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Abstract. In this paper we present a meta strategy that combines two negotia-
tion tactics. The first one based on concessions, and the second one, a trade-off
tactic. The goal of this work is to demonstrate by experimental analysis that the
combination of different negotiation tactics allows agents to improve the negotia-
tion process and as a result, to obtain more satisfactory agreements. The scenario
proposed is based on two agents, a buyer and a seller, which negotiate over four is-
sues. The paper presents the results and analysis of the meta strategy’s behaviour.

1 Introduction

During the last years automated negotiation has become an important challenge in the
MAS field. It is the main key for autonomous agent interaction. In a multi agent system
we find autonomous agents who decide which actions to execute, when and how. In
consequence it is often the case that their own interests conflict with others agents’
interests. To solve these conflicts, we must equip them with appropriate negotiation
strategies; negotiation is not just a protocol which can be used for agent communication,
but also a way to achieve agreements when agents have conflicting interests. To specify
a negotiation process we must define [4]:

– Negotiation Protocols: set of rules that govern the interaction (who can participate,
which are the negotiation states, what events cause negotiation states to change and
what are the valid actions of the participants in each particular state).

– Negotiation Objects: the range of issues over which an agreement must be reached.
– Agents’ Decision Making Models: the decision making apparatus the participants

employ to act in line with the negotiation protocol in order to achieve their objec-
tives. Basically, how agents negotiate.

We can define the negotiation process as a distributed search through a space of
potential agreements (Figure 1). The dimensionality of the space is determined by the
structure of the negotiation object. If we consider each attribute of our negotiation ob-
ject to have a separate dimension, we clearly see that the space in Figure 1 concerns two
attributes. The preferences of the participants are represented by regions in the negotia-
tion space. If an intersection between these regions exist, then a possible solution to the
conflict may be found. The way to reach this solution can be done by interchanging pro-
posals. Formally, a proposal is a solution to the negotiation problem. Each proposal can



be represented as a point (or region) in the negotiation space. The negotiation process
consists of receiving the others agents’ proposals and responding to them with a new
proposal or an acceptance. The process terminates when the participants find a mutually
acceptable point in the negotiation space or when the protocol dictates that the search
should be terminated (for whatever reason) without reaching an agreement.

Researchers have proposed different negotiation models. The aim of this work is
to combine two existing models in order to improve the negotiation process, i.e. to
propose more satisfactory offers for the agents. As a result, we expect to increase the
agents’ utilities obtained by the agreement achieved. The idea is to switch from one
model to the other trying to exploit as much as possible their advantages and to avoid
their disadvantages. The first one, we will call it negoEngine, is based on concessions
[1], and the second one, the trade-off strategy [2] where multiple decision variables are
traded-off against one another (e.g., paying a higher price in order to obtain an earlier
delivery date or waiting longer in order to obtain a higher quality service). We also
propose a modification to the trade-off algorithm in order to improve its performance.
Somehow we try to guess the opponent’s preferences from the negotiation dialogue
in order to propose more acceptable offers. To summarise, this paper presents a step
towards the combination of already existing models and a modification of one them to
compute more satisfactory offers.

The rest of the paper is organised as follows. Section 2 gives a brief summary of
the research done until now on negotiation. Section 3 describes the basic notation used
through the paper and the strategies mentioned before. Section 4 details the modification
of the trade-off algorithm and introduces the meta strategy proposed. Section 5 presents
a scenario for the experiments and the results obtained. Finally, section 6 shows the
conclusions and future work.
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2 Related Work

During the past years different negotiation approaches have been studied in the fields
of game theory and artificial intelligence. Game theory generally assumes agents have
complete information about their opponents’ preferences. However, in real environ-
ments, this situation is unrealistic. For this reason, researches in the AI field have de-
signed new techniques to solve the negotiation problem with incomplete information
and uncertainty. Faratin, et al. use heuristic functions to compute the proposals to offer
at each time [1]. Parsons, Sierra and Jennings propose an argumentation model where
agents exchange proposals and counter-proposals arguing why they reject an offer. [11].
Mugdal and Vassileva propose a sequential decision making in which agents use a pref-
erence model of the user incorporating the risk attitude. The decision making is mod-
elled using an influence diagram [9]. Zeng and Sycara propose a sequential decision
model which is able to learn. For this purpose, they model the beliefs about the ne-
gotiation environment and the participating agents under a probabilistic framework us-
ing Bayesian learning representation and updating mechanism [14]. Li, Giampapa and
Sycara study the impact of outside options during a negotiation process. They claim
that an outside option affects the negotiation strategy via its impact on the reservation
price [6]. Some work has also been done regarding agents with firm deadlines as pri-
vate information. Fatima, Wooldridge and Jennings search for the optimal strategy to
be selected based on the remaining negotiation time [3]. Sandholm and Vulkan show
that the only sequential equilibrium outcome is one where the agents wait until the
first deadline, at which point that agent concedes everything to the other [12]. For an
extensive review on bilateral negotiation see [5]. Research has been mainly focused
over different parts of the whole negotiation problem. However, trying to integrate all
these parts in one general model is still a task to complete and few proposals can be
found in the literature. Among them, Lopes et al. present a generic negotiation model.
Their main goal is the integration of two models: an individual behaviour model and
a negotiation model based on concessions [7]. As we already mentioned, much work
has been done in expanding the negotiation process along different dimensions, for in-
stance, time constraints, outside options, multilateral negotiations, etc. But little work
has been done regarding the integration of already designed tactics. In this context, this
paper addresses the integration of two negotiation tactics [1,2] in order to improve the
outcome. Some modifications have been done on the trade-off algorithm to learn the
opponent’s preferences in order to compute more satisfactory offers.

3 Negotiation Strategies

In order to understand the notation used in previous models [1,2], we firstly describe
their basics. Then, in the next subsections, we make a quick review of the negotiation
models. Let i (i ∈ {a, b}) represent the negotiating agents and j (j ∈ 1, . . . , n) be the
decision variables under negotiation (attributes of our negotiation object). Negotiations
can range over quantitative (e.g. price, delivery time, and penalty) or qualitative (e.g.
quality of service) decision variables. Quantitative decision variables are defined over a
real domain (i.e. xi

j ∈ Di
j = [mini

j , maxi
j ]). Qualitative decision variables are defined



over a partially ordered set (i.e. xi
j ∈ Di

j = {q1, q2, . . . , qp}). Each agent has a scoring
function V i

j : Di
j → [0, 1] that gives the score it assigns to a value of decision variable

j in the range of its acceptable values. For convenience, scores are kept in the interval
[0, 1]. The relative importance that an agent assigns to each decision variable under
negotiation is modelled as a weight, wi

j , that gives the importance of decision variable j

for agent i. We assume the weights of both agents are normalised, i.e.
∑

1≤j≤n wi
j = 1,

for all i ∈ {a, b}. An agent’s scoring function for a contract, x = (x1, . . . .xn) in the
multi-dimensional space defined by the decision variables’ value ranges, is then defined
as: V i(x) =

∑

1≤j≤n wi
j · V

i
j (xj).

We assume both parties have a deadline by when they must complete the nego-
tiation. This time can be different for each agent and if its deadline passes the agent
withdraws from the negotiation. An agent accepts a proposal when the value of the
offered contract is higher than the offer the agent is ready to send at that moment in
time.

A negotiation thread between agents a and b at time tn is a finite sequence of pro-
posals from one agent to the other ordered over time:

Xtn

a↔b = (xt1
a→b, x

t2
b→a, xt3

a→b, . . .)

Optionally, the las element of the sequence is {accept, reject}.

3.1 NegoEngine

This subsection describes the first negotiation model (for more details refer to [1]). It is
based on defining a set of tactics to be used, either one at a time or as a combination
of them. Tactics are the set of functions that determine how to compute the value of a
decision variable. For instance:

– Time dependent: as time passes, the agent will concede more rapidly trying to
achieve an agreement before arriving to the deadline. The value to be uttered by
agent a for a decision variable j at time t, with 0 ≤ t ≤ ta

max is computed as
follows:

xt
j =

{

mina
j + αa(t)(maxa

j − mina
j ) (1)

mina
j + (1 − αa(t))(maxa

j − mina
j ) (2)

(1) if V a
j is a decreasing function

(2) if V a
j is an increasing function

where αa is a function depending on time and parametrised by a value β ∈ R
+.

αa(t) =

(

t

tamax

)
1
β

For each value of β, infinite number of possible tactics can be represented. How-
ever, two qualitatively different classes can be identified: boulware tactics if β < 1,
and conceder tactics if β > 1.



– Behaviour dependent or Imitative: to imitate the opponent’s behaviour.

x
tn+1

j =







mina
j if P ≤ mina

j

maxa
j if P > maxa

j

P otherwise

The parameter P determines the type of imitation to be performed. We can find the
following families:
• Relative Tit-For-Tat: the agent reproduces, in percentage terms, the behaviour

that its opponent performed δ ≥ 1 steps ago.

P =
x

tn−2δ

j

x
tn−2δ+2

j

x
tn−1

j

• Absolute Tit-For-Tat (Absolute-TFT): the same as before, but in absolute terms.

P = x
tn−1

j + x
tn−2δ

j − x
tn−2δ+2

j

• Averaged Tit-For-Tat (Average-TFT): the agent applies the average of percent-
ages of changes in a window of size λ ≥ 1 of its opponents history.

P =
x

tn−2λ

j

xtn

j

x
tn−1

j

Once we define the tactics to be used during the negotiation process,we also de-
fine a combination strategy. We compute the values for the decision variables under
negotiation according to each tactic. The final value of each decision variable is a lin-
ear combination of these values. To represent this linear combination we use a matrix
of weights Γ . Each column represents a tactic and each row, a decision variable. The
matrix value γpm represents the weight assigned to the tactic m for the decision vari-
able p. During the negotiation the Γ matrix may change and then, the behaviour of the
negotiating agent.

3.2 Trade-off

The main idea of this tactic is to find a proposal with the same utility as the previous
one offered, but expecting to be more acceptable for its opponent (for more details, see
[2]). The problem here is how to determinate which offer may increase the opponent’s
utility, without knowing its preferences. Given an agent a, who receives a proposal y

from agent b, the mechanism should allow agent a to choose a new proposal x′ to offer
to its opponent which fulfils two conditions:

1. the new proposal x′ must have the same utility as the offer previously proposed, x
(this is called a’s aspiration level);

2. the new proposal x′ must be the most similar to the offer y proposed by b.



This way, on the one hand we maintain our aspiration level, and on the other hand,
we maximise the probability of acceptance of our offer as similarity is in many cases
correlated with utility.

Regarding the aspiration level, we define the iso-curves, which are curves formed
by all the proposals with the same utility value for an agent:

isoa(θ) = {x|V a(x) = θ}

From this set of proposals, the agent must now choose one. To find the most similar
one we use similarity functions which are based on criteria evaluation functions. These
evaluation functions determine how much a given element matches the criteria, i.e.
h : D → [0, 1]. Thus a similarity function between to values induced by a single criteria
h can be defined as: Simh(x, y) = 1 − |h(x) − h(y)|. In some cases, multiple criteria
can be used to compute the similarity between two values. To aggregate the individual
similarities Simhi

a weighted means procedure is employed. Given a domain of values
Dj , a similarity between two values xj , yj ∈ Dj over m criteria is defined as:

Simj(xj , yj) =
∑

1≤i≤m

wi · (1 − |hi(xj) − hi(yj)|)

where
∑

1≤i≤m wi = 1 is the set of weights representing the importance of the criteria
functions in the computation of similarity. Finally, the similarity between two contracts
x and y over the set of decision variables J for agent a is defined as:

Sim(x,y) =
∑

j∈J

wa
j · Simj(xj , yj)

Formalising the trade-off tactic, given the proposal x offered by agent a, and a
subsequent offer y received from agent b, where θ = V a(x), agent a makes trade-off
the following way:

trade-off a(x,y) = arg max
z∈isoa(θ)

{Sim(z,y)}

The algorithm proposed in 3.2 performs an iterated hill-climbing search in a land-
scape of possible contracts. The search begins with the last offer received from our
opponent and generates a set of N proposals that lie closer to the iso-curve. At the end
of each iteration, the most similar contract is selected. The algorithm terminates when
the iso-curve is reached after S steps. We can see the algorithm steps in Figure 2.

4 Contributions

Next we explain the contributions of this work. First we detail the modification the
trade-off algorithm and then we explain the meta strategy proposed.
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Fig. 2. Schema of the trade-off algorithm with N=3 and S=3.

4.1 Modification of the trade-off algorithm

We first explain in more detail the steps performed by the algorithm used in 3.2 to com-
pute new proposals. Given the offer y proposed by agent b in time ti and the previous
proposal x offered by agent a in time ti−1 with V a(y) < V a(x), the algorithm must
compute a new proposal x′ to offer in time ti+1, where V a(x′) = V a(x). The idea is to
increase the utility of the proposal y, V a(y), until it achieves the current aspiration level
(V a(x)) after S steps. For simplicity, from now on we assume a single step (S = 1).
As explained in the beginning of the section, the utility of a proposal is the sum of the
issues’ weighted utilities, V a

j (xj), under negotiation. Thus, if we increase each individ-
ual utility, we also increase the whole proposal’s utility. First, the new proposal is ini-
tialised, x′ = y. Then, the algorithm chooses an issue and increments its utility (either
increasing o decreasing its value xj according to the utility function’s monotony). If the
aspiration level is not reached yet, V a(x′) < V a(x), a second issue is chosen and a new
value is computed. The process continues until the iso-curve is reached or no issues are
left. In the first case, the algorithm finishes and returns the new proposal x′. Otherwise,
the loop begins again with the first issue. It is easy to see that the order in which each
issue is selected affects the final outcome. Given the list of decision variables, the first
ones have a higher probability to be modified than the last ones. Thus, in order to pro-
pose more satisfactory offers to our opponent, we propose to order the issues according
to the opponent’s guessed preferences. During human negotiation, it is easy to notice
that the most important variables are the ones with less variations between offers. For
example, if we are not interested in time delivery, it makes no difference to us to change
it as our opponent demands it. But, in the case of the price issue, it is important to us
to try to keep it as stable as possible with small variations. Then, from our opponent’s
contracts history we can deduce somehow its own preferences. With this information
we can propose more satisfactory offers variating first the values of those issues that
are not so important to our opponent. If we order the decision variables following our
opponent’s preferences (first those less preferred), the algorithm will begin modifying



those that are not so important. In the best case, if the new proposal already achieves the
current aspiration level, no more changes will be needed and the most preferred issues
may maintain their original values. In the worst case, all issues will be modified. But
even in this case, the utility gain needed to achieve the current level will be lower when
the most preferred issues are computed.

As a summary, we use the similarity approach presented in [2] but using as much
as possible the knowledge about our opponents’ preferences. We bias the exploration in
the similarity landscape.

We then define the variability of a decision variable in a window of size m of the
contracts history as:

f(j) =

m−2
∑

i=0

|x
tn−2i

j − x
tn−2(i+1)

j |

(m − 1) · ∆xmax

with ∆xmax = max(Dj) − min(Dj), m > 1 and t the current time. The resulting
algorithm includes the computation of the issues’ variability and the storing of the offers
proposed by the opponent. Thus, the main steps are:

Algorithm Smart Trade-off

1. Store received proposal y in the contract history
2. For each decision variable i do

Compute variability(i)
3. Order the decision variables based on their variability
4. Compute a new offer using the trade-off algorithm

4.2 Meta Strategy

First, we review the advantages and disadvantages of both models. On one hand, the
negoEngine tactic allows us to compute offers considering the remaining time to end the
negotiation process and our opponent’s behaviour, both important aspects to consider
when trying to achieve an agreement. The disadvantage of this model is that every offer
proposed is a concession; this means that our aspiration level decreases in every step of
the negotiation process. On the other hand, the trade-off algorithm advantage is that it
searches all possible offers which maintain our aspiration level. Thus, our utility gain
does not decrease during the negotiation until it is deliberately indicated. An external
mechanism is defined to decrease the current aspiration level to achieve an agreement
(otherwise, if we never concede, the chance of achieving an agreement is minimum).
Faratin et al. proposed to decrease the aspiration level by a predefined amount whenever
a deadlock was detected. The problem is that other aspects, as time, are not taken into
account.

After reviewing the advantages and drawbacks of the models, we now proceed to
describe the meta strategy designed. The main idea is to exploit as much as possible
the current aspiration level. If no agreement is reached in a given negotiation step,
we reduce our aspiration level expecting to find, in a lower level, a new proposal that



satisfies both participants. To manage this behaviour the agent applies a trade-off tactic
to maintain the aspiration level until a deadlock is achieved. A deadlock is detected
when the last offer proposed by the opponent does not improve the utility of the offer
proposed two steps before. Then, the negoEngine tactic is used in order to decrease the
current aspiration level. Using this strategy ensures us to concede in a more rational way,
considering the remaining time to end the negotiation and our opponent’s behaviour.
Next example shows the meta strategy behaviour from the initial state until a deadlock
situation is detected:

t V a(x) V a(y)
t0 0.800
t1 0.200
t2 0.800
t3 0.334
t4 0.800
t5 0.329
t6 0.751

where V a(·) is agent a’s utility function, x, agent a’s proposals, and y corresponds to
agent b’s proposals.

The initial aspiration level is set to 0.8. At time t0 agent a proposes an offer. Then,
agent b offers a proposal in time t1 with a utility value of 0.2 for agent a. The process
continues until time t5, where b’s utility proposal decreases compared to the proposal
received in time t3. The meta strategy detects the deadlock situation. Thus, in time t6
agent a computes the new proposal using the negoEngine tactic, decreasing the current
aspiration level to 0.751.

Algorithm Meta Strategy

1. While deadline is not reached, tmax, or no agreement is found, V a(x) ≤ V a(y),
do
(a) Given the last offer x proposed by agent a, compute θ

θ = V a(x)

(b) If no deadlock then propose a new offer x
′ using the smart trade-off tactic.

else propose a new offer x
′ using the negoEngine tactic.

2. If the deadline tmax is reached then withdraw and terminate.
Else accept the proposal y and terminate.

5 Experiments

In this section we first present the scenario used in our experimentation. Then the ex-
periments realized are explained, and finally we proceed on the analysis of the results
obtained.

The experiments involve two players, a and b bargaining over fabric products. The
decision variables under negotiation are color, material, price and time delivery. Even



though color and material issues are discrete decision variables, to simplify the scenario
description we assume that all are modelled as a continuous domain. Regarding the
color issue, values are ordered based on color temperature (meaning 0 for extreme cold
colors and increasing with the warmth of the color). The same way, material issue is
based on wrinkle resistance (0 means no wrinkle resistance at all, increasing as more
resistant is the material).

Dc = [0, 5]
Dm = [0, 4]
Dp = [30euros, 70euros]
Dd = [5days, 15days]

The weight vectors representing the agents’ preferences for each decision variable are
fixed during the negotiation: W a = [0.35, 0.15, 0.45, 0.05]and W b = [0.10, 0.15, 0.40, 0.35],
where each weight corresponds to color, material, price and delivery time issues. Re-
garding to the evaluation functions we use linear functions:

V a
c (x) = x

5 V b
c (x) = 5−x

5
V a

m(x) = x
4 V b

m(x) = 4−x
4

V a
p (x) = 70−x

70−30 V b
p (x) = x−30

70−30

V a
d (x) = 15−x

15−5 V b
d (x) = x−5

15−5

And finally, the similarity functions shared by both agents. Similarity for price and
delivery are each based on two criteria: low and high price, hlp and hhp respectively;
and fast and slow time delivery, hfd and hsd. The weights are defined as follows: wa

lp =

0.8, wa
hp = 0.2, wa

fd = 0.8 and wa
sd = 0.2, for agent a; and wb

lp = 0.2, wb
hp = 0.8,

wb
fd = 0.2 and wb

lp = 0.8, for agent b.

hhp(x) =







1 x > 100
x−20

80 x ∈ [20, 100]
0 x < 20

hfd(x) =







1 x < 5
30−x

25 x ∈ [5, 30]
0 x > 30

hlp(x) =







1 x < 20
100−x

80 x ∈ [20, 100]
0 x > 100

hsd(x) =







1 x > 30
x−5
25 x ∈ [5, 30]

0 x < 5

Color and material similarity are represented as linear function based on a single crite-
ria:

h(x) =
x − min

max − min

The experiments involve a complete negotiation process. An agent makes its first
offer and the opponent responds with another one. The interaction continues until an
agreement is found or the negotiation time expires. The first offer proposed by the



agents is computed with the negoEngine tactic and then different combinations of tac-
tics are used to compare the performance of our meta strategy. Thus, we define the next
types of agents:

– NegoTO agent: this agent employs the meta strategy defined on section 4.2. That is,
applying the trade-off tactic until it reaches a deadlock, and then making an offer
with the negoEngine tactic.

– Random agent: the next strategy to compute the new offer is chosen randomly.
For instance: negoEngine, trade-off, trade-off, negoEngine, trade-off, negoEngine,
negoEngine, ...

– Sequential agent: altering both strategies throughout the negotiation process, one
at a time: negoEngine, trade-off, negoEngine, trade-off, negoEngine, trade-off, ...

– TO agent: in this case, the agent only applies the trade-off tactic while the utility of
the offer received is higher than the previous one received. Otherwise, the aspiration
level is decreased by a fixed 0.05 and a new proposal is generated.

– Nego agent: this agent only uses the negoEngine tactic during the negotiation.

Regarding the negoEngine tactic, we model five types of behaviours: very boulware
(B), boulware (b), neutral (n), conceder (c) and very conceder (C). We also combine
two tactics: time dependent and relative tit-for-tat. The weights of the Γ matrix are
γtd = 0.1 and γtft = 0.9 respectively.

Two measures were obtained during the experimentation:

1. utility product: once an agreement is achieved, the product of the utilities obtained
by both participants is computed.

2. utility difference: once an agreement is achieved, the difference of the utilities ob-
tained is computed.

The first measure indicates us the joint outcome, while the second one, indicates the
distance between both utilities. There is an important relation between these two mea-
sures and compromise should be taken in account. Even though a high joint outcome is
expected, it is also important that the difference between both utilities is low. For ex-
ample, an agent can obtain an utility of 0.75, while the other one, 0.48. The joint utility
would be 0.36, which is quite good. But the difference is also high enough to consider
the contract as an unsatisfactory agreement (with an assumption of equal negotiation
power). For this reason, we will evaluate the results obtained, not only based on the
utility product, but also on the utility difference.

We realized 100 bilateral negotiations for every pair of agents to obtain an average
of the outcome utility (each execution will variate as the trade-off algorithm includes
a randomness): NegoTO agent vs. NegoTO agent, NegoTO agent vs. Random agent,
Sequential agent vs. NegoTO agent, Sequential agent vs. Random, and so on. We also
modified the behaviour of every pair, changing from a very conceder one, to a very
boulware to study its influence on the final outcome. The negotiation deadline was fixed
to 40 steps for both agents. The next tables show the averages of the utility outcomes for
both agents (V a(x) corresponds to the utility obtained by the reference agent indicated
in the table’s caption and V i(x), to the utility obtained by the rest of the agents ai), the
utility products and the utility differences obtained with neutral behaviour in all cases.



We can clearly see that in general the NegoTO agents improve the negotiations
achieving satisfactory agreements for both participants. As expected, negotiations per-
formed by at least one NegoTO agent fulfil the desired properties, i.e. high utilities
and low utility differences. As we can see on table 1 (top) the highest utility product
(0.360) is obtained between a NegoTO agent and a TO agent, but the utility difference
(0.244) also increases. This means that while the NegoTO agent achieves a higher util-
ity, its opponent achieves a lower one. The best equilibrium is found when two NegoTO
agents negotiate together (0.350 for the utility product and 0.039 for the utility differ-
ence). Also notice that comparing to the rest of the agents’ utilities, the NegoTO agent
achieves in all cases, the higher one (V a(x) > V i(x), where a is the NegoTO agent,
and i, all the rest).

agenti V a(x) V i(x) ∗ | − |

NegoTO 0.611 0.572 0.350 0.039
Random 0.649 0.514 0.333 0.135

Sequential 0.634 0.514 0.326 0.120
TO 0.734 0.490 0.360 0.244

Nego 0.742 0.303 0.224 0.439

agenti V a(x) V i(x) ∗ | − |

NegoTO 0.562 0.592 0.332 0.030
Random 0.592 0.553 0.327 0.039

Sequential 0.608 0.543 0.330 0.065
TO 0.658 0.512 0.337 0.146

Nego 0.630 0.399 0.252 0.231
Table 1. Where ∗ refers to the utility product, and |− |, to the utility difference. Left table: utility
measures obtained by a NegoTO agent vs. all the rest. Right table: Utility measures obtained by
a Sequential agent vs. all the rest. Neutral behaviour in all cases.

In table 1 (bottom), where the reference agent is the Sequential agent again we con-
firm the results shown before. The NegoTO agent achieves the higher utility products
and the lower utility differences. While the Sequential agent, except for the NegoTO
agent, always obtains a higher utility compared to its opponents’ utilities. This means
that competing with other agents, the sequential meta strategy does a quite good perfor-
mance obtaining advantages among the rest.

Regarding the Random agent the best combination is obtained when negotiating
against a TO agent. But as depicted on table 2 (top) comparing the utility obtained
in the agreement against the NegoTO agent and the Sequential agent, it finalises the
negotiation with a lower utility gain. Thus, we can say that it cannot improve the other
agents performance. In table 2 (middle) we observe that the TO agent achieves the
higher utility product against itself, and also the lower utility difference, but it cannot
improve the others final utility gain, except when negotiating with a Nego agent. Finally,
and also as expected, the Nego agent is the one with the worst performance. This is
obvious as it has a concession strategy where it does not look for an improvement. It
only tries to achieve an agreement as soon as possible and conceding as much as it can.
We can see the results in table 2 (bottom).

Figure 3 depicts two examples of a complete negotiation process. We represent the
proposals offered by the buyer (NegoTO agent) in red circles and the ones offered by the
seller (agenti) in blue crosses. The x axis represents the utility perceived by the seller,
while the y axis, represents the buyer’s utility (in the range [0,1]). After analysing the



agenti V a(x) V i(x) ∗ | − |

NegoTO 0.543 0.613 0.333 0.070
Random 0.576 0.558 0.321 0.018

Sequential 0.550 0.574 0.316 0.024
TO 0.598 0.562 0.336 0.036

Nego 0.637 0.407 0.259 0.230

agenti V a(x) V i(x) ∗ | − |

NegoTO 0.437 0.776 0.339 0.339
Random 0.562 0.606 0.340 0.044

Sequential 0.503 0.638 0.321 0.135
TO 0.636 0.565 0.360 0.071

Nego 0.579 0.453 0.262 0.127

agent V a(x) V i(x) ∗ | − |

NegoTO 0.341 0.728 0.248 0.387
Random 0.483 0.591 0.286 0.109

Sequential 0.423 0.605 0.256 0.183
TO 0.484 0.600 0.290 0.115

Nego 0.506 0.494 0.250 0.011

Table 2. Where ∗ refers to the utility product, and | − |, to the utility difference. Top left table:
utility measures obtained by a Random agent vs. all the rest. Top right table: utility measures
obtained by a TO agent vs. all the rest. Bottom table: Utility measures obtained by a Nego agent
vs. all the rest. Neutral behaviour in all cases.

complete process between a NegoTO agent and the rest of the agents, we can observe
two situations:

– in the best case, the NegoTO agent tries to maintain the current utility gain as much
as it can. If its opponent always concedes, offering better proposals at each step,
the NegoTO agent continues sending proposals computed with the trade-off algo-
rithm as long as the negotiation process lasts. Finally the agreement ends without
modifying (or modifying very little) the initial aspiration level.

– in the worst case, the NegoTO agent behaves similar to a sequential strategy. Sup-
pose we have a very boulware opponent which makes few concessions. In the be-
ginning the NegoTO agent proposes an offer using the trade-off algorithm. Next a
deadlock is detected (because the offers received do not improve previous ones),
and a new proposal is generated with the negoEngine tactic. In the next step it tries
again with the trade-off tactic. Then, if a new deadlock occurs, the negoEngine tac-
tic is employed one more time. The process is repeated again and again until an
agreement is reached or agents withdraw.

It is also important to mention that changing the behaviour of the negoEngine tac-
tic did not really affect the final outcome. The reason is that the participation of this
strategy during the negotiation process is mainly used to finish the execution on time,
and not to improve the final outcome. As more conceder is the behaviour, the faster the
agreement is achieved. In situations where the negotiation time is significant to evaluate
the performance of the negotiation, the agent’s behaviour must be taken into account. If
a time cost is introduced into the model, the negoEngine parameters would need to be
modified in order to reduce the necessary time to reach an agreement, allowing maybe
greater concessions in the proposals computed. As the trade-off algorithm does not take



into account the time factor the meta strategy should also be modified to switch from
one strategy to the other one when time cost increases.

More experiments were realized modifying other parameters as the issues’ weights,
(wi

j , the domains, Di
j , and utilities functions, V i

j . They did not caused a significance
variation on the results shown.
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Fig. 3. Negotiation process between two players. On the left, NegoTO vs. NegoTO; and on the
right, NegoTO vs. Sequential.

6 Conclusions and Future Work

This paper presents the design of meta strategies to combine negotiation tactics. More
precisely, a model based on concession functions and a trade-off tactic. As we have
seen, the first ones try to achieve an agreement decreasing the expected utility of the
final proposal accepted by the participants, while the latter searches a satisfactory pro-
posal maintaining the utility as much as possible. Combining tactics allows agents to
better adapt to different situations. In this article we described two simple combinations
(random and sequential), and a more accurate one, the meta strategy showed on section
4.2. After the experiments we could see that the meta strategy developed obtains better
results than the other combinations. In the worst case it behaves as a sequential strat-
egy, which also performs quite well. In the best case, it exploits as much as possible
the trade-off tactic in order to maintain the current aspiration level. We also presented
a mechanism to detect our opponent’s preference in order to propose more satisfactory
offers. As a consequence, the probability of acceptance is increases.

As future work we propose the refinement of the parameters involved in both mod-
els. For this purpose we suggest genetic algorithms due to the huge quantity of param-
eters of the models. It would be also interesting to include other negotiation models,
such as argumentation based models [11]. In these models agents respond not only with
a new proposal, but also with an argument explaining why they produced that offer
or why they reject the received one. This way, agents can get to know its opponents’
interests and thus propose them more satisfactory offers. More modifications can be
experimented, as in [13], where fuzzy-logic is used to model the utility function. Also,



bilateral negotiation could be transformed into a multilateral negotiation. Instead of per-
forming negotiations between two agents, an agent could negotiate against more than
one agent. Finally, including time restrictions to achieve an agreement could be done.
In this paper, time influence is only represented during the execution of the negoEngine
tactic, where the new proposal is computed based on a time dependent tactic. It would
be interesting to introduce a cost function in the meta strategy to consider time as the
negotiation process progresses.
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