
Supplier performance in a Digital Ecosystem
Angela Fabregues1, Jordi Madrenas-Ciurana1, Carles Sierra1 and John Debenham2

1IIIA: Institut d’Investigacio en Intel.ligencia Artificial, CSIC: Spanish Scientific Research Council
UAB, 08193 Bellaterra, Catalonia, Spain, e-mail: (fabregues, jmadrenas, sierra)@iiia.csic.es

2Faculty of Information Technology, University of Technology
Sydney, NSW, Australia, e-mail: debenham@it.uts.edu.au

Abstract— Autonomous entities in a digital ecosystem are
expected to interact, negotiate and make agreements. The work
introduced in this paper focuses on how these autonomous entities
evaluate and rank the other participants in the digital ecosystem
using past experiences. These past experiences allow agents to
learn a probabilistic model of the behaviour of the others. We
introduce a trust measure based on this probabilistic model
of behaviour and a software tool that helps in the decision
making process of how to choose the right partner for our next
agreemeent.

I. INTRODUCTION

One of the key issues in any model of self-organisation,
as required by the Digital Ecosystem paradigm, is to have
an adequate model of the members of our own species
and of the other species. In the context of Digital Business
Ecosystems, where the participants are autonomous entities
(humans, companies, banks, brokers, . . . ) capable of making
commitments to act, there is a need to form different forms of
organisations in order to respond to changes in the environ-
ment. For instance, we might need to build coalitions of small
companies producing the same products in order to participate
in a large contract and compete with large producers. We
might need to build teams that would organise companies and
professionals with different profiles in order to solve a complex
task for which no pre-existent solution has yet been found. All
these processes require the adaptation of the agents incarnating
the different principals in a digital ecosystem. Agents need
to learn from experience who is reliable, who is capable of
reacting quickly, who is expected to produce at the best quality.
Experience and information exchanges are the basic building
blocks of our model of the participants in a digital ecosystem.

In this context, we understand digital ecosystems as un-
derpinned by the basic notion of agreeement. Agents (i.e.
companies, humans or software agents) in a digital ecosys-
tem are expected to interact, negotiate and sign agreements.
Agreements to form coalitions, agreements to perform tasks in
a team solving a complex problem, or agreements to structure
supply chains that would efficiently produce certain goods.
These agreements can then be honoured up to a certain extent.
A member of a coalition may not contribute in the expected
way, a team member may not show the committed capabilities
in solving its part of the problem, or a node in a supply chain
may deliver its committed goods late. The work introduced in
this paper focuses on how to measure the execution of such

agreements. In particular, we propose a model for trust based
on a shared ontology and that takes into account time and
conceptual similarity and that is based on a solid probabilistic
modelling of agent behaviour.

Furthermore, we show how the model can be used in the
particular case of eSourcing and give details of a software tool
called SRM (Supplier Relationship Management) that gives
support to a member of a digital ecosystem in the task of
deciding which supplier to choose for a given supply order.
It is now a prototype capable of working in a standalone
mode but that will also be integrated in the iQuotes Suite, an
enterprise resource planning system of the company iSOCO.

The paper is structured as follows. In Section II we describe
the trust model. In Section III we show the use of the model
in the context of eSourcing and in Section IV we discuss the
contributions of the paper.

II. TRUST MODEL

A lot of work can be found in the multiagent system
literature that deals with trust, [1]. The models and techniques
developed can be easily adapted to the context of digital
business ecosystems. In this section we introduce such a trust
model as an extension of [2] with a richer notion of similarity.
This model allows an agent to evaluate the trust it has on
another agent when the latter commits to a course of action.
Trust values are calculated over a probabilistic representation
of the expected performance of agents over signed agreements.

When an agreement is signed, agents involved get commit-
ted to a plan of action. How an agent performs a commitment
directly affects the trust other agents will have on its behaviour
in the future. Information about how an agreement is executed
is called experience.

Definition 1: We define an experience as a tuple:
µ = 〈α, β, ϕ, ϕ′, t〉

meaning that α signed an agreement with β at time t in which
β committed to do ϕ but what α finally observed was ϕ′

happening.
What is committed and observed is expressed on an on-

tology that agents engaged in a dialogue are assumed to
share. The relation between commitment and observation is
then represented as a conditional probability that is built
along time by factoring in a number of experiences. To take
maximum profit of experiences we assume that agents will
have similar behaviours in similar semantic regions of the



ontology. Thus, similarity measures are crucial to build the
conditional probability distribution from a minimum set of
experiences as we will see next.

A. Ontology

Agents involved in an agreement negotiation are required
to have a shared ontology O. This ontology allows to specify
what agents are arguing about and which is the content of the
agreements being signed.

Definition 2: We define an ontology O as the tuple

O = 〈C,⊂⊂⊂, :〉 (1)

where:
- C is a finite set of concepts.
- : ⊆ C ×C, is a refinement relationship usually referred

to as is-a.
- ⊂⊂⊂ ⊆ C×C, is a combination relationship usually referred

to as part-of.
Satisfying the following properties:

1) transitivity: if c : c′ and c′ : c′′ then c : c′′
2) ⊂⊂⊂ inherence: if c : c′ and c′′ ⊂⊂⊂ c′ then c′′ ⊂⊂⊂ c
3) : inherence: if c′ ⊂⊂⊂ c and c′′ ::: c′ then c′′ ⊂⊂⊂ c
The refinement relation defines increased specificity be-

tween concepts. It can also be seen as a relation between values
and types. On the other hand, the combination relationship de-
fines components of a concept. We represent the combination
relation as a term where the predicate is the composed concept
and the arguments the parts of it. For example: wheels⊂⊂⊂ car
and engine ⊂⊂⊂ car is represented as car(wheels, engine).
Even, we can represent it as car() if we don’t want to specify
its components. The term representing a concept that has no
components is the name of the concept itself, e.g. nail.

Definition 3: The set of terms associated to the concepts
of an ontology O = 〈C,⊂⊂⊂, :::〉, noted Term(c) for c ∈ C, is
defined as:

1) if c′ : c then c′ ∈ Term(c)
2) if ∃c′. c′ ⊂⊂⊂ c then c() ∈ Term(c) else c ∈ Term(c)
3) if c1 ⊂⊂⊂ c, ..., cn ⊂⊂⊂ c then c(c′1, ..., c

′
n) ∈ Term(c) where

c′i ∈ Term(ci)
We abuse notation to define the terms of a set R as

Term(R) = ∪c∈RTerm(c). In particular, the terms of an
ontology O = 〈C,⊂⊂⊂, :〉 can be defined as Term(C). In the
rest of the paper we will refer Term(C) as Term(O).

B. Similarity measures

Similarity measures are crucial for the trust model. The
idea is that a concrete experience about a commitment can be
used to update the expectation of behaviour over semantically
close commitments. To that end we have to be able to
compare commitments that is concepts and terms of the shared
ontology.

When comparing two terms whose associated concepts
have components, we take into account the similarity between
those components and also their relevance. For example, one
may think that the engine of a car is more important than

its colour. So two cars with the same engine would be
more similar than two cars painted with the same colour.
To measure the similarity between the components of two
concepts we define the function at equation 2 where the
components are compared and the result is aggregated
weighted by the relevance each component has.

sim⊂⊂⊂(P1(L1), P2(L2)) = 1/2 ·

·


∑
t∈L1

rel(h(t), P1) · max
t′∈L2

sim(t, t′)∑
t∈L1

rel(h(t), P1)
+

+

∑
t′∈L2

rel(h(t′), P2) ·max
t∈L1

sim(t′, t)∑
t′∈L2

rel(h(t′), P2)

 (2)

where:

- P1(L1) and P2(L2) are two terms which heads are P1

and P2 respectively and L1 and L2 are the lists of terms
that represent their components.

- sim(t, t′) is an overall similarity function between terms
that will be introduced later.

- rel(c, c′) is a function that represents how relevant is the
component c′ for the concept c when c′ ⊂⊂⊂ c.

- h : T → C gets the head of a term, eg. h(P (L)) = P

Focussing now on the refinement relation, it seams reason-
able to let the designer define a specific similarity function
between concepts c1, c2 that are direct specifications of another
concept c. That is to say: a partial similarity function simc :
Term(O) × Term(O) 7→ [0, 1] that is defined for concepts
c1, c2 when there exists c. c1 ::: c and c2 ::: c but there is no c′

such that c1 ::: c′ ::: c or c2 ::: c′ ::: c. For instance, if high ::: level,
medium ::: level and low ::: level the designer can define
a function simlevel that verifies simlevel(high,medium) >
simlevel(high, low). By default, when the designer does not
define a specific similarity function, then we use the similarity
described in equation 3, [3],

simdefault(c1, c2) = e−k1l · e
k2h − e−k2h

ek2h + e−k2h
(3)

where:

- l is the length, number of hops, of the shortest path
between the concepts following the refinement relation.

- h is the depth of the deepest concept subsuming both
concepts following the refinement relation.

- k1, k2 balance the contribution of shortest path length
and depth respectively1.

Finally we put together all these similarity functions and
create an overall measure for similarity between terms:

1[3] argues that k1 ' 0.2 and k2 ' 0.6 represent a good model of human
intuitions about similarity.



sim(t1, t2) =

=

8>><>>:
1 bt1 = bt2
sim(P, Q) · sim⊂⊂⊂(P (L1), Q(L2)) bt1 = P (L1), bt2 = Q(L2)
sim:::(h(t1), h(t2)) ∃c. h(t1) ::: c, h(t2) ::: c
0 otherwise

(4)
where:

- sim:::(c1, c2) would be either a specific concept similarity
simc(c1, c2) or, otherwise, the default concept similarity
simdefault(c1, c2).

- h : T → C gets the head of a term, eg. h(P (L)) = P
- t̂ represents the expansion of the term t.
As introduced before, a concept with components can be

expressed as a term that does not include all its components.
It is a simplification on notation suitable when some of the
components are the most general ones2. In that case, these
general components can be omitted. The expansion operator
completes the term description including all its components.

bt =

8>>>>><>>>>>:

t 6 ∃c′ ⊂⊂⊂ h(t)

P (bt′1, ...,bt′j , ...,bt′n)

t = P (L).

t′j =


ti ∃ti ∈ L. ti ∈ Term(cj)
cj otherwise

, ∀cj ⊂⊂⊂ P . 6 ∃ck ⊂⊂⊂ P . cj ::: ck
(5)

where L represents the list of arguments of the term which
head is P .

C. Expected observations
The trust model being described models the expected be-

haviour of an agent involved in an agreement. The expected
behaviour is represented as a conditional probability distribu-
tion function (PDF) over the possible observations given the
possible agreements. That is P(ϕ′|ϕ) represents the probability
of ϕ′ happening when a commitment ϕ is made. This PDF is
built using past relevant experiences; understanding as relevant
all those experiences that have a commitment that is similar
to ϕ over a threshold.

The PDF is initialized using background knowledge on
the other agents in the digital ecosystem and updated for
each new experience µ = 〈α, β, ψ, ψ′, t〉 using minimum
relative entropy inference3 from the a priori PDF and a set
of constraints Q. There are constraints for each term ϕ that
is similar enough to those commitments appearing in previous
experiences as described in equation 6.

Q(ϕ′ | ϕ) = Pt(ϕ′|ϕ) + 1/nex ·Sinertia · (1−Pt(ϕ′|ϕ)) (6)

2Remember that the refinement relation represents specificity between
concepts.

3Given a probability distribution ~q, the minimum relative entropy distri-
bution ~p = (p1, . . . , pI) subject to a set of J linear constraints ~g =
{gj(~p) = ~aj · ~p − cj = 0}, j = 1, . . . , J (that must include the constraintP
i pi − 1 = 0) is: ~p = arg min~r

P
j rj log

rj

qj
. This may be calculated

by introducing Lagrange multipliers ~λ: L(~p, ~λ) =
P
j pj log

pj

qj
+ ~λ · ~g.

Minimising L, { ∂L
∂λj

= gj(~p) = 0}, j = 1, . . . , J is the set of given

constraints ~g, and a solution to ∂L
∂pi

= 0, i = 1, . . . , I leads eventually to ~p.
Entropy-based inference is a form of Bayesian inference that is convenient
when the data is sparse [4] and encapsulates common-sense reasoning [5].

where:
- nex limits the maximum influence of a single experience.
- inertia amplifies the impact of an experience.
- S is a similarity measure between the past experience
µ = 〈α, β, φ, φ′, t〉 and the hipotetical future experience
µ′ = 〈α, β, ϕ, ϕ′, t′〉 represented in equation 7:
S = (1− | Sim(φ′, φ)− Sim(ϕ′, ϕ) |) · Sim(φ, ϕ) (7)

D. Time

The model of the behaviour of agents in a digital ecosystem
evolves along time. This is due to two factors: new experiences
arrive and the information decays as times goes by leading to
ignorance. These two factors are considered together in the
next general equation that updates the PDFs.

Pt
′

= (MRE(Pt, Q)− D) · ν∆t + D (8)

where:
- MRE(Pt, Q) is the minimum relative entropy distribu-

tion from Pt satisfying the set of constraints Q.
- D is the decay limit distribution.
- ν ∈ [0, 1] sets the speed at which a probability distribu-

tion goes back to the decay distribution.
- ∆t = t′ − t is the time increment from last update.

E. Trust

Finally, the trust that agent α has on β at time t′ with respect
to a potential commitment ϕ is evaluated using equation 9,
where ϕ′ is every possible observation.

T (α, β, ϕ, t′) =
∑
ϕ′

P(Prefer(ϕ′, ϕ)) · Pt
′
(ϕ′|ϕ) (9)

Trust is computed as the aggregation of the probability of
each observation happening weighted by the probability of
that observation being more preferable than the commitment.

As we don’t assume a closed world we need to always
represent the unknown possibilities. The set of unknown
possibilities is represented with the symbol ⊥. Because of
that, for any commitment φ, there will always be at least
two possibilities: φ and ⊥. This permits the values of trust to
respect some minimum commmon sense. For instance without
information the probability of φ and ⊥ would be the same, as
the intuition indicates. As expereinces arrive with new possible
observation: ψ, δ, ... the importance of ⊥ decreases.

Trust is calculated on demand following algorithm 1 in this
section. The main steps in the algorithm are:

1) (lines 1 to 4) build Observations that is the set of
all terms observed in the past plus ⊥ and the current
commitment.

2) (lines 5 to 8) build the decay limit distribution D
and initializes the a priori PDF Ptold . We assume an
equiprobable distribution for D and for the initial Ptold .

3) (lines 9 to 20) update the probability distribution P
considering the elements in the experience history Mα

that are similar enough (over a given threshold ω) to
the current commitment ϕ. Note that the experiences are



sorted by time. The equations implemented in these lines
have already been described in this section. Concretely,
lines 11 and 12 correspond to the decay that affects to
information as time goes by, and lines 13 to 16 refer
to the constraint computation necessary to update the
expected observation PDF as stated in line 17.

4) (lines 21 and 22) apply decay over the expected obser-
vation PDF updated using the last experience. Time gets
updated.

5) (lines 23 to 26) calculate the final trust value considering
the probability of the terms in the set Observations and
the preference function.

Algorithm 1 function Trust(α, β, ϕ, t′)
Require: O {the shared ontology}
Require: Mα ⊆M {α’s history of experiences sorted by time}
Require: Sim : Term(O)× Term(O)→ [0, 1] {term similarity}
Require: Prefer : Term(O)× Term(O)→ [0, 1] {term preference}
Require: ω : [0, 1] [Default 0.1] {minimum term similarity}
Require: ν : [0, 1] [Default 0.95] {decay parameter}
Require: nex : N [Default 6] {influence limiter parameter}
Require: inertia : [1,∞) [Default 8] {influence amplifier parameter}
Ensure: Trust(α, β, ϕ, t′) ∈ [0, 1]
1: Observations ← {ϕ,⊥}
2: for all µ = 〈α, β, φ, φ′, t〉 do
3: Observations ← Observations ∪ {φ′}
4: end for
5: for all ϕ′ in Observations do
6: D(ϕ′ | ϕ)← 1/size(Observations)
7: end for
8: told ← 0; Ptold = D
9: for all µ = 〈α, β, φ, φ′, t〉 in Mα do

10: if Sim(φ, ϕ) ≥ ω and t ≤ t′ then
11: ∆t← t− told
12: Pt ← (Ptold − D) · ν∆t + D {Time goes by and Pt decays}
13: for all ϕ′ in Observations do
14: S ← (1− | Sim(φ′, φ)− Sim(ϕ′, ϕ) |) · Sim(φ, ϕ)
15: Q(ϕ′ | ϕ)← (Pt(ϕ′|ϕ) + 1/nex ·Sinertia · (1−Pt(ϕ′|ϕ)))

{Constraints to satisfy}
16: end for
17: Pt ←MRE(Pt, Q) {Min. relative entropy from Pt satisfying Q}
18: end if
19: told ← t
20: end for
21: ∆t← t− told
22: Pt′ ← (Ptold − D) · ν∆t + D {Time goes by and Ptold decays}
23: T ← 0 {Computing trust value}
24: for all ϕi in Observations do
25: T ← T + Prefer(ϕi, ϕ) · Pt′ (ϕi | ϕ)
26: end for
27: return T

III. SRM

As an application of the described trust model to strategic
sourcing, we have developed the SRM toolbox. SRM, Sup-
plier Relationship Management, establishes a technological
framework to give support to the buying process in a supply
chain. Strategic sourcing concerns: category management –
sales analysis by product categories–, supplier relationships
–operative buying process support– and supplier performance
–advanced tools for supplier monitoring and selection–. The
application SRM specially focus on supplier performance. It
gives support for supplier selection evaluating experiences

with past agreements and computing a trust value for each
explored buying order.

Let us illustrate the scenario of supplier performance with
an example.

Ana is the person in charge of buying the office supplies
for her company. She has ordered thirty pens of a certain
quality, and asked to receive them by tomorrow. She reaches
an agreement with the supplier ‘The Happier’. Unfortunately,
she receives sixty pencils two days late. She feels disappointed
as she wanted pens, not pencils, and she needed them imme-
diately, not two days latter. The supplier ‘The Happier’ is not
trustworthy.

Her level of satisfaction with the outcome of an agreement
will depend on: (1) how important was for her each order
dimension –in the example: product, quality, quantity and de-
livery day–, (2) how different is what she got –the observation–
compared with what she asked for –the commitment– and, of
course, (3) which are her preferences. All these points are
contemplated in our trust model.

For supplier performance, the trust model is illustrated in
the following using a simple ontology. The ontology describes
an order as a concept with four components: product, delivery
day, quality and quantity. We refer to them as order dimen-
sions. As can be seen in figure 1, writing instruments are
products. And these writing instruments can be either opaque
(pen and pencil) or transparent (marker and highlighter). The
ontology also represents that a delivery day can be +1 ... +7,
the quality chosen for an order should be one of excellent,
good, medium or bad. And finally, the quantity of products to
be ordered is expressed by an integer value.

order

product quality quantitydelivery day

writing instrument

transparentopaque

pencil pen marker highlighter

good badmediumexcellent

integer

+1 ... +7

References:
         part-of relation
         is-a relation

1 ... n

Fig. 1. SRM Ontology

Similarity between orders is computed as described in
section II-B with three specific similarity functions for delivery
day, quality and quantity. The relevance function is adjusted
to give more importance to the product of an order and the
quantity than to the rest of components.

The PDF is updated based on experiences and the decay
of information is as described before. The preference function
represents the knowledge of what is preferred with respect
to the commitment and to what degree it is preferred, for
instance, higher quality in the product is to be preferred in
this illustration. More quantity or lower delivery day are not



preferred because of the storage problems they can provoke.
Any way, preference can be adjusted by the SRM user for
every order component if it is required.

The experience reported in the previous example can thus
be represented as:

µ = 〈Commit(‘The happier’, ‘Ana’, order(pen, 30, good,
+1)), Obs(‘Ana’, ‘The happier’, order(pencil, 60, medium,

+3)), 12.5〉

An example of expected observation PDF is represented
in figure 2. It belongs to the evaluation of the commitment
of order(pen, excellent,+1). In this order, quantity is not
indicated. In fact, SRM can evaluate the trust in a supplier
when only a subset of order components has been specified
in the commitment. As it is shown in the PDF, it is expected
to receive the requested product, pen, but it is known that
sometimes there is a delay in the delivery of pens of such
quality. If the user preferences specify that there is no problem
with small (≤ +5) delivery delays then the trust associated to
this PDF will be high.

Fig. 2. Bar chart representing P(ϕ′|order(pen, excellent,+1)). The height
of the bars corresponds to the probability of a specific order being observed.
Expected orders are represented at the bottom.

A. SRM functionalities

The SRM toolbox has four tools to analyse the performance
of suppliers: Trust, Supplier, Critical Order and Minimal Cost.
The features of these tools are described below.

1) Trust: The aim of the Trust tool is to show the trust on
a supplier for a given commitment ϕ. Three different charts
are visualized: a bar and a point similarity charts representing
the expected observation PDF for the commitment ϕ, and a
chart with the trust evolution over time.

Several parameters allow to adjust the trust measure as
desired. One of them is the speed of memory loss. Changing
this parameter, the relevance of old experiences to build the
PDF changes.

Trust can also be computed focusing on a subset of the
order dimensions.

2) Supplier: The Supplier tool does not compute trust as
described in section II. Experience history data is represented
in several ways using mean and standard deviation measures
of either similarity between commitment and observation or
experience satisfaction. Satisfaction is evaluated using the
preference function.

This tool provides a ranking of suppliers and a mean versus
standard deviation chart representing each supplier as a circle
whose diameter is proportional to the number of previous
experiences with that particular supplier.

Besides, the tool includes a set of charts representing the
comparison between two suppliers along each order dimen-
sion. These are spider charts –summarizing the behavior of
the two selected suppliers along each order dimension– and a
new chart for each dimension illustrating the behavior of the
supplier for the corresponding order dimension over time.

Figure 3 is a screenshot of this tool where most of the
described charts are visible. In addition, this tool allows both
to ignore some of the order dimensions and to constrain the
experiences to those which have a commitment quite similar
to the one being analysed.

Fig. 3. Screenshot of the Supplier Tool. At top left the user can choose
between similarity or satisfaction and select which suppliers he wants to
compare. At top right there is a mean versus standard deviation chart where
all the suppliers are represented. The suppliers that behave better are in the
bottom right part of the chart. Finally, at the bottom we can see a ranking on
suppliers (left) and the spider chart of the two suppliers being compared. The
blue one has problems in guaranteeing quality and the red doesn’t succeed in
delivering the product at the correct day.

3) Critical Order: This tool allows us to study how the
suppliers are expected to perform when committing to a spe-
cific order. We can specify priorities between order dimensions
–relevance of each dimension for the similarity calculations–
and our preferences. Some dimensions can also be ignored.

The tool shows a ranking of suppliers based on their trust
value for the desired order, priorities and preferences. It
also shows a trust versus entropy chart where all suppliers
are represented. Note that the most trustworthy suppliers are
situated at the bottom right area.

4) Minimal Cost: Minimal Cost is perhaps the smartest
tool included in SRM. It provides a split of orders along



suppliers such that the split guarantees the levels of satisfaction
that we want for each order dimension whilst minimizing the
overall cost. To this end, an order and several percentages of
satisfaction have to be indicated, one per dimension.

This tool aims to provide the cheapest solution that satisfies
the user need. The solution indicates how many items should
provide each supplier.

B. iQuotes integration of SRM

Several enterprise resource planning systems (ERP) are
nowadays dealing with eSourcing. For example: iQuotes4,
SAP5 and Ariba6. But no one is able to manage trust. In fact,
most of the ERPs are more focused on data management than
on decision support. Therefore, SRM is an innovation in the
field of industrial strategic eSourcing that has its roots on an
agent trust model.

In addition to its standalone use, SRM is being integrated
into the iQuotes Suite of the company iSOCO7. In fact,
SRM will be a new module of the suite from which it will
get information about past experiences. This is, information
about committed orders and feedback about their respective
execution observation. For example, the user can inform that
the execution was late, the quality different than committed,
etc. With this information a new experience can be completed
and thus be used to update the trust on the corresponding
supplier.

IV. DISCUSSION

In this paper we have described a trust model that takes into
account (1) the passage of time, (2) past similar experiences,
(3) number of previous interactions with a given agent, (4)
preferences, as well as (5) the importance given to each
of the dimensions that describe the new commitment. To
that end, an ontology has to be defined together with a
domain dependent similarity measure. The trust evaluation is
computed on demand and bases its calculations on an expected
observation PDF and a preference function. How this PDF is
build is described in Section II-C.

In addition, we have applied this trust model to eSourcing,
and concretely to strategic sourcing. A toolbox for supplier
performance, SRM, is provided to give support to a company
in selecting the supplier that better fulfills its needs when
an agreement is negotiated. Indeed, the company’s needs are
expressed, as indicated by the trust model, by means of the
terms of a shared ontology and a preference function. SRM
is also being integrated in a larger ERP with the objective
of being used as one of the components of the commercial
sourcing application suite iQuotes.

Future work can be summarized in three points: aggregation
of more tools to cover contract management as well as supplier
performance, use of reputation to compute the trust value
and support on negotiation. The design of more tools will

4http://www.isoco.com/soluciones es iquotes suite.htm
5http://www.sap.com
6http://www.ariba.com/
7http://www.isoco.com

come together with a users’s demand of them. At the moment
we will deploy the functionality described and will be in
touch with the company iSOCO to report the need of extra
functionality. Negotiation support is already being held in
some way by iQuotes. We plan to improve the negotiation
model by adding tools based on information theory to model
information gain and ideas from cognitive science to help
modelling the relationships between members of a supply
chain. Finally, reputation can be applied to our trust model
by the aggregation of external experiences and opinions. The
use of experiences of other members of the digital ecosystem
to update the expected observation PDF is studied in general
terms in [6], but it doesn’t include any software implemen-
tation or test results. The other way to incorporate reputation
is by opinions. Users would be able to express their opinions
about suppliers without making their experiences with them
public. Some work is being done with this objective, [6], but
how the trust model described in this paper can be modified
to incorporate information about opinions is ongoing work.

ACKNOWLEDGMENT

Research supported by the PROFIT and the Consolider-
Ingenio programs of the Spanish Ministry of Science and In-
novation by means of the Strategic eSourcing and Agreement
Technologies projects respectively. Partial support is given by
the LiquidPub EU funded project.

REFERENCES

[1] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decis. Support Syst., vol. 43, no. 2,
pp. 618–644, 2007.

[2] C. Sierra and J. Debenham, “An information-based model for trust,” in
AAMAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems. New York, NY, USA: ACM,
2005, pp. 497–504.

[3] Y. Li, Z. A. Bandar, and D. McLean, “An approach for measuring
semantic similarity between words using multiple information sources,”
IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 4,
pp. 871 – 882, July / August 2003.

[4] P. Cheeseman and J. Stutz, Bayesian Inference and Maximum Entropy
Methods in Science and Engineering. Melville, NY, USA: American
Institute of Physics, 2004, ch. On The Relationship between Bayesian
and Maximum Entropy Inference, pp. 445 – 461.

[5] J. Paris, “Common sense and maximum entropy,” Synthese, vol. 117,
no. 1, pp. 75 – 93, 1999.

[6] C. Sierra and J. Debenham, “Information-based reputation,” in ICORE’09:
International Conference on Reputation, 2009, p. [in press].


