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In this paper we carry out an algebraic investigation of the Weak Nilpotent Minimum logic (WNM) and its
t-norm based axiomatic extensions. We consider the algebraic counterpart of this logic, the variety of WNM-
algebras (WNM) and we prove that it is locally finite, so all its subvarieties are generated by finite chains. We
give criteria to compare varieties generated by finite families of WNM-chains, in particular varieties generated
by standard WNM-chains, or equivalently t-norm based axiomatic extensions of WNM, and study their standard
completeness properties. We also characterize the generic WNM-chains, i.e. those that generate the variety
WNM, and we give finite axiomatizations for some t-norm based extensions of WNM.
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1 Introduction

The logic MTL (Monoidal Triangular norm based Logic) was introduced by Esteva and Godo in [10] as a gen-
eralization of Hájek’s BL logic ([17]). They conjectured that it was the basic fuzzy logic, i.e. the least logic
complete with respect to a semantics given by a class of left-continuous triangular norms (t-norms, for short) and
their residua. Indeed, this was proved to be true when Jenei and Montagna showed in [20] that MTL is complete
with respect to the semantics given by the class of all left-continuous t-norms and their residua.

Moreover, following [17] and [18], an algebraic semantics for MTL logic was given in [10], the variety of
bounded commutative integral residuated lattices satisfying the prelinearity equation, (x → y) ∨ (y → x) ≈ 1.
Those algebras were called MTL-algebras. In fact, this variety, that we denote MTL, is an equivalent algebraic
semantics for MTL logic, so MTL turns out to be an algebraizable logic in the sense defined by Blok and Pigozzi
in [2]. As a consequence, there is a dual order isomorphism between the lattice of subvarieties of MTL and the
lattice of axiomatic extensions of MTL. Nevertheless, the whole structure of the lattice of axiomatic extensions
of MTL is very far from being known. Only some parts of the lattice have been described so far.
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Among the well studied axiomatic extensions of MTL there is the Gödel-Dummett logic G (see [15, 8, 17]).
It can be seen as the extension of MTL obtained by adding the axiom schema of contraction, ϕ → ϕ&ϕ. Its
algebraic counterpart are the G-algebras (prelinear Heyting algebras) and its latttice of subvarieties has been
completely described (see e.g. [16]). Moreover, G is complete with respect to the semantics given by the t-norm
of the minimum. The negation associated to this t-norm is the so-called Gödel negation that maps every non-
zero element to zero. Following the idea of considering fuzzy logics based on t-norms related to the minimum
operation, Esteva and Godo defined in [10] two new axiomatic extensions of MTL: Nilpotent Minimum logic
(NM, for short)1 and Weak Nilpotent Minimum logic (WNM, for short). The first one is complete with respect to
the semantics given by Fodor’s nilpotent minimum t-norm (see [12]), which is a modification of the minimum t-
norm by making the negation involutive; more precisely, Fodor considers the standard involutive negation n(x) =
1 − x, and keeps the value of the minimum t-norm in the region above its graph while he forces the t-norm to
be 0 under the graph. Weak Nilpotent Minimum logic is a further generalization of the idea of considering t-
norms related to the minimum, since it is complete with respect all t-norms defined in the same way as Fodor’s
t-norm but allowing the negation to be any weak negation function (in the sense of [9]). Therefore, in order to
obtain these kind of t-norms that only take value 0 or the minimum, the required axiom to define WNM from
MTL is (ϕ&ψ → 0) ∨ (ϕ ∧ ψ → ϕ&ψ). NM is the extension of WNM with the axiom schema of involution,
¬¬ϕ → ϕ. Their equivalent algebraic semantics are the varieties of NM-algebras and WNM-algebras, NM and
WNM, respectively. The lattice of subvarieties of NM was completely described by the third author in [14], thus
giving a complete classification of the axiomatic extensions of NM.

In this paper we aim to extend the work done for NM-algebras and G-algebras by giving a first approach to the
classification of axiomatic extensions of WNM logic (i.e. a classification of the subvarieties of WNM). Moreover,
WNM can also be seen as an interesting subvariety of both 3-contractive MTL-algebras (see [6, 19, 21]) and the
variety BP+ω

0 generated by perfect MTL-algebras plus ω points (studied in [23]). After some necessary logical
and algebraic2 preliminaries in Section 2, we will survey the known results for varieties of G-algebras and NM-
algebras, and then in Section 3 we will describe the simple structure of WNM-chains (focusing on WNM-chains
satisfying the finite partition property) and we prove that WNM is a locally finite variety, so, as in the case of
NM, all subvarieties are generated by finite WNM-chains. In Section 3.1 we will characterize the WNM-chains
that generate the whole variety WNM and among them we characterize the standard ones. In Section 3.2 we
focus on varieties generated by standard WNM-chains (i.e. t-norm based axiomatic extensions of WNM) and
study their standard completeness properties. In Section 3.3 we discuss the problem of giving axiomatizations
for the axiomatic extensions of WNM, with special attention to the extensions given by standard WNM-chains.
We will end with some concluding remarks.3

2 Preliminaries

WNM is the logic introduced by Esteva and Godo in [10] by means of a Hilbert-style calculus in the language
L = {&,→,∧, 0} of type 〈2, 2, 2, 0〉, where the only inference rule is Modus Ponens and the axiom schemata
are the following (taking→ as the least binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ&ψ → ϕ
(A3) ϕ&ψ → ψ&ϕ
(A4) ϕ ∧ ψ → ϕ
(A5) ϕ ∧ ψ → ψ ∧ ϕ
(A6) ϕ&(ϕ→ ψ)→ ϕ ∧ ψ
(A7a) (ϕ→ (ψ → χ))→ (ϕ&ψ → χ)
(A7b) (ϕ&ψ → χ)→ (ϕ→ (ψ → χ))
(A8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A9) 0→ ϕ
(A10) ¬(ϕ&ψ) ∨ (ϕ ∧ ψ → ϕ&ψ)

1 According to [25], an equivalent system had been previously defined by G. J. Wang in a paper in Chinese.
2 We need to assume some background in Universal Algebra. It can be found in a good reference book such as [5].
3 Preliminar versions of the results presented in this paper are available in [24, 21].
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where ¬ and ∨ are following defined connectives:
¬ϕ := ϕ→ 0;
ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ).
Additional connectives are defined as:
1 := 0;
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).
This calculus for WNM is actually the calculus for MTL extended with the axiom (A10).
We denote the set ofL-formulae built over a denumerable setX of variables by FmL. Given Γ∪{ϕ} ⊆ FmL,

we write Γ `WNM ϕ if, and only if, ϕ is provable from Γ in the system WNM. We write `WNM ϕ instead of
∅ `WNM ϕ.

The Nilpotent Minimum logic (NM, for short) is the axiomatic extension of WNM obtained by adding the
axiom schema of involution:

¬¬ϕ→ ϕ.

The Gödel-Dummett logic (G, for short) is the axiomatic extension of WNM obtained by adding the axiom
schema of contraction:

ϕ→ ϕ&ϕ.

A syntactical proof (analogous to the usual proof of the deduction theorem for classical logic) shows that these
three logics enjoy the following global forms of deduction-detachment theorem.

Theorem 2.1 For every set of formulae Γ ∪ {ϕ,ψ} ⊆ FmL we have:

1. Γ, ϕ `WNM ψ if, and only if, Γ `WNM ϕ2 → ψ

2. Γ, ϕ `NM ψ if, and only if, Γ `NM ϕ2 → ψ

3. Γ, ϕ `G ψ if, and only if, Γ `G ϕ→ ψ

where ϕ2 is a shortcut for ϕ&ϕ.

As it is proved in [10], an algebraic semantics for WNM is given by the class of WNM-algebras.

Definition 2.2 ([10]) Let A =
〈
A,&A,→A,∧A,∨A, 0A, 1A

〉
be an algebra of type 〈2, 2, 2, 2, 0, 0〉. We

define a unary operation by ¬Aa := a →A 0A.4 Then, A is a WNM-algebra if, and only if, it is a bounded
commutative integral residuated lattice satisfying the following equations:

(x→ y) ∨ (y → x) ≈ 1,

¬(x&y) ∨ (x ∧ y → x&y) ≈ 1.

An element a ∈ A is involutive if, and only if, ¬A¬Aa = a.
A is an NM-algebra if, and only if, all elements are involutive, i.e. A satifies the equation of involution:

¬¬x ≈ x.
An element a ∈ A is a negation fixpoint (or just fixpoint, for short) if, and only if, ¬Aa = a. In [18] Höhle

proves that there exists at most one fixpoint.5

We will say that A is a WNM-chain (resp. NM-chain) if, and only if, the lattice order is total.

We will denote by WNM and NM the classes of WNM-algebras and NM-algebras, respectively. It can proved
that both classes are varieties and, of course, NM ⊆ WNM. The algebraic counterpart of G is the class of
prelinear Heyting algebras and it is easy to prove that they are termwise equivalent to WNM-algebras satisfying
the equation of contraction: x&x ≈ x, which are called G-algebras. The variety of G-algebras is denoted by G.

4 The superscripts in the operations will be often omitted when they are clear from the context.
5 Actually, Höhle states it for the involutive algebras but the same proof gives the result for the general non-involutive case.

Copyright line will be provided by the publisher



6 C. Noguera, F. Esteva, and J. Gispert: On t-norm based axiomatic extensions of the Weak Nilpotent Minimum logic

These classes of algebras allow to define a semantical consequence in the usual way. Indeed, given Γ∪{ϕ} ⊆
FmL and K ⊆ WNM, the expression Γ |=K ϕ means that for every A ∈ K and every evaluation v of the
formulae in A, we have v(ϕ) = 1A whenever v(ψ) = 1A for every ψ ∈ Γ. When K = {A}, we write Γ |=A ϕ
instead of Γ |={A} ϕ. This semantical consequence gives the first strong completeness result for the considered
logics:

Theorem 2.3 ([10]) For every set of formulae Γ ∪ {ϕ} ⊆ FmL, we have:

1. Γ `WNM ϕ if, and only if, Γ |=WNM ϕ

2. Γ `NM ϕ if, and only if, Γ |=NM ϕ

3. Γ `G ϕ if, and only if, Γ |=G ϕ

However, this result can be strenghthened by realizing that WNM is actually an algebraizable logic in the
sense of Blok and Pigozzi [2] and WNM is its equivalent algebraic semantics. This implies that every axiomatic
extension of WNM is also algebraizable and there is the following dual order isomorphism between the lattice of
axiomatic extensions of WNM and the lattice of subvarieties of WNM:

• If L is the axiomatic extension of WNM obtained by adding as axiom schemata the set of formulae Γ ⊆
FmL, then its equivalent algebraic semantics is the subvariety L ⊆ WNM axiomatized by the equations
{ϕ ≈ 1 : ϕ ∈ Γ}.

• If K is the subvariety of WNM axiomatized by a set of equations6 Σ ⊆ EqL, then its corresponding logic is
the axiomatic extension of WNM obtained by adding {ϕ↔ ψ : ϕ ≈ ψ ∈ Σ} as axiom schemata.

The strong completeness result with respect to the variety of all WNM-algebras can be refined to the class of
WNM-chains by means of the following theorem:

Theorem 2.4 ([10]) Every WNM-algebra is representable as a subdirect product of WNM-chains.

Corollary 2.5 ([10]) For every set of formulae Γ ∪ {ϕ} ⊆ FmL, we have:
Γ `WNM ϕ if, and only if, Γ |=A ϕ for every WNM-chain A.

The same results are true for every axiomatic extension of WNM, in particular for NM and G.
Finally, the completeness of WNM, NM and G with respect to chains can be further refined to the class of

standard chains, i.e. chains defined over the real unit interval [0, 1]. Recall from [10] that the operation & in
WNM-chains defined over [0, 1] is given by a special kind of left-continuous triangular norm. These triangular
norms (t-norms, for short) are defined in the following way. If n is a negation function (a function n : [0, 1] →
[0, 1], such that n(1) = 0, is order-reversing, and a ≤ n(n(a)) for every a, as defined in [9]) and a, b ∈ [0, 1], the
operation ∗n is defined as:

a ∗n b =
{

min{a, b} if a > n(b),
0 otherwise.

This operation ∗n is a left-continuous t-norm and its residuum is given for every a, b ∈ [0, 1] by:

a→n b =
{

1 if a ≤ b,
max{n(a), b} otherwise.

It is straightforward that [0, 1]∗n
:= 〈[0, 1], ∗n,→n,min,max, 0, 1〉 is a WNM-chain, and all WNM-chains

over [0, 1] are of this form. We refer to these chains as standard WNM-chains. Notice that a standard WNM-
chain given by a negation function n is an NM-chain if, and only if, n is involutive, i.e. n(n(a)) = a for every
a ∈ [0, 1]. It follows from the study of such negation functions in [26] that there is only one standard NM-chain
up to isomorphism, namely the one given by the negation n(x) = 1 − x. We will refer to it as [0, 1]NM. The
left-continuous t-norm corresponding to this algebra was introduced by Fodor in [12]. For G the situation is

6 Recall that given an algebraic language L and a set formulae in this language FmL over some set of variables X , the equations are
formally defined as the expressions of the form ϕ ≈ ψ, where ϕ,ψ ∈ FmL. The set of all equations over X is denoted as EqL.
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similar: there is only one standard G-algebra and it is the one given by the minimum t-norm. We will denote it
by [0, 1]G.

Standard algebras provide an algebraic semantics for G, NM and WNM logics, as it was proved in [8] for G,
and in [9] for NM and WNM.

Theorem 2.6 Let Γ ∪ {ϕ} ⊆ FmL be a set of formulae. Then:

1. Γ `G ϕ if, and only if, Γ |=[0,1]G ϕ.

2. Γ `NM ϕ if, and only if, Γ |=[0,1]NM ϕ.

3. Γ `WNM ϕ if, and only if, Γ |=[0,1]∗n
ϕ for every negation function n.

This kind of result is usual called a standard completeness theorem. There are several standard completeness
properties that have been already considered in several papers, specially in [7] where there is a general study of
such properties for fuzzy logics from which we follow the terminology and notation.

Definition 2.7 If L is an axiomatic extension of WNM and K is a set of L-chains, we say that L has the strong
K-completeness property, SKC for short, when for every set of formulae T ⊆ FmL and every formula ϕ it holds
that T `L ϕ iff T |=A ϕ for every L-chain A ∈ K. We say that L has the finite strong K-completeness property,
FSKC for short, when the equivalence holds for every finite theory T . We say that L has the K-completeness
property, KC for short, when the equivalence is true for T = ∅. When K is the class of all standard L-algebras,
we just call the property strong standard completeness (resp. finite strong standard completeness and standard
completeness), and following [7] we use the notation SRC (resp. FSRC andRC).

Therefore, the theorem above states that WNM and NM enjoy the strong standard completeness. Of course,
the SKC implies the FSKC, and the FSKC implies the KC. They have their equivalent algebraic property (see
[7]).

Theorem 2.8 Let L be an axiomatic extension of WNM, let L be its equivalent variety semantics and let K
be a set of L-chains. Then:

1. L has the KC if, and only if, L = V(K),

2. L has the FSKC if, and only if, L = Q(K), and

3. L has the SKC if, and only if, L = ISPσ−f (K).

where V is the operator of generated variety, Q is the operator of generated quasivariety and Pσ−f denotes
the operator of reduced products over countably complete filters.

Therefore we have the following:

1. WNM = V({[0, 1]∗n : n is a negation function}) = Q({[0, 1]∗n : n is a negation function}) = ISPσ−f ({[0, 1]∗n :
n is a negation function}),

2. NM = V([0, 1]NM) = Q([0, 1]NM) = ISPσ−f ([0, 1]NM), and

3. G = V([0, 1]G) = Q([0, 1]G) = ISPσ−f ([0, 1]G).

Hence, there is a single NM-chain and a single G-chain that generate (by means of these three algebraic
operators) the whole variety of NM-algebras and the variety of G-algebras respectively, while in the case of
WNM-algebras we have an infinite class of generators. This result will be improved in Section 3.1, where we
will characterize the generic standard WNM-algebras.

Among the lattice of axiomatic extensions of WNM that we intend to study there is a subclass of particular
interest: the logics associated to one concrete t-norm.

Definition 2.9 Let ∗ be a WNM-t-norm and consider its corresponding standard WNM-chain [0, 1]∗. The
logic associated to ∗ is the axiomatic extension of WNM corresponding to the variety V([0, 1]∗) and it will be
denoted by L∗.
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Given a WNM-t-norm ∗ it is obvious that L∗ enjoys the RC but in fact this can be said in a more precise
way: L∗ enjoys the KC with respect to the class K = {[0, 1]∗} (i.e. it is not necessary to consider all the standard
algebras in the variety). We will call this stronger version of the RC, canonical RC. The canonical FSRC and
the canonical SRC are defined in the analogous way. Notice that G and NM enjoy the canonical SRC.

Finally, we need to recall some more usual algebraic notions.
Definition 2.10 Let A be a WNM-algebra. A filter is a set F ⊆ A such that:

• 1 ∈ F ,

• If a ∈ F and a ≤ b, then b ∈ F , and

• If a, b ∈ F , then a&b ∈ F .

F is proper iff 0 /∈ F .
The family of all filters of a WNM-algebra A is a closure system, i.e. it is a family of subsets of A closed

under arbitrary intersections and containing A. Therefore, it makes sense to speak about the notion of generated
filter. We will denote by F a the filter generated by an element a.

As it happens in all bounded commutative integral residuated lattices, we have the following one-to-one cor-
respondence between filters and congruences.

Proposition 2.11 Let A be a WNM-algebra. For every filter F ⊆ A we define Θ(F ) := {〈a, b〉 ∈ A2 :
a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈ A : 〈a, 1〉 ∈ θ}. Then, Θ is an order
isomorphism from the set of filters onto the set of congruences and Fi is its inverse.

By virtue of this correspondence, we will do a notational abuse by writing A/F instead of A/Θ(F ). Given
an element a ∈ A, [a]F will denote the equivalence class of a w.r.t. to the congruence Θ(F ).

A class K of algebras is locally finite (LF, for short) if, and only if, for every A ∈ K and for every finite set
B ⊆ A, the subalgebra generated by B is also finite. Notice that this property is inherited by the subclasses of K.

Let L be an algebraic language, let A = 〈A, {fA : f ∈ F}〉 be an algebra of type L and let B ⊆ A be a
non-empty set. The partial subalgebra B of A with domain B is the partial algebra 〈B, {fB : f ∈ F}〉, where
for every f ∈ F n-ary, and every b1, . . . , bn ∈ B,

fB(b1, . . . , bn) =
{
fA(b1, . . . , bn) if fA(b1, . . . , bn) ∈ B,
undefined otherwise.

We denote it by B ⊆p A.
Given two algebras A and B of the same language we say that A is partially embeddable into B when every

finite partial subalgebra of A is embeddable into B. Generalizing this notion to classes of algebras, we say that a
class K of algebras is partially embeddable into a class M if every finite partial subalgebra of a member of K is
embeddable into a member of M.

If the language is finite, this turns out to be equivalent to say that K belongs to the universal class generated
by M (see for instance [16]). That is, by recalling Łos’ theorem (see [5]) of characterization of universal classes,
we have the following equivalence.

Proposition 2.12 ([16]) Let K and M be classes of algebras of the same finite language. Then the following
conditions are equivalent:

• K is partially embeddable into M

• K ⊆ ISPU (M)

Given a class K of algebras, Kfin will denote the class of its finite members.
A class K of algebras has the finite embeddability property (FEP, for short) if, and only if, it is partially

embeddable into Kfin.
A class K of algebras of the same type has the strong finite model property (SFMP, for short) if, and only if,

every quasiequation that fails to hold in K can be refuted in some member of Kfin.
A class K of algebras of the same type has the finite model property (FMP, for short) if, and only if, every

equation that fails to hold in K can be refuted in some member of Kfin.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 9

It is clear that a variety has the FMP if, and only if, it is generated by its finite members and a quasivariety has
the SFMP if, and only if, it is generated (as a quasivariety) by its finite members.

Theorem 2.13 ([4]) Let L be a finite algebraic language and let K be a class of algebras of type L closed
under finite products. Then, K has the FEP if, and only if, K has the SFMP.

Moreover, it is clear that for every class of algebras K, we have:

• If K is locally finite, then it has the FEP.

• If K has the FEP, then it has the SFMP.

• If K has the SFMP, then it has the FMP.

Theorem 2.14 ([1]) Let L be a finite algebraic language and let K be a variety of algebras of type L enjoying
the EDPC (equationally definable principal congruences property). Then, the following are equivalent:

• K has the FEP,

• K has the SFMP,

• K has the FMP.

Since for every algebraizable logic whose equivalent algebraic semantics is a variety, the EDPC of the equiva-
lent algebraic semantics is equivalent to the deduction-detachment theorem of the logic (see [3]) and these logics
enjoy it (as stated in Theorem 2.1), we can conclude that WNM and all its axiomatic extensions fall under the
conditions of the last theorem.

2.1 Varieties of G-algebras and NM-algebras

The structure of G-chains and the lattice of subvarieties of G are well known (see for instance [16]). Indeed, if
A =

〈
A,&A,→A,∧A,∨A, 0A, 1A

〉
is a G-chain, then for every a, b ∈ A:

a&Ab = a ∧A b

a→A b =
{

1A if a ≤ b,
b otherwise.

We can consider the following canonical finite G-chains. For every n ≥ 1 the canonical G-chain of n elements
is defined as Gn := 〈{0, . . . , n−1},&,→,∧,∨, 0, n−1〉, where for every a, b ∈ {0, . . . , n−1}, a&b = a∧ b =
min{a, b}, a ∨ b = max{a, b} and

a→ b =
{
n− 1 if a ≤ b,
b otherwise.

Every finite G-chain with exactly n elements is isomorphic to Gn.
It is straigthforward to check that G is a locally finite variety, thus all varieties of G-algebras are generated

by finite G-chains. Morever, since Gn ⊆ Gn+1 for every n ≥ 1, then the varieties generated by a finite family
of finite G-chains form the following chain: V(G1) ⊆ V(G2) ⊆ V(G3) ⊆ . . . ⊆ V(Gn) ⊆ V(Gn+1) ⊆ . . ..
Finally, every infinite family of finite G-chains generates the whole variety G, so there are no more subvarieties.

It is clear that V(G1) is the trivial variety and V(G2) is (termwise equivalent to) the variety of Boolean
algebras. For every n ≥ 3, an axiomatization (relative to G) for V(Gn) is given by the equation:

∨
i<n(xi →

xi+1) ≈ 1. This implies that the inclusions in the chain of varieties are strict.
As regards to NM, its lattice of subvarieties has been completely described in [14]. We will briefly present

this description.
The structure of finite NM-chains is very simple. In fact, for every n ≥ 1 there is exactly one, up to isomor-

phism, NM-chain with n elements. Therefore, we can also define canonical finite NM-chains.
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For every n ≥ 1 the canonical NM-chain of 2n elements is defined asN2n := 〈{−n,−(n−1), . . . ,−1, 1, . . . , n−
1, n},&,→,∧,∨,−n, n〉 and the canonical NM-chain of 2n+ 1 elements is defined asN2n+1 := 〈{−n,−(n−
1), . . . ,−1, 0, 1, . . . , n− 1, n},&,→,∧,∨,−n, n〉, where:

a&b :=
{

min{a, b} if a > −b,
−n otherwise.

a→ b :=
{
n if a ≤ b,
max{−a, b} otherwise.

a ∧ b := min{a, b} and a ∨ b := max{a, b}.
Recall also the definition of the unique (up to isomorphism) standard NM-chain, [0, 1]NM.
Given an NM-chain C with fixpoint, we denote by C− the subalgebra obtained by erasing the fixpoint. With

this notation, it is clear that N2n = N−2n+1 for every n ≥ 1.

Theorem 2.15 ([14]) A variety of NM-algebras is a proper subvariety of NM if, and only if, it does not
contain Nn for some n ≥ 1.

Corollary 2.16 ([14]) If A is an infinite NM-chain with fixpoint, then V(A) = NM.

Theorem 2.17 ([14]) NM is locally finite.

This fact, as already discussed, implies the FMP and the decidability of NM. Thus, in particular, we have
that every variety of NM-chains is generated by its finite chains. It leads to the following classification and
axiomatization of the subvarieties of NM:

Theorem 2.18 ([14]) Consider the termsBp(x) = (¬(¬x)2)2 ↔ ¬(¬x2)2 and Sn(x0, . . . , xn) =
∧
i<n((xi →

xi+1)→ xi+1)→
∨
i<n+1 xi. Every proper subvariety of NM is of one of the following types:

1. V([0, 1]−NM) = V({N2n : n ≥ 1}) and it is axiomatized by Bp(x) ≈ 1, or

2. V(N2n+1) for some n ∈ ω and it is axiomatized by Sn(x0, . . . , xn) ≈ 1, or

3. V(N2n) for some n ∈ ω and it is axiomatized by Sn(x0, . . . , xn) ≈ 1 and Bp(x) ≈ 1, or

4. V([0, 1]−NM,N2n+1) for some n ∈ ω and it is axiomatized by Bp(x) ∨ Sn(x0, . . . , xn) ≈ 1, or

5. V(N2n,N2m+1), for somem,n ∈ ω such thatm < n and it is axiomatized by (Bp(x)∧Sn(x0, . . . , xn))∨
Sm(x0, . . . , xm) ≈ 1.

Therefore, the paper [14] gives a complete description of all axiomatic extensions of NM. The lattice of all
these logics is depicted in Figure 1, where NM− denotes the logic corresponding to V([0, 1]−NM), NMn denotes
the logic corresponding to V(Nn), NMnm denotes the logic corresponding to V(Nn,Nm), and NMn,NM−

denotes the logic corresponding to V(Nn, [0, 1]−NM).

3 Main results

3.1 General facts about WNM-chains

Starting from the results of the last section our aim now is to study the whole variety of WNM-algebras and its
subvarieties. First we need to study the WNM-chains, since they generate all the subvarieties of WNM.

The operations in WNM-chains are quite simple as the following lemma states:

Lemma 3.1 Let A =
〈
A,&,→,∧,∨, 0, 1

〉
be a WNM-chain. Then for every a, b ∈ A:

a&b =
{
a ∧ b if a > ¬b,
0 otherwise.

a→ b =
{

1 if a ≤ b,
¬a ∨ b otherwise.
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Axiomatic extensions of NM

Fig. 1 Lattice of axiomatic extensions of NM.

Notice that the previous lemma generalizes the structure of standard WNM-chains presented in the prelimi-
naries. It turns out, that WNM-chains depend just on the order and the negation operation, thus we need to recall
some properties of such operations.

Lemma 3.2 Let A be a WNM-chain. Then for every a ∈ A:

(i) ¬a = ¬¬¬a,

(ii) a ≤ ¬¬a,

(iii) a = ¬¬a if, and only if, there is b ∈ A such that a = ¬b, and

(iv) ¬¬a = min{b ∈ A : a ≤ b and b = ¬¬b}.

The negation operation determines two kinds of elements in a chain: the positive and the negative, which are
defined as follows.

Definition 3.3 Given a WNM-algebra A, the sets of positive and negative elements are respectively defined
as:
A+ := {a ∈ A : a > ¬a}
A− := {a ∈ A : a ≤ ¬a}
Consider the terms p(x) := x ∨ ¬x and n(x) := x ∧ ¬x. The next proposition gives a useful way to describe

these sets:
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12 C. Noguera, F. Esteva, and J. Gispert: On t-norm based axiomatic extensions of the Weak Nilpotent Minimum logic

Proposition 3.4 Let A be a WNM-algebra. Then:

• A+ = {p(a) : a ∈ A,¬a 6= ¬¬a}.

• A− = {n(a) : a ∈ A}.

Next we will prove that the involutive elements of a WNM-chain form an NM-algebra.

Definition 3.5 Let A be a WNM-chain. N(A) will denote the set of involutive elements of A, i.e. N(A) =
{¬a : a ∈ A}.

Proposition 3.6 Let A be a WNM-chain. Then N(A) is the universe of the maximum NM-subalgebra of A.
We denote it by N (A).

P r o o f. We must prove that N(A) is closed under all operations. Obviously, 0 = ¬1 ∈ N(A) and 1 = ¬0 ∈
N(A). Take ¬a,¬b ∈ N(A). Since A is linearly ordered, ¬a ∧ ¬b,¬a ∨ ¬b ∈ N(A), hence ¬a&¬b ∈ N(A).
Finally, if ¬a ≤ ¬b, then ¬a→ ¬b = 1 ∈ N(A); otherwise ¬a→ ¬b = ¬¬a ∨ ¬b ∈ N(A).

Proposition 3.7 Let K ⊆WNM be a variety. Then, K ∩ NM = V({N (A) : A chain of K}).

P r o o f. The inclusion from right to left is clear, since for every chain of K, A, we have thatN (A) is an NM-
chain and it is a subalgebra of an algebra in K, soN (A) ∈ K∩NM. Conversely, if C is a chain of K∩NM, then
C = N (C) ∈ {N (A) : A chain of K}, and by the subdirect representation theorem, we obtain the inclusion.

To deal with the non-involutive elements we will use the following definition.

Definition 3.8 Let A be a WNM-chain and let a ∈ A be an involutive element. We define IAa := {b ∈ A :
¬b = ¬a} and we call it the interval associated to a, where the negation function is constant with value ¬a. We
say that a has a trivial associated interval when IAa = {a}. WhenA is a standard WNM-chain given by a t-norm
∗, we will sometimes write I∗a instead of IAa . We will write just Ia when the algebra is clear from the context.

Now we can define the finite partition property for WNM-chains.

Definition 3.9 Let A be a WNM-chain. We say that A enjoys the finite partition property (FPP, for short) iff
¬A is constant in a finite number of intervals, i.e. the set {a ∈ A : Ia 6= {a}} is finite. Let Ia1 , . . . , Ian be these
intervals. In such a case we define the associated finite partition P in the following way:

• Ia1 , . . . , Ian
∈ P .

• Consider the set X = A \ (Ia1 ∪ . . . ∪ Ian
). It is clear that X ⊆ N(A). For every connected component

Y of X ∩ A−, consider the elements ¬ai1 < . . . < ¬aik ∈ Y (where {i1, . . . , ik} ⊆ {1, . . . , n}), and
add the following intervals to P : Y ∩ [0,¬ai1 ], (¬ai1 ,¬ai2 ], . . . , (¬aik−1 ,¬aik ], Y ∩ (¬aik , 1]. If there are
no elements of the form ¬ai in Y , we add Y to P . We do the same for every connected component Y of
X ∩A+.

Notice that this partition yields two kinds of intervals: those where the negation takes a constant value, and
those where all elements are involutive. As a matter of nomenclature, we call them constant intervals and in-
volutive intervals, respectively. Figure 2 shows an example of a WNM-t-norm with negation fixpoint, a3, and
satisfying the FPP where the constant intervals are [a4, a5] and [a6, a7], while the involutive intervals are [0, a1],
(a1, a2], (a2, a3], (a3, a4), (a5, a6) and (a7, 1].

Figure 3 shows three families of WNM-t-norms enjoying the FPP parametrized with a real number c: c ∈ [0, 1)
for ⊗c, c ∈ [1/2, 1) for ?c and c ∈ [1/2, 1] for �c. Notice that ⊗0 = �1 = min and ?1/2 = �1/2 is the nilpotent
minimum t-norm. Actually, these families are the only WNM-t-norms having a finite partition of at most three
intervals.

To refer to the class of WNM-t-norms and those satisfying the FPP we will use from now on the following
notations:

WNM = {∗ is a weak nilpotent minimum t-norm}

WNM-fin = {∗ ∈WNM | [0, 1]∗ enjoys the FPP}
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0           a1       a2     a3      a4      a5 a6     a7             1

1

x ∗ y = min(x, y)

x ∗ y = 0

Fig. 2 An example of WNM-t-norm satisfying the FPP.

0 c    1                 0       1-c         c        1                  0      1-c         c       1

1

0

c        c               c

1

0

1

0

Fig. 3 Three parametric families of WNM-t-norms enjoying the FPP.

Next we prove that the variety of WNM-algebras is locally finite.

Lemma 3.10 Let A be a WNM-chain. Then, every finite subset of A generates a finite WNM-chain.

P r o o f. Take a finite subset B = {b0, . . . , bn} ⊆ A. Due to Lemma 3.1 and (i) of Lemma 3.2 it is obvious
that the universe of the subalgebra generated by B is {0, 1, b0, . . . , bn,¬b0, . . . ,¬bn,¬¬b0, . . . ,¬¬bn}, so it is
finite.

Proposition 3.11 WNM is a locally finite variety.

P r o o f. Let A be a WNM-algebra and take a finite set B ⊆ A. Suppose that B = {b0, . . . , bn}. We must
prove that 〈B〉A is also finite. IfA is a chain, we apply the previous lemma. Suppose thatA is not a chain. Then,
due to the theorem of representation in subdirect products of chains, we have an embedding α : A ↪→

∏
i∈I Ai,

where for every i ∈ I , Ai is a WNM-chain. Consider the images of the elements of B, α(bj) = (aji )i∈I , for
every j ∈ {1, . . . , n}. We have seen that for every i ∈ I , {a1

i , . . . , a
n
i } generates a finite chain Ci ⊆ Ai whose
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14 C. Noguera, F. Esteva, and J. Gispert: On t-norm based axiomatic extensions of the Weak Nilpotent Minimum logic

universe is {0Ai , 1Ai , a1
i , . . . , a

n
i ,¬a1

i , . . . ,¬ani ,¬¬a1
i , . . . ,¬¬ani }. Notice that there is only a finite number of

such chains up to isomorphism, say {C0, . . . , Cn−1}, and 〈B〉A ∈ V({Ci : i < n}). Therefore, using that every
variety generated by a finite number of finite algebras is locally finite ([5], Theorem 10.16), we obtain that 〈B〉A
is finite.

We have the following easy consequences:

• WNM has the FEP.

• WNM has the FMP.

• WNM = V(WNMfin) = Q(WNMfin).

• Every subvariety of WNM is generated (as a variety and as a quasivariety) by its finite chains.

• The quasiequational theory of every finitely axiomatizable subvariety of WNM is decidable.

• WNM and all its finitely axiomatizable extensions are decidable.7

Lemma 3.12 Let A be a WNM-chain, let F be a filter and consider the quotient algebra A/F . Then:

• [1A]F = F

• [0A]F = {a ∈ A : ¬a ∈ F}

• For every a, b ∈ A \ ([1A]F ∪ [0A]F ) such that a 6= b, we have [a]F 6= [b]F .

P r o o f. The first statement is trivial. As for the second, take an arbitrary a ∈ A. Then, a ∈ [0A]F iff
a → 0A ∈ F iff ¬a ∈ F . Now consider a pair of different elements a, b ∈ A \ ([1A]F ∪ [0A]F ). Suppose, for
instance, that a > b. Then, a→ b = ¬a ∨ b /∈ F , hence [a]F 6= [b]F .

Roughly speaking the last lemma describes homomorphic images (i.e. quotients) of WNM-chains as the result
of identifying all the elements of a filter in the top of the resulting chain, identifying the elements whose negation
is in the filter in the bottom element, and leaving the rest of the chain as it was. Figure 4 shows the quotient of a
standard WNM-chain.

Lemma 3.13 Let A and B be WNM-chains and let f : A → B a surjective homomorphism. Then:

(i) If I
1
B = {1B}, then B is embeddable into A.

(ii) If I
1
B 6= {1B}, then there is a ∈ N(A) ∩A+ such that Ia 6= {a} and B is embeddable into A/F a.

P r o o f. By the Homomorphism Theorem we know that A/Kerf ∼= B; thus, after the previous lemma, we
can assume that the universe of B is (A \ ([1A]Kerf ∪ [0A]Kerf )) ∪ {0A, 1A}. (i) is obvious. Assume that
I
1
B 6= {1B}. Take c ∈ I

1
B \ {1B}, then it is clear that B is embeddable into A/F¬¬c.

Corollary 3.14 Let A be a WNM-chain. Then, H(A) = IS(A) ∪ IS({A/F a : a ∈ N(A) ∩ A+ and
Ia 6= {a}}). Moreover, if there exists the maximum positive involutive element a with Ia 6= {a} and such that for
any other b ∈ N(A) ∩A+, Ib is order-embeddable into Ia, then H(A) = IS(A) ∪ IS(A/F a).

P r o o f. All the algebras of H(A) are a homomorphic image of A and thus, by the previous lemma, they
are embeddable into A or into A/F a for some a ∈ N(A) ∩ A+. Assume now that there exists the maximum
positive involutive element a with Ia 6= {a} and such that for any other b ∈ N(A)∩A+, Ib is order-embeddable
into Ia. According to the description of quotients of WNM-chains given in Lemma 3.12, for every b ∈ N(A) ∩
A+ such that b < a, the assumption implies that A/F b is embeddable into A/F a, and hence IS(A/F b) ⊆
IS(A/F a).

7 The decidability of WNM and some of its extensions (and expansions with truth-constants) was already proved in [11] with a different
reasoning which, in fact, proved that for these logics the tautology and the consequence problems are coNP-complete while the satisfaction
problem is NP-complete.
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Notice that for every standard WNM-chain [0, 1]∗ whose t-norm is in WNM-fin, there is a maximum positive
involutive element a such that Ia 6= {a} (possibly a = 1) and, since all the constant intervals have the same
order-type, we have H([0, 1]∗) = IS([0, 1]∗)∪ IS([0, 1]∗/F a). Actually, the algebra [0, 1]∗/F a can also be seen
as a standard WNM-chain since it is clearly isomorphic to a chain over [0, 1]. The reader can see an example of
such situation in Figure 4.

0                                            a           1                                      0                                                      1  

[0, 1]
*

isomorphic to [0, 1]
* /Fa

1 1
x ∗ y = min(x, y) x ∗ y = min(x, y)

x ∗ y = 0
x ∗ y = 0

•

Fig. 4 A WNM-t-norm satisfying the FPP such that I1 = {1} (left) and its corresponding t-norm on the quotient algebra
[0, 1]∗/Fa (right).

Lemma 3.15 Let K be a class of WNM-chains closed under subalgebras. We have: H(K)fin = H(Kfin).

P r o o f. One inclusion is trivial. As for the other one, take A ∈ H(K)fin, then A is a finite chain and it is
isomorphic to B/F for some B ∈ K and some filter F of B. Define F = {a ∈ A | ¬a ∈ F}. The subalgebra of
B generated by B \ (F ∪ F ) is in K, thus A ∈ H(Kfin).

Lemma 3.16 Let A be a WNM-chain. Then ISPU (A)fin = IS(A)fin.

P r o o f. One direction is obvious. Due to the local finiteness of WNM, to prove the other one is equiva-
lent to prove that ISPU (A) is partially embeddable into IS(A)fin, which is equivalent by Proposition 2.12 to
ISPU (A) ⊆ ISPU (IS(A)fin). Finally, the last inclusion is true because A ∈ ISPU (IS(A)fin) (recall that
a first-order structure is embeddable into an ultraproduct of its finitely generated substructures, and in WNM
finitely generated algebras are finite).

Proposition 3.17 LetA be a WNM-chain. Then HSPU (A)fin = IS(A)fin∪ IS({A/F a : a ∈ N(A)∩A+

and Ia 6= {a}})fin.

P r o o f. HSPU (A)fin = H(ISPU (A))fin = [by Lemma 3.15] H(ISPU (A)fin) = [by Lemma 3.16]
H(IS(A)fin) = H(IS(A))fin = HS(A)fin = SH(A)fin = SIS({A/F a : a = 1A or a ∈ N(A) ∩ A+ and
Ia 6= {a}})fin = IS({A/F a : a = 1A or a ∈ N(A) ∩A+ and Ia 6= {a}})fin.

Corollary 3.18 Let A be a WNM-chain such that it has the maximum positive involutive element a with
Ia 6= {a}, and for any other b ∈ N(A)∩A+, Ib is order-embeddable into Ia. Then, HSPU (A)fin = IS(A)fin∪
IS(A/F a)fin.

The description of the classes HSPU ( )fin leads to the following criterion to compare varieties generated by
a finite family of chains.

Theorem 3.19 Let n,m ≥ 1 be natural numbers and let A1, . . . ,An and B1, . . . ,Bm be WNM-chains such
that for every i there exists ai ∈ Ai and bi ∈ Bi, positive involutive elements satisfying the conditions of the
previous corollary. The following are equivalent:

(i) V(A1, . . . ,An) ⊆ V(B1, . . . ,Bm)
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(ii) IS(A1, . . . ,An,A1/F
a1 , . . . ,An/F an)fin ⊆ IS(B1, . . . ,Bm,B1/F

b1 ,
. . . ,Bm/F bm)fin.

(iii) 1. For every i ∈ {1, . . . , n}, there is j ∈ {1, . . . ,m} such that IS(Ai)fin ⊆ IS(Bj)fin or IS(Ai)fin ⊆
IS(Bj/F bj )fin, and

2. for every i ∈ {1, . . . , n}, there is k ∈ {1, . . . ,m} such that IS(Ai/F ai)fin ⊆ IS(Bk)fin or IS(Ai/F ai)fin ⊆
IS(Bk/F bk)fin.

P r o o f. First observe that:
V(A1, . . . ,An) ⊆ V(B1, . . . ,Bm) if, and only if, V(A1, . . . ,An)FSI ⊆ V(B1, . . . ,Bm)FSI .
By Jónsson’s Lemma and being WNM locally finite, this is equivalent to:

HSPU (A1, . . . ,An)fin ⊆ HSPU (B1, . . . ,Bm)fin
By the previous corollary, this is equivalent to:

IS(A1, . . . ,An,A1/F
a1 , . . . ,An/F an)fin ⊆ IS(B1, . . . ,Bm,B1/F

b1 , . . . ,Bm/F bm)fin
Therefore, we have proved (i)⇔ (ii).
(iii)⇒ (ii) is trivial.

(ii) ⇒ (iii): Suppose that (iii) does not hold. Then, for instance, there exists i ∈ {1, . . . , n} such that
for every j ∈ {1, . . . ,m}, IS(Ai)fin 6⊆ IS(Bj)fin and IS(Ai)fin 6⊆ IS(Bj/F bj )fin. Therefore, there exist
C1, . . . , Cm,D1, . . . ,Dm ∈ IS(Ai)fin such that for every j, Cj is not embeddable into Bj and Dj is not embed-
dable into Bj/F bj . Consider the subalgebra C ⊆ Ai generated by C1 ∪ . . . ∪ Cm ∪D1 ∪ . . . ∪Dm. Then, C is
finite and it cannot belong to IS(B1, . . . ,Bm,B1/F

b1 , . . . ,Bm/F bm)fin, so (ii) does not hold.

We know by the local finiteness that every subvariety of WNM is generated by its finite chains; moreover,
for every WNM-chain A we have described the class HSPU (A)fin which is exactly the class of finite chains
in V(A); and finally the previous theorem shows how to compare varieties by using the finite subalgebras of
their generators. Therefore, finite WNM-chains will play a central role in the task of classifying varieties of
WNM-algebras.

Given a WNM-chain A, the negation in A only depends on the negation in N (A), due to the properties
of Lemma 3.2. Therefore, every WNM-chain is characterized by the NM-subalgebra defined by its involutive
elements and by the number of non-involutive elements in their associated intervals. As in the case of NM-chains,
some canonical representatives could be defined for the finite chains. Given n ≥ 1, l1, . . . , ln ≥ 0, Anl1,...,ln will
denote the WNM-chain that has n involutive elements and li non-involutive elements in the constant interval of
the (i+ 1)-th involutive element. It is clear that these chains generate pairwise different varieties. We can see an
example in Figure 5.

3.2 Generic WNM-chains

In this section we will study the WNM-chains that generate the variety WNM, i.e. the generic chains.
Definition 3.20 Let A be a WNM-chain. A is generic if, and only if, V(A) = WNM.
They can be characterized by using Theorem 2.8 and Proposition 3.17 in the following way.
Theorem 3.21 Let A be a WNM-chain. The following are equivalent:

(1) A is generic.

(2) For every ϕ ∈ FmL, A |= ϕ ≈ 1 if, and only if, `WNM ϕ.

(3) For every finite WNM-chain C, either C is embeddable intoA or there is a ∈ N(A)∩A+ such that Ia 6= {a}
and C is embeddable into A/F a.

Some chains satisfy a condition stronger than (3), namely all finite chains are embeddable into them. This
situation is characterized in the next proposition.

Proposition 3.22 Let A be a WNM-chain. Then, all finite WNM-chains are embeddable into A if, and only
if, A satisfies the following conditions:

1. The set I
1
A is infinite,
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0 1a b c d

Fig. 5 Example of a canonical finite WNM-chain, A6
0,3,1,2,1. Squares represent involutive elements, while circles represent

the non-involutive ones. b, c, d and 1 have some associated non-involutive elements, while a (and, of course, 0) has a trivial
associated interval.

2. A has a negation fixpoint f such that the set If is infinite, and

3. Either there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements inA− such that for every n, k ≥ 1
there is m ≥ n such that the sets Iam

and I¬am
have both more than k elements,

or there is an increasing sequence 〈an : n ∈ ω〉 of involutive elements in A+ such that for every n, k ≥ 1
there is m ≥ n such that the sets Iam

and I¬am
have both more than k elements.

P r o o f. If A satisfies the conditions, it is obvious that every finite WNM-chain is embeddable into A. In
order to prove that the conditions are also necessary suppose that A satisfies the first and the second condition
but not the third (if the first or the second condition fail, then it is easy to produce a finite chain that it is not
embeddable into A). Consider the set X = {a ∈ A− : a is involutive and | Ia |, | I¬a |≥ ω}. This set must
be finite (otherwise A would satisfy the third condition); suppose that X has m elements. For each involutive
element a ∈ A−, we define r(a) := min{| Ia |, | I¬a |}. If {r(a) : a ∈ A− \ X, a = ¬¬a} is unbounded,
we produce a sequence by choosing ak ∈ {a ∈ A− \ X : a = ¬¬a and r(a) = k} for every k ∈ ω such that
{a ∈ A− \X : a = ¬¬a and r(a) = k} 6= ∅. But then we would have a sequence satisfying the third condition,
contradicting our assumption. Hence, there is an upper bound k of {r(a) : a ∈ A− \X, a = ¬¬a}. Then, it is
clear that the finite chain A2m+4

k+1,k+1,...,k+1 is not embeddable into A.

Figure 6 shows an example of a generic WNM-chain defined by a WNM-t-norm satisfying this stronger
condition.

Furthermore, we obtain the following characterization of generic standard WNM-chains.
Theorem 3.23 Let A be a standard WNM-chain. Then, A is generic if, and only if, it satisfies the following

conditions:

1. A has a negation fixpoint f such that the set If is non-trivial, and

2. There is a sequence, either increasing or decreasing, 〈an : n ∈ ω〉 of involutive elements in A− such that
for every n ≥ 0 there is m ≥ n such that the sets Iam and I¬am are non-trivial.

P r o o f. Assume that A is generic. If there is a maximum constant interval Ia (with possibly a = 1), then
every finite WNM-chain is embeddable into A/F a. Hence, by Proposition 3.22, A/F a satisfies the conditions,
so also A satisfies them. Suppose now that the maximum constant interval does not exist. Since all finite chains
are embeddable intoA/F a for some suitable a, it is clear thatA has a negation fixpoint f and the set If is infinite.
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Min

0

ca0a1 b0 b10 1… …

Fig. 6 Example of a generic chainA defined by a WNM-t-norm over the real unit interval [0, 1]. It has a decreasing sequence
〈an : n ∈ ω〉 of involutive elements in the negative part such that Ian = (an+1, an] for every n, an increasing sequence
〈bn = ¬an : n ∈ ω〉 of involutive elements in the positive part such that Ibn = (bn, bn+1] for every n, a fixpoint c with
Ic 6= {c}, and I1 6= {1}.

If it would not satisfy the other condition, then the set {a ∈ A− : Ia and I¬a are infinite} would be finite, and
then it would be possible to find a finite chain which we could not embed in any quotient of A; a contradiction.

Conversely, suppose that A satisfies the two conditions. Then it is clear that every finite WNM-chain is
embeddable into some quotient of A.

3.3 T-norm based axiomatic extensions of the Weak Nilpotent Minimum logic and their stan-
dard completeness properties

In this section we focus on varieties generated by t-norm-algebras, i.e. standard WNM-chains.

Lemma 3.24 Let [0, 1]∗ be a standard WNM-chain. If I1 6= {1}, then HSPU ([0, 1]∗)fin = IS([0, 1]∗)fin.

P r o o f. Just apply the Corollary 3.18 with a = 1.

This gives the following criterion to compare varieties generated by standard WNM-chains such that I1 6= {1}.
Corollary 3.25 LetA andB be standard WNM-chains such that IA1 6= {1} and IB1 6= {1}. Then the following

are equivalent:

• V(A) ⊆ V(B)

• IS(A)fin ⊆ IS(B)fin.

We can obtain similar results for t-norms satisfying the FPP.

Lemma 3.26 Let [0, 1]∗ be a standard WNM-chain. If ∗ ∈ WNM-fin and Ia is the maximum constant
interval, then HSPU ([0, 1]∗)fin = IS([0, 1]∗)fin ∪ IS([0, 1]∗/F a)fin.
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P r o o f. By Corollary 3.18.

Corollary 3.27 Let A and B be standard WNM-chains with finite partition such that IAa and IBb are their
maximum constants intervals respectively. Then the following are equivalent:

• V(A) ⊆ V(B)

• IS(A)fin ∪ IS(A/F a)fin ⊆ IS(B)fin ∪ IS(B/F b)fin.

Notice that corollaries 3.25 and 3.27 give a classification of varieties generated by a standard WNM-chain
(when the chains have I1 6= {1} or satisfy the FPP). Indeed, if A and B are standard WNM-chains under these
conditions, the inclusion of the set of finite subalgebras of A into the set of finite subalgebras of B is easy to
compute, since the possible finite subalgebras only depend on the partitions ofA and B. The results can be easily
generalized to varieties generated by a family of standard WNM-chains.

Remark 3.28 It is easy to see that if ∗ ∈ WNM-fin, then all the chains in the variety V([0, 1]∗) enjoy the
FPP. Indeed, we can equationally express the maximum number of constant intervals that these chains can have in
their partitions. Suppose, for instance, that [0, 1]∗ is the standard WNM-chain depicted in Figure 2 and consider
the following equations (recall the terms used in Proposition 3.4):

(E1) ¬¬n(x)→ n(x) ≈ 1

(E2) (¬¬x0 ↔ ¬x0) ∨ (¬¬x1 ↔ ¬x1) ∨ (¬¬x2 ↔ ¬x2) ∨ (¬¬p(x0) → p(x0)) ∨ (¬¬p(x1) → p(x1)) ∨
(¬¬p(x2)→ p(x2)) ∨ (¬¬p(x0)→ ¬¬p(x1)) ∨ (¬¬p(x1)→ ¬¬p(x2)) ≈ 1

It is not difficult to check that any WNM-chain satisfying (E1) has only involutive elements in the negative
part, and any WNM-chain satisfying (E2) has at most 2 constant intervals in the positive part. Since these
equations are valid in [0, 1]∗, they are also valid in all the chains in V([0, 1]∗), and hence all of them enjoy the
FPP.

Given any standard WNM-chain [0, 1]∗ it is obvious that the logic L∗, i.e. the logic corresponding to the
variety V([0, 1]∗), enjoys the canonical RC with respect to [0, 1]∗. Now we will study in which cases this
standard completeness result can be improved. We start with t-norms satisfying the FPP.

Proposition 3.29 Let ∗ ∈WNM-fin, let Ia be its maximum constant interval (with possibly a = 1) and let A
be a countable L∗-chain. Then:

• If IA
1
A = {1A}, then there exists an embedding from A into [0, 1]∗.

• If IA
1
A 6= {1

A}, then there exists an embedding from A into [0, 1]∗/F a.

P r o o f. We are assuming that [0, 1]∗ has a finite partition. Let r and s be the number of intervals in the
negative part, and respectively in the positive part, of [0, 1]∗. Suppose that IA

1
A = {1A}. By the last remark we

know that the number of intervals in the negative part (resp. in the positive part) of A is at most r (resp. s). Take
a finite WNM-subchain B satisfying the following construction rules:

1. Every unitary interval belonging to the partition of A is in B.

2. For every non-unitary constant interval of the partition of A, one interior element of this interval and its
upper bound belong to B.

3. For every involutive non-unitary interval in the negative part of the partition of A, two different elements
and their negations belong to B.

It is clear see that such a chain exists and it is a finite WNM-chain, subalgebra of A, with the same number of
intervals in the partition. By Lemma 3.26, there is an embedding g : B ↪→ [0, 1]∗. Observe now that two different
non-unitary intervals of the partition of B must be embedded into two different intervals of the partition of [0, 1]∗
and also that as subalgebra two different intervals of the partition of B are contained in two different intervals of
the partition of A. Thus, remembering that the non-unitary intervals of A are countable and the ones in [0, 1]∗
are continuous, and using that A and B have the same partition, we can define an embedding f : A ↪→ [0, 1]∗. If
IA
1
A 6= {1

A}, the proof is analogous.
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Corollary 3.30 Let ∗ ∈WNM-fin and let Ia be its maximum constant interval. Then:

• If a = 1, then the logic L∗ has the canonical SRC with respect to [0, 1]∗.

• If a 6= 1, then the logic L∗ has the SRC with respect to {[0, 1]∗, [0, 1]∗/F a}.

Now we turn to t-norms with an infinite partition.

Proposition 3.31 Given ∗ ∈ WNM \WNM-fin, an L∗-chain C and a finite partial subalgebra B ⊆p C, we
have:

• If I∗1 6= {1}, then B is partially embeddable into [0, 1]∗.

• If I∗1 = {1}, then B is partially embeddable into [0, 1]∗ or there is a positive involutive element a ∈ [0, 1]
with I∗a 6= {a} such that B is partially embeddable into [0, 1]∗/F a.

P r o o f. Since WNM is locally finite, the subalgebra of C generated by B is also finite. Then, Proposition
3.17 gives the result.

Corollary 3.32 Given ∗ ∈WNM \WNM-fin, we have:

• If I∗1 6= {1}, then the logic L∗ has the canonical FSRC with respect to [0, 1]∗.

• If I∗1 = {1}, then the logic L∗ has the FSRC with respect to {[0, 1]∗}∪{[0, 1]∗/F a : a is positive, involutive
and Ia 6= {a}}.

Although in some cases the SRC holds for logics of WNM-t-norms with an infinite partition (for instance,
when [0, 1]∗ is a generic WNM-chain), it is false in general as the following examples show.

Example: Let [0, 1]∗ be a standard WNM-chain with an infinite partition such that the number of positive
constant intervals is finite, say I∗a1

, . . . , I∗an
. Assume that I∗1 6= {1}. For every i, let Xi be the set of these

discontinuity points of the negation between I∗ai
and I∗ai+1

, let Yi1 be the set of accumulation points of Xi which
are a limit of an increasing sequence of elements of Xi, and let Yi2 be the set of accumulation points of Xi which
are a limit of a decreasing sequence of elements of Xi. Take a ∈ I∗1 \ {1} and let A be the countable subalgebra
of [0, 1]∗ generated by the rational numbers in [0, a]. It is clear that A is subdirectly irreducible. Assume that
there is i such that Xi is infinite and Yi1 or Yi2 is finite. Then:

1. If Yi1 is finite, we can produce a new countable WNM-chain B by adding to A a new accumulation point to
Yi1.

2. If Yi2 is finite, we can produce a new countable WNM-chain B by adding to A a new accumulation point to
Yi2.

In both cases, B ∈ V([0, 1]∗), since every finite subalgebra of B is embeddable into [0, 1]∗, but clearly B is
not embeddable into [0, 1]∗. Therefore, L∗ has not the SRC.

An analogous reasoning is possible when the number of negative constant intervals is finite.
Example: Let [0, 1]∗ be a standard WNM-chain with an infinite partition such that 1 is the only accumulation

point of positive constant intervals. Consider the formula ϕ>(x, y) := (y → x)∧ ((x→ y)→ y). The following
claim is easy to check.

Claim: For every WNM-chain A and every a, b ∈ A we have:
ϕA>(a, b) = 1A iff a > b or a = b = 1A.
Using this formula, we can formulate an infinite semantical derivation, {ϕ>(¬¬p(xi+1),¬¬p(xi)) : i ≥

1} ∪ {ϕ>(¬¬p(xi), p(xi)) : i ≥ 1} ∪ {ϕ>(¬¬p(x0),¬¬p(xi)) : i ≥ 1} |=[0,1]∗ ¬¬p(x0) ∨ ¬¬p(x1), but it is
not valid if we consider only a finite subset of the premisses, so L∗ has not the SRC.

An analogous reasoning is possible when the only accumulation point of positive constant intervals is the
infimum of the positive elements.
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3.4 Axiomatization of some t-norm based extensions of the Weak Nilpotent Minimum logic

In this section we give finite equational bases for some varieties generated by standard WNM-chains, or equiva-
lently finite axiomatizations for some t-norm based extensions of WNM. Since every variety is generated by its
finite chains, the equational base essentially has to describe these finite chains. More precisely:

Lemma 3.33 Given a WNM-chain A, the following statements are equivalent:

1. The variety V(A) is axiomatized by the equations Σ ⊆ EqL.

2. For every finite WNM-chain C, C ∈ HSPU (A) iff C |= Σ.

3. For every finite WNM-chain C, C ∈ IS(A) ∪ IS({A/F a : a ∈ N(A) ∩A+ and Ia 6= {a}}) iff C |= Σ.

We will focus on the last condition, which is the most descriptive.
First, we consider some easy observations on the equations in the language of WNM.

Lemma 3.34 Let A be a WNM-algebra, let ϕ ≈ ψ ∈ EqL be an equation and Σ = {ϕi ≈ ψi : i < n} ⊆
EqL be a finite set of equations. Then:

1. A |= ϕ ≈ ψ if, and only if, A |= ϕ↔ ψ ≈ 1, and

2. A |= Σ if, and only if, A |= (ϕ0 ↔ ψ0)& . . .&(ϕn−1 ↔ ψn−1) ≈ 1.

Therefore, every finite equational base can be reduced to one single equation whose second member is the
constant for the neutral element of the monoid. Using this and the following lemma we can produce an equational
base for the variety generated by a finite family of WNM-chains, whenever we have an equational base for the
variety generated by each chain of the family.

Lemma 3.35 Let t0(x0), . . . , tn(xn) ∈ FmL, where x0, . . . , xn denote pairwise disjoint sets of variables.
Let A be a WNM-chain. Then, A |= t0(x0) ∨ . . . ∨ tn(xn) ≈ 1 if, and only if, there exists i ≤ n such that
A |= ti(xi) ≈ 1.

Proposition 3.36 Let {C1, . . . , Cn} be a finite set of WNM-chains. Suppose that for each i ∈ {1, . . . , n},
ti ≈ 1 is an equation axiomatizing V(Ci), in such a way that the sets of variables of these equations are pairwise
disjoint. Then, the equation t1 ∨ . . . ∨ tn ≈ 1 axiomatizes the variety V({C1, . . . , Cn}).

P r o o f. It follows from the last results and the fact that HSPU (C1, . . . , Cn) = HSPU (C1)∪ . . .∪HSPU (Cn).

In the following we provide some examples of t-norm based axiomatic extensions of WNM for which we are
able to give efectively a finite axiomatization.

Examples: Let ∗ be a WNM-t-norm, let [0, 1]∗ be its corresponding standard WNM-algebra and let L∗ be the
axiomatic extension of WNM corresponding to the variety V([0, 1]∗). Our aim is to find a set of axiom schemata
such that, added to the Hilbert-style system for WNM, give a calculus for L∗ (or equivalently, to find a set of
equations such that, added to the equational base for WNM, give an equational base for V([0, 1]∗)). We will use
the terms introduced in Proposition 3.4.

1. If [0, 1]∗ is a generic WNM-t-norm (i.e. it satisfies the conditions of Theorem 3.23), then L∗ is just WNM,
and hence there is no need for additional axioms.

2. Suppose that [0, 1]∗ satisfies the following conditions:

• The partition of [0, 1]∗ has no constant interval in the negative part.

• [0, 1]∗ has a negation fixpoint.

• The partition of [0, 1]∗ has infinitely many constant intervals in the positive part (i.e. ∗ ∈ WNM \
WNM-fin).
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It is clear that for every finite WNM-chain C, C ∈ IS([0, 1]∗)∪ IS({[0, 1]∗/F a : a ∈ N([0, 1]∗)∩ ([0, 1]∗)+
and Ia 6= {a}}) iff all the negative elements in C are involutive. Therefore, the variety generated by [0, 1]∗
is axiomatized by the following equation:8

¬¬n(x) ≈ n(x)

Notice that the symmetric situation (no constant intervals in the positive part, while infinitely many in the
negative part) is axiomatized by:

¬¬p(x) ≈ p(x)

Of course, the two equations together would give the variety generated by [0, 1]NM, which can be axioma-
tized just by:

¬¬x ≈ x

3. Suppose that [0, 1]∗ satisfies the following condition:

• There is a sequence, either increasing or decreasing, 〈an : n ∈ ω〉 of involutive elements in A− such
that for every n ≥ 0 there is m ≥ n such that the sets Iam

and I¬am
are non-trivial.

i.e. just the second condition required for generic standard WNM-chains in Theorem 3.23. On the one hand,
it is clear that for every finite WNM-chain C, C ∈ IS([0, 1]∗) ∪ IS({[0, 1]∗/F a : a ∈ N [0, 1]∗) ∩ ([0, 1]∗)+
and Ia 6= {a}}) iff C has no negation fixpoint. On the other hand, in the papers [22, 23], while studying the
varieties generated by perfect IMTL-algebras and perfect MTL-algebras, the authors proved that a WNM-
chain is perfect iff it has no negation fixpoint. Therefore, the equation for perfect MTL-chains will be enough
to obtain an equational base for the variety we are considering now:

(¬(¬x)2)2 ≈ ¬(¬x2)2

4. Take ∗ ∈WNM-fin such that the partition of [0, 1]∗ has no involutive intervals. Let r and s be respectively
the number of constant intervals in the negative and in the positive part. Then, due to the symmetry properties
of negation functions, we obtain that:

• If [0, 1]∗ has no negation fixpoint, then s = r + 1.

• If [0, 1]∗ has negation fixpoint, then s = r.

Observe that these chains (we can see two examples in Figure 7) have a finite number of involutive elements:
0 and the right extreme of each constant interval:

• If [0, 1]∗ has no negation fixpoint, then it has 2r + 2 involutive elements.

• If [0, 1]∗ has negation fixpoint, then it has 2r + 1 involutive elements.

Therefore, in order to axiomatize this kind of varieties we only need an equation giving an upper bound to
the number of involutive elements. It is easy to check that a WNM-chainA has at most k involutive elements
if, and only if, the following equation is valid in A:∨

i<k

(¬xi → ¬xi+1) ≈ 1

For instance, to axiomatize the varieties corresponding to the chains in Figure 7, we would take the equation
with k = 6 (for the chain on the left hand side) and the equation with k = 7 (for the chain on the right hand
side).

8 Its associated logic has been already studied in [13] under with a different name, MTL[D∧], and a different axiomatization. In
particular, the authors proved the SRC for this logic.
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0 01 1

1 1

0 0

Min Min

Fig. 7 Two examples of standard WNM-chains satisfying the FPP with no involutive intervals. The chain on the left hand
side has no negation point, while the chain on the right hand side has it.

5. Finally, assume that ∗ ∈ WNM-fin and the partition of [0, 1]∗ has some involutive intervals. We have not
found an equational base for every WNM-t-norm under these conditions. However, we will illustrate with
some example how it could be done when the partition has a small number of intervals. For instance, suppose
that ∗ is the t-norm depicted in Figure 2. In this case the equational base only needs to force the chains to
have no constant intervals in the negative part and at most 2 in the positive part. Thus we take the equations:

¬¬n(x) ≈ n(x)

and ∨
i<3

(¬xi ↔ ¬¬xi) ∨
∨
i<3

(¬¬p(xi)→ p(xi)) ∨
∨
i<2

(¬¬p(xi)→ ¬¬p(xi+1)) ≈ 1

Consider now the chain in Figure 8 where some more restrictions must be described in the equations.

0 1

1

0

Min

Fig. 8 An example of a standard WNM-chain satisfying the FPP with involutive intervals.
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In this case we take the following equational base:∨
i<3(¬¬n(xi)→ n(xi)) ∨

∨
i<2(¬¬n(xi)→ ¬¬n(xi+1)) ≈ 1

(there are at most two constant intervals in the negative part)∨
i<2(¬xi ↔ ¬¬xi) ∨

∨
i<2(¬¬p(xi)→ p(xi)) ∨ (¬¬p(x0)→ ¬¬p(x1)) ≈ 1

(there is at most one constant interval in the positive part)∨
i<2(¬¬n(xi) → n(xi)) ∨

∨
i<2(¬¬n(xi) → ¬¬n(xi+1)) ∨ (¬¬n(y) → ¬¬n(x1)) ∨ (¬¬n(x0) →

¬¬n(y)) ≈ 1

(if there are two constant intervals in the negative part, then there are no involutive elements between them)∨
i<2(¬¬n(xi)→ n(xi)) ∨

∨
i<2(¬¬n(xi)→ ¬¬n(xi+1)) ∨ (¬¬n(x0)↔ ¬n(x0)) ≈ 1

(if there are two constant intervals in the negative part, then the right extreme of the second one is the
negation fixpoint)

(¬¬n(x0)→ n(x0)) ∨ (¬¬n(y0)→ ¬¬n(y1)) ∨ (¬¬n(y1)→ ¬¬n(x0)) ≈ 1

(if there is a constant interval in the negative part, then there is at most one negative involutive element above
it)

(¬x0 ↔ ¬¬x0) ∨ (¬¬p(x0)→ p(x0)) ∨ (¬y0 ↔ ¬¬y0) ∨ (¬¬p(x0)→ ¬¬p(y0)) ≈ 1

(if there is a constant interval in the positive part, then there are no positive involutive elements below it)

4 Conclusions

In this paper we have studied a particular variety of MTL-algebras, WNM. After presenting the description
and axiomatization of the varieties formed by the involutive members obtained in [14], we have achieved the
following new results:

• WNM is a locally finite variety, so it has the FEP and the FMP and the corresponding logic is decidable.
Obviously, these properties are inherited by all the subvarieties and axiomatic extensions, respectively.

• We have studied WNM-t-norms. In particular, we have characterized the generic t-norms, we have given
criteria to compare their generated varieties and we have studied their standard completeness properties.

• We have given equational bases for some varieties generated by a finite family of standard WNM-chains.

As a matter of future research it would be interesting to find a general method to axiomatize t-norm based
extensions of WNM, or even all axiomatic extensions of WNM.
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