
The Simple Normative Systems Language

Thomas Ågotnes1, Wiebe van der Hoek2, Juan A. Rodŕıguez-Aguilar3, Carles
Sierra3, and Michael Wooldridge2

1 Department of Computer Engineering, Bergen University College, Norway
2 Department of Computer Science, University of Liverpool, UK

3 Artificial Intelligence Research Institute IIIA, Spanish Council for Scientific
Research CSIC, Spain

Abstract. Although many formalisms have been developed for reason-
ing about normative behaviour, most of these have been somewhat di-
vorced from real systems. That is, while they allow the specification of
what is obligatory or permissible, there is often no direct mapping to
concrete computational systems, and so no way of really being able to
tell (for example) whether a system respects or violates some system of
norms. In this paper, we introduce the Simple Normative Systems Lan-
guage, a concrete computational language for defining normative systems
that has a concrete interpretation with respect to Reactive Modules, a
well-known and widely used language for defining multi-agent systems.
We introduce and formally define the language, briefly investigate some
of its properties, and illustrate its use by means of an example.

1 Introduction

Normative systems, or social laws, have been widely promoted as an approach
to coordinating multi-agent systems [9]. Crudely, a normative system defines
a set of constraints on the behaviour of agents, corresponding to obligations,
which may or may not be observed by agents. A number of formalisms have
been proposed for reasoning about normative behaviour in multi-agent systems,
typically based on deontic logic [10, 5, 8]. However the computational properties
of such formalisms – in particular, their use in the practical design and synthesis
of normative systems – has received relatively little attention. In this paper,
we seek to rectify this omission. We introduce the Simple Normative Systems
Language (snl), a computational language for defining normative systems that
has a concrete interpretation with respect to Reactive Modules, a well-known
and widely used language for defining multi-agent systems [2, 7]. We motivate
the language, introduce and formally define it, briefly investigate some of its
properties, and illustrate its use by means of an example.

2 Kripke Structures and Normative Systems

We will model our multi-agent systems using Kripke structures, a widely used
model of concurrent, distributed, and reactive systems [6, 4]. Kripke structures

describe the possible behaviours of agents in a system as transitions between
possible states of the system, and abstracts away details such as the internal
structure of agents. Thus, our approach is general and not specific to any par-
ticular agent or system architecture. Furthermore, this abstraction allows us to
reason about normative systems in a general and abstract way, independent of
the specifics of a particular normative systems architecture.

Abstractly, a Kripke structure can be thought of as a directed graph, in which
nodes in the graph correspond to states of a system, and transitions in the graph
correspond to actions, which cause state transitions. (As we will see later, in fact
a transition corresponds to a tuple of actions, one for each agent in the system.)
We label states with a description of the primitive propositions that are true
in that state; these propositions provide a “description” of the state. Formally,
let Φ = {p, q , . . .} be a finite set of atomic propositional variables. Then Kripke
structure (over Φ) is a quad

K = 〈S ,S 0,R,V 〉,
where:

– S is a finite, non-empty set of states, with S 0 ⊆ S (S 0 6= ∅) being the initial
states of K;

– R ⊆ S ×S is a total binary relation on S , which we refer to as the transition
relation4; and

– V : S → 2Φ labels each state with the set of propositional variables true in
that state.

A path over R is an infinite sequence of states π = s0, s1, . . . which must satisfy
the property that ∀u ∈ N: (su , su+1) ∈ R. If u ∈ N, then we denote by π[u]
the component indexed by u in π (thus π[0] denotes the first element, π[1] the
second, and so on). A path π such that π[0] = s is an s-path.

Now that we have a model of systems, we can define normative systems. In
this paper, a normative system should be understood simply as a set of con-
straints on the behaviour of agents in a system. More precisely, a normative
system defines, for every possible system transition, whether or not that tran-
sition is considered to be legal or not, in the context of the normative system.
Different normative systems may differ on whether or not a particular transition
is considered legal. Formally, a normative system η (w.r.t. a Kripke structure
K = 〈S ,S 0,R,V 〉) is simply a subset of R, such that R \ η is a total rela-
tion. We refer to the requirement that R \ η is total as a reasonableness re-
quirement: it prevents social laws which lead to states with no successor. Let
N (R) = {η | η ⊆ R & R \ η is total} be the set of normative systems over R.
The intended interpretation of a normative system η is that the presence of an
arc (s, s ′) in η means that the transition (s, s ′) is forbidden in the context of η,
hence, R \ η denotes the allowed transitions. Since it is assumed that η is rea-
sonable, we are guaranteed that such a transition always exists for every state.
4 Following standard usage in the branching time literature, we say a relation R ⊆

S × S is total iff ∀s∃s ′(s, s ′) ∈ R.

If π is a path over R and η is a normative system over R, then we say that π
is η-conformant if it satisfies the property that ∀u ∈ N, (π[u], π[u + 1]) 6∈ η. We
denote the set of η-conformant s-paths (w.r.t. some assumed R) by Cη(s).

Since normative systems in our view are just sets (of disallowed transitions),
we can compare them, to determine, for example, whether one is more liberal
(less restrictive) than another: if η ⊂ η′, then η places fewer constraints on a
system than η′, and hence η is more liberal. Notice that, assuming an explicit
representation of normative systems, (i.e., representing a normative system η
directly as a subset of R), checking such properties can be done in polynomial
time. We can also operate on them with the standard set theoretic operations
of union, intersection, etc. Taking the union of two normative systems η1 and
η2 may yield (depending on whether R \ (η1 ∪ η2) is total) a normative system
that is more restrictive (less liberal) than either of its parent systems, while
taking the intersection of two normative systems may yield a normative system
which is less restrictive (more liberal). The ∪ operation is intuitively the act of
superposition, or composition of normative systems: imposing one law on top of
another: care must be taken when operating on normative systems to ensure the
resulting normative system is reasonable.

3 The Simple Normative Systems Language

When we program, we do not talk in terms of Kripke structures. Rather, we talk
in terms of programs and programming languages. A program (or more precisely,
a collection of such programs, interacting with one-another) can be thought of
as defining a Kripke structure, by way of the semantics of the language. In this
section, we present a language for defining systems, and (somewhat informally)
its semantics in terms of Kripke structures.

The reactive modules language (rml) was introduced by Alur and Hen-
zinger as a simple but expressive formalism for specifying game-like distributed
system models [2], and this language is used as the model specification language
for several model checkers [3]. In this section, we consider a “stripped down” ver-
sion of rml called simple reactive modules language (srml), introduced
in [7]; this language represents the core of rml, with some “syntactic sugar”
removed to keep the presentation (and semantics) simple.

Here is an example of an agent in srml (note that agents are referred to as
“modules” in srml):

module toggle controls x
init
`1 : > ; x ′ := >
`2 : > ; x ′ := ⊥
update
`3 : x ; x ′ := ⊥
`4 : (¬x) ; x ′ := >

This module, named toggle, controls a single Boolean variable, x . The choices
available to the agent at any given time are defined by the init and update
rules5. The init rules define the choices available to the agent with respect
to the initialisation of its variables, while the update rules define the agent’s
choices subsequently. In this example, there are two init rules and two update
rules. The init rules define two choices for the initialisation of this variable:
assign it the value > or the value ⊥. The “prime” notation for variables, e.g.,
x ′, means “the value of x afterwards”. Both of these rules can fire initially, as
their conditions (>) are always satisfied; in fact, only one of the available rules
will ever actually fire, corresponding to the “choice made” by the agent on that
decision round. On the left hand side of the rules are labels (`i) which are used to
identify the rules. Note that labels do not form part of the original rml language,
and in fact play no part in the semantics of rml – their role will become clear
below. We reserve a distinguished label “[]”, which we later will use for rules
that must never be disabled. With respect to update rules, the first rule says that
if x has the value >, then the corresponding choice is to assign it the value ⊥,
while the second rules says that if x has the value ⊥, then it can subsequently be
assigned the value >. In other words, the module non-deterministically chooses
a value for x initially, and then on subsequent rounds toggles this value. Notice
that in this example, the init rules of this module are non-deterministic, while
the update rules are deterministic. An srml system is a set of such modules.

Formally, a rule γ over a set of propositional variables Φ and a set of labels
L is an expression

` : ϕ ; v ′
1 := ψ1; . . . ; v ′

k := ψk

where ` ∈ L is a label, ϕ (the guard) is a propositional logic formula over Φ,
each vi is a member of Φ and ψi is a propositional logic formula over Φ. We
require that no variable vi appears on the l.h.s. of two assignment statements
in the same rule (hence no issue on the ordering of the updates arises). The
intended interpretation is that if the formula ϕ evaluates to true against the
interpretation corresponding to the current state of the system, then the rule is
enabled for execution; executing the statement means evaluating each ψi against
the current state of the system, and setting the corresponding variable vi to the
truth value obtained from evaluating ψi . We say that v1, . . . , vk are the controlled
variables of γ, and denote this set by ctr(γ). A set of rules is said to be disjoint
if their controlled variables are mutually disjoint.

When dealing with the srml representation of models, a state is simply
equated with a propositional valuation (i.e., the set of states of an srml system
is exactly the set of possible valuations to variables within it: S = 2|Φ|). Given
a state s ⊆ Φ and a rule γ = ` : ϕ ; v ′

1 := ψ1; . . . ; v ′
k := ψk such that s enables

γ (i.e., s |= ϕ) we denote the result of executing γ on s by s ⊕ γ. For example,
if s = {p, r}, and γ = ` : p ; q ′ := >; r ′ := p ∧ ¬r , then s ⊕ γ = {p, q}. Given
a state s ⊆ Φ, and a set Γ of disjoint rules over Φ such that every member of Γ
is enabled by s, then the interpretation s ′ resulting from Γ on s is denoted by

5 To be more precise, the rules are in fact guarded commands.

s ′ = s ⊕ Γ (since the members of Γ are disjoint, we can pick them in any order
to execute on s).

As described above, there are two classes of rules that may be declared in
an atom: init and update. An init rule is only used to initialise the values of
variables, when the system begins execution. We will assume that the guards to
init command are “>”, i.e., every init command is enabled for execution in
the initialisation round of the system.

An srml module, m, is a triple:

m = 〈ctr , init , update〉 where:

– ctr ⊆ Φ is the (finite) set of variables controlled by m;
– init is a (finite) set of initialisation rules, such that for all γ ∈ init , we have

ctr(γ) ⊆ ctr ; and
– update is a (finite) set of update rules, such that for all γ ∈ update, we have

ctr(γ) ⊆ ctr .

Given a module m, we denote the controlled variables of m by ctr(m), the initial-
isation guarded commands of m by init(m), and the update guarded commands
of m by update(m). An srml system ρ is then an (n + 2)-tuple

ρ = 〈Ag , Φ,m1, . . . ,mn〉

where Ag = {1, . . . ,n} is a set of agents, Φ is a vocabulary of propositional
variables, and for each i ∈ Ag , mi is the corresponding module defining i ’s
choices; we require that {ctr(m1), . . . , ctr(mn)} forms a partition of Φ (i.e., every
variable in Φ is controlled by some agent, and no variable is controlled by more
than one agent).

A joint update rule (init rule) is an indexed tuple 〈γ1, . . . , γk 〉 of rules, with
a rule γi ∈ update(mi) (γi ∈ init(mi)) for each i ∈ Ag . A joint (update/init)
rule 〈γ1, . . . , γk 〉 is enabled by a propositional valuation s iff all its members are
enabled by s.

It is straightforward to extract the Kripke structure Kρ = 〈Sρ,S 0
ρ ,Rρ,Vρ〉

corresponding to an srml system ρ:

– the state set Sρ and valuation function Vρ correspond to the possible valu-
ations of variables Φ, with initial states S 0

ρ corresponding to the valuations
that could be generated by the joint init rules of ρ against the empty valu-
ation6; and

– the transition relation Rρ is defined by (s, s ′) ∈ Rρ iff there exists some
joint update rule 〈γ1, . . . , γn〉 such that this joint rule is enabled in s and
s ′ = s ⊕ {γ1, . . . , γn}.

6 More precisely, the state space corresponds to the valuations that are reachable from
the initial states of the system.

3.1 A Concrete Language for Normative Systems

We now introduce the srml Norm Language, or Simple Normative Systems Lan-
guage (snl), for representing normative systems, which corresponds to the srml
language for models. The general form of a normative system definition in snl
is as follows:

normative-system id
χ1 disables `11 , . . . , `1k

· · ·
χm disables `m1 , . . . , `mk

Here, id ∈ Σ is the name of the normative system, where we assume a set Σ of
identifiers. The body of the normative system is defined by a set of constraint
rules. A constraint rule

χ disables `1, . . . , `k

consists of a condition part χ, which is a propositional logic formula over the
propositional variables Φ of the system, and a set of rule labels {`1, . . . , `k} ⊆ L.
We require that none of the `i labels is the distinguished label [], which is used
for rules that never should be disabled. The intuition is that if χ is satisfied in
a particular state, then any srml rule with a label that appears on the r.h.s.
of the constraint rule will be disabled in that state, according to this normative
system. Consider the following simple example.

normative-system forceTrue
> disables `3

We here define a normative system forceTrue, which consists of a single rule.
The condition part of the rule is >, and hence always fires; in this case, the
effect is to disable the rule with label `3. Since the condition part of this rule is
always enabled, in the forceTrue normative system, rule `3 can never fire.

Formally, an snl constraint rule is a pair

c = 〈ϕ,L〉

where ϕ is a propositional formula over Φ, and L ⊆ L is a set of rule labels. An
snl normative system is then a pair

η = 〈id ,C 〉

where id ∈ Σ is a unique identifier for the normative system and C is a set of
snl constraint rules. In any given state s, the set of srml rules that are disabled
by a normative system 〈id ,C 〉 will be the set of rules whose labels appear on
the right hand side of constraint rules in C whose condition part is satisfied in
s. Let lgl(s, η) denote the set of labels of rules that are both legal in s according
to the normative system η, and that are enabled in s. A snl interpretation is
then simply a set of snl normative systems, each with a distinct name.

In order to ensure that a snl normative system η = 〈id ,C 〉 is reasonable with
respect to a srml system ρ = 〈Ag , Φ,m1, . . . ,mn〉, we must impose a further
restriction on η: for every state s ∈ Sρ and agent i , there must exist a rule in
update(mi) with a label ` which is enabled in s and not disabled by η.

Given a srml system ρ and a (reasonable w.r.t. ρ) snl normative system η,
it is straightforward to induce a normative system η′ with respect to the Kripke
structure Kρ:

– (s, s ′) ∈ η′ iff for every joint update rule 〈γ1, . . . , γn〉 enabled in s where
s ′ = s ⊕ {γ1, . . . , γn}, there exists a snl constraint rule c = 〈ϕ,L〉 ∈ C such
that s |= ϕ and there is some γi with label ` such that ` ∈ L.

Given snl normative systems η1 and η2, for some srml system ρ, we say: η1
is at least as liberal as η2 in system ρ if for every state s ∈ Sρ, every rule that is
legal according to η2 is legal according to η1; and they are equivalent if for every
state s ∈ Sρ, the set of rules legal according to η1 and η2 are the same.

Theorem 1. The problem of testing whether snl normative system η1 is at least
as liberal as snl normative system η2 is pspace-complete, as is the problem of
testing equivalence of such systems.

Proof. We do the proof for checking equivalence; the liberality case is similar. For
membership of pspace, consider the complement problem: guess a state s, check
that s ∈ Sρ, (reachability of states in rml is in pspace) and check that there is
some rule legal in s according to η2 is not legal in s according to η1, or vice versa.
Hence the complement problem is in npspace, and so the problem is in pspace.
For pspace-hardness, we reduce the problem of propositional invariant checking
over (s)rml modules. Given an srml system ρ and propositional formula ϕ,
define normative systems η1 and η2 as follows (where ` does not occur in ρ):

normative-system η1 normative-system η2

¬ϕ disables ` ⊥ disables `

According to η2, ` is always enabled; thus η1 will be equivalent to η2 iff ϕ holds
across all reachable states of the system.

4 Case Study: A Traffic Controller

Consider a circular road with two parallel lanes. Vehicles circulate on the two
lanes clockwise. We consider three types of vehicles: cars, taxis, and ambulances.
We consider the road discretised in a finite number of positions, each position oc-
cupied by a vehicle represented as an instance of a predicate at(lane-number,lane-position,vehicle-id).
For instance, at(2,5,car-23) stands for agent car-23 staying on lane 2 at posi-
tion 5. Notice that lane 2 stands for the outer lane while lane 1 stands for the
inner lane. We will refer to lane 1 as the right lane and to lane 2 as the left
lane considering the direction of the vehicles. At each time step, cars and taxis
can either stand still or change their position by one unit. Cars and taxis can
either move straight or change lane, for instance a car can go from at(2,5,car-23)

to either at(2,6,car-23) or at(1,6,car-23). Ambulances can stand still or change
their position by one or two units, either straight or changing lanes at will.

To avoid crashes and permit that ambulances get faster to hospitals and that
taxis have priority over private cars, we can imagine a number of norms that
regulate the behaviour of the vehicles:

– η1: Ambulances have priority over all other vehicles
– η2: Cars cannot use the rightmost (priority) lane
– η3: Vehicles have “right” priority.

By right priority we mean that a vehicle on the left lane has to give way to
any vehicle running in parallel on the right lane intending to change to the left
lane. These norms act on the decisions that agents can make by constraining
them. For instance, η1 will force cars to stop to allow ambulances to overtake
them. Also, norms have relative priorities and for instance η1 takes priority over
η2 and η3, that is, cars might occupy the priority lane to facilitate the progress
of an ambulance, or a car might give left priority to another car for the same
reason.

We model each vehicle as a module containing the rules that determine their
physically legal movements, and the global traffic control as a set of norms
that constraint the application of certain rules. Although each module should
be encoded using propositions, we employ predicates with variables over finite
domains that can be easily translated into propositions. We do so to facilitate
the reading of the modules.

4.1 Vehicle Modules

We define two modules standing for two types of vehicles: those with 2-unit
speed (vehicle-2) and those with 1-unit speed (vehicle-1). Either vehicle module,
after initialising its position, nondeterministically chooses the next position the
vehicle will occupy. Note that the operations on vehicles’ positions, addition and
subtraction, are modulo-n operations, where n is the number of positions in the
road.

module vehicle-1
interface at(l,p,v):bool
atom controls at(l,p,v)
awaits init-at(l,p,v)
init
[] init-at(l,p,v) -> at(l,p,v) := T
[] ~init-at(l,p,v) -> at(l,p,v) := T

update
v-straight:
at(l,p,v) & not(at(l,p+1,z)) ->
at(l,p+1,z) := T,
at(l,p,v) := F

v-right:

at(2,p,v) & not(at(1,p+1,z)) ->
at(1,p+1,z) := T,
at(2,p,v) := F

v-left:
at(1,p,v) & not(at(2,p+1,z)) ->
at(2,p+1,z) := T,
at(1,p,v) := F

endatom
endmodule

module vehicle-2
interface at(l,p,v):bool
atom controls at(l,p,v)
awaits init-at(l,p,v)
init
[] init-at(l,p,v) -> at(l,p,v) := T
[] ~init-at(l,p,v) -> at(l,p,v) := T

update
v-straight:
at(l,p,v) & not(at(l,p+1,z)) ->
at(l,p+1,z) := T,
at(l,p,v) := F

v-right:
at(2,p,v) & not(at(1,p+1,z)) ->
at(1,p+1,z) := T,
at(2,p,v) := F

v-left:
at(1,p,v) & not(at(2,p+1,z)) ->
at(2,p+1,z) := T,
at(1,p,v) := F

v-right-straight:
at(2,p,v) & ~at(1,p+1,z1) & ~at(1,p+2,z2) ->
at(l-1,p+2,v) := T , at(l,p,v) := F
v-straight-right:
at(2,p,v) & ~at(2,p+1,z1) and ~at(1,p+2,z2) ->
at(l-1,p+2,v) := T , at(l,p,v) := F
v-right-left:
at(2,p,v) & ~at(2,p+2,z1) & ~at(1,p+1,z2) ->
at(l,p+2,v) := T , at(l,p,v) := F

v-straight-straight:
at(l,p,v) & ~at(l,p+1,z1) & ~at(l,p+2,z2) ->
at(l,p+2,v) := T , at(l,p,v) := F
v-straight-left:
at(1,p,v) & ~at(1,p+1,z1) & ~at(2,p+2,z2) ->
at(l+1,p+2,v) := T , at(l,p,v) := F

v-left-straight:

at(1,p,v) & ~at(2,p+1,z1) & ~at(2,p+2,z2) ->
at(l+1,p+2,z) := T , at(l,p,z) := F

v-left-right:
at(1,p,v) & ~at(2,p+1,z1) & ~at(1,p+2,z2) ->
at(l,p+2,v) := T , at(l,p,v) := F

endatom
endmodule

4.2 Cars, Taxis and Ambulances

Cars and taxis are vehicles of type vehicle-1. Ambulances are vehicles of type
vehicle-2. Thus, we define cars and taxis by renaming the vehicle-1 module,
whereas we define ambulances by renaming the vehicle-2 module. For instance,
for the i-th car, for the j-th taxi and for the k-th ambulance, we would have the
following definitions based on the renaming mechanism provided by mocha [1]:

c-i := vehicle-1 [v, v-right, v-left, v-straight :=
car-i, car-i-right, car-i-left, car-i-straight]

t-j := vehicle-1 [v, v-right, v-left, v-straight :=
taxi-j, taxi-j-right, taxi-j-left, taxi-j-straight]

a-k := vehicle-2[v, v-right, v-left, v-straight, v-right-straight,
v-straight-right, v-right-left, v-straight-straight,
v-straight-left, v-left-straight, v-left-right :=
ambulance-k, ambulance-k-right, ambulance-k-left,
ambulance-k-straight, ambulance-k-right-straight,
ambulance-k-straight-right, ambulance-k-right-left,
ambulance-k-straight-straight, ambulance-k-straight-left,
ambulance-k-left-straight, ambulance-k-left-right]

Ambulances are vehicles of type vehicle-2 and are defined in a similar way to
cars and taxis.

4.3 Controller Module

The controller module solely initialises the positions of cars, taxis, and ambu-
lances. These vehicles wait for this initialisation to happen in order to start
moving along the road.

module traffic_control
interface init-at(l,p,v):bool
atom controls init-at(l,p,v)
init
[] init-at(2,4,car-1) := T,
init-at(1,1,car-1) := F,

init-at(1,2,car-1) := F, ...
...
[] init-at(2,6,taxi-1) := T,
init-at(1,1,taxi-1) := F,
init-at(1,2,taxi-1) := F, ...

...
[] init-at(1,3,ambulance-1) := T,
init-at(1,1,ambulance-1) := F,
init-at(1,2,ambulance-1) := F, ...

update
endatom

endmodule

4.4 Normative Systems

The norms detailed in the beginning of Section 4 are translated into three sep-
arate normative systems as defined below. Notice that our implementation of
normative system η3 is rather conservative in the sense that we enforce a car to
give priority to another car by forcing it to stand still. We adopt this view for
the sake of simplicity. Otherwise, in order for a car to give way to another car
with right priority, a signalling system should be used.

normative-system N1
at(l,p,car-i) and at(l,p-1,ambulance-j) disables

car-i-straight,car-i-left,car-i-right
at(l,p,taxi-i) and at(l,p-1,ambulance-j) disables

taxi-i-straight,taxi-i-left,taxi-i-right

normative-system N2
at(1,p,car-i) disables car-i-straight
at(2,p,car-i) disables car-i-right

normative-system N3
at(2,p,z1) and at(1,p,z2) and z1 != z2 disables
z1-straight,z1-right

Properties that can be proven in this system are:

– Without norms, there might be crashes.
– If there is only one ambulance then under norm systems η1, η2, and η3 there

are no crashes.
– If there is more than one ambulance and there is at least one free position,

then under (only) norm systems η1 and η2 it is permitted that two different
vehicles can be at the same position on the same lane.

– If there are no ambulances, then norm system η3 ensures that two different
vehicles cannot be at the same position on the same lane.

5 Conclusions

We have introduced the Simple Normative Systems Language (snl) as a con-
crete computational language in order to be able to add norms to multi-agent
systems defined via the well-known Reactive Modules language. An advantage
over other formalisms for normative behaviour in multi-agent systems is that
the snl language can be executed directly, as a part of a Reactive Modules
specification.

The Reactive Modules is most popular as a specification language for model
checking [4], as implemented in the mocha system [3]. Model checking is the
problem of checking whether a given system – specified in the Reactive Modules
language – has a given property – specified by a formula in a logical language.
We are currently working on using logics with deontic operators for “obligation”
and “permission” for model checking our normative systems, and studying the
properties of such logics.

References

1. R. Alur, L. de Alfaro, T. A. Henzinger, S. C. Krishnan, F. Y. C. Mang, S. Qadeer,
S. K. Rajamani, and S. Taşiran. mocha user manual. University of Berkeley
Report, 2000.

2. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System Design,
15(11):7–48, July 1999.

3. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Taşiran. Mocha: Modularity in model checking. In CAV 1998: Tenth Inter-
national Conference on Computer-aided Verification, (LNCS Volume 1427), pages
521–525. Springer-Verlag: Berlin, Germany, 1998.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press:
Cambridge, MA, 2000.

5. F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law, 7:69–
79, 1999.

6. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science Volume B: Formal Models and Semantics, pages
996–1072. Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990.

7. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical
ATL model checking. In Proc. of the Fifth Inter. Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2006), Hakodate, Japan, 2005.

8. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–
92, 2003.

9. Y. Shoham and M. Tennenholtz. On social laws for artificial agent societies: Off-
line design. In P. E. Agre and S. J. Rosenschein, editors, Computational Theories
of Interaction and Agency, pages 597–618. The MIT Press: Cambridge, MA, 1996.

10. R. J. Wieringa and J.-J. Ch. Meyer. Deontic logic in computer science. In J.-
J. Ch. Meyer and R. J. Wieringa, editors, Deontic Logic in Computer Science —
Normative System Specification, pages 17–40. John Wiley & Sons, 1993.

