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Abstract
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Fuzzy Horn clauses in artificial intelligence: a study of free models,
and applications in art painting style categorization

by Vicent Costa

This PhD thesis contributes to the systematic study of Horn clauses of predicate
fuzzy logics and their use in knowledge representation for the design of an art painting
style classification algorithm. We first focus the study on relevant notions in logic pro-
gramming, such as free models and Herbrand structures in mathematical fuzzy logic.
We show the existence of free models in fuzzy universal Horn classes, and we prove
that every equality-free consistent universal Horn fuzzy theory has a Herbrand model.
Two notions of minimality of free models are introduced, and we show that these no-
tions are equivalent in the case of fully named structures. Then, we use Horn clauses
combined with qualitative modeling as a fuzzy knowledge representation framework
for art painting style categorization. Finally, we design a style painting classifier based
on evaluated Horn clauses, qualitative color descriptors, and explanations. This algo-
rithm, called `-SHE, provides reasons for the obtained results and obtains percentages
of accuracy in the experimentation that are competitive.
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Fuzzy Horn clauses in artificial intelligence: a study of free models,
and applications in art painting style categorization

by Vicent Costa

Aquesta tesi doctoral contribueix a l’estudi de les clàusules de Horn en lògiques
difuses, així com al seu ús en representació difusa del coneixement aplicada al dis-
seny d’un algorisme de classificació de pintures segons el seu estil artístic. En la
primera part del treball ens centrem en algunes nocions rellevants per a la progra-
mació lògica, com ho són per exemple els models lliures i les estructures de Her-
brand en lògica matemàtica difusa. Així doncs, provem l’existència de models lliures
en classes universals difuses de Horn, i demostrem que tota teoria difusa universal
de Horn sense igualtat té un model de Herbrand. A més, introduïm dues nocions de
minimalitat per a models lliures, i demostrem que aquestes nocions són equivalents
en el cas de les fully named structures. En la segona part de la tesi doctoral, utilitzem
les clàusules de Horn combinades amb el modelatge qualitatiu com a marc de repre-
sentació difusa del coneixement per a la categorització d’estils de pintura artística.
Finalment, dissenyem un classificador de pintures basat en clàusules de Horn aval-
uades, descriptors qualitatius de colors i explicacions. Aquest algorisme, anomenat
`-SHE, proporciona raons dels resultats obtinguts i mostra percentatges competitius
de precisió a l’experimentació.
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Chapter 1

Introduction and research objectives

Two interrelated parts, the theoretical one and the practical other, divide the research
presented in this doctoral thesis. Both parts focus on Horn clauses, which are among
the most widely used formulas in computer science, and they are significant in classi-
cal logic.This chapter indicates the principal objectives of this PhD thesis and intro-
duces our main topics’ background.

Part I: free models in predicate fuzzy logics Although the general seman-
tics presented in the seminal book of Hájek (1998) prompted the development of a
systematic study of mathematical fuzzy logic, Horn clauses had not been extensively
investigated. Regarding the primary goal of Part I, we intend to show some important
properties of the universal Horn fragment of predicate fuzzy logics, focusing on free
models of universal Horn theories and Herbrand structures. Specifically, we aim to
enhance our understanding of the universal Horn fragment by obtaining results on the
existence and characterization of free models of universal Horn theories.

Part II: art painting style categorization Concerning Part II’s principal ob-
jective, we aim to use fuzzy Horn clauses combined with qualitative modeling as a
knowledge representation framework for dealing with the problem of art painting style
categorization. The classification of paintings in art styles has been widely explored
from different approaches in artificial intelligence; however, according to the best of
our knowledge, there are no research works that integrate fuzzy logics and qualitative
modeling for this aim, allowing for explanations in human-machine interactions.

The work related to this doctoral thesis was conducted at the Artificial Intelligence
Research Institute (Spanish National Research Council) and the Philosophy Depart-
ment of the Autonomous University of Barcelona. Besides, essential contributions
related to Part II were obtained during three research stays at the Bremen Spatial Cog-
nition Center (University of Bremen), for which a YERUN Research Mobility Award
(2018) and a DAAD short-term scholarship were obtained. The coordinator of these
stays was Dr.-Ing. Zoe Falomir. Related to Part I, we first published the book chapter
Costa & Dellunde (2015) and presented it at the 18th International Conference of the
Catalan Association for Artificial Intelligence (University of Valencia). We also pub-
lished the book chapter Costa &Dellunde (2017b) and presented it at the 47th Interna-
tional Symposium on Multiple-Valued Logic (University of Novi Sad). Furthermore,
we published the journal paper Costa & Dellunde (2017a). Part of the results shown
in this article was presented at the international conference Syntax Meets Semantics
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2016 (University of Barcelona). The results obtained in Part I also contributed to the
writing of the journal paper Badia et al. (2019), also authored by Dr. Badia (Univer-
sity of Queensland), Dr. Noguera (Institute of Information Theory and Automation,
Czech Academy of Sciences), apart from the supervisor of this doctoral thesis Prof.
Dr. Dellunde. Part of the results presented in Badia et al. (2019) was presented at the
7th international workshop on Many-Valued Logic (Paul Sabatier University) and the
international conference Syntax Meets Semantics 2019 (University of Amsterdam).
Concerning Part II, we first published the book chapter Costa et al. (2018), also au-
thored by Dr.-Ing Falomir (Bremen Spatial Cognition Center, University of Bremen),
and presented it at the 21st International Conference of the Catalan Association for
Artificial Intelligence. We extended this work and published the journal paper Costa
et al. (2021). During the research stays, we also published the journal articles Falomir
et al. (2019), also authored by Prof. Dr. Gonzalez-Abril (University of Seville) and
Dr.-Ing Falomir, and Falomir et al. (2020), also authored by Mr. Pich and Dr.-Ing
Falomir. Finally, as the first step to a further research direction related to this doctoral
thesis, the book chapter Costa (2020) has been published.

Next, to clarify the above-stated objectives, we introduce the main background of
the topics related to this doctoral thesis.

Fuzzy model theory Classical model theory is the branch of mathematical
logic that studies the construction and classification of structures. It started at the
beginning of the last century, and nowadays, the field is an active part of mathemati-
cal logic. Chang & Keisler (1973) described model theory as the result of logic plus
universal algebra. The recent roadmap of model theory has been focused on the de-
velopment of stability theory (see, for instance, Pillay (2013)), whereas the field of
applied model theory has repeatedly merged with stability theory, rising to geometric
model theory. For a general introduction to model theory, see Kirby (2019) or Jahnke
et al. (2018). In parallel to the development of fuzzy model theory, the stream of
research of continuous model theory, Łukasiewicz logic expanded with connectives
for each continuous function, has also been quite relevant (see, for instance, Yaacov
et al. (2008)).

An important sub-area that grew out of computer science applications is finite
model theory, which focuses on structures. Finite model theory benefited from a
continuous interaction of different sub-areas of computer science as database theory
and computational complexity. An overview of the relation between finite model
theory and database theory has been presented by Vianu (1996). Cozman & Mauá
(2019) discussed various facets of finitemodel theory of Bayesian networks, including
definability and complexity of inferences. For an overview of finite model theory, the
reader Grädel et al. (2007).

Mathematical fuzzy logic is concerned with the logical systems which involve
some notion of truth degree. Its birth is traditionally placed at the crossroads of three
areas: philosophy of science (the need to model reasoning in contexts with vague
predicates mainly), fuzzy set theory (Zadeh (1965) defined the notion of fuzzy set
for working with imprecision in the context of engineering applications), and many-
valued logics (logical systems whose intended algebraic semantics present three or
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more truth values - for instance, Łukasiewicz (1920)). Hájek et al. (1996), Novák
(1990a,b), and Pavelka (1979a,b,c) are part of the seminal works concerning math-
ematical fuzzy logic, which was first systematized by Hájek (1998). The series of
handbooks Cintula et al. (2011a,b, 2015) have collected in-depth knowledge of the
discipline. We refer the reader to Belohlavek et al. (2017) for a comprehensive ac-
count of the history of mathematical fuzzy logic.

Fuzzy model theory (also named graded model theory or model theory of pred-
icate fuzzy logics) is the generalized study, in mathematical fuzzy logic, of the con-
struction and classification of graded structures. The field was properly started by
Cintula & Hájek (2006), and it has received quite an attention recently. Bagheri &
Moniri (2013) proved preservation theorems for Łukasiewicz logic. Ultraproducts in
predicate fuzzy logics have been deeply analyzed by Dellunde (2012) and Dellunde
(2014). Dellunde et al. (2016) obtained downward and upward Löwenheim–Skolem
theorems in the context of mathematical fuzzy logic. Badia & Noguera (2018) pre-
sented a graded analog of the Fraïssé limit.

Fuzzy Horn clauses Classical Horn clauses were firstly studied by McKinsey
(1943) in the context of a decision problem for classes of first-order sentences with-
out quantifiers. Since then, the influence of Horn clauses has been very remarkable
in different areas such as, for instance, universal algebra or computer science. In clas-
sical predicate logic, a basic Horn formula is an implication where the antecedent
is a conjunction of atomic formulas, and the consequent is an atomic formula. A
quantifier-free Horn formula is built from basic Horn formulas with the conjunction.
AHorn formula is built up from basic Horn formulas with the conjunction, the univer-
sal quantifier, and the existential quantifier. Furthermore, a universal Horn formula is
the universal quantification of a quantifier-free Horn formula.

In universal algebra, Burris & Sankappanavar (1981) proved that a universal Horn
class of structures is characterized by the closure under isomorphisms, substructures,
and reduced products (alternatively, by the closure under isomorphisms, substruc-
tures, products, and ultraproducts). They also characterized the set of sentences log-
ically equivalent to Horn clauses in terms of preservation under substructures and
reduced products. The literature shows that Horn clauses also play a very signif-
icant role in the development of model theory. For instance, Fujiwara (1971) and
Mal’tsev et al. (1971) obtained the least universal Horn classes containing differ-
ent types of classes of first-order structures, and Givant (1978) described the uni-
versal Horn classes which could be categorical in infinite powers. The categoricity
in power for universal Horn logic was independently analyzed by Abakumov et al.
(1972) and Baldwin & Lachlan (1973). Furthermore, Chang & Keisler (1973) found
the required conditions to characterize a reduced product sentence in terms of Horn
sentences. McNulty (1977) presented two characterizations of the notion of universal
Horn equivalence, proved a version of Beth’s definability theorem for universal Horn
logic, presented a modification of the notion of the consistent property more use-
ful for Horn logic with the corresponding model existence theorem, and proved that
the set of universal Horn sentences preserved under the formation of homomorphic
images is not recursive. Preservation theorems for the universal Horn fragments of
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equality-free classical logic were showed by Dellunde & Jansana (1996). For a gen-
eral discussion on the importance of Horn clauses in classical logic, including model
theory, we refer the reader to Hodges (1993)).

In computer science, Horn clauses play an outstanding role, especially in logic
programming (see Makowsky (1987) for a general presentation). Based on a proce-
dural interpretation of Horn clauses developed by Kowalsky, Alain Colmerauer de-
signed the programming language Prolog in 1972 (we refer the reader to Colmerauer
& Roussel (1996) for an exposition of the birth of Prolog). An important problem
in artificial intelligence, specifically for its applications in rule-based systems, is the
SAT problem. The works of Yamasaki & Doshita (1983) and Dowling & Gallier
(1984) presented algorithms for deciding whether a propositional Horn formula is
satisfiable and proved that this problem could be decided in polynomial time. Minoux
(1992) presented an algorithm for testing whether a given irreducible Horn formula
is uniquely satisfiable. Escalada-Imaz & Manyà (1994) presented an almost linear
algorithm for testing the multiple-valued Horn formulas’ satisfiability. In the con-
text of efficient knowledge representation systems, Selman & Kautz (1996) showed
how propositional logical theories could be compiled into Horn theories that approxi-
mate the original information. Furthermore, Kanovich &Vauzeilles (2001) presented
Horn logic as a comprehensive logical system capable of handling the usual artificial
intelligence problem of planning the actions performed by a robot.

In fuzzy logic programming, there is a rich battery of proposals of Horn clauses
which differ depending on the programming approach selected. For instance, Vojtás
(2001) presented a truth-functional logic approach where the rules of the programs
were many-valued functions. Ebrahim (2001) defined a Horn clause as a definite
program clause or a definite goal. Both authors proved the soundness and complete-
ness of their systems. Fuzzy logics have been applied to image interpretation; for
example, Hudelot et al. (2008) developed a fuzzy spatial relation ontology to deal
with brain structures in 3D magnetic resonance images. They have also been used in
landslide identification and classification (Aksoy & Ercanoglu (2012)). Furthermore,
Almubarak et al. (2017) proposed a fuzzy logic-based color histogram analysis for dis-
criminating benign skin lesions from malignant melanomas in dermoscopy images.
González et al. (2017), Rubio et al. (2017) applied a general type-2 fuzzy logicmethod
for edge detection to color format images. Moreover, Dasiopoulou et al. (2010) devel-
oped a fuzzy description logic-based reasoning framework for an extracted descrip-
tion of an outdoor image.

In recent years several definitions of Horn clause have been proposed in the liter-
ature of mathematical fuzzy logic. One of the firsts was introduced by (Manyà 1999,
Def 2.20). Regarding the universal Horn fragment of fuzzy equational logic, in the
works of Belohlávek & Vychodil (2006a,b, 2005), Belohlávek (2003, 2002) and Vy-
chodil (2015) the authors presented fuzzy equalities. They worked with theories that
consisted of formulas that are implications between identities with premises weighted
by truth degrees. They adopted Pavelka style: theories were fuzzy sets of formulas,
and they considered degrees of provability of formulas from theories. The authors
derived a Pavelka-style completeness theorem (the degree of provability equals the
degree of truth) from which they got some particular cases by imposing restrictions
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on the formulas under consideration.

Art painting style classification Artificial intelligence is the science and engi-
neering devoted to the design of virtual and physical machines that intend to perform
intelligent tasks and activities involving other human faculties (e.g., association, per-
ception, or motor control). In the last years, virtual art encyclopedias and virtual mu-
seum tours have increased the number of online images of art paintings, which may
explain the interest in the challenge of applying artificial intelligence for the classifi-
cation of art paintings. In the literature, research works that deal with this challenge
are quite diverse. Traditional Chinese paintings were classified by Jiang et al. (2006)
using color and SVMs. The authors proposed a scheme to detect traditional Chinese
paintings from general images and categorize them into Gongbi (traditional Chinese
realistic painting) and Xieyi (freehand style) schools. The classifier algorithm was
tested on a dataset of 9515 images. Karayev et al. (2014) trained deep neural networks
on object recognition for style categorization of artworks of Baroque, Impressionism,
and Post-Impressionism. The work of Condorovici et al. (2015) presents a fusion
scheme based on combining Multi-Layer Perceptron classified data with SVMs. The
authors considered eight art painting styles (Baroque, Cubism, Renaissance, Byzan-
tine Icons, Impressionism, Greek Pottery Paintings, Rococo, and Romanticism) and
tested the classification on a dataset more than 4000 paintings.
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Chapter 2

Presentation of the research

In this chapter, we present the main research of the doctoral thesis, divided into Parts
I and II. To do it, we use some research papers published throughout the work related
to this PhD thesis. The limited length of journal articles sometimes hampers a good
exposition of the preliminaries on the studied topic. For this reason, in this chapter, it
has been considered appropriate to include extended preliminaries sections for both
parts, before presenting the research works.

2.1 Part I: free models of fuzzy universal Horn theo-
ries

The study of free models of fuzzy universal Horn theories is presented in the journal
paper Costa & Dellunde (2017a) and the book chapter Costa & Dellunde (2017b).
The research work Costa & Dellunde (2017a) is an extended and revised version of
the book chapter Costa &Dellunde (2015), which got the best paper award of the 18th
International Conference of the Catalan Association for Artificial Intelligence. Next,
we present the preliminaries of Part I.

2.1.1 Preliminaries: t-norms and predicate fuzzy logics

Following theHandbook ofMathematical Fuzzy Logic (Cintula et al. (2011a,b, 2015)),
this chapter sets up notation and presents some preliminaries on the predicate fuzzy
logics studied in this thesis.

Monoidal t-normbased logic Triangular norms (or t-norms for short) appeared
for the first time in 1942, in the work of Menger (1942). The aim of K. Menger, i.e.,
to yield metric spaces where probability distributions describe the distance between
elements, led the author through a generalization of the classical triangle inequality.
Initially, the set axioms for t-norms included parts that later were discarded and in-
cluded as axioms for t-conorms. The set of axioms used currently was proposed by
Schweizer & Sklar (1958, 1960, 1961). For a fuller treatment of related historical
remarks, see Klement et al. (2013). Nowadays, the use of t-norms spreads through-
out different disciplines. Although the origin of fuzzy logics goes back to the work
of Łukasiewicz (1920), the term fuzzy logic was introduced by Zadeh (1965). In the
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last two decades, the systematization presented by Hájek (1998) has significantly con-
tributed to the study of fuzzy logics. In the context of fuzzy logics, t-norms have been
thoroughly applied. From now on, let [0,1]⊆R denote the closed unit interval of real
numbers.

Definition 1 (Continuous and left-continuous t-norms (Hájek 1998, Def 2.1.1))
A t-norm ∗ is a binary operation on [0,1] satisfying the following conditions:

(i) ∗ is commutative and associative;

(ii) ∗ is non-decreasing in both arguments, that is, for any x,y,x1,y1,x2,y2 ∈ [0,1]⊆
R,

x1 ≤ x2 implies x1 ∗ y≤ x2 ∗ y and

y1 ≤ y2 implies x∗ y1 ≤ x∗ y2.

(iii) For any x ∈ [0,1], x∗1 = x.

A t-norm ∗ is said to be continuous (left-continuous) if it is a continuous (left-continuous)
mapping of [0,1]2 into [0,1].

The logic of all continuous t-norms is called basic logic (BL for short), and it
was introduced by Hájek (1998). Monoidal t-norm based logic (MTL for short) is a
propositional fuzzy logic introduced by Esteva & Godo (2001). This logic is weaker
than BL, and it is the logic of all left continuous t-norms and their residua (Jenei &
Montagna (2002)). The algebras corresponding to MTL are called MTL-algebras,
and are defined as bounded residuated lattices (A,u,t,∗,⇒∗,0,1), where u and t
are respectively the lattice meet and join operations and (∗,⇒∗) is a residuated pair
satisfying the pre-linearity equation (x⇒ y)t (y⇒ x) = 1 (see Noguera et al. (2005)
for more details). Completeness of MTL with respect to MTL-algebras is proven in
(Esteva & Godo 2001, Thm 1). Next, we present a set of axioms for MTL.

Definition 2 (Axiomatic system for MTL)

MTL1 (ϕ → ψ)→ ((ψ → ξ )→ (ϕ → ξ )).

MTL2 (ϕ&ψ)→ ϕ .

MTL3 (ϕ&ψ)→ (ψ&ϕ).

MTL4 (ϕ ∧ψ)→ ϕ .

MTL5 (ϕ ∧ψ)→ (ψ ∧ϕ).

MTL6 (ϕ&(ϕ → ψ))→ (ϕ ∧ψ).

MTL7a (ϕ → (ψ → ξ ))→ ((ϕ&ψ)→ ξ ).

MTL7b ((ϕ&ψ)→ ξ )→ (ϕ → (ψ → ξ )).
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MTL8 ((ϕ → ψ)→ ξ )→ (((ψ → ϕ)→ ξ )→ ξ ).

MTL9 0→ ϕ .

Gödel logic, Product logic, and Łukasiewicz logic Gödel logic, Product logic,
and Łukasiewicz logic (denoted by G, u and Ł, respectively) are some of the most
significant and well-known t-norm based logics.

Let us start with Gödel logic. Finite valued Gödel logics were first introduced
by Gödel (1932), and expanding this logic with truth-constants has been explored by
Guller (2015).

The Gödel t-norm ∗G is defined as

x∗G y = min{x,y}, for any x,y ∈ [0,1].

Thus for any x,y ∈ [0,1],

x⇒G y =

{
1 if x≤ y

y, otherwise.

For any x,y ∈ [0,1], the negation associated to ∗G is defined as

¬∗Gx =

{
1 if x = 0

0, otherwise.

An axiomatic system for G is obtained by adding to the axiomatic system of MTL
(Definition 2) the following axioms:

BL (ϕ&(ϕ → ψ))↔ (ϕ ∧ψ).

G ϕ → (ϕ&ϕ).

For a fuller exposition of Gödel logic the reader is referred to (Hájek 1998, Ch. 4
Section 2, and Ch. 5 Section 3) and (Cintula et al. 2011b, Ch. VII).

Let us present the Product logic, u. This logic was first introduced by Hájek,
Godo and Esteva Hájek et al. (1996).

The product t-norm (also named minimum t-norm) ∗u is the product of two real
numbers, that is,

x∗u y = xy, for any x,y ∈ [0,1].

For any x,y ∈ [0,1], the residuum associated to ∗u, which is the truth function of
the Goguen implication, is defined as:

x⇒u y =

{
1 if x≤ y
y
x , otherwise.

For any x,y ∈ [0,1], the negation associated to ∗u is defined as ¬∗G , that is,
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¬∗ux =

{
1 if x = 0

0, otherwise.

An axiomatic system for u is obtained by adding to the axiomatic system of MTL
(Definition 2) the following axioms:

u1 ¬¬ϕ → (((ϕ&ψ)→ (ϕ&ξ ))→ (ψ → ξ )).

u2 (ϕ&¬ϕ)→ 0.

Finally let us present some basics on the infinite-valued Łukasiewicz logic (in
this thesis the infinite-valued Łukasiewicz logic is called Łukasiewicz logic for short),
denoted by Ł.

The Łukasiewicz t-norm ∗Ł is defined as:

x∗Ł y = max{0,x+ y−1}, for any x,y ∈ [0,1].

The residuum associated to ∗Ł, which is the truth function of the Łukasiewicz
implication, is defined as:

x⇒Ł y = min{1− x+ y,1}, for any x,y ∈ [0,1].

Finally, for any x ∈ [0,1], the negation associated to ∗Ł is defined as ¬∗Łx = 1− x.
An axiomatic system for Ł is obtained by adding to the axiomatic system of MTL

(Definition 2) the following axioms:

BL (ϕ&(ϕ → ψ))↔ (ϕ ∧ψ).

Ł ¬¬ϕ → ϕ .

Let us refer the reader to (Hájek 1998, Ch. 3, Section 3.3, and Ch. 5, Section
5.4), (Cintula et al. 2011b, Ch. 6), and (Cintula et al. 2015, Ch. XVII, Section 2.2)
for further details on Łukasiewicz logic.

Pavelka (1979a,b,c) introduced the rational Pavelka logic. Later Novák (1987)
extended rational Pavelka logic to first-order logic. For an extensive presentation of
RPL the reader is referred to (Hájek 1998, Ch. 3, Section 3.3 and Ch. 5, Section 5.4)
and (Cintula et al. 2011b, Ch. VIII).

Rational Pavelka Predicate Logic RPL is the expansion of Ł∀ by adding a truth
constant r for each rational number r in [0,1] and by adding the axioms RPL1 and
RPL2:

(RPL1) (r→ s)↔ r→ s.

(RPL2) (r&s)↔ r&s.

Definition 3 (Evaluated formula and evaluated atomic formula) An evaluated for-
mula (ϕ,r) in a language of RPL is a formula of the form r→ ϕ , where r ∈ [0,1] is
a rational number and ϕ is a formula without truth constants apart from 0 and 1. We
say that an evaluated formula (ϕ,r) is atomic whenever ϕ is atomic.
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Definition 4 (The standard RPL-algebra) The standard RPL-algebra, denoted by
[0,1]RPL, is the expansion of the standardMV-algebra [0,1]Ł with each truth constant
r interpreted as r and the ‘book-keeping axioms’ for each rational r,s ∈ [0,1]:

• r&s↔ r ∗ s.

• (r→ s)↔ r⇒ s.

Predicate fuzzy logics
Cintula & Hájek (2006) introduced the class of core fuzzy logics, a class of ex-

tensions of MTL, in order to provide a common framework to the study of first-order
fuzzy logics. In this chapter we recall the syntax and semantics for predicate fuzzy
logics based in core fuzzy logics, and later we will present our results only for some
of these logics.

Definition 5 (Core fuzzy logic) A logic L is said to be a core fuzzy logic if it expands
MTL, has local deduction theorem and the substitution rule holds.

For some important logical and algebraic properties of core fuzzy logics the reader
is referred to (Cintula et al. 2011a, Ch. III, Thm 3.2.11 ). Throughout this section let
L be a core fuzzy logic in a propositional language L . As next definition shows, the
language of first-order fuzzy logic is defined as in classical first-order logic.

Definition 6 (Language of first-order logic) A predicate language P consists in a
triple 〈PredP ,FuncP ,ArP〉, where PredP is a nonempty set of predicate symbols,
FuncP is a set of function symbols (disjoint with PredP ), and ArP represents the
arity function, which assigns a natural number to each predicate symbol or function
symbol. This natural number is called the arity of the symbol. The predicate symbols
with arity zero are called truth constants, whereas the function symbols whose arity
is zero are named individual constants (constants for short).

The set ofP-terms, P-formulas and the notions of free occurrence of a variable,
open formula, substitutability and sentence (or closed formula) are defined as in clas-
sical predicate logic. From now on, when it is clear from the context, P-terms and
P-formulas are simply called terms and formulas, respectively. A term t is ground if
it has no variables. Throughout this thesis, a theory is a set of sentences. Observe that
a theory is not necessarily closed under the consequence relation. We work with the
first-order extension of L of models over linear algebras, L∀. An axiomatic system of
the logic L∀ is defined as follows.

(P) Instances of the axioms of L (the propositional variables are substituted for
first-order formulas).

(∀1) (∀x)ϕ(x)→ ϕ(t), where the term t is substitutable for x in ϕ .

(∃1) ϕ(t)→ (∃x)ϕ(x), where the term t is substitutable for x in ϕ .

(∀2) (∀x)(ξ → ϕ)→ (ξ → (∀x)ϕ), where x is not free in ξ .
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(∃2) (∀x)(ϕ → ξ )→ ((∃x)ϕ → ξ ), where x is not free in ξ .

(∀3) (∀x)(ξ ∨ϕ)→ ξ ∨ (∀x)ϕ , where x is not free in ξ .

The deduction rules of L∀ are those of L and the rule of generalization: from ϕ

infer (∀x)ϕ . The definitions of proof and provability are analogous to the classical
ones. The expression Φ `L∀ ϕ denotes the fact that ϕ is provable in L∀ from the set
of formulas Φ . For the sake of clarity, when it is clear from the context we write `
to refer to `L∀. A theory Φ is consistent if Φ 0 0. Next we present some theorems of
the logic L∀.

Proposition 1 ((Cintula et al. 2011a, Ch. I, Thm 5.1.4)) Let ϕ,ψ,ξ be formulas, x
a variable not free in ξ , and x′ a variable not occurring in ϕ . The following formulas
are theorems of L∀:

(T∀1) ψ ↔ (∀x)ψ .

(T∀2) ψ ↔ (∃x)ψ .

(T∀3) (∀x)ϕ(x)↔ (∀x′)ϕ(x′).

(T∀4) (∃x)ϕ(x)↔ (∃x′)ϕ(x′).

(T∀5) (∀x)(∀y)ϕ ↔ (∀y)(∀x)ϕ .

(T∀6) (∃x)(∃y)ϕ ↔ (∃y)(∃x)ϕ .

(T∀7) ((∀x)(ϕ → ψ))→ ((∀x)ϕ → (∀x)ψ).

(T∀8) ((∀x)(ϕ → ψ))→ ((∃x)ϕ → (∃x)ψ).

(T∀9) (ξ → (∀x)ϕ)↔ ((∀x)(ξ → ϕ)).

(T∀10) ((∃x)ϕ → ξ )↔ ((∀x)(ϕ → ξ )).

(T∀11) ((∃x)(ξ → ϕ))→ (ξ → (∃x)ϕ).

(T∀12) ((∃x)(ϕ → ξ ))→ ((∀x)ϕ → ξ ).

(T∀13) ((∀x)ϕ ∧ (∀x)ψ)↔ ((∀x)(ϕ ∧ψ)).

(T∀14) ((∃x)(ϕ ∨ψ))↔ ((∃x)ϕ ∨ (∃x)ψ).

(T∀15) ((∀x)ϕ ∨ψ)↔ ((∀x)(ϕ ∨ψ)).

(T∀16) ((∃x)(ϕ ∧ψ))↔ ((∃x)ϕ ∧ψ).

(T∀17) ((∃x)(ϕ&ψ))↔ ((∃x)ϕ&ψ).

(T∀18) (∃x)ϕn↔ ((∃x)ϕ)n.

(T∀19) (∃x)ϕ → (¬(∀x)¬ϕ).
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(T∀20) (¬(∃x)ϕ)→ ((∀x)¬ϕ).

(T∀21) ((∃x)ϕ ∧ξ )→ ((∃x)(ϕ ∧ξ )).

Let us now introduce the semantics of predicate core fuzzy logics. Throughout
this section, let A be an L-algebra.

Definition 7 (Semantics of Predicate Fuzzy Logics)
Consider a predicate languageP = 〈PredP ,FuncP ,ArP〉 and letA be anL-algebra.
AnA-structureM forP is a triple 〈M,(PM)P∈Pred,(FM)F∈Func〉, whereM is a nonempty
domain, PM is a fuzzy relation on M for each n-ary predicate symbol, i.e., a function
from Mn to A, identified with an element of A if n = 0; and FM is a function from
Mn to M, identified with an element of M if n = 0. If M is an A-structure for P , an
M-evaluation of the object variables is a mapping v assigning to each object vari-
able an element of M. The set of all object variables is denoted by Var. If v is an
M-evaluation, x is an object variable and a ∈ M, it is denoted by v[x 7→ a] the M-
evaluation so that v[x 7→ a](x) = a and v[x 7→ a](y) = v(y) for each object variable y
such that y , x. If M is an A-structure and v is anM-evaluation, the values of terms
and the truth values of formulas in M are defined recursively as follows:

||x||AM,v = v(x);

||F(t1, . . . , tn)||AM,v = FM(||t1||AM,v, . . . , ||tn||AM,v), for F ∈ Func;

||P(t1, . . . , tn)||AM,v = PM(||t1||AM,v, . . . , ||tn||AM,v), for P ∈ Pred;

||c(ϕ1, . . . ,ϕn)||AM,v = cA(||ϕ1||AM,v, . . . , ||ϕn||AM,v), for c ∈L ;

||(∀x)ϕ||AM,v = in f{||ϕ||AM,v[x→a] | a ∈M};

||(∃x)ϕ||AM,v = sup{||ϕ||AM,v[x→a] | a ∈M}.

If the infimum or the supremum do not exist, the truth value of the quantified formula
is undefined. It is said that anA-structure is safe if ||ϕ||AM,v is defined for each formula
ϕ and each M-evaluation v.

For a set of formulas Φ , ||Φ||AM,v = 1 stands for ||ϕ||AM,v = 1 for every ϕ ∈Φ . It is
said that 〈A,M〉 is a model of a set of formulas Φ if ||ϕ||AM,v = 1 for every ϕ ∈Φ and
everyM-evaluation v. The notation ||ϕ(a1, . . . ,an)||AM means that ||ϕ(x1, . . . ,xn)||AM,v
for every v(xi) = ai for i ∈ {1, . . . ,n}. Besides, ||ϕ||AM = 1 denotes that ||ϕ||AM,v = 1
for all M-evaluation v. From now on when it is clear from the context A-structures
are simply referred as structures. A formula ϕ is called satisfiable if there exists a
structure 〈A,M〉 such that ||ϕ||AM = 1. In such case, it is also said that ϕ is satisfied by
〈A,M〉 or that 〈A,M〉 satisfies ϕ . In addition, for an M-evaluation v, 〈A,M〉 |= ϕ[v]
means that ||ϕ||AM,v = 1.

Theorem 1 (Linear strong completeness for L∀ (Cintula et al. 2011a, Ch. III,
Thm 5.2.3)) Let T be aP-theory, and ϕ aP-formula. The following are equivalent:
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• T `L∀ ϕ .

• 〈A,M〉 |= ϕ for each linear model 〈A,M〉 of the theory T .

The notion of homomorphism is specially relevant for our study of predicate fuzzy
logics, since it allows us to relate a pair of structures Several notions of homomor-
phism have been proposed in the literature. Thus clarifying which proposal is selected
is mandatory whenever these functions are used. Indeed, the definition of homomor-
phism selected determines how the relation between two first-order structures is un-
derstood. An in-depth investigation of different definitions of homomorphism in the
context of fuzzy logics was carried out by Dellunde et al. (2016), and here a general-
ization of the classical homomorphism is taken from this reference.

Definition 8 (Homomorphism) Let 〈A,M〉 and 〈B,N〉 be structures, f a mapping
from A to B and g a mapping from M to N. The pair ( f ,g) is said to be a homomor-
phism from 〈A,M〉 to 〈B,N〉 if f is a homomorphism of L-algebras and for every
n-ary function symbol F and d1, . . . ,dn ∈M,

g(FM(d1, . . . ,dn)) = FN(g(d1), . . . ,g(dn))

and for every n-ary predicate symbol P and d1, . . . ,dn ∈M,

(*) If PM(d1, . . . ,dn) = 1, then PN(g(d1), . . . ,g(dn)) = 1.

It is said that ( f ,g) is strict if instead of (*) it satisfies the stronger condition: for
every n-ary predicate symbol P and d1, . . . ,dn ∈M,

PM(d1, . . . ,dn) = 1 if and only if PN(g(d1), . . . ,g(dn)) = 1.

Moreover it is said that ( f ,g) is an embedding if it is a strict homomorphism and
both functions f and g are injective. And it is said that an embedding ( f ,g) is an
isomorphism if both functions f and g are surjective.

Definition 9 (Witnessed models) A formula of the form (∃x)ϕ(y1, . . . ,yn) is wit-
nessed in a structure 〈A,M〉 if for eachM-evaluation vwith v(yi)= ai for i∈{1, . . . ,n},
there exists b ∈M such that

||(∃x)ϕ(x,a1, . . . ,an)||AM = ||ϕ(b,a1, . . . ,an)||AM;

and analogously for (∀x). It is said that 〈A,M〉 is a witnessed model if each formula
beginning with a quantifier is witnessed in 〈A,M〉.

We assume that all the predicate languages contain a similarity symbol ≈, and
the axiomatization of the logic is extended with the following axioms: Throughout
this thesis the ≈ symbol is considered as a binary predicate symbol, not as a logical
symbol, and thereby its interpretation is not fixed.

Definition 10 (Axioms of similarity and congruence) Let ≈ be a binary predicate
symbol, the following are the axioms of similarity and congruence:
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S1. (∀x)x≈ x.

S2. (∀x)(∀y)(x≈ y→ y≈ x).

S3. (∀x)(∀y)(∀z)(x≈ y&y≈ z→ x≈ z).

C1. For each n-ary function symbol F ,

(∀x1) · · ·(∀xn)(∀y1) · · ·(∀yn)(x1≈ y1& · · ·&xn≈ yn→F(x1, . . . ,xn)≈F(y1, . . . ,yn)).

C2. For each n-ary predicate symbol P,

(∀x1) · · ·(∀xn)(∀y1) · · ·(∀yn)(x1≈ y1& · · ·&xn≈ yn→P(x1, . . . ,xn)↔P(y1, . . . ,yn)).

The extension of L∀ with the similarity and congruence axioms is denoted by
L∀≈.

Definition 11 (Truth degree and provability degree) Let Φ be a theory, and r ∈
[0,1] a rational number.

(i) The truth degree of ϕ over Φ is ||ϕ||Φ =

in f{||ϕ||[0,1]RPLM | 〈[0,1]RPL,M〉 is a model of Φ}.

(ii) The provability degree of ϕ over Φ is

|ϕ|Φ = sup{r | Φ ` r→ ϕ}.

The logic RPL∀≈ is not strongly complete with respect to its standard semantics,
but it is complete in a weak sense. Indeed, it satisfies what is called Pavelka-style
completeness, that is, truth degree and provability degree coincide.

Theorem 2 (Pavelka-style completeness (Hájek 1998, Thm 5.4.10)) Let Φ be a
theory and ϕ a formula. Then,

|ϕ|Φ = ||ϕ||Φ .

2.1.2 A summary of the main original contributions of Part I

In this section, we first introduce the key notions related to Part I and the original
contributions of the published papers included in this PhD thesis.

Free models The notion of free structure is especially important in our study
of the universal Horn fragment of fuzzy logics. Free structures were introduced by
Goguen et al. (1975) in category theory (see (Barr & Wells 1990, Def. 4.7.17) for
a definition of free structure in category theory). They are very relevant in different
areas. In classical logic, free structures have been used to prove the satisfiability of a
set of consistent sentences ((Ebbinghaus et al. 1994, Ch.V)). In the context of logic
programming, they allow a procedural interpretation of the programs, and admitting
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free structures makes reasonable the negation as failure (Makowsky (1987)). And
in the context of abstract data types, Tarlecki (1985) characterized abstract algebraic
institutions that admit free constructions.

Herbrand structures A Herbrand structure is defined only by the syntactical
properties of its vocabulary. In classical logic, Herbrand structures have been widely
used (see, for instance, (Ebbinghaus et al. 1994, Ch.11)). Regarding fuzzy logics,
Baaz & Metcalfe (2008) presented approximate Herbrand theorems for first-order t-
norm based logics, provided proof-theoretic proofs of Skolemization for its prenex
fragments. Concerning Łukasiewicz logic, an approximate version of Herbrand’s
theorem was first presented by Novák (1996). Furthermore, Herbrand structures also
have an important role in the foundation of logic programming (see, for example, the
work of Dovier & Pontelli (2010)). And the same occurs in the case of fuzzy logic
programming. In a series of papers Gerla (2005, 2001a,b) proposed to base fuzzy
control on fuzzy logic programming and observed that the class of fuzzy Herbrand
interpretations gives semantics for fuzzy programs. Gerla worked with a complete,
completely distributive, lattice of truth-values. Other approaches are, for instance,
Vojtás (2001) and Ebrahim (2001).

Original Contributions

• Definition of term structure associated to a consistent theory in MTL∀≈. If the
theory consists of universal Horn formulas, we show that the associated term
structure is a model of the theory. [Definition 10 and Theorem 2 of Costa &
Dellunde (2017a)]

• Proof that term structures that are models of its associated theory, are free in
the class of reduced models of the theory (i.e., an analog of Mal’tsev theorem
– see Mal’tsev (1971) – is proved for MTL∀≈). Besides, the proof of this result
provides an explicit criterion for defining such models. The possibility given
by fuzzy logics of defining the term structure associated to a theory using the
similarity symbol ≈ leads us to a notion of free structure restricted to the class
of reduced models of that theory. In case that the interpretation of the similarity
symbol ≈ is crisp, the above mentioned term model is free over the class of all
models of the theory (Theorem 1 of Costa & Dellunde (2017a))

• Proof that consistent universal Horn theories over MTL∀≈ (containing only
the truth-constants 1 and 0) have classical models. [Corollary 1 of Costa &
Dellunde (2017a)]

• Definition ofHerbrand structures inMTL∀≈. (Definition 12 of Costa&Dellunde
(2017a))

• Proof that every equality-free universal Horn theory over MTL∀≈ has a Her-
brand model. [Corollary 2 of Costa & Dellunde (2017a)]

• Introduction of the notion of term structure associated to a theory in RPL∀≈.
[Definition 7 of Costa & Dellunde (2017b)]
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• Proof that term structures that are models of its associated theory, are free in the
class of RPL∀≈ reduced models of the theory (in all models, if the similarity
symbol has a crisp interpretation). [Theorem 2of Costa & Dellunde (2017b)]

• Proof of the existence of free models in fuzzy universal Horn classes of struc-
tures in RPL∀≈. [Theorem 3 of Costa & Dellunde (2017b)]

2.1.3 On the existence of free models in fuzzy universal Horn
classes

Next, we include in this chapter the journal article Costa & Dellunde (2017a), titled
On the existence of free models in fuzzy universal Horn classes1

1This article was published in the Journal of Applied Logic, Vol 23, Vicent Costa, and Pi-
lar Dellunde, On the existence of free models in fuzzy universal Horn classes, Page 3–15,
Copyright Elsevier (2017). We acknowledge to the Journal of Applied logic, and to Elsevier.
https://www.sciencedirect.com/science/article/abs/pii/S1570868316300568.
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This paper is a contribution to the study of the universal Horn fragment of predicate 
fuzzy logics, focusing on some relevant notions in logic programming. We introduce 
the notion of term structure associated to a set of formulas in the fuzzy context and 
we show the existence of free models in fuzzy universal Horn classes. We prove that 
every equality-free consistent universal Horn fuzzy theory has a Herbrand model.
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1. Introduction

Since their introduction in [28], Horn clauses have shown to have good logic properties and have proven 
to be of importance for many disciplines, ranging from logic programming, abstract specification of data 
structures and relational data bases, to abstract algebra and model theory. However, the analysis of Horn 
clauses has been mainly restricted to the sphere of classical logic. For a good exposition of the most relevant 
results concerning Horn clauses in classical logic we refer to [24], and to [26] for a good study of their 
importance in computer science.

The interest in continuous t-norm based logics since its systematization by Hájek [23] and the subsequent 
study of core fuzzy logics [9] invite to a systematic development of a model theory of these logics (and of 
algebraizable non-classical logics in general). Cintula and Hájek raised the open question of characterizing 
theories of Horn clauses in predicate fuzzy logics [9]. Our first motivation to study the Horn fragment of 
predicate fuzzy logics was to solve this open problem, the present article is a first contribution towards its 
solution.

Some authors have contributed to the study of Horn clauses over fuzzy logic. In [6,5,4,2,3,31] Bělohlávek 
and Vychodil study fuzzy equalities, they work with theories that consist of formulas that are implications 
between identities with premises weighted by truth degrees. They adopt Pavelka style: theories are fuzzy sets 

* Corresponding author.
E-mail addresses: vicent@iiia.csic.es (V. Costa), pilar.dellunde@uab.cat (P. Dellunde).

http://dx.doi.org/10.1016/j.jal.2016.11.002
1570-8683/© 2016 Elsevier B.V. All rights reserved.
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of formulas and they consider degrees of provability of formulas from theories. Their basic structure of truth 
degrees is a complete residuated lattice. The authors derive a Pavelka-style completeness theorem (degree 
of provability equals degree of truth) from which they get some particular cases by imposing restrictions on 
the formulas under consideration. As a particular case, they obtain completeness of fuzzy equational logic. 
In different articles they study the main logical properties of varieties of algebras with fuzzy equalities. 
Taking a different approach, in a series of papers [21,20,19], Gerla proposes to base fuzzy control on fuzzy 
logic programming, and observes that the class of fuzzy Herbrand interpretations gives a semantics for fuzzy 
programs. Gerla works with a complete, completely distributive, lattice of truth-values. For a reference on 
fuzzy logic programming see [30,17].

Several definitions of Horn clause have been proposed in the literature of fuzzy logics, but there is not a 
canonical one yet. Cintula and Hájek affirm that the elegant approach of [2] is not the only possible one. In 
[15], Dubois and Prade discuss different possibilities of defining fuzzy rules and they show how these different 
semantics can be captured in the framework of fuzzy set theory and possibility theory. Following all these 
works, our contribution is a first step towards a systematic model-theoretic account of Horn clauses in the 
framework introduced by Hájek in [23]. We introduce a basic definition of Horn clause over the predicate 
fuzzy logic MTL∀m that extends the classical one in a natural way. In future work we will explore different 
generalizations of our definitions for expanded languages. Our approach differs from the one of Bělohlávek 
and Vychodil because we do not restrict to fuzzy equalities. Another difference is that, unlike these authors 
and Gerla, our structures are not necessarily over the same complete algebra, because we work in the general 
semantics of [23].

In the present work we have focused on the study of free models of Horn clauses. Free structures have a 
relevant role in classical model theory and logic programming. Admitting free structures makes reasonable 
the concepts of closed-word assumption for databases and negation as failure for logic programming. These 
structures allow also a procedural interpretation for logic programs (for a reference see [26]). Free structures 
of a given class are minimal from an algebraic point of view, in the sense that there is a unique homomorphism 
from these structures to any other structure in the class. The free structures introduced here are term 
structures, structures whose domains consist of terms or equivalence classes of terms of the language. In 
classical logic, term structures have been used to prove the satisfiability of a set of consistent sentences, see 
for instance [16, Ch.5]. Notorious examples of term structures are Herbrand models, they play an important 
function in the foundations of logic programming. Several authors have been studied Herbrand models in 
the fuzzy context (for a reference see [19,30,17]), providing theoretical background for different classes of 
fuzzy expert systems. For a general reference on Herbrand Theorems for substructural logics we refer to [7].

The present paper is an extension of the work presented in the 18th International Conference of the 
Catalan Association for Artificial Intelligence (CCIA 2015) [11]. Our main original contributions are the 
following:

• Introduction of the notion of term structure associated to a theory over predicate fuzzy logics. If the 
theory consists of universal Horn formulas, we show that the associated term structure is a model of 
the theory (Theorem 2).

• Existence of free models in fuzzy universal Horn classes of structures. In the case that the language has 
an equality symbol ≈ interpreted as a similarity, we prove the existence of models which are free in the 
class of reduced models of the theory (Theorem 1). In the case that the language has the crisp identity, 
the class has free models in the usual sense.

• Consistent universal Horn theories over predicate fuzzy logics (that contains only the truth-constants 1
and 0) have classical models (Corollary 1).

• Introduction of Herbrand structures. We prove that every equality-free consistent universal Horn theory 
over predicate fuzzy logics have a Herbrand model (Corollary 2).
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The paper is organized as follows. Section 2 contains the preliminaries on predicate fuzzy logics. In 
Section 3 we introduce the definition of Horn clause over predicate fuzzy logics. In Section 4 we study the 
term structures associated to universal Horn theories. In Section 5 we introduce Herbrand structures for 
equality-free theories. Finally, there is a section devoted to conclusions and future work.

2. Preliminaries

Our study of the model theory of Horn clauses is focused on the basic predicate fuzzy logic MTL∀m and 
some of its extensions based on propositional core fuzzy logics in the sense of [9]. The logic MTL∀m is the 
predicate extension of the left-continuous t-norm based logic MTL introduced in [18], where MTL-algebras 
are defined as bounded integral commutative residuated lattices (A, �, �, ∗, ⇒, 0, 1), where � and � are 
respectively the lattice meet and join operations and (⇒, ∗) is a residuated pair, satisfying the pre-linearity 
equation (x ⇒ y) � (y ⇒ x) = 1 (for an exhaustive exposition of MTL-algebras, see [29]). In addition, 
completeness of this logic with respect to MTL-algebras is proven in [18, Th.1], and Jenei and Montagna 
shown that MTL is the logic of all left continuous t-norms and their residua [25]. Now we present the syntax 
and semantics of predicate fuzzy logics and we refer to [8, Ch.1] for a complete and extensive presentation.

Definition 1 (Syntax of predicate languages). A predicate language P is a triple 〈PredP , FuncP , ArP〉, where 
PredP is a nonempty set of predicate symbols, FuncP is a set of function symbols (disjoint from PredP), 
and ArP represents the arity function, which assigns a natural number to each predicate symbol or function 
symbol. We call this natural number the arity of the symbol. The predicate symbols with arity zero are called 
truth constants, while the function symbols whose arity is zero are named individual constants (constants
for short) or objects.

The set of P-terms, P-formulas and the notions of free occurrence of a variable, open formula, substi-
tutability and sentence are defined as in classical predicate logic. From now on, when it is clear from the 
context, we will refer to P-terms and P-formulas simply as terms and formulas. A term t is ground if it 
has no variables. Throughout the paper we consider the equality symbol as a binary predicate symbol, 
not as a logical symbol, that is, the equality symbol is not necessarily present in all the languages and its 
interpretation is not fixed. From now on, let L be a core fuzzy logic in a propositional language L that 
contains only the truth-constants 1 and 0 (for an extended study of core fuzzy logics, see [9]).

Definition 2. We introduce an axiomatic system for the predicate logic L∀m:

(P) Instances of the axioms of L (the propositional variables are substituted for first-order formulas).
(∀1) (∀x)ϕ(x) → ϕ(t), where the term t is substitutable for x in ϕ.
(∃1) ϕ(t) → (∃x)ϕ(x), where the term t is substitutable for x in ϕ.
(∀2) (∀x)(ξ → ϕ) → (ξ → (∀x)ϕ(x)), where x is not free in ξ.
(∃2) (∀x)(ϕ → ξ) → ((∃x)ϕ → ξ), where x is not free in ξ.

The deduction rules of L∀m are those of L and the rule of generalization: from ϕ infer (∀x)ϕ. The 
definitions of proof and provability are analogous to the classical ones. We denote by Φ �L∀m ϕ the fact that 
ϕ is provable in L∀m from the set of formulas Φ. For the sake of clarity, when it is clear from the context 
we will write � to refer to �L∀m . A set of formulas Φ is consistent if Φ � 0.

Definition 3 (Semantics of predicate fuzzy logics). Consider a predicate language P = 〈PredP , FuncP , ArP〉
and let A be an L-algebra. We define an A-structure M for P as the triple 〈M, (PM )P∈Pred, (FM )F∈Func〉, 
where M is a nonempty domain, PM is an n-ary fuzzy relation for each n-ary predicate symbol, i.e., 
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a function from Mn to A, identified with an element of A if n = 0; and FM is a function from Mn to M , 
identified with an element of M if n = 0. As usual, if M is an A-structure for P, an M-evaluation of the 
object variables is a mapping v assigning to each object variable an element of M . The set of all object 
variables is denoted by V ar. If v is an M-evaluation, x is an object variable and a ∈ M , we denote by 
v[x �→ a] the M-evaluation so that v[x �→ a](x) = a and v[x �→ a](y) = v(y) for y an object variable such 
that y = x. If M is an A-structure and v is an M-evaluation, we define the values of terms and the truth 
values of formulas in M for an evaluation v recursively as follows:

‖x‖AM,v = v(x);
‖F (t1, . . . , tn)‖AM,v = FM(‖t1‖AM,v, . . . , ‖tn‖AM,v), for F ∈ Func;
‖P (t1, . . . , tn)‖AM,v = PM(‖t1‖AM,v, . . . , ‖tn‖AM,v), for P ∈ Pred;
‖c(ϕ1, . . . , ϕn)‖AM,v = cA(‖ϕ1‖AM,v, . . . , ‖ϕn‖AM,v), for c ∈ L;
‖(∀x)ϕ‖AM,v = inf{‖ϕ‖AM,v[x→a] | a ∈ M};
‖(∃x)ϕ‖AM,v = sup{‖ϕ‖AM,v[x→a] | a ∈ M}.

If the infimum or the supremum do not exist, we take the truth value of the formula as undefined. We say 
that an A-structure is safe if ‖ϕ‖AM,v is defined for each formula ϕ and each M-evaluation v.

For a set of formulas Φ, we write ‖Φ‖AM,v = 1 if ‖ϕ‖AM,v = 1 for every ϕ ∈ Φ. We say that 〈A, M〉
is a model of a set of formulas Φ if ‖ϕ‖AM,v = 1 for any ϕ ∈ Φ and any M-evaluation v. We denote by 
‖ϕ‖AM = 1 that ‖ϕ‖AM,v = 1 for all M-evaluation v. We say that a formula ϕ is satisfiable if there exists a 
structure 〈A, M〉 such that ‖ϕ‖AM = 1. In such case, we also say that ϕ is satisfied by 〈A, M〉 or that 〈A, M〉
satisfies ϕ. Unless otherwise stated, from now on A denotes an MTL-algebra and we refer to A-structures 
simply as structures.

Now we recall the notion of homomorphism between fuzzy structures.

Definition 4 ([12, Definition 6]). Let 〈A, M〉 and 〈B, N〉 be structures, f be a mapping from A to B and 
g be a mapping from M to N . The pair 〈f, g〉 is said to be a homomorphism from 〈A, M〉 to 〈B, N〉 if f is 
a homomorphism of L-algebras and for every n-ary function symbol F and d1, . . . , dn ∈ M ,

g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn))

and for every n-ary predicate symbol P and d1, . . . , dn ∈ M ,

(*) If PM(d1, . . . , dn) = 1, then PN(g(d1), . . . , g(dn)) = 1.

We say that a homomorphism 〈f, g〉 is strict if instead of (*) it satisfies the stronger condition: for every 
n-ary predicate symbol P and d1, . . . , dn ∈ M ,

PM(d1, . . . , dn) = 1 if and only if PN(g(d1), . . . , g(dn)) = 1.

Moreover we say that 〈f, g〉 is an embedding if it is a strict homomorphism and both functions f and g are 
injective. And we say that an embedding 〈f, g〉 is an isomorphism if both functions f and g are surjective.

3. Horn clauses

In this section we present a definition of Horn clause over predicate fuzzy logics that extends the classical 
definition in a natural way. In classical predicate logic, a basic Horn formula is a formula of the form 
α1 ∧ · · · ∧ αn → β, where n ∈ N and α1, . . . , αn, β are atomic formulas. Now we extend these definitions to 
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work with predicate fuzzy logics. Observe that there is not a unique way to extend them due to the fact 
that, in predicate fuzzy logic, we have different conjunctions and implications.

Definition 5 (Basic Horn formula). A basic Horn formula is a formula of the form

α1& · · ·&αn → β (1)

where n ∈ N, α1, . . . , αn, β are atomic formulas.

The formula obtained by substitution in expression (1) of the strong conjunction & by the weak con-
junction ∧ will be called basic weak Horn formula. From now on, for the sake of clarity, we will refer to the 
basic weak Horn formulas as basic w-Horn formulas.

Analogously to classical logic, disjunctive definitions of basic Horn formulas can be defined. Nevertheless, 
it is an easy exercise to check that, for predicate fuzzy logics, these disjunctive forms are not in general 
equivalent to the implicational ones that we have introduced here. Here we focus our analysis on the 
implicational Horn clauses and we leave for future work the study of the properties of disjunctive Horn 
clauses.

Definition 6. A quantifier-free Horn formula is a formula of the form φ1& · · ·&φm where m ∈ N and φi is a 
basic Horn formula for every 1 ≤ i ≤ m. If φi is a basic w-Horn formula for every 1 ≤ i ≤ m, we say that 
φ1 ∧ · · · ∧ φm is a quantifier-free w-Horn formula.

From now on, whenever it is possible, we present a unique definition for both the strong and the weak 
version, we use the w- symbol into parenthesis.

Definition 7. A (w-)Horn formula is a formula of the form Qγ, where Q is a (possibly empty) string 
of quantifiers (∀x), (∃x)... and γ is a quantifier-free (w-)Horn formula. A (w-)Horn clause (or universal 
(w-)Horn formula) is a (w-)Horn formula in which the quantifier prefix (if any) has only universal quantifiers. 
A (w-)universal Horn theory is a set of (w-)Horn clauses.

Observe that, in classical logic, the formula (∀x)ϕ ∧ (∀x)ψ is logically equivalent to (∀x)(ϕ ∧ ψ). This 
result can be used to prove that every Horn clause is equivalent in classical logic to a conjunction of formulas 
of the form (∀x1) . . . (∀xk)ϕ, where ϕ is a basic Horn formula. Having in mind these equivalences, it is easy 
to see that the set of all Horn clauses is recursively defined in classical logic by the following rules:

1. If ϕ is a basic Horn formula, then ϕ is a Horn clause;
2. If ϕ and ψ are Horn clauses, then ϕ ∧ ψ is a Horn clause;
3. If ϕ is a Horn clause, then (∀x)ϕ is a Horn clause.

In MTL∀m we can deduce (∀x)ϕ ∧ (∀x)ψ ↔ (∀x)(ϕ ∧ ψ). This fact allows us to show that in MTL∀m, 
any w-Horn clause is equivalent to a weak conjunction of formulas of the form (∀x1) · · · (∀xk)(ϕ) where ϕ
is a basic w-Horn formula. Thus, w-Horn clauses can be recursively defined in MTL∀m as above. But it is 
not the case for the strong conjunction since (∀x)ϕ&(∀x)ψ ↔ (∀x)(ϕ&ψ) can not be deduced from MTL∀m

(we refer to [18, Remark p.281]). So the set of Horn clauses is not recursively defined in MTL∀m.

4. Term structures associated to a set of formulas

In this section we introduce the notion of term structure associated to a set of formulas over predicate 
fuzzy logics. We study the particular case of sets of universal Horn formulas and prove that the term 
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structure associated to these sets of formulas is free. Term structures have been used in classical logic to 
prove the satisfiability of a set of consistent sentences, see for instance [16, Ch.5]. From now on we assume 
that we work in a language with a binary predicate symbol ≈ interpreted as a similarity. We assume also 
that the axiomatization of the logic L∀m contains the following axioms for ≈.

Definition 8 ([23, Definitions 5.6.1, 5.6.5]). Let ≈ be a binary predicate symbol, the following are the axioms 
of similarity and congruence:

S1. (∀x)x ≈ x

S2. (∀x)(∀y)(x ≈ y → y ≈ x)
S3. (∀x)(∀y)(∀z)(x ≈ y&y ≈ z → x ≈ z)

C1. For each n-ary function symbol F ,

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)(x1 ≈ y1& · · ·&xn ≈ yn → F (x1, . . . , xn) ≈ F (y1, . . . , yn))

C2. For each n-ary predicate symbol P ,

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)(x1 ≈ y1& · · ·&xn ≈ yn → (P (x1, . . . , xn) ↔ P (y1, . . . , yn)))

Definition 9. Let Φ be a set of formulas, we define a binary relation on the set of terms, denoted by ∼, in 
the following way: for every terms t1, t2,

t1 ∼ t2 if and only if Φ � t1 ≈ t2.

By using [18, Prop.1(5)], it is easy to check that for every set of formulas Φ, ∼ is an equivalence relation. 
From now on we denote by t the ∼-class of the term t. The next result, which states that ∼ is compatible 
with the symbols of the language, can be easily proven using the Axioms of Congruence of Definition 8.

Lemma 1. Let Φ be a set of formulas. The relation ∼ has the following property: if for every 1 ≤ i ≤ n, 
ti ∼ t′i, then

(i) For any n-ary function symbol F , F (t1, . . . , tn) ∼ F (t′1, . . . , t′n),
(ii) For any n-ary predicate symbol P , Φ � P (t1, . . . , tn) iff Φ � P (t′1, . . . , t′n)

Definition 10 (Term structure). Let Φ be a consistent set of formulas. We define the following structure 
〈B, TΦ〉, where B is the two-valued Boolean algebra, TΦ is the set of all equivalence classes of the relation 
∼ and

• For any n-ary function symbol F ,

FTΦ(t1, . . . , tn) = F (t1, . . . , tn)

• For any n-ary predicate symbol P ,

PTΦ(t1, . . . , tn) =
{

1, if Φ � P (t1, . . . , tn)
0, otherwise

We call 〈B, TΦ〉 the term structure associated to Φ.
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Notice that for every 0-ary function symbol c, cTΦ = c. By using Lemma 1, it is easy to prove that the 
structure 〈B, TΦ〉 is well-defined, because the conditions are independent from the choice of the represen-
tatives. Observe that, so defined, 〈B, TΦ〉 is a classical structure. The following lemma agrees with this 
classical character.

Lemma 2. Let Φ be a consistent set of formulas. The interpretation of the ≈ symbol in the structure 〈B, TΦ〉
is the crisp equality.

Proof. Let t1, t2 be terms. We have t1 = t2 iff t1 ∼ t2 iff Φ � t1 ≈ t2 iff t1 ≈TΦ t2 (this last step by 
Definition 10). �

Now we prove some technical lemmas that will allow us to show that the term structure 〈B, TΦ〉 is free.

Definition 11. Given a consistent set of formulas Φ, let eΦ be the following TΦ-evaluation: eΦ(x) = x. We 
call eΦ the canonical evaluation of 〈B, TΦ〉.

Lemma 3. Let Φ be a consistent set of formulas, the following holds:

(i) For any term t, ‖t‖BTΦ,eΦ = t.
(ii) For any atomic formula ϕ, ‖ϕ‖BTΦ,eΦ = 1 if and only if Φ � ϕ.
(iii) For any atomic formula ϕ, ‖ϕ‖BTΦ,eΦ = 0 if and only if Φ � ϕ.

Proof. (i) By induction on the complexity of t and Definitions 10 and 11.
(ii) Let P be an n-ary predicate symbol and t1, . . . , tn be terms, we have:

‖P (t1, . . . , tn)‖BTΦ,eΦ = 1 iff

PTΦ(‖t1‖BTΦ,eΦ , . . . , ‖tn‖BTΦ,eΦ) = 1 iff

PTΦ(t1, . . . , tn) = 1 iff

Φ � P (t1, . . . , tn)

The second equivalence is by (i) of the present Lemma, and the third one by Definition 10. (iii) holds because 
〈B, TΦ〉 is a classical structure. �

Observe that, since terms are the smallest significance components of a first-order language, Lemma 3 (ii) 
and (iii) can be read as saying that term structures are minimal with respect to atomic formulas. Intuitively 
speaking, the term structure picks up the positive atomic information associated to Φ.

Lemma 4. Let Φ be a consistent set of formulas. The set {x | x ∈ V ar} generates the universe TΦ of the 
term structure associated to Φ.

Proof. Let t(x1, . . . , xn) ∈ TΦ. By Lemma 3,

t(x1, . . . , xn) = ‖t(x1, . . . , xn)‖BTΦ,eΦ

and by the semantics of predicate fuzzy logics (Definition 3),

‖t(x1, . . . , xn)‖BTΦ,eΦ = tTΦ(‖x1‖BTΦ,eΦ , . . . , ‖xn‖BTΦ,eΦ) = tTΦ(x1, . . . , xn). �
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Term structures do not necessarily satisfy the theory to which they are associated. In classical logic, if 
it is the case, from an algebraic point of view, the minimality of the term structure is revealed by the fact 
that the structure is free. A model of a theory is free if there is a unique homomorphism from this model 
to any other model of the theory. Free structures have their origin in category theory, as a generalization 
of free groups (for a definition of free structure in category theory, see [1, Def. 4.7.17]). Free structures are 
also named initial in [26, Def. 2.1 (i)]. In the context of computer science, they appeared for the first time 
in [22].

The possibility given by fuzzy logic of defining the term structure associated to a theory using the 
similarity symbol ≈ leads us to a notion of free structure restricted to the class of reduced models of 
that theory, as we will prove in next theorem. Remember that reduced structures are those whose Leibniz 
congruence is the identity. By [13, Lemma 20], a structure 〈A, M〉 is reduced iff it has the equality property
(EQP) (that is, for any d, e ∈ M , d ≈M e iff d = e).

Theorem 1. Let Φ be a consistent set of formulas with ‖Φ‖BTΦ,eΦ = 1. Then, 〈B, TΦ〉 is a free structure 
in the class of the reduced models of Φ, i.e., for every reduced structure 〈A, M〉 and every evaluation v
such that ‖Φ‖AM,v = 1, there is a unique homomorphism 〈f, g〉 from 〈B, TΦ〉 to 〈A, M〉 such that for every 
x ∈ V ar, g(x) = v(x).

Proof. Let 〈A, M〉 be a reduced structure and v an M-evaluation such that ‖Φ‖AM,v = 1. Now let f :
B → A be the identity and define g by: g(t) = ‖t‖AM,v for every term t. We show that 〈f, g〉 is the desired 
homomorphism (for the definition of homomorphism see the Preliminaries section, Definition 4).

First let us check that g is well-defined. Given terms t1, t2 with t1 = t2, that is, t1 ∼ t2, by Definition 9, 
Φ � t1 ≈ t2. Then, since ‖Φ‖AM,v = 1, we have ‖t1 ≈ t2‖AM,v = 1. But 〈A, M〉 is reduced, which by [13, 
Lemma 20] is equivalent to have the EQP; therefore ‖t1‖AM,v = ‖t2‖AM,v, that is, g(t1) = g(t2).

Now, let us see that g is a homomorphism. Let t1, . . . , tn ∈ TΦ be terms and F be an n-ary function 
symbol. By Definition 10, we have that

FTΦ(t1, . . . , tn) = F (t1, . . . , tn)

and then g(FTΦ(t1, . . . , tn)) = g(F (t1, . . . , tn)) = ‖F (t1, . . . , tn)‖AM,v = FM(‖t1‖AM,v, . . . , ‖tn‖AM,v) =
FM(g(t1), . . . , g(tn)).

Let P be an n-ary predicate symbol such that PTΦ(t1, . . . , tn) = 1. By Definition 10, Φ � P (t1, . . . , tn). 
Since ‖Φ‖AM,v = 1, we have

‖P (t1, . . . , tn)‖AM,v = 1

and then PM(‖t1‖AM,v, . . . , ‖tn‖AM,v) = 1, that is, PM(g(t1), . . . , g(tn)) = 1.
Finally, since by Lemma 4 the set {x | x ∈ V ar} generates the universe TΦ of the term structure 

associated to Φ, 〈f, g〉 is the unique homomorphism such that for every x ∈ V ar, g(x) = v(x). �
Observe that in languages in which the similarity symbol is interpreted by the crisp identity, by using an 

analogous argument to the one in Theorem 1, we obtain that the term structure is free in all the models of 
the theory and not only in the class of reduced models.

To end this section we prove that the term structure associated to a universal Horn theory is a model 
of this theory. We have shown above in Section 3 that the set of Horn clauses is not recursively defined in 
MTL∀m. For that reason we will present here proofs that differ from the proofs of the corresponding results 
in classical logic, using induction on the rank of a formula instead of induction on the set of the (w-)Horn 
clauses. We introduce first the notion of rank of a formula ϕ. Our definition is a variant of the notion of 
syntactic degree of a formula in [23, Definition 5.6.7]).
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rk(ϕ) = 0, if ϕ is atomic;
rk(¬ϕ) = rk((∃x)ϕ) = rk((∀x)ϕ) = rk(ϕ) + 1;
rk(ϕ ◦ ψ) = rk(ϕ) + rk(ψ), for every binary propositional connective ◦.

Lemma 5. Let ϕ be a (w-)Horn clause where x1, . . . , xm are pairwise distinct free variables. Then, for every 
terms t1, . . . , tm,

ϕ(t1, . . . , tm/x1, . . . , xm)

is a (w-)Horn clause.

Proof. We prove it for the strong conjunction but the proof is analogous for the weak conjunction. By 
induction on rk(ϕ).

Case rk(ϕ) = 0. If ϕ is a basic Horn formula of the form ψ1& · · · &ψn → ψ, it is clear that 
ϕ(t1, . . . , tm/x1, . . . , xm) is still a basic Horn formula. In case that ϕ = φ1& · · ·&φl is a conjunction of 
basic Horn formulas, note that ϕ(t1, . . . , tm/x1, . . . , xm) has the same form as ϕ.

Case rk(ϕ) = n + 1. Assume inductively that for any Horn clause ψ where x1, . . . , xm are pairwise distinct 
free variables in ψ and whose rank is n, the formula ψ(t1, . . . , tm/x1, . . . , xm) is a Horn clause. Let ϕ be 
a Horn clause of rank n + 1, then ϕ is of the form (∀y)ψ, where ψ has rank n. Assume without loss of 
generality that and y ∈ {x1, . . . , xm}, then

[(∀y)ψ](t1, . . . , tm/x1, . . . , xm) = (∀y)[ψ(t1, . . . , tm/x1, . . . , xm)]

thus we can apply the inductive hypothesis to obtain the desired result. �
Theorem 2. Let Φ be a consistent set of formulas. For every (w-)Horn clause ϕ, if Φ � ϕ, then ‖ϕ‖BTΦ,eΦ = 1.

Proof. We prove it for the strong conjunction but the proof is analogous for the weak conjunction. By 
induction on rk(ϕ).

Case rk(ϕ) = 0. We can distinguish two subcases:

1) If ϕ = ψ1& · · ·&ψn → ψ is a basic Horn formula, we have to show that ‖ψ1& · · · &ψn‖BTΦ,eΦ ≤
‖ψ‖BTΦ,eΦ . If ‖ψ‖BTΦ,eΦ = 1, we are done. Otherwise, by Definition 10, Φ � ψ. Consequently, since 
Φ � ψ1& · · · &ψn → ψ, Φ � ψ1& · · ·&ψn and thus for some 1 ≤ i ≤ n, Φ � ψi. By Lemma 3 (ii), we 
have ‖ψi‖BTΦ,eΦ = 0 and then ‖ψ1& · · ·&ψn‖BTΦ,eΦ = 0. Therefore, we can conclude ‖ψ1& · · ·&ψn‖BTΦ,eΦ ≤
‖ψ‖BTΦ,eΦ . Note that if n = 0, ϕ is an atomic formula and the property holds by Lemma 3 (ii).

2) If ϕ = ψ1& · · ·&ψn is a conjunction of basic Horn formulas and Φ � ϕ, then for every 1 ≤ i ≤ n, 
Φ � ψi. Thus, by 1), for every 1 ≤ i ≤ n, ‖ψi‖BTΦ,eΦ = 1 and then ‖ϕ‖BTΦ,eΦ = 1.

Case rk(ϕ) = n + 1.

If ϕ = (∀x)φ(x) is a Horn clause, where rk(φ(x)) = n and Φ � ϕ, by Axiom ∀1 of L∀m, for every term t, 
Φ � φ(t/x). Since by Lemma 5, φ(t/x) is also a Horn clause and rk(φ(t/x)) = n, we can apply the inductive 
hypothesis and hence for every term t, ‖φ(t/x)‖BTΦ,eΦ = 1, that is, by Lemma 3 (i), for every element t of 
the domain, ‖φ(x)‖BTΦ,eΦ(x→t) = 1. Therefore, we can conclude that ‖(∀x)φ(x)‖BTΦ,eΦ = 1. �

Observe that the inverse direction of Theorem 2 is not true. Assume that we work in Gödel predicate 
fuzzy logic G∀. Let P be a 1-ary predicate symbol, c be an individual constant, Φ = {¬(P (c) → 0)} and 
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ϕ = P (c) → 0. Now we show that ‖ϕ‖BTΦ = 1, but Φ � ϕ. First, in order to show that Φ � ϕ, consider a 
G-algebra A with domain the real interval [0, 1] and a structure 〈A, M〉 such that ‖P (c)‖AM = 0.8, then we 
have that ‖Φ‖AM = 1 and ‖P (c) → 0‖AM = 1 consequently Φ �G P (c) → 0. Using the same structure we 
obtain also that Φ �G P (c). Finally, since Φ �G P (c), by Lemma 3, ‖P (c)‖BTΦ = 0 and then ‖ϕ‖BTΦ = 1.

Remark that, as a corollary of Theorem 2, we have that the substructure of 〈B, TΦ〉 generated by the 
set of ground terms is also a model for all universal Horn sentences that are consequences of the theory. 
Another important corollary of Theorem 2 is the following:

Corollary 1. Every consistent set of (w-)Horn clauses without free variables has a classical model.

Observe that Corollary 1 is not true in general. The consistent sentence ¬(1 → Pa)&¬(Pa → 0) has no 
classical model.

5. Herbrand structures

In this section we introduce Herbrand structures for fuzzy universal Horn theories. They are a prominent 
form of term structures, specially helpful when dealing with sets of equality-free formulas (that is, formulas 
in which the symbol ≈ does not occur), the reason is that, as it is shown below in Lemma 6, no non-trivial 
equations are derivable from a set of equality-free formulas. In classical logic, Herbrand structures have been 
used to present a simplified version of a term structure associated to a consistent theory [16, Ch.11], and they 
have also a relevant role in the foundation of logic programming (see for instance [14]). Regarding Herbrand 
structures in fuzzy logic programming, we refer to the works [19,30,17]. Throughout this section we assume 
that the symbol ≈ is interpreted always as the crisp identity and that there is at least an individual constant 
in the language.

Lemma 6. Let Φ be a consistent set of equality-free formulas, then for every terms t1, t2,

If Φ � t1 ≈ t2, then t1 = t2.

Proof. Assume that Φ is a consistent set of equality-free formulas and Φ � t1 ≈ t2 for terms t1, t2 of the 
language. Since CL∀ is an extension of MTL∀m, Φ � t1 ≈ t2 in CL∀. Then, by the analogous classical result 
[16, Ch. 11, Th. 3.1], we have t1 = t2. �
Definition 12 (Herbrand structure). The Herbrand universe of a predicate language is the set of all ground 
terms of the language. A Herbrand structure is a structure 〈A, H〉, where H is the Herbrand universe, and:

For any individual constant symbol c, cH = c.
For any n-ary function symbol F and any t1, . . . , tn ∈ H,

FH(t1, . . . , tn) = F (t1, . . . , tn)

Observe that in Definition 12 no restrictions are placed on the interpretations of the predicate symbols 
and on the algebra we work over. The canonical models 〈LindT , CM(T )〉 introduced in [10, Def.9] are 
examples of Herbrand structures. In these structures LindT is the Lindenbaum algebra of a theory T and 
the domain of CM(T ) is the set of individual constants (the language in [10] does not contain function 
symbols). Now we introduce a particular case of Herbrand structure and we show that every consistent 
Horn clause without free variables has a model of this kind.

Definition 13 (H-structure and H-model). Let H be the set of all equality-free sentences of the form 
P (t1, . . . , tn), where t1, . . . , tn are ground terms, n ≥ 1 and P is an n-ary predicate symbol. For every 
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subset H of H, we define the Herbrand structure 〈B, NH〉, where B is the two-valued Boolean algebra, the 
domain NH is the set of all ground terms of the language, the interpretation of the function symbols is as 
in every Herbrand structure and the interpretation of the predicate symbols is as follows: for every n ≥ 1
and every n-ary predicate symbol P ,

PNH(t1, . . . , tn) =
{

1, if P (t1, . . . , tn) ∈ H

0, otherwise.

We call this type of Herbrand structures H-structures. If Φ is a set of sentences, we say that an H -structure 
is an H-model of Φ if it is a model of Φ.

Proposition 1. Let 〈A, M〉 be a structure and H be the set of all atomic equality-free sentences σ such 
that ‖σ‖AM = 1. Then, for every equality-free sentence ϕ which is a (w-)Horn clause, if ‖ϕ‖AM = 1, then 
‖ϕ‖BNH = 1, where 〈B, NH〉 is an H-structure as in Definition 13.

Proof. We prove it for the strong conjunction but the proof is analogous for the weak conjunction. Assume 
that ϕ is an equality-free sentence which is a Horn clause and ‖ϕ‖AM = 1. We proceed by induction on the 
rank of ϕ

Case rk(ϕ) = 0. We distinguish two cases:

1) If ϕ = ψ1& · · · &ψn → ψ is a basic Horn formula, we have to show that ‖ψ1& · · ·&ψn‖BNH ≤ ‖ψ‖BNH . 
If ‖ψ‖BNH = 1, we are done. Otherwise, by Definition 13, ψ ∈ H, and thus ‖ψ‖AM = 1. Therefore, since 
‖ϕ‖AM = 1, we have that ‖ψ1& · · · &ψn‖AM = 1. Consequently for some 1 ≤ i ≤ n, ‖ψi‖AM = 1, therefore ψi ∈
H, i.e., ‖ψi‖BNH = 0, and then ‖ψ1& · · · &ψn‖BNH = 0. Hence, ‖ψ1& · · ·&ψn‖BNH ≤ ‖ψ‖BNH .

2) If ϕ = ψ1& · · ·&ψn is a strong conjunction of basic Horn formulas, then by 1) we have that ‖ψi‖AM = 1
implies ‖ψi‖BNH = 1, for each i ∈ {1, . . . , n}. Thus, if ‖ϕ‖AM = 1, then ‖ϕ‖BNH = 1.

Case rk(ϕ) = n + 1.

Let ϕ = (∀x)φ(x) be a Horn clause with rk(φ(x)) = n. Since ‖ϕ‖AM = 1, by Axiom ∀1 of L∀m, for every 
ground term t, ‖φ(t/x)‖AM = 1. By Lemma 5, φ(t/x) is also a Horn clause, and since rk(φ(t/x)) = n, we can 
apply the inductive hypothesis and hence for every ground term t, ‖φ(t/x)|BNH = 1. Finally, since 〈B, NH〉
is a Herbrand structure, we have that for every element t of its domain ‖φ(t/x)‖BNH = 1, and consequently 
‖(∀x)φ(x)‖BNH = 1. �

Notice that Proposition 1 does not assert that given a structure 〈A, M〉, 〈A, M〉 and 〈B, NH〉 satisfies
exactly the same equality-free sentences which are Horn clauses. Actually, this is not true. Let P be a 
predicate language with three monadic predicate symbols P1, P2, P3 and one individual constant c. Suppose 
that A is the Łukasiewicz algebra [0, 1]Ł and let 〈A, M〉 be a structure over P such that ‖P1(c)‖AM = 1, 
‖P2(c)‖AM = 0.9 and ‖P3(c)‖AM = 0.5. Let ϕ be P1(c)&P2(c) → P3(c), ϕ is an equality-free sentence which is 
a Horn clause with ‖P1(c)&P2(c) → P3(c)‖AM = 0.6, but if we consider its associated H-structure, 〈B, NH〉, 
we have H= {P1(c)} and thus ‖P1(c)&P2(c) → P3(c)‖BNH = 1.

Corollary 2. An equality-free sentence which is a (w-)Horn clause has a model if and only if it has an
H-model.

We can conclude here, in the same sense as in Corollary 1, that every consistent equality-free sentence 
which is a (w-)Horn clause has a classical Herbrand model.
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6. Discussion, conclusions and future work

The present paper is a first step towards a systematic study of universal Horn theories over predicate fuzzy 
logics from a model-theoretic perspective. We have proved the existence of free models in universal Horn 
classes of structures. In the future we will pay special attention to the study of possible characterizations 
of universal Horn theories in terms of the existence of these free models and its relevance for fuzzy logic 
programming.

Future work will be devoted also to the analysis of the logical properties of the different definitions of 
Horn clauses introduced so far in the literature of fuzzy logics, for instance see [2,3,27]. It is important to 
underline here some differences between our work and some important related references. Our paper differs 
from the approaches of Bělohlávek and Vychodil and also the one of Gerla, due to mainly three reasons: it 
is not restricted to fuzzy equalities, it does not adopt the Pavelka-style definition of the Horn clauses and 
it does not assume the completeness of the algebra. Our choice is taken because it gives more generality to 
the results we wanted to obtain, even if in this first work our Horn clauses are defined very basically.

We take as a future task to explore how a Pavelka-style definition of Horn clauses in the framework 
developed by Hájek [23] could change or even improve the results we have obtained on free models. We will 
follow the broad approach taken in [8, Ch.8] about fuzzy logics with enriched languages. Finally we will 
study also quasivarieties over fuzzy logic, and closure properties of fuzzy universal Horn classes by using 
recent results on direct and reduced products over fuzzy logic like [13]. Our next objective is to solve the 
open problem of characterizing theories of Horn clauses in predicate fuzzy logics, formulated by Cintula and 
Hájek in [9].
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2.1.4 Term models of Horn clauses over rational Pavelka predi-
cate logic

Next, we include in this doctoral thesis the book chapter Costa & Dellunde (2017b),
titled Term Models of Horn Clauses over Rational Pavelka Predicate Logic2.

2© 2017 IEEE. Reprinted, with permission, from Pilar Dellunde, Term Models of Horn Clauses
over Rational Pavelka Predicate Logic, 47th International Symposium on Multiple-Valued Logic,
2017.
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1. Introduction

Free models and Horn clauses have a relevant role in
classical logic and logic programming. On the one hand,
free models, which appeared first in category theory (see
for instance [1, Def. 4.7.17]), are crucial in universal alge-
bra and, thereby, in model theory. In the context of logic
programming, free structures, introduced in [16] and also
named initial (as for instance in [19, Def. 2.1 (i)]), are
important in logic programming, since they allow a pro-
cedural interpretation of the programs and admitting free
structures makes reasonable the negation as failure (see for
instance [19]). In the context of abstract data types, Tar-
lecki [20] characterizes abstract algebraic institutions which
admit free constructions. On the other hand, the significant
importance of Horn clauses in classical logic was detailed
in [18], while it is well-known that Horn clauses are used
both as a specification and as a programming language in
Prolog, the most common language in logic programming.

In the context of fuzzy logics, several definitions of Horn
clause have been proposed in the literature, but there is not
a canonical one yet. An extensive and important work in
predicate fuzzy logics has been done by Bělohlávek and
Vychodil (see [2], [3], [4], [5], [6], [22]). Even if the work
of these authors also adopts Pavelka-style, it differs from
our approach: we do not restrict Horn clauses to fuzzy
equalities and we work in the general semantics of [17].

Another approach is shown in [13], where Dubois and Prade
discuss different possibilities of defining fuzzy rules and they
show how these different semantics can be captured in the
framework of fuzzy set theory and possibility theory. We
find also that, in the context of fuzzy logic programming,
there is a rich battery of proposals of Horn clauses which
differ depending on the programming approach chosen.
Some reference here are [15], [21].

With the goal of developing a systematic study of the
universal Horn fragment of predicate fuzzy logics from a
model-theoretic point of view, we took in [10] the syntactical
definition of Horn clause of classical logic. Starting by this
general and basic definition we studied the existence of
free models of theories of Horn clauses in MTL∀. As a
generalisation of a group-theoretic construction, Mal’tsev
showed in classical logic that any theory of Horn clauses
has a free model. In the present paper, a definition of Horn
clause in RPL∀ using evaluated formulas is introduced.
Consequently, we prove the existence of free models of
theories of RPL∀- Horn clauses showing in RPL∀ an analo-
gous result to Mal’tsev’s one. The advantage of using these
RPL∀-Horn clauses instead of the ones of [10] lies in the
fact that the former can be better settled in the context of
fuzzy logic programming. For instance, from a syntactical
point of view, basic RPL∀-Horn clauses are a particular case
of the clauses used in [7]

The paper is organized as follows. Section 2 contains
the preliminaries on RPL∀. In Section 3 we introduce the
definition of a term structure associated to a consistent
theory and prove that when this structure is a model of the
associated theory, the term structure is free on the class of
all models of the theory. In Section 4 we define the notion
of RPL∀-Horn clause and it is shown that whenever the
associated theory is a set of RPL∀-Horn clauses, the term
structure is a model of this theory.

2. Preliminaries

In this section we introduce the basic notions and results of
RPL∀, the first-order extension of Rational Pavelka Logic.



For an extensive presentation of RPL∀ see [17, Ch.3.3 and
Ch.5.4] and [8, Ch.VIII].
Definition 1. Rational Pavelka Predicate Logic [8,

Ch.VIII] Rational Pavelka Predicate Logic RPL∀ is the
expansion of Ł∀ by adding a truth constant for each
rational number r in [0, 1] and by adding the axioms
RPL1 and RPL2. The following is an axiomatic sytem
for RPL∀:
(Ł1) ϕ→ (ψ → ϕ)
(Ł2) (ϕ→ ψ)→ ((ψ → ξ)→ (ϕ→ ξ))
(Ł3) (¬ψ → ¬ϕ)→ (ψ → ϕ)
(Ł4) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)
(RPL1) (r → s)↔ r → s
(RPL2) (r&s)↔ r&s
(∀1) (∀x)ϕ(x) → ϕ(t), where the term t is substi-

tutable for x in ϕ.
(∀2) (∀x)(ξ → ϕ) → (ξ → (∀x)ϕ(x)), where x is

not free in ξ.

The rules are Modus Ponens and Generalization, that is,
from ϕ infer (∀x)ϕ.

A theory Φ is a set of sentences. We denote by Φ `RPL∀ ϕ
the fact that ϕ is provable in RPL∀ from the set of formulas
Φ. From now on, when it is clear from the context, we
will write ` to refer to `RPL∀. We say that a theory Φ is
consistent if Φ 6` 0.
Definition 2. An evaluated formula (ϕ, r) in a language of

RPL∀ is a formula of the form r → ϕ, where r ∈ [0, 1]
is a rational number and ϕ is a formula without truth
constants apart from 0 and 1. We say that an evaluated
formula (ϕ, r) is atomic whenever ϕ is atomic.

Now we introduce the semantics of the predicate lan-
guages. Let [0, 1]RPL be the standard RPL-algebra [8,
Def.2.2.5, Ch.II], a structure for a predicate language P
of the logic RPL∀ has the form 〈[0, 1]RPL,M〉, where
M = 〈M, (PM )P∈Pred, (FM )F∈Func〉, M is a non-empty
domain; for each n-ary predicate symbol P ∈ Pred, PM is
an n-ary fuzzy relation M , i.e., a function Mn → [0, 1]RPL
(identified with an element of [0, 1]RPL if n = 0); for each n-
ary function symbol F ∈ Func, FM is a function Mn →M
(identified with an element of M if n = 0).

An M-evaluation of the object variables is a mapping v
which assigns an element from M to each object variable.
Let v be an M-evaluation, x a variable, and a ∈ M . Then
by v[x 7→ a] we denote the M-evaluation such that v[x 7→
a](x) = a and v[x 7→ a](y) = v(y) for each object variable
y different from x. We define the values of terms and the
truth values of formulas in the structure 〈[0, 1]RPL,M〉 for an
evaluation v recursively as follows: given F ∈ Func, P ∈
Pred and c a connective of RPL:

||x||[0,1]RPL
M,v = v(x)

||F (t1, . . . , tn)||[0,1]RPL
M,v = FM(||t1||[0,1]RPL

M,v , . . . , ||tn||[0,1]RPL
M,v )

||P (t1, . . . , tn)||[0,1]RPL
M,v = PM(||t1||[0,1]RPL

M,v , . . . , ||tn||[0,1]RPL
M,v )

||c(ϕ1, . . . , ϕn)||[0,1]RPL
M,v =

c[0,1]RPL(||ϕ1||[0,1]RPL
M,v , . . . , ||ϕn||[0,1]RPL

M,v )

||(∀x)ϕ||[0,1]RPL
M,v = inf{||ϕ||[0,1]RPL

M,v[x→a] | a ∈M}

||(∃x)ϕ||[0,1]RPL
M,v = sup{||ϕ||[0,1]RPL

M,v[x→a] | a ∈M}.
Observe that, since the universe of the standard RPL-

algebra is the interval of real numbers [0, 1], which is
complete, all the infima and suprema in the definition of
the semantics of the quantifiers exist.

For every formula ϕ, possibly with variables, we write
||ϕ||[0,1]RPL

M =

inf{||ϕ||[0,1]RPL
M,v | for every M -evaluation v},

we say that 〈[0, 1]RPL,M〉 is a model of a sentence ϕ if
||ϕ||[0,1]RPL

M = 1; and that 〈[0, 1]RPL,M〉 is a model of a theory
Φ if ||ϕ||[0,1]RPL

M = 1 for every ϕ ∈ Φ.

In particular, given a structure 〈[0, 1]RPL,M〉 and two
formulas ϕ and ψ:

||ϕ&ψ||[0,1]RPL
M = max{||ϕ||[0,1]RPL

M + ||ψ||[0,1]RPL
M − 1, 0}

||ϕ→ ψ||[0,1]RPL
M = min{1− ||ϕ||[0,1]RPL

M + ||ψ||[0,1]RPL
M , 1}.

Definition 3. Let 〈[0, 1]RPL,M〉 and 〈[0, 1]RPL,N〉 be struc-
tures, and g be a mapping from M to N . We say that g is
a homomorphism from 〈[0, 1]RPL,M〉 to 〈[0, 1]RPL,N〉 if
for every n-ary function symbol F , any n-ary predicate
symbol P and d1, . . . , dn ∈M ,

(1) g(FM(d1, . . . , dn)) = FN(g(d1), . . . , g(dn)), and

(2) PM(d1, . . . , dn) = 1⇒ PN(g(d1), . . . , g(dn)) = 1.

Throughout the paper we assume that all our languages
have a binary predicate symbol ≈ and we extend the axio-
matic system of RPL∀ in [8, Ch.VIII] with the following
axioms of similarity and congruence.

Definition 4. [17, Definitions 5.6.1, 5.6.5]

S1. (∀x)x ≈ x
S2. (∀x)(∀y)(x ≈ y → y ≈ x)
S3. (∀x)(∀y)(∀z)(x ≈ y&y ≈ z → x ≈ z)
C1. For each n-ary function symbol F ,

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)(x1 ≈ y1& · · ·&xn ≈ yn →
F (x1, . . . , xn) ≈ F (y1, . . . , yn))

C2. For each n-ary predicate symbol P ,

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)(x1 ≈ y1& · · ·&xn ≈ yn →
(P (x1, . . . , xn)↔ P (y1, . . . , yn))

Definition 5. Let Φ be a theory over RPL∀, ϕ a formula in
a language of RPL∀ and r ∈ [0, 1] a rational number.



(i) The truth degree of ϕ over Φ is ||ϕ||Φ =

inf{||ϕ||[0,1]RPL
M | 〈[0, 1]RPL,M〉 is a model of Φ}.

(ii) The provability degree of ϕ over Φ is

|ϕ|Φ = sup{r | Φ ` r → ϕ}.

Theorem 1. Pavelka-style completeness [17, Th.5.4.10]
Let Φ be a theory over RPL∀ and ϕ a formula in a
language of RPL∀. Then, |ϕ|Φ = ||ϕ||Φ.

3. Term structures

In this section we introduce the notion of term structure
associated to a consistent theory Φ over RPL∀, and prove
that whenever the term structure is a model of Φ, the
structure is free on the class of models of Φ. Term structures
have been used extensively in classical logic, for instance,
to prove the satisfiability of a set of consistent sentences
(see for example [14, Ch.V]).
Definition 6. Let Φ be a consistent theory, we define a

binary relation on the set of terms, denoted by ∼, in
the following way: For every terms t1, t2,

t1 ∼ t2 if and only if |t1 ≈ t2|Φ = 1.

Using Axioms ∀1, S1, S2 and S3, it can be proven that
∼ is an equivalence relation. Next lemma, which states that
the equivalence relation ∼ is compatible with the symbols
of the language, is proved using Axioms ∀1, C1, C2 and
[17, Remark 3.18].
Lemma 1. For any consistent theory Φ, the following holds:

If ti ∼ t′i for every 1 ≤ i ≤ n, then

(i) For any n-ary function symbol F , F (t1, . . . , tn) ∼
F (t′1, . . . , t

′
n).

(ii) For any n-ary predicate symbol P and rational num-
ber r ∈ [0, 1],

|(r → P (t1, ..., tn))↔ (r → P (t′1, ..., t
′
n))|Φ = 1

From now on, for any term t we denote by t the ∼-class
of t.
Definition 7. Term Structure Let Φ be a consistent theory.

We define the following structure 〈[0, 1]RPL,T
Φ〉, where

TΦ is the set of all equivalence classes of the relation
∼ and

• For any n-ary function symbol F and terms
t1, . . . , tn,

FTΦ(t1, . . . , tn) = F (t1, . . . , tn)

• For any n-ary predicate symbol P and terms
t1, . . . , tn,

PTΦ(t1, . . . , tn) = |P (t1, . . . , tn)|Φ
We call 〈[0, 1]RPL,T

Φ〉 the term structure associated to Φ.

Notice that for 0-ary functions, that is, for individual
constants, cTΦ = c. Given a consistent theory Φ, let eΦ be

the following TΦ-evaluation: eΦ(x) = x for every variable
x. We call eΦ the canonical evaluation of 〈[0, 1]RPL,T

Φ〉.
Lemma 2. Let Φ be a consistent theory, the following holds:

(i) For any term t, ||t||[0,1]RPL

TΦ,eΦ
= t.

(ii) For any atomic formula ϕ, ||ϕ||[0,1]RPL

TΦ,eΦ
= 1 if and

only if |ϕ|Φ = 1.
(iii) For any evaluated atomic formula (ϕ, s),

||(ϕ, s)||[0,1]RPL

TΦ,eΦ
= 1 if and only if |(ϕ, s)|Φ = 1.

Proof: The proofs of (i) and (ii) are straightforward. Regar-
ding (iii), let (ϕ, s) = (P (t1 . . . , tn), s), we have:

||(P (t1 . . . , tn), s)||[0,1]RPL

TΦ,eΦ
= 1 iff

s ≤ ||P (t1 . . . , tn)||[0,1]RPL

TΦ,eΦ
iff

s ≤ PTΦ(t1 . . . , tn) iff

s ≤ |P (t1 . . . , tn)|Φ iff |s→ P (t1, . . . , tn)|Φ = 1.

The last equivalence is proved from [17, Remark 3.18]. 2

Since the simplest well-formed formulas are atomic
formulas, Lemma 2 (ii) can be read as saying that term
structures are minimal with respect to atomic formulas. By
Theorem 1, |ϕ|Φ = ||ϕ||Φ and, by Lemma 2 (ii), the term
structure 〈[0, 1]RPL,T

Φ〉 only assigns the truth value 1 to
those atomic formulas that have 1 as their truth value in
every model 〈[0, 1]RPL,M〉 of Φ. By a similar argument,
Lemma 2 (iii) states that the term structure 〈[0, 1]RPL,T

Φ〉
is minimal with respect to evaluated atomic formulas.

From an algebraic point of view, the minimality of the
term structure is revealed by the fact that the structure is
free. The following theorem proves that in case that the term
structure associated to a theory is a model of that theory,
the term structure is free.

Working in predicate fuzzy logics (and, in particular,
in RPL∀) allows to define the term structure associated
to a theory using similarities instead of crisp identities.
This leads us to a notion of free structure restricted to
the class of reduced models of that theory. Remember that
reduced structures are those whose Leibniz congruence is
the identity. By [12, Lemma 20], a structure 〈[0, 1]RPL,M〉
is reduced iff it has the equality property (EQP) (that is,
for any d, e ∈ M , ||d ≈ e||[0,1]RPL

M = 1 iff d = e). Observe
that, by using Definitions 6 and 7 and the fact that ∼ is an
equivalence relation, it can be proven that 〈[0, 1]RPL,T

Φ〉 is
a reduced structure.
Theorem 2. Let Φ be a consistent theory such that
〈[0, 1]RPL,T

Φ〉 is a model of Φ. Then 〈[0, 1]RPL,T
Φ〉

is free on the class of all the reduced models
〈[0, 1]RPL,N〉 of Φ. That is, for every reduced model
of Φ 〈[0, 1]RPL,N〉 and every N-evaluation v, there
is a unique homomorphism g from 〈[0, 1]RPL,T

Φ〉 to
〈[0, 1]RPL,N〉 such that for every variable x, g(x) =
v(x).

Proof: Let 〈[0, 1]RPL,N〉 be a reduced model of Φ and
v an N-evaluation. We define g by: g(t) = ||t||[0,1]RPL

N,v for



every term t. We show that g is the claimed homomorphism.

Let us first check that g is well-defined. Let t1, t2 be
terms with t1 = t2, i.e., t1 ∼ t2, that is, |t1 ≈ t2|Φ = 1.
From Theorem 1 we have ||t1 ≈ t2||Φ = 1. Since
||Φ||[0,1]RPL

N = 1, it follows that ||t1 ≈ t2||[0,1]RPL
N = 1 and, in

particular, ||t1 ≈ t2||[0,1]RPL
N,v = 1. From this and the fact that

〈[0, 1]RPL,N〉 is reduced, we deduce, by [12, Lemma 20],
that ||t1||[0,1]RPL

N,v = ||t2||[0,1]RPL
N,v , i.e., g(t1) = g(t2).

The task is now to see that g satisfies the conditions (1)
and (2) of Definiton 3. For any 0-function symbol c, cTΦ =
c = cN by Definition 7. Let t1, . . . , tn ∈ TΦ and F be an
n-ary function symbol, FTΦ(t1, . . . , tn) = F (t1, . . . , tn) by
Definition 7. Then, by the definition of g,

g(FTΦ(t1, . . . , tn)) = g(F (t1, . . . , tn)) =

FN(||t1||[0,1]RPL
N,v , . . . , ||tn||[0,1]RPL

N,v ) = FN(g(t1), . . . , g(tn)).

Let P be an n-ary predicate symbol such that
PTΦ(t1, . . . , tn) = 1. By Definition 7 and Theorem 1, 1 =

PTΦ(t1, . . . , tn) = |P (t1, . . . , tn)|Φ = ||P (t1, . . . , tn)||Φ.

Consequently, ||P (t1, . . . , tn)||[0,1]RPL
N = 1, because

||Φ||[0,1]RPL
N = 1. Thus ||P (t1, . . . , tn)||[0,1]RPL

N,v = 1.
Therefore PN(||t1||[0,1]RPL

N,v , . . . , ||tn||[0,1]RPL
N,v ) = 1, that is,

PN(g(t1), . . . , g(tn)) = 1.

Finally, since the set {x | x is a variable} generates the
universe TΦ of the term structure associated to Φ, g is
the unique homomorphism such that for every variable x,
g(x) = v(x). 2

Observe that in languages in which the similarity symbol
is interpreted by the crisp identity, by using an analogous
argument to the one in Theorem 2, we obtain that the term
structure is free in the class of all the models 〈[0, 1]RPL,M〉
of the theory and not only in the class of the reduced ones.

4. RPL∀-Horn Clauses

In the previous section we have seen that if the term structure
associated to a theory Φ is a model of Φ, then the structure
is free in the class of all models of Φ. In this section, we
show in Theorem 3 that whenever Φ is a theory of RPL∀-
Horn clauses, 〈[0, 1]RPL,TΦ〉 is a model of Φ. Theorem 3
gains in interest if we realize that it proves (using Theorem
2) the existence of free models of theories of RPL∀-Horn
clauses. Let us first define the notion of RPL∀-Horn clauses.

In predicate classical logic, a basic Horn formula is
a formula of the form α1 ∧ · · · ∧ αn → β, where n is
a natural number and α1, . . . , αn, β are atomic formulas.
Notice that there is not a unique way to extend this definition
in fuzzy logics, where we have different conjunctions and
implications. In this section we present one way to define
Horn clauses over RPL∀ extending the classical definition.

Definition 8. Basic RPL∀-Horn Formula A basic RPL∀-
Horn formula is a formula of the form

(α1, r1)& · · ·&(αn, rn)→ (β, s)

where (α1, r1) . . . , (αn, rn), (β, s) are evaluated atomic
formulas and n is a natural number. Observe that n can
be 0. In that case the basic RPL∀-Horn formula is an
evaluated atomic formula.

Definition 9. Quantifier-free RPL∀-Horn Formula A
quantifier-free RPL∀-Horn formula is a formula of the
form φ1& · · ·&φm, where m is a natural number and
φi is a basic RPL∀-Horn formula for every 1 ≤ i ≤ m.

Definition 10. RPL∀-Horn Clause A RPL∀-Horn clause
is a formula of the form Qγ, where Q is a (possibly
empty) string of universal quantifiers (∀x) and γ is a
quantifier-free RPL∀-Horn formula.

Example 1. Let P be a predicate language with a unary
predicate symbol P , a binary predicate symbol R and
a an individual constant. The following formulas are
examples of RPL∀-Horn clauses:

(1) (P (a), 0.5),
(2) (P (a), 0.6)&(R(a, x), 0.3),
(3) (P (a), 0.5)→ (R(a, a), 0.1),
(4) (P (a), 0.6)&(R(a, x), 0.3)→ (P (x), 0.8),
(5) (∀x)((P (x), 0.6)&(R(a, x), 0.3)),
(6) (∀x)((P (x), 0.6)&(R(a, x), 0.3)→ (P (a), 0.9)).

Observe that, in general, RPL∀-Horn clauses are not
evaluated, only the atomic RPL∀-Horn clauses are evaluated
formulas.

A weak version of RPL∀-Horn clauses can be intro-
duced by substituting each strong conjunction & appea-
ring in the formula by the weak conjunction ∧. Although
in this paper we do not present this weak version, all
the results we prove are also true for weak RPL∀-Horn
clauses. In classical logic, the set of all Horn clauses is
recursively defined, because the formula (∀x)(ϕ ∧ ψ) is
logically equivalent to (∀x)ϕ ∧ (∀x)ψ. In RPL∀ these two
formulas are also logically equivalent, so the set of the
weak version of fuzzy RPL∀-Horn clauses is recursively
definable. However, this is not the case for fuzzy RPL∀-
Horn clauses. Indeed, let P and R be unary predicate
symbols, consider the structure 〈[0, 1]RPL,M〉 such that
M = {a, b}, PM(a) = RM(b) = 0.4 and PM(b) = RM(a) =

0.7. Then, ||(∀x)((P (x), 1)&(R(x), 1))||[0,1]RPL
M = 0.1, but

||(∀x)((P (x), 1))&(∀x)((R(x), 1))||[0,1]RPL
M = 0.

We now see that for any consistent theory of RPL∀-Horn
clauses Φ, the term structure associated to Φ is a model of Φ.
To show that, we need the following lemmas and the notion
of rank of a formula. Our definition of rank is a variant
of the notion of syntactic degree of a formula of [17, Def.
5.6.7]). Let ϕ be a formula, the rank of ϕ, denoted by rk(ϕ)
is defined by:

• rk(ϕ) = 0 if ϕ is atomic;
• rk(¬ϕ) = rk((∃x)ϕ) = rk((∀x)ϕ) = rk(ϕ) + 1;



• rk(ϕ ◦ψ) = rk(ϕ) + rk(ψ) for every binary propo-
sitional connective ◦.

Note that since the set of RPL∀-Horn clauses is not recur-
sively definable, induction on the complexity of the clause
cannot be applied. Hence it is applied on the rank of the
clauses. Such induction can be used to prove next lemma.
Lemma 3. Let ϕ be an RPL∀-Horn clause where x1, . . . , xm

are pairwise distinct free variables. Then, for every terms
t1, . . . , tm, the substitution

ϕ(t1, . . . , tm/x1, . . . , xm)

is an RPL∀-Horn clause.

Lemma 4. For any consistent theory Φ and any evaluated
atomic formula (ϕ, s),

||(ϕ, s)||[0,1]RPL

TΦ = ||(ϕ, s)||Φ.

Proof: It is enough to show that for any rational number
t ∈ [0, 1], ||(ϕ, s)||[0,1]RPL

TΦ ≥ t iff ||(ϕ, s)||Φ ≥ t.
Let t ∈ [0, 1] be a rational number, we have:

||(ϕ, s)||[0,1]RPL

TΦ ≥ t iff ||t→ (s→ ϕ)||[0,1]RPL

TΦ = 1 iff

||t&s→ ϕ||[0,1]RPL

TΦ = 1 iff ||ϕ||[0,1]RPL

TΦ ≥ t ∗Ł s iff

||ϕ||[0,1]RPL
M ≥ t ∗Ł s for every model 〈[0, 1]RPL,M〉 of Φ iff

for any model 〈[0, 1]RPL,M〉 of Φ,

||t→ (s→ ϕ)||[0,1]RPL
M = 1.

The second and latter equivalence are proved by using
[17, Def.2.2.4 (Axioms 5a and 5b)]. The latter expre-
ssion is equivalent to ||(ϕ, s)||[0,1]RPL

M ≥ t for every model
〈[0, 1]RPL,M〉 of Φ, i.e., ||(ϕ, s)||Φ ≥ t. 2

Lemma 5. For any consistent theory Φ and any evaluated
atomic sentences (ϕ1, s1), . . . , (ϕn, sn),

||(ϕ1, s1)& · · ·&(ϕn, sn)||[0,1]RPL

TΦ ≤ ||(ϕ1, s1)& · · ·&(ϕn, sn)||Φ.

Proof: By Lemma 4, it is clear for n = 1. For the sake
of clarity, we present the proof for the case n = 2, but the
argument is analogous for the cases with n > 2. First, by
Lemma 4 we have:

||(ϕ1, s1)&(ϕ2, s2)||[0,1]RPL

TΦ = ||(ϕ1, s1)||[0,1]RPL

TΦ ∗Ł ||(ϕ2, s2)||[0,1]RPL

TΦ =

||(ϕ1, s1)||Φ ∗Ł ||(ϕ2, s2)||Φ.

Since for any model 〈[0, 1]RPL,M〉 of Φ, ||(ϕ1, s1)||Φ ≤
||(ϕ1, s1)||[0,1]RPL

M and ||(ϕ2, s2)||Φ ≤ ||(ϕ2, s2)||[0,1]RPL
M , we have

that for any model 〈[0, 1]RPL,M〉 of Φ,

||(ϕ1, s1)||Φ∗Ł ||(ϕ2, s2)||Φ ≤ ||(ϕ1, s1)||[0,1]RPL
M ∗Ł ||(ϕ2, s2)||[0,1]RPL

M =

||(ϕ1, s1)&(ϕ2, s2)||[0,1]RPL
M .

Therefore, since ||(ϕ1, s1)&(ϕ2, s2)||Φ is the infimum, we
have

||(ϕ1, s1)||Φ ∗ ||(ϕ2, s2)||Φ ≤ ||(ϕ1, s1)&(ϕ2, s2)||Φ.

Consequently,

||(ϕ1, s1)&(ϕ2, s2)||[0,1]RPL

TΦ ≤ ||(ϕ1, s1)&(ϕ2, s2)||Φ. 2

Theorem 3. Let Φ be a consistent theory. For every RPL∀-
Horn clause ϕ without free variables,

If |ϕ|Φ = 1, then ||ϕ||[0,1]RPL

TΦ = 1.

Proof: Let ϕ be an RPL∀-Horn clause without free varia-
bles. We proceed by induction on rk(ϕ).

rk(ϕ) = 0. We can distinguish three subcases:

1) If ϕ = (ψ, s) is an evaluated atomic formula, the
statement holds by Lemma 4 (iii).

2) Let ϕ = (ψ1, s1)& · · ·&(ψn, sn)→ (ψ, s) be a basic
RPL∀-Horn formula, where (ψ1, s1), . . . , (ψn, sn), (ψ, s)
are evaluated atomic formulas. By hypothesis and Theorem
1 we have:

1 = |(ψ1, s1)& · · ·&(ψn, sn)→ (ψ, s)|Φ =

||(ψ1, s1)& · · ·&(ψn, sn)→ (ψ, s)||Φ.

Therefore, ||(ψ1, s1)& · · ·&(ψn, sn)||Φ ≤ ||(ψ, s)||Φ.
By Lemmas 4 and 5,

||(ψ, s)||[0,1]RPL

TΦ = ||(ψ, s)||Φ
and

||(ψ1, s1)& · · ·&(ψn, sn)||[0,1]RPL

TΦ ≤
||(ψ1, s1)& · · ·&(ψn, sn)||Φ.

Therefore

||(ψ1, s1)& · · ·&(ψn, sn)||[0,1]RPL

TΦ ≤ ||(ψ, s)||[0,1]RPL

TΦ .

That is,

||(ψ1, s1)& · · ·&(ψn, sn)→ (ψ, s)||[0,1]RPL

TΦ = 1.

3) If ϕ = φ1& · · ·&φm is a conjunction of basic RPL∀-
Horn formulas,

||φ1& · · ·&φm||[0,1]RPL

TΦ = 1 iff

||φi||[0,1]RPL

TΦ = 1 for every 1 ≤ i ≤ m.

From 1) and 2), |φi|Φ = 1 for every 1 ≤ i ≤ m and
thus |φ1& · · ·&φm|Φ = 1.

rk(ϕ) = n+ 1. Let ϕ = (∀x)ψ be such that ψ is an
RPL∀-Horn clause of rank n. Assume inductively that for
any RPL∀-Horn clause without free variables ξ of rank less
or equal than n and such that |ξ|Φ = 1, ||ξ||[0,1]RPL

TΦ = 1. By
assumption and Axiom ∀1,

Φ ` (∀x)ψ → ψ(t/x) for every term t.



From Axiom Ł2, sup{r | Φ ` r → ϕ} = 1 implies that
sup{r | Φ ` r → ψ(t/x)} = 1 for any term t. That is,

|ψ(t/x)|Φ = 1 for every term t.

Since ψ has rank n and is an RPL∀-Horn clause by
Lemma 3, we can apply the inductive hypothesis and con-
clude that ||ψ(t/x)||[0,1]RPL

TΦ = 1 for any term t. So, by
Lemma 2 (i),

||ψ(x)||[0,1]RPL

TΦ,v[x 7→t]
= 1 for every element t of the domain,

and thus we get ||(∀x)ψ||[0,1]RPL

TΦ = 1. 2

5. Conclusions and Future Work

The present paper is another step towards a systematic study
of theories of Horn clauses over predicate fuzzy logics from
a model-theoretic point of view, a study that we started in
[10] and which is still in progress. In particular, here we
have proved the existence of free models of theories of Horn
clauses in RPL∀.

Future work will be devoted to study the broad approach
taken in [8, Ch.8] to fuzzy logics with enriched languages.
We shall see if RPL∀-Horn clauses introduced here can be
generalized to that logics with enriched languages. Later,
since one of our next goals is to solve the open problem
(formulated by Cintula and Hájek in [9]) about the cha-
racterization of theories of fuzzy Horn clauses in terms
of quasivarieties, we will analyze quasivarieties and try to
define them in the context of fuzzy logics using recent
results on products over fuzzy logics like [12].

Herbrand structures have been important in model theory
and in the foundations of logic programming. Therefore,
as a continuation of the present work, we would like to
characterize the free Herbrand model in the class of the
Herbrand models of theories of RPL∀-Horn clauses without
equality. Finally, we will focus on a generalization of Her-
brand structure, fully named models, in order to show that
two types of minimality for these models (specifically free
models and A-generic models) are equivalent.
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2.2 Part II: art painting style categorization

The work-related to Part II is presented in the journal paper Costa et al. (2021). The
research work Costa et al. (2021) is an extended and revised version of the book chap-
ter Costa et al. (2018). We presented the results included in this book chapter at the
21st International Conference of the Catalan Association for Artificial Intelligence,
where we obtained the best presentation award.

2.2.1 Preliminaries: color spaces, the QCD model and the datasets
QArt-Dataset and Painting-91-BIP

In this chapter we first introduce the concept of color space and give an example of
its use. Then, we present the QCD model defined by Falomir, Museros & Gonzalez-
Abril (2015), and describe the datasets used in this PhD thesis, the QArt-Dataset and
the Painting-91-BIP. Finally, we explain the procedure we follow in order to obtain a
color description of each image in the datasets.

Color is defined as the human perception of the visible electromagnetic spectrum,
and a color space is a way by which we can specify colors (Tkalcic & Tasic (2003)).
The latter concept was defined by Hermann Grassmann in the middle of the nine-
teenth century. Nowadays there are different classes of color spaces (for more details
see Tkalcic & Tasic (2003)). The human visual system is composed of three compo-
nents which produce color sensation (Joblove &Greenberg (1978)). The color spaces
we use belong to the class of those spaces inspired by the properties of the human vi-
sual system. In this way, as we shown next a color space is a coordinate system that
makes it possible to describe any displayable color by the corresponding values of its
coordinates.

Let us now introduce one of the most well-known color spaces, the RGB space
(RGB stands for Red, Green, Blue), which creates the entire range of displayable
colors as a mixture of the three primary colors. The RGB color space intends to de-
scribe the visible electromagnetic spectrum by simulating the very first detection of
light. According to the trichromatic theory (based on the work of Thomas Young and
Hermann von Helmholtz in the 19th century), the components of the human visual
system are three types of photoreceptors, sensitive to particular wavelengths of red,
green and blue. They are the responsable of the perception of color, and nowadays
they are known as cell cones (or simply cones. The human eye has three types of
cones: S-cones, M-cones and L-cones (Long, Middle and Short wavelength sensitiv-
ity, respectively), depending on the visible wavelengths of light for which the cones
are sensitive to. In this way, the color is can be described by the three numerical com-
ponents. Thus any displayable color can be regarded as Cartesian coordinates in a
Euclidean space (in this case, as a point in the RGB system). In the RGB model, the
coordinates of any color must be contained in the cube shown in Figure 2.1.

The range of the three coordinates is [0,1]; and the origin at the vertex (i.e.,
(0,0,0)) corresponds to the black color. The intensity of the color increases along
the three axes, up to the vertex (i.e., (1,1,1)), which corresponds to the white color.
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FIGURE 2.1: RGB color space mapped to a cube. Au-
thor of the image: SharkD (own work Source-code avail-
able at the POV-Ray Object Collection., CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=3375025).

For instance, the coordinates for a color with R = 0.2,G = 0.6 and B = 0.8 in the
RGB cube are shown in Figure 2.2.

FIGURE 2.2: Example of a color in the RGB color space.
Author of the image: SharkD (own work Source-code avail-
able at the POV-Ray Object Collection., CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=3375025).

Other color spaces inspired by the properties of the human visual system have been
introduced in the literature, as for example the HSI color space (Hue,Saturation and
Intensity) or the HSV/HSB color space (Hue, Saturation and Value or Brightness).
In this thesis we work with the HSL color space (Hue, Saturation and Lightness),
described below, which is the space used to define the QCD model. The coordinates
of the HSL are obtained by linear transformations from the RGB space, but these
transformations are not unique. The QCD model translates the RGB color channels
into coordinates of the HSL (for the details on these linear transformations the reader
is referred to Falomir, Museros & Gonzalez-Abril (2015)).
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The QCD model was defined by Falomir, Museros & Gonzalez-Abril (2015).
With this model, one can extract the color coordinates of each pixel of any digital
image, describe it using the HSL color space, and obtain a color label for the pixel.
The HSL color space is described by 3 coordinates (uH,uL,uS)∈ [0,360]× [0,100]×
[0,100]⊆N3, where N stands for the set of natural numbers, and:

uH: The hue refers to the pure spectrum colors and corresponds to the dominant
color as perceived by a human. The uH takes any value from the interval
[0,360], that is, 0≤ uH ≤ 360.

uS: The saturation refers to the relative purity or the amount of white light mixed
with hue. The uS takes any value from the interval [0,100], i.e., 0≤ uS≤ 100.

uL: The luminance corresponds to the amount of light in a color. The uL takes any
value from the interval [0,100], that is, 0≤ uL≤ 100.

For each pixel in a digital image, using the QCD model one can extract its HSL
color coordinates and obtain its corresponding color name according to the following
Qualitative Color Reference System (QCRS) (see Figure 2.3), which discretizes the
HSL color space as follows:

QCRS = {uH,uS,uL,QCNAME1,...,5,QCINT 1,...,5},
where uH, uS and uL stand for the previous definitions, and the color namesQCNAME1,...,5
and its corresponding HSL interval values QCINT 1,...,5 are shown by Table 2.1. The
QCRS was calibrated by Falomir, Museros & Gonzalez-Abril (2015) using machine
learning on data obtained from surveys to people.

FIGURE 2.3: HSL colour space and QCD discretisation according to
the QCRS.

The QCD model considers 37 labels for color names, which are grouped into 5
sets according to their spatial properties in the color space:
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QCNAME1 = {black, light_grey, grey, dark_grey, white},

QCNAME2 = {red, orange, yellow, green, turquoise, blue, purple, pink},

QCNAME3 = {pale_red, pale_orange, pale_yellow, pale_green, . . . , pale_pink},

QCNAME4 = {light_red, light_orange, light_yellow, light_green, . . . , light_pink},

and QCNAME5 = {dark_red, dark_orange, dark_yellow, . . . , dark_pink}.

Let QCNAME1,...,5 be the union of the five sets above-defined, and let us note the
37 elements of QCNAME1,...,5 by QCi with 1≤ i≤ 37 (i.e., QCi denotes a color name
for 1 ≤ i ≤ 37). In order to determine a color name, QCi, for the color displayed
by a pixel, the QCD model considers the QCRS, which can also be expressed as the
following function:

fQCRS(uH,uL,uS) : [0,360]× [0,100]× [0,100]→ QCNAME1,...,5

(uH,uL,uS) ∈ [0,360]× [0,100]× [0,100] 7→ QCi ∈ QCNAME1,...,5,

defined in Table 2.1.

B

I

PI

FIGURE 2.4: Extract from the QArt-Dataset: paintings correspond-
ing to the Baroque style (B), the Impressionist style (I) and the Post-
Impressionist style (PI). All rights by Wikimedia commons, public

domain.

In this thesis we consider two datasets, the QArt-Dataset and the Painting-91-BIP
dataset. The QArt-Dataset contains 90 images (30 Baroque paintings, 30 Impression-
ist paintings and 30 Post-Impressionist paintings). For each art style, theQArt-Dataset
considers two representative authors: Velázquez and Vermeer for the Baroque style,
Monet and Renoir for the Impressionism style, and Gauguin and van Gogh for the
Post-Impressionism style (see Figure 2.4 for some examples). From the Painting-91
dataset introduced by Khan et al. (2014), Falomir et al. (2018) extracted the paintings
of the six authors considered in the QArt-Dataset, 252 in total. We consider a total of
247 of images from the Painting-91 dataset: 74 for the Baroque style (39 byVelázquez
and 35 by Vermeer), 82 for the Impressionism style (46 by Renoir and 36 by Monet),
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TABLE 2.1: The definition of the function fQCRS.

uH uL uS fQCRS(uH,uL,uS) QCNAME1,...,5
(0,20] black
(20,40] dark_grey

[0, 360] (40,60] [0,20] grey
(60,80] light_grey
(80,100] white

[0, 20] ∪ (335, 360] red
(20, 50] orange
(50, 80] yellow

(80, 160] (40,55] (50,100] green
(160, 200] turquoise
(200, 239] blue
(239, 297] purple
(297, 335] pink

[0, 20] ∪ (335, 360] pale_red
(20, 50] pale_orange
(50, 80] pale_yellow

(80, 160] (40,55] (20,50) pale_green
(160, 200] pale_turquoise
(200, 239] pale_blue
(239, 297] pale_purple
(297, 335] pale_pink

[0, 20] ∪ (335, 360] ligth_red
(20, 50] ligth_orange
(50, 80] ligth_yellow

(80, 160] (55,100] (50,100] ligth_green
(160, 200] ligth_turquoise
(200, 239] ligth_blue
(239, 297] ligth_purple
(297, 335] ligth_pink

[0, 20] ∪ (335, 360] dark_red
(20, 50] dark_orange
(50, 80] dark_yellow

(80, 160] (20,40] (50,100) dark_green
(160, 200] dark_turquoise
(200, 239] dark_blue
(239, 297] dark_purple
(297, 335] dark_pink

B

I

PI

FIGURE 2.5: Extract from the Painting-91-BIP dataset. All rights
under © creative commons, public license.

and 91 for the Post-Impressionism style (40 by van Gogh and 51 by Gauguin). The
dataset containing these 247 images is called Painting-91-BIP (Figure 2.5). Details of
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both datasets, the QArt-Dataset and the Painting-91-BIP, can be found in Appendix
A.

In order to obtain a color description of the images in the datasets, each fine-
art painting image (Img) is described by applying computer vision techniques (see
Falomir et al. (2018) for more details), from which we can extract a color vector
histogram:

( f1(Img), f2(Img), . . . , f37(Img)) ∈N37,

where fi(Img) corresponds to the number of pixels labeled as QCi in Img.
Let T (Img) be the number of pixels in Img, we define the frequency of the color

QCi, Fi(Img), as fi(Img)/T (Img) for 1 ≤ i ≤ 37. Note that for any image Img,
fi(Img),Fi(Img) ≥ 0 for 1 ≤ i ≤ 37. Then we transform the color traits in each
painting to expressions with the following sintaxis:

color_painting(P,QCi,Fi),

where P corresponds to the digital image identifier (provided by the chosen dataset),
QCi ∈ QCNAME1,...,5, Fi is defined as indicated above and 1≤ i≤ 37.

We have described all the images of the datasets considered using these formulas.
Examples of paintings described by these expressions are shown in Figures 2.6 – 2.11.

colour_painting(v10, black, 0.362).
colour_painting(v10, dark_turquoise, 0.056).
colour_painting(v10, dark_green, 0.025).
colour_painting(v10, dark_grey, 0.117).
colour_painting(v10, dark_orange, 0.022).
...
colour_painting(v10, light_green, 0.014).
colour_painting(v10, light_grey, 0.054).
colour_painting(v10, light_orange, 0.010).
...
colour_painting(v10, pale_yellow, 0.0128).
colour_painting(v10, pale_green, 0.046).
colour_painting(v10, turquoise, 0.0004).
colour_painting(v10, white, 0.021).

FIGURE 2.6: Equestrian Portrait of Prince Balthasar Charles (v10
in the QArt-Dataset) by Velázquez. All rights under © creative com-

mons, public license.

2.2.2 A summary of the main original contributions of Part II

First, wemotivate and contextualize the work related to Part II. Then, before including
the journal paper related to this part, we outline the original contributions of this part.

Qualitative descriptors and fuzzy knowledge representation for art painting
style categorization As we have shown in the previous section, art painting clas-
sification tasks in artificial intelligence have been recently fostered by machine learn-
ing algorithms (i.e., neural networks, support vector machines, deep learning, etc.).
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colour_painting(jan_vermeer_6, black, 0.329).
colour_painting(jan_vermeer_6, dark_grey, 0.043).
colour_painting(jan_vermeer_6, grey, 0.063).
colour_painting(jan_vermeer_6, light_grey, 0.165).
...
colour_painting(jan_vermeer_6, orange, 0.016).
colour_painting(jan_vermeer_6, light_orange, 0.070).
colour_painting(jan_vermeer_6, light_yellow, 0.030).
...
colour_painting(jan_vermeer_6, pale_orange, 0.050).
colour_painting(jan_vermeer_6, dark_orange, 0.101).
colour_painting(jan_vermeer_6, dark_blue, 0.004).
colour_painting(jan_vermeer_6, white, 0.095).

FIGURE 2.7: The Lacemaker ( jan_vermeer_6 in the Painting-91-BIP
dataset) by Vermeer. All rights under © creative commons, public

license.

colour_painting(rn3, black, 0.206).
colour_painting(rn3, dark_grey, 0.213).
colour_painting(rn3, dark_orange, 0.034).
...
colour_painting(rn3, green, 0.151).
colour_painting(rn3, light_grey, 0.1245).
colour_painting(rn3, light_orange, 0.033).
...
colour_painting(rn3, pale_orange, 0.068).
colour_painting(rn3, pale_green, 0.046).
colour_painting(rn3, white, 0.034).

FIGURE 2.8: Luncheon of the Boating Party (rn3 in the QArt-Dataset)
by Renoir. All rights under © creative commons, public license.

colour_painting(claude_monet13, black, 0.096).
colour_painting(claude_monet13, dark_turquoise, 0.019).
colour_painting(claude_monet13, grey, 0.068).
colour_painting(claude_monet13, light_yellow, 0.00).
...
colour_painting(claude_monet13, orange, 0.002).
colour_painting(claude_monet13, pale_orange, 0.006).
colour_painting(claude_monet13, light_blue, 0.178).
...
colour_painting(claude_monet13, pale_turquoise, 0.007).
colour_painting(claude_monet13, blue, 0.022).
colour_painting(claude_monet13, dark_blue, 0.090).
colour_painting(claude_monet13, white, 0.040).

FIGURE 2.9: Argenteuil Red Boats (claude_monet13 in the Painting-
91-BIP dataset) by Monet. All rights under © creative commons, pub-

lic license.

Machine learning methods provide high categorization accuracies, but they usually
cannot provide reasons to users regarding why an item is classified in a category.

Artificial intelligence is today present in almost all aspects of daily life, drawing
much interest from governments, universities, and societies in general. For this rea-
son, human-machine interaction is one of the ongoing reality to be expected in the
foreseeable future, or one could even say that these interactions are the current reali-
ties, so intuitive and easy communications are crucial for making possible satisfactory
interactions. In order to improve these interactions, in this doctoral thesis we make
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colour_painting(vg12, black, 0.003).
colour_painting(vg12, dark_green,0.001).
colour_painting(vg12, dark_grey, 0.015).
...
colour_painting(vg12, grey, 0.018).
colour_painting(vg12, light_orange, 0.057).
colour_painting(vg12, light_yellow, 0.009).
...
colour_painting(vg12, pale_orange, 0.089).
colour_painting(vg12, pale_green, 0.002).
colour_painting(vg12, white, 0.017).

FIGURE 2.10: Sunflowers (vg12 in the QArt-Dataset) by van Gogh.
All rights under © creative commons, public license.

colour_painting(paul_gauguin_41, black, 0.107).
colour_painting(paul_gauguin_41, dark_grey, 0.225).
colour_painting(paul_gauguin_41, grey, 0.143).
colour_painting(paul_gauguin_41, light_grey, 0.060).
...
colour_painting(paul_gauguin_41, dark_red, 0.010).
colour_painting(paul_gauguin_41, pale_red, 0.007).
colour_painting(paul_gauguin_41, light_blue, ).
...
colour_painting(paul_gauguin_41, dark_turquoise, 0.03).
colour_painting(paul_gauguin_41, orange, orange, 0.010).
colour_painting(paul_gauguin_41, white, 0.060).

FIGURE 2.11: The Ancestors of Tehamana (paul_gauguin_41 in the
Painting-91-BIP dataset) by Gauguin. All rights under © creative

commons, public license.

use of qualitative descriptors in the design of the classification algorithms presented.
Qualitative descriptors are theoretical tools which describe within the same formal-
ism different approaches to transform quantitative data into qualitative data Baillie &
Ganascia (2000). In this way, they extract qualitative phases from a data flow and
can serve to provide evidences to users regarding why an item is classified in a cat-
egory. Indeed, qualitative descriptors (see Falomir & Kluth (2018)) and conceptual
spaces (see for instance Mast et al. (2016) and Banaee et al. (2018)) have proven to be
favorable in providing human understandable narratives of scenes. Qualitative color
descriptors have been used by Falomir, Cabedo, Sanz & Abril (2015) to categorize
painting styles using some machine learning techniques (e.g., k-nearest neighbors
algorithms and SVMs). Later, Falomir et al. (2018) extended this approach by the
QArt-Learn, adding quantitative global features to the qualitative color descriptors.
In concordance to these works (Falomir, Cabedo, Sanz & Abril (2015) and Falomir
et al. (2018)), in order to classify paintings into art styles, we focus on the color fea-
tures of the images. In addition, in this doctoral thesis we integrate fuzzy logics to
express the knowledge we have about distinctive color traits of each style under study
(i.e., the Baroque, the Impressionism, and the Post-Impressionism styles). The use of
fuzzy notions helps us to interpret the algorithm designed, `-SHE, so that explaining
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its classifications becomes possible.
Machine learning methods in general provide high categorization accuracies, but

they need great amounts of training data. In this PhD thesis we consider two datasets,
the QArt-Dataset and the Painting-91-BIP dataset. The QArt-Dataset only contains
90 images (30Baroque paintings, 30 Impressionist paintings and 30 Post-Impressionist
paintings), and this is our training dataset. The Painting-91-BIP contains 247 im-
ages (74 Baroque paintings, 82 Impressionist paintings and 91 Post-Impressionist
painting), and we use it to evaluate the classifier algorithm, `-SHE.

Original Contributions

• Introduction of distinctive color traits of each style based on qualitative color
descriptors and fuzzy notions. Using the Qualitative Colour Descriptor model
(QCD model) introduced by Falomir, Museros & Gonzalez-Abril (2015), we
propose a method to obtain a color description of each image in the datasets
(Section 2 of Costa et al. (2021)).

• On the basis of the characteristic color features outlined by the art experts for
each art style under study, we present distinctive color traits of the three styles
as fuzzy notions (Section 3 of Costa et al. (2021)).

• Categorization of art styles. We introduce evaluated Horn clauses that express
characteristic color traits of the Baroque, the Impressionism, and the Post-
Impressionism styles (Section 4 of Costa et al. (2021).

• Design of the `ogical painting Style classifier based on Horn clauses and Ex-
planations, called `-SHE (Section 5 of Costa et al. (2021)).

2.2.3 The logical style painting classifier based on Horn clauses
and explanations (`-SHE)

Next, we include in this doctoral thesis the journal article Costa et al. (2021), titled The
logical style painting classifier based on Horn clauses and explanations (`-SHE)3.

3We acknowledge to the Logic Journal of the IGPL, and to the Oxford University Press.
https://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzz029/5618973
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Abstract
This paper presents a logical Style painting classifier based on evaluated Horn clauses, qualitative colour descriptors and

Explanations (�-SHE). Three versions of �-SHE are defined, using rational Pavelka logic (RPL), and expansions of Gödel
logic and product logic with rational constants: RPL, G(Q) and �(Q), respectively. We introduce a fuzzy representation of
the more representative colour traits for the Baroque, the Impressionism and the Post-Impressionism art styles. The �-SHE
algorithm has been implemented in Swi-Prolog and tested on 90 paintings of the QArt-Dataset and on 247 paintings of the
Paintings-91-PIB dataset. The percentages of accuracy obtained in the QArt-Dataset for each �-SHE version are 73.3% (RPL),
65.6% (G(Q)) and 68.9% (�(Q)). Regarding the Paintings-91-PIB dataset, the percentages of accuracy obtained for each �-
SHE version are 60.2% (RPL), 48.2% (G(Q)) and 57.0% ( �(Q)). Our logic definition for the Baroque style has obtained the
highest accuracy in both datasets, for all the �-SHE versions (the lowest Baroque case gets 85.6% of accuracy). An important
feature of the classifier is that it provides reasons regarding why a painting belongs to a certain style. The classifier also
provides reasons about why outliers of one art style may belong to another art style, giving a second classification option
depending on its membership degrees to these styles.

Keywords: qualitative colour, art, fuzzy logics, Horn clause, logic programming, classifier, explainable AI

1 Introduction

Classification tasks in artificial intelligence (AI) have been recently fostered by machine learning
algorithms (i.e. neural networks, support vector machines, deep learning, etc.). In the literature,
research works that deal with the challenge of classifying paintings in art styles are the following:
traditional Chinese paintings were classified using colour and support vector machines (SVMs) [22];
2-way classification of paintings by Renoir/Monet, Pollock/Ernst, Dalí/Ernst, Renoir/ Rothko and
Dalí/Kandinsky were categorized using signature styles (computer vision statistical features) and
SVMs [34, 35]; deep neural networks achieved a separation of image content from style, which
allowed to recast the content of one image in the style of another image [16]; deep neural networks
were also trained on object recognition for style categorization of artworks [23] and obtained
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81.45% accuracy for Baroque paintings, 82.15% for the Impressionism style and 74.51% for the
Post-Impressionism style. However, although machine learning methods provide high categorization
accuracies, they need great amounts of training data and they usually cannot provide reasons to users
regarding why an item is classified in a category. Providing reasons for a decision is very important
in human–machine interactions, because users expect intelligent systems to explain themselves in a
rational or human-like way when they take decisions. Moreover, although the expressiveness of deep
neural networks is the reason they succeed, it also causes them to learn uninterpretable solutions that
could have counter-intuitive properties [37]: (i) the individual units in the learning algorithm does
not contain semantic information; and (ii) the stability of neural networks can be affected by small
perturbations to their inputs (adversarial examples). Our research differs from all these approaches
in that it does not use machine learning, but logic representation and moreover, it can generate
explanations of the outliers (i.e. items classified in a wrong category) using qualitative concepts (as
individual units with semantic meaning), which are used for the classification as features.

Logical reasoning has been also associated with image interpretation: non-monotonic reasoning
has been applied to image description [30]; description logics have been used to interpret digital
images by describing each object by its colour and qualitative shape and by its main spatial features
(location, relative orientation and topology), which allows to infer new object categories (i.e. doors)
by reasoning [10], etc. Fuzzy descriptions logics have been also applied to image interpretation: a
fuzzy spatial relation ontology have been developed to deal with brain structures in 3D magnetic
resonance images [21]; a fuzzy logic-based colour histogram analysis for discriminating benign skin
lesions from malignant melanomas in dermoscopy images has been proposed [2]; fuzzy logics have
been also used in landslide identification and classification [1]; a general type-2 fuzzy logic method
for edge detection has also been applied to colour format images [17, 31]; a fuzzy description logics-
based reasoning framework has been developed, which reasons over an extracted description of an
outdoor image and it handles the underlying vagueness in a formal way providing well-defined
reasoning services [8]. The work presented in this paper differs from all these logic approaches for
image interpretation in that it uses qualitative features of colour and do classify images of paintings
into art styles, also providing explanations when there are reasons to believe that a painting may fit
in two styles. In the literature, some research works tend to follow the explainable AI principle too.
Recently, research works have appeared, which provide reasons for a concept/object to be classified
in a category: when categorizing leaves [3] or when categorizing places, movies and wines [9].
In addition, Sørmo et al. [36] consider different theories of explanation from the philosophy and
cognitive science communities. Using these studies, the authors present a framework for explanation
in case-based reasoning. Moreover, the SWALE project1 studies creative explanation of anomalous
events. The current paper follows also this explainable AI principle.

Qualitative descriptors have been shown to be successful in managing incomplete, imprecise and
ambiguous information [5, 15] when reasoning. In addition, they use linguistic concepts that align
with human perception and can be easily used to generate narratives that explain the reasoning
process in order to give feedback to the users. Regarding human–machine interaction, qualitative
descriptors [11] and conceptual spaces [3, 27] have proven to be successful in providing human
understandable narratives of scenes. In the literature, few works have used qualitative colours for
image interpretation. Semantic categories (e.g. warm, cold) and colour names have shown to be
effective for painting retrieval in databases [26]. Qualitative colour descriptors (QCDs) have been
used to categorize painting styles using machine learning techniques (i.e. k-Nearest Neighbors and

1 http://www.cs.indiana.edu/\ignorespacesleake/projects/swale
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98 Logical Style Painting Classifier

SVMs) and the results obtained an accuracy of 75% for a dataset of 70 paintings [13]. Later, this
approach was extended by QArt-Learn [14] adding quantitative global features to the QCDs and the
accuracy obtained was 65% for 252 paintings. However, as far as the authors are concerned, there are
no research works that integrate qualitative descriptors and logics for art style categorization that also
can provide explanations of decisions and outliers. This is the main contribution of this paper, i.e. the
definition of a �ogical Style painting classifier based on Horn clauses and Explanations (�-SHE).
This paper extends the pilot study [7] that formalizes distinctive colour traits for the Baroque, the
Impressionism and the Post-Impressionism styles, and introduces an evaluated Horn clause based
on these colour features as a categorization of each style. �-SHE has been tested using the above-
mentioned fuzzy propositional logics using 90 painting of the QArt-dataset and on a wider and
different dataset, the Paintings-91-PIB dataset containing 247 paintings.

The restof thepaper isorganizedasfollows.Section 2introducestheQCDaspreliminaries.Section 3
presents the colour traits that characterize the Baroque, the Impressionism and the Post-Impressionism
styles in the literature and it explains how these traits are obtained. Section 4 presents three different
logics that can be used to categorize the art styles, rational Pavelka logic (RPL) and expansions of Gödel
logic and product logic with rational constants, and explains how the definitions for each art style are
parameterizedusing theQArt-dataset.Section 5describes indetail the�-SHEcategorization.Section 6
presents and discusses the results obtained when classifying the 90 images in the QArt-Dataset with
the three art style painting classifiers defined: �-SHERPL, �-SHEG(Q) and �-SHE�(Q). Section 8 shows
and analyses the results obtained when classifying the 247 images in the Paintings-91-PIB dataset with
the three classifiers. Finally, in Section 9 conclusions and future work are presented.

2 Preliminaries

This section introduces the QCD model and shows how the colour frequencies of any digital image
are extracted and expressed as facts for reasoning using Prolog Horn clauses. The datasets used in
this paper are also introduced here: the QArt-Dataset and the Painting-91-BIP.

The QCD model was defined by Falomir et al. [12]. It extracts the colour coordinates of each pixel
of any digital image and it describes it using the Hue, Saturation and Lightness (HSL) colour space.

The HSL colour space is described by 3 coordinates (uH , uL, uS) ∈ [0, 360]×[0, 100]×[0, 100] ⊆
N3, where N stands for the set of natural numbers.

1. uH : The hue refers to the pure spectrum colours and corresponds to the dominant colour as
perceived by a human. The uH takes any value from the interval [0, 360], i.e. 0 ≤ uH ≤ 360.

2. uS: The saturation refers to the relative purity or the amount of white light mixed with hue.
The uS takes any value from the interval [0, 100], i.e. 0 ≤ uS ≤ 100.

3. uL: The luminance corresponds to the amount of light in a colour. The uL takes any value from
the interval [0, 100], i.e. 0 ≤ uL ≤ 100.

For each pixel in a digital image, the QCD model [12] extracts its HSL colour coordinates and
it obtains its corresponding colour name according to the following Qualitative Colour Reference
System (QCRS) (see Figure 1), which discretizes the HSL colour space as follows:

QCRS = {uH , uS, uL, QCNAME1...5, QCINT1...5},
where uH , uS and uL stands for the previous definitions, and the colour names QCNAME1...5 and its
corresponding HSL interval values QCINT1...5 are shown by Table 1. The QCRS was calibrated using
machine learning on data obtained from surveys to people[12, 33].

The QCD model considers 37 labels for colour names [12], which are grouped into 5 sets
according to their spatial properties in the colour space:

1. QCNAME1 = {black, light_grey, grey, dark_grey, white},
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Logical Style Painting Classifier 99

FIGURE 1. HSL colour space and QCD discretization according to the QCRS. The colour version
of the figure is available on the online version of this paper.

2. QCNAME2 = {red, orange, yellow, green, turquoise, blue, purple, pink},
3. QCNAME3 = {pale_red, pale_orange, pale_yellow, pale_green, . . . , pale_pink},
4. QCNAME4 = {light_red, light_orange, light_yellow, light_green, . . . , light_pink} and
5. QCNAME5 = {dark_red, dark_orange, dark_yellow, dark_green, . . . , dark_pink}.
Let QCNAME1...5 = {black, red, orange, . . . , dark_purple, dark_pink} = {QCi | 1 ≤ i ≤ 37} be the

set of all the 37 colour names considered by the QCD model, where each QCi denotes a colour name
for 1 ≤ i ≤ 37. In order to determine a colour name, QCi, for the colour displayed by a pixel, the
QCD considers the QCRS (see Figure 1), which can also be expressed as the following function:

fQCRS(uH , uL, uS) : [0, 360] × [0, 100] × [0, 100] → QCNAME1...5

(uH , uL, uS) ∈ [0, 360] × [0, 100] × [0, 100] �→ QCi ∈ QCNAME1...5,

defined by Table 1.
In order to obtain a colour description of the images in the datasets, each fine-art painting

image (Img) is described by applying computer vision techniques [14] that extract a colour vector
histogram: (f1(Img), f2(Img), . . . , f37(Img)) ∈ N37, where fi(Img) corresponds to the number of
pixels labelled as QCi in Img. Let T(Img) be number of pixels in Img, we define the frequency
of the colour QCi, Fi(Img), as fi(Img)/T(Img) for 1 ≤ i ≤ 37. Note that for any image Img,
fi(Img), Fi(Img) ≥ 0 for 1 ≤ i ≤ 37.

We transform the colour traits in each painting to Prolog facts with the following sintaxis:

colour_painting(P, QCi, Fi),
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100 Logical Style Painting Classifier

TABLE 1 The definition of the function fQCRS

uH uL uS fQCRS(uH , uL, uS)QCNAME1...5

(0, 20] black
(20, 40] dark_grey

[0, 360] (40, 60] [0,20] grey
(60, 80] light_grey
(80, 100] white

[0, 20] (335, 360] red
(20, 50] orange
(50, 80] yellow
(80, 160] (40, 55] (50,100] green
(160, 200] turquoise
(200, 239] blue
(239, 297] purple
(297, 335] pink

[0, 20] (335, 360] pale_red
(20, 50] pale_orange
(50, 80] pale_yellow
(80, 160] (40, 55] (20, 50) pale_green
(160, 200] pale_turquoise
(200, 239] pale_blue
(239, 297] pale_purple
(297, 335] pale_pink

[0, 20] (335, 360] ligth_red
(20, 50] ligth_orange
(50, 80] ligth_yellow
(80, 160] (55, 100] (50,100] ligth_green
(160, 200] ligth_turquoise
(200, 239] ligth_blue
(239, 297] ligth_purple
(297, 335] ligth_pink

[0, 20] (335, 360] dark_red
(20, 50] dark_orange
(50, 80] dark_yellow
(80, 160] (20, 40] (50, 100) dark_green
(160, 200] dark_turquoise
(200, 239] dark_blue
(239, 297] dark_purple
(297, 335] dark_pink

where P corresponds to the digital image identifier (provided by the chosen dataset), QCi ∈
QCNAME1...5, Fi is defined as indicated above and 1 ≤ i ≤ 37.

The QArt-Dataset contains 90 images (30 Baroque paintings, 30 Impressionist paintings and 30
Post-Impressionist paintings) and we have used its colour histograms describing each image to obtain
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Logical Style Painting Classifier 101

FIGURE 2. Extract from the QArt-Dataset: paintings corresponding to the Baroque style (B),
Impressionist style (I) and Post-Impressionist style (PI). All rights by Wikimedia commons, public
domain. The colour version of this figure is available on the online version of this paper.

FIGURE 3. Extracted Prolog facts from Equestrian Portrait of Prince Balthasar Charles by Velázquez.
All rights under © creative commons, public license. The colour version of this figure is available
on the online version of this paper.

the parameters in �-SHE. For each art style, the QArt-Dataset considers two representative authors:
Velázquez and Vermeer for the Baroque style, Monet and Renoir for the Impressionism style and
Gauguin and van Gogh for the Post-Impressionism style (see Figure 2 for some examples). From the
Painting-91 dataset introduced in [24], Falomir et al. [14] extracted the paintings of the six authors
considered in the QArt-Dataset, 252 in total. This paper considers a total of 247 of images from
the Painting-91 dataset: 74 for the Baroque style (39 by Velázquez and 35 by Vermeer), 82 for the
Impressionism style (46 by Renoir and 36 by Monet) and 91 for the Post-Impressionism style (40 by
Van Gogh and 51 by Gauguin). This paper renames this new dataset as Painting-91-BIP (Figure 6).
Section 8 uses the Painting-91-BIP dataset in order to test �-SHE. In order to name the images in
both datasets, the QArt-Dataset and the Painting-91-BIP dataset, we use the notation established
in each dataset. Examples of paintings described by the Prolog facts are shown in Figures 3,
4 and 5.
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102 Logical Style Painting Classifier

FIGURE 4. Extracted Prolog facts from Luncheon of the Boating Party by Renoir. All rights under ©
creative commons, public license. The colour version of this figure is available on the online version
of this paper.

FIGURE 5. Extracted Prolog facts from Sunflowers by van Gogh. All rights under © creative
commons, public license. The colour version of this figure is available on the online version of
this paper.

3 Art style representation based on fuzzy QCDs

In this section we present a representation of the characteristic colour traits of the Baroque, the
Impressionism and the Post-Impressionism styles using fuzzy sets. The fuzzy sets are defined using
the frequencies of the colours.

The literature explains that Baroque paintings show mainly indoor scenes where lighting is
exaggerated by contrasting dark colours to light/pale colours [32]. Regarding colour features in
the Impressionist style, the literature [25, 28] explains that the development of synthetic pigments
provided artists with vibrant shades of blue and green, among others. Moreover, the Impressionists
captured the effects of sunlight by painting en plein air (outdoors), and thereby the blue of
the sky, light colours and grey shadows are common colour traits in this style. In contrast to
the Impressionism style, the Post-Impressionist style [19] breaks the tendency of representing
colours as appearing in reality [20]. The Post-Impressionists looked for expressiveness using colours
arbitrarily [38]. Thus, colours with pure hues (i.e. vivid colours) are present in the Post-Impressionist
paintings.

Hence, with the goal of defining the different colour features for the art styles selected, we extend
the QCD model.
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Logical Style Painting Classifier 103

DEFINITION 1
The following is an extension of the QCD model:

dark_colours = {black, dark_red, dark_orange, dark_yellow, dark_green, dark_turquoise,
dark_blue, dark_purple, dark_pink, dark_grey},
pale_colours = {pale_red, pale_orange, pale_yellow, pale_green, pale_turquoise, pale_blue,
pale_purple, pale_pink, grey},
light_colours = {white,light_red, light_orange, light_yellow, light_green, light_turquoise,
light_blue, light_purple, light_pink},
grey_hue = {grey, pale_grey, light_grey, dark_grey},
red_hue = {red, pale_red, light_red, dark_red},
orange_hue = {orange, pale_orange, light_orange, dark_orange},
yellow_hue = {yellow, pale_yellow, light_yellow, dark_yellow},
green_hue = {green, pale_green, light_green, dark_green},
turquoise_hue = {turquoise, pale_turquoise, light_turquoise, dark_turquoise},
blue_hue = {blue, pale_blue, light_blue, dark_blue},
purple_hue = {purple, pale_purple, light_purple, dark_purple} and
pink_hue = {pink, pale_pink, light_pink, dark_pink}.

Vivid colours, warm hues and cold hues are also defined:

warm_hue = {red_hue,orange_hue,yellow_hue},
vivid_colours = {red, orange, yellow, green, turquoise, blue, purple, pink} and
cold_hue={green_hue,turquoise_hue,blue_hue,purple_hue,pink_hue}.

Considering these colour features outlined by the art experts and the extension of the QCD
presented above, we propose to use the following distinctive colour traits for the Baroque style:

darkness_level: the accumulative sum of the frequencies of dark_colours.
no_paleness_level: the total frequency of colours that are not pale_colours.
contrast_level: the total frequency of dark and pale colours bounded to 1.

Regarding the Impressionism style, four characteristic colour features are proposed:

bluish_level: the total frequency of the QCs extracted as having blue hue (see Definition 1).
greyish_level: the total frequency of the QCs extracted as having grey hue (see Definition 1).
diversityofHues: all the QCs in a painting are grouped according to their hues (see
Definition 1) and they are related to the total number of hues in QCD, which is 11
(|vivid_colours ∪ {black,white}| = 11).
diversityofQCDs: the relation between the amount of qualitative colours (including all their
pale-, light- and dark- variants) in a painting, and the total number of QCs possible (i.e. 37).

Two distinctive colour traits for the Post-Impressionism are suggested:

vividness_level: the total frequency of the QCs extracted as having pure hue (see Definition 1).
warm_colours_level: the total frequency of the QCs extracted as having warm hue (see
Definition 1).

4 Art style categorization based on evaluated Horn clauses

Since the distinctive colour traits presented in Section 3 can be regarded in a natural way as fuzzy
notions, in this section we introduce one evaluated Horn clause for each painting style using the
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104 Logical Style Painting Classifier

FIGURE 6. Extract from the Painting-91-BIP dataset. All rights under © creative commons, public
license. The colour version of this figure is available on the online version of this paper.

RPL, and other propositional fuzzy languages expanded with truth-constants. These evaluated Horn
clauses give a categorization of the different painting styles. First we recall the syntax and semantics
of these formal languages and then introduce a propositional variable for each main colour trait of the
different painting styles. Finally, we show how the rational parameters of the evaluated Horn clauses
are obtained using the data on qualitative colours and frequencies extracted from the QArt-Dataset.

DEFINITION 2
(Syntax and semantics of continuous t-norm based propositional fuzzy logics [4, Chapter I,
Definition 1.1.13]) The language of continuous t-norm based propositional fuzzy logics contains
a set of propositional variables Var, the binary connectives in the set {→, &, ∧, ∨, ↔}, the unary
connective ¬ and the truth-constants 0, 1. Let [0, 1] ⊆ , where denotes the set of real numbers, a
[0, 1]-evaluation e is a mapping e : Var → [0, 1]. Let ∗ be a continuous t-norm, an evaluation e
extends uniquely to an evaluation e∗ of the set of well-formed formulas as usual.

For the sake of simplicity, no distinction between e and e∗ is made and the notation is simplified
to e in both cases. For each rational number r ∈ [0, 1], we consider the truth-constant r so that
e∗(r) = r. In order to categorize the three art styles considered, we use RPL and expansions with
rational constants of Gödel logic (G(Q) for short) and product logic (�(Q) for short). Let ϕ, ψ be
two formulas, we recall the interpretation of & and → in RPL:

e(ϕ&ψ) = max{0, e(ϕ) + e(ψ) − 1}, and
e(ϕ → ψ) = min{1 − e∗(ϕ) + e∗(ψ), 1}.

Regarding G(Q), let us remember that

e(ϕ&ψ) = min{e(ϕ), e(ψ)}, and

e(ϕ → ψ) =
{

1 ifϕ ≤ ψ

ψ , otherwise.

Finally, with respect to �(Q), let us recall that

e(ϕ&ψ) = e(ϕ)e(ψ), and

e(ϕ → ψ) =
{

1 if ϕ ≤ ψ
ψ
ϕ

, otherwise.
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Logical Style Painting Classifier 105

Next definition is a generalization of the definition of RPL∀-Horn clause introduced in [6].

DEFINITION 3
(Evaluated Horn clause [6, Definition 10]) An atomic evaluated formula (ϕ, r) is defined as r → ϕ,
where r ∈ [0, 1] is a rational number and ϕ is an atomic formula without truth constants apart from
0 and 1. An evaluated Horn clause has the form

(ϕ1, r1)& . . . &(ϕn, rn) → (ϕ, s),

where (ϕ1, r1), . . . , (ϕn, rn) and (ϕ, s) are atomic evaluated formulas.

For the sake of clarity, evaluated Horn clauses are simply named Horn clauses. Consider the fol-
lowing propositional variables referring to the colour features defined in Section 3: darkness_level,
no_paleness_level, contrast_level, bluish_level, greyish_level,diversityofHues, diversityofQCDs,
vividness_level, warm_colours_level; and consider also the following propositional variables
referring to the styles Baroque, Impressionism and Post-Impressionism, respectively: baroque,
impressionism, post_impressionism. We propose the following Horn clauses to categorize the
different art styles selected. HB represents the Baroque style:

(darkness_level, 0.76)&(no_paleness_level, 0.84)&

(contrast_level, 0.90) → (baroque, 1).

HI represents the Impressionist style:

(diversityofQCDs, 0.60)&(diversityofHues, 0.75)&(bluish_level, 0.05)

&(greyish_level, 0.44) → (impressionism, 1).

And HPI represents the Post-Impressionist style:

(vividness_level, 0.14)&(warm_colours_level, 0.53) → (post_impressionism, 1).

Observe that the semantics of the three logics selected in this paper are different, and thus the
interpretation of the Horn clauses depends on the logic used. Since their systematization by Hájek
[18], these three logics have shown to be some of the most significant and well-known t-norm based
logics.

For any digital painting p, it can be associated an evaluation ep of the variables in the antecedent
of the Horn clauses HB, HI , HPI . For instance, for painting v10 (see Figure 3), in RPL we obtain
that ev10(contrast_level, 0.90) = min{1 − 0.9 + ev10(contrast_level), 1} = min{1 − 0.9 + 0.87, 1} =
0.97. Given a painting p, the antecedent of clause HB is evaluated using ep in order to obtain a
membership degree for the Baroque style. For the sake of clarity, let us introduce some notation:
B1(p) = ep(darkness_level, 0.76) and

B2(p) = ep(no_paleness_level, 0.84) I1(p) = ep(diversityofQCDs, 0.60)

B3(p) = ep(contrast_level, 0.90) I2(p) = ep(diversityofHues, 0.75)

PI1(p) = ep(vividness_level, 0.14) I3(p) = ep(bluish_level, 0.05)

PI2(p) = ep(warm_colours_level, 0.53) I4(p) = ep(greyish_level, 0.44).

According to the semantics of each logic selected, the membership degrees to the Baroque,
the Impressionism and the Post-Impressionism styles are next calculated. For the sake of clarity,
throughout this section we focus the presentation on the �-SHERPL version. For �-SHERPL,

B(p) = max{0, B1(p) + B2(p) + B3(p) − 2}
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106 Logical Style Painting Classifier

(i.e. B(p) = ep((darkness_level, 0.76)&(no_paleness_level, 0.84)&(contrast_level, 0.9))), I(p) =
max{0, I1(p) + I2(p) + I3(p) + I4(p) − 3}, and PI = max{0, PI1(p) + PI2(p) − 1}.

Let us now consider the painting v10 in the QArt-Dataset, we take �-SHERPL and we show how
the membership degree of v10 to each art style is obtained. First, the levels of the characteristic
colour traits of the Baroque style are obtained:

B1(v10) = ev10(darkness_level, 0.76) = min{1 − 0.76 + ev10(darkness_level), 1} =
min{0.24 + 0.67, 1} = 0.91,
B2(v10) = ev10(no_paleness_level, 0.84) = min{1 − 0.84 + ev10(no_paleness_level), 1}
= min{0.16 + 0.80, 1} = 0.96 and
B3(v10) = ev10(contrast_level, 0.90) = min{1 − 0.9 + ev10(contrast_level), 1} =
min{1 − 0.9 + 0.87, 1} = 0.97.

The membership degree to the Baroque style given to v10 is B(v10) = max{0, B1(p) + B2(p) +
B3(p) − 2} = {0.91 + 0.96 + 0.97 − 2, 0} = 0.84. The other membership degrees are obtained
similarly: I(v10) = 0.78, and PI(v10) = 0.53.

We explain the procedure for the colour trait darkness_level of clause HB. The median and the
standard deviation for darkness_level are denoted by xdly and σdly, respectively, where dl denotes
darkness_level and y is substituted by B, I , PI , depending on the art style selected. For instance, xdlB
denotes the median of the darkness_level of the 30 Baroque paintings in the QArt-Dataset. We also
define the interval Rdly = [xdly − σdly, xdly + σdly]. For each art style y, xdly, σdly, Rdly are computed
from the colour frequencies using the R platform [29] (observe that for any digital painting, each
colour trait yields a degree in [0, 1]):

darkness_level(dl) xdly σdly Rdly = [xdly − σdly, xdly + σdly]
Baroque(B) 0.76 0.15 [0.61, 0.91]
Impressionism(I) 0.42 0.20 [0.22, 0.62]
Post − Impressionism(PI) 0.33 0.19 [0.14, 0.52].

Let a, b, c, d ∈ [0, 1], where b ≥ a and d ≥ c, and R1 = [a, b], R2 = [c, d] be two intervals, the
intersection of R1 and R2 is defined as

R1 ∩ R2 =
{

∅ if c > b or a > d

[max{a, c}, min{b, d}] otherwise.

Let R = [a, b] be an interval, the length of R, denoted by |R|, is defined as |R| = b − a; and by
convention the length of the empty set is 0.

Note that |RdlB ∩ RdlI | = 0.009, i.e. the darkness level interval corresponding to the Baroque and
the Impressionism styles presents an intersection that corresponds to 2.98% of the length of RdlB
and 2.22% of the length of RdlI . This shows that these styles have very few in common regarding
the darkness_level feature. Moreover, |RdlB ∩ RdlPI | = 0, but |RdlI ∩ RdlPI | = 0.303. Thus, the
darkness_level feature is very similar in both styles, the Impressionism and the Post-Impressionism
styles. These results suggest that using the level of darkness to categorize Baroque paintings is
reasonable, considering the large difference between xdlB and both xdlI and xdlPI . They also show that
darkness is not a useful colour feature for separating the Impressionism and the Post-Impressionism
styles. Furthermore, xdlB is much larger than xdlI and xdlPI , and σdlI and σdlPI represent around the
half part of XdlI and xdlPI , respectively. Considering these, it has been deemed advisable to consider
0.76 as the parameter for darkness_level. This simple method avoids hard computation such as other
training methods used in machine learning.
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5 The �-SHE categorization

The aim of this section is to describe the �-SHE algorithm that is intended to generate human-
understandable explanations based on colour traits according to the categorization obtained. We
recall that �-SHE has been defined for RPL, G(Q), �(Q): �-SHERPL, �-SHEG(Q) and �-SHE�(Q),
respectively. Note that �-SHE categorizations are not crisp, i.e. a membership degree for each art
style—Baroque, Impressionism and Post-Impressionism—is provided, as detailed in Section 4.

From now on, let p denote any digital painting. We define the belief degree for p to belong to an
art style as

dbAS(p) =

⎧
⎪⎨
⎪⎩

(Bst, B(p)) if max{B(p), I(p), PI(p)} = B(p) and B(p) �= I(p)

(Ist, I(p)) if max{B(p), I(p), PI(p)} = I(p)

(PIst, PI(p)) if max{B(p), I(p), PI(p)} = PI(p) and B(p) �= PI(p) �= I(p).

Note that in the event of a tied membership degree, dbAS chooses the most restrictive art style.
Since �-SHE has to give a second option in difficult cases, a similarity between membership
degrees, Sim, is defined: SimB,I (p) = |B(p) − I(p)|, SimB,PI (p) = |B(p) − PI(p)| and SimI ,PI (p) =
|I(p)−PI(p)|, where SimB,I (p) stands for the closeness between the Baroque and the Impressionism
membership degrees of p, and SimB,PI (p) and SimI ,PI (p) are described analogously. From data
analysis obtained in the �-SHE classification of the QArt-Dataset, we considered different values
for determining doubt between art styles: 0.10, 0.15, 0.20 and 0.25. Finally, it was found by
experimentation that 0.15 is the best option for this parameter.

For the sake of clarity, throughout this section we introduce only the �-SHERPL version. The rest
of the �-SHE versions are defined analogously. The �-SHERPL algorithm categorizes paintings in the
three following styles.

(1) If dbAS = (Bst, B(p)), then ‘p is a Baroque painting.’ & explanationRPL(B, p).
– If SimB(p),I(p) ≤ 0.15, then ‘Although p is categorised in the Baroque style, there are

reasons to believe that it may belong to the Impressionism.’ & explanationRPL(I , p).
– If SimB(p),PI(p) ≤ 0.15, then ‘Although p is categorised in the Baroque style, there are

reasons to believe that it may belong to the Post-Impressionist.’
& explanationRPL(PI , p).

(2) If dbAS = (Ist, I(p)), then ‘p is an Impressionist painting (I).’ & explanationRPL(I , p).
– If SimB(p),I(p) ≤ 0.15, then ‘Although p is categorised in the Impressionist style, there are

reasons to believe that it may belong to the Baroque.’ & explanationRPL(B, p).
– If SimI(p),PI(p) ≤ 0.15, then ‘Although p is categorised in the Impressionist style,

there are reasons to believe that it may belong to the Post-Impressionism.’ &
explanationRPL(PI , p).

(3) If dbAS = (PIst, PI(p)), then ‘p is a Post-Impressionist painting (PI).’
& explanationRPL(PI , p).
– If SimB(p),PI(p) ≤ 0.15, then ‘Although p is categorised in the Post-Impressionist style,

there are reasons to believe that it may belong to the Baroque.’
& explanationRPL(B, p).

– If SimI(p),PI(p) ≤ 0.15, then ‘Although p is categorised in the Post-Impressionist
style, there are reasons to believe that it may belong to the Impressionism.’ &
explanationRPL(I , p).
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108 Logical Style Painting Classifier

TABLE 2 Thresholds used by the explanations corresponding to each colour trait and logic

Logic/thresholds RPL G(Q) �(Q)

TB1 0.82 0.94 0.90
TB2 0.90 0.98 0.97
TB3 0.78 0.98 0.95
TI1 0.87 0.89 0.90
TI2 0.89 0.95 0.94
TI3 0.97 1.00 0.87
TI4 0.84 0.92 0.80
TPI1 0.96 0.89 0.47
TPI2 0.76 0.89 0.75

In addition, explanations for specific characteristics in each art style can also be provided, as
explained below. Let us consider the feature darkness_level as significant for classifying a painting
p into the Baroque style, whenever B1(p) is higher than a threshold TB1. If this is the case, the
presence of this feature must appear as an explanation/evidence for p classified into this style. This
threshold TB1 is calculated as xB1 − σB1 , where xB1 is the mean of {B1(p) | p is a Baroque painting}
and σB1 is the corresponding standard deviation. Notice that the thresholds are obtained from the
truth value of an implication, and this truth value depends on the t-norm used. Hence, each threshold
depends on the selected logic. Thus, a superscript indicating the logic used is provided. For instance,
the three cases regarding the threshold B1 are noted as TRPL

B1 , TG(Q)
B1 , T�(Q)

B1 . Table 2 shows the value
of each threshold for the three logics considered.

For the Baroque style, explanationRPL(B, p) provided by �-SHE are the following:

If B1 ≥ TRPL
B1 , then ‘The darkness evidences the Baroque style.’

If B2 ≥ TRPL
B2 , then ‘Due to the contrast of dark and pale colours.’

If B3 ≥ TRPL
B3 , then ‘The lack of pale colours evidences this style.’

The �-SHE also provides the following explanations, explanationRPL(I , p), for the Impressionist
style:

If I1 ≥ TRPL
I1 , then ‘The diversity of qualitative colours evidences the Impressionism style.’

If I2 ≥ TRPL
I2 , then ‘The variety of hues evidences the Impressionism style.’

If I3 ≥ TRPL
I3 , then ‘The amount of bluish evidences this style.’

If I4 ≥ TRPL
I4 , then ‘The amount of grey colour evidences this style.’

The explanations by �-SHE for the Post-Impressionist style, explanationRPL(PI , p), are the
following:

If PI1 ≥ TRPL
PI1 , then ‘The presence of vivid colours evidences the Post-Impressionism style.’

If PI2 ≥ TRPL
PI2 , then ‘The high level of warm colours evidences the Post-Impressionism style.’

6 Implementing �-SHE

This section shows the implementation of the �-SHE algorithm and provides some examples of
responses produced by �-SHE.
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Logical Style Painting Classifier 109

�-SHE has been implemented in Prolog using Swi-Prolog [39] as the testing platform, whereas
some thresholds have been obtained using the platform R [29], as indicated previously.

Some of the clauses implemented in Prolog for evaluating RPL formulae are shown next:

The Prolog implementation clauses for obtaining the degree of believing of a painting P to be
classified into the Baroque style is the following:

For the sake of simplicity the exposition is focused on the �-SHERPL version (the versions �-
SHEG(Q) and �-SHE�(Q) are implemented analogously).

The clauses used for obtaining the darkness_level of a painting are shown next. The QCDs
(Sections 2 and 4) are highlighted in blue:

The examples highlighted in Section 2 are v10, rn3 and vg12. Our purpose was to choose 3
possibilities of correct classifications: (i) clear case with membership degree 1 (Figure 5); (ii) a clear
case with membership degree different from 1 (Figure 4); and (iii) not clear case, so a second opinion
is needed (Figure 3). Thus, Figure 5 shows a painting (vg12) classified in the Post-Impressionism
style with membership degree 1. Figure 4 (rn3 painting) shows that �-SHE correctly classifies a
painting when the membership degree to Impressionism is 0.891 (not 1). As we will see, here it
does not give a second opinion, because it is a clear case since the other membership degrees are
0.475 to Baroque and 0.604 to Post-Impressionism. Figure 3 shows a case where v10 painting has a
membership degree of 0.875 to Baroque Style. As we will see, here �-SHE provides a second opinion
because the membership degree to Impressionism Style is 0.78, close to 0.875.
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110 Logical Style Painting Classifier

So an example of the response produced by �-SHERPL regarding painting v10 is the following:

Moreover, the categorization reasons provided by �-SHERPL for the painting v10 (shown in Figure 3)
are the following:

An example of the response produced by �-SHERPL regarding painting rn3 (Figure 4) is the
following:

Moreover, the explanations provided by �-SHERPL for the painting rn3 (shown in Figure 4) are the
following:

Finally, an example of the response produced by �-SHERPL regarding painting vg12 (Figure 5) is
the following:

Moreover, the explanations provided for vg12 by �-SHERPL are the following:

7 Testing the �-SHE on the QArt-Dataset

This section presents and discusses the results obtained when classifying the 90 images in the QArt-
Dataset using the three art style painting classifiers defined: �-SHERPL, �-SHEG(Q) and �-SHE�(Q).
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TABLE 3 Confusion matrix for �-SHERPL using the QArt-Dataset

Baroque Impressionism Post-Impressionism
� ? � ? � ?

Baroque 24 3 1 0 2 0
Impressionism 3 0 16 5 2 4
Post-Impressionism 1 1 4 6 15 3

FIGURE 7. Examples of outliers or paintings misclassified from the QArt-Dataset. All rights under
© creative commons, public license. The colour version of this figure is available on the online
version of this paper.

The �-SHERPL version has been tested using the paintings in the QArt-Dataset. Table 3 shows
the confusion matrix obtained for the three art styles. The blue cells correspond to the correct
classifications: on the left, correct classifications where �-SHERPL is sure (�); on the right, correct
classifications where �-SHERPL is not sure and provides an alternative style as a second opinion (?).
The rest of the cells correspond to the outliers: in each column, the cell on the left indicates the
outliers in that �-SHERPL does not give a second opinion (�); and the cell on the right shows the
outliers in that the second opinion given by �-SHERPL classifies correctly the painting (?). The rest
of the confusion matrices of this paper use the same notation. In order to clarify, let us indicate that,
when the algorithm is doubting, it provides two possible styles as a result. The first option (highest
certainty) is the one considered as a correct classification (column ?). If the second opinion (lowest
certainty) is the correct one, it is not counted as a correct classification and it appears in a column
corresponding to a different style.

From the analysis of the data in Table 3 regarding �-SHERPL, we can conclude that

– the highest accuracy is obtained for the Baroque style (90%), and that almost 67% of the
outliers (i.e. paintings classified outside its art style) are classified in the Post-Impressionist
style. From the data analysis, we have obtained that the membership degree to the Baroque
style of 55.6% of these correct classifications is 1.

– The Impressionism style obtains an accuracy of 70%. In 22.2% of the misclassifications
obtained (that is, the outliers), �-SHERPL warns that there is evidence to belong to the
Impressionist style. In addition, almost 67% of the outliers are classified in the Post-
Impressionist style. An example of an outlier in the Impressionist style is Garden Scene in
Brittanny (rn14 in the QArt-Dataset, Figure 7) by Renoir, where PI(rn14) = 0.877, while
I(rn14) = 0.875. In fact �-SHERPL points out to the diversity of colours, the variety of hues,
the high level of bluish and the use of greys as strong reasons to believe that rn14 is an
Impressionist painting, although �-SHERPL categorizes the painting as Post-Impressionist.
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112 Logical Style Painting Classifier

FIGURE 8. Examples of outliers or paintings misclassified from the Painting-91-BIP dataset. All
rights under © creative commons, public license. The colour version of this figure is available on the
online version of this paper.

TABLE 4 Confusion matrix for �-SHEG(Q) using the QArt-Dataset

Baroque Impressionism Post-Impressionism
� ? � ? � ?

Baroque 29 1 0 0 0 0
Impressionism 9 3 10 7 1 0
Post-Impressionism 10 2 6 0 12 0

– The Post-Impressionism style gets 60% of accuracy rate. In 41.7% of the outliers, �-
SHERPL warns that there is evidence to believe that a painting belongs to the Post-
Impressionist style. Again, separating the Impressionism and Post-Impressionism features
becomes difficult, since 83.3% of outliers are categorized as Impressionist paintings. For
instance, Les Alyscamps (gg2 in the QArt-Dataset, Figure 7) by Gauguin is classified as an
Impressionist painting with a membership of I(gg2) = 0.90, whereas PI(gg2) = 0.84. This
misclassification is due to �-SHERPL recognizes in gg2 the totality of the colour features that
have been considered as distinctive of the Impressionism style.

Table 4 shows the confusion matrix corresponding to the art style classification obtained by
�-SHEG(Q) regarding the 90 paintings in the QArt-Dataset.

From the analysis of the data in Table 4 regarding �-SHEG(Q), we have obtained the following
results.

– Again, the highest accuracy is obtained for the Baroque style (100%). Notice that �-SHEG(Q)

provided another possible style for 1 painting although with less certainty, this is why it was
not classified into the other categories, but it is not a piece which had a clear diagnostic.
Observe also that the membership degree to the Baroque style of 63.3% of these correct
classifications is 1.
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TABLE 5 Confusion matrix for �-SHE�(Q) using the QArt-Dataset

Baroque Impressionism Post-Impressionism
� ? � ? � ?

Baroque 28 0 0 1 1 0
Impressionism 5 5 18 0 2 0
Post-Impressionism 3 1 9 1 15 1

– The Impressionism style gets 56.7% of accuracy rate. In addition, in 23.1% of the obtained
misclassifications, �-SHEG(Q) warns that there is evidence to belong to the Impressionist
style. With respect to outliers, 92.3% are classified as Baroque paintings, whereas the rest,
7.7%, are classified as Post-Impressionist paintings. An example of an outlier in this style is
Bal du moulin de la Galette (rn2 in the QArt-Dataset, Figure 7) by Renoir, where B(rn2) =
0.68 and I(rn2) = 0.51.

– The Post-Impressionism style gets an accuracy of 40%, and the membership degree to the
Post-Impressionist style of 83.3% of these correct classifications is 1. In 11.1% of the
misclassifications �-SHEG(Q) warns that there is evidence to believe that a painting belongs
to the Post-Impressionist style. Most of the outliers, 66.7%, are classified in Baroque style.
An example of an outlier in this style is Madame Roulin (gg6 in the QArt-Dataset, Figure 7)
by Gauguin, for which B(gg6) = 0.40 and PI(gg6) = 0.13.

Table 5 shows the confusion matrix obtained by �-SHE�(Q) for all the art styles in the QArt-
Dataset.

From the analysis of the data in Table 5 regarding �-SHE�(Q), we have obtained the following
results.

– The highest accuracy is obtained for the Baroque style (93.3%), and that the membership
degree to the Baroque style of 64.3% of these correct classifications is 1. Moreover, outliers
are classified equally in the Impressionist and Post-Impressionist styles.

– The Impressionism style gets 60% of accuracy rate. In addition, in 33.3% of the obtained
misclassifications, �-SHE�(Q) warns that there is evidence to belong to the Impressionist
style. Regarding outliers, 86.3% are categorized as Baroque paintings. An example of an
outlier in the Impressionist style is The Waterlily Pond, green harmony (m11 in the QArt-
Dataset, Figure 7) by Monet, where B(m11) = 1 and I(m11) = 0.87.

– Regarding the Post-Impressionism style, the accuracy obtained is 53.3%. In none of the
misclassifications �-SHE�(Q) warns that there is evidence to believe that a painting belongs to
the Post-Impressionist style. Most of the outliers, 71.4%, are classified in Impressionist style.
An example of an outlier in this style is The three graces on the temple of Venus (gg2 in the
QArt-Dataset and shown in Figure 7) by Gauguin, where I(gg2) = 0.77 and PI(gg2) = 0.65.

Note that the total accuracies obtained with each �-SHE version for the QArt-Dataset (Table 6)
do not show a large difference, but �-SHERPL is the proposal with highest general accuracy, 73.3%.
In addition, although the lowest accuracy for the Baroque style is obtained by �-SHERPL, let us
remark that the highest accuracies for the Impressionist and the Post-Impressionist styles are also
obtained by �-SHERPL. In summary, �-SHERPL shows the highest general accuracy and the highest
accuracies for two of the three art styles considered. Therefore, we conclude that the �-SHERPL is
the best proposal for the QArt-Dataset.
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114 Logical Style Painting Classifier

TABLE 6 Percentages of accuracy obtained in the QArt-Dataset for each �-SHE version

�-SHE version / Art style �-SHERPL �-SHEG(Q) �-SHE�(Q)

Baroque 90 100.0 93.3
Impressionism 70 56.7 60
Post-Impressionism 60 40 53.3
General accuracy 73.3 65.6 68.9

TABLE 7 Confusion matrix for �-SHERPL using the Painting-91-BIP dataset

Baroque Impressionism Post-Impressionism
� ? � ? � ?

Baroque 61 9 4 1 6 2
Impressionism 22 2 33 9 27 6
Post-Impressionism 20 10 22 6 49 10

8 Evaluating �-SHE using a different dataset: Paintings-91-PIB

This section presents the performance of the three versions of �-SHE in a larger dataset, Paintings-
91-PIB, which contains 247 paintings 74 for the Baroque style (39 by Velázquez and 35 by Vermeer),
82 for the Impressionism style (46 by Renoir and 36 by Monet) and 91 for the Post-Impressionism
style (40 by Van Gogh and 51 by Gauguin). See Section 2 for more details. Let us recall that the
Painting-91-BIP dataset is slightly unbalanced by author and also with respect to the number of
paintings belonging to each style. For this reason, the general accuracy obtained for each �-SHE
version has been calibrated: the general accuracy has been obtained as the median of the accuracies
of each art style, and not as the quotient between the total of correct classifications and the total of
outliers. In this way, the adequacy of �-SHE using RPL, G(Q) and �(Q) is evaluated again. Notice
that the same dataset, QArt-Dataset, was used both to parametrise and test the �-SHE algorithm.
Consequently, it was important to test �-SHE with another dataset.

Let us start the analysis with �-SHERPL. Table 7 shows the confusion matrix obtained with
�-SHERPL for all the art styles in the Painting-91-BIP dataset.

From the analysis of the data in Table 7 regarding �-SHERPL in the Painting-91-BIP dataset, we
have obtained the following results.

– The Baroque style gets 86.5% of accuracy rate, and the membership degree to this style
of 76.6% of these correct classifications is 1. In 30% of the misclassifications �-SHERPL

warns that there is evidence to believe that a painting belongs to the Baroque. With
respect to the outliers, 40% are classified as Impressionist paintings and 60% are clas-
sified as Post-Impressionist paintings. An example of an outlier in this style is The
Music Lesson (jan_vermeer_12 in the Painting-91-BIP dataset) by Vermeer, for which
B(jan_vermeer_12) = 0.74, I(jan_vermeer_12) = 0.12 and PI(jan_vermeer_12) = 0.87.

– The Impressionism obtains an accuracy of only 40.2%. With respect to the outliers,
44.9% are classified as Baroque paintings, whereas the rest, 55.1%, are classified as
Post-Impressionist paintings. An example of an outlier in this style is Woman in a
boat (pierre_auguste_renoir_10 in the Painting-91-BIP dataset) by Renoir, for which
PI(pierre_auguste_renoir_10) = 0.87, whereas I(pierre_auguste_renoir_10) = 0.72 and
B(pierre_auguste_renoir_10) = 0.
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TABLE 8 Confusion matrix for �-SHEG(Q) using Painting-91-BIP dataset

Baroque Impressionism Post-Impressionism
� ? � ? � ?

Baroque 74 0 0 0 0 0
Impressionism 60 4 7 8 3 0
Post-Impressionism 54 3 10 0 24 0

TABLE 9 Confusion matrix for �-SHE�(Q) using the Painting-91-BIP dataset

Baroque Impressionism Post-Impressionism
� ? � ? � ?

Baroque 69 2 2 1 0 0
Impressionism 42 3 25 3 9 0
Post-Impressionism 29 2 20 3 35 2

– The Post-Impressionism style gets 53.9% of accuracy rate, and the membership degree to
this style of 44.9% of these correct classifications is 1. With respect to outliers, 47.6%
are classified as Baroque paintings and 52.4% are classified as Impressionist paintings. In
addition, in 38.1% of the obtained misclassifications �-SHERPL warns that there is evidence
to belong to the Post-Impressionist style. An example of an outlier in the Post-Impressionist
style is Arearea (paul_gauguin_4 in the Painting-91-BIP dataset) by Gauguin, for which
PI(paul_gauguin_4) = 0.83, B(paul_gauguin_4) = 0.44 and I(paul_gauguin_4) = 0.88.

Let us consider �-SHEG(Q). Table 8 shows the confusion matrix obtained with �-SHEG(Q) for all
the art styles in the Painting-91-BIP dataset.

From the analysis of the data in Table 8 regarding �-SHEG(Q) in the Painting-91-BIP dataset, we
have obtained the following results.

– Regarding the Baroque style, observe that this style gets 100% of accuracy rate, and we obtain
that 71.7% of the Baroque classifications have Baroque membership degree 1.

– The Impressionism style gets 18.3% of accuracy rate. Most of the outliers, 95.5%, are
classified as Baroque paintings, and only 4.5% of the misclassifications �-SHEG(Q) warns
that there is evidence to believe that a painting belongs to the Impressionist style. An example
of an outlier is Water lilies (claude_monet_8 in the Painting-91-BIP dataset) by Monet:
B(claude_monet_8) = 0.37, I(claude_monet_8) = 0.32 and PI(claude_monet_8) = 0.02.

– The Post-Impressionism style gets 26.4% of accuracy, and we obtain that 83.3% of the
Post-Impressionist classifications have Post-Impressionist membership degree 1. Again,
most of the outliers, 85.1%, are classified in the Baroque style. Besides, none of the
misclassifications �-SHEG(Q) warns that there is evidence to believe that a painting belongs
to the Post-Impressionist style. An example of an outlier in the Post-Impressionist style
is Two Cut Sunflowers (vincent_van_gogh_10 in the Painting-91-BIP dataset) by van
Gogh, for which B(vincent_van_gogh_10) = 0.41, I(vincent_van_gogh_10) = 0.21 and
PI(vincent_van_gogh_10) = 0.06.

Let us now analyse �-SHE�(Q). Table 9 shows the confusion matrix obtained with �-SHE�(Q) for
all the art styles in the Painting-91-BIP dataset.
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TABLE 10 Percentages of accuracy obtained in the QArt-Dataset and the Painting-91-BIP datasets
for each �-SHE version

�-SHE version

Dataset Art style painting �-SHERPL �-SHEG(Q) �-SHE�(Q)

Baroque 86.5 100.0 96.0
Painting-91-BIP Impressionism 40.2 18.3 34.2

Post-Impressionism 53.9 26.4 40.7

General accuracy 60.2 48.2 57.0

Baroque 90 100.0 93.3
QArt-Dataset Impressionism 70 56.7 60

Post-Impressionism 60 40 53.3

General accuracy 73.3 65.6 68.9

From the analysis of the data in Table 9 regarding �-SHE�(Q) in the Painting-91-BIP dataset, we
have obtained the following results.

– The highest accuracy is obtained for the Baroque style (96.0%), and that the membership
degree to this style of 66.2% of these correct classifications is 1. In 33.3% of the misclassifica-
tions, �-SHE�(Q) warns that there is evidence to believe that a painting belongs to the Baroque
style. An example of an outlier is Tercio (diego_velazquez_27 in the Painting-91-BIP dataset)
by Velázquez, for which B(diego_velazquez_27) = 0.53, I(diego_velazquez_27) = 0.61 and
PI(diego_velazquez_27) = 0.00.

– The Impressionism style gets 34.2% of accuracy rate. Regarding the outliers, 83.3% are
classified as Baroque paintings and 16.7% as Post-Impressionist paintings. Only 9.3% of the
misclassifications �-SHE�(Q) warns that the painting might belong to the Impressionism style.
An example of an outlier is Water lilies (claude_monet_3 in the Painting-91-BIP dataset) by
Monet: B(claude_monet_3) = 1, I(claude_monet_3) = 0.87 and PI(claude_monet_3) =
0.02.

– The Post-Impressionism style obtains 40.7% of accuracy, and that the membership degree
to this style of 59.5% of these correct classifications is 1. Regarding outliers, 57.4%
are classified in the Baroque style and 42.6% in the Impressionist style. In 13.5% of
the misclassifications �-SHE�(Q) warns that there is evidence to believe that a painting
belongs to the Post-Impressionist style. An example of an outlier in the Post-Impressionist
style is Sorrowing Old Man (vincent_van_gogh_41 in the Painting-91-BIP dataset) by
van Gogh, where B(vincent_van_gogh_41) = 0.17, I(vincent_van_gogh_41) = 0.87 and
PI(vincent_van_gogh_41) = 0.00.

Results obtained by each �-SHE for both datasets are presented in Table 10. Note first that �-
SHEG(Q) gets the lowest general accuracy, 48.2%. Besides, the �-SHERPL version is again the
proposal with highest general accuracy, but �-SHE�(Q) gets 57.0% of general accuracy. Hence,
similar accuracies to other were obtained for both proposals, �-SHERPL and �-SHE�(Q). However,
accuracies for the Impressionist and the Post-Impressionist styles are higher for �-SHERPL, and
the �-SHE�(Q) version shows an accuracy for the Impressionism style close to a random classifier.
Therefore, from the data analysis it might be concluded that �-SHERPL is the most accurate
classifier.
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9 Conclusions and future work

The art style classification algorithm �-SHE has been presented and analysed considering the
three different versions defined, which are determined by the three logics RPL, G(Q) and
�(Q). The accuracy acquired in the QArt-Dataset with the three logics (Table 10) is similar
to other works that use QCDs [12]. Regarding Painting-91-BIP dataset, the results obtained
(Table 10) are similar, but a bit the two classifiers built in [14]. However, contrary to those
classifiers based on machine learning methods, the �-SHE classification provides explanations
of right classifications, and also of some of the outliers by giving a second option. Hence,
each classification method has both advantages and disadvantages. In this way, comparing in
detail different approaches for art style classification is future work. On the other hand, all the
�-SHE versions show a low accuracy for Impressionist style in the Painting-91-BIP dataset. This
f law in the classification might be explained in terms of art genres: individual portraits are
scant in Renoir’s paintings from the QArt-dataset, whereas this is the main type of painting in
Renoir’s paintings from Painting-91-BIP dataset. This is an important aspect to consider for future
work.

In both datasets the �-SHERPL version gets the highest general accuracy among the �-SHE
approaches. Indeed, the general accuracy for the QArt-Dataset obtained by the �-SHERPL version
is 73.3%, whereas the general accuracies for the QArt-Dataset obtained by the �-SHEG(Q) and the
�-SHE�(Q) are 65.6% and 68.9%, respectively (see Table 10). In addition, the general accuracy
for the Painting-91-BIP obtained by the �-SHERPL version is 60.2%, and the general accuracies
for the Painting-91-BIP dataset obtained by the �-SHEG(Q) and the �-SHE�(Q) are 48.2% and
57%, respectively (see Table 10). Thus, the �-SHERPL seems to be the best approach on both
datasets.

Other future work includes introducing other logical formalisms and other aggregation methods
to represent the different art styles and the use of reasoning mechanisms to draw conclusions
about the relationship between new and classical styles. For this purpose it would be important
to add new art styles to the dataset. Moreover, we expect to show the �-SHE outcomes to art
experts in order to get feedback from them and use it to improve the �-SHE algorithm. Moreover,
adding art-genre information, studying the complexity of �-SHE algorithm and comparing it to
machine learning methods are future work. Also, it would be relevant to explore a SMT-based
(Statistical Machine Translation) approach in future extensions of the �-SHE algorithm. Finally,
we will study the possibility of enriching our algorithm with abduction procedures to improve the
accuracy.
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[32] M. Rzepińska and K. Malcharek. Tenebrism in baroque painting and its ideological back-
ground. Artibus et Historiae, 7, 91–112, 1986.

[33] I. Sanz, L. Museros, Z. Falomir and L. Gonzalez-Abril. Customising a qualitative colour
description for adaptability and usability. Pattern Recognition Letters, 67, 2–10, 2015.

[34] L. Shamir, T. Macura, N. Orlov, D. M. Eckley and I. G. Goldberg. Impressionism, expression-
ism, surrealism: automated recognition of painters and schools of art. ACM Transactions on
Applied Perception, 7, 1–17, 2010.

[35] L. Shamir and J. A. Tarakhovsky. Computer analysis of art. Journal on Computing and Cultural
Heritage, 5, 1–7, 2012.

[36] F. Sørmo, J. Cassens and A. Aamodt. Explanation in case-based reasoning-perspectives and
goals. Artificial Intelligence Review, 24, 109–143, 2005.

[37] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow and R. Fergus.
Intriguing properties of neural networks. Conference Track Proceedings 2013.

[38] C. Tate. Post-Impressionism. http://www.tate.org.uk/art/art-terms/p/post-impressionism,
accessed 14 April 2018.

[39] J. Wielemaker, T. Schrijvers, M. Triska and T. Lager. SWI-Prolog. Theory and Practice of
Logic Programming, 12, 67–96, 2012.

Received 26 June 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article/29/1/96/5618973 by U

N
IVER

SITAT AU
TO

N
O

M
A D

E BAR
C

ELO
N

A user on 05 February 2021



71

Chapter 3

Discussion and conclusions

In this doctoral thesis, we presented original contributions in the areas of mathemat-
ical fuzzy logic and artificial intelligence. First, in Part I, we developed a systematic
study on free models of fuzzy universal Horn theories. Then, in Part II, we used qual-
itative descriptors and fuzzy knowledge representation for designing an art painting
style classification algorithm. In the present chapter, we discuss the results presented
in Chapter 2 and propose further research directions.

On minimality Free structures are minimal from an algebraic point of view.
We can, however, consider the minimality from a model-theoretic point of view (in
the sense of Lemma 3(ii) of Costa & Dellunde (2017a), intuitively speaking, term
structures pick up the positive atomic information that follows from their associated
theory). It is, thus, natural to wonder whether these are equivalent terms. Next, we
discuss this question and prove that they are equivalent for some class of fully named
models.

The name of fully named model appears first in predicate fuzzy logics in the work
(Cintula et al. 2011a, Ch.2), but these models were used before by Cintula & Hájek
(2006) for the completeness proof of predicate core fuzzy logics (see Theorem 6 of
Cintula &Hájek (2006)). In these models, every element of the domain is an interpre-
tation of a ground term of the language (i.e., a term without variables). A prominent
type of fully named models is the class of Herbrand structures, studied in this doc-
toral thesis. For a reference to the notion of fully named model in classical logic, see
Definition 2.1(iii) of Makowsky (1987). We assume that the predicate languages have
at least one individual constant symbol. Let us remark that the results presented next
hold in MTL∀≈.

Definition 12 (Fully Named Model) A structure 〈B,N〉 is a fully namedmodel if for
any element n of the domain N, there exists a ground term t such that ||t||BN = n.

Observe that the substructure of 〈B,TΦ〉 (Costa &Dellunde 2017a, Definition 10)
generated by the equivalence classes of the ground terms is also a fully named model.
Given a class K of structures over the same predicate language, on the one hand one
structure can be minimal in the sense of free in K. On the other hand, a structure can
be minimal in a model-theoretic point of view (at-generic in K), which means that
the structure is a model exactly of those atomic sentences that all the structures of K
are models of. In the work Makowsky (1987) the at-genericity is defined as a special
case of the notion of genericity, notion that was first introduced in specification of data
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structures, relational data bases and logic programming. Now we extend to the fuzzy
context the definition of at-genericity of Makowsky (see Definition 2.4 of Makowsky
(1987)).

Definition 13 Let K be a class of structures. Given 〈B,N〉 ∈ K, we say that 〈B,N〉
is at-generic in K if for every atomic sentence ϕ , we have that

||ϕ||BN = 1 if and only if for every structure 〈A,M〉 ∈K, ||ϕ||AM = 1.

Next, we present the proof that the two notions of minimality (the algebraic and
the model-theoretic) coincide for reduced fully named models 〈B,N〉 where B is the
two-valued Boolean algebra.

Theorem 3 Let K be a class of fuzzy reduced structures and 〈B,N〉 ∈ K be a fully
named model where B is the two-valued boolean algebra. Then,

〈B,N〉 is free in K if and only if 〈B,N〉 is at-generic in K.

Proof: (⇒) Assume that 〈B,N〉 is free inK, and let ϕ be an atomic sentence such that
||ϕ||BN = 1 and 〈A,M〉 ∈K. Since 〈B,N〉 is free inK, there is a unique homomorphism
from 〈B,N〉 to 〈A,M〉, say ( f ,g). By Theorem 16 of Dellunde et al. (2016) we have
that ( f ,g) preserves atomic formulas, then ||ϕ||AM= 1 andwe can conclude that 〈B,N〉
is at-generic in K.

(⇐) Assume that 〈B,N〉 is at-generic in K and let 〈A,M〉 ∈ K. We define g :
M → N by: g(tN) = tM for any ground term t. Let us see that g is well-defined: if
t, t ′ are ground terms and tN = t ′N, then ||t ≈ t ′||BN = 1. Since 〈B,N〉 is at-generic,
||t ≈ t ′||AM = 1, and since 〈A,M〉 is reduced we have tM = t ′M.

Now let F be an n-ary function symbol and t1, . . . , tn ground terms. Then, since
〈B,N〉 is a fully named model, we have that:

g(FN((t1)N, . . . ,(tn)N)) = g([F(t1, . . . , tn)]N) =

= [F(t1, . . . , tn)]M = FM((t1)M, . . . ,(tn)M) =

= FM(g((t1)N), . . . ,g((tn)N)).

Let P be an n-ary predicate symbol and t1, . . . , tn ground terms. Suppose that
PN((t1)N, . . . ,(tn)N) = 1, that is, ||P(t1, . . . , tn)||BN = 1. Then, since 〈A,M〉 ∈ K and
〈B,N〉 is at-generic in K, we conclude that ||P(t1, . . . , tn)||AM = 1, i.e.,
PM((t1)M, . . . ,(tn)M) = 1, which is equivalent by the definition of g to
PM(g((t1)N), . . . ,g((tn)N)) = 1.

Moreover, given another homomorphism ( f ,g′) from 〈B,N〉 to 〈A,M〉, we will
have that g′(tN)= tM, thus g= g′. This fact give us the unicity of ( f ,g). Consequently,
〈B,N〉 is free in K. 2

Notice that if 〈B,N〉 is free in K, since 〈B,N〉 ∈K, then 〈B,N〉 is rigid, that is,
there are no non-trivial automorphisms of 〈B,N〉. Observe that in languages in which
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the similarity symbol is interpreted by the crisp identity the result holds for arbitrary
classesK, and not only for classes of reduced structures. Finally, we show that a class
of structures K has up to isomorphism, at most one fully named model which is free
in K.

Corollary 1 LetK be a class of fuzzy reduced structures, then there is, up to isomor-
phism, at most one fully named model 〈B,N〉 ∈K, which is free in K (where B is the
two-valued Boolean algebra).

Proof: Assume that 〈B,N〉 and 〈B,M〉 are fully named models free inK. We have to
prove that 〈B,N〉� 〈A,M〉. Let ( f ,g) be the homomorphism in the proof of Theorem
3. We show that ( f ,g) is an isomorphism. First notice that f is the identity on B;
and since both are fully named models, g is clearly surjective. Now we prove the
injectivity. Let t, t ′ be ground terms such that tN , t ′N. To find a contradiction, suppose
that g(tN)= g(t ′N). That is, tM= t ′M. Since 〈A,M〉 is also a freemodel, there is another
homomorphism ( f ,g′) from 〈A,M〉 to 〈B,N〉, defined as in the proof of Theorem 3.
Consequently, g′(tM) = g′(t ′M), i.e., tN = t ′N, which is a contradiction. Therefore,
g(tN) , g(t ′N). 2

Characterization of free models of equality-free fuzzy universal Horn the-
ory Here we discuss the possibility of characterizing the free model of a class of
structures as the intersection of a class of Herbrand structures.

Definition 14 Let I be a nonempty set and for every i ∈ I, Hi ⊂ H. We call 〈B,NH〉
the intersection of the family of H-structures {〈B,NHi〉 | i ∈ I}, where H=

⋂
i∈I Hi.

Using Definition 13 of Costa & Dellunde (2017a), it is easy to check that any
intersection of a family of H-structures is also an H-structure.

Proposition 2 Let ϕ be an equality-free consistent sentence which is a Horn clause.
If {〈B,NHi〉 | i ∈ I} is the family of all H-models of ϕ and H=

⋂
i∈I Hi, then 〈B,NH〉

is also an H-model of ϕ .

Proof: Assume that ϕ is an equality-free consistent sentence which is a Horn clause
and {〈B,NHi〉 | i ∈ I} is the family of all H-models of ϕ . By Corollary 2 of Costa &
Dellunde (2017a), the family is not empty. We proceed by induction on the quantifier
rank of ϕ .

Case qr(ϕ) = 0. We distinguish two cases:
1) In case that ϕ is atomic is clear by definition of the intersection. And, in

general, if ϕ = ψ1& · · ·&ψn → ψ is a basic Horn formula, we have to show that
||ψ1& · · ·&ψn||BNH ≤ ||ψ||BNH . If ||ψ||BNH = 1, we are done. Otherwise, by byDefinition
13 of Costa & Dellunde (2017a), ψ <H and thus there is some i∈ I such that 〈B,NHi〉
is an H-model of ϕ and ||ψ||BNHi

= 0. Hence, as ||ϕ||BNHi
= 1, ||ψ1& · · ·&ψn||BNHi

= 0.
So for some j ∈ {1, . . . ,n}, ||ψ j||BNHi

= 0 and then ||ψ j||BNH = 0, which implies that
||ψ1& · · ·&ψn||BNH = 0. Therefore ||ψ1& · · ·&ψn||BNH ≤ ||ψ||BNH .
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2) If ϕ = ψ1& · · ·&ψn is a strong conjunction of basic Horn formulas, by 1),
for every j ∈ {1, . . . ,n} the following holds: if for every i ∈ I,||ψ j||BNHi

= 1, then
||ψ j||BNH = 1. Thus, ||ϕ||BNH = 1.

Case qr(ϕ) = n+1.

Let ϕ = (∀x)φ(x) be a Horn clause with qr(φ(x)) = n. For every i ∈ I, ||ϕ||BNHi
=

1. By Axiom ∀1, for every ground term t and every i ∈ I, ||φ(t/x)||BNHi
= 1. Since

φ(t/x) is also a Horn clause, and qr(φ(t/x)) = n, we can apply the inductive hypothe-
sis and then for every ground term t, ||φ(t/x)||BNH = 1. Consequently, ||(∀x)φ(x)||BNH =

1 because 〈B,NH〉 is a Herbrand structure. 2

Theorem 4 (Characterization Theorem) LetK be the class of all models of a con-
sistent set of equality-free sentences which are Horn clauses. The intersection of the
family of all H-structures in K is the free model in K.

Proof: By Proposition 2 of this chapter, the intersection of the family of all H-
structures in K is also a member of K. Then by Proposition 1 of Costa & Dellunde
(2017a), the intersection is an at-generic structure in K. Consequently, by Theorem
3 of this chapter, the intersection is the free model in K. 2

Some counterexamples Another issue to be discussed is the improvement of
some of the results presented in the papers. Next, we discuss a possible generalization
of some of the article’s results included in this PhD thesis. Specifically, we focus on
two main theorems and present some counterexamples.

In Theorem 2 of Costa & Dellunde (2017b), we proved that for any consistent the-
ory Φ and any RPL∀≈-Horn clause ϕ ,

If |ϕ|Φ = 1, then ||ϕ||[0,1]RPL
TΦ
RPL,e

Φ
RPL

= 1.

Now, using a counterexample, we prove that the inverse of the theorem is not
true. Indeed, consider a predicate language P with just a monadic predicate symbol
P, and two individual constants a,c, and let Φ be the empty theory. Observe that,
sinceΦ is equivalent to the set of all logically valid sentences, Φ is consistent. More-
over, it is easy to see that: (i) every P-structure 〈[0,1]RPL,M〉 is a model of Φ; (ii)
||P(t)||Φ = 0 for any term t; (iii) the term structure associated to the empty theory Φ
is well-defined. Let ϕ = (P(a),1)→ (P(c),1). Note that ||(P(a),1)||[0,1]RPL

TΦ
RPL∀≈ ,e

Φ
RPL∀≈

=

||(P(c),1)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

= 0, thereby ||ϕ||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

= 1. However, |ϕ|Φ , 1. In-

deed, consider the P-structure 〈[0,1]RPL,M〉 so that PM(a) = 0.1 and PM(c) = 0.
Note that ||ϕ||[0,1]RPLM = 0.9, and then ||ϕ||Φ , 1. By theorem 2, |ϕ|Φ , 1.

In Lemma 5 of Costa & Dellunde (2017b) we proved that for any consistent the-
ory Φ and any evaluated atomic formulas (ϕ1,s1), . . . ,(ϕn,sn),

||(ϕ1,s1)& · · ·&(ϕn,sn)||[0,1]RPLTΦ
RPL≈ ,e

Φ
RPL∀≈

≤ ||(ϕ1,s1)& · · ·&(ϕn,sn)||Φ .
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Using a counterexample, we show that the symbol ≤ of the lemma cannot be
substituted by an identity. Indeed, consider a predicate languageP with twomonadic
predicate symbols P,R, and one individual constant symbol c, and letΦ be the theory

{0.1→ (∀x)((P(x),1)&(R(x),1))}.

We show that

||(P(c),1)&(R(c),1)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

< ||(P(c),1)&(R(c),1)||Φ .

On the one hand, for any model 〈[0,1]RPL,M〉 of Φ , ||(P(c),1)&(R(c),1)||[0,1]RPLM ≥
0.1. Then, ||(P(c),1)&(R(c),1)||Φ ≥ 0.1.

On the other hand, we show that ||(P(c),1)&(R(c),1)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

= 0. Indeed,

consider two P-structures 〈[0,1]RPL,M1〉, 〈[0,1]RPL,M2〉 with M1 = M2 = {c} and
such that:

||P(c)||[0,1]RPLM1
= 0, and ||R(c)||[0,1]RPLM1

= 0.6;

||P(c)||[0,1]RPLM2
= 0.6, and ||R(c)||[0,1]RPLM2

= 0.

Notice that 〈[0,1]RPL,M1〉 and 〈[0,1]RPL,M2〉 are models of Φ . Then,

||P(c)||Φ = ||R(c)||Φ = 0.

By Theorem 2, |P(c)|Φ = |R(c)|Φ = 0, and then, by Lemma 5 of Costa&Dellunde
(2017b),

||P(c)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

= ||R(c)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

= 0.

Moreover, observe that

||(P(c),1)&(R(c),1)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

=

max{0, ||(P(c),1)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

+ ||(R(c),1)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

−1}=

max{0, ||P(c))||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

+ ||R(c)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

−1}= 0.

Therefore, we have proven the following inequality:

||(P(c),1)&(R(c),1)||[0,1]RPL
TΦ
RPL∀≈ ,e

Φ
RPL∀≈

< ||(P(c),1)&(R(c),1)||Φ ,

and we have finished.

The performance of the `-SHE algorithm The results obtained when classi-
fying all the images in the datasets considered are presented and discussed in Costa
et al. (2021). Details on the results are indicated in the Appendices B and C. In Ap-
pendix B, we show thoroughly the results obtained for the three versions of the `-SHE
algorithm when classifying the 90 images in the QArt-Dataset. In Appendix C, we
show the results obtained for the three versions of the `-SHE algorithm in detail when
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classifying the 247 images in the Painting-91-BIP dataset. Furthermore, all the paint-
ings in the QArt-Dataset and the Painting-91-BIP datasets are shown in Appendix A.

In conclusion, the `-SHE algorithm, using fuzzy Horn clauses as knowledge rep-
resentation, obtains percentages of accuracy in the experimentation that are compet-
itive. Indeed, the performance of the `-SHE is similar to other classification algo-
rithms like those presented by Falomir, Cabedo, Sanz & Abril (2015), Falomir et al.
(2018). Contrary to these methods based on machine learning, the `-SHE algorithm
does not require hard computation, and its outcomes provide explanations of the cor-
rect classifications and some of the outliers by giving a second option. However, the
`-SHE algorithm does not automatically obtain the required thresholds like machine
learning methods do. We conclude that both methods are complementary. The ideal
case would be that the evaluated Horn clauses’ thresholds and the explanations in the
algorithm could be automatically learned from the dataset using machine learning
techniques. This ideal method could learn semantic traits of an art style that would
be later explainable to the users. In the future, we intend to tackle this challenge.

Since the explainability is an essential issue in the ongoing artificial intelligence,
a promising future line could be introducing other logical formalisms and other ag-
gregation methods to represent the different art styles, and the use of reasoning mech-
anisms to draw conclusions about the relationship between new and classical styles.
According to the theory of Dujmović, logic aggregators can be used in mathematical
models of human evaluation reasoning, since in general, they yield a closer approx-
imation to related human evaluation processes than t-norm based logics do. For a
presentation of the Dujmović’s theory, we refer the reader to, for instance, Dujmovic
(2018b,a, 2017, 2013). The first step in research into solving this problem is already
in progress. In this way, we have recently published the work Costa (2020), which has
received the Best STAIRS 2020 Paper Award. Furthermore, to further our research it
would be important also to add new art styles to the datasets, as well as to show the
`-SHE outcomes to art experts to get feedback from them.
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Appendix A

Datasets: the QArt-Dataset and the
Painting-91-BIP

A.1 The QArt-Dataset

All the paintings in the QArt-Dataset corresponding to the Baroque style (Figure A.1),
the Impressionism style (Figure A.2), and the Post-Impressionism style (Figure A.3)
are shown in this section.

v1 v2 v3 v4 v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15 j1

j2 j3 j4 j5 j6 j7 j8 j9

j10 j11 j12 j13 j14 j15

FIGURE A.1: Baroque paintings by Velázquez and Vermeer in the
QArt-Dataset. All rights by Wikimedia commons, public domain.

A.2 The Painting-91-BIP

All the paintings from the Painting-91-BIP dataset corresponding to the Baroque style
are indicated in Figures A.4, A.5 and A.6. All the paintings from the Painting-91-BIP
dataset corresponding to the Impressionism style are shown in Figures A.7, A.8, and
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m1 m2 m3 m4 m5 m6 m7 m8

m9 m10 m11 m12 m13 m14 m15 rn1

rn2 rn3 rn4 rn5 rn6 rn7 rn8 rn9

rn10 rn11 rn12 rn13 rn14 rn15

FIGURE A.2: Impressionist paintings by Monet and Renoir in the
QArt-Datset. All rights by Wikimedia commons, public domain.

vg1 vg2 vg3 vg4 vg5 vg6 vg7 vg8

vg9 vg10 vg11 vg12 vg13 vg14 vg15 gg1

gg2 gg3 gg4 gg5 gg6 gg7 gg8 gg9

gg10 gg11 gg12 gg13 gg14 gg15

FIGURE A.3: Post-Impressionist paintings by van Gogh and Gauguin
in the QArt-Dataset. All rights by Wikimedia commons, public do-

main.

A.9. Finally, all the paintings from the Painting-91-BIP dataset corresponding to the
Post-Impressionism style are indicated in Figures A.10, A.11 and A.12.
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FIGURE A.4: Some Baroque paintings by Velázquez in the Painting-
91-BIP dataset. All rights by Wikimedia commons, public domain.
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FIGURE A.5: Baroque paintings by Velázquez and Vermeer in the
Painting-91-BIP dataset. All rights by Wikimedia commons, public

domain.
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FIGURE A.6: Baroque paintings by Vermeer in the Painting-91-BIP
dataset. All rights by Wikimedia commons, public domain.
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FIGURE A.7: Some Impressionist paintings by Monet in the Painting-
91-BIP dataset. All rights by Wikimedia commons, public domain.
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FIGURE A.8: Impressionist paintings by Monet and Renoir in the
Painting-91-BIP dataset. All rights by Wikimedia commons, public

domain.
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FIGURE A.9: Impressionist paintings by Renoir in the Painting-91-
BIP dataset. All rights by Wikimedia commons, public domain.
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FIGURE A.10: Some Post-Impressionist paintings by van Gogh in the
Painting-91-BIP dataset. All rights by Wikimedia commons, public

domain.
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FIGURE A.11: Post-Impressionist paintings by van Gogh and Gau-
guin in the Painting-91-BIP dataset. All rights by Wikimedia com-

mons, public domain.
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FIGURE A.12: Post-Impressionist paintings by Gauguin in the
Painting-91-BIP dataset. All rights by Wikimedia commons, public

domain.
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Appendix B

Detailed results obtained when
classifying the 90 images in the
QArt-Dataset

This appendix provides a detailed exposition of the results obtained when classifying
the 90 images in the QArt-Dataset using all the classification methods introduced in
this PhD thesis: the three versions of the `-SHE algorithm (i.e., the `-SHERPL, the
`-SHEG(Q), and the `-SHEu(Q) versions).

B.1 The `-SHERPL algorithm tested on the
QArt-Dataset

This section presents in detail the quantitative results obtained by the `-SHERPL al-
gorithm when classifying all the paintings in the QArt-Dataset, indicating the mem-
bership degree to the three art styles (the Baroque, the Impressionism and the Post-
Impressionism styles – B, I, PI, respectively) got for each image in the dataset. In
addition, the tables of this section indicate whether the `-SHE classification provides
a second opinion (column Second opinion?). Table B.1 provides the results obtained
from the 30 Baroque paintings and the 30 Impressionist paintings in the QArt-Dataset,
and Table B.2 shows the results when classifying the 30 Post-Impressionist paintings
in the dataset. Note that in all the tables of this appendix the last column indicates
whether a second evaluation is given to the user.

B.2 The `-SHEG(Q) algorithm tested on the
QArt-Dataset

This section presents in detail the quantitative results obtained by the `-SHEG(Q) al-
gorithm when classifying all the paintings in the QArt-Dataset, indicating the mem-
bership degree to the three art styles (the Baroque, the Impressionism and the Post-
Impressionism styles) got for each image in the dataset. Table B.4 provides the re-
sults obtained from the 30 Baroque paintings in the QArt-Dataset, and Table B.5
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shows the results when classifying the 30 Impressionist 30 paintings and the 30 Post-
Impressionist paintings in the dataset.

B.3 The `-SHEu(Q) algorithm tested on the
QArt-Dataset

This section presents in detail the quantitative results obtained by the `-SHEu(Q) al-
gorithm when classifying all the paintings in the QArt-Dataset, indicating the mem-
bership degree to the three art styles (the Baroque, the Impressionism and the Post-
Impressionism styles) got for each image in the dataset. Table B.6 provides the results
obtained from the 30 Baroque paintings in the QArt-Dataset, and Table B.7 shows the
results when classifying the 30 Impressionist 30 Post-Impressionist paintings in the
dataset.
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TABLE B.1: `-SHERPL: detailed results obtained when classifying
the 30 Baroque images in the QArt-Dataset.

Art style Painter
Name of the

painting p in the
QArt-Dataset

B(p) I(p) PI(p) Second opinion?

j1 0.974 0.414 0.533 No
j2 0.631 0.334 0.415 No
j3 0.820 0.564 0.352 No
j4 1 0.153 0.580 No
j5 1 0.645 0.426 No
j6 1 0.295 0.363 No
j7 1 0.616 0.508 No

Vermeer j8 0.975 0.601 0.409 No
j9 1 0.413 0.445 No
j10 1 0.440 0.458 No
j11 1 0.588 0.667 No
j12 0.661 0.384 0.577 Yes
j13 0.841 0.431 0.538 No
j14 1 0.401 0.520 No
j15 0.405 0.406 0.666 No

Baroque v1 0.995 0 0.760 No
v2 1 0.376 0.456 No
v3 0.681 0.837 0.432 No
v4 1 0.615 0.457 No
v5 1 0.470 0.430 No
v6 0.986 0.355 0.706 No
v7 0.867 0.284 0.750 Yes

Velázquez v8 0.975 0.574 0.538 No
v9 1 0.119 0.509 No

v10 0.835 0.781 0.526 Yes
v11 1 0.437 0.455 No
v12 0.117 0.161 0.942 No
v13 1 0.261 0.511 No
v14 0.630 0.611 0.382 Yes
v15 1 0.305 0.571 No
rn1 0.689 0.864 0.770 Yes
rn2 0.855 0.891 0.463 Yes
rn3 0.475 0.891 0.604 No
rn4 0.430 0.665 0.355 No
rn5 0.145 1 0.480 No
rn6 0.532 0.918 0.661 No
rn7 0.512 0.550 1 No

Renoir rn8 0.332 0.557 0.549 Yes
rn9 0.541 0.499 0.868 No

Impressionism rn10 1 0.795 0.659 No
rn11 0 0.918 0.376 No
rn12 0 0.948 0.464 No
rn13 0.307 0.556 0.947 No
rn14 0.637 0.876 0.877 Yes
rn15 0.182 0.921 0.894 Yes
m1 0.102 1 0.656 No
m2 0.205 0.945 0.542 No
m3 0 0.746 0.473 No
m4 0.144 0.685 0.899 No
m5 0 0.847 0.502 No
m6 0.254 0.839 0.881 Yes
m7 0.786 0.946 0.525 No

Monet m8 0 0.961 0.482 No
m9 1 0.733 0.576 No

m10 0.168 0.692 0.484 No
m11 0.592 0.918 0.479 No
m12 0.624 0.642 0.379 Yes
m13 0.818 0.591 0.701 Yes
m14 0.119 0.100 0.568 No
m15 0 0.912 0.468 No
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TABLE B.2: `-SHERPL: detailed results obtained when classifying
the 30 Impressionist images and 30 the Post-Impressionist paintings

in the QArt-Dataset.

Art style Painter

Name of the
painting p in

the
QArt-Dataset

B(p) I(p) PI(p) Doubt?

vg1 0 0.810 0.989 No
vg2 0 0.269 1 No
vg3 0.049 0.785 0.719 Yes
vg4 0.093 0.686 1 No
vg5 0.665 0.679 1 No
vg6 0.188 0.778 0.965 No
vg7 0.891 0.723 1 Yes
vg8 0 0.766 1 No

van Gogh vg9 0.023 0.750 0.100 No
vg10 0 0.672 0.980 No
vg11 0.943 0.559 0.369 No
vg12 0 0.629 1 No
vg13 0.259 1 0.481 No
vg14 0.774 0.880 0.425 Yes
vg15 0.182 0.921 0.894 Yes

Post-Impressionism gg1 0 0.402 0.905 No
gg2 0.160 0.899 0.844 Yes
gg3 0 0.823 0.956 Yes
gg4 0 0.521 0.919 No
gg5 0.255 0.862 0.895 Yes
gg6 0.298 0.809 0.695 Yes
gg7 0.083 0.805 1 No

Gauguin gg8 0 0.938 0.772 No
gg9 0 0.611 1 No
gg10 0.067 0.816 1 No
gg11 0.254 1 0.651 No
gg12 0.001 0.958 0.726 No
gg13 0.876 0.374 0.972 Yes
gg14 0.007 0.818 1 No
gg15 0.385 1 0.674 No

TABLE B.3: `-SHEG(Q): detailed results obtained when classifying
the 15 Baroque images by Vermeer in the QArt-Dataset.

Art style Painter
Name of the

painting p in the
QArt-Dataset

B(p) I(p) PI(p) Doubt?

j1 0.874 0 0.003 Yes
j2 0.584 0 0.004 No
j3 0.660 0 0.000 No
j4 1 0 0.001 No
j5 1 0.378 0 No
j6 1 0 0.000 No
j7 1 0.056 0.003 No

Vermeer j8 0.758 0.406 0.000 No
j9 1 0.080 0.001 No
j10 1 0 0.003 No
j11 1 0.083 0.006 No
j12 0.597 0.304 0 No
j13 0.688 0 0.002 No
j14 1 0.149 0.012 No
j15 0.453 0 0.000 No
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TABLE B.4: `-SHEG(Q): detailed results obtained when classifying
the 15 Baroque images by Velázquez in the QArt-Dataset.

Art style Painter
Name of the

painting p in the
QArt-Dataset

B(p) I(p) PI(p) Doubt?

v1 1 0 0 No
v2 1 0 0 No
v3 0.591 0.460 0 Yes
v4 1 0 0 No
v5 1 0 0 No
v6 0.886 0 0.064 No
v7 0.693 0 0 No

Velázquez v8 1 0.378 0.001 No
v9 1 0 0.014 No
v10 1 0.040 0.016 No
v11 1 0.249 0.000 No
v12 0.308 0 0.82 No
v13 1 0 0.001 No
v14 1 0.324 0 No
v15 1 0 0 No
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TABLE B.5: `-SHEG(Q): detailed results obtained when classifying
the 30 Impressionist images and 30 the Post-Impressionist paintings

in the QArt-Dataset.

Art style Painter

Name of the
painting p in

the
QArt-Dataset

B(p) I(p) PI(p) Doubt?

rn1 0.284 0.487 0.001 No
rn2 0.677 0.514 0.001 No
rn3 0.487 0.514 0.003 Yes
rn4 0.465 0.378 0 Yes
rn5 0.322 1 0.010 No
rn6 0.516 0.541 0.003 Yes
rn7 0.507 0.126 1 No

Renoir rn8 0.745 1 0.002 No
rn9 0.523 0.193 0.008 No

rn10 1 0.294 0.006 No
rn11 0.201 0.541 0 No
rn12 0.054 0.388 0.015 No
rn13 0.401 0 0.087 No
rn14 0.575 0.316 0.017 No
rn15 0.329 0.361 0.034 Yes

Impressionism m1 0.301 1 0.007 No
m2 0.384 0.568 0.030 No
m3 0.107 0.460 0.000 No
m4 0.322 0.416 0.039 Yes
m5 0.207 0.346 0.005 Yes
m6 0.377 0.279 0.053 Yes
m7 0.643 0.386 0.012 No

Monet m8 0.160 0.401 0.009 No
m9 0.378 0.406 0 Yes

m10 1 0.174 0.008 No
m11 0.562 0.541 0 Yes
m12 0.565 0 0 No
m13 0.721 0.268 0 No
m14 0.310 1 0.007 No
m15 0.119 0.352 0.017 No
vg1 0.227 0.250 0.519 No
vg2 0.082 0 1 No
vg3 0.175 0.225 0.068 Yes
vg4 0.307 0.145 1 No
vg5 0.583 0.119 1 No
vg6 0.344 0.218 0.495 No
vg7 0.723 0.163 0.007 No
vg8 0.037 0.206 1 No

van Gogh vg9 0.261 0 1 No
vg10 0.170 0.112 0.120 Yes
vg11 0.732 0.226 0.005 No
vg12 0.121 0 1 No
vg13 0.379 1 0.001 No
vg14 0.637 0.320 0.005 No
vg15 0.431 0.273 0.057 No

Post-Impressionism gg1 0.220 0 0.045 No
gg2 0.343 0.330 0.125 Yes
gg3 0.158 0.265 0.010 Yes
gg4 0.118 0 0.059 Yes
gg5 0.377 0.044 0.035 No
gg6 0.399 0.250 0.128 Yes
gg7 0.292 0.044 1 No

Gauguin gg8 0.240 0.378 0.017 Yes
gg9 0.073 0 1 No
gg10 0.284 0.311 1 No
gg11 0.377 1 0.036 No
gg12 0.251 0.398 0.033 Yes
gg13 0.176 0 0.112 Yes
gg14 0.253 0.258 1 No
gg15 0.442 1 0.005 No
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TABLE B.6: `-SHEu(Q): detailed results obtained when classifying
the 30 Baroque images in the QArt-Dataset.

Art style Painter
Name of the

painting p in the
QArt-Dataset

B(p) I(p) PI(p) Doubt?

j1 0.971 0 0.009 No
j2 0.508 0 0.004 No
j3 0.811 0 0.000 No
j4 1 0 0.004 No
j5 1 0.512 0 No
j6 1 0 0.004 No
j7 1 0.127 0.008 No

Vermeer j8 1 0.491 0.000 No
j9 1 0.125 0.001 No

j10 1 0 0.004 No
j11 1 0.172 0.028 No
j12 0.545 0.271 0 No
j13 0.791 0 0.005 No
j14 1 0.194 0.028 No
j15 0.337 0 0.002 No

Baroque v1 1 0 0 No
v2 1 0 0 No
v3 0.668 0.743 0 Yes
v4 1 0 0 No
v5 1 0 0 No
v6 0.984 0 0.269 No
v7 0.839 0 0 No

Velázquez v8 1 0.459 0.003 No
v9 1 0 0.032 No
v10 0.847 0.420 0.040 No
v11 1 0.297 0.001 No
v12 0.321 0 0.588 No
v13 1 0 0.003 No
v14 0.717 0.459 0 No
v15 1 0 0 No
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TABLE B.7: `-SHEu(Q): detailed results obtained when classifying
the 30 Impressionist images and 30 the Post-Impressionist paintings

in the QArt-Dataset.

Art style Painter

Name of the
painting p in

the
QArt-Dataset

B(p) I(p) PI(p) Doubt?

rn1 0.190 0.786 0.006 No
rn2 0.891 0.830 0.001 Yes
rn3 0.517 0.830 0.011 No
rn4 0.578 0.535 0 Yes
rn5 0.287 1 0.019 No
rn6 0.676 0.874 0.012 No
rn7 0.391 0.225 1 No

Renoir rn8 0.402 1 0.004 No
rn9 1 0.286 0.054 No

rn10 1 0.602 0.028 No
rn11 0.062 0.874 0 No
rn12 0.003 0.882 0.024 No
rn13 0.222 0 0.624 No
rn14 1 0.718 0.124 No
rn15 0.262 0.821 0.243 No

Impressionism m1 0.327 1 0.030 No
m2 1 0.917 0.074 Yes
m3 0.025 0.650 0.001 No
m4 0.403 0.588 0.275 No
m5 0.065 0.709 0.012 No
m6 0.213 0.635 0.353 No
m7 0.802 0.877 0.029 Yes

Monet m8 0.032 0.910 0.017 No
m9 0.133 0.573 0 No

m10 1 0.394 0.025 No
m11 1 0.874 0 Yes
m12 0.508 0 0 No
m13 0.719 0.419 0 No
m14 0.274 1 0.020 No
m15 0.011 0.801 0.027 No
vg1 0.078 0.567 0.979 No
vg2 0.007 0 1 No
vg3 0.147 0.512 0.295 No
vg4 0.106 0.328 1 No
vg5 0.640 0.270 1 No
vg6 0.221 0.496 0.935 No
vg7 1 0.370 0.049 No
vg8 0.012 0.467 1 No

van Gogh vg9 0.261 0 1 No
vg10 0.040 0.254 0.858 No
vg11 1 0.354 0.002 No
vg12 0.012 0 1 No
vg13 0.323 1 0.002 No
vg14 0.767 0.727 0.007 Yes
vg15 0.406 0.621 0.298 No

Post-Impressionism gg1 0.104 0 0.319 No
gg2 0.136 0.769 0.654 Yes
gg3 0.072 0.602 0.711 Yes
gg4 0.024 0 0.424 No
gg5 0.302 0.611 0.252 No
gg6 0.308 0.567 0.409 No
gg7 0.207 0.496 1 No

Gauguin gg8 0.126 0.860 0.095 No
gg9 0.020 0 1 No
gg10 0.170 0.649 1 No
gg11 0.307 1 0.138 No
gg12 0.200 0.904 0.161 No
gg13 0.838 0 0.798 Yes
gg14 0.128 0.586 1 No
gg15 0.322 1 0.021 No
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Appendix C

Detailed results obtained when
classifying the 247 images in the
Painting-91-BIP dataset

This appendix provides a detailed exposition of the results obtained when classifying
the 247 images in the Painting-91-BIP dataset using the different methods presented
in this thesis, `-SHERPL, `-SHEG(Q), and `-SHEu(Q). Again, let us recall that the
experimentation was run using Swi-Prolog (Wielemaker et al. (2012)).

C.1 The `-SHERPL algorithm tested on the Painting-
91-BIP dataset

This section presents in detail the quantitative results obtained by `-SHERPL when
classifying all the paintings in the Painting-91-BIP dataset, indicating themembership
degree to the three art styles (Baroque, Impressionism and Post-Impressionism – B, I,
PI, respectively) got for each image in the dataset. In this way, tables C.1–C.4 provide
the results obtained for the 247 in the Painting-91-BIP dataset. Note again that in all
the tables of this appendix the last column indicates whether a second evaluation is
given to the user.

C.2 The `-SHEG(Q) algorithm tested on the Painting-
91-BIP dataset

This section presents in detail (Tables C.5–C.8) the quantitative results obtained by
`-SHEG(Q) when classifying all the paintings in the Painting-91-BIP dataset, indi-
cating the membership degree to the three art styles (Baroque, Impressionism and
Post-Impressionism) got for each image in the dataset.
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Painting-91-BIP dataset

C.3 The `-SHEu(Q) algorithm tested on the Painting-
91-BIP dataset

This section presents in detail (Tables C.9–C.12) the quantitative results obtained by
`-SHEu(Q) when classifying all the paintings in the Painting-91-BIP dataset, indi-
cating the membership degree to the three art styles (Baroque, Impressionism and
Post-Impressionism) got for each image in the dataset.
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TABLE C.1: `-SHERPL: detailed results obtained when classifying
the 35 images from Vermeer and 25 paintings from Velázquez in the

Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
1 0.610 0.667 0.406 Yes
2 1 0.119 0.701 No
3 1 1 0.270 Yes
4 0.642 0.355 0.864 No
5 1 0.250 0.595 No
6 0.243 0.718 0.649 Yes
7 1 0.245 0.598 No
8 1 0.312 0.636 No
9 0.980 0.080 0.885 Yes

10 1 0.108 0.615 No
11 1 0.141 0.401 No
12 0.744 0.118 0.872 Yes
13 0.577 0.600 0.734 Yes
14 1 0.208 0.480 No
15 1 0.093 0.482 No

jan_vermeer_i 16 0.552 0.364 0.862 No
17 1 0.127 0.907 Yes
18 0.963 0.200 0.641 No
19 1 0.015 0.950 Yes
20 1 0.582 0.436 No
21 1 0.126 0.391 No
22 0.591 0.248 0.808 No
23 0.780 0.234 0.861 Yes
24 0.782 0.218 0.761 Yes
25 1 0.408 0.601 No
26 0.924 0.121 0.519 No
27 1 0.386 0.609 No
28 1 0 0.909 Yes
29 1 0.199 0.696 No

Baroque 30 0.047 0.520 0.414 Yes
31 1 0.237 0.569 No
32 1 0.256 0.396 No
33 1 0.152 0.537 No
34 0.938 0.300 0.703 No
35 1 0.510 0.373 No
1 1 0.073 0.853 Yes
2 1 0.092 0.789 No
3 0.913 0.110 0.865 Yes
4 0.906 0.280 0.766 Yes
5 1 0.297 0.715 No
6 1 0 0.526 No
7 1 0.024 0.696 No
8 0.981 0.128 0.705 No
9 1 0.378 0.433 No

10 1 0.196 0.542 No
11 1 0.285 0.423 No
12 1 0.231 0.654 No

diego_-
velazquez_i 13 1 0.192 0.758 No

14 1 0.524 0.627 No
15 1 0.050 0.887 Yes
16 1 0.116 0.384 No
17 1 0.076 0.554 No
18 0.964 0.287 0.510 No
19 1 0.470 0.438 No
20 1 0 0.535 No
21 0.973 0.294 0.807 No
22 1 0 0.675 No
23 0.990 0.105 0.879 Yes
24 1 0.180 0.621 No
25 0.955 0.126 0.708 No
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TABLE C.2: `-SHERPL: detailed results obtained when classifying
the rest of the images from Velázquez and the 46 images from Renoir

in the Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
26 1 0 0.600 No
27 0.561 0.719 0.506 No
28 1 0.352 0.357 No
29 1 0.374 0.509 No
30 0.951 0.063 0.839 Yes
31 0.854 0.416 0.493 No
32 1 0 0.656 No

Baroque 33 1 0.352 0.357 No
diego_-

velazquez_i 34 1 0.057 0.439 No

35 1 0.160 0.567 No
36 1 0.199 0.656 No
37 1 0.341 0.529 No
38 0.992 0.314 0.721 No
39 1 0.362 0.646 No
1 0.299 0.415 0.678 No
2 0.691 0.406 0.752 Yes
3 0 0.182 0.900 No
4 0.373 0.669 0.738 Yes
5 0.557 0.170 0.860 No
6 0.736 0.005 1 No
7 0.876 0.995 0.484 Yes
8 0.369 1 1 Yes
9 0 0.959 0.712 No

10 0 0.721 0.866 Yes
11 0.245 0.692 0.518 No
12 1 0.574 0.375 No
13 0 0.497 0.500 Yes
14 0.414 0.722 0.799 Yes
15 0.926 0.568 0.861 Yes
16 0 0.496 0.837 No
17 0.527 0.918 0.441 No

Impressionism 18 0.850 0 0.902 Yes
19 1 0.837 0.703 No

pierre-auguste_-
renoir_i 20 0 0.592 0.925 No

21 0 0.382 0.735 No
22 0.989 0.496 0.767 No
23 0.212 0.997 0.473 No
24 1 0.437 0.864 No
25 0.513 0.607 0.805 No
27 0.373 0.571 0.911 No
28 0.947 0.397 0.657 No
29 0.207 0.173 0.624 No
30 0.031 0 1 No
31 0.069 0.860 0.639 No
32 0.680 0.491 0.970 No
33 0.872 0.024 0.860 Yes
34 0.811 0.484 0.824 Yes
35 1 0 0.875 Yes
36 0.968 0 0.860 Yes
37 0.703 0.159 0.860 No
38 0.754 0.388 0.751 Yes
39 0 0.249 0.962 No
40 0.413 0.497 0.384 Yes
41 0.679 0.432 0.555 Yes
43 0.400 0.203 0.925 No
44 0.619 0.497 0.742 Yes
45 1 0.130 0.865 Yes
46 0.399 0.723 0.662 Yes
47 0 0.677 0.786 Yes
48 0.077 0.897 0.727 No
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TABLE C.3: `-SHERPL: detailed results obtained when classifying the
36 images from Monet and 24 from van Gogh in the Painting-91-BIP

dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
1 0.732 0.941 0.460 No
2 0.132 0.783 0.367 No
3 0.602 0.918 0.528 No
4 1 1 0.340 Yes
5 0.548 0.837 0.543 No
6 1 0.574 0.450 No
7 0.454 0.642 0.446 No
8 0.304 0.884 0.444 No
9 0.938 0.719 0.525 No

10 0.756 0.941 0.415 No
11 0 0.735 0.563 No
12 0.821 0.443 0.369 No
13 0.145 0.934 0.393 No
14 0.925 0.180 0.425 No
15 1 0.297 0.918 Yes
16 0.205 0.574 0.627 Yes
17 0 0.918 0.594 No

Impressionism 18 0 1 0.410 No
19 1 0.719 0.697 No

claude_monet_i 20 1 0.887 0.602 Yes
21 1 0.719 0.398 No
22 0.001 0.665 0.384 No
23 0.132 0.837 0.700 Yes
24 0 0.615 0.498 Yes
25 0 0.923 0.394 No
26 0.606 0.696 0.419 Yes
27 0.084 0.180 0.440 No
28 1 0.207 0.767 No
29 0.427 0.574 0.411 Yes
30 0.917 0.834 0.685 Yes
31 0.623 0.891 0.376 No
32 0.495 0.035 0.348 Yes
33 0.196 0.827 0.655 No
34 0.481 0.810 0.338 No
35 0 0.972 0.366 No
36 0.602 0.918 0.528 No
1 0.681 0.442 0.900 No
2 0 0.746 1 No
3 0.022 0.810 0.425 No
4 0.167 0.414 0.926 No
5 0 0.494 0.793 No
6 0 0.864 0.696 No
7 1 0.352 0.432 No
8 0 0.690 0.970 No
9 0 1 0.366 No

10 0.408 0.767 0.785 Yes
Post-Impressionism 11 0.566 0.230 1 No

vincent_van_-
gogh_i 12 1 0 0.701 No

13 0.951 0.041 0.968 Yes
14 0.339 0.945 0.471 No
15 0 0.956 0.658 No
16 0.417 0.864 0.398 No
17 0.961 0.703 0.711 No
18 1 0.574 0.458 No
19 0.535 0.703 0.893 No
20 0.708 0.750 0.682 Yes
21 0.481 0.416 0.373 Yes
22 0.725 0.918 0.513 No
23 0 0.863 0.766 Yes
24 0.116 0.723 0.795 Yes
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TABLE C.4: `-SHERPL: detailed results obtained when classifying
the 40 images from van Gogh in the Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
26 0 0.747 0.922 No
27 0.318 0.495 0.976 No
28 0.046 0.433 0.891 No
29 0 0.705 0.887 No
30 0 0.854 0.911 Yes

vincent_van_-
gogh_i 31 0.205 0.485 1 No

32 0.678 0.727 0.903 No
33 1 0.374 0.402 No
34 0 0.780 0.875 Yes
35 0.231 0.539 1 No
36 0 0.714 0.901 No
37 0.544 0.750 0.397 No
38 0 1 0.678 No
39 0.376 0 1 No
40 0.970 0.918 0.702 Yes
41 0.073 0.918 0.702 No
1 0 0.627 1 No
2 0.287 0.813 0.951 Yes
3 0.527 1 0.623 No
4 0.443 0.884 0.828 Yes
5 0.490 0.655 0.752 Yes
6 0.262 0.642 0.798 No
7 0.809 0.730 1 No
8 0.982 0.253 0.856 Yes
9 1 0.671 0.709 No
10 1 0.827 0.928 Yes

Post-Impressionism 11 1 0.478 0.884 Yes
12 0 0.689 1 No
13 0.517 1 0.781 No
14 0.605 0.460 1 No
15 0.868 0.817 0.735 Yes
16 0.894 0.759 0.887 Yes
17 0.699 0.757 0.884 Yes
18 0.362 0.995 0.468 No
19 0 0.719 1 No

paul_gauguin_i 20 0 0.503 1 No
21 0.221 0.561 1 No
22 0.040 0.748 1 No
23 0.291 0.202 0.955 No
24 1 0.624 0.690 No
25 0.285 0.682 1 No
26 0.102 0.692 0.987 No
27 0.517 0.218 0.931 No
28 0.342 0.955 0.929 Yes
29 0.374 0.700 1 No
30 0.991 0.594 0.968 Yes
31 0.754 0.500 0.758 Yes
32 0.849 0.722 0.857 Yes
33 0.550 1 0.603 No
34 0.523 0.913 0.773 No
35 0 0.738 1 No
36 0 0.548 0.904 No
37 0.546 0.690 1 No
38 0.411 0.120 1 No
39 0.908 0.864 0.787 Yes
40 0.149 0.392 1 No
41 0.559 0.824 0.714 Yes
42 0.401 0.977 0.585 No
43 1 0.642 0.442 No
44 0 0.420 1 No
45 0.009 0.351 1 No
46 1 0.381 0.625 No
47 0.756 0.417 0.712 Yes
48 0.472 0.684 0.901 No
49 1 0.378 0.891 Yes
50 0.691 0.874 0.997 Yes
51 0.819 0.500 1 No
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TABLE C.5: `-SHEG(Q): detailed results obtained when classifying
the 35 images from Vermeer and 25 paintings from Velázquez in the

Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
1 0.738 0.307 0.003 No
2 1 0 0.015 No
3 1 0 0 No
4 0.761 0 0.004 No
5 1 0 0.007 No
6 0.622 0.271 0.018 No
7 1 0 0.007 No
8 1 0 0.002 No
9 0.880 0 0.025 No

10 1 0 0.004 No
11 1 0 0.000 No
12 0.776 0 0.024 No
13 0.752 0.294 0.005 No
14 1 0 0.001 No
15 1 0 0 No

jan_vermeer_i 16 0.765 0 0.007 No
17 1 0 0.047 No
18 0.863 0 0.062 No
19 0.871 0 0.090 No
20 1 0.303 0 No
21 1 0 0 No
22 0.734 0 0 No
23 1 0 0.001 No
24 0.643 0 0 No
25 1 0 0.000 No
26 0.832 0 0 No
27 1 0 0.001 No
28 1 0 0.072 No
29 1 0 0.022 No

Baroque 30 0.546 0.324 0 No
31 1 0 0 No
32 1 0 0 No
33 1 0 0.003 No
34 0.698 0 0.004 No
35 1 0.143 0 No
1 1 0 0.004 No
2 1 0 0.025 No
3 0.834 0 0.042 No
4 1 0 0.014 No
5 1 0 0.016 No
6 1 0 0.000 No
7 1 0 0.012 No
8 0.881 0 0.026 No
9 1 0.217 0.001 No

10 1 0 0.002 No
11 1 0 0 No
12 1 0 0.007 No

diego_-
velazquez_i 13 1 0 0.015 No

14 1 0 0 No
15 1 0 0.027 No
16 1 0 0 No
17 1 0 0 No
18 0.864 0 0 No
19 1 0 0 No
20 1 0 0.015 No
21 1 0 0.013 No
22 1 0 0.017 No
23 0.890 0 0.099 No
24 1 0 0.000 No
25 0.855 0 0.058 No
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TABLE C.6: `-SHEG(Q): detailed results obtained when classifying
the rest of the images from Velázquez and the 46 images from Renoir

in the Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
26 1 0 0.037 No
27 0.775 0.432 0.000 No
28 1 0 0 No
29 1 0.213 0.001 No
30 1 0 0.040 No
31 1 0 0 No
32 1 0 0.039 No

Baroque 33 1 0 0 No
diego_-

velazquez_i 34 1 0 0 No

35 1 0 0.002 No
36 1 0 0.002 No
37 1 0 0.002 No
38 0.892 0 0.062 No
39 1 0 0.001 No
1 0.661 0 0 No
2 1 0.299 0.000 No
3 0.479 0 0.040 No
4 0.745 0 0.000 No
5 0.758 0 0 No
6 0.797 0 1 No
7 0.668 0.595 0.011 Yes
8 0.778 0 1 No
9 0.274 0.399 0.039 Yes

10 0.241 0 0.006 No
11 0.209 0.405 0.013 No
12 1 0.378 0.000 No
13 0.451 0 0 No
14 0.776 0 0 No
15 0.702 0 0.011 No
16 0.634 0 0.023 No

Impressionism 17 0.483 0.541 0 Yes
18 0.825 0 0.010 No

pierre-auguste_-
renoir_i 19 1 0.460 0.005 No

20 0.569 0 0.065 No
21 0.529 0 0.048 No
22 1 0.217 0.011 No
23 0.641 0.437 0.05 No
24 1 0.131 0.004 No
25 0.734 0.328 0.079 No
27 0.429 0 0.051 No
28 1 0 0.001 No
29 0.604 0 0.010 No
30 0.551 0 1 No
31 0.337 0.460 0 Yes
32 0.761 0 0.110 No
33 1 0 0.004 No
34 1 0 0.018 No
35 1 0 0.015 No
36 1 0 0.000 No
37 1 0 0.000 No
38 0.828 0 0.005 No
39 0.238 0 0.102 Yes
40 0.486 0 0 No
41 0.684 0.324 0 No
43 0.765 0 0.065 No
44 0.831 0 0 No
45 1 0 0.005 No
46 0.461 0 0.013 No
47 0.553 0.371 0.001 No
48 0.420 0.337 0.029 Yes
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TABLE C.7: `-SHEG(Q): detailed results obtained when classifying
the 36 images from Monet and 24 from van Gogh in the Painting-91-

BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
1 1 0.541 0.000 No
2 0.311 0.405 0 Yes
3 0.362 0.541 0.008 No
4 1 1 0.000 Yes
5 0.408 0.460 0 Yes
6 1 0.378 0.001 No
7 0.757 0 0.002 No
8 0.372 0.324 0.021 Yes
9 1 0.432 0.005 No

10 0.531 0.541 0.001 Yes
11 0.473 0.175 0.041 No
12 1 0 0 No
13 0.619 0.374 0.025 No
14 1 0 0 No
15 1 0 0.058 No
16 0.211 0.378 0.025 No
17 0.607 0.541 0.057 Yes

Impressionism 18 0.069 1 0 No
19 1 0.432 0 No

claude_monet_i 20 1 0.487 0.037 No
21 1 0.432 0 No
22 0.124 0.378 0 No
23 0.380 0.386 0.045 Yes
24 0.097 0 0 Yes
25 0.099 0.369 0.002 No
26 0.742 0 0.000 No
27 0.388 0 0 No
28 0.470 0 0 No
29 0.723 0.378 0 No
30 0.689 0.357 0.035 No
31 0.791 0.514 0.002 No
32 1 0 0 No
33 0.679 0.541 0.023 Yes
34 0.727 0.432 0 No
35 0.083 0.595 0.010 No
36 1 0 0.008 No
1 0.508 0 0.040 No
2 0.531 0.186 1 No
3 0.172 0.432 0 No
4 0.727 0 0.066 No
5 0.126 0 0.323 No
6 0.388 0.487 0.025 Yes
7 1 0 0.025 No
8 0.395 0.130 0 No
9 0.227 1 0.001 No

10 0.406 0.213 0.059 No
Post-Impressionism 11 0.627 0 1 No

vincent_van_-
gogh_i 12 1 0 0.074 No

13 0.733 0 0.075 No
14 0.734 0.568 0.000 No
15 0.607 0.044 0.008 No
16 0.836 0.487 0 No
17 1 0 0.035 No
18 1 0.378 0.035 No
19 0.489 0.425 0.033 Yes
20 1 0 0.012 No
21 0.790 0 0 No
22 0.485 0.541 0.001 Yes
23 0.588 0.302 0.096 No
24 0.222 0 0.003 No
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TABLE C.8: `-SHEG(Q): detailed results obtained when classifying
the 40 images from van Gogh in the Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
26 0.093 0.046 0.452 No
27 0.517 0.017 0.506 Yes
28 0.356 0 0.031 No
29 0.494 0.018 0.417 Yes
30 0.478 0.322 0.085 No

vincent_van_-
gogh_i 31 0.604 0 1 No

32 0.777 0.168 0.433 No
33 1 0 0 No
34 0.415 0.252 0.015 No
35 0.708 0 0 No
36 0.486 0 0.041 No
37 0.778 0.196 0.017 No
38 0.435 1 0 No
39 0.730 0 1 No
40 1 0.287 0 No
41 0.216 0.541 0.000 No
1 0.400 0.067 1 No
2 0.468 0.252 0.091 No
3 0.522 1 0.036 No
4 0.468 0.324 0.110 Yes
5 0.550 0.460 0.282 Yes
6 0.649 0 0.110 No
7 0.686 0.170 1 No
8 0.882 0 0.056 No
9 1 0 0.016 No
10 1 0.295 0.068 No

Post-Impressionism 11 1 0 0.086 No
12 0.483 0.126 1 No
13 0.741 1 0.120 No
14 0.593 0 1 No
15 1 0 0.027 No
16 1 0.221 0.090 No
17 0.768 0.046 0.024 No
18 0.430 0.595 0.003 No
19 0.268 0.165 1 No

paul_gauguin_i 20 0.294 0.143 1 No
21 0.599 0 1 No
22 0.442 0.271 1 No
23 0.420 0 0.095 No
24 1 0 0.006 No
25 0.615 0.123 1 No
26 0.556 0.165 0.517 Yes
27 0.687 0 0.461 No
28 0.735 0.400 0.069 No
29 0.636 0.145 1 No
30 0.891 0.121 0.108 No
31 0.783 0 0.078 No
32 1 0.390 0.115 No
33 0.796 1 0.021 No
34 0.451 0.386 0.002 Yes
35 0.440 0.314 1 No
36 0.536 0 0.044 No
37 0.731 0.130 1 No
38 0.697 0 1 No
39 0.708 0.487 0.044 No
40 0.601 0 1 No
41 0.801 0.427 0.011 No
42 0.781 0.727 0.002 Yes
43 1 0 0.001 No
44 0.535 0 1 No
45 0.551 0 1 No
46 1 0 0.005 No
47 1 0 0.004 No
48 0.769 0.233 0.056 No
49 1 0.099 0.048 No
50 0.781 0.314 0.137 No
51 0.814 0 1 No
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TABLE C.9: `-SHEu(Q): detailed results obtained when classifying
the 35 images from Vermeer and 25 paintings from Velázquez in the

Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
1 0.601 0.507 0.003 Yes
2 1 0 0.073 No
3 1 0 0 No
4 0.625 0 0.029 No
5 1 0 0.005 No
6 0.336 0.499 0.074 No
7 1 0 0.023 No
8 1 0 0.009 No
9 0.977 0 0.182 No

10 1 0 0.014 No
11 1 0 0.000 No
12 0.725 0 0.167 No
13 0.564 0.434 0.024 Yes
14 1 0 0.002 No
15 1 0 0 No

jan_vermeer_i 16 0.532 0 0.048 No
17 1 0 0.334 No
18 1 0 0.207 No
19 0.967 0 0.646 No
20 1 0.421 0 No
21 1 0 0 No
22 0.584 0 0 No
23 0.734 0 0.005 No
24 0.751 0 0 No
25 1 0 0.002 No
26 0.915 0 0 No
27 1 0 0.005 No
28 1 0 0.490 No
29 1 0 0.103 No

Baroque 30 0.236 0.393 0 No
31 1 0 0 No
32 1 0 0 No
33 1 0 0.007 No
34 1 0 0.022 No
35 1 0.347 0 No
1 1 0 0.025 No
2 1 0 0.145 No
3 0.908 0 0.280 No
4 0.888 0 0.082 No
5 1 0 0.081 No
6 1 0 0.001 No
7 1 0 0.057 No
8 0.979 0 0.121 No
9 1 0.243 0.001 No

10 1 0 0.003 No
11 1 0 0 No
12 1 0 0.031 No

diego_-
velazquez_i 13 1 0 0.084 No

14 0.806 0 0 No
15 1 0 0.192 No
16 1 0 0 No
17 1 0 0 No
18 0.906 0 0 No
19 1 0 0 No
20 1 0 0.038 No
21 0.965 0 0.079 No
22 1 0 0.074 No
23 0.989 0 0.601 No
24 1 0 0.011 No
25 0.950 0 0.250 No
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TABLE C.10: `-SHEu(Q): detailed results obtained when classifying
the rest of the images from Velázquez and the 46 images from Renoir

in the Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
26 1 0 0.117 No
27 0.533 0.612 0.000 Yes
28 1 0 0 No
29 1 0.238 0.002 No
30 0.935 0 0.253 No
31 0.807 0 0 No
32 1 0 0 No

Baroque 33 1 0 0 No
diego_-

velazquez_i 34 1 0 0 No

35 1 0 0.006 No
36 1 0 0.007 No
37 1 0 0.005 No
38 1 0 0.273 No
39 1 0 0.003 No
1 0.363 0 0 No
2 0.616 0.290 0.001 No
3 0.068 0 0.283 No
4 0.370 0 0.001 No
5 0.541 0 0 No
6 0.709 0 1 No
7 0.848 0.991 0.020 Yes
8 0.330 0 1 No
9 0.136 0.907 0.179 No

10 0.165 0 0.045 No
11 0.215 0.573 0.031 No
12 1 0.459 0.000 No
13 0.067 0 0 Yes
14 0.379 0 0 No
15 0.908 0 0.075 No
16 0.074 0 0.150 Yes
17 0.501 0.874 0 No

Impressionism 18 0.829 0 0.634 No
19 1 0.743 0.025 No

pierre-auguste_-
renoir_i 20 1 0 0.465 No

21 0.188 0 0.229 Yes
22 1 0.302 0.066 No
23 0.308 0.992 0.009 No
24 1 0.193 0.028 No
25 0.511 0.456 0.423 Yes
27 0.390 0 0.361 Yes
28 1 0 0.003 No
29 0.317 0 0.037 No
30 0.227 0 1 No
31 0.223 0.766 0 No
32 0.663 0 0.786 Yes
33 1 0 0.003 No
34 0.766 0 0.117 No
35 1 0 0.110 No
36 1 0 0.001 No
37 1 0 0.001 No
38 0.714 0 0.026 No
39 0.094 0 0.729 No
40 0.430 0 0 No
41 0.665 0.315 0 No
43 0.377 0 0.461 Yes
44 0.549 0 0 No
45 1 0 0.033 No
46 0.415 0 0.057 No
47 0.130 0.548 0.005 No
48 0.245 0.765 0.057 No
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TABLE C.11: `-SHEu(Q): detailed results obtained when classifying
the 36 images from Monet and 24 from van Gogh in the Painting-91-

BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
1 0.648 0.901 0.000 No
2 0.236 0.655 0 No
3 1 0.874 0.021 No
4 1 1 0.000 Yes
5 0.478 0.743 0 No
6 1 0.459 0.001 No
7 0.439 0 0.003 No
8 0.332 0.736 0.026 No
9 1 0.612 0.014 No

10 0.687 0.901 0.001 No
11 0.072 0.397 0.107 No
12 0.784 0 0 No
13 0.272 0.849 0.013 No
14 1 0 0 No
15 1 0 0.416 No
16 0.205 0.459 0.090 No
17 0.094 0.874 0.160 No

Impressionism 18 0.010 1 0 No
19 1 0.612 0 No

claude_monet_i 20 1 0.811 0.117 No
21 1 0.612 0 No
22 0.102 0.535 0 No
23 0.259 0.728 0.198 No
24 0.023 0 0 Yes
25 0.009 0.830 0.001 No
26 0.596 0 0.000 No
27 0.241 0 0 No
28 1 0 0 No
29 0.438 0.459 0 Yes
30 0.894 0.708 0.151 No
31 0.589 0.830 0.001 No
32 1 0 0 No
33 0.272 0.764 0.093 No
34 0.485 0.699 0 No
35 0.027 0.961 0.004 No
36 1 0.874 0.021 Yes
1 0.619 0 0.285 No
2 0.115 0.423 1 No
3 0.136 0.699 0 No
4 0.195 0 0.472 No
5 0.014 0 0.610 No
6 0.204 0.786 0.117 No
7 1 0 0 No
8 0.040 0.296 0.782 No
9 0.153 1 0.000 No

10 0.398 0.479 0.315 Yes
Post-Impressionism 11 0.565 0 1 No

vincent_van_-
gogh_i 12 1 0 0.296 No

13 0.941 0 0.533 No
14 0.349 0.917 0.000 No
15 0.133 0.795 0.036 No
16 0.298 0.786 0 No
17 1 0 0.163 No
18 1 0.459 0.013 No
19 0.508 0.590 0.238 Yes
20 1 0 0.053 No
21 0.436 0 0 No
22 1 0.874 0.003 Yes
23 0.132 0.688 0.441 No
24 0.188 0 0.017 No
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Appendix C. Detailed results obtained when classifying the 247 images in the

Painting-91-BIP dataset

TABLE C.12: `-SHEu(Q): detailed results obtained when classifying
the 40 images from van Gogh in the Painting-91-BIP dataset.

Art style Painter i B(p) I(p) PI(p) Doubt?
26 0.006 0.463 0.853 No
27 0.381 0.034 0.955 No
28 0.220 0 0.222 Yes
29 0.122 0.369 0.786 No
30 0.097 0.703 0.567 Yes

vincent_van_-
gogh_i 31 0.316 0 1 No

32 0.656 0.379 0.817 No
33 1 0 0 No
34 0.041 0.543 0.108 No
35 0.274 0 1 No
36 0.010 0 0.292 No
37 0.514 0.441 0.012 Yes
38 0.062 1 0 No
39 0.385 0 1 No
40 1 0.299 0 No
41 0.173 0.874 0.002 No
1 0.093 0.152 1 No
2 0.349 0.576 0.650 No
3 0.514 1 0.126 No
4 0.449 0.737 0.573 No
5 0.496 0.557 0.532 Yes
6 0.340 0 0.529 No
7 0.786 0.386 1 No
8 0.980 1 0.353 Yes
9 1 0 0.077 No
10 1 0.645 0.485 No

Post-Impressionism 11 1 0 0.508 No
12 0.165 0.285 1 No
13 0.511 1 0.535 No
14 0.590 0 1 No
15 0.829 0 0.139 No
16 0.872 0.488 0.566 No
17 0.680 0.424 0.172 No
18 0.384 0.991 0.006 No
19 0.115 0.371 1 No

paul_gauguin_i 20 0.105 0.236 1 No
21 0.327 0 1 No
22 0.232 0.537 1 No
23 0.343 0 0.679 No
24 1 0 0.029 No
25 0.348 0.279 1 No
26 0.264 0.353 0.976 No
27 0.528 0 0.869 No
28 0.350 0.902 0.493 No
29 0.424 0.327 1 No
30 0.990 0.234 0.769 No
31 0.739 0 0.362 No
32 0.819 0.609 0.639 No
33 0.504 1 0.071 No
34 0.485 0.829 0.009 No
35 0.046 0.561 1 No
36 0.106 0 0.032 Yes
37 0.543 0.294 1 No
38 0.437 0 1 No
39 0.891 0.786 0.247 Yes
40 0.281 0 1 No
41 0.510 0.721 0.054 No
42 0.360 0.970 0.005 No
43 1 0 0.000 No
44 0.197 0 1 No
45 0.215 0 1 No
46 1 0 0.019 No
47 1 0 0.022 No
48 0.447 0.440 0.388 No
49 1 0.138 0.329 No
50 1 0.713 0.977 Yes
51 0.797 0 1 No
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