In Section 6.5, we compare our approach with
other heuristics. In Section 6.6, we present some experimental results.
Finally, in Section 6.7, we give the conclusions of the Chapter and suggest
some further work.

178 Chapter 6. Support-based Heuristics

6.1 Introduction

The order in which variables and values are selected in depth-first
algorithm defines the tree that is traversed. It has been known for a long
time that these orders have a profound impact in search efficiency. The
order in which values are assigned defines the location of solutions. For
example, consider a problem with three values {a, b, ¢ per variable such
that its only solution is {X]<a, X9<a,..., X< a}. It is clear that the order
in which values are assigned will affect the cost of search. On the one
hand, if values are considered in lexicographical order, even the most
naive algorithm will efficiently find the solution because it is located at
the leftmost leaf, and the algorithm will go straight to it. On the other
hand, if values are considered in counter-lexicographical order, even the
most sophisticated algorithm is likely to invest substantial effort to find the
solution because under this ordering the solution is located at the
rightmost leaf and search will need to traverse the whole tree before
finding it .

The order in which variables are selected may also affect search
efficiency. To illustrate this fact consider the graph coloring problem of
Figure 6.1. It is easy to see that it is unsolvable because there is no
consistent assignment including the three first variables. Any algorithm
selecting variables in lexicographical order will efficiently detect its
unsolvability because dead-ends will be detected in the first three levels of
the tree. However, algorithms selecting variables in counter-
lexicographical order will require to instantiate from variable X, to
variable X3 before being able to detect the dead-end. Then, the algorith
will backtrack, change a previous assignnment and rediscover the same
failure. This process will be repeated for all consistent assignments
including variables X3,..., Xy.

In this Chapter we present new heuristics for CSP and MAX-CSP
variable and value ordering. Although we assume forward checking
algorithms (i.e.: FCG and PFC), one should be aware that our approach is
valid for any other look-ahead algorithm. Our heuristics are inspired in
the analysis of the labelling problem (LP), a formalism arising in computer
vision that has allowed the development of efficient algorithms for low
level image processing [Rosenfeld et. al, 76; Hummel and Zucker, 83;
Kittler and Illingworth, 85; Torras, 89]. Roughly, LP involves the
labelling of a set of units subject to a set of local preferences. Solutions are
consistent labellings which, in a sense, maximize preferences. It is obvious
that LP have much in common with CSP, since both deal with
assignments that must be consistent with respect to some preferences.

6.1 Introduction 179

Figure 6.1: An unsolvable graph coloring problem.

LP attracted our attention because of its similarity with constraint
satisfaction and the existence of effective solving methods for it. Our first
objective was to explore how LP algorithms could be adapted to the
constraint satisfaction context. With this purpose we carried out a
theoretical analysis of similarities and differences between CSP and LP.
From this analysis we extract that LP and CSP can be seen as the local and
global optimization of the same function. This result explains why CSP
are, in general, more difficult than LP.

Existing methods for LP solving follow a hill-climbing schema
which is appropriated for local optimization but does not guarantee global
optimality. If these methods are directly applied to CSP solving, search
gets often trapped in local optima. The idea of CSP solving using local
optimization methods has been studied before and has lead to a number of
approaches to circunvent the problem of getting trapped in local optima.
For instance, [Minton et al., 90] presents a heuristic repair method which
involves the performance of some limited amount of search in the
neighbourhood of the local optima to find a way out; [Selman et al., 92]
propose the addition of some stochasticity to allow some random sideway
local changes; [Morris, 98] associates a penalty cost with violated
constraints at local optima, which causes a change in the function surface
such that the basin disappears.

We follow a completely different approach. We show that
information from the local optimization point of view can be effectively
used to heuristically guide search within a systematic algorithm. In this
new context, we are no longer concerned with local search issues (such as
escaping from local optima) because the systematic algorithm will explore
all directions until finding a solution (global optimum). In our approach,
local optimization is used to devise heuristics for variable and value
selection. Local optimization information is adapted to the role that these
heuristics play in a systematic algorithm. The contributions presented in
this Chapter are twofold:

180 Chapter 6. Support-based Heuristics

1. From a theoretical point of view, we present a reformulation of CSP
into LP which is used to clarify the common aspects between them.
Basically, our results show that LP can be seen as a local optimization
problem, while total and partial constraint satisfaction can be seen
as a global optimization problem of the same function.

2. From a practical point of view, we import the concept of support from
LP into the CSP context. In our approach, this concept (which is
equivalent to a gradient) is used to devise heuristics to guide search.
Interestingly, it is equally useful for both CSP and MAX-CSP and
provides the first unifying view, as far as we know, for heuristic
generation. Furthermore, we propose two alternatives for support
computation of increasing accuracy and computing cost. Therefore,
the most cost-effective for each particular situation can be chosen.

6.2 Labelling Problems and its Relation to
Constraint Satisfaction

6.2.1 Labelling Problems

A LP is defined by a finite set of units {U}}, a set of labels for each unit {A}, a
neighbour relation over the units, and a compatibility relation over tuples of
neighbour units. In our work we assume that sets of labels are discrete and
finite and neighbour relations are binary. The number of units is » and,
without loss of generality, we will assume a common set of indexed labels
A for all the units, being m its cardinality.

Compatibilities are real-valued functions, rit Ax A — R; where rii(a,b)
refers to the compatibility of the simultaneous assignment of a to U; and b
to U] High values mean high compatibility, while low values mean low
compatibility or incompatibility (the importance of these magnitudes is
relative to the rest of them). We assume that compatibilities are symmetric
(i.e.: rzj(a,b)=r]-i(b,a)) and that each unit has null compatibility with itself
(i.e.: 7;(a,b)=0, i=1,.., n; Va,bEA).

A labelling is a weighted assignment of labels to units. A weight is a
real number in the interval [0, 1]. More than one label can be assigned to
the same unit, provided that the sum of weights for each unit is 1.
Accordingly, the set of labellings (K) is defined in the following way,

K={VER™M™ | 0<sv,,s1, i=1,..., n aEA; E vig =1, ==1,..., n}
a=A

6.2 Labelling Problems and its Relation to Constraint Satisfaction 181

where v;, is the weight that labelling V associates with label aof unit U;. A
labelling is unambiguous when it assigns one label per unit. The set of
unambiguous labellings (K*) is defined as follows,

K* = (VER™ M | 4, (0,1}, i=l., n a€A; Y vjg=1, i=1,..., n}
a=A

A labelling is ambiguous when it is not unambiguous. The set of
ambiguous labellings is K-K*

In a similar way that CSP aim at finding total assignments where
constraints are not violated, LP looks for labellings where units are
highly compatible to their neighbours with respect to compatibility
functions.

Example 6.1:

A typical labelling problem is edge detection in two-dimentional
images [Hummel and Zucker, 83]. Consider a simplified version in
which an image consist of a matrix of binary pixels (i.e. a pixel can
be either white or black) that represents a scene formed by different
segments. Each pixel may or may not belong to a segment, and
segments may be of two different types: horizontal or vertical. It is
assumed that segments are one pixel thick. Given an image, the task
is to detect their segments by individually considering pixels.
Images usually have noise, so the interpretation of an individual
pixel needs not to be compatible with its neighbours. However, the
overall image interpretation has to be, in general, compatible.

If we represent this situation as a LP, pixels are associated with
units, the label set contains three elements: the two different
segment types and the non-segment, that we denote by the
following set of symbols A={|,—,e}. The space of possible labellings,

K, is formed by a set of bi-dimensional subspaces { Osv;,=< 1, E Ui
acA

=1}, one for each unit. One of these subspaces is the surface
represented in the following picture.

182 Chapter 6. Support-based Heuristics

The space of unambiguous labellings K" is included in K and
restricts labellings to the corners of each subspace.

Each pixel takes its eight surrounding pixels as its neighbours.
There are different strategies regarding compatibilities.
Nevertheless, they must indicate that each possible label needs to be
coherent with its neighbour labels. For instance, two horizontally
neighbour pixels have the following pairs of highly compatible
labels: {e,e}, {—,—}, {g,]} and {|,e}. The pair of values {|,|} has a low
compatibility (recall that segments are one pixel thick). The
remaining possibilities have medium value compatibility because
they represent corners or segment ends which are uncommon, but
possible.

Consider the two following unambiguous labellings.

8 [ty D
€ 3 € € € £

It is clear that the labelling at the left is more consistent with a
segment-based image than the labelling at the right.
Given a labelling V, it is possible to measure the degree of compatibility of
a label/unit pair with respect to one of its neighbours using the notion of
support. The support that label a at unit U; receives from unit Ujis defined
as,

Supp(U;, a, U;, V) = E vjp 157(a,b) (6.1)
A
or, in words, the weighted sum of compatibilities that the pair (U;, a) has
with unit U;. The support that label a in unit U; receives from labelling V
is the sum of all its individual supports,

n
Supp(Uj ,a V) = 2 Supp(Us, a, Uy, V) (62)
J

If label a of unit U; has a greater support than label & (i.e. Supp(U,a,V) >
Supp(U;,b,V)), it means that a is more compatible than 4 for V.

The average local consistency function of a labelling, A(V), is a function
globally measuring how compatible a labelling is,

6.2 Labelling Problems and its Relation to Constraint Satisfaction 183

n
A(V) = E Vi Supp(U; , a, V) (6.3)
=1 acA
The gradient of A(V) is a function Q(V): R"™*XM — {NXM guch that
n

ia(V) =2 2 E vjp 7i(a,b)
FL A

where ¢;,(V) is the gradient component associated to the v;, weight. From
(6.1) and (6.2), it is easy to see that gradient and supports are proportional,

Gia(V) = 2 Supp(U; , a, V) (6.4)

LP solutions are consistent labellings. A labelling Vis consistent
provided that,

E Vi Supp(U; ,a,V) = E wig Supp(Us ,a,V) i=l,., n VY WEK
a=A a=A

In words, a labelling Vis consistent if any change of weights in one of its
units does not increase the weighted support that this unit receives from
the labelling. Observe that consistency in the LP sense is an optimality
criterion that has to hold in n equations simultaneously. Optimality cannot
be independently achieved for each equation because changing a unit
weight distribution modifies supports of neighbouring units.

Relaxation techniques are a family of iterative algorithms which
efficiently solve labelling problems. Starting from an initial labelling, an
updating rule is repeatedly applied until a fixed point is reached. A
classical relaxation algorithm which has been used as a reference point
for subsequent research is due to [Rosenfeld et. al, 76]. They proposed the
following updating rule,

Via'= via 2+ 4ia(V) /D vip (2 + (V)
A
where it is assumed that compatibilities are in the range [-1, 1]. A
number of alternatives to these algorithm have been proposed in order to
deal with different situations [Kittler and Illingworth, 85]. In general,
updating rules increase weights that receive high supports and decrese
weights that receive low support. Relaxation techniques can be seen as
approximations of hill-climbing methods [Hummel and Zucker, 83].

6.2.2 Relationship between Labelling Problems and
Constraint Satisfaction Problems

It is obvious that CSP and LP have much in common: both deal with
assignments that must be compatible with respect to some preferences. In

184 Chapter 6. Support-based Heuristics

this Section we analyze their similarities and differences. For this
purpose, we propose a reformulation of a CSP into a LP, where each
variable X; corresponds to a unit U; and the common domain of values D
corresponds to the common set of labels A. For every pair of units a
neighbour relation is declared where 7j(a,b) takes value 0 or 1 depending
on whether there is a constraint disallowing that assignment in the CSP
or not. The algorithm for transforming a CSP into a LP is given in Figure
6.2.

Under this transformation, each CSP variable X;is associated with a

subspace of K {0 s v;, = 1, 2 v;q =1} and each value a€D; has associated a
acA

weight v;, of this subspace. Under this transformation there is an obvious
correspondence between LP unambiguous labellings and CSP total
assignments. Thus, in the sequel we will make no distinction between
them.

A solution for a transformed CSP is an unambiguous labeling which
does not violate any constraint (i.e. being consistent in the CSP sense). The
following example illustrates that csp-consistency! and lp-consistency are
not equivalent concepts.

for every pair of variables (X; ,Xj), i,7=1,...,n,
for every pair of values (a,b), a,b €D
if (inconsistent(X;<a, X;y<b)) then rij(a,b) =0
else rij(a,b) = 1 endif

endfor
endfor

Figure 6.2. Reformulation of a CSP into a LP.

Example 6.2:

Consider the 3-queens problem and the following board
configuration,

x| @

Ity the sequel, we will use the terms csp-consistency and Ip-consistency to
distinguish the two types of consistency.

6.2 Labelling Problems and its Relation to Constraint Satisfaction 185

If this CSP is transformed into a LP, the previous situation
corresponds to the following unambiguous labelling V=((1,0,0),
(0,0,1), (1,0,0)). Labelling V causes the following matrix of supports,

1 2 3
Xl 1 1 0
0 0 2
X9
X3 1 1 0

Replacing these values in the definition of lp-consistency, we obtain
the following equations:

1=1 Wig t+ 1 w1b+0 Wi,

220 wo, + 0 wop + 2 w9

1=1 W3a+1 w3b+0 w3y,

Which obviously hold V WEK. Consequently, labelling V is lp-
consistent. However, it is not csp-consistent because it violates one
constraint.
Now, a natural question arises: what is the relation between csp-consistency and
lp-consistency? In what follows we provide several results relating lp-
consistency and csp-consistency with local and global maxima of the A(V)
function.

Theorem 6.1:[Hummel and Zucker, 1983]

Let us consider a labeling problem with symmetric binary
constraints. A labeling W is lp-consistent if and only if it is a local
maximum of A(V).

This first result establishes the equivalence between lp-consistent labelings
and local maxima of A(V). These labelings can be ambiguous and
therefore meaningless when considering CSP. The following theorem
relates ambiguous and unambiguous lp-consistent labelings.

Theorem 6.2:[Sastry and Thathachar, 1994]

Let us consider a labeling problem with symmetric binary
constraints. If there exists an ambiguous lp-consistent labeling V,

186 Chapter 6. Support-based Heuristics

there exists an unambiguous Ip-consistent labeling W such that A(V)
=A(W).

This theorem guarantees the existence of an unambiguous lp-consistent
labeling for each ambiguous Ip-consistent labeling with the same value of
A(V). Therefore, this theorem allow us to ignore —at least in theory— the
existence of ambiguous Ip-consistent labelings and to consider only
unambiguous ones.

Lemma 6.1:

Let us consider a binary CSP formulated as a labeling problem and
let V be an unambiguous labeling. Then, A(V)= n(n-1)-2V;,,, where
Vine 1s the number of constraint inconsistencies of V.

Proof:

It is easy to see that n - Supp(U;, a, V) - 1 is exactly the number of
constraint violations in V involving X;<a. After this fact, the proof is
straightforward.

This lemma relates average local consistency with constraint violations. It
is restricted to unambiguous labellings because ambiguity is meaningless
in the CSP context. It shows that A(V) is essentially counting satisfied
constraints.

Theorem 6.3:

Let us consider a binary CSP formulated as a labeling problem and
let W be an unambiguous labeling. W violates a minimal number of
constraints if and only if W is a global maximum of A(V).

Proof:

1. From left to right. Lets suppose that A(W) is not a global maximum.
Then, there is an labelling W’ such that A(W') > A(W). We can
assume that W' is unambiguous because of theorem 6.2. Lets denote
Wine and W';,, the number of constraint inconsistencies of W and

W', respectively. Using Lemma 6.1, we know that,
n(n-1)-2Wipne > n(n-1)-2Wip,

Therefore, it is easy to see that W';,. < W;y,. . Then, W does not
violate a minimal number of constraints.

2. From right to left. Lets suppose that W does not violate a minimal
number of constraints. Then there is another unambiguous
assignment W' such that violates fewer constraints than W. Lets
denote W;,, and W';,, the number of constraint inconsistencies of

6.2 Labelling Problems and its Relation to Constraint Satisfaction 187

W and W', respectively. It is clear that W';,, < Wiy, . Therefore, using
Lemma 6.1 we know that A(W') > A(W) what shows that W is not a
global maximum.
This theorem gives a necessary and sufficient condition for the best
possible solution of a CSP: it must be a global maximum of A(V). The
theorem is restricted to unambiguous labelings because ambiguous global
maxima can exist. However, Theorem 6.2 assures the existence of
unambiguous global maxima.

Corollary 6.1:

Let us consider a binary CSP formulated as a labeling problem. An
unambiguous labeling Vis csp-consistent if and only if A(V) = n(n-1).

Proof:

This corollary is a trivial specialization of Lemma 6.1 when the total

assignment satisfies all the constraints.

An implication of all these theoretical results is that we can always solve a
CSP with the following procedure: reformulate the problem as a LP,
compute the unambiguous global maximum of A(V) using any optimization
technique and return the optimum as the best possible solution to the
problem. If the average local consistency in the optimum equals n(n-1), the
problem is solvable and the labelling is its solution, otherwise the
problem is overconstrained and the labelling is the solution of the
corresponding MAX-CSP problem.

Maximazing A(V) using optimization techniques is far from an easy
task. A(V) is a quadratic function generally neither convex nor concave and
no efficient algorithm for its optimization is known. Nevertheless, the
optimization perspective of constraint satisfaction is still useful for two
reasons. On the one hand, it provides a unifying view for CSP and MAX-
CSP which have been typically considered related, but different problems.
On the other hand, it allows the use of optimization concepts within tree-
based search. Thus, in the following Section we use this optimization
perspective to generate general purpose heuristics that can be used either by
CSP and MAX-CSP algorithms to heuristically guide their search.

188 Chapter 6. Support-based Heuristics

6.3 Using Support to Guide Search

6.3.1 The Role of Heuristics in Search

In this Subsection we analyze how the order in which variables and values
are selected can affect the search efficiency, and how we can use heuristic
orderings to improve it. We take the number of visited nodes as the search
quality measurement. Thus, good orderings produce tree traversals in
which few nodes are visited. However, if deciding a good ordering
requires much computation, it may not pay off. In the remaining of this
Chapter we assume forward checking algorithms (i.e.: FC and PFC).
However, one should be aware that all conclusions drawn can be applied to
other look-ahead algorithms such as MAC, DAGC-based PFC, PFC-RDS, etc.

We analyze separately total and partial constraint satisfaction.
However, as it will become apparent at the end, the situation is very
similar in both cases. Therefore, it is suitable to devise heuristics for them
under a common strategy.

Total constraint satisfaction

Consider an arbitrary node where the dead-end condition does not hold.
At this point, FC selects the next variable to assign and the order in which
its values are attemped. Thus, these decisions transform the current
subproblem into a sequence of simpler subproblems. We analyze how
different decisions can affect the overall cost. There are two possible
situations:
1. The current node is in a dead-end: In that case, each subproblem in
the sequence will report failure. All of them have to be solved
before reporting failure from the current node. When solving each
subprolem, every path will lead to a dead-end detection. Aiming at
efficiency, the objective is to detect those dead-ends as soon as
possible, so search can rapidly escape from the current subtree.
The selected variable defines the set of subproblems that are to be
solved. Aiming at early dead-end detection for all of them, a good
idea is to select the variable that is more likely to make the dead-
end apparent. This criterion for variable selection has been often
called the failfirst principle because it selects first those variables
that are more likely to drive search to a failure.
Value ordering is irrelevant in this case because the order in
which subproblems are considered does not affect the cost of solving
them.

6.3 Using Support to Guide Search 189

2. The current node is not in a dead-end: In that case, both variable and
value selection affect search. Search can stop as soon as one
subproblem is successfully solved. Therefore, the most important
goal is to select first a solvable subproblem because the rest of
subproblems will not need to be solved.

Value ordering can achieve this objective by itself. A good idea is to
select first a value that is more likely to participate in a solution
subject to previous decisions. We denote this criterion for value
selection the succeed-first principle because it selects first that value
that is more likely to drive search to success.

If a perfect value ordering can be guaranteed, variable ordering
becomes irrelevant because there is at least one solvable subproblem
associated with a value for every unassigned variable. No matter
what variable is chosen, selecting always the value associated with
the solvable subproblem will lead us to the solution without
backtracking. However, value orderings are far from being perfect.
Therefore, the importance of variable ordering becomes apparent.
A good idea for variable selection is to be pessimistic about the
subsequent value selections and assume that they will make
mistakes and drive search into dead-end nodes. In that context, it
is meaningful to select a variable that will promote the anticipation
of potential future dead-ends. This can also be done following the
fail-first principle.

In general, when an algorithm visits a node it is not known
whether it is in a dead-end or not. In that context, it is reasonable to
devise variable and value heuristics under the following rules of thumb:

1. Variable ordering: follow the fail-first principle. If the current node
is in a dead-end, a good choice under this criterion will produce
an early dead-end detection, no matter what line of search is
followed, so the algorithm will backtrack shortly. If the current
node is not in a dead-end, the fail-first principle is also
appropriated as a prevention for future value ordering mistakes.

2. Value ordering: follow the succeed-first principle. If the current
node is not in a dead-end, a good choice under this criterion will
maintain search out of the dead-end, so the remaining sibling
subproblems will not need to be solved. If the current node is in a
dead-end, all values will have to be attempted. Then, all value
orderings are equally good.

If a tree search requires to visit N nodes to find a solution of a
problem, only the » nodes that belong to the path to the solution are not in
a dead-end. Therefore, when solving a non trivial problem, algorithms
spend most of their time visiting dead-end nodes. For this reason, during
most of the search value ordering is irrelevant and only causes overhead.
In that context, it is clear that the fail-first principle of variable selection
plays a more relevant role in search than the succeed-first principle of
value ordering.

190 Chapter 6. Support-based Heuristics

Example 6.3:

A well-known implementation of the failfirst principle for variable
ordering is minimum domains (see Section 2.2.5). If we assume that the
current node is in a dead-end, the cost of solving the current
subproblem is the sum of costs of all subproblems of the selected
variable. If we suppose that all possible successors from the current
node are equally costly, selecting the variable having the fewest
feasible values in its domain minimizes the overall cost, and
minimum domains is the best heuristic under these assumptions.

Partial Constraint Satisfaction

Consider an arbitrary node where the dead-end condition does not hold.
As in the previous case, PFC selects the next variable to assign and the
order in which its values are attempted. Thus, these decisions transform a
subproblem into a sequence of simpler subproblems. Unlike the previous
case, branch and bound always solves every subproblem in the sequence.
We analyze how different decisions can affect the cost of search. There are
two possible situations:
1. The current node is in a dead-end: When solving each subprolem,
every path will lead to a dead-end detection because there is no leaf
improving the current upper bound. Aiming at efficiency, the
objective is to detect dead-ends as soon as possible, so search can
rapidly escape from the current subtree.
The selected variable defines the set of subproblems that are to be
solved. Aiming at an early dead-end detection, a good idea is to
select that variable that is more likely to make the dead-end
apparent. This is again the failfirst principle. In branch and
bound, dead-ends occur when the lower bound becomes greater
than or equal to the upper bound. In this case the upper bound
remains fixed, so the failfirst principle involves selecting variables
promoting high lower bounds.
All subproblems will be solved without changing the upper bound.
Then, the order in which they are considered does not affect the
cost of search. Therefore, value ordering is irrelevant.
2. The current node is not in a dead-end: Since the current node is not
in a dead-end, some of the subproblems (at least one) correspond to
non dead-end nodes. When solving these subproblems, at least one
leaf will be visited and the current upper bound will be decreased.
Although search can improve the upper bound several times during
the traversal, the only leaf that must strictly visit is that one having
the best solution of the current subproblem. Aiming at an efficient
traversal, the objective is to detect as soon as possible that any path
not leading to the best solution is fruitless. The detection of these

6.3 Using Support to Guide Search 191

dead-ends depends on both the upper and the lower bound. The
evolution of the upper bound depends on the order in which
subproblems are solved (value ordering) and the lower bound
depends on the variable selected.

A good idea for variable ordering is to select a variable promoting
high lower bounds because it will be useful for future dead-end
detections. This is again to follow the failfirst principle because it
aims to anticipate failure.

A good idea for value ordering is to select first that value whose
subproblem has the best solution. Then, the remaining
subproblems will be solved with the best possible upper bound and
their dead-ends will be earlier detected. Following this idea can
be also cast in the succeed-first principle, since it also involves
selecting first values that are more likely to drive search to the best
solution.

In general, when an algorithm visits a node it is not known
whether it is in a dead-end or not. Therefore, like in the FC case, it is
reasonable to devise variable and value heuristics in terms of succeed-first
and failfirst:

1. Value ordering: follow the succeed-first principle. If the current
node is not in a dead-end a good choice under this criterion will
produce low upper bounds quickly, so it will help to anticipate dead-
end detection in subsequent search. If the current node is in a dead-
end, value ordering does not have any effect.

2. Variable ordering: follow the failfirst principle. Independently
whether the current node is in a dead-end or not, the whole
subtree has to be traversed and search will visit dead-end nodes. In
that context, following the failfirst principle promotes early dead-
end detection, so the algorithm will backtrack shortly.

During a search traversal, only a small polynomial number of the
visited nodes can be non-dead-end nodes. The reason is that the upper
bound can only be improved a polynomial number of times (the number of
problem constraints) and only paths leading to an upper bound
improvement are formed by non dead-end nodes. Therefore, MAX-CSP
algorithms also spend most of their search visiting dead-end nodes when
they solve a non trivial problem. Consequently, in MAX-CSP the fail-first
principle in variable ordering also plays a more relevant role than the
succeed-first principle in value ordering. Most of the time, value ordering
cannot improve search and is causing overhead.

192 Chapter 6. Support-based Heuristics

6.3.2 Support-based Heuristics

We can use local information from the optimization perspective of
constraint satisfaction to implement the fail-first and the succeed-first
principles. Our approach relies on a correspondence between search states
and labellings. Given an arbitrary node defined by a partial assignment
{Xj= o: X/€P}, its corresponding labelling V; is defined as follows,

if X,EP, then vjp=1, bis v
vy =0, otherwise

if X]$P, then vy = 1/ |Feasible(D;)l, b is in Feasible(Dj)
v =0, otherwise

where D; and Feasible(Dj) are the initial and the current domain of X]',
respectively. When a value is not in Feasible(Dj) it means that it has been
pruned. Labels corresponding to past variables are unambiguously
assigned, while labels corresponding to future variables are ambiguously
assigned, with a homogeneous distribution of weights among feasible
values. Pruned values take weight zero.

Under this correspondence, a depth-first algorithm can be seen as a
procedure which builds an unambiguous labelling as it deepens in the
tree. At each search state, past variables are unambiguously labelled and
future variables are ambiguously labelled. Variable selection chooses the
next subspace to disambiguate and value ordering decides the order in
which the possible disambiguations will be attempted.

Example 6.4:

Consider the 5-queens problem. The initial problem, when no
queen is placed in the board, has the following associated labelling,

1 2 3 4 5

X | 1/5 1/5 | 1/5 1/5 1/5

X 1/5 1/5 1 1/5 1/5 1/5

X1 | 15 15 | 15 | 1/5

1/5 1/5 | 1/5 1/5 1/5

X i | 15 15 | 15 | 1/5

6.3 Using Support to Guide Search 193

that is, an homogeneous distribution of weights among feasible
values. Initially, all values are feasible and all domains have size 5.
Consequently, the corresponding labelling has weight 1/5 in all its
components. If FC moves to a node defined by the assignment
{Xg3< 1} and propagates its effect, the following labelling is
associated with it,

1 2 3 4 5

X 0 13 o |18 | 1/3

X 0 0 1/3 | 1/3 | 1/8

%4 0 01 1/38 | 1/3 | 178

51 o0 | 13 0 [1/3 | 1/8

which gives weight zero to unfeasible future values and to non
assigned past values. Feasible future values receive weight one
divided by their domains size. Weight v3; takes the maximum value
because it corresponds to a past assignment.
Given an arbitrary node, we can compute the support that each future value
receives from the current labelling. Each support receives contributions
from past and future variables. Thus, we can rewrite (6.2) in terms of past
and future supports,

Supp(X; , a) = SuppP(Xi , @) + SuppF()(, , a)

where each contribution has the following form,

SuppP(X;,) = Y ny(a)

JEP
and
1
SuppF (X; , a) = 2 (|Feasible(Dj)l 2 rij(a,b))
JEF bEFeasible(Dj)

where we omit the V parameter because it is clear from the context. In
words, each support receives for each consistent past variable a unit

194 Chapter 6. Support-based Heuristics

contribution and for each future variable the ratio of the number of
consistent values to the number of feasible values.

If supports are used with FC, feasible future values are consistent with
every past variable. Consequently, the contribution from past variables to
every support is equal to the number of past variables,

SuppP (X;, a) =1 P |

Regarding the contribution from future variables to Supp(X;, a), only those
feasible values that are consistent with the considered value contribute to its
support. In FC, consistent values are those values that will survive pruning
if the considered value is assigned. Therefore, we can rewrite the
contribution of future variables to its support as the following expresion,

| Feasible'(D;)|
SubpF (X; , a) = EF Feasible(D)1

where Feasible'(Dj) denotes the set of feasible values in D;if X; < a is
propagated.

If supports are used with PFC, different future values may have
different inconsistencies with past variables. Then, the contribution from
past variables counts the number of consistencies and it can be rewritten in
terms of IC,

SuppP (X;, a) =1 P | -icy

The contribution from future variables to supports measures the ratio of
variables whose IC will be incremented for each future variable if the
considered value is assigned.

Example 6.5:

In the previous example we showed the labelling associated with the
initial board configuration of the 5-queens problem. The following
picture shows the support for every feasible value in that search state.
The pair (X3, 3) receives the lowest support from this board
configuration. It indicates that the assignment Xg3<-3 is the most
inconsistent with future domains. Thus, propagating this
assignment will make explicit many inconsistencies. Therefore, the
resulting subproblem is likely to be close (closer than other
alternatives) to a dead-end detection.

6.3 Using Support to Guide Search 195

X | 12/5| 12/5| 12/5| 12/5| 12/5

X 12/5 | 10/5 | 10/5 | 10/5 | 12/5

Xs | 12/5 | 10/5 | 8/5 | 10/5 | 12/5

X4 | 1275 10/5| 10/5 | 10/5| 12/5

X5 | 12/5| 12/5| 12/5 | 12/5| 12/5

We can think of support Supp(X;, a) as an indicator of how much the
propagation of X;<a will bring near the dead-end detection. In FC, a
dead-end occurs when there is an empty domain. If a value has a low
support, propagating its assignment reduces future domains. Thus, the
resulting subproblem is more likely to be near a dead-end detection than
another subproblem whose corresponding value has a higher support.
Regarding PFC, a dead-end occurs when the lower bound reaches the
upper bound, but the situation is similar. If a value has a low support, it is
likely to have many inconsistencies with respect past and future variables,
SO propagating its assignment causes a new subproblem in which many
new inconsistencies become apparent (inconsistencies with past variables
become part of the current distance and inconsistencies with future values
become IC increments). Thus, the resulting subproblem is more likely to
be near the dead-end detection, too.

We mentioned in the previous Subsection that the failfirst principle
involves the selection of that variable producing the apparently most
immediate dead-end detection. We propose the use of future value supports
to estimate how much their propagation will bring near the dead-end
condition. Then, we propose the lowest support heuristic, a support-based
implementation of the fail-first principle, in which we select the variable
receiving the lowest support.

Definition 6.1:

Given an arbitrary node, the lowest support variable ordering
heuristic (LS) selects the future variable which minimizes the
following expression,

196 Chapter 6. Support-based Heuristics

min; { E Supp(X; , a)}
aEFeasible(D;)
or, what is equivalent,

mini{ (E Tij(a’uj) +
aEFeasible(D;) =P

1

R [Feasible(D;)| > mitad))}
EF bEFeasible(D;)

The lowest support heuristic bases its decision on two aspects. On the one
hand, it considers the current domain cardinality because each variable
receives one support contribution for each feasible value that it has. Thus,
given two variables whose values are equally supported, LS prefers the
variable with minimum domain. On the other hand, LS considers the
constraining behaviour of each domain value subject to the current
subproblem. Thus, given two variables with the same domain cardinality,
LS prefers that one whose values are less supported. Therefore, in general
terms LS selects variables with few and low supported values in their
domain.

The succeed-first principle for value ordering involves the selection
of values producing subproblems that apparently maintain search out of
dead-ends. As in the previous case, we take the support of each future value
as an indicator of how much their propagation will bring near the dead-
end condition. We then propose the highest support heuristic, a support-
based implementation of the succeed-first principle in which we select
first the value having the highest support.

Definition 6.2:

Given an arbitrary- subproblem such that its current variable is Xj,
the highest support value ordering heuristic (HS) attempts the
assignment of its feasible values by decreasing support,

. 1
SuppXi @) = % ri@d) + Y ipaaepyr D, (@D)
=P EF bEFeasible(D;)

An important feature of LS and HS is that they can be used in both total
and partial constraint satisfaction. If combined with FC, these heuristics
take their decisions considering for each future value how constrained it is
with the rest of future variables. If combined with PFC, they also consider
how constrained values are with past variables.

6.3 Using Support to Guide Search

Example 6.6:

197

Consider the empty assignment in the b-queens problem. In
Example 6.5 we showed its future value supports. In this situation, LS
advise is to start assigning X3 because this variable has the lowest
sum of supports. Regarding value ordering, HS proposes the sequence
1, 5, 2, 4, 3 (we break ties lexicographicaly). Thus, FC would move to
the node defined by {Xg<-1}. This search state has the following

future value supports,

X

1 2 3 4 5
| o3| o~ |8 | 83
|
1 V4
! 183 | 83 | 63
1 //
1,

¢

| \
| AN
! v | 8/3 | 8/3 | 63
| \
| \
"o | 7/3 | 8/3

Therefore, LS and HS choose to continue search moving to the node
defined by {Xg<1, X9<3}. If this process is followed, FC finds the
solution {X]1< 5, X9« 3, Xg<1, X4< 4, X5< 2} without any

backtracking.

6.3.3 Heuristics and Local Optimization

In this subsection we address the relation between the proposed heuristics
(LS and HS) and the local optimization perspective presented in Section
6.2. Heuristics are expressed in terms of supports which are the gradients
of the function A(V). In this context, a natural question is: are these heuristics

implementing some kind of local optimization?

We want to make clear that these heuristics are defined to be used
inside a systematic algorithm, which considers all possible combinations
of assignments, irrespective of their associated gradient. Regardless of the
variable and value ordering used, a systematic traversal does not perform

local optimization.

198 Chapter 6. Support-based Heuristics

Depth-first algorithms leave room to decide the selection order of
variables and values which, from the analysis of 6.3.1, should follow the
fail-first and succeed-first principle, respectively. We have implemented
this principles using the gradients of the function A(V) as a source of local
information. In this sense, we can say that our heuristics are inspired by
local optimization, although the advise that they give does not have a local
optimization interpretation.

Most heuristics are developed by selecting information that is
believed to be relevant and combining it in an ad-hoc manner. In this
context, we believe that our approach is more appropriated because we do
not find how to combine information experimentally. On the contrary,
we use the information given by the gradient, which has a clear
foundation and a clear topological interpretation.

6.4 Incremental Support

Applying LS and HS requires the computation of supports at each visited
node. The cost of computing an individual support is O(n'm). Consequently,
the cost of computing all future value supports (required for LS) is O(n2'm2).
If a non support-based variable ordering heuristic is used, then only
supports for the current variable are needed. Thus, the cost of computing
them (required for HS) is O(n~m2). LS and HS are clearly costly compared
to other heuristics (for instance, the overhead of minimum domain is O(n)
and the overhead of sorting values by IC+DAC is O(m ‘logm)). Preliminary
experiments on the n-queens problem showed that it was not cost effective
to compute gradients at each node although the heuristic advise was very
good (we observed a low number of visited nodes at the cost of a high
number of consistency checks) [Meseguer and Larrosa, 95].

To circumvent that difficulty, we have developed an approximation of
the heuristics that is much cheaper to compute. Computing the contribution
of future variables to supports is what makes them costly. The reason is that
this contribution depends on the current domain, so it has to be re-
computed after each propagation. In our approximation, we disregard the
effect that pruning has in supports. With this idea, the contribution that a
variable Xj gives to the rest of variable supports does not change during
search, as far as X remains being a future variable. To do this efficiently,
we need to compute the individual contribution that every variable gives to
every support at the initial problem,

ini_Supp(Xj, b, Xp) = ;nl— E rik(b,c)
=Dy,
Approximate supports (ap_Supp(X;, a)) at an arbitrary node are computed in
the following way,

6.4 Incremental Support 199

ap_Supp(X;, a) = E rii(a, u7) + E mi_Supp(X;, a, X])
=P EF

When the current subproblem has many pruned values, this
approximation can be coarse because it is counting many non-existing
contributions. However, at high tree levels, where few assignments have
been propagated, one may expect that few values have been pruned. Then,
the approximation is supposed to be accurate. Interestengly, it is on the
highest tree levels where heuristics have a larger impact in search
efficiency because their decisions affect to the largest subproblems. The
extreme case occurs at the tree root, where the proposed approximation is
equivalent to the exact support.

One efficient way to implement this approximation is to compute
gradients at each node by updating the gradient of its parent. This is done
with the following procedure,

1. At the tree root, approximate supports are the exact supports
n

ap_Supp(X;;, b) = Supp(Xj, b) = 21 ini_Supp(Xj, b, Xp)

2. At a node S§? that differs from its parent S in that the current variable
X; has been instantiated with value a, we compute the approximate
supports (ap_Suppa(Xj, b)) from the approximate supports at $§
(ap_Supp(X]', b)) and the individual contribution of X; to the initial
support (ini_Supp(X]', b, X;)) with the following rule

ap_Supp™(X;, b) = ap_Supp(Xj, b) - ini_Supp(X;, b, X;) + 735(a,b)

The approximate lowest support variable ordering heuristic (ALS) and
the approximate highest support value ordering heuristic (AHS) are defined as
their exact counterparts, but using approximate supports. With our
approach, computing one approximate support is done in constant time.
Therefore, the cost of computing all approximate supports is O(n'm), which
gives a significant gain in efficiency with respect to exact supports.

Example 6.7:

Consider the 5-queens problem and the approximate heuristics.
Initially, approximate supports and exact supports are equivalent.
Then, ALS proposes to start assigning X3 and AHS proposes value 1 as
a first choice (like in Example 6.6). Approximate supports at node
{Xg<-1}, are computed by substracting to the initial supports the
contribution of X3 and adding 1. The following table shows the
result,

200 Chapter 6. Support-based Heuristics

X 14/4 14/5| 14/5
I
I /'
7/
00 |, | 18| 185 145
% | @
RN
1
X ! \\
4| < | 18/5| 18/5]| 14/5
] \
I ‘\
X5 | ! 14/5| ° 14/5 | 14/5

Comparing with exact supports (Example 6.6), one observes that this
approximation is not very accurate. The reason is that in this small
problem the propagation of a single value causes an important
change in domains (all domains are reduced to almost half their
size). However, the approximation is supposed to be more accurate on
larger problems.

In this situation, ALS selects X9 and AHS selects to attempt in
first place value 5, so the next visited node is {Xg<1, X9<5}. This
decision causes FC to fall in a dead-end. However, it is only needed
to visit one more node {Xg<1, X9« 5, X4<4} to detect it. Next, FC
backtracks to X9, attempt value 3 and the approximate heuristics head
search straight to solution {X]<5, X9< 3, Xg< 1, X4< 4, X5<2},
which is the same solution found with exact supports

6.5 Comparison with Other Heuristics?

In subsections 2.2.5 and 2.3.4, we introduced different heuristics that
appear in the CSP literature. In this section, we show how some of them
are closely related to our approach.

For clarity purposes in the comparison, we introduce some new
terminology. Consider an arbitrary node such that X; is a future variable.
We denote past and fut the number of past and future variables; dg; is the
degree of X;; the number of past variables with which it is connected
(backward degree if it becomes the current variable) is denoted bd;; and

2LS, HS and their approximate counterparts were first presented in [Meseguer and
Larrosa, 95]. Some approaches discussed in this Section were posterior to that work.

6.5 Comparison with Other Heuristics 201

the number of future variables with which it is connected (forward degree
if it becomes the current variable) is denoted fd;. The current domain
cardinality of X; is denoted dom; . We consider different variable and value

ordering heuristics proposed for CSP and MAX-CSP.

6.5.1 Variable Selection in CSP

The most popular variable ordering heuristic for CSP is minimum domain
(MD) [Haralick and Elliot, 80]. It selects the variable having the
minimum number of values in its current domain. MD is unable to
discriminate among variables having the same domain cardinality. This
fact is especially relevant in problems where all variables have the same
number of values because the first choice is made blind. To circunvent this
drawback, different approaches have been proposed. For instance, MD-DG
[Frost and Dechter, 95] break ties with variable degree and DOM/DG
[Bessiere and Régin, 96] selects the variable that minimizes the ratio
domain cardinality divided by degree. These three heuristics differ
among them in the importance that they give to variable degree. MD
completely disregards degree, MD-DG gives to degree a secondary role
and DOM/DG gives to degree the same importance as to domain size.

The main difference between these heuristics and LS is that they
consider all problem constraints as equally important, while LS considers
their constraining behaviour. In order to make the comparison, we
simplify LS assuming that all variables give the same support sto other
variable values with which they are constrained. Then,

1
S rii(a,b) = s VX;, X,€F;Ya€D;, and constrained(X;, X;)
dom] 2 J J
bEFeasz'ble(Dj)
1
domj rij(a,b) =1 VX, XJGF;VaEDi, and not consr. (X;, X))
bEFeasible(D;)
With FC, a future value support is,
1
Supp(X;, @) = past + 2 (\Feasible(D})| Y rijlab))
JEF bEFeasible(D)

Considering the hypothesis of constant individual supports, this expresion
can be rewritten as,

Supp(X; , a) = past + 1 (fut - fd;) + s fd;
which can be simplified as,
Supp(X;, a) =n -1+ fd; (s1)

LS selects the variable with the lowest sum of supports. For X; this sum is,

202 Chapter 6. Support-based Heuristics

Supp(X; , a) = dom; (n -1+ fd; (s1))
aEFeasible(D;)
Observe that there are two elements contributing to this expresion: the
domain cardinality and the variable forward degree. Depending on what
value we assume for s, LS has a different behaviour,

(a) If s=1, it means that there is no difference between two variables
being constrained or not. In that case the effect of the variable
degree becomes null and LS is equivalent to MD.

(b) If <1 and sis very close to 1, forward degree has a very low negative
effect in the expresion. It can only discriminate among variables
having the same cardinality. In that case, LS is equivalent to MD-DG
with the only exception that LS breaks ties with forward degree
instead of full degree.

(¢) If s<1 and it is not close to 1, forward degree gains relevance in the
expression. In that case, LS is similar to DOM/DG in the sense that
combines similar information in a similar way. The differences are
that LS uses forward degree, while DOM/DG uses full degree, and
that LS uses forward degree as a multiplying negative factor, while
DOM/DG uses the inverse of full degree as a multiplying positive
factor.

6.5.2 Value Selection in CSP

Different value ordering heuristics have been proposed in the CSP context.
Under the influence of planning/scheduling problems, [Keng and Yun,
89] propose to consider values by increasing cruciality, where a crucial value
corresponds with a highly requested resource. Thus, among different
resource alternatives it is preferred the least requested one with the
objective of not causing a dead-end. With our notation, an arbitrary value a
of the current variable X; has the following cruciality,

1 1
Cruciality(X;, a) = -+) (57— (1 -r;(a,b))
dom; dom] Y
<F bEFeasible(D;)
It can be rewritten as,
o 1 1
Cruciality(X;, a) = dom; + fut - 2 (o E rij(a,b))

oy
£F) seFedsibie(D;)

The first element of the summation is common to all values, so it has no

effect. Regarding the second element, it is obvious that it is equivalent to

select values by increasing cruciality that to select them by decreasing

support. Therefore, our HS is equivalent to Keng and Yun cruciality

heuristic.

6.5 Comparison with Other Heuristics 203

An alternative value ordering heuristic, denoted LVO, was
presented in [Frost and Dechter, 95]. They propose to sort values by
decreasing number of consistent remaining values. That is,

LVO(X; , a) = 2 r;i(a,b)
JEF bEFeasible(Dj)

Which follows the same intuition than HS but differs in that the
contribution from each variable is the total number of consistent values,
rather than the ratio.

Finally, [Geelen, 92] propose to sort values by decreasing promise.
With our notation, an arbitrary value a of the current variable X; , it has
the following promise,

Promise(X; , a) = 1_[2 r;(a,b)
JEF bEFeasible(Dj)
Which again follows the same intuition than HS but has two differences:
The contribution from each variable is multiplied instead of added and
contributions of individual future variables are absolute numbers instead of
ratios.

6.5.3 Variable Selection in MAX-CSP

In [Freuder and Wallace, 92] PFC is combined with a variable ordering
heuristic which selects the variable having the largest inconsistency count
mean (ICM). ICM can be stated in terms of minimizing the following
expresion,

1 :
ICM(X;) =past - dom; . iCa
a&Feasible(D;)
where ic;g is the current IC computed by PFC. In the MAX-CSP case,
supports can be rewritten in the following way,

1
Supp(X; , a) = past - icjq + E (dom: E 7ij(a,b))
¥ 7 VEFedsibie(D))

Therefore, the sum of supports is,

Supp(X; , a) = E (past - iciq) +
aEFeasible(D;) aSFeasible(D;)

1
* E E (dom; E r,-]'(a,b))
aSFeasible(D;) jEF bEFeasible(Dj)
which can be rewritten as,

204 Chapter 6. Support-based Heuristics

1
Supp(X; , a) = dom; (past - doms i6q) +
aSFeasible(D;) aEFeasible(D;)
1
+ (dom' 2 rlj(a:b))

aEFedsible(D;) ’ bEFedsible(D))

Observe that the second factor of the first term in the summation is the
numerical expresion of ICM, so it can be rewritten like,

1
Supp(X; , a) = dom; ICM(X;) + E (5o E ri(ab))

aEFeasible(D;) aEFeasible(D;) J bEFeasible(D;)
Therefore, we see that LS is a refinement of ICM considering two
additional sources of information: from the first element of the
summation, we see that LS considers the domain cardinality and prefers
variables having few feasible values; from the second element of the
summation, we see that LS prefers variables whose values are highly
constrained with future values.

6.5.4 Value Selection in MAX-CSP

There are three value ordering heuristics for MAX-CSP often used in the
literature. In [Freuder and Wallace, 92] values are selected by increasing
number of inconsistencies with past variables (we call this heuristic IC).
In [Wallace and Freuder, 93] values are selected by increasing number of
arc-inconsistencies which are computed during a pre-processing step (we
call this heuristic ACC). In [Larrosa and Meseguer, 96] values are selected
by increasing number of inconsistencies with past variables plus arc-
inconsistencies with future variables (we call this heuristic IC+DAC).
These three heuristics can be seen as simplifications of HS. For instance,
IC is equivalent to HS if the contribution of future variables to supports are
discarded. IC+DAC is equivalent to HS if the contribution of non arc-
inconsistent future variables to supports are discarded. Finally, ACC is
equivalent to HS if the contribution of non arc-inconsistent variables to
supports are discarded, no matter whether they are future or past variables.

6.5 Comparison with Other Heuristics 205

6.6 Experimental Results

6.6.1 Total Constraint Satisfaction

The first set of experiments endeavours to evaluate the effectiveness of our
heuristics in total constraint satisfaction. In these experiments we used the
following classes of random problems,

(a). <35, 6,501/595, po> (8). <35, 9, 178/595, po>
(¢). <50, 6, 325/1225, po> (d). <50, 20, 95/1225, po>
(e). <125, 3, py, 1/9> (). <350, 3, p;, 1/9>

All these problem classes have been already used for evaluation purposes in
the literature [Bessiére and Régin, 96]. For each parameter setting we
generated samples of 50 instances.

We solved each problem using FC with four different heuristic
combinations:
1. The first combination is minimum domains as variable selection and
lexicographical ordering as value ordering. We will refer to this
combination as MD_LEX. This is a combination widely used with
random problems and we use it as a reference.
2. The second combination is domain size divided by degree for variable
selection [Bessiére and Régin, 96] and look-akead value ordering for
value ordering [Frost and Dechter, 95]. We will refer to this
combination as DOM/DG_LVO. It is believed that this combination
is one of the most effective for random problems [Bessiére and
Régin, 96].
3. The third combination is approximate lowest support variable selection
and exact highest support value ordering. We will refer to this
combination as ‘ALS_HS. This is a fair competitor with
DOM/DG_LVO because it performs a similar amount of computation
at each node. In addition, we saw in the previous Section that these
heuristics are closely related. Thus, a similar performance can be
expected.
4. The fourth combination is approximate lowest support variable selection
and approximate highest support value ordering. We will refer to this
combination as ALS_AHS. The purpose of this combination is to
quantify the cost associated to the accuracy decrement of using
approximate supports in value ordering.
We have not tried the combination LS_HS because the cost of LS is
prohibitive for random problems.

Figures 6.3-6.8 report the results of our experiments. Each figure
corresponds to a problem class and reports the average search cost in terms

206 Chapter 6. Support-based Heuristics

of consistency checks, visited nodes and CPU time. For problem classes
where tightness is the varying parameter (i.e.: from (a) to (d)), we only
plot the region that corresponds to the complexity peak. Figure 6.3 presents
the results with the <35, 6, 501/595, po> class. Regarding the number of
visited nodes, we see that DOM/DG_LVO and support-based heuristics give
a gain ration of about 1.5 over MD_LEX. Support-based heuristics are
slightly better than DOM/DG_LVO. Interestingly, approximating supports
for value ordering does not cause any performance loss. Regarding the
number of checks, we observe that the cost of LVO and HS does not pay off
its tree reduction. Nevertheless, the consistency-check-free nature of AHS
makes this choice the most cost effective. Regarding CPU time, we see that
DOM/DG_LVO and ALS_HS are not cost effective and ALS_AHS gives a
reduced (althouth worthwhile) gain.

Figures 6.4 and 6.5 present a similar behaviour in the <35, 9,
178/595, po> and <50, 6, 325/1225, po> problem classes. Regarding number
of nodes, we again see that DOM/DG_LVO and support-based heuristics
clearly outperform MD_LEX. The tree reduction goes up to a factor of 4.
Support-based heuristics and DOM/DG_LVO present a similar
performance. Like in the previous case, approximating supports for value
ordering does not cause any performance loss. Regarding the number of
checks, we observe that support-based heuristics and DOM/DG_LVO are
considerably more efficient than MD_LEX. However, only ALS_AHS
achieves a gain ratio of nearly 4, which is equal to its gain ratio in terms
of visited nodes. Regarding CPU time, support-based heuristics and
DOM/DG_LVO are nearly twice faster than MD_LEX. In random
problems, performing a consistency check is cheap. For this reason, the
ratio gain that ALS_AHS has over ALS_HS and DOM/DG_LVO in terms of
checks is not maintained in terms of CPU time. Nevertheless, AHS is
supposed to be more fruitful in domains where performing consistency
checks is more costly.

Figure 6.6 reports our results on the <50, 20, 95/1225, po> class.
Independently of what search effort measurement is considered,
DOM/DG_LVO is much more effective than the other heuristic
combinations. Nevertheless, our support-based heuristics clearly outperform
MD_LEX. Regarding CPU time, the gain ratio of DOM/DG_LVO over
MD_LEX goes up to 50 and the gain ratio of DOM/DG_LVO over ALS_HS
goes up to 6. In this case, AHS outperforms HS in terms of checks, but HS
outperforms AHS in terms of nodes and time. Again, this fact can be
understood because consistency checks in random problems are cheap.

Figures 6.7 and 6.8 present the results of the <125, 3, p1, 1/9> and
<850, 3, p1, 1/9> problem classes. For this problems, the relative
performance between DOM/DG_LVO and support-based heuristics is
reversed with respect Figure 6.6. The combination presenting the worst
performance is MD_LEX. Independently of what search effort
measurement is considered, ALS_AHS is the best choice (except in terms of
visited nodes, where ALS_AHS and ALS_HS have practically the same

6.6 Experimental Results 207

performance). Comparing with DOM/DG_LVO in the <125, 3, 1, 1/9>
class, ALS_AHS is about 5 times better in terms of checks, 2 times better in
terms of visited nodes and 1.5 times better in terms of CPU time.
Comparing with DOM/DG_LVO in the <350, 3, P15, 1/9> class, ALS_AHS is
about 25 times better in terms of checks and visited nodes and 15 times
better in terms of CPU time.

From this experiments, we see that both support-based heuristics and
DOM/DG_LVO are, in general, much better than MD_LEX (although
there are exceptions like the <35, 6, 501 /595, po> class where MD_LEX is
slightly better in terms of CPU time). Comparing DOM/DG_LVO, there
is no clear winner. In some problem classes, both combinations present a
quite similar performance. This result could be expected from the analysis
performed in Section 6.5, where we show that DOM/DG is similar than a
simplified version of LS, and LVO is similar than HS. However, one can
find problem classes where one combination is clearly better than the
other and the way around. Regarding HS vs. AHS, we observed that the
approximation can save many consistency checks without a heuristic quality
degradation (the number of visited nodes is, in general, similar). It has to
be mentioned, that the same idea used to approximate HS can be applied to
LVO and one can expect a similar behaviour.

6.6.2 Partial Constraint Satisfaction

The second set of experiments endeavours to evaluate the effectiveness of our
heuristics in partial constraint satisfaction. In this context, there is not a
consensuated variable ordering heuristic that can be used as a reference
(such as MD in total constraint satisfaction). Therefore, we performed an
initial experiment with the <15, 10, 50,105, po> problem class. For each
parameter setting we generated samples of 10 instances. We solved each
problem using PFC-RDAC (described in Section 4.7) with five different
variable ordering heuristic (values were always sorted by IC+DAC):

1. FD/BD: forward degree/ backward degree. This is a static variable
ordering which selects first the variable that has most constraints
with already chosen variables. It breaks ties preferring variables that
have most constraints with still not chosen variable. This heuristic
was found in [Larrosa and Meseguer, 96] the most effective static
variable ordering among several alternatives.

2. ICM: it selects the variable having the largest inconsistency count mean
[Freuder and Wallace, 92].

3. MD: like in total constraint satisfaction, it selects the variable having
the minimum domain size.

4. MD-DG: as in total constraint satisfaction, it selects the variable
having the minimum domain size using variable degree as a tie
breaker. This heuristic was found the most effective heuristic for

208 Chapter 6. Support-based Heuristics

PFC-RDAC among several alternatives for the experiments
presented in Chapter 4.
5. ALS: approximate lowest support as described in Section 6.4.

Figure 6.9 shows the results of this experiment in terms of visited nodes
(checks and time give similar results). It can be observed that LM and MD
are by far outperformed by the rest of heuristics. We also see that the
recognized dominance of dynamic over static orderings in total constraint
satisfaction cannot be extended to MAX-CSP (we already observed this fact
in Chapter 4). Nevertheless, dynamic orderings seem to be slightly better
than FD/BD. The two heuristics that give the best performance are MD-
DG and ALS.

For the remaining experiments, we select the best variable
orderings found above and make a more exhaustive comparison
combining them with value ordering heuristics. We used the same
classes of random problems that we already used in Chapter 4,

(a). <10, 10, 45/45, po> (B). <15, 5,105/105, po>
(¢).<15,10,50/105, py> (d). <20, 5, 100/190, po>
(¢). <25, 10, 37/300, po> (). <40, 5, 55/780, po>

Recall that (a) and (b) are highly connected, (¢) and (d) are problems with
medium connectivity, and (¢) and (f) are sparse problems. For each
parameter setting, we generated samples of 50 instances.

Each problem was solved with PFC-RDAC and two different
combinations of heuristics: The first combination is MD-DG as variable
selection and IC+DAC as value ordering and the second combination is
ALS with AHS.

Figures 6.10-6.15 report the results of these experiments. Each figure
corresponds to a problem class and includes three plots reporting the
average search cost in terms of consistency checks, visited nodes and CPU
time. Since both combinations perform a similar amount of work at each
node, the three measurements are very correlated. It can be seen that both
heuristic combinations give a very close performance, although ALS_AHS
is slightly better (except for the tightest dense problems). ALS_AHS seems
to produce larger gains in sparse problems and in problems with low
tightness. The highest gain ratios occur in sparse problems where
ALS_AHS is typically twice faster than MD-DG_IC+DAC.

6.7 Conclusions and Future Work

From the work presented in this Chapter, we extract several conclusions.
Although LP and CSP seem similar, we have shown that there is a major
difference between them. Constraint satisfaction is a global optimization

6.6 Experimental Results 209

task, while LP is a local optimization task. Our analysis has served for a
better understanding of the relationship between these two formalisms.

The effect that variable and value orderings have in algorithsms for
CSP and MAX-CSP is not equivalent. However, heuristics for both cases can
be thought in the same terms. We have seen that the failfirst and succeed-
first principles provide the basic targets for variable and value ordering
heuristics. Interestingly, this principles are valid for both CSP and MAX-
CSP.

Depthfirst search and local optimization are completely different
algorithmic schemas. However, a local optimization perspective can be
useful to heuristically guide depth-first search. Most previous heuristics are
obtained by pure experimental means. Qur heuristics, which are based on
local gradients, can be reduced to them under certain assumptions. In that
sense, our approach gives insight into their nature.

Our work raises several questions that deserve further research. The
global optimization perspective of constraint satisfaction suggests a closer
look to the A(V) function. For instance, it is interesting to study under
which conditions A(V) is a convex function because it would give condition
for CSP and MAX-CSP tractability.

Stochastic search is an alternative to depth-first which has shown to
be very effective in some situations. A well-known disadvantage of
stochastic search is that it takes decisions based on wvery local information
(the current assignment). Support-based heuristics may be suitable in this
context if we give non-zero weight to unassigned values. With this idea
supports would take into account the compatibility of values which are not
currently assigned.

With our approach, labellings have a homogeneous distribution of
weights among future values. It means that we consider every value equally
important. However, we may give a higher weight to those values that we
believe that are more important (may be based on previously gathered
knowledge about the problem).

210

c. checks

visited nodes

1500000

1000000 —

500000 —

20000

1

1

time (secs.)

Chapter 6. Support-based Heuristics

Sokgoweec ALS_HS

ALS_AHS

oy

5000 —

0000 -

5000 -

1.5

._.
|

(=]
[
1

p2 x 36

Figure 6.3: Experimental results on the class <35, 6, 501/595, po> with

different heuristics.

6.6 Experimental Results 211

800000

—+—o—— MD_LEX
600000 =......q........ DOM/DG_LVO

400000 5 77T ALSHS

-}---e---- ALS_AHS
200000 -

c. checks

! 1
(= 7e) = el
N N o o

30000

25000 -

20000 —

15000 -

10000 —

visited nodes

5000 —

20

time (secs.)
L
(9,
|

20
257
307
35

p2x 81

Figure 6.4: Experimental results on the class <35, 9, 178/595, po> with
different heuristics.

212 Chapter 6. Support-based Heuristics

1500000
——— MD_LEX

10000004 P DOM/DG_LVO

c. checks
&
2
jas)
»n

500000+ -----e---- ALS_AHS

6~
8
107

50000

40000 —

30000 —

20000

visited nodes

10000 - e

ey,
[,
B e . e

6
8
10

time (secs.)
[\]
1

p2x 36

Figure 6.5. Experimental results on the class <50, 6, 325/1225, po> with
different heuristics.

6.6 Experimental Results 213

25000000 -
——=—— MD_LEX 3§ e DOM/DG_LVO
200000004 R R
® ALS_HS [X LA ALS_AHS
§ 150000004 j
2
(3}
S 100000004
H
50000004 Wl PN .
. A vax o5 LN g ',RQ
O-J it -;"; gifwo-,rf""*"'e"*‘w:}&;n. g -~

o S
[ee] [=)} (e} — N
N [\l o on o
1000000
750000 —
3
o
]
=]
E 500000 —
* 250000
150
~ 100
F
= 50 —
0 -+

Figure 6.6: Experimental results on the class <50, 20, 95/1225, po> with
different heuristics.

214 Chapter 6. Support-based Heuristics

5000000
e P W_LEX agrrrensens DOM/DG_LVO
4000000 A oe-= ALS HS
3000000 |}
iv]
8 *y
£ 2000000
S
% 1000000 —
1
[ew] wv [} w (e
(] [} v ©~ (e}
()} [@)} [«)} (=)} 2
200000
150000 -)
3
° :
o
= iy
< 100000 -
2
% 50000 -

900
925
950
975
1000

15

time (secs.)

0 I | I I 1
(] v [«] v [e]
] (] vy o~ (=)
[=)} (=)} (o)} (=)} 2
p1x 7750

Figure 6.7: Experimental results on the class <125, 3, p;, 1/9> with
different heuristics.

6.6 Experimental Results

215

)
L ds';”':’:’%’ T AN

MD_LEX

DOM/DG_LVO

v
o
o
N

30000000 .
N}WMW W —
......... —
g 20000000
Q
< gnnna
Q
s
% 10000000 — e
&
@i "o’z“a{ﬁp‘;’@{ o
1500000
$ 1000000 -
g
hel
3
£ 500000
£

200
150
g
< 100 -
Q
E

2275

plx 61075

216

c. checks

30000000

20000000 —

10000000

visited nodes

1500000

1000000 —

500000 —

time (secs.)

Chapter 6. Support-based Heuristics

£
1B S
LAY Yot
K ‘;’Q % By "

-"..*;E‘é 'S

e
ron

150 =

100 —

p1x 61075

Figure 6.8: Experimental results on the class <350, 3, p;, 1/9> with

different heuristics.

217
MD-DG

- s

DOM/DG

———s—— FD/BD

ICM

6.6 Experimental Results

S .

001
v e 5 £ 2 AR T T g
PRTL -0
B e Mu..l@lm.ludilliuws o B3
=T gt 08

—-0L

- 09

200000

150000

100000 —
50000 -

SOpOU PAJISIA #

p2x 100

Figure 6.9: Number of visited nodes on the class <15,10,50/105,po> with
different variable ordering heuristics.

218

800000

Chapter 6. Support-based Heuristics

600000 —

I400000 -

ch_mean

200000 —

———a—— MD-DG_IC+DAC

40

50000

80
100

40000 -

30000 —

20000 —

visited nodes

10000 —

40

—
o

0 —naedd kil

80
100

time (secs.)
N
w W
1 |

()
W
1

(e
40}

80
100

p2 x 100

Figure 6.10: Experimental results on the class <10, 10, 45/45, po> with two
different heuristic combinations.

6.6 Experimental Results 219

2000000

———— MD-DG_IC+DAC
1500000 g \

1000000 —

c. checks

500000 —

125000

100000 —

75000 —

50000 —

visited nodes

25000 -

0 %

I
s} (=]
—

15
20
25

20

10 —

time (secs.)

I 1 I
7o} =}) =

— — N
p2x25

Figure 6.11: Experimental results on the class <15, 5, 105/105, po> with two
different heuristic combinations.

220 Chapter 6. Support-based Heuristics

2000000
———a—— MD-DG_IC+DAC L
X ;é “; A
15000004 ... eerennees ALS_AHS g 3
P i .
S & T P
2 1000000 - i -
S oé
I3 B, f
Sl
500000 — fpr o
d&
<21
0 T T T T
=) =) =) =) =) =
) O o~ (e o] (@) o
150000
£ 100000 -
]
a
]
]
> 50000 -
H
3
0 T T T T
(=] (@] [} S [} (]
wv =) o~ e} =)} o
50
40
,‘; F\fe
7 304 R
Q 8
~ ,«-d'é
Y g
E 20 - ";
o™ D
10 - ‘ ,_é.éné
L 8 ¢
0 -4 T T T T
=) =) =) =) =) =)
w O o~ e} (=) [e]
p2 x 100

Figure 6.12: Experimental results on the class <15, 10, 50/105, py> with two
different heuristic combinations.

6.6 Experimental Results 221

2500000

——a—— MD-DG_IC+DAC

2000000 —

1500000 —

1000000 —

c. checks

500000 —

0 —

30

200000

150000 —

100000 —

visited nodes

50000 —

0

5=
10
157
20
254
30

40

30 H

20

time (secs.)

10 —

20
257
30

T I 1
© o S 2
p2x25

Figure 6.13: Experimental results on the class <20, 5, 100,/190, po> with two
different heuristic combinations.

222 Chapter 6. Support-based Heuristics

500000

——a—— MD-DG_IC+DA C

400000 —

300000 —

200000 —

c. checks

100000 —

70

80

90
100

60000

visited nodes

100 ~*

25

time (secs.)

100 ~*

p2 x 100

Figure 6.14: Experimental results on the class <25, 10, 37/300, po> with two
different heuristic combinations.

6.6 Experimental Results 223

500000

———=—— MD-DG_IC+DAC
400000 —

300000 —

c. checks

200000 /s

100000 —

15
20
25

150000

100000

visited nodes

50000 —

15
207
25

40

30 —

20

time (secs.)

10 —

5
20

e}
N

p2x25

Figure 6.15: Experimental results on the class <40, 5, 55/780, po> with two
different heuristic combinations.

Chapter 7

Experimental Results on
the Job-shop Problem

In this Chapter, we evaluate support-based heuristics —developed in the
previous Chapter— in a real application domain. We experimentally show
that our heuristics are suitable for the job-shop problem, a classical
scheduling problem for which a considerable research effort has been
devoted. More precisely, we show that our heuristics are competitive with
respect to specific techniques for the job-shop. The interest of this result is
that our approach was developed under a general-purpose motivation and
does not include any domain-dependent element or any parameter that
has to be adjusted manually for this particular domain. In that sense, our
generic approach is more robust and more applicable to other problem
instances than specific approaches.

This paper is organized as follows. In Section 7.1, we introduce the
job-shop problem. In Section 7.2, we revise the last approaches to the job-
shop from Al In Section 7.3, we express the job-shop as a CSP and present
two different solving approaches. In section 7.4, we show how support-based
heuristics are used with the different approaches. In Section 7.5, we solve
both approaches using depth-first based algorithms. In Section 7.6, we solve
again both formulations using discrepancy-based algorithms, a new type of
search algorithms recently developed. Finally, in Section 7.7, we present
the conclusions of this Chapter.

7.1 Introduction

The job-shop problem involves the temporal synchronization of the
production of a set of jobs. Each job is composed by a sequence of operations;
each operation has a duration and it requires the exclusive use of a
machine for its duration. Each job has a release date and a due date
between which it should be accomplished. This problem can be formulated

226 Chapter 7. Experimental Results on the Job-shop Problem

as an optimization problem or as a decision problem. In this Chapter, we
consider the decision problem, often called the job-shop with non-relaxable
time windows. A solution is a temporal assignment of operations to
machines in such a way that jobs are perfomed in time, satisfying the
sequence of its operations and respecting that any machine is used by at
most one operation at any time.

The job-shop is a classical problem in manufacturing to which a
considerable amount of research has been devoted in different fields of
Computer Science. The interest for this problem is not purely academic,
since it represents many real-world problems that arise daily in factories
and workshops. Simpler, easier and more efficient solving methods are of
great interest because of the practical implications that they have. From an
Artificial Intelligence perspective, the job-shop has been treated as a CSP
by several authors who have developed efficient solving approaches.
However, these approaches are specific for this particular domain. In this
context, one may believe that generic search and CSP methods are not
appropriated for this problem. In this Chapter we contradict this belief.
We show that support-based heuristics combined with general purpose
search schemas can be successfully applied to the job-shop.

Our claim is based on experimental results on a classical job-shop
benchmark [Sadeh, 91; Sadeh and Fox, 96]. Currently, all its problem
instances have been solved. However, this benchmark has been considered
as challenging in the job-shop community and has attrackted the interest
of several researchers. Therefore, it provides an interesting test-case for
comparing our work with different approaches. In our experiments, we
obtain similar results to specific approaches in terms of the number of
solved problems. Our approach does not outperform specific approaches in
terms of CPU time, but it reaches a reasonable performance using generic
search and CSP methods which, in general, are easier to develop, codify
and maintain than specialized approaches.

7.2 Previous Work

The job-shop problem has been object of intense research from different
perspectives. In the following, we summarize some recent approaches from
an Al point of view.

An important contribution is due to Sadeh and colleagues [Sadeh et
al, 95; Sadeh and Fox, 96]. They formulate the job-shop as a CSP, where
variables are associated with operations, variable domains are possible start
times, and constraints involve precedence among operations and
exclusivity in resource use. To solve this problem, they achieve initial arc-
consistency on precedence constraints, and they use forward checking plus
a weak form of arc-consistency on resource constraints as the basic
algorithm. Claiming that "generic CSP variable and value ordering

7.2 Previous Work 227

heuristics do not perform well in the job-shop domain"l, they develop two
specific variable and value ordering heuristics based on resource
contention, denominated ORR and FSS respectively. With this approach,
they solve 52 out of 60 problems of their benchmark outperforming
existing approaches at year 1991. Next year, they were able to solve all the
problems of the benchmark. They modified the algorithm enhancing it
with three new features:

1. Dynamic consistency enforcement, which dynamically identifies critical
subproblems and determines how far to backtrack by selectively
enforcing higher levels of consistency among variables participating
in these critical subproblems.

2. Learning ordering from failure, which dynamically modifies the order
in which variables are instantiated based on earlier conflicts.

3. Incomplete backjumping heuristic, which abandones areas of the search
space that appear to require excessive computational effort. This
feature renders the algorithm incomplete.

Coincidentally, another approach [Muscettola, 94] was able to solve
the 60 problems using a stochastic search procedure with a global heuristic
based on resource contention. Resource contention is approximated via
Monte-Carlo simulation. If the procedure fails to find a feasible solution, it
restarts from scratch, relying on the stochasticity of its Monte-Carlo
simulation to produce a different solution.

Alternatively, Smith and Cheng [Smith and Cheng, 93] formulate
the problem as a search in a binary decision tree, where each node
represents two operations that compete for the same resource. A node has
two successors, the two possible orderings for two operations. When one of
the orderings is selected, this decision is propagated over the possible start
and finish times of all other operations. In addition to this problem
formulation, the main contribution of this approach is a dynamic variable
ordering heuristic (which pair of operations consider next) and a
dynamic value ordering heuristic (which operation post first), based on
slacks (free period) left by two operations competing for the same resource,
when they are scheduled from their earliest start time and consecutively.
These heuristics are used in a very simple search method (called PCP),
which selects two operations, determines which one is scheduled first and
propagates the effect of this decision. If no operation appears unfeasible, the
process iterates, otherwise it stops and returns false (no backtracking is
done). With this approach they solve 56 out of 60 Sadeh problems. Using a
more complex version of their heuristics, modified in an ad-hoc manner,
they are able to solve the 60 problems.

Finally, Crawford and Baker [Crawford and Baker, 94] codify
Sadeh's benchmark as propositional satisfiability problems (SAT), and they
solve them using a complete algorithm (Davis-Putnam procedure) and two

1 This was probably true when this research was done, at year 1991. Nowadays it is
no longer true, as we will see in this Chapter.

228 Chapter 7. Experimental Results on the Job-shop Problem

incomplete ones (GSAT and ISAMP). Only ISAMP is able to solve the 60
problems, with a upper limit of 20,000 tries.

From this brief analysis, we can identify complex specialized
algorithms such as a modified forward checking with incomplete
backtracking [Sadeh et al, 95], complex heuristics based on global resource
contention (ORR/FSS [Sadeh and Fox, 96], CPS [Muscettola, 94]), or
specialized local heuristics (slack-based [Smith & Cheng, 93]). Only the
formulation of Crawford and Baker seems to be generic. However, this
approach also presents some drawbacks, and it is the size of the SAT
translation of a problem. According to [Harvey, 95], a typical benchmark
problem is translated into a theory of 100,000 clauses and 20,000 literals,
using more than 1 Mbyte of memory, which seems not to be very
operational from a practical perspective. Regarding completeness, all
approaches solving the whole benchmark are incomplete (although PCP
can be completed easily). For all this, it seems to be a plausible goal to look
for simple, generic solving methods for the job-shop, easy to implement
and debug, which could solve the problem with reasonable performance.

7.3 The Job-shop as a CSP

The job-shop requires the scheduling of a set of jobs on a set of physical
resources. Each job consist of a set of operations to be scheduled according to
a process routing that specifies a partial ordering among these operations.
In the job-shop considered in this work, process routings are sequences of
operations. Each operation (O;) has an earliest start time (est;), a latest finish
time (lft;) and a duration (d;). In addition, each operation requires the
exclussive use of a unique machine (r;) during its execution. The objective is
to come up with a start time (st;) for each operation such that problem
constraints are fulfilled. Figure 7.1 shows a simple job-shop problem
which is formed by two jobs, each one including three operations. Each
node corresponds to an operation. Simple arrows indicate precedences
impossed by the process routing and double arrows indicate different
operations competing for the same machine. In addition, at each node we
include the earliest-start-time/latest-finish-time interval and the duration
of the corresponding operation.

Representing the job-shop as a CSP, variables are operation start
times (st;), domains (D;) are determined by each operation earliest start
time (est;), latest finish time (Ift;) and duration (d;), Ds=[est;, Ift;-d;]. There
are two different kinds of constraints:

(a). Precedence constraints (between consecutive operations of a job): if

operation i must be executed before operation j, then st; + d; < st;,

(b). Resource constraints: if operations ¢ and j require the same

machine, then st; + d; < stj or stj + djs st;.

7.3 The Job-shop as a CSP 229

For instance, in the example of Figure 7.1 operations O] and 09 are
constrained by a precedence constraint R19={(¢¢')| ¢+ 10 < ¢’} and the
assignment {st] <1, stg <15} is consistent with respect that constraint (¢
and ¢’ are potential start times for the two considered operations).
Operations 02 and O5 compete for the same machine. Therefore, they are
constrained by a precedence constraint Ro5={(%,¢)| t+5 <t or t'+ 5 < # and
the assignment {st9 <= 10, st5 < 15} is consistent with respect to that
constraint.

7.3.1 CSP Solving Approach 1

The CSP-standard solving approach for the job-shop consist on traversing
depth-first a search tree such that each node corresponds to a partial
consistent scheduling of someoperations [Sadeh and Fox, 96]. At each node
a new operation is selected and its possible start times are sequentially
attempted. Regarding the example of Figure 7.1, this approach searches in
a tree of depth 6 (the number of operations). Each node has a different
branching factor, depending on the number of possible start times for the
current operation.

01 10 02 5 03 10
[0, 14] [10,19] [15, 29]
-
[0, 20] [19, 26]

(b) Legend for each operation

Figure 7.1: A job-shop problem.

230 Chapter 7. Experimental Results on the Job-shop Problem

Under this approach, the variable ordering heuristic selects the next
operation to schedule and the value ordering heuristic decides the order
in which its possible starting times are tried. We will refer to this
approach for job-shop solving as approach 1.

7.3.2 CSP Solving Approach 2

Some authors have reported that the job-shop is more efficiently solved if it
is formulated in terms of precedences between pairs of operations
competing for the same machine [Smith and Cheng, 93]. Each pair of
operations gives two possibilities, the two ways precedence can be
established. We denote by ¢ —; the fact that operation i precedes operation
J- With this approach, search traverses a binary tree. At each search state,
it selects a pair of operations competing for the same machine whose
precedence has not yet been established, and sequentially attempt the two
possible orders (i.e.: i — j and j— 7). After establishing an order, the
intervals of feasible starting times of the two affected operations have to be
accordingly updated. If the decision k — [is taken, time intervals of
operations k and [have to be updated with the following rule:

est}= max{est], estp+dp}
lftp= min{lfty, lftrd])

and these new values are then propagated forward or backward respectively
through all pre-specified and previously decided precedences. A dead-dend
takes place when est;+d; becomes greater than Ift; for any operation i.
When a dead-end occurs, the algorithm backtracks to a previous decision
and changes its precedence relation. We will refer to this approach as CSP
solving approach 2.

For instance, in the example of Figure 7.1 there are three pairs of
precedences that need to be established. Consequently, the search tree is a
binary tree of depth three. If we decide to post operation O9 before
operation Os, the time interval for Op is changed from [14, 25] to [15, 25].
This change is propagated to Og and its time interval becomes [20, 26].
Figure 7.2 shows the resulting subproblem after this decision.

Observe that this is not a different CSP representation of the same
problem where variables are pairs of operations, because problem
constraints are not given in terms of pairs of operations (i.e.: the problem
description does not explicit whether combinations of precedences are
consistent or not). This formulation defines a different solving schema in
which search is done in terms of a different type of decisions.

Under this approach there are two decisions that search has to take
at each visited node: what is the next pair of operations whose precedence
is going to be established, and in what order the two possibilities are

7.3 The Job-shop as a CSP 231

going to be attempted. For parallelism with the solving approach 1, we
will refer to this decisions as variable and value selection, respectively.

[0, 14] [10,19] [15, 29]
I - \~\\

0y 14 O5 5 Op 1

[0, 20] [15, 25] [20, 26]

Figure 7.2: Subproblem obtained after deciding to schedule O9 before Os
and propagating this decision.

7.4 Support-based Heuristics for the Job-shop

7.4.1 CSP Solving Approach 1

The job-shop that we are considering in this work is a total constraint
satisfaction problem. With the CSP solving approach 1, support-based
heuristics can be used as they were defined in the previous Chapter. At a
given node, there are a set of assigned operations (past operation with a
start time assigned to them) and a set of unassigned operations (future
operations with a set of feasible values). Assuming a forward-checking-like
algorithm, future values are consistent with past assignments. In that
context, the support that an arbitrary start time ¢ for an arbitrary operation
i receives is,

|Feasible'(D;) |
T Ny
Supp(st;,) =1 P | + 2 Feasible(D;)|
EF

Where Feasible(D ;) is the current domain of operation j and Feasible' (D)) is
the current domaln restricted to those values consistent with the
assignment of time ¢ to the start time of operation i. The approximate
support that an arbitrary start time ¢ for an arbitrary operation i receives
is,

232 Chapter 7. Experimental Results on the Job-shop Problem

ap_Supp(st;, £) = | P | + 2 'I%lL'
F
Where D; is the initial domain of operation j and D, is the initial
domain restricted to those values consistent with the assignment of time ¢
to the start time of operation .

The lowest support heuristic (LS) selects the variable having the
lowest sum of supports among its feasible values. The highest support
heuristic (HS) attempts the assignment of values by decreasing support. The
approximate counterparts of these heuristics (ALS and AHS) are defined in
the same way, but using approximate supports.

7.4.2 CSP Solving Approach 2

With the solving approach 2, nodes are not defined in terms of past and
future operations. At a given search node, each operation ¢ has a time
interval for its start time (st; € Feasible(D;)) determined by previous
decisions and the propagation rule. If and j are two unordered operations
competing for the same machine, we define the support that establishing ¢
— j receives from the problem as

. |Feasible'(Dg) |
Suppi =)= Y Foasible(Dp)|
kK=Operations

where Feasible(Dp) is the time interval [estg, Iftg-dg] for operation k before
deciding the order between : and j, and Feasible’(Dg) is the time interval
[esty, Iftp-dg] after deciding i—j and propagating its effect. With this
definition, the lowest support variable selection heuristic (LS) for this
algorithm selects the pair of operations (¢,j) with minimum sum of
supports for the two possible orderings,

ming [{Supp(k —) + Supp(l— k)}

In a similar way, the highest support value selection heuristic (HS) selects
the ordering that ordering that receives the highest support.

7.5 Experimental Results 233

7.5 Experimental Results

7.5.1 The Benchmark

Several studies of the job-shop from an Al point of view have used the
benchmark proposed in [Sadeh, 91] to evaluate their approaches?. This fact
makes this benchmark especially appropriated for our purposes because
using a single set of problem instances we can compare our work with
several previous approaches.

The problem set consists of 60 randomly generated problems. Each
problem contains 10 jobs and 5 resources. Each job has 5 operations. A
controlling parameter was used to generate problems in three different
deadline ranges: wide (w), median (m) and tight (t). A second parameter
was used to generate problems with both 1 and 2 bottleneck resources.
Combining these parameters, 6 different categories of problems were
defined and 10 problems were generated for each category. The problem
categories were carefully defined to cover a variety of manufacturing
scheduling circumstances. All problems have at least one solution. A
detailed description of the problem generator can be found in [Sadeh and
Fox, 96]. Initial time intervals for operations have around 100 possible
starting times, on average. Therefore, using solving approach 1 the
associated search space is around 10059, Regarding solving approach 2,
there are 225 pairs of operations competing for the same resource.
Therefore, the associated search space has size 2225.

7.5.2 CSP Solving Approach 1

The first experiment aimed to show that support-based heuristics produce
competitive results when applied to the CSP solving approach 1 using a
standard algorithm. We used plain forward checking combined with
support-based heuristics. The only modification made to the problem
description (Section 7.3.1) was that implicit precedences between
nonconsecutive operations of the same job were made explicit by additional
precedence constraints (in the example of Figure 7.1 it means the addition
of two constraints R13={(%¢)| t+ 15 < t'land R46={(%,¢)| t+ 19 < t}).

Table 7.1 shows the results of forward checking with support-based
heuristics. For each case we give two columns: number of solved problems
(with a search limit of 500 visited nodes) and average search effort

2This test suite can be obtained via anonymous ftp to cimds3.cimds.ri.cmu.edu
. . . p . .
(password: user-name@node). The test suite is in /usr/sadeh/public/ csp_test_suite.

234 Chapter 7. Experimental Results on the Job-shop Problem

required as the number of visited nodes. Using exact heuristics (LS/HS) 51
problems are solved. If we use the approximate lowest support for variable
selection (ALS/HS), we still solve the same 51 problems. Interestingly, by
approximating support for variable selection average time of solving a
problem decreases from about 300 seconds in a Sun workstation to roughly
4 seconds. In addition, all solved problems are solved without any
backtracking. If approximate heuristics are used for variable and value
selection (ALS/AHS), only 39 problems can be solved. It illustrates the
importance of value selection heuristic accuracy for scheduling problems.
These results are compared with the corresponding ones of [Sadeh and
Fox, 96], where the forward checking algorithm with ORR/FSS heuristics
solved 52 problems. With their approach, solving a problem required about
8 seconds using a DECstation 5000/200 platform and a Lisp
implementation

7.5.3 CSP Solving Approach 2

The second experiment aimed to show that support-based heuristics are
also general in the sense that they can be effectively applied to different
algorithmic approaches. We use the CSP solving approach 2. In particular,
we use the PCP algorithm presented in [Smith and Cheng, 93] combined
with support-based heuristics. Unlike [Smith and Cheng, 93], our
implementation allows backtracking when a deadend occurs.

Table 7.2 shows the results of this experiment: 56 problems were
solved with a search limit of 1,000 nodes. All solved problem instances but
one are solved without any backtracking (225 visited nodes). In average,
our algorithm requires about 13 seconds to solve a problem. These results
are compared to those of [Smith and Cheng, 93] where PCP combined to
slack-based heuristics also solved 56 problem. In their approach, 0.2
seconds were required to solve a problem with a C implementation and a
DEGstation 5000 platform.

7.6 Experimental Results Using Discrepancy
Algorithms

An important drawback of depth-first search is that it is strongly
committed to its first decisions. If heuristics give a wrong advice early in
the tree, depthfirst is forced to unsuccessfully traverse a large subtree. In
the previous Section, we showed that no heuristic (ORR/FSS, slack-based,

7.6 Experimental Results Using Discrepancy Algorithms 235

LS/HS ALS/HS ALS/AHS ORR/FSS

solved | nodes | solved | nodes [solved | nodes | solved | nodes
w/1 10| 50| 10| 50 9| 55 10| 52
w/2 9| 50 9| 50 8| 16| 10| 50
m/1 9 50 9 50 5| 53 g| o
m/2 10| 51| 10| 50 71 m 9| 57
t/1 6 50 6] 50 4| 50 7| 68
t/2 71 0 71 50 6| 52 g| Ol
sum 51 51 39 52

Table 7.1: Results of forward checking with support-based heuristics,
compared with results of forward checking with ORR/FSS heuristics of
[Sadeh and Fox, 96].

LS/HS slack-based

solved | nodes |solved | nodes
w/1 10 225 10 225
w/2 10 225 10 225
m/1 10 225 10 225
m/2 10 231 10 225
t/1 10 225 10 225
t/2 6 225 6 225
sum 56 56

Table 7.2: Results of PCP with support-based heuristics, compared with
results of PCP with slack-based heuristics [Smith and Cheng, 93].

support-based) is perfect and, in occasions, it may give wrong advice. In
Sadeh's problems, the search space is too large to traverse exhaustively .
Therefore, an early mistake causes the failure of the search procedure.
Trying to solve this problem for the job-shop, [Sadeh et al, 95]
modified the forward checking algorithm adding an incomplete backjumping
heuristic. when the system starts thrashing, the algorithm backjumps all
the way to the first search state and simply tries the next best value. This
approach renders the algorithm incomplete and it has been implemented
with a parameter (the maximum number of visited nodes between
backjumps), which has to be adjusted to solve the whole benchmark.

236 Chapter 7. Experimental Results on the Job-shop Problem

Alternatively, [Smith and Cheng, 93] modified the slack-based heuristics
introducing a bias; this was implemented by two parameters n] and n9,
which should be adjusted manually to achieve the heuristic formulation
able to solve the whole benchmark. In both cases, parameters are problem-
dependent and they may change using a different benchmark, so manual
tuning is always required.

To decrease the degree of dependency of depth-first search with
initial decisions in the search tree, new search strategies have been
recently proposed following the work of [Harvey and Ginsberg, 95] and
further developed by [Korf, 96; Meseguer, 97, Walsh, 97]. These new
algorithms are based on the concept of discrepancy. Regarding CSP, a
search path has as many discrepancies as value assignments differing
from the value ordering heuristic first choice. A discrepancy-based
algorithm is not strictly committed to the first choices made early in the
tree, which forces depth-first to search a sequence of nested subproblems,
but it searches in several subtrees corresponding to subproblems which
have little in common. This minimizes the negative performance impact
of early wrong decisions. In particular, limited discrepancy search (LDS,
[Harvey and Ginsberg, 95]) is a complete backtracking algorithm that
searches the nodes of the tree in increasing order of discrepancies (i.e.: in
its first iteration it searches all paths with less than 1 discrepancy, in its
second iteration it searches all paths with less that 2 discrepancies and so
on). LDS is easily adapted to algorithms used in Section 7.5 and combined
with support-based heuristics, producing complete procedures which are
adaptable to problem difficulty, so no manual tuning of parameters is
required. In the following, we provide experimental results of these
combinations for the two CSP solving approaches.

7.6.1 CSP Solving Approach 1

Our third experiment aimed to show that the reason for failure in 9
problems of Section 7.5.2. is the combination of two factors: occasional
wrong heuristic advice and depth first commitment to early decisions. For
this purpose, we combine LDS with forward checking and support-based
heuristics (ALS and HS). Table 7.3 presents the results of the experiment
where all problems are solved. 51 problems are solved with 0 discrepancies
(and an average CPU time of 4 seconds), 8 problems require 1 discrepancy
(and 115 seconds on average) and 1 problem requires 2 discrepancies (and
3,700 seconds). Tracing the execution we could verify our conjecture because
solution paths had their discrepancies in the first tree levels (in six cases
the discrepancy occurred in the first tree level, in the remaining cases
discrepancies occurred in the first four tree levels). As far as we know, this
is the first time that a complete algorithm solves all the benchmark
problems using the solving approach 1.

7.6 Experimental Results Using Discrepancy Algorithms 237

7.6.2 CSP Solving Approach 2

Our fourth and last experiment combined LDS with the PCP algorithm
and support-based heuristics. Table 7.4 gives the results. Again, all
problems are solved: 55 problems with 0 discrepancies (14 seconds on
average) and 5 problems with 1 discrepancy (36 seconds on average). All
discrepancies occurred in the first four tree levels.

7.7 Conclusions

From the experimental results presented in this Chapter, we conclude that
support-based heuristics have in practice the same solving performance
than specific heuristics in their initial form using the same problem
formulation and the same algorithms (51 vs. 52 solved problems with
forward checking, 56 vs. 56 solved problems with PCP). In addition,
problem-dependent modifications such as incomplete backjumping
heuristic or the inclusion of bias in slack-based heuristics can be efficiently
substituted by a discrepancy-based algorithm. This algorithm modifies the
depth-first strategy of forward checking and PCP. Combined with support-
based heuristics, it reaches the same solving performance (the whole
benchmark is solved). In this way, the problem of heuristic mistakes is
attacked from a sound algorithmic approach, and ad-hoc modifications and
manually adjusted parameters can be avoided.

For all this, we claim that search and CSP techniques, motivated and
developed in a generic context, can be effectively applied the job-shop
problem. Regarding performance, our generic approach has the same
solving power than specific ones; although it does not outperform specific
methods in CPU time, its computational requirements are quite
reasonable. Regarding methodology, our approach is generic and it does
not include domain-dependent elements which have to be adjusted for
each problem set. This makes our approach more robust and more
applicable to other problem instances. The solution proposed is a
combination of three well known elements in the constraint community:
constraint propagation (by forward checking), dynamic variable and value
selection (by support-based heuristics) and early mistakes avoidance (by
discrepancy-based search). By the modular inclusion of each of these
elements, we have assessed their relative importance and the role that
each plays in the construction of the solution. Each of these elements has
an intrinsic value for the search community and it has been
independently analyzed and studied. This provides our approach a higher
level of understanding than specific methods, which renders it more
suitable for supporting the development of applications.

238 Chapter 7. Experimental Results on the Job-shop Problem

ALS/HS inc. fc ORR/FSS
solved nodes solved nodes
w/1 10 50 10 52
w/2 10 53 10 50
m/1 10 68 10 55
m/2 10 50 10 54
t/1 10 4,831 10 57
t/2 10 813 10 60
sum 60 60

Table 7.3: Results of LDS with forward checking and support-based
heuristics, compared with results of incomplete forward checking with

ORR/FSS heuristics [Sadeh et al, 95].

LS/HS modif. slack-based

solved nodes solved nodes
w/1 10 225 10 225
w/2 10 225 10 225
m/1 10 225 10 225
m/2 10 244 10 225
t/1 10 225 10 225
t/2 10 356 10 225
sum 60 60

Table 7.4: Results of LDS with PCP and support-based heuristics, compared
with results of PCP with modified slack-based heuristics [Smith and

Cheng, 93].

Chapter 8

Conclusions

Many important problems can be expressed as CSP. The development of
techniques to efficiently solve them is of clear practical importance. In this
thesis, we have presented a set of algorithms which improve state-of-the-art
methods for constraint satisfaction solving. We have shown that total and
partial constraint satisfaction have many common features that can be
exploited. In that context, we have extended many technics developed for
total constraint satisfaction to partial constraint satisfaction. Moreover, we
have developed some techniques that have been shown to be useful in both
cases. All our research has been motivated under a general-purpose
perspective, without assuming any domain knowledge. For this reason, we
believe that our contributions can be effective in a broad spectrum of
domains.

Our work has some recognized limitations. For instance, we have
only considered binary problems. Altough most work related to ours also
assumes binary problems, it has to be mentioned that many practical
problems have their natural representation as a m-ary CSP. Part of our
claims on the efficiency of our algorithms is supported by an experimental
evaluation based on random problems. It should be clear that results
obtained on random problems need not extrapolate to every particular
domain. Finally, we have limited our research to systematic algorithms.
Therefore, we have disregarded stochastic search methods, an important
line of research which has been very fruitful in constraint satisfaction.

This thesis leaves a number of doors open. Some of our algorithms
can be more efficiently implemented. Some of our techniques can be
naturally combined, and some of our ideas can be extended to more
general constraint satisfaction frameworks.

Considering the intractability of constraint satisfaction problems,
the aim of our research is to be a contribution to the development of new
algorithms of increasing efficiency which will eventually allow for the
successful application of constraint technology to a broad spectrum of
problems.

240 Chapter 8. Conclusions

8.1 Conclusions

From our work, we can extract the following general conclusions.

1. An idea that has been at the heart of our work is that one can
successfully exploit common features of total and partial constraint
satisfaction. The practical importance of this idea is twofold: on the
one hand, techniques that have been developed in total constraint
satisfaction can be adapted to partial constraint satisfaction. On the
other hand, it is possible to develop general techniques and
incorporate them into algorithms for both total and partial
constraint satisfaction. Throughout this work, several examples of
this claim have been presented.

a. Subproblem merging: when a CSP has different values with the
same constraining behaviour, standard depth-first search
produces similar subproblems and solves them independently,
without taking any advantage of their similarity. We have
shown that this situation occurs in both total and partial
constraint satisfaction and we have proposed a solution which
has shown to be effective in both cases. Our approach is based
on a search space transformation such that search trees of
similar subproblems are merged into a unique tree. The cost is
the addition of extra tree levels. We have embedded this idea
into forward checking and have developed two algorithms
(FCw and PFCw)

b. Combining search with local consistency: when depth-first search
falls into a dead-end, a subtree has to be unsuccessfully
traversed. During its traversal, all paths are condemned to a
dead-end detection. The earlier the dead-end is detected, the
sooner search will break out of the dead-end. One of the most
fruitful approaches for early dead-end detection in total
constraint satisfaction involves the combination of search and
local consistency. We have shown that the same idea can be
extended to partial constraint satisfaction. Our approach is
based on the use of DAC to improve the branch and bound
lower bound. We have shown that this approach can produce
exponentially large gains with respect to algorithms not using
DAC information. We have developed a set of algorithms
substantiated on that idea (PFC-GDAC, PFC-RDAC and PFC-
MDAC) which have shown to be very effective.

c. Lazy evaluation: look-ahead algorithms propagate their
assignments toward future variables. It is a matter of fact that
propagation plays an important role in early dead-end
detection. In general, stronger propagations have better dead-
end capabilities at the cost of performing more computation at
each node. Therefore, there is a trade off between the amount

8.1 Conclusions 241

of propagation and the gains that may come with it. In that
context, it is of clear interest the development of efficient
propagation techniques. It has been observed that some
propagation procedures in total constraint satisfaction perform
more work than estrictly needed. This lack of efficiency has
been successfully solved applying lazy evaluation techniques.
We have shown that algorithms for partial constraint
satisfaction also suffer from this inefficiency and we have
shown that a lazy approach is very appropriate for it. Our
approach is based on the application of lazy techniques in order
to perform the minimum amount of computation to compute
the dead-end detection condition. As a result, we have
developed an algorithm (PLFC) which never performs worse
than its greedy counterpart and which has the potential to
perform much better.

d. Heuristics: We have analyzed the role that heuristics play in
algorithms for total and partial constraint satisfaction and we
have shown that, although not being equivalent situations, it is
sensible to develop heuristics for both problems following the
same principles. From an analysis of the common aspects
between LP and CSP, we have obtained a unifying view of
constraint satisfaction in terms of global optimization. Using
this optimization perspective as a source of inspiration, we have
developed a variable and a value ordering heuristic (LS and
HS) to guide depth-first search. An important feature of these
heuristics is that they can be used with algorithms for both
total and partial constraint satisfaction.

2. An important feature common to all our work is that it has been
developed under a general purpose motivation. Therefore, all our
algorithms are general and we believe that they can be specialized
to particular domains without jeopardizing their performance. We
have presented a good example of this claim in the job-shop context.
Our heuristics do not encode any domain specific knowledge and
they have shown to be competitive with specialized methods. In that
sense, our work supports the importance of developing generic
algorithms which in general are easier to develop and maintain,
have a broader applicability and can be a starting point for the
development of specialized techniques.

3. This thesis has been concerned with systematic algorithms. One
may believe that systematicity is a useless feature when dealing with
exponential worst-case algorithms. Our work contradicts this belief
to some extent. We have shown that different exponential worst-case
algorithms may show a completely different behaviour with the
same problem instance (i.e.: the same problem can be exponentially
difficult for one algorithm and trivial for another). In our work, we
have improved the efficiency of existing algorithms (some times the

242 Chapter 8. Conclusions

improvement rate has been of several orders of magnitud). Thus, our
algorithms contribute to the successful applicability of constraint
satisfaction techniques to larger and more difficult instances.

4. The use of arc-consistency information for lower bound computation
has lead us to the discovery of a complexity peak on MAX-CSP. We
have shown that the search effort of branch and bound enhanced
with the use of directed arc consistency counts presents an easy-hard-
easy pattern in the average difficulty when solving random binary
CSP instances. This discovery generalizes the complexity peak
observed (and widely studied) in the decision problem to the
optimization case. In MAX-CSP, this phenomenon cannot be
explained in terms of a phase transition on the problems solvability.
We have given an algorithmic dependent explanation in terms of
lower and upper bounds of the branch and bound algorithm. A
similar phenomenon has been already detected in other
optimization problems such as the travelling salesman problem
[Cheeseman et al., 91].

8.2 Further Research

This work raises a number of issues that require further research. We have
identified the following,

* Regarding subproblem merging, we gave a very vague notion of
value similarity. We believe that our vague notion of value
similarity can be characterized using some distance
measurement (¢.e.: taking the set of supporting values and
considering common occurrences). If an effective distance
measurement can be found and it can be computed in an efficient
way, the decision of what values are weakly assigned can be done
in a domain independent and automatic way.

* Regarding the combination of search with local consistency
enforcement, we believe that two of our algorithms can be further
improved. It is our belief that lower bound quality is the major
issue in branch and bound algorithms for partial constraint
satisfaction. Considering the simplicity of the greedy
optimization algorithm presented in Section 4.7, we think that
there is still room for further improvements. Regarding the
algorithm that maintains RDAC updated, we believe that it can
also be improved by moving to more advanced AC schemas. Our
research has been restricted to the use of DAC. It may be fruitful
to look at other forms of local consistency focusing on the
detection of new inconsistencies. The MAX-CSP complexity peak
that we have discovered also deserves further study. A deeper

8.2 Further Research 243

analysis aiming at a good characterization of the peak is of
obvious interest.

* Regarding our support-based heuristics, we identify a number of
issues which require additional work. Since constraint
satisfaction can be seen as the global optimization of the average
local consistency function, it is of obvious interest to study this
function topology. For instance, it would be interesting to know
what happens to this function on random problems as they
approach the tightness critical point. A second idea for future
work is the extention of our approach to stochastic search
algorithms, where heuristic guidance cannot be explained in
terms of the failfirst and succeed-first principles.

* An important feature of CSP techniques is that they can be easily
combined. Throughout our work, we have shown some examples of
how our different algorithms could be combined (PFCw-DAC in
Chapter 3, PLFC-DAC in Chapter 5, PFC-RDAC plus support-based
heuristics in Chapter 6). However, most of these hybrid algorithms
were basic versions. There are some other combinations that seem to
be especially promising. We have identified the following two:

PLFC-MRDAC is the algorithm that maintains reversible
DAC wupdated in a lazy manner. It seems a suitable
combination because since maintaining DAC is expensive, a
lazy approach has more to save.

FCw plus support-based heuristics seem to be a fruitful
combination because computing the support of two values
(required for the heuristics) and evaluating their common
constraining behaviour (useful for weak assignments) can be
done simultaneously. Therefore, it gives two different ways in
which to take advantage of the overhead.

Appendix

Solving Fuzzy Constraint
Satisfaction Problems

In this thesis, we have associated partial constraint satisfaction with MAX-
CSP, where every constraint is equally important and only give two
possible constraining values: totally allowed or totally disallowed. In the last
years, new types of constraints have found to be useful to model realistic
problems, allowing for intermediate satisfaction degrees. Some examples
are flexible constraints, priority constraints and conditional constraints.
Fuzzy set theory seems to be specially well suited to model these new types
of constraints in an integrated form. This has generated a new kind of
problem denominated Fuzzy CSP (FCSP), as an extension of classical CSP
where constraints are represented by fuzzy relations. In this case, a
solution is a complete assignment which satisfies, at least partially, every
constraint and with maximum satisfaction degree on the whole set of
constraints. FCSP is an optimization problem, similar to MAX-CSP.

In this Appendix, we extend part of our results presented in Chapter
4 to FCSP. More precisely we present the generalization of DAC usage to
the fuzzy case. We have tested our algorithms on random problems,
showing empirically how lower bound improvement increases algorithm
efficiency on average.

This Appendix is organized as follows. In Section A.1, we extend the
classical CSP framework to the fuzzy case. In Section A.2, we define branch
and bound search for FCSP solving, introducing different lower bounds. In
Section A.3, we present empirical results of testing our algorithms on
random problems. Finally, in Section A.4 we summarize this work.

A.1 Extending Classical CSP

In classical CSPs constraints are required to be crisp (i.e., a pair of values
either satisfies or violates completely a constraint). This model can be

246 Appendix. Solving Fuzzy Constraint Satisfaction Problems

generalized allowing the introduction of flexible constraints, defined as
follows. A flexible binary constraint Rjj is an application from D; xDj into a
completely ordered set (E, >) [Schiex et al., 95], where the maximum
element stands for complete satisfaction, the minimum element stands for
complete violation, and intermediate elements represent partial degrees
of satisfaction. A flexible CSP is a classical CSP where crisp constraints are
substituted by flexible constraints. A solution is a complete assignment
satisfying, at least partially, every constraint with the maximum
satisfaction degree on the whole set of constraints, where some operator is
used to combine the individual satisfaction degree of each constraint.

In classical CSPs all constraints are equally important. This is not
always the case in real problems, for which constraints with priority have
been introduced. Given a CSP with crisp constraints, the priority of a
constraint Pr(Ri]‘) expresses the importance of R;j to be satisfied. Priority is
defined as a mapping Pr:{Rij} — [0,1], where Pr(Ri]') = 1 means that Rij
must be necessarily satisfied and Pr(RZ'j) = 0 means that R;; can be ignored.
For intermediate values of priority, Pr(Rgj) > Pr(Rl']') means that if Rg; and
Rl']' cannot be satisfied simultaneously, satisfaction of Rgj is preferred over
satisfaction of R,'j.

A.1.1 Fuzzy Modelling of Constraints

Fuzzy set theory can be used to model flexible and priority constraints
[Fargiére, 94]. A flexible constraint Ri]' is represented by a fuzzy relation
Cz']' , defined by,

ucij(a,b): D; xD]'—-> [0,1], s.t. ucij(a,b) = R,’j(a,b)

where set (E,>) corresponds to the set [0,1] with the usual total order in
real numbers. In possibility theory, the priority of a constraint Pr(R;;) can
be interpreted as the necessity of Ri]‘ to be satisfied, while 1 - Pr(Rij) is the
possibility of Rl‘]‘ to be violated. This interpretation induces a fuzzy relation
Cij in the set D; xD; defined by,

Mcij(a’b) =1, if (a,b) satisfies Rij
p,cz.j(a, b) =1 - Pr(R;j) if (a,b) does not satisfy R;;
Although more sophisticated constraint types can also be formulated

in this model, in this Appendix we will focus on flexible and priority
constraints.

A.1 Extending Classical CSP 247

A.1.2 Fuzzy CSP

A fuzzy GSP (FCSP) is defined by a set of n variables {X;} taking values on
discrete and finite domains {D;} under a set of ¢ constraints {Rij}
represented as fuzzy relations {C4jl. A solution is a complete assignment
which satisfies, at least partially, every constraint and with the maximum
satisfaction degree.

The satisfaction degree of a global assignment A={X;< v: 0 =i < n} on
the whole set of constraints is given by the intersection of the fuzzy
relations corresponding to every constraint, defined by,

minij{ucij(v’ﬂﬂ)} (A.1)

A solution of the FCSP is the complete assignment with maximum

satisfaction degree of the least satisfied constraint,

max 4 {min; {uC;(v*) 1} (A.2)

where A €D] x...xD, . This analysis can be repeated substituting the
satisfaction degree of a constraint, “Cij , by its violation degree, defined as 1 -

”Cij' Then, a solution is the complete assignment with minimum

violation degree of the most violated constraint,

min 4 {max; {1 - uG;(v',)}}
Both equations (A.1) and (A.2) are equivalent. In the following, we
will use equation (A.2) for FCSP solving.

A.1.3 The Lexicographic Approach

Equation (A.2) causes a too coarse solution generation because it only
considers the most violated constraint. To refine this, we take the
lexicographic approach [Dubois et. al, 96], which discriminates among
assignments sharing the violation degree of the most violated constraint.
The compatibility of a partial assignment A={X;<v’: X,€ V} with respect to
a subset Vof the problem constraints is described by its vector of violation
degrees, VD(A) , defined as follows,

[VD(A)]ij=1-uc,-j(v’,zﬂ), if X;, XjEV

[VD(A)] ij= 0, otherwise

VD(A) has e components, one for each constraint. Component (4,j) contains
the violation degree of Rij by the assignment A. Vectors of violation

degrees are ranked by increasing lexicographic ordering. Given two
assignments A and B such that VD(A) = (a] ,...,ap) and VD(B) = (4] ,...,b,),

its lexicographical ordering is defined as follows: (i) rearrange vectors in

248 Appendix. Solving Fuzzy Constraint Satisfaction Problems

decreasing order, a;) =...2q;, and b; 2...2 b;,, and (i) perform a
lexicographical comparison starting from the leftmost component, A <jg B
< J k< esuch that V Kk, a;, = b;; and ajy, < by,

The preferred solution is the assignment with minimum vector of
violation degrees. With this formulation, equation (A.2) is replaced by,

minlexA {maxl-]- {1- ucij(vi,vj) 1} VA EDj x...xD,,

A.2 FCSP and Branch and Bound

Finding a solution to a FCSP is an optimization problem, where the goal
is to find the complete assignment with minimum vector of violation
degrees satisfying, at least partially, every constraint. For this kind of
problems we can also use depth-first branch and bound. In the following,
we assume that variables are instanciated following a predetermined
sequence {X], X9,.., Xp}. At an arbitrary node, we have the set of past
variables P, the set of future variables F, the best solution found in the
explored part of the tree UB (the upper bound) and an underestimation of
the best solution in the current subtree LB (the lower bound). Each node
has an associated partial assignment A={X;« vl X;€ P

In the FCSP case, the cost function is given by the vector of violation
degrees with <jg order. Therefore, the vector of the current best solution,
VDps, is taken as the upper bound, UB = VDy, For the lower bound, a first
option is to take the vector of the current node, VD .y, given that no node
in the subtree rooted at the current node can have a vector lower than
VD ¢yy. In the following subsections, we develop strategies for more
sophisticated lower bounds.

Pruning occurs when any of the following conditions occurs at the
current node, (#) a constraint is violated completely or (ii) LB =y, UB.
Regarding (7), if the assignment of the current node violates completely a
constraint, any extension of this assignment will violate the same
constraint. Therefore, the subtree rooted at this node contains no solutions
and it can be pruned. Regarding (i), LB 2], UB is the standard pruning
condition of branch and bound adapted to our case. It means that any leaf
descending from the current node will have a vector of violation degrees
greater than or equal to UB in the lexicographical order, so there is no
point in visiting them and the subtree rooted at the current node can be
pruned. When the current node is a leaf where VD yy <lox VDps, the
assignment of the current node is better than the current best solution.
This assignment becomes the new current best solution and the UB is
updated accordingly. The solution of the problem is the current best
solution after branch and bound traverses the whole search tree.

A.2 FCSP and Branch and Bound 249

A.2.1 Lower Bound Approaches

At a given node, the lower bound is an underestimation of the minimum

value of the cost function among leaves descending from it. Regarding
FCSP, the lower bound is a vector of violation degrees lower than or equal
to the minimum vector among descending leaves. We define three sets of
constraints at the current node,

RPP _ {Rij- X;, X]' €P}
RPF(X;) = {R;; X; EP, X; EF)
RIF(X;) = {Ryj X;, X; €F and i<j)

The simplest lower bound comes from considering constraints in
RPP only. If A is the current partial assignment, it is obvious that any

descending leaf will violate constraints in REP with the same degree that
A does. Therefore, we define our first lower bound, LBj,

[LB1] ;= [VD(A)] if Rij ERFP

[LB1],:=0, otherwise

)
where non-zero components in LB] correspond to constraints in RPP_This
lower bound extends the idea of using the distance as lower bound to the
fuzzy case. A better lower bound can be computed taking advantadge of the
effect that the assignment A has on future variables, or equivalently,

performing lookahead on future variables. The effect that A has on a value
a of a future variable X; is represented by its look-ahead vector of violation

degrees, VDL(X; ,a),

[VDL(X;, a)] ;=1 - HCy(@), i Rij ERFF(X;)
[vDL(X;, d)]i]: 0, otherwise

which plays the same role as inconsistency counts in PFC for MAX-CSP.
Every leaf descending from the current node will have some value
assigned to every future variable. Any assignment of X; will contribute to

violate constraints in RPF(Xi) to a degree which will be, at least, the
minimum VDL(XZ', a) for all a €D; . Denoting this value by ap;y_ 1 and

applying this idea to every future variable, we obtain a second lower bound
LB ,

[LBgl;:= [VD(A)];; if R;j ERPP

2 Y J

[LB2) ;= [VDM(X, amin_L)] if Rij €RPF(X;)
[LBo] ;= 0, otherwise

which extends to the fuzzy case the lower bound described in Section 2.3.
The lower bound can still be refined performing some level of
directional arc-consistency among future variables. Regarding FCSP, given

250 Appendix. Solving Fuzzy Constraint Satisfaction Problems

two future variables X; and X]' (i<j), constraining each other by R,']'E
RIF (X;), if value a € D; is assigned to X; , the minimum violation degree
for Rij will be ming {(1 - ucij(a, b))}, for all b ED]' . We can combine this

effect on X; from future variables appearing after it in the instantiation
order, with the effect caused from past variables on X; , in the extended

lookahead vector of violation degrees, VDEL(X,' ,a),

[VDEL (X, 0)] 3= 1-ugi(avt), if Rij ERPF(X;)
[VDEL(X; , @)1 = ming { (1-nCyi(a 8)), if R;j ERIT(X;)
[VDEL(Xi , a)]ij =0, otherwise

Any assignment of X; will contribute to violate constraints in
RPF(XZ') U RFF(Xi) to a degree that will be, at least, the minimum
VDEL(XZ' , a) for all a € D; . Denoting this value by amin_EL and applying
this idea to every future variable, we obtain a third lower bound LBg,

[LBS]Z]= [VD(A)] ij if Rij €RPP
[LB3) ;= (VDEL(X; amin_EL)1j if Ry €RPI(X;) U RIF(X;)

This is the extension of the lower bound described in Section 4.4 to the
fuzzy case.

It is important to notice that LB3 2[gx LB9 2[,x LB]. Although LB3 is
the best lower bound among the three formulations, the selection of a
specific bound is a matter of balance between its computational cost and the
benefit it causes (in terms of pruning efficiency), for a class of problems.

A.2.2 Pruning Domain Values

Branch and bound can also prune values on domains of future variables,
when using LB9 or LB3. Considering LB3, pruning conditions for domain

values can be developed as follows. If X; € F and a € D;, we can prune value
a at the current node providing,

LB3 - VDEL(X;, amin,_EL) + VDEL(X;, a) 21,y UB

where + and - represent vector addition and subtraction. The rationale for
this condition is as follows. VDEL(XZ', amin EL) is the minimum
contribution of any assignment of X; regarding violation of constraints in
RPF(X,') U RFF(Xi). VDEL(Xi, a) is the actual contribution of the
assignment (Xj,a) regarding violation of the same constraints. If we
substitute the minimum contribution of X; to LB3 by the contribution of the
assignment (X;, @), and the resulting vector is greater than or equal to UB,
value a can be pruned because it will never appear as value for X; in a
complete assignment extending the current one and better than the

A.2 FCSP and Branch and Bound 251

current best solution. Value pruning depends on the current assignment
A, so when branch and bound performs backtracking behind A, every
value pruned when A was at the current node should be restored.

A.3 Experimental Results

We have tested the branch and bound algorithm with LBy, LB9 and LBg
on random problems with binary constraints. To do this, we have
extended the four parameter model to include FCSP with flexible and
priority constraints. A random FCSP with flexible constraints is defined
by <n, m, p1, p2°V, p2P?,g> where n, m and p] are defined as in the classical
case. p2°7 is the ratio of tuples causing complete violation at each constraint
(exactly poc? m2 tuples), and po?P? is the ratio of tuples causing partial
violation at each constraint (exactly poP? m2 tuples). For these problems,
constraint tightness is p9 = po°¥ + poP? . Finally, g is a finite number of
different satisfaction degrees.

A random FCSP with priority constraints is defined by <n, m, plPrzl,
p2°Y, plPKl, pQP”, g> where n, m and g are defined as before. plp’:l is the
problem connectivity for constraints with priority 1 (the problem has
exactly p1F7=1 n (n-1)/2 constraints of this type). p2¢V is the tightness of
constraints with priority 1 (exactly po¢Y m? forbidden tuples per
constraint). p1Pr<1 is the connectivity for constraints with priority lower
than 1 (the problem has exactly plPKl n (n-1)/2 constraints of this type)
p2P? is the tightness of constraints with priority lower than 1 (exactly poP?
m2 forbidden tuples per constraint). For these problems, problem
connectivity is p] =p1P’:1 + p1P7<1, while two different tightness are
present, p2V for mandatory constraints and p9#? for non-mandatory ones.

To construct a random instance, constraints and tuples are
sequentially selected following a uniform probabilistic distribution until
the correct amount is reached. Experiments on random instances of
classical CSP show that, when tightness increases, problems suddently
become over-constrained after a critical point. In our models of random
FCSP we differentiate tuples causing complete violation from tuples causing
partial violation, in order to prevent that tuples causing complete violation
render random instances unsoluble, in which the effect of fuzzy constraints
is null. Our benchmark comprises twelve sets of problems:

(1). <80, 3, 100/435, 2/9, pof¥, 5> (7). <30, 3, 100/435, 2,20/435, poP? , 5>
(2). <30, 3, 120/435, 1/9, poP¥, 5> (8). <30, 3, 120/435, 1, 20/435, poP? 5>
(3). <80, 8, 150/435, 1/9, pof¥, 5> (9). <30, 3, 150/435, 1, 20/435, pot? , 5>
(4). <30, 3, 100/435, 0, poP?, 5> (10). <30, 3, 0, 0, 100/435, pot?, 5>

252 Appendix. Solving Fuzzy Constraint Satisfaction Problems

(5). <30, 3, 120/435, 0, poP?, 5> (11). <30, 3, 0, 0, 120/435, poP?, 5>
(6). <30, 3, 150/435, 0, poP?, 5> (12). <30, 3, 0, 0, 150/435, poP?, 5>

For each set of problems p9P? was varied from its minimum to its
maximum value in steps of 1/9. Observe that the benchmark can be
classified into four groups: problems with flexible constraints and total
violation tuples (1,2,3), problems with flexible constraints without total
violation tuples (4,5,6), problems with priority constraints having
mandatory constraints (7,8,9) and problems with priority constraints
without mandatory constraints (10,11,12). In those sets of problems with
tuples causing complete violation, their parameters were selected as to have
the highest p2¢V before problems become unsoluble. For each parameter
setting 20 instances were generated.

When using LB] and LB9, variables were dynamically ordered by
increasing remaining domain size. When using LBg, variables were
statically ordered by decreasing degree. Values were always considered in
lexicographical order. Regarding implementation quality, all
experiments share the same branch and bound implementation (with the
minimal differences associated to the three bounds). When using LB3, a
preprocessing is required to initialize VDEL, Consistency checks performed
in this preprocessing are included in the results.

Figures A.1-A.4 shows the results of our experiments. Each figure
includes results of a group of three different classes of problems. Each plot
corresponds to a set of problems. Plots represent the average number of
consistency checks versus the number of tuples causing partial violation in
a constraint (the number of visited nodes and CPU time give very similar
results). It can be observed that problems without tuples causing complete
violation (shown in Figure A.2) are harder to solve. The reason is that
tuples causing complete violation have an inmediate pruning effect on
values of future variable and reduce the search space. The second
observation is that LB] is clearly inefficient. LB9 outperforms LBj in all
cases and LBg3 outperforms LB] in all but two sets (1) and (7).

Comparing LB9 versus LBg , a deeper analysis is required.
Regarding sets (1),(2) and (3) (shown in figure A.1), LB9 equals or
dominates LBg in the whole range of poP?. Something similar occurs in
sets (7), (8) and (9) (Figure A.3) for low and medium values of pgf’v, while

for high values of p9P? LB9 increases abruptly while LB3 drops gracefully to
zero. Regarding sets (4), (5), (6), (10), (11) and (12) (shown in Figures A.2
and A.4), LB3 outperforms clearly LB9 . From these results we can conclude
that LB9 is competitive with LBg in problems where contraints are
completely violated by some value tuple or with mandatory constraints,
while LB3g dominates in problems where constraints cannot be completely
violated or without mandatory constraints. Regarding FCSP with priority
constraints, LB3 produces a change in the difficulty pattern of problems
like the one detected in Chapter 4. If LBg is used, problems become harder

A.3 Experimental Results 253

as poP? is increased. However, the use of LBg produces an easy-hard-easy
pattern, where the tightest problems become trivial.

A.4 Conclusions

From this work we can extract the following conclusions. First,
algorithmic approaches developed for MAX-CSP can be successfully adapted
and applied to FCSP. Second, regarding branch and bound lower bounds,
lookahead from past to future variables seems to be always relevant, while
lookahead from future into future variables produces relevant savings on
problems where constraints cannot be completely violated or without
mandatory constraints. And third, problems with priority constraints
show an easy-hard-easy pattern in the search effort similar to that observed
in Chapter 4.

254 Appendix. Solving Fuzzy Constraint Satisfaction Problems

15000

10000 2

PE e

ch_mean
.
.
§
®
A
s
‘
N
\
°

50004

1000000

500000 —

ch_mean

250000 —

0 - T T T T
[} N < O [ee]

10

400000

300000 —

200000 —

ch_mean

100000

(=]
—

Figure A.l: Experimental results of branch and bound using three
different lower bounds on the <30, 3, 100/435, 2/9, pgf”’, 5>, <30, 3,
120/435, 1/9, pgﬁv, 5> and <30, 3, 150/435, 1/9, pgf’v, 5> classes of random
problems (from top to bottom). Horizontal axis represents pgl’v x 9. Vertical
axis stands for average number of consistency checks.

A .4 Conclusions 255

8000000

6000000+

4000000+

ch_mean

2000000+

10

10000000

7500000+

5000000 “=--=---- LB3

ch_mean

2500000+

10

10000000

7500000 —

5000000 —

ch_mean

2500000 —

10

Figure A.2: Experimental results of branch and bound using three
different lower bounds on the <30, 3, 100/435, 0, pgpv, 5>, <30, 3, 120/435,
0, pgpv, 5> and <30, 3, 150/435, 0, p2pv ,» 5> classes of random problems
(from top to bottom). Horizontal axis represents poP? x 9. Vertical axis
stands for average number of consistency checks.

256 Appendix. Solving Fuzzy Constraint Satisfaction Problems

15000

N
.
8 @ N
10000 A e -,
.
. N

ch_mean
Y
&
R

5000 P

10

1000000

750000 —

500000 —
|

ch_mean

250000 —

10

400000

300000 —

200000 —

ch_mean

100000 —

(=

Figure A.3: Experimental results of branch and bound using three
different lower bounds on the <30, 3, 100/435, 2, 20/435, pgﬁv , 5>, <30, 3,
120/435, 1, 20/435, poP?, 5> and <30, 3, 150/435, 1, 20/435, P, 5> classes
of random problems (from top to bottom). Horizontal axis represents pof? x
9. Vertical axis stands for average number of consistency checks.

A.4 Conclusions 257

10000000

7500000 —

5000000 —

ch_mean

2500000 —

10

10000000

7500000

5000000

ch_mean

2500000 —

1000000

7500000+

5000000+

ch_mean

2500000+

Sy
o

o o
N —

Figure A.4: Experimental results of branch and bound using three
different lower bounds on the <30, 3, 0, 0, 100/435, pQPv, 5>, <30, 3, 0, 0,
120/435, pQPU, 5> and <30, 3, 0, 0, 150/435, pgf’v, 5> classes of random
problems (from top to bottom). Horizontal axis represents poP? x 9. Vertical
axis stands for average number of consistency checks.

References

[Agnése et. al, 95] Agnése]., Bataille N., Bensana E., Blumstein D. and
Verfaillie G. Exact and approximate methods for the daily management of
an earth observation satellite. In Proceedings of the 5th. ESA Workshop on
Artificial Intelligence and Knowledge Based Systems for Space. 1995.

[Bacchus and Grove, 95] Bacchus F. and Grove A. On the forward checking
algorithm. In proceedings of the Ist. Int. Conf. on Principles and Practice of
Constraint Programming, CP-95, 292-309, 1995.

[Bacchus and van Run, 95] Bacchus F. and van Run P. Dynamic Ordering
in CSPs. In proceedings of the Ist. Int. Conf. on Principles and Practice of
Constraint Programming, CP-95, 258-275, 1995.

[Van Beek, 91] Van Beek P. On the minimality and decomposability of
constraint networks. In Proceedings of the National Conference on Artificial
Intelligence, AAAI-92, 447-452, 1992.

[Bellicha et al, 94] Bellicha A., Capelle C., Habib M., Koékény T. and
Vilarem M.C. CSP techniques using partial orders on domain values. In
ECAI-94 Workshop on Constraint Satisfaction issues raised by practical applications,
47-56, 1994

[Bessiére, 94] Bessiére C. Arc-consistency and arc-consistency again.
Artificial Intelligence , Vol.65(3), 179-190, 1994.

[Bessiére et al., 95] Bessiére C., Freuder E.C. and Régin, J.C. Using
inference to reduce arc consistency computation. In Proceedings of the
International Joint Conference of Artificial Intelligence , IJCAI-95, 592-598, 1995.

[Bessiére and Régin, 96] Bessiére C. and Régin, J.C. MAC and combined
heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In
proceedings of the 2th Int. Conf. on Principles and Practice of Constraint
Programming, CP-96, 61-75, 1996.

[Cheeseman et al, 91] Cheeseman P., Kanefsky B. and Taylor W. M.
Where the Really Hard Problems Are. In Proceedings of the International Joint
Conference of Artificial Intelligence, IJCAI-91, 331-337, 1991.

260 References

[Cohen et al, 94] Cohen D. A., Cooper M. C. and Jeavons P. G.
Characterizing tractable constraints. Artificial Intelligence 65, 347-361, 1994.

[Cooper, 89] Cooper M. An optimal k-consistency algorithm. Artificial
Intelligence , Vol.41, 89-95, 1989.

[Crawford and Baker, 94] Crawford J. and Baker A. Experimental results
on the Application of Satisfiability Algorithms to Scheduling Problems. In
Proceedings of the National Conference on Artificial Intelligence, AAAI-94, 1092-
1097, 1994.

[Debruyne and Bessiére, 97] Debruyne R. and Bessiére C. Some practicable
filtering techniques for the constraint satisfaction problem. In Proceedings of
the International Joint Conference of Artificial Intelligence, IJCAI-97, 412-417, 1997.

[Dechter, 90] Dechter R. Enhancement schemes for constraint processing:
Backjumping, Learning and Cutset Decomposition. Artificial Intelligence
41(3), 273-312, 1990.

[Dechter and Meiri, 89] Dechter R. and Meiri 1. Experimental evaluation
of preprocessing techniques in constraint satisfaction problems. In
Proceedings of the International Joint Conference of Artificial Intelligence, IJCAL-89,
271277, 1989.

[Dechter and Meiri, 94] Dechter R. and Meiri I. Experimental evaluation
of preprocessing algorithms for constraint satisfaction problems. Artificial
Intelligence 68,211-241, 1994.

[Dechter and Pearl, 88] Dechter R. and Pearl J. Network-based heuristics
for constraint satisfaction problems, Artificial Intelligence, 34, 1-38, 1988.

[Dent and Mercer, 94] Dent M. and Mercer R. Minimal forward
checking, Proceedings of TAI-94, 432-438, 1994.

[Deville and Van Hentenryck, 91] Deville Y. and Van Hentenryck P. An
efficient arc consistency algorithm for a class of CSP problems. In
Proceedings of the International Joint Conference of Artificial Intelligence, IJCAI-91,
325-330, 1991.

[Dubois et. al., 96] Dubois D., Fargier H. and Prade H. possibility theory in
constraint satisfaction problems: handling priority, preference and
uncertainty. Applied Intelligence, 6, 287-309, 1996.

[Fargiére, 94] Fargiére H. Probléme de satisfaction de constraintes
flexibles, application a l’ordonnancement de production. Pk thesis,
Université Paul Sabatier, 1994.

[Frangouli et. al, 95] Frangouli H., Stamatopoulos P. and Harmandas V.
UTSE: Construction of optimm timetables for university courses - a CLP-
based approach. In Proceedings of the Third International Conference of the
Practical Applications of Prolog. 225-243, 1995.

References 261

[Freuder, 78] Freuder E. C. Synthesizing constraint expressions,
Communications ACM, Vol.21, N.11, 958-966, 1978.

[Freuder, 82] Freuder E. C. A sufficient condition for backtrack-free search,
Journal of the ACM, Vol.29, N.1, 24-32, 1982.

[Freuder, 91] Freuder E.C. Eliminating interchangeable values in
constraint satisfaction problems. In Proceedings of the National Conference on
Artificial Intelligence, AAAI-91, 227-233, 1991.

[Freuder and Hubbe, 1995] Eugene C. Freuder and Paul D. Hubbe.
Extracting constraint satisfaction subproblems. In Proceedings of the
International Joint Conference of Antificial Intelligence, IJCAI-93, pages 548-555,
1993.

[Freuder and Wallace, 92] Freuder E. C. and Wallace R. J. Partial
constraint satisfaction, Artificial Intelligence, 58:21-70, 1992.

[Freuder and Wallace, 93] Freuder E. C. and Wallace R. J. Conjunctive
width heuristics for maximal constraint satisfaction. In Proceedings of the
National Conference on Artificial Intelligence, AAAI-93, 762-768, 1993.

[Frost and Dechter, 94] Frost D. and Dechter R. Dead-end driven
learning. In Proceedings of the National Conference on Artificial Intelligence,
AAAIL-94, 294-300, 1994.

[Frost and Dechter, 95] Frost D. and Dechter R. Look-ahead value ordering
for constraint satisfaction problems. In Proceedings of the International Joint
Conference of Artificial Intelligence, IJCAI-95, 572-578, 1995.

[Frost et al., 96] Frost D., Bessiére C., Dechter R. and Régin J.C. Random
uniform CSP generators.
http://www.ics.uci.edu/~dfrost/csp/generator.html, 1996.

[Garey and Johnson, 79] Garey M.R. and Johnson D.S. Computers and
Intractability: a guide to the theory of NP-completeness. W. H. Freeman, 1979.

[Gaschnig, 77] Gaschnig J. A general backtracking algorithm that
eliminates most redundant tests. In Proceedings of the International Joint
Confference of Artificial Intelligence, IJCAI-77, 457-462, 1977.

[Gaschnig, 78] Gaschnig J. Experimental case studies of backtrack vs.
Waltz-type vs. new algorithms for satisficing assignment problems. In
Proceedings of the Canadian Anrtificial Intelligence Conference, 268-277, 1978.

[Geelen, 92] Geelen P.A. Dual viewpoing heuristics for binary constraint
satisfaction problems. In Proceedings of European Conference of Artificial
Intelligence, ECAI-92, 31-35, 1992.

[Gent and Walsh, 94] Gent I.P. and Walsh T. The SAT Phase Transition.
In Proceedings of European Conference of Artificial Intelligence, ECAI-94, A. Cohn
ed., 105-109, 1994.

262 References

[Gent et al., 96] Gent I.P., MacIntyre E., Prosser P., Smith B. and Walsh T.
An empirical study of dynamic variable ordering heuristics for the
constraint satisfaction problem. In proceedings of the 2th Int. Conf. on Principles
and Practice of Constraint Programming, CP-96, 179-193,1996.

[Ginsberg, 93] Ginsberg M. Dynamic backtracking. Journal of Artificial
Intelligence Research. 1, 25-46, 1993.

[Ginsberg et al, 90] Ginsberg M., Frank M., Halpin M. and Torrance M.
Search lessons learned from crossword puzzles. In Proceedings of the National
Confference on Artificial Intelligence, AAAI-93, 762-768, 1993.

[Haralick and Elliot, 80] Haralick R. and Elliot G. Increasing Tree Search
Efficiency for Constraint-Satisfaction Problems, Artificial Intelligence, 14(3),
263-313, 1980.

[Haralick and Shapiro] Haralick R. and Shapiro L. The consistent
labeling problem: part 1. IEEE Trans. Pattern Analysis Machine Intelligence, 1
(2), 173-184, 1979.

[Harvey, 95] Harvey W. Nonsystematic backtracking search. Ph. D. thesis.
Stanford University. 1995.

[Harvey and Ginsberg, 95] Harvey W. and Ginsberg M. Limited
Discrepancy Search In Proceedings of the International Joint Conference of
Artificial Intelligence, IJCAI-95, 607-613, 1995.

[Haselbock, 1993] Haselbock A. Exploiting Interchangeabilities in
constraint satisfaction problems. In Proceedings of the International Joint
Conference of Artificial Intelligence, IJCAI-93, 282-287, 1993.

[Hummel and Zucker, 1983] Hummel R. A. and Zucker S. W. On the
Foundations of Relaxation Labeling Processes, IEEE Trans. Pattern Analysis
Machine Intelligence, 5 (3), 267-287, 1983.

[Jeavons et al., 95] Jeavons P., Cohen J. and Gyssens M. A unifying
framework for tractable constraints. In proceedings of the 1st. Int. Conf. on
Principles and Practice of Constraint Programming, CP-95, 276-291, 1995.

[Keng and Yun, 89] Keng N. and Yun D. A planning/scheduling
methodology for the constrained resource problem. In Proceedings of the
International Joint Conference of Artificial Intelligence, IJCAI-89, 998-1003, 1989.

[Kittler and Illingworth, 85] Kittler J. and Illingworth J. Relaxation
labelling algorithms - a review, Image and Vision Computing, 3 (4), 206-216,
1985.

[Kondrak and van Beek, 97] Kondrak G. and van Beek P. A theoretical
evaluation of selected bactracking algorithms. Artificial Intelligence, 89, 365-
387, 1997.

References 263

[Konolige, 94] Konolige K. Easy to be hard: difficult problems for greedy
algorithms. In Proceedings of the International Conference on Knowledge
Representation and Reasoning. 374-378, 1994.

[Korf, 96] Korf R. Improved Limited Discrepancy Search. In Proceedings of
the National Conference on Artificial Intelligence, AAAI-96, 286-291, 1996.

[Kumar, 92] Kumar V. Algorithms for constraint satisfaction problems: a
survey. AI-Magazie, Spring 1992.

[Larrosa, 97] Larrosa]J. Merging constraint satisfaction subproblems to
avoid redundant search. In Proceedings of the International Joint Conference of
Artificial Intelligence, IJCAI-97, 424-430, 1997.

[Larrosa and Meseguer, 95] Larrosa J. and Meseguer P. Optimization-based
Heuristics for Maximal Constraint Satisfaction. In proceedings of the Ist. Int.
Conf. on Principles and Practice of Constraint Programming, CP-95, 103-120, 1995.

[Larrosa and Meseguer, 96a] Larrosa J. and Meseguer P. Phase Transition
in MAX-CSP. In Proceedings of European Conference of Artificial Intelligence,
ECAI-96, 190-194, 1996.

[Larrosa and Meseguer, 96b] Larrosa J. and Meseguer P. Exploiting the use
of DAC in MAX-CSP. In proceedings of the 2th Int. Conf. on Principles and
Practice of Constraint Programming, CP-96, 308-322, 1996.

[Larrosa and Meseguer, 98a] Larrosa J. and Meseguer P. Generic CSP
techniques for the job-shop problem. In proceedings of thellth International
Conference on industrial and engineering applications of artificial intelligence and
expert systems, IEA-AIE-98.

[Larrosa and Meseguer, 98b] Larrosa J. and Meseguer P. Partial Lazy
Forward Checking for MAX-CSP. Submitted to the European Conference of
Artificial Intelligence, ECAI-98, 1998.

[Larrosa et al., 98] Larrosa J., Meseguer P., Schiex T. and Verfaillie G.
Reversible DAC and other improvements for solving MAX-CSP. In
Proceedings of the National Conference on Artificial Intelligence, AAAIL-98.

[Manchak and van Beek, 94] Manchak D. and van Beek P. A C library of
constraint satisfaction techniques. Available by anonymous ftp from:
ftp.cs.ualberta.ca:pub/ai/csp.

[Mackworth, 77] Mackworth A. Consistency in Networks of Relations,
Artificial Intelligence, 8(1), 99-118, 1977.

[Meseguer, 97] Meseguer P. Interleaved Depth-First Search. In Proceedings
of the International Joint Conference of Artificial Iintelligence , IJCAI-97, 1382-1387,
1997.

264 References

[Meseguer and Larrosa, 95] Meseguer P. and Larrosa J. Constraint
Satisfaction as Global Optimization. In Proceedings of the International Joint
Conference of Artificial Intelligence, IJCAI-95, 5'79-584, 1995.

[Meseguer and Larrosa, 97] Meseguer P. and Larrosa J. Solving fuzzy
constraint satisfaction problems. In proceedings of the 6th. IEEE International
conference on fuzzy systems. 1233-1238, 1997.

[Miller, 90] Miller G. Five papers on WordNet. International Journal of
Lexicography, 3(4). 1990. WordNet is available at
http://www.Cogsci.princeton.edu/~wn/.

[Minton et al, 90] Minton S., Johnston M. D., Philips A.B. and Laird P.
Solving large-scale constraint satisfaction and scheduling problems using

a heuristic repair method. In Proceedings of the National Conference on Artificial
Intelligence, AAAI-90, 17-24, 1990.

[Minton et al., 92] Minton S., Johnston M. D., Philips A.B. and Laird P.
Minimizing conflicts: a heuristic repair method for constraint satisfaction
and scheduling problems. Artificial Intelligence, Vol.58, 161-205, 1992.

[Mitchell et al, 92] Mitchell D., Selman B. and Levesque H. Hard and Easy
Distributions of SAT Problems. In Proceedings of the National Conference on
Artificial Intelligence, AAAI-92, 459-465, 1992.

[Montanari, 74] Montanari U. Networks of constraints fundamental
properties and applications to picture processing, Information Sciences, Vol.7,
95-132, 1974.

[Mohr and Henderson, 86] Mohr R. and Henderson T.C. Arc and path
consistency revisited. Artificial Intelligence, Vol.28, 225-233, 1986.

[Muscettola, 94] Muscettola N. On the Utility of Bottleneck Reasoning for
Scheduling. In Proceedings of the National Conference on Artificial Intelligence,
AAAI-94, 1105-1110, 1994.

[Pearl, 85] Pearl J. Heuristics. Addison-Wesley, 1985.

[Pountain, 95] Pountain D. Contraint logic programming. Byte, 159-160,
1995.

[Prosser, 93a] Prosser P. Hybrid algorithms for the constraint satisfaction
problem, Computational Intelligence, 9(3), 268-299, 1993.

[Prosser, 93b] Prosser P. Domain filtering can degrade intelligent
backtracking search. In Proceedings of the International Joint Conference of
Artificial Intelligence, IJCAI-93, 262-267, 1993.

[Prosser, 94] Prosser P. Binary constraint satisfaction problems: some are
harder than others. In Proceedings of European Conference of Artificial
Intelligence, ECAI-94, 95-99, 1994,

References 265

[Prosser, 95] Prosser P. MAC-CBJ: maintaining arc-consistency with
conflict-directed backjumping. Research Report 95/177. Department of
Computer Science. University of Strathclyde. 1995.

[Rosenfeld et al, 76] Rosenfeld A., Hummel R. A. and Zucker S. Scene
labeling by relaxation operations. IEEE Transactions on Systems Man and
Cybernetics. 6 (6), 420-433, 1976.

[Rossi et al., 90] Rossi F., Petrie C. and Dhar V. On the equivalence of
constraint satisfaction problems. In Proceedings of European Conference of
Antificial Intelligence, ECAI-90, 550-556, 1990.

[Sabin and Freuder, 94] Sabin D. and Freuder E.C. Contradicting
conventional wisdom in constraint satisfaction. In Proceedings of European
Conference of Artificial Intelligence, ECAL-94, 125-129, 1994.

[Sadeh, 91] Sadeh N. Look-ahead techniques for micro-opportunistic job
shop scheduling. Ph. D. Thesis, School of Gomputer Science, Carnegie
Mellon University, 1991.

[Sadeh et al, 95] Sadeh N., Sycara K., and Xiong Y. Backtracking
techniques for the job shop scheduling constraint satisfaction problem,
Artificial Intelligence, 76, 455-480, 1995.

[Sadeh and Fox, 96] Sadeh N. and Fox M. Variable and value ordering for
the job shop constraint satisfaction problem, Artificial Intelligence, 86, 141,
1996.

[Schiex et al., 95] Schiex T., Fargier H. and Verfaillie G. Valued constraint
satisfaction problems: hard an easy problems. In Proceedings of the
International Joint Confference of Anrtificial Intelligence, I]CAI-95, 631-637, 1995.

[Schiex et al., 96] Schiex T., Régin J.C,, Gaspin C. and Verfaille G. Lazy arc
consistency. In Proceedings of the National Conference on Antificial Intelligence,
AAAL-96, 216-221, 1996.

[Selman et al., 92] Selman B., Levesque H. and Mitchel D. A new method
for solving hard satisfability problems. In Proceedings of the National
Conference on Artificial Intelligence, AAAI-92, 440-446, 1992.

[Smith, 94] Smith B. Phase transition and the mushy region in constraint
satisfaction problem. In Proceedings of European Conference of Artificial
Intelligence, ECAI-94, 100-104, 1994.

[Smith and Cheng, 93] Smith S. and Cheng C. Slack-Based Heuristics for
Constraint Satisfaction Scheduling. In Proceedings of the National Conference on
Antificial Intelligence, AAAI-93, 139-144, 1993.

[Torras, 89] Torras C. Relaxation and neural learning: points of
convergence and divergence, Journal of Parallel and Distributed Computing, vol.
6, 217-244, 1989.

266 References

[Tsang, 93] Tsang E. Foundations of Constraint Satisfaction, Academic Press,
1993.

[Verfaillie ez al., 96] Verfaillie G., Lemaitre M. and Schiex T. Russian doll
search for solving constraint optimization problems. In Proceedings of the
National Conference on Artificial Intelligence, AAAI- 96, 181-187, 1996.

[Wallace, 94] Wallace R.J. Directed Arc Consistency Preprocessing as a
Strategy for Maximal Constraint Satisfaction. ECAI94 Workshop on Constraint
Processing, M. Meyer editor, 69-77, 1994.

[Wallace, 96a] Wallace RJ. Analysis of heuristic methods for partial
constraint satisfaction problems. In proceedings of the 2th Int. Conf on
Pn'nci[)les and Practice of Constraint Prog‘rammz'ng, CP-96, 482-496, 1996.

[Wallace, 96b] Wallace M. Practical Applications of constraint
programming. Constraints. An International Journal. Kluwer academic Pub. 1,
139-168, (1996).

[Wallace and Freuder, 93] Wallace R. J. and Freuder E. C. Conjunctive
width heuristics for maximal constraint satisfaction. In Proceedings of the
National Conference on Artificial Intelligence, AAAL93, '762-778, 1993,

[Walsh, 97] Walsh T. Depth-bounded Discrepancy Search. In Proceedings of
the International Joint Conference of Artificial Intelligence, IJCAL-97, 1388-1393,
1997.

[Yokoo, 94] Yokoo M. Weak-commitment search for solving constraint
satisfaction problems. In Proceedings of the National Conference on Artificial
Intelligence, AAAIL-94, 313-318, 1994.

[Yoshikawa ez al., 96] Yoshikawa M., Kaneko K., Yamanouchi T. and
Watababe M. A constraint based high school scheduling system. JEEE
Expert, July 1996.

[Zabih, 90] Zabih, R. Some applications of graph bandwidth to constraint
satisfaction problems. In Proceedings of the National Conference on Artificial
Intelligence, AAATL90, 46-51, 1990.

[Zweben and Eskey, 89] Zweben M. and Eskey M. Constraint satisfaction
with delayed evaluation. In Proceedings of the International Joint Conference of
Artificial Intelligence, IJCAI-89, 875-880, 1989.

[Zweben and Fox, 94] Zweben M. and Fox M. eds. Intelligent Scheduling.
Morgan Kauffman, 1994.

