
Machine Learning Journal manuscript No.
(will be inserted by the editor)

Similarity Measures over Refinement Graphs

Santiago Ontañón · Enric Plaza

Received: date / Accepted: date

Abstract Similarity assessment plays a key role in lazy learning methods such as k-

nearest neighbor or case-based reasoning. In this paper we will show how refinement

graphs, that were originally introduced for inductive learning, can be employed to as-

sess and reason about similarity. We will define and analyze two similarity measures,

Sλ and Sπ, based on refinement graphs. The anti-unification-based similarity, Sλ, as-

sesses similarity by finding the anti-unification of two instances, which is a description

capturing all the information common to these two instances. The property-based sim-

ilarity, Sπ, is based on a process of disintegrating the instances into a set of properties,

and then analyzing these property sets. Moreover these similarity measures are appli-

cable to any representation language for which a refinement graph that satisfies the

requirements we identify can be defined. Specifically, we present a refinement graph for

feature terms, in which several languages of increasing expressiveness can be defined.

The similarity measures are empirically evaluated on relational data sets belonging to

languages of different expressiveness.

Keywords similarity measures · refinement graphs · case-based reasoning · feature

terms · lazy learning

1 Introduction

Similarity assessment plays a key role in lazy learning methods such as k-nearest neigh-

bor [15] or case-based reasoning [1], where new problems are solved typically by se-

lecting, adapting or interpolating the solutions of the most similar training instances

to the problem at hand. Similarity is also relevant for machine learning and artificial

intelligence in general, since it serves as an organizing principle by which individuals

classify objects, form concepts and make generalizations [44]. Similarity assessment has

been widely studied for attribute-value representations. However, there has been less

Santiago Ontañón · Enric Plaza
IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia (Spain),
E-mail: {santi,enric}@iiia.csic.es

2

activity on defining similarity for structured representations such as feature terms [3,

14,35] or description logics [10].

Structured machine learning [17] has received an increased amount of interest in the

recent years for several reasons like allowing to handle complex data in a natural way

(as illustrated by the success of these techniques in biomedical fields), or sophisticated

forms of inference. Most recent work on similarity assessment for structured representa-

tions follows the idea of “hierarchical aggregation”, in which to compute the similarity

between two instances, each instance is seen as an object with a set of features and the

similarity is computed as an aggregation of the similarity of the values in the features.

If features have structured values, then this procedure is repeated recursively [11,7,12,

18,24]. A few exceptions to that exist, such as the work of Amato et Al. [16] where they

measure concept similarity as a function of the intersection of their interpretations, or

the work on similarity for chemical domains where the focus is on finding common

substructures among molecules [40]. However, hierarchical aggregation tends to deem

those features that are closer to the root of an instance as more important than those

that are deeper into the structure.

In this paper we will introduce similarity measures that do not follow the idea of

hierarchical aggregation. In order to do this we will turn to existing formalizations for

structured representations, which correspond to different subsets of first-order logic.

Three widely used ones are Horn clauses used in inductive logic programming (ILP)

[29], description logics [10] used mainly by the semantic web community, or feature

terms [3,14] proposed as a formalization of frame-based representations. In this paper

we will borrow the notions of refinement graph and refinement operator from ILP

and use them to define similarity measures. In particular, we will present refinement

operators and a refinement graph for feature terms and use them to define similarity

measures. However, thanks to the idea of the refinement graph the similarity measures

introduced in this paper are, in principle, applicable to any other formalism given a

refinement graph that satisfies several requirements that we will identify (a preliminary

validation of the ideas presented in this paper to description logics can be found in our

previous work [42]).

Specifically, we present and analyze two similarity measures, Sλ and Sπ. The anti-

unification-based similarity, Sλ, finds the anti-unification (least general generalization)

of two instances, which is a description capturing all the information common to these

two instances. Sλ then estimates similarity as a ratio between the common information

and the total amount of information in the two instances. The second measure, the

property-based similarity Sπ, is based on a process of disintegrating the instances into

a set of properties, and then similarity between two instances is assessed by analyzing

their property sets.

Moreover, we will also show that Sπ is an approximation of Sλ but with lower

computational cost. In order to evaluate Sλ and Sπ, we use them in nearest-neighbor

algorithms upon a variety of propositional and structured data sets and compare them

to other relational similarity measures. This paper extends and formalizes the core ideas

informally presented in an early publication [34], defining refinement graphs for several

representation languages of increasing expressiveness, generalizing the algorithms for

these languages, and analyzing the behavior of Sλ and Sπ within them.

The paper is organized as follows. Section 2 introduces the feature term formal-

ism used in the rest of the paper. Section 3 presents specific refinement operators

for feature terms which allow the construction of a refinement graph and several lan-

guages of feature terms of increasing expressiveness. Sections 4 and 5 define the anti-

3

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 1 Trains data set as introduced by Michalski [28].

unification-based and the property-based similarity respectively, while Section 6 intro-

duces a weighted version of the property-based similarity. Then, Section 7 presents an

empirical evaluation of these measures. Section 8 discusses related work on relational

similarity measures, and Section 9 discusses the contributions of this paper and outlines

future lines of research.

2 An Overview of Feature Terms

Feature terms [3,14] (also called Order-Sorted Feature logics, feature structures, or

Ψ -terms) are a generalization of first-order terms that have been introduced in theoret-

ical computer science in order to formalize object-oriented capabilities of declarative

languages. Feature terms correspond to a different subset of first-order logics than

description logics. However, as argued by Aı̈t-Kaci [2], they have the same expressive

power, only differing in their basic reasoning mechanisms. In this paper we use a specific

formalization that may slightly differ from those of Aı̈t-Kaci [3] or Carpenter [14].

As an example, consider the apparently simple Trains data set shown in Figure 1,

introduced by Michalski [28]. The original task is to learn the rule that discriminates

east-bound from west-bound trains. If we were to represent such data set using a feature

vector, we would need to define features for each one of the cars of a train (size, shape,

load, and number of wheels), and determine beforehand a maximum number of cars

per train (since feature vector representations have a fixed number of features). Notice,

however, that not all the trains have the same number of cars, and that, in principle, a

train may have an unbounded number of cars. Thus, it is difficult to represent this data

using a feature vector without losing information. Using a relational representation, we

can just represent each car as a term, and define that a train is a set of cars, without

restricting the number of cars of the train or the load each train is carrying.

For instance, Figure 2 represents the first west-bound train from Figure 1 using a

graphical representation of a feature term. Such train (X1) is composed of three cars

(X2, X3 and X4), the first of which (X2) is a long engine car with 2 wheels, the second

(X3) is a long closed rectangle with 2 wheels holding three circles, and the last one

(X4) is a short open rectangle with 2 wheels holding one triangle.

Feature terms can be defined by its signature: Σ = 〈S,F ,≤,V〉. Where S is a set of

sort symbols, which includes ⊥ (also called “any”) representing the most general sort

and > (also called “none”) representing the most specific sort. ≤ is an order relation

4

!"#$%&'()$

!*#$+'&$

!,#$+'&$

!-#$+'&$

!.#$*$

!/#$01)2$

!3#$4)2()4$

!5#$+01647&4+%$

!"8#$+(&+04$

!""#$+(&+04$

!9#$+(&+04$

!"*#$6:1&%$

!",#$1;4)&4+%$

!"-#$%&(')204$

+'&6$

()<&1)%$

()<&1)%$

)=:4406$

)=:4406$

)=:4406$

0)$

0)$

0)$

6:';4$

6:';4$

6:';4$

0+1)%$

0+1)%$

!:

Fig. 2 A graphical depiction of a train represented using the feature terms representation
formalism.

inducing a single inheritance hierarchy among the sorts in S \>, and where ⊥ ≤ s ≤ >
for any s ∈ S. F is a set of feature symbols, and V is a set of variable names.

We define a feature term ψ as:

ψ ::= X : s [f1
.
= Ψ1, ..., fn

.
= Ψn]

where ψ points to the root variable X (that we will note as root(ψ)), X ∈ V, s ∈ S,

fi ∈ F , and Ψi might be either another feature term ψi, an already defined variable

Y ∈ V or a set {x1, ..., xm} (where elements are feature terms or variables). When the

value Ψi of a feature fi is an already defined variable, we say that there is a variable

equality. Moreover, in our formalization of feature terms we impose the restriction that

each element in a set must be different.

Using this term notation, Figure 3 represents the same train pictured previously in

Figure 2, where we can see that the term is composed of 14 variables (corresponding to

the 14 nodes in the graphical representation in Figure 2). The term contains two set-

valued features (indicated by a curly bracket): in the feature cars of variable X1, and in

the feature lcont of variable X3. Finally, we can also see that there are several variable

equalities in this term: since the value of the feature infront of variable X2 is the,

already defined, variable X3 (we note X2.infront
.
= X3), and also X3.infront

.
= X4.

Additionally, the number of wheels in all the cars is the same, and the length of the

first two cars is also the same.

In the remainder of this paper we will use vars(ψ) to represent the set of vari-

ables in a given feature term ψ, features(X) to denote the set of features defined for

a variable X, and sort(X) to denote the sort defined for a variable X. Finally, we

will define the set reachable(X) as the set of variables reachable from the features

of X. For instance reachable(X3) = {X2, X6, X8, X9, X10, X11, X4, X12, X13, X14}
and reachable(X14) = ∅. Moreover, if for a particular term ψ there is a variable

5

ψ ::= X1 : train

26666666666666666666666666664

cars
.
=

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

X2 : car

264nwheels
.
= X5 : 2

ln
.
= X6 : long

shape
.
= X7 : engine

infront
.
= X3

375

X3 : car

266666664

nwheels
.
= X5

ln
.
= X6

shape
.
= X8 : closedrect

lcont
.
=

8<:X9 : circle
X10 : circle
X11 : circle

infront
.
= X4

377777775

X4 : car

264nwheels
.
= X5

ln
.
= X12 : short

shape
.
= X13 : openrect

lcont
.
= X14 : triangle

375

37777777777777777777777777775
Fig. 3 The same train in Figure 2, represented in term notation.

X ∈ vars(ψ) such that X ∈ reachable(X), we will say that ψ has a circular vari-

able equality, or simply a cycle.

In our formalization of feature terms, we add the notion of an ontology, which

restricts the set of feature terms that can be formed. Thus, in addition to the signa-

ture Σ, we will define an ontology O as a set of restrictions of the form: s1.f $ s2,

meaning that any value of a defined feature f ∈ F of any variable of sort s1 (or more

specific) must be of sort s2 (or more specific). Moreover, if no restriction appears for

a particular feature f for a particular sort s, then f is not allowed in s. For instance,

the ontology for the Trains example would be O = {train.cars $ car, train.ncar $
integer, car.infront $ car, car.nwheels $ integer, car.ln $ car-size, car.shape $ car-

shape, car.lcont $ load}. This notion of ontology is a particular case of the full OSF

theories presented in [4], but sufficient for the purposes of this paper.

Feature terms can be represented in three different formalisms: they can be repre-

sented structurally (as graphs), as depicted in Figure 2, in term notation, as shown in

Figure 3, or in clause notation, as shown in Figure 4. The three notations are equivalent,

and we will use them indistinguishably in the remainder of this paper. The equivalence

between the term form and the clause form is described by Aı̈t-Kaci [4], so that given

a term:

ψ ::= X : s[f1
.
= ψ1, ..., fn

.
= ψn]

the clause form can be obtained by a process called dissolving as:

φ ::= X : s & X.f1
.
= X1 & ... & X.fn

.
= Xn

where Xi represents the root variable of the term ψi. In the case where there is any set-

valued feature X.f
.
= {X1...Xn}, it can be dissolved as X.f

.
= X1 & ... & X.f

.
= Xn.

For instance, in Figure 3, the value of the feature cars of variable X1 is a set of three

elements (X2, X3, and X4), and thus it is dissolved as X1.cars
.
= X2 & X1.cars

.
=

X3 & X1.cars
.
= X4 (as shown in Figure 4).

The basic operation between feature terms is subsumption: we will use ψ1 v ψ2 to

express that a term ψ1 subsumes another term ψ2 – that is to say ψ1 is more general (or

6

φ ::= X1 : train & X1.cars
.
= X2 & X1.cars

.
= X3 & X1.cars

.
= X4 &

X2 : car & X2.nwheels
.
= X5 & X2.ln

.
= X6 & X2.shape

.
= X7 &

X2.infront
.
= X3 & X5 : 2 & X6 : long & X7 : engine & X3 : car &

X3.nwheels
.
= X5 & X3.ln

.
= X6 & X2.shape

.
= X8 & X3.lcont

.
= X9 &

X3.lcont
.
= X10 & X3.lcont

.
= X11 & X3.infront

.
= X4 &

X8 : closedrect & X9 : circle & X10 : circle & X11 : circle &
X4 : car & X4.nwheels

.
= X5 & X4.ln

.
= X12 & X4.shape

.
= X13 &

X4.lcont
.
= X14 & X12 : short & X13 : openrect & X14 : triangle

Fig. 4 Representation in clause notation of the train shown in Figure 2.

equal) than ψ2
1. Another interpretation of subsumption is that of an “informational

content” order: ψ1 v ψ2 means that all the information in ψ1 (all that is true for ψ1)

is also contained in ψ2 (is also true for ψ2). In our work, we use the definition of sub-

sumption introduced in [6] which has a slightly different definition than the traditional

θ-subsumption. Specifically, the difference is that we introduce the constraint that all

the elements in a set have to be different. See Appendix A for a formal definition.

The subsumption relation induces a partial order in the set of feature terms, i.e.

the pair 〈L,v〉 is a poset for a given set of terms L (called a language); additionally, L
contains the infimum element ⊥ (or “any”), and the supremum element > (or “none”)

with respect to the subsumption order. We will work with several languages L of

increasing expressiveness, some of which satisfying that 〈L,v〉 is a lattice2. In the

remainder of this paper we will use G(ψ) = {ψ′ ∈ L|ψ′ v ψ} to denote the set of

subsumers of ψ in a given language L, i.e., all the terms which subsume ψ (including

⊥ and ψ itself).

Given the subsumption relation, for any two terms ψ1 and ψ2 we can define their

anti-unification (ψ1 u ψ2) as their least general generalization [37]:

Definition 1 (Anti-unification) The anti-unification of two terms ψ1 and ψ2, noted

as ψ1 u ψ2, is the most specific term that subsumes both:

ψ1 u ψ2 = ψ : (ψ v ψ1 ∧ ψ v ψ2) ∧ (@ψ′ A ψ : ψ′ v ψ1 ∧ ψ′ v ψ2)

Anti-unification is relevant for defining similarity measures, since it contains all the

information that is common to both ψ1 and ψ2. If two terms have nothing in common,

then ψ1uψ2 = ⊥. Thus, anti-unification encapsulates in a single description all that is

shared by two given terms. Additionally, we can generalize the idea of anti-unification

to a set of terms, noted by
d

({ψ1, ..., ψn}), representing the most specific term that

subsumes all the terms in {ψ1, ..., ψn}. Appendix B presents an algorithm to compute

one anti-unification of a given set of terms (the algorithm is not specific to feature terms,

but can be applied to any representation formalism for which an adequate refinement

operator can be defined). A complementary operation to the anti-unification is that of

unification, or most general specialization:

1 Notice that in the description logics notation, subsumption is written in the reverse order
since it is seen as “set inclusion” of their interpretations. In machine learning terms, A v B
means that A is more general than B, while in description logics it has the opposite meaning.

2 Albeit every partial order with supremum and infimum is trivially a lattice, we will reserve
the name of lattice for those partial orders 〈L,v〉 where we will define a unification and anti-
unification that correspond to the meet and join operations of such lattice.

7

⊥⊥

ψ1 ! ψ2

ψ1 ! ψ2

a) b)

Fig. 5 a) Two terms ψ1 and ψ2 and with their unification ψ1tψ2 and anti-unification, ψ1uψ2;
b) a refinement graph, where each node represents a term and the most general node is ⊥.

Definition 2 (Unification) The unification of two terms ψ1 and ψ2, noted as ψ1 tψ2,

is the most general term that is subsumed by both:

ψ1 t ψ2 = ψ : (ψ1 v ψ ∧ ψ2 v ψ) ∧ (@ψ′ @ ψ : ψ1 v ψ′ ∧ ψ2 v ψ′)

When two terms have contradictory information then they have no unifier – which is

equivalent to say that their unifier is “none”: ψ1tψ2 = >. As before, we can generalize

unification to a set of terms, noted by
F

({ψ1, ..., ψn}), representing the most general

term subsumed by all terms in {ψ1, ..., ψn}.
Figure 5.a graphically illustrates both concepts. Notice that both unification and

anti-unification are operations over the subsumption graph: anti-unification corre-

sponds to finding the most specific common “parent” (generalization), where as unifi-

cation corresponds to finding the most general common “descendant” (specialization).

Moreover, unification and anti-unification might be unique or not depending on the

structure of the subsumption graph, as we will see later. To simplify the notation, in

the remainder of this paper we will assume anti-unification and unification are unique

when it does not make a difference.

3 Refinement Graphs for Feature Terms

From the poset 〈L,v〉 we can derive a refinement graph as the poset R = 〈L,≺〉, where

ψ1 ≺ ψ2 represents that ψ2 is a specialization refinement of ψ1. Conversely, ψ1 is a

generalization refinement of ψ2. Formally, the refinement relation used in this paper is

defined as:

Definition 3 (Refinement) Two feature terms hold a refinement relation ψ1 ≺ ψ2 iff

ψ1 v ψ2 ∧ @ψ′ : ψ1 @ ψ
′ @ ψ2

That is to say, the relation ψ1 ≺ ψ2 holds when specializing from ψ1 to ψ2 is a

minimal specialization step: there is no intermediate term ψ′ in 〈L,v〉 between ψ1

and ψ2. Figure 5.b shows an illustration of the refinement graph, where each node

represents a term, and arrows represent refinements. Typically, such refinement graphs

have been used in inductive learning and in pattern mining to define the hypothesis

8

(ρs) Sort Specialization:24 s1 < s2 ∧ @s : s1 < s < s2 ∧
∀X.f .

= Y ∈ φ,∃s2.f $ s3 ∈ O ∧
sort(Y) ≥ s3

35 φ & X : s1
φ & X : s2

(ρi) Variable Introduction Without Sets:24 Y ∈ V ∧ Y 6∈ vars(φ) ∧
s.f $ s′ ∈ O ∧
f 6∈ features(X)

35 φ & X : s
φ & X : s & X.f

.
= Y & Y : s′

(ρv) Variable Introduction:»
Y ∈ V ∧ Y 6∈ vars(φ) ∧
s.f $ s′ ∈ O

–
φ & X : s
φ & X : s & X.f

.
= Y & Y : s′

(ρn) Non-Circular Variable Equality:264X,Y ∈ vars(ψ) ∧ X 6= Y ∧
sort(X) ≥ sort(Y) ∨ sort(Y) ≥ sort(X) ∧
X 6∈ reachable(Y) ∧
Y 6∈ reachable(X)

375 φ
φ & X = Y

(ρe) Variable Equality:»
X,Y ∈ vars(ψ) ∧ X 6= Y ∧
sort(X) ≥ sort(Y) ∨ sort(Y) ≥ sort(X)

–
φ
φ & X = Y

Fig. 6 Specialization refinement operators, represented as rewriting rules.

space of inductive learning methods [33]. However, in this paper we will show how to

use refinement graphs to define similarity measures.

A refinement graph is defined by a refinement operator, that can be either a special-

ization (or downward) refinement operator or a generalization (or upward) refinement

operator. Specifically, a specialization refinement operator is defined as follows:

ρ(ψ) = {ψ′ ∈ L|ψ ≺ ψ′}

Whereas a generalization refinement operator is defined as follows:

γ(ψ) = {ψ′ ∈ L|ψ′ ≺ ψ}

Terms are related by refinements paths, as follows:.

Definition 4 (Refinement Path) A finite sequence of terms (ψ1, ..., ψn) is a refinement

path ψ1
ρ−→ ψn between two terms ψ1 and ψn when for each 1 ≤ i < n, ψi+1 ∈ ρ(ψi).

The same definition applies for the generalization refinement operator: ψn
γ−→ ψ1.

This allows us to define a language as follows.

Definition 5 (Language) A language L (for a refinement operator ρ) is the set of

terms L = {ψ|⊥ ρ−→ ψ} ∪ {⊥,>}.

9

ρs ρvρn ρiρe

L

LsL0

Lc

Le

L
Ls

L0

Lc

Le

Tree

DAG

Graph

Trees+sets

F-terms

Fig. 7 Different sublanguages of feature terms generated by different subsets of refinement
operators.

That is to say, a language is the set of all terms ψ that are reachable from ⊥ with a

refinement path using a particular specialization refinement operator ρ, plus ⊥ and >.

The refinement graph R might be more or less complex depending on the repre-

sentation language being used. For instance, unification and anti-unification might be

unique or not. Since the complexity of the refinement graph determines the computa-

tional cost of operations defined over it, it is useful to define several languages (different

sets of terms L) of feature terms with different expressive power, clearly delineating

the areas in which, for instance, the unification is unique (and R = 〈L,≺〉 is a lattice).

In order to define languages of different expressiveness we will specify several dif-

ferent refinement operators. The collection of specialization refinement operators for

feature terms are outlined in Figure 6 as rewriting rules. A rewriting rule is composed

of three parts: a top part, with the clause representation of a term, a lower part which

represents the refinement of that term, and the applicability conditions of the rewrite

rule (shown between square brackets in the left hand side of the definition).

Let us briefly review each operator:

– ρs generates refinements by substituting the sort s1 of a variable in a term by

a more specific sort s2. Notice that the applicability condition ensures that s1 is

substituted only by a direct descendant sort s2 (i.e. @s ∈ S : s1 < s < s2) while

satisfying the restrictions in the ontology.

– ρi generates refinements by adding a feature and its value to a term that previously

didn’t have that feature.

– ρv generates refinements by adding a value to a feature: if the feature was undefined

the operator will add the feature and its value or (if the feature was already defined)

add a value to the a set of values of that feature.

– ρn generates refinements by adding a non-circular variable equality.

– ρe generates refinements by adding a variable equality (either circular or non cir-

cular).

Moreover, notice that all the refinement operators always generate terms that sat-

isfy the given ontology O. Using these refinement operators we will define five languages

of increasing expressiveness. Figure 7 shows the relationship between these languages,

where set inclusion among languages means that L ⊂ L′. Let us briefly review them:

– L0 is defined by the refinement operators {ρs, ρi}3 shown in Figure 6. L0 contains

all the feature terms that do not have any set-valued feature or any variable equality.

3 Notice that in Definition 5 we defined a language from a single refinement operator, and
here were are defining languages form sets of refinement operators. In fact, a set of refinement

10

Unification and anti-unification are unique in L0. Using the graphical representation

of feature terms, the terms in L0 are always trees.

– Le is defined by the refinement operators {ρs, ρi, ρn}. Le is a super set of L0

corresponding to all the terms that do not have any set-valued feature or any

circular variable equality (non-circular variable equalities are allowed). Unification

and anti-unification are also unique. Terms in Le are always DAGs (directed acyclic

graphs).

– Lc is defined by the refinement operators {ρs, ρi, ρe}. Lc is a super set of Le which

allows terms with circular variable equalities. Both unification and anti-unification

are still unique. One difference of this language with respect to L0 and Le is that

some terms might have an infinite number of subsumers, i.e. G(ψ) might be infinite

for some ψ ∈ Lc (see Appendix C).

– Ls is defined by the refinement operators {ρs, ρv}. Ls is a super set of the base

language L0 which allows set-valued features. This language has non-unique unifi-

cation or anti-unification, but all terms have a finite number of subsumers.

– L is defined by the refinement operators {ρs, ρv, ρe}. L is a superset of all the

previous languages and contains all feature terms as defined in Section 2. L has

non-unique unification and anti-unification, and also some terms might have an

infinite number of subsumers.

Notice that the three languages on left part of Figure 7 (L0,Le and Lc) form a

lattice with respect the refinement order relation (≺) and have unique unification and

anti-unification operations. The other two languages (Ls and L) are just posets with

respect to refinement order relation (≺) —since unification and anti-unification may

be non-unique when set-valued features are allowed [38].

Refinement operators may be characterized according to three properties: com-

pleteness, properness and local finiteness [45]. Completeness states that there are no

refinements of a term which are not generated by the operator, properness means that

a term is not equivalent to any of its refinements, and local finiteness means that the

number of refinements generated for any given term by the refinement operator is fi-

nite. The set of refinement operators {ρs, ρv, ρe} for feature terms presented here is

complete, finite and proper 4. Notice that for other refinement graphs (such as the ones

defined for description logics [30] or the ones defined by θ-subsumption [45]) complete,

finite and proper refinement operators do not exist5.

Figure 8 presents the generalization operators for feature terms. Notice that the

generalization operators are the same regardless of the language of feature terms used.

Nevertheless, depending of the language used, the operators will be complete or not.

Concerning the generalization operator, it is not possible to define a complete and

still locally finite operator when there are circular variable equalities (see Appendix

C). However, for the purposes of this paper (similarity assessment among terms), it

suffices with generalization operators that ensure that ⊥ is reachable by generalizing

any term. The operators shown in Figure 8 do ensure that ⊥ is reached, but they are

not complete. Specifically:

operators R is equivalent to a single refinement operator ρ which generates the union of all
the refinements generated by the operators in R.

4 The operators ρn and ρe shown in Figure 6 are a simplification that might generate some
terms that are not refinements, but it’s easy to filter those out using subsumption tests.

5 The conditions identified by van der Laag and Nienhuys-Cheng [45] for proving the inex-
istence are not satisfied in our case, so the proof does not apply to our formalization.

11

(γs) Sort Generalization:24 s1 < s ∧ @s2 : s1 < s2 < s ∧
∀X.f .

= Y ∈ φ∃s1.f $ s3 ∈ O ∧
sort(Y) ≥ s3

35 φ & X : s
φ & X : s1

(γv) Variable Elimination:»
s.f $ s′ ∈ O ∧
features(Y) = ∅

–
φ & X : s & X.f

.
= Y & Y : s′

φ & X : s

(γe) Variable Equality Elimination:

ˆ
Z1 6∈ vars(φ)

˜ φ & X.f
.
= Z & Y.f ′ .= Z

φ & X.f
.
= Z & Y.f ′ .= Z1 & Z1 : sort(Z)

(γr) Root Variable Equality Elimination:»
Z1 6∈ vars(φ) ∧
root(ψ) = Z

–
φ & X.f

.
= Z

φ & X.f
.
= Z1 & Z1 : sort(Z)

Fig. 8 Generalization operators for feature terms. Notice that this operators are not complete,
but that they ensure reaching ⊥ from any feature term in the language.

– γs generalizes terms by substituting the sort of one of the variables in the term by

a more general sort.

– γv generalizes a term by removing the value of one of the features in one variable of

the term. Notice that the operator only removes a variable Y if features(Y) = ∅,
i.e. if Y has no defined features.

– γe and γr generalize a term by removing a variable equality. A circular variable

equality can be removed in an infinite number of ways (see Appendix C), and this

is the cause of the generalization operators not being complete, although they still

ensure that ⊥ can be reached from any term.

This section has defined refinement operators for feature terms. Nevertheless, the

techniques presented in the remainder of this paper are applicable to any other repre-

sentation formalism for which (1) a complete and locally finite specialization refinement

operator can be defined, and (2) there is a generalization operator that ensures that

the most general term (⊥) can be reached from any term through a finite number of

steps.

4 Anti-Unification-based Similarity

The anti-unification of two feature terms ψ1 uψ2 is commonly described as their least

general generalization. But it is also a symbolic representation of that which is shared

by ψ1 and ψ2 and all that is shared. For this reason, anti-unification has been used

in case-based reasoning (CBR) as a form of symbolic similitude [35]. Although this

symbolic similitude can be used for explanatory purposes in CBR, another important

issue, that we want to address here, is how to quantitatively measure the similarity.

12

⊥

ψ1 ψ2

ψ1 � ψ2

λs

λ1 λ2

Sλ(ψ1, ψ2) =
λs

λs + λ1 + λ2

Fig. 9 Illustration of the anti-unification based similarity for two feature terms ψ1 and ψ2

Algorithm Λ(ψa, ψb, ρ)
ForEach (ψ ∈ ρ(ct)) Do

If (ψ v ψb ∧ ψ 6v ψa) Then Return Λ(ψ,ψb, ρ) + 1
EndForEach
Return 0

EndAlgorithm

Fig. 10 Given two terms ψa and ψb, such that ψa v ψb, and a refinement operator ρ, the
algorithm Λ returns the length of the refinement path from ψa to ψb in the refinement graph
defined by the operator ρ.

That is to say, answering the question “How large is ψ1 uψ2” might give us a measure

that estimates how similar ψ1 and ψ2 are.

Our proposal is to estimate the informational content of ψ1 u ψ2, since the larger

ψ1 uψ2 is the more similar ψ1 and ψ2 are. The refinement graph gives us a direct way

to estimate the informational content of any term ψ in a language L: it is the length of

the minimal path of refinements that leads from ⊥ (the most general feature term) to ψ

itself. In other words, the number of times that a refinement operator has to be applied,

starting from ⊥, to reach ψ. The intuition here is that every time a term is specialized,

an extra piece of information is added to it. Using Definition 4 (of refinement path) we

can characterize any term ψ by the path ⊥ ρ−→ ψ, i.e. the refinement path from ⊥ to

ψ; moreover, an estimation of the informational content of any term ψ is given by the

length (λ) of that path: λψ = λ(⊥ ρ−→ ψ).

Therfore, the length λ(⊥ ρ−→ ψ1 u ψ2) of the refinement path from ⊥ to ψ1 u ψ2

estimates the informational content of that which is common to ψ1 and ψ2 (this length

is called λs in Figure 9). In order to define a similarity measure we need to compare

what is common to ψ1 and ψ2 with that which is not. The information in ψ1 that is

not common to both terms is exactly what is added by the path ψ1 uψ2
ρ−→ ψ1 (whose

length is called λ1 in Figure 9); and equivalently for ψ2 with path ψ1uψ2
ρ−→ ψ2 (whose

length is called λ2 in Figure 9).

Definition 6 (Anti-unification-based similarity) The anti-unification-based similarity

Sλ between two terms ψ1 and ψ2 is:

Sλ(ψ1, ψ2) =
λ(⊥ ρ−→ ψ1 u ψ2)

λ(⊥ ρ−→ ψ1 u ψ2) + λ(ψ1 u ψ2
ρ−→ ψ1) + λ(ψ1 u ψ2

ρ−→ ψ2)

13

!"#$%&'()$

!*#$+'&$

!,#$+'&$

!-#$+'&$

!.#$/0)1$

!2#$3)1()3$

!4#$+'&56(73$

!8#$+'&569':3$

!";#$+(&+/3$

!""#$690&%$

!"*#$+'&50:3)569':3$

<",#$%&(')1/3$

+'&6$

()=&0)%$

()=&0)%$

)>933/6$

)>933/6$

)>933/6$

/)$

/)$

/)$

69':3$

69':3$

69':3$

/+0)%$

/+0)%$

!:

!?#$*$

Fig. 11 Anti-unification of the two first west-bound trains.

The measure Sλ estimates the ratio between the amount of shared information and

the total informational content (i.e. the shared plus the non-shared information). The

numerator estimates the shared informational content as λs = λ(⊥ ρ−→ ψ1 u ψ2), while

the denominator estimates the total amount of information of ψ1 and ψ2 together by

adding the shared informational content λs with the informational content of ψ1 that

is not shared λ1 = λ(ψ1 u ψ2
ρ−→ ψ1) and the informational content of ψ2 that is not

shared λ2 = λ(ψ1 u ψ2
ρ−→ ψ2).

Sλ(ψ1, ψ2) requires computing two things: the anti-unification ψ1 u ψ2, and the

three lengths λs, λ1, λ2. Appendix B describes an anti-unification algorithm that starts

with ⊥ and proceeds by iteratively applying refinement until the anti-unification is

reached, returning the anti-unifier ψ1 u ψ2 and the length of the refinement path λs.

The other two lengths (λ1 and λ2) are computed by the algorithm Λ shown in Figure

10: Λ takes two terms ψa and ψb (such that ψa v ψb) and a refinement operator ρ,

and returns the number of specialization refinements required to go from ψa to ψb.

Therefore, the two lengths can be computed as λ1 = Λ(ψ1 u ψ2, ψ1, ρ) and λ2 =

Λ(ψ1 u ψ2, ψ2, ρ) where ρ is the refinement operator for the language being used.

4.1 Exemplification

To illustrate the anti-unification-based similarity, let us walk through the process of

computing the similarity between the first two west bound trains in Michalski’s data

set (Figure 1), which we will call ψ6 and ψ7. In order to represent this (apparently

simple) data set, the full language L is required. The anti-unification of those two

trains (ψ6 u ψ7) is shown in Figure 11, clearly capturing the key similarities among

the two trains: both of them have 3 cars in common, the first car is the engine, which

is long and has 2 wheels; both of them have a second car with 2 wheels and which

contains at least one circle; and both of them have a third car, which is short, has two

wheels, has at least one triangle, and has an open shape (one has an open rectangle

shape and the other one has a U shape).

14

This anti-unification can be computed using the algorithm presented in Appendix

B, that also yields the length of the refinement path from ⊥ to ψ6 u ψ7, which in this

case is λs = 40. Then, the algorithm Λ in Figure 10 counts the refinement path length

from ψ6 u ψ7 to ψ6, which is λ1 = 8, and from ψ6 u ψ7 to ψ7, which is λ2 = 19.

Notice that the length from ψ6 u ψ7 to the first westbound train is very small (only 8

refinements), while the length to the second westbound train is larger (19 refinements),

since the second train has more non-shared content (4 cars, instead of 3).

Thus, the similarity between these two trains is: Sλ(ψ6, ψ7) = 40
40+8+19 = 0.597.

The interpretation of Sλ is that the ratio 40/67 estimates that these two train de-

scriptions share almost 60% of the total informational content. Moreover, the symbolic

similitude (shown in Figure 11) is capable of conveying an explanation of that which

is behind the numerical similarity value 0.597.

4.2 Discussion

The requirement for Sλ to be applied to a refinement graph is that the specialization

refinement operators are locally finite and complete. Thus, the anti-unification-based

similarity can be applied to any other representation formalisms such that a refinement

graph can be defined with a subsumption relation that is compatible with the definition

of specialization refinement operators satisfying this requirement.

There are two main issues concerning Sλ worth discussing. The first one is the

computational cost of Sλ. Although computing the anti-unification of two terms re-

quires (using the algorithm described in Appendix B) a linear number of subsumption

tests in function of the size of the terms, testing for subsumption might have a differ-

ent computational cost depending on the representation language used. In expressive

languages, like Ls and L, subsumption has a higher computational cost than in less

expressive languages, such as L0, Le, or Lc.
Moreover, in languages where anti-unification might not be unique (Ls and L),

ensuring that the maximum similarity value for similarity Sλ is found would involve

computing all possible anti-unifications ψ1 u ψ2 and taking the one that maximizes

Definition 6. Computing only one anti-unification (which is the approach taken in the

experiments reported in Section 7) results only in an estimation of Sλ that is not

ensured to be maximal. Thus, in domains where the instances are large structures and

where the language used is very expressive, this trade-off (non-maximal but efficient)

may be useful.

A second issue is that Sλ considers each refinement in the refinement graph as

equally important; in general, assuming that all pieces of information generated from

refinement operators have the same usefulness might not hold. Thus, being able to

determine a different weight or importance degree for each of the refinements in the

similarity computation is a significant issue that we address on Section 6.

Nevertheless, Sλ has two main advantages: first of all, Sλ is a conceptually intuitive

similarity measure, and second, during the computation of Sλ a symbolic similitude

term is also computed: the anti-unification term ψ1 u ψ2. As argued by Plaza [36],

such term describes in what aspects two instances are similar, and can be used for

explanation purposes in Case-based Reasoning systems and other systems estimating

similarity among complex descriptions. Additionally the anti-unification term can also

be used for case adaptation purposes in CBR (since it makes the similarities between

a problem and the retrieved case explicit [13]).

15

X1:$train$ X2:car

X2:2

X3:$long$

X4:$engine$

cars$

nwheels$

ln$

shape$

X1:$train$ X2:car

X3:$integer$

X4:$long$

X5:$engine$

cars$

nwheels$

ln$

shape$

� X1:$train$ X2:car X3:2cars$ nwheels$

Fig. 12 A refinement operator γ that generalizes ψ1 into ψ2 by subtracting a piece of infor-
mation ψ called the remainder of the refinement.

5 Property-based Similarity

This section introduces the property-based similarity, a new approach to assess simi-

larity that is also based on the idea that every specialization refinement adds a piece

of informational content to a description (and, conversely, every generalization refine-

ment subtracts a piece of informational content from a description), but addresses the

two issues of Sλ mentioned above. These pieces of information added or removed by a

refinement operator are called properties, i.e. a property is some condition that some

terms satisfy and some do not. For example, in the Trains domain introduced before,

a property might be that “a train has 3 cars”, and some trains might satisfy it while

some others might not.

The core idea of the property-based similarity is to disintegrate a term into a

collection of smaller terms, which we call properties, and then count how many of

those properties they share. Furthermore, we will show it is feasible to integrate those

properties again in order to reconstruct the original term, so no information is lost.

There are several issues that we have to address to define the property-based sim-

ilarity. First we will define what constitutes a property; second, we will specify how to

disintegrate a term into a collection of properties; and finally, we will define a measure

of similarity based on the properties of two disintegrated terms.

5.1 Disintegrating a Term into Properties

Intuitively we would like a property to capture an individual piece of information

contained in a term. For instance, in the Trains example used previously, the fact that

a train has 4 cars, or that one of the cars is carrying a triangle, are examples of two

properties. Generalization refinement operators generate refinements by subtracting

pieces of information from terms, and thus making them more general. These pieces of

information that are subtracted from terms when generalizing are properties, and will

be represented also as feature terms. Dually, specialization refinement operators add

pieces of information (properties) to terms. In order to formally define the properties

of a term, we will first define the remainder of a generalization refinement operator.

16

Algorithm Disintegrate(ψ, γ)
D = ∅, t = 0, ψ0 = ψ
While (ψt 6= ⊥) Do

ψt+1 ∈ γ(ψt)
D = D ∪ {r(ψt, ψt+1)}
t = t+ 1

EndWhile
Return D

EndAlgorithm

Fig. 13 Algorithm to disintegrate a term ψ into a property set D(ψ).

Definition 7 (Remainder) Given a term ψ2 ∈ γ(ψ1), where γ is a generalization

refinement, the remainder r(ψ1, ψ2) of such generalization is a term ψ such that ψ t
ψ2 = ψ1 and @ψ′ ∈ G(ψ1) such that ψ′ @ ψ and ψ′ t ψ2 = ψ1.

That is to say, the remainder of a generalizing refinement γ from ψ1 to ψ2 is the

most general term ψ such that when unified with the generalization ψ2 obtains back

the original term ψ1. We will call this remainder ψ a property of ψ1. Notice that the

remainder is the most general term that captures which is the “property” that ψ1 has

and that is not present in ψ2, i.e. the informational content that the generalization

operator removed. Figure 12 illustrates this idea, where a train is generalized with a

refinement operator, and the property subtracted is the fact that the car of that train

has 2 wheels. The remainder of a specialization refinement ρ can be defined similarly.

Now, if we iterate this generalization refinement over the resulting term and keep

generalizing it, we will obtain a collection of properties as remainders of each step. In

the end, the iterative generalization process will reach ⊥, the empty term, and we will

have a collection of properties satisfied by the initial term. This is the intuitive idea

of term disintegration: generalize a term repeatedly until reaching ⊥ while collecting a

property at each step by getting the remainder of the generalization operation.

Definition 8 (Disintegration) Given a finite refinement path p = ψ1
γ−→ ⊥ consisting

of a sequence of terms (ψ1, ..., ψn = ⊥), a disintegration of a term ψ1 is the setDp(ψ1) =

{r(ψi, ψi+i)|1 ≤ i < n},

That is to say, Dp(ψ1) is the set of remainders resulting from each generalization step

in p from ψ1 to ⊥.

Given a refinement path ψ
γ−→ ⊥, and having in mind that refinement operators

represent the most fine-grained steps in which terms can be specialized or generalized,

the remainders obtained from such paths correspond to the most primitive pieces of

information contained in a term ψ. Therefore, the disintegration of a term is a process

that breaks up a term into its most constituent and primitive pieces of information

(with respect to a particular language); each one of these pieces of information is also

represented as a term, and is what we call a property.

Figure 13 presents an algorithm to compute the disintegration of a term ψ. Given a

term ψ, and a generalization refinement operator γ, the algorithm proceeds iteratively,

generalizing ψ using γ, until ⊥ is reached. At each iteration t of the algorithm, a

new generalization ψt+1 is generated by taking one of the generalizations (it does not

matter which one) generated by γ from the current term ψt. Then, the property set D

is expanded by adding the remainder r(ψt, ψt+1) of generalizing ψt into ψt+1. When

⊥ is reached, the algorithm returns the set D containing all the properties generated

so far, corresponding to a disintegration of the term ψ.

17

X2:car

X4:long

X5:engine
shape

ln

X1:train

X3:car

X6:short

X7:openhex

cars ln

shape

infront

Y1:train Y2:car
cars

Y3:engine
shape

cars
h

ln

Y1:train Y2:car Y4:car‐shape
cars shape

Y3:car
infront

l d h
cars shape

Y3
infront

Y1:train Y2:car
cars

Y2:car

Y4:short
ln

Y1:train Y2:car Y4:car‐length
cars lnY3:car

infront

Y1:train Y2:car Y4:closed‐shape
cars p

Y3:car

Y1:train
Y2:car

Y3:car

cars
Y4:ccar‐shape

shape

Y5:short
ln

Y1:train Y2:car Y3:long
cars ln

Y1:train

Y2:car

Y3:car

cars
infront

Y2:car Y3:car length
ln

Y1:train
Y2:car

Y3:car

cars

Y1:train Y2:car
carsY1:train Y3:openhex

cars shape
Y3:car

Y1:train
Y2:car

Y3:car

cars
Y3:car‐length

Y3:car‐length
ln

Y1:train Y2:car

Y1:trainY1:train Y2:car Y4:open‐shape
cars shape

Y3:car
infront

Fig. 14 An example feature term disintegrated into properties using the algorithm in Figure
13.

The integration of a property set is the process opposite to disintegration, and is

defined as integrate(D(ψ)) =
F

(D(ψ)), that is to say the unification of all properties

of a disintegrated term ψ. Integrating a disintegrated term allows as to recover the

original term, as shown in the following Lemma.

Lemma 1 One of the unifications of all the properties of a term ψ is exactly the term

ψ, i.e. ψ ∈
F

(D(ψ)). When unification is unique, then ψ =
F

(D(ψ)).

Proof Let ψ1 be a term that when disintegrated using the refinement path (ψ1, ..., ψn =

⊥) yields the properties (r1, ... , rn−1). Definition 7 (Remainder) ensures that ψi+1 t
ri = ψi (or that ψi is one of the unifications if ψi+1 t ri is not unique). Let us consider

first the case when unification is unique. Iteratively unifying the properties in the

reverse order in which they were generated, we can reconstruct the refinement path:

ψn−1 = rn−1, ψn−2 = rn−1 t rn−2, ψn−3 = (rn−1 t rn−2) t rn−3, etc. Thus, ψ1 =F
i=n−1...1 ri, which is precisely

F
(D(ψ)). When unification is not unique, we know by

Definition 7 that: ψn−1 = rn−1, ψn−2 ∈ rn−1 t rn−2, ψn−3 ∈ (rn−1 t rn−2) t rn−3,

etc. Thus, ψ1 ∈
F
i=n−1...1 ri, which is precisely

F
(D(ψ)). �

Figure 14 shows an example of the disintegration process, where a simple train

represented as a feature term (top half) has been disintegrated into properties (bottom

half). Disintegration extracted 14 properties from this train, since the refinement path

used had 14 generalization steps. Also, notice that different refinement paths might

generate different disintegrations; Section 5.3 discusses this and other properties of the

disintegration operation within the different languages L we have defined. But let us

first present the formal definition of the property-based similarity.

18

5.2 Property-based Similarity Measure

The property-based similarity Sπ of two terms ψ1 and ψ2 uses disintegration to obtain

their their property sets D(ψ1) and D(ψ2) and compares how many properties are

shared and how many are not.

Definition 9 (Property-based Similarity Measure)

Sπ(ψ1, ψ2) =
|D(ψ1) ∩D(ψ2)|
|D(ψ1) ∪D(ψ2)|

That is to say, Sπ is the ratio between number of shared properties, and the total

number of properties that at least one of the two terms satisfies. An equality among

feature terms is required in order to perform set intersection and union of property

sets, which we define in the usual way: ψ ≡ ψ′ ⇐⇒ (ψ v ψ′ ∧ ψ′ v ψ).

Notice that in the disintegration process each property corresponds to one refine-

ment. Therefore, Sπ should provide results similar to those of Sλ, since each refinement

in the path ⊥ ρ−→ ψ1uψ2 corresponds to a shared property in Sπ (see Section 5.3 below).

The advantage of the property-based similarity Sπ is that its computational cost is

lower than that of Sλ. For data sets with complex cases, computing the anti-unification

of two terms (as required by Sλ) might be very costly, while properties can be ex-

tracted at a reasonable cost. Although the formal analysis of computational complex-

ity of both similarity measures is outside the scope of this paper, Section 7 shows

an empirical evaluation of their average computational cost. Intuitively, the idea be-

hind the property-based similarity is to go from unification and anti-unification of

terms to union and intersection of properties. This is a powerful idea, since unifica-

tion and anti-unification are expensive operations, while union and intersection are

cheaper; the only cost is associated with subsumption for computing term equality,

since ψ1 ≡ ψ2 ⇐⇒ (ψ1 v ψ2 ∧ ψ2 v ψ1). Subsumption among properties is a fast

and efficient operation in practice, as long as we are in a domain where properties are

represented by small-sized terms.

Finally, the requirements for Sπ (and the disintegration operation) to be applied to

a refinement graph are: (1) there is a unification operation, and (2) the generalization

refinement operators ensure that for every ψ there is a path ψ
γ−→ ⊥.

5.3 Disintegration and Feature Term Languages

Depending on the refinement path used for disintegration and on the language used, we

might obtain different property sets. Specifically, depending on the language being used,

term disintegration following Definition 8 can be either weakly or strongly complete.

Definition 10 (Weak Completeness) Disintegration is weakly complete, when, given

any term ψ, we have that ψ ∈
F

(D(ψ)) —i.e. integrating all the properties using

unification recovers the original term ψ.

For a given term ψ, the property set D(ψ) obtained by the disintegration algorithm in

Figure 13 is always at least weakly complete since (as shown in Lemma 1) ψ ∈
F

(D(ψ)).

Definition 11 (Strong Completeness) Disintegration is strongly complete when, given

any two terms ψ1 and ψ2, we have that ψ1 u ψ2 ⊆
F

(D(ψ1) ∩ D(ψ2)) – integrating

the properties common to both disintegrations recovers the anti-unification of the two

terms, ψ1 u ψ2.

19

ψ1 ψ2

ψ1 t ψ2

ψ1 u ψ2

Approximation

Approximation

Disintegration

D(ψ1) ∩D(ψ2)

D(ψ1) ∪D(ψ2)

D(ψ1) D(ψ2)

Fig. 15 Disintegration maps a term ψ into a property set D(ψ) allows to go from unification
and anti-unification of terms (on the right side) to union and intersection of properties (to the
left side), which are computationally cheaper. Thus, the term resulting from integrating the
intersection of the properties of two terms is an approximation of its anti-unification.

Notice that strong completeness implies that given any pair of terms ψ and ψ′ such that

ψ′ v ψ, there is a subset of properties D′ ⊆ D(ψ) such that ψ′ ∈
F

(D′), i.e. any term

which is a subsumer of ψ can be generated as the unification of a subset of properties

of ψ. This is because if ψ′ v ψ then ψ u ψ′ = ψ′, and thus ψ′ ∈
F

(D(ψ) ∩ D(ψ′));
moreover, D′ = D(ψ) ∩D(ψ′).

Disintegration is strongly complete in the language L0. The reason is that, regard-

less of which refinement path is used, the property set obtained is the same —the

properties are just obtained in a different order (this is a direct implication of terms

in L0 being always trees). Given two terms, ψ1 and ψ2, we can always find refine-

ment paths from ψ1 to ⊥ and from ψ2 to ⊥ that traverse their anti-unification term

ψa = ψ1 u ψ2. Therefore, the set of properties generated for ψ1 or for ψ2 by disin-

tegration using those paths will contain the set of properties of ψa. Since, regardless

of the path, we obtain the same property sets, the disintegrations of ψ1 and ψ2 each

contain all the properties of ψa, and thus the unification of the intersection of their

property sets is exactly ψa. Additionally, there is a more efficient algorithm to obtain

the remainders in L0 [34].

If we move to more expressive languages like Ls and Le, the property set generated

will be different depending on the refinement path used to disintegrate a term, and

the disintegration operation cannot be guaranteed to be strongly complete. New ways

of disintegrating terms are part of our future work. Additionally, studying whether

different refinement paths for disintegration affects Sπ, in the sense that some might

be more efficient or accurate, is also part of our future work.

Finally, disintegration can never be strongly complete in languages Lc and L, even

if other disintegration algorithms are devised. The reason is that, since they allow cyclic

variable equalities, the set G(ψ) of some ψ might be infinite (see Appendix C). For

having strong completeness, we need to have a subset of properties in D(ψ) which can

recover every term in G(ψ), i.e. there is a mapping between the parts of D(ψ) and

elements of G(ψ). Since D(ψ) is finite, it is not possible to find such mapping when

G(ψ) is infinite.

20

5.4 Approximation of Sλ by Sπ

We will now show that Sπ approximates Sλ. The difference between the two is work-

ing with unification and anti-unification between terms versus working with union and

intersection of properties, as shown in Figure 15. In fact, they are equal when disinte-

gration is strongly complete, i.e. for language L0, where Sλ = Sπ, because (as we saw)

property sets are unique and thus ψ1 uψ2 =
F

(D(ψ1)∩D(ψ2)). The approximation is

partial for more complex languages for which disintegration is not strongly complete.

That is to say, we cannot ensure that ψ1 u ψ2 is equal to
F

(D(ψ1) ∩D(ψ2)).

When disintegration is weakly complete, the term resulting from unification of the

shared properties might be more general than the anti-unification of the terms.

Lemma 2 The unification of all the shared properties of two terms ψ1 and ψ2 is always

more general or equal to their anti-unification, i.e.

∀ψ ∈
G

(D(ψ1) ∩D(ψ2)), ∃ψa ∈ ψ1 u ψ2 : ψ v ψa

Proof The proof is a straightforward implication of the definition of unification and

anti-unification. All the properties in D(ψ1) ∩ D(ψ2) subsume both ψ1 and ψ2, and

thus they must also subsume at leas one of their anti-unification(s), i.e. ∀ψ ∈ D(ψ1)∩
D(ψ2) : ψ v ψa (for some ψa ∈ ψ1 uψ2) – see Definition 1. Therefore, by Definition 2,F

(D(ψ1) ∩D(ψ2)) v ψa. �

Notice that the term resulting from unification of the shared properties might

be more general than the anti-unification of the terms when disintegration is weakly

complete, since there might be some properties shared by ψ1 and ψ2 that are not in

their disintegrations.

As a consequence, Sπ is an underestimator of Sλ (Sπ ≤ Sλ), assuming the refine-

ment paths used in both similarities are the same. The reason is that, in Definitions

6 and 9, the numerator in Sλ is greater or equal to the numerator in Sπ, and the

denominator in Sλ is lower or equal to the denominator in Sπ. First, notice that

|D(ψ1)| = λs + λ1 and |D(ψ2)| = λs + λ2, since the number of properties in the

disintegration of the terms is identical to the lengths of the refinement paths used to

disintegrate them. However, |D(ψ1) ∩ D(ψ2)| ≤ λs since, even when the paths are

the same, the set of properties may be different, and there are some properties shared

by ψ1 and ψ2 that are not in both of their disintegrations. Consequently, the nu-

merator Sλ is greater or equal to the numerator in Sπ and the denominator satisfies

|D(ψ1) ∪D(ψ2)| = |D(ψ1)|+ |D(ψ2)| − |D(ψ1) ∩D(ψ2)| ≥ |D(ψ1)|+ |D(ψ2)| − λs =

λs + λ1 + λ2.

6 Weighted Property-based Similarity

Since each property represents a piece of information, Sπ measures how many pieces

of information are shared among two given terms. However, when using this similarity

measure for a particular learning task, not all the pieces of information shared among

two terms might be equally important.

An interesting advantage of the property-based similarity is that we can assess the

importance of each individual property for the task at hand and thus determine a weight

for each property. For classification tasks, assume our training set is T = (c1, . . . , cn)

21

Data set Examples Classes Variables Sets Properties L
Soybean 307 18 8 - 38 0 12 - 72 L0

Demospongiae-280 280 3 20 - 48 0 - 18 32 - 106 Ls
Demospongiae-503 503 8 20 - 51 0 - 18 32 - 106 Ls

Trains 10 2 14 - 23 3 - 6 46 - 78 L
Kinship 24 2 14 0 - 8 67 - 110 L

PTC-MR 297 2 6 - 138 0 - 64 7 - 523 L
PTC-FR 296 2 6 - 138 0 - 76 7 - 491 L
PTC-MM 296 2 5 - 138 0 - 76 7 - 523 L
PTC-FM 319 2 5 - 138 0 - 76 7 - 523 L

Table 1 Data set size and complexity comparison, showing the number of examples and classes
of each data set, the ranges in number of variables and set-values features in the examples,
the ranges in number of properties produced by disintegration of examples, and the language
L used to represent the data set.

and an example is a pair ci = (pi, si), i.e. a problem description pi and a solution

class si. In order to asses property weights, we take T ’s problem descriptions (pi) and

disintegrate them obtaining D(pi) for each example in T . Then, the property dictionary

D(T) of the training set T is obtained by the set of all (non-equivalent) properties of

the examples, i.e. D(T) =
S
i=1,...,nD(pi).

The second step is to estimate a weight w(ψ) for each property ψ in the property

dictionary D(T). Each property ψ divides the set of training instances in two sets: Tψ
and Tψ, where Tψ = {ci ∈ T |ψ ∈ D(pi)} is the subset of examples that satisfy a given

property ψ and Tψ = {ci ∈ T |ψ 6∈ D(pi)} is the subset of those that don’t. A measure

such as Quinlan’s Information Gain [39] can be used to compute property weights. The

following equation determines the weight of each property ψ ∈ D(T) using Information

Gain:

w(ψ) = H(T)−
H(Tψ)× |Tψ|+H(Tψ)× |Tψ|

|T |
where H(X) represents the entropy of the set of instances X with respect to the

partition induced by the solution classes, and |X| is the cardinality of set X. Thus,

given that D(ψ) is the subset of properties D(ψ) ⊂ D(T) that a particular term ψ

satisfies, the weighted property-based similarity Swπ between two terms is defined as

follows:

Definition 12 (Weighted Property Similarity)

Swπ(ψ1, ψ2) =

P
ψi∈D(ψ1)∩D(ψ2)

w(ψi)P
ψj∈D(ψ1)∪D(ψ2)

w(ψj)

That is to say, Swπ is the sum of the weights of those properties shared by two terms ψ1

and ψ2, divided by the sum of the weights of all the properties that at least one of the

terms ψ1 and ψ2 satisfies. Clearly, Swπ is independent of the Information Gain measure,

and any other way to estimate importance of properties could be used. Nevertheless,

the experiments reported in the next section use Information Gain for estimating the

weight of properties.

7 Experimental Evaluation

In order to evaluate our similarity measures, we measured the performance of a nearest

neighbor method using them. We used five different data sets: Soybean, Demospongiae,

22

Trains, Kinship and Toxicology (PTC). The different characteristics of these data sets

are shown in Table 1. Trains is the data set shown in Figure 1, as presented by Michalski

[28]; the full language L is required to represent this data set. Soybean is a propositional

data set (representable using L0) from the UCI machine learning repository consisting

of 307 cases and 18 solution classes.

Kinship is a small but complex relational data set consisting of two families where

the goal is to learn family relations like uncle [23]. Each family has 12 members (thus

24 persons in total); the full language L is required to represent this data set. The

representation is purely relational, and each family is a graph (with most features in-

troducing circular variable equalities); there are 4 positive examples and 20 negative

examples. We selected the Trains and Kinship data sets to highlight domains that are

highly relational and where the value of features is not as important as the structure

of the terms. The Demospongiae data set is a relational data set from the UCI ma-

chine learning repository (with sets, but no variable equalities, and representable in

Ls) composed of 503 Demospongiae belonging to 8 different solution classes. For the

Demospongiae data set, we report results both using the complete data set as well as

using a subset consisting of 280 Demospongiae and 3 solution classes.

Finally, the Toxicology data set (PTC) is a highly relational data set introduced

as a challenge in the ECML/PKDD 2001 conference [22]. We have selected PTC to

evaluate the scalability of our similarity measures rather than their accuracy; thus, we

present results for Toxicology in a separate section. The original dataset consists of a

collection of Prolog facts, so, for our evaluation we used the version created by Armengol

and Plaza [9], who converted the dataset to feature terms using a chemical ontology

and which contains 371 examples. The Toxicology dataset consists of a collection of

molecules and the task is to predict their carcinogenicity (positive or negative) for four

different types (MR, FR, MM, FM) given by sex (M and F) or species (M and R). For

each different type, a different subset of the 371 examples is used, and they are shown

in Table 1 as separate data sets.

Additionally, in order to better measure the complexity of each dataset, Table 1

shows some statistics of each data set. Specifically, the first two columns in Table 1

shows the number of examples of each dataset and the number of solution classes. The

third column shows the number of variables present in the feature terms representing

the examples of each data set; we show the range from minimum to maximum number

of variables. The larger the number of variables, the larger the examples – for instance

the term in Figure 2 has 14 variables. As Table 1 shows, the larger examples are found

in the Toxicology dataset, where some examples have up to 138 variables. The fourth

column of Table 1 shows the total number of variables occurring in set-valued features

(minimum and maximum); this factor plays an important role in the computational

cost of subsumption. The only data set without set-valued features is Soybean. The

fifth column shows the number of properties obtained by disintegrating the examples

of a dataset: the more properties the more complex the examples are. This number is

equivalent to measuring the length of a refinement path from ⊥ to a given example (i.e.

it is a measure of the amount of information contained in each example); we show the

minimum and maximum number of properties. Again, this shows that the Toxicology

data set has some very large examples, some of them generating up to 523 properties.

The last column in Table 1 shows the language required to represent the examples in

each data set.

23

Sλ Sπ Swπ SHAUD RIBL Kashima
1-NN

Soybean 91.53 91.53 91.21 91.53 91.53 92.18
Demospongiae-280 95.00 94.64 96.79 95.71 91.67 90.71
Demospongiae-503 89.66 90.26 92.44 88.27 88.93 83.10

Trains 50.00 60.00 60.00 - 50.00 20.00
Kinship 100.00 87.50 100.00 - 83.33 83.33

3-NN
Soybean 88.93 89.58 88.27 88.93 88.93 87.95

Demospongiae-280 94.29 95.71 96.79 95.00 91.67 90.71
Demospongiae-503 88.27 90.66 90.46 87.08 86.43 83.10

Trains 60.00 70.00 70.00 - 70.00 30.00
Kinship 91.67 83.33 83.33 - 83.33 83.33

Table 2 Classification accuracy (in percentage) measured using a leave-one-out method for
different similarity measures.

7.1 Classification Accuracy Comparison

Table 2 shows the classification accuracy for several similarity measures in the data

sets used for our evaluation —except the PTC data set that is addressed later in

Section 7.2. We report results for Sλ and for both Sπ and Swπ, as well as two other

relational similarity measures (SHAUD [7] and RIBL [18]) and a graph kernel [26] for

comparison purposes. For each similarity measure we measured classification accuracy

using both 1-nearest neighbor and a 3-nearest neighbor by means of a leave-one-out

method. SHAUD is a relational similarity measure defined for feature terms that has

been shown to obtain very good results in complex relational data sets, and RIBL is

a well known similarity measure for first order logic (FOL). RIBL requires examples

to be represented in FOL and not as feature terms, but feature terms can actually be

converted to FOL predicates without losing information. We used such conversion to

evaluate RIBL.

Moreover, RIBL and SHAUD require knowing the ranges of each numeric feature

in order to compute the similarity values. We used the minimum and maximum values

observed in the data set to define such ranges. RIBL also requires a maximum depth

parameter, that was set to 10 in our experiments. Since SHAUD works only for trees,

it could not be applied to the Kinship or Trains data set.

We also used the random-walk graph kernel [26], that we will refer to as Kashima’s

kernel. Given two graphs, Kashima’s kernel computes the expected similarity between

a random walk from one graph and a random walk from the other graph. This kernel

has a low computational cost for acyclic graphs, but requires inverting a matrix with

n ×m rows and n ×m columns (where n and m are the number of nodes of the two

graphs) when there are cycles in the graph, and thus it can only be calculated using a

numerical approximation. Since Kashima’s kernel works on labelled graphs, we used the

graph representation of feature terms. Moreover, Kashima’s kernel has two parameters:

γ, that corresponds to the probability of a random walk to end, and a kernel to assess

similarity among the labels in the graph. We experimented with different values for γ,

and used γ = 0.1 in our experiments, since it gave the best results overall. We used the

sort ontology to define a kernel for the labels of the graph (to ensure that the kernel

can exploit all the information available to the other similarity measures).

Table 2 shows the classification accuracy of these methods, with the highest ac-

curacy for a given data set shown in bold; most of the times the difference between

24

the accuracy shown in bold and the rest is statistically significant using a t-test with

p < 0.05, with the following exceptopns: in the Trains data set (which only has 10 in-

stances), in the Demospongiae-503 data set with 3-NN (where the difference between Sπ
and Swπ is not statistically significant), and in the Demospongiae-280 data set, where

it is only significant with p < 0.25. Table 2 shows that the weighted property-based

similarity (Swπ) achieves the highest classification accuracy in all data sets except for

Soybean (but where the difference is not statistically significant when using 3-NN).

The Soybean data set is a propositional one, where the most important issue is the

value of the features, and not the relational structure in the instances; however, Sπ
achieves the same classification accuracy as both SHAUD and RIBL, and only slightly

under that achieved by Kashima’s kernel.

Structure is the only important factor in the Kinship data set. SHAUD cannot be

applied since instances are not trees, and RIBL has problems also, since there are no

numerical or symbolic values in any of the terms in Kinship, only a graph relating

each member of the family to each other. In fact RIBL achieves an accuracy of 83.33%

only because it always predicts “negative”, and there are only 4 positive examples out

of 24. Sλ and Swπ are able to capture the structure of the instances, and achieve an

accuracy of 100.00% when used in a 1-NN. Sπ also achieves a high accuracy, although

not a 100.00%.

Trains is an apparently simple but complex data set, since out of the numerous

features in each train only two are key to determine the class, and it is hard to learn

this with only 10 instances. Swπ and RIBL perform the best in this data set.

In the Demospongiae data set, Swπ achieves the best results. SHAUD, Sπ, and Sλ
achieve also good results but not as good, and finally Kashima’s kernel gets the lowest

accuracy. RIBL does not perform well in this data set either, because it does not exploit

completely the information in the sort taxonomy, which is important in this data set.

Moreover, notice that RIBL can accept weights in both predicates and attributes, but

there is no simple way to compute them directly (like with the properties in Swπ),

and thus we used uniform weights. Thus, the results reported here for RIBL might be

suboptimal, although weights would not allow RIBL to improve in this data set.

Comparing with Kashima’s kernel, Table 2 shows that the kernel achieves good

results only in the Soybean dataset. The issue seems to be that Kashima’s kernel simply

estimates the similarity among two graphs; for instance, in the Kinship dataset, the

graphs representing some of the examples are identical (since all the examples belong

to the same family). However, both RIBL and our measures Sπ and Sλ consider the

similarity among instances that, albeit are graphs, start at a specific node (called the

root node in feature terms). To determine whether this was the case, we performed a

second set of experiments (not shown on Table 2) where we used Kashima’s kernel, but

only considering random walks starting from a root node. Using this second version,

we achieved better results in the Trains and Kinship datasets. In the Trains dataset,

accuracy went up to 50% for 1-NN and 60% for 3-NN, while in the Kinship dataset,

accuracy went up to 87.5% both using 1-NN and 3-NN.

The computational cost of different similarity measures, evaluated as the average

execution time to compute the similarity between two instances in different data sets, is

shown in Table 3. The most computationally expensive similarity measures are Sλ and

SHAUD, since they perform the anti-unification of the two instances being compared.

For instance, in the Demospongiae data set, Sλ takes 66.23 milliseconds6 on average

6 Times were measured in a Macbook Pro laptop with a 2.53GHz CPU and 4GB of RAM.

25

Sλ Sπ/Swπ SHAUD RIBL Kashima
Soybean 66.30ms 0.36ms 23.86ms 1.90ms 1.37ms

Demospongiae-280 66.23ms 2.65ms 28.24ms 5.26ms 3.09ms
Demospongiae-503 62.72ms 3.17ms 23.00ms 5.25ms 4.36ms

Trains 158.35ms 4.29ms - 7.81ms 1.35ms
Kinship 85.84ms 5.39ms - 9.69ms 15.87ms

Table 3 Average time (in milliseconds) required to compute the similarity of two instances
for different similarity measures.

Sπ Swπ RIBL
1-NN

PTC-MR 57.24 58.59 57.91
PTC-FR 63.04 61.39 66.33
PTC-MM 58.06 60.87 50.83
PTC-FM 62.07 58.62 56.43

3-NN
PTC-MR 51.85 57.58 59.59
PTC-FR 56.44 63.37 64.03
PTC-MM 57.19 65.22 56.52
PTC-FM 58.93 60.19 54.23

Table 4 Classification accuracy for PTC in percentage measured using a leave-one-out method
for different similarity measures.

to assess one similarity. SHAUD takes 23.86ms, and the property based similarities

Sπ and Swπ take 2.65ms. RIBL is also a fast similarity measure, taking only 5.26

milliseconds per similarity in the Demospongiae data set. Kashima’s kernel is very fast

in the Soybean, Demospongiae and Trains data sets, since they do not contain cycles.

However, Kashima’s kernel has a much higher computational cost in the Kinship data

set (15.87ms), since it contains cycles7.

Computing the weights of properties in Swπ, as well as disintegrating an example

into properties, are processes typically performed offline, since they only need to be

performed once, and their cost is not included in the time for computing the similarity

among 2 instances. Computing weights for Swπ in our experiments takes 79.82ms in the

Soybean dataset, 389.20ms and 983.92ms in the Demospongiae-280 and Demospongiae-

503 data sets, 1.50ms in the Trains data set, and 49.68ms in the Kinship data set.

Disintegrating the complete Soybean data set takes 8.12 seconds, the Demospongiae

data set requires 328.77 seconds, while the Trains and Kinship data sets take 7.45 and

18.85 seconds respectively.

The next two subsections evaluate the scalability of our similarity measures by

using first a data set with very large examples and then a data set with a large number

of examples.

7.2 Evaluation with Large Examples

In order to evaluate the scalability of Sλ and Sπ, we selected the Toxicology data

set, which contains some very large molecules (with up to 138 variables in the terms

representing the examples). SHAUD could not be applied to Toxicology, since molecules

7 We used the Colt Java matrix library for Kashima’s kernel for high performance matrix
computations: http://acs.lbl.gov/software/colt/

26

Sπ/Swπ RIBL
PTC-MR 4.05ms 5.85ms
PTC-FR 9.76ms 5.84ms
PTC-MM 10.26ms 5.84ms
PTC-FM 10.11ms 5.79ms

Table 5 Average time (in milliseconds) required to compute the similarity of two instances
for different similarity measures in the Toxicology data set.

are cyclic graphs (SHAUD was applied to a subset of the Toxicology data set [8],

consisting of molecules without cycles when represented as feature terms). Additionally,

due to the size of the molecules, Sλ could not be applied to the Toxicology data set,

since there is a small set of molecules that are too large for computing anti-unification

in a reasonable amount of time.

Table 4 shows the classification accuracy results for the Toxicology data set in its 4

animal groups. RIBL performs well for the MR and FR animals, but rather poorly in

MM and FM. Swπ outperforms Sπ in all tests except in FR and FM using a 1-NN. Using

a 3-NN, Swπ always outperforms Sπ. The accuracy levels achieved for the Toxicology

data set are comparable to the results obtained with other techniques. For instance,

using graph-kernels, Kashima et al. [26] report between 54.1% to 58.4% accuracy for

MR depending on the value set for the parameter γ of their algorithm (the termination

probability of random walks). They also report between 62.1% to 66.1% for FR, 62.2%

to 64.3% for MM and between 59.3% to 63.4% for FM. Moreover, the maximum and

minimum accuracy for each type were achieved with a different value of that parameter.

The results obtained with Swπ using a 3-NN are inside or above those ranges, without

the need to tune any parameter, so the results achieved with Swπ are comparable to

those obtained with Kashima’s kernel.

Table 5 shows the average time required to compute the Sπ similarity between

examples in the Toxicology data set, showing that the cost of assessing similarity even

in this complex data set is not too high. As before, Swπ needs to compute weights for

all the properties, which takes 1.17s, 1.02s, 1.19s and 1.28s for the PTC-MR, PTC-

FR, PTC-MM and PTC-FM data sets respectively; notice that, using a leave-one-out

method, the weights were recomputed for each problem using the remaining examples as

training set (consisting of n-1 examples). The Toxicology data set takes a considerable

amount of time to disintegrate compared with the other data sets, requiring 22,614.14

seconds (over 6 hours) to disintegrate. However, notice that data sets only need to be

disintegrated once.

7.3 Evaluation with a Large Number of Examples

In order to better evaluate the scalability of Sλ and Sπ, we used Muggleton’s Train

data set generator [32], which can generate Michalsky-style Train data sets, but of

arbitrary size. Specifically, we generated data sets with 100, 1,000 and 10,000 trains.

Tables 6 and 7 show the results of our experiments over those data sets using a leave-

one-out method. For each different size of the Trains data set and similarity metric,

we evaluated the performance of both a 1-NN and a 3-NN algorithm in classification

accuracy and in time used to classify a given problem. Notice that, using a k-NN, the

time used to solve a problem includes the application of the similarity metric n − 1

times (where n is the size of the data set). We evaluated problem solving time, instead

27

Sλ Sπ Swπ RIBL Kashima
1-NN Accuracy

Trains-100 71.00% 71.00% 70.00% 56.00% 62.00%
Trains-1000 84.80% 80.20% 93.90% 67.10% 63.90%
Trains-10000 - 95.58% 99.01% 97.86% 67.20%

3-NN Accuracy
Trains-100 64.00% 67.00% 73.00% 62.00% 73.00%
Trains-1000 88.50% 82.40% 93.30% 71.20% 67.60%
Trains-10000 - 97.73% 98.51% 96.71% 68.39%

Table 6 Classification accuracy for different sizes of the Trains data set measured using a
leave-one-out method for different similarity measures.

Sλ Sπ/Swπ RIBL Kashima
Trains-100 2.13s 9.88ms 114.87ms 255.60ms
Trains-1000 27.26s 18.30ms 813.98ms 2.14s
Trains-10000 - 95.39ms 11.13s 28.96s

Table 7 Time to solve a problem using different similarity measures for different sizes of the
training set.

of the time required to assess the similarity between two instances (as in previous

sections), since the time required to assess similarity does not change as we increase

the number of instances in a data set. As before, times in Table 7 do not include the

time required to disintegrate a data set for Sπ and Swπ, or the computation of weights

for Swπ. Disintegration time was 30.26, 235.78 and 2,287 seconds for the 100, 1,000 and

10,000 trains data sets respectively, while computing weights takes 2.24ms, 141.74ms,

and 39.9s for the 100, 1,000, and 10,000 trains data sets respectively.

As expected, Table 6 shows that all the similarity measures achieve much higher

performance, in terms of classification accuracy, in data sets with a larger number of

examples. In particular, Swπ is the one that increases faster, achieving an accuracy of

99.01% in the data set with 10,000 trains. Kashima’s graph kernel does not perform

well in this data set in terms of accuracy, since it seems unable to capture the target

concept (namely, trains are labelled as “east” if they have one car that is, at the same

time “short” and “closed”).

For the 10,000 trains data set, we show no results for Sλ, since it takes a prohibitive

amount of time to complete a leave-one-out run with such large amount of examples.

A simple estimation allows us to predict that the amount of time Sλ would take to

solve a problem in the 10,000 trains data set is between 200 to 300 seconds. Sλ is slow

since it is based on antiunification, if a very large number of similarity assessments is

required, its cost can be prohibitive. RIBL and Kashima’s kernel are in the middle,

they are much faster than Sλ, but not as fast as Sπ and Swπ. Specifically, Kashima’s

kernel is quite efficient in this data set, since the graphs representing trains do not have

cycles.

Sπ and Swπ are much faster than the other similarity measures. For example,

the time to solve a problem in the 10,000 trains data set is only 95.39 milliseconds.

In summary, we can see that Sπ and Swπ are scalable to large data sets, since the

expensive operation is disintegration, and it only needs to be performed once. Swπ also

requires to compute weights for the different properties, but this only needs to be done

once for each training set.

28

Soybean Demospongiae-503 Trains Kinship
Sλ vs Sπ 1.000 0.984 0.950 0.894
Sλ vs Swπ 0.987 0.938 0.700 0.829

Table 8 Correlation between the similarity values of Sλ and Sπ and Swπ .

X1:person X2:man
brother

X3:woman
daughter

X1:person X2:man
brother

X3:woman

wife X4:woman

daughter

daughter

ψ1

ψ2

Fig. 16 Two of the highest weighted properties in the Kinship data set. Notice that both
properties imply that the person corresponding to this pattern is an uncle or an aunt, and
that the target concept to learn from the Kinship data set is “uncle”.

7.4 Correlation Between Sλ and Sπ

Since Sπ approximates Sλ by moving from unification and anti-unification of terms to

union and intersection of properties, we would like to evaluate how good is this approx-

imation. Theoretically, the two similarity measures are identical when disintegration

is strongly complete, as defined in Section 5.3 (e.g. when working in the language L0),

while they may deviate when disintegration is only weakly complete. In order to evalu-

ate how does this effect manifests in different data sets, we have evaluated the Pearson

correlation coefficient among the similarity values produced by our three similarity

measures (Sλ, Sπ, and Swπ) on the 4 data sets shown in Table 8.

In the Soybean data set, as expected, Sλ and Sπ compute identical similarity values,

and thus their correlation is 1. This is because the Soybean data set can be represented

in the language L0, in which disintegration is strongly complete, and thus Sπ approxi-

mates Sλ completely. In the Demospongiae data set the correlation diminishes to 0.984.

This means that there are already some differences, but they are quite small. The rea-

son is that this data set, which is represented using language Ls, has only very few

attributes that cannot be represented with L0 (it contains a few features that are set

valued). In data sets where more complex languages are required, such as the Trains

and the Kinship data sets, Sλ and Sπ start deviating, as expected, since disintegration

is only weakly complete. Finally, we can observe that the difference between Sλ and

Sπ is smaller than between Sλ and Swπ, since the weights in Swπ modify the similarity

estimation.

7.5 Discussion

As mentioned earlier, both RIBL and SHAUD implement the idea of “hierarchical

aggregation,” and therefore have a bias that makes them deem features closer to the

root of an instance as more important than those that are deeper into the structure.

The similarity measures presented in this paper do not have this bias. The weighted

property-based similarity Swπ assigns weights to properties according to how discrim-

inant they are with respect to the task at hand, regardless of whether they are deep

into the structure or if they are closer to the root. For instance, Figure 16 shows two of

29

the highest weighted properties in the Kinship data set by the Swπ similarity (many

properties were tied with the highest weight, and these are just two of them). Recall

the the target concept for this data set is that of “uncle”. The first one represents

“a person with a brother who has a daughter”, and the second one, “a person with a

brother, who has a daughter and a wife”. Notice that if a particular instance satisfied

any of those properties, it means that the term represents either an “uncle” or an

“aunt”. Therefore, those properties are highly discriminant for the task at hand, which

is discriminating uncles from non-uncles. On the other hand, Kashima’s graph kernel

does not have the hierarchical aggregation bias, but weights each of the different ran-

dom walks that can be generated for a given graph according to its probability, which

might not be correlated with its importance to the task at hand. For that reason, it

would be interesting to incorporate a different way to weight the random walks, like

Swπ does with properties.

Moreover, notice that properties do not correspond to individual features in propo-

sitional machine learning, but to complete patterns that capture some piece of infor-

mation of an instance. For instance, the second property shown in Figure 16 captures

the fact that X2, the brother of a particular person, and the wife of X2 have a daughter

in common; this shows that the disintegration operation will construct the property

as the most general term which still captures that piece of information, regardless of

the depth or the number of features or variables needed to represent it. This illustrates

that the combination of disintegration and weight assessment can discover which are

the relevant properties or patterns for a given classification task.

In summary, Swπ is the most balanced similarity overall, achieving the highest clas-

sification accuracy in most data sets while being computationally efficient. Moreover,

Sλ, Sπ and Swπ are conceptually very simple (they measure the amount of shared

information) whereas in more complex measures, such as SHAUD and RIBL, it is hard

to conceptually understand what is exactly being measured. Comparing Sλ to Sπ and

Swπ, Sλ has the advantage of computing an explicit symbolic similarity and of being

conceptually very simple, however it is computationally expensive. Sπ and Swπ on the

other hand are computationally less expensive and more accurate. Additionally, Swπ
has the interesting side effect of discovering which are the most relevant properties for

a given classification task, as illustrated above.

8 Related Work

Hutchinson [25] presented a distance based on the anti-unification of two terms. The

Hutchinson distance is the addition of the sizes of the variable substitutions required

to move from the anti-unification of two terms to each of these terms. This measure is

related to Sλ, since it is similar to the addition λ1+λ2. However, counting only variable

substitutions fails to take into account some information. For example, substituting a

term number by integer or substituting it by the number 45, will count as a single

substitution in Hutchinson’s formalism, while in Sλ moving from number to integer

counts as one refinement, whereas moving from number to 45 requires two refinements

—thus Sλ is more fine-grained. Moreover, Hutchinson’s distance does not take into

account the amount of information shared (that Sλ estimates as the length λs of the

path from ⊥ to the anti-unification).

RIBL (Relational Instance-Based Learning) is an approach to apply lazy learn-

ing techniques while using Horn clauses as the representation formalism [18]. RIBL’s

30

similarity measure follows a “hierarchical decomposition” approach: the similarity of

two instances (terms) is the average of the similarity of the value of their attributes

(calling this function recursively if the values are themselves terms). Thus, RIBL is

better suited for acyclic graphs. Moreover, they define special similarity measures if

the values are numeric or symbolic. Our Sλ and Sπ are more general in the sense that

we do not make any assumption about the representation language being used, but

only rely on the existence of a subsumption operation and a refinement graph. For Sλ
and Sπ, the fact that terms are trees, graphs or lists only affects the computational

cost of the process, but not their algorithms. Moreover, RIBL’s recursive computation

of similarity adds a bias in that values deep in the instance tree are bound to have less

importance, while Sλ and Sπ do not present this bias. An earlier similarity measure

related to RIBL was that of Bisson [12].

Horváth et al [24] presented an extension of RIBL that is able to deal with lists

and terms. The extension consists of a specialized routine that uses an edit-distance

to compute similarities among lists and terms added to the RIBL’s basic similarity

measure. The downside of the RIBL approach (including this improvement) is that

specialized measures have to be defined for different types of data, whereas Sλ and Sπ
can uniformly handle any kind of tree or graph.

Bergmann and Stahl [11] present a similarity metric specific for object oriented

representations based on the concepts of intra-class similarity (measuring similarity

among all the common features of two objects) and inter-class similarity (providing a

maximum similarity given to object classes). This similarity is defined in a recursive

way, thus following the same “hierarchical decomposition” idea as RIBL, and limiting

the approach to tree representations.

SHAUD, presented by Armengol and Plaza [7], is another similarity measure follow-

ing the “hierarchical decomposition” approach but designed for feature terms. SHAUD

also assumes that the terms do not have cycles, and in the same way as RIBL and

Bergmann and Stalh’s it can handle numerical values by using specialized similarity

measures for different data types. An advantage of Sλ and Sπ with respect to RIBL and

SHAUD is that Sλ and Sπ can handle comparisons among generalizations (i.e. terms

that have unbound variables). Hutchinson distance can handle generalizations by us-

ing the “single representation trick” to map variables into constants, and Bergmann

and Stahl define some special instances to handle this situation. Notice that this is

because Sλ and Sπ do not make any assumptions about the data other than assuming

a subsumption relation and a refinement graph.

Similarity measures for complex molecular structures in domains of biology or

chemistry have been widely studied [46], and they are typically grouped into two classes

[40]: fingerprint-based and graph-based. Fingerprint similarities transform each molecule

in a sequence of binary features where each feature determines whether a particular

molecule exhibits some particular property or contains a certain substructure. Of spe-

cial interest for the work presented in this paper are graph-based similarities, which

represent molecules as graphs (where each vertex corresponds to an atom). Graph-based

similarity measures for molecules are typically based on computing the maximum com-

mon subgraph (MCS) of two graphs. This is a computationally expensive process, and

thus there are a number of strategies to simplify the computations. For instance Ray-

mond et al. [41] propose to first compute an upper bound of the similarity measure, and

only compute the actual MCS for those molecules for which the upper bound is over a

given threshold. Computing the MCS is a very related problem to that of finding the

anti-unification in refinement graphs, and thus Sλ is related to graph-based similarities

31

for molecules. Moreover, Sπ can be seen as either a fingerprint similarity (because it

breaks every term into a collection of properties, each of which could be represented

as a binary feature) or a graph-based similarity (since Sπ is an approximation of Sλ).

Another related area is that of kernels for graphs. Kernels for graphs are interesting

since they allow the application of machine learning techniques to complex data repre-

sented as graphs (such as chemical molecules). Typically, kernels for graphs are based

on the idea of finding substructures (the idea is that if substructures are similar, then

graphs are similar). For example, Kashima et al. [26] present a kernel for graphs based

on random-walks. Although these kernels are defined specifically for particular kinds

of graphs (e.g. directed labeled graphs), an interesting idea is that they are based on

approximations rather than on exact calculations. Our similarity measures, however,

are based on exact subsumption calculations. An interesting idea for future work is to

explore similarity measures for refinement graphs based on approximations of either

the subsumption, anti-unification or remainder operations. Moreover, notice that fea-

ture terms can also be represented as labelled graphs, thus, kernels for graphs could

be applied to our data. However, when we represent a term as a labelled graph, some

information (such as the sort information) might be lost.

Concerning the applicability of Sλ and Sπ to other formalisms, feature terms can

represent naturally object oriented data, making our approach applicable to those rep-

resentations. Moreover, other authors have proposed refinement operators for different

subsets of first-order logics such as description logics, which is the first step towards

applying our similarity metrics to those representation formalisms. For instance, Laag

and Nienhuys-Cheng [27], Shapiro [43] or Lehmann and Hitzler [31].

A related area is that of similarity measures for description logics. Fanizzi et al.

[19] present a similarity metric based on the idea of a “committee of concepts”. In

their work, they consider each single concept in the T-box to be a feature that can be

0 or 1 for each individual (belonging or not to that concept). The ratio of concepts

that two individuals share corresponds to their similarity. González et al. [21] present

a similarity measure for description logics designed for case-based reasoning systems.

This similarity measure shares ideas with SHAUD, but in the context of description

logics. In the same way as SHAUD, it has problems with circular variable equalities, and

thus they preprocess the instances to remove the roles that introduce such circularities

before processing. For that reason, this similarity would not be suitable for data sets

such as Kinship.

Kaci and Sasaki [5] introduced algorithms for both unification and anti-unification

of feature terms based on clause rewriting rules (which operate over the clause form of

a feature term). The anti-unification algorithm presented in Appendix B, however, is

different, since it is based on refinement operators.

In an earlier paper [34] we introduced two informal definitions of Sλ and Sπ. In this

paper, we have formally defined several languages in order to analyze the behavior of Sλ
and Sπ within representations of different complexity and presented general algorithms

for refinement graphs. Moreover, the disintegration process is defined here for the first

time, while the algorithm for finding properties in [34] is adequate only for L0, since

it would not generate weakly complete property sets in other languages.

32

9 Conclusions

In this paper we have presented similarity measures for structured representations

based on the notion of refinement graphs, which can be used for case-based reasoning

and instance-based learning systems. Specifically, we presented the anti-unification-

based similarity, Sλ, which generalizes the classical notions of similarity between con-

cepts in a taxonomy to compute similarity between instances in a refinement graph. We

also presented the property-based similarity, Sπ, a measure that is an approximation

of Sλ and, thanks to the idea of term disintegration, is computationally more efficient

and allows the addition of weights. We have evaluated both similarity measures in

a collection of propositional and relational data sets and compared them with other

similarity measures for structured representation of instances.

In order to define Sλ and Sπ, we presented a refinement graph for feature terms,

but both similarity measures could, in principle, be implemented for other represen-

tation formalisms. Our similarity measures only require a refinement graph with (1)

unification, (2) specialization refinement operators that are finite and complete, and (3)

generalization refinement operators which are finite and which ensure that ⊥ is reach-

able from any term by generalization. Specifically, Sλ requires (2) while Sπ requires

(1) and (3).

The main contributions of our work are twofold. The first contribution is the idea

of defining similarity over a refinement graph, which allows our similarity measures to

be independent of the representation formalism. Whereas previous work in similarity

measures presented specialized algorithms to assess similarity for specific data types, in

our work, the language in which the instances are represented (whether it is relational

or propositional, or whether we allow cycles or not, etc.) only has an effect on the

computational cost, but not on the algorithm used to assess similarity. Ontologies,

as defined in this paper, were introduced to restrict the search space and increase the

efficiency, but they are not strictly required for the definition of the similarity measures.

The second contribution is term disintegration. Disintegration allows us to move

from performing unification and anti-unification of terms to performing union and

intersection of properties, which are more efficient operations, hence improving the

efficiency of similarity assessment over refinement graphs. Moreover, working directly

with property sets offers interesting possibilities. For instance, in this paper we have

exploited such property sets with feature weighting to obtain a similarity measure

(Swπ) which can discover the most relevant properties for a given classification task.

Additionally, we have defined refinement operators for feature terms for several

languages whose refinement graphs satisfy the requirements above. The two similarity

measures that we have introduced are general with respect to the refinement graphs

satisfying those requirements. Moreover, they are capable of both estimating a simi-

larity degree as well as generating a symbolic description of such similarity.

As future work, we will study how our approach on similarity could be used in other

representation formalisms such as Horn clauses or description logics (a preliminary

study on this can be found at [42]). This study basically needs to define refinement

operators that satisfy the requirements (1-3) above, so that our similarity measures

apply. This entails solving some theoretical issues, since current results characteriz-

ing refinement graphs on Horn clauses [45] or description logics [20] lack some of the

requirements outlined in our approach. We will also explore the use of term disinte-

gration in other fields of structured machine learning such as induction, i.e. using the

property sets as an alternative representation of relational instances. Finally, the rela-

33

tionship (established by disintegration and integration) between the “space of terms”

(with unification and anti-unification) and the “space of properties” in languages of

different expressiveness seems to merit also a deeper study.

Acknowledgements We thank Eva Armengol for her support in using and integrating the
PTC dataset and the anonymous reviewers for their insightful suggestions. Support for this
work came from the project Next-CBR TIN2009-13692-C03-01 (co-sponsored by EU FEDER
funds).

Appendix A: Formal Definition of Subsumption for Feature Terms

Intuitively, a feature term ψ1 subsumes another one ψ2 if all the information contained in ψ1

is also in ψ2; or equivalently, when all that is true for ψ1 is also true for ψ2. Formally, a feature
term ψ1 subsumes another one ψ2 (ψ1 v ψ2) if all the following conditions are met:

– There is a total mapping m : vars(ψ1)→ vars(ψ2),
– root(ψ2) = m(root(ψ1)),
– For each variable X ∈ vars(ψ1):

– sort(X) ≤ sort(m(X)),
– features(X) ⊆ features(m(X)),
– For each feature f ∈ features(X), where X.f = Ψ1 and m(X).f = Ψ2 (i.e. Ψ1 and Ψ2

are the set of feature terms that are the value of feature f in ψ1 and ψ2 respectively),
we have that:

• ∀Y ∈ Ψ1, ∃Z ∈ Ψ2|m(Y) = Z,
• ∀Y, Z ∈ Ψ1, Y 6= Z ⇒ m(Y) 6= m(Z),

i.e. that for each variable in the set Ψ1, its mapping is in the set Ψ2, and that each
different variable in Ψ2 has a different mapping.

The main difference from this definition of subsumption to the traditional θ-subsumption
is that in our definition, all variables in a set are considered different, i.e. a set of n variables
will never subsume a set of less than n variables. This is interesting, since it eliminates the
problem described in [45], and allows finite, complete and proper specialization refinement
operators (although it does not resolve the problem for the case of the generalization operator
as explained in Appendix C).

It is important to remark the difference between subsumption (v) as defined here, as a
relation that defines an informational content ordering, and classical θ-subsumption. A basic
idea concerning feature terms is that they can be understood as partial descriptions, which
allows us to have both instances and generalizations in the same representation language. The
relation ordering partial descriptions (ψ v ψ′) makes sense only if all that is true for ψ (all
information contained in ψ) is also true for ψ′ (the information contained in ψ′ includes at
least all information contained in ψ).

An example may clarify how subsumption (v) but not θ-subsumption induce such an in-
formational order upon partial descriptions. Consider three partial descriptions (ψ1, ψ2 and
ψ3) of a person such that they are equal in all but the children feature where they have (re-
spectively) one, two, or three children. Clearly, subsumption (v) captures the desired ordering
among partial descriptions, namely ψ1 @ ψ2 @ ψ3. However, θ-subsumption does not respect
this order, since we can substitute the two variables of ψ2 (representing two children) for the
same variable in ψ1 (representing one children) and thus ψ2 would also θ-subsume ψ1. Thus,
θ-subsumption allows losing information, in this case about having two children as stated in
ψ2. Moreover, unification makes sense for our subsumption since, as expected when ψ1 @ ψ2,
unifying a term with a subsumer yields the same term: ψ1 t ψ2 = ψ2 – while this property
does not hold for θ-subsumption.

Appendix B: Efficient Search for an Anti-Unification

Finding the set of all the anti-unifications of a set of given terms might be computationally
expensive. However, if we are interested in finding just one anti-unification of the set of possible
anti-unifications, an efficient algorithms exists.

34

Algorithm AntiUnification(T, ρ, ψ0 = ⊥)
ForEach (ψ ∈ ρ(ψ0)) Do

If (ψ 6v ψ0 ∧ ∀ψ′ ∈ T, ψ v ψ′) Then
〈ψt, t〉 = AntiUnification(T, ρ, ψ)
Return 〈ψt, t+ 1〉

EndForEach
Return 〈ψ0, 0〉

EndAlgorithm

Fig. 17 Algorithm to compute an anti-unification of a set of feature terms T using depth first
search. It returns a pair containing both the anti-unification, and the length of the refinement
path from ⊥ to the anti-unification.

!"#$%&'()*$!+#$%&'()*$
,'-&*.$

,'-&*.$

/"#$%&'()*$ /+#$%&'()*$
,'-&*.$

/0#$%&'()*$
,'-&*.$

/"#$%&'()*$ /+#$%&'()*$
,'-&*.$

/0#$%&'()*$

,'-&*.$

/1#$%&'()*$
,'-&*.$

,'-&*.$

/"#$%&'()*$ /+#$%&'()*$
,'-&*.$

/2#$%&'()*$/3#$%&'()*$
,'-&*.$

,'-&*.$

/0#$%&'()*$
,'-&*.$

/1#$%&'()*$

,'-&*.$

,'-&*.$

ψ1 ψ2

ψ

ψ
ψ�

ψ2
ψ1

ψ�

Fig. 18 A term ψ with a circular variable equality. This term has an infinite number of
generalizations: ψ1 and ψ2 are two examples. The generalization operator γe generates ψ′ to
avoid infinite paths.

Given a refinement operators ρ that is finite and complete (see Section 3), Figure 17 shows
an algorithm to compute one anti-unification of a set of feature terms T . The algorithm works
as follows: the search starts by having c0 = ⊥ as initial candidate to be the anti-unification.
At each step of the algorithm, a set ρ(c0) will be generated with the specialization refinements
of the current candidate c0 using the refinement operator ρ. If any of those refinements ψ
subsumes all the terms in T , and it is more specific than the current candidate c0 (this test is
required since we do not require the refinement operator to be proper) then a recursive call is
made using ψ as the candidate anti-unification. When none of the refinements of c0 subsume
all of the terms in T , we will know that c0 is an anti-unification of all the terms in T .

Given that all the feature terms in T have a finite number of variables, it is possible to
proof that only a finite number of refinements are required to reach an anti-unification from any
starting feature term ψ, and in particular from c0 = ⊥. Moreover, the number of refinements
required is linear as a function of the number of variables, features and the depth of the sort
taxonomy.

The number of recursive calls represents the number of refinements required to compute
the anti-unification, i.e. the length of the refinement path in the refinement graph from ⊥ to
the anti-unification. The algorithm returns a pair 〈c0, t〉 with both the anti-unification and
refinement path length.

Appendix C: Finite and Infinite Paths in a Refinement Graph

Languages Lc and L, allowing circular variable equalities, define refinement graphs where there
may be infinite monotonic refinement paths8. This means that starting from some terms,
infinite sequences of terms, where each term is a generalization of the previous one, can be
created. Let us again show this with an example.

8 A refinement path is monotonic when all the steps in the path are a generalization, or all
the steps in the path are a specialization.

35

Figure 18 shows a term ψ which contains a circular variable equality: it describes a person
X1 which has a friend X2, and X2 also has a friend, which is X1, so it has a cycle of size 2. Let
us show that circular variable equalities cause infinite generalization paths. The term ψ1 in
Figure 18 is a generalization of ψ (ψ1 v ψ), and has a cycle of size 4. ψ1 subsumes ψ because
with the mapping m(Y1) = X1, m(Y2) = X2, m(Y3) = X1 and m(Y4) = X2 all the conditions
specified in Appendix A are satisfied. It is easy to see that a simple term with a cycle of size a
where a = k× b (with a, b and k being natural numbers) subsumes a term with a cycle of size
b. Thus, we can create an infinite generalization path by starting with ψ which has a cycle of
size 2, continuing with a term with a cycle of size 4, then one of size 8, 16, 32, etc.

Moreover, two terms which have cycles of size a and b respectively do not subsume each
other if a and b are not a multiple of each other. For example, the term ψ2 in Figure 18 has
a cycle of size 6 and it subsumes ψ, but not ψ1. Thus, there are also infinite terms which
are generalizations of ψ, but that do not subsume each other. This is why a circular variable
equality can be removed in an infinite number of ways, as we mentioned in Section 3. This is
also the reason for which the set of subsumers G(ψ) is infinite when there are circular variable
equalities.

This is a problem for implementing generalization refinement operators. For that reason,
the generalization operator γe in Section 3 generates the term ψ′ as a generalization of ψ
but does not generate any of the terms ψ1, ψ2, etc. In this way, we avoid infinite paths,
but at the cost of not being complete. In practice this is not a problem, since the disallowed
generalizations are terms with new variables (w.r.t. the set of examples) and they are not
required in the disintegration process where γe is used.

References

1. Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodologi-
cal variations, and system approaches. Artificial Intelligence Communications, 7(1):39–59,
1994. Online at <url:http://www.iiia.csic.es/People/enric/AICom ToC.html>.

2. Hassan Aı̈t-Kaci. Description logic vs. order-sorted feature logic. In Description Logics,
2007.

3. Hassan Aı̈t-Kaci and A. Podelski. Towards a meaning of LIFE. Technical Report 11,
Digital Research Laboratory, 1992.

4. Hassan Aı̈t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature the-
ory unification. In ILPS ’93: Proc. 1993 International Symposium on Logic programming,
pages 506–524, Cambridge, MA, USA, 1993. MIT Press.

5. Hassan Aı̈t-Kaci and Yutaka Sasaki. An axiomatic approach to feature term generalization.
In EMCL ’01: Proceedings of the 12th European Conference on Machine Learning, pages
1–12, London, UK, 2001. Springer.

6. Josep Llúıs Arcos. The NOOS representation language. PhD thesis, Universitat Politècnica
de Catalunya, 1997.

7. Eva Armengol and Enric Plaza. Relational case-based reasoning for carcinogenic activity
prediction. Artificial Intelligence Review, 20(1-2):121–141, 2003.

8. Eva Armengol and Enric Plaza. Relational case-based reasoning for carcinogenic activity
prediction. Artificial Intelligence Review, 20:121–141, 2003.

9. Eva Armengol and Enric Plaza. Lazy learning for predictive toxicology based on a chemical
ontology. In W. Dubitzky and F. Azuaje, editors, Artificial Intelligence Methods and Tools
for Systems Biology, volume 5, pages 1–18. Springer, 2005.

10. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

11. Ralph Bergmann and Armin Stahl. Similarity measures for object-oriented case repre-
sentations. In Advances in Case-Based Reasoning, EWCBR-98, volume 1488 of Lecture
Notes in Artificial Intelligence, pages 8–13. Springer Verlag, 1998.

12. Gilles Bisson. Learing in FOL with a similarity measure. In Proceedings of AAAI 1992,
pages 82–87, 1992.

13. Katy Börner. Structural similarity as a guidance in case-based design. In Topics in Case-
Based Reasoning: EWCBR’93, volume 837 of Lecture Notes in Computer Science, pages
197–208, 1993.

36

14. Bob Carpenter. The Logic of Typed Feature Structures, volume 32 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1992.

15. T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1):21–27, 1967.

16. Claudia d’Amato, Steffen Staab, and Nicola Fanizzi. On the influence of description logics
ontologies on conceptual similarity. In EKAW ’08, Proc. 16th Int. Conf. on Knowledge
Engineering: Practice and Patterns, volume 5268 of Lecture Notes in Computer Science,
pages 48–63, 2008.

17. Thomas Dietterich, Pedro Domingos, Lise Getoor, Stephen Muggleton, and Prasad Tade-
palli. Structured machine learning: the next ten years. Machine Learning, pages 3–23,
2008.

18. Werner Emde and Dietrich Wettschereck. Relational instance-based learning. In Lorenza
Saitta, editor, Proceedings 13th International Conference on Machine Learning, pages
122–130. Morgan Kaufmann, 1996.

19. Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. Induction of optimal semi-
distances for individuals based on feature sets. In Proc. 2007 International Workshop
on Description Logics. CEUR-WS, 2007.

20. Nicola Fanizzi, Claudia D’Amato, and Floriana Esposito. Dl-foil concept learning in de-
scription logics. In ILP ’08: Proceedings of the 18th Int. Conf. Inductive Logic Pro-
gramming, volume 5194 of Lecture Notes in Computer Science, pages 107–121, Berlin,
Heidelberg, 2008. Springer.

21. Pedro A. González-Calero, Belén Dı́az-Agudo, and Mercedes Gómez-Albarrán. Applying
DLs for retrieval in case-based reasoning. In In Proceedings of the 1999 Description Logics
Workshop (DL’99), 1999.

22. C. Helma, R. King, S. Kramer, and A. Srinivasan. The predictive toxicology challenge
2000- 2001. Bioinformatics, 17:107–108, 2001.

23. Geoffrey E. Hinton. Learning distributed representations of concepts. In Proceedings of
8th Annual Conf. Cognitive Science Society, pages 1–12, 1986.

24. Tamás Horváth, Stefan Wrobel, and Uta Bohnebeck. Relational instance-based learning
with lists and terms. Machine Learning, 43(1/2):53–80, 2001.

25. Alan Hutchinson. Metrics on terms and clauses. In ECML ’97: Proceedings of the 9th
European Conference on Machine Learning, volume 1224 of Lecture Notes in Computer
Science, pages 138–145. Springer, 1997.

26. Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled
graphs. In Proceedings of the Twentieth International Conference (ICML 2003), pages
321–328. AAAI Press, 2003.

27. P.R.J. van der Laag and S.-H. Nienhuys-Cheng. Subsumption and refinement in model
inference. Discussion Paper 7, Erasmus University Rotterdam, Faculty of Economics, 1992.

28. James Larson and Ryszard S. Michalski. Inductive inference of VL decision rules. SIGART
Bulletin, 63:38–44, 1977.

29. Nada Lavrač and Sašo Džeroski. Inductive Logic Programming. Techniques and Applica-
tions. Ellis Horwood, 1994.

30. Jens Lehmann and Pascal Hitzler. Foundations of refinement operators for description
logics. In Proceedings of the 17th International Conference on Inductive Logic Program-
ming (ILP), volume 4894 of Lecture Notes in Computer Science, pages 161–174. Springer,
2008.

31. Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm for the
ALC description logic. In Proceedings of the 17th International Conference on Inductive
Logic Programming (ILP), volume 4894 of Lecture Notes in Computer Science, pages
147–160. Springer, 2008.

32. D. Michie, S. Muggleton, D. Page, and A. Srinivasan. To the international computing
community: A new East-West challenge. Technical report, Oxford University Computing
Laboratory, Oxford,UK, 1994.

33. Tom Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226, 1982.
34. Santiago Ontañón and Enric Plaza. On similarity measures based on a refinement lattice.

In D. Wilson and L. McGinty, editors, Proc. 8th Int. Conf. on Case-Based Reasoning,
volume 5650 of Lecture Notes in Computer Science, pages 240–255. Springer, 2009.

35. Enric Plaza. Cases as terms: A feature term approach to the structured representation of
cases. In M. Veloso and A. Aamodt, editors, Case-Based Reasoning, ICCBR-95, volume
1010 of Lecture Notes in Artificial Intelligence, pages 265–276. Springer, 1995.

37

36. Enric Plaza, Eva Armengol, and Santiago Ontañón. The explanatory power of symbolic
similarity in case-based reasoning. Artificial Intelligence Review, 24(2):145–161, 2005.

37. Gordon D Plotkin. A note on inductive generalization. In Machine Intelligence, volume 5,
pages 153–163. Edinburgh University Press, 1970.

38. Carl J. Pollard and M. Drew Moshier. Unifying partial descriptions of sets. In Philip P.
Hanson, editor, Information, Language and Cognition, volume 1, pages 167–184. Univer-
sity of British Columbia Press, 1990.

39. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
40. John W. Raymond, C. John Blankley, and Peter Willett. Comparison of chemical cluster-

ing methods using graph- and fingerprint-based similarity measures. Journal of Molecular
Graphics and Modelling, 21(5):421–433, 2003.

41. John W. Raymond, Eleanor J. Gardiner, and Peter Willett. Rascal: Calculation of graph
similarity using maximum common edge subgraphs. Computer J., 45(6):631–644, 2002.

42. Antonio A. Sánchez-Ruiz, Santiago Ontañón, Pedro A. González-Calero, and Enric Plaza.
Measuring similarity in description logics using refinement operators. In Proc. 19th Int.
Conf. on Case-Based Reasoning, volume 6880 of Lecture Notes in Computers Science,
pages 289–303. Springer, 2011.

43. Ehud Y. Shapiro. Inductive inference of theories from facts. Technical Report 192, Dept.
of Computer Science, Yale University, 1981.

44. Amos Tversky. Features of similarity. In Psychological Review, volume 84, pages 327–352,
1977.

45. Patrick R. J. van der Laag and Shan-Hwei Nienhuys-Cheng. Existence and nonexistence
of complete refinement operators. In ECML-94: Proceedings of the European Conference
on Machine Learning, pages 307–322. Springer New York, Inc., 1994.

46. Peter Willett, John M. Barnard, and Geoffrey M. Downs. Chemical similarity searching.
Journal of Chemical Information and Computer Sciences, 38(6):983–996, 1998.

