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Abstract. Moderation poses one of the main Internet challenges. Currently, many
Internet platforms and virtual communities deal with it by intensive human labour,
some big companies –such as YouTube or Facebook– hire people to do it, others
–such as 4chan or fanscup– just ask volunteer users to get in charge of it. But
in most cases the policies that they use to decide if some contents should be re-
moved or if a user should be banned are not clear enough to users. And, in any
case, typically users are not involved in their definition.
Nobel laureate Elinor Ostrom concluded that societies –such as institutions that
had to share scarce resources– that involve individuals in the definition of their
rules performed better –resources lasted more or did not deplete– than those or-
ganisations whose norms where imposed externally. Democracy also relies on
this same idea of considering peoples’ opinions.
In this vein, we argue that participants in a virtual community will be more prone
to behave correctly –and thus the community itself will be "healthier"– if they
take part in the decisions about the norms of coexistence that rule the community.
With this aim, we investigate a collective decision framework that: (1) structures
(relate) arguments issued by different participants; (2) allows agents to express
their opinions about arguments; and (3) aggregates opinions to synthesise a col-
lective decision. More precisely, we investigate two aggregation operators that
merge discrete and continuous opinions. Finally, we analyse the social choice
properties that our discrete aggregator operator satisfies.

1 Introduction

With the advent of the Internet, a plethora of on-line communities, such as social net-
works, have emerged to articulate human interaction. Nonetheless, interactions are not
frictionless. Thus, for instance, users may post inappropriate or offensive contents, or
spam ads. Thus, typically the owners of on-line communities establish their own norms
(terms and policies) to regulate interactions without the involvement of its participants.
Moderators become then in charge of guaranteeing the enforcement of such norms dis-
regarding what users may deem as fair or discomforting.

Here we take the stance that the participants in a social network must decide the
norms that govern their interactions. Thus, we are in line with Nobel-prize winner E.
Ostrom [4], who observed that involving a community’s participants in their decisions
improves its long-term operation. Then, there is the matter of helping users agree on



their norms. As argued in [2, 3], argumentative debates are a powerful tool for reach-
ing agreements in open environments such as on-line communities. On-line debates
are usually organised as threads of arguments and counter-arguments that users issue
to convince others. There are two main issues in the management of large-scale on-
line debates. On the one hand, as highlighted by [2] and [3], there is simply too much
noise when many individuals participate in a discussion, and hence there is the need
for structuring it to keep the focus. On the other hand, the preferences on arguments is-
sued by users must be aggregated to achieve a collective decision about the topic under
discussion [1].

Against this background, here we consider that structured argumentative debates
can also be employed to help users of a virtual community jointly agree on the norms
that rule their interactions. With this aim, we present the following contributions:

– Based on the work in [3], we introduce an argumentative structure, the so-called
norm argument map, to structure a debate focusing on the acceptance or rejection
of a target norm. Figure 1 shows one example in an online sports community.

– A novel aggregation method to assess the collective support for a single argument
by aggregating the preferences (expressed as ratings) issued by the participants in
a discussion. Such method will consider that the impact of a single rating on the
overall aggregated value will depend on the distance of that rating from neutrality.
More precisely, our aggregation method abides by the following design principle:
the farther a rating is from neutrality, the stronger its importance when computing
the collective support for an argument.

– A novel aggregation method to compute the collective support for a norm based
on the arguments issued by the participants in a discussion. This method is based
on the following design principles: (1) the larger the support for an argument, the
larger its importance on the computation of the collective support for a norm; and
(2) only those arguments that are relevant enough (count on sufficient support) are
worth aggregating. Technically, this method is conceived as a WOWA operator [7]
because it allows to consider both the values and the information sources when
performing the aggregation of argument supports.

– We compared our aggregation method with a more naive approach that simply av-
erages participants’ preferences on a collection of prototypical argumentation sce-
narios. We observe that our method obtains support values for norms that better
capture the collective preference of the participants.

The paper is organised as follows. Section 2 introduces some background on the
aggregation operators employed, sections 3, 4, 5, and 6 introduce our formal notion of
norm argument map and our functions to compute the support for an argument, a set
of arguments and a norm. Section 7 details the analysis of our support functions on
argumentation scenarios. Finally, section 8 draws conclusions and sets paths to future
research.



Fig. 1. Example of a norm argument map. Rated positive/negative arguments in favor/against a
norm prohibiting to upload spam content at a social network forum.

2 Background

As previously stated, the main goal of this work is to compute an aggregated numerical
score for a norm from its arguments and opinions3. Hence, aggregation operators be-
come necessary to fuse all the numerical information participants provide. Next, we in-
troduce the aggregation operators employed in this work, namely the standard weighted
mean (WM) and the weighted ordered weighted average (WOWA, an OWA’s [8] varia-
tion) from Torra [7], to compute the collective support for a norm.

Definition 1. A weighting vector w is a vector such that if w = (w1, . . . , wn) ∈ Rn
then wi ∈ [0, 1] and

∑n
i=1 wi = 1.

Definition 2. Letw = (w1, . . . , wn) ∈ Rn be a weighting vector and let e = (e1, . . . , en) ∈
Rn be the vector of elements we want to aggregate. A weighted mean is a function
WMw(e) : Rn → R, defined as WMw(e) =

∑n
i=1 wiei.

Notice that WM weighs the position of the elements, which amounts to concede
different importance degrees to each particular (information) source. In order to weigh
the values of aggregated elements in e we need an alternative operator.

Definition 3. Let w = (w1, . . . , wn) ∈ Rn and q = (q1, . . . , qn) ∈ Rn be two weigh-
ing vectors and let e = (e1, . . . , en) ∈ Rn be the vector of elements we want to ag-
gregate. A weighted ordered weighted average, weighted OWA or WOWA is a function
WOWAw,q(e) : Rn → R defined as:

WOWAw,q(e) =

n∑
i=1

pieσ(i), pi = f∗(
∑
j≤i

wσ(j))− f∗(
∑
j<i

wσ(j)),

3 An argument’s opinions are numerical values that, in the case of Figure 1, take the form of
number of stars awarded to each argument.



where σ is a permutation of the elements in e so that eσ(i) is the ith largest element in e
and f∗ is a non-decreasing interpolation function of the points: {(i/n,

∑
j≤i qj)}i=1,...,n∪

{(0, 0)} that has to be a straight line when the points can be interpolated that way.

Note that w acts as the vector in the weighted mean, weighing the information
source, while q weighs the value of the aggregated elements. For instance, q1 = qn >
q2, . . . , qn−1, gives more importance to extreme (i.e., the highest and lowest) values.

3 Norm Argument Map

Next we formalise the notion of norm argument map as the argumentative structure that
contains all arguments and opinions about a norm.

Definition 4. A norm is pair n = (φ, θ(α)), where φ is the norm’s precondition, θ is a
deontic operator4 and α is an action that participants can perform.

Definition 5. An argument is a pair ai = (s,Oai) composed of a statement s, the
argument itself, and a vector of opinions Oai that contains all the opinion values par-
ticipants issued.

Henceforth we will note the vector of opinions asOai = (oi1, . . . , o
i
ni), where oij is

the jth opinion about argument ai.

Definition 6. Given a norm n, the argument set for n is a non-empty collection of
arguments An containing both arguments supporting and attacking the norm.

We will note the vector of all the opinions of the arguments in An as OAn . For the
sake of simplicity, we assume that all arguments in the argument set An of a norm are
different. We divide the argument set of a norm into two subsets: the arguments in favor
of the norm and the arguments against it.

We are now ready to define our argumentative structure as follows:

Definition 7. A norm argument map M = (n,An, κ) is a triple composed of a norm
n, a norm argument set An, and a function κ that classifies the arguments of An be-
tween the ones that are in favor of the norm and the ones that are against it.

Hereafter we will refer to the positive arguments of norm n as the set of arguments in
favor of the norm and to its negative arguments as the set of arguments against the norm.
These argument sets will be noted as A+

n and A−n respectively. A negative argument is
distinguished from positive arguments by adding a bar over the argument (e.g. āi ∈
A−n ).

Finally, we also define a framework wherein participants can simultaneously discuss
over multiple norms.

Definition 8. A norm argument map framework F = (P,N) is a pair of a set of
participants P and a set of norm argument maps N , so that participants in P can
deliberate about different norms by means of the norm argument maps in N.

4 A deontic operator stands for either prohibition, permission, or obligation.



4 Argument support

Having defined the norm argument map we aim now at aggregating arguments’ opinions
to calculate the support for each argument. In our case opinions will be numerical values
defined in an opinion spectrum.

Definition 9. An opinion spectrum is a set of possible numerical values individual
participants can assign to each argument meaning her opinion about the argument.

The spectrum will be considered a closed real number interval, and thus there exist
a maximum, a minimum and a middle opinion values. Figure 2 shows an example of
the opinion spectrum semantics considering λ = [1, 5]. Since opinions will have dif-
ferent values, we consider different semantics for them. The opinion spectrum will be
divided into three subsets of opinions. Given an opinion spectrum λ = [lb, ub] such
that lb, ub ∈ R and lb < ub: [lb, lb+ub2 ) contains the values for negative opinions,
( lb+ub2 , ub] contains the values for positive opinions, and { lb+ub2 } contains the value for
the neutral opinion. Note that an opinion oij = lb is the most extreme opinion against
argument ai, while another opinion oik = ub would represent the most extreme opinion
in favor of the argument. Additionally, we consider the opinion laying in the middle of
the spectrum lb+ub

2 as a neutral opinion.

Fig. 2. Semantics of the opinion spectrum λ = [1, 5].

Since different opinions in an opinion spectrum have different meanings and we aim
at aggregating them in order to calculate the support for an argument, we need a function
that weighs the importance of each opinion. Such importance function will consider
neutral opinions less important than the extreme (strongly stated) ones. Formally,

Definition 10. Given an opinion spectrum λ = [lb, ub], we say that a function I : λ→
[0, 1] is an importance function iff it satisfies the following conditions:

(C1) I continuous and piecewise differentiable
(C2) I(ub) = I(lb) = 1
(C3) I( lb+ub2 ) = 0

(C4)


I ′(x) < 0 if x ∈ [lb, lb+ub2 ) and I is differentiable in x
I ′(x) = 0 if x = lb+ub

2 and I is differentiable in x
I ′(x) > 0 if x ∈ ( lb+ub2 , ub] and I is differentiable in x

Given a opinion spectrum, we can construct an importance function either by in-
terpolation or geometrically (parabola case). Here we follow the first approach. Below



we formally define the importance function that we propose in this paper, which is
graphically depicted in Figure 3.

I(x) =



ub2−1.8 ub lb−0.2 ub x−4lb2+9.8 lb x−4.8x2

(lb−ub)2 if x ∈
[
lb, ub+3lb

4

]
1.45ub+1.75lb−3.2x

ub−lb if x ∈
(
ub+3lb

6 , 3ub+5lb
8

)
4ub2+8 ub lb−16 ub x+4lb2−16 lb x+16x2

(lb−ub)2 if x ∈
[
3ub+5lb

8 , 5ub+3lb
8

]
1.75ub+1.45lb−3.2x

lb−ub if x ∈
(

5ub+3lb
8 , 3ub+lb4

)
−4ub2−1.8 ub lb+9.8 ub x+lb2−0.2 lb x−4.8x2

(lb−ub)2 if x ∈
[
3ub+lb

4 , ub
]

Fig. 3. Importance function (I) plot when λ = [1, 5].

We can now weigh the importance of each opinion with our importance function to
calculate the support of an argument as the weighted mean of its opinions.

Definition 11. Given an opinion spectrum λ = [lb, ub], an argument support function
Sarg : A→ λ is a function that yields the collective support for each argument ai ∈ A
as: Sarg(ai) = WMw(Oai), where w =

(
I(oi1)
li

, . . . ,
I(oini

)

li

)
stands for a weighting

vector for the opinions inOai , I is an importance function, and li =
∑ni
j=1 I(oij).

Notice that oij is the jth opinion of argument ai and li stands for the overall addi-
tion of all importance values associated to all opinions about argument ai. Since the
elements in w add up to one, w is a weighting vector.

5 Argument set support

So far we have learned how to aggregate an argument’s opinions to compute its support.
Next we face the problem of calculating the support for an argument set. To motive the
choice of our aggregation function, we start with an example.

Example. Consider a norm n with positive and negative arguments with opinions in
the spectrum λ = [1, 5]. Say that there are three positive arguments a1, a2, a3, and a



single negative argument a4. On the one hand, in the set of positive arguments a1 has
a support of 5, which comes from a single opinion while both a2 and a3 have a support
of 1, which comes from aggregating 100 opinions. On the other hand, on the set of
negative arguments, a4’s support is 5, which comes from aggregating 30 opinions:

A+
n Sarg(ai) dim(Oai)

a1 5 1
a2 1 100
a3 1 100

A−n Sarg(a) dim(Oa)
a4 5 30

What should we consider to give the support for A+
n on this extreme case? We

should discard a2 or a3 because they have bad (the minimum) support. People have
decided these arguments are not appropriate or do not provide a valid reason to defend
the norm under discussion. Since opinions’ semantics can be applied to argument sup-
port: arguments with supports outside ( lb+ub2 , ub] are not accepted by participants and,
therefore, should not be considered as valid arguments. We cannot consider a1 either
because, although it has the maximum possible support, it has only been validated by
one person, hence it is negligible in front of the other arguments. Therefore, we propose
to filter out arguments by just considering those having at least a number of opinions
that corresponds to a significant fraction of the number of opinions of the argument with
the largest number of opinions.

Thus, we tackle this argument relevance problem by creating a new subset of ar-
guments containing only the arguments considered to be α-relevant (namely, relevant
enough) and by defining the criteria needed to be considered as such:

Definition 12. Let A be a set of arguments and λ = [lb, ub] an opinion spectrum, we
say that an argument ai ∈ A is relevant iff Sarg(ai) > lb+ub

2 .

Definition 13. LetA be a set of arguments, λ = [lb, ub] an opinion spectrum, α ∈ [0, 1]
a relevance level, and ak ∈ A the argument with the largest number of opinions. We
say that a relevant argument ai ∈ A is α-relevant iff dim(Oai) ≥ α dim(Oak).

Henceforth, Rα(A) = {aα1 , . . . , aαr } will denote the set of α-relevant arguments in
A. Notice that r ≤ |A| and that in general aαi is not equal to ai.

We propose to aggregate the set of α-relevant arguments by weighting their sup-
ports with the importance function previously introduced in order to weight more those
arguments that have received greater support than others. Moreover, since arguments
count on different numbers of opinions, we consider the sum of importances of their
opinions so that important opinions account for more weight that neutral opinions.

To aggregate the supports of the arguments weighting these two values we will use
a WOWA operator. Hence, we define the argument set support function as follows:

Definition 14. Let λ be an opinion spectrum, an argument set support function Sset
is a function that takes a non-empty argument set A, with Rα(A) 6= ∅, and yields its
support in λ as:

Sset(A) = Sset(Rα(A)) = WOWAw,q(Sarg(a
α
1 ), . . . , Sarg(a

α
r )),



where Rα(A) = {aα1 , . . . , aαr }, w =
(∑dim(Oaα1

)

j=1 I(o1j )

IoA
, . . . ,

∑dim(Oaαr
)

j=1 I(orj )

IoA

)
,

IoA =

r∑
i=1

( dim(Oaα
i
)∑

j=1

I(oij)
)

with oij ∈ Oaαi
= {oi1, . . . oini}

stands for the overall importance of all the opinions over arguments in A,

q =
(I(Sarg(a

α
σ(1)))

IargA

, . . . ,
I(Sarg(a

α
σ(r)))

IargA

)
IargA =

∑r
i=1 I(Sarg(a

α
σ(i))) stands for the overall importance of the collective sup-

ports received by the arguments in A, aασ(i) ∈ Rα(A) = {aα1 , . . . , aαr }, and aασ(i) is the
α-relevant argument with the ith largest support.

Notice that, if there are no α-relevant arguments then we cannot asses the support
for the set, hence we consider Sset(∅) to be not defined.

Also note that the w vector is used to weigh the importance of the arguments as the
sum of the importances of its opinions. After that we have to divide by IoA so we get a
weighting vector. The q vector uses the importance of the supports for the arguments.
We have to order the arguments with the σ permutation because the WOWA orders the
values being aggregated. This way each weight in the q vector weighs its corresponding
element. With this modification, we get the WOWA to aggregate the elements using
two weighting vectors. Note that the weighting vector w does not have to be ordered
because the WOWA itself orders it.

6 Computing the collective support for a norm

To compute the collective support for a norm, we will use the support for its positive
and negative argument sets, namely S(A+

n ) and S(A−n ). In general, a large support for
the negative arguments of a norm is expected to negatively impact the norm’s support.
Thus, instead of directly aggregating S(A−n ), we will aggregate the symmetric value of
the support in the spectrum with respect to the center of the spectrum, namely ub+ lb−
S(A−n ).

Analogously to the computation of the support for an argument set, here we have
to weigh the importance of the values aggregated as well as the importance of each
argument set as information source. Thus, we will also employ a WOWA operator to
compute the collective support for a norm, which we define as follows:

Definition 15. A norm support function is a function Snorm that takes a norm n , and
uses the supports of its positive and negative arguments to obtain the support for the
norm in λ = [lb, ub]. If Rα(A+

n ) 6= ∅ and Rα(A−n ) 6= ∅, the function is defined as
follows:

Snorm(n) = WOWAw,q(Sset(A
+
n ), ub+ lb− Sset(A−n ))



such that the information source is weighed by

w =
(∑|Rα(A+

n )|
i=1 (

∑ni
j=1 I(oij))

Ion
,

∑|Rα(A−
n )|

i=1 (
∑ni
j=1 I(oij))

Ion

)
and the aggregated values are weighed by

q =
(I(Sset(A

+
n ))

Isetn

,
I(ub+ lb− Sset(A−n ))

Isetn

)
where Ion =

∑|Rα(A+
n )|

i=1 (
∑ni
j=1 I(oij))+

∑|Rα(A−
n )|

i=1 (
∑ni
j=1 I(oij)), oij is the jth opinion

in Oaαi
= {oi1, . . . , oini}, a

α
i ∈ Rα(A+

n ) = {aα1 , . . . , aαk1}, o
i
j is the jth opinion in

Oaαi
= {oi1, . . . , oini}, a

α
i ∈ Rα(A−n ) = {aα1 , . . . , aαk2}, and Isetn = I(Sset(A

+
n )) +

I(ub+ lb− Sset(A−n )).
If one or both relevant argument sets are empty the function is defined as follows:

Snorm(n) =

ub+ lb− Sset(A−n ) if Rα(A+
n ) = ∅ and Rα(A−n ) 6= ∅

Sset(A
+
n ) if Rα(A+

n ) 6= ∅ and Rα(A−n ) = ∅
not defined if Rα(A+

n ) = ∅ and Rα(A−n ) = ∅

At this point, once we compute the collective support for a norm, we can decide
whether the norm should be enacted or not. Given a predefined norm acceptance level
µ, a norm will be enacted if Snorm(n) > µ. For the norm to be enacted, its support
should be laying on the positive side of the spectrum, hence µ should be picked so that
µ ∈ ( lb+ub2 , ub].

7 Case study: A virtual community

In this section we qualitatively compare the outcome of our norm support function with
that of a naive average support function. This naive average support function obtains the
support for a norm n as Savg(n) = 1

dim(OAn )

(∑|A+
n |

i=1

∑ni
j=1 o

i
j +

∑|A−
n |

i=1

∑ni
j=1 ub +

lb − oij
)

. Our comparison encompasses a collection of Norm Argument Maps (NAM)
that we characterise based on the opinions about their positive and negative arguments.
Table 1 summarises the results of our comparison, which we detail next through some
examples which invoke our norm support function5 with an opinion spectrum λ =
[1, 5], the importance function I , and a relevance level α = 0.3.

NAM 1. Consider a norm n with one positive argument which is highly supported by
opinions (e.g. with values 5, 5, 5), and three negative arguments that count on neutral
supports (e.g. one with opinions 3.15, 3.2, 2.8; another one with opinions 3, 3.5, 2.6; and
a third one with opinions 2.5, 3.5, 3.2). Thus, while the average support function would
yield a rather neutral norm support (Savg(n) = 3.5375), our norm support function
would compute a strong support (Snorm(n) = 4.9842). Note that, since participants

5 This implementation is based on [6] and we have made it publicly available in [5].



Argument sets Norm support
Norm argument map Positive arguments Negative arguments Savg Snorm

NAM 1 one strong argument several neutral arguments neutral strong
NAM 2 one neutral argument one weak argument strong neutral
NAM 3 weak arguments none weak undefined
NAM 4 none weak arguments strong undefined
NAM 5 strong with few opinions weak with lots of opinions strong undefined

Table 1. Norm supports computed by the average approach Savg and our approach Snorm.

have not issued negative arguments that are strong enough to attack the norm, whereas
they have found a strong argument to support it, the norm support should be favorable
to the enacting of the norm. This is captured by our norm support function, while the
average support function remains neutral. This happens because it is fundamental to
weigh the importance of the arguments as well as the importance of the argument sets.
In this way neutral arguments do not weigh much in the overall norm support. NAM
2. Consider the case of a norm with one positive argument with neutral opinions (e.g.
3.5, 3.25, 3.5, 3, 2.5) and one negative argument with a similar number of opinions but
with weak support (e.g. opinions with values 1, 1, 1.2, 1.3, 1.25). The average support
function would yield a strong support for the norm (Savg(n) = 4) because of the weak
support received by the negative argument. Unlike the average, our support function
would obtain a neutral support for the norm (Snorm(n) = 3.1731) because the negative
arguments are weakly supported and the positive one counts on neutral support.

The two cases above show that the norm support of our method is in line with posi-
tive arguments because negative arguments are not strong enough. The next three cases
show the importance of counting on relevant arguments. NAM 3. Consider now a norm
with weak positive arguments and no negative arguments. The average approach would
yield weak support for the norm. However, notice that the lack of strongly-supported
positive arguments does not imply that the norm is not good. If the norm was not good,
we should expect that participants eventually issue strongly-supported negative argu-
ments. Since there is not enough relevant information to decide whether the norm is
good or not, the norm support would be undefined for our norm support function. This
seems more reasonable than the weak support computed by the naive approach. NAM
4. Consider now the dual of our last NAM: a norm counts on weak negative arguments
and no positive arguments. Here the average support function would obtain a strong
norm support. Again, like in the previous case, our norm support function would be
undefined, which seems more adequate due to the lack of relevance of the arguments
issued so far. NAM 5. Consider the case of a norm with positive arguments, each one
counting with a few high-valued opinions, and negative arguments, each one count-
ing on a much larger number of low-valued opinions. The average support function
Savg(n) would produce a strong norm support. However, notice that weak negative ar-
guments should not favorably support a norm. Moreover, the positive arguments count
on few opinions. If the norm was good enough, we should have expected to receive
more supporting opinions, which is not the case. This is why our norm support function
Snorm(n) yiedls an undefined support. Overall, the three last examples show that the



lack of enough relevant information leads our norm support function to an undefined
norm support, which seems more reasonable (and cautious) than that of a naive average
support function.

7.1 A test with human users

We conducted a test to evaluate the functionality of the norm argument map. Our test
encompassed eleven people debating on norms similar to the one in Figure 1 within
a prototyped football social network. Users debated normally for several rounds and,
afterwards, a satisfaction survey asked them if resulting aggregated ratings were rea-
sonable. In a scale from 1 to 5, the answers’ mean was 3.36, which we can consider
as a positive preliminary result if we take into account the usability deficiencies of our
prototype.

8 Conclusions and future work

To provide a more democratic way of moderating virtual communities, we propose
a new argumentative structure, the so-called norm argument map. We also faced the
problem of computing the collective support for a norm from the opinions of an argu-
ment’s participants. We have identified two core concepts when computing a norm’s
support: the relevance of arguments and their importance. Thus, we argue that we must
only consider relevant enough arguments and weigh opinions based on their importance
(strength).

As to future work, we are currently working on identifying similar arguments that
should be colapsed, but some other issues, such as when to close the argumentation
process or how to define the norm acceptance level µ, still need to be studied. Moreover,
we also plan to apply it to other social participation situations such as direct democracy.
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