

Assisted Hybrid Structured
3D Virtual Environments

Pablo Almajano

Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial –
CompartirIgual 3.0. Espanya de Creative Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual
3.0. España de Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0. Spain License.

Assisted Hybrid Structured
3D Virtual Environments

Pablo Almajano

July 2014

Doctorat en Matemàtiques. Ciències de la computació, llenguatges i sistemes.
Ph.D. in Mathematics. Computer Science, languages and systems.

Advisors:

Dr. Maite López Sánchez
Dr. Inmaculada Rodŕıguez Santiago

Facultat de Matemàtiques - Departament de Matemàtica Aplicada i Anàlisi

In memoriam of Dr. Marc Esteva Vivanco.

In loving memory of my father, to my mother, sister
and brother, my friends, and all the nice people I came
across along this work.

Friends can help each other. A true friend
is someone who lets you have total freedom
to be yourself - and especially to feel. Or,
not feel. Whatever you happen to be feeling
at the moment is fine with them. That’s
what real love amounts to - letting a person
be what he really is.

Jim Morrison

Contents

Abstract xi

1 Introduction 1
1.1 Motivation . 2
1.2 Research Problems and Questions 4
1.3 Research Objectives . 5
1.4 Contributions . 5
1.5 Background . 6

1.5.1 Electronic Institutions . 6
1.5.2 Virtual Worlds . 9
1.5.3 Virtual Institutions . 9
1.5.4 VIXEE . 10

1.6 Structure . 11

2 Related Work 13
2.1 Assistance Services . 13
2.2 Human-Agent Interaction . 18

3 Assistance Formalisation 21
3.1 Running Example . 22
3.2 Organisational Layer . 23

3.2.1 Organisation Specification 23
3.2.2 Organisation Historical Information 27

3.3 Assistance Layer . 28
3.3.1 Personal Assistant Agents 29
3.3.2 Information Services Specification 30
3.3.3 Justification Services Specification 32
3.3.4 Estimation Services Specification 33
3.3.5 Advice Services Specification 34

4 Application Scenarios 37
4.1 Application Background . 37
4.2 v-mWater Model . 39

4.2.1 Water Market . 39

v

4.2.2 Formalisation and Electronic Institution Implementation . 40

4.2.3 Goals . 51

4.2.4 mWater correspondence 52

4.3 Setting up the Model . 52

4.3.1 v-mWater Running Scenario 53

4.4 Evaluation . 55

4.4.1 Test objectives . 55

4.4.2 Usability Research Questions 56

4.4.3 Participants . 57

4.4.4 Methodology . 58

4.4.5 Results and discussion . 59

4.5 Local Smart Micro Grids . 62

4.5.1 Game Overview . 63

5 Assistance Design and Evaluation 67

5.1 Architecture . 67

5.2 Personal Assistant Embodiment 70

5.3 Information Service . 71

5.3.1 Runtime Information Service 72

5.3.2 Experiment configuration 75

5.3.3 Assistance Quality of Service Evaluation 76

5.3.4 Experimental Results . 77

5.4 Justification Service . 79

5.5 Estimation Service . 84

5.6 Advice Service . 87

5.6.1 OCMAS Planning . 92

5.6.2 v-mWater planning example 104

5.6.3 Plan Delivery . 106

5.6.4 Service Evaluation . 108

6 Enhanced Human-Agent Interaction 113

6.1 Introduction . 113

6.2 Conversational Architecture . 114

6.3 Task-Oriented Conversation . 117

6.3.1 Basic AIML . 118

6.3.2 Conversation Structure 120

6.3.3 Task-Oriented AIML Knowledge 122

6.3.4 Conversation Management in VIXEE 134

6.4 Evaluation . 137

6.4.1 Test objectives . 138

6.4.2 Methodology . 138

6.4.3 Results and discussion . 139

vi

7 Conclusions 143
7.1 Objectives achievement . 144

7.1.1 Assistance Infrastructure Formalisation 144
7.1.2 Application . 145
7.1.3 Assistance Architecture 145
7.1.4 Enhanced Human-Agent Interactions 146

7.2 Publications . 147
7.3 Future Work . 148

Appendices 151

A Application Test Documents 153

B Assistance Test Documents 157

C Enhanced Human-Agent Interaction Test Documents 165

vii

List of Figures

1.1 Example of an Electronic Institution’s Performative Structure . . 7
1.2 Example of an Electronic Institution’s Protocol 8
1.3 Overview of VIXEE Architecture 10

3.1 Assisted Hybrid Structured Virtual Environment infrastructure . 21
3.2 Extract of the specification of v-mWater for seller participants. . 22
3.3 Runtime values of properties in v-mWater 27

4.1 v-mWater Performative Structure 40
4.2 waiting&info protocol . 44
4.3 registration protocol . 45
4.4 auction protocol . 47
4.5 An example execution of a Multi-unit Japanese protocol 48
4.6 v-mWater Initial aerial view . 53
4.7 Human avatar registering: interaction with a software agent by

means of a chat window . 54
4.8 The inside of the Waiting&Info room 54
4.9 Bot bidding in a running auction 55
4.10 Post-test questionnaire results. X axis: questions from Table 4.2.

Y axis: average values. 60
4.11 Performative Structure of Serious Game 64
4.12 Challenge Resolution protocol . 65
4.13 Examples of game 3D environment 66

5.1 Assistance Architecture . 68
5.2 Assistance Performative Structure 69
5.3 Assistance Protocol . 69
5.4 Mary’s avatar with her Personal Assistant in the 3D Virtual World 70
5.5 Average OrgGoal and AgSat values of ten executions 78
5.6 Initial Runtime Properties . 104
5.7 Example of Plan-eA returning plan pl with associated plans pl′

and pl′′′. 105
5.8 Post-test questionnaire average results. 111

6.1 Conversational Task-Oriented Architecture 115

ix

6.2 Finite State Machine depicting conversation’s states during task
stage . 121

6.3 Extract of a task-oriented conversation to register a water right . 124
6.4 User to Agent interactions sequence diagram 135
6.5 Agent to User interaction sequence diagram 137
6.6 Post-test questionnaire results. X axis: questions from Table 6.21.

Y axis: average values. 140

A.1 Presentation Letter . 154
A.2 Satisfaction Survey. Page 1/2 . 155
A.3 Satisfaction Survey. Page 2/2 . 156

B.1 Moderator Script. Page 1/2 . 158
B.2 Moderator Script. Page 2/2 . 159
B.3 Presentation Letter . 160
B.4 Satisfaction Survey. Page 1/3 . 161
B.5 Satisfaction Survey. Page 2/3 . 162
B.6 Satisfaction Survey. Page 3/3 . 163

C.1 Moderator Script. Page 1/2 . 166
C.2 Moderator Script. Page 2/2 . 167
C.3 Presentation Letter . 168
C.4 Satisfaction Survey. Page 1/2 . 169
C.5 Satisfaction Survey. Page 2/2 . 170

x

Abstract

The blending of digital technologies, such as artificial intelligence, interactive sys-
tems, 3D interfaces and the Internet is enabling new services for users. In partic-
ular, Hybrid Structured 3D Virtual Environments (VE) provide users with a col-
laborative space not only for entertainment and socialization but also for devel-
oping “serious” applications such as e-learning, e-government and e-commerce.

This thesis focuses on Hybrid Structured 3D VE, which are persistent multi-
user systems where participants (both human users and software agents) develop
“serious” activities. In these systems the 3D interface graphically represents
the system and facilitates human participation, and an Organisation Centred
Multi-Agent System (OCMAS) structures participants’ interactions. To do so,
the OCMAS specifies the roles that participants can enact, the activities where
complex tasks can be accomplished, and communication protocols that enable
the prosecution of such tasks.

Nevertheless, participating in these systems is not a straight-forward process.
Specifically, when the system specification is complex, participants have to per-
form intricate reasoning processes to understand their applicable regulations at
current system state; and they do not have access to information about what
happened before they entered the system, neither can further process this infor-
mation. Moreover, software agents speak a computer-based language, which is
usually hard to use by human users. Then, as human users interact with staff
agents (software agents devoted to support the system activities) to complete
tasks, human-agent interaction style becomes a key issue.

In order to overcome these limitations, this work proposes Assisted Hybrid
Structured 3D Virtual Environments, where both human users and software
agents participation in the system is improved by both assistance and human-
agent interaction mechanisms. The system is formalised as a two layered infras-
tructure. The Organisational Layer structures the interactions of participants,
and the Assistance Layer is populated by a set of Personal Assistants in charge
of providing with a set of Assistance services to a system participant. There
are four types of Assistance services: i) an Information service that processes
data about the organisation specification, the participant current state, and the
organisational historical execution states; ii) a Justification service that can be
triggered once a participant tries to execute a non-valid or prohibited action;
iii) an Estimation service that processes whether an action can be performed at
current state prior to its execution or not and, if it is actually the case, then it
also provides the next system state; and iv) an Advice service, which provides
participants with a sequence of actions (i.e. plans) to achieve their goals.

xi

Moreover, this work implements and evaluates v-mWater, a virtual market
based on trading water, modelled as an Assisted Hybrid Structured 3D Virtual
Environment. The usability evaluation results of v-mWater show that it is per-
ceived as a useful and powerful application that could facilitate everyday tasks
in the future. Users like its learnability, its immersiveness, and how scenario set-
tings facilitate task accomplishment. In general, users completed the proposed
task well and they were able to go to the right destination in the scenario. After
doing the test, users improved their opinion about 3D virtual environments. In
addition, the overall opinion of the human-agent interaction was positive. Nev-
ertheless, those users less familiar with new technologies experimented problems
when using a command-based system to interact with staff agents.

To support assistance services in the system, this work designs and evalu-
ates an Assistance Architecture where the Information service is implemented
for software agents; and the Justification, Estimation and the planning Advice
service for human users. Nonetheless, these four services could be offered in-
terchangeably for both humans and software agents, since they all simplify the
reasoning process as well as the cognitive load required to participate in these
complex structured systems.

Specifically, the Information service has been extended to help sellers to set
the price in their transactions. The tests performed compare the values that dif-
ferent agent satisfaction parameters and system goals take when agents request
for different information services, using as a base-line a configuration without
enabling assistance services. The experiments show that system performance
and agent satisfaction (and thus, the quality of assistance service) increase with
the addition of the information service. Furthermore, individual agents following
alternative strategies can request different information as a useful decision sup-
port tool. The planning Advice service is the most sophisticated one and makes
use of the rest of services to provide a plan that has into account other partici-
pants actions and, executed at current system state, will lead to the user’s goal.
It is implemented as an extension of A*, namely Plan-eA. Evaluation results
indicate that assistance impacts positively in usability measures of efficiency,
efficacy and satisfaction.

Related to human-agent interaction, this work integrates a new conversa-
tional mechanism within VIXEE, an execution infrastructure for Hybrid Struc-
tured 3D Virtual Environments. This new mechanism includes a task-oriented
conversational system, which allows staff agents to dialogue with human users
using natural language conversations. To do so, this work proposes an extension
of the well-known AIML language, namely Task-Oriented AIML, for dealing with
task-oriented conversations, which are based on activities’ specification and cur-
rent system state. Test results give good usability measures of efficiency, efficacy
and user satisfaction for the conversational approach.

xii

Acknowledgements

I would like to thank all the people involved in the completion of this research
work, because it would not have been possible without them. Special thanks to
Marc Esteva, who actively contributed in the first steps of this work. With his
passing I lost a great supervisor and friend. It is a honour to continue working
on his scientific seed. I will always remember you.

I would also like to specially thank my supervisors Maite López Sánchez and
Inmaculada Rodŕıguez Santiago, for believing in me all this time, stimulating
me in both the good and difficult moments, their immense patience, their “out
of hours” work, and their teaching, without which I undoubtedly have not been
able to meet the deadlines.

My gratitude to Jeremy Pitt and Aikaterini Bourazeri, for giving me the
opportunity to collaborate with them and to visit Imperial College at London
for three pleasing months. In London, I met a lot of old an new friends whom
I also would like to thank for supporting me in both the professional world and
personal life.

My thanks also goes to Tomas Trescak, Enric Mayas and Anna Puig for co-
operation on our papers. I would like to thank Tomas for his previous work and
indications that established strong foundations of my work. Thanks to Enric for
his enthusiastic hard work. I appreciate Marta Escartin for her graphical designs
that have made this work more beautiful, and her friendship. My gratitude to
Adriana Giret and Juan Andres Gimeno, for their previous work and support
in the first steps of the application implementation. I would like to thank Juan
Antonio Rodŕıguez Aguilar and Jesús Cerquides, for introducing me in the re-
search area, advising me on my master thesis and occasionally on this work, and
their friendship. My thanks to all the testers I recruited for the evaluations.

My immense gratitude to Alejandro Almajano, my father, and Carmen Fran-
coy, my mother, for instilling in me great values such as hard work and, above
all, to be a good person. Thanks to my sister, Ana, and brother, Juan, and
their families, for their understanding and affection. Thanks to all my friends
in Huesca, specially for those incredible hikes and climbs in the Pyrenees, and
helping me to cope with difficult times. I am also grateful to those dear friends
with whom I have not been able to share these years, but they have understood
me. To all the people mentioned in this paragraph, I sincerely love you all.

Thanks to all the great friends I have met in Barcelona, to my friends and col-
leagues at the Applied Mathematics and Analysis department of the University
of Barcelona (UB) and the Artificial Intelligence Research Institute (IIIA), for
those amazing climbs in the fantastic Catalan mountains, the funny beers-and-

xiii

xiv

cigarettes discussions, and the crazy nights out. I would like to thank to Ramon
Lopez de Mantaras, director of IIIA, the UDP crew, and the technical and ad-
ministrative staff of both IIIA and UB, for effectively supporting and helping
me. Many thanks to my flatmates in Çerdanyola and Sant Cugat because they
have contributed to make my life easier and nicer.

This thesis would not have been possible without the Spanish govern-
ment’s funding through the Engineering self-* Virtually Embedded systems
(TIN2009-14702-C02-01 / TIN2009-14702-C02-02), Agreement Technologies
(CONSOLIDER CSD2007-0022, INGENIO 2010) –specially Carles Sierra for
his leadership of this project, and Lissete Lemus responsible of the technology
transfer– and RObust Collaborations (TIN2012-38876-C02-02) projects. Thanks
to the European Network for Social Intelligence (SINTELNET) for funding my
visits to London, specially to Pablo Noriega, chair of social coordination working
group. I would also like to thank the Research Office at the Faculty of Mathemat-
ics of the University of Barcelona and the Associació Catalana d’Intel.ligència
Artificial (ACIA) for their funding to attend workshops and conferences.

Finally I would like to thank the people that I do not mention here but made
this work possible.

Pablo Almajano

Chapter 1

Introduction

Hybrid Structured 3D Virtual Environments are distributed and open multi-user
systems that are graphically represented in 3D scenarios where both human users
and software agents interact with the objective of achieving their goals, i.e. com-
pleting tasks. They are open because participants are free to enter and exit the
system at any time. The regulation of participants’ interactions is structured in
a (usually complex) static specification and the system evolves with the interac-
tions of participants, that provoke changes in the (dynamic) system state. Staff
roles are devoted to support the system execution, while external roles are usu-
ally played by humans, who interact with other (human and agent) participants
and with the environment by means of a 3D interface, which provides immersive
scenarios where users experience others as being there. However, achieving goals
in these systems may not be a straight forward process as several obstacles still
need to be removed. First, participants have to understand the system specifi-
cation and be aware of data generated along different states; and this data may
require to be processed in order to be useful for participants. Moreover, soft-
ware agents speak a computer-based language, which is usually hard to utilise
by human users.

This research claims that both human users and software agents would benefit
if they were provided with assistance mechanisms to facilitate their interactions.
Thus, this work focuses on the provision of assistance to participants of Hybrid
Structured 3D Virtual Environments, and the enhancement of human-agent in-
teractions within these systems. This chapter first describes the context and
motivation of the research, next the problems that this work addresses and the
objectives stated to solve them, and how this investigation has contributed to
the design and development of Assisted Hybrid Structured 3D Virtual Envi-
ronments. Moreover, this chapter provides the background of its foundations.
Finally, the structure of the rest of chapters is explained.

1

2 Chapter 1. Introduction

1.1 Motivation

3D Virtual Worlds are persistent Virtual Environments that model real or imag-
inary spaces where a community of on-line users enter to perform activities by
controlling avatars, engendering the sense of being there. Particularly, Social
3D Virtual Worlds are popular applications where users enter to freely socialise
in open-ended tasks [Book, 2004]. Users roam the world, and loosely interact
with other users and the environment. These interactions are facilitated by us-
ing multi-modal communication mechanisms, such as gestures, input boxes and
(audio and text) chats.

Nevertheless, Virtual Worlds can be used for other purposes rather than
socialisation and entertainment. Serious Virtual Worlds are applications where
participants connect to perform serious activities, such as e-learning, e-commerce
and e-government, by executing interleaved interactions in a given order and
structure with specific objectives, such as learn, do business and consume cit-
izen’s services. However, 3D Virtual Worlds were conceived lacking of mecha-
nisms to facilitate the control of complex interactions.

This research advocates for the use of Hybrid Structured 3D Virtual Environ-
ments to model Serious Virtual Worlds, as they combine an Organisation Cen-
tred Multi-Agent System [Ferber et al., 2004] –to regulate complex activities–
and 3D environments –to engage and immerse users within the system. Fur-
thermore, this research considers the system hybrid because participants can
be human users who join to achieve their goals, and software agents which are
programmed to perform automatic tasks.

Particularly, a Virtual Institution is a Hybrid Structured 3D Vir-
tual Environment that proposes the combination of Electronic Institu-
tions [Esteva et al., 2004] (i.e. an Organisation Centred Multi-Agent System),
and 3D Virtual Worlds. On the one hand, the Electronic Institution speci-
fies a common ontology, role-based activities where users gather, the protocols
associated to each activity and the messages interchanged between users. On
the other hand, the 3D Virtual World interface engages humans and facilitates
their inclusion within the regulated system. In the 3D environment, the sys-
tem is graphically represented with virtual objects that may have in turn some
functionality associated; software agents are embodied as bots, i.e. computer
controlled virtual characters; and people get immersed by controlling avatars.
As result, a human user can move around the 3D Virtual World, interact with
the environment by using objects’ functionality, and also interact with other
(human and agent) participants by using multi modal communication channels.

There are two functional applications of Virtual Institutions developed until
now. First, a tourism agency [Seidel et al., 2009] that is an e-commerce appli-
cation where all participants are human users, and interaction is implemented
by means of chat windows, forums, gestures and 2D command-based interfaces.
Second, a 3D recreation of the city of Uruk [Bogdanovych et al., 2012] that is
an e-learning application where inhabitants are software agents which are able
to reason and interact with the environment simulating the daily routine of hu-
mans in the ancient city, and give educational explanations about Uruk and its

1.1. Motivation 3

activities to students. However, cited applications do not contemplate hybrid
participation within system activities that require complex humans and agents
interleaved interactions.

Moreover, in order to successfully participate in Serious Virtual Worlds,
participants have to reason about the complex system specification of the
Electronic Institution and be aware of its historical states. Thus, par-
ticipants’ cognitive load can be alleviated with additional mechanisms
devoted to help them to complete their tasks. Several assistance tech-
nologies have been researched in the field of Multi-Agent Systems. This
work conceptually organises them in two main groups: i) organisation assis-
tance [Centeno and Billhardt, 2011, Bou et al., 2009, Campos et al., 2011]
and ii) agent assistance [Chalupsky et al., 2001, Oh et al., 2011,
Centeno et al., 2009] services.

The former group of services assists the system to coordinate its participants,
e.g. by adapting regulations, changing norms, and modifying the environment.
Particularly, the Two Level Assisted MAS Architecture [Campos et al., 2011]
proposes: i) an organisational layer in charge of enabling the system execution
and ii) an assistance layer on top of it providing services to the organisational
layer. The latter group of services is devoted to help the system participants,
usually by providing them with (basic) information so that participants can be
aware of the system specification and its current execution state. However, the
system structure can be rather complex and, as open systems, participants can
enter and exit at any time, so that they are seldom aware of all values that the
system’s properties take along its execution. As result, participants may mis-
understand the system specification and miss relevant information. Moreover,
participants have usually to process the information in order to be useful in their
decision process. Thus, they may benefit if they were provided with additional
services that facilitate the achievement of their goals.

There are several mechanisms in the literature that have proposed to en-
able agent assistance services in a more sophisticated way, such as applica-
tions’ plug-in [Kumar et al., 2002, Faulring et al., 2010, Dong et al., 2012], web
services [Lujak and Billhardt, 2013], and, the focus of this work, Assistant
agents. They are software tools which are able to resolve help requests about
the static structure and the dynamic functioning of a system. Several works
have researched this approach in non-multi user or/and non-structured sys-
tems. In the line of this research, other works have investigated how to
help participants of structured and multi user systems by means of Assistant
agents [Chalupsky et al., 2001, Oh et al., 2013, Yaich et al., 2013]. The pro-
posed assistants are either for software participants or external human users,
that are not actually participating in the structured system, i.e. they are not
able to perform on-line actions within the system. Nevertheless, there are no
works in the literature that address agent assistance by means of Personal Assis-
tants in Hybrid Structured 3D Virtual Environments, where assistance is devoted
to help both human users and software agents in their achievement of complex
tasks.

4 Chapter 1. Introduction

1.2 Research Problems and Questions

As motivated, human users and software agents participate in Hybrid Structured
3D Virtual Environments to accomplish tasks. To do so, they execute interleaved
interactions fulfilling a system specification at runtime. Virtual Institutions offer
all the necessary means to model this kind of systems. However, participation in
these systems is generally complex because: i) an intricate system specification
is defined in a computer-oriented language, and ii) some values of its execution
states may be unknown to its participants, because they are not notified about
them or they are not visible to them. These issues affect the decision process of
both software agents and human users, and also the human-agent interactions
within the system.

On the one hand, software agents should implement algorithms to reason
about the involved specification in persistent multi user environments with in-
complete information. As a consequence, the decisions taken by the software
agents can be inaccurate. This leads us to the following research question:

Research Question 1 Can general assistance mechanisms facilitate software
agents design and implementation, increase agent satisfaction in terms of effec-
tiveness and efficiency, and improve the system performance?

On the other hand, human users have to understand a complex social model
(i.e the one defined in the system specification) and are seldom aware of all
system properties. As a consequence, they can fail in their task achievement,
become frustrated and perceive the system as not “usable” enough. Moreover,
making errors and mistakes in real-life tasks can have harmful consequences.
Then, a second research question is introduced:

Research Question 2 Can general assistance mechanisms alleviate the cogni-
tive load of human users, increase their satisfaction, and improve the system
performance?

As aforementioned, in Hybrid Structured 3D Virtual Environments partici-
pants can be software agents or human users. Staff roles are devoted to perform
institutional tasks and support external participants in their task achievement.
Such institutional tasks can be automatised so that staff roles are usually played
by software agents. On the other hand, external roles are usually played by hu-
man users. As result, human users must interact with software agents in order
to achieve their complex tasks. Thus, in addition to help system participants,
human-agent interaction is a key issue in these hybrid systems. Finally, the third
research question is stated:

Research Question 3 Which interaction style facilitates human-agent inter-
action in Hybrid Structured 3D Virtual Environments best?

1.3. Research Objectives 5

1.3 Research Objectives

This work states three objectives to tackle the aforementioned research questions.

1. To assist both human user and software agent participants of Hybrid Struc-
tured 3D Virtual Environments. This includes: (i) to extend the system
formalisation proposed by Campos et. al [Campos et al., 2011] in order to
enable a set of Agent Assistance Services devoted to help participants in
their task accomplishment; (ii) to propose an architecture that supports
the execution of the resulting Assisted Structured Virtual Environment;
and (iii) to define general decision support algorithms for both software
agents and human users.

2. To facilitate human-agent interactions by studying state of the art of ap-
propriate interaction mechanisms, adapting them and proposing a conver-
sational architecture for general Hybrid Structured 3D Virtual Environ-
ments.

3. To create a functional application that illustrates and assesses the contri-
butions of the approach. In this application staff bots are software agents
graphically represented as embodied bots in the 3D environment, whereas
human users control avatars in a 3D Virtual World interface, can interact
with other human users and staff bots, and with the environment. The
application will be used to evaluate the overall solution usability in terms
of criteria such as efficiency, efficacy, satisfaction and errors of participants
using the proposed system.

1.4 Contributions

This section enumerates the contributions of this work that overcome the dis-
cussed problems and, thus, accomplish the aforementioned research objectives:

• A formalisation extension of the assistance infrastructure defined by Cam-
pos et al. [Campos et al., 2011] for structured environments, and the
proposition of both a new assistance layer that includes agent assistance
services in this kind of systems, and an Assistance architecture that sup-
ports individual users to achieve their tasks [Almajano et al., 2011a].

• A complete formalisation of an Information service for software agents and
its general implementation [Almajano et al., 2012a].

• A complete formalisation of an Advice service (that uses the Informa-
tion, Justification and Estimation services), and its general implementa-
tion as an extension of the A∗ algorithm adapted to multi user environ-
ments [Almajano et al., 2014a].

• The inclusion of a new interaction style in the Virtual Institutions eXEcu-
tion Environment [Almajano et al., 2014b]. It is a mixed conversational

6 Chapter 1. Introduction

mechanism for human-computer interaction: a command-based system
liked by expert users and an extension of a well known natural language
mechanism (AIML) adapted to structured environments.

• A functional application that allows humans and software agents
to directly interact in the structured system [Almajano et al., 2011b,
Almajano et al., 2012c, Almajano et al., 2012b, Almajano et al., 2013c,
Almajano et al., 2013b]

• The evaluation of the usability of the functional ap-
plication [Almajano et al., 2013b], the Information ser-
vice [Almajano et al., 2012a], the Advice service [Almajano et al., 2014a]
and the conversational mechanism [Almajano et al., 2014b].

• A design of an application using the proposed infrastructure in a
different domain, specifically the Smart Grid [Almajano et al., 2013a,
Bourazeri et al., 2012, Bourazeri et al., 2014]

1.5 Background

This section explains the concepts which have been used as the basis to achieve
the aforementioned objectives. Such concepts will help the reader to understand
the rest of the document.

1.5.1 Electronic Institutions

Organisation Centred Multi-Agent Systems approaches are Multi-Agent Sys-
tems whose foundation lies in organisational concepts [Ferber et al., 2004]. The
particular Organisation Centred Multi-Agent System used to operationalise the
research applications of this work is Electronic Institution [Esteva, 2003]. An
Electronic Institution structures participant interactions by establishing what
actions participants are permitted and forbidden to perform as well as their con-
sequences . This section is devoted to explain the general concepts of Electronic
Institutions.

The so-called performative structure defines several dialogic activities (also
referred as scenes) where agents participate enacting different roles, and how
agents can legally move among them depending on their roles. Specifically, a
performative structure is specified as a graph where the nodes represent both
activities and transitions – i.e. activity connectives – linked by directed arcs,
which represent the movements between transitions and activities. Figure 1.1
depicts an example of a performative structure for the registration of goods in a
market. There are two roles: market facilitator (mf) and seller (s). Besides the
obligated Initial (on the left-top of figure) and Final (on the right) activities to
enter and exit the institution respectively, it also has two activities: Registration
(on the middle-bottom) and Waiting&Info (on the middle-top). The market
facilitator role is in charge of supporting the activities, and the seller role is

1.5. Background 7

Figure 1.1: Example of an Electronic Institution’s Performative Structure

allowed to register goods in the Registration activity and become informed about
the market in the Waiting&Info activity.

Regarding transitions, there are three types in Electronic Institution. The
type of transition establishes the outgoing arcs that an agent can follow. First,
the and transition forces an agent to follow all its allowed outgoing movements,
so that the agent is cloned as many times as allowed outgoing arcs this transition
has. Notice that in Electronic Institutions one agent can be cloned, so that it
can participate in multiple activities at the same time. Second, the or transition
indicates that the agent is free to select one or more paths. Finally, the orX
transition makes the user to select exactly one outgoing path. In the example of
Figure 1.1, there is one and transition (represented as a semicircle) for a market
facilitator when exits the initial activity, so that it is cloned and must follow
the movement towards both the Registration activity and the Waiting&Info
activity. Moreover, there is one or transition (represented as an empty triangle
with rounded sides) when a market facilitator exits either the Registration or the
Waiting&Info activity. The only transition for sellers is of type orX (represented
as a triangle with rounded sides filled with an X), so that they must select one
of the outgoing movements.

With respect to movements between activities and transitions, besides indi-
cating the role, they also contain an agent identifier that constrains the flow of
a role through a transition. Thus, an agent which enters a transition following
an ingoing movement with a particular identifier (e.g. m1 for market facilitator
in the movement that exits the initial activity and reaches the and transition),
only can follow the outgoing movements which have defined the same identifier
(e.g. m1 in the movements from the and transition to the activities). In the
example of Figure 1.1, sellers and market facilitators are allowed to follow any
path independently of their origin because all identifiers defined in the arcs from
activities to transitions (s1, s2, s3, m1, m2 and m3) are also defined in the re-
spective transitions to activities arcs. Namely, there are no restrictions in this
regard.

8 Chapter 1. Introduction

With respect to movements from a transition to an activity, there are two
types: just to enter the activity, or also to create a new one. Following with
the example, a seller can enter both activities, while the market facilitator also
creates them.

Figure 1.2: Example of an Electronic Institution’s Protocol

Interactions for each activity follow well-defined protocols which are specified
by Finite State Machines whose nodes represent the states and the transitions
are labelled with illocution schemes (i.e. events defined as messages) or time-
outs. Any illocution uttered in the initial node opens the protocol. In an activity,
participants may change over time, agents may enter or leave. In this aspect, a
protocol node defines the roles that are allowed to enter and exit at it. Moreover,
a protocol specifies the minimum number of participants needed to open the
activity and the maximum number of agents allowed to participate.

Figure 1.2 depicts the protocol followed within the Registration activity. On

1.5. Background 9

the top of the figure is represented the four protocol’s nodes (initial, open, req
and final) and five illocutions (open, close, register, agree and failure). The
market facilitator role is allowed to enter at the initial node (+mf), and it is
allowed to exit at the open (+-mf, which indicates that the agent is cloned, so
that while the agent still remains in this activity its clone exits it to participate
in other one) and final nodes. The seller role is allowed to enter (+s) at the open
node, and exit (-s) at both the open and the final nodes. Nobody is allowed to
enter nor exit at the req node. The box on the bottom of the figure shows the
defined restrictions on participants: there should be 1 market facilitator to open
the protocol, and a maximum of 100 sellers are allowed to participate.

1.5.2 Virtual Worlds

Virtual Worlds are three-dimensional (3D) social spaces where people interact
by controlling embodied characters [Bartle, 2003, Messinger et al., 2009]. One
of their main features is the immersive experience provided to their participants.
They can walk around the world to explore it as done in real spaces. Moreover,
they can also fly or even teleport to other places in the Virtual World. Partici-
pants interact by using multi-modal communication such as text-based interfaces
(e.g. chat windows), voice chat (e.g. using headsets) or actions performed by
avatars (e.g. doing gestures or touching objects). Moreover, the immersive ex-
perience can be still increased by incorporating sounds (e.g. birds singing in a
virtual forest). Furthermore, they can provide an intuitive graphical represen-
tation of the progress of activities that participants are engaged in.

1.5.3 Virtual Institutions

Virtual Institutions combine Electronic Institutions [Esteva, 2003] and 3D Vir-
tual Worlds technologies [Bartle, 2003] to represent 3D virtual spaces where
both human and software agents can interact. They offer interesting possibili-
ties to both Multi-Agent Systems, i.e. structured environments, and 3D virtual
worlds [Bogdanovych, 2007]. First, thanks to the regulation imposed by an
Organisation Centred Multi-Agent System –in this case an Electronic Institu-
tion [Esteva, 2003]–, the 3D environment becomes a structured virtual world
where regulations are enforced at runtime. Second, a 3D real-time represen-
tation of the system allows humans to participate in Multi-Agent Systems by
controlling its 3D representation (avatar) in an immersive environment. This
way, humans participate in the system by controlling an avatar in the Virtual
World, while software agents are directly connected to the Electronic Institutions
and can be displayed as bots in the virtual space to emphasize their artificial
nature.

Both Electronic Institutions and Virtual Worlds are causally connected be-
cause whenever one of them changes, the other one changes in order to maintain
a consistent state [Maes and Nardi, 1988]. Notice that Electronic Institutions
and Virtual Institutions have a conceptual difference. Electronic Institutions
define what is permitted and the rest is prohibited. On the contrary, in Virtual

10 Chapter 1. Introduction

Institutions, only those actions in the virtual world platform that have institu-
tional meaning are regulated, while everything else is permitted.

Up until now, Virtual Institutions have been used to model seri-
ous applications in domains such as e-commerce [Seidel, 2010] and e-
learning [Bogdanovych et al., 2012]. The former only contemplates human par-
ticipants. In the latter, system participants are software agents that also plays
the role of virtual tutors, and (human) students may ask for explanations about
the system to virtual tutors.

1.5.4 VIXEE

VIXEE, is a robust Virtual Institution eXEcution Environment that provides
interesting features such as multi-verse communication and dynamic manipu-
lation of the virtual world content [Trescak, 2013]. VIXEE is a generic and
domain-independent solution. Figure 1.3 depicts its architecture composed of
three layers: i) normative, ii) visual interaction and iii) causal connection.

Figure 1.3: Overview of VIXEE Architecture

The normative layer (on the right of Figure 1.3) is composed by AMELI,
the electronic institutions infrastructure that mediates agents’ interactions
while enforcing institutional rules [Esteva et al., 2004], the system specification
and its running state. AMELI can be regarded as domain-independent be-
cause it can interpret any institution specification generated by ISLANDER
tool [Esteva et al., 2002]. It is implemented in JAVA and uses two TCP ports
for communication with the causal connection layer.

The visual interaction layer (on the left of Figure 1.3) comprises several
3D virtual worlds. Each Virtual World can be implemented in a different pro-
gramming language using a different graphics technology. The usual parts of a
Virtual World are a Virtual World client and a Virtual World server. Such a
server communicates with the causal connection layer using a standard protocol
(e.g. UDP, TCP or HTTP). The present application employs Open Simulator, an
open source multi-platform, multi-user 3D Virtual World server [Guard, 2007].

The causal connection layer (on the middle of Figure 1.3) causally con-
nects the visual interaction and the normative layers, i.e. whenever one of
them changes, the other one changes in order to maintain a consistent state
[Maes and Nardi, 1988]. This layer implements a Virtual Worlds Manager which

1.6. Structure 11

is a multi-verse communication mechanism that allows users from different vir-
tual worlds to participate in the same Virtual Institution. The Agent Manager
creates an External Agent (E. Agent in Figure 1.3) for each connected user.
Dispatchers are in charge of the mapping between Virtual World actions and
AMELI events –and vice versa– defined in the so-called movie script.

1.6 Structure

This research work is described following this structure:

• Chapter 2 gives an overview of the state-of-the-art approaches on assistance
to participants of software systems and on human-agent interactions by
using natural language conversations.

• Next, Chapter 3 provides with the formalisation of the Assisted Hybrid
Structured 3D Virtual Environments architecture.

• Chapter 4 explains two applications and their deployment as an Assisted
Hybrid Structured 3D Virtual Environment.

• Then, Chapter 5 shows the architecture that enables the proposed system
and the implementation of general assistance services in such architecture.

• The conversational mechanism and its inclusion in VIXEE is detailed in
Chapter 6.

• Finally, Chapter 7 draws some conclusions and discuss on future work.

Chapter 2

Related Work

This chapter discusses first on several research approaches to assistance services
that are offered by software agents to both human and software participants
of Virtual Environments. Second it presents a number of works in the context
of Human-Agent interactions that investigated extended conversational mecha-
nisms or the inclusion of conversations in structured environments.

2.1 Assistance Services

Usually, Multi-Agent Systems [Jennings et al., 1998] design and implementation
involves the specification of a coordination model and the development of an in-
frastructure in charge of enacting it. In open Multi-Agent Systems, systems are
populated by heterogeneous agents trying to achieve particular and/or collective
goals. These agents are developed by third parties so that the number and the
cognitive abilities of agents that may participate in an open Multi-Agent System
is unknown at development time, and varies at runtime [Jureta et al., 2007]. Or-
ganisation Centred Multi-Agent Systems [Ferber et al., 2004] have proven to be
an effective mechanism to define the coordination model that structures agent
interactions in Multi-Agent Systems, and infrastructures give support to their
execution by imposing interaction rules between participants. Although Or-
ganisation Centred Multi-Agent System infrastructures usually provide open
specifications to agents [Esteva, 2003, Hübner et al., 2006], understanding these
specifications and participating in the organisation could result a difficult task
to agents, specially as its specification becomes more and more complex. If we
take the humans in the loop and consider hybrid systems, where agents may
be human users and software agents, the complexity increases and, therefore,
facilitating their participation becomes a mandatory issue.

In the literature the problem of general coordination support in Or-
ganisation Centred Multi-Agent Systems is first analysed by Campos et
al. [Campos et al., 2009]. They identify two different approaches for assistance
to software participants in these structured systems: Organisational Assistance

13

14 Chapter 2. Related Work

and Agent Assistance. Nevertheless, the bulk of their work is devoted to Organ-
isational Assistance [Campos et al., 2013], whereas the focus of this research is
Agent Assistance. That is, services offered to help participants to achieve their
goals in the system. Furthermore this work also advances the state of the art by
including not only software agents but also human users.

Existing Organisation Centred Multi-Agent System infrastructures already
offer information to software agents as input in their organisational reasoning
process related to the system. For example, PreSage2 [Macbeth et al., 2012]
is a modular architecture where an Environment Services component offers
to software agents a service to get Organisational Information, so that they
are aware of the system where they are participating. Other example is Ja-
CaMo [Boissier et al., 2013] that includes services to help agents as Artefacts,
i.e. resources and tools that model the environment and encapsulate specific
functionality that can be requested by system participants. Particularly, Organ-
isational Artefacts are devoted to inform agents about the system specification
and its current state.

The infrastructure presented in this work proposes an Assistance Layer pop-
ulated by Personal Assistant agents (see Section 3.3). These agents are able to
offer services that, besides providing software agents with general organisational
information, also provide them with elaborated information by processing the
historical organisation states, such as statistics on data non accessible to partic-
ipants. Moreover, Personal Assistant agents are designed to offer services cov-
ering other aspects of the participants’ decision process: justification of action’s
constraints; estimation of the next system state prior to execute an action; and
advice of possible plans to complete a task within the system at current state.
Finally, this work contemplates services for both software agents and human
users.

Regarding Personal Assistants’ abilities, Okamoto et al. proposed and tested
a framework for “communication management”, “task contingency manage-
ment” and “decision support” [Okamoto et al., 2009]. Human behaviour was
simulated in different social organisational models in their framework (regular
hierarchies, rings, and random structures) to evaluate the impact that afore-
mentioned abilities have on both the individual performance of the user and the
collective organisation. The conclusion was that “decision support”, the ability
closest to this proposal, in human organisations with hierarchical structure can
increase the humans’ success rate (i. e. they complete the task with higher
probability) and the speed performance average (i. e. they complete the task
faster).

The rest of this section reviews the works in Tables 2.1 and 2.2. They are
analysed with respect to the Artificial Intelligence technology used, the assistance
architecture, the applications that can be implemented, the user interface, the
human inclusion in the system, the embodiment of assistants, and the evaluation
provided.

As for assistance in the multi-agent systems research area, there are many
works proposing Multi-Agent System architectures to provide assistance to hu-

2.1. Assistance Services 15

Assistance
AI Technology Architecture Implementation

Electric Elves Markov Dec. Pro. MAS Meeting scheduling
Machine Learning

Oh et al. Markov Dec. Pro. MAS Military planning

ASC-TM Case Based R. OCMAS Virtual Communities

EMA Negotiation web services OCMAS Medical urgencies

Kumar et al. Semantic Web plug-in Talks announcements

RADAR Machine Learning plug-in e-mail filtering

Dong et al. Recommender plug-in Reviews’ writing

Virtual Theatre Path Planning Agent Spatial guidance

Virtual Museum Path Planning Agent Spatial guidance

Assisted Hybrid
Structured 3D VE OCMAS Planning 2-Layered OCMAS e-government

Table 2.1: Comparison of related works with the proposed approach (last line):
AI Technology, Assistance Architecture and Implementation

Human
UI Inclusion Embodiment Evaluation

Electric Elves 2D no no performance

Oh et al. no no no no

ASC-TM no no no performance

EMA 2D yes no performance

Kumar et al. 2D yes no no

RADAR 2D yes no no

Dong et al. 2D yes no performance

Virtual Theatre 3D yes no no

Virtual Museum 3D yes yes usability

Assisted Hybrid
Structured 3D VE 3D yes yes usab. & perf.

Table 2.2: Comparison of related works with the proposed approach (last line):
UI, Human Inclusion, Embodiment and Evaluation

man users. For example, Electric Elves [Chalupsky et al., 2001] is a Personal
Assistant to support meeting scheduling of the Intelligent Systems Division of
the University of Southern California Information Sciences Institute. In this
context, the Personal Assistant is modelled as a system composed by differ-
ent software agents that perform a variety of tasks. Specifically, matchmaker
agents are able to assign meeting-related tasks (performed outside the system)
to a participant (e.g. reserve a meeting room) based on her or his capability
and interest to do it; and wrapper agents are able to access needed informa-
tion from the web (e.g. airline schedules). Each division member is provided
with a mobile device with the Personal Assistant system installed, which is able
to (semi) autonomously reschedule meetings, volunteer its user to give a pre-
sentation, and select which user should give a presentation. To do so, Electric
Elves proposes a decision-theoretic planning approach that uses Markov Decision
Processes (MDP) to reason about team coordination based on both individual
and collective policies, and Machine Learning techniques for reliable access of
information by wrappers. This work reports some results about the system
performance.

Continuing with Multi-Agent Systems, Oh et al. propose Personal Assistant
agents to assist military planners in a peacekeeping problem domain to guar-
antee escort to civilians in conflict areas [Oh et al., 2013]. As proof of concept,
they develop a prototype that simulates civilians travelling from an origin to a

16 Chapter 2. Related Work

destination cell in a n×n grid; particular cells of the grid represent conflict areas;
and norms are specified as prohibitions and obligations on visiting a cell. They
propose Personal Assistants able to perform prognostic normative reasoning, i.e.
discover the civilians’ goal and predict their future actions, and give advice (i.e.
a plan) on how to avoid norm violations, e.g. send escort request. As the pre-
vious work, it proposes a MDP model for coordination tasks, but this time to
discover civilian users actions, and advice military users to avoid conflicts. Thus,
the system computes military plans based on civilians goals. The system is still
pendent of empirical evaluation.

Alternatively, Yaich et al. propose the decision-theoretic model ASC-TM
(Adaptive and Socially-Compliant Trust Model) and modelled it as an Organ-
isation Centred Multi-Agent System [Yaich et al., 2013]. This system is also
populated exclusively by software agents, but in this case they are designed to
help users of a Virtual Community in their trust management. In this scenario,
users share digital resources (e.g. text documents) with other users based on
both individual and collective policies. Given the credentials of a requester, and
the individual and collective policies to share a resource, agents in the system
are able to i) assess the degree of trust to assign to the requester and ii) decide
whether to share the resource or not. The authors use a Case-Based Reasoning
approach, and community users’ participation is restricted to select fixed meta-
policies defined as heuristic functions. Such meta-policies are used to adapt the
individual and collective policies (also defined by community users) to the cur-
rent situation. The degree of trust is then computed by the resulted policy, and
compared to a threshold value (also given by the user) to take the final decision.
This work implements 4 different meta-policies and evaluates the validity of the
model, and the evaluation results are as expected.

The main difference of the research work presented here with the aforemen-
tioned approaches is that, while they limit human participation to configure
software agents that participate in the system, this research contemplates hu-
man direct participation in a virtual environment to achieve complex tasks (see
Chapter 4). Similarly to the work by Yaich et al., this research contemplates
assistance in Organisation Centred Multi-Agent Systems, but in a more gen-
eral way, so that it can be used to model a similar trust management system
where the same information service can be included (see Section 3.3). Finally,
an additional difference with aforementioned works on human assistance using
Multi-Agent Systems is that they did not report evaluations on system usability,
as this work does (see Sections 4.4, 5.3.3 and 5.6.4).

Nonetheless, direct human participation is actually considered in the lit-
erature. For example, humans are represented in the system as agents
with well defined roles and activities in EMA, the Emergency Medical As-
sistance organisation modelled as an Organisation Centred Multi-Agent Sys-
tem [Lujak and Billhardt, 2013]. Humans interact in the system by using a mo-
bile application, and EMA system provides real time assistance to all involved
participants (e.g, patients, ambulances, medical professionals, etc.) through
web services. The system supports users to access medical data of patients

2.1. Assistance Services 17

which may allow more effective medical treatments. They also present three
different approaches to assist the ambulance allocation problem that use trust
and auction-based negotiation, and evaluate their performances. There are at
least two main differences with EMA: i) it is for a specific application, while
this research proposes general assistance services, so that similar systems can be
modelled (see Section 3.3); and ii) the information needed to assist participants
is accessed via web services, that are external entities that only work under re-
quest and are not usually allowed to access the system information, while the
Personal Assistants proposed in this work are proactive organisational agents,
so that they have complete access to system information.

Other approaches aim to include assistance in existing desktop applications,
such as e-mail clients and web pages. For example, Kumar et al. exploit the
semantic web data with the aim of recommending talks announcements to users
with a given profile [Kumar et al., 2002]. Personal Assistants search this infor-
mation in web pages by using description logics and a rule engine. No evaluation
is provided for this work.

In RADAR [Faulring et al., 2010] a Multi Task Coordination Assistant is
integrated in a 2D email client to help office workers cope with email overload. Its
peculiarity is that the assistant observes experts and learns models to offer task
ordering suggestions and warnings when the user’s behaviour differs significantly
from the expert’s one. The evaluation of RADAR is lacking.

Along the same research line, Dong et al. propose a recommender sys-
tem that provides with optional suggestions to product reviewers in web
pages [Dong et al., 2012] . The recommender system encourages users to write
good reviews by means of a Reviewer’s Assistant. It is a browser plug-in that
extracts topics from related reviews and suggests them to users. Dong et al. also
provide and evaluate different recommendation strategies.

Still these works differ with this research in several aspects. They do not
require the interaction between different users, and users are not participat-
ing in a structured multi user environment, with the inherent complexity of
interleaved interactions. Moreover these works feature 2D user interfaces and
assistant agents are non-embodied.

In the line of 3D environments, assistance has been used, above all, to support
users’ physical navigation in open 3D spaces by using path planning technology.
The Virtual Theatre [van Dijk et al., 2003] proposes a non-embodied agent that
uses environment knowledge to indicate the user places to visit; and the Virtual
Museum [Chittaro et al., 2004] proposes a 3D character that presents the user
a precomputed guided tour to follow. Only the latter work performed informal
tests to assess the usability of the application.

The Personal Assistant proposed in this research is an interactive 3D char-
acter that works in a structured multi user environment, it is always available
to the user and helps her or him to achieve her or his goals (see Chapter 5). In
fact, this research proposes the first formalisation of an infrastructure to support
Assisted Hybrid Structured 3D Virtual Environments, and also implements and
evaluates it in a functional application.

18 Chapter 2. Related Work

2.2 Human-Agent Interaction

This section introduces Intelligent Virtual Agents (IVA) and covers aspects such
as recognising user inputs, transition between conversation topics and bot’s per-
sonality. IVAs are intelligent agents with a digital representation and endowed
with conversational capabilities. For example, the e-commerce application IKEA
(http://www.ikea.com) has a virtual assistant Anna that helps web customers
to find items in the shop catalogue.

Thus, an IVA usually has some mechanism to interact with human users
using natural language conversations skills. The Artificial Intelligence Mark-
up Language (AIML) is a well-known mechanism to implement chatter-bots. In
fact, a number of works propose to solve different AIML limitations by extending
it with different Artificial Intelligence techniques.

Related to the study of transitions in the conversation topic, Mori et al.
propose a conversational web-based module composed by an AIML engine and a
Reasoning engine, that detects when the user requests a topic change and asks for
user confirmation, to smooth the transition between topics [Mori et al., 2003].
Mehta et al. [Mehta and Corradini, 2008] also deal with the problem of topic
transitions, but to out-of-domain topics. This approach is capable of engaging
in conversations of general purpose topics not covered by the conversational
application. It uses both question and answering systems available in the web
to generate answers to users’ questions, and Google’s ontological resources to
understand the users’ questions out of the domain.

Persona-AIML [Galvao et al., 2004] focuses on bot’s personality, where
chatter-bots are deployed as stand-alone applications for both the Internet Relay
Chat and the web, and are able to treat the user according to their mood and
attitude. In the line of personality, Negobot [Laorden et al., 2013] simulates a
child, which aims to detect paedophile behaviour in the internet. It includes
the use of different Natural Language Processing techniques, AIML, and game
theory.

The problem of processing unrecognised user inputs, i.e. queries not covered
by AIML patterns, is studied in the Virtual Interactive Story Telling Agent
(VISTA) project [Wang et al., 2002]. VISTA is able to chat with listeners of
stories available in a digital gallery web. Transcripts of real chat discussions
of experts about individual stories are processed by an example driven learner,
which generates the AIML knowledge and, in order to process those queries that
have not AIML patterns associated, it also generates for these cases the rules
that are used by a logic-based engine.

Unrecognised user inputs are also researched in Kom-
Parse [Klüwer et al., 2012], which implements a barkeeper in a commercial 3D
massive multi-player on-line game. KomParse recommends and sells drinks to
customers, and also entertains them with small talks about celebrities. User
entries are processed and the response is selected by the natural language
understanding component, composed by a dialogue context memory and a
dialogue state. When the user entry has not rule nor pattern associated
KomParse uses a Bayesian classifier to generate a response.

http://www.ikea.com

2.2. Human-Agent Interaction 19

Similarly to the latter work, this research proposes agents to be embodied
characters in a 3D Virtual World, instead of using 2D interfaces for user input
and output as the rest of aforementioned works. A difference with the latter
is, while KomParse is meant to entertain users in a particular game, the sys-
tem proposed in this work models general “serious” applications, where staff
agents successfully support users to perform structured tasks. To do so, this
work extends AIML to support task-oriented conversations, where staff bots
(i.e. software agents) are able to manage conversations with multiple human
users to support them to achieve complex tasks in a virtual environment (see
Section 6.3). This work does so by including new AIML tags and verifying user’s
inputs with respect to the system specification and current state.

In the line of task-oriented conversations, the Artificial Intelligent Dialogue
Agent (AIDA) integrates different interaction task styles [Banchs et al., 2013].
Specifically it implements four types of interaction engines: command, question
answering, task-oriented dialogue and chatting. A dialogue orchestration mech-
anism decides when to switch the domain and select the appropriate task style.
This process is based on three different sources of information: the last user
utterance, the state of the interaction engines and system expectations –which
are constructed based on the most recent history of user-system interactions, the
user’s profile, and a considered hierarchy of the tasks’ engines. It is implemented
as a browser interface with several frames, including a talking avatar. The Ex-
tended Interaction Mechanism proposed by this work is also task oriented and
is composed of two interaction styles: command based and natural language
conversations (see Section 6.2). However, while AIDA is designed to implement
different types of human interactions within a 2D web page, the mechanism re-
searched in this work is designed for staff bots populating an Assisted Hybrid
Structured 3D Virtual Environment.

The rest of this section discusses on applications that use pattern-matching
approaches for human-agent interaction. i.e. for matching user queries with IVA
responses. One example is the CHAtteR Learning Interface Entity (CHAR-
LIE) [Mikic et al., 2009], that is able to maintain a general conversation with
students of an on-line learning platform by chatting in a pop-up window. CHAR-
LIE uses standard AIML to help students to access the content of courses (i.e.
test questions) stored in the system. Specifically, students are supported to
ask for: an existing test, personalise a test, or free questions. To do so, some
keywords in the conversation are identified with these users’ requests.

Danforth et al. propose virtual patients for medical educa-
tion [Danforth et al., 2009]. A student acts as a doctor in the initial
doctor-patient visit, and has to gather information from the virtual patient,
create differential diagnoses and order the appropriate lab tests. Their focus
is on the flexible creation of different types of patient conditions. Data about
diseases symptoms is stored in a case repository, that contains general questions
for any conditions and their particular answers. The AIML generator converts
case files to AIML for the virtual patients.

AutoTutor [Graesser et al., 2005] is a virtual teacher of Newtonian physics.

20 Chapter 2. Related Work

It is a 3D character programmed to fulfil student’s expectations, by using Latent
Semantic Analysis as a pattern-matching algorithm and a curriculum script as
the knowledge. AutoTutor is evaluated by a variation of the Turing test.

The ancient city of Uruk [Bogdanovych et al., 2012] is an educational appli-
cation for cultural heritage. Its inhabitants are IVAs that participate in activities
regulated by an Organisation Centred Multi-Agent System, and also play the
role of virtual tutors that use standard AIML. As virtual tutors, they chat with
students about their current state, the activities they perform and give explana-
tion about surrounding objects [Ijaz et al., 2011]. They evaluate the believability
of the virtual tutors and the learning effectiveness of their proposal.

This research implements “v-mWater application”, an Assisted Hybrid Struc-
tured 3D Virtual Environment that includes task-oriented AIML, an extension
of AIML that enables task-oriented conversations in the system. Thus, in v-
mWater humans and agents interact in a structured system to complete com-
plex tasks by using natural language conversations. Moreover, the application
is evaluated with users in terms of efficiency, efficacy and user satisfaction (see
Section 6.4).

Chapter 3

Assistance Formalisation

Figure 3.1: Assisted Hybrid Structured Virtual Environment infrastructure

This chapter presents the formalisation of the proposed infrastructure for As-
sisted Hybrid Structured Virtual Environments as the foundations of the assis-
tance services. It is composed by two layers (see Figure 3.1): the Organisational
Layer and the Assistance Layer.

On the one hand, in the Organisational Layer participants are represented as
runtime agents (rtAg) that participate to achieve their goals, their interactions
are structured by a system specification (Org), and the organisational Trace
(Trac) keeps the different system execution states. On the other hand, the
Assistance Layer is populated by a set of organisational agents named Personal

21

22 Chapter 3. Assistance Formalisation

Assistants, each one offering a set of general assistance services to a system
participant.

Both layers are connected by a bidirectional communication channel depicted
as arrows in Figure 3.1. Participants request assistance to Personal Assistants
using a private channel, which are allowed to access to the organisational infor-
mation (Org and Trac) to provide participants with a response. Before describing
these layers, section 3.1 gives an introduction of the example that is used to ex-
plain the formalised elements. Then, the Organisational and Assistance layers,
and the communication channel are formalised in Sections 3.2 and 3.3.

3.1 Running Example

Figure 3.2: Extract of the specification of v-mWater for seller participants.

The example scenario is the Electronic Institution v-mWater, a simplification
of mWater [Giret et al., 2011], a water market where the goods to negotiate are
water rights and the traders are the right-holders (see Section 4.2 for a further
explanation).

Briefly, v-mWater is a v irtual market based on trading Water which models
an electronic market of water rights in the agriculture domain. It represents a
hydrological basin that irrigates farmlands of its surrounded area. This example
considers farmlands that irrigate from water sources totally controlled by public

3.2. Organisational Layer 23

governments. Each farmland has associated a water right with an assigned
quantity of water, and their holders (or representatives) are allowed to enter the
market.

The market supports the transfer of water among water rights. Sellers enter
the market to register their surplus of water, which will be negotiated later on
by buyers. The result of a negotiation is an agreement where a seller agrees to
reallocate (part of) the water from her or his rights to a buyer for a fixed period
of time in exchange for a certain amount of money. For the sake of clarity, the
concepts explained in this chapter are illustrated with examples from the sellers’
point of view. A detailed explanation of the application is given in Chapter 4.

Figure 3.2 depicts an extract of v-mWater specification concerning seller
participants. Sellers are supported by staff agents to perform two tasks in the
market: i) register tradable water rights to be negotiated later on; and ii) get
information about the last transactions in the market. The market has enabled
a set of assistance services devoted to help system participants, i.e. sellers and
buyers, to perform their tasks. The specification of Figure 3.2 is detailed along
next Section 3.2.

3.2 Organisational Layer

Inside the two-layered architecture depicted in Figure 3.1, this section formalises
the Organisational Layer (OL) by extending the definition of Campos et al.
[Campos et al., 2009]. The main contributions in this layer are: i) the extension
of the Organisation Specification (Org) with elements related to assistance and
ii) the addition of the Organisational Trace (Trac), which contains historical
system information useful for assistance purposes.

3.2.1 Organisation Specification

Org = 〈O,SocStr, SocConv,DomP,Goals, AssQoS〉 (3.1)

SocStr = 〈Rol,Rel, AgP 〉 AgP : p (3.2)

SocConv = 〈Activ, Prot, ActivRel, A〉 (3.3)

DomP = 〈OrgP,EnvP 〉 OrgP,EnvP : p (3.4)

Goal = 〈OrgGoal, AgSat〉 (3.5)

p = 〈name, type, V isRol〉 (3.6)

Within the organisation (Equation 3.1), the Ontology O contains the def-
inition of concepts related to the domain. These concepts can be simple or
structured ones. The ontology in the example of Figure 3.2 defines simple do-
main concepts such as price –which is expressed as a real number greater than
zero–, and structured ones such as water right –which is composed of the quan-
tity of water, the area it belongs to, and a participant who is its holder– and
transaction (tran) –that is composed of the transferred right, a participant who
is its buyer, the quantity of water sold, and the price.

24 Chapter 3. Assistance Formalisation

It is worth mentioning that different elements in the system specification
have associated properties, whose values represent their state at runtime. Equa-
tion 3.6 formally defines a property with a name1, a type2 already defined in the
ontology, and the set of roles with visibility to such a property, V isRol ⊆ Rol
(roles are explained below). Visibility implements the natural privacy policy of
any organisation. A participant rtAg perceives a property p whenever it takes
role rol such that rol ∈ V isRol. When V isRol is the empty set (V isRol = ∅)
the property is private and thus it can be only accessed by its owner. On
the other end, when VisRol is the set of all roles defined in the specification
(V isRol = Rol) the property is public, i.e., it is completely visible within the
organisation.

The Social Structure (SocStr) constitutes the second component in the
Org specification and formalises the roles that participants play (Rol), their
relationships (Rel), and a set of properties associated to participants (AgP). In
the running example, SocStr is depicted at the top of Figure 3.2. Participant
roles are staff (f), market facilitator (mf), irrigator (i) and seller (s). Their
relationships are mf is subrole of f and s is subrole of i. Participant properties
are Wright, location and goal. The first one is the list of water rights owned by
the participant, and it is visible to staff roles. The second one indicates where
the participant is located expressed as the identifier (type = id) of an activity
or transition (both explained later on this section) and it is visible to all roles
(V isRol = Rol), i.e. it is public. The third one refers to the individual goal that
each participant has in mind (or memory in case of an agent) and it is expressed
as a partial description of the system execution state (see execution state, S, in
Section 3.2.2), i.e. it contains the subset of runtime values that fulfil the goal, so
that the rest of values can take any value (type = Sp). The goal of a participant
is only known by the participant, i.e. it is private (VisRol = ∅). Thus, in order
the system to be aware of a participant’s goal, it should be asked or predicted
somehow.

Social Conventions is defined in Equation 3.3 and stand for the “rules of
the game”. It is worth to mention here that some rules are watched by staff
agents. Participants enact roles and gather in the activities defined as Activ,
where they complete tasks by following protocols whose specification is given
in Prot, or move to other related activities following the constraints defined in
ActivRel. In the example of Figure 3.2, seller participants can: enter or leave
the system in the Initial or Final activities, ask for market information in the
Waiting&Info activity, and register a water right in the Registration activity.

1This work uses the notation x.name to refer to property name of component x (e.g.,
Mary.location denotes the property location of participant Mary). Moreover, properties
starting with an upper-case letter refer to lists of elements (e.g., Mary.Wrights is the list of
water rights of participant Mary)

2In this work, a property whose type is an ordered list of elements is defined with brackets,
e.g. {right} corresponds to type list of water rights.

3.2. Organisational Layer 25

ActivRel = 〈Tra,Mov〉 (3.7)

mov = 〈mRol, ori, des,mT 〉 (3.8)

activ = 〈ActivProt, ActivP 〉 ActivP : p (3.9)

prot = 〈ProtP, ProtC,Nod, Illo〉 ProtP : p (3.10)

ProtC = {〈rolC,min,max〉} (3.11)

nod = 〈EnterRol, ExitRol〉 (3.12)

illo = 〈sRol, rRol, cM, ori, des〉 (3.13)

A = 〈Illo ∪Mov, Prec, Postc〉 (3.14)

Activities relationships are defined as ActivRel in Equation 3.7. They con-
strain the flow of roles among activities. Transitions (Tra) are intermediate
locations meant for participant synchronization. Movements (mov ∈ Mov,
Equation 3.8) are participant actions that change their location. They are
defined by: i) its role (mRol); ii) the transition and activity it connects
(ori, des ∈ {Tra ∪ Activ}, ori being origin and des destination); and iii) its
type (mT ∈ {“new”, “enter”, “exit”}, meaning create and enter a new activity,
enter, and exit an existing activity)3. Figure 3.2 represents a directed graph,
where nodes correspond to both activities –which are depicted as rectangles– and
transitions –depicted as diamonds–, and edges –that are depicted as labelled ar-
rows between rectangles and diamonds– represent allowed movements between
them.

An activity can be instantiated multiple times and each instance can have
one different protocol associated. It is defined as activ in Equation 3.9, where
ActivP is a set of properties and ActivProt ⊆ Prot is a set of protocols that
can perform it. An example in v-mWater is the activity where sellers register
water rights to be negotiated later on, namely Registration, which is enabled by
means of a registration protocol.

Protocols structure participants’ interactions within activities. Equation 3.10
defines a protocol (prot ∈ Prot in Equation 3.3) as a set of properties (ProtP)
and its specification as a Finite State Machine, where nodes (Nod) correspond
to the states and illocutions (Illo) to state transitions. Figure 3.2 depicts pro-
tocols’ nodes as circles and illocutions as labelled arrows. Those nodes where
the protocol execution starts and ends are named initial and final respectively.
Moreover, the protocol capacity (ProtC in Equation 3.11) defines a set of tuples
that bound the number of participants that enact each role (rolC): min sets the
minimum number required to open the protocol, whereas max sets the maxi-
mum number of allowed participants in this protocol. If capacity is not specified
for a particular role it means that it is not allowed to participate in the protocol.
It can be also specified, for each protocol node (nod ∈ Nod) in Equation 3.12,
the list of roles that can join (EnterRol) and leave (ExitRol) the activity when

3This work uses the notation mT(mRol, ori, des) to refer to a movement and, when it is
possible it simply uses the notation mT(mRol) (e.g. in Figure 3.2).

26 Chapter 3. Assistance Formalisation

it is at this protocol state. For example, in the Registration activity in the left
of Figure 3.2, participants playing seller role are allowed to enter (can enter s)
and exit (can exit s) whenever its protocol state is node open.

Illocutions are messages that participants interchange when following a pro-
tocol. They act as transitions of the Finite State Machine, so they may imply
a change in the protocol execution state (node). Thus, for instance, any il-
locution uttered at an initial node opens the protocol. An illocution (illo in
Equation 3.13) formalises a participant action by specifying: i) the role of the
sender (sRol) or all, in case anybody can send it; ii) the role of the receiver
(rRol) or all, if it is public and everybody will receive it; iii) the message con-
tent (cM), with data types already defined in the ontology; iv) the origin node
(ori) where the message can be sent; and v) the destination node (des), the node
reached once the illocution is successfully uttered. For instance in Figure 3.2,
illocution register(s, mf, reg)4 in the Registration activity specifies the request
from a seller (s) to a market facilitator (mf) for a registration (reg). It can be
uttered when the protocol’s state is node open and, once performed, the protocol
state will transit to req.

In this formalisation, actions (A) are defined in Equation 3.14, and corre-
spond to illocutions exchanged between participants inside activities and move-
ments to enter or exit such activities (see Equations 3.13 and 3.8). Furthermore,
all actions include: i) a set of preconditions (Prec) as boolean conditions5 (over
properties defined in {AgP ∪RolP ∪ProtP ∪ActivP ∪DomP}) that should be
fulfilled before executing the action; and ii) a set of postconditions (Postc) which
will update properties’ values after the action has been successfully executed6.
In the example, the illocution agree in the Registration has a precondition that
restricts registrations to water rights belonging to the basin (Prec = {reg.right
∈ Rights}) and one postcondition that updates the list of water rights to be
negotiated later on (Postc = {Regs ← Regs ∪ {reg}).

Back to the general organisational definitions, Domain properties, de-
fined in Equation 3.4 are differentiated between: organisation internal properties
(OrgP), such as the list of water rights to be negotiated in v-mWater –Regs–;
and environmental properties (EnvP), such as the list of water rights belonging
to the basin –Rights–.

Goals (Goal) are defined in Equation 3.5 as a duple containing a set of or-
ganisational goals (OrgGoal) and a method to calculate participant satisfaction
(AgSat). OrgGoal describes the organisation design purpose in terms of desired
values for certain properties, usually related to the organisational properties.
AgSat is a method (may be asking the participants or computing it automati-
cally) to obtain the participants’ degree of satisfaction at runtime. In v-mWater,
one organisational goal is to minimise the auction time. On the other hand, the
degree of participant satisfaction for a seller can be related to the quantity of

4For the sake of clarity, and similarly to movements, hereinafter this work uses the notation
illo(sRol, rRol, cM, ori, des) to refer to an illocution, where illo is the label given to the
illocution, and ori and des will be omitted when they are clearly defined (e.g. in Figure 3.2).

5This work uses the following boolean operators: ¬, =, 6=, >, ≥, <, ≤, ∈, /∈, &&, ||.
6The operator ← is used by this work to indicate the updating of properties’ values

3.2. Organisational Layer 27

water sold.

Finally, the Assistance Quality of Service AssQoS is a method to mea-
sure the influence that the Assistance Layer has on the whole system, such as
empirical evaluations. The particular measurement method for software agents
is detailed in Section 5.3.3. Alternatively, for human participants a usability test
has been conducted (Section 5.6.4).

3.2.2 Organisation Historical Information

At runtime, participants enter the organisation, interact trying to achieve their
tasks and finally exit. As the result of these (inter)actions, the state of the or-
ganisation changes. The Organisational Layer keeps the sequence of execution
States (S) and the participants’ Runtime Actions (RtA) within the organisa-
tional Trace (Trac). The rest of this section is devoted to detail them.

–Execution States. A state S contains current runtime (Rt) values of
non-static organisational elements. This runtime values are therefore runtime
instances of the elements in the organisation. Equations 3.15-3.21 specify these
elements based on Equations 3.1-3.5.

S = 〈RtSocStr,RtSocConv,RtDomP,RtGoals,RtAssQoS〉 (3.15)

RtSocStr = 〈RtAg〉; rtAg = 〈RtAgP,RtRolP 〉, rtAg ∈ RtAg (3.16)

RtSocConv = 〈RtActivRel, RtActiv〉 (3.17)

rtActivRel = 〈RtTra〉, rtActivRel ∈ RtActivRel (3.18)

rtActiv = 〈RtActivP,RtProtP 〉, rtActiv ∈ RtActiv (3.19)

RtDomP = 〈RtOrgP,RtEnvP 〉 (3.20)

RtGoal = 〈RtOrgGoal,RtAgSat〉 (3.21)

Figure 3.3: Runtime values of properties in v-mWater

28 Chapter 3. Assistance Formalisation

Figure 3.3 shows the current state of v-mWater. The domain property list of
water rights (Rights) contains wr1, owned by Mary with 100,000 m3, the list of
transactions (Trans) is empty, and the list of registrations (Regs) as well, so that
nobody has requested a registration and no transactions have been performed
in this market season. There are two activities: Waiting&Info, whose running
protocol (waiting&info) is open to seller participants because its state is open;
and Registration is not created.

There are three participants: Mary, who is a human user playing seller role,
and InfoMngr and RegMngr, which are software agents both playing market
facilitator role. Mary is located at transition sMove, and her goal is to register
100,000 m3 of her water right (wr1) at 11e per 1,000 m3 of water in the Registra-
tion activity; the InfoMngr is inside the Waiting&Info activity, and the RegMngr
has recently entered the market so that it is located at transition mfEnter, from
where it can create a new Registration activity.

–Runtime Actions, RtA = {rtA1, . . . , rtAn}, is the set of participants’
actions performed at runtime, where n is the number of participants of the
institution and rtAi is the action performed by a participant i. This work assigns
the idle action to rtAi (rtAi = idle) when participant i does not perform any
action.

–Organisational Trace, Trac, contains the trace of the organisation (Equa-
tion 3.22) specified by: i) a set of time stamps, T ; ii) the sequence of execution
states at each time stamp, S; and iii) a set of participants’ actions performed at
each state, RtA. S0 is the initial state, Sc is the current state and in general Si

is the organisation execution state at step i, RtAi is the set of actions that take
place at such step and Ti indicates the time at which Si occurred. S only keeps
information about changes in the organisation.

Trac = {〈T0, S0, RtA0〉, . . . , 〈Tc, Sc, RtAc〉} (3.22)

Table 3.1 shows an example of Trac in v-mWater. Second column shows the
incremental changes in the execution state. Specifically, the property “state” of
the Registration activity at step occurred at time t (see Sc in Figure 3.3) has the
value “not created”, therefore the activity is not yet open to sellers. It just opens
when the RegMngr agent enacting market facilitator role (mf) performs first
the movement new and then the illocution open. As consequence, the properties
Registration.state, Registration.Participants and RegMngr.location are updated
and S changes at steps t+1 and t+2. Finally, user Mary enters the registration
and its location, as well as the participants of the activity, are updated at step
t+3.

3.3 Assistance Layer

The Assistance Layer depicted at the top of Figure 3.1 is in charge of providing
context-sensitive help and decision support to participants in the Organisational
Layer. It is populated by the so-called Personal Assistants, a set of organisational

3.3. Assistance Layer 29

T S RtA

t see Figure 3.3 new(RegMngr, mfEnter, Registration)

t+1 Registration.state = initial open(RegMngr, all, ∅,initial, open)

RegMngr.location = Registration

Registration.Participants =

{RegMngr:mf}
t+2 Registration.state = open enter(Mary, sMove, Registration)

t+3 Mary.location = Registration

Registration.Participants =

{RegMngr:mf, Mary:s}

Table 3.1: Example of v-mWater Organisational Trace at times from t to t+3

agents offering a set of Assistance Services to participants in the Organisational
Layer.

The Assistance Layer is designed to provide the following services (AsServ =
{Info, Just, Est, Adv}): i) refined information (Info), ii) justification (Just)
of applied constraints when performing an action iii) estimation (Est) of action
consequences, and iv) advice (Adv) on how to complete a task.

3.3.1 Personal Assistant Agents

Personal Assistant Agents are software agents that belong to the organisation.
Specifically, one Personal Assistant provides direct and sole support to one par-
ticipant rtAg ∈ RtAg, who, as an autonomous entity, can freely use the given
support in its decision process. The private communication channel between
a Personal Assistant and its assisted participant is depicted as arrows in Fig-
ure 3.1. The communication processes can be formalised as two different services,
assistance by subscription and assistance under request:

AsServ : Org × Trac→ Res (3.23)

AsServReq : Req ×Org × Trac→ Res (3.24)

These definitions assume that the infrastructure provides with information about
the organisation specification (Org) and its execution state (Trac) to Personal
Assistants. Since Personal Assistants are organisational agents, they are allowed
to use organisational information in order to provide assistance. However, they
only provide responses (Res) concerning properties that respect visibility7 con-
straints.

First, Equation 3.23 defines the process by subscription (AsServ). It can
be provided at different frequencies of subscriptions: each time the information
changes, e.g. when a participant location is updated by joining or leaving an
activity; at concrete moments, e.g. the first time entering the organisation the
participant receives a “welcome pack”; and never, e.g. subscription disabled.

7Properties visibility was further explained in Section 3.2.1

30 Chapter 3. Assistance Formalisation

Second, Equation 3.24 defines the process under request (AsServReq). The
request, Req, can include personal information of the participant (e.g., its goals)
who can decide whether to reveal it or not. The specification of both Req
and Res illocutions contains first the sender, second the receiver, and a set of
parameters in the request, Req = 〈rtAg, pA, Par〉, or a set of values in the
response, Res = 〈pA, rtAg, V al〉. As explained along this section, both the
parameters in the request Par and the values in the response V al depend on
the particular service provided. Although the participant can decide how much
relevant information provides to its assistant agent, it is worth mentioning that
the more relevant information revealed, the better services will be provided.

This work proposes to establish a private communication channel between a
Personal Assistant and its assisted participant in order to preserve the privacy of
the information in the communications. To ensure the use of private information
in the defined terms and conditions, a service contract may be signed between
the Personal Assistant and the participant. On one hand, this contract commits
the Personal Assistant to keep personal information private, to not exploit it,
and to offer services pursuing participants’ private information following social
conventions. On the other hand, a participant is responsible for the use it makes
of the services rendered based on the personal information revealed by it and can
decide when the personal information should be erased by the assistants. As a
Personal Assistant is designed to provide assistance based on organisational trace
and personal information in a private way, this work considers that participants
should have confidence using them. Subsequent sections detail each of the four
proposed services.

3.3.2 Information Services Specification

It is obvious that, usually, for a successful participation in the system, partici-
pants should be aware of organisational information, at least the system specifi-
cation (Org) and, even better, its historical execution states, i.e. the organisa-
tional trace (Trac). Most times, even being aware of organisational information,
participants have to deal with processing the data in order to be useful to them.
Participants may need processed organisational information due to 3 main dif-
ferent reasons. First, the specification of the organisation could be difficult to
understand for some participants. Second, runtime data could not be perceived
by participants, because, even though it is visible to them, they were not notified
about it. Finally, (possible non perceived) data from previous executions states
may require to be processed in order to be useful for participants’ decisions, e.g.,
the weighted average value of transactions’ prices in v-mWater along a previous
market season.

This research work proposes an Information Service that provides partic-
ipants with processed information about the organisation specification (Org)
and its historical runtime states (Trac). Information Service can be divided
into three subcategories of services: i) Organisation Specification, ii) Runtime
Organisation Specification and iii) Runtime Properties.

Organisation Specification (InfoOs in Equation 3.25) information ser-

3.3. Assistance Layer 31

vice provides with information about the organisation as defined at design time
(Org).

InfoOs :Req ×Org → Res (3.25)

ReqOs =〈rtAg, pA, id〉 (3.26)

ResOs =〈pA, rtAg, id.values〉 (3.27)

The only parameter of the request is the identifier of a component (id ∈ Org)
in the organisation specification. The response contains the (list of) value(s) of
such a component at design time (id.values).

For example, in v-mWater Mary wants to join the Registration activity fol-
lowing protocol registration and requests her Personal Assistant (pAMary)
information about the protocol’s illocutions (id ← registration.Illo). As a re-
sult she would obtain as response the list ResOs ={open(mf,all,∅,initial,open),
close(mf,all,∅,open,final), register(s,mf,reg,open,req), agree(mf,s,∅,req,open),
failure(mf,s,∅,req,open)}), that is the market facilitator can open and close the
activity, and accept (agree) of refuse (failure) a registration that the seller can
request (register).

Runtime Organisation Specification (InfoRtOs in Equation 3.28) infor-
mation service delivers information of the organisation specification based on
the current situation of the participant within the organisation at runtime (Sc).

InfoRtOs :Req × Sc → Res (3.28)

ReqRtOs =〈rtAg, pA, par〉 (3.29)

ResRtOs =〈pA, rtAg, V alues〉 (3.30)

In this case, one parameter par ∈ {location, actions, destinations} indicates the
class of specification requested: i) the current location ii) the actions defined at
such location, or iii) the possible destinations in the organisation.

The values in the response can be:

1. the participant’s location ∈ {Activ, Tra}, expressed as an activity or tran-
sition identifier;

2. the set of actions that include participant’s role and are defined at such
location, i.e. their origin is the participant’s location for movements, or
the current state of the protocol where the participant is located in case
of illocutions;

3. or the set of destinations defined in previous actions, where a destination
∈ {Activ, Tra} is expressed in the same way as a location for movements.

Following with the example in v-mWater, at state t+3 in Table 3.1
Mary has joined the Registration activity, and she could ask for the de-
fined actions to her Personal Assistant (ReqRtOs(Mary, pAMary, actions)),
which would respond {register(s,mf,reg,open,req), exit(s,mf,Registration,sMove),
close(mf,all,∅,open,final)}, which can be read as a seller can request a water right

32 Chapter 3. Assistance Formalisation

registration to a market facilitator, sellers can exit the activity, or a market fa-
cilitator can close the activity.

Runtime Properties (InfoRt in Equation 3.31) is (processed) information
about historical values (see Trac in Section 3.2.2) of the observable properties
(see Org in Section 3.2).

InfoRt :Req ×Org × Trac→ Res (3.31)

ReqRt =〈rtAg, pA, id, tini, tfin, f〉 (3.32)

ResRt =〈pA, rtAg, f(id.values)〉 (3.33)

The parameter of the request is the identifier of a property id ∈ AgP ∪ProtP ∪
ActivP ∪OrgP ∪EnvP , two timestamps defining a period: tini, indicating the
beginning, and tfin, indicating the end, and a statistical function associated, e.g.
the minimum, maximum or average values. Notice that, although the requested
property could not be visible to the participant, its statistical value could be.
The response will contain the corresponding statistical values of such a prop-
erty at runtime f(id.values) between the specified timestamps. If no statistical
function is provided (f = ∅) the raw list of values is returned. Continuing with
the previous example, Mary, in order to decide the starting price of her water
right in the negotiation, can request for a low transactions price, i.e. the min-
imum value of the price in the domain property transactions along a previous
market season. Notice that this information cannot be obtained in the Wait-
ing&Info activity, where information about recent transaction of the current
market season is offered. One possible request could be asking for a minimum
(min) transaction price during the period of time between time stamps t1 and t80:
ReqRt(Mary, pAMary, 〈tran.price | tran ∈ Trans, t1, t80,min〉). One possible
response could be ResRt(pAMary,Mary, 8.00).

3.3.3 Justification Services Specification

As defined in Section 3.2, the organisation is structured with regulations (or
rules) implicitly defined in the specification (particularly in the social conven-
tions). These rules constrain the actions that a participant performs. Thus,
from the set of all actions defined in the specification, only a subset of them are
allowed to be performed by a participant enacting a role and located in a given
context (i.e. an activity or a transition). These are the set of the possible actions
for a participant, while the rest of them are prohibited. Moreover, at current
system state, a subset of these possible actions may be non-valid because any
of its constraints is not fulfilled. Summarising, this work considers two types
of actions that cannot be executed by a participant: prohibited and non-valid.
Thus, in order to justify why an action cannot be executed, a participant has to
reason about its prohibitions, or the rules that constrain its execution at current
state.

3.3. Assistance Layer 33

Just :Req ×Org × Sc → Res (3.34)

Req =〈rtAg, pA, a〉 (3.35)

Res =〈pA, rtAg, J〉 (3.36)

(3.37)

This work proposes a Justification Service (Just in Equation 3.34) that,
based on the specification of the organisation (Org) and its current state (Sc),
provides the participant with a justification related to the last action that she or
he failed to execute. The request (Equation 3.35) will contain such last action
(a) the participant tried to execute. By default, this service is designed to
be provided to participants immediately after the participant tries to perform
an action, but cannot execute it because either it is prohibited in her or his
current context or it is non-valid at current state. When service’s subscription
is disabled, the participant can request this service for the last action she or he
wanted to but could not perform.

The response would be a list of justifications, characterised by a type, on
the related prohibitions –if the action is banned– or the rules that constrain its
execution –if it is allowed but non-valid at current system state. The type of
justification is related to the definition of the social conventions, e.g. to utter an
illocution within an activity the participant should be inside and there should
be a sender, or an activity should be open to her or his role in order she or he
to enter. The operationalisation of the Justification Service is explained later on
in Chapter 5.

As an example of non-valid action, suppose that user Mary is located in tran-
sition sMove trying to enter the Registration activity (i.e. executing the move-
ment enter(Mary, Registration)) but unfortunately the Registration activity is
in the initial state and thus, it is not open to sellers. This rule is defined in the
initial state of activity’s protocol, which indicates that only participants enacting
market facilitator (mf) role can enter the activity (initial.EnterRol = {mf}).
Thus, the movement is allowed for Mary in her current context, but it is non-
valid at current system state. A possible response by subscription could be: in
the current state of Registration’s protocol Mary’s role (seller) cannot enter.

As an example of prohibited action, if Mary is located within the Wait-
ing&Info activity she is not allowed to register a water right, as this illocution is
defined in the Registration activity. A possible response could be: in the current
location of Mary, she is not allowed to register a water right.

3.3.4 Estimation Services Specification

In structured virtual environments, prior to executing an action, participants
may analyse the prohibitions and consequences derived from its execution.
Namely, they want to assess if the action can be executed at current state (i.e.
it is valid) and the consequences of doing it. Thus, in order to decide whether to

34 Chapter 3. Assistance Formalisation

perform the action or not, participants should estimate the resulting state after
executing it.

Est :Req ×Org × Trac→ Res (3.38)

Req =〈rtAg, pA, a〉 (3.39)

Res =〈pA, rtAg, Sc+1}〉 (3.40)

This work proposes an Estimation Service (Est in Equation 3.38) that, based
on the system specification (Org) and the current state (Sc), is able to estimate
whether the action can be executed at current state or not and, in affirmative
case, it also computes the next state after executing the given action.

By default, this service is provided under request. The request (Equa-
tion 3.39) should include the action to be estimated (a). Subscription could be
activated for individual actions whose execution entails high risk consequences
and, thus, they are important to be understood by the participant. In this case,
the estimation would be given when the participant tries to perform the action
and its actual execution would be then confirmed (or not) by the participant.

The Personal Assistant will return (Res in Equation 3.40) the empty set (∅)
if the action is invalid, or the next system state after executing the action other-
wise. Knowing the organisation specification and its current state, it is possible
to compute the next state after executing an action. Furthermore, Estimation
Service can be offered together with information about possible actions at next
system state, or a justification when the action is non-valid or prohibited (as
described in Section 3.3.3). Thus, participants can directly focus on evaluat-
ing action consequences and prohibitions instead of social conventions and the
system state.

Following with the previous example, when Mary, who enacts seller role,
is about to enter the Registration activity, she may ask “What if I enter the
Registration Activity?”. Then, if the activity is open to sellers, the response
would be of the form:

Sc+1 =

〈 Mary.location = Registration,
Registration.protocol = registration,
Registration.state = open,
Registration.Participants = {RegMngr : mf,Mary : s}

〉

The translation to natural language could be: Mary is able to enter; once
inside the activity, it will remain at open state of protocol registration, and there
will be one additional participant named RegMngr playing market facilitator
role, i.e. a staff member of the organisation.

3.3.5 Advice Services Specification

This section has proposed so far three services that help participants: i) to
process data about the organisation specification, the participant current state,

3.3. Assistance Layer 35

and the organisational historical execution states; ii) after executing an action,
to justify its constraints when it is prohibited or it is allowed but non-valid at
current state; and iii) before executing an action, to estimate whether it can be
executed or not, together with the next state after executing it in affirmative
case. Advice service is devoted to deal with a step further in the participant’s
decision process.

Participants complete tasks by executing a sequence of ordered interleaved
interactions, i.e. a plan. At each step, a participant decides which action to exe-
cute next, with the aim of leading to her or his final goal. Moreover, such a plan
can include not only its own actions but other participants’ ones. However, infor-
mation, justification and estimation deal with actions that the participant may
or may not execute at current state, and does not contemplate the participant’s
goal nor include other participants’ actions.

One way to achieve tasks in a structured environment is by imitating other
users’ behaviours, although the knowledge needed to do so is stored in the or-
ganisational trace and requires to be processed. Another way is to plan a set of
actions that fulfils social conventions at current state. In any case, these decision
processes require a low-level (strong) analysis of organisation specification (Org)
and the organisational trace (Trac).

Adv :Req ×Org × Trac→ Res (3.41)

ReqI =〈rtAg, pA, goal〉 (3.42)

ResI =〈pA, rtAg, a〉 (3.43)

ReqP =〈rtAg, pA, goal〉 (3.44)

ResP =〈pA, rtAg, P lans〉 (3.45)

This work proposes the Advice Service Adv in Equation 3.41 that provides
participants with a plan that leads to her or his goal. This service can be provided
in different ways. Here, imitation and planning are described. Usually, these
advice services are provided under request, and the participant has to indicate
in both cases the goal to achieve (see Equations 3.42 and 3.44). Subscription
requires to predict the participant’s task (i.e. goal) and advising her or him when
performing a non-planned action, but this goes beyond the scope of current work.

Following are detailed the responses for each case.

Imitation (I) is the simplest way to create an advice. In this case, plans are
defined as the most common action carried out by other participants facing the
same situation, i.e. following the same task in a similar system state, that led
them to their goal completion. The response is defined in Equation 3.43 and it
is composed by the next action (a) to perform. Intuitively, this process can be
done by applying machine learning techniques, such as linear regression, having
as learning data the organisational trace (Trac).

For example, in v-mWater, seller Mary when entering the institution (this
situation corresponds to the system state represented in Figure 3.3) may require

36 Chapter 3. Assistance Formalisation

an advice to get information about last market transactions. The infrastructure
could answer with the advice: other participants entered the Wait&Info activity.
Notice that the plan just corresponds to a single action.

Planning (P) is the most sophisticated service, that provides the participant
with possible plans that conform to the system specification (Org), and if exe-
cuted at current system state (Sc) will lead the participant to her or his goal of
performing the task.

The provided advice in the response (Equation 3.45) is a set of n plans
Plans = {Pl1, ..., P ln}. A plan (Pl = {a1, . . . , am} , P l ∈ Plans) consists of
a sequence of m actions (movements and illocutions) that executed at current
state will complete the assisted participant’s task. Thus, this service not only
requires to reason about the current state, but also about future states. Notice
that Advice service uses the rest of services in its planning process. Briefly, it
uses information service to select at current location of the participant the possi-
ble next actions in the plan; the estimation service to assess whether the action is
valid or not, and compute the sequence of planning states; and the justification
service of non-valid actions in order to search associated plans of other partici-
pants that overcome the attached constraints (e.g. the participant cannot enter
an activity that is not created, so that other participant should create it before),
and to compute a heuristic cost to reach the goal. The operationalisation of the
Advice Service is explained in Chapter 5. This way, participants only have to
select one of the provided plans and execute it instead of performing complex
planning processes based on the organisation specification and its current state.

Following with the example, Mary at current state (see Figure 3.3) can re-
quest a plan for her goal, i.e. to complete the task “register 100,000 m3 of water
at price 11e per 1,000 m3 of water”. As response she could obtain the sequence
of interactions (the same response in computer-based language, i.e. actions in
the OCMAS, appears indented within each proposed action):

1. Mary, wait until RegMngr creates and enters the Registration activity;

• new(RegMngr, mfEnter, Registration)

2. Mary, wait until RegMngr opens the Registration activity;

• open(RegMngr, all, ∅, initial, open)

3. Mary, enter the Registration activity;

• enter(Mary, sMove, Registration)

4. Mary, request a registration to RegMngr of 100,000 m3 of water at 11e
per 1,000 m3 of water;

• register(Mary, RegMngr, reg1=〈wr1, 100,000, 11〉, open, req)

5. Mary, wait until RegMngr agrees and Mary’s water right is registered;

• agree(RegMngr, Mary, ∅, req, open)

Chapter 4

Application Scenarios

This chapter presents the Assisted Hybrid Structured 3D Virtual Environment
that will be subsequently used to illustrate and evaluate the contributions of this
research. It is an e-government application named v-mWater, a v irtual market
based on trading Water, modelled as a Virtual Institution [Bogdanovych, 2007].

First, Section 4.1 provides the reader with some background in domain ap-
plications. Then, Section 4.2 formalises v-mWater model and specifies it as
an Electronic Institution. Next, Section 4.3 discusses the related engineering
process and shows an example execution. The evaluation of the system is ex-
plained in Section 4.4. Finally, in order to show the generality of the approach,
Section 4.5 discusses an alternative application domain: serious games for local
smart micro grids.

4.1 Application Background

The application domains that are explored in this work are serious applications,
which are the so-called e-∗ applications –such as e-learning, e-commerce and
e-government– and serious games. Particularly, this research considers an e-
government application for Water Markets and a serious game for Smart Grids.

e-government for Water Markets Public administrations are increas-
ing the usage of Information and Communication Technologies to deploy e-
government applications, to provide a variety of services over the internet to
citizens, businesses, employees and agencies. Some examples are tax returns,
voting, virtual offices and help desk applications [Chadwick and May, 2003,
Almarabeh and AbuAli, 2010]. Some works have modelled these services as
Multi-Agent Systems [De Meo et al., 2005, Abdellatif et al., 2013], so that they
have benefit from being distributed and intelligent. Furthermore, e-government
applications can take advantage of Organisation Centred Multi-Agent Systems
to model governmental services as structured interactions between stakeholders

37

38 Chapter 4. Application Scenarios

and to enforce government regulations. In particular this work is interested in
those systems where participants can be both human and software agents.

In this research, the focus of the first application scenario is on water mar-
kets that can be used by governments with the objective of encouraging more
efficient use of water for irrigation, above all, in countries with water scarcity
problems, such as Australia [Bjornlund and Rossini, 2010]. For example, Wa-
terfind is an intermediary private company which offers web-based tools to ac-
cess the national market in Australia. These tools allow right holders to place
on-line orders to buy or sell water rights, they also can buy water from a pre-
vious selling order, sell water to a buying order, and see real-time information
about orders [WaterFind, 2005]. This research advocates that Virtual Institu-
tions can enhance the participation of citizens and business representatives in
e-government applications with respect to traditional web-based user interfaces
(WUI) or 2D graphical user interfaces (GUI). To demonstrate that, this work
proposes v-mWater, an e-government application for the negotiation of water
rights. Next section formalises v-mWater.

Serious Game for Smart Grids. The electricity network also uses Informa-
tion and Communication Technologies to underpin the network’s infrastructure
and performance, i.e. the so-called Smart Grids. Specifically, Smart Grids are
concerned with policy demands (to address global warming and carbon diox-
ide emissions) and consumer demands for low and competitive electricity prices.
Other important issues in the Smart Grid are security, smoothing out peak de-
mand, increased generation from renewable resources, and more importantly,
from the point of view of this research, active user participation.

The optimisation of the energy system depends on the users’ behaviour and
their interactions with the new technologies. User behaviour impacts the Smart
Grid at both individual (e.g. a household) and collective levels (e.g. a commu-
nity). However, the role of the consumer tends to be ignored by Smart Grids,
as they assume that users will somehow adapt to new technologies. In fact, a
major problem that arises from the evolution of the electricity distribution net-
work is the limitation of the user interface and the imposition of Smart Meters
as controlling and distributed sensors, that report to a monolithic and central
control system [Bourazeri et al., 2014].

Smart Meters are devices that are installed in house’s appliances for read-
ing the energy consumption, but their advanced features (process and transmit
consumer’s information to energy providers and provide feedback to users) make
them more functional and useful [McDaniel and McLaughlin, 2009]. Consumers
can have a real-time overview of the energy usage by connecting a Smart Meter
to every electrical appliance; Smart Meters know exactly how much electricity
each appliance consumes at a specific time period. Another advanced feature is
the pricing scheme with the different prices and the variation in tariffs. Smart
Meters should not be just passive devices for displaying data, but they should
allow to remotely control the electrical appliances and schedule them depending
on consumers needs and preferences. This work aims to establish and encourage

4.2. v-mWater Model 39

user participation within Smart Grids by means of Serious Games.
Serious games are digital games, simulations and virtual environments whose

purpose is not only to entertain and have fun, but also to assist learning and help
users develop skills such as decision-making, long-term engagement and collab-
oration. They are experiential environments, where features such as thought-
provoking, informative or stimulating are as important as fun and entertain-
ment [Marsh, 2011]. Serious games can help users to improve their abilities,
while at the same time designing and implementing a user-infrastructure inter-
face based on them can engage and motivate users for long-term decisions and
actions. Users are able to observe changes in their performance and behaviour
throughout this interface, whereas their active involvement, participation and
confidence can be enhanced. Another important feature is the collaboration
that can be established among players who play for achieving a common goal
(see Ostrom’s principles in Section 4.5). Thus, this research proposes an Assisted
Hybrid Structured 3D Virtual Environment that models a game for Smart Grids
with training purposes. This game helps users to better understand problems
concerning resource allocation, prices, investment decisions and grid’s sustain-
ability.

4.2 v-mWater Model

v-mWater is a Virtual Institution which models an electronic market of water
rights. This market is a simplification of mWater which is an Electronic In-
stitution focusing on a general water market that includes conflict resolution
features [Garrido et al., 2013]. While mWater includes generic water uses such
as human consumption or industrial, this work restricts the model to water
trading for agricultural purposes, where irrigators are the only actors using the
water.

4.2.1 Water Market

The water market presented in this work is modelled in the agriculture domain.
More specifically, it considers farmlands that irrigate from water resources totally
controlled by public governments. A water right in this domain is associated
with a farmland. The right-holders are either the owners or the lessees of the
farmlands, namely, the irrigators. An irrigation area is defined as a group of
farmlands which can irrigate from the very same water resource –e.g. a reservoir
of a basin–. For the sake of simplicity, this work assumes that one farmland only
belongs to a single area.

At the beginning of the irrigation season, the authorities estimate the water
reserves and assign the quantity of water to the rights. A water right registration
in the market contains the surplus (in terms of m3) of water the irrigators expect
to have on their held water rights and decide to sell them at a particular reference
price. Thus, the goods to negotiate are water rights and the traders are the
right-holders. The result of a negotiation is a transaction where a seller agrees

40 Chapter 4. Application Scenarios

Figure 4.1: v-mWater Performative Structure

to reallocate (part of) the water from her or his rights to a buyer for a fixed
period of time in exchange for a certain amount of money.

The modelled market opens at the beginning of the irrigation season. Only
those irrigators holding rights are allowed to join it. v-mWater groups the negoti-
ations of water rights by irrigation areas. That means all registrations of an area
are negotiated in the same activity under the same negotiation protocol. Only
irrigators holding rights in this area can participate in the negotiation. More-
over, in order to avoid speculation, it is not permitted to resell water rights. It is
worth to mention here that most of these regulations are defined in the system
specification, and also are watched by participants playing staff roles that be-
long to the organisation. For example, in order to prevent monopolist strategies,
the authorities may establish a maximum water quantity that one irrigator is
allowed to buy in a particular area, v-mWater may consider a regulation such as
“from the total amount of water under negotiation, each irrigator is just entitled
to buy a maximum of 40%” watched by the basin authority role.

4.2.2 Formalisation and Electronic Institution Implemen-
tation

Chapter 3 gave an extraction of v-mWater concerning sellers’ participants to
help in the explanation of the assistance concepts there formalised. This sec-
tion presents the complete formalisation of v-mWater as an Assisted Hybrid

4.2. v-mWater Model 41

Structured 3D Virtual Environment and its implementation as an Electronic
Institution using the editor ISLANDER [Esteva et al., 2002]. Recall that staff
roles are played by software agents that belong to the organisation and are in
charge of supporting market activities at the same time as watching some of its
regulations. Thus, the regulations they watch are also explained along with the
protocols’ formalisation.

Following the formalisation from Equation 3.1, v-mWater ontology (O) and
domain properties (DomP) are:

O = { price ∈ < > 0,
quantity ∈ N1,
area:string,
participant:string,
right = 〈quantity, area, participant〉,
reg = 〈right, quantity, price〉,
tran = 〈right, participant, quantity, price〉 }

OrgP = { 〈Trans, {tran}, Rol〉, 〈Regs, {reg}, {mf}〉 }
DomP = { 〈Rights, {right}, {mf}〉 }

Specifically, the ontology defines the following simple types: price in euros per
1,000 cubic metres of water as a real number greater than 0, quantity in cubic
metres of water as a natural number greater than 0, and area and participant as
string identifiers. It also defines the structured types water right (right), with
the quantity of its assigned water, the area it belongs to, and its holder (which is
a system participant); registration (reg), with the water right to sell, the surplus
of quantity and its starting price; and transaction (tran), with the water right
sold, its buyer (i.e. a participant), the quantity of water transferred and the
price agreed in the negotiation.

Organisation properties, OrgP, contain Regs as the list of registered water
rights to be negotiated later on, and Trans as the list of transactions in the
present market season. Recall that the market is running along different irriga-
tion seasons, and only current season transactions are stored in Trans. Trans
is visible to all participants in the system (Rol) and Regs is only visible to the
market facilitator role (mf). Finally, DomP contains Rights which is the list of
water rights that are allowed to be traded in v-mWater market, only visible to
the market facilitator role.

Social Model

The Social Structure (SocStr) elements are defined in the following table:

Rol = { i, f, b, s, mf, ba }
Rel = { b:i, s:i, mf:f, ba:f }

AgP = { 〈Wright, {right}, {f, mf, ba}〉, 〈location, id, Rol〉, 〈goal, Sp, ∅〉 }

Participants’ principal roles in the market are irrigator (i) and staff (f), which
have role dependencies (Rel) with four other (sub)roles. On the one hand, irri-
gator role is played by external participants and its subroles are buyer (b) and

42 Chapter 4. Application Scenarios

seller (s). On the other hand, staff role is enacted by organisational agents and
its subroles are market facilitator (mf) and basin authority (ba).

Participant properties are the list of owned water rights (Wright) of type list
of rights and visible to staff roles; the location, which is public and contains an
identifier of the activity or transition where the participant is (id); and goal,
which is private and contains a partial description of the system state (Sp) that
the participant aims to reach.

The Social Conventions (SocConv) of v-mWater are formalised as:

Activ = { Initial, Final, Registration, Waiting&Info, Auction }
Prot = { registration, waiting&info, auction }
Tra = { bMove, sMove, mfEnter, mfAuction, mfExit, baEnter, baExit }

Mov = { exit(b, Initial, bMove),
enter(b, bMove, Waiting&Info),
exit(b, Waiting&Info, bMove),
enter(b, bMove, Auction),
exit(b, Auction, bMove),
enter(b, bMove, Final),
exit(s, Initial, sMove),
enter(s, sMove, Waiting&Info),
exit(s, Waiting&Info, sMove),
enter(s, sMove, Registration),
exit(s, Registration, sMove),
enter(s, sMove, Final),
exit(mf, Initial, mfEnter),
new(mf, mfEnter, Waiting&Info),
new(mf, mfEnter, Registration),
exit(mf, Waiting&Info, mfExit),
exit(mf, Registration, mfAuction),
new(mf, mfAuction, Auction),
exit(mf, Auction, mfExit),
enter(mf, mfExit, Final),
exit(ba, Initial, baEnter),
enter(ba, baEnter, Auction),
exit(ba, Auction, baExit),
enter(ba, baExit, Final) }

This formalisation corresponds to the performative structure as defined in IS-
LANDER and presented in Figure 4.1. Besides the obligated initial and final
activities to enter and exit the institution, it has three activities (Activ) which
enact the market: Waiting&Info, Registration and Auction. There are seven
transitions (Tra) that allow roles to transit between activities: bMove for buyers
(the ‘orX’ transition depicted between the Auction and the Waiting&Info activ-
ities in he Figure); sMove for sellers (the ‘orX’ transition depicted between the
Registration and the Waiting&Info activities); mfEnter (the only ‘and’ transi-
tion on the bottom-left of the figure), mfAuction (the ‘or’ transition on the right
of the figure) and mfExit (the ‘or’ transition from Waiting&Info, Registration

4.2. v-mWater Model 43

and Auction activities to Final activity), for the market facilitator; baEnter (the
‘or’ transition from Initial to Auction activity on the top-left of the figure) and
baExit (the ‘or’ transition from Auction to Final activity) for the basin author-
ity. Movements (Mov) of roles between transitions and activities defines the
following roles’ behaviour:

• The market facilitator is the responsible for starting the execution of every
activity: new(mf,mfEnter,Waiting&Info), new(mf,mfEnter,Registration)
and new(mf,mfAuction,Auction).

• The basin authority is only allowed to enter to the Auction activity to
validate the results: enter(ba,baEnter,Auction).

• Seller participants can move from the Registration to the Waiting&Info
activity and the other way around: enter(s,sMove,Waiting&Info) and en-
ter(s,sMove,Registration).

• On the other hand, buyer agents movements are restricted between Wait-
ing&Info and Auction activities: enter(b,bMove,Waiting&Info) and en-
ter(b,bMove,Auction).

Subsequent paragraphs are devoted to further detail activities, together with
their associated protocols. Each activity defined in this market has one protocol
associated. The Waiting&Info activity follows the waiting&info protocol in Fig-
ure 4.2, Registration activity follows the one with its same name in Figure 4.3
and Auction activity follows auction protocol in Figure 4.4.

As previously explained, protocols are Finite State Machines where nodes
represent the states and the illocutions are state transitions. All protocols in
v-mWater start in the initial node, i.e. the state reached just after an activity
is created. At these initial nodes only staff participants are able to enter (+mf,
+ba). Moreover, the last state of protocols in v-mWater is the final node, where
all participants should exit the activity (-mf, -ba, -s, -b) because it is over.
Protocol nodes open are always reached after the market facilitator utters the
illocution open when the state is the initial node. At these open states, both
sellers and buyers are able to freely enter and exit (+b, -b, +s, -s) the activity
in the waiting&info protocol, while only sellers are in the registration protocol
(+s, -s), and only buyers are in the auction protocol (+b, -b).

Waiting&Info Activity

This activity permits irrigators (buyers and sellers) to become informed about
activities in the market by a market facilitator. Next is the formalisation of this
activity and its protocol:

44 Chapter 4. Application Scenarios

Figure 4.2: waiting&info protocol

Prot = { waiting&info }
Nod = { initial, open, reqr, reqt, final }
Illo = { open(mf,all),

askRegs(i, mf, ∅, open, reqr),
infoRegs(mf, i, {〈right, quantity〉}, reqr, open),
askTrans(i, mf, n, open, reqt),
infoTrans(mf, i, {tran}, reqt, open),
newReg(mf, all, 〈right, quantity〉, open, open),
auctionOpen(mf, all, ∅, open, open),
newTran(mf, all, {tran}, open, open),
auctionClosed(mf, all, ∅, open, open),
close(mf, all, open, final) }

ProtC = { 〈mf, 1, 1〉, 〈s, 0, 100〉, 〈b, 0, 100〉 }

The specification of protocol waiting&info in ISLANDER is depicted in Fig-
ure 4.2. Both buyers and sellers, i.e. irrigators, can request the market facili-
tator to inform about the last transactions in the market by uttering askTrans
illocution at the open state, which would change the state from open to reqt. At
this state, the market facilitator would respond with the illocution infoTrans,
which contains the list of n recent transactions agreed in the Auction activity.

Similarly, irrigators can request for the list of registered water rights by pri-
vately uttering illocution askRegs to the market facilitator, which would change
the state from open to reqr. Then, the market facilitator would respond back
to the seller by uttering the illocution infoRegs with the list of active registra-
tions performed in the Registration activity without prices, because they are not
visible to irrigators.

Moreover, all participants within this activity are proactively informed when:
i) a new Auction activity has been open (auctionOpen), so that buyers are able
to enter; ii) new transactions have been reached after an auction iteration is
finished (newTran); iii) a seller has successfully registered a new right that will

4.2. v-mWater Model 45

be negotiated later on in the corresponding Auction activity (newReg); and iv)
an Auction activity has been closed (auctionClosed). Notice that all of these
illocutions lead to the same protocol node open.

Therefore, sellers can wait within this activity for the result of the negotia-
tions of their rights after registering them, and buyers can wait until the auction
they want to participate opens.

The capacity of the protocol (ProtC) indicates that exactly one market fa-
cilitator has to be in the activity to be open, and a maximum of 100 sellers and
100 buyers can simultaneously participate, while none of them are required to
open the activity.

Figure 4.3: registration protocol

Registration Activity

In this activity the market facilitator is in charge of registering sellers’ rights.
The interactions between participants are regulated following the protocol reg-
istration formalised as:

Prot = { registration }
Nod = { initial, open, req, final }
Illo = { open(mf, all, ∅, initial, open),

register(s, mf, reg, open, req),
agree(mf, s, ∅, req, open),
failure(mf, s, ∅, req, open),
close(mf, all, ∅, open, final) }

ProtC = { 〈mf, 1, 1〉, 〈s, 0, 100〉 }

Figure 4.3 depicts the ISLANDER graphical output. First, a seller asks for
registering a right by uttering the illocution register with the registration (reg)
containing the water right the participant wants to sell, the quantity and the
price. If no value is specified for the quantity, it is assumed that the whole

46 Chapter 4. Application Scenarios

quantity of the water right is registered. The price will be the starting price
of its negotiation in the Auction activity. Once executed, this illocution would
change the protocol state from open to req. At state req, the market facilitator
decides if the registration is valid by checking these two domain regulations:

1. Only water rights of farmlands belonging to the basin are allowed to be
traded.

2. In order to avoid speculation, it is not allowed to register water rights sold
in the market.

While the second regulation is watched by the market facilitator, the first regu-
lation is enforced in the specification, when the market facilitator sends back the
result of the process to the seller: agree in case of success and failure otherwise.
To do so, the agree illocution has the following conditions associated:

agree.Prec = {reg.right ∈ Rights}
agree.Postc = {Regs ← Regs ∪ {reg}}

The precondition assures that the water right being registered belongs to the
market basin. The postcondition adds the registration to the official registrations
list (Reg) that contains the registrations of all areas, where reg refers to the
registration request in previous illocution by the seller.

The capacity (ProtC) is similar to the one of waiting&info protocol, where
exactly only one market facilitator can participate, who should open the activity;
and a maximum of 100 sellers can participate, but none of them are required to
open the activity.

Auction Activity

All water rights belonging to the same area and previously registered by sell-
ers in the Registration activity are negotiated within the same Auction activity
using a multi-unit Japanese auction protocol, because it is suitable for divisible
and perishable goods, in this case, irrigation water. There are three roles in-
volved in the activity: the market facilitator conducts the auction, buyers bid
for water rights and request water, and the basin authority announces the valid
agreements. The formalisation of the activity and its protocol is as follows:

4.2. v-mWater Model 47

Figure 4.4: auction protocol

Prot = { auction }
ProtP = { 〈quantityAuc, quantity, Rol〉, 〈priceAuc, price, Rol〉,

〈Bidders, {participant}, Rol〉, 〈LastBidders, {participant}, Rol〉,
〈areaAuc, area, Rol〉 }

Nod = { initial, open, run1, run2, run3, run4, pau1, pau2, pau3, pau4,
final }

Illo = { open(mf, ba, ∅, initial, open),
startRound(mf, all, 〈 reg, time, 〉, open, run1),
bid(b, all, ∅, run1, run1),
timeOut(mf, all, ∅, run1, run2),
raisePrice(mf, all, price, run2, run3),
bid(b, all, ∅, run3, run3),
timeOut(mf, all, ∅, run3, run4),
raisePrice(mf, all, price, run4, run3),
singleWinner(mf, all, participant, run2, pau1),
singleWinner(mf, all, participant, run4, pau1),
multipleWinner(mf, all, {participant}, run4, pau2),
quantity(b, ba, quantity, pau1, pau3),
quantity(b, ba, quantity, pau2, pau2),
agreement(ba, all, {tran}, pau3, pau4),
newIteration(mf, all, quantity, pau4, run1),
endRound(mf, all, ∅, pau4, open),
close(mf, all, ∅, open, final) }

ProtC = { 〈mf, 1, 1〉, 〈ba, 1, 1〉, 〈b, 0, 100〉 }

48 Chapter 4. Application Scenarios

Figure 4.5: An example execution of a Multi-unit Japanese protocol

Figure 4.4 depicts the ISLANDER graphical specification. In this protocol,
the market facilitator conducts the auction of registered water rights –composed
by several m3 of water– in a round-iteration-step schema. For the sake of clarity,
Figure 4.5 shows two example rounds execution of this protocol that is used to
explain its specification. Registered water rights –composed by several m3 of
water– are auctioned in consecutive rounds which follow these four rules:

1. When a round is running, buyers cannot join nor leave the auction.

2. Only water rights belonging to the market’s basin and the area of the
auction (areaAuc) are traded.

3. There is one round for each registered water right (see Figure 4.5 where
water right wr1 is auctioned in round 1, and wr2 in round 2).

4. A round ends when there are no more water available in the water right
(iteration 2 of round 1 in the example).

This protocol has specified that buyers only can join and leave the activity
at state open, which is the intermediate state between rounds, enforcing thus
the first rule. At this state, the market facilitator is in charge of announcing
the starting of a new round by publicly uttering illocution startRound, which
contains the registered water right (reg) to trade, and the time in seconds that
buyers have to both bid and request water. It has two preconditions and five
postconditions which enforce rules 2 and 3:

4.2. v-mWater Model 49

startRound.Prec = { reg ∈ Regs, reg.right.area = areaAuc }
startRound.Postc = { Bidders ← ∅, LastBidders ← ∅, Winners ← ∅,

priceAuc ← reg.price, quantityAuc ← reg.quantity }

At state pau4, i.e. just before the end of a round, the market facilitator is
in charge of enforcing rules 3 and 4. To do so, it utters the public illocution
endRound without content, when there is not more water available. Illocution
has one precondition and one postcondition:

endRound.Prec = { quantityAuc = 0 }
endRound.Postc = { Regs ← Regs - reg }

A round is divided in several iterations, each one with the following rules:

1. One iteration is composed by several steps, where the price increases in
regular increments in subsequent steps. For example, in Figure 4.5 the
first step of all iterations in round 1 starts at 10e per 1,000 m3 of water
and the increment is 0.5e

2. The starting price of the first step is the one established in the registration
of the water right by its holder, e.g. 10e per 1,000 m3 of water in the first
round of the example.

3. Buyers interested in buying water can place one bid per step, only buyers
that bid at previous step are allowed to place bids, and all buyers can bid
in case of first step. Following with the example, only Buyer2 and Buyer3
are allowed to place bids in the second step of iteration 2.

4. The iteration ends when:

(a) Just one buyer bids at current step, then being the winner (Buyer1
in iteration 1).

(b) Buyers did not perform any bid at this step (Buyer2 and Buyer3 in
iteration 2), so the winners are determined to be the buyers that bid
at previous step, or the water right is withdraw in case of first step,
i.e. not a single buyer performed a bid in the iteration, similarly to
the round 2 of the example.

5. The winners of the iteration have to request the amount of water desired
(e.g. Buyer1 buys 20,000 m3 in Figure 4.5), which should not be less than
an established value (e.g. 1 m3).

6. If there are multiple winners, the water is distributed following a propor-
tional allocation algorithm.

Iteration states correspond to protocol nodes run1 run2, run3, and run4
when it is running; and pau1, pau2, pau3 and pau4 when it is paused. A new
iteration starts at run1 and subsequent steps start at run3. At both states,
buyers can place bids by uttering public illocution bid without content and with
the following conditions which enforce the third rule:

50 Chapter 4. Application Scenarios

bid.Prec = { b ∈ LastBidders, b /∈ Bidders }
bid.Postc = { Bidders ← Bidders ∪ {b} }

After the previously announced period of time (with the startRound illocution),
the market facilitator announces a time out by uttering illocution timeOut, and
the protocol state changes to run2 in case of first step (run1), or run4 otherwise.
At these states, the market facilitator can utter the illocution raisePrice to
announce the next step with the new price. This illocution has the following
preconditions and postconditions which enforces the first, third and fourth rules:

raisePrice.Prec = { price = priceAuc + 0.5, |Bidders|> 1 }
raisePrice.Postc = { priceAuc ← price, LastBidders ← Bidders,

Bidders ← ∅ }

Moreover, at these states (run2 and run4) the market facilitator is also
in charge of announcing the iteration ending. In the first step, it utters the
illocution withdraw in case of no bidders. This illocution has defined the next
conditions:

withdraw.Prec = { |Bidders| = 0 }
withdraw.Postc = { Regs ← Regs - reg, Winners ← ∅ }

In case of only one bidder in any step, the market facilitator utters the illocution
singleWinner which contains the winner (i.e. the single bidder), which has the
following conditions defined:

singleWinner.Prec = { |Bidders| = 1 }
singleWinner.Postc = { Winners ← Bidders }

Finally, in case of no bidders at second or successive steps, i.e. state run4, the
market facilitator announces multiple winners in this iteration by uttering illo-
cution multipleWinner with the list of winners. i.e. the bidders of the previous
iteration. This illocution has the next conditions:

multipleWinner.PreC = { |Bidders| = 0 }
multipleWinner.PostC = { Winners ← LastBidders }

At this point, the auction is paused. Specifically, this situation corresponds
to state pau1 in case of a single winner, and state pau2 in case of multiple
winners. From this state, rules 5 and 6 are enforced as it is explained in next
two paragraphs.

In order to request the desired water quantity, a winner can utter the illocu-
tion quantity to the basin authority indicating the desired quantity. Similarly to
the bidding time out, winners have a limited time to do the request, after which
the market facilitator utters the timeOut illocution, and as a consequence the
state changes to pau3 so that no more requests are accepted.

At this state pau3, the basin authority validates the requests. Specifically, it
assigns to a request the minimum quantity of water established if the quantity
specified in the request is not over this value. After that, the basin authority dis-
tributes the water among winners considering the validated quantities. If there

4.2. v-mWater Model 51

is more than one winner, then the water is assigned by following the proportional
allocation algorithm ration+ [Pitt and Schaumeier, 2012]. Finally, the basin au-
thority announces the agreement(s) by uttering the illocution agreement, with
the list of resulting transactions ({tran}), each one indicating the winner of the
transaction, the quantity of water to be transferred and the price, which changes
the protocol state to pau4. The precondition of this illocution is that the total
quantity in the agreements should be not greater than the quantity available,
and the postconditions decrements the quantity of water available in this round
(quantityAuc) with the total quantity of water distributed in the transactions
announced in the illocution ({tran}), and adds such transactions to the list of
recent transactions in the market (Trans):

agreement.Prec = { quantityAuc ≥
i=|{tran}|∑

i=1

trani.quantity }

agreement.Postc = { quantityAuc ← quantityAuc-
i=|{tran}|∑

i=1

trani.quantity,

Trans ← Trans ∪ {tran} }

Afterwards, if it remains water in the water right, then a new iteration starts
to auction the remaining water. To do so, the market facilitator utters public
illocution newIteration containing the price, which should be again the one es-
tablished in the registration announced in the startRound illocution (reg). It
has the following conditions defined:

newIteration.Prec = { price = reg.price, quantityAuc > 0 }
newIteration.Postc = { Bidders ← ∅, LastBidders ← ∅,

priceAuc ← price }

4.2.3 Goals

As aforementioned one property of a participant is her or his goal, which is ex-
pressed as a partial system state. Particularly, the general definition of sellers’
goals in v-mWater is given in Equation 4.1: the goal of a seller is to register a
quantity (m3) of its water right at a reference price (e per 1,000 m3 of water)
in the Registration activity. Recall that v-mWater ontology defines a register as
reg = 〈right, quantity, price〉 (see Section 4.2.2). Equation 4.2 defines the goal
of a buyer, who aims to purchase a quantity (m3) of water from any water right
to a maximum price (e per 1,000 m3 of water) in the Auction activity. Again, re-
call that a transaction is defined as tran = 〈right, participant, quantity, price〉.
Thus, both sellers and buyers’ goals can be expressed in terms of price and
quantity.

agseller.goal = {〈right, quantity, price〉 ∈ Regs,
location = Registration,
Registration.state = open}

(4.1)

52 Chapter 4. Application Scenarios

agbuyer.goal = {〈∅, agbuyer, quantity, price〉 ∈ Trans,
location = Auction,
Auction.state = pau4}

(4.2)

Staff roles belong to the organisation, and are played by software agents
which follow a behaviour that supports the market execution. Thus, they aim
to achieve organisational goals and also to increase participants’ satisfaction.
v-mWater has defined Organisational Goals in Equation 4.3, and a set of Agent
Satisfaction functions in Equation 4.4.

OrgGoal = {F (Regs, Trans)} (4.3)

AgSat = {F (quantity, price)} (4.4)

On one hand, OrgGoal is evaluated in terms of Regs which is the domain
property list of recent registrations, and Trans, i.e. the list of last transactions
in the present market season. That is, the goal of the organisation is to com-
plete registrations and transactions. On the other hand, AgSat is defined as
F (quantity, price) as a set of functions that computes participants’ satisfaction
as the degree of their price and quantity goal fulfilment.

4.2.4 mWater correspondence

As previously stated, v-mWater is a simplification of mWa-
ter [Garrido et al., 2013]. It has a hierarchical structure where a number
of performative structures are defined. The activities explained above have
the following correspondences with mWater performative structures: (1) Reg-
istration is a simplification of Accreditation; (2) in Waiting&Info, water users
may obtain information about negotiations as in Open Trades and Ongoing
Agreements –both located in the TradingHall PS–; and (3) Auction activity
includes Agreement Validation as well as a particular trading protocol of the
TradingTable PS.

4.3 Setting up the Model

The application v-mWater has been engineered following three steps.
First step corresponds to the definition of the regulations governing the

Assisted Hybrid Structured 3D Virtual Environment. This is done using IS-
LANDER [Esteva et al., 2002], the Electronic Institution tool that allows to
specify an Electronic Institution. The output is the Electronic Institution spec-
ification introduced in Section 4.2.2.

Second step consists on the generation of the 3D representation from v-
mWater specification by using the Virtual World Building Toolkit. Figure 4.6
depicts the resulted generation in Open Simulator [Guard, 2007]. In particular,
it shows an aerial view of three rooms located at an open space that correspond

4.3. Setting up the Model 53

Figure 4.6: v-mWater Initial aerial view

to the three main activities in v-mWater. Participants join and leave these activ-
ities by opening (and crossing) the doors of these rooms. Moreover, transitions
between activities are experienced as movements in the open space.

Third step defines the mapping between Virtual World actions and Electronic
Institution messages and vice versa using the movie script mechanism. In this
initial application, some actions in the Virtual World (such as touching a door
to open) are mapped to Electronic Institution messages (join the activity tak-
ing place in the room). Additionally, commands typed on chat windows in the
Virtual World (e.g., the registration chat represented in Figure 4.7) have been
mapped to protocol messages in the Electronic Institution (register in protocol
registration). On the other hand, some of the agents’ messages in the Electronic
Institution are represented as gestures made by their respective avatars in the
Virtual World. Thus, for instance, the illocution bid(b, all) uttered in the Auc-
tion activity (see Section 4.2.2) is mapped to a “raise hand” gesture as depicted
in Figure 4.9).

4.3.1 v-mWater Running Scenario

This section presents key aspects of the result of the engineering process men-
tioned above. Key aspects are introduced by following a particular sequence of
interactions that a given participant may follow1.

Nevertheless, before getting into the steps, it is worth noticing that software
agents have been characterized as bots with the aim of enhancing their artificial
nature: they are bold and have differentiated artificial skin colours that represent
their roles (see Figures 4.7, 4.8 and 4.9).

When playing a seller role, a participant can register a water right in the
Registration room (see Figure 4.7) by sending the “register” command privately
to the market facilitator which is sat at a desktop. This command includes the

1Watch video at youtube http://youtu.be/hJzw40lQvUY for another example of participa-
tion (with buyer role)

http://youtu.be/hJzw40lQvUY

54 Chapter 4. Application Scenarios

Figure 4.7: Human avatar registering: interaction with a software agent by
means of a chat window

quantity of water to negotiate, and it is mapped to the illocution register(b,
mf, reg) uttered in the Registration activity (see Section 4.2.2). The market
facilitator then performs the registering process and sends us back an “agree”
or “failure” message.

Figure 4.8: The inside of the Waiting&Info room

Participants can access the Waiting&Info room (depicted in Figure 4.8) by
enacting a seller or a buyer role. In this room, they can ask for information
about negotiations to the market facilitator sat at a desktop. Furthermore, they
can wait by sitting down on the sofas arranged in the room and consult both
basin’s map and the available information about negotiations displayed on the
dynamic information panels.

In the Auction room the market facilitator and the basin authority bots are
sited at their respective desktops and several chairs are disposed within the room
for buyer participants. Figure 4.9 shows how human participation in the auction

4.4. Evaluation 55

Figure 4.9: Bot bidding in a running auction

has been facilitated by providing a comprehensive environment that includes real
time information about the current auction. Moreover, bots’ bid actions can be
also easily identified by human participants since they are displayed as raising
hands.

4.4 Evaluation

This section evaluates the Assisted Hybrid Structured 3D Virtual Environ-
ment by means of a usability test that follows the widely-used test plan
from [Rubin and Chisnell, 2008]. First, it defines general test objectives and
specific research questions that derive from them. Next, it details test partici-
pants and test methodology. Last, obtained results are described and discussed
both at qualitative and quantitative levels.

4.4.1 Test objectives

The main goal is to assess the degree to which the environment enables human
users to achieve their goals and the user’s willingness to use the system. This
goal can be subdivided in the following sub-goals:

1. assess the effectiveness of v-mWater, i.e the extent to which users achieve
their goals;

2. assess the efficiency of v-mWater, i.e. the quickness with which the user
goals can be accomplished accurately and completely;

3. identify problems/errors users encounter/make when immersed on such a
structured 3D Virtual Environment;

4. assess users’ satisfaction, that is, their opinions, feelings and experiences;

56 Chapter 4. Application Scenarios

5. and open some discussion about the hypothesis that users’ age, gender or
skills may affect effectiveness and user satisfaction.

With all these objectives in mind, this research defined a test task that
consisted of searching for information about last transactions in the market and
registering (for selling) a water right. This water right must be registered with
a reference price that is related to the gathered information. Recall that when
the value for the quantity is not provided, it is assumed that the whole quantity
of water in the water right is registered. This task is structured. In fact, it is
composed of four subtasks:

i understand the task and figure out the plan (two out of three rooms have to
be visited in a specific order) required to perform the task;

ii get specific information about the market transactions at the Waiting&Info
room. This can be accomplished by reading the information panel or rather
by asking the Information staff bot;

iii work out the required registration price, which has to be 5e higher than the
price of the most recent transaction;

iv and register the water right at the Registration room, by talking to the Reg-
istration bot.

4.4.2 Usability Research Questions

With v-mWater being a functional application, this work wanted to answer some
questions related to how usable it is, how useful this Virtual Environment proves
to be to different profile of users, and more generally, the users’ willingness to
perform e-government services in Virtual Environments. Given the test objec-
tives introduced in the previous section, this work addresses several usability
research questions that derive from them. These questions are divided in two
categories. The first category is closely related to the structured task users are
asked to perform in the Virtual Environment:
URQ1: Information gathering. How fast does the user find the information
needed once she or he enters the Waiting&Info room? Was the information easy
to understand? How did the user obtain that information? (reading a panel or
interacting with the agent).
URQ2: Human-bot interaction. Is the registration desk (and bot) easy to
find? How pleasant is the interaction with the bot? Does the user value knowing
which characters are bots and which are humans?
URQ3: Task completion. What obstacles do sellers encounter on the way to
the Registration room on the Virtual Environment? What errors do they make
when registering a water right? How many users did complete the task?

The second category is more general and focuses on user’s ability and strate-
gies to move around a 3D virtual space, learnability for novice users, and
perceived usefulness and willingness to use Virtual Environments for online e-
government procedures:

4.4. Evaluation 57

URQ4: User profile influence. Does the user profile (age, gender, and
experience with computers and Virtual Environments) influence perceived task
difficulty, user satisfaction and immersiveness?
URQ5: Virtual Environment navegability. Which strategy does the user
take to move between rooms? Does the user notice (and use) the teleport func-
tion? Even noticing it, does she or he prefer to walk around and inspect the 3D
space?
URQ6: Applicability to e-government. How do users feel about 3D e-
government applications after the test? Would they use them in the future?

4.4.3 Participants

The study recruited 13 participants. They form a diverse user population in
terms of features such as age (18-54), gender, computer skills and experience
on 3D Virtual Environments/games. There are users that have grown up sur-
rounded by computers and users that have not, therefore this work can study
how age and previous experience influence efficiency, perceived easiness, use-
fulness and their predisposition to use such a 3D and hybrid virtual space for
e-government related tasks. This work also pays special attention to users’
computer skills and experience in 3D Virtual Environments as it can influence
their ability to perform required tasks. Table 4.1 shows details on participants
age, gender, computer skills (‘basic’, ‘medium’, ‘advanced’) and Virtual Envi-
ronment/games experience (‘none’, ‘some’, ‘high’).

Name Age Gender PC exp Virtual Environment exp

P1 18 Female Medium Some

P2 19 Female Medium High

P3 20 Male Advanced Some

P4 23 Male Advanced None

P5 25 Female Medium None

P6 25 Female Medium None

P7 27 Male Advanced Some

P8 27 Female Advanced None

P9 28 Female Advanced None

P10 39 Male Advanced None

P11 40 Male Medium None

P12 53 Male Basic None

P13 54 Female Basic None

Table 4.1: List of participants’ characteristics

The classification for computer skills was: ‘basic’ for participants which use
only the most basic functionalities of the computer, such as web browsing, text
editing, etc.; ‘medium’ for users with a minimum knowledge of the computer’s
internal functioning and who use it in a more complex way such as gaming;
and ‘advanced’ for participants who work professionally with computers, i.e.
programmers. Regarding Virtual Environment skills, ‘none’ were users who

58 Chapter 4. Application Scenarios

have never used a Virtual Environment, ‘some’ described users who have tried
it occasionally, and ‘high’ for users who often use a Virtual Environment.

Specifically, considering age, 6 were under 25 years old versus 7 over such age;
regarding gender, 7 testers were female and 6 were male; moreover 2 testers had
basic experience with computers, 5 medium and 6 advanced; and with respect
to experience in 3D virtual environments, 9 of the testers had not experience,
3 some and 1 high. Notice that although most skills are uniformly distributed,
Virtual Environment experience is strongly biased towards Virtual Environment
newcomers in order to reflect the novelty of the researched topic, as most of the
people do not have previous experience in 3D virtual environments.

4.4.4 Methodology

The usability study was mainly exploratory, but somehow summative. It uses
the Formative Evaluation method2 [Bowman et al., 2002]. The study was mostly
interested in finding relevant qualitative data. Nevertheless, since the application
itself is already a functional application, some quantitative measures were also
taken.

The evaluation team was composed by a moderator and an observer. The for-
mer guided the user if needed, encouraged her or him to think-aloud, introduced
the test, and gave the user the consent-form and the post-test questionnaire.
The latter took notes during the test.

The tests took place at users’ locations: half of the participants did the test
at their home and the other half at their workplace, on a separate room. The
equipment consisted in 2 computers, the VW server and the VW client. The
latter recorded user interactions and sound.

All participants were requested to perform a task. Specifically, they were
told:

“Act as a seller, and register a water right for a price which is 5e higher
than the price of the last transaction done”

Recall that, in order to do the task properly, participants would then have
to visit the Waiting&Info room, check the price of the last transaction (by
asking the bot or checking the information panel), and afterwards head towards
the Registration room and register there a water right at the correct price by
interacting with the Registration bot.

The test protocol consisted of 4 phases. First, Pre-test interview : The mod-
erator welcomed the user, explained test objectives and asked questions about
their experience with e-government. Second, Training : The user played through
a demo to learn how to move in 3D and interact with objects and avatars alike.
The moderator also showed her or him the different appearance of bots and hu-
mans and gave a basic explanation of how to interact with bots. This training
part was mostly fully guided, except at the end, when the user could freely roam
and interact in the demo scenario. Third, Test : The user performed the test task
without receiving guidance unless she or he ran out of resources. Meanwhile the

2Appendix A contains the documents used in the test.

4.4. Evaluation 59

moderator encouraged the user to think-aloud (by telling her or him to describe
actions and thoughts while she or he did the test). Fourth, Post-test question-
naire: The user was given a pot-test questionnaire regarding the experience
using v-mWater and the application of Virtual Environments to e-government
tasks (see Figure 4.10).

4.4.5 Results and discussion

This section discusses usability issues identified after the analysis of data gath-
ered during the test. It will go through the usability research questions defined
in Section 4.4.2. The answers to each of them come from different sources: a
combination of the post-test questionnaire; comments given by the users; notes
took by the observer; and the review of the desktop and voice recordings that
were taken during the test (i.e. while participants performed the task).

Table 4.2 summarizes the 12 questions in the post-test questionnaire, and Fig-
ure 4.10 depicts a compilation of users’ answers. There, X axis shows each of the
post-test questions and the Y axis shows average values of answers considering
a five-point Likert scale [Likert, 1932]. This scale provides 5 different alterna-
tives in terms of application successfulness (‘very bad’/‘bad’/‘fair’/‘good’/‘very
good’), where ‘very bad’ corresponds to 1, and ‘very good’ to 5. The nature
of the Likert scale is a controversial matter in the literature, since it is treated
as either ordinal or as (equidistant) intervals [Jamieson, 2004, Norman, 2010].
This study (and later studies presented in sections 5.6.4 and 6.4) takes the lat-
ter approach and thus, questionnaires’ answers were linearly and symmetrically
designed to facilitate the user to visually perceive intervals as being equidistant.
Nevertheless, the presented analysis is just based on the average to avoid further
simplifying assumptions on the matter. Specifically, the standard deviation is
not included because this study cannot guarantee that its questionnaire data
follow a normal distribution.

Overall, the obtained quantitative results from the questionnaires were sat-
isfactory 3. Highest rated responses, whose values were higher than 4.3, were
associated with the easy distinction of bots and human controlled characters
(Q5) and the overall satisfaction of the user (Q12). On the other end, lowest
rated responses (with 3.5 and 3.6 values) were related to the comfortability when
walking within the environment (Q2.1), the command system used to chat with
the bots (Q6), and the idea of using a 3D Virtual Environment for similar tasks
(Q10).

From both the qualitative measures that the user gave at the open question
of the post-test questionnaire as well as when debriefing with the evaluating
team, can be extracted a number of relevant aspects of v-mWater. Firstly, users
like its learnability, its immersiveness, and how scenario settings facilitate task
accomplishment. Moreover, users like 3D visualization although as of today, it

3Note that questionnaires on artefacts in which the participants in some sense know or can
infer that the researcher is directly involved should be treated with extra care, since it may
bias the results. This study, thus, considers only averages near to or above 4 as indicative of
success.

60 Chapter 4. Application Scenarios

Question Number Brief description

Q1 Situatedness and movement in 3D

Q2 Virtual Environment walking (2.1) and
(Q2.1, Q2.2) teleport (2.2) comfortability

Q3 Info gathering (panel/bot)

Q4 Human-bot interaction

Q5 Bot visual distinction

Q6 Chat-based bot communication

Q7 Task easiness

Q8 Immersiveness in 3D

Q9 Improved opinion of 3D VWs

Q10 Likeliness of future usage

Q11 3D interface usefulness

Q12 Overall system opinion

open question User’s comments

Table 4.2: Post test questionnaire

Figure 4.10: Post-test questionnaire results. X axis: questions from Table 4.2.
Y axis: average values.

is too soon for them to imagine a Virtual Environment being used for everyday
tasks, since it is hard to imagine, unfamiliar, and in some cases users wouldn’t
fully trust on it. At the same time, the overall opinion of the system was positive
and some users clarified that they were not entirely comfortable using the ap-
plication, but they would easily become used to it; since it was highly learnable
and safe to use.

Usability criteria, such as effectiveness, efficiency and errors have been anal-
ysed answering the usability research questions from first category introduced
in Section 4.4.2.

URQ1: Information gathering. The information that the user had to obtain
in subtask ii) could be gathered from 2 sources: the information panel and the
Information bot, both located at the Waiting&Info room. During the test, the
majority of the users, except two of them who did not enter this room, walked

4.4. Evaluation 61

directly towards the information panel and/or the information desk (where the
bot was located). These users could properly read the information from both
sources. Answers of Q1 and Q3, both with an average close to 4, reinforce
previous statement.

URQ2: Human-bot interaction. Users were supposed to interact with bots
in subtasks ii) and iv). The high average of Q4 indicates that users had a good
overall impression about human-bot interaction. Nevertheless, Q6 denotes that
users were uncomfortable with the technique, a command-based system, used
during the dialogue with the bot. Analysing Q5, with an average of 4.6, it is
possible to state that participants found it useful to know when they were facing
a bot.

URQ3: Task completion. Overall, participants found it easy to complete the
task (as Q7 indicates with an average of 4), and they took an average of 4.38
minutes. Users did not found any obstacles that prevented them from completing
the task.

Regarding errors that users committed during the task completion, some
users did not always go to the right destination (building), but they always re-
alised their mistake and were eventually able to get to the correct destination.
Another type of error relates to the chat-based interaction with bots; as Q6 indi-
cates, where the average of the answers was 3.6. Users with low computer skills
had some trouble when interacting with the bot because of the strict command-
based system. Nevertheless, the users found useful the help provided by the
system after typing an incorrect command.

Related to the effectiveness of the application, it has been measured re-
viewing the desktop recordings. Considering the structure of the task that has
been detailed in Section 4.4.1, the percentage of users that completed the corre-
sponding four sub-tasks were: i) 62% understood the task correctly. 38% of users
did not figure out they had to check prices before registering their water right.
ii) 85% of users gathered the information correctly whereas the rest skipped that
step. iii) 77% of users calculated the required reference price properly. iv) 100%
completed the registration subtask, i.e. all participants registered water rights,
although 23% of them did not to the correct price.

Below, this section gives a brief discussion about user profile influence on
perceived task difficulty, satisfaction, usefulness and immersiveness, and analyse
more general usability aspects such as the user’s ability to move around a 3D
Virtual Environment; or perceived usefulness of Virtual Environments for on-line
e-government procedures.

URQ4: User profile influence. This question was answered by analysing
the results from the post-test questionnaire in terms of user features. From the
point of view of age, participants are equally balanced. As the age increases
it also does the difficulty to use the application, although the satisfaction also
increases. Surprisingly, the youngest users found the application less useful than
the older ones (this may be due to their higher expectations from 3D Virtual
Environment). Related to users’ experience with computers, users with the
lowest experience had clearly a harder time using the arrow controls to walk

62 Chapter 4. Application Scenarios

around the 3D space. Additionally, this group found difficult both the interaction
with the bots and the task completion. Similarly, the immersion grows as the
experience with computer grows.
URQ5: Virtual Environment navigability. Navigation in the Virtual En-
vironment has proven to be relatively easy, since users’ average opinion was 3.9
(Q1). They did not roam in any occasion as it has been appreciated on the
recordings. Users who found out they could teleport, were comfortable using it,
as they reflected on the post-test questionnaire (Q2.2) and also by some of their
comments.
URQ6: Applicability to e-government. Users’ opinion about Virtual Envi-
ronments had relatively improved after doing the test (Q9), since they answered
with an average value of 3.9. When asked about their intention to use a sim-
ilar system for similar tasks in the future (Q10), users answered an average of
3.5, which means that they have a relative good opinion about the usefulness
of the application. This score is related to the futuristic perception of the ap-
plication by users to do nowadays tasks, as manifested in the open questions.
Finally, users reported that the 3D interface has somehow helped in achieving
their goals during the test, as Q11 shows with an average value of 3.7.

The usability test described in this section is the first test realised with v-
mWater. Section 5.6.4 describes a posterior test that evaluates the assistance,
and uses the results of this test as base-line. Moreover, another test is described
in Section 6.4, where a new User-Agent interaction mechanism is evaluated.

4.5 Local Smart Micro Grids

This work, with the aim of evaluating its contributions in a different domain,
investigates the application of the proposed technology to the electricity Smart
Grid (see Section 4.1). On the demand-side, the smart grid requires both a bet-
ter understanding of energy consumers’ behaviour and getting energy consumers
to understand better the effects of their actions on the grid. Then, it is crucial
to promote long-term user engagement and enable consumers to gain a better
understanding, not just of prices, but of resource allocation –electricity distri-
bution among different members of a community–, investment decisions –invest
money on buying new electrical appliances or solar panels–, and sustainability
–endurance of resources (energy).

Serious games can be used to encourage active user participation in the grid
infrastructure. As introduced in Section 4.1, Serious games are digital games,
simulations and virtual environments whose purpose is not only to entertain
and have fun, but also to assist learning and help users develop skills such as
decision-making, long-term engagement and collaboration. They are experi-
ential environments, where features such as though-provoking, informative or
stimulating are as important as fun and entertainment [Marsh, 2011].

This research designs an Assisted Hybrid Structured 3D Virtual Environ-
ment as an innovative serious game for local micro-grids in which the energy
consumers are also producers, who self-organise their own provision and appro-

4.5. Local Smart Micro Grids 63

priation rules in the context of an institution. Moreover, the proposed system
may provide users with agent-based assistance to help them in their decisions
about both individual and collective goals. As result, the designed game en-
capsulates aspects of self-organisation and supports the principles of enduring
institutions [Ostrom, 1990].

4.5.1 Game Overview

This work has performed the first two steps needed to deploy an Assisted Hybrid
Structured 3D Virtual Environment, i.e., the part concerning system specifica-
tion as an Organisation Centred Multi-Agent System and the 3D Virtual World
generation. But previous to show the generated specification and 3D spaces, it
is important to know how this serious game for local smart micro grids encap-
sulates in it Ostrom’s principles for enduring institutions [Ostrom, 1990]. These
principles are necessary and sufficient conditions for an institution to maintain
a common pool resource (i.e. electricity). Table 4.3 presents the correlation
between Ostrom’s principles and the user participation in a Serious Game for
SmartGrids.

Serious Game
Ostrom’s Principles User Participation
1. Clearly defined boundaries Game access
2. Congruence between appro-
priation/provision rules and local
environment

Dynamic rules’ configuration

3. Collective choice arrangements Deliberative Assembly to vote al-
location, penalisation and reward
schemes

4. Monitoring Smart Meters
5. Graduated Sanctions Adaptable penalisation schemes

for cheaters
6. Conflict resolution Conflict resolution mechanisms in

allocations

Table 4.3: Ostrom’s Principles encapsulated by a Serious Game

The game encapsulates Principle 1, clearly defined boundaries, by having
login access to the Serious Game (or not). The online world represents the insti-
tution, and a membership is needed in order the user to have access to this online
world and play a character of the game. Regarding Principle 2, the users should
be able to communicate with each other and decide whether to change the rules’
configuration of their institution or not (e.g. the allocation priority). A spe-
cialised decision-making forum for collective choice is needed for implementing
the above configuration (Principle 3). Smart Meters have the role of a monitor-
ing agency enabling data streaming and visualisation (Principle 4). Principle
5, graduated sanctions are enabled by using adaptable penalisation schemes to

64 Chapter 4. Application Scenarios

Figure 4.11: Performative Structure of Serious Game

sanction inappropriate behaviours. Finally, a conflict resolution mechanism is
included in cases where disputes occur (Principle 6). This first prototype do not
consider Ostrom’s two last principles (no interference from external authorities
and systems of systems) so that they have been omitted in table 4.3. Both can
be encapsulated to ensure that the Serious Game cannot be controlled or mon-
itored from the external environment and the communication between different
institutions is feasible.

Figure 4.11 shows the performative structure defined for the serious game.
It is a Massively Multi-player On-line Role-Playing Game (MMORPG) where
external users play the role of a consumer (c), and staff agents play the roles of
game manager (gm) and smart meter (sm).

The game has 6 activities. It starts in the Welcome activity, where users learn
about the purpose of the game and receive general game information. Then,
players perform four activities sequentially. First, players are informed about
the current challenge in the Information activity, e.g. smooth out peak demand.
Then, the Allocation activity supports players to demand electricity and vote
for the priorities in its allocation. In the Challenge Resolution activity players
program their appliances according to their needs. Finally, players decide co-
players rewards in the Scoring activity. When the game is over (in the Farewell
activity), all players get informed about the (individual and collective) results.

Figure 4.12 shows the protocol that enables the Challenge Resolution ac-
tivity, which is accomplished in players’ households. Herein, a consumer can
program, deprogram and monitor her or his electrical appliances in order to
perform the assigned tasks of an ongoing challenge. To do so, she or he in-
teracts with the household smart meter which communicates with the different
smart electrical appliances. The illocution to program appliances is specified

4.5. Local Smart Micro Grids 65

Figure 4.12: Challenge Resolution protocol

as program(c, sm, 〈idAppliance, day, slot, duration〉) and contains the identi-
fier of the appliance to program, the day, the time slot and the duration. The
one to deprogram appliances is specified as deprogram(c, sm, 〈idProgram〉), and
contains the identifier of the program. The illocution to monitor is specified
as feedback(c, sm, 〈type, Params〉), and contains the type of feedback –which
is one of appliance, household of community– together with a list of param-
eters. Moreover, at particular times along the challenge, the game manager
records awards and sanctions (in terms of increment and decrement score’s
points respectively) and pro-actively informs the players about it by uttering il-
locutions award(gm, c, 〈award〉), containing information about the award given,
and sanction(gm, c, 〈sanction〉), with sanction’s information.

The game scenario has been represented as a virtual community (see Fig-
ure 4.13(a)) composed by standard houses equipped with all the electrical appli-
ances and Smart Meters (see Figure 4.13(b)). The household’s user can program
the appliances and observe their electricity consumption. It can also be provided
with agent-based assistance for giving advices such as how to reduce the carbon
dioxide emissions or save money.

It is worth to mention here that, although only the initial design phases of
the Serious Game as an Assisted Hybrid Structured 3D Virtual Environment
have been completed, the research has been very interesting, and undoubtedly
it has the potential to provide with good results.

66 Chapter 4. Application Scenarios

(a) Community view (The outside of the Assembly room and a Household)

(b) The inside of the Household with electrical appliances

Figure 4.13: Examples of game 3D environment

Chapter 5

Assistance Design and
Evaluation

This work has presented so far the formalisation of the concepts that enable
Assisted Hybrid 3D Virtual Environments, which are distributed environments
where multiple users join to complete complex tasks, and Personal Assistants
help them in their goal achievement.

This chapter presents the architecture that operationalises the execution of
these systems. It also describes the services offered by Personal Assistant agents.
Specifically, it first details the operationalisation and evaluation of the Informa-
tion service, the simplest one. Subsequently, Justification and Estimation ser-
vices, are introduced. Nevertheless they have not been individually evaluated.
Instead, they are included in the reasoning process of the Advice service, which
is the most complex one and is fully evaluated.

5.1 Architecture

Assisted Hybrid 3D Virtual Environments extend the architecture of Virtual in-
stitutions by adding an Assistance Layer to the Normative Layer, which, recalling
from Section 1.5.4, is the one that corresponds to the Electronic Institution and
follows an Organisation Centred Multi-Agent System approach. As aforemen-
tioned, an Electronic Institution structures participants’ interactions by defining
the following components: an ontology, which specifies domain concepts; a num-
ber of roles participants can adopt; several dialogic activities, which group the
interactions of participants; well-defined protocols followed by such activities;
and a performative structure that defines the legal movements (i.e. transitions)
of roles among (possibly parallel) activities. More specifically, a performative
structure is specified as a graph where nodes represent both activities and tran-
sitions and are linked by directed arcs labelled with the roles that are allowed to
follow them. Furthermore, protocols are finite state machines where the nodes
represent activity states and illocutions uttered by participants trigger state

67

68 Chapter 5. Assistance Design and Evaluation

Figure 5.1: Assistance Architecture

transitions.

The overall Assistance Architecture is depicted in Figure 5.1. It is composed
by the Assisted Hybrid Structured Environment (on the left) and the 3D User
Interface (on the right). Both are causally connected so that the system updates
the 3D Virtual World when its state changes, and Virtual World actions with
institutional meaning are validated by the system.

As a hybrid system, participants can be both software agents and human
users. Software agents (robot icons on the left hand side of Figure 5.1) are
directly connected to the Electronic Institution and are represented as bots in
the 3D Virtual World. Human users (human icons on the right hand side of
figure) are able to participate within the system by means of a 3D User Inter-
face, controlling avatars and interacting with other participants and with the
environment.

Within the Assisted Hybrid Structured Environment on the left part of Fig-
ure 5.1, the Organisational Layer and the Assistance Layer, formalised in Chap-
ter 3, correspond to the Domain Electronic Institution (on the bottom) and the
Assistance Electronic Institution (on the top) respectively. Therefore, when a
new (human or agent) participant enters the virtual environment, the system
manages the cloning and entrance of such a participant in both Electronic In-
stitutions and the assignment of a Personal Assistant. Recall that in Electronic
Institutions participants can be cloned so that they can participate in multiple
activities at the same time.

In order to provide assistance, Personal Assistants are allowed to access the
runtime information Trac and the domain Electronic Institution static specifi-
cation by means of its Personal Assistant Interface (see Figure 5.1). Recalling,
Trac corresponds to the sequence of system execution states and the actions per-
formed at every step. In the architecture proposed by this work, a Trac Monitor
is the one in charge of monitoring and storing Trac.

While the Domain Electronic Institution should be created for each new ap-
plication, the Assistance Electronic Institution is general enough to be reusable

5.1. Architecture 69

Figure 5.2: Assistance Performative Structure

for any domain specification. The Assistance performative structure is detailed
in Figure 5.2. The Assistance Electronic institution defines two roles: runtime
agent (rtAg) played by system participants, and Personal Assistant (pA) played
by institutional agents with the assistance services enabled. It has two activi-
ties: Comm and Assistance. Personal Assistants participate in both activities,
whereas runtime agents are only allowed to enter to the Assistance activity.
Within a single Comm activity, all Personal Assistants gather in order to com-
municate one each other.

Each time a Personal Assistant is assigned to a new participant, it enters to
the Assistance Electronic Institution and creates a new instance of the Assistance
activity. Afterwards, the system manages the entrance of its assisted participant
clone to the new Assistance activity which will be private for both the participant
and its Personal Assistant. The Assistance activity follows the protocol depicted
in Figure 5.3.

Figure 5.3: Assistance Protocol

70 Chapter 5. Assistance Design and Evaluation

Figure 5.4: Mary’s avatar with her Personal Assistant in the 3D Virtual World

Both the Personal Assistant and the runtime agent enter in the initial pro-
tocol node and exit in the final node. Once inside, the Personal Assistant opens
the activity by uttering the illocution start(pA, rtAg, ∅), which changes the
state to node stand, where the Personal Assistant is in stand-by mode. At
this state, the Personal Assistant can proactively help the participant by ut-
tering illocution subscription(pA, rtAg, 〈type, {val}〉), where type indicates the
provided-service type, and {val} is a list of ordered values. Notice that this illo-
cution does not modify the protocol state. The participant can also request for
a service by uttering illocution request(〈type, {par}〉), with the type of service
provided and a list of parameters ({par}). The protocol then will transit to state
req, where the Personal Assistant will provide a response by uttering illocution
response(pA, rtAg, 〈type, {val}〉), similar to the subscription illocution. At the
same time as the assisted participant leave the system, the runtime agent, which
is a clone of such a participant, utters the illocution close(rtAg, pA, ∅), which
finalises the activity. When the Assistance activity is closed, both the Personal
Assistant and its assisted participant automatically leaves the Assistance activity
and, finally, the institution.

5.2 Personal Assistant Embodiment

Personal Assistants are organisational software agents that can assist both other
software agents and human users that join the organisation. Personal Assistants
for software agent participants are not represented in the 3D Virtual World
because they have alternative means to be aware of their existence. However,
when the participant to assist is a human, a personal assistant is graphically
represented as an Angel bot, an interactive non-player 3D character. Figure 5.4
shows a snapshot of the 3D User Interface, with user Mary (female user avatar)
and her Personal Assistant (angel bot). The Personal Assistant always accom-
panies the user during the interactive experience so it is always available for her.
Nevertheless, she can activate (show) her Personal Assistant, interact with it
whenever she needs help, or deactivate (hide) it otherwise.

5.3. Information Service 71

Previous Section 3.3.1 formalised the assistance process in two steps. First,
the participant requests a service from the Personal Assistant. Second, the Per-
sonal Assistant sends a response to the participant. Although, these steps are
operationalised by means of the Assistance Electronic Institution explained in
previous section, it is worth mentioning that user-agent interaction style in a 3D
Virtual World can be implemented in different ways, such as commands, option
dialogues or natural language conversations. Although natural language con-
versations are considered in Chapter 6, current chapter assumes User-Personal
Assistant interaction is accomplished in the following way:

• A user performs the action touch to her or his Personal Assistant in the
3D Virtual World.

• Afterwards, the Personal Assistant shows an option dialogue (on the right
hand side of Fig. 5.4) where the user can request one of the available
services. Based on the social model specification, the designer identifies
those services that will be automatically offered.

• Subsequently, the Personal Assistant computes the response for the se-
lected service. This processing state is indicated to the user by highlighting
the 3D representation of her or his Personal Assistant.

• Finally, the Personal Assistant sends the response to the user as a note
card (on the left of Fig. 5.4), which is a document where the response,
initially generated using a notation only readable by software agents, is
written in natural English language to facilitate user comprehension.

The remaining of this chapter is devoted to introduce the four assistance
services offered, and the full operationalisation of both Information and Advice
services.

5.3 Information Service

Information Service has been formalised in Section 3.3.2. Specifically three al-
ternative Information services have been proposed: Organisation Specification,
Runtime Organisation Specification, and Runtime information. As discussed
in Section 2.1, many platforms offer some kind of information to their partici-
pants, which is somehow similar to the first and the second proposed information
services.

However, the achievement of a task in Assisted Hybrid Structured 3D Virtual
Environments entails users not only to be informed about the complex system
specification and its current state, but also to acquire the knowledge related to
the previous events that happened in the system (i.e. how the organisation has
progressed). Even more, participants would obtain enriched knowledge more
valuable for their decision process by processing historical information. Thus,
this section explains the implementation of the Runtime Information service
(InfoRt), the configuration of its empirical evaluation, and its resulting assis-
tance quality of service.

72 Chapter 5. Assistance Design and Evaluation

5.3.1 Runtime Information Service

As explained in Section 3.3.2, this service is devoted to process the values that
an element of the specification takes along the system execution, which is stored
in the organisational trace Trac. This service has been implemented also having
in mind general goals of market participants, where sellers aim to sell at the
highest possible price and buyers aim to purchase at the lowest possible price.

This section explains the implementation of the Runtime Information service
(InfoRt) in v-mWater that has been extended to support sellers to achieve their
goal in Equation 4.1. Specifically, this service has been implemented to help
sellers to set the starting price of a registration and, thus, represents a decision
support tool for them.

The implementation of Runtime Information service is given in Algorithm 1.

Algorithm 1 InformationRt(Org, Trac, rtAg, id, tini, tfin, f)

V alues←TracValues(Trac, id, tini, tfin)
if f = ∅ then

if IsVisible(id, rtAg.rol) then
return V alues

else
return ∅

end if
end if
if f = lowPrice && id = Trans then

value←min(V alues.Prices)
else if f = medPrice && id = Trans then

value←wAvePrice(V alues)
else if f = highPrice && id = Trans then

value←max(V alues.Prices)
else

return Compute(rtAg.rol, f, id, V alues)
end if
k ←Decrement(value)
return {value− k}

Notice that the parameters of this algorithm correspond to the ones for-
malised in the service’s request in Chapter 3 〈id, tini, tfin, f〉, where the identifier
id corresponds to a property defined in the specification id ∈ AgP ∪ ProtP ∪
ActivP ∪OrgP ∪EnvP , tini and tfin are the initial and final time stamps indi-
cating a period in the organisational trace (Trac), and f is the identifier of the
statistical function requested to compute over the values. Recall that Personal
Assistants have an interface to Trac. It is represented as function TracVal-
ues(Trac, id, tini, tfin) invoked in line 1, that obtains all historical values stored
in Trac of element identified as id, between time stamps tini and tfin. It is

5.3. Information Service 73

worth mentioning here that, for the sake of clarity, some of the functions’ algo-
rithms used in the implementation of the services have been omitted. Table 5.1
shows their interface, parameters, a brief description, the values returned and
the algorithms where they are invoked.

Afterwards, InformationRt function processes the recovered values depend-
ing on the requested function f . First, line 2 checks if f is ∅, so that no function
is going to be applied to the recovered values. Moreover, the algorithm validates
the visibility of the property id to the role of the assisted agent (rtAg.rol). To
do so, line 3 calls function IsVisible(id, rtAg.rol). Roles’ visibility to properties
is explained in Section 3.2.1. As result, the raw values are returned in line 4 or
the empty set in line 6.

If it is the case that f is not ∅, the algorithm computes elaborated values
attending the function f . First, it considers the functions operationalised with
the names lowPrice, medPrice and highPrice, that are standard functions for
general markets, as they are based on the price of a transaction and the quantity
of goods transacted, in this case water. In v-mWater is specially useful for
participants because the property Trans only keeps information about the last
transactions along the current market season, so that previous market seasons
are not visible at current state. Notice that the id passed in the request of these
extensions must be equal to Trans, and the property Prices of the recovered
values contains the list of prices of the different transactions.

Thus, if the seller strategy is to set low starting prices, the corresponding
information service (lowPrice in line 9) will calculate the minimum transac-
tion price in the organisational trace by calling function min(V alues.Prices) in
line 10. Similarly, the seller can request a medium (medPrice in line 11) or a
high (highPrice in line 13) transaction price, and the calculated values will be
the weighted average or the maximum historical price, by invoking functions
wAvePrice(V alues) in line 10 or function max(V alues.Prices) in line 14 re-
spectively. Equation 5.1 details the wAvePrice(Trans) computation over the
set of market transactions (Trans), where transi.quantity and transi.price de-
note the water quantity and price per water unit of transaction i.

For all of them, a k decrement is computed by calling the function Decre-
ment(value) in line 18 with the value computed. This decrement may be estab-
lished by the system designer to be applied to the computed value, e.g. 10% of
the value, and the result is returned to the assisted participant in last line 19.

Finally, InformationRt also contemplates other standard statistical func-
tions –such as minimum, maximum or standard deviation–, whose computation
is returned by function Compute in line 16, which also has into account visibility
constraints.

wAvePrice(Trac) =

|Trans|∑
i=1

(transi.quantity × transi.p)

|Trans|∑
i=1

transi.quantity

(5.1)

74 Chapter 5. Assistance Design and Evaluation

Interface Parameters Description Return Alg.

TracValues Trac, id, tini, tfin Obtains all historical values stored
in Trac of element identified as
id, between time stamps tini and
tfin.

{value} 1

Decrement value Computes a decrement over a value value 1

Compute rol, f, id, Values Computes a statistical function f
over a set of Values of system prop-
erty id respecting visibility con-
straints over role rol

value 1

ActionHasRole action, role Checks if an action includes role boolean 2

ActionInLoc action, location Checks if an action is defined in
location

boolean 2

PrecComplyState Precon, S Checks if preconditions Precon are
fulfilled at state S.

boolean 2

CanBeOpen rtActiv, S Checks if activity rtActiv can be
open at state S.

boolean 3

NumAgRolAct Org, role, rtActiv, S Computes the number of partic-
ipants playing a role in activity
rtActiv

integer 3,5

DuplicateState S Duplicates a system state S Sd 6,7

DuplicatedElement element, S Returns the reference to the dupli-
cate of an element at system state
S.

elementd 6,7

IsIllo action Checks if an action is an illocution boolean 6

IsExitMov action Checks if an action is a movement
to exit an activity

boolean 6

CreateActivity S, activity Creates a new instance of an activ-
ity at state S

rtActivity 6

Concatenate Pl1, Pl2 Concatenates two plans Pl 7,8

OrderPlanListCost Plans Orders a list of Plans with respect
to their costs g

Planso 7

RequiredProperties goal Assesses the properties required to
achieve a goal

Properties 9

Contains goal, property Checks if a goal contains values of
a property

boolean 9

GoalsInfoProp Org, S, rtAg, prop Returns a list of subgoals that
amount to become informed about
a property prop

Goals 9

DuplicateGoalList Goals Duplicates a list of Goals Goals 9

fMin PlanningNodes Selects the planing node having
minimum cost f

planningNode 10

RolActivMiss S, rtActiv, a Computes a list with the roles re-
quired to enter activity rtActiv so
that action a can be successfully ut-
tered at state S.

{rol} 12

AgRolNAct role, rtActiv, S Computes a list of participants
playing a role that are not located
at activity rtActiv at state S

{rtAg} 13

MinG PlanningNodes Selects the planning node with min-
imum cost g

planningNode 13,14,15

AgCanCreate Org, activity, S Selects participants currently en-
acting a creator role for an activity
at state S.

{rtAg} 14

AgRolAct role, rtActiv, S Selects participants at state S in
activity rtActiv playing a role

{rtAg} 16

ReachGoal Org, S, rtAg, a, goal Validates if the execution of an ac-
tion a could reach the goal at state
S

boolean 19,20

IsInstanceOf rtElem, elem Computes if runtime element
rtElem is instance of element elem

boolean 20

MovExit role, rtActiv Recovers a movement for a role to
exit the activity rtActiv

mov 20

MovEnter role, rtActiv Recovers a movement for a role to
enter activity rtActiv

mov 20

AgCanCreate Org, rtActiv, S Returns the participants at state S
that can create activity rtActiv.

{rtAg} 20

RolCanEnterAtIniState role, activity Checks if once created an activ-
ity, when it would be in the initial
state, a participant playing a role
is allowed to enter

boolean 20

Table 5.1: List of System Functions utilised by Assistance Services

5.3. Information Service 75

5.3.2 Experiment configuration

In order to asses the benefits (in terms of system performance and quality of
service) of the Information service devoted to support sellers to set their starting
price, four alternative experiments have been configured. The first one does not
use any service and, thus, acts as a base-line for comparison purposes. The
other configurations use the service (which gathers trace information from the
base-line) by issuing different information requests.

Agents in the base-line configuration include staff agents, which follow a
predefined and fixed behaviour, and a heterogeneous population of 100 buyers
and 100 sellers. The goals of buyers and sellers were defined in Chapter 4 in
Equations 4.2 and Equation 4.1 respectively: the goal of sellers is to register a
‘quantity’ of water at a starting ‘price’ and buyers aim to purchase a desired
‘quantity’ of water at a ‘price’ under a maximum value.

In these experiments, all buyers and sellers (rtAgi.rol = b|s) aim at buy-
ing/selling the same fixed water quantity of 100,000 m3 (rtAgi.goal.quantity =
100,000). The variation in their behaviour is modelled in terms of the purchas-
ing/sale price of water rights (rtAgi.goal.price). Specifically, this work assumes
buyers have an inner maximum purchasing price whose value is normally dis-
tributed, N (µ, σ2), with µ = 12 (i.e. 12e per 1,000 m3 of water) and σ2 = 2.
As for sellers, their starting price is low enough to ensure sales and follows a
normal distribution N (4, 1).

Configuration Request
base-line no information

low 〈Trans, t1, t80, lowPrice〉
medium 〈Trans, t1, t80,medPrice〉

high 〈Trans, t1, t80, highPrice〉

Table 5.2: Request performed in each configuration

In order to preserve similar market conditions, just sellers’ price strategies
are changed among the three non-base-line test configurations. Table 5.2 shows
different sellers’ requests for the same Runtime Information service in different
configurations. Time stamps t1 and t80 corresponds to rounds 1 and 80 of
the base-line configuration. Thus, the final result will be computed over the
transactions realised from the 1st round to the 80th round, both included.

Assuming buyers in the market have different price preferences, in the low
configuration sellers aim to set low prices, which could be a conservative strategy
to sell as many quantity of water as possible. On the other end, sellers may
follow an aggressive strategy to sell as expensive water as possible, so that they
aim to set a high price. In the middle, sellers aim to set a medium price, that
could be a trading-off strategy between price and quantity. Notice that for these
experiments, k (see Algorithm 1)has been fixed to the 10% of the respective
computed value.

76 Chapter 5. Assistance Design and Evaluation

5.3.3 Assistance Quality of Service Evaluation

The Assistance Quality of Service AssQoS defined in Equation 3.15 of Chap-
ter 3 is evaluated in these experiments by measuring the fulfilment of both
organisational goals (OrgGoal) and agent satisfaction (AgSat), with and with-
out assistance. Previously, it was explained that the general organisational goals
OrgGoal are evaluated with respect to the domain properties list of registrations,
Regs, and list of transactions, Trans; and the agent satisfaction can be computed
as a function of agent-goal properties water right price and quantity. This sec-
tion first establishes the specific computation of both goals and satisfaction, and,
afterwards, it discusses the results of the Information service evaluation.

Goals Measures As explained before in Chapter 4 and defined in Equa-
tion 4.3, organisational goals are evaluated in terms of values of domain prop-
erties Regs and Trans. Equation 5.2 defines the specific values measured in the
evaluation of Information service.

OrgGoal = {transPerform, transRevenue,marketRevenue} (5.2)

marketRevenue =

|Trans|∑
i=1

transi.quantity × Trans.wAvePrice

|Regs|∑
i=1

regsi.quantity × Trans.Prices.max
(5.3)

Specifically, Transaction Performance (transPerform) and Transaction
Revenue (transRevenue) are computed based on Trans values, while Market
Revenue (marketRevenue) does it in terms of both Trans and Regs:

• Transaction Performance corresponds to the inverse of the average num-
ber of steps to complete a transaction, so that the more steps, the worse
performance.

• Transaction Revenue stands for transactions’ average price in euros (e)
per water unit (1,000 m3) computed as the wAvePrice in Equation 5.1.

• Market Revenue is computed in Equation 5.3 as the proportion of the
actual revenue (i.e. total transacted water quantity times weighted average
price) over the maximum possible revenue (i.e. total auctioned quantity
times maximum transactions’ price).

On the other hand, Equation 4.4 of Chapter 4 defined agents satisfaction
as a set of functions based on the price and quantity in the participants’ goals.
Equation 5.4 contains the definition of the four functions used in this evaluation,
two for buyers and two for sellers respectively:

5.3. Information Service 77

AgSat = {buyerQuantity, buyerPrice, sellerQuantity, sellerPrice} (5.4)

On the one hand, buyer satisfaction increases with water acquisitions and
decreases when the price on the market exceeds its inner maximum purchasing
price. Thus, buyerQuantity is computed as the percentage of transacted water
quantity over the total quantity that buyers aim to acquire; and buyerPrice
is a price value which indicates the difference of the average of buyers’ maxi-
mum purchasing price with respect to the actual average price (wAvePrice in
Equation 5.1).

buyerQuantity =

|Trans|∑
i=1

transi.quantity

|Agbuyer|∑
i=1

agi.goal.quantity

buyerPrice =
|Agbuyer|∑

i=1

(agi.goal.price/|Agbuyer|)− Trans.wAvePrice

On the other hand, the satisfaction for a seller increases with water sales
and also when the price on the market gets closer to the maximum historical
price. Therefore, sellerQuantity is computed as the percentage of water quantity
actually transacted over the total quantity registered by sellers; and sellerPrice
is the percentage of wAvePrice with respect to the maximum transaction price:

sellerQuantity =

|Trans|∑
i=1

transi.quantity

|Agseller|∑
i=1

agi.goal.quantity

sellerPrice = Trans.wAvePrice/Trans.Prices.max

5.3.4 Experimental Results

In order to evaluate the information assistance infrastructure (AssQoS in Equa-
tion 3.1), one experiment for each configuration in Section 5.3.3 has been con-
ducted.

Figure 5.5 shows the averaged results of executing ten times each of the four
configurations. The graphic on the left contains thick horizontal bars which cor-
respond to the number of steps required to close a transaction (the inverse of
transPerform which has values 45 for the base-line, 19 for the low, 11 for the
medium and 4 for the high configuration). Thin vertical bars go from the starting
prices, namely, 4.0e in the first configuration with no information service and
the responses of each information request in the rest of configurations (9, 11.2
and 15), to the weighted average transaction prices (transRevenue with values
12.53, 12.53, 13.03 and 15.46). The latter becomes the centre of a circle whose
area represents both, buyers’ and sellers’ quantity satisfaction (buyerQuantity

78 Chapter 5. Assistance Design and Evaluation

Figure 5.5: Average OrgGoal and AgSat values of ten executions

and sellerQuantity)1. The area value labels the circle. buyerPrice values (-
0.53, -0.53, -1.03 and -3.46) are represented by vertical bars just on the right of
each circle. It starts in the weighted average transaction prices (transRevenue
with values 12.53, 12.53, 13.03 and 15.46) and ends in the average buyers’ maxi-
mum purchasing price, in this case 12. For example, a buyerPrice value of -0.53
in the base-line configuration indicates that, in average, buyers bought 0.53e
under the average price of transactions and, thus, its satisfaction in this regard
is slightly negative, as they aim to buy at the highest price. Additionally, the
table on the right completes the results by providing the marketRevenue and
sellerPrice. On the one hand, marketRevenue is the percentage of market
income with respect to the one having all auctioned quantity of water sold at
maximum transactions’ price. For example, a value of 10% in the high configu-
ration indicates a low volume of water sold at high prices. On the other hand,
sellerPrice percentage refers only to prices in transactions, where 95% in the
high configuration means that those sellers who sold water did it at high prices.
Since the information service under evaluation target seller agents, this work will
focus on their satisfaction and the overall system performance.

As we can observe, the values obtained for low configuration get a
sellerPrice, sellerQuantity, marketRevenue and transRevenue that are as
high as the base-line configuration, with the advantage that they are reached in
far less time (see the average number of steps). Thus, it is possible to argue that
the low information service drastically improves performance (transPerform).
Accordingly, if it is assumed that system and agent goals are aligned, a seller
agent can use this service to reduce the time of its sales without affecting any of
its other satisfaction attributes.

1Note that buyerQuantity = sellerQuantity because rtAgi.goal.quantity = 100,000 for
all buyer and seller agents.

5.4. Justification Service 79

On the other hand, seller pricing strategies may be more aggressive and
pursue a higher sellerPrice. The results of the medium and high configurations
show us that if the seller agent follows the corresponding services’ advice when
setting the starting price, then the sellerPrice can be increased close (95%) to
the maximum sold price. Nevertheless it takes the risk of not being the one who is
actually selling at the desired higher price (since the proportion of transactions,
sellerQuantity, decreases down to 9 and the marketRevenue moves down to
10%). Moreover, taking higher risks has the additional positive effects of further
improving transPerform and transRevenue (i.e. transactions are performed
faster and at higher prices).

Overall, it can be concluded that these experiments show that system perfor-
mance and agent satisfaction (and thus, the quality of service) increase with the
addition of Information service. Furthermore, different service’s requests can be
useful for decision support processes being carried out by individual agents that
follow alternative strategies.

5.4 Justification Service

In the formalisation of the Justification service in Section 3.3.3 was explained
that the execution of an action at current system state (Sc) is constrained by
the rules of the organisation defined in its specification (Org). Recall that ac-
tions are illocutions uttered within activities’ protocols and movements to enter,
create and exit activities. Moreover, at a particular system state, participants
can be located at a transition or within an activity. Possible actions of a par-
ticipant are those that include the participant’s role in the participant’s current
location. Any other action will be considered as prohibited. Furthermore, from
the set of possible actions, the ones that cannot be performed at current state
are non-valid, being valid the rest of them, i.e. the possible actions that fulfil all
constraints defined in the system specification at its current state. Thus, valid
actions amount for both possible from considering the specification and “doable”
at current state. For example, when a participant is within an activity, its pro-
tocol specifies the possible illocutions that the participant can utter at current
protocol state. Recall that an illocution defines a receiver role, so that at least
one participant playing such a role must be located within the activity. Thus,
participant’s possible illocutions that have not receivers within the activity at
current system state are non-valid.

Section 3.3.3 formalised a Justification service that provides the participant
with a list of justifications about the last action that she or he tried to perform
but was not allowed to do so. This section explains the implementation of this
service by means of the Justification(Org, Sc, rtAg, a) function. It returns a
list of justifications, characterised with a type, about the constraints over the
execution of action a by participant rtAg at current state Sc within the organi-
sation specified in Org. This function is detailed in Algorithm 2, which identifies
restrictions over an action execution in Assisted Hybrid Structured 3D Virtual
Environments by analysing: actions in Equation 3.14, which include movements

80 Chapter 5. Assistance Design and Evaluation

and illocutions in Equations 3.8 and 3.13 respectively; protocol capacity in Equa-
tion 3.11; and protocol nodes in Equation 3.12.

Algorithm 2 Justification(Org, Sc, rtAg, a)

1: J ← ∅
2: if ¬ActionHasRole(a, rtAg.rol) then
3: J ← {play}
4: else
5: if ¬ActionInLoc(a, rtAg.location) then
6: J ← {loc}
7: end if
8: if ¬PrecComplyState(a.Prec, Sc) then
9: J ← J ∪ {precon}

10: end if
11: if IsIllo(a) then
12: J ← J ∪ CheckIllo(Org, Sc, rtAg, a)
13: else if IsExitMov(a) then
14: J ← J ∪ CheckExitMov(Org, Sc, rtAg, a)
15: else if IsEnterMov(a) then
16: J ← J ∪ CheckEnterMov(Org, Sc, rtAg, a)
17: end if
18: end if
19: return J

Specifically, the analysed restrictions are: the role(s) required to execute the
action (illo.sRol and illo.rRol in Equation 3.13, and mov.mRol in Equation 3.8);
the protocol states where the action can be performed (illo.ori in Equation 3.13
and nod.ExitRol in Equation 3.12); the preconditions associated to the action
(Prec in Equation 3.14); and, in case of movements to enter activities, the ex-
istence of a running activity in Sc.RtActiv where its current state allows the
participant to enter (nod.EnterRol in Equation 3.12) and it has enough room
to do so (ProtC in Equation 3.11). As result, function Justification in Algo-
rithm 2 is able to compute ten different types of justifications that participants
of Assisted Hybrid Structured 3D Virtual Environments are provided with: play,
loc, precon, state, enterSen, enterRec, enterPar, create, open and exit. They are
described as:

1. type = play. Possible actions of a participant must include the role of
the participant. On the one hand, an illocution can be uttered by a par-
ticipant playing sender role (illo.sRol in Equation 3.13) and received by
participant enacting receiver role (illo.rRol in Equation 3.13). On the
other hand, a movement can be performed by a participant playing the
role it has defined (mov.mRol in Equation 3.8). Thus, this justification
is given when the action does not include the participant’s role. Function
ActionHasRole(a, rtAg.rol) in algorithm’s line 2 checks if action a in-
cludes role rol. In case it does not, line 3 specifies ‘play’ as the justification

5.4. Justification Service 81

type to be returned in line 19.

2. type = loc. As previously explained in Section 3.3.3, participant’s possi-
ble actions must be defined in the current participant’s location, i.e. the
activity or transition where the participant is. Moreover, actions are de-
fined with an origin, which is a protocol node for an illocution (illo.ori
Equation 3.13), an activity for exit movements, and a transition for en-
ter movements (mov.ori in Equation 3.8). Thus, this justification is given
when the action is not defined in the participant’s location.

Function ActionInLoc(a, rtAg.location) in algorithm’s line 5 computes
this condition. Notice that when the action corresponds to an illocution
executed within an activity or a movement to exit it, the participant should
be located at such activity; and when the action is a movement to enter or
create an activity, the participant must be located at the transition where
the movement is defined. Otherwise, the justification function will assign
a ‘loc’ type in line 6 and will return it in line 19.

3. type = precon. The precondition of an action should be fulfilled at
current state in order the action to be valid for a participant. Pre-
conditions are defined as boolean expressions. Thus, this justification
is given when the action does not fulfil its preconditions. Function
PrecComplyState(Precon, Sc) in algorithm’s line 8 checks if precon-
ditions Precon are fulfilled at state Sc.

4. type = state. This justification can be given for both illocutions and move-
ments to exit activities. Recall that an illocution defines an origin, i.e. the
protocol node where it can be uttered. Moreover, an exit movement for a
specific role only can be performed in a protocol node nod if such a role is
defined in nod.ExitRol.

On the one hand, this justification is given when the current state of the
protocol does not correspond with the origin of an illocution and, thus, the
activity’s state does not allow the participant to utter the illocution. It
is processed by function CheckIllo defined in Algorithm 3. Specifically,
this verification is performed in algorithm’s line 3.4. CheckIllo is invoked
by Justification algorithm’s in line 12.

On the other hand, this justification is given when the current state of the
protocol does not include the role of the participant as an allowed to exit
role and, thus, the activity’s state does not allow the participant to exit
it. It is computed by function CheckExitMov defined in Algorithm 4.
Particularly, it is checked in algorithm’s line 4.3. CheckExitMov is
invoked by Justification algorithm in line 14.

5. type = enterPar. Whenever the activity has just started, so that it is in
the initial state, any illocution uttered at such state opens the protocol.
However, the protocol capacity (ProtC) defines the minimum number of

82 Chapter 5. Assistance Design and Evaluation

participants playing specific roles required to do so and, thus, such mini-
mum number of participants should enter the activity prior to open it. This
justification is given when this rule is not met at current state. Specifically,
function CanBeOpen(rtActivt, Sc) in line 7 of algorithm CheckIllo
checks if activity rtActivt can be open at state Sc. CheckIllo is invoked
by Justification algorithm in line 12.

6. type = enterSen. The sender of an illocution must play a specific role
to utter it. This justification is given when there are not participants
within the activity playing the sender role and, thus, a user enacting such
a role should enter the activity before the illocution can be successfully
uttered. This is verified in line 10 of CheckIllo by invoking function
NumAgRolAct(Org, illot.sRol, rtActivt, Sc), that returns the number of
participants playing the sender role of the illocution within the activity at
current state. Thus, if it is 0, then CheckIllo will return justification
type ‘enterSen’.

7. type = enterRec. An illocution defines the role of its possible receivers.
This justification is given when there are not participants within the ac-
tivity playing receiver role and, thus, a participant playing such role must
enter the activity to receive it. Similarly to enterSen, line 13 of CheckIllo
invokes function NumAgRolAct(Org, illot.rRol, rtActivt, Sc), that re-
turns the number of participants playing the receiver role, which should
be different than 0.

8. type = create. This justification together with the next two ones are spe-
cific for movements to enter activities. They are validated in function
CheckEnterMov detailed in Algorithm 5 and invoked by Justification
in line 16.

Recall that movements to enter activities require the activity to be created.
Thus, this justification is provided when the participant tries to enter an
activity that is not created so that it should be created before entering it.
Line 4 of CheckEnterMov checks if activity rtActivt is an instance of
a running activity defined in Sc.RtActiv.

9. type = open. Having the activity created, a participant is only allowed to
enter when the protocol node nod representing its current state includes
the participant’s role in nod.EnterRol. Thus, this justification is provided
when the participant is trying to enter an activity whose state (i.e. protocol
node) does not allow the participant’s role to enter and, thus, it should be
open to the participant’s role before the participant can enter. Algorithm’s
line 5.7 validates this situation.

10. type = exit. The capacity of a protocol (protC) also includes the maximum
number of participants playing a particular role that can participate in an
activity (protC.max) simultaneously. This justification is given when the
participant tries to enter an activity but there is not enough room (i.e.

5.4. Justification Service 83

the maximum capacity has been reached) and, thus, any other participant
playing the assisted’s role must exit the activity prior its entrance.

The number of participants playing the role of the assisted one (rtAg.rol)
within the activity rtActivt is computed by CheckEnterMov in line 10.
Next, the restriction on the capacity related to participant’s role in the
activity is obtained by calling function ProtCRol(rtActivt, rtAg.rol) in
line 11. Finally, CheckEnterMov validates that the activity has not
reached its maximum capacity in line 12.

Algorithm 3 CheckIllo(Org, Sc, rtAg, illot)

1: J ← ∅
2: rtActivt ← rtAg.location
3: nodt ← illot.ori
4: if nodt 6= rtActivt.state then
5: J ← {state}
6: end if
7: if nodt = initial && ¬CanBeOpen(rtActivt, Sc) then
8: J ← J ∪ {enterPar}
9: end if

10: if NumAgRolAct(Org, illot.senRol, rtActivt, Sc)= 0 then
11: J ← J ∪ {enterSen}
12: end if
13: if NumAgRolAct(Org, illot.recRol, rtActivt, Sc)= 0 then
14: J ← J ∪ {enterRec}
15: end if
16: return J

Algorithm 4 CheckExitMov(Org, Sc, rtAg,movExitt)

1: J ← ∅
2: rtActivt ← rtAg.location
3: if rtAg.role /∈ rtActivt.state.ExitRol then
4: J ← {state}
5: end if
6: return J

Overall, the working of Justification is as follows. It first analyses three
justifications (play, loc and precon) about constraints that are general for all
kinds of actions (lines 2, 5 and 8). Afterwards, this function performs three
different processes depending on the kind of action to consider. Particularly,
it makes a distinction between illocutions, movements to enter activities, and
movements to exit activities.

• First, function IsIllo(a) in line 11 checks if the action a is an illocution,
and next line 12 calls function CheckIllo defined in Algorithm 3 which

84 Chapter 5. Assistance Design and Evaluation

Algorithm 5 CheckEnterMov(Org, Sc, rtAg,movEntert)

1: J ← ∅
2: rtTrat ← rtAg.location
3: rtActivt ← movEntert.des
4: if rtActivt /∈ Sc.RtActiv then
5: J ← {create}
6: else
7: if rtAg.role /∈ rtActivt.state.EnterRol then
8: J ← {open}
9: end if

10: nAg ←NumAgRolAct(Org, rtAg.rol, rtActivt, Sc)
11: protCt ←ProtCRol(rtActivt, rtAg.rol)
12: if nAg = protCt.max then
13: J ← J ∪ {exit}
14: end if
15: end if
16: return J

returns justifications (state, enterPar, enterRec and enterSen) related with
illocutions.

• Second, function IsExitMov(a) in line 13 assesses if the action a is a
movement to exit an activity (mov.mT = exit in Equation 3.8), and next
line 14 calls function CheckExitMov that computes a justification (state)
associated with these actions. This function is defined in Algorithm 4.

• Third, function IsEnterMov(a) in line 15 checks whether a is a movement
to enter an activity (mov.mT = enter in Equation 3.8), and as consequence
function CheckEnterMov defined in Algorithm 5 is called in next line 16
to assess related types of justifications (create, open and exit).

Finally, notice that the two first types of justifications (play and loc) are
detected whenever the action is not possible (i.e. prohibited) for a participant,
whilst the rest of justifications are detected whenever the action is non-valid,
i.e. it is possible for a participant but cannot be actually performed at current
system state. Moreover, if the action is valid, the Justification function would
return an empty set (∅). Therefore, this function can be used to compute the
validity of an action. In fact, next section describes the implementation of the
Estimation function which invokes Justification to check whether the action
is valid or not.

5.5 Estimation Service

Section 3.3.4 explained that, in order to select which action to execute next,
participants may want to know the consequences of executing each possible ac-

5.5. Estimation Service 85

tion prior to its execution. To do so, they have to appraise the consequences
of each action execution. In this regard, an Estimation service was proposed in
order to help participants to predict the result of performing an action prior to
its execution.

This section presents the operationalisation of the Estimation service by
means of Estimation(Org, Sc, rtAg, a) function, which, based on the organi-
sation specification Org and the current system state Sc, estimates the conse-
quences of the execution of action a by participant rtAg. If the action a is valid,
the function will return the estimated system state Sd after the execution of ac-
tion a by participant rtAg at current state Sc within the organisation specified
in Org. Otherwise, the function will return the value ∅.

As explained in previous Section 5.4, the Justification function can be used
to assess whether an action is valid or not, namely, if it can be executed at current
system state. For valid actions, the next system state is predicted by analysing
the following elements defined in Section 3.2.1: action’s destination (illo.des in
Equation 3.13 and mov.des in Equation 3.8); and, when it is a movement, its type
formalised as mov.mT in Equation 3.8. It is worth noticing that the execution
of an illocution may change the state of the protocol where it is uttered to the
illocution’s destination, while the execution of a movement updates both the
property location of a participant to the movement’s destination as well as the
number of participants in the related activity. Additionally, a movement of type
new creates a new instance of the activity specified as its destination.

Algorithm 6 describes the working of function Estimation. In line 1,
Estimation invokes Justification. As aforementioned, when this function
returns the empty set means that the action is valid, because has not find any
restriction on the action execution at current state. Thus, if the result of calling
Justification function with the action to be estimated does not return the
empty set (see line 2) then the action cannot be executed at current state and,
as consequence, the ∅ value is returned.

Otherwise, function Estimation starts the prediction of the next state.
First, line 5 creates a duplicate of current state Sc. To do so, it invokes function
DuplicateState(Sc) and stores the result in the duplicated state Sd. Then,
next line 6 sets rtAgd by calling function DuplicatedElement(rtAg, Sd), that
returns the duplicate of element rtAg at system state Sd. Similarly, the next line
sets ad to be the duplicate of element a at Sd. Notice that Estimation does not
modify the actual current state, as only duplicates are subsequently updated by
the Estimation algorithm to eventually provide the estimated state.

At this point, function Estimation checks if the action is an illocution, a
movement to exit an activity, a movement to enter an activity or a movement
to create and enter a new activity:

• First, line 8 calls function IsIllo(a) to check if the action is an illocution.
If it is the case that it is an illocution, then the state of the activity
rtActivd, which is the location of the participant, is updated in line 11 to
the protocol node which corresponds to the destination of the action.

• Alternatively, if the action is a movement to exit an activity (line 12 calls

86 Chapter 5. Assistance Design and Evaluation

Algorithm 6 Estimation(Org, Sc, rtAg, a)

1: J ← Justification(Org, Sc, rtAg, a)
2: if J 6= ∅ then
3: return ∅
4: end if
5: Sd ←DuplicateState(Sc)
6: rtAgd ←DuplicatedElement(rtAg, Sd)
7: ad ←DuplicatedElement(a, Sd)
8: if IsIllo(a) then
9: rtActivd ← rtAgd.location

10: nodd ← ad.des
11: Sd.rtActivd.state← nodd
12: else if IsExitMov(a) then
13: rtTrad ← ad.des
14: Sd.rtAgd.location← rtTrad
15: rtActivd ← rtAgd.location
16: Sd.rtActivd.Participants← Sd.rtActivd.Participants− rtAgd
17: else
18: if a.mT = new then
19: activd ← ad.des
20: rtActivd ←CreateActivity(Sd, activd)
21: Sd.RtSocConv.RtActiv ← Sd.RtSocConv.RtActiv ∪ {rtActivd}
22: else
23: rtActivd ← ad.des
24: end if
25: Sd.rtAgd.location← rtActivd
26: Sd.rtActivd.Participants← Sd.rtActivd.Participants ∪ {rtAgd}
27: end if
28: return Sd

function IsExitMov(a) to check this), the location of participant rtAgd
is updated in line 14 to the transition where the movement drives, and the
participants of the activity are updated in line 16 to remove rtAgd.

• Otherwise, the action is a movement to create and enter a new activity, or
just to enter a running activity.

On the one hand, if the movement corresponds to create and enter a new
activity or, in other words, it is a movement from a transition to an activity
and its type is new (a.mT = new in line 18), line 20 will invoke function
CreateActivity(Sd, activt) to create a new instance of activity activd
at state Sd (rtActivd); and next line will include it in the list of running
activities of the estimated state (Sd.RtSocConv.RtActiv).

On the other hand, the action is a movement to enter a running activity,
so that line 23 updates the duplicated value rtActivd with the destination

5.6. Advice Service 87

of the action ad.des, i.e. a running activity.

Finally, line 25 updates the location of the participant to be the computed
running activity rtActivd, and line 26 updates the list of participants of
rtActivd to add rtAgd.

• Last line is devoted to return the estimated state Sd.

Notice that the Estimation function can be used sequentially to estimate a set
of consecutive states, where the output estimated state of a function invocation
would be the input state of the next invocation. Namely, it can be used to
perform planning processes that require the estimation of future states. In fact,
next section describes de implementation of the Advice function which invokes
Estimation to compute future states in a planning process.

5.6 Advice Service

In the Assisted Hybrid Structured 3D Virtual Environments proposed by this
work and formalised in Chapter 3, activities of the social conventions specify
participants’ interactions so that certain goals can be achieved (e.g., partici-
pants can aim at registering water rights in the Registration activity). Recall
that a goal is expressed in terms of desired values for state runtime properties,
e.g. the location of the participant, or the values in the registrations list. As
explained in Section 3.3.5, whenever a participant pursues one of such goals, the
participant can request an Advice service to her or his assigned Personal Assis-
tant (Req = 〈 rtAg, pA, goal 〉), so that some actions are provided as guidelines
to accomplish participant’s goal. This Advice service can be offered applying
imitation techniques, i.e. returning the most common action performed by other
participants facing a similar situation, or planning.

This section describes the operationalisation of the planning Advice service
by means of the Advice function detailed in Algorithm 7. As consequence of the
participant’s request for a planning Advice, the Personal Assistant will respond
with an ordered set of plans (Plans), where each plan (Pl = {a1, . . . , am}) con-
sists of a sequence of m actions (movements and illocutions). Each provided
advice (plan) will conform to the organisation specification and, if executed at
current system state, will lead the participant to the requested goal. The order
of the returned plans is established having into account their costs. Specifically
it is returned in increasing cost order (minimum cost first). Cost in this imple-
mentation corresponds to the cost of executing planned actions that should be
performed by the assisted participant in a given plan, together with other par-
ticipants’ dependent actions necessary to successfully execute such a plan. For
the sake of simplicity, this function considers the cost of executing any action to
be 1. As explained ahead in this section, this service makes use of the rest of
services in its decision process.

Previous Section 3.2.1 defined the property goal of a participant (in the So-
cial Structure) as a partial description of the system execution state, so that it

88 Chapter 5. Assistance Design and Evaluation

contains the subset of runtime values that fulfil the goal. Non specified property
values are not considered to be relevant for the accomplishment of the partici-
pant’s goal. However, some of these properties not revealed by the participant
may still be necessary for achieving the goal. Thus, in order to provide more
useful plans to participants, this work proposes to provide plans that do not only
accomplish participant’s requested goal but also includes actions that allow the
participant to be informed about properties that are necessary to be known for
the goal’s proper achievement even though the participant may not be aware of
that when specifying the goal.

To do so, to become informed about a property is considered by this work
as an associated subgoal for the participant. In Assisted Hybrid Structured 3D
Virtual Environments, the goals of becoming informed about properties may
be completed in alternative ways. For example, in the application scenario v-
mWater explained in Chapter 4, sellers can become informed about the market
transactions within the Registration room by two different ways: i) asking to
the Information Manager or ii) reading the Information panels. Therefore, a
requested goal may be decomposed as different ordered lists of subgoals. Each
particular alternative subgoal list is defined in Equation 5.5 as SubGoals, and,
if they are achieved in the given order, the suggested plan will complete the
requested goal. Moreover, the list of alternative subgoal lists is expressed as the
GoalLists in Equation 5.6.

SubGoals = {subgoal1,1, ..., subgoal1,n} (5.5)

GoalsList = {SubGoals1, ..., SubGoalsm} (5.6)

The function Advice(Org, Sc, rtAg, goal) is detailed in Algorithm 7, and re-
turns an ordered set of plans for rtAg participating in an organisation specified
in Org to achieve a requested goal from current state Sc. It starts by decompos-
ing the goal by calling function DecomposeGoal(Org, Sc, rtAg, goal) in line 2.
This function, described in Algorithm 9, returns a set of lists of ordered subgoals
as defined in Equation 5.6. The DecomposeGoal function is further explained
later on in this section.

As aforementioned, each one of the ordered subgoals’ list will conduct to
the requested goal if accomplished from current state. Thus, Advice goes
through the set of goals’ lists (see line 3) and tries to find a plan that ac-
complishes all its subgoals in the given order. To do so, line 4 invokes function
DuplicateState(Sc) that creates a working copy of the current system state
Sc, hereafter named the current planning system state PlSc. Next line 5 re-
covers the working copy of the assisted participant rtAgc by means of function
DuplicatedElement(rtAg, P lSc). Notice that, similarly to Estimation func-
tion, Advice does not modify the actual current system state as it works with
duplicated elements.

Afterwards, Advice goes through the list of subgoals (see lines from 7 to 18).
First, line 8 initialises the set V isitedNodes. As explained later in Section 5.6.1,
V isitedNodes contains a list of already visited planning nodes in order to avoid
cycles in the planning process. A planning node planningNode is defined in

5.6. Advice Service 89

Algorithm 7 Advice(Org, Sc, rtAg, goal)

1: Plans← ∅
2: GoalsList← DecomposeGoal(Org, Sc, rtAg, goal)
3: for all SubGoals ∈ GoalsList do
4: PlSc ←DuplicateState(Sc)
5: rtAgc ←DuplicatedElement(rtAg, P lSc)
6: Pl← ∅
7: for all subgoal ∈ SubGoals do
8: V isitedNodes← ∅
9: rtAgc.goal← subgoal

10: planFinalNode← Plan-eA(Org, P lSc, rtAgc, V isitedNodes)
11: if planFinalNode = ∅ then
12: Pl← ∅
13: Break
14: end if
15: PlSc ← planFinalNode.P lSn

16: Plt ←ConstructPlan(planFinalNode)
17: Pl←Concatenate(Pl, P lt)
18: end for
19: Plans← Plans ∪ {Pl}
20: end for
21: return OrderPlanListCost(Plans)

Equation 5.7 having: i) its parent node, so that the previous nodes in the plan
can be accessed; ii) the participant rtAgn subject of this plan; iii) its planning
state PlSn, iv) the action that is the transition from the parent node, v) the
list of associated planning nodes AsNod, where each element corresponds to the
last node of a plan computed for other participants, vi) the cost g of reaching
the node from the initial state; vii) the heuristic estimation h of reaching the
goal from this state; and viii) f which is computed as the sum of g and h. As
aforementioned, this implementation considers 1 to be the cost of executing an
action.

planningNode = 〈parent, rtAgn, P lSn, action,AsNod, g, h, f〉 (5.7)

Still in Algorithm 7, line 9 sets the goal of the participant (rtAgc.goal) to be
the subgoal, and invokes Plan-eA(Org, P lSc, rtAgc, V isitedNodes) to compute
a plan to achieve such subgoal in the organisation specified as Org from the
current planning state PlSc (line 10). Plan-eA is the core function proposed
by this work to perform the planning in Assisted Hybrid Structured 3D Virtual
Environments, i.e. OCMAS planning. It returns the last planning node of
the computed plan for participant rtAgc to achieve goal rtAgc.goal from state
PlSc within the system specified in Org. It is further described later on in
Section 5.6.1.

90 Chapter 5. Assistance Design and Evaluation

In case no plan is found for a subgoal in a list (see line 11), Advice
would discard this plan. Otherwise, the planning state is updated to the
one in the returned node (see line 15) so that next subgoal can be reached
from the last state in current plan; the plan is constructed by calling func-
tion ConstructPlan(planFinalNode) that constructs the plan as further de-
scribed below; and the constructed plan is concatenated at the end of the previ-
ously computed plans for former subgoals in line 17. Finally, Advice function
returns the list of found plans Plans ordered by the cost of executing them in
terms of number of participants’ actions composing the plan.

Plan Constructor. The ConstructPlan(goalNode) function is detailed in
Algorithm 8. Its single parameter is the goal node goalNode.

Algorithm 8 ConstructPlan(goalNode)

1: planningNode← goalNode
2: Plan← ∅
3: while planningNode 6= ∅ do
4: Plan←Concatenate(planningNode.action, P lan)
5: AsNod←ReversedList(planningNode.AsNod)
6: for all planningNodea ∈ AsNod do
7: Plana ← ConstructPlan(planningNodea)
8: Plan←Concatenate(Plana, P lan)
9: end for

10: planningNode← planningNode.parent
11: end while
12: return Plan

ConstructPlan constructs the plan in reverse order by following, from
the goalNode computed by Plan-eA, the references to the parent node
planningNode.parent (see line 10). To do so, for each planning node
planningNode, ConstructPlan first concatenates its action to the beginning
of the final plan in line 4, so that actions in the final plan will maintain the
correct order.

Afterwards, it constructs associated plans by going through the list of associ-
ated planning nodes planningNode.AsNod. Notice that the order in the list of
associated planning nodes should be reversed because this process works in the
backward direction and thus, the last plan in the list is processed first by this al-
gorithm. This is done in line 5 by calling function ReversedList(node.AsNod)
that returns the list of associated planning nodes reversed, which is stored in
AsNod.

For each associated planning node planningNodea, line 7 makes a recursive
call to ConstructPlan function and the returned associated plan Plana is
concatenated in next line 8 at the beginning of the final plan, i.e., just before
the action of the current planning node planningNode, as this action successful
execution depends on the previous execution of its associated plans.

5.6. Advice Service 91

Finally, the planningNode is overwritten with its parent in line 10, and
this process is repeated while planningNode has a parent, i.e. until the initial
planning node is reached.

Goal Decomposition Function DecomposeGoal(Org, Sc, rtAg, goal), de-
scribed in Algorithm 9, returns a set of ordered lists of subgoals, where each
list of goals, if completed in the given order, will complete the requested goal.
To do so, it computes subgoals based on the required properties to achieve
the goal. That is, for each required property’s value not provided in the goal,
DecomposeGoal tries to create a subgoal to become informed about such a
property.

Algorithm 9 DecomposeGoal(Org, Sc, rtAg, goal)

1: Plan← ∅
2: GoalLists← ∅
3: Props← RequiredProperties(goal)
4: for all prop ∈ Props do
5: if Contains(rtAg.goal, prop) then
6: Continue
7: end if
8: SubGoals← GoalsInfoProp(Org, Sc, rtAg, prop)
9: if GoalLists = ∅ then

10: for all subgoal ∈ SubGoals do
11: GoalLists← GoalLists ∪ {{subgoal}}
12: end for
13: else
14: GoalListst ← ∅
15: for all List ∈ GoalLists do
16: for all subgoalt ∈ SubGoals do
17: Listt ← DuplicateGoalList(List)
18: Listt ← Listt ∪ {subgoalt}
19: GoalListst ← GoalListst ∪ {Listt}
20: end for
21: end for
22: GoalLists← GoalListst
23: end if
24: end for
25: for all List ∈ GoalLists do
26: List← List ∪ {goal}
27: end for
28: return GoalList

Algorithm 9 starts in line 3 by invoking function
RequiredProperties(goal) that returns a list of properties. In the cur-
rent implementation, this function contemplates the properties needed to

92 Chapter 5. Assistance Design and Evaluation

achieve a goal, and checks if their values are revealed in the goal, as the
function assumes that the participant will need to become informed about
them if they are not. For example, in v-mWater application specification
explained in Section 4.2.2, when the goal of a seller is to register a water
right, it includes a registration with a water right, a quantity and a price
(reg = 〈right, quantity, price〉). Thus, in this case, RequiredProperties
function would return the list {right, quantity, price} .

After computing the list of possible properties to be informed about, the pro-
cess then inspects this list. First, line 5 calls function Contains(rtAg.goal, prop)
in order to avoid considering subgoals for those properties whose values are al-
ready specified in the participant’s goal. In our example, the goal of the par-
ticipant may include the water right and the quantity, but not the price. Thus,
only the subgoal “to become informed about the price” would be considered.

Afterwards, line 8 invokes function GoalsInfoProp(Org, Sc, rtAg, prop)
which returns a list of subgoals that amount to become informed about a prop-
erty prop. As aforementioned, a goal to become informed about a property may
be completed in different ways. Following with the example, in v-mWater spec-
ification there are two goals in the Waiting&Info activity to become informed
about prices: i) receive information about transactions from the market facilita-
tor (by means of illocution infoTrans(mf, i, {tran}, reqt, open)) and ii) read the
information about transactions in the information panels updated by the market
facilitator (by means of illocution newTran(mf, all, {tran}, open, open)). Notice
that property tran refers to a transaction, which already includes a price.

Next, lines 9 to 23 create a new list of goals for each subgoal recovered.
Namely, it creates all possible combinations of subgoals. Finally, the final goal
is appended at the end of all lists, and the set of ordered lists of subgoals is
returned.

Next section details the OCMAS planning process, which is general for a
given subgoal.

5.6.1 OCMAS Planning

As previously stated, Personal Assistants compute plans based on both the static
system specification (Org) and current (dynamic) system state, Sc. Section 3.2.1
defined the organisational trace Trac as a historical database where the different
execution system states are stored, together with the actions performed at each
state and a time stamp. Thus, Sc corresponds to the last state stored in Trac.
This knowledge allows to explore the search space by expanding a directed plan-
ning tree to compute the path towards a (sub)goal state, i.e., the one reached
once a participant accomplishes a task. Nodes of the planning tree represent
different system states whereas edges correspond to possible participant actions.
Notice though, that, since this work considers a multi-user scenario with action
dependencies, it needs to reckon with different plans executed by different par-
ticipants. Specifically, a Personal Assistant computes a plan for a participant by
invoking the function Plan-eA described in Algorithm 10.

5.6. Advice Service 93

Considering a multi-user scenario, this research proposes to implement
Plan-eA as an extension of A∗ [Hart et al., 1968] (with an admissible heuris-
tic) that handles action dependencies by providing plans that are extended with
other participants’ plans. Action dependencies amounts to actions whose success
depends on other participants’ actions. For example, Mary needs an activity to
be open before she can move into it or she cannot utter an illocution if there
are not receivers. Thus, plans for opening activities or including receivers are
associated to her plan, so she will be aware that she has to wait for other par-
ticipants to execute these plans before she can successfully perform her planned
action.

Plan-eA(Org, P lSc, rtAgc, V isitedNodes) is described in Algorithm 10
with parameters: i) the organisation specification (Org); ii) current planning
state (PlSc) which is initially a working copy of Sc; iii) its corresponding par-
ticipant’s planning state (rtAgc), including its goal (rtAgc.goal); and iv) the list
of visited nodes V isitedNodes.

Similarly to A∗, Plan-eA keeps two lists in order to avoid cycles in the
searching process: the set of already visited nodes V isitedNodes and the set of
open nodes OpenNodes, including the possible successor nodes to be visited.

Thus, the root node (see planning node definition in Equation 5.7) first
in line 1 is initialised with the planning state PlSc, which is the initial plan-
ning state received by the function. In the same way as A∗, the list of open
nodes OpenNodes is initialised with the root node. However, when the process
deals with action dependencies, it recursively calls Plan-eA (explained later on
for functions invoked by Algorithm 12) to compute subplans of other partici-
pants. Thus, to guarantee that each planning node will be visited only once,
V isitedNodes is passed as parameter of the function, which is initialised with
the empty set by the Advice function (see line 8 of Algorithm 7).

As for standard A∗, Plan-eA algorithm will continue the search until the
goal is reached (i.e. currentNode.P lSn = rtAgc.goal) or no more nodes can be
expanded (i.e. OpenNodes 6= ∅). This searching process starts in line 4, which
selects the open node having minimum cost f by invoking fMin(OpenNodes)
function. In case of reaching a goal node, then line 6 returns the current plan-
ning node. Otherwise, the current node is moved from the list of open nodes
OpenNodes to the list of visited nodes V isitedNodes in lines 8 and 9.

Next step consists of computing the Successor nodes by selecting the valid ac-
tions at current state and computing the next states after executing them. This is
done in line 10 by calling function Successor(Org, rtAgc, currentNode.P lSn),
further discussed later on in this section. Following, Plan-eA discards all suc-
cessor nodes that have been already visited, i.e. they are in the V isitNodes list.
Then, it computes f for each node as the sum of a past path-cost g and an ad-
missible heuristic h. Notice that Successor already computes g for each node
as the cost to perform the selected action in such node. Thus, in line 15, this
precomputed value is added to the cost g calculated for the parent node. Subse-
quently, line 16 invokes function h(rtAgc, Org, sucessor.P lSn, goal), a heuristic
computation of the cost of reaching the goal from current state. It is further de-

94 Chapter 5. Assistance Design and Evaluation

Algorithm 10 Plan-eA(Org, P lSc, rtAgc, V isitedNodes)

1: rootNode← 〈PlSc, ∅, ∅, ∅, 0, 0, 0〉
2: OpenNodes← rootNode
3: while OpenNodes 6= ∅ do
4: currentNode←fMin(OpenNodes)
5: if currentNode.P lSn = rtAgc.goal) then
6: return currentNode
7: end if
8: OpenNodes← OpenNodes− {currentNode}
9: V isitedNodes← V isitedNodes ∪ {currentNode}

10: Successors← Successor(Org, rtAgc, currentNode.P lSn)
11: for all successorNode ∈ Successors do
12: if successorNode ∈ V isitedNodes then
13: Continue
14: else if successorNode /∈ OpenNodes then
15: successorNode.g ← currentNode.g + successorNode.g
16: successorNode.h← h(rtAgc, Org, sucessor.P lSn, goal)
17: successorNode.f ← successorNode.g + successorNode.h
18: successorNode.parent← currentNode
19: OpenNodes← OpenNodes ∪ {successorNode}
20: end if
21: end for
22: end while
23: return failure

tailed at the end of this section. Finally, line 19 adds the node to the OpenNodes
list.

The rest of this section is devoted to explain the major contributions in this
Advice service: the Successor function and the heuristic function h. These
functions make use of the rest of services: the Runtime Organisation Specifica-
tion Information service (InformationRtOs) in both Successor and h func-
tions to obtain the set of possible participant’s actions (recall that are the ones
that have defined the participant’s role and are defined in the participant’s cur-
rent location); the Estimation service in Successor to check whether the action
is valid or not, and within the NextNode function (used by the Successor
function) to compute the successor planning node; and the Justification service
within the AsPlans function (also used by the Successor function) to com-
pute associated plans, and within the h function to compute a heuristic cost to
reach the goal.

Successor Searching

Successor(Org, rtAgc, P lSc) function is described in Algorithm 11. The pro-
cess invokes function InformationRtOs(Org, P lSc, rtAgc, actions) in line 2 in
order to get participant’s possible actions. Afterwards, as the successor node for

5.6. Advice Service 95

Algorithm 11 Successor(Org, rtAgc, P lSc)

1: Suc← ∅
2: Actions←InformationRtOs(Org, P lSc, rtAgc, actions)
3: for all a ∈ Actions do
4: AsNod← ∅
5: PlSd ←DuplicateState(PlSc)
6: ad ←DuplicatedElement(a, P lSd)
7: rtAgd ←DuplicatedElement(rtAgc, P lSd)
8: if Estimation(Org, P lSd, rtAgd, ad) = ∅ then
9: AsNod← AsPlans(Org, P lSd, rtAgd, ad)

10: if AsNod = ∅ then
11: Continue
12: end if
13: end if
14: plNode← NextNode(Org, P lSd, rtAgd, AsNod, ad)
15: Suc← Suc ∪ {plNode}
16: end for
17: return Suc

each possible action a is computed from the very same planning state PlSc, it
is duplicated in line 5 (PlSd) to avoid possible changes in it. Moreover, line 6
gets ad, that is the duplicate of a, and line 7 gets rtAgd that is the duplicate of
rtAgc.

The execution of each possible action ad at planning state PlSd is then val-
idated by calling function Estimation(Org, P lSd, rtAgd, ad) in line 8. If the
action is not valid, line 9 would invoke function AsPlans(Org, rtAgd, P lSd, ad)
detailed in Algorithm 12 (and explained later on), that tries to compute asso-
ciated plans for other users that alleviate action’s constraints so that action a
becomes valid once the plans in AsNod are sequentially executed.

If associated plans were not found, then AsPlans would return an empty
list, and the action ad would be discarded for expansion. Otherwise, the
Successor function will compute a planning node (plNode) resulting from
executing the associated plans at PlSc. To do so, Successor function calls
function NextNode(Org, P lSd, rtAgd, AsNod, ad) in line 14. This function is
detailed in Algorithm 17 and described later on.

The rest of this section explains the computation of both associated plans
and the successor node.

Computation of Associated Plans. AsPlans(Org, P lSd, rtAgd, ad) func-
tion, detailed in Algorithm 12, is invoked by Successor function for non-valid
action ad whose successful execution depends on other participants’ actions, and
returns the list of other participants’ plans associated to the execution of such
an action ad. The rest of parameters correspond to the participant rtAgd that
executes action ad at planning state PlSd within the system specified in Org.

96 Chapter 5. Assistance Design and Evaluation

Within Algorithm 12, Justification(Org, P lSd, rtAgd, ad) function is in-
voked in line 2 to get a list of justifications about the reasons action ad is not
valid. The response is characterised by a type. From the justification types
explained in Section 5.4, AsPlans function considers six out of ten: to enter a
minimum number of participants to open an activity (enterPar); to enter the
sender (enterSen) or the receiver (enterRec) required to utter an illocution; to
exit participants to enter an excessively crowded activity (exit); to create a new
activity to enter it (create); and to open an existing activity to enter (open). No-
tice that justifications of type play, loc and state do not require to be considered
since they refer to prohibited actions and, thus, never returned by the informa-
tion service invoked by Successor function. Moreover, justification precon is
not considered by this planning process, so that it would discard the action.

Several issues are raised when considering justification types. To utter an
illocution in an activity requires a sender, a receiver and, in case the illocution
is uttered at the initial state (i.e. it opens the activity), the minimum number
of participants from the protocol capacity (see ProtC.min in Equation 3.11).
Recall that ProtC defines the minimum number of participants playing a spe-
cific role to open an activity, together with the maximum number of participants
playing such role within the activity. Thus, when the justification type is en-
terPar, enterSen or enterRec (see line 3), line 6 first recovers all required roles
in activity rtActivt to utter illocution ad at state PlSd by invoking function
RolActivMiss(PlSd, rtActivd, ad), that returns a list with the roles required
to enter activity rtActivd so that action ad can be successfully uttered at state
PlSd. Notice that if, for example, two sellers and two buyers are necessary to
enter, the function would return the set {seller, seller, buyer, buyer}. Then,
for each missing participant, line 7 calls AsEnt(Org, rol, rtActivd, P lSd), which
returns an associated plan for a participant playing role rol enters into activity
rtActivd.

AsEnt is detailed in Algorithm 13. It selects participants located outside
rtActivd and enacting role rol using function AgRolNAct(rol, rtActivd, P lSd),
which returns a list of participants playing role rol that are not located at activity
rtActivd at state PlSd. Then, for each selected rtAgd, it computes a plan to
join rtActivd by setting its goal to be this location. AsEnt returns the planning
node having the minimum cost g.

Back to AsPlans function, lines 16 to 36 go through the complete list of
justifications discarding enterPar, enterSen and enterRec that have been already
considered in previous lines. Thus, here AsPlans deals with justifications about
entering activities. Recall that a participant can only enter an activity if and
only if: (1) it is created (otherwise justification type is create), (2) it is open to
the participant role (otherwise justification type is open), and (3) its number of
participants enacting participant’s role does not exceed its capacity (otherwise
justification type is exit). Following is explained how AsPlans deals with these
situations:

1. Line 22 invokes function AsCreate(Org, activd, P lSd) described in Algo-
rithm 14. It computes the associated plan for creating the activt activity.

5.6. Advice Service 97

Algorithm 12 AsPlans(Org, P lSd, rtAgd, ad)

1: AsP lNodet ← ∅
2: while J ← Justification(Org, P lSd, rtAgd, a) 6= ∅ do
3: if enterPar ∈ J || enterSen ∈ J || enterRec ∈ J then
4: asP lNodet ← ∅
5: rtActivt ← rtAgd.location
6: for all rolt ∈RolActivMiss(PlSd, rtActivt, ad) do
7: asP lNodet ← AsEnt(Org, rolt, rtActivt, P lSd)
8: if asP lNodet = ∅ then
9: AsP lNodet ← ∅

10: Break
11: end if
12: AsP lNodet ← AsP lNodet ∪ {asP lNodet}
13: PlSd ← plNodet.P lSn

14: end for
15: end if
16: for all j ∈ J do
17: asP lNodet ← ∅
18: if j.type ∈ {enterPar, enterSen, enterRec} then
19: Continue
20: else if j.type = create then
21: activd ← a.des
22: asP lNodet ← AsCreate(Org, activd, P lSd)
23: else if j.type = open then
24: rtActivd ← a.des
25: asP lNodet ← AsOpen(Org, rtAgd.rol, rtActivd, P lSd)
26: else if j.type = exit then
27: rtActivd ← a.des
28: asP lNodet ← AsExit(Org, rtAgd.rol, rtActivd, P lSd)
29: end if
30: if asP lNodet = ∅ then
31: AsP lNodet ← ∅
32: Break
33: end if
34: AsP lNodet ← AsP lNodet ∪ {asP lNodet}
35: PlSd ← asP lNodet.P lSn

36: end for
37: if AsP lNodet = ∅ then
38: Break
39: end if
40: end while
41: return AsP lNodet

98 Chapter 5. Assistance Design and Evaluation

Algorithm 13 AsEnt(Org, rol, rtActivd, P lSd)

1: PlsNode← ∅
2: for all rtAgd ∈AgRolNAct(rol, rtActivd, P lSd) do
3: rtAgd.goal.location← rtActivt
4: plNode← Plan-eA(Org, rtAgd, P lSd)
5: PlsNode← TmpPls ∪ {plNode}
6: end for
7: return MinG(PlsNode)

It first invokes AgCanCreate(Org, activd, P lSd) in line 2 to select par-
ticipants currently enacting a creator role for activity activd at state PlSd.
A temporal copy PlSt of the planning state PlSd is created in line 3, so
that it is not actually modified. Second, for each rtAgt (which is the se-
lected rtAgd in the temporal state PlSt), it sets the goal’s property create
activity (createAct) and calls Plan-eA in line 6 to have its plan. Finally,
AsCreate returns the planning node with minimum cost g.

2. To assess the associated plan for opening an existing activity rtActivt to
the participant role rol, AsPlans algorithm in line 25 invokes function
AsOpen(Org, rol, rtActivd, P lSd), detailed in Algorithm 15. Recall that,
as explained in Section 3.2.1 for protocol nodes, participants playing roles
are only allowed to enter and exit activities when the protocol associ-
ated to these activities are at specific states where the role is defined in
nod.EnterRol and nod.ExitRol respectively. It goes through the list of
participants in activity rtActivd (line 2). For each participant rtAgd, the
function creates a temporal copy of the planning state in line 3 (PlSt), set
the temporal copy of the participant rtAgt goal to open the activity to role
rol (openActRol) and calls Plan-eA in line 7. Finally, AsOpen returns
the planning node with minimum cost g.

3. Lastly, AsPlans calls function AsExit(Org, rol, rtActivd, P lSd) in line 28
when the number of participants playing the role of the planning partic-
ipant (rol) in activity rtActivt exceeds its maximum capacity. Thus, at
least a participant within such activity must exit it so that the planning
participant can enter the activity. AsExit function is described in Al-
gorithm 16. In line 2 it calls function AgRolAct(rol, rtActivd, P lSd) to
select participants located inside activity rtActivd and enacting role rol
at state PlSd. Then, for each selected participant rtAgd, and similarly
to AsCreate and AsOpen, this function creates a temporal copy of the
planning state (PlSt) and gets the participant at such state (rtAgt). Then,
it sets the goal of rtAgt to be at a transition, i.e. to exit the activity, an
calls Plan-eA in line 6. Finally, AsExit returns the planning node having
the minimum cost g.

AsPlans will repeat the whole process until no justifications are found (i.e.
the action is valid) and the list of associated planning nodes AsP lNodet is

5.6. Advice Service 99

returned; or no plans are found for any justification (i.e. the action is rejected)
and the empty set is returned.

Algorithm 14 AsCreate(Org, activd, P lSd)

1: PlsNode← ∅
2: for all rtAgd ∈ AgCanCreate(Org, activd, P lSd) do
3: PlSt ←DuplicateState(PlSd)
4: rtAgt ←DuplicatedElement(rtAgd, P lSt)
5: rtAgt.goal.createAct← activd
6: plNode← Plan-eA(Org, rtAgt, P lSt)
7: PlsNode← PlsNode ∪ {plNode}
8: end for
9: return MinG(PlsNode)

Algorithm 15 AsOpen(Org, rol, rtActivd, P lSd)

1: PlsNode← ∅
2: for all rtAgd ∈ rtActivt.Participants do
3: PlSt ←DuplicateState(PlSd)
4: rtAgt ←DuplicatedElement(rtAgd, P lSt)
5: rtActivt ←DuplicatedElement(rtActivd, P lSt)
6: rtAgt.goal.openActRol← {rtActivt, rol}
7: plNode← Plan-eA(Org, rtAgt, P lSt)
8: PlsNode← PlsNode ∪ {plNode}
9: end for

10: return MinG(PlsNode)

Computing the Successor Node. Line 14 in Algorithm 11
computes the next node in the planning tree by invoking
NextNode(Org, P lSd, rtAgd, AsNod, ad) function detailed in Algorithm 17.
Briefly, it computes the planning node after associated plans (AsNod is the list
of final nodes for these plans) are executed in the given order and subsequently
action ad which is now valid is performed by participant rtAgd at state PlSd.

First, it goes through each associated plan AsNod in the given order. In
line 4 it invokes function ConstructPlan(node) to construct the associated
plan. For each action a in the associated plan, line 6 invokes sequentially
Estimation(Org, P lSd, node.rtAgn, a) function to estimate the next state after
executing a by participant node.rtAgn (the subject of the plan) at last com-
puted state PlSd, which is overwritten to be used as input parameter in the
next invocation to Estimation. As explained in previous Section 5.5, Estima-
tion function corresponds to the Estimation service and does not modify the
state passed as parameter. Instead, it creates a copy of such state. It is worth
to mention that, in this case, Estimation function will always return the next

100 Chapter 5. Assistance Design and Evaluation

Algorithm 16 AsExit(Org, rol, rtActivd, P lSd)

1: PlsNode← ∅
2: for all rtAgt ∈AgRolAct(rol, rtActivd, P lSd) do
3: PlSd ←DuplicateState(PlSd)
4: rtAgd ←DuplicatedElement(rtAgt, P lSd)
5: rtAgd.goal.location←InstanceOf(Org.SocConv.Tra)
6: plNode← Plan-eA(Org, rtAgd, P lSd)
7: PlsNode← PlsNode ∪ {plNode}
8: end for
9: return MinG(PlsNode)

state (instead of a ∅ value indicating a non-valid action) because the associated
plans only contain valid sequences of actions. Additionally, g is increased in
line 7 with the cost of executing the action, namely 1.

Finally, the definitive successor state is computed by calling again the
Estimation function in line 11 for the selected action ad, which is valid once all
associated plans are executed; increments g in 1; and updates the following prop-
erties of the successor: the planning participant rtAgn; the action that transits
to this node; the associated plans (AsNod); its planning state after execucting
associated plans AsNod and action (PlSn); and the cost of the node (g).

Heuristic Distance

Plan-eA computes f for a successor node as the sum of: i) the past path-cost
g, computed as the number of actions to reach node PlSc from the root node
(i.e the one that refers to the current state); and ii) an admissible heuristic h.
This section details function h(rtAgc, Org, P lSc, goal), which computes h as a
lower bound of the actions required to reach the goal from PlSc. It does so by
relaxing the constraints imposed by the social model specification and runtime
properties. Specifically, h only considers a subset of the action dependencies that
are taken into account in the actual planning process. Thus, as it is explained
below, the action dependencies handled by algorithm 11 are also considered by
h. In fact, h also uses Justification function in its process. Nevertheless, it is
done in a far less costly way: applying admissible “rules of thumb” and without
invoking Plan-eA.

Function h(rtAgc, Org, P lSc, goal) is described in Algorithm 18, and esti-
mates the cost of reaching the goal by participant rtAgc at state PlSc. Initially,
h checks whether rtAgc is in the same location than the goal. If it is the case
that both participant and goal are in the same location, h will call function
hSameLoc(rtAgc, Org, P lSc, goal) in line 3. Otherwise, it will call function
hDiffLoc(rtAgc, Org, P lSc, goal) in line 5.

hSameLoc function computes the lower cost of executing any possible ac-
tion at PlSc, so that it starts initialising the cost h to ∞ in line 1 because
later is updated with minimum cost values (see line 13). Then, it inspects

5.6. Advice Service 101

Algorithm 17 NextNode(Org, P lSd, rtAgd, AsNod, ad)

1: successor ← ∅
2: g ← 0
3: for all node ∈ AsNod do
4: plan← ConstructPlan(node)
5: for all a ∈ plan do
6: PlSd ← Estimation(Org, P lSd, node.rtAgn, a)
7: g ← g + 1
8: end for
9: end for

10: if ad 6= ∅ then
11: PlSd ← Estimation(rtAg,Org, P lSd, rtAgd, ad)
12: g ← g + 1
13: successor.rtAgn ← rtAgd
14: successor.action← ad
15: successor.AsNod← AsNod
16: successor.P lSn ← PlSd

17: successor.g ← g
18: end if
19: successor.P lSn ← PlSd

20: return successor

Algorithm 18 h(rtAgc, Org, P lSc, goal)

1: h← 0
2: if rtAgc.location = goal.location then
3: h← hSameLoc(rtAgc, Org, P lSc, goal)
4: else
5: h← hDiffLoc(rtAgc, Org, P lSc, goal)
6: end if
7: return h

the possible actions of participant rtAgc at state PlSc by invoking service
InformationRtOs(Org, P lSc, rtAgc, actions) in line 2. For each action at,
hSameLoc computes the cost of executing it together with a lower bound of the
cost of executing other participants’ dependent actions. To do so, hSameLoc
initialises the temporal cost ht of executing action at to 1 and invokes Justifi-
cation(Org, P lSc, rtAgc, at) in line 4. It then aggregates one more action for
each participant that must enter the activity before the action can be executed.
The number of missing participants corresponds to the number of elements in
the set of roles returned by function RolActivMiss(PlSd, rtActivt, at). Addi-
tionally, function ReachGoal(Org, P lSc, rtAgc, a, goal) in line 10 validates if
the action execution could reach the goal at state PlSc, adding 1 more to ht
if it is not the case, because at least one more action will be necessary to be
executed. Finally, the lower cost of all considered actions is returned.

102 Chapter 5. Assistance Design and Evaluation

Algorithm 19 hSameLoc(rtAgc, Org, P lSc, goal)

1: h←∞
2: for all at ∈ InformationRtOs(Org, P lSc, rtAgc, actions) do
3: ht ← 1
4: J ← Justification(Org, P lSc, rtAgc, at)
5: if enterPar ∈ J || enterSen ∈ J || enterRec ∈ J then
6: rtActivt ← rtAgc.location
7: RolEnter ←RolActivMiss(PlSc, rtActivt, at)
8: ht ← ht +RolEnter.count
9: end if

10: if ¬ReachGoal(Org, P lSc, rtAgc, at, goal) then
11: ht ← ht + 1
12: end if
13: h←min(h, ht)
14: end for
15: return h

hDiffLoc function computes cost h if it is the case that rtAgc is not lo-
cated at the goal location, so that then rtAgc would have to: i) exit its current
location; and ii) enter the goal location. Thus, hDiffLoc estimates the cost
for both movements, considering also if current protocol state allows the par-
ticipant to exit/enter the corresponding activities. To do so, hDiffLoc first
initialises the cost h of performing the movement to enter the goal activity to
1 (see line 1). Then, it checks if the location of rtAgc is an activity in line 2,
which would increment the cost in 1, since at least one activity exit movement
will be required. Moreover, it uses function MovExit(rtAgc.rol, rtActivt) in
line 5 to recover a movement to exit the activity and next line invokes function
Justification(Org, P lSc, rtAgc, aEnter). If any justification is found, that
means the action is non-valid at current state so that at least one additional
dependent action should be executed and thus, hDiffLoc adds 1 to the cost.

Line 11 checks if the location of the goal is an activity. Afterwards,
MovEnter(rtAgc.rol, rtActivt) function in line 13 recovers a movement to en-
ter (or if it is the case create) activity rtActivt, and next line invokes function
Justification(Org, P lSc, rtAgc, aEnter). Then, for justifications to open or
exit the activity hDiffLoc adds 1 to the cost, since additional actions will
be required. Moreover, if the activity is not created, it is checked if par-
ticipant rtAgc can be the creator of such an activity by invoking function
AgCanCreate(Org, rtActivt, P lSc) which returns the participants at state
PlSc that can create activity rtActivt. It then adds 1 to amount for the cost
of creating it, and also checks if, once created, when it would be in the initial
state, the role of participant rtAgc is allowed to enter (see line 22 that calls
function RolCanEnterAtIniState(rtAgc.rol, activt)). If so, it will add 1 to
the cost, because at least one action will be required to open it. Lastly, function
ReachGoal(Org, P lSc, rtAgc, a, goal) in lines 29 and 30 checks if the consid-

5.6. Advice Service 103

Algorithm 20 hDiffLoc(rtAgc, Org, P lSc, goal)

1: h← 1
2: if IsInstanceOf(rtAgc.location,Org.Activ) then
3: h← h+ 1
4: rtActivt ← rtAgc.location
5: aExit←MovExit(rtAgc.rol, rtActivt)
6: J ← Justification(Org, P lSc, rtAgc, aExit)
7: if J 6= ∅ then
8: h← h+ 1
9: end if

10: end if
11: if IsInstanceOf(goal.location,Org.Activ) then
12: rtActivt ← goal.location
13: aEnter ←MovEnter(rtAgc.rol, rtActivt)
14: J ← Justification(Org, P lSc, rtAgc, aEnter)
15: for all j ∈ J do
16: if j.type ∈ {open, exit} then
17: h← h+ 1
18: else if j.type = create then
19: activt ← goal.location
20: if rtAgc /∈AgCanCreate(Org, activt, P lSc) then
21: h← h+ 1
22: if ¬RolCanEnterAtIniState(rtAgc.rol, activt) then
23: h← h+ 1
24: end if
25: end if
26: end if
27: end for
28: end if
29: if ¬ReachGoal(Org, P lSc, rtAgc, aEnter, goal) then
30: h← h+ 1
31: end if
32: return h

104 Chapter 5. Assistance Design and Evaluation

ered movement could reach the goal, adding 1 more to the cost if it is not the
case, because at least one more action will be necessary to be executed.

5.6.2 v-mWater planning example

Figure 5.6: Initial Runtime Properties

Figure 5.7 illustrates a planning process Plan-eA(Org,Mary, P lSc) that
considers the static specification (Org) from Figure 3.2 and the runtime proper-
ties (PlSc), which are a working copy of the current state, depicted in Figure 5.6.
In Figure 5.7 nodes with circular shape represent the ones reached by the refer-
ence participant (the one for which the planning is computed), while diamond
shape2 in the planning tree indicates another participant does the action. More-
over, root nodes are represented in solid black and final nodes have a thick
outline. As for Plan-eA invocation results, and for the sake of clarity, instead
of showing the planning nodes, Figure 5.7 depicts the corresponding plan pl, pl′,
pl′′ and pl′′′.

In this particular example, Mary (see rtSocStr in Figure 5.6) enacts a seller
role, is located at transition sMove (see Figure 3.2), and she has revealed her
goal which is to register 100,000 m3 of her water right which is identified as wr1,
and she aims to register it with a reservation price of 15e per 1,000 m3 of water.
Furthermore, the Waiting&Info activity is open (see rtSocConv on the right of
Figure 5.6); and Registration activity has not been created yet. Additionally,
as rtSocStr indicates at Figure 5.6, there are two staff agents playing market
facilitator role: InfoMng is located at the Waiting&Info activity whereas RegM-
ngr just entered the system, and it is located at transition mfEnter. The root
node PlS0 (in solid black on the top of Figure 5.7) is initialised to PlSc (see
line 1 of function Plan-eA in Algorithm 10), and the Successor function in
Algorithm 11 considers two seller actions for Mary (see specification depicted in
Figure 3.2). First, a1 =enter(s, sMove, Waiting&Info) will directly lead to state
PlS1, because the current state of the activity protocol is open, and sellers can
enter at such a node. Second, a2 =enter(s, sMove, Registration) cannot be per-
formed. The Justification service returns the list J = {create, open}, namely,
Mary needs to wait for another participant to create and open the Registration
activity.

2Do not mix up with transitions notation in Performative Structure in Figure 3.2

5.6. Advice Service 105

Figure 5.7: Example of Plan-eA returning plan pl with associated plans pl′

and pl′′′.

106 Chapter 5. Assistance Design and Evaluation

As a consequence, function AsCreate in Algorithm 14 looks
for plans for InfoMngr and RegMngr to create the activity,
by invoking Plan-eA(Org, InfoMngr, P lS0, V isitedNodes) and
Plan-eA(Org,RegMngr, P lS0, V isitedNodes) respectively. Specifically,
it computes pl′ = {new(mf,mfEnter,Registration)} for RegMngr and pl′′ = ∅
for InfoMngr in Figure 5.7 as the plans for creating the Registration activity.
Since InfoMngr does not have a plan, so that pl′ for RegMngr is returned as the
associated plan to create activity Registration. Afterwards, function AsOpen
in Algorithm 15 finds plan pl′′′ = {open(RegMngr, all)} for RegMngr to open
the activity.

Together, associated plans pl′ and pl′′′ are sequentially linked and transit
current state PlS1 to PlS′′′1 (final state in plan pl′′′ on the bottom left part of
Figure 5.7), where a2 can now lead to successor state PlS2 (in the main planning
tree on top of Figure 5.7). At this state, participant Mary is now located inside
Registration activity, whose protocol state is open.

The heuristic for each successor state is computed as follows. PlS2 has f = 5:
g(PlS2) = 3 since the associated plans add two actions to the one performed by
Mary; and h(PlS2) = 2 because, although Mary is at the Registration, none of
her possible actions in PlS2 do lead to the goal state. Moreover, PlS1 has f = 6;
g(PlS1) = 1 since only one action (enter) has been executed; and h(PlS1) = 5
because Mary is not where the goal task is performed. Thus, she has, at least, to
exit Waiting&Info and enter Registration which must first be created and open.
Moreover, once inside the activity, at least one illocution should be uttered,
since the goal is not just to enter the activity and thus cannot be reached upon
entrance to the activity.

Hereafter since PlS2 has lower estimated cost than PlS1, the planning ex-
pands PlS2 and continues until it reaches the goal node PlS6 (diamond shape
indicates another participant, mf , did the action). As result, it returns plan pl
in Figure 5.7 which consist of the following actions:

1. new(RegMngr, mfEnter, Registration)

2. open(RegMngr, all)

3. enter(Mary, sMove, Registration)

4. register (Mary, RegMngr, reg)

5. agree(RegMngr, Mary)

5.6.3 Plan Delivery

Computed plans are sequences of actions meant for software agents. Personal
Assistants facilitate the interaction with human users by presenting them in nat-
ural language. Thus, following the example in previous Figure 5.4, this natural
language translation allows human user Mary to easily interpret the plan pro-
vided. It is worth noticing though, that, as explained above, several plans can

5.6. Advice Service 107

be found. For example, additionally to the plan showed in Figure 5.4, Mary’s
Personal Assistant also sends her the following one:

1. Mary Smith, enter the “Waiting And Information” room.

2. Information about market transactions is publicly displayed at Information
Panels.
KEEP THE INFORMATION OBTAINED HERE (price) TO BE USED
LATER.

3. Mary Smith, exit the “Waiting And Information” room.

4. Mary Smith, enter the “Registration” room.

5. Mary Smith, ask for registering a water right to Registration Manager.

Notice that this plan differs from the one in Figure 5.4 in that the information
about transactions is suggested to be read from the information panels (action
number 2 in the written example) instead of asked to the Registration Manager
(actions number 2 and 3 in Figure 5.4). The human user is free to choose which
one to follow when pursuing her goals.

Action translation requires the designer to specify a template. Current imple-
mentation defines the template as a property of an action in Org. For example,
the register illocution is described as “$sender$ ask for registering a water right
to $receiver$”, where $sender$ and $receiver$ are substituted by the name of the
actual participants, as last sentence in Figure 5.4 reads. Moreover, if, instead of
being the sender, the human user is the receiver of an illocution, then a different
template is used to generate sentences. Third sentence in Figure 5.4: “Informa-
tion Manager will provide information about last transactions to Mary Smith”
exemplifies this situation. The templates used to generate the plan showed in
Figure 5.4 are the following:

1. $sender$ enter the “Waiting And Information” room.

2. $sender$ ask for last transactions to $receiver$.

3. $sender$ provide information about last transactions to $receiver$

4. $sender$ exit the “Waiting And Information” room.

5. $sender$ enter the “Registration” room.

6. $sender$ ask for registering a water right to $receiver$.

Additionally, the templates used to generate the alternative plan given above
are:

1. $sender$ enter the “Waiting And Information” room.

2. Information about market transactions is publicly displayed at Information
Panels.

108 Chapter 5. Assistance Design and Evaluation

3. $sender$ exit the “Waiting And Information” room.

4. $sender$ enter the “Registration” room.

5. $sender$ ask for registering a water right to $receiver$.

5.6.4 Service Evaluation

This research evaluated the assistance service 3 by i) fulfilling a usability test that
follows the Formative Evaluation methodology, and ii) comparing the obtained
results with the previous study in Chapter 4, where the users performed the
same task in v-mWater but without assistance.

Test Goals and Assistance Research Questions

This work conducted a user evaluation whose goal was twofold. First, it aimed
to evaluate the assistance in terms of its i) effectiveness, if it helps the users
to actually perform the task; ii) efficiency, if it reduces the effort (in terms of
number of user’s actions and cognitive load) required to conduct the task; and
iii) users’ satisfaction: their opinions, feelings and experience. Second, this work
also aims at identifying the errors/problems users make/encounter when using
the assistance.

Having these goals in mind, this work addressed the following assistance
research questions:

• ARQ1: Assistance helpfulness. At what stage of task completion was the
help requested? Was the provided advice useful for the user to complete
the task?

• ARQ2: User-Personal Assistant interaction. Is the assistance easy to
request? How easy and pleasant is the interaction with the Personal As-
sistant?

• ARQ3: Plan tracking. What obstacles do users encounter when following
the plan? Is it clearly explained? Is it detailed enough to complete the
task successfully and in a seamless way?

• ARQ4: Task completion. How many users do complete the task? How do
they perceive it?

For this usability test, users were asked to perform the same complex task
as for the previous study: to register a water right in v-mWater at a price that
depends on previous market transactions. As before, it implies 4 subtasks: i) to
understand the task (they are required to visit 2 rooms in a specific order); ii)
to get particular information about the market prices at the Waiting&Info room
(this subtask can be accomplished by asking the Information Manager bot or

3The reader is encouraged to watch http://youtu.be/VOQ9DavaqNA which shows the usabil-
ity test requested to testers.

http://youtu.be/VOQ9DavaqNA

5.6. Advice Service 109

by reading the information panel); iii) to come up with the required registration
price, which has to be 5e higher than the price of the most recent transaction;
and iv) to register the water right by interacting with the Registration bot at
the Registration room. Whenever needed, users can ask for assistance to their
Personal Assistant.

Participants and methodology

14 new participants were recruited for this experiment, i.e. they are different
from the ones that participated in the initial one without assistance. Table 5.3
shows details on their age, gender, computer skills (‘basic’ stands for users of
limited computer functionalities and ‘advanced’ for computer professionals such
as programmers) and Virtual Environment experience (‘none’/‘high’ describe
users who have never/often used a Virtual Environment).

Since this work is mostly interested in finding relevant qualitative and quan-
titative data, this usability test is summative and follows the Formative Evalu-
ation4 [Rubin and Chisnell, 2008]. The settings are similar to those used in the
previous evaluation.

Name Age Gender PC exp VE exp
P1 23 Female Advanced None
P2 24 Male Advanced High
P3 26 Female Advanced High
P4 27 Male Advanced High
P5 27 Male Advanced High
P6 27 Male Advanced High
P7 29 Female Advanced None
P8 32 Male Basic None
P9 32 Male Basic None
P10 32 Male Advanced High
P11 41 Male Advanced High
P12 42 Male Basic High
P13 53 Male Advanced None
P14 66 Female Basic None

Table 5.3: List of participants’ characteristics

The tests took place at users’ locations: 30% of the participants did the
test at their home and the rest at their workplace, on a separate room. The
equipment consisted in 1 portable computer. It had the overall system installed:
AMELI, the OCMAS execution infrastructure that supports the execution of
Electronic Institutions [Esteva et al., 2004], OpenSimulator VW server, and a
VW client. It also recorded user interactions and sound. Again, all participants
were requested to perform the aforementioned task by telling them: “act as a

4Appendix B contains the documents used in the test.

110 Chapter 5. Assistance Design and Evaluation

seller, and register a water right for a price which is 5e higher than the price of
the last transaction done”.

Similarly to the previous evaluation, a moderator guided the test along four
different phases: 1) Pre-test interview : the moderator welcomed the user, briefly
introduced the test and asked the user about her or his experience with similar
Virtual Environments. 2) Training : the moderator taught the user to move in a
3D demo Virtual Environment as well as to interact with objects, avatars, bots
(whose ’special’ appearance, i.e. bold and coloured skin, was made noticeable)
and her or his Personal Assistant. This training part was mostly fully guided,
except at the end, when the user could freely roam and interact in the demo
scenario. 3) Test : the user performed the assigned task without receiving any
guidance (unless she or he ran out of resources). Meanwhile, the moderator en-
couraged the user to think-aloud (i.e., to describe her or his actions and thoughts)
while performing the test. 4) Post-test satisfaction survey : the moderator gave
the user a survey with qualitative (open-ended) and quantitative (close-ended)
questions regarding v-mWater and the assistance provided.

Results and discussion

This section shows and discusses results obtained after the analysis of data gath-
ered during the test, i.e desktop and voice recordings, moderator notes, users’
comments, and post-test satisfaction surveys.

Table 5.4 summarizes the 8 questions in the post-test survey and Fig-
ure 5.8 depicts users’ answers. There, X axis shows questions identifiers and
the Y axis shows average 5 values of answers considering a 5-point Likert
scale [Likert, 1932]. This scale provides 5 different alternatives in terms of ap-
plication successfulness (‘very bad’/‘bad’/‘fair’/‘good’/‘very good’), where ‘very
bad’ corresponds to 1, and ‘very good’ to 5.

Question Brief description
Q1 Info gathering (panel/bot)
Q2 Human-bot interaction
Q3 Bot visual distinction
Q4 Dialogue-based bot communication
Q5 Overall system opinion
Q6 Assistance usefulness
Q7 PA interaction
Q8 Advice Understanding

open Q User’s comments

Table 5.4: Post test questionnaire

5As previously stated in Section 4.4.5, the presented analysis is just based on the aver-
age, and the standard deviation is not included because this study cannot guarantee that its
questionnaire data are normally distributed.

5.6. Advice Service 111

Figure 5.8: Post-test questionnaire average results.

Collected data was related to general issues about the 3D environment in
questions Q1-Q5, and results here are similar to those obtained in the evaluation
without assistance in Chapter 4. Moreover, the questionnaire included a new
group of questions related to assistance (Q6-Q8) that turned out to have scores
over 3.8.

Furthermore, a number of relevant aspects of assistance in v-mWater were
extracted from questionnaire qualitative measures as well as from user debrief-
ings with the evaluation team. Generally, the obtained responses indicate that
users like the way that the assistance was provided and how it helps task accom-
plishment. The assistance clearly guided them to perform the task and corrected
users behaviour when they deviated from the proper one. The overall opinion
of the system was positive.

Usability criteria, such as effectiveness, efficiency, errors and satisfaction have
been analysed answering the assistance research questions previously introduced.

ARQ1: Assistance helpfulness. The assistance was voluntarily requested by the
93% of the testers: i) at the beginning of the task (6 users), ii) in the middle of
the task (4 users), to check if they were doing it as expected and iii) when they
were trying to register without getting price information (3 users). Therefore,
it is possible to conclude that the assistance was helpful to all users at some
time during the task. This fact is reinforced by the answers to Q6, which has
an average value of 4.2.

ARQ2: User-Personal Assistant interaction. Along the test, all users interacted
with the Personal Assistant in a seamless way: they managed to ask for the
correct advice and recognised the received plan. Thus, user-Personal Assistant
interaction was satisfactory (as Q7 also indicates with a value over 4).

ARQ3: Plan tracking. All users who requested the plan understood its structure
and followed it without errors. In general, the advice was comprehensible. This

112 Chapter 5. Assistance Design and Evaluation

can be confirmed by related question Q8 since it has a value of 3.8.
ARQ4: Task Completion. The difference in number of actions with assistance
(average of 7, σ = 2.3) and without it (average of 10.8, σ = 3.4) has proven to be
significant by a one tailed unequal variance t-test with a p-value of 0.004 (p-value
< 0.05). In order to successfully complete the given task, users had to perform
a minimum of 5 actions (see Mary’s actions on the left of Figure 5.4). If these
averages are analysed with and without assistance respect to this minimum,
they represent a 140% and 216% respectively, so that assistance provides a 76%
reduction. Assuming this work is considering the same type of actions (i.e. the
ones defined in the social model), the number of actions are taken as a measure
of efficiency. It was also observed that assisted users went more directly to
the goal and, thus, had less cognitive load than non-assisted ones. Overall,
assistance reduces perceived task complexity, and this fact is confirmed by the
lower percentage of fails with assistance (7%) respect to those without it (23%).

Chapter 6

Enhanced Human-Agent
Interaction

This chapter describes a human-agent conversational interaction mechanism in
Assisted Hybrid Structured 3D Virtual Environments deployed by means of
VIXEE infrastructure. Particularly, staff agents, embodied as staff bots, may
interact with humans using both command-based and conversational interaction
styles. In the former, the staff bot just understands user messages in a (strict)
command-based language. In the latter, the staff bot converses with users in
natural language, being able to manage task-oriented conversations, i.e conver-
sations with the ultimate goal of performing a task. To do so, this chapter
proposes the extension of the Artificial Intelligence Mark-up Language (AIML),
a language that allows agents to engage in conversations with humans, with
special tags to enable the proposed task-oriented conversations. The resulting
extension is named Task-Oriented AIML, which allows to control the flow and
state of a conversation basing on user entries, system specification and sytem
state. The interaction mechanism is evaluated in terms of task effectiveness,
efficiency, errors and user satisfaction when performing structured tasks.

6.1 Introduction

Assisted Hybrid 3D Virtual Environments were proposed and formalised in
Chapter 3 as being composed of a two layered architecture. The Organisa-
tional Layer models distributed systems based on organisational concepts. On
top of it, the Assistance Layer is populated by Personal Assistants, i.e. organisa-
tional agents devoted to help system participants. The focus of this chapter is in
the former, where the domain Organisation Specification (Org) structures par-
ticipants’ interactions by defining communication protocols they must follow in
order to perform complex tasks (i.e. achieve their goals) within specific activities.
These protocols are based on the speech act theory [Searle, 1969] so that uttered
illocutions count as interactions. When running an Assisted Hybrid 3D Virtual

113

114 Chapter 6. Enhanced Human-Agent Interaction

Environment, in addition to the organisation specification, the system keeps
track of its current state (Sc ∈ Trac), which includes, for instance, participant’s
location and current number of participants. Although system participants can
enact different roles, the present chapter focuses on (i) participants that are
software staff agents enacting institutional roles which support user tasks, and
(ii) human users enacting external roles that join the organisation to perform a
variety of tasks.

Chapter 4 explained the v-mWater application deployed as a Virtual Insti-
tution with Assistance capabilities enabled, i.e. an Assisted Hybrid Structured
3D Virtual Environment. A Virtual Institution combines an Electronic Institu-
tion [Esteva et al., 2004] (an Organisation Centred Multi-Agent System) and a
3D Virtual World. The 3D Virtual World provides an immersive scenario where
human users participate and intuitively follow and perform the ongoing activi-
ties. In this scenario, a user controls an avatar and interacts with other users,
the environment and also with staff bots (i.e the embodiment of staff agents)
in order to achieve her or his goals. Thus, user-agent interaction style becomes
key for enabling task completion. To this end, interface elements, such as chat
windows, allow user-agent interactions. Initially in v-mWater, as explained in
Chapter 4, the user-agent interaction style was command-based, within such chat
windows. Nevertheless, as expected, evaluation results showed that command-
based interaction is error-prone and has low learnability, specially for users with
basic computer skills.

Natural language interactions constitute a suitable alternative to command-
based systems. Embodied conversational agents are popular representatives
of this type of interactions. They are virtual characters which are able
to engage in a conversation with humans. Nowadays, they can be mostly
found as virtual assistants that provide information to users in web environ-
ments. Specifically, Artificial Intelligence Mark-up Language (AIML) chatter-
bots [Wallace, 2000, Wallace, 2009] are well known reactive bots which follow
basic dialogue structures defined in static files. They have been conceived to
give general information to users under request. Additionally, they are able to
ask the user about some general information (e.g. gender or name) and store
her or his response in a non-typed memory (i.e. a list of string values).

Next section introduces the Conversational Architecture that enables natural
language conversations between humans users and staff agents in Assisted Hybrid
Structured 3D Virtual Environments.

6.2 Conversational Architecture

As previously introduced in Section 1.5, Virtual Institutions paradigm
allows the creation of Hybrid Structured 3D Virtual Environments.
VIXEE [Trescak et al., 2013] is the Virtual Institutions eXEcution Environment
that connects an Electronic Institution and several 3D Virtual Worlds. It enables
the validation of those Virtual World interactions which have institutional mean-
ing (i.e. contemplated in the Electronic Institution specification), and updates

6.2. Conversational Architecture 115

Figure 6.1: Conversational Task-Oriented Architecture

116 Chapter 6. Enhanced Human-Agent Interaction

both Virtual World and Electronic Institution states to maintain a consistent
state. This section briefly recalls VIXEE concepts and details the incorporation
of a new human-agent (conversational) interaction mechanism. Top of Figure 6.1
depicts VIXEE architecture structured in three main layers: Visual Interaction;
Normative; and, as middle-ware, the Causal Connection Layer.

The Visual Interaction Layer is the 3D interface which represents an immer-
sive space where participants (i.e humans and agents) can interact and human
users intuitively follow the progression of activities they are engaged in. Human
users (human-alike icons on the left of Figure 6.1) participate in the system by
controlling avatars (i.e. 3D virtual characters) that represent them in the virtual
environment. Additionally, staff agents are visualised as staff bots in the Virtual
World (notice how a dashed arrow in Figure 6.1 links robot icon on the right
with staff bot character).

The Normative Layer on the right of Figure 6.1 is composed by:
AMELI [Esteva et al., 2004], the Electronic Institution specification, and its cur-
rent state. AMELI is the Electronic Institution execution infrastructure that
regulates participant interactions by enforcing its Electronic Institution specifi-
cation at run-time. Briefly, this specification defines: participant (staff and ex-
ternal) roles; activities where participants –enacting specific roles– perform tasks;
and regulations and communication protocols associated with these activities.
Communication (conversation) protocols are defined as finite state machines,
where states represent different conversation stages and edges correspond to il-
locutions (i.e. institutional messages) that participants can interchange. These
illocutions consist of a sender, a receiver and a content, which is expressed in
terms of Electronic Institution types (defined in an ontology) and whose specific
values can come from user entries. Finally, staff agents (robot-alike icons in
Figure 6.1) are software programs connected to AMELI.

The Causal Connection Layer in Figure 6.1 acts as middle-ware. It includes
both the Virtual Worlds manager (that mediates all the communication with the
Virtual World platforms) and the Connection Server (that does so with AMELI).
The latter has three components: i) the Agent Manager, which represents hu-
mans as External Agents (represented as ellipses) in AMELI; ii) the Dispatchers
and iii) the Extended Interaction Mechanism. The Dispatchers use the so called
Movie Script mechanism to define the mapping between AMELI events and Vir-
tual World actions and in reverse. On one hand, an event generated in AMELI
triggers a Virtual World action, and thus, the visualisation in the Virtual World
is updated. On the other hand, for each institutional action (regulated by the
Electronic Institution) performed by a human avatar in the Virtual World, a
dispatcher generates the corresponding illocution in AMELI.

The Extended Interaction Mechanism (zoomed in at the bottom of Fig-
ure 6.1) supports human-agent interactions. In particular, each staff agent in
AMELI has a staff bot (see Staff Bot labelled ellipses in the lower left part of
Figure 6.1) within this Extended Interaction Mechanism that controls a staff bot
character in the Virtual World and that is endowed with both a command-based
and a conversational interaction mechanism. Both mechanisms are generic for

6.3. Task-Oriented Conversation 117

any 3D Virtual World (supported by VIXEE) and Electronic Institution speci-
fication.

When using the command-based interaction style, the staff bot just under-
stands user messages structured as commands, where the first word corresponds
to the illocution defined in the specification and successive words map to illocu-
tions’ content. Specifically, the staff bot filters users’ messages by comparing the
first word with allowed Electronic Institution illocutions and uses a Command
Manager to validate its structured content. Commands are then directly mapped
to illocutions uttered from users to staff agents in AMELI. In the reverse direc-
tion, one illocution that the staff agent sends to the user in AMELI is translated
to one message sent by the staff bot to the user in the virtual environment.

Using the conversational system, users can express their intentions using
natural language dialogues and staff bots have to understand users’ entries and
support them in their task completion. To do so, a staff bot must: i) identify
user’s task; ii) if some data is required to complete the task, request the user
accordingly; iii) validate user entries with respect to both the Electronic Insti-
tution specification and Electronic Institution current state, and store them in a
typed memory; and iv) send a compiled illocution to the staff agent so that the
user’s task can be completed. In the reverse direction, each illocution the staff
agent sends to the user should be expressed in natural language.

This bidirectional process requires a staff bot to dynamically control the flow
and state of a task-oriented conversation with multiple users based on the users’
entries, the staff agent’s illocutions, the system specification and its current
state. The staff bot delegates in a Conversation Manager the updating of the
conversations’ states, the storage of users’ responses into a Typed Memory (with
the types defined in the Electronic Institution specification) and the interpreta-
tion of the conversational knowledge, which is based on the Artificial Intelligence
Mark-up Language (AIML). As aforementioned, AIML has been conceived to
program reactive chatter bots that follow basic conversations with users. This
work extends it and proposes Task-Oriented AIML, which includes special tags
to enable structured/regulated conversations. Next sections further explain and
evaluate this extension.

6.3 Task-Oriented Conversation

The Artificial Intelligence Mark-up Language (AIML) was conceived to create
chatter bots, i.e. reactive software programs that can engage in simple natural
language dialogues with humans. AIML is in fact a XML dialect that encapsu-
lates conversational knowledge in data objects called categories. Basically, each
category is defined by an input question (i.e. a pattern for the user entry) and an
output response (a template to generate bot’s response). Categories are grouped
in topics. Thus, bot designers can encapsulate conversational knowledge into
topics and so control a conversation flow through topics. Despite their simple
structure and functioning, AIML chatter bots can give a response to almost any
sentence the user can think of. It is a matter of expanding the conversational

118 Chapter 6. Enhanced Human-Agent Interaction

knowledge with more and more AIML files.

Nevertheless, AIML does not perform well in Assisted Hybrid Structured
3D Virtual Environments, where staff bots, beyond having basic conversational
skills to welcome, talk about general topics and farewell the user, they need
to manage conversations that support user’s task achievement. Therefore, it is
needed to extend AIML for enabling task-oriented conversations. This section
further details the structure and deployment of these conversations and propose
an extension of AIML, Task-Oriented AIML, to support them. Following, the
basic AIML structures used to explain the proposed extension are introduced.

6.3.1 Basic AIML

In AIML, categories are the basic unit of knowledge, defined by a <category>

tag. At this level, user inputs are placed in a <pattern> tag (by convention,
text within pattern tag is written in capital letter), and bots responses inside a
<template> tag. Several categories that belong to the same topic of conversa-
tion should be placed within a <topic> tag. The default topic corresponds to
categories not grouped within any topic. The example in Table 6.1 presents two
categories: the first one belongs to the default topic and the second one to the
sports topic.

<category>

<pattern>

HI *

</pattern>

<template>

Hi user, how are you?

</template>

</category>

...

<topic name="sports">

<category>

<pattern>

WHAT ARE YOUR FAVOURITE SPORTS?

</pattern>

<template>

I like climbing and hiking.

</template>

</category>

...

</topic>

Table 6.1: Example of AIML tags category and topic

The asterisk (*) is a special character that, when used in the pattern, maps
to any content in the user input. In the first category of the example given in
Table 6.1, the asterisk maps to all user entries after the word ‘HI’, so that when
the user says whatever sentence starting with ‘HI’, such as ‘Hi, good morning’
or ‘Hi bot, how are you?’, and the topic of the conversation is the default one,
this pattern is matched and the bot response is ‘Hi user, how are you?’.

6.3. Task-Oriented Conversation 119

One interesting feature of AIML is the recursion. Particularly, the <srai>

tag placed inside the <template> tag allows to redirect multiple user en-
tries –in the example of Table 6.2 patterns ‘HI *’ and ‘HOW ARE YOU’ with
‘<srai>HELLO</srai>’ in their template tag – to the very same bot output –‘Hi
user! How are you?’. Moreover, the <that> tag, placed within the <category>

tag, corresponds to whatever the bot said before that provoked the current
user input. It introduces one dimension of “dialogue state” into the bot re-
sponse. In the next example, the first category (without <that> tag) always
redirects to the third category, so that when the user entry starts with ‘HI’
the bot always responds ‘Hi user! How are you?’. However, the second cate-
gory, with ‘<that>WELLCOME USER</that>’, only does so when the user entry is
‘HOW ARE YOU’ and previous bot’s output was ‘WELCOME USER’.

<category>

<pattern>

HI *

</pattern>

<template>

<srai>HELLO</srai>

</template>

</category>

<category>

<pattern>HOW ARE YOU</pattern>

<that>WELCOME USER</that>

<template>

<srai>HELLO</srai>

</template>

</category>

<category>

<pattern>

HELLO

</pattern>

<template>

Hi user! How are you?

</template>

</category>

Table 6.2: Example of AIML tags srai and that

Moreover, AIML bots have a non-typed memory, composed of a list of strings.
It is possible to the set (part of) the user entry to a string variable in the bot’s
memory by using the <set> tag, and recover the stored string by using the <get>
tag. On the one hand, the <set> tag is placed inside a <think> tag, meaning
that the text inside the <think> tag is something that will not be a response
(it is hidden) to the user. The <star /> tag is used to refer in the <set> tag
to the user entry represented with an asterisk in the pattern tag. On the other
hand, the <get> tag in the <template> tag allows the bot to show the content
of stored string variables to the user. Table 6.3 shows an example category that
sets the user entry after the words ‘MY NAME IS’ to a variable named username,
and shows it in the response.

120 Chapter 6. Enhanced Human-Agent Interaction

<category>

<pattern>

MY NAME IS *

</pattern>

<template>

<think><set name="username"><star /></set></think>

Please to meet you <get name="username"/>!

</template>

</category>

Table 6.3: Example of AIML tags think, set, star and get

The topic of a conversation is considered as a variable, so that it can be
set and get in the way just explained. In the example of Table 6.4, when the
conversation is in the default topic and the user says a sentence containing
the word ‘SPORT’, the bot changes the topic to sports and responds with the
message ‘Now let’s talk about sports.’

<category>

<pattern>

* SPORTS *

</pattern>

<template>

<think><set name="topic">sports</set></think>

Now let’s talk about sports.

</template>

</category>

<topic name="sports">

...

</topic>

Table 6.4: Example of topic change in AIML

After a brief introduction to basic AIML tags, next section is devoted to
explain the structure of a task-oriented conversation.

6.3.2 Conversation Structure

In Assisted Hybrid Structured 3D Virtual Environments, a task-oriented human-
agent conversation consists of three main interaction stages: welcoming, task, and
farewell.

On the one hand, welcoming and farewell correspond to initial and final
stages of the conversation. At these stages, the staff bot is reactive and interact
with the user, basically, to greet and inform about the activity (welcoming stage),
and say goodbye (farewell stage). On the other hand, human-agent interaction
during the task stage is more complex, see Finite State Machine in Figure 6.2. It
will result in the sending of an illocution to the corresponding staff agent in the
normative layer (i.e AMELI), which in turn returns a response back to the user.
The change to task stage is triggered when, during the welcoming stage, the
user interacts with the staff bot sending a message, and the staff bot recognises

6.3. Task-Oriented Conversation 121

Figure 6.2: Finite State Machine depicting conversation’s states during task
stage

message’s content as a request to perform a task.

Once the staff bot has identified the task, it takes the initiative by asking to
the user the data needed to complete the task. This interaction transits from
the initial state to the asked state (A) in the Finite State Machine in Figure 6.2.
In this state, the bot waits for the user response, which will be processed in the
responded (R) state.

Notice that both the format and value of user’s entries have to be checked
against the system specification (i.e illocution) and current system state re-
spectively. If these entries have incorrect format along a number of times, the
conversation state becomes failed (F) and the staff bot informs the user, asking
for a confirmation to continue with the task. If the user confirms that she or he
wants to continue with the task, the staff bot repeats the last question and the
conversation reaches again the asked state. Nevertheless, if she or he decides not
to continue (cancel requested, CR, state), it provokes the staff bot to finish the
task, reaching then the Finite State Machine final state, i.e. final state of task
stage.

Alternatively, if all information is successfully gathered, the staff bot termi-
nates the questions (terminated, T, state) by presenting to the user the obtained
information and requesting her or his confirmation before executing the actual
illocution in the system. Then, the user can either request the cancellation with
the same consequences as for previous failed state (F) or confirm that task’s data

122 Chapter 6. Enhanced Human-Agent Interaction

is correct (confirmed, C, state). If the user confirms, the staff bot facilitates the
execution of the corresponding illocution within the normative layer (i.e a staff
agent in AMELI receives the illocution) and informs the user accordingly.

It is worth mentioning here, though, that after a participant tries to execute
an illocution in AMELI, it may respond with an ‘error’ message if it was not
actually performed. For example, a human user is conversing in v-mWater with
the Registration Manager bot, which is about to execute user illocution register.
However, a seller software agent in AMELI just performs illocution register be-
fore the staff bot and, as consequence, the protocol state changes. At this state,
register illocution is not allowed to be executed, so that if the staff bot tries to
execute user illocution register in AMELI, an ‘error’ message is returned. Thus,
if it is the case that the illocution has not been uttered in AMELI, the staff
bot finishes the conversation and notifies the user. Otherwise (i.e. the illocution
has been successfully uttered), the executed (E) state is reached, and the staff
bot (recall, the one in the 3D interface) waits for the staff agent (recall, the one
in the normative layer) to send another illocution (response) back to the user.
Finally, the staff bot translates the staff agent’s response illocution to natural
language, shows it to the user, finishes the conversation and changes to farewell
stage.

Notice that, at task stage, the staff bot is an automata which, for a particular
conversation state, selects the next action to perform based on the users’ entries,
illocutions defined in the Electronic Institution specification, and the allowed
values of illocution contents at current state of the organisation.

6.3.3 Task-Oriented AIML Knowledge

This section proposes an extension of AIML language which enables task-
oriented conversations. This extension is based on the general stages of a task
oriented conversation (wellcome, task, and farewell) and the several states that
define the conversation flow in task stage, as introduced in previous section 6.3.2.

<template>

<taskstate>state</taskstate>

<taskresptype>responsetype</taskresptype>

...

expression

</template>

Table 6.5: Task Oriented AIML tags taskstate and taskresptype

On the one hand, the staff bot is able to switch among task’s stages by means
of topic changes in AIML. In order to recognise users’ requests to accomplish a
task, the bot uses standard AIML categories that redirect particular user entries
to a task topic. On the other hand, as transitions between states of the task
stage cannot be facilitated by standard AIML tags, a new tag named taskstate

has been incorporated. Moreover, another new tag named taskresptype allows
the bot to guarantee that the user entry fulfils the illocution’s specification in
the system (recall illocutions formalization in Equation 3.13). Table 6.5 shows

6.3. Task-Oriented Conversation 123

a general example of these new tags, both located inside the standard template

tag.
First, taskstate indicates the state of the conversation, and can be one of

the conversation states defined in Figure 6.2, except responded (R) and cancel
requested (CR), because these states do not require human-bot interaction and
the transition to them is automatically performed by the staff bot after the user
responds to a question (in the asked, A, state) or the user cancels the task (in
the failed, F, or terminated, T, states). Second, taskresptype tag indicates the
expected format (type) of the user response for this interaction. Its responsetype
value corresponds to a type specified in the Electronic Institution ontology.

The staff bot is able to redirect the conversation to the desired state be-
cause the categories that represent the conversation states have defined specific
patterns. For example, all questions that transit to state asked have the for-
mat BOSTASKDATAn, where n is substituted by the number of the question.
The example showed in Table 6.6 represents a category for the bot to ask the
first question to the user about the water right she or he wants to register in
v-mWater. Then, the pattern is BOTASKSDATA1, state reached is asked, and the
expected type in the response is right.

<category>

<pattern>BOTASKSDATA1</pattern>

<template>

<taskstate>asked</taskstate>

<taskresptype>right</taskresptype>

If you want to register a water right, please give me its ID.

</template>

</category>

Table 6.6: Example of Task-Oriented AIML category

Following this schema, Figure 6.3 shows an actual conversation within v-
mWater application (further explained in Chapter 4), when Tester 1 user, inside
the Registration room, converses with the Registration Manager bot to perform
a register task. At OCMAS level (i.e normative layer), two illocutions are neces-
sary to register a water right (see Section 4.2). First, a seller participant (either
human user or software agent) sends the illocution register(s, mf, reg=〈right,
quantity, price〉) to the market facilitator staff agent, indicating the water right
to register, a quantity and a price. Last, the staff agent sends back the response
agree(mf, s) or failure(mf, s), indicating whether the water right has been suc-
cessfully registered or not.

Specifically, in the conversation of Figure 6.3 the human user requests the
staff bot Registration Manager to register a water right with identifier wr1 at a
price of 25e. In this case, the quantity of the water right is not asked because
it is assumed that the user registers all water from her or his right (100,000 m3

in the example of Figure 6.3).
In the following, this section explains the AIML code that enables task-

oriented conversations and the example implementation for the conversation of
Figure 6.3 in v-mWater.

124 Chapter 6. Enhanced Human-Agent Interaction

Figure 6.3: Extract of a task-oriented conversation to register a water right

As previously introduced, changes between conversations stages are per-
formed by means of topic changes in AIML. Then, the Task-Oriented AIML
code should have at least one welcoming topic and one task topic for each sup-
ported task. welcoming is the default topic of the staff bot, it uses standard
AIML tags, and contains the categories related to the welcoming and farewell
stages devoted to greet, inform about the activity, and farewell the user.

AIML categories for welcoming stage

Table 6.7 shows the general skeleton of the welcoming topic with four categories.
The first category says hello to the user and the second one says goodbye. The
staff bot is able to switch from welcoming to task topic by means of the other
two categories. They are devoted to recognise users’ requests (indicated by
variables $keywords$ and $additionalkeywords$ in Table 6.7) to accomplish
a task, and redirect (using the <srai> tag, see Section 6.3.1) particular user
entries to a task (indicated by $task$) topic.

Table 6.8 shows and extract of the welcoming topic of the Registration Man-
ager in v-mWater, where $task$, $keywords$ and $additionalkeywords$ have
been replaced by ‘register’, ‘REGISTER’, ‘REGISTRY’ and ‘REGISTRATION’, re-
spectively. The first category is devoted to greet the user, while the second
category is to say farewell. Whenever the user mentions the words ‘REGISTER’,

6.3. Task-Oriented Conversation 125

<topic name="welcoming">

<category>

<pattern>HI</pattern>

<template><think><set name="topic">welcoming</set></think>

Greetings and welcome to the building. How can I help you?

</template>

</category>

<category>

<pattern>BYE</pattern>

<template>

Good bye. Have a nice day!

</template>

</category>

<category>

<pattern>$keywords$</pattern>

<template>

<think><set name="topic">$task$</set></think>

<srai>BOTASKSDATA1</srai>

</template>

</category>

<category>

<pattern>$additionalkeywords$</pattern>

<template><srai>$keywords$</srai></template>

</category>

</topic>

Table 6.7: General categories of welcoming topic

126 Chapter 6. Enhanced Human-Agent Interaction

<topic name="welcoming">

<category>

<pattern>HI</pattern>

<template>

Hi, greetings and welcome to the Registration building.

How can I help you?

</template>

</category>

<category>

<pattern>BYE</pattern>

<template>

Good bye. Have a nice day!

</template>

</category>

<category>

<pattern>REGISTER</pattern>

<template>

<think><set name="topic">register</set></think>

<srai>BOTASKSDATA1</srai>

</template>

</category>

<category>

<pattern>* REGISTER *</pattern>

<template><srai>REGISTER</srai></template>

</category>

<category>

<pattern>* REGISTRY *</pattern>

<template><srai>REGISTER</srai></template>

</category>

<category>

<pattern>* REGISTRATION *</pattern>

<template><srai>REGISTER</srai></template>

</category>

</topic>

Table 6.8: welcoming topic of Registration Manager in v-mWater

6.3. Task-Oriented Conversation 127

<category>

<pattern>BOTASKSDATAn</pattern>

<template>

<taskstate>asked</taskstate>

<taskresptype>$type$</taskresptype>

Please, can you give me a $type$?

</template>

</category>

<category>

<pattern>BOTSETDATAn *</pattern>

<template>

<think><set name="datan"><star /></set></think>

<srai>BOTASKSDATA$+n+1$</srai>

</template>

</category>

<category>

<pattern>BOTREASKSDATAn *</pattern>

<template>

<taskstate>asked</taskstate>

<taskresptype>$type$</taskresptype>

<think><set name="datan"><star /></set></think>

Sorry but I do not understand $type$ "<get name="datan"/>".

Revise it and enter again.

</template>

</category>

Table 6.9: General Task-Oriented AIML categories for asked state

‘REGISTRY’ or ‘REGISTRATION’, the other four categories change the topic to
register and redirects the chat to the first category (question) of the task-
oriented conversation which corresponds to the pattern BOTASKSDATA1.

AIML categories for task stage: asked state

In the following, conversation states during task stage are introduced. The task-
oriented AIML categories labelled with task state asked are devoted to ask to
the user illocution data in the order specified in the activity’s protocol. Table 6.9
shows three general categories inside task topic for this state. All categories are
included in the task topic for each value required to the user.

The first category in Table 6.9 is devoted to ask the value to the user and
follows the pattern BOTASKSDATAn, where n should be replaced by the num-
ber of the question and $type$ by the expected type in the user’s response, i.e.
the one specified in the illocution. When this category is matched, the staff
bot, after user’s response, will automatically transit the conversation to state
responded.

At responded state, the bot process and validates the user entry, stores it in
both its Typed Memory with the indicated type to be used later on in the illocu-
tion execution; and a variable named datan of the non-typed memory so that
it can be showed ahead in the confirmation request (explained later on in this

128 Chapter 6. Enhanced Human-Agent Interaction

<category>

<pattern>BOTASKSDATA1</pattern>

<template>

<taskstate>asked</taskstate>

<taskresptype>right</taskresptype>

If you want to register a water right, please give me its ID.

</template>

</category>

<category>

<pattern>BOTSETDATA1 *</pattern>

<template>

<think><set name="data1"><star /></set></think>

<srai>BOTASKSDATA2</srai>

</template>

</category>

<category>

<pattern>BOTASKSDATA2</pattern>

<template>

<taskstate>asked</taskstate>

<taskresptype>price</taskresptype>

What is your reference PRICE (in euros) for this water right?

</template>

</category>

<category>

<pattern>BOTSETDATA2 *</pattern>

<template>

<think><set name="data2"><star /></set></think>

<srai>BOTASKSDATA3</srai>

</template>

</category>

Table 6.10: Task-Oriented AIML Categories of Registration Manager for asked
state in v-mWater

6.3. Task-Oriented Conversation 129

section) and redirects the flow of the conversation to the next question. To do
so, the bot uses the second category in Table 6.9 with pattern BOTSETDATAn *

where n is replaced by the number of the question and * maps to the user
entry processed by the bot. For example, when the bot asks for the price in
the second question, and the user responds ‘25 euros’, the bot recognise 25 as a
price, and uses the pattern BOTSETDATA2 25.

If it is the case that the user response has not the expected format, she or
he would be informed about the situation and asked again by using the pattern
BOTREASKSDATAn *. In the related category (third one in Table 6.9), n and
type corresponds to the same values as for the first one, and * maps to the user
entry to be showed in the bot response.

In the example of Figure 6.3, the Registration Manager asks the user Tester
1 for water right identifier and price. In this example, the user answers with
allowed values, so that no questions retries (BOTREASKSDATA patterns) are re-
quired. Table 6.10 shows an extract of the register topic (i.e. the one related
to the task stage) with the categories related to this situation. The last question
(i.e. the one with BOTSETDATA2 * pattern) redirects to the category representing
the terminated state (with BOTASKSDATA3 pattern).

<category>

<pattern>BOTINVALIDATES</pattern>

<template>

<taskstate>failed</taskstate>

Sorry, I still do not understand you.

Would you like to continue with the task? (yes/no)

</template>

</category>

Table 6.11: General Task-Oriented AIML category for failed state

AIML categories for task stage: failed state

After a number of consecutive non-expected answers, the bot changes the state
of the conversation to failed by using pattern BOTINVALIDATES (category in Ta-
ble 6.11), where a confirmation to continue with the task is asked, i.e ‘Sorry, I
still do not understand you. Would you like to continue with the registration?
(yes/no)’. The user expected responses at this state are ‘YES’, which goes again
to the state asked and the last question is repeated to the user by using the
corresponding BOTASKSDATAn pattern; or ‘NO’, which drives the conversation
to the cancel requested state and consequently to the final state by using the
BOTCANCELS pattern explained later on in this section. In the example of Fig-
ure 6.3 this state is never reached.

AIML categories for task stage: terminated state

The category that corresponds to the terminated state is also labelled with the
pattern BOTASKSDATAn, although n in this case corresponds to the total
number of questions incremented in 1. Table 6.12 shows the two categories

130 Chapter 6. Enhanced Human-Agent Interaction

<category>

<pattern>BOTASKSDATAn</pattern>

<template>

<taskstate>terminated</taskstate>

Do you confirm? (yes/no)

</template>

</category>

<category>

<pattern>BOTREASKSDATAn *</pattern>

<template>

<taskstate>terminated</taskstate>

<think><set name="datan"><star /></set></think>

Sorry but I do not understand confirmation "<get name="datan"/>",

please type yes or no. Do you confirm?

</template>

</category>

Table 6.12: General Task-Oriented AIML categories for terminated state

<category>

<pattern>BOTASKSDATA3</pattern>

<template>

<taskstate>terminated</taskstate>

You are about to register a water right with ID "<get name="data1"/>"

and reference price "<get name="data2"/> euros".

Do you confirm it? (yes/no)

</template>

</category>

<category>

<pattern>BOTREASKSDATA3 *</pattern>

<template>

<taskstate>terminated</taskstate>

<think><set name="data3"><star /></set></think>

Sorry but I do not understand confirmation "<get name="data3"/>",

please type yes or no. Do you confirm?

</template>

</category>

Table 6.13: Task-Oriented AIML categories of Registration Manager for termi-
nated state in v-mWater

6.3. Task-Oriented Conversation 131

representing this state that are devoted to request a confirmation from the user,
if necessary; otherwise the staff bot would assume that the user always confirms
and as consequence would redirect to the confirmed state (explained later on).
Similarly to the failed state, at terminated state expected responses are ‘YES’,
that transits to the confirmed state, or ‘NO’ that goes towards the cancel requested
state. The BOTREASKSDATAn * pattern allows the bot to inform the user about
the incorrect answer and ask again about confirmation.

In the example conversation of Figure 6.3, the fourth sentence of the Regis-
tration Manager is the confirmation request, and the user response is ‘yes’, so
that the bot drives the conversation to the confirmed state. Table 6.13 shows
the categories corresponding to the terminated state in v-mWater, where the
user entries are showed in the response, and a confirmation to perform the task
is required to the user.

<category>

<pattern>BOTEXECUTEUSERACTION</pattern>

<template>

<taskstate>confirmed</taskstate>

Your task is being processed!!!

</template>

</category>

Table 6.14: General Task-Oriented AIML category for confirmed state

<category>

<pattern>BOTEXECUTEUSERACTION</pattern>

<template>

<taskstate>confirmed</taskstate>

Your registration is being processed!!!

</template>

</category>

Table 6.15: Task-Oriented AIML category of Registration Manager for confirmed
state in v-mWater

AIML categories for task stage: confirmed state

The category with the pattern BOTEXECUTEUSERACTION allows the bot to change
the state to confirmed while the user illocution is executed within the system
with the values asked to the user. Table 6.14 shows the category related to this
state.

In the example, the bot output corresponds to the fifth sentence of the Regis-
tration Manager in Figure 6.3. i.e. ‘Your registration is being processed!!!’, and
the illocution register(Tester1, RegMngr, reg=〈wr1, 10,000, 25〉) is executed
within the system with the values asked to the user (except quantity which has
a default value as explained above). Table 6.15 shows the related category in
the example.

132 Chapter 6. Enhanced Human-Agent Interaction

<category>

<pattern>USERACTIONOK</pattern>

<template>

<taskstate>executed</taskstate>

</template>

</category>

<category>

<pattern>USERACTIONERROR</pattern>

<template>

<taskstate>final</taskstate>

<think><set name="topic">welcoming</set></think>

There has been an error in the system, please try to register again.

</template>

</category>

Table 6.16: Task-Oriented AIML categories for executed and final (because of
AMELI error) task states

AIML categories for task stage: executed state

Afterwards, if the illocution is successfully uttered in AMELI, the bot transits
the conversation to state executed using the pattern USERACTIONOK. In this state,
the staff bot comes into stand-by mode and waits for the staff agent illocution.
Instead, in case of any system error, the bot would finish the conversation by
selecting the pattern USERACTIONERROR, which changes the conversation state
to final and the topic back to welcoming. Table 6.16 shows the two categories
representing these situations. In the example of Figure 6.3 the user illocution is
successfully uttered, and the Registration Manager’s AIML code has these same
categories.

<category>

<pattern>BOTCANCELS</pattern>

<template>

<taskstate>final</taskstate>

<think><set name="topic">welcoming</set></think>

Task cancelled. You can try it again at any moment.

</template>

</category>

<category>

<pattern>BOTRESETCONVERSATION</pattern>

<template>

<taskstate>final</taskstate>

<think><set name="topic"></set></think>

</template>

</category>

Table 6.17: Task-Oriented AIML categories for final state (alternative flows)

6.3. Task-Oriented Conversation 133

AIML categories for task stage: alternative flows

Alternative conversation flows finish the conversation without completing the
task. Table 6.17 shows two categories. The first one with the pattern
BOTCANCELS is used by the staff bot when the conversation state is cancel re-
quested. The second one with the pattern BOTRESETCONVERSATION allows the
staff bot to reset the conversation at any time, e.g. after a time out or when
the user leaves the activity without ending the conversation. In the example of
v-mWater registration in Figure 6.3 these categories are never matched.

Categories explained so far are related to user-agent interactions initiated
in the visual interaction layer (i.e 3D interface). Next, the ones needed in the
reverse direction, i.e. initiated in the normative layer, from the software agent
in AMELI to the human user, are detailed.

<category>

<pattern>BOTRESPONSE$illocution$ *</pattern>

<template>

<taskstate>final</taskstate>

<think>

<set name="botResponse"><star /></set>

<set name="topic">welcoming</set>

</think>

<get name="botResponse"/>

Task completed successfully!

Thank you very much!

</template>

</category>

Table 6.18: Task-Oriented AIML category for final state

AIML categories for task stage: final state

Finally, in the executed state, the staff agent utters in AMELI one of its al-
lowed illocutions, and the staff bot translates it to natural language by using the
pattern BOTRESPONSE$illocution$ *, where $illocution$ corresponds to the
identifier of the illocution as defined in the specification. Table 6.18 shows the
skeleton of this category. It is required to include one category of this type in the
staff bot’s AIML code for each staff agent’s possible illocution. It can include
set and get tags to show the content of the illocution to the user, if necessary.
Moreover, as the rest of categories that finish the conversation, it changes the
topic back to welcoming.

Following with v-mWater example, the Registration Manager may utter two
possible illocutions after a registration is requested by a seller: the illocution
agree(mf,s), which corresponds to pattern BOTRESPONSEagree, and failure(s,mf),
which corresponds to pattern BOTRESPONSEfailure. In this case, agree and
failure illocutions have no content so that it is not necessary to show it in the
staff bot’s message. Two last sentences from the Registration Manager bot in
the chat of Figure 6.3 corresponds to the agree illocution: Registration valid!,

134 Chapter 6. Enhanced Human-Agent Interaction

Thank you very much!. The categories for these two possible agent illocutions,
agree and failure, are represented in Table 6.19.

<category>

<pattern>BOTRESPONSEagree</pattern>

<template>

<taskstate>final</taskstate>

<think><set name="topic">welcoming</set></think>

Registration valid!

Thank you very much!

</template>

</category>

<category>

<pattern>BOTRESPONSEfailure</pattern>

<template>

<taskstate>final</taskstate>

<think><set name="topic">welcoming</set></think>

Registration NOT valid!

Try it at any time!

</template>

</category>

Table 6.19: Task-Oriented AIML categories of Registration Manager for final
state in v-mWater

This section has described the standard and task-oriented AIML categories
for human-agent interactions in a Hybrid Structured 3D Virtual Environment
so far. Next subsection describes VIXEE sequence diagrams that enable these
interactions.

6.3.4 Conversation Management in VIXEE

As aforementioned in Section 6.2, each staff agent in AMELI has a staff bot
within the proposed Extended Interaction Mechanism located in VIXEE middle-
ware. This staff bot controls a staff bot character in the Virtual World that inter-
acts with human users by means of a chat window. The staff bot is endowed with
a conversational interaction mechanism implemented to enable task-oriented
AIML conversations. Figure 6.4 and 6.5 represent VIXEE sequence diagrams for
conversations initiated by the human in the 3D interface, and responses given
back by the staff agent in the normative layer, respectively. Figure 6.4 shows
how each time a user sends a chat message to the staff bot, it gets from the
conversation manager the user’s current task, the expected type in her or his
response (if any), and the current conversation state (getInfo function). At the
welcoming stage, they have no value associated, so that the staff bot behaves as
an standard AIML chatter bot, i.e. it gives the user a response (template) based
on user entry (pattern).

As aforementioned, an AIML category in the welcoming topic redirects the
conversation to the task topic when any of the task-related keywords is de-
tected. This causes the staff bot to starts the conversation’s task stage, because

6.3. Task-Oriented Conversation 135

Figure 6.4: User to Agent interactions sequence diagram

136 Chapter 6. Enhanced Human-Agent Interaction

the category matched corresponds to the one of the first question (recall BO-
TASKSDATA1 pattern in Section 6.3.3). As consequence, the Conversation
Manager updates the state to asked, as specified in the taskstate tag of the
first question, and the type of the required response to the one specified in the
taskresptype tag (updateFromTemplate function in Figure 6.4).

When the user responds, the staff bot requests the state and type of the
user’s conversation to the Conversation Manager, which, in this case, updates
the state to responded (updateFromUserEntry function in Figure 6.4). The staff
bot then tries to recognise a value in the user entry. Specifically, it gets the defi-
nition of the related type from the Electronic Institution specification (getEitype
function in figure) and the allowed values (getValues function) at runtime from
the Electronic Institution state, and tries to find such a value in the user’s entry.
If found, the staff bot will send the valid value to the Conversation Manager,
which stores it into its Typed Memory, and computes the pattern to access the
next question (BOTASKSDATA$n+1$). Otherwise, the staff bot will compute the
pattern to repeat the question (BOTREASKSDATAn *). After a number of rep-
etitions, the pattern computed is the one devoted to request a confirmation to
continue with the task (BOTINVALIDATES). If the user response is ‘yes’, the staff
bot selects the pattern BOTASKSDATAn which asks again the question; when
it is ‘no’ the selected pattern is BOTCANCELS which finishes the conversation;
and otherwise the BOTINVALIDATES pattern is selected again. For the sake of
simplicity this process is not represented in Figure 6.4.

Then, the staff bot sends the computed pattern to the Conversation Man-
ager (getMes function in Figure 6.4), that recovers the matched template (get-
Template function), updates the state and type with the values indicated in
the taskstate and taskresptype tags respectively (updateFromTemplate func-
tion), and returns the message to the staff bot, which in turn sends it to the
user (chat function).

Recall that, after several executions of the sequence diagram depicted in
Figure 6.4, the last question updates the state to terminated, and then a con-
firmation is requested to the user. In this case, if the user response is ‘yes’, the
Conversation Manager updates the state to confirmed (updateFromUserEntry
function). Then, the staff bot gets the user illocution from the Electronic In-
stitution specification (getIllocution function) and requests to the Conversation
Manager the data asked to the user (getData function). Afterwards, the bot
tries to execute the user illocution within AMELI (utterUserIllocution function)
where the sender is the user, the receiver is the staff agent and the content is
the stored data asked to the user. Then, the staff bot computes the pattern
USERACTIONOK (which updates state to executed) if the action is successfully
uttered in AMELI or USERACTIONERROR (which finishes the conversation) other-
wise. When the user response to the confirmation is ‘no’, the state is updated by
the Conversation Manager to cancel requested (updateFromUserEntry func-
tion). This causes the staff bot to compute the pattern BOTCANCELS, which
finishes the conversation. Otherwise, i.e. the user entry is different to ‘yes’ or
‘no’, the state does not change and a new confirmation is requested to the user

6.4. Evaluation 137

Figure 6.5: Agent to User interaction sequence diagram

by selecting BOTREASKDATAn * pattern.

Finally, the staff bot waits for an illocution that the staff agent sends to the
user as response. Specifically, Figure 6.5 shows how the staff bot receives the staff
agent’s illocution from AMELI, gets from the conversation manager the user’s
current task and the current conversation state, executed, and computes the
pattern that sends to the conversation manager (BOTRESPONSE$illocution$ *).
Afterwards, the conversation manager accesses the Task-Oriented AIML to get
the appropriate template (getMes), which finishes the conversation (update-
FromTemplate function), and sends back the resulting message that represents
the illocution in natural language to the staff bot, which is the one that the staff
bot sends to the user. For example, when a market facilitator agent within the
normative layer sends the illocution agree to a seller at the end of a register task
conversation, its staff bot sends the following message to the user: Registration
valid! Thank you very much! in the Virtual World interface.

6.4 Evaluation

This section evaluates the usability of the proposed conversational mechanism,
by assessing and comparing it with the command-based approach evaluated in
Section 4.4. Specifically, user tests have been performed 1 using v-mWater appli-
cation, a Structured 3D Virtual Environment which implements a virtual market
for the trading of water rights. In the following the general test objectives are
defined. Next, test methodology is detailed. Last, results are presented and
discussed.

1The reader is encouraged to watch http://youtu.be/VIld9IfuhCY where different testers
perform tasks by using both the command-based and the conversational interaction styles.

http://youtu.be/VIld9IfuhCY

138 Chapter 6. Enhanced Human-Agent Interaction

6.4.1 Test objectives

The main goal is to assess the overall usability of the task-oriented conversational
approach in Assisted Hybrid Structured 3D environments. To do so, this work
focuses on different usability criteria such as effectiveness, efficiency, errors and
satisfaction and compare them with the command based approach. This work
also aims to open some discussion about the hypothesis that users’ skill in
command based systems may affect her or his experience with both command
and conversational interaction mechanisms. Additionally, this usability study
will allow to detect design problems –in both structure and content– of task-
oriented conversations in structured 3D virtual environments.

6.4.2 Methodology

This research followed both summative and comparative evaluation meth-
ods2 [Bowman et al., 2002]. The summative method focuses on gathering mainly
quantitative data related to the usability of the conversational approach. For
the comparative evaluation it was conducted a within-subjects design, where
each user tried each approach (conversational and command-based), measuring
user’s performance for each approach.

10 participants were recruited, half of them were selected with previous ex-
perience with command-based systems, and the other half were novices. Partic-
ipants were a diverse population in terms of other characteristics such as age,
sex, and occupation.

As Table 6.20 details, all participants were requested to repeat the same two
tasks using conversational and command-based interactions. To mitigate carry-
over effect, half the participants started by using command-based interaction,
whereas the other half started by using the conversational one.

Table 6.20: Within subjects experiment design
Participants Task1, Task2 Task1, Task2

P1-P5 Conversational Command

P6-P10 Command Conversational

The users were asked to perform the following tasks, literally:

• Task 1: “Your goal is to ask the Information Manager about the last 2
transactions in the market”.

• Task 2: “Your goal is to ask the Registration Manager to register a water
right, identified as wr1, for a price of 25e.”

Note that users performed the tasks in this order: task 1 followed by task
2. The reason was that the first task is a bit simpler than the second one and
therefore it was assumed novice users in command based interactions would
encounter less difficulties (i.e. become less frustrated) trying first task one.

2Appendix C contains the documents used in the test.

6.4. Evaluation 139

The evaluation team was composed by a moderator and an observer. The
former guided the user (if needed), introduced the test, and gave the user the
consent-form, task descriptions, and the post-test questionnaire. The latter
took notes during the test. Tests took place at users’ locations. The equipment
consisted in a computer running both the VW server and the VW client. It also
recorded user interactions and sound.

The test protocol consisted of 4 phases. First, in the pre-test interview the
user was welcomed, explained test objectives, and asked about their experience
with command-based and conversational interactions. In the second phase, the
training, the user played through a demo to learn how to move in 3D environ-
ments and interact with both objects and bots. This training part was mostly
fully guided, except at the end, when the user could freely roam and interact in
the demo scenario. The third phase was the test, the user performed the test
tasks without receiving guidance unless s/he ran out of resources. Finally, the
user answered a post-test questionnaire with both qualitative and quantitative
questions, including a last open question for any extra comments the user could
have.

6.4.3 Results and discussion

This section analyses test results and discuss the achievement of test objectives
which, as introduced before, are mainly focused on usability criteria and user
profile influence in task achievement. Tests results come from data collected
from: post-test questionnaire, users comments, observer notes, and the review
of the desktop and voice recordings while participants were performing the task.

Table 6.21 summarizes the seven questions included in the satisfaction post-
test questionnaire, and Figure 6.6 depicts a compilation of users’ answers. There,
X axis shows each of the post-test questions and the Y axis shows average values
of answers considering a five-point Likert scale. Questions are formulated so that
1 corresponds to the most negative answer and 5 to the most positive.

Five post-questionnaire questions had double answer, one for the conversa-
tional approach and another one for the command-based, and two of them re-
quired a single answer about the conversational approach. Therefore, bar chart
in Figure 6.6 shows five pairs of bars, dark blue and light blue for conversational
and command-based respectively. Overall, the quantitative results obtained from
these five questions were very satisfactory, and the average answer for the conver-
sational approach was higher than command-based. Individual questions (Q6,
Q7) with averages of 4.7 and 4.6 show good results on the conversational bot’s
ability to understand the user and to give her or him meaningful responses.

Regarding task effectiveness, the conversational interaction style obtained a
task completion rate of 100%. That was not the case for the command-based
approach, where 30% of the participants failed at task 1 and 20% did at task 2.
It is considered a task failure when the participant could not complete the task
without the help of the moderator or when the task was performed unsuccessfully
(i.e. registering using an incorrect price). Additionally, users performed both
tasks making a lower average of errors in the conversational system (0.3 errors in

140 Chapter 6. Enhanced Human-Agent Interaction

Table 6.21: Questions in post-test questionnaire.
Brief description

Q1 I did not feel I needed help while talking to the bot.

Q2 I did not feel frustrated while talking to the bot

Q3 What the bot said to me made sense

Q4 I did know what to answer to the bot

Q5 How comfortable was the communication

Q6 I felt that the bot understood me

Q7 The bot had answers I expected

Possible answers are: 1: Never/ Very Uncomfortable
2: Sometimes/Uncomfortable - 3: Regularly/Normal
4: Often/Comfortable - 5: Always/Very Comfortable

Figure 6.6: Post-test questionnaire results. X axis: questions from Table 6.21.
Y axis: average values.

average) than in the command-based (2.2 errors in average). This error difference
was significant with a p-value = 0.01 obtained in a t-test.

Related to efficiency, this research reports results on the number of messages
users needed to send to the bot to successfully complete the given tasks, either
in the conversational or the command-based approach. They sent an average of
6,7 messages using commands and 9,7 messages when conversing using natural
language. If these averages are analysed respect to the minimum number of
messages needed for both tasks in command (that was 4 messages), and the
minimum messages for conversational (that was 9), they represent a 168% in
commands, and only 107% in the conversational approach. These results show
that users who interacted by using natural language spent less effort pursuing
their goal. This is also corroborated by the smaller number of errors made when
conversing.

If results are analysed by user’s skill in command based systems (i.e. ex-
pert or novice), satisfaction post-questionnaire shows that experts rate almost
identically both methods (conversational with an average of 4.35 and command

6.4. Evaluation 141

with 4.57) while for novices natural language is rated higher, with an average of
4.65 compared to the average of 3.63 obtained in commands. This result denotes
that experts feel comfortable with both interaction methods, which is not the
case for novices. When it comes to the number of errors in the command-based
interaction, the difference between novices (with an average of 3.8) and experts
(with an average of 0.6) was proved to be significant with a p-value of 0.01. Ad-
ditionally, novices sent more messages than experts, with an average of 8.4 and
5 respectively, again with a p-value of 0.01. If the results obtained in the con-
versational approach are analysed, data collected shows that both experts and
novices made a similar number of errors and sent a similar number of messages,
demonstrating that both user profiles behave similarly when using the conver-
sational interaction approach. This data analysis on users’ skills suggests the
use of multi-modal interaction, facilitating the coexistence of both interaction
styles.

User tests also aimed to detect faults, shortcomings, or inconsistencies in the
definition of AIML task-oriented conversations, as they may affect negatively
user-bot interaction. As previously mentioned, task-oriented conversations are
structured in welcome, task and farewell stages. Nevertheless, the staff bot did
not welcome the user proactively, that is, the staff bot waited for the user to
take the initiative in the greeting. Therefore, some users that were eager to
ask the staff bot about the task they wanted to perform, received as response
a greeting, being necessary for the users to repeat their request. Moreover,
some users became confused by an interrogative expression used by the staff bot
related to last transactions, since they assumed they had to provide transaction
identifiers, which where unknown, instead of the number of transactions (i.e.,
how many). To avoid this or similar confusions, staff bots’ AIML should be
reviewed. Finally, when a task required the user to introduce several data, some
users wanted to give all the data in a single sentence. They thought the staff bot
could understand the entire sentence but this was not the case. This is another
point to take into account in the revision of staff bots’ knowledge.

Chapter 7

Conclusions

Hybrid Structured 3D Virtual Environments are regulated systems based on or-
ganisational concepts where both human users and software agents interact with
each other and with the environment to achieve their goals, i.e. to complete
tasks. Participants can join and leave the system at any time, and the system
state changes with the participants’ interleaved interactions. The structure of
these interactions is defined in an organisation specification, and the different
system execution states are stored in the organisational trace. Thus, in order
to successfully complete tasks in these systems, both human users and software
agents have to be aware of the organisation specification and the organisational
trace. Nevertheless, when the system specification is complex, participants have
to perform intricate reasoning processes to understand their applicable regu-
lations at current system state; and knowing system historical values requires
participants to access the organisational trace and to further process such infor-
mation to be useful for them.

The user interface is a 3D Virtual World where the organisation is graph-
ically represented, and institutional Virtual World actions are mapped to or-
ganisational actions and the other way around. Software agents are directly
connected to the structured multi-agent system and represented as bots in the
Virtual World, while humans participate by controlling an avatar in the 3D en-
vironment and are included as external agents in the multi-agent system. In
particular, staff roles are devoted to support the system execution, and are usu-
ally played by software staff agents, as their behaviour can be automatised.
Thus, human users have to interact with staff agents to complete their tasks.
However, software agents speak a computer-based language, which is usually
hard to use by human users.

This work proposes Assisted Hybrid Structured 3D Virtual Environments,
where both human users and software agents participation in the system is im-
proved by means of assistance mechanisms that help them in their task achieve-
ment. Moreover, participant interactions are facilitated by equipping staff agents
with an Extended Interaction Mechanism that allows software agents to interact
with human users by using natural language conversations.

143

144 Chapter 7. Conclusions

This chapter is devoted to present the main conclusions of this work. First,
it is explained how the objectives have been achieved. Next, a detailed list of
publications resulting from the research is given. Finally, future directions are
discussed.

7.1 Objectives achievement

Chapter 1 introduced three research objectives in this work: (1) to assist partic-
ipants of Hybrid Structured 3D Virtual Environments, (2) to facilitate human-
agent interactions; and (3) to create a functional application where software
agents and human users can interact within the system, and be assisted when
performing tasks.

As detailed below, these objectives have been achieved with i) the formali-
sation of an Assistance Infrastructure that supports participation in a Hybrid
Structured 3D Virtual Environment by offering a set of general assistance ser-
vices, ii) the deployment of an application where the contributions are evaluated,
iii) the design of an architecture that supports the execution of the assistance
infrastructure and its evaluation in the deployed application, and iv) the en-
hancement of human-agent interactions in these systems.

7.1.1 Assistance Infrastructure Formalisation

The proposed infrastructure is constituted by two layers. On the one hand,
the Organisational Layer is composed by a set of runtime agents (i.e. system
participants), and the extension of an organisation specification (Org) previ-
ously formalised in [Campos et al., 2009], which adds, among other elements,
the organisational trace (Trac), keeping historical information of previous or-
ganisation executions. On the other hand, the Assistance Layer is populated
with personal assistants, where one personal assistant is able to access both Org
and Trac to provide with four assistance services to each runtime agent (i.e.
assisted participant) in the Organisational Layer. The formalised services are:

• Three kinds of Information services. They are tailored to provide spe-
cialised information about 1) the Organisation Specification, e.g. the illo-
cutions (messages) that participants can interchange; 2) the Organisation
Specification based on the actual Runtime participant’s state, such as the
current participant’s location, the actions including the participants’ role
and defined at such location, or the possible destinations in the organisa-
tion; and, the more elaborated one, 3) processed information of the values
of the Runtime properties, stored in the organisational trace, e.g. specific
statistics on data that might be unknown to participants.

• A Justification service that can be triggered once a participant tries to
execute a non-valid or prohibited action. Its responses would be n terms
of the rules that constrain participant’s action.

7.1. Objectives achievement 145

• An Estimation service that processes whether an action can be performed
at current state prior to its execution or not. Moreover, if it is actually
the case, then it also provides the next system state.

• An Advice service about the next action(s) that a participant can perform
in order to achieve her goal. This service can be delivered by providing (in
case she reveals her goal to her Persona Assistant) i) the most performed
action by other users facing a similar situation (imitation) or ii) a plan,
i.e. a sequence of actions, that leads to participant’s goal.

7.1.2 Application

An application has been deployed that explicitly structures participants’ inter-
actions in a hybrid (human users and software agents) virtual environment. It is
an e-government application called v-mWater, a v irtual market based on trading
Water. The market has been represented in an immersive 3D scenario where
both human users and software agents can interact with each other and with
the environment, and different multi-modal interaction mechanisms have been
characterized for human users (visual, gestural and textual).

The usability of this application has been evaluated, and results provide a
promising feedback on the implemented scenario. v-mWater is perceived as a
useful and powerful application that could facilitate everyday tasks in the future.
Users like its learnability, its immersiveness, and how scenario settings facilitate
task accomplishment. In general, users complete the proposed task well and are
able to navigate adequately in the 3D environment. After doing the test, users
relatively improve their opinion about 3D Virtual Environments. In addition,
the overall opinion of the human-bot interaction is positive, although some non-
expert users experience problems using the command-based approach.

7.1.3 Assistance Architecture

The design and evaluation of an architecture that supports Assistance Ser-
vices in Hybrid Structured 3D Virtual Environments has been deployed by
using Electronic Institutions. Electronic institutions development environment
(EIDE [Esteva et al., 2008]) offers a range of tools that are flexible enough to not
only deploy the standard institutions in both the Organisational and Assistance
Layers, but also to extend them with new components such as the organisational
trace (Trac) or enriched interfaces. Furthermore, it is worth mentioning that,
while the Organisational Layer is domain dependent and should be defined for
each particular application, the Assistance Layer is general for any domain, and
it can be reused for each new domain implementation.

Using this architecture in the implemented application, it has been imple-
mented the Runtime Properties information service for software agents; and the
Justification, Estimation and the planning Advice service for human users. Nev-
ertheless, these four services could be offered interchangeably for both humans

146 Chapter 7. Conclusions

and software agents, since they all simplify the reasoning process as well as the
cognitive load required to participate in such complex structured systems.

Specifically, the Runtime Properties information service has been extended
to help sellers to set the price in their transactions. The tests performed com-
pare the values that different agent satisfaction parameters and system goals
take when agents request for different information services, using as a base-line
a configuration without enabling assistance services. The experiments show that
system performance and agent satisfaction (and thus, the quality of assistance
service) increase with the addition of information services. Furthermore, individ-
ual agents following alternative strategies can use different services as an useful
decision support tool.

The planning Advice service is the most sophisticated one and makes use
of the rest of services to provide a plan that has into account other users ac-
tions and, executed at current system state, will lead to the user’s goal. It is
implemented as an extension of A∗, namely Plan-eA. Evaluation results indi-
cate that assistance impacts positively in usability measures of efficiency, efficacy
and satisfaction. A comparative analysis of the number of user actions with and
without assistance shows a significant difference (from an average of 7 performed
actions when receiving assistance to 10.8 actions when no assistance is offered).
Moreover, with assistance, 93% of users complete the task, compared to 77% of
users without assistance. Finally, users report they like the way assistance is
provided and how it facilitates task completion.

7.1.4 Enhanced Human-Agent Interactions

Initial tests performed over v-mWater, the Hybrid Structured 3D Virtual Envi-
ronment application, showed that, those users less familiarised with new tech-
nologies experimented problems when using the command-based system to in-
teract with staff agents to achieve tasks. These tasks may be complex as they
require a user to specify a number of values to the staff bot.

In order to overcome this limitation, this work integrates a new conversa-
tional mechanism for user-agent interaction –the so-called Extended Interaction
Mechanism– in an existing infrastructure for the execution of Structured 3D
Virtual Environments —namely VIXEE. This new mechanism includes, in ad-
dition to an existing command-based approach, a conversational system which
allows institutional software agents to dialogue with human users using natural
language conversations. To do so, this work proposes an AIML extension for
dealing with task-oriented conversations, which are based on activities’ specifi-
cation and current system state.

The Extended Interaction Mechanism has been enabled for staff agents, so
that they are able to communicate using both command-based and conversa-
tional systems. Test results give good usability measures of efficiency, efficacy
and user satisfaction for the conversational approach. Moreover, this conversa-
tional interaction style is also compared against the command-based, which was
already incorporated in the infrastructure. In the satisfaction post-test question-
naire the conversational approach is better rated than the command-based one.

7.2. Publications 147

Nevertheless, further data analysis, based on users’ skills (in the commands-
based approach), suggests the coexistence of both approaches.

7.2 Publications

This section lists the publications derived from this research.

Journals

• Pablo Almajano, Maite Lopez-Sanchez, Inmaculada Rodriguez, Tomas
Trescak. “Assistant Agents to Advice Users in Hybrid Structured 3D Vir-
tual Environments”, Computer Animation and Virtual Worlds, pp. 497-
506, 2014.

See included video: http://youtu.be/VOQ9DavaqNA

• Tomas Trescak, Inmaculada Rodriguez, Maite Lopez-Sanchez, Pablo Al-
majano. “Execution Infrastructure for Normative Virtual Environments”,
Engineering Applications of Artificial Intelligence, vol. 26, issue 1, pp.
51-62, 2013.

Conferences

• Pablo Almajano, Enric Mayas, Inmaculada Rodriguez, Maite Lopez-
Sanchez. “Conversational Structured Hybrid 3D Virtual Environments”,
XV International Conference on Human Computer Interaction, Puerto de
la Cruz. Tenerife. Spain, to appear 2014.

See included video: http://youtu.be/VIld9IfuhCY

• Pablo Almajano, Enric Mayas, Inmaculada Rodriguez, Maite Lopez-
Sanchez, Anna Puig. “Structuring Interactions in a Hybrid Virtual Envi-
ronment: Infrastructure&Usability”, 8th International Conference on Com-
puter Graphics Theory and Applications (GRAPP), Barcelona, Spain, pp.
288-297, 2013.

• Pablo Almajano, Tomas Trescak, Marc Esteva, Inmaculada Rodriguez,
Maite Lopez-Sanchez. “v-mWater: a 3D Virtual Market for Water Rights
(Demonstration)”, Proceedings of the 11th international conference on au-
tonomous agents and multiagent systems (AAMAS), Valencia, Spain: In-
ternational Foundation for Autonomous Agents and Multiagent Systems,
pp. 1483-1484, 2012.

See included video: http://youtu.be/hJzw40lQvUY

• Pablo Almajano, Tomas Trescak, Inmaculada Rodriguez, Maite Lopez-
Sanchez. “An Infrastructure for Human Inclusion in MAS (Demonstra-
tion)”, 20th European Conference on Artificial Intelligence (ECAI), Mont-
pellier, France: IOS press, pp. 999-1000, 2012.

http://youtu.be/VOQ9DavaqNA
http://youtu.be/VIld9IfuhCY
http://youtu.be/hJzw40lQvUY

148 Chapter 7. Conclusions

• Pablo Almajano, Maite Lopez-Sanchez, Marc Esteva, Inmaculada Ro-
driguez. “An Assistance Infrastructure for open MAS”, 14th International
Conference of the Catalan Association for Artificial Intelligence (CCIA):
Frontiers in Artificial Intelligence and Applications, vol. 232, Lleida, Cat-
alonia, Spain: IOS Press, pp. 1-10, 2011.

• Pablo Almajano, Tomas Trescak, Marc Esteva, Inmaculada Rodriguez,
Maite Lopez-Sanchez. “Virtual Institutions For Water Rights Negotia-
tion”, Video Track of the 22nd International Join Conference on Artificial
Intelligence (IJCAI), Barcelona, Spain, 2011.

http://ijcai-11.iiia.csic.es/files/videotrack/almajano.mov

Workshops

• Pablo Almajano, Maite Lopez-Sanchez, Inmaculada Rodriguez. “An As-
sistance Infrastructure to Inform Agents for Decision Support in open
MAS”, International Workshop on Infrastructures and Tools for Multi-
agent Systems (ITMAS), Valencia, Spain, pp. 93-106, 2012.

• Aikaterini Bourazeri, Jeremy Pitt, Pablo Almajano, Inmaculada Ro-
driguez, Maite Lopez-Sanchez. “Meet the Meter: Visualising SmartGrids
using Self-Organising Electronic Institutions and Serious Games”, 2nd
AWARE workshop on Challenges for Achieving Self-Awareness in Auto-
nomic Systems (SASO), Lyon, France, 2012.

Book chapters

• Pablo Almajano, Tomas Trescak, Marc Esteva, Inmaculada Rodriguez,
Maite Lopez-Sanchez. “v-mWater: An e-Government Application for Wa-
ter Rights Agreements”, Agreement Technologies (Law, Governance and
Technology Series), vol. 8: Springer, pp. 583-595, 2013.

• Aikaterini Bourazeri, Pablo Almajano, Inmaculada Rodriguez, Maite
Lopez-Sanchez. “Assistive Awareness in SmartGrids”, The Computer Af-
ter Me, in press.

Magazine

• Pablo Almajano, Aikaterini Bourazeri, Maite Lopez-Sanchez, Inmaculada
Rodriguez. “Digital game enables active user participation in Smart-
Grids”: Awareness: Self-Awareness in Autonomic Systems Magazine,
2013.

7.3 Future Work

In this research work there are several issues that still remain open. Regarding
deployment, all the proposed services have been implemented except advice by

http://ijcai-11.iiia.csic.es/files/videotrack/almajano.mov

7.3. Future Work 149

imitation. A priori, it seems reasonably to implement them by applying Arti-
ficial Intelligence techniques such as, for example, machine learning where the
training set would correspond to similar situations coming from other partici-
pants extracted from the organisational trace. Moreover, there are several issues
related to the implemented services that deserve further work. For example, jus-
tification and estimation have not been individually evaluated, so that it remains
as future work the evaluation of such services.

As for planning advice service, the provided plans are presented to users as
textual note cards which contain a list of actions defined in the system speci-
fication that have been translated to natural language. However, plans can be
presented in a more realistic way. For example, the path that the assisted par-
ticipant must follow within the virtual environment can be presented drawn in
a map. Moreover, the drawn map can be extended with annotations detailing
the actions that the participant has to perform. Additionally, the personal assis-
tant can use voice and non-verbal communication acts, such as gestures, facial
expressions and gaze, to give assistance to its assisted participant. Even more,
a step forward is to present plans directly as virtual world actions. Thus, for
instance, the personal assistant may detach from the assisted participant and
move within the virtual environment: following the planned path; approaching
the doors that the user should pass through; pointing at the information pan-
els where data can be gathered; or indicating those other participants that its
assisted participant has to interact with in order to complete her or his tasks.

Another open issue is how advices’ request are included in a new application.
Currently, in order the user to select the desired advice, the system designer,
after identifying the tasks that the user can accomplish, has to implement the
user interface, e.g. using option dialogues. An improvement in this line is to
predict user’s intentions (i.e. goals), so that the personal assistant can compute
a plan to achieve the predicted goal, and advice the user when she or he deviates
from the expected plan. This way, users can disregard on asking the personal
assistant about an advice. Intuitively, some Intelligence Artificial techniques
that could help with this issue are Markov Decision Processes.

As aforementioned, now plans are restricted to the defined institutional ac-
tions translated to natural language. However, in the 3D Virtual World users
need to execute additional actions, i.e. non institutional actions. Thus, for in-
stance, in v-mWater, the institutional state does not change when a participant
moves around the environment without entering or leaving any building. A fu-
ture work in this regard is to somehow associate these non-institutional actions
to system actions, which may help to both give more detailed information in the
provided plans and better recognise users’ intentions. For example, when the
user is walking towards a building’s door, there is a high probability that her or
his intention is to enter such a building. One possibility to do so is to include a
framework similar to the worlk of Ranathunga et al. [Ranathunga et al., 2012].

With respect to personal assistants, they are designed to offer services under
request and by subscription. This research implements them under request,
and therefore it remains as future work to offer services by subscription. For

150 Chapter 7. Conclusions

example, a justification can be provided just when the user is trying to execute
a forbidden action, and the estimation of the next system state can be given prior
to execute those actions that have non-reversible and important consequences,
e.g. requesting a water quantity after winning an auction.

Regarding the conversational approach, the AIML conversations can be fur-
ther studied and re-designed to incorporate insights obtained in evaluations per-
formed with real users. For example, voice conversations can be incorporated,
in order to provide more realistic interactions to users and at the same time to
further facilitate their tasks achievement. Notice that the requirement to incor-
porate voice is to have a speech recognition engine to translate users’ voice to
text, and a text to speech engine to play the sentences that bots say to users.
Moreover, this conversational mechanism can be incorporated in personal assis-
tants, enhancing their user interface. Furthermore, it remains as future work
the semi-automatic generation of the task-oriented AIML files.

Finally, the approach presented in this work can be further deployed in the
electrical micro grid domain.

Appendices

151

Appendix A

Application Test
Documents

153

154 Appendix A. Application Test Documents

vmWater

Hoja de presentación

Introducción

Estás participando en un test en el cual queremos evaluar la aplicación que hemos desarrollado y
queremos que realices una tarea con este fin. Te entregamos este documento con la intención de
que conozcas nuestra aplicación, vmWater, y la tarea que realizarás. Nos gustaría aclararte que
realizamos el test con el fin de evaluar nuestra aplicación, y no a ti (no te estamos examinando).
Durante el test podrás, en voz alta, explicar lo que estas haciendo y expresar tus opiniones. Al
final del test también te pediremos que nos des tu opinión mediante un cuestionario.

La aplicación que hemos desarrollado está enfocada a lo que se le llama eGovernment, o
gobierno electrónico. El gobierno electrónico usa tecnologías para facilitar la relación de los
ciudadanos con las instituciones gubernamentales, por ejemplo distribuyendo información y
facilitando la realización de trámites.

vmWater es un mundo virtual que permite la compra y la venta de los derechos del agua. En
agricultura, un derecho del agua tiene asociada una cierta cantidad de agua que se usa para
regar. Va dirigida a agricultores que quieran comprar estos derechos para adquirir agua con la que
regar sus campos, o bien a los propietarios con agua sobrante que deseen venderla.

Accederás a un mundo virtual 3D mediante tu avatar, un personaje que te representa en el mundo.
Dentro del mundo podrás encontrar otros personajes: unos serán avatares que corresponden a
otras personas y otros serán bots controlados por el ordenador, y que desempeñaran diferentes
tareas dentro del mundo, como por ejemplo proporcionar información, actuar como comprador o
como vendedor para registrar sus derechos del agua. Podrás distinguir a los bots del los avatares
porque éstos tienen un color de piel artificial como el amarillo o el verde.

En el mundo virtual te encontrarás al aire libre, en un espacio que contendrá 3 edificios con
diferentes usos cada uno y mapas interactivos repartidos por la zona. Los 3 edificios son:

1. Edificio de información: Aquí los participantes pueden obtener información relacionada con
la evolución del mercado del agua.

2. Edificio de registro: Aquí los vendedores pueden poner a la venta, es decir, registrar sus
derechos del agua.

3. Edificio de subastas: Aquí los compradores pueden entrar para adquirir derechos del agua.

Tarea

Durante la tarea actuarás como vendedor, y tu objetivo será registrar un derecho del agua, que
estará identificado como wr1, a un precio 5€ mayor al de la transacción más reciente.

Nota: Aunque el mundo virtual está en inglés, estaremos dispuestos a traducirte aquello que
necesites. Nos ayudaría que pienses en voz alta para que podamos recoger mejor tus
impresiones.

Figure A.1: Presentation Letter

155

Encuesta de satsfacción

Nombre:..

1; ¿Cómo de fácil te ha sido situarte y moverte en el espacio 3D?

1 Muy difcil 2 Difcil 3 Normal 4 Fácil 5Muy fácil

2; ¿Cómo de cómodo te ha resultado caminar o teleportarte por el espacio 3D?

Caminar

1 Muy incómodo 2 Incómodo 3 Normal 4 Cómodo 5 Muy cómodo

Teleportar

1 Muy incómodo 2 Incómodo 3 Normal 4 Cómodo 5 Muy cómodo

3; ¿Te ha sido fácil entender el panel de información o la información proporcionada por el

bot?

1 Muy difcil 2 Difcil 3 Normal 4 Fácil 5Muy fácil

4; ¿Qué te ha parecido la interacción con los bots?

1 Muy difcil 2 Difcil 3 Normal 4 Fácil 5Muy fácil

5; ¿Te parece importante saber qué personajes 3D son bots (controlados por sofware) y

cuales avatares (controlados por humanos)?

1 Nada

importante

2 Poco

importante

3 Indiferente 4 Importante 5 Muy

importante

6; ¿Como de cómodo te ha parecido la comunicación por chat con el bot?

1 Muy incómoda 2 Incómoda 3 Normal 4 Cómoda 5 Muy cómoda

7; ¿Te ha sido fácil realizar la tarea en el mundo virtual?

1 Muy difcil 2 Difcil 3 Normal 4 Fácil 5Muy fácil

Figure A.2: Satisfaction Survey. Page 1/2

156 Appendix A. Application Test Documents

8; Durante el test, ¿hasta qué punto te has sentdo inmerso en el espacio 3D?

1 Nada inmerso 2 Poco

inmerso

3 Normal 4 Inmerso 5 Muy inmerso

9; Una vez realizado el test, ¿ha mejorado tu perspectva de los mundos virtuales y su utlidad?

1 Nada 2 Poco 3 La misma 4 Mejor 5 Mucho mejor

10; ¿Usarías un sistema similar a este para tareas parecidas a la que has realizado?

1 Nunca 2 A veces 3 A menudo 4 Frecuentemente 5 Muy frecuentemente

11; ¿Crees que la interfaz 3D (el mundo virtual) te ha ayudado a realizar tu tarea?

1 Nada 2 Poco 3 Algo 4 Bastante 5 Mucho

12; ¿Cuál es tu impresión global del sistema?

1 Muy mala 2 Mala 3 Normal 4 Buena 5 Muy buena

Comentarios adicionales (qué te ha gustado, qué has echado en falta, ideas o

sugerencias ...):

Figure A.3: Satisfaction Survey. Page 2/2

Appendix B

Assistance Test Documents

157

158 Appendix B. Assistance Test Documents

Moderator Script

1 Initial settings

We will use a portable setting, where a laptop has Singularity viewer installed and a desktop and

voice recording software. The client viewer is (minimised and) logged in the VW (using VIXEE

proxy) as “Tester 1” enacting role “seller”. “Tester 1” is positioned in front of the “Training room”.

There is a chair in front of the laptop. We ask the user to take a sit there.

2 Presentation and Acceptance document signing

“Hello, my name is … and I will be the moderator along this test session.”

(if there is an observer) “This is … and will act as an observer.”

“First of all, thank you for participating, we plan the session to be 20 minutes.”

“We have write an informed consent that you should sign before starting the test”.

3 Test session introduction

“Thank you very much. Now, please, could you read the presentation document?” (I give the tester

presentation_document.odt) “It will inform you about the aim of the test and the task you should

accomplish. I would like to stress that this test is based on your feelings, so I encourage you to be

expressive, and you are free to think aloud. Do you have any doubt about the document?”

4 Pre-test questions

“Before starting the task, I would like you to ask you a couple of questions:” (write down in a

paper)

1. “What is you experience using eGovernment application (e.g. governmental administrative

processing)?”

2. “What do you think about the idea of using 3D interfaces, in particular 3D virtual Worlds,

in eGovernment applications?”

5 Test running explanation

“The test is divided in two parts, the training mode and the task mode. Along the training mode,

you will get familiar with the application. I will explain you how to move and interact in the

environment. During the task mode, you should participate by your own, using the mechanisms I

taught you in the training to achieve the task I have assigned you (in the document). In this test we

use the thinking aloud technique, which consists on the tester to express her/is feelings and actions

in the VW in out loud in order to better register her/his opinions.”

6 Training

I maximise the viewer (it should be in the initial settings).

Personal Assistant introduction

“Now you are in the training mode. This is your avatar, you control it in the VW. The character on

your side is your Personal Assistant. Please, interact with him by clicking on it with the left button

of your mouse. An options dialog appears. There, you can observe the different assistance options.

These options are focused on the application tasks (in this case, the training tasks). Please, select

Figure B.1: Moderator Script. Page 1/2

159

an option. Your assistant send you a note card (or several) containing a plan to achieve the

selected task. A note card can be sent between characters and you can keep it in your inventory.

The inventory is where your belongings are stored. Particularly, note cards are stored in the note

cards folder. You can access your inventory using the related button” (point out).

“Now, please, read the plan” (explain here the structure of the plan) “and try to follow it. To move

your avatar, you can use the arrows in the keyboard. To enter any room you should use the door.

Just simple click on it. If you are allowed to enter, then the door will open and you are teleported

inside. Here you can observer two characters. The one which looks like a human is human

controlled, the other one is a bot controlled by the computer. You can interact with the bot by

clicking once with the left mouse button. An option dialog appears. Here you are two options and a

close button (please, do not use never the ignore button). Select one (following the plan).” (when

the text box appears) “This is other type of dialog to input required information. It has a text, an

input box, a send button and a ignore button.” (stress not to use never this button) “You should

always read the text, input the required information and press send. Congratulations, you have

achieved your task!”

“There is also other ways to interact with objects and avatars in the VW. For example, do right

mouse-click once on the sit of the chair. Then a contextual menu appears. Select sit. To stand up just

press button stand up. This is the training. Now, you can explore the room and, when your are

ready, please, exit the room and we will go to the task.” (when the user exits) “Now, I am going to

change the (training) personal assistant by the one which can help you in performing tasks in the

water market. I am teleporting you to the task application starting point. As you observe,

teleporting can be used to quickly move between locations in the VW.”

7 Task

Ask the tester to read the task and explain it to you. Recall the tester to think aloud. When the tester

is ready, start the record application and announce the starting of the task. From now on, I will only

support the tester if s/he is really lost in the world. Once the task is finished (the registration process

has been completed), congratulate the user.

8 Questionnaire

“To finish, I would like you to complete this questionnaire to reflect your opinion about this test,

and of course, if you can share with me any additional comment.” (when the tester finishes the

questionnaire) “Thank you very much for your participation.”

Figure B.2: Moderator Script. Page 2/2

160 Appendix B. Assistance Test Documents

v-mWater

Presentation letter

Introduction

You are participating in a test in which we are evaluating an application we have deployed named
v-mWater. We would like you to perform a task with this aim. This document contains a brief
description of the application (from now on v-mWater) and the task you are about to perform. We
would like to stress that we are evaluating v-mWater and not the tester (this is not an exam you
should pass). We encourage you to think aloud along the test, explaining what are you doing as
well as your opinions. At the end of this test you will be asked about your opinion by completing a
survey.

v-mWater is an eGovernment application. eGovernment applications use information and
communication technologies with the aim of facilitating citizens relationships with governments,
e.g., providing information and easing administrative procedures.

Particularly, v-mWater is a water market focused in the agriculture domain. In the agriculture
domain, a farmer can own water rights. A water right has associated a given amount of water to
irrigate farmlands. Our market allows a farmer to sell her/his surplus of water to other farmers.

The application interface is a 3D Virtual World (VW). You will access to the VW using a client-side
application. Therein, you will control an avatar, the character which represents you in this
environment. Inside the world you can come across with other characters (avatars). They can be
human-controlled (as yours) or computer-controlled, also named bots. These bots perform
different tasks, such as information provision (staff), water right purchase (buyer) or water right
registration (seller). Bots are easy to recognise because they have an artificial coloured skin (like
yellow or blue). There will be also available a personal assistant which you can use always you
consider proper. This personal assistant can advice you to perform tasks within the application.

The starting point in the application is an open-air location. There, you can find three buildings and
interactive maps of the space located along the area. The three buildings are:

1. Waiting and Information: here, everybody can get information related with the evolution of
the water market.

2. Registration: here, only sellers can enter to put on sale, that is, register their water rights.

3. Auction: here, only buyers can enter to purchase water rights.

Task

Along the task, you will act as a seller. Your goal is to register a water right,

identified as wr1, for a price which is 5€ higher than the price of the latest
transaction done.

Figure B.3: Presentation Letter

161

Satsfacton survey

Name:..

1; Was it easy for you to positon and move in the 3D space?

1 Very difcult 2 Difcult 3 Regular 4 Easy 5 Very easy

2; Was it comfortable for you to walk or teleport in the 3D space?

Walk

1 Very

Uncomfortable

2

Uncomfortable

3 Regular 4 Comfortable 5 Very

Comfortable

Teleport (if you don't use it, just don't mark any opton)

1 Very

Uncomfortable

2

Uncomfortable

3 Regular 4 Comfortable 5 Very

Comfortable

3; Was it easy for you to understand the informaton panel or the informaton provided by

the bot?

1 Very difcult 2 Difcult 3 Regular 4 Easy 5 Very easy

4; Was it easy for you to interact with bots?

1 Very difcult 2 Difcult 3 Regular 4 Easy 5 Very easy

5; Do you think is important to know which characters are bots (computer controlled) and

which are avatars (human controlled)?

1 Nothing at all 2 A litle bit 3 Indiferent 4 Quite a bit 5 A lot

6; Was it comfortable for you to communicate with bots using text chat and dialogs?

1 Very

Uncomfortable

2

Uncomfortable

3 Regular 4 Comfortable 5 Very

Comfortable

Figure B.4: Satisfaction Survey. Page 1/3

162 Appendix B. Assistance Test Documents

7; Did your assistant help you to achieve your task? (if you don't use it, just don't mark any

opton)

1 Not at all 2 A litle bit 3 Some 4 Quite a bit 5 A lot

8; Was it easy for you to interact with your assistant? (if you don't use it, just don't mark any

opton)

1 Very difcult 2 Difcult 3 Regular 4 Easy 5 Very easy

9; Was it easy for you to understand the advices (as plans) provided by your assistant? (if

you don't use it, just don't mark any opton)

1 Very difcult 2 Difcult 3 Regular 4 Easy 5 Very easy

10; Was it easy for you to perform the task in the virtual world?

1 Very difcult 2 Difcult 3 Regular 4 Easy 5 Very easy

11; Did you get immersed in the 3D space?

1 Not at all 2 A litle bit 3 Some 4 Quite a bit 5 A lot

12; Once the test is done, has your opinion about the virtual worlds and their utlity improved?

1 Not at all 2 A litle bit 3 Some 4 Quite a bit 5 A lot

13; Will you use a system like this to perform similar tasks?

1 Never 2 Sometmes 3 Regular 4 Frequently 5 Very frequently

14; Has the 3D interface (the virtual world) help you in achieving your task?

1 Not at all 2 A litle bit 3 Some 4 Quite a bit 5 A lot

Figure B.5: Satisfaction Survey. Page 2/3

163

15; What is your overall impression about the system?

1 Very bad 2 Bad 3 Regular 4 Good 5 Very good

If you have used the assistance, why have you decided to use it?

Please, write here any additonal comment (what did you like, what did you miss, ideas,

suggestons, ...):

Figure B.6: Satisfaction Survey. Page 3/3

Appendix C

Enhanced Human-Agent
Interaction Test Documents

165

166 Appendix C. Enhanced Human-Agent Interaction Test Documents

Moderator Script

1 Initial settings

We will use a portable setting, where a laptop has Singularity viewer installed and a desktop and

voice recording software. The client viewer is (minimised and) logged in the VW (using VIXEE

proxy) as “Tester 1” enacting role “seller”. “Tester 1” is positioned in front of the “Training room”.

There is a chair in front of the laptop. We ask the user to take a sit there.

RECALL to erase previous conversations in the chat windows and set the proper

interaction mode (activatecommands, activatedialogues)

2 Presentation and Acceptance document signing

“Hello, my name is … and I will be the moderator along this test session.”

(if there is an observer) “This is … and will act as an observer.”

“First of all, thank you for participating, we plan the session to be 20 minutes.”

“We have written an informed consent that you should sign before starting the test”.

3 Test session introduction

“Thank you very much. Now, please, could you read the presentation document?” (I give the tester

presentation_document.odt) “It will inform you about the aim of the test and the task you should

accomplish. I would like to stress that this test is based on your feelings, so I encourage you to be

expressive, and you are free to think aloud. Do you have any doubt about the document?”

4 Pre-test questions

“Before starting the task, I would like to ask you a couple of questions:” (write down in a paper)

1. “What is you experience interacting with computers by using command base systems?”

2. “What is you experience interacting with computers using natural language

conversations?”

5 Test running explanation

“The test is divided in two parts, the training mode and the task mode. Along the training mode,

you will get familiar with the application. I will explain you how to move and interact in the

environment. During the task mode, you should participate by your own, using the mechanisms I

taught you in the training to achieve the task I have assigned you (in the document). You will do the

same task using two different interactions mechanisms with bots: command based and dialogue

based. In this test we use the thinking aloud technique, which consists on the tester to express her/is

feelings and actions in the VW in out loud in order to better register her/his opinions.”

6 Training

I maximise the viewer (it should be in the initial settings).

“Now you are in the training mode. This is your avatar, you control it in the VW. To move your

avatar, you can use the arrows in the keyboard. To enter any room you should use the door. Just go

to the Training building and simple click on its door. If you are allowed to enter, then the door will

Figure C.1: Moderator Script. Page 1/2

167

open and you will be teleported inside. Here you can observe a bot controlled by the computer. You

can interact with the bot by sending it Instant Messages (IM).”

Explain how to send the IM 'hi' to the bot (the bot will respond hi).

“There is also other ways to interact with objects and avatars in the VW. For example, do right

mouse-click once on the sit of the chair. Then a contextual menu appears. Select sit. To stand up just

press button stand up. This is the training. Now, you can explore the room and, when your are

ready, please, exit the room and we will go to the task.” (when the user exits) “Now, I am

teleporting you to the task application starting point. As you observe, teleporting can be used to

quickly move between locations in the VW.”

7 Task

Ask the tester to read the task and explain it to me. Recall the tester to think aloud.

“You are going to do the tasks in two different ways of interaction with bots: command based and

dialogue based.”

COMMAND BASED: “Send the help command to the bot whenever you want to know the

available commands it has and their usage.”

DIALOGUE BASED: “Just talk to the bot using natural language.”

When the tester is ready, start the record application and announce the starting of the task. From

now on, I will only support the tester if s/he is really, really lost in the world.

Once the 2 tasks are finished (information obtained and the registration process has been

completed), congratulate the user.

RECALL to erase previous conversations in the chat windows and set the proper

interaction mode (activatecommands, activatedialogues)

Start that taskt with the other way of interaction.

8 Survey

“To finish, I would like you to complete this survey to reflect your opinion about this test, and of

course, you can share with me any additional comment.” (when the tester finishes the survey)

“Thank you very much for your participation.”

Figure C.2: Moderator Script. Page 2/2

168 Appendix C. Enhanced Human-Agent Interaction Test Documents

v-mWater

Presentation letter

Introduction

You are participating in a test for evaluating v-mWater., an application we have deployed, and we
would like you to perform two tasks. This document contains a brief description of the application
(from now on v-mWater) and the tasks you are about to perform. We would like to stress that we
are evaluating v-mWater and not the tester (this is not an exam you should pass). We encourage
you to think aloud along the test, explaining what are you doing as well as your opinions. At the
end of this test you will be asked about your opinion by completing a survey.

v-mWater is an eGovernment application. eGovernment applications use information and
communication technologies with the aim of facilitating citizens relationships with governments,
e.g., providing information and easing administrative procedures.

Particularly, v-mWater is a water market focused in the agriculture domain. In the agriculture
domain, a farmer can own water rights. A water right has associated a given amount of water to
irrigate farmlands. Our market allows a farmer to sell her/his surplus of water to other farmers.

The application interface is a 3D Virtual World (VW). Therein, you will control an avatar, the
character which represents you in this environment. Inside the world you will interact with bots
(computer-controlled avatars) that act as market staff members, and thus, they can assist you in
specific tasks.

The starting point in the application is an open-air location. There, you can find three buildings and
interactive maps of the space located along the area. The three buildings are:

1. Waiting and Information: here, participants can get information related with the evolution of
the water market.

2. Registration: here, sellers can enter to put on sale (that is, to register) their water rights.

3. Auction: where buyers can enter to purchase water rights.

Please, perform the following tasks:

Task 1

Your goal is to ask the Information Manager about last 2 transactions in the market.

Task 2

Your goal is to ask the Registration Manager to register a water right, identified as wr1,

for a price of 25 €.

Figure C.3: Presentation Letter

169

Satsfacton survey

Name:..

1. How comfortable was the communicaton with the bot?

Command based chat

1 Very Uncomfortable 2 Uncomfortable 3 Normal 4 Comfortable 5 Very Comfortable

Natural language

1 Very Uncomfortable 2 Uncomfortable 3 Normal 4 Comfortable 5 Very Comfortable

2. How ofen would you use each of the methods of communicaton?

Command based chat

1 Very Rarely 2 Rarely 3 Regularly 4 Frequently 5 Very Frequently

Natural language

1 Very Rarely 2 Rarely 3 Regularly 4 Frequently 5 Very Frequently

3. The bot had unexpected answers

Natural language

1 Always 2 Ofen 3 Regularly 4 Sometmes 5 Never

4. I did know what to answer to the bot

Command based chat

1 Never 2 Sometmes 3 Regularly 4 Ofen 5 Always

Natural language

1 Never 2 Sometmes 3 Regularly 4 Ofen 5 Always

5. I felt that the bot understood me

Natural language

1 Never 2 Sometmes 3 Regularly 4 Ofen 5 Always

6. What the bot said to me made sense

Command based chat

1 Never 2 Sometmes 3 Regularly 4 Ofen 5 Always

Natural language

1 Never 2 Sometmes 3 Regularly 4 Ofen 5 Always

Figure C.4: Satisfaction Survey. Page 1/2

170 Appendix C. Enhanced Human-Agent Interaction Test Documents

7. I felt frustrated while talking to the bot

Command based chat

1 Always 2 Ofen 3 Regularly 4 Sometmes 5 Never

Natural language

1 Always 2 Ofen 3 Regularly 4 Sometmes 5 Never

8. I felt I needed help while talking to the bot

Command based chat

1 Always 2 Ofen 3 Regularly 4 Sometmes 5 Never

Natural language

1 Always 2 Ofen 3 Regularly 4 Sometmes 5 Never

Extra commentaries (what did you liked, what do you think is missing, ideas or

suggestons…):

Figure C.5: Satisfaction Survey. Page 2/2

Bibliography

[Abdellatif et al., 2013] Abdellatif, A., Ben Amor, N., and Mellouli, S. (2013).
An intelligent framework for e-government personalized services. In Proceed-
ings of the 14th Annual International Conference on Digital Government Re-
search, dg.o ’13, pages 120–126, New York, NY, USA. ACM.

[Almajano et al., 2013a] Almajano, P., Bourazeri, A., Lopez-Sanchez, M., and
Rodriguez, I. (2013a). Digital game enables active user participation in smart-
grids. Awareness: Self-Awareness in Autonomic Systems Magazine.

[Almajano et al., 2011a] Almajano, P., Lopez-Sanchez, M., Esteva, M., and Ro-
driguez, I. (2011a). An assistance infrastructure for open mas. In CCIA ’11,
volume 232, pages 1–10. IOS Press.

[Almajano et al., 2012a] Almajano, P., Lopez-Sanchez, M., and Rodriguez, I.
(2012a). An assistance infrastructure to inform agents for decision support in
open mas. In ITMAS’12, 93-106, pages 93–106.

[Almajano et al., 2014a] Almajano, P., Lopez-Sanchez, M., Rodriguez, I., and
Trescak, T. (2014a). Assistant agents to advice users in hybrid structured 3d
virtual environments. Computer Animation and Virtual Worlds, 25(3-4):497–
506.

[Almajano et al., 2014b] Almajano, P., Mayas, E., Rodriguez, I., and Lopez-
Sanchez, M. (to appear, 2014b). Conversational structured hybrid 3d virtual
environments. In INTERACCION’14.

[Almajano et al., 2013b] Almajano, P., Mayas, E., Rodriguez, I., Lopez-
Sanchez, M., and Puig, A. (2013b). Structuring interactions in a hybrid virtual
environment: Infrastructure&usability. In GRAPP/IVAPP, pages 288–297.

[Almajano et al., 2011b] Almajano, P., Trescak, T., Esteva, M., Rodriguez, I.,
and Lopez-Sanchez, M. (2011b). Virtual institutions for water rights negoti-
ation. http://ijcai-11.iiia.csic.es/files/videotrack/almajano.mov.
Video Track of the 22nd International Join Conference on Artificial Intelli-
gence (IJCAI).

[Almajano et al., 2012b] Almajano, P., Trescak, T., Esteva, M., Rodriguez, I.,
and Lopez-Sanchez, M. (2012b). v-mwater: A 3d virtual market for water

171

http://ijcai-11.iiia.csic.es/files/videotrack/almajano.mov

172 Bibliography

rights (demonstration). In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS ’12,
pages 1483–1484, Richland, SC. International Foundation for Autonomous
Agents and Multiagent Systems.

[Almajano et al., 2013c] Almajano, P., Trescak, T., Esteva, M., Rodriguez, I.,
and Lopez-Sanchez, M. (2013c). v-mwater: An e-government application for
water rights agreements. In Agreement Technologies, pages 583–595. Springer.

[Almajano et al., 2012c] Almajano, P., Trescak, T., Rodriguez, I., and Lopez-
Sanchez, M. (2012c). An infrastructure for human inclusion in mas (demon-
stration). In ECAI, pages 999–1000.

[Almarabeh and AbuAli, 2010] Almarabeh, T. and AbuAli, A. (2010). A general
framework for e-government: Definition maturity challenges, opportunities,
and success. European Journal of Scientific Research, 39(1):29–42.

[Banchs et al., 2013] Banchs, R. E., Jiang, R., Kim, S., Niswar, A., and Yeo,
K. H. (2013). Aida: Artificial intelligent dialogue agent. In Proceedings of
the SIGDIAL 2013 Conference, pages 145–147, Metz, France. Association for
Computational Linguistics.

[Bartle, 2003] Bartle, R. (2003). Designing virtual worlds. New Riders Games.
New Riders, Indianapolis, USA.

[Bjornlund and Rossini, 2010] Bjornlund, H. and Rossini, P. (2010). Climate
change, water scarcity and water markets: Implications for farmers? wealth
and farm succession. In Proceedings of the PRRES Conference.

[Bogdanovych, 2007] Bogdanovych, A. (2007). Virtual Institutions. PhD thesis,
University of Technology, Sydney, Australia.

[Bogdanovych et al., 2012] Bogdanovych, A., Ijaz, K., and Simoff, S. (2012).
The city of uruk: teaching ancient history in a virtual world. In Intelligent
Virtual Agents, pages 28–35. Springer.

[Boissier et al., 2013] Boissier, O., Bordini, R. H., Hbner, J. F., Ricci, A., and
Santi, A. (2013). Multi-agent oriented programming with jacamo. Science of
Computer Programming, 78(6):747 – 761.

[Book, 2004] Book, B. (2004). Moving beyond the game: social virtual worlds.
State of Play, 2:6–8.

[Bou et al., 2009] Bou, E., López-Sánchez, M., and Rodŕıguez-Aguilar, J.
(2009). Autonomic electronic institutions’ self-adaptation in heterogeneous
agent societies. In Organized Adaption in Multi-Agent Systems, volume 5368,
pages 18–35. Springer.

[Bourazeri et al., 2014] Bourazeri, A., Almajano, P., Rodriguez, I., and Lopez-
Sanchez, M. (in press, 2014). Assistive awareness in smartgrids. In The
Computer After Me. Imperial College Press / World Scientific Book.

Bibliography 173

[Bourazeri et al., 2012] Bourazeri, A., Pitt, J., Almajano, P., Rodriguez, I., and
Lopez-Sanchez, M. (2012). Meet the meter: Visualising smartgrids using self-
organising electronic institutions and serious games. In 2nd AWARE workshop
on Challenges for Achieving Self-Awareness in Autonomic Systems, SASO
2012: Lyon, France.

[Bowman et al., 2002] Bowman, D., Gabbard, J., and Hix, D. (2002). A survey
of usability evaluation in virtual environments: classification and comparison
of methods. Presence: Teleoperators & Virtual Environments, 11(4):404–424.

[Campos et al., 2011] Campos, J., Esteva, M., López-Sánchez, M., Morales, J.,
and Salamó, M. (2011). Organisational adaptation of multi-agent systems in
a peer-to-peer scenario. Computing, 91:169–215.

[Campos et al., 2009] Campos, J., López-Sánchez, M., and Esteva, M. (2009).
Coordination support in multi-agent systems. In AAMAS’09, pages 1301–
1302.

[Campos et al., 2013] Campos, J., Lopez-Sanchez, M., Salamó, M., Avila, P.,
and Rodŕıguez-Aguilar, J. A. (2013). Robust regulation adaptation in multi-
agent systems. ACM Trans. Auton. Adapt. Syst., 8(3):13:1–13:27.

[Centeno and Billhardt, 2011] Centeno, R. and Billhardt, H. (2011). Adaptive
regulation of open mas: an incentive mechanism based on online modifications
of the environment (extended abstract). In Proceedings of The 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages
1243–1244.

[Centeno et al., 2009] Centeno, R., Billhardt, H., Hermoso, R., and Ossowski, S.
(2009). Organising mas: a formal model based on organisational mechanisms.
In Proceedings of the 2009 ACM symposium on Applied Computing, pages
740–746.

[Chadwick and May, 2003] Chadwick, A. and May, C. (2003). Interaction be-
tween states and citizens in the age of the internet: e-government in the united
states, britain, and the european union. Governance, 16(2):271–300.

[Chalupsky et al., 2001] Chalupsky, H., Gil, Y., Knoblock, C. A., Lerman, K.,
Oh, J., Pynadath, D. V., Russ, T. A., and Tambe, M. (2001). Electric elves:
Applying agent technology to support human organizations. In Proceedings of
the Thirteenth Conference on Innovative Applications of Artificial Intelligence
Conference, pages 51–58. AAAI Press.

[Chittaro et al., 2004] Chittaro, L., Ieronutti, L., and Ranon, R. (2004). Navi-
gating 3d virtual environments by following embodied agents: a proposal and
its informal evaluation on a virtual museum application. PsychNology Journal,
2(1):24–42.

174 Bibliography

[Danforth et al., 2009] Danforth, D., Procter, M., Chen, R., Johnson, M., and
Heller, R. (2009). Development of virtual patient simulations for medical
education. Journal For Virtual Worlds Research, 2(2).

[De Meo et al., 2005] De Meo, P., Quattrone, G., Ursino, D., and Terracina, G.
(2005). A multi-agent system for the management of e-government services.
In Proceedings of the IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology, IAT ’05, pages 718–724, Washington, DC, USA. IEEE
Computer Society.

[Dong et al., 2012] Dong, R., McCarthy, K., O’Mahony, M., Schaal, M., and
Smyth, B. (2012). Towards an intelligent reviewer’s assistant: recommending
topics to help users to write better product reviews. In IUI’12, pages 159–168.
ACM.

[Esteva, 2003] Esteva, M. (2003). Electronic institutions. from specification to
development. PhD thesis, Universitat Politecnica de Catalunya.

[Esteva et al., 2002] Esteva, M., De La Cruz, D., and Sierra, C. (2002). Islander:
an electronic institutions editor. In Proceedings of the first international joint
conference on Autonomous agents and multiagent systems: part 3, pages 1045–
1052. ACM.

[Esteva et al., 2008] Esteva, M., Rodriguez-Aguilar, J. A., Arcos, J. L., Sierra,
C., Noriega, P., Rosell, B., and de la Cruz, D. (2008). Electronic institu-
tions development environment. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems: Demo Papers,
AAMAS ’08, pages 1657–1658, Richland, SC. International Foundation for
Autonomous Agents and Multiagent Systems.

[Esteva et al., 2004] Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J. A., and Arcos,
J. L. (2004). AMELI: An agent-based middleware for electronic institutions.
In AAMAS’04, pages 236–243.

[Faulring et al., 2010] Faulring, A., Myers, B., Mohnkern, K., Schmerl, B., Ste-
infeld, A., Zimmerman, J., Smailagic, A., Hansen, J., and Siewiorek, D.
(2010). Agent-assisted task management that reduces email overload. In
IUI’10, pages 61–70. ACM.

[Ferber et al., 2004] Ferber, J., Gutknecht, O., and Michel, F. (2004). From
agents to organizations: An organizational view of multi-agent systems. In
Agent-Oriented Software Engineering IV, pages 214–230. Springer.

[Galvao et al., 2004] Galvao, A. M., Barros, F. A., Neves, A. M., and Ramalho,
G. L. (2004). Persona-aiml: An architecture developing chatterbots with per-
sonality. In Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems-Volume 3, pages 1266–1267. IEEE
Computer Society.

Bibliography 175

[Garrido et al., 2013] Garrido, A., Giret, A., Botti, V., and Noriega, P. (2013).
mwater, a case study for modeling virtual markets. In Ossowski, S., editor,
Agreement Technologies, volume 8 of Law, Governance and Technology Series,
pages 565–582. Springer Netherlands.

[Giret et al., 2011] Giret, A., Garrido, A., Gimeno, J. A., Botti, V., and Noriega,
P. (2011). A MAS decision support tool for water-right markets. In AAMAS
’11, pages 1305–1306.

[Graesser et al., 2005] Graesser, A. C., Chipman, P., Haynes, B. C., and Olney,
A. (2005). Autotutor: An intelligent tutoring system with mixed-initiative
dialogue. Education, IEEE Transactions on, 48(4):612–618.

[Guard, 2007] Guard, D. (2007). Opensimulator. http://opensimulator.org.
Last access: July 2014.

[Hart et al., 1968] Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis
for the heuristic determination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on, 4(2):100–107.

[Hübner et al., 2006] Hübner, J., Sichman, J., and Boissier, O. (2006).
S −Moise+: A middleware for developing organised multi-agent systems. In
Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski,
S., Sichman, J., and Vzquez-Salceda, J., editors, Coordination, Organizations,
Institutions, and Norms in Multi-Agent Systems, volume 3913 of Lecture Notes
in Computer Science, pages 64–77. Springer Berlin Heidelberg.

[Ijaz et al., 2011] Ijaz, K., Bogdanovych, A., and Simoff, S. (2011). Enhanc-
ing the believability of embodied conversational agents through environment-
, self- and interaction-awareness. In Proceedings of the Thirty-Fourth Aus-
tralasian Computer Science Conference - Volume 113, ACSC ’11, pages 107–
116, Darlinghurst, Australia, Australia. Australian Computer Society, Inc.

[Jamieson, 2004] Jamieson, S. (2004). Likert scales: how to (ab) use them.
Medical education, 38(12):1217–1218.

[Jennings et al., 1998] Jennings, N. R., Sycara, K., and Wooldridge, M. (1998).
A roadmap of agent research and development. Autonomous Agents and Multi-
Agent Systems, 1:7–38.

[Jureta et al., 2007] Jureta, I. J., Kollingbaum, M. J., Faulkner, S., Mylopoulos,
J., and Sycara., K. (2007). Requirements-driven contracting for open and
norm-regulated multi-agent systems. Technical report, Technical report.

[Klüwer et al., 2012] Klüwer, T., Xu, F., Adolphs, P., and Uszkoreit, H. (2012).
Evaluation of the komparse conversational non-player characters in a com-
mercial virtual world. In LREC, pages 3535–3542.

http://opensimulator.org

176 Bibliography

[Kumar et al., 2002] Kumar, S., Kunjithapatham, A., Sheshagiri, M., Finin, T.,
A., J., Peng, Y., and Cost, R. (2002). A Personal Agent Application for the
Semantic Web. In AAAI 2002 Fall Symposium Series.

[Laorden et al., 2013] Laorden, C., Galán-Garćıa, P., Santos, I., Sanz, B., Hi-
dalgo, J. M. G., and Bringas, P. G. (2013). Negobot: A conversational agent
based on game theory for the detection of paedophile behaviour. In Interna-
tional Joint Conference CISIS12-ICEUTE´ 12-SOCO´ 12 Special Sessions,
pages 261–270. Springer.

[Likert, 1932] Likert, R. (1932). A technique for the measurement of attitudes.
Archives of psychology.

[Lujak and Billhardt, 2013] Lujak, M. and Billhardt, H. (2013). Coordinating
emergency medical assistance. In Agreement Technologies, volume 8 of Law,
Governance and Technology Series, pages 597–609. Springer Netherlands.

[Macbeth et al., 2012] Macbeth, S., Pitt, J., Schaumeier, J., and Busquets, D.
(2012). Animation of self-organising resource allocation using presage2. 2013
IEEE 7th International Conference on Self-Adaptive and Self-Organizing Sys-
tems, 0:225–226.

[Maes and Nardi, 1988] Maes, P. and Nardi, D., editors (1988). Meta-Level Ar-
chitectures and Reflection. Elsevier Science Inc., NY, USA.

[Marsh, 2011] Marsh, T. (2011). Serious games continuum: Between games for
purpose and experiential environments for purpose. Entertainment Comput-
ing, 2(2):61–68.

[McDaniel and McLaughlin, 2009] McDaniel, P. and McLaughlin, S. (2009). Se-
curity and Privacy Challenges in the Smart Grid. Security & Privacy, IEEE,
7(3):75–77.

[Mehta and Corradini, 2008] Mehta, M. and Corradini, A. (2008). Handling
out of domain topics by a conversational character. In Proceedings of the 3rd
International Conference on Digital Interactive Media in Entertainment and
Arts, DIMEA ’08, pages 273–280, New York, NY, USA. ACM.

[Messinger et al., 2009] Messinger, P. R., Stroulia, E., Lyons, K., Bone, M., Niu,
R. H., Smirnov, K., and Perelgut, S. (2009). Virtual worlds - past, present,
and future: New directions in social computing. Decision Support Systems,
47(3):204–228.

[Mikic et al., 2009] Mikic, F. A., Burguillo, J. C., Llamas, M., Rodŕıguez, D. A.,
and Rodŕıguez, E. (2009). Charlie: An aiml-based chatterbot which works as
an interface among ines and humans. In EAEEIE Annual Conference, 2009,
pages 1–6. IEEE.

Bibliography 177

[Mori et al., 2003] Mori, K., Jatowt, A., and Ishizuka, M. (2003). Enhancing
conversational flexibility in multimodal interactions with embodied lifelike
agent. In Proceedings of the 8th international conference on Intelligent user
interfaces, pages 270–272. ACM.

[Norman, 2010] Norman, G. (2010). Likert scales, levels of measurement and
the laws of statistics. Advances in health sciences education, 15(5):625–632.

[Oh et al., 2013] Oh, J., Meneguzzi, F., Sycara, K., and Norman, T. (2013).
Prognostic normative reasoning. Engineering Applications of Artificial Intel-
ligence, 26(2):863 – 872.

[Oh et al., 2011] Oh, J., Meneguzzi, F., Sycara, K., and Norman, T. J. (2011).
Prognostic agent assistance for norm-compliant coalition planning. In The Sec-
ond International Workshop on INFRASTRUCTURES AND TOOLS FOR
MULTIAGENT SYSTEMS, pages 126–140.

[Okamoto et al., 2009] Okamoto, S., Sycara, K., and Scerri, P. (2009). Personal
assistants for human organizations. In Dignum, V., editor, Organizations in
Multi-Agent Systems, pages 514–540. IGI Global.

[Ostrom, 1990] Ostrom, E. (1990). Governing the commons: The evolution of
institutions for collective action. Cambridge: CUP.

[Pitt and Schaumeier, 2012] Pitt, J. and Schaumeier, J. (2012). Provision and
appropriation of common-pool resources without full disclosure. In Rahwan, I.,
Wobcke, W., Sen, S., and Sugawara, T., editors, PRIMA 2012: Principles and
Practice of Multi-Agent Systems, volume 7455 of Lecture Notes in Computer
Science, pages 199–213. Springer Berlin Heidelberg.

[Ranathunga et al., 2012] Ranathunga, S., Cranefield, S., and Purvis, M.
(2012). Interfacing a cognitive agent platform with second life. In Beer,
M., Brom, C., Dignum, F., and Soo, V.-W., editors, Agents for Educational
Games and Simulations, volume 7471 of Lecture Notes in Computer Science,
pages 1–21. Springer Berlin Heidelberg.

[Rubin and Chisnell, 2008] Rubin, J. and Chisnell, D. (2008). Handbook of us-
ability testing : how to plan, design, and conduct effective tests. Wiley Publ.,
Indianapolis, Ind.

[Searle, 1969] Searle, J. R. (1969). Speech acts: An essay in the philosophy of
language, volume 626. Cambridge university press.

[Seidel, 2010] Seidel, I. (2010). Engineering 3D Virtual World Applications.
Design, Realization and Evaluation of a 3D e-Tourism Environment. PhD
thesis, Vienna University of Technology.

[Seidel et al., 2009] Seidel, I., Gärtner, M., Froschauer, J., Berger, H., and
Merkl, D. (2009). An agent-based centralized e-marketplace in a virtual en-
vironment. In SEKE, pages 218–221.

178 Bibliography

[Trescak, 2013] Trescak, T. (2013). Intelligent Generation and Control of Inter-
active Virtual Worlds. PhD thesis, Universitat Autonoma de Barcelona.

[Trescak et al., 2013] Trescak, T., Rodriguez, I., Lopez Sanchez, M., and Alma-
jano, P. (2013). Execution infrastructure for normative virtual environments.
Engineering applications of artificial intelligence, 26(1):51–62.

[van Dijk et al., 2003] van Dijk, E., op den Akker, H., Nijholt, A., and Zwiers,
J. (2003). Navigation assistance in virtual worlds. Informing Science, Special
Series on Community Informatics, 6:115–125.

[Wallace, 2000] Wallace, R. S. (2000). A.l.i.c.e. http://www.alicebot.org/.
Last access: July 2014.

[Wallace, 2009] Wallace, R. S. (2009). The anatomy of a.l.i.c.e. In Epstein, R.,
Roberts, G., and Beber, G., editors, Parsing the Turing Test, pages 181–210.
Springer Netherlands.

[Wang et al., 2002] Wang, F.-Y., Mirchandani, P. B., and Wang, Z. (2002). The
vista project and its applications. Intelligent Systems, IEEE, 17(6):72–75.

[WaterFind, 2005] WaterFind (2005). Waterfind, australia’s water market spe-
cialist. http://www.waterfind.com.au/. Last access: July 2014.

[Yaich et al., 2013] Yaich, R., Boissier, O., Picard, G., and Jaillon, P. (2013).
Adaptiveness and social-compliance in trust management within virtual com-
munities. Web Intelligence and Agent Systems, 11(4):315–338.

http://www.alicebot.org/
http://www.waterfind.com.au/

	Abstract
	Introduction
	Motivation
	Research Problems and Questions
	Research Objectives
	Contributions
	Background
	Electronic Institutions
	Virtual Worlds
	Virtual Institutions
	VIXEE

	Structure

	Related Work
	Assistance Services
	Human-Agent Interaction

	Assistance Formalisation
	Running Example
	Organisational Layer
	Organisation Specification
	Organisation Historical Information

	Assistance Layer
	Personal Assistant Agents
	Information Services Specification
	Justification Services Specification
	Estimation Services Specification
	Advice Services Specification

	Application Scenarios
	Application Background
	v-mWater Model
	Water Market
	Formalisation and Electronic Institution Implementation
	Goals
	mWater correspondence

	Setting up the Model
	v-mWater Running Scenario

	Evaluation
	Test objectives
	Usability Research Questions
	Participants
	Methodology
	Results and discussion

	Local Smart Micro Grids
	Game Overview

	Assistance Design and Evaluation
	Architecture
	Personal Assistant Embodiment
	Information Service
	Runtime Information Service
	Experiment configuration
	Assistance Quality of Service Evaluation
	Experimental Results

	Justification Service
	Estimation Service
	Advice Service
	OCMAS Planning
	v-mWater planning example
	Plan Delivery
	Service Evaluation

	Enhanced Human-Agent Interaction
	Introduction
	Conversational Architecture
	Task-Oriented Conversation
	Basic AIML
	Conversation Structure
	Task-Oriented AIML Knowledge
	Conversation Management in VIXEE

	Evaluation
	Test objectives
	Methodology
	Results and discussion

	Conclusions
	Objectives achievement
	Assistance Infrastructure Formalisation
	Application
	Assistance Architecture
	Enhanced Human-Agent Interactions

	Publications
	Future Work

	Appendices
	Application Test Documents
	Assistance Test Documents
	Enhanced Human-Agent Interaction Test Documents

