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Abstract

Social norms are one of the mechanisms for decentralized societies to achieve coordi-
nation amongst individuals. Such norms are conflict resolution strategies that develop
from the population interactions instead of a centralized entity dictating agent protocol.
One of the most important characteristics of social norms is that they are imposed by
the members of the society, and they are responsible for the fulfillment and defense
of these norms. By allowing agents to manage (impose, abide by and defend) social
norms, societies achieve a higher degree of freedom by lacking the necessity of author-
ities supervising all the interactions amongst agents.

In this thesis we approach social norms as a malleable concept, understanding norms
as dynamic and dependent on environmental situations and agents’ goals. By integrat-
ing agents with the necessary mechanisms to handle this concept of norm, we have
obtained an agent architecture able to self-police its behavior according to the social
and environmental circumstances in which is located.

First of all, we have grounded the difference between conventions and essential
norms from a game-theoretical perspective. This difference is essential as they favor
coordination in games with different characteristics.

With respect to conventions, we have analyzed the search space of the emergence
of conventions when approached with social learning. The exploration took us to dis-
cover the existence of Self-Reinforcing Structures that delay the emergence of global
conventions. In order to dissolve and accelerate the emergence of conventions, we have
designed socially inspired mechanisms (rewiring and observation) available to agents
to use them by accessing local information. The usage of these social instruments rep-
resent a robust solution to the problem of convention emergence, specially in complex
networks (like the scale-free).

On the other hand, for essential norms, we have focused on the “Emergence of
Cooperation” problem, as it contains the characteristics of any essential norm scenario.
In these type of games, there is a conflict between the self-interest of the individual and
the group’s interest, fixing the social norm a cooperative strategy. In this thesis we study
different decentralized mechanisms by which cooperation emerges and it is maintained.

An initial set of experiments on Distributed Punishment lead us to discover that
certain types of punishment have a stronger effect on the decision making than a pure
benefit-costs calculation. Based on this result, we hypothesize that punishment (utility
detriment) has a lower effect on the cooperation rates of the population with respect to
sanction (utility detriment and normative elicitation). This hypothesis has been inte-
grated into the developed agent architecture (EMIL-I-A). We validate the hypothesis by
performing experiments with human subjects, and observing that behaves accordingly
to human subjects in similar scenarios (that represent the emergence of cooperation).
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We have exploited this architecture proving its efficiency in different in-silico scenar-
ios, varying a number of important parameters which are unfeasible to reproduce in
laboratory experiments with human subjects (because of economic and time resources).

Finally, we have implemented an Internalization module, which allows agents to
reduce their computation costs by linking compliance with their own goals. Inter-
nalization is the process by which an agent abides by the norms without taking into
consideration the punishments/sanctions associated to defection. We have shown with
agent based simulation how the Internalization has been implemented into the EMIL-
I-A architecture, obtaining an efficient performance of our agents without sacrificing
adaptation skills.
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Chapter 1

Introduction

1.1 Motivation
Social norms have been claimed to be one of the research topics in multi-agent systems
to be investigated [Luck et al., 2005]. Social norms are part of our everyday life, and
they have been of interest in several areas of research [Elster, 1989]. Social norms
help people self-organizing in many situations, specially in open-environments where
having an authority representative is not feasible. On the contrary to institutional rules,
the responsibility to enforce social norms is not the task of a central authority but a
task of each member of the society. From the book of Bicchieri [Bicchieri, 2006], the
following definition of social norms is extracted:

“The social norms I am talking about are not the formal, prescriptive or
proscriptive rules designed, imposed, and enforced by an exogeneous au-
thority through the administration of selective incentives. I rather discuss
informal norms that emerge through the decentralized interaction of agents
within a collective and are not imposed or designed by an authority”.

Although this definition does not pretend to be a formal definition, it gives us the no-
tion that social norms are used in human societies as a mechanism to improve the be-
havior of the individuals in those societies without relying on a centralized and om-
nipresent authority. In recent years, the use of these kinds of norms has been con-
sidered also as a mechanism to regulate virtual societies and specifically societies
formed by artificial agents ([Saam and Harrer, 1999, Shoham and Tennenholtz, 1992,
Grizard et al., 2006]), and in some cases, mixed populations (agents and humans).

The study of social norms within multi-agent systems has been framed inside
the Computational Social Science community, which is “in charge of collecting
and analyzing data at scale that may reveal patterns of individual and group be-
haviours” [Lazer et al., 2009]. The combination of both techniques (computer sci-
ence and social science) makes special sense when we deal with multi-agent sys-
tems, as agents are social entities. The exploitation of the knowledge provided by the
social sciences is becoming more useful with the integration of humans and agents
(E.g. [Brito et al., 2009]).

1



Latterly, and due to the interest of the multi-agent community on social norms,
the NorMAS movement has been founded [Nor, 2008]. This movement gathers an
interdisciplinary community (mainly formed by computer scientists, social scientists,
psychologists, and economists) around the topic of the norms in multi-agent systems.
From one of the workshops organized by this community, the following definition of
normative multi-agent system was agreed by consensus:

“A normative multi-agent system is a multi-agent system organized by
means of mechanisms to represent, communicate, distribute, detect, create,
modify, and enforce norms, and mechanisms to deliberate about norms and
detect norm violation and fulfillment” [Boella et al., 2008].

The online emergence of social norms (how they are created at first time) in a decen-
tralized way is one of the problems in the community that needs to be solved and some
authors are trying to approach. As we are focusing on decentralized open virtual soci-
eties, different norms might emerge on different areas of the social topology. However,
social norms are by definition ([Coleman, 1998]) more socially efficient when the whole
population abides by them. We are interested in studying the spreading and acceptance
of social norms, what Axelrod [Axelrod, 1986] calls norm support. Our understanding
of norm support deals with the problem of which norm is established as the dominant
when more than one norm exists for the same situation, or in those situations where
the agents’ self-interest is against the interest of the society, and therefore violating the
norms is the strategy that provides the highest payoff.
There are basically two well-known approaches to study this emergence: the game-
theoretical and the cognitive. The former studies the process by which agents calculate
the cost-benefit ratio of the possible actions taking into consideration the existence of a
norm [Villatoro et al., 2010] and the strategic behavior of the other agents involved in
the interactions. On the other hand, the latter studies the emergence from the point of
view of the beliefs, desire and intentions of the agents and their relation to normative
beliefs [Andrighetto et al., 2010b].

After reviewing the literature on both research approaches, we agree with
Young [Young, 2008] that there are three mechanisms by which norms emerge, that
generalize all the factors previously treated in the literature:

• Pure Coordination: These are “social” phenomena, because they are held in place
by shared expectations about the appropriate solution to a given coordination
problem, but there is no need for social enforcement.

• Threat of social disapproval or punishment for norm violations.

• Internalization of norms of proper conduct.

The first mechanisms have been widely studied under the topic of conven-
tion emergence [Shoham and Tennenholtz, 1997a, Kittock, 1993, Delgado et al., 2003,
Mukherjee et al., 2007, Sen and Airiau, 2007, Walker and Wooldridge, 1995] (e.g. the
typical example of these kind of mechanisms are which side of the road should cars
drive: both agents are benefited from following the coordination norm, otherwise, their
utility is drastically reduced).
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However, we have observed a general practice in that area of research which con-
sists in establishing the system as converged when 90% of the population shares the
same convention. Because of the definition of convention (a norm that establishes a
focal point amongst the possibles to promote coordination when shared by all partici-
pants), we cannot consider 90% as an acceptable convergence rate and we perform an
exhaustive study on that area. We focus on aspects like the strategy update rule used by
agents or the topology that fixes their interactions to study full convergence (100%) in
the system. We will observe how certain strategy update rules and topologies promote
the existence of subconventions, that delay the emergence of a global convention. We
propose socially-inspired methods to dissolve subconventions and allow the society to
reach the desired full-convergence.

On the other hand, the second and third points are tightly related amongst
them. Sanctions serving as a mechanism for norm emergence has been widely
studied by social scientist [Coleman, 1998], psychologists [Bandura, 1976] and
economists [Fehr and Gachter, 2002]. In this thesis we will study how different punish-
ment technologies can reinforce the process of norm emergence, allowing the system
to self-policy. We initially envisioned to donate agents with the necessary mechanisms
to achieve Multilateral Costly Punishment [Posner and Rasmusen, 1999]. In order to
be realistic with the parameter setting for the Multilateral Costly Punishment, we per-
formed experimental economics experiments that proved us the existence of a stronger
force behind the punishment: the normative message affecting a normative decision
making. With the light thrown in those experiments, we decided to develop a cognitive
agent architecture that not only performs a benefit-cost calculation with respect to the
existence of norms, but it also considers the fact of the norm’s existence as determi-
nant in the decision making. In this part we will also prove the determinant difference
between punishment and sanction, which is an important element for our developed
architecture, and a state-of-the-art discovery in the behavioural economics literature.
As we said previously, the third point affirmed by Young for norms to emerge (Inter-
nalization) is in a direct relationship with our research on punishment technologies. In
our work [Andrighetto et al., 2007, Conte, 2009, Andrighetto et al., 2010b], we intend
Internalization as the process where an agent becomes compliant with norms not be-
cause the fear of potential punishment (and utility detriment) but just because the mere
existence of norms and the willing to abide by them. We will observe how this process
ensures a more robust society against norm-violations, without sacrificing adaptation
skills.

1.2 Contribution
This thesis contributes to the field of self-organized and normative multi-agent systems
in three lines:

First - Exhaustive Exploration of the Dimensions in the Convention Emergence
Problem

We present an experimental framework to analyze the dynamics in the process of
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convention emergence, observing the effects of the different parameters configuring
the model. Specially, we focus on the problem of the emergence and dissolution of
subconventions. We have detected how these subconventions emerge mainly for two
reasons: the strategy update rule promoting concordance with previous history (and
culture maintenance) and topological conditions promoting endogamy. The conducted
research took us to discover the existence of Self-Reinforcing Structures, mainly in
Scale-Free Networks, producing subconventions to remain metastable. We propose
socially-inspired mechanisms that dissolve these Self-Reinforcing Structures, allowing
the society to achieve full convergence.

Second - Experimental Platform for Regulated Hybrid Experiments

In order to obtain experimental results about certain punishment technologies, a
platform allowing to test the behavior of humans under certain conditions (achieved by
the partners interactions) was necessary. Another requirement for the platform was a
restricted behavioural set of available actions to agents and a pre-established interac-
tion protocol. Because of the previous reasons, the paradigm of Electronic Institutions
seemed the most adequate.

We have developed a friendly user web-interface for human subjects to interact
with other subjects inside an Electronic Institution. With the usage of this platform we
allow humans to interact from remote locations through a simple web interface. On the
other hand, the electronic institution paradigm allows us, as experiment designers, to
implement agents that perform in an specific way, locating human subjects in specific
interesting experimental conditions.

This platform has been essential to perform behavioral economics experiments,
introducing agents into them, and allowing subjects to participate remotely, advancing
the state-of-the-art platforms (like Z-tree [Fischbacher, 2006]).

Third - EMIL-I-A Architecture for Self-Regulating Societies

We have developed a BDI agent architecture which distinguishes at a cognitive level
the difference between punishment and sanction. Experimental results with human
subjects confirmed the difference between punishment (utility detriment) and sanction
(utility detriment plus norm elicitation) in the decision making of human subjects. This
difference is incorporated precisely in our agent architecture (EMIL-I-A), producing
effects on the decision making of the agents at several levels. Moreover, we test the
performance of our EMIL-I-As in the same experimental conditions than with humans.
These experiments show that EMIL-I-As produce the same dynamics than those showed
by humans, obtaining an state-of-the-art agent architecture with punishment capabilities
able to interact (accordingly) with humans.

Finally, we implement an Internalization mechanism that allows norm compliance
to happen without the external enforcement of punishment, proving the adaptive capa-
bilities of EMIL-I-A while saving in cognitive load.
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1.3 Overview and Structure of the Thesis

This thesis is structured in nine chapters:
Chapter 2: We present a game-theoretical difference between conventions and essen-
tial norms. This difference is basic to structure the rest of the thesis. Then we make
an analysis of the state of the art in the MAS literature in both fields. With respect to
conventions, we review the different works performed on the emergence of conventions
and how they treated different aspects of such process. On the other hand, we review
the different works and mechanisms analyzed for the emergence of cooperation. We
focus on those that are applicable for self-organizing societies, paying special attention
at MAS with punishment technologies incorporated.
Chapter 3: In this chapter we present the general framework for the convention emer-
gence problem. This framework allows us to study the different dimensions affecting
the convention emergence, focusing in the achievement of full convergence. A detailed
analysis of the search space of parameters allows us to discover that full convergence
was not previously achieved because of certain strategy update rules and certain topo-
logical configurations promoting subconventions.
Chapter 4: In order to dissolve the identified subconventions, we propose socially-
inspired techniques that also accelerate the process of convention emergence. With the
usage of these instruments we discover the existence of Self-Reinforcing Structures,
and propose a combined social instrument for dissolving the subconventions created in
those areas of the topology.
Chapter 5: In this chapter we propose distributed punishment as a punishment tech-
nology that can produce norm emergence in situations represented by common good
games. Experimental results with human subjects give us the intuition that other types
of punishment may exist and affect differently to the decision making of the agents.
Chapter 6: We present the EMIL-I-A architecture, conceived to interpret the difference
between punishment and sanction at a cognitive level. This architecture is constructed
assuming the existence of normative beliefs and goals, which are orchestrated with the
norm salience, representing the degree of activation in the social environment of the
different recognized norms.
Chapter 7: In this chapter we prove the correctness of the EMIL-I-A architecture by
simulating the same experiments where human subjects participated, obtaining similar
results. Moreover, we exploit our agent architecture in different experimental condi-
tions, understanding the dynamics of our agents when interacting in different environ-
mental situations. Finally we introduce a Dynamic Adaptation Heuristic of the cost of
punishment in order to achieve a more efficient sanction, profiting from its cognitive
load, and maintaining high cooperation rates.
Chapter 8: This chapter discusses a cognitive mechanism that allows agents to internal-
ize norms, and therefore, comply with them without external enforcement. By means
of simulation in a P2P inspired scenario, we will observe how internalization allows
agents to efficiently respond to their peer needs, adapting to environmental conditions
and dynamically changing the normative scheme.
Chapter 9: We conclude our research of normative self-organized systems and sketch
future lines of research to exploit the work presented in this thesis.
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Chapter 2

State of the Art

Descriptions of tasks like greeting another person, dressing, driving, etc. are often
accompanied by the phrase “in a proper way”. In human societies, the “proper way”
to fulfill these interaction protocols is specified by social norms. A number of tasks
that require some kind of interaction with other agents might require agents to follow
specified guidelines to successfully complete these tasks. Social norms can facilitate
such agent interactions and enable agents to complete these tasks efficiently. Such social
norms can emerge and spread among the society until they are widely accepted and
adopted. Therefore, we can view social norms as key elements that enable coordination
and self-organization in our everyday life.

Not all the social norms, however, deal with the same kind of interaction scenarios.
We observe that social norms like greeting (shaking hands, kissing, leaning towards
each other, or a simple “hi!”) pertain to different situations compared to, for example,
the social norm of recycling. We also observe that social norms, though referring to
the same concept, are defined using different terms in the literature, e.g. norms, social
laws, conventions, social norms.

In addition to the different types of norms, and the wide variety of terms used to
define this social instrument, the study of social norms is made more challenging by the
heterogeneous perspective on this issue and how it is viewed in diverse research areas
such as economics, social sciences or multi-agent systems. We believe that though
these areas have interesting theories and practices to contribute to social norms literature
and can benefit from prudent adaptations and applications of social norms, not enough
attention and effort has been expended on this potentially effective social coordination
mechanism by the corresponding research groups.

The primary goal of this chapter is to develop a characterization of social norms
into two primary groups: coordination norms and essential norms. This division is
performed from a game-theoretical point of view with the goal of understanding the
process of norm emergence.

Before proceeding, we need to characterize the type of environment where the con-
tribution of this thesis is though to be applied in. Technically speaking we assume
the existence of a MAS environment –observable as an objective entity– with fixed
ontology, dynamic state, regimented with constitutive conventions and where the par-
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ticipation of capable and entitled agents is permitted.1 The decision-making processes
of agents may be not under the control of the MAS. Agents may respond to their own
motivations and be owned by different owners. Agents may enter or leave the MAS at
will, as long as they are capable and entitled to be in the MAS.

The type of norms treated in this work are those norms created through the interac-
tion of agents and that are not imposed by any central authority. These emerging norms
possess interesting dynamics that have to be studied to achieve real self-regulated soci-
eties.

2.1 Categorizing Norms
In the multi-agent systems literature, several terms have been used for the same con-
cept (convention, social norm, social law) although referring to a similar term. How-
ever, those terms have been used as synonyms, and referring to a concept that was
not specifically described. Considering norms as regularities in the behavior of agents,
Coleman [Coleman, 1998] defines two main types of norms: conventions and essential
norms. In this section we ground on a game-theoretical paradigm to clearly define con-
ventions and essential norms, as mechanisms that solve coordination problems although
in games with different dynamics.

2.1.1 Conventional Norms

Conventions (or conventional norms) are a type of norms that naturally emerge, with
no threat of punishment. Conventional norms solve coordination problems (a represen-
tative payoff matrix of these type of problems can be seen in Figure 2.1), where there
exist no conflict between the individual and the collective interests, as what is desired is
that everyone behaves in the same way, without any major difference on which action
agents are coordinated.

Following Coleman’s theory, the selection of the focal action2 in such norms is
arbitrary, although most of the times is strongly biased by cultural patterns. One clear
example of these kind of norms is the selection of which side of the road to drive on.

1That is (i) There exists a world that may be populated by (ii) agents whose activity may involve other
agents and possibly other entities –like speed limits, traffic lights, or fines. (iii) At any point in time, that
world is in a state which is represented by a set of variables whose values may change due to the actions
of agents or to their own dynamics. (iv) Out of the many conceivable actions that, in principle, agents may
attempt, the only ones that are deemed admissible in that world may have any effect in the world. (v) All
actions are subject to preconditions (on the state of the world) that make them feasible and post-conditions
that determine their intended effect in the world.

2The term focal action is directly borrowed from game theory where it exists the concept of focal point.
A focal point is defined as a solution that players will tend to use in the absence of communication, because it
seems natural, special or relevant to them. For example, imagine that you and your partner are visiting Paris.
It is the first time for both of you in that city. Unfortunately, you are not in the same hotel and you have no
means to communicate with each other, although you know that you have to meet each other at a certain time
in a public place. You can choose between all the public places in Paris. Using a common sense reasoning,
you might choose to go to the Eiffel Tower, the Pyramid of the Louvre Museum, or the Arc de Triomphe.
Those would be focal points in the decision game. Consequently the focal action will be the action taken by
the agents in the absence of communication.
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Player 2
Player 1 Action A Action B

Action A
+1

+1

-1

-1

Action B
-1

-1

+1

+1

Figure 2.1: Coordination Game

This definition is in concordance with that of Young [Young, 2007]: “A convention is a
pattern of behavior that is customary, expected, and self-enforcing. Everyone conforms,
everyone expects others to conform, and everyone wants to conform given that everyone
else conforms.”.

Before any agent has a preference for any convention, all the possible conventions
are equally beneficial at the utilitarian point of view, and therefore, selecting which one
to use is initially chosen randomly. Its spread along the society (and how it is affected
by social learning) has been widely studied as we will see in Section 2.2.

Convention emergence is a process that starts with a population of agents with no
initial preferences for any of the existing conventions, and they have to agree on a com-
mon one (because a convention, by definition, is only useful when all agents share the
same convention); once all agents have agreed on the same convention, the system has
converged. Pertinent examples of conventions in Multi-agent Systems are communi-
cation protocol (the language an individual chooses for communication), behavioral
patterns (coordination protocols like the side of the road where to drive or how to greet
when introduced to other people), or the selection of the task to be executed in a multi-
task scenario.

2.1.2 Essential Norms
Essential norms are norms that solve or ease collective action problems, where there is
a conflict between the individual and the collective interests, making this the main dif-
ference with respect to conventions. These norms are called essential norms. Following
the definition of focal actions, in these kind of norms the focal action is not chosen ran-
domly because the targets’ interests lie in the direction of action opposing observance
of the norm, and the beneficiaries’ interests lie in the direction of action favoring obser-
vance of the norm. Essential norms help address situations where the individuals are
tempted not to contribute to the common good. These problems are commonly known
in the literature as collective action problems. Heckathorn [Heckathorn, 1996] claims
that any collective action system has two characteristics:

1. Non-excludable: Excluding anyone from consumption of the common good is
impractical. For example, scabs benefit from higher wages won through strikes.

2. Jointness of supply: the degree to which the good costs the same to produce
regardless of the number of people who consume it. A radio broadcast has very
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Player 2
Player 1 Cooperate Defect

Cooperate
3

3

5

0

Defect
0

5

1

1

Figure 2.2: Prisoner’s Dilemma

high jointness of supply because the costs of production have very little, if any,
proportion to the number of people who consume the broadcast. Manufactured
products, in contrast, typically have low jointness of supply because the cost of
production increases with the number of consumers, though economies of scale
may make the increase in cost less than directly proportional to the increase in
consumers [Barros, 2007].

Referring to the first of these characteristics of collective action systems, in the
case of the collective actions, conflicts appear when an individual is tempted not to
contribute to the common pool, leading to an incomplete collective action. The fact
that an individual behavior affects the welfare of the group is enough for the group to
acquire the right to control individual behavior. Social norms are applied to control the
individual behaviour in these kind of problems.

It has been proven [Hardin, 1971] that a Collective Action Game is equivalent to the
Prisoner’s Dilemma3. In a game that follows the structure of a Prisoner’s Dilemma (like
the one shown in Figure 2.2) the individually rational strategy is to Defect, no matter
what the other player decides. The equilibrium state of those decisions is suboptimal
in the sense of Pareto, as there exists a different focal point (the mutually coopera-
tive outcome) where the outcome when both agents are coordinated is preferred by
both players. A social norm prescribing cooperation would help agents in obtaining a
socially-efficient behavior.

However, conflict between the individual’s interest and the collective’s interest can
occur in other situations than that captured by the Prisoner’s Dilemma game. Such
conflicts can also have the form of the Collective Action Game, as shown in Figure 2.3.
Only the payoffs for the individuals are shown, and they are calculated considering that
V is the value of the collective good, c is the cost for the individual to contribute, and p
is the proportion of the total value that an individual can produce by itself.

3The Prisoner’s Dilemma states: Two suspects are arrested by the police. The police have insufficient
evidence for a conviction, and, having separated both prisoners, visit each of them to offer the same deal.
If one testifies (defects) for the prosecution against the other and the other remains silent (cooperates), the
betrayer goes free and the silent accomplice receives the full 5-year sentence. If both remain silent, both
prisoners are sentenced to only six months in jail for a minor charge. If each betrays the other, each receives a
five-year sentence. Each prisoner must choose to betray the other or to remain silent. Each one is assured that
the other would not know about the betrayal before the end of the investigation. How should the prisoners
act?

12



Collective
Individual Cooperate Defect

Cooperate
V-c pV-c

Defect
V(1-p) 0

Figure 2.3: Collective Action Game

In this thesis we will focus on the subgroup of essential norms that can be charac-
terized by the Prisoner’s Dilemma, and we refer the reader to [Villatoro et al., 2010] for
a further classification of Collective Action Games.

2.2 Convention Emergence
In real self-organized systems (and in most of the work in the literature) convention
emergence can be achieved through social learning. The social learning process is a
complicated task: agents are learning from the other agents whom they interact with,
which at the same time are also learning from those interactions. Therefore, the struc-
ture of the social network that restricts the interactions between agents is essential for
the emergence of conventions learnt through social learning.

This section will be useful to help us understand the roots of this area of research,
and how it evolved along the years, leaving an important gap unexplored, that we will
cover in this thesis.

The concept of social learning was firstly used by [Shoham and Tennenholtz, 1994],
although referring to it as co-learning4: “the process in which several agents simul-
taneously try to adapt to one another’s behaviour so as to produce desirable global
system properties.”. One of the main contributions of that work is the presentation of
the convention emergence problem, characterized by the following dynamics: from a
population of agents, n players are randomly selected, and these agents (without any
possible means of communication amongst them) choose an action from the m possible
following an specific strategy update rule; then, the system returns a payoff (calculated
depending on the game played, normally a coordination game with a payoff matrix sim-
ilar to the one in Figure 2.1) with which agents update their strategy update rule and
the interaction is finished. The system (ideally) continues this process until all agents
agree on the same action, considering the convention to have emerged.

In the specific case of [Shoham and Tennenholtz, 1994], the authors focused on the
question of how different update rules and other system characteristics affect the even-

4Shoham and Tennenholtz [Shoham and Tennenholtz, 1994] were the first ones using the
term co-learning, also used by [Kittock, 1993], even though the dates might seem misleading.
[Shoham and Tennenholtz, 1994] was submitted for publication in 93, when Kittock was writing this
other article [Kittock, 1993], which got published earlier.
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tual emergence of desirable global system characteristics. The Highest Cumulative Re-
ward (HCR) Rule was object of study in that paper, in a 2-player and 2-actions scenario,
analyzing the results when using Coordination Games and the Prisoner’s Dilemma
games. The HCR rule determines agents which action to choose by observing which
action has provided the maximum accumulated reward in the last interactions. We can
observe how this strategy update rule is sensible with respect to the memory size of
the agents. Their experimental results showed how different parameters that configure
the HCR affect to the overall system performance. At this experimentation phase, au-
thors took a decision that would mark the empirical practices on this area of research:
they considered the system as converged when it reached 85% of agents performing
the same action5. This decision was motivated to save computational efforts. It would
seem intuitive that the system would not reverse its state given such high convergence
rate, being therefore a perfectly efficient reason to fix the convergence at such level.
However, it still was against the strict definition of conventions, which specifies that a
convention has to be shared by the whole population in order to obtain the maximum
social benefit, otherwise, a subgroup of agents will not be benefiting from it.

Soon after Shoham and Tennenholtz presented their work, Kittock [Kittock, 1993]
noticed an important problem in their model. As we said before, these conventions
are achieved through social learning, being the interactions amongst agents a key el-
ement for the success of the system. Shoham and Tennenholtz did not explicitly
consider this problem and used a random interaction approach. Kittock’s contribu-
tion [Kittock, 1993] is the first attempt to observe the effect of a social network of in-
teraction in the convention emergence problem. Even though the only topologies tested
where regular lattices 6 with different neighborhood sizes, those were enough for him
to discover the relationship between the ratio of the network and the speed of conver-
gence. However, and following the tradition started by Shoham and Tennenholtz, the
empirical convergence rate was fixed to 90%.

Having grounded the base for the convention emergence problem, different exten-
sions have been performed along the years. Without paying attention to the topology
of interaction, in the seminal work of Peyton [Young, 1993], a new strategy update rule
is described, External Majority, where agents update their strategy with a sample of
the strategies played by other agents in previous games. For our understanding, such
strategy update rule is intrusive for the agents’ privacy. Later, in [Walker A, 1995], this
strategy update rule was refined to use only information observed by the updating agent.

On top of that refinement, Walker and Wooldridge introduced the conven-
tion emergence problem in a Hunter-Gatherer inspired society (previously presented
in [Castelfranchi and Conte, 1995]), allowing agents to choose one rule from a set of
4 possible. Moreover, and because of the scenario, agents were not located in a fixed
network of interactions; instead they were mobile and located in a grid. Because of the
combination of the mobility of agents and the strategy update rule, the system performs
a convergence of 100%, becoming the first authors to obtain such achievement.

With the growth of the Internet, networks with similar characteristics to the Internet

5An extension of this work is presented in [Shoham and Tennenholtz, 1997b], where the convergence rate
is extended to 95% in a subset of experiments (2 of them), remaining the rest (10) equal at 85%.

6A lattice is a regular network in which all nodes are sequentially connected to a constant number of
nodes. The ring network and the fully connected network are extreme cases of lattices.
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captured the attention of scientists, mainly, small-world and scale-free networks. Theo-
retical scale-free networks have been proved to represent the same characteristics of real
social networks [Newman, 2003, Barabasi and Bonabeau, 2003]. In the work of Del-
gado [Delgado, 2002] it is explicitly analyzed the relationship between the emergence
of social conventions and the effect of topologies. In their empirical evaluation they per-
form experiments with two different strategy update rules: generalized simple majority
rule and the highest cumulative reward rule. In their scenario, pairs of agents have to
play a pure coordination game of 2 actions. As the main goal of their work, agents are
located in theoretical social networks, namely, Scale-Free Networks constructed with
the Albert-Barabasi algorithm7. However, as Kittock (and Shoham and Tenneholtz),
Delgado fixes convergence rate at 90%. In this case, they observe that the process of
convention emergence is accelerated with the usage of Scale-Free networks, because of
the cascading effect produced by inherent structure of the network. We will see later
how this acceleration is only at an initial phase, as it might happen that certain topo-
logical subconventions emerge, specially in scale-free networks, although these cannot
be observed when fixing convergence at 90%. In a latter work [Delgado et al., 2003],
Delgado’s work is extended including different algorithms for the construction of the
Scale Free networks (the Albert-Barabasi already studied in [Delgado, 2002], the Walsh
model and the Fitness model) to be used in the convention emergence problem. Even
though the new extended variety of algorithms to build Scale-Free networks, conver-
gence dynamics are similar and proportional to the density of the network. In a different
work [Pujol et al., 2005], and with the scope of accelerating the process of convention
emergence, agents are given with socially-inspired mechanisms. Authors proved empir-
ically that by providing agents with a small probability of Imitation (copying the action
performed by another agent independently of what the strategy update rule dictates),
faster convergence rates are obtained in scale-free networks. However, the convergence
rates were still fixed at 95%.

Ten years after the first strategy update rule was presented, Sen and
Airiau [Sen and Airiau, 2007] decided to incorporate different machine learning al-
gorithms in the convention emergence problem, avoiding in that way the prob-
lems inherent to the selection of an appropriate strategy selection rule. In that
work they did not incorporate any interaction topology, restricting their empirical
results to the efficiency of different Multi-agent Learning Algorithms such as Q-
Learning [Watkins and Dayan, 1992], WoLF-PHC [Bowling and Veloso, 2002], and
Fictitious Play [Fudenberg and Levine, 1998]. The contribution of Sen and Airiau is
important as they combine two interesting lines of research in Multi-agent Systems,
such as Convention Emergence and Social Norms with Multi-agent Learning. As an
extension of the previous work, in [Mukherjee et al., 2008] agents are located in a grid
environment, in order to study the topological effects of the social network of inter-
actions, as others ([Walker A, 1995]) did before. In both works, they consider a con-
vention to have emerged when the average payoff of the population is at 3.5 (out of a
maximum of 4, and a minimum of -1).

In a renewal of interest for the Convention Emergence problem, in the last years
the MAS community has focused on discovering different mechanisms that could ac-

7Albert-Barabasi algorithm tuned with the following parameters m0 = 4, m = 2, p = q = 0.4.
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celerate the emergence, specially in complex networks. In the work of Savarimuthu
et al. [Savarimuthu et al., 2007b], authors describe the emergence of norms in an sce-
nario where the network of interactions dynamically change as the agents move in a
grid world, being their neighbours in the network those agents geographically closer to
them in the grid at an specific moment in time. Eventhough this work might remind us
to others [Walker A, 1995], authors here focus on the dynamic aspect of the network of
interactions and how this affects to the process of emergence, which in this case is fixed
at 100%.

Another recent work [Mungovan et al., 2011] propose an interesting scenario where
agents have a fixed interaction network (small-world) and authors provide agents with
the possibility of having random interactions. Their solution to the random interactions
is very elegant as the random interactions are not chosen uniformly from the popula-
tion, but, with a weighted measure considering the distance in the network (i.e. agents
that are closer in the network are more likely to interact). Their results, together with
those presented in [Walker A, 1995, Pujol et al., 2005, Savarimuthu et al., 2007b], sug-
gest that a random interactions produce faster convergence results than when the in-
teraction topology is fixed. However, the type of scenario we are interested in (virtual
societies constructed on top of a real social network) cannot assume the possibility of
intense dynamic changes on the underlying network.

Trying to provide agents with other mechanisms, Urbano et
al. [Urbano et al., 2009a] investigated how a new strategy update rule (Recruit-
ment based on Force with Reinforcement (RFR)), which promotes a dynamic creation
of a hierarchy speeds up the convention emergence. Their proposed strategy update
rule functions by providing agents with a measure of force that increases with every
successful interaction, and in case of unsuccessful interactions, the agent with the
lower force copies the strategy and force of the winner. We find this function similar
to the SLACER algorithm [Hales and Arteconi, 2006]. Authors prove the efficiency of
their new strategy update rule on different topologies: regular graphs, a unconventional
implementation of a random graph with uniform degree distribution, scale-free net-
works (developed following the Albert-Barabasi model), and Small World (constructed
using the Watts-Strogatz model). However, convergence rate is still fixed to 90%. Their
results are in concordance with those obtained by Kittock in [Kittock, 1994] where he
proved the efficiency of trees structures, that are those dynamically created with the
concept of force.

Providing a slightly different framework than the classical convention emergence,
Salazar et al. [Salazar et al., 2010] propose a variation of the coordination game, im-
plementing a Language Coordination Game similar to [Lakkaraju and Gasser, 2008].
In their game, agents have to match words with concepts, creating a huge convention
space. Their solution is founded on a spreading protocol where agents can communi-
cate part of a local solution together with a truthful valuation of the solution. Therefore,
agents aggregate into their solutions the bests pieces of solutions received and then
communicate them again with a truthful measure. Because of the communication is-
sue, their framework is fragile against the presence of untruthful agents with different
preferences than their collaborative agents. Authors demonstrate the robustness of their
instrument in different topologies (scale-free and small world), reaching convergence
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rates of 100% in most of the cases. Even though the success of their approach, they
assume the existence of a fully coperative community, which in our case does not have
to be the case. Conventions have to be reached by themselves, as it is in the common
interest to be reached.

The general conclusion that we can extract from the revised work on the literature
is that only those authors that provided agents with instruments (generally instruments
that access private information of agents) achieve complete convergence in complex
networks. The rest of work which do not incorporate any extra mechanism state the
convergence results with a rate of 90%, that as we have claimed previously, it cannot
be considered as a convention to be emerged. A summary of the review works in the
literature together with some of the characteristics analyzed can be seen in Table 2.1.

In the following chapters we will overcome this prefixed limit, observing the dy-
namics of the system after that point.

2.3 Essential Norms and the Emergence of Cooperation
in Artificial Social Systems.

As we mentioned previously in this chapter, there are norms that solve different prob-
lems (represented with different games) than conventions. These games are represented
by the Prisoner’s Dilemma or the Public Good Game (depending on the amount of
players). In general, in these type of games, the individual’s self-interest is in con-
flict with the social interest, and norms establish a balance, motivating agents to play
the prosocial behaviour. These type of games generally represent what in the litera-
ture is known as the Emergence of Cooperation [Axelrod, 1981]. This problem has
been treated from several areas of research such as philosophy [Bicchieri, 2006], econ-
omy [Fehr and Gachter, 2002, Dreber et al., 2008], politics [Axelrod, 1986], and com-
puter science[Kollock and Smith, 1996, Shoham and Tennenholtz, 1997a].

“The Tragedy of the Commons”, firstly described in [Hardin, 1968], describes the
situation where potentially everyone can highly benefit from a common resource. How-
ever, the temptation is to selfishly enjoy the common resource without contributing to
it.

In order to achieve and maintain cooperation, researchers have looked for socially-
inspired techniques that can be implemented into the agent architectures and obtain a
macroscopic result. Along this section we will review the most influential techniques
that can be suitable for decentralized virtual societies, focusing on the achievement of
cooperation.

2.3.1 Socially Inspired Mechanisms for Cooperation Emergence

Tags

One of the most studied mechanisms is Tags. The term was introduced by Holland
in [Holland, 1993], and it is ideally conceptualized to allow agents to have a certain
external visible marking recognizable by the rest of the population and relating the tag
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with a specific behaviour. A good example of a Tag mechanism is to be found at the mil-
itary stripes, allowing any member of the military to recognize the rank (and associate
it with certain protocols of interaction) towards another by observing its stripes.

By allowing agents to carry tags, they recognize features that can associate towards
others’ cooperative or defective strategy. It has been showed that incorporating a tag-
based donation system (donating to those agents with similar tags) can sustain the emer-
gence of cooperative behavior [Riolo et al., 2001]. Nevertheless, the model is based on
a strong assumption: agents change their tags by accessing (and copying) other more
successful agents’ tag. We consider such information (others’ strategy and its success)
to be private, and not accessible to other agents, at least in the type of scenarios we
envision, where each agent might belong to a different owner, and therefore, this type
of information access is unrealistic.

In addition, in these models tags evolve by allowing agents to substitute their neigh-
borhood for the neighborhood of the most successful agents, producing a dynamic vari-
ation of the network as well as an unrealistic access to private information of agents
(such as their network of interactions).

Other models [Hales and Edmonds, 2005, Hales and Arteconi, 2006] have tried to
apply a tags based mechanism in P2P networks, obtaining higher cooperation rates
than when tags where not used. Other models have been inspired by Hales’ SLAC
algorithm (copying the neighbours and strategy of the most successful known agent)
like Araujo’s [Araujo and Lamb, 2008] Memetic Networks (inspired in the concept of
memes: information that is propagated through copies in a cultural setting), or Griffiths’
et al. [Griffiths and Luck, 2010] and the integration with Context Awareness.

Even though some variants of the tags mechanism have been ana-
lyzed [Matlock and Sen, 2009], we find unrealistic to allow agents to access others’
private information, which necessary for tags to function (success of the opponent
agent, and strategy of interaction) and copy it for their own success. Moreover, in tag
based mechanism, agents reproduce and die as genes do in a genetic algorithm. We
are more interested in finding online mechanisms that rely on the present and public
actions of agents without having to sacrifice or reproduce.

Partner Selection

The private information access problem that concerns us the most with respect to Tags
mechanisms is avoided in another studied mechanism: Partner Selection. The main
difference with respect to tags is that this mechanism allows agents to choose whom
they want to interact with, thus reducing the risks associated to cooperation. Tags al-
low agents to identify other agents as similar (comparing their tags) and then interact
accordingly; however, with partner selection agents need to explore and then start the
exploitation by interacting repeatedly with those agents that have obtained the most sat-
isfactory results. This type of mechanism generates the evolution of a social network,
where an agent interacts more often with those that it considers more suitable. De-
pending on the agents’ tolerance towards defection and the costs of refusal and social
isolation, the resulting social network of interaction might be very detached, resulting
in higher rates of endogamy [Ashlock et al., 1996].

From the point of view of defectors, one of the problems is that in large populations
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they might avoid punishment by roving from group to group, while they might result
ostracized in smaller populations. Some simulation models of real phenomena have
proven [de Vos et al., 2001, Tosto et al., 2006, Nosratinia et al., 2007] that by allowing
partner selection, higher group payoffs are obtained, increasing the rate of cooperation
while avoiding free-riders.

However, these models implementing partner selection also implement the possibil-
ity of interaction rejection between agents, producing a segregation on the population.

Reputation

One mechanism that has been thoroughly studied is Reputation. This mechanism
emerges when agents can communicate amongst them and can express and reason about
other agents previous experiences. MAS researchers have produced a number of dif-
ferent models to reason about trust and reputation issues [Sabater and Sierra, 2005],
in a centralized or decentralized way. The last models (decentralized) are those
that we are more interested in. Reputation mechanisms [Ohtsuki and Iwasa, 2004,
Nowak and Sigmund, 2005] help in establishing indirect reciprocity (“I help you if you
help somebody else”). However, these type of systems are fragile against the existence
of unreliable agents.

Reputation can be used to promote partner selection (by spreading good evaluations
about an agent and therefore everyone will want to interact with it) or to punish (by
spreading bad evaluations about such agent producing ostracism).

Some MAS scientists have proven that by introducing reputation mechanisms in
P2P-like scenarios, cooperation is sustained [Hales, 2002, Banerjee et al., 2005], en-
suring a good performance of the system.

Authority

The existence of a centralized authority that regiment the behaviour of agents
is an efficient mechanism to obtain norm-compliance [Cardoso and Oliveira, 2008,
Cardoso and Oliveira, 2009, Garcia-Camino A, 2006, Grossi et al., 2007]. The success
of the authority is found on the recognition from agents of an entitled figure that objec-
tively recognizes the difference between what is right or wrong, and (ideally) punishes
what is not considered as a pro-social behaviour.

Our main concern against the Authority is that it requires role-specialization, where
some agents have special abilities over the others. The type of scenario that we deal with
is self-regulated, which assumes that all agents have the same potential possibilities to
perform actions over the other agents. The MAS scenarios where authority has been
proven are small and controllable environments, however, we can think of other types
of scenarios (like P2P networks) where controlling all interactions amongst agents is
totally unfeasible.

Authority has also been implemented [Aldewereld et al., 2005] into the agents
mind: instead of having an entitled agent controlling the correct interactions, agents
are initialized with normative protocols of interactions, called landmarks, which re-
strict the agents freedom, establishing the actions to be taken in order to achieve certain
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tasks in a normative manner. The main drawback associated to landmarks is the diffi-
culty for agents to adapt to environmental changes, which has to be done by changing
agents’ internal landmarks by their programmers.

In general, we can observe how the success of most of the previously explained
mechanisms is based on the potential repercusions on the agents payoffs, therefore, the
punishment associated. When using tags or partner selection, agents fear the poten-
tial ostracism [de Pinninck et al., 2007a]. Reputation affects indirectly the utility of an
agent, by restricting the number or decreasing the quality of interactions(due to the bad
reputation). And, with authority is implemented, agents fear the fines imposed by au-
thority when norm violations are observed. Because of all these reasons, we focus on
punishment as one important mechanism that ensures cooperation.

2.3.2 Punishment
Allowing agents to react against the behaviour of wrongdoers is the scope of Punish-
ment. On the other hand, by receiving punishments, agents’ utility can be affected by
the others punishments. Nobel prize Elinor Ostrom [Ostrom, 2000] gives an evolu-
tionary perspective to the emergence and maintenance of the cooperation norm in col-
lective action dilemmas, discussing the relationship of the maintenance of norms with
the existence of monitoring and sanctioning mechanisms that reduce the probability of
free-riding. Another Nobel prize Gary Becker also related the existence of a punish-
ment mechanisms with the maintenance of cooperation [Becker, 1968]. Nonetheless,
Becker’s view describes a homo-economicus type of agent, which is only motivated by
utilitarian aspects. The pessimistic conclusion of many researchers [Hardin, 1968] is
that coercion by a strong external authority is necessary in order to ensure cooperation.

However, Ostrom’s theory suggests the existence of other type of mechanisms
that sustain cooperation other than the utilitarian damage that comes with punishment.
In [Ostrom, 2000], she discusses the laboratory empirical evidences that are hard (or im-
possible) to explain following Becker’s homo-economicus theory, or zero-contribution
thesis.

Ostrom defends that for the evolution and maintenance of norms, other types of
agents different to the rational egoist agent have to be present in the society, and she
defines two of them: “conditional cooperators” and “willing punishers”. The former
are willing to cooperate to the common good (even though the rational strategy would
move the agent to reduce its contribution to the minimum, even to zero). However,
this type of agents is also affected by the behaviour of others, which might provoke
a collapse in the cooperation strategy followed by the conditional cooperator. On the
other hand, the willing punishers are agents that are “willing, if given the opportunity,
to punish presumed free riders through verbal rebukes or to use costly material payoffs
when available”. With the existence of these types of agents, a more robust compliant
and norm-defending society can be obtained.

Several works in Multi-agent Systems have considered the existence of punishment
mechanisms to ensure norm-compliance [de Pinninck et al., 2007b, Blanc et al., 2005,
Grossi et al., 2007, Bazzan et al., 2008]. In [Pasquier et al., 2006] a classification of the
possible types of sanctions that can be present in a MAS, together with the styles of
sanctions and the scope of sanctions, is presented.
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By allowing peer punishment, on contrast to that achieved through a centralized
institution, agents have the option to violate norms in those situations that they find it
necessary. This intelligent norm-violation allows society as a whole to achieve self-
organization.

Normative BDI Architectures

Some authors [Castelfranchi et al., 2000] already noticed about the necessity of intel-
ligent norm violation. They describe a theoretical architecture of agent that have a
number of characteristics that allow an agent:

• to know that a norm exists in the society and that it is not simply a diffuse habit,
or a personal request, command or expectation of one or more agents;

• to adopt this norm impinging on its own decisions and behaviour, and then

• to deliberately follow that norm in the agents behaviour, but also

• to deliberately violate a norm in case of conflicts with other norms or, for ex-
ample, with more important personal goals; of course, such an agent can also
accidentally violate a norm (either because it ignores or does not recognize it, or
because its behaviour does not correspond to its intentions).

Even though the accurate theoretical policy described in [Castelfranchi et al., 2000],
no agent implementation was done. On the other hand, a more complete description of
an agent architecture based on a BDI architecture is presented in [Dignum et al., 2000],
which integrate norms into the agents decision making, specially on the process of
generating (candidate) intentions. With an such type of architectures, agents’ behaviour
is different (and norm regulated) than that of utility-maximizing agents.

[Boella and Lesmo, 2002] sketched a BDI agent architecture that cope with game-
theoretical concepts of norms, mainly, punishment. A key element for their theoretical
model to function is the existence of a “normative agent”, which imposes obligations
to other agents, observe the fulfillment of norms, and apply sanctions to norm-violators,
similar to the “willing punishers” described in [Ostrom, 2000].

As we will explain along this thesis, there is a clear necessity of a modular BDI
agent architecture that can deal with normative related actions such as punishment and
integrate them correctly into the agents decision making. On the other hand, this agent
architecture has to be designed in such way that agents can intelligently apply punish-
ments to other norm-violating agents. With a correct implementation of a BDI nor-
mative architecture which reasons about norm compliance but also about metanorm
compliance (apply punishments), intelligent norm violation can be achieved.

Other researchers have investigated a negotiation approach [Boella et al., 2009] to
the emergence of norms. In this work, agents negotiate about all the aspects related
to the norms, like the social goal to be achieved with the fulfilment of the norm, the
obligations and sanctions. Moreover, this model is theoretically designed for online
game scenarios, like The Sims Online or Second Life. And alternative to the BDI
models to achieve norm consensus is that presented in [Joseph and Prakken, 2009].
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Instead of centering on the emergence, other proposals [Tinnemeier et al., 2010]
have been envisioned to facilitate the runtime modification of norms. Such frame-
work assumes a whole cooperative population, that will accept any changes in the
normative code produced by any other agent. Similar to the work of Tinnemeier,
in [Meneguzzi and Luck, 2009] authors present an agent architecture able to modify
plans at runtime in reaction to newly accepted norms. Their main contribution is the
introduction of plan manipulation strategies to enable reasoning about norms and to en-
sure compliance with newly accepted norms. Authors focus on the intelligent compli-
ance of norms rather than in the emergence of these. They present an elegant framework
where norms are obligations and prohibitions over certain states of the world or certain
actions, which are specified with a validity period (if the norm says to pay your bills, it
is impossible to identify a norm violation if there is no deadline to abide by the norm).
Their framework can generate new plans to enable agents to comply with norms, and
remove the plans when the norms are no longer relevant.

Another important contribution in the literature of normative agent architecture is
EMIL-A [Andrighetto et al., 2010a]. EMIL-A is an agent architecture born with the
scope of representing the process of norm innovation, and how this process is affected
by different societal levels, and the relations amongst them. Specially, they focus on the
recognition of social norms in open societies where there is no central authority. The
architecture is built using a BDI approach, where the micro-interactions amongst agents
derive to a macro-behaviour (norms). Their theoretical architecture is also proven with
a simulation framework, where agents recognize the existence of norms and behave
according to that recognition. However, agents were still not given with the tools and
mechanisms to reason about the dynamic state of norms, and how they might disappear
(and loose scope) along time.

In this thesis we will present an agent architecture (EMIL-I-A), constructed on top
of the BDI EMIL-A architecture, that is able to interpret normative cues (such as com-
pliance, violations, sanctions and punishments) into the agents decision making. More-
over, this architecture integrates an adaptive vision of agent which can adapt to envi-
ronmental and normative changes and obtain intelligent norm violation. Finally, this
architecture is given with an extra mechanism that allows agents to dissociate compli-
ance with punishment, called Internalization. Our EMIL-I-A Architecture fits with the
operational approach described in [Lotzmann and Möhring, 2009].
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Chapter 3

Conventions: Trespassing the
90% Convergence Rate

Conventions are a special type of norms, used as a mechanism for sustaining social
order, increasing the predictability of behavior in the society and specify the details
of those unwritten laws. Following Coleman’s theory[Coleman, 1998], conventions
emerge to solve coordination problems, where there exist no conflict between the in-
dividual and the collective interests, as what is desired is that everyone behaves in the
same way, without any major difference on which action agents are coordinated. There-
fore, the selection of the focal action in such norms is arbitrary. One clear example of
these kind of norms is the selection of which side of the road to drive on, both options
are equally good as long as all drivers agree. Examples of conventions pertinent to
MAS would be the selection of a coordination protocol, communication language, or
(in a multitask scenario) the selection of the problem to be solved.

Research from several communities (multi-agent systems, physics, or economy)
have studied a restricted configuration of parameters, giving special importance to
the underlying interaction topology [Kittock, 1993, Shoham and Tennenholtz, 1997a,
Urbano et al., 2009a, Delgado, 2002, Delgado et al., 2003], and leaving all the other pa-
rameter configurations unexplored.

Moreover, and in order to save computation efforts, most of these research consid-
ered a convention as emerged when 90% of the population had converged to the same
convention. However, 90% convergence cannot, by definition, be considered a conven-
tion, as a convention needs to be shared by the complete population. Therefore, we have
decided to extend the 90% convergence rate to 100% in order to be consistent with the
definition.

In this work we will provide multi-dimensional analysis of several factors that we
believe determine the process of convention emergence, such as:

• the population size.

• the underlying interaction topology.

• the strategy selection rules.
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• the learning algorithm.

• the agents memory size.

• the amount of players per interaction.

The contribution of this chapter is centered on the achievement of full convergence,
and a detailed analysis of the search space of parameters.

3.1 Model

The social learning situation for norm emergence that we are interested in is that of
learning to reach a social convention. We adopt the following definition of a social
convention from the definition of a social law [Shoham and Tennenholtz, 1997a]: A
social law is a restriction on the set of actions available to agents. A social law that
restricts agents’ behavior to one particular action is called a social convention.

For the sake of generalization, our framework is built with the most accepted
convention emergence model (used by [Kittock, 1993, Walker and Wooldridge, 1995,
Shoham and Tennenholtz, 1997a, Delgado et al., 2003, Mukherjee et al., 2007,
Sen and Airiau, 2007, Villatoro et al., 2009]). We represent the interaction between
two agents as an n-person m-action game.

for a fixed number of epoch do1

A← N // Initialize the available agents with all the2

population
repeat3

select randomly an agent from the available agents: i ∈ A;4

select randomly a neighbor of i that is available: j ∈ A∪{ j |(i, j) ∈ G };5

remove i and j from the set of available agents: A = A\{i, j};6

ask i to select an action r in Ar;7

ask j to select an action c in Ac;8

send the joint action (r,c) to both i and j for policy update;9

until no pair of agents is available: @(i, j) ∈ A2 | i, j) ∈ G ;10

end11

Algorithm 1: Interaction protocol.

The model runs as specified in Alg. 1: at each time step, each agent is paired with
another agent from the population and chooses from one of several alternatives (the
choice can either be that of an action to execute, which we use in this paper, or a
particular state to be in). In our case a social convention will be reached if all the n
agents are in the same state or choose the same action, i.e., the actual state or action
chosen as a convention is not important.

Based on the underlying assumptions of the convention emergence problem, all
actions (or states) are potentially of the same value, as long as all agents converge to the
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same action (i.e. given the set of actions={A,B}, converging to action A produces the
same utility to agents than converging to action B).

We model agent environments by networks, where each agent is represented by a
node and the links in the network represent the possibility of interaction between nodes
(or agents).

We consider the following two different agent network topologies or environment
types:

1. a one-dimensional lattice that provides a structure in which agents are connected
with their n nearest neighbors. Different values of the neighborhood size (n)
produce different network structures. For example, when n = 2 the network will
have a ring structure (as in Figure 3.1(b)) and agents will only be connected
with their immediate neighbors on either side, corresponding to a ring topology.
On the other hand, when n = PopulationSize, the connections result in a fully
connected network (as in Figure 3.1(a)) where each agent is connected with all
other agents. The motivation for the usage of this type of networks is to simulate
the ordered structure that many computational systems (memory clusters, sensor
networks, etc..) are organized.

2. a scale-free network, whose node degree distribution asymptotically follows a
power law, meaning that there are many vertices with small degrees and only few
vertices with large degrees. This makes the network diameter (average minimum
distance between pairs of nodes) significantly smaller than one-dimensional lat-
tices with small neighborhood sizes. Scale-free networks do represent the topol-
ogy of social networks [Albert and Barabasi, 2002], and we find valuable to have
results at least in synthetic scale-free networks. An example of this topology can
be seen in Fig. 3.1(c). The scale-free networks used in this work are generated
with the BA algorithm [Barabási and Albert, 1999], with mo = 2, m = 1, p = 1
and q = 0, as in other works such as [Delgado et al., 2003, Salazar et al., 2010].

3. to capture some typical real-world scenarios, e.g., a community of closely knit
researchers and their students, we use a rather novel network topology, namely
the fully connected stars network: such a network has a relatively small number of
hubs or core nodes which are fully connected forming a clique, and each of these
core nodes is also connected with a number of leaf nodes (an example can be
seen in Figure 3.1(d)). This topology possesses some interesting characteristics
to understand the topological dynamics of convention emergence.

Agents cannot observe the other agent’s current decision, or immediate reward, and
hence cannot calculate the payoff for any action before actually interacting with the
opponent.

Agents use a learning algorithm to estimate the worth of each action. Agents will
choose their action in each interaction in a semi-deterministic fashion. A certain per-
centage of the decisions will be chosen randomly, representing the exploration of the
agent, and for the rest of the decisions, the agents deterministically choose the action
estimated to be of higher utility. In all the experiments presented in this work, the ex-
ploration rate has been fixed at 25%, i.e., one-fourth of the actions are chosen randomly.
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(a) Fully Connected Network (b) Ring Network or One-dimensional Lattice
with Neighborhood Size 2

(c) Scale-Free Network (d) Fully Connected Stars Network

Figure 3.1: Underlying Topologies
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The learning algorithm used here is a simplified version of the Q-Learning algo-
rithm [Watkins and Dayan, 1992]. The Q-update function for estimating the utility of
an action is:

Qt(a)← (1−α)×Qt−1(a)+α× reward, (3.1)

where reward is the payoff received from the current interaction and Qt(a) is the utility
estimate of action a after selecting it t times. When agents decide not to explore, they
will choose the action with the highest Q value. The reward used in the learning process
is a proportional reward obtained from the system after each interaction.

We have used two different learning modalities: (a) in the Multi learning approach
both interacting agents use the payoff to update their memory and action estimate, (b) in
the Mono learning approach, however, only the first agent selected, and not the second
one, updates its memory and action estimate after an interaction. Each agent interacts
exactly once per time step in mono-learning, whereas in the multi-learning mode, dif-
ferent agents interact different times in the same time step because of random partner
selection.

3.2 Overpassing the 90%
The first experiments performed have the scope of proving how con-
vergence evolves in the convention emergence process, as done in
[Delgado et al., 2003, Kittock, 1993, Mukherjee et al., 2007, Sen and Airiau, 2007,
Shoham and Tennenholtz, 1997a, Walker and Wooldridge, 1995]. However, this time
we have fixed the rate of convergence to 100%.

Our experimental results confirm those obtained by others with the same parame-
ters, although, as we venture further than 90%, we discover different dynamics in those
ranges.

It can be seen in Figure 3.2 that convergence rates grows really fast at the beginning
of the execution as agents do not have any clear preference and they will converge
through the learning obtained by interacting. In certain topologies, the convergence
rates suffer from a delay which might be produced by the existence of subconventions.

We hypothesize that subconventions are facilitated by the topological configuration
of the environment (isolated areas of the graph which promote endogamy) or by the
agent reward function (concordance with previous history, promoting cultural main-
tenance). While the former can be studied by analyzing the dynamics of convention
emergence of the different presented topologies, in order to test the latter a new reward
function that captures the agents’ previous history has to be designed.

3.3 Is cultural maintenance the source of subconven-
tions?

We hypothesize that history of interaction is instrumental for norm evolution. Learn-
ing algorithms incorporate the history of interactions into their decisions, but reward
metrics are typically static and independent of the agent histories. Norm evolution is
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Figure 3.2: Convergence rates with different topologies and actions set
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dependent upon the exertion of social pressure by the group on aberrant individuals. It
is through learning via repeated interactions that social pressure is applied to individ-
uals in the group. However, a reward metric based on the current interaction does not
necessarily model the full context or capture the persistent nature of social pressure in
human societies.

In particular, society often uses past history to judge individuals and hence actions
have future consequences in addition to immediate effects. Accordingly, we propose
a reward structure based upon the agent’s interaction history as a more appropriate al-
ternative to the single interaction reward metric normally used in the literature. In our
model agents are rewarded based upon the conformity of action between two agents,
such that the agent who has the larger of the majority action choice in the stored in-
teraction history of the agents receives higher reward. Hence, both interaction agents’
history of actions are used to calculate each individuals’ payoff from an interaction. We
investigate how this history, and in particular, its size (memory size) affects different
types of social structure.

We have designed a memory based reward function that captures the past actions of
the interacting agents into the calculation.

/* First, we select the majority action */
TotalAActions = A1 +A2;1

TotalBActions = B1 +B2;2

if TotalAActions < TotalBActions then3

Ma jorityAction = B;4

if TotalBActions < TotalAActions then5

Ma jorityAction = A;6

if TotalAActions == TotalBActions then7

Ma jorityAction = RandomlyselectedbetweenAorB;8

/* Then, we calculate the reward depending on the agents9

action selection and on the majority action */
if Action1 == Ma jorityAction then10

reward1 = Ma jorityActions1
TotalMa jorityActions11

else12

reward1 = 013

end14

Algorithm 2: Memory Based Reward Function.

When two agents interact, the instantaneous reward that an agent receives is calcu-
lated based on the action it selected and the action history of both agents as shown in
Algorithm 2 (the algorithm calculates reward for agent 1 and assumes only two actions
available per agent, but can be easily extended to an arbitrary number of actions). Here
Ax and Bx are the number of A and B actions in memory that agent x has taken, Actionx
is the last action taken by agent x, and for which it is rewarded, Ma jorityAction is se-
lected to be whichever action is selected more frequently by the two players combined,
Ma jorityActionsx is the number of actions equal to the majority action that agent x has
previously taken, and TotalMa jorityActions is the number of times the majority action
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was chosen by both players in their finite histories.

3.3.1 Experiments
To evaluate the rate and success of norm emergence we ran experiments with different
societal configurations by varying the following system and agent properties:

Memory Size: To be able to analyze the effects of memory sizes, we vary the number
of past interactions stored by an agent,

Population Size: We study the effects of scale-up by varying population size.

Neighborhood Size: We study how different neighborhood sizes in a one dimensional
lattice affect the process of emergence of conventions.

Underlying Topology: We observe the dynamics of the process of emergence of con-
ventions depending on the underlying network topology.

Learning Modalities: We compare how conventions are reached with different learn-
ing modalities, namely, one or both agents learning from an interaction.

Number of Players: We analyze the effect of different number of players participating
in each interaction on the speed of convention emergence.

Actions Set: We study the effect of the search space, namely the number of options
available to agents, on the convention emergence process.

Results reported here have been averaged over 25 runs. Agents are initialized with
uniformly random memories, and initially are unbiased in their action choice. We con-
clude that a social convention has been reached when 100% of the population choose
the same action.

3.3.2 Effect of Memory Size
In this set of experiments, we want to observe the effect of different memory sizes
on convention emergence. We fix the population size at 100 agents. We present the
convergence times for different memory sizes in Figure 3.3.

First experiments are performed on fully connected networks, and the results are
shown in Figure 3.3. For both learning modalities, convergence times increase pro-
portionally with memory size. The relationship between memory size and convergence
time is explained by observing the configuration of the reward function and the learning
algorithm. Each action in memory gets a relatively high reward for smaller compared
to larger memory sizes (refer to the reward function defined in Algorithm 2). The learn-
ing algorithm, therefore, receives larger reinforcements for the actions performed for
smaller memory sizes, resulting in faster convergence. Convergence is accelerated in
this situation because higher rewards have a larger impact on the Q value updated by
the learning algorithm represented in Formula 3.1. On the other hand, when dealing
with higher memory windows, the proportional reward is much smaller, and therefore,
the reinforcement will be smaller. Due to this smaller reinforcement, a higher number
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Figure 3.3: Effect of Memory Size in Convergence Time on a Fully Connected network.
(100 Agents).

of interactions, and hence higher number of timesteps, will be needed to reinforce that
action to same degree, thereby increasing convergence time.

Moreover, and observing the learning modalities, the mono-learning approach takes
longer to converge than the multi-learning approach. A part of this difference is ex-
plained by the fact that the average number of learning interactions in a multi-learning
approach is twice that of the mono-learning approach for the same number of time steps.
There is, however, an additional clear trend of accelerated learning when both agents
are learning from the same interaction.

We extend the experiment to the other presented network topologies. The re-
sults show that larger memory sizes consistently increase convergence times for all
the topologies, showing a stronger impact in the scale-free and fully connected stars
networks than in the one-dimensional lattice.

In Figure 3.4 (note that the y-axis is in a logarithmic scale), we can observe the
relative performance of different topologies for different memory sizes with the mono-
learning approach. During this experiment, we limited the execution of the simulations
to one million timesteps. We observe that the Fully Connected Stars network takes the
most time to converge, followed by the Scale-Free network. For both the Scale Free and
the Fully Connected Networks we can observe that the convergence time increases with
increasing memory size. These inefficiencies are largely due to more time taken to break
or resolve conflicting subconventions that form with scale-free and fully connected stars
networks but not for fully connected networks (see Section 3.3.4). Accordingly, the
fully connected network scales up much better with increasing memory size.

These first experiments provide us with the hint that topologies have an strong im-
pact on the delay of full convergence, specially in Scale-Free and Fully Connected Stars
networks.
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Figure 3.4: Topologies Comparison with different Memory Sizes with Mono Learning
Approach.

3.3.3 Effect of Neighborhood Size

To observe the effect of neighborhood size, we use a one-dimensional lattice (as scale-
free networks and fully connected stars predetermine the neighbors for each node). In
these experiments, we fixed a memory size of 5. Figure 3.5(a) shows a comparison
of convergence times for different neighborhood sizes, measured as percentages of the
population size, in a multi learning approach.

We can see that when increasing the neighborhood size, the convergence time is
steadily reduced until it stabilizes after a certain neighborhood size. This effect is due
to the topology of the network. When the one dimensional lattice has a small neighbor-
hood size, on average, the diameter of the graph1 is high and therefore agents have a
relatively higher amount of local interactions. These local interactions might promote
different conventions in different parts of the network due to the inherent structure of
the convention emergence problem: one convention from the possible ones has to be
adopted by interacting with your neighbours, and as the topology restricts agents to
more immediate neighbours (promoting endogamy), they can develop a different con-
vention than agents in another part of the network. These subconventions need to be
broken within a certain number of timesteps to achieve the global convention. In the
case of larger neighbourhood sizes, these endogamy has a softer effect, and therefore
the topology does not promote such strong metastable subconventions. It is also inter-
esting to note that for smaller neighborhoods, larger populations exhibits much faster
convergence.

1The diameter of a graph is the largest number of vertices which must be traversed in order to travel from
one vertex to another
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(a) Multi Learning

(b) Mono Learning

Figure 3.5: Convergence rates with different Neighborhood Sizes in a One Dimensional
Lattice
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Figure 3.6: Diameter relation with Neighborhood size in a One Dimensional Lattice
with population = 100

Similar convergence results are also obtained with the mono learning approach
shown in Fig. 3.5(b). When the neighborhood size crosses about 30% of the population
size, the convergence time does not significantly decrease anymore. The relation of the
neighborhood size and the diameter follows a geometric distribution and is shown in
Figure 3.6. We see that when neighborhood sizes cross 30% of the population size the
diameter of the network is no longer significantly reduced, and hence the convergence
times are also not significantly reduced any further.

This experiment convinced us of the importance of the topology, but also lead us to
think about the differences between the learning modalities and their different effect.

3.3.4 Effect of Learning Modalities
In this set of experiments, we want to observe the difference in convergence times with
the two learning modalities for different topologies. We first compare results of the
two learning modalities in a one-dimensional lattice with 100 agents (see Figure 3.7,
where the y-axis is drawn on a logarithmic scale). For smaller neighborhood sizes,
i.e., when the network diameter is high, multi-learning takes longer to converge than
mono-learning. After reaching the point where the diameter is no longer affected by
the neighborhood size (as discussed before, this happens when the neighborhood size
is about 30% of the population size), the multi-learning performs better. The reason for
this interesting phenomenon is the creation of local subconventions with multi-learning
when the neighborhood size is small.

When agents have a small neighborhood size, they will interact often with their
neighbors, resulting in diverse subconventions forming at different regions of the net-
work. With the multi-learning approach, agents reinforce each other in each interac-
tion. Such divergent subconventions conflict in overlapping regions. To resolve these
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Figure 3.7: Different Learning Approaches in One Dimensional Lattices with different
Neighborhood Sizes

conflicts, relatively more interactions between the agents in the overlap area between
regions adopting conflicting subconventions is necessary. Unfortunately, agents in the
overlapping regions may have more connections in their own subconvention region and
hence will be reinforced more often by their subconventions, which makes it harder
to break subconventions and arrive at a consistent, uniform convention over the entire
society. In the case of the mono-learning approach, the agents in the overlapping region
will not be disproportionately reinforced by the other agents sharing its subconvention,
making it easier to break those subconventions.

On the other hand, when neighborhood sizes are large, and hence network diameters
are small, agents interact with a larger portion of the population. This makes it more
difficult to create or sustain subconventions. In addition, this large neighborhood size
is more effectively utilized by the multi-learning as agents will be learning from all the
interactions they are involved in, and not only from the interactions initiated by them.

For the scale-free and fully-connected stars, systematic variation of neighborhood
size is not possible in general. We do observe an interesting phenomenon for these
kind of networks. When the multi-learning approach is used in scale-free networks and
fully connected stars, subconventions are persistent and the entire population does not
converge to a single convention! This is the first time in all of our research on norm
emergence that we observed the coexistence of stable subconventions.

The explanation of this rather interesting phenomena can be found in the combina-
tion of the memory-based reward function and the inherent topologies of such networks.
We present, in Figure 3.8, a portion of a representative Scale Free or Fully Connected
Stars network where subconventions have formed. We see that agent 1 (hub node 1) and
its connected leave nodes (nodes 10, 11, and 12) have converged to one subconvention
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Figure 3.8: Subnetwork topology resistent to subconventions in a multi learning ap-
proach

(represented by the color of the nodes) that is different from the subconvention reached
by agent 2 (hub node 2) and its connected leave nodes (nodes 21, 22, and 23). As an
agent has equal probability of interaction with any of its neighbors, both agents 1 and
2 interact more frequently with their associated leave nodes that share their subconven-
tion.

Also note that when two agents interact and both actions have been used equally
often in their combined memories, as will be the case when agents 1 and 2 interact,
the majority action will be selected randomly, giving advantage to one of the agents.
For the subconventions to be broken in this scenario, it is needed that for one of the hub
nodes the following holds true: (1) the agent’s q-value for its preferred action decreases,
and (2) the q-value for the action preferred by the other agent increases. In order for the
agent’s q-value for its preferred action to decrease, a number of repeated interactions
(proportional to the memory size) between the hub nodes (in our example 1 and 2)
have to occur, and as there will be no clear majority action, the preference has to be
given to the same action, e.g., that preferred by agent 2, in all those interactions. As
the reward for the agent 1’s action will then be 0, its q-value will start decreasing. In
order for the agent 1’s q-value for its non-preferred action to increase, a number of
interactions (also proportional to the memory size) between it and agent 2 has to occur
and agent 1 has to explore in that interaction and try agent 2’s preferred action. This will
result in agent 1’s estimate of agent 2’s preferred action to increase, albeit slowly. Only
when both these fortuitous events follow each other, and without the intervention of
another interaction with the leaves associated with agent 1 (which would reinforce the
subconvention), can the subconvention be ultimately broken. The likelihood of these
sequence of events happening is exceedingly small and hence subconventions routinely
arise with the multi-learning approach. Viewed another way, the leaf nodes can only
interact with their hubs and each of them will reinforce the subconvention action for
their associated hub node in every time step, making it very unlikely that conflicting
subconventions will be resolved in situations such as in Figure 3.8.

On the other hand, as an agent is reinforced only once each time-step in the mono-
learning approach, the processes required to break the subconventions are more likely,
even though it sill has a relatively small probability. This probability decreases with
larger memory sizes, and hence subconventions are more likely to emerge with larger
memory sizes when using mono-learning. Therefore, with larger memory sizes, sub-
conventions will be harder to break and this phenomenon caused the significant increase
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in convergence time for scale-free networks and full-connected star networks (we dis-
cussed this in the previous section with reference to results displayed in Figure 3.3).

3.3.5 Effect of Number of Players
To investigate the effect of the number of players per interaction on the convention
emergence process we designed the following experiment set. Agents are situated in a
fully connected network. As the actual design of the Memory Based Reward Function
does not consider situations with more than two players, we modify it to produce a
new reward function (shown in Algorithm 3) that reinforces the convention taken by
the majority of the players.

// First, we select the majority action
Choose Ma jorityAction as the most frequent action over memories of all1

interacting players;
In case of tie, select randomly amongst the possible ones;2

// Then, we calculate the reward depending on the agents
action selection and on the majority action

if Action1 == Ma jorityAction then3

reward1 = 14

else5

reward1 = 06

end7

Algorithm 3: MultiPlayer Reward Function.

Results from this experiment are presented in Fig. 3.9. We observe that the conver-
gence time seems to decrease when the number of players in each interaction increases.
The reason of this phenomena is found on the design of the reward function: agents
will reinforce the action played by the majority. In situations with smaller number of
players, fewer agents are consulted while deciding the majority action. This leads to
the emergence of more subconventions, and these agents reinforce each other. On the
other hand, in scenarios with larger number of players per interaction, the majority
action will be calculated by consulting the history of more agents, and therefore, these
subconventions will be less likely to appear. In essence, more consistent rewards are
provided to a larger number of agents, hence promoting convergence of choices and
enabling the emergence of a global convention. Information sharing between a larger
number of individuals then have a similar effect on global convention emergence as the
likelihood of interacting with a larger proportion of the society. Both facilitate uniform
action adoption.

In Figure 3.10 we can observe how the neighborhood size affects (as identified in
Section 3.3.3) the emergence of multiplayer conventions. We previously observed that
the emergence of conventions in one-dimensional lattices was strongly affected by the
neighborhood size: the convergence times are drastically reduced when the diameter of
the network (inversely proportional to the neighborhood size) is reduced. We can now
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Figure 3.9: Different Players in Fully Connected Networks with Different Learning
Approaches

observe similar effects in Multiplayer situations. We also observe that the convergence
time also increases when increasing the number of players. This phenomena occurs
due to the learning modality used by the agents (a multi-learning approach) and the
relation between the number of players and the neighborhood size. When a small
number of players interact (relative to the neighborhood size), subconventions are less
likely to be created. However, when the number of players per interaction is larger
(and closer to the neighborhood size), agents will always interact with the same agents,
creating and reinforcing subconventions.

The neighborhood size also plays an important role when dealing with multiplayer
interactions. Assuming that all the players in an interaction must be neighbors, we
can infer that the amount of neighbors an agent has directly affects to the convergence
time. We have accordingly designed two methods that will adapt the neighborhood
size of the network, depending on the number of players per interaction: the reduced
and the super-reduced. The super-reduced scheme assigns the minimum amount of
neighbors needed for the number of players specified. Recall that the neighborhood
size should be an even number N, representing N/2 of neighboring agents on each side
of the agent. Therefore, in the super-reduced method, for either a 2 or 3 players games,
the neighborhood size will be N = 2. We have observed that using the super-reduced
method, in the case of the upper limit of players (3 players with a neighborhood size N =
2), makes agents interact repeatedly with the same agents every timestep. Depending on
the type of reward function, this repeated interaction with the same players would lead
to metastable subconventions. Therefore, we relaxed this method creating the reduced
method. The reduced method assigns the minimum amount of neighbors needed for
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Figure 3.10: Neighborhood Sizes Comparison with Different Players with Multi Learn-
ing Approach

the amount of players specified plus 2. This addition of two extra neighbors introduces
variety into the games (reducing the endogamy), allowing agents to play with different
agents in different interactions.

From the results presented in Figure 3.11 we can observe the convergence times of
both methods (reduced and super-reduced) with different number of players per inter-
action. We can observe how the super-reduced method produced larger convergence
times and more pronounced changes between the even and odd value of each neigh-
borhood size2. The reason why the super-reduced takes longer to converge is because
of the interacting topology. When agents are not allowed to interact with other agents
than their direct neighbors, no variance is introduced (complete endogamy), promoting
the appearance of a “frontier effect”. This frontier effect affects the agent located in the
middle of two regions of clear preference: this agent in the “frontier” will be doubt-
ful about its preference (one example of this situation can be seen in Fig. 3.12). If the
agents that the frontier agent interact with are always the same, it will be harder to break
the frontier effect this agent is under the influence of.

Until one of the involved agents explores a different action, this frontier effect will
not be broken.

Moreover, in Fig. 3.11 we observed another phenomenon that has not been ex-
plained yet. We observe that the scenarios with an odd number of players games take
longer to converge than those with an even number of players. We can find an expla-
nation for this phenomenon in the design of the reward function and the frontier effect:
the majority action is chosen by observing the actions of the interacting agents, and,
if those are even, there might be a tie. In case of a tie, the majority action is chosen
randomly, giving a clear advantage to one of the actions in the “frontier” region. In the
case of an odd amount of players, the frontier agent will be affected by the same amount

2For N = 2, 2 and 3 players games can be played. For N = 4, 4 and 5 players games can be played. For
N = m, m (even) and m+1 (odd) players games can be played.
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Figure 3.11: Reduced and Super Reduced Neighborhood sizes with different Players
using the Multi Learning modality.

of non-frontier agents. We can observe and example scenario in Figure 3.12. Initially,
in Figure 3.12(a), Agent 3 is doubtful about its preference. When Agent 2 interacts, in
Figure 3.12(b), it affects (together with agent 1) agent 3, biasing their action preference
to one convention. On the other hand, when agent 4 interacts, it will affect (together
with agent 5) agent 3, making it change its preference to the other convention.

The random selection of the majority action in case of a tie, possible only for even
number of players, speeds up the process of convergence, although producing a larger
number of preference change per agent.

On the other hand, when having an odd number of players, we obtain the previously
explained “frontier” effect. This effect ensures a longer convergence time (because the
frontier agent needs to explore in order to break the frontier) with a smaller number
of preference changes. Experimental results are shown in Figure 3.13 confirming our
hypotheses.

3.3.6 Effect of Action Set
This last experiment was designed to evaluate how the topology plays an important

role in the emergence of conventions in environments where there are more than two
conventions to choose from. We can observe in Figure 3.13, that the larger the search
space in the number of possible conventions, the longer it takes for the conventions to
emerge. Specially pronounced is the effect with smaller neighborhood sizes. The expla-
nation for this phenomena is again the creation of metastable subconventions promoted
by the endogamy produced by the topological structure as explained in Section 3.3.3.
However in the previous experiments, agent only had two options where to choose from.
Having a larger set of options generate a larger number of different subconventions that
need to be broken.
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(a) Agent 3 doubtful

(b) Agent 2 interacts and affects Agent 3

(c) Agent 4 interacts and affects Agent 3

Figure 3.12: Frontier effect in 3-players game with two competing conventions.

3.4 Discovering subconventions: not only history, but
topology

These first set of experiments have been useful to understand the emergence of social
conventions based not only on direct interactions but also on the memory (and previ-
ous history) of each of the agents under different interconnection topologies between
agents. Our initial hypothesis was that subconventions are facilitated by the topological
configuration of the environment or by the agent reward function. Experimental results
using the Memory Based Reward function confirmed that the cultural maintenance pro-
moted by this functions slows down the convention emergence and in certain situations
provoke subconventions to emerge.

However, empirical results have given us a number of proofs of the effect of topol-
ogy on the maintenance of subconventions. Specific topology structures promote en-
dogamy between a certain subgroup of agents that might produce a different subcon-
vention than the rest, as identified by several authors [Salazar-Ramirez et al., 2008,
Toivonen et al., 2009, Villatoro et al., 2009]. Specially, we have observed that subcon-
ventions are more likely to appear and are more resistant when using the multi-learning
approach, and might not be resolved for scale-free and fully-connected star networks.
This is an important result as we consider the multi-learning approach to be the most
realistic. From now and on in the remaining of this thesis we will only consider that
learning approach.
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(a) Convergence Time for 2 Player Games (b) Convergence Time for 3 Player Games

(c) Average Number of Preference Change
for 2 Player Games

(d) Average Number of Preference Change
for 3 Player Games

Figure 3.13: Multi Player and Multi Action Games
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Chapter 4

Unraveling Subconventions

The problem of subconventions is a critical bottleneck that can derail emergence of
conventions in agent societies and mechanisms need to be developed that can allevi-
ate this problem. Subconventions are conventions adopted by a subset of agents in a
social network who have converged to a different convention than the majority of the
population. As we have seen, subconventions are facilitated by the topological config-
uration of the environment (isolated areas of the graph which promote endogamy) or
by the agent reward function (concordance with previous history, promoting cultural
maintenance). Assuming that agents cannot modify their own reward functions, the
problem of subconventions has to be solved through the topological reconfiguration of
the environment.

4.1 Social Instruments for Subconvention Dissolution
As part of the social network, agents can exercise certain control over their social net-
work so as to improve one’s own utility or social status. We define Social Instruments
to be a set of tools available to agents to be used within a society to influence, directly
or indirectly, the behaviour of its members by exploiting the structure of the social net-
work. Social instruments are used independently (an agent do not need any other agent
to use a social instrument) and have an aggregated global effect (the more agents use
the social instrument, the stronger the effect).

Normally, in social learning scenarios the reward function for an agent is deter-
mined either by the environment (e.g., if you over-exploit resources, they will be ex-
hausted) or by individual social interactions (e.g., drive on the same side of the road as
the rest of the drivers for your and others’ safety) and typically individual agents cannot
modify it. However, in social learning interactions, the reward is determined based on
the strategies of the partners involved in the interaction. Therefore, an agent can indi-
rectly modify the reward obtained and change its success and visibility and hence social
status by controlling or modifying the social network it is located in, e.g. selectively
choosing which other agents it interacts with, giving different importance to the rela-
tionships with other agents, share information about the interactions with other agents,
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etc.
Social instruments are used by agents to improve their utility, without directly al-

tering the utility function. Given a set of social instruments, agents can exploit the state
of their social environment to have tangible effects on the utility obtained from their
interactions with other agents in that environment.

A society where individual agents repeatedly use a social instrument has the prop-
erties of a complex system: the effect of the individual elements aggregated together
exhibit, as a whole, properties that are not present in the properties of the individual
parts. Moreover, the emergent aggregate behavior may change over time. The impact
of the social instruments is reflected on its aggregated effect which often transforms the
social environment.

For source of inspiration, we can look to human societies and observe how humans
have developed different social instruments to exploit and produce changes in their
social networks. These human social mechanisms have direct or side-effects on
the social networks. There exists some literature on classifying and analyzing the
effects of these social instruments on the network and therefore on the agents’ inter-
actions [Albert et al., 2000, de Pinninck et al., 2007b, Savarimuthu et al., 2007a,
Urbano et al., 2009a, Villatoro et al., 2009, Babaoglu and Jelasity, 2008,
Conte and Paolucci, 2002, Hales, 2002, Hales and Arteconi, 2006].

However, there is a critical dearth of work in this area of socially-inspired tools for
multi-agent systems (MAS). Our goal is to fill this gap by formalizing and adapting
the social mechanisms used by humans for agent societies. As a social network can be
represented as a type of graph, graph theory provides us with a good ground formalism
and allows us to establish a parallel between network operators and social operators.
However, from a societal point of view only a subset of all the possible graph operations
make sense.

In a social network, agents are represented by nodes and relationships by edges.
Assuming agents cannot create or destroy other agents, the set of graph operations that
are socially relevant are the following: destroy a link, create a link, add attributes to
nodes (node coloring), add attributes to links (link coloring) and transmit information
(any node can transmit information to any other node following the right protocols using
the communication network, which might be different from the social network).

The social instruments available to the agents should be able to perform those
operations. To alter the state of the social network in which agents are located,
researchers have developed different social mechanisms that we now categorize. We
identify some social instruments found in the MAS literature and observe their effect
on the social network. The mechanisms we are interested in are those that can be used
by the agents without institutional support.

• Partner Selection (Edge Removal): People continually select who they do
and do not want to interact with. Giving agents the capability of removing
edges attached to them in their social network, gives them direct control over
the network that directly affects them, improving the overall behavior of the
system [Albert et al., 2000, de Pinninck et al., 2007b].
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• Tags (or Node Coloring): Recognizing certain attributes and characteristics
of other agents before interacting with them reduces social friction (e.g., by
reducing the number of unsuccessful interactions) and improves coordination. To
facilitate this process, some kind of externally visible social markings are needed,
e.g., tag mechanisms [Chao et al., 2008, Holland, 1993]. By carrying a tag, hav-
ing a role [Savarimuthu et al., 2007a] or a certain force [Urbano et al., 2009a],
an agent allows all other agents to recognize a certain characteristic or quality
even before any direct interaction.

• Social Position (or Link Coloring): Humans recognize that our behaviour
has to be adapted depending on who we are interacting with, e.g., I behave
differently with a friend from school than with my boss. Agents can extract
information from the topology of a social network to gauge the influence or
status of other agents and use this information strategically to further their own
interests [Villatoro et al., 2009].

• Mimicking (or Node Imitation): Humans consciously and sub-consciously im-
itate the strategies of more successful individuals as they aspire to improve their
own situation. Access to the strategies of other nodes in the network can be used
as a social instrument [Hales and Arteconi, 2006]. Such access can be applied to
compare the efficiencies of several strategies and mimic the most effective ones.

4.1.1 Our Social Equipment
Some researchers in the literature have used certain instruments for the establishment
and distribution of norms in virtual societies. However we have envisioned two new in-
struments that we hypothesize will act efficiently on the dissolution of subconventions:
rewiring and observation. As we will see in the next sections, rewiring directly changes
the structure of the network and observation exploits the information of certain parts of
the network to bias agents’ decisions.

Rewiring (or Intelligent Link Removal and Creation)

If we use human societies as inspiration, agents should have the ability of choosing
whom they want to interact with. We have adapted this idea into a social instrument
that allows agents to “break” the relationships from which they are not receiving any
benefit and try to create new ones. This social instrument allows an agent to remove
links with other agents it is connected with, and substitute intelligently those links by
new ones, making this last step the crucial difference with edge removal. Agents decide
to rewire a link after the number of unsuccessful interactions1 with another agent goes
above a certain Tolerance threshold. Agents also need to decide whom they want to
establish the new link with. We have developed three different methods:

1Unsuccessful interaction in our convention emergence scenario corresponds to being uncoordinated or
not sharing the same convention for that interaction.
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1. Random Rewiring: Agents rewire to a randomly selected agent from the popula-
tion.

2. Neighbour’s Advice: Agents rewire to an agent recommended by a neighbour.
The rewiring agent, X, asks a neighbour with the same preference as that of
X (agent referent) for another agent also with the same preference but not a
neighbour of X (agent referred). If it was not possible to achieve that, Random
Rewiring will be applied.

3. Global Advice: Agents rewire to an agent that is randomly selected by the system
from those that have the same strategy. This rewiring technique is sued as control
case.

Despite the similarity with the work of Griffiths [Griffiths and Luck, 2010], there
exist a crucial difference with our approach: both [Griffiths and Luck, 2010] use an
evolutionary approach, observing the results of their techniques after the reproduction
of a number of generations, and with a certain mutation rate. On the other hand, we
use a more online approach where agents can modify their social network on runtime,
without the necessity of evolving new generations. In addition, our rewiring methods
do not access any private agent’s information (used only in the Global Advice which is
used as a control case), such as their actual reward. There is also a clear difference of
this social weapon with the partner selection mechanism: rewiring produces a tangible
change in the network, partner selection on the other hand does not directly affect the
network but prioritise some nodes over the rest.

Observation

In a social learning scenario, allowing agents to observe the strategy of other agents
outside their circle of interaction can provide useful information to support the con-
vention emergence process. However, there has to be a trade-off between observing
and interacting. Allowing agents to observe other agents’ state might help when decid-
ing which strategy to adopt. However, there has to be a trade-off between observing
and interacting. In order to analyze the effects of observation we will allow agents to
observe, at certain timesteps, a subset of agents’ states in the population. Therefore,
agents will be assigned an Observation Probability. Moreover, agents need to know the
amount of agents they can observe (Observation Limit) and how they want to observe
(Observation Method). We propose three different observation methods:

1. Random Observation: Agents observe random agents from the society. (Fig-
ure 4.1(b)).

2. Local Observation: Agents observe their immediate neighbours in the social net-
work. (Figure 4.1(a)).

3. Random Focal Observation: Agents select one random agent from the society
and observe that agent and its direct neighbours. (Figure 4.1(c)).
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(a) Local (b) Random (c) Random Focal

Figure 4.1: Observation Methods

After the observation process, the agent will choose the majority action taken by
the selected observed agents and will reinforce it. We are aware that in certain config-
urations, choosing the observed “majority action” might not help agents to achieve the
general convention. Nonetheless, and because of the intrinsic nature of the convention
emergence process, the observed “majority action” will lead in most of the situations to
the general majority action.

Despite the similarity, this instrument and mimicking (presented in the previous sec-
tion) behave differently. Mimicking agents copy from a successful agent the strategy
(which in most of the cases is private) as well as the interaction neighbours (which
might also be private). On the contrary, with the observation instrument agents observe
the last decision (hoping this represents the actual strategy) of a group of agents (with-
out knowing the actual success of the agents) and update their estimates based on the
majority. With observation, agents only access information that has been previously
made public by the observed agent, while with mimicking, they access information that
can be considered private.

4.2 Experiments
We use the simulation model presented in Section 3.1 to evaluate how the social instru-
ments that we propose influence the process of emergence of social conventions.

However, and in order to obtain complete results, we have introduced at this point
different decision making functions to evaluate the efficiency of our social instruments.
The decision making functions are:

1. Best Response Rule (BRR) [Mukherjee et al., 2007, Sen and Airiau, 2007]:
Agents choose the action with which they have obtained the highest payoff in
the last iteration. A positive reward is given to agents if they are coordinated.
This function gives preference to the instantaneously utility maximizing action.

2. Highest Cumulative Reward Rule (HCRR) [Shoham and Tennenholtz, 1997a,
Kittock, 1993]: “an agent switches to a new action iff the total payoff obtained
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from that action in the latest m iterations is greater than the payoff obtained from
the currently-chosen action in the same time period”. A reward is generated based
on a coordination game. This function gives preference to the action that has ob-
tained the higher accumulated payoff in the last m interactions (rather than only
in the last one).

3. Memory Based Rule (MBR) [Villatoro et al., 2009]: A positive reward is given
to agents if they are coordinated, and it is proportional to the actions they have
chosen in the past. This function gives preference to the action that has provided
the largest payoff while taking into consideration in the reward function also the
previous actions (promoting concordance with previous history).

For all the following experiments we fix the population size to 100 agents (as we
have been able to understand the different population size effects so far) amd the mem-
ory size to 5 (for HCRR and MBR).

4.2.1 Rewiring

We have experimented with the three rewiring methods introduced in Section 4.1.1 on
three topologies: a low clustered 2 one dimensional lattice (lattice with Neighborhood
Size = 10), a high clustered one dimensional lattice (lattice with Neighborhood Size
= 30), and a scale free network. We have explored the search space of the Tolerance
Levels, observing how they affect the convergence time and the number of components
(maximally connected subgraphs) created when convergence is reached with the differ-
ent decision making functions.

Influence of Rewiring Methods

From the experimental results obtained we have observed how, in general, the Global
Advice (GA) rewiring method produces the best convergence time due to its central-
ized nature and access to global information. Nonetheless the decentralized methods,
specially the Neighbor’s Advice (NA) method, also show good performances. The NA
method improves the Random Rewiring (RR) method as it more expediently resolves
the subconventions that appear in the one-dimensional lattices during the convention
emergence process. These metastable subconventions have been already identified
in [Salazar-Ramirez et al., 2008, Toivonen et al., 2009, Villatoro et al., 2009] to be the
preferred action of a group of nodes who have converged to a different convention than
the rest. These subconventions, as noted in [Villatoro et al., 2009], do persist as long
as the frontier region remains metastable3. The frontier region is the group of nodes in
the subconvention that directly interacts with other nodes that have adopted a different
convention (if nodes represent agents, and the color of the node the convention they
have adopted, Fig 4.2 shows examples of frontiers in two different networks).

2Clustering Coefficient is a measure of degree to which nodes in a graph tend to cluster together.
3Metastable conventions are those that should preferably be broken, but remain stable because of a com-

bination of factors (like interaction dynamics, topology and decision making functions).
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(a) Frontier in Ring Network. (b) Frontier in Scale Free

Figure 4.2: Examples of Frontiers in Different Networks.

When using the Neighbor’s Advice method, these subconventions are resolved more
expediently. Agents in the frontier use the rewiring instrument as they cross the toler-
ance level faster than those not in the frontier. For this reason, the RR method will relink
an agent with a more suitable agent with a probability of 1

NumberO f Actions . In contrast,
the NA method will relink the agent with another one with the same preference if it is
accessible. In case there is no other agent with the same preference to connect with,
random rewiring will be applied, obtaining in the worst case scenario, the same results.

These results are reaffirmed for the scale-free networks, although an interesting
phenomenon concerning the final number of components is observed in this case. Fig-
ure 4.3 shows the size of the clusters when a convention was reached. The horizontal
axis represents the Tolerance levels and the vertical axis presents ranges (of size 10)
of cluster sizes, and the histogram darkness the amount of clusters. When using the
RR (Fig. 4.3(a)) and the GA (Fig. 4.3(c)) methods, the number of components obtained
is always above one, resulting in a fragmented society. The number of components is
slightly higher for the NA method than when using the other methods. This phenomenon
is observed because of the structure of the scale-free networks (very few nodes with high
degree (hubs) and a larger amount of nodes with a lower degree following a power-law
distribution) and the dynamics of the rewiring methods. Non-hub nodes reach their tol-
erance levels faster than hub nodes (as non-hub nodes interact with a lower amount of
agents). Once the tolerance level is reached, the rewiring process starts working. We do
not observe any distinctive behavior separating the RR or the GA methods as they both
incorporate a random component. However, when using the NA the number of compo-
nents is variable, depending on the tolerance level: with a low tolerance the number of
components is higher, although we have observed that most of them are smaller com-
ponents (as it is shown in Fig. 4.3(b) observing larger amounts, represented with darker
colours in the figure, in the smaller cluster ranges).

Non-hubs (when using the NA method) will rewire to any of their leaf nodes4 sep-

4A Leaf node is a vertex of degree 1
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(a) RR Method (b) NA Method (c) GA Method

Figure 4.3: Cluster Sizes Histogram for Scale Free

arating completely from the initial complete component (e.g. in Fig. 4.4), creating a
greater number of components, but with smaller size.

Figure 4.4: Example of Components Evolution in Scale Free NA Rewiring Method.

Influence of topology

When observing the effects of the topology, we find that the convergence time is in-
creased under the effects of rewiring when the neighborhood size is increased. This
effect is due to the clustering coefficient of the network. The one dimensional lat-
tices with higher neighborhood sizes are more fragmented than those with more re-
stricted neighborhoods. Therefore, when increasing the neighborhood size, the num-
ber of links between agents also increase, thereby increasing the clustering coefficient.
Highly clustered societies are more resistant to rewiring, as the node that wants to
use the rewiring would have to apply it to a higher number of nodes, and then, be
rewired to the same amount of nodes with the appropriate strategy. This is one of
the scenarios where the difference between our social instrument and that presented
in [Hales and Arteconi, 2006, Griffiths and Luck, 2010]: our instrument needs to sub-
stitute one by one the selected links; on the other hand, in [Hales and Arteconi, 2006,
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(b) NS = 30
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(c) Scale Free

Figure 4.5: Rewiring Methods Comparison for Number of components in a One Di-
mensional Lattice

Griffiths and Luck, 2010] their instrument accesses the private information of another
agent and copies their set of neighbors. Our social instrument sacrifices convergence
time for the sake of privacy.

Tightly linked to the previous results, we also observed that under the effects of
rewiring there exists a trade-off between the diameter of the network and the number of
components: with higher diameters (smaller neighborhood size) the number of compo-
nents remains constant and greater than one (as it can be seen in Figure 4.5(a)). How-
ever, we can observe in Figure 4.5(b) that when the diameter is smaller (with higher
neighborhood size), the number of components is reduced to one with certain values
of Tolerance. The explanation of this phenomenon is again related to the clustering
coefficient of the network combined with the dynamics of the rewiring process. When
the clustering level of the network is low, agents have less links to be rewired. Initially,
and before the Tolerance level is reached, agents also change their preferences without
rewiring. Eventually, and after the Tolerance level is reached, agents start rewiring their
links (and reducing their number of preference changes). As it was explained previ-
ously, low clustered societies have higher tendency to become disconnected and form
different components.

Experimental results (shown in Figure 4.6) also show interesting properties
with Scale Free networks (see Section 4.2.1). Similar to what was observed
by [Villatoro et al., 2009] we found that subconventional effect has a stronger effect on
Scale Free networks when using MBR, producing (as it can be seen in Figure 4.5(c))
generally a larger number of components. However, when using the rewiring social
instrument, global convergence is obtained in this type of networks.

We can conclude that rewiring performs better in low clustered societies, producing
a stratified population which results in a significant reduction in convergence time. In
more clustered networks, the tolerance level has to be chosen carefully (depending on
the other experimental parameters) to produce an effective technique for norm emer-
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Figure 4.6: Convergence Times with different Rewiring Methods in a Scale Free Net-
work.

gence.

4.2.2 Observation
In this section we analyze the effects of observation as a social instrument when used
by agents. We test and compare the three different methods proposed, exploring the
search space with a representative range of Observation Probability values. As we did
in the previous section, we experiment with three topologies: a low clustered lattice, a
high clustered lattice and a scale free. To observe the effects of the different observation
methods, we fix the Observation Limit to 10 for the experiments.

Influence of Observance Methods

Comparing the results from the three Observation methods we observe in Figure 4.7
that the Random (RO) and the Random Focal Observation (RFO) methods are the most
effective ones (with different topological effects to be commented), and have very sim-
ilar results, when compared with the Local Observation (LO) method. The reason for
this phenomenon is to be found on the frontier effect. When agents use the LO method,
they observe their direct neighbors. If the observing agent is in the frontier area, then,
this observation is pointless. However, observing different areas gives a better under-
standing of the state of the world, and hence the RO and the RFO methods perform
better.

Influence of topology

For the BRR and MBR decision making functions, we have observed that the differ-
ent Observation methods produce a more pronounced effect in societies with higher
diameters, as we can see in Fig. 4.7. We notice that a small percentage of Observation
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Figure 4.7: Comparison on Effects of Convergence Time on One Dimensional Lattice.
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drastically reduces convergence times. The reason for this effect can again be found in
the frontier and the subconvention effect previously discussed. Subconventions emerge
more readily when the social network has a small diameter and the frontier region rep-
resents the unsettled area. These subconventions are more easily resolved at these fron-
tiers by observation rather than by learning through interactions.

Influence of Strategy Decision Techniques

The main experimental results obtained for BRR and MBR is that greater observation
leads to faster convergence. However, in most cases, even smaller observation percent-
age helps significantly reduce the convergence time. This result is important if Observa-
tion has a concomitant cost. However, observation has a poor effect on HCRR: we find
that the convergence time is proportional to the observation probability (the higher the
observation, the worst it performs). The reason of this effect is found on the HCRR’s
lack of exploration policy. When observing, an action is reinforced, and this action
might be different from the one that the agent has converged to within its environment.
This new reinforcement destabilizes the convergence that was already obtained. This
effect is not produced with the others reward rules as they have an exploration rate that
quickly corrects this destabilization.

4.3 Discussion on the Frontier Effect
The experiments performed up to now have shown us how the emergence of social con-
ventions can be facilitated with the usage of our proposed social instruments, achieving
good results. However, some practical information has to be kept for the appropriate
usage of them: on the one hand, tolerance levels have to be carefully chosen when
using rewiring. On topologies with large diameters the social network might suffer im-
portant changes affecting the number of components. Moreover, we have observed an
interesting phenomenon on Scale Free networks: without the usage of the social instru-
ments full convergence was hard to obtain; with the rewiring instrument convergence is
reached producing a larger amount of components when using the Neighbour’s Advice
method.

On the other hand, a small percentage of observation is very helpful in the achieve-
ment of full convergence. Interestingly, when using the Local Observance method, this
improvement is not as with the other methods.

With these pieces of information we can hypothesize that there exist a special type
of subconventions that cannot be resolved at a local level with the methods proposed,
specially in Scale Free Networks.

4.4 Understanding Subconventions in Scale-Free Net-
works.

The results from experiments presented above, together with the observations nar-
rated by other authors [Epstein, 2000, Toivonen et al., 2009, Villatoro et al., 2009], con-
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vinced us that subconventions are problematic obstacles to the emergence of global
conventions. These subconventions thrive (amongst other reasons) because of the topo-
logical structure of the network where they emerge.

Because of the inherent structure of the scale-free networks (nodes whose connec-
tions follow a power-law distribution), interesting properties of the network emerge in
the dynamics of the convention emergence process. To have a more detailed idea of how
the topology affect the process, we have performed a detailed study of its dynamics.

4.4.1 Who’s the Strongest Node?
In previous works in the literature [Sen and Airiau, 2007, Mukherjee et al., 2008], some
authors fixed the behaviour of a number of agents in the population to observe how their
unchangeable behaviour would affect the emergence of a convention. Those experi-
ments were performed in regular networks and the position of the fixed learners on the
network was not really considered. Inspired by those works, we have decided to apply
such technique in irregular networks, locating the fixed learners in different positions
of the network.

Scale free networks are basically defined as irregular networks where very few
nodes have a large number of connections (hubs), and, a large number of nodes have
a very few connections (leafs). In order to discover which nodes have a stronger ef-
fect in the emergence of conventions, we experiment by fixing a certain percentage of
the population to an specific (and common to all of fixed-agents) convention. Three
experimental variants are tested:

1. fixing hub agents’ behaviour: the behavior of the nodes with higher degree will
be fixed.

2. fixing leaf agents’ behaviour: the behavior of the nodes with lower degree will
be fixed.

3. fixing random agents’ behaviour: the behavior of nodes selected randomly will
be fixed.

We hypothesize that by fixing the behaviour of hub agents, the rest of the popula-
tion will converge faster than in any other possible situation. Our intuitions are founded
on the dynamics of the convention emergence: given that a hub node will interact with
more agents, its fixed behaviour will remain unaffected by the others’ decisions. How-
ever, as others are learners, they will learn from the decisions of the hubs.

Experimental results presented in Fig. 4.8 partially confirm our hypotheses. We
have performed an intense evaluation of the search space, exploring different percent-
ages of fixed agents in different locations of the network and analyzing their conver-
gence rate. For small numbers of fixed agents, fixing the hubs produces better con-
vergence rates than when fixing the same amount of leafs or random agents (as we can
observe in Fig. 4.8(a), Fig. 4.8(b), Fig. 4.8(c), and Fig. 4.8(d)). On the other hand, when
the number of fixed agents is larger, fixing the leafs results in much faster convergence
time (as it can be seen in Fig. 4.8(e) and Fig. 4.8(f)).

This empirical result lead us to pay attention on the leafs. Experimental data con-
firms that when the majority of the leafs have reached a common convention (artificially
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(a) 5% Fixed Learners

(b) 25% Fixed Learners

(c) 35% Fixed Learners

(d) 45% Fixed Learners

(e) 65% Fixed Learners

(f) 75% Fixed Learners

Figure 4.8: Fixing Agents Behavior

58



by fixing its behaviour, or naturally through the convention process) reaching the full
convergence can be easily achieved. Consequently, in order to identify why learning
leafs (by fixing the hubs’ behavior) produces such delay in the convention emergence,
we analyzed carefully the networks when the metastability was reached. By taking
snapshots of the state of the convention emergence process (the structure and state of
the network: which node is in which state and connected with which other nodes) at
the moment where no improvement in the convergence rate has been made, we find
what we have defined as Self Reinforcing Substructures (SRS). These substructures are
a group of nodes that, given the appropriate configuration of agents’ preferences and
network topology, do maintain subconventions.

During this research we have been able to abstract the topology of these structures
into two general structures:

• The Claw SRS is formed by connecting a node with a number of hangers5 con-
nected to it smaller than the number of links with the rest of the network. In
the situation where the hangers coordinate to the same convention among them-
selves and with the connecting node, we have a self-reinforcing structure. For
example, in Fig. 4.9(a), A is the central node, having one connection with the rest
of the network and 3 hangers: B (that it is another claw), C (plain hanger) and D
(chain’s connecting node).

• The Caterpillar SRS is a structure formed by a central path and from its members
can hang other SRSs (such as claws, chains, or plain hangers). For example, in
Fig. 4.9(b), A, B, C, and D are members of the central path, and the other nodes
reinforce them.

These two abstract (examples in Fig. 4.9) structures can be found as subnetworks
of scale-free and random networks. As we have observed, the existence of these SRS
(74% of the generated networks with the methods described in [Delgado et al., 2003]
contain SRS) are the main reason why convergence to a 90% level (as observed
by [Delgado et al., 2003]) is achieved relatively quickly, but overcoming the last 10%
(containing the SRS) is much harder to achieve.

In order to check the validity of our hypotheses, we have extended the previous
experiment, adding another variant where we fix the behavior of the nodes in the SRS
with higher betweenness6.

Experimental results in Fig.4.10 show a comparison of the results of convergence
rates of the best performing variant of those presented previously and the one that fixes
the agents’ behavior in the SRS. We can observe that fixing the SRS nodes outperforms
any of the other strategies.

This result is very interesting as it help us understand the specific substructures
that generate subconventions within social networks. This result is applied in the next
section to help us solve the subconventions effect in a more robust way.

5A hanger is formed by nodes that are connected to a member of a cyclic component, but which do not
themselves lie on a cycle [Scott, 2000], and a chain is a walk in which all vertices and edges are distinct.

6Betweenness measures the extent to which a particular node lies “between” the various other nodes in
the graph [Freeman, 1979].
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(a) Claw (b) Caterpillar

Figure 4.9: Self-Reinforcing Structures

4.5 Combining Instruments: Solving the Frontier Ef-
fect.

After experimenting with both social instruments in Sec.4.2, we observed that the sub-
conventions need to be resolved in what we consider to be the “frontier” region.

Theoretically, a subconvention in a regular network is not metastable (i.e. the sub-
convention is continuosly affected tending to disappear), but unfortunately, slows down
the process of emergence. On the other hand, in other network types, such as random
or scale-free , subconventions seem to reach metastable states7 because of the existence
of the Self-Reinforcing Structures identified in Sec.4.4.1.

Therefore, by giving agents the tools to dissolve these frontiers, we hypothesize
that convention emergence will be achieved faster and full convergence rates will be
obtained.

However, because of the way social instruments have been designed, the instru-
ments can be activated in situations where it is not necessary (observation follows a
probabilistic approach, and rewiring is activated using a rewiring tolerance). Therefore,
and by combining both social instruments developed in this work, we have designed
a composed instrument for resolving subconventions in the frontier in an effective and
robust manner. This composed instrument allows agents to “observe” when they are
in a frontier, and then, apply rewiring, with the intention of breaking subconventions.
To effectively use this combined approach, agents must first recognize when they are

7By experimentation, we have observed that around 99% of the generated scale-free networks do not
achieve full convergence before one million timesteps with any of the decision making functions used in this
work and without any social instrument.
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(a) 5% Fixed Learners

(b) 25% Fixed Learners

(c) 35% Fixed Learners

(d) 45% Fixed Learners

(e) 65% Fixed Learners

(f) 75% Fixed Learners

Figure 4.10: Comparison with Fixed SRS Nodes
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located on a frontier.
We define a frontier as a group of nodes in the subconvention that are neighbours

to other nodes with a different convention and at the same time are not in the frontier
with any other group. To provide a more precise definition we first need to define our
system:

Systemt = {A,Relt ,St} (4.1)

where A is a set of agents, Relt is a neighbouring function at time t, St is the actual
state of agents at time t.
We can therefore formalize the notion of subconvention Sub:

Subt ⊂ A where ∃a ∈ Subt , 6 ∃b ∈ Subt | Relt(a,b)∧St
a 6= St

b

And now we can define when an agent is located in a frontier:

Frontiert(a) = {a,c ∈ Subt ∧∃b 6∈ Subt ∧Relt(a,b)∧St
a 6= St

b∧Relt(a,c)∧
(∀d ∈ A | Relt(c,d)→ St

c == St
d)} (4.2)

This formula basically means that an agent a is in the frontier when it is in front
of another agent (b) not sharing the same convention, and at the same time, is being
reinforced by other agents (c) that are not in the frontier.

As the cases are different for regular or irregular networks, two types of frontiers
need to be defined:

• weak frontiers as the ones that are not metastable in regular networks.

• strong frontiers as the ones generated by the SRSs in irregular networks.

The most important characteristic that defines a frontier is the existence of a con-
frontation. Confrontation occurs when two agents in an interaction do not share the
same convention 8.

Before proceeding further, we will define three characteristics of agents with re-
spect to their convention and the topological position in the network. An agent is in
equilibrium if it has the same number of neighbours in its own convention as in the
other convention. An agent is a weak node if the number of neighbours in its own
convention is lower than those in the other, and an agent is a strong node otherwise (if
the number of neighbours in its own convention is greater than those in the other). In
regular networks, two confronted agents are in a frontier region iff: (1) At least one of
the confronted agents is in an equilibrium position, and (2) all the neighbours of an in-
equilibrium confronted agent are strong nodes. In irregular networks, two confronted
agents are in a frontier region iff both agents are strong nodes.

With these formalizations and identification of what the frontiers are in each of the
topologies, agents can be equipped with this knowledge and the tools necessary to rec-
ognize when they are located in a frontier and repair that situation. To achieve this

8Not sharing the same convention, choosing a different action, or choosing a different state to be, are
considered equivalent expressions for our purpose.
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task we will use the simple instruments presented in Sec. 4.1.1 but in a combined man-
ner: firstly, agents will use observation (with the local observance method) to identify
if they are located in a frontier (and therefore part of a self-reinforcing structure), and
secondly, they will use rewiring to solve the frontier problem, by disconnecting from
another agent in the SRS and reconnecting to another random agent.

4.5.1 Results
We have conducted exhaustive experimentation with the composed instrument on the
three topologies and using the different decision making functions described in the pre-
vious section. The use of the composed instrument on the regular networks does not
produce an improvement on convergence time with respect to simple rewiring (one ex-
ample of topology and strategy decision technique can be observed in Fig. 4.11(a)).
However, an important improvement is observed in the number of rewired links (one
example of this improvement can be seen in Fig. 4.11(b)). In general, this improve-
ment is observed for lower tolerances. The reason of this effect is because for higher
tolerances rewiring works in the same way as the composed social instrument, but with-
out observing. For those smaller values, the effect is intense, reducing the number of
rewiring links down to half of the original value.

On the other hand we observe an important improvement for convergence times
when using the composed instrument (with the recognition of SRS) on irregular net-
works. The results presented in Figure 4.12 represent the average results from 25 dif-
ferent scale-free networks with and without using the Combined Social instrument. By
comparing Figure 4.12(a) and Figure 4.12(b) we notice the trade-off between the im-
provement in convergence time and the amount of rewiring to be done. The reason
of this phenomena is because the Composed social instrument decomposes the SRS
differently than the simple rewiring which only rewires the node in the actual frontier.

4.6 Conclusions
In this chapter we have taken a step forward in the state-of-the-art research on conven-
tion emergence by setting the convention emergence rate to 100%. This improvement
might initially seem meaningless although our experimental results showed that over-
coming the 90% rate is a challenging task in certain configurations of the environment
because of the creation of subconventions. This research focused on identifying under
what conditions subconventions emerge and are maintained along the time. We hypoth-
esized that was mainly for two reasons: cultural maintenance and endogamy amongst
the members. To prove the first we introduced a Memory based reward rule that sim-
ulated a function that promoted the cultural maintenance, analyzing carefully the sit-
uations where subconventions emerged. After a profound analysis we learnt that the
subconventions are strongly affected by the topological configuration of the interaction
network which promotes strong endogamy. As system designers we are still interested
in achieving a 100% convergence rate (as it is the most efficient strategy for the system
as a whole when dealing with conventions), and assuming agents cannot change their
reward function, we have introduced the use of Social Instruments as tools that facilitate

63



(a) Convergence Time

(b) Rewired Links

Figure 4.11: Comparison with Simple and Combined Social Instruments on Regular
Network using MBR.
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(a) Convergence Time

(b) Rewired Links

Figure 4.12: Comparison with Simple and Combined Social Instruments on Scale Free
Network using BRR.
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norm evolution. We have identified the characteristics and opportunities for effectively
utilizing these social instruments for facilitating norm emergence through social learn-
ing. Social instruments are attractive since they do not require centralized monitoring
or enforcement mechanisms, normally are extremely easy to use, have very low com-
putational costs, and are scalable to large systems. Despite the usage of the social
instruments, subconventions were still resistant on certain configurations of the envi-
ronment leading us to perform a more exhaustive study to identify the Self-Reinforcing
Structures that are present in social networks like the Scale-Free.

Finally, we have presented a composed social instrument as a robust solution against
the persistence of subconventions generated by the identified SRS, improving the con-
vergence times obtained with simple rewiring.

In a world where almost 950 million users belong to an online social networking
platform (where virtual agents could also exist) [Radwanick, 2010]9, it is important to
understand what mechanisms this virtual entities should be equipped with to facilitate
the emergence of common conventions (for the sake of the whole group) as quickly
as possible. Moreover, as a system manager, the results from this work highlights the
harmful potential of Self-Reinforcing Structures within the network for delaying the
emergence process, and draws our attention to solutions for such critical problems.

9This report was accessed Sept 1st, 2010 at http://www.comscore.com/Press_Events/Press_
Releases/2010/8/Facebook_Captures_Top_Spot_among_Social_Networking_Sites_in_India
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Chapter 5

Distributed Punishment

The previous chapter has illustrated us how conventions can be delayed by the emer-
gence and maintenance of subconventions. As analyzed, subconventions are mainly
generated by the topological configuration of the interaction network. However, this
situation emerges as we dealt with the most strict and pure definition of convention,
where all the options are potentially equally good as long as the whole population fol-
lows the same convention. Consequently it is in the agents’ self-interest to accept the
convention with which they obtain maximum benefit. However, empirical results made
us learnt that certain agents obtain a benefit from following a convention, but due to
some exogenous reasons they can be positioned in a frontier.

Being located in a frontier forces an agent to maintain the convention with which
the highest benefit is obtained; because of the social learning approach, agents obtain
a larger benefit from the convention followed by the majority of their neighbours. The
topological configuration can produce the neighbours not to change their convention so
our frontier agent interacts successfully with all its neighbours. Because of that reason,
some of the interactions of the frontier agent (depending on the number of uncoordi-
nated neighbours) will be unsuccessful. At that moment, all the agents related to the
agent(s) in the frontier are interested in reaching a common convention (and resolve the
subconvention), to reduce the number of unsuccessful interactions, and maximize their
utility.

Agents’ strategy are ruled by a utility-maximizing policy. Therefore, by providing
agents with the correct mechanisms, they would be able to reduce others utility depend-
ing on their behaviour. This type of action is commonly known as a punishment or a
sanction1. Normally, punishment implies a cost for both the punisher and the punished,
reducing both utilities. In that way, we can see how a group of agents could coordinate
for punishing a certain agent, whose behaviour should be changed for the benefit of the
society, in our case, the frontier agent. Punishment and sanction make special sense in
public-good scenarios, where it is in the participants’ self-interest to free-ride; however,
through punishment/sanctions free-riding can become the least convenient action.

The usage of punishment and sanctions is essential for self-policing so-

1We will see in Chapter 6 the difference between punishment and sanction at a cognitive level.
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cieties [Papaioannou and Stamoulis, 2005, de Pinninck Bas et al., 2010]. Axel-
rod [Axelrod, 1986] identified a number of mechanisms to impose social norms in a
society: metanorms, dominance, internalization, deterrence, social proof, membership,
law and reputation. We are specially interested in dominance and deterrence, in the form
of sanctions. Posner and Rasmusen [Posner and Rasmusen, 1999] claim that there exist
the following types of sanctions:

1. Automatic Sanctions: Those that an agent receive for not being coordinated with
the others, i.e. those for not following the convention.

2. Guilt: The violator feels bad about his violation as a result of his education and
upbringing, quite apart from external consequences. Probably most people in
our society, though certainly not all, would feel at least somewhat guilty about
stealing even if they believed they were certain not to be caught. This can be
understood as a self-punishment imposed after breaking an internally respected
norm.

3. Shame: The violator feels that his action has lowered himself either in his own
eyes or in the eyes of other people. In its most common form, shame arises
when other people find out about the violation and think badly of the violator.
The violator may also feel ashamed, however, even if others do not discover the
violation. He can imagine what they would think if they did discover it, a moral
sentiment which can operate even if he knows they will never discover it. Also,
he may feel lowered in his own eyes, a “multiple self” situation in which the
individual is both the actor and the observer of his actions. In order to be able to
apply this kind of punishment in MAS, it would be needed to develop into our
agent’s mind a mental representation of the other agents normative beliefs, being
then able to know when others might consider that an agent have broken a norm,
and the degree of importance of its violation.

4. Informational sanctions. The violator’s action conveys information about him-
self that he would rather others not know. This type of punishment is closely
related to trust and reputation systems in MAS. By transmitting a certain piece of
information, agents can construct an specific opinion of other agents, to be used
during the decision making when interacting with that agent.

5. Bilateral costly sanctions. The violator is punished by the actions of and at the
expense of just one other person, whose identity is specified by the norm. The
expense to that person could be the effort needed to cause the violator disutility,
or the utility that the person imposing the punishment loses by punishing him.
Examples of what we are calling bilateral costly sanctions could be the agent that
spends part of its bandwidth to reduce other agent’s bandwidth after sharing a
bad quality resource in a P2P network.

6. Multilateral costly sanctions. The violator is punished by the actions and at the
expense of many other people. One good example would be a coalition of agents
reducing another agent’s bandwidth for sharing bad quality resources in a P2P
network.
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Due to the type of assumptions we make in this thesis about the scenario and for
which we are designing our utility-based agents, both costly sanctions (bilateral and
multilateral) are interesting mechanisms as they can reduce directly other agents’ utility.
The rest of sanctions (guilt, shame and informational sanctions) are very linked to the
internal beliefs and construction of the agent, and can also be delayed in time, being
the sanction hard to interpret (like ostracism resulting from the distribution of a bad
reputation).

Even though applicable for conventions, costly punishment makes special sense
when dealing with essential norms, which are generally named social norms. Essen-
tial norms help agents in fixing the focal action for coordinating in the most beneficial
situation for the society (full cooperation). However, agents are tempted by the Nash
Equilibrium which brings agents towards defection (as an agent obtains a higher ben-
efit from defecting when the rest are cooperating). However, “If holding a norm is
assumption of the right to partially control a focal action and recognition of other norm
holders’ similar right, then a sanction is the exercise of that right. A sanction may be
negative, directed at inhibiting a focal action which is proscribed by a norm, or positive,
directed at inducing a focal action which is prescribed by a norm.” [Coleman, 1998].

Theoretical, empirical and ethnographic studies about costly punishment in hu-
man societies have demonstrated that this behavior promotes and sustains cooper-
ation in large groups of unrelated individuals and more generally plays a crucial
role in the maintenance of social order [Fehr and Gachter, 2002, Ostrom et al., 1992,
Boyd and Richerson, 1992]. However, when talking about peer punishment, experi-
mental results [Dreber et al., 2008] have proven that costly punishment increases the
amount of cooperation but not the average payoff of the group, specially, reducing
drastically the payoff of those subjects applying the costly punishment. We agree that
punishment is therefore a second order public good, as it is executed at someone’s costs.
These costs affect also to the agents’ decision making, and might not be convenient for
the potential punisher to punish.

We hypothesize that by dividing the costs of punishment amongst the members of
the society, this second-order public good becomes less costly, and therefore, more
attractive for the members of the society: at a small costs, the potential benefits are
increased as the number of freeriders decrease.

Within the scope of the MacNorms project [MacNorms, 2008], and in conjunction
with the Instituto de Análisis Económico, we have proven the viability of distributed
costly punishment through experimentation with human subjects. The main objective
of the experiments is to study the validity of distributed punishment amongst human
subjects, in order to latter introduce these technologies in heterogeneous societies pop-
ulated with human and virtual entities.

To perform the experiments with the human subjects we used HIHEREI: a platform
to perform experimental economics experiments with human subjects. As this platform
is built on top of an Electronic Institution, we can easily provide it with the capability
of performing experiments with virtual agents.
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5.1 HIHEREI: Humans playing in an Electronic Insti-
tution

Electronic institutions are regulated frameworks where agents can participate in in or-
der to achieve a tasks. The actions and interactions performed by agents inside are an
electronic institution are prefixed by the system designer, being impossible for agents
to perform the non-authorized actions. The set of tools already provided to specify,
develop and run electronic institutions do not take into account a way to incorpo-
rate humans to participate remotely either alone or together with autonomous agents
in the electronic institution. Given that, we have extended the current technological
framework to incorporate it. This work is the implementation of the design presented
in [Sabater-Mir et al., 2007].

The electronic institutions (eI) paradigm is specially useful for us to solve this prob-
lem for several reasons. The first one is that the experimental subjects behaviour can be
controlled by eI, allowing them only to perform certain tasks in certain moments (with
this functionality we can implement the desired experimental scenario). Moreover, the
HIHEREI technology allows us to create a remote connection for human subjects to
be (invisibly) represented by a virtual agent in the eI; this remote connection has been
created to be accessed through any web navigator, allowing the human subjects to par-
ticipate in the experiment from anywhere in the world2. Finally, HIHEREI and the eI
provide us with the correct environment for humans to participate with other entities
without knowing the nature of them (virtual or human), transporting our subjects of
study to the situation that we are more interested: those scenarios where the human
subject is not certain of the nature of his peers.

Figure 5.1 shows the main elements of the presented architecture:

• Electronic Institution (eI): The concept of electronic institution
([Noriega, 1997, Rodrı́guez-Aguilar, 2003, Esteva, 2003]) is inspired in hu-
man institutions. In open multi-agent systems you have also autonomous entities
that interact to achieve individual goals. The behaviour of these entities cannot
be guaranteed. Therefore, and similarly to what happens in human societies,
agents need mechanisms to guarantee the good functioning of the system in spite
of the local behaviours. To fully understand the electronic institution machinery
we refer the reader to [Sierra et al., 2004].

• Virtual agents (E-Agents): Agents endowed with autonomous behavior that par-
ticipate in the e-institution through the governors (elements that provide the agent
with the interface to interact with the eI and at the same time restrict the possible
actions the agent can perform given the current state of the eI).

• Interface agents (I-Agents): Agents that represent human users in the electronic
institution. They also act as web servers and, like E-Agents, connect to the eI by
interacting with the governors. This allows a totally distributed approach.

2In order to test how populations from different countries behave with respect to the punishment we
initially planned to run the experiments in the LINEEX Laboratory in Valencia and in the Nutfield Centre for
Experimental Social Sciences in Oxford. In the end, because of the shortage of money and the discoveries
from other researchers [Noussair et al., 2003], the experiments were restricted to the LINEEX.
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Figure 5.1: Human - eI interaction

• Staff agents: Institutional agents in charge of different aspects related to the well
functioning of the eI.

• Data base: Everything relevant that happens in the e-institution is stored in the
DB for a subsequent analysis. The DB also stores the human user activity regard-
ing the actions she/he performs in the client side.

• Client application: It is the software that provides a friendly interface for the
human user.

5.1.1 Extending EIDE
EIDE [Esteva et al., 2008], the Integrated Development Environment for Electronic In-
stitutions, is a set of tools developed at the IIIA-CSIC aimed at supporting the engi-
neering of multi-agent systems as electronic institutions. However, these tools do not
provide a general framework for a flexible participation of humans in electronic institu-
tions. The desirable requirements for this extension are the following:

1. Allow remote access of human users to the eI.

2. Provide flexible and standard client applications for this access. Web applications
are a good solution since they can run with standard Internet browsers.

The central element in the link between the human user and the e-institution is the
servlet, which is activated once the user (client side), using a web browser, establishes
the connection with the server side. This piece of software (I-Agent) is seen as a servlet
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from the point of view of the web server but at the same time as a normal agent from
the point of view of the eI.

The I-Agent, acting as a servlet, receives messages in XML format from the client
application running locally in the user’s computer as a web application. The XML
messages can be of two types:

• Tracker messages. This is the information that can be used later to analyze the
actions performed by the user in the client side.

• Institutional messages. Information that is associated with the e-institution.
These are actions that the user wants to perform and that have an influence in
the state of the eI.

Simultaneously, the client application receives XML messages from the servlet de-
scribing the changes that have been produced in the eI. These changes are shown to the
user by the client application.

Under the circumstances of our Experimental Economics Experiments, the follow-
ing instantiation of the platform was developed:

1. Electronic institutions: Using the eI development environ-
ment [Esteva et al., 2008] an appropriate electronic institution was defined
and verified. This includes the specification of interaction protocols, illocution
schemas and a concrete ontology.

2. Client application: Using HIHEREI we developed a web-based application to
perform the the experiment. Then, human users can be remotely connected to the
eI through a simple web browser. The application guides human subjects through
the experiment while they interact with other agents (human or simulated).

3. E-Agents: Virtual agents are defined to achieve certain experimental situations.

5.2 Experimental Design
In order to test the potential of Distributed Punishment, and following the tradition of
Experimental Economics, we have designed the following experiment. Participants of
the experiment have to play repeatedly a three phase game. All the participants are
divided into groups of 4 that remain constant along the 40 rounds of the experiment.

0C 1C 2C′s 3C′s
C 5 10 15 20
D 10 15 20 25

Table 5.1: Payoff Matrix for the Distributed Punishment Experiment.

Every round is structured in 3 stages with two decisions to be taken by all the par-
ticipants (humans or virtual): in the first stage participants have to decide whether or
not to cooperate to a public good, following the payoffs matrix shown in Table 5.1; the
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action C means cooperation and the action D means defection. By observing the pay-
offs described in Table 5.1 we can easily observe how is in the participants self-interest
to defect (by selecting the action D).

During the second stage all participants are informed of the decisions of the other
participants in their group, and the benefits obtained so far by each of the participants;
moreover, subjects are given the option to assign punishments to the other participants
within their group, reducing to zero their payoffs obtained in the first stage.

Depending on the treatment, punishing have different costs for the punishers, but it
affects in the same way to the punished: removing all the benefits obtained in the first
stage of the game. After all the decisions of the second stage have been taken, during
the third stage all participants are informed of the decisions of the other participants in
their group and the resulting payoffs of that round.

In order to test the effect of distributed punishment on experimental subjects we
have designed an experiment with 3 different treatments:

1. No Punishment Treatment: No punishment is allowed in this treatment. This is
the control treatment.

2. Monolateral Punishment: In this treatment participants are allowed to send pun-
ishments to the other participants assuming each punisher the whole cost of pun-
ishment.

3. Distributed Punishment: In this treatment participants are allowed to send pun-
ishments to the other participants dividing the punishment costs amongst all the
punishers.

In the last two treatments, it is straightforward to observe that the optimal strategy
for an individual would be defecting and not punishing. However, this behaviour can
be interpreted as freeriding from the rest of peers, imposing costly punishment to the
defector. Therefore, with the existence of punishment, subjects can impose it in or-
der to achieve and maintain high cooperation rates. We hypothesize that by having a
cheaper option to punish, this punishment will be exerted more frequently, increasing
the cooperation rates obtained by the subjects.

5.3 Empirical Results

The experiments with human subjects were performed in the Laboratory for Research in
Experimental Economics (LINEEX), at the Center for Research in Social and Economic
Behavior, in the University of Valencia. 40 subjects participated in each treatment,
obtaining 10 groups and independent observations per treatment. All the participants
were paid depending on their performance on the game.

Experimental results for the 3 treatments are shown in Figure 5.2. Figure 5.2(a)
shows the dynamics of the average cooperation rates of the participants in the three
treatments, meaning (from [0-1]) the rate of agents that decided to cooperation from
the population. Even though high cooperation rates were not obtained in any of the
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Figure 5.2: Distributed Punishment Experimental Results with Human Subjects
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treatments, experimental results on cooperation rates confirmed that Distributed Pun-
ishment outperformed Monolateral Punishment in a 20,95%, and No Punishment in a
31,84%.

We realize that high cooperation rates are not obtained because punishment is still
too costly for the subjects, and moreover, the cost of punishment is not linear (in either
monolateral or distributed punishment, the relationship between the punishment costs
and its effects is not linear, as the punished looses what he earned at the first phase of the
game). Other works in the literature have proven that the 1:4 punishment factor is most
effective to promote cooperation [Nikiforakis and Normann, 2008]. Therefore we can
observe how on the one hand, the punished is affected by the punishment received (as
it loses all the benefits obtained in that round), but on the other hand, punishment is too
costly to be applied, unless distributed punishment is achieved. Because of the design
of the game, distributed punishment is not easily achievable without the possibility of
communication amongst the potential punishers, being the punishment rates very low
in general, as it can be seen in Figure 5.2(b).

Treatment Cooperative Groups
No Punishment 0

Monolateral Punishment 1
Distributed Punishment 4

Table 5.2: Cooperative Groups in the Different Treatments.

By observing the data more carefully (shown in Table 5.2) we detected in the Dis-
tributed Punishment treatment that cooperation was established and maintained in 4
groups, which happen to be exactly the same groups where Distributed Punishment
was achieved (in the rest of the groups, subjects did not coordinate for distributed pun-
ishment and did not achieve high cooperation rates); we can therefore infer that cooper-
ation was achieved because of the Distributed Punishment. This result is interesting as
in the Monolateral treatment, stable cooperation was only obtained in one group, and
never obtained in the No punishment treatment.

We would like to remember the reader that the experiment was designed to be exe-
cuted with no possible communication or planning from the punishers. Agents have to
coordinate by acting and only when this happen, punishments costs are reduced for the
punishers and therefore cooperation is achieved.

The results obtained regarding the Distributed Punishment were encouraging, how-
ever, we noticed that two dynamics were acting at the same time: the punisher’s moti-
vations and the punished’s motivation. These two dynamics reinforce one to the other,
not allowing us to fully understand the behavior of the phenomena.

As we are interested in observing how effective is distributed punishment, we sep-
arate both dynamics and analyze carefully the motivations of the punished agent. In
order to fully understand the dynamics of the punished subjects, we need to explore the
different possible situations, i.e. (1) when the subject receives no punishment, (2) when
the subject receives punishment from only one subject, (3) when the subject receives
punishment from two subjects, (4) when the subject receives punishment from three
subjects.
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To extract a scientific conclusion, each situation have to be reached a significant
number of times, obtaining the necessary observations; however, it seems unfeasible (in
terms of money and time) to repeat the previous experiment as many times as necessary
until obtaining the desired results. Moreover, we cannot ensure that the experimental
subjects will reach the situations we are interested in by themselves. Therefore, we
need to introduce confederate subjects into our experiment, as done in other experi-
ments [Asch, 1955] to produce the experimental situations we need. As the groups in
our Public Good Game are of size 4, three confederates are needed for each experimen-
tal subject, in order to have a completely controlled situation and observe the subjects’
reactions.

For the sake of resource optimization (in terms of economic and time expenses) we
decided these confederates to be virtual agents, preprogrammed by us to achieve the
different treatments. In that way we fully exploit the capacity of HIHEREI, where the
experimental subjects interact in a web-based platform, without knowing the identity of
their opponents. Moreover, these type of experiments place the subjects in the type of
situation that we are more interested: human subjects playing against other participants
without knowing if they are human or virtual entities, as it happens in any interaction
normally performed on the Internet.

5.4 Disentangling Distributed Punishment: the Pun-
ished’s motivation

A total of 80 subjects from the Universitat Autònoma de Barcelona participated vol-
untarily in a repeated Public Good’s game at the Experimental Economics Lab. The
participants, students from a wide range of fields of study, interacted anonymously us-
ing the HIHEREI software. Subjects were not allowed to participate in more than one
session of the experiment. In all, four sessions were conducted in December 2010, with
an average of 20 participants.

Each treatment was formed by 20 human subjects. Reproducing the conditions of
the previous experiment, each human subject was assigned in a group with three other
preprogrammed confederate agents which remained the same for the entire session.
Subjects knew that the experiment would last 40 rounds, but did not know neither the
existence of virtual entities nor the identity of the other participants in their group. The
structure of the round follows the same structure of the initial experiment: a first stage
were subjects have to decide whether to cooperate or not, a second stage were they
decide whom to punish, and a third stage were subjects are informed with the decisions
from their peers.

In order to produce a complete experiment, the search space has to be exhaustively
explored. To do so we programmed two types of acting strategies for the virtual agents
interacting with each subject: the punisher and the non-punisher. Their behavior is pro-
grammed to be the same during the first ten rounds, acting differently after the tenth
round. The first ten rounds, all virtual actors contribute 50% of the times and punish
25% of the other agents. After the tenth round, all agents contribute 90%. The dif-
ference comes in the punishment strategy: non-punishers never punish and punishers
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act on defectors 90% of the times only when the punisher has cooperated (to maintain
consistency). In order to have complete information about the different possibilities, we
explore the complete search space with 4 different treatments with respect the studied
human subject:

1. No Punisher Agent Treatment: each human subject interacting with 3 non-
punisher agents.

2. 1 Punisher Agent Treatment: each human subject interacting with 1 punisher
agent and 2 non-punisher agents.

3. 2 Punisher Agents Treatment: each human subject interacting with 2 punisher
agents and 1 non-punisher agent.

4. 3 Punisher Agents Treatment: each human subject interacting with 3 punisher
agents.

Empirical data (shown in Figure 5.3(a)) confirms that distributed punishment have
a much stronger impact on the cooperation rates of human subjects, specially when
the punishment is consistent from the whole group (3 Punisher Agents Treatment). A
small difference between the subjects is taken into consideration when analyzing the
results: as the number of punisher actors increase, so does the probability of a subject
to be punished (as the punisher actor punishes 90% of the times); the probability of a
defector of being punished in each of the treatments is therefore 90%, 99% and 99,9%
respectively. These probabilities affect directly to the ratio of non-punished defectors,
shown in Figure 5.3(b), along the experiment, that remains below a 5% in the 1 punisher
treatment, around 2% in the 2 punishers treatment, and a 0,005% in the 3 punishers
treatment. Even though the different punishment probabilities in each treatment, we
observe that they do not have significant impact on the non-punished defectors rates to
explain the differences in the cooperation rates.

We hypothesize that the explanation for the difference on the cooperation rates is
found on the non-evident causes that made the experimental subjects change their coop-
eration strategy. Punishment affects equally to the experimental subjects at a monetary
level independently of the amount of punishers (for those treatments with punishers);
however, the subjects decisions have had to be taken by considering other information
than the potential monetary punishment. In the treatment with three punishers, cooper-
ation rates are higher than any other treatment.

Based on this empirical result, and those obtained by oth-
ers [Noussair and Tucker, 2005a], we hypothesize that some behaviours (like a
consistent punishment from the entire group) might contain implicit normative
messages that affect to the decision making in a more profound way than a mere
benefit-cost calculation. Human subjects do not only take into consideration the
potential punishment that can be received, but they rather interpret some social cues
as the existence of a social norm, that even in the absence of punishment systems, can
lead the subject to abide by the norms.

As far as we are concerned, there is no existing agent architecture that is able to
identify these type of cues and uses them into its decision making. Consequently, we
have envisioned a cognitive architecture that incorporate a more complex reasoning than
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a simple benefit-cost calculation. This architecture, named EMIL-I-A, will be presented
in the following chapter.
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Chapter 6

EMIL-I-A: The
Cogno-Normative Agent
Architecture

In centralized systems norms are explicitly specified ([Garcia-Camino A, 2006,
Aldewereld et al., 2007]), might be accessible in a repository and are imposed by a
legitimated authority. Differently, in self-organized societies, norms are created and
controlled (through peer punishment) by the members of the society. As we discussed
in Chapter 1, in this work we focus on the establishment of social norms and not in their
emergence.

Peer punishment [Casari, 2004] is considered as a second order public good, as
through the application of it, norm compliance is achieved, although it implies a cost for
the punisher [Ostrom et al., 1992, Fehr and Gachter, 2000]. This view of punishment is
in line with the one supposed by the economic model of crime (see [Becker, 1968])
and with the approach adopted by experimental economics (see, [Sigmund, 2007], for a
review of this approach). If punishment is therefore seen only as a deterrent mechanism,
in our previous experiment, the three treatments should have provided similar results
in terms of cooperation. However, empirical data showed that one of the treatments
outperformed the rest, even though the punishment affected in the same way to the
instrumental reasoning of the punished.

As noted by others [Giardini et al., 2010, Xiao and Houser, 2005,
Hirschman, 1984], peer punishment, and punishment in general, can be seen as
a twofold mechanism: (1) as an economic instrument to achieve deterrence on the
wrong-doer, and (2) as a signalling mechanism used to let the audience know that the
punished behavior is understood as an infraction and therefore it should not be done.

In the experiments performed in the previous chapter, we have seen how the deter-
rent effect on the wrong-doer is the same in all the treatments, therefore we hypothesize
that the difference on the compliance rates can only be explained through a more com-
plex cognitive mechanism.

Nonetheless, several experiments show that punishment is effective in
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promoting cooperation also when it does not impose an incentive and it
is purely symbolic [Sunstein, 1996, Tyran and Feld, 2006, Houser and Xiao, 2010,
Galbiati and D’Antoni, 2007, Masclet et al., 2003]. Social disapproval, peer pressure,
public embarassement of offenders, or the communication that a norm violation oc-
curred are often applied to alter people’s conduct and in many cases appear to be ef-
fective. In these cases, punishing (explicitly or implicitly) informs the offenders and
public that the targeted behavior is not condoned, and thus elicits the social norms.

These evidences seem at odds with the idea that people’s decisions are influ-
enced only by incentives and they suggest that there are other factors driving their
choices. As shown by several works in psychology, focusing people’s attention on the
norm is a crucial factor in producing norm-compliant behavior [Cialdini et al., 1990,
Bicchieri, 2006]. One possible explanation of this phenomenon is that the normative
content expressed by punishment has the effect of activating people’s normative moti-
vation to comply with the norm of cooperation. When the normative content is signalled
by punishment, it has the effect of framing the situation in such a way that not only pref-
erences to avoid costs are activated, but normative preferences as well. With normative
motivation, we refer to the fact that people follow the norm because they recognize
that there is a norm and they are disposed to comply with it even when there is little
possibility of instrumental gain, future reciprocation, and when the surveillance rate is
very small. We are not claiming here that people are always and only driven by norma-
tive motivations when complying with norms, but that their decision is motivated by a
combination of normative and cost-avoidance motivations. The hypothesis that people
can follow norms as ultimate ends is controversial (see [Barkow et al., 1995], for an
evolutionary explanation), but there are several interesting models, such as for example
[Bicchieri, 2006, Gintis, 2003], showing how normative preferences can be included
in the utility function of the individuals and how this preference interacts with other
preferences of the individual.

Recently, researchers have conducted several experiments designed to explore the
norm-signalling effect of sanction in the achievement of cooperation, analysing what
factors might impact the expressive power of this mechanism [Xiao and Houser, 2005,
Masclet, 2003, Noussair and Tucker, 2005a], including ourselves inside the MacNorms
project. However, and up to our knowledge, this is a first attempt to fill a gap in the
state-of-the-art normative agent literature by designing an agent architecture able to
interpret certain social cues (like punishment) in the similar way as humans do. With
this contribution we are producing an agent that is able to interact consistently in virtual
hybrid environments (where both humans and virtual entities interact).

Basing our work on the findings of cognitive scientists [Giardini et al., 2010], and
the results obtained within the MacNorms project, we have developed a BDI cognitive
architecture that allow agents to process (and include into its reasoning and decision
making) the intrinsic signalling with which punishment might be accompanied, disen-
tangling punishment and sanction.
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6.1 Punishment and Sanctions

As specified by [Giardini et al., 2010], punishment and sanction are both mechanisms
aimed at changing the behaviors of others, in order to make them abstain from future
violations. Because of this similarity, these two phenomena are often mistaken one
for another and considered as a single behavior. Punishment and sanction are different
behaviours and that can be distinguished on the basis of their mental antecedents and of
the way in which they aim to influence the future conduct of others.

On the one hand, punishment is referred to be a practice consisting in imposing
a cost on the wrongdoer, with the aim of deterring him from future offenses. Deter-
rence is achieved by modifying the relative costs and benefits of the situation, so that
wrongdoing becomes a less attractive option. The effect of punishment is achieved by
influencing the instrumental mind of the individual, by shaping his material payoffs.
This approach to punishment is in line with the economic model of crime, also known
as the rational choice theory of crime [Becker, 1968], claiming that the deterrent effect
of punishment is caused by increasing individuals’ expectations about the price of non-
compliance. A rational comparison of the expected benefits and costs guides criminal
behaviors and this produces a disincentive to engage in criminal activities.

On the other hand, sanction works by imposing a cost, as punishment does,
and in addition by communicating to the target (and possibly to the audience) both
the existence and the violation of a norm [Giardini et al., 2010, Hirschman, 1984,
Xiao and Houser, 2005, Andrighetto et al., 2010b])1 and at asking them to comply with
it in the future.

The sanctioner ideally wants the sanctioned to change his conduct not just to avoid
the penalty but because he recognizes that there is a norm and wants to respect it.
Sanction mixes together material and symbolic aspects and it is aimed at changing the
future behaviour of an individual by influencing both its instrumental and normative
mind. In order to decide how to behave, the individual will take into consideration not
only a mere costs and benefits measure but also the norm.

Often the sanctioner uses scolding to reign in free-riders, or expresses indignation or
blame, or simply mentions that the targeted behaviour violated a norm. Through these
actions, he aims to focus people’s attention on different normative aspects, such as: (a)
the existence and violation of a norm; (b) the high rate of norm surveillance in the social
group; (c) the causal link between violation and sanction: “you are being sanctioned
because you violated that norm”; (d) the fact that the sanctioner is a norm defender.
As suggested by works in psychology, all these normative messages have a key effect
in producing norm compliance and favouring social control as well. Even a strong
personal commitment to a norm does not predict behaviour if that norm is not activated
or made the focus of attention [Bicchieri, 2006, Cialdini et al., 1990]. Furthermore, the
more these norms are made salient, the more they will elicit a normative conduct.

Norm salience indicates to an individual how operative and relevant a norm is within
a group and a given context [Andrighetto et al., 2010b]. It is a complex function, de-
pending on several social and individual factors. On the one hand, the actions of others

1Clearly, also punishment can have a norm-signalling effect as an unintended by-product, but only the
sanctioner intentionally has this norm-defense goal.
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provide information about how important a norm is within that social group. On the
other hand, norm salience is also affected by the individual sphere, it depends on the
degree of entrenchment with beliefs, goals, values and previously internalized norms of
the agent.

We claim that both punishment and sanction favor the increment of cooperation in
social systems, but sanction achieves cooperation in a more stable way and at a lower
cost for the system. Cooperation is expected to be more robust if agents’ decisions are
driven not only by instrumental considerations but are also based on normative ones.
Moreover, an individual that complies with the norm for internal reasons is also more
willing to exercise a special form of social control as well, reproaching transgressors
and reminding would-be violators that they are doing something wrong.

6.2 The cognitive dynamics of norms
Building on Ullman-Margalit’s definition of a norm [Ullman-Margalit, 1977] as a pre-
scribed guide for conduct which is generally complied with by the members of society,
a norm has been defined [Andrighetto et al., 2007, Campennı̀ et al., 2009] as a behavior
that spreads through a given society to the extent that the corresponding prescription
spreads as well, giving rise to a shared set of normative beliefs and goals. A normative
belief is a mental representation, held to be true in the world, that a given action is either
obligatory, forbidden or permitted for a given set of individuals in a given context. On
the other hand, a normative goal is an internal goal2 relativized 3 to a normative belief:
it is the will to perform an action because and to the extent that this is believed to be
prescribed by a norm.

There are at least three main types of normative beliefs:

• the main normative belief, stating that: there is a norm prohibit-
ing, prescribing, permitting that... [von Wright, 1963, Kelsen, 1979,
Conte and Castelfranchi, 2006, Conte and Castelfranchi, 1999].

• the normative belief of pertinence, indicating the set of agents on which the norm
is impinging.

• the norm enforcement belief, indicating that a positive sanction is consequent to
norm obedience and a negative sanction is consequent to norm violation.

In order to be compliant with the norm, the first two normative beliefs are
necessary conditions: agents should recognize that there is a norm and that it
applies to them. When individuals do not have them in mind, norms exert

2From a cognitive point of view, goals are internal representations triggering-and-guiding action at once:
they represent the state of the world that agents want to reach by means of action and that they monitor while
executing the action [Conte, 2009]

3A goal is relativized when it is held because and to the extent that a given world-state or event is held
to be true or is expected [Cohen and Levesque, 1990]. An example is the following: tomorrow, I want to go
sunbathing to the beach (relativized goal) because and to the extent that I believe tomorrow it will be sunny
(expected event). The precise instant I cease to believe that tomorrow it will be sunny, I will drop any will to
go to the beach
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no effect on the behavior [Andrighetto et al., 2007, Campennı̀ et al., 2009]. Fur-
thermore, the more these normative mental representation are salient, the more
they will elicit a normative behavior [Bicchieri, 2006, Xiao and Houser, 2005,
Cialdini and Goldstein, 2004]. Norm compliance and norm salience are strongly inter-
twined: findings from psychology [Cialdini et al., 1990, Bandura, 1991] and behavioral
economics [Xiao and Hauser, 2009, Bicchieri and Chavez, 2010] have pointed out that
drawing people’s attention on a social norm and making it salient elicits an appropriate
behavior. Making a norm salient typically means providing people with information
about the behavior and beliefs of the other individuals [Bicchieri and Xiao, 2007, p 4].

Despite the main normative belief and the belief of pertinence, the norm enforcing
belief is not a defining element of the norm, it simply enforces it. A normative command
is a special command that is intended to be adopted by its addressees because it is
normative and norms must be obeyed [von Wright, 1963]. Of course this motive can be
absent or weak in the minds of people, depending on the socialization and education
process and the credit obtained by current institutions. Sub-ideally, norms are often
complied with because they are enforced by a system of sanctions. But ideally, they
are meant to be observed because are norms and should be complied with for their own
sake.

However, a belief is not yet a decided action. Normative beliefs are necessary but
insufficient conditions for norms to be complied with. What leads agents endowed with
one or more normative beliefs to execute them, especially since, by definition, norms
prescribe costly behaviours? How can norms generate goals?

Usually normative beliefs generate normative goals by reference to an external en-
forcement4 (sanctions, approval, etc.). The agent calculates the costs and benefits of
complying with or violating the norm and then decides how to behave. If no such a
goal is generated, the norm will be violated.

6.3 The EMIL-I-A Architecture
In order to account for the different forms of punishment (and intended to achieve

other cognitive processes as we will see) a rich cognitive platform, namely a BDI-type
architecture is required and EMIL-A [Andrighetto et al., 2007, Campennı̀ et al., 2009]
seemed a good candidate. Our extension is called EMIL-I-A, which stands for EMIL
Internalizer Agent. As the name suggests this architecture was first conceived for Norm
Internalization. Internalization is achieved with another module of this architecture
that will be carefully analyzed in Chapter 8. In this chapter we center on how the
difference between sanction and punishment is taken into account by for the described
architecture.

EMIL-I-A (as EMIL-A) consists of mechanisms and mental representations allow-
ing norms to affect the behavior of autonomous intelligent agents. As any BDI-type
(Belief-Desire and Intention) architecture EMIL-I-A operates through modules for dif-
ferent sub-tasks (recognition, adoption, decision making, salience control, etc. . . ) and
acts on mental representations for goals and beliefs in a non-rigid sequence.

4See [Conte and Castelfranchi, 1995, Conte and Castelfranchi, 2006] for a fine grained analysis of differ-
ent reasons behind norm compliance)
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Figure 6.1: EMIL-I-A Architectural Design
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Our normative agent architecture (represented in Fig. 6.1) has three important parts:
the norm recognition module, the salience control module, and decision-making.

For further references on how the norm recognition module works, we refer the
reader to [Campennı̀ et al., 2009]. The norm recognition module (that is accessed when
norms have not yet been recognized, as it is shown in Fig. 6.1) allows agents to interpret
a social input as a norm. In order for agents to recognize the existence of a norm, they
have to hear from consistent agents5 a certain number of normative messages, such as
“you should not take advantage of your group members by shirking” and observe a
few normative actions compliant with the norm or aimed to defend it (i.e. cooperation,
punishment and sanction, observed or received).

After recognition, a norm activates the three types of normative beliefs described
in Section 6.2, that are stored in the normative board6 (inside the Normative Decision
Making Module represented in Fig. 6.1) . Once generated or activated, normative be-
liefs will be inputted to the norm-adoption module: a normative goal - relativized to
the expected enforcement - will be generated. In this condition the normative agent
adopts the norm, because it wants to avoid punishment. The normative goal is then
inputted to the normative decision-maker and compared with other goals (on the basis
of their salience, updated with the Salience Control Module) possibly active in the sys-
tem. The normative decision-maker will choose which one to execute and will convert
it into a normative intention (i.e. an executable goal). Once executed, this normative
intention will give rise to norm-compliance and/or norm-defense and/or norm transmis-
sion through communication. Otherwise, it will eventually be abandoned, solution that
brings to the utility maximizing strategy (normally, norm violation).

6.3.1 Norm Salience
We adopt a definition of norms in which social norms are not static objects and
the degree to which they are operative and active varies from group to group
and from one agent to another: we refer to the degree of activation as norm’s
salience. The more salient a norm is, the more it will elicit a normative be-
haviour [Bicchieri, 2006, Xiao and Houser, 2005, Cialdini et al., 1990]. Norm’s
salience is a complex function, depending on several social and individual factors
allowing agents to dynamically monitor if the normative scene is changing and to adapt
to it7. For example, in an unstable social environment, if norm enforcement suddenly
decreases, agents having highly salient norms are less inclined to violate them, as a
highly salient norm is a reason for which an agent continues to comply with it even in
absence of punishment. It guarantees a sort of inertia, making agents less prompt to
shift from the present strategy to a more favorable one. Viceversa, if a specific norm
decays, agents are able to detect this change, ceasing to comply with it and adapting
to the new state of affairs. Finally, if an agent faces an emergency or a normative
conflict, norm salience allows it to decide which action to perform providing it with a

5An agent is consistent if, when choosing to punish, it has before cooperated in the PD.
6The normative board is a portion of the long-term memory where normative beliefs are stored, ordered

by salience.
7It is interesting to notice that this mechanism allows agents to record the social and normative informa-

tion, without necessarily proactively exploring the world (e.g. with a trial and error procedure).
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criterion to compare the norms applicable to the context. For example, on the basis of
the relative salience of the two norms, “stop at the red traffic light” and “do not block
the way, when listening to an ambulance siren”, the agent will decide whether to wait
or move on.

This is possible because our normative agents are as autonomous as socially respon-
sive. They are autonomous in that they act on their own beliefs and goals (on the basis
of their salience). However, they are also responsive to their environment, and to the
inputs they receive from it, especially to social inputs.

On the one hand, the actions of others provide information about how important a
norm is within the group. In particular, norm’s salience is affected by:

1. The amount of observed compliance and the costs people are willing to sustain
in order to comply ([Cialdini et al., 1990]).

2. The surveillance rate, the frequency and intensity of punishment ([Haley, 2003]).

3. The enforcement typology (private or public, 2nd and 3rd party, punishment or
sanction, etc.) ([Masclet, 2003]).

4. The efforts and costs spared to educate the population to a certain norm; the
visibility and explicitness of the norm ([Cialdini et al., 1990]).

5. The credibility and legitimacy of the normative source ([Sacks et al., 2009]).

On the other hand, norm salience is also affected by the individual sphere, it depends
on the degree of entrenchment with beliefs, goals, values and previously internalized
norms. It has to be pointed out that the norm salience can also gradually decrease: for
example, this happens when agents realize that norm violations received no punishment
or when normative beliefs stay inactive for a certain time lag, suggesting that the norm
is not very active in the population anymore.

In order our agents to obtain an accurate and representative salience measure, we
have designed a Salience Control Module. This module is fed with the social infor-
mation accessible by agents, transforming and aggregating those cues into a value that
represents the degree of activation of an specific norm. With that information, agents
can be endowed with other mechanisms in order to decide when to abide by (or violate)
intelligently the existing social norms. However, the agents’ decision making module is
dependent on the scenario and environment and we will analyze two different decision
making modules, built on top of norms’ salience, in the following chapters.

6.3.2 Salience Control Module
By using the Salience Control Module agents can understand the relative importance

of each norm. The module is fed (interaction after interaction) by social and normative
cues available within their surrounding, and those are the following:

• Compliants Observed: Neighboring agents who comply with the norm.

• Violators Observed: Neighboring agents who violated the norm.
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Social Cue Weight
Norm Compliance/Violation (C) wC = (+/-) 0.99
Observed Norm Compliance (O) wO = (+) 0.33
Non Punished Violators (NPD) wNPD = (-) 0.66

Punishment Observed/Applied/Received (P) wP = (+) 0.33
Sanctioning Observed/Applied/Received (S) wS = (+) 0.99

Explicit Norm Invocation Observed/Received (E) wE = (+) 0.99

Table 6.1: Normative Social Information Weights for the Salience Aggregation Func-
tion.

• Non Punished Violators: The amount of unpunished neighboring agents that vi-
olated the norm.

• Punishment Observed/Applied/Received: The amount of punishment actions ob-
served in the neighbourhood, applied to other agents or received from other
agents.

• Sanctioning Observed/Applied/Received: The amount of sanctioning actions ob-
served in the neighbourhood, applied to other agents or received from other
agents.

• Explicit Norm Invocation Observed/Received: The amount of explicit norm invo-
cations observed in the neighbourhood, applied to other agents or received from
other agents.

Each of these cues (see Table 6.1) is aggregated with different weight. A higher weight
is given to those social actions that are interpreted as driven by normative motivations,
and the values and their ranking have been extracted from [Cialdini et al., 1990].

Norms’ salience is updated according to the formula below and the social weights
described in Table 6.1:

SalNt = SalN
t−1 + 1

α×φ
(wC +O ·wO +NPD ·wNPD +P ·wP +S ·wS +E ·wE) (6.1)

where SalN
t represents the salience of the norm N at time t, α the number of neigh-

bors that the agent has, φ the normalization value, wX the weights specified in Table 6.1,
and finally O,NPD,P,S,E indicate the registered occurences of each cue. The resulting
salience measure (SalN

t ∈ [0− 1], 0 representing minimum salience and 1 maximum
salience) is subjective thus providing flexibility and adaptability to the system.
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6.4 Conclusions
In this chapter we have discussed about the necessity of a cognitive model that is able
to represent the existence of norms into the agents decision making. We have seen in
previous chapters how an utilitarian-based agent architecture is not enough, based on
the empirical results obtained with human subjects.

We have developed a cogno-normative agent architecture based on different norma-
tive beliefs and goals that allow agents to comply with norms in a cognitive way when
these are recognized. Our modular architecture activates a different decision making
when norms are identified (following a normative decision making) different than the
classical utility-maximizing one, as those seen in Chapters 3 and Chapter 4. Once the
norms are identified, the normative beliefs related to the recognition of a norm will also
affect the agents decision making, orchestrated by the norms salience. This salience
indicates agents how important norms are within a normative context, allowing agents
to perform an intelligent norm violation in those necessary cases.

In the next chapter we will put this architecture into use, exploiting it to observe the
effect of norms and punishment into the agents self-regulation.
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Chapter 7

Proving EMIL-I-A

In this chapter we explore, by means of cognitive modeling and agent based simula-
tion, the specific ways in which punishment and sanction favor the recognition of social
norms, and adapt accordingly their degree of activation, in order to achieve an intelli-
gent compliance.

For such task, we put EMIL-I-A into action. Therefore, we need to develop a com-
plete agent architecture, integrating the Salience Control Module (explained in Chap-
ter 6) with the agents’ decision making. We prove the efficiency of EMIL-I-A by repro-
ducing with agent based simulation the Distributed Punishment Experiment presented
in Chapter 5.4.

Based on our results with human subjects in the Distributed Punishment Experi-
ment, and under the suspicion that different types of punishment have a different effect
on the emergence of cooperation, we will present the design and results of new exper-
iments with human subjects that make explicit the difference between punishment and
sanction, proving afterwards the consistency of EMIL-I-A with the empirical results.

After checking the efficiency of EMIL-I-A we fully exploit its capabilities by ana-
lyzing in a simulated scenario the different dynamics of punishment and sanction in the
achievement of norm compliance, focusing specially on the emergence of cooperation.
As both punishment and sanction are costly behaviors, both for the enforcer and the tar-
get, a well-designed enforcement system should combine high efficacy in discouraging
cheating with limited costs for society. For such reason we also introduce a heuristic to
be used locally by agents in order to intelligently adapt the regulation costs.

7.1 EMIL-I-A plays Distributed Punishment
In order to test the EMIL-I-A implementation we firstly prove its behaviour in the Dis-
tributed Punishment experiment presented previously.

As it was specified in Section 5.4, in the Distributed Punishment game agents have
to take two decisions at two different phases on a repeated game. During the first stage
agents have to choose whether to cooperate or not, and then in the second stage they
have to choose whom to punish inside their group.
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The dynamics of the game are exactly the same, and we will not repeat them (refer-
ring the reader to Section 5.2 for the complete specification of the experiment). How-
ever, we need to specify how the agent take these two decisions.

7.1.1 EMIL-I-A Decision Making
In this model, agents have to take two decisions at two different stages: to cooperate or
defect and to punish/sanction or not. These decisions are influenced by an aggregation
of economic, social and normative considerations. The decision making modules in
charge of taking these decisions are built into the agents following an evolutionary
approach using mixed strategies. These mixed strategies are updated after each timestep
in the simulation with an aggregation of the Drives that are explained in this section.
These mixed strategies allow agents to adapt to the environmental conditions, and to
other changes in their social environment.

First Stage Decision: Cooperate or Defect?

We have designed three different drives that are aggregated to update the mixed strat-
egy. These three drives represent the influence of different aspects into the cooperation
decision.

SIDt = SIDt−1 +(O× Rt−Rt−1
RMax−RMin

) (7.1)

1. Self-Interested Drive (SID): it motivates agents to maximize their individual
utility independently of what the norm asks. The SID is updated according Equa-
tion 7.1.1 where SIDt represents the self-interested drive at time t, O the orienta-
tion (+1 if the agent Cooperated and -1 if it Defected), Rt the reward obtained at
time t, and RMax and RMin respectively the maximum and minimum reward that
can be obtained. In the case where the marginal reward is zero, it is substituted by
an inertial value with the same orientation as in the last variation. This way, the
proportional and normalized value of the marginal reward (a proportional value
of the gain/loss wrt the last timestep) obtained indicates how the agent would
change its cooperation probability.

2. Social Drive1: Agents are influenced by what the majority of their neighbors
do. Combining the results obtained in the experiments with human subjects, 31%
of agents ([Asch, 1955]) will change their tendency (with an increment of 18%
[Fowler and Christakis, 2010]) towards that of their neighbors in case those are
unanimous.

1Even though we model this drive at the theoretical level, we have decided not to include it in the actual
platform yet in order to have clearer results.
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3. Normative Drive (ND): once the cooperation norm is recognized, agents deci-
sions are influenced also by the normative drive. The normative drive is affected
by the norm salience: the more salient the norm is, the higher the motivation to
cooperate. Salience is updated as explained in Sec. 6.3.2.

Second Stage Decision: Punish or Sanction or none?

The agent’s decision making module is also in charge of deciding when to punish or
sanction a non compliant behaviour. Considering the difference between punishment
and sanction, agents need to decide which one to use: only agents having recognized
the existence of a norm regulating their group can sanction, otherwise they will just use
punishment.

As discussed in Section 6.1, the punisher and the sanctioner are driven by different
motivations. The former punishes in order to induce the future cooperation of others,
thus expecting a future pecuniary benefit from its acts. On the other hand, the sactioner
is driven by a normative motivation: it sanctions to favor the generation and spreading
of norms within the population. Given these differences, the probability governing the
decision of punishing or sanctioning is modified by different factors2 and they change
in the following way:

(4) Punishment Drive: Agents change their tendency to punish on the basis of
the relative amount of defectors with respect to the last round. “The more commonly
a norm violation is believed to occur, the lower the individuals’ inclination to punish
it.” [Traxler and Winter, 2009]. If the number of defectors increased, agents’ motivation
to punish decreases accordingly.

(5) Sanction Drive: Agents change their tendency to sanction on the basis of the
norm salience. The more salient the norm is, the higher the probability to sanction
defectors.

Therefore, we can see how the mixed strategies are affected both by agents’ deci-
sions and by social information. As in evolutionary game theory, eventually these mixed
strategies can tend to extreme values (full cooperation or full defection, and complete
punishment or no punishment), thus meaning that the system has converged.

7.1.2 EMIL-I-A Results in Distributed Punishment Experiment

As it was done with the human subjects, each subject (in this case, the EMIL-I-A agents)
is assigned with 3 other preprogrammed agents. The effects of the 4 different treatments
(no punishment, 1 punisher, 2 punishers, and 3 punishers) are analyzed.

Before showing the results, we need to specify that EMIL-I-As are loaded into the
experiment with an initial cooperation and punishment probability of 50% based on em-
pirical evidence. As communication was not allowed in the experiments with human
subjects, the EMIL-I-As’ norm recognition module parameters have been changed, re-
ducing the normative messages to 0 and leaving the other parameter with the same
value. Therefore, for an agent to recognize the norm, 10 normative actions need to be

2Even though agents pay a cost to enforce defectors, this cost is not taken into account when they update
their decisions to punish and sanction.
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seen (either compliance, a violation, or a punishment). Moreover, and because of the
same previous reason, the confederate actor agents only punish, and not sanction. In
this way we are able to reproduce with fidelity the experimental conditions under which
human subjects were tested.

Experimental results show that EMIL-I-As (shown in Figure 7.1(b)) behave follow-
ing the same pattern with respect to humans (whose results are shown in Figure 7.1(a)).
However, the difference observed in the experiments with human subjects between the
three treatments (with a stronger impact on cooperation when 3 punishers acted simul-
taneously) is not as strong with EMIL-I-A subjects.

In order to observe whether EMIL-I-A is being affected by the different punish-
ment probabilities noticed in Sec. 5.4, we contrast the results with other type of agents’
architectures, driven exclusively by utilitarian motivations (as the ones we used in Chap-
ter 3.1, built with Reinforcement Learning Algorithms).

From the different options (Fictitious Play [Fudenberg and Levine, 1998], Q-
Learning [Watkins and Dayan, 1992], Win or Learn Fast - Policy Hill Climb-
ing [Bowling and Veloso, 2002]) we decide to use a WoLF-PHC as it is the one that
we believe represents better the learning of an utilitarian-based human: it will maintain
its strategy while obtaining benefits, and it will change it and learn otherwise.

Experimental results show that the reinforcement learning agents obtain similar dy-
namics than humans, confirming that the instrumental motivation in humans is very
strong, although the high cooperation rates obtained with humans (and EMIL-I-As) are
not reached.

These results give us the certainty that the dynamics of EMIL-I-A have been cor-
rectly integrated from the model into a working architecture, allowing us to recover our
initial hypotheses and test the specific ways in which punishment and sanction favor
the achievement of cooperation and the spreading of social norms in social systems
populated by autonomous agents.

7.2 Experimenting with Punishment and Sanction

Experimental economics experiments with human subjects allowed us to differentiate
the effects of punishment and sanction on the emergence of cooperation. As we have
commented already, our hypothesis states that when sanction is available as a mecha-
nism for peer punishment, higher cooperation rates are obtained and, in the absence of
punishment, remain higher for a longer time than when punishment is used.

To test this hypothesis we perform a new set of experiments with human subjects
that explicitly differentiates between punishment and sanction. For the sake of compar-
ison, the experiment is designed in a similar fashion to [Fehr and Gachter, 2000].

7.2.1 Experimental Design

Participants are divided into groups of 4, that remain constant for the whole treatment.
For this experiment, no virtual agents were used, and all the experiments were per-
formed following the Experimental Economics methodology [Croson, 2005].
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Figure 7.1: Distributed Punishment Experimental Results with Simulated Agents
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As the objective of this experiment is to test the difference of punishment and sanc-
tion on the subjects decision making, we perform two different treatments: the Punish-
ment Treatment and the Sanction Treatment. Each treatment is composed of 3 blocks
of 10 rounds (with a total of 30 rounds). Depending on the treatment, the second block
will vary, remaining the first and third block constant.

In all three blocks, at the beginning of every round, participants are given with an
endowment of 20 ECUs, and at the end of each round participants are informed of the
benefits obtained in that round.

In the first block of 10 rounds (as well as in the third block), subjects simultane-
ously choose the portion of their endowment to contribute to a group account. Each
ECU contributed to the group account yields a payoff of 0.4 ECU to each of the four
members of the group. Each ECU not contributed by the subject is credited to the sub-
jects own earnings. Therefore, the earnings of an individual in a period are calculated
with formula 7.2.1, where cx is the amount contributed by subject x.

E = 20 - ci +0.4×
n
∑

k=1
ck (7.2)

Once all participants of the group make their contribution decision for that round, the
system informs each subject of his initial endowment, his individual contribution, the
total group contribution, and his individual earnings.

In the second block (rounds 11-20), subjects have to take decision in two phases.
The first phase decision is exactly the same than in the first block. During the second
phase, agents have to simultaneously decide whom and how much to punish/sanction.
At the end of the first stage, subjects are informed of the contribution levels of each of
the other members of their group. For the Punishment Treatment, they can assign from
zero to ten punishment points to each of the three other group members, with a cost
of 1 ECU per point. Each point received from any other agent reduces the first stage
earnings of the receiving subject 3 ECUs.

In the case of the Sanction Treatment, the second phase remains equal with a slight
variation: apart from sending the punishment points as in the Punishment Treatment,
subjects can also send a message that justifies their punishment decision and will be
sent together with the punishment points. The message is predefined by us, allowing
certain parameters to be chosen by the subjects, like the correct amount that should be
contributed (represented by the XXX). The message structure is the following:

It should be contributed XXX ECUs, because:

1. it is what is supposed to be done.

2. because that way we all are better off.

3. because that way you will not be punished.
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With this message structure, subjects have to specify (in the XXX provided space)
what they consider the “correct” amount to be contributed, and one of the three reasons
why that should be done. The first message (“it is what is supposed to be done”) corre-
sponds to a normative explanation, the second message (“because that way we all are
better off ”) corresponds to a social preference explanation, and the last one (“because
that way you will not be punished”) corresponds to a self-interested explanation. This
way, in the Sanction Treatment, subjects have the chance to send punishment points
with a justification of what the correct behaviour should be and why, in contrast with
the Punishment Treatment where no messages are sent. We want to remark that theoreti-
cally, and as the messages that go with the punishment points are optional and cost-free,
the Punishment Treatment can produce the same utilitarian effect than the Sanctioning
Treatment.

At the end of this second phase, participants are shown the punishments (and mes-
sages if any) sent to each of them, and their final benefit of the round.

This three block experimental structure allows us to observe what happens in the
absence of punishment (in the first block) and clearly observe the effect of both pun-
ishment technologies when available (in the second block). The third block of the
experiment allows us to observe the inertia introduced in the subjects with punish-
ment/sanction.

7.2.2 Empirical Results

The experiments with human subjects were performed in the Laboratory for Research in
Experimental Economics (LINEEX), at the Center for Research in Social and Economic
Behavior, in the University of Valencia. 48 subjects participated in each treatment,
obtaining 12 groups and independent observations per treatment. All the participants
were paid depending on their performance in the game.

Experimental results are shown in Figure 7.2(a). Empirical data confirm our hy-
potheses showing that sanction do have a stronger impact on the subjects decision mak-
ing, resulting in a higher and more stable cooperative strategy than when punishment
is used. This result is important since the message accompanying the punishment do
not have any monetary costs associated, and indeed produces higher cooperation rates.
Moreover, as we can see in Figure 7.2(b), the average amount of sanctions sent per
subject is considerably reduced with respect to the average amount of punishments3.

In general we can observe how both punishment/sanctioning technologies are ef-
fective in attaining contribution levels higher than would typically be observed in the
absence of any system. The results obtained in our experiments are in concordance
with those presented in [Fehr and Gachter, 2000, Noussair and Tucker, 2005b], at least
in the punishment treatment. In [Noussair and Tucker, 2005b] authors incorporate a

3At the beginning of each treatment, subjects are informed about the 3-block structure of the experiment,
but they did not know the specific configuration of each block. Instructions were read and explained at the
beginning of each block. Because of this experiment configuration, subjects discover only at the beginning
of the second block that they can punish/sanction after the first phase, and they will be able to do it for 10
rounds. This introduces an “end-of-the-world” effect, for which, when “the end of the world” is approaching,
the decisions are not rational anymore. In our case, it is the last round of the second block, where we observe
an abrupt increase of both punishments and sanctions, which should not be considered as representative.
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Figure 7.2: Punishment and Sanction Experiment with Human Subjects
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symbolic punishment that reminds of our sanction mechanism: they allow subject to
send punishment points in the same way we did in our Punishment Treatment although
with no costs associated to the subjects assigning or receiving points. These points can
be understood as a level of disapproval of a subject’s contribution decision in the first
stage. However, they lack of an accompanying significance of why that should be done,
which is included in the message that goes with our punishment points.

With respect to the message chosen by subjects, in the Sanctioning Treatment (the
only one where a message can be accompanied with the punishment points), subjects
have a preference between sending no message at all (50,48% of the times and obtain-
ing a plain punishment), or, sending the Social Preference message (“because that way
we all are better off.” is sent 42,63% of the times), as it is indicated in Figure 7.2(c).
While others have studied the strength of different types of messages accompanying
punishment with other punishment technologies [Bo and Bo, 2009] (centralized pun-
ishment coming from the system instead that from peers), our experimental results con-
firm that when punishment comes with the message justifying the punishing decision
from the peer, cooperation rates are increased. Even though we will not further explore
the reasons of this effect (and leaving this line of research open for future work) we
hypothesize that this occurs because when punishment is accompanied with a message
the punisher is seen as an entitled authority by the punished, activating its normative
mind.

With the light thrown with the results obtained with human subjects, we can affirm
that our assumption (integrated into the EMIL-I-A platform) about the stronger impact
of sanctioning over punishment was correct.

7.2.3 EMIL-I-A Results

In order to check the correctness of the implementation of our EMIL-I-A platform,
we decided to simulate the previously performed experiments substituting the human
subjects with EMIL-I-A agents, as we did with the Distributed Punishment experiment
in Sec.7.1.

There are a number of reasons why we believe that it is hard to simulate the hu-
man subjects results as there are many other factors affecting their decision making
and cannot be controlled in these in-vitro experiments. Among them, the one we con-
sider essential is the distribution of personalities on the experiment; it has already been
demonstrated that there are different types of subject attitudes towards contribution in a
public good [Brennan et al., 2008], and we believe that this proportion of each type of
potential personality has an effect on the group’s dynamics.

In the experiments with EMIL-I-As we assume an homogeneous population of
agents, with the same characteristics and tendencies in the decision-making; this as-
sumption is taken because for the design of EMIL-I-A, average values from human
subjects were taken and implemented in the architecture, without considering different
types of human personalities4.

4Agents can be given a “personality” with the EMIL-I-A architecture by fine-tuning the decision making.
In the specific configuration detailed in Section 7.1.1, different weights applied while aggregating the different
drives would produce a different type of behaviour.
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We need to make a number of assumptions that will help us fix some EMIL-I-
A’s behavioural parameters before running the simulation: agents are initialized with
a tendency to cooperate of the 50%, an initial tendency to punish of the 70%. We
believe these are pertinent (based on empirical results from humans) and necessary to
run the simulation in the proper way. Moreover, we assume that our EMIL-I-A agents
already know the existence of the cooperation norm (as humans do before going into
the experiment) with an initial salience of 0.75.

In order to reproduce the same experiments performed with human subjects, we
restrict the simulation platform to only allow punishment on one of the treatments,
and punishment and sanction in the second treatment. For the sanctioning treatment
we have taken an implementation decision: as we saw with the human subjects, the
message chosen by them was fundamental to achieve the desired effect (cooperation
rate’s raise); in our architecture, and assuming the homogeneity of agents, we have
decided to avoid the problems associated to the semantics of the message and we fix
this message as a universal message, to be understood equally by all EMIL-I-A agents
as the normative message that is part of a sanction 5.

We have slightly altered the structure of the experiment by eliminating the first
block: restricting agents from the punishment/sanctioning technologies, cooperation
rates will start decreasing. Because of the evolutionary strategies with which agents
are provided, the recovery from the absence of punishment/sanction would result to
be much slower than in humans. The reason why humans react in a such a way is
because the “re-start” effect: the experiment pauses and the instructions are read to
humans, producing in them the image of a re-start of the experiment. Unfortunately
these dynamics cannot be realistically incorporated into the agents.

The experimental results are shown in Figure 7.3(a). The EMIL-I-A’s obtained dy-
namics when contrasting punishment and sanction are similar than those obtained with
humans: when sanctioning is available, cooperation rates reach values between 70%
and 80%, in contrast with the 50% obtained with punishment. Moreover, in the absence
of punishment, cooperation rates in both cases start decreasing, being the decreasement
slower when sanction is used. In general, we observe that EMIL-I-A is slower than hu-
mans because of the evolutionary strategy update performed; on the other hand, humans
were affected by different external inputs like the instructions reading between blocks,
and possibly other non-identified dynamics. The delay observed is of 5 rounds, being
the average behaviour almost identical after that adaptation time.

The dynamics of punishment and sanction (shown in Figure 7.3(b)) are also similar
after this adaptation time, being the average amount of punishments and sanctions sim-
ilar at the end of the punishment block wrt the humans experiment. We observed that,
in both humans and simulated agents, the number of sanctions is lower than the number
of punishments, representing a cheaper cost for society to obtain cooperation.

These experiments have been useful to test the correct implementation of the EMIL-
I-A architecture and a satisfactory selection of the Salience Weights.

5We want to remind the reader that we consider a sanction to be a punishment with a normative message.
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Figure 7.4: Prisoner’s Dilemma Game Payoff Matrix

7.3 Exploiting EMIL-I-A

So far we have seen how EMIL-I-A and the Salience Control Mechanism have been
correctly designed, obtaining similar results when comparing its behaviour with that
of human subjects. To perform an exhaustive analysis of these two mechanisms, we
introduce a simulation model where to test them.

7.3.1 Simulation Model

In order to capture the specific dynamics of punishment and sanction and to test their
relative effects in the achievement and maintenance of cooperation a simulation model
has been developed.

In this model, agents play a variation of the classic Prisoner’s Dilemma Game
(PDG) (whose payoff matrix is shown in Table 7.4), where an extra stage has been in-
cluded in the game: after deciding whether to cooperate or not, agents can also choose
whether they want (or not) to punish or sanction the opponents who defected. The
motivation behind the PDG is due to our long-term research goal aimed at studying
enforcing technologies in virtual societies, and more specifically in environments like
P2P scenarios or web-services markets. These types of scenarios share a number of
characteristics with the PDG: dyadic encounters, repeated interactions, and one-shot
games.

Each timestep of the simulation is structured in 4 phases, that are repeated for a
fixed number of timesteps:

1. Partner Selection: Agents are randomly paired with their neighbours in the so-
cial network.

2. First Stage: Agents play the PDG, deciding whether to cooperate (C) or to defect
(D).

3. Second Stage: Agents decide whether to punish/sanction or not the opponents
who defected. Only agents who have recognized that there is a norm of coopera-
tion governing their group use sanction to enforce others’ behaviours; otherwise
punishment is used. Punishment works by imposing a cost to the defector, this
way affecting its payoffs. On the other hand, sanction also informs the target (and
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possibly the audience) that the performed action violated a social norm, thus hav-
ing an impact both on agents’ payoffs and on the process of norm recognition and
norm salience. If an agent decides not to punish/sanction and it is a norm-holder
(i.e. an agent with a highly salient norm of cooperation stored in its mind), it can
send an educational message to its opponent. Problems related to the way agents
communicate the abstract concept of norm are outside of the scope of this paper
and therefore, we assume perfect communication.

4. Strategy Update: As agents have mixed strategies, these strategies are updated
on the basis of their decisions, payoffs and social information acquired.

7.3.2 Experimental Design

One of the main objectives of this research is to study the achievement of cooperation in
adverse situations, where defecting is the utility-maximizing strategy for the agents. In
order to observe the relative effects of punishment and sanction in our artificial scenario,
we exploit the advantages of having agents endowed with normative minds (fine-tuned
with the parameters obtained with human-subjects in similar scenarios) allowing them
to process the signals produced by these two enforcing mechanisms separately.

In order to analyze the differences of both types of punishment on the agents’ de-
cision making, we have performed an exhaustive experimental analysis. To reduce the
search space (and save computation costs), we have prefixed the population size to 100
agents.

In the following experimental section, we contrast the results obtained in simula-
tions where only punishment is allowed against situations in which both punishment
and sanction are allowed. Only after having recognized the existence of the coopera-
tion norm, agents will sanction defectors, thus defending the norm; otherwise they will
just punish them.

As in this work we are not interested in analysing the emergence of norms, some
agents already endowed with the cooperation norm are initially loaded into the simula-
tion: we refer to them as initial norm’s holders (INHs), and are initially loaded with the
norm at a salience of 0,8. If no agent had the norm, they would have to start a process
of norm emergence that would include the recognition of an anti-social behavior, the
identification of a possible solution and the consequent implementation in the society
in the form of norms.

All the following experiments have been run on two different topologies: a fully
connected network (where agents have access to complete information) and a scale-
free network (where agents only access local information). Despite obtaining the same
final convergence results in both topologies, we have observed a delay in the scale-free
networks, caused by the cascade effect of the spread of norms produced by the location
of the INHs (better connected INHs produce faster convergence results).
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7.3.3 Punishment and Sanctioning on the Emergence of Coopera-
tion

In this first experiment, we analyze the relative effects of punishment and sanction
on the achievement of cooperation, paying attention to the amount of INHs and the
different damages imposed with punishment and sanction. By comparing the results
obtained with different damages in Fig. 7.5, we observe that different damages (i.e.
the amount of punishment/sanction imposed to the target) affect the cooperation levels
differently. We can understand this first experiment as a proof-of-concept to check the
correctness of our architecture. As expected, agents’ motivation to defect decreases in
a much stronger way with a damage of 5 than with a lower damage of 36. It has to be
pointed out that, despite what happens when using punishment, in populations enforced
by sanction (with a minimum amount of INHs, 10 in this experiment), cooperation is
also achieved when imposing a lower damage, as can be seen in Fig. 7.5(a), Fig. 7.5(c),
and Fig. 7.5(e).

Both punishment and sanction directly affect the agents’ SID, reducing their moti-
vation to defect. However, these two enforcing mechanisms are effective in achieving
deterrence only when the damage imposed is at least 3, as with a damage of 3 (Coop-
eration Payoff = 3, Defection Payoff = 5 - 3 = 2 ) cooperation is the utility-maximizing
strategy.

As said in Sec. 7.1.1, agents’ cooperation probability is affected by both the SID and
the ND: sanction - thanks to its signalling component - influences the normative drive
more than punishment. In order to obtain deterrence, punishment exploits the power of
norms much less than sanction, that is why it needs to impose higher damages on its
targets.

The amount of INHs produces an interesting result when using sanctioning: when
the number of INHs is increased, emergence is achieved faster and it follows a distri-
bution equal to the neighbors distribution (in the regular networks the emergence of
cooperation increases linearly and exponentially in scale-free networks). When using
punishment the dynamics of the cooperation are different, as the salience is not affected
as strongly, and therefore the normative drive does not push towards cooperation as
much as when sanction is used. In the next section we analyze this phenomenon.

7.3.4 Norms Spreading

With the proof-of-concept experiment presented in the last section, we not only tested
the effects of punishment and sanctioning on the achievement of cooperation, but also,
how the initial amount of norm holders affects the dynamics of cooperation. Analysing
the same experimental data presented in the previous section, we now observe the rel-
ative effects of sanctions and punishments on the recognition of the cooperation norm.
As specified previously, our hypothesis is that, thanks to its signaling nature, sanction

6These values have been chosen for experimentation as both 3 and 5 punishment damages turn the co-
operative action into the utility-maximizing strategy. A damage of 3 produces a slight improvement for
cooperation (Payoff = 3) over the defection (Payoff 5 - 3 = 2). On the other hand, a damage of 5 produces a
stronger difference between cooperation (Payoff = 3) and defection (Payoff = 0).
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(a) 10 INHs. Damage 3.
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(b) 10 INHs. Damage 5.
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(c) 30 INHs. Damage 3.
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(d) 30 INHs. Damage 5.
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(f) 50 INHs. Damage 5.

Figure 7.5: Effects of Punishment (P) and Sanction (S) on the Emergence of Coopera-
tion.
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allows norms to spread more and more quickly in the population, making it more re-
silient to change than if enforced only by mere punishment.

By paying attention to the average norm’s salience per agent in Fig. 7.6, we appre-
ciate that sanction produces a stronger effect on the spread of norms than punishment,
thus verifying our hypothesis. This phenomenon is mainly caused by the design of our
normative architecture, where sanctions impact in a stronger way the agents’ recogni-
tion and salience of norms.

Moreover, this is a self-reinforcing process: once an agent has recognized a norm, it
will start sanctioning, getting others to comply with the norm, reproaching transgressors
and reminding would-be violators that they are doing something wrong. This process
affects and reinforces the sanctioner’s own salience, but also the norm’s salience of its
neighbours.

7.3.5 Costs of Punishment

Our second hypothesis is that sanctioning combines high efficacy in discouraging de-
fectors with lower costs for society as compared to punishment. From the data shown
in Table 7.1, we observe that in the two situations where both punishment and sanction
allow cooperation to emerge (i.e. imposing a damage of 5), sanctions are 32,52% better
in terms of the amount of punishment/sanction occurrences and the cost for the society
wrt the situation where punishments are used. In other words, when using sanction, the
amount of punishment/sanctioning acts and consequently the associated costs are de-
creased by 1/3. This is an interesting result that confirms our hypothesis, that the use of
sanctions reduces the social costs of the achivement of cooperation as it impacts deeper
on the salience.

Punishments Sanctions Individual Cost Social Cost
Punishment 4,8748 0 5 24,374

Sanction 0,3364 1,2491 5 7,9275

Table 7.1: Costs of Punishment and Sanctioning. Average values per agent and
timestep.

Moreover, (and even though the data obtained with Damage 3 are not comparable
amongst them because of the different effects on the emergence of cooperation), we
can observe that - from a system designer point of view - knowing the right value of
the punishment/sanction to apply (5 better than 3 in this case) would reduce the global
costs, obtaining the same result on the emergence of cooperation (full cooperation). The
reason for this phenomena is because a sanction of 5 would produce a stronger deterrent
effect in the self-utilitarian drive of the agents than a sanction of 3, which needs to be
repeatedly applied to achieve the same results.
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(a) 10 INHs. Damage 3.
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(b) 10 INHs. Damage 5.
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(c) 30 INHs. Damage 3.
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(d) 30 INHs. Damage 5.
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(e) 50 INHs. Damage 3.
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(f) 50 INHs. Damage 5.

Figure 7.6: Effects of Punishment (P) and Sanction (S) on the Salience.
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7.3.6 Dynamic Adaptation Heuristic
In the experiment in Sec. 7.3.3, the damage that both punishers and sanctioners can
impose on defectors in order to deter them from violating again is fixed for the entire
duration of the simulation. But in some circumstances, this damage could be reduced,
without lowering its deterring effect. In order to allow our agents to dynamically choose
the right amount of punishment and sanction to impose, thus reducing social costs, a
Dynamic Adaptation Heuristic (DAH) has been implemented. This heuristic works in
the following way:

if De f ectorst−1 ≤ De f ectorst AND De f ectorst > ToleranceDe f then1

Increase PunCost by ∆;2

if De f ectorst−1 > De f ectorst OR De f ectorst < ToleranceDe f then3

Decrease PunCost by ∆;4

Algorithm 4: Dynamic Adaptation Heuristic (DAH).

By keeping track of the amount of defectors in the previous timestep
(De f ectorst−1), and comparing it with the actual amount of defectors, the imposed
cost of punishment (PunCost) is adapted consequently with a ∆ (∆ = 0.1 in this work),
thus obtaining an intelligent dynamic adaptation. ToleranceDe f is another parameter
used to allow agents to be tolerant against exploration from the other agents, allowing a
percentage of violations in their social environment. If ToleranceDe f is fixed to zero,
it might produce a continuous rise of the Punishment Cost without having an effect on
the violators mind (as some violations are done by mere exploration).

Punishments Sanctions Individual Cost Social Cost
DAH Punishment 2,1142 0 5,1640 10,9177
DAH Sanction 0,2932 0,8669 3,7031 4,2959

Table 7.2: Performance of the Dynamic Adaptation Heuristic. Average values per
timestep.

In order to test how the implemented DAH affects the performances of both punish-
ment and sanction, an exhaustive exploration of the search space with different amounts
of INHs (from 10 to 90, increasing at intervals of 10) has been performed.

Results obtained for different amounts of INHs follow the same distribution, for the
cases with and without DAH. In Table 7.2, the average performances of both punish-
ment and sanction in the dynamic and static conditions are shown. The DAH allows
society to significantly reduce the number of punishing (57% less) and sanctioning
(27% less) acts with respect to the static condition reported in Table 7.1.

However, when using DAH, the average individual cost of punishment is slightly
higher than that of sanctioning. This is given by the cyclic dynamics produced by
agents driven only by their strategic drives. When enforced by punishment, agents
abandon their defecting strategy because they want to avoid the cost of punishment.
The number of cooperators starts to increase and punishers decrease the punishment
cost accordingly. However, this reduced punishment cost makes defection to become
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(b) Sanction.

Figure 7.7: New Free Riders introduced at TS = 5000.

the utility maximizing strategy. Consequently, the number of defectors will increase
again and the punishment cost accordingly. With this newly adapted punishment cost,
defection will not be the optimal strategy anymore, reaching the initial situation again.

Consequently, the social expenses using DAH are considerably reduced both when
punishing (66%) and sanctioning (56%). The implemented heuristic allows society to
intelligently reduce the social costs needed for the achievement and maintenance of
cooperation.

7.3.7 Adapting to the Environment: Free Riders Invasions

This experiment is aimed to test the hypothesis that sanction makes the population
more resilient to change than if it were enforced only by mere punishment. If suddenly a
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large amount of new defectors joins the population, we suppose that defectors will take
longer to invade the population in which sanction has been used. In order to confront the
relative speed of adaptation and degree of resilience of the populations enforced with
punishment and sanction, we run simulation experiments in which after timestep 5000,
new free riders (from a minimum amount of 10 to a maximum of 500) are injected in
the populations

Experimental results (see Fig. 7.7) show that a population enforced by (DAH) sanc-
tion is able to receive up to 200 new free riders and still to maintain a high level of
cooperation, while when (DAH) punishment is used, only 100 new free riders make
cooperation collapse. In the population enforced by sanction, a larger amount of coop-
eration norms have spread, this having a refraining effect on the decision of abandoning
the cooperative strategy. Highly salient norms guarantee a sort of inertia, restraining
agents to change their strategy to a more favorable one.

7.4 Conclusions
The Distributed Punishment experiment performed with human subjects (presented in
Chapter 5) gave us the hint of the existence of a heavier “message” in certain types
of punishment, affecting differently the reasoning of subjects. The designed EMIL-
I-A Architecture takes into consideration the difference stated by cognitive scien-
tist [Giardini et al., 2010] between Punishment and Sanction. We rebuilt the Distributed
Punishment experiment in a simulated scenario with EMIL-I-A agents, obtaining sat-
isfactory results recreating with an virtual agent the behavior of human subjects under
the same experimental conditions.

Meanwhile, we have also proven with experimental economics the hypothesized
difference between punishment and sanction. As far as we know, this is the first time
this result has been proven, being therefore interesting for such community. On the
other hand, EMIL-I-A has also performed well recreating the human subjects dynamics
in the same experiment. After proving the validity of such architecture, we (computer
scientists and policy makers) are given with a powerful tool that allows us to further
exploit these punishment technologies, in different situations, unfeasible to obtain in
the laboratory with human subjects.

For that reason, we have developed a simulation platform that have served us to
test our normative theory of punishment and the designed EMIL-I-A architecture. The
simulation results obtained by exploiting the capabilities of EMIL-I-A show the ways
in which punishment and sanction affects the emergence of cooperation. More specifi-
cally, these results seem to verify our hypotheses that the signaling component of sanc-
tion allows this mechanism (a) to be more effective in the achievement of cooperation;
(b) to spread norm faster and wider in the population, making it more resilient to envi-
ronmental change than if enforced only by mere punishment; (c) to reduce significantly
the social cost for cooperation to emerge.

Moreover, and up to our knowledge, this is the first work in which agents are en-
dowed with rich cognitive architecture allowing them to be affected by the normative
information associated to sanction and to dynamically gauge the amount of damage to
impose on defectors, achieving an efficient compliance.
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However, one question remains unanswered: what happens when punishment is
not available but the norm is still necessary? We need a special mechanism that allow
agents to be compliant with the norms independently of the external outcomes. Axelrod
defined this process as internalization [Axelrod, 1986] and we will show in the follow-
ing chapter how it is tightly linked with the salience of norms. By donating agents
with norm internalization mechanisms we will achieve a more compliant, stable and
cost-efficient society, without sacrificing adaptability.
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Chapter 8

Internalization

In the previous chapter we have seen how punishment is a useful mechanism to impose
social norms by deterring (and educating) norm violators. However, we have seen how
in the absence of punishment mechanisms, agents tend to adapt to the self-interested
utility-maximizing strategy.

The problem social scientists still revolve around is how autonomous systems,
like living beings, perform positive behaviors toward one another and comply with
existing norms, especially since self-regarding agents are much better-off than other-
regarding agents at within-group competition. Since Durkheim, the key to solving the
puzzle is found in the theory of internalization of norms [Mead, 1963, Parsons, 1937,
Grusec and Kuczynski, 1997, Gintis, 2004, Horne, 2003]. One plausible explanation
of voluntary non self-interested compliance with social norms is that norms have
been internalized. Internalization is another of the mechanisms identified by Axel-
rod [Axelrod, 1986] for the establishment of norms1.

Internalization occurs when

a norm’s maintenance has become independent of external outcomes -
that is, to the extent that its reinforcing consequences are internally medi-
ated, without the support of external events such as rewards or punishment
([Aronfreed, 1968, p 18]).

This process entails several advantages. For example, norm compliance is expected
to be more robust when norms are internalized than in the case when norms are ex-
ternal reasons for conduct: if everybody in the population internalizes a norm, there
is no incentive to defect and the norm remains stable [Gintis, 2004]. Driven by inter-
nal motivations, internalizers are not only much better at complying with norms than
are externally-enforced individuals, but also at defending them. An effect of the latter
prediction is that norm internalization is decisive, if not indispensable, for distributed
social control. Internalization is not only a mechanism of private compliance, but also
a factor of social enforcement. Individuals who have internalized the norm, not only

1Other factors identified by Axelrod in [Axelrod, 1986] like dominance and deterrence have been analyzed
in Chapter 7.
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comply with it without any need of external enforcement, but in many circumstances
they also want others to observe the norm, by reproaching transgressors and reminding
would-be violators that they are doing something wrong.

The importance of norm internalization in favouring social order has been largely
recognized, but philosophers, social scientists, psychologists, anthropologists still strive
to answer some fundamental questions: Why and how do agents internalize social in-
puts, such as commands, values, norms and tastes transforming them into endogenous
states? Which types of mental properties and ingredients ought individuals to possess
in order to exhibit different forms of compliance? How many people must internalize a
norm in order for it to spread and remain stable? What are the different implications of
distinct modalities of norm compliance for society and governance of distinct modal-
ities of norm compliance? These questions received no conclusive answer so far. In
particular, no explicit, controllable, and reproducible model of the process of internal-
ization is available yet.

Agents conform to an internal norm because so doing is an end in itself, and not
merely because of external sanctions, such as material rewards or punishment.

This chapter provides an operational model of the internal mechanisms of inter-
nalization. Rather than a none-or-all phenomenon, norm internalization is a highly
dynamic process, whose deepest step occurs when norms are observed thoughtlessly.
Norm internalization is here characterized as a multi-step process, occurring at various
levels of depth and giving rise to more or less robust compliance and also allowing in
certain circumstances for automatic behaviours to be unblocked and deliberate norma-
tive reasoning to be restored. If only the deepest level of internalization were modelled,
it would be sufficient to hardwire agents with norms and make them automatically com-
pliant. Even though in several contexts this type of agent is highly efficient, in rapidly
changing environments it proves to be inadequate to deal with the adaptive problems
it faces. Thus, to fully operationalise such a multilevel model of norm internalization
requires a complex agent architecture. Unlike the vast majority of simulation models
in which heterogeneous agents interact according to simple local rules, in our model
the agents (EMIL-I-As) are provided with normative mental modules, allowing them to
internalize norms active in the social system in which they interact.

Emotions, playing a significant role in this process, will not be investigated at this
stage. However, recent work [de Melo et al., 2011] has explored the effects of emotions
in hybrid environments (populated with humans and agents) affecting on the decision
making of human subjects.

8.1 What is Internalization?
Norm internalization is the process by means of which norm’s compliance becomes
independent of external outcomes i.e. when the norm addressee observes it free from
external punishment and reward. In other words, it is a mental process that takes a
(social) norm as input and provides the individual with terminal goals, i.e. goals that
are considered as an end in itself and as means for achieving other goals. Therefore, it
is the next step to take in our road towards norm compliance after having studied the
punishment/sanction mechanisms.
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As discussed in Sec. 6.2, normative beliefs generate normative goals by reference
to an external enforcement. However, a norm is internalized when the norm addressee
complies with it independently of external sanctions and rewards. In such a case, the
normative goal is no more relativized to an expected sanction, but only to the main
normative belief.

8.1.1 Factors affecting internalization.
Why do agents observe a norm irrespective of external enforcement? Far from provid-
ing a complete list of the factors favouring norm internalization, in the present work we
will focus on some of the elements playing a key role in this process, such as:

• consistency;

• self-enhancing effect;

• urgency;

• calculation cost saving;

• norm salience.

Let us start with consistency. This mechanism operates at two stages: first by
selecting which norm to internalize, and later by enforcing it (self-enforcement) and
controlling that one’s behavior corresponds to it (self-control). Consistency of new
norms with one ’s beliefs, goals and previously internalized norms plays a crucial
role in the selection process (of which norm to internalize). Successful educational
strategies favor internalization processes, often by linking new inputs with previously
internalized norms. Analogous considerations apply to policy-making. Consider the
antismoking legislation: the efficacy of antismoking campaigns based on frightening
announcements and warning labels (e.g., sentences like ’Smoking kills’ on cigarette
packages, see [Goodall, 2005]) is still controversial. One of the factors reducing the
efficacy is the effect known as hyperbolic discounting ([Bickel and Johnson, 2003]; see
also, [Rachlin, 2000]), a psychological mechanism that leads to invest in goal-pursuit
a measure of effort that is a hyperbolically decreasing function of the time-distance
from goal-attainment, and leads people to procrastinate energy-consuming work until
the very last moment. Due to hyperbolic discounting, people, especially young people,
are unable to act under the representation of delayed consequences of current actions.
On the other hand, much more efficacious anti-smoking campaigns are those playing on
previously emerged and diffused set of social norms, such as the live-healthy precepts,
highly consistent with the message they want to transmit.

The second factor playing a role in norm internalization is the self-enhancing effect
of norm compliance: the norm addressee realizes that it achieves one of its goals by
observing a given norm. Suppose I succeed in refraining from smoking and that after
a few days, I realize an advantage that I had not perceived before: food starts to taste
again. This discovery generates a goal (quit smoking to enjoy good food), not rela-
tivized to the norm but supporting it: I have converted the norm into an ordinary goal.
Whether this goal will be strong enough to out-compete addiction is another matter.
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Third, we focus on urgency (see, for example, [Zhang and Huang, 2006]). In par-
ticular, one can argue that the more a given norm allows to answer problems frequently
encountered under conditions of urgency, when time for decision-making is none or
scanty, the more likely that norm will be internalized.

Fourth, we claim that agents are parsimonious calculators: under certain conditions,
they internalize norms in order to save calculation and execution time. Upholding a
norm that has led one to succeed reasonably well in the past is a way of economizing
on the calculation costs that one would have to sustain whenever facing a new situation.
Imagine a driver’s decision to stop at the traffic light when it turns red. Each time our
driver approaches a red traffic light, it calculates the costs and benefits of complying
with the norm: e.g. it predicts that it will save time by ignoring the norm, but that a
fine will then follow with a certain probability. The driver then chooses what is best for
itself.

After a certain amount of calcula, always returning the same output (e.g. the driver
always deciding to stop in order to avoid punishment), the agent able to internalize
will abstain from instrumental reasoning: it will stop the car when traffic light is red
without calculating the convenience of such behavior. After having weighted the costs
and benefits of complying or not with a certain norm for a certain number of times (and
having reached exactly the same decision every time), the agent stops calculating and
takes norm compliance as the best choice. By doing so, it will save time acting in a
more efficient way. Explicit processing starts declining with norms gaining force, and
gradually stops once norms have been internalized.

This last point is strictly intertwined with another important factor favoring norm
internalization: i.e. norm salience.

Norm’s salience (already analyzed in Sec. 6.3) is another factor allowing norm inter-
nalization: if the norm is highly salient, the norm is a candidate to be internalized by the
agent. We claim that social norms are not static objects and the degree to which they are
operative and active varies from group to group and from one agent to another: we refer
to the degree of activation as salience. The more salient a norm is, the more it will elicit
a normative behaviour [Bicchieri, 2006, Xiao and Houser, 2005, Cialdini et al., 1990].
Then, salience may increase to the point that the norm becomes internalized, i.e. con-
verted into an ordinary goal, or even in an automated conditioned action, a routine.
Norm’s salience is a complex function, depending on several social and individual fac-
tors.

The salience of a normative belief can vary depending on several social and indi-
vidual factors. The social factors affecting salience have been discussed in Chapter 6.
On the other hand, norm salience is also affected by the individual sphere, it depends
on the degree of entrenchment with beliefs, goals, values and previously internalized
norms2.

In this work we will focus only on the last two conditions, calculation cost saving
and norm salience, leaving the rest open for future work.

2It has to be pointed out that the norm salience can also gradually decrease: for example, this happens
when agents realize that norm violations received no punishment or when normative beliefs stay inactive for
a certain time lag, suggesting that the norm is not very active in the population anymore.
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In the next sections, we will show how EMIL-I-As can account for reversible rou-
tines, or, which is the same, for flexible conformity.

8.2 Dynamics of Norms Internalization

When located in environments regulated by different competing norms, agents need
a mechanism to detect the respective importance of each norm, thus allowing them
to select which one of them to internalize, when to internalize it, or to de-internalize
one norm in order to internalize another. EMIL-I-A is given with several modules to
handle this complex task. Some of these modules (like the norm recognition module
and the salience control module) have already been explained in Sec. 6.3. Their struc-
ture and functioning remain completely the same, and in this section we will center in
the Internalization Module. This module is a conceptual selector of the decision mak-
ing function to be followed; agents can follow an instantaneous utility maximization
function, a normative decision function or an automatic response (with no computation
associated).

8.2.1 Internalization Module

The internalization mechanism accounts for the trade-off between self-adaptation and
internalization. This is in charge of selecting which norm should be internalized, con-
verting it into an automatic behavior that is fired without any decision making process.
Of course, automatization is a multi-step complex process that needs conceptual, mod-
elling and experimental work. For the time being, we implement norm compliance as
either automated or decided upon behaviour. In the real matters, the alternative is prob-
ably fuzzier, and different steps on the continuum from a fully deliberate to a wholly
automated behaviour ought to be modelled. In the present work, (and as we can see in
Figure 8.1) an internalized norm fires an automated action without any decision mak-
ing process. An agent can internalize only one norm regulating a certain situation (e.g.
people can greet by waving from a respectful distance, with a friendly handshake, or
with a number of kisses: depending on the environment, only one of these actions will
be internalized). Moreover, thanks to the information provided by the Salience Con-
trol Module, this mechanism is also in charge for the de-internalization process. As
explained in Sec. 8.1.1, EMIL-I-As are parsimonious calculators, and therefore, they
internalize norms in order to save calculation (decision-making) and execution time.
Trying to record the monotony of agents’ decisions, agents keep track (EvalN) of the
amount of times this decision-making calculation (in which the expected payoffs ob-
tained by complying or not with the norm is calculated) is performed and it returns
the same decision. In case the decision-making calculation would return a different
decision, the counter would be resetted, representing a break up of the monotony.

• Two conditions are necessary for a norm N to be internalized by an agent:

1. the salience of the candidate norm is at its maximum value (SalN
t = 1), and,

117



2. the decision-making calculation has been done for a certain amount of time
always returning the same decision (in the present model we fixed the cal-
culation repetition tolerance to 10, therefore EvalN ≥ 10).

• Instead, a norm N1 is de-internalized when the following conditions apply:

1. the salience of the internalized norm arrives at its minimum value (SalN1
t =

0), and,

2. the salience of another norm (ruling exactly the same situation) exceeds the
internalized one (SalN2

t > SalN1
t )

Summing up, we can see in Figure 8.1 a representation of the EMIL-I-A architec-
ture with all its capabilities. An example decision making process would start recog-
nizing the situation in which an agent finds itself; after that an agent reacts with the
automated action in case a norm is internalized. Otherwise, and if the agent has not
recognized any norm, it will use the Norm Recognition Module and then proceed with a
default decision-making. However, if the norm was already recognized, but not yet in-
ternalized, agents check the internalization conditions previously explained and check
whether the norm can be internalized; the decision making at this stage will be that
restricted to the normative beliefs and goals, orchestrated by the salience.

8.2.2 Urgency Management Module

In self-organizing societies, where agents are in charge of creating, imposing, modi-
fying, and enforcing norms, these are neither explicitly specified nor defended by any
in-charge authority. In a number of situations norms must be broken and agents should
be able to recognize these situations properly. By this means, agents have to intelli-
gently decide to violate the norm, for example crossing at the red light when hearing an
ambulance coming from behind.

In our model, to violate norms when urgent situations occur, agents need to explic-
itly record and compare the urgent and necessary nature of the situation their are facing
(in the ambulance example, the lights and the siren make explicit the socially desirable
violation of Do not cross in red norm). Therefore, all the Urgent Situations are accom-
panied with a salience value (SalUrgency

t ), that agents can compare with the salience of
the norm “normally” regulating that specific situation and decide accordingly. We are
aware of the fact that associating Urgent Situations with a pre-defined salience value is
a short-cut, and agents should learn this Urgency salience instead, but at the moment
how agents learn to recognize what it is considered to be an urgency has been deliber-
ately left out and will be explored in future work. Therefore, in urgent situations the
decision making compares the salience of the urgent situation with the salience of the
norm that usually regulates the situation, as it is showed in the following algorithm:
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Figure 8.1: EMIL-I-A Architectural Design
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if SalN
t ≤ SalUrgency

t then1

Violate the norm;2

else3

Comply with the norm;4

end5

Algorithm 5: Urgency Management Algorithm.

8.3 Self-Regulated Distributed Web Service Provision-
ing

Our simulation scenario consists in a web-service market populated by agents whose
task is to find out which services are offered by other agents (distributed) and control the
behavior of the rest of peers (self-regulated). This environment allows for EMIL-I-A to
be tested in a setting relevant for the MAS community. We will use the complete EMIL-
I-A architecture, although with a simplified version of the Decision Making than the one
shown in Sec. 7.1.1. The decision making of the agents used in here are explained in
Sec. 8.3.4.

The simulated scenario presents some fundamental features reproducing the real-
world phenomenon it models: it is dynamic (new services with different capabilities
can be created during the simulation), unpredictable and populated by heterogeneous
agents.

To test the performance of internalizers in a multi-norm scenario, we have intro-
duced two possible norms regulating the system. This variant is a novel contribu-
tion with respect to previous works in the normative self-adapting community (such
as [de Pinninck et al., 2007b, Blanc et al., 2005]).

8.3.1 Motivation
The presented simulation model aims to reproduce a self-regulated web-service market.
Inspired to the ”Tragedy of the Digital Commons”, we present a provider-consumer
scenario, populated by providers that might suffer a tragedy-of-the-commons caused
by the consumers’ over-exploitation. The services we refer to present the following
features: (1) they are available for use, and return agents a certain utility; (2) they are
a common good, and, (3) they can attend up to a certain amount of requests: once a
certain threshold is overcome the service starts loosing quality.

While looking for services, consumers ask central registries information about who
can provide them the service they are looking for, information that is obtained by mo-
bilizing neighbors in their social network. Networks are an effective way to obtain in-
formation - for example provided through word-of-mouth - and represent an alternative
source, with respect to traditional methods. Conventional approaches in multi-agent
systems, such as registries (centralized repositories with the services that are offered)
or matchmakers (auxiliary agents with knowledge to couple agents offering services
and agents with need of services), partially address this problem [Decker et al., 1997].
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However, in highly dynamic environments, there is a valuable amount of informa-
tion that cannot be stored in a centralized repository. In some cases, much of this
information (such as the updated details about the quality of the service or the avail-
ability of the service) may be accessed only by using social networks of interaction.
In this work, a hybrid approach has been proposed: similarly to the white pages in
UDDI [Curbera et al., 2002], our agents will query a central server for obtaining point-
ers to service providers, and then, all the other important information about the service
will be provided by the service providers. The functioning of the system is similar to
that implemented by Napster [nap, 2006].

More specifically, our case study presents the following dynamics: during the sim-
ulation, agents look for and find services (or learn tasks) that are necessary to satisfy
their necessities. According to the number of agents that are exploiting it, every ser-
vice has a level of quality that can increase or decrease during the simulation. Agents
obtain the services they need by finding other agents willing to share the service they
have control of. For the sake of simplicity, the allocation of new resources and neces-
sities are done automatically from the system into the agents, with different allocation
probability distributions depending on the experiment.

By finding a needed service with its expected quality, an agent obtains a reward;
however if the service obtained does not fulfil the agent’s expectations - in terms of
quality -, the requester will continue to look for the service. The service itself does not
take any part in the decision to be shared or not: the decision is taken by the service
holder, and, if a service-holder decides to share its service, this will be automatically
shared.

Moreover, when sharing, a service-provider remains blocked for a number of time-
steps (representing the transaction time), thus reducing its possibility to look for and
find its own needed service. This transaction time is inspired on the P2P networks:
in these type of networks, when a resource is shared, the bandwidth of both agents is
reduced (one for uploading the resource and the other for downloading it).

Thus, we can see how in this scenario, a selfish agent is motivated to free-ride
by obtaining services from other agents, but giving none. The spread of this selfish
behaviour would eventually lead to a “tragedy of the commons” situation, getting the
society to collapse, as predicted in [Adar and Huberman, 2000].

Trying to model the performance of a real system, EMIL-I-As behave dynamically,
changing the rates of services’ assignation and request along the time. To test how
the EMIL-I-A architecture performs when facing this “tragedy of the digital commons”
situation, we compared its performance with that of agents endowed with different ar-
chitectures.

8.3.2 Norms in our Web Service Scenario
As we have already specified, the service providers can share a resource with a re-
quester. However, the service provider is the only one that knows at run-time the quality
of the service he can offer, and the quality needed by the requester. We introduced two
different norms that regulate the environment: (N1) the Always Share when Asked for
a Service norm and (N2) the Share Only High-Quality Services norm. Depending on
the environmental conditions (the service’s capacity distributions) and on the agents’
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necessities (the services’ expected quality), one or the other norm will become more
salient, and therefore will govern the behavior of the system.

In order to enforce norms and to deter agents from violating them, EMIL-I-As can
use the two different enforcing mechanisms already analyzed: punishment or sanction.

8.3.3 Model
For the sake of clarity, we model the environment as a Hybrid Decentralized archi-
tecture (as in Fig. 8.2), as defined in [Androutsellis-Theotokis and Spinellis, 2004]. In
this type of architecture, each agent shares services (or resources) with the rest of the
network. All agents are connected with a central directory server that maintains (a) a
table in which all the users’ information are recorded (normally the IP addresses and the
connection bandwidth, which in our system are represented as an ID and the capacity
of the service), and (b) a table listing the services from each agent, along with metadata
descriptions of the services (such as the type, capacity and so on). Every agent looking
for a service sends a query to the central server. The server searches for matches in its
index, returning a list of users that hold the matching service. The user can then open
direct connections with one or more of the peers that hold the requested service, and he
can request the needed service. The final decision of whether sharing or not the service
is to be taken by the peers.

In our scenario, the central server maintains the following information: A, the set of
agents in the system, SN, the social network that connects the agents, and T , the types
of services that can be provided and looked for in the system.

Agents are located in a social network that restricts their interactions and commu-
nications. The social network is described in the following way:

SN = {A,Rel}
where A is the set of agents populating the network and Rel is a neighborhood

function. The neighborhood function is indirected, therefore is ∀a,b ∈ A if Rel(a,b)
then Rel(b,a).

During the simulation, agents find resources (or learn tasks) that are offered as ser-
vices:

Service = {ID, t,c,Clients}

where ID represents the identification number of the service provider (e.g. IP ad-
dress), t ∈ T is the type of service offered by the service provider (e.g. storage, calcu-
lation time, data analysis), c is the capacity of the service provider, i.e. the amount of
clients it can satisfy offering a good Quality of Service; and Clients ⊂ A indicates all
the clients the service provider is holding at the moment.

Moreover, agents find out new necessities, that can be fulfilled by obtaining services
from other agent:

Needs = {t,q,d}
where t ∈ T represents the type of service an agent needs with a minimum q Quality

of Service level, before timestep d. The Quality-of-Service of a provider is calculated
in the following way: Capacity

Clients
For the sake of simplicity, the allocation of new resources and necessities to the

agents is done automatically by the system, with different allocation probability distri-
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Figure 8.2: Social Network of the Web-Service Provisioning Scenario.
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butions depending on the experiment. Moreover, the service’s capacity and the service’s
expected quality follow two different probability distributions, both defined by the sys-
tem and dependent on the environmental conditions that will be simulated.

Algorithm 6: Simulation Process.

for timesteps do1
/* Environmental Phase: Resource & Needs Assignation */
forall i ∈ agents do2

coin = random();3
if coin ≤ serviceAssignationProbability then4

s = createNewService(type,capacity);5
S.add(s);6
i.assignService(s);7
forall j ∈ agents do8

if coin ≤ needAssignationProbability then9
j.assignNeed(s.type, deadline);10

end11
end12

end13
end14
/* Search & Exchange Phase */
forall i ∈ agents do15

/* Ordering the needs */
i.orderNeedsByUrgency();16
n = i.mostUrgentNeed();17
/* Query server about most urgent needed service */
Server← i.serverRequest(n);18
potentialContacts = i.receiveServerResponse()← Server.serverResponse({c0,d0},{c1,d1}, . . . ,{ck ,dk});19
/* Send a request to the closest of the available service holders */
contact = potentialContacts.closestDistance();20
contact← i.sendRequest(n,n.quality,n.urgency);21
/* Receive and evaluate response for norm violations */
response = i.receiveResponse()← contact.decideRequest(i,n,urgency);22
if response == Share then23

i.Block(contact.distance);24
contact.Block(contact.distance);25

end26
normativeResponse = i.decideNormativeReaction(response);27

end28
/* Strategy Update Phase */
forall i ∈ agents do29

nc = i.ObserveNormaticeCues(i.neighbours);30
i.UpdateStrategy(nc);31

end32
end33

The simulation is run for 20.000 time steps, and each time step is structured in the
following way:

1. According to the environmental situation, each agent has the possibility to pro-
vide some services and has some needs to satisfy (lines 2-14 in Algorithm 6).
The needs are only assigned to agent when a service is created, and that is why
we created the needs assignation after the creation of the service.

2. Each agent can ask the system for a needed service (line 18 in Alg. 6), thus
receiving a list containing the service’s holders (line 19 in Alg. 6). The server
list has the following form {c0,d0},{c1,d1}, . . . ,{ck,dk}, where ci represents the
agent identity, and di represents the distance from the requester to that agent.
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3. Each agent can send to the selected service-holder a request (as it can be seen in
the schematic communication protocol shown in Fig. 8.3) with a urgency param-
eter. The service-holder is chosen giving preference to those that have available
services and are located at the closest distance (line 20-21 in Alg. 6).

4. To simplify our experiments, agents can take any of these three decisions:
“share”, “not to share” or “not allowed to share”. The decision-making functions
will be further discussed in Section 8.3.4.

5. If the service holder’s response is positive (”share”) and the quality of the re-
ceived service is at least equal to the expected one, the requester becomes a
service-holder, and both the original service-holder and the requester remain
blocked for a fixed number of time steps (representing the transaction time); if
the quality of the service is insufficient, the requester will continue to look for
that service, discarding the one received (line 23-26 in Alg. 6)

6. After receiving the service holder’s response, if a low quality service is received
(line 27 in Alg. 6), the requester can decide to punish or sanction the service-
provider. As said in section 8.3.2, punishment works by imposing a fine to the
target, thus modifying the cost-to-benefit ratio of norm compliance and violation,
while sanction is also accompanied with a normative message, making explicit
the existence and violation of the norm to the target (and potentially to the audi-
ence).

7. At the end of each time step, agents observe the interactions that have occurred
around them, this way checking the amount of norm’s compliance, violation, pun-
ishment and sanction and consequently update the norm’s salience mechanism (as
explained in Sec. 8.2). Our agents have access to perfect local information: they
can record only the social normative information of their direct neighbors in their
social network (line 29-32 in Alg. 6).

Figure 8.3: The Interaction Protocol Between Agents
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The two norms that govern the environment, described in Sec. 8.3.2, are formalized
as follows:

• N1, the Always Share when Asked for a Service norm:
∀requesterAgent Share← contact.decideRequest(requesterAgent,requestedService,urgency);

• N2, the Share Only High-Quality Services norm:
∀requesterAgent Share← contact.decideRequest(requesterAgent,requestedService,urgency)
i f f requestedService.capacity>requestedService.Clients.size.

8.3.4 Agents Architectures

In environments where the designer has perfect knowledge of both the system’s be-
haviour and the agents’ necessities, hardwired strategies are the best option: the sys-
tem designer can use scheduling algorithms to synchronize the usage of the resources
amongst the agents to obtain the optimal distribution. However, in this work, we are
interested in scenarios where the dynamics of the system are unpredictable and unfold
runtime. Therefore we need agents able to adapt to environmental changes. In the ex-
perimental section (Sec. 8.3.5) we compare two agents’ architectures: the Instantaneous
Utility Maximizing Agents (IUMA) and the EMIL-I-As.

Aiming to maximize their instantaneous utility, IUMAs share their resources only
if the probability of being punished is sufficiently high. Moreover, these agents never
punish (as punishing is costly and reduces their utility).

EMIL-I-As are provided with the normative architecture described in Sec. 8.2.
Before internalizing the norm, they comply with it only to avoid punishment, as

IUMAs do. We refer to EMIL-I-As that are not provided the internalization modules as
normative agents. They do not comply with norms in an automatic way, as internalizers
do, they choose to comply with the norm only to avoid punishment. In other words,
unlike internalizers their goal to comply with the norm is an instrumental one: it is
satisfied only to avoid punishment and it is not an end in itself. Once internalized, they
follow the norm also in absence of punishment. Initially, only norm-holders know about
the norms governing their environment. Any normative agent (EMIL-I-A or not) can
(or cannot) be a norm-holder, depending if they are initialized with knowledge about
norms and the salience variable.

Therefore, normative agents observe norms under the threat of punishment (as this
would reduce their utility). If a norm is intensively defended through the application of
punishment, a normative agent will consequently observe it; on the other hand, when the
norm is not defended, a normative agent will probably not observe the norm. However,
agents do not know beforehand what the surveillance rates of the norm are. During
the simulation, agents update (with their own direct experience and observed normative
social information) the perceived probability of being punished. Normative agents’
decision making is also sensible to a risk tolerance rate: when the perceived punishment
probability is below their risk tolerance threshold, agents will decide to violate the
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norm; otherwise they will observe it. Although this process might provide agents with
the highest benefit, it yields the computational cost of evaluating at every time step each
of the options. Before internalizing norms, a normative agent calculates the convenience
of complying with the norm, while the salience mechanism works in the background.
From the technical point of view, the normative agent will internalize a norm when both
the following conditions are fulfilled: (1) norm salience is above a certain threshold,
indicating that the norm is important enough within the social group; and (2) the cost-
to-benefit calculations for all the possible actions exceed the tolerance threshold.

Once a norm is internalized, EMIL-I-As stop executing benefit-cost calculation, and
start observing the norm in an automatic way. Nevertheless, the salience mechanism
is still active, and it is continuously updated. This way, if necessary, agents are able
to unblock the automatic action, restoring a cost-to-benefit analysis in order to decide
whether to comply or not.

Internalizer Decision Making

Internalizers take two decisions: (a) whether share a service or not, and (b) whether
punish or sanction norm violators. Concerning the first choice (see Alg. 7), share a
service or not, if no norm has been internalized yet, the agents will evaluate all the
possible actions available, and they will choose the one returning the highest payoffs
(line 11-24 in Alg. 7). Otherwise, once the norm has been internalized, the agent will
behave in an automatic way: the decision will be no further evaluated, but executed
straightforwardly wrt the compliant behaviour of the internalized norm (line 1-10 in
Alg. 7).

Concerning the second choice, when detecting a norm violation, the decision to
punish/sanction3 or not the wrongdoers depends on the level of salience of the violated
norm. This decision making is described in Algorithm 8 in a very self-explanatory way.

IUMAS Decision Making

The IUMAs’ decision making for the first stage decision is modelled with a
classic Q-Learning algorithm (as in [Sen and Airiau, 2007, Villatoro et al., 2009]).
The learning algorithm used here is a simplified version of the Q-Learning one
[Watkins and Dayan, 1992].

The Q-Update function for estimating the utility of a specific action is:

Qt(a)← (1−α)×Qt−1(a)+α× reward (8.1)

where reward is the payoff received from the current interaction and Qt(a) is the utility
estimate of action a after selecting it t times. When agents decide not to explore, they
will choose the action with the highest Q value. The reward used in the learning pro-
cess is the one obtained from interaction, considering also the amount of punishment
received.

The IUMAs’ decision making for the second stage is also modelled with a Q-
Learning. However, as there are no potential risks consequent to not punishing (as in

3As we said, only agents having recognized that there is a norm regulating their group will sanction,
otherwise they will just use punishment.
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Algorithm 7: Resource Sharing Decision Making.

Input: Deciding Agent i, Requesting Agent j, Required Service s, Requested Quality q, Requested Urgency u
Data: Potential Reward for Defection RDe f = 3
Data: Potential Reward for Cooperation RCoop = 0
/* Automatism in case of Internalized Norms */
if i.Internalized(N1) then1

/* Norm 1 Compliant Behaviour */
Share requested resource;2

end3
if i.Internalized(N2) then4

/* Norm 2 Compliant Behaviour */
if s.clients.size < s.capacity then5

Share requested resource;6
else7

Do not Share;8
end9

end10
/* If no norm has been internalized, Benefit-Cost Calculation considering the presence

of Norms */
/* Agents have to update their Beliefs about Punishment Policies */
i.updateBeingPunishedProb();11
if i.RiskTolerance ≤ i.perceivedPunishmentProb(N1) ∨12
i.RiskTolerance ≤ i.perceivedPunishmentProb(N2) then13

RDe f ← Deduce Punishment Cost;14
end15
if RDe f ≥ RCoop then16

Do not Share;17
else18

if i.Salience(N2) ≥ i.Salience(N1) ∧ i.Salience(N2) ≥ Norm Activation Value then19
Not allowed to Share;20

else21
Share;22

end23
end24
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Algorithm 8: Decision Making in front of norm violations
Input: Requesting Agent i, Requested Agent j, Required Service s, Requested Quality qreq,

Requested Urgency u, response, Obtained Quality qrec
/* Response against an Excused Service Denial */

if response == Not allowed to Share then1
/* If low quality was requested... */

if qreq < 1 then2
/* And N1 is more important, it is considered as a Punishable

Violation */

if i.salience(N1) > i.salience(N2) then3
if i.salience(N1) ≥ ACTIVATION VALUE then4

i.sanction(j);5
else6

i.punish(j);7
end8

end9
end10

end11
/* Response against a Service Denial */

if response == Do Not Share then12
/* If low quality was requested... */

if qreq < 1 then13
/* And any norm is active, it is considered as a Punishable

Violation */

if i.salience(N1) ≥ ACTIVATION VALUE then14
i.sanction(j);15

else16
i.punish(j);17

end18
else19

if i.salience(N2) ≥ ACTIVATION VALUE then20
i.sanction(j);21

else22
i.punish(j);23

end24
end25

end26
/* Response against a Low Quality Sharing */

if response == Share ∧ qrec < qreq then27
/* If it is not an urgency... */

if u¡i.salience(N2) then28
/* And N2 is active, it is considered as a Punishable Violation */

if i.salience(N2) ≥ ACTIVATION VALUE then29
i.sanction(j);30

else31
i.punish(j);32

end33
end34

end35
/* If no normative action has been taken, and any norm is highly salient,

educational messages are sent */

if No Punishment/Sanction Yet then36
if i.salience(N1) > i.salience(N2) ∧ i.salience(N1) ≥ ACTIVATION VALUE then37

i.educate(j);38
end39
if i.salience(N2) > i.salience(N1) ∧ i.salience(N2) ≥ ACTIVATION VALUE then40

i.educate(j);41
end42
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the meta-punishment situation presented by [Axelrod, 1986]), agents will always prefer
not to punish.

8.3.5 Experimental Design

In the simulation platform presented, two important factors can vary, thus affecting the
system’s behaviour: (1) the services’ capacity, (2) the expected desired-quality of the
services.

In order to check the adaptability of EMIL-I-As, the service’s capacities and its
expected desired-quality vary during the simulations.

To reduce the search space, the service and task assignment have been fixed to a
constant rate of 10%: the resources are created at an average rate of 1 every 10 time
steps, and at that time step, 10% of the population will be assigned with tasks that need
that resource. Tasks are assigned only when resources are created.

Agents are located in a scale-free network (that represents theoretical social net-
works [Newman, 2003, Albert and Barabasi, 2002]). This topology restricts the agents
observation (with respect to the social and normative information) to their direct neigh-
bors, but they can potentially interact (ask and receive services) with any other agent in
the network.

In this work, the cost of punishment has been fixed to 1:4, meaning that punishing
costs 1 unit to the punisher while reducing the target endowment of 4 units (the 1:4
punishment technology is used because found [Nikiforakis and Normann, 2008] more
effective in promoting cooperation). The decision making of both normative agents
and internalizers is not affected by the cost of applying a punishment/sanction to the
target; however, the costs of being punished/sanctioned affects the agents’ decision to
cooperate or defect in the next rounds. The results presented in this section are the
average results of 25 simulations.

All non-IUMAs agents are initialized with a constant propensity to violate norms
and the perceived probability of being punished/sanctioned is equal to or lower than
30%. From the beginning of the simulation, some agents (this quantity varies from
experiment to experiment) are already endowed with the two norms, N1 Always Share
when asked for a Service and N2 Share Only High-Quality Services. We refer to these
agents as norms’ holders and the initial salience of their norms is set to 0.9. Before pro-
ceeding and for the sake of clarification, as specified in Sec. 8.3.4, a normative agent
is an agent endowed with the EMIL-I-A architecture and that has not internalized the
norm yet, while with internalizers we refer to normative agents that have the internal-
ization module and can reach the internalization state and comply with norms in an
automatic way. Both types of agents (internalizers and normative) can (or cannot) be
norm-holders, i.e. knowing the existence of the norm with a salience value assigned to
it.

The simulations are populated with a constant amount of 50 agents, with a variable
amount of internalizers (whether or not norm holders) and IUMAs.
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8.3.6 Experiment 1: Adapting to Environmental Conditions
One key feature of our internalizers is their ability to dynamically adapt to unpredictable
changes. To test this ability, we have designed several dynamic situations, where the
providers’ capacities and the requesters’ desires vary, in order to dynamically change
the norm that apply along the simulation without the knowledge of the agents. From the
beginning of the simulation, the environment is fully populated by internalizers, already
having the two norms highly salient stored in their minds (norms holders) 4.

In Fig. 8.4, on the x-axis the timesteps of the simulation are shown, on the y-axis
the amount of internalizers is indicated.

Firstly, in Fig. 8.4(a) we show the dynamics of a basic scenario, where the services
are endowed with infinite capacity to attend clients, and the requesters do not care about
the quality of the services they receive (meaning that also services with a low quality
satisfy their needs). We can observe that, after a number of timesteps the internaliza-
tion process starts working, resulting in an increased number of agents that internalize
norm 1 (Always share when asked for a service). Why is norm 1 spreading and being
internalized rather than norm 2 (Share only high-quality services)? This is due to the
fact that in this experimental condition agents looking for a service are not interested
in its quality, thus even though they receive services with a low quality their needs are
satisfied and they will not punish/sanction the service holder that provided it. Shar-
ing a service, whichever its value is, is interpreted as an action compliant with norm 1
and since instances of this action exceed the number of actions in which high-quality
services are shared, the salience of this norm is higher than the other’s. This experi-
ment confirms that our internalization architecture works selecting the correct norm to
internalize.

The second experiment is a slight but important variation of the previous one. This
time, the services’ capacity is restricted (to 3 clients). Results in Fig. 8.4(b) show that
agents correctly internalize the norm that rules the situation (i.e. norm 1), although the
internalization process is slower than in the previous experiment. The reason for delay
lays in that the dynamics taking place in this experiment: no clear information is given
to the agents for deciding which one, between norm 1 and norm 2, is governing the sys-
tem. Internalizers are initialized with both norms at high salience. When the resources’
holders start sharing, they provide requesters with high quality resources, even though
the requesters’ needs would be satisfied also by low quality resources. Agents interpret
high-quality transactions as actions compliant with norm 2, this increasing its salience
value. After a while, agents start sharing resources of lower quality, because the list of
requesters exceeds the amount of high quality resources. Low-quality resource trans-
actions make the salience level of norm 2 decrease and the salience level of norm 1
increases to its maximum value (necessary condition for norm internalization as shown
in Sec.8.2.1). We can observe how all these micro-dynamics in the individuals affect
the global behaviour of the system producing the delay showed in Fig. 8.4(b).

In the third experiment, we test the agents’ capacity to internalize norm 2: in this
situation the services’ capacity is restricted to 3 clients and the requesters’ needs are
satisfied only when receiving high-quality resources. In general, we observe that the

4As we will see in Sec. 8.3.8, the internalization process speed is proportional to the initial amount of
norm holders.
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(a) Experiment 1: Infinite services’ capacity and expected low quality of the services (meaning
that agents need to have the service without paying attention to its quality)
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(b) Experiment 2: Restricted services’ capacity (restricted to 3 clients) and expected low quality
of the services
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(c) Experiment 3: Restricted services’ capacity (restricted to 3 clients) and expected high quality
of the services
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(d) Experiment 4: Services’s capacity is variable along the simulation: the services’ capacity
is infinite during the first 2000 timesteps, and after that moment, it linearly decreases from 20 to
1, reaching the service exploitation point (where they cannot longer offer high quality services)
after timestep 8000. Agents are assigned tasks to be fulfilled at high quality level along the entire
simulation.
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(e) Experiment 5 (The Complex Loop): Before the timestep 2000, the capacity of the services is
infinite, but it is set to 3 after that. Before timestep 5000 and after the timestep 15000, agents are
assigned needs that are satisfied also with low quality services. During the rest of the execution, the
expected quality of the services is high.

Figure 8.4: Different Combinations of Resources Capacities Distribution and Expected
Quality Distributions.
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agents internalizing norm 2 do not reach the majority, but when this is the case they do
so quickly. This is because until the number of resources is high enough to satisfy all
the requests with their expected quality, being compliant with norm 2 can be interpreted
also as an action compliant with norm 1, thus maintaining the salience of norm 1 high.

In the fourth experiment a dynamic change in the environment is included. The
system is programmed in such a way that for the first 2000 timesteps the capacity to
provide resources is infinite; after that time, during the simulation, the capacity linearly
decreases from 20 to 1 until. Agents’ needs are satisfied only when they receive high-
quality resources. We observe that after timestep 8000, the capacity of the services
significantly decreases and agents slowly start deinternalizing norm 1 and substitute it
with norm 2. This experiment shows how our agents are able to adapt to this dynamic
situations.

In order to test their speed of adaptability, we have designed one last experiment.
In Fig. 8.4(e), we show the result of the experiment named The Complex Loop, where
we can observe that our internalizers perform efficiently even in complex situations, i.e.
where not only the environment (the services capacity), but also the agents’ preferences
(desired-quality of the services) change during the simulation.

The Complex Loop experiment shows that when the services’ capacity is infinite
(meaning that high-quality services are always available) and the agents’ needs are
satisfied by high-quality (HQ) resources, norm 1 is internalized. At timestep 2000,
an abrupt change occurs in the environment, making the services’ capacity drop to 3,
and agents switch to internalize norm 2. After time step 5000, agents’ preferences
change (starting now to be satisfied also with Low-Quality resources), producing an-
other change in the internalization dynamics. Agents turn back to internalize norm 1.
Finally, agents’ preferences change again at time step 15000, preferring HQ resources
and internalizing norm 2 again.

We can conclude that a population of internalizers can adapt to sudden and unex-
pected environmental changes in a flexible manner.

8.3.7 Experiment 3: Internalizers vs IUMAs

In this experiment, the internalizers’ performances are compared with the IUMAs ones.
We run several simulations to cover the search space of different proportions of Inter-
nalizers5 and IUMAs.

As it is shown in Fig. 8.5, a higher amount of Internalizers is able to adapt faster to
the changing environmental conditions. The figure shows the percentage of unsuccess-
ful transactions6 occurred in the system during a situation identical to the one presented
in the “Complex Loop” experiment, except that the population is a combination of In-
ternalizers and IUMAs.

The results show that the number of unsuccessful transactions is inverse-
proportional to the number of internalizers. The explanation of this result can be found
in the way in which IUMAs decide to comply or not with the norm: when they decide to

5Also in this scenario, Internalizers are also norm-holders
6We consider transactions as unsuccessful when a service provider offers a service of a quality lower than

the expected one, or when a service, though available, is not shared .
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Figure 8.5: Percentage of Unsuccessful Transactions with Different Proportions of
Strategic Agents and Internalizers.

share a resource their payoff is reduced (when sharing, agents are blocked for a number
of timesteps), therefore they decide to free-ride. In other words, they always ask for
services, but they never share.

On the other hand, internalizers decide to comply or violate the norm, not only
to maximize their material payoffs, but also because they recognized a norm in their
social environment, and form the goal to comply with it, depending on its salience.
Consequently, when the environment change and agents need to find out the new norm,
internalizers perform a certain number of unsuccessful transactions before adapting to
the new situation. The simulation data show that the unsuccessful transactions are 50%
less (from 45% to 22,9%) in groups entirely populated by internalizers than in those
populated by IUMAs.

8.3.8 Experiment 3: Effect of Initial Norm Holders

This experiment aims to analyze how the initial amount of norm holders affects the
performance of a group fully populated by internalizers. As explained in Sec. 8.2, in-
ternalizers do not know which are the norms in force in the group at the simulation
onset, therefore the presence of norm-holders, explicitly eliciting the norms, is neces-
sary for triggering the process of norm recognition.

Focusing again on the The Complex Loop experiment (presented in Sec. 8.3.6 and
shown in Fig. 8.4(e)), in Fig. 8.6 the average norm’s salience per agent is shown: on
the x-axis the simulation time evolution is shown, while on the y-axis the amount of
initial norm holders (randomly located in the network) is indicated. We obtained similar
results in the rest of experiments performed in Sec. 8.3.6, but we decided to analyze only
this situation because of its complexity and completeness (as it contains all the possible
dynamics of our scenario with respect to norm internalization and de-internalization).
Figure 8.6(a) represents the salience dynamics of norm 1 and Figure 8.6(b) that of norm
2: depending on the moment of the experiment, only one of the two norms is the one
that really prescribes how to behave; that is why its salience is higher than the other one
(for a more detailed description of the relation between the two norms, see, Sec. 8.3.6).
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Figure 8.6: Complex Loop Experiment Average Salience.
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Figure 8.7: Different norms coexisting in the same social environment.

During the first 2000 timesteps of the simulation, we can appreciate the impact of
a different number of norms’ holders on norms’ salience: when this number increases,
so does the norm’s salience. Special attention should be paid to the situation with no
initial norm-holders: here norms are never recognized as no explicit norm elicitation
occurs (by explicit norm invocation or by sanction). Even a small number of initial
norm-holders (10% of the population in this case) allows agents to recognize the norms
and internalize them. Once recognized and stored according to their salience degree,
agents will start both comply with the norms and also defend them. Thus, norm hold-
ers are necessary to trigger a virtuous circle from compliance with the norms to their
enforcement. After the two norms have been recognized (around timestep 5000), the
number of initial norm holders will no more affect the successive dynamics.

8.3.9 Experiment 4: Testing Locality: Norms Coexistence

In self-organized societies, as are the ones we are interested in, norms are an impor-
tant tool for solving the dilemma of public good provision. Since individual behaviours
affect the group’s welfare, the group itself needs to exercise control over its members.
Consequently, agents can create and impose a norm depending on the goals of the so-
ciety. Moreover, in this type of distributed systems, different dilemmas could appear
in different parts of the social network, depending (again) on the distribution of pop-
ulation’s preferences distribution and the environmental conditions. Our internalizers
are able to cope with the locality of the norms, thus allowing the coexistence of dif-
ferent competitive norms in the same social network. To observe this result we have
performed the following experiment.

We have placed 60 agents in a one-dimensional lattice, with neighborhood size set
to 6 (i.e. each agent has a constant number of 6 neighbors). In Fig.8.7, agents in the
top right and in the bottom left quarters of the ring are assigned with infinite capacity
resources and low quality desired services, and, the rest of the agents are given limited
capacity services and high-quality desired tasks. The colour of the nodes indicates the
internalized norms (light colour standing for norm 1, and dark colour for norm 2). The
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self-adaptive capability of our internalizers shows a good performance in the designed
environment: two norms can coexist in different areas of the same social network.

8.3.10 Experiment 5: Dealing with Emergencies: Selective Norm
Violation

One of our claims is that internalizers are able to unblock a norm not only in situations
where its salience is very low, this meaning that the norm is disappearing, but also in
emergency situations.

While IUMAs cannot handle normative requests with different levels of urgency
(because they are not endowed with normative architectures), our internalizers (thanks
to the salience module) can. In the ambulance case, the urgency of the situation is
announced by the siren, thus allowing agents to unblock the automatic behaviour of
stopping at the red traffic light (and the ambulance to pass), as the emergence situation
is more salient than the observance of the norm. In our distributed web-service scenario,
we can imagine the following situation: imagine one of our agents is writing a scientific
paper which includes a number of important calculations. However, the day before the
deadline the agent in question realizes it needs to rerun some of the experiments; in
order to get the results in time, it needs to use different calculation clusters distributed
amongst its peers, who are requested accordingly. The requested agents can choose
to follow the FIFO (first-in, first-out) norm, or, given the urgent situation, make an
exception and proceed to the execution of our last-minute scientist’s calculations. It
is easy to see how this norm violation performed by its neighbours/colleagues would
bring a benefit to our agent (as it will have the results in time for submission).

Experimental results show us that the internalizers successfully handle emergencies
when these are explicitly specified (as the siren in the ambulance case). However, there
is a cost associated to this advantage. An emergency is interpreted by the audience as
a non-punished norm-violation, consequently reducing the norm’ salience (stopping at
the red traffic light). If agents face the same emergency too often, the salience of the
norm “normally” regulating the situation will decrease and this reduction unblock the
internalization process, leading the agent back to the normative (benefit-to-cost calcu-
lation) phase. We can then affirm that emergencies can be managed by internalizers,
but only when they occur sporadically, otherwise they are interpreted as a change in the
salience of the norm governing the environment.

8.3.11 Experiment 6: Topological Location

Finally, we pay attention to the importance of the location of our INHs (initial norm
holders) in the topology, when dealing with scale-free networks. As agents handle local
information to adapt the notion of norm activation, those agents located closer to INHs
will have a stronger and faster norm recognition process and salience adaptation. In
other chapters of this thesis (Chapter 4), we identified that agents located on certain
positions within a Scale-Free network played an important role on the emergence of
conventions. We hypothesize that in irregular networks, such as scale-free, agents with
higher connections will be the most adequate to be initialize as INHs, as they will be
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able to influence a larger portion of the population, producing a faster spread of norms
within the population.

In order to analyze the effect of the topological location of INHs, we adjust our
experimental platform in order to position our INHs in certain locations of the topology
and contrast their effects:

• Hubs: INHs will be located in the nodes with the highest degree.

• Leafs: INHs will be located in the nodes with the lowest degree.

• Self-Reinforcing Structures (SRSs): INHs will be located in the nodes with a
higher betweeness inside a Self-Reinforcing Structure. Eventhough the concept
of Self-Reinforcing Structure have sense in the convention emergence problem,
we believe that the position of these agents (connecting small communities with
the rest of the society) can have an important impact on the distribution of norms.

In order to obtain the results, we run each of the treatments 25 times and plot the
average results. As we want to observe the effect of the location of the INHs in the dis-
tribution of norms, we load a society fully populated with internalizers, and we vary the
number and position of INHs. Agents are located in the first scenario used in Sec.8.3.6,
where services capacities are infinite and it is expected low quality from agents; that
way we only pay attention to the average salience of Norm 1: Always Share when
Asked for a Service.

Experimental results shown in Figure 8.8 are against our initial hypothesis, show-
ing that locating INHs on the leafs produce a stronger effect on the average population’s
salience. Even though it seems counterintuitive, the explanation is straightforward. Be-
cause of the design of our agents, INHs decisions are motivated by the information
gathered at a local level. In the Hubs treatment, INHs access more information than in
the Leafs treatment, as the INHs have more neighbours in the former treatment. For that
reason, hub INHs initially observe more violations than the others. On the other hand,
leaf INHs are only connected to very few agents, and therefore the information that
they gather is reduced with respect to the Hub INH. Moreover, and using an example,
if a leaf INH is connected to only one agent, and this one is a violator, the INH will
punish/sanction this violation. As we saw previously, a punished/sanctioned violation
have a strong impact on salience. On the other hand, the hub INH that has a large num-
ber of neighbours will observe a reduced number of punished/sanctioned violations,
remaining the other unpunished. As we have said, those actions have an effect on the
salience of INH that motivate their decisions. In the case of Hub INHs, INHs loose
their motivation to punish/sanction faster than a leaf INH.

These results suggest us that using punishment in a self-organizing society should
be a bottom-up process, so that agents do not loose the motivation to punish/sanction
free-riders. Moreover, this result is encouraging for policy-makers, as it is not necessary
to locate INHs in hub positions of a network (which are hard to obtain because of the
degree of these nodes), being the correct position the leafs of the network.
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(b) 30 INHs.
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(c) 50 INHs.

Figure 8.8: Effect of the topological positioning of INHs.
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8.4 Conclusions
When Vygotsky first formulated his theory of internalization, he noted that only “the
barest outline of this process is known” [Vygotskii and Cole, 1978, p 57]. We do not
know, yet, how people manage to internalize beliefs and precepts with a reasonably
adequate success, partly because we still do not agree about what to investigate, or
what we mean by this notion. Consequently, no useful notion and model are avail-
able for applications, despite its wide and profound implications. Questions such as
how norm internalization unfolds, which factors elicit it, which are its effects, obsta-
cles and counter-indications, are issues of concern for all of the behavioral sciences.
The internalization of social inputs is indispensable for the study and management of
a broad spectrum of phenomena, from the development of a robust moral autonomy to
the investigation and enforcement of distributed social control; from the solution to the
puzzle of cooperation, to fostering security and fighting criminality, etc.

After a cognitive definition of the subject matter, this chapter presented and dis-
cussed the building blocks of a rich cognitive model of internalization as a multi-step
process, including several types and degrees of internalization. Next, factors favoring
different types of internalization were discussed. The modular character of BDI archi-
tectures, like EMIL-A was shown to fit the approach advocated in the paper.

In this work we have also implemented and presented the results of the internal-
ization module that has been incorporated into the existing platform, creating the new
EMIL-I-A (EMIL Internalizer Agent). Internalizers have been tested in a tragedy of
the digital commons’ scenario, where the emergence of cooperation is a difficult task
to achieve and they have proven to successfully deal with this task. The simulation
data have also shown that when facing situations in which the environment can quickly
change internalizers are able to self-adapt. We have also observed that the amount of
initial norm holders and internalizers speed up the process of norm’s convergence, even
when the scenarios are dynamic and different norms have to be internalized and de-
internalized. Another interesting result is how the subjective character of the salience
allows the coexistence of different norms in the same social environment: depending
on the agents’ interests and the environmental conditions, different norms can emerge
in the same environment. Finally, the experiments have shown that our internalization
architecture is flexible enough to handle emergencies and decide to violate an already
internalized norm. We claim that internalization provides agents with self-policing ca-
pabilities that are very useful in settings where social control is unfeasible and expen-
sive.

What is the added value of a rich cognitive model of internalization, as compared
to simpler ones (e.g., reinforcement learning)? There are several competitive advan-
tages. First, reinforcement learning does not account for the main intuition shared by
different authors, i.e. the idea that internalization makes compliance independent of ex-
ternal enforcement. Second, a rich cognitive model, namely a BDI architecture with its
specific modules, accounts for different types and degrees of internalization, bridging
the gap between self-enforcement and automatic responses. Third, a BDI architecture
accounting for different levels of internalization allows flexibility to be combined with
automatism, as well as thoughtless conformity with autonomy. A BDI system can host
automatism, but a simpler agent architecture does not allow for flexible, innovative and
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autonomous action.
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Chapter 9

Conclusions

In this final chapter we summarize the main contributions of the thesis that have already
appeared partially in the respective sections of the dissertation. We also state the future
lines of research that this thesis has opened. For the sake of clarity we will divide both
the conclusions and the future works in two sections, one for the convention emergence
part and the other for the emergence of cooperation in Multi-agent Systems. However,
there is a main conclusion to be extracted from the thesis as a whole: we have presented
a game theoretical differentiation for social norms, and a different range of techniques
that can be used by agents (independently) in order to achieve their tasks in a more
efficient manner. This thesis shows how norms are essential for the achievement of
coordination between agents without a centralized authority, even though these norms
are against the agents’ self interest.

9.1 Convention Emergence

9.1.1 Conclusions

In this thesis we have developed a general framework for the convention emergence
problem. The problem of convention emergence is a key problem to be solved for real
self-organized systems. By allowing agents to reach a common convention from all
possibles is one of the simplest coordination tasks to be achieved in a decentralized
way. In our approach we focus on the emergence of the conventions following a social
learning approach, as it seems to be the most realistic and less intrusive for the rest of
agents in the population (others have studied this problem although accessing to private
information of the other agents). Our experimental framework has been designed to
vary a number of parameters that were never previously explored in the literature (type
of game, players per interaction, conventions available, strategy update rules, learning
algorithms and topologies), and we believed were essential for a complete understand-
ing of the phenomenon.

The systematic variation of these parameters allowed us to analyze the dynamics of
the process of convention emergence and analyze the reasons why previous researchers
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did not overcome the threshold of 90% emergence rate. We have seen how certain con-
figurations of the social network and some strategy update rules promote the emergence
of subconventions that remain meta-stable. It is the first time during the our research
in convention emergence that we identify this meta-stability, introduced by the social
learning and the topology of interactions.

In order to dissolve those subconventions we analyzed the state-of-the-art of the
socially-inspired instruments used in MAS and propose two new ones: rewiring and
observance. Rewiring allows agents to break links with agents from which they are
not getting satisfactory interactions, while Observance allows agents to obtain infor-
mation about the last played strategy of a certain subset of agents. With the usage of
these instruments independently, the emergence of global conventions is accelerated in
some scenarios, remaining others meta-stable. Specifically, we observe than when our
instruments are only fed with local information, the subconventions remain meta-stable.

The recognition of this locality effect took us to discover the existence of Self-
Reinforcing Structures in Scale-Free Networks. These structures are a group of agents
that can emerge a subconvention that remains stable because of the interaction topology
which directly affect to the social learning. The Self-Reinforcing Structures detected are
Claws and Caterpillars in Scale-Free Networks. With an instrument that combines the
power of observance and rewiring, we achieved the dissolution of the Self-Reinforcing
Structures, allowing then the system to achieve full-convergence, accessing only public
and local information.

9.1.2 Future Work

Along this work, we have seen how the convention emergence problem show interest-
ing dynamics when studied in complex networks such as Scale Free. As this type of
networks represent theoretical social networks, the future work regarding this area of
research involves a careful analysis of the convention emergence in Scale-Free Net-
works.

In this thesis we have already thrown some light about the dynamics observed in
those type of networks, and how the existence of Self-Reinforcing Structures delayed
the process of convention emergence. Our solution (social instruments) proposes the
dynamic rewiring of the network. However, we did not concentrated on the mainte-
nance of the characteristics that define such networks: scale-free networks are charac-
terized by a number of properties (short average network diameter, small clustering).
Our rewiring instrument does not pay attention in maintaining those properties which
determine a scale-free network. Recent work [Scholtes, 2010] presented a distributed
rewiring scheme that is suitable to effectuate scale-free overlay topologies. One of our
short-term tasks is the development of an algorithm that produces effective rewiring,
maintaining the scale-free network, accessing only local information.

Another line of research that we consider of vital importance to be performed is
the analysis of reconfiguration techniques. This thesis has studied how conventions are
achieved under static environments. It would be interesting to study how our social
instruments ease the process of reconfiguration to different conventions if one of them
looses its validity within the social context of agents.
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Finally, we plan to introduce more complex protocols to be learnt by agents: in this
part of our work, agents only had to learn how to behave in a single action interaction.
However, we plan to introduce norms that involve more than one action, allowing agents
to learn normative patterns with the form of protocols. By studying the complexity
of the protocols (the number of available actions, the length of the protocol and the
typology of agents) we will observe how our agents are able to coordinate for more
complicated tasks.

9.2 Essential Norms and Emergence of Cooperation

9.2.1 Conclusions

This thesis have shown a game-theoretical approach to norms that differentiates be-
tween conventions and essential norms, as games that represent different dynamics
with respect to the interest of the individuals. We have seen how conventions are not
a solution for certain phenomena, like situations that represent common-good games.
Initially we envisioned an specific type of peer punishment (distributed punishment)
to impose the emergence of cooperation and its maintenance. Contrary to monolateral
punishment technologies (like that used in [Dreber et al., 2008]), distributed punish-
ment seemed attractive since it would reduce individual costs (by dividing the cost of
punishment amongst the punishers), obtaining higher social costs (by making defection
a less attractive option for norm-violators).

The empirical results obtained with human subjects showed us that motivations to-
wards cooperation are not only driven by the external enforcement, but affected by
other factors. Our hypothesis was that certain types of peer punishment have a stronger
impact on the agents decision making than the utilitarian damage.

In this thesis we have established the distinction between punishment (utility de-
duction) and sanction (utility deduction plus norm elicitation), and we have sketched
a BDI agent architecture (EMIL-I-A) whose goals (and beliefs) are not only affected
by a benefit-cost calculation, but also, by the existence of norms (and their importance
within the social context).

Experiments with human subjects confirmed the hypothesis of the difference be-
tween punishment and sanction, using a experimental platform where humans could
participate in the experiments through an electronic institution. These experiments have
also served us to fine-tune the parameters that regulate the agent architecture, prov-
ing another successful example of cross-fertilization between experimental economics
and computer science [Grossklags, 2007]. This differentiation between punishment and
sanction is an important step forward, specially in the economics research, as so far lit-
tle importance was given to the non-costly communication messages (assuming them as
cheap talk [Farrell and Rabin, 1996]). The usage of sanction produces a more resilient
individual, as its decision making is also influenced by normative motivations.

We exploit the capabilities of EMIL-I-A in simulated scenarios, proving that our
agents achieve the emergence of cooperation with lower social costs and in a more re-
silient way. We have performed a detailed analysis varying the amount of our agents
in populations of pure utilitarian agents, observing the adaptive capabilities of our ar-
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chitecture. Another interesting contribution of this work is the intelligent Dynamic
Adaptation Heuristic which allows agents to dynamically change the amount of pun-
ishment/sanction sent to norm-violators, producing an efficient punishment mechanism.
One final interesting result confirm the robustness of sanction against invasions of free
riders into the population.

Finally, we have studied how Norm Internalization can be incorporated as a dif-
ferent module in the agents mind allowing them to avoid a continuous evaluation of
the possible actions in their decision making process. This internalization mechanism
allows agents to save computational resources by firing automated actions in certain
internalized situations. We have studied how internalizers perform in different types of
scenarios, achieving good performance without sacrificing adaption skills. Moreover,
the final experiments have allowed us to test the locality of social norms, being possible
the emergence of different norms in different areas of the topology.

9.2.2 Future Work
The emergence and maintenance of cooperation is a problem that worry policy mak-
ers of open distributed punishment, as the natural tendency in these type of systems
is to defect and free-ride, producing a collapse of the system. As an example, when
Gnutella was one of the most popular p2p sharing platform, 70% of users did not share
resources [Adar and Huberman, 2000]. In this thesis we have studied how different
punishment technologies can affect the decision making of agents in a distributed man-
ner, without the necessity of a centralized authority, which would be costly for the
system. Unfortunately, the sanctioning technology that we propose also implies a cost
for the punisher, entering in a second-order public good game. For that reason, and as a
future work to be performed in this area of research, we are interested in studying how
reputation can work as a cost-free mechanism that ensures cooperation. By providing
agents with the ability to communicate, they can send evaluations that affect their fu-
ture interactions with other agents. Agents need to be given with the trust and reputation
mechanism that (1) aggregates the rumors that receives, and (2) activates a broadcasting
mechanism to spread rumors. By giving agents with this mechanism, agents also need
to be given an heuristic to determine what to communicate and to whom. This problem
is essential to be understood within the scope of social networks.

As a more direct task in our future work plan we need to carefully analyze the
Dynamic Adaptation Heuristic used for the efficient sanctioning. At the moment, the
heuristic changes the damage associated to punishment and sanction depending on the
amount of norm-violators within their social environment. However, we believe that
this adaptation should be also proportional to the changes in the environment in order to
be more efficient: if a larger amount of norm-violator appears, the damage of sanction
should be larger (instead of increasing gradually, producing a number of punishment
acts with no deterrent effect).
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