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Abstract— Our work is a contribution to the model-theoretic study
of equality-free fuzzy predicate logics. We present a reduced seman-
tics and we prove a completeness theorem of the logics with respect
to this semantics. The main concepts being studied are the Leibniz
congruence and the relative relation. On the one hand, the Leibniz
congruence of a model identifies the elements that are indistinguish-
able using equality-free atomic formulas and parameters from the
model, a reduced structure is the quotient of a model modulo this
congruence. On the other hand, the relative relation between two
structures plays the same role that the isomorphism relation plays in
classical predicate languages with equality.
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1 Introduction
This work is a contribution to the model-theoretic study of
equality-free fuzzy predicate logics. Model theory is the
branch of mathematical logic that studies the construction
and classification of structures. Construction means building
structures or families of structures, which have some feature
that interest us. In our case we devote our investigation to the
class of reduced structures, that help us to shed light to the
characteristic role played by equality in predicate fuzzy log-
ics.

Classifying a class of structures means grouping the struc-
tures into subclasses in a useful way, and then proving that
every structure in the collection does belong in just one of the
subclasses. The most basic classification in classical model
theory is given by the relations of elementary equivalence and
isomorphism. Our purpose in the present article is to inves-
tigate and characterize the structure-preserving maps between
structures in a fuzzy setting. In classical predicate logics with
equality, homomorphisms are structure-preserving, but if they
are not isomorphisms, they don’t necessarily preserve all the
formulas of the language. On the contrary, in equality-free
fuzzy predicate logics, σ-homomorphisms preserve all the for-
mulas, but unlike isomorphisms, the relation between struc-
tures of one being the σ-homomorphic image of another is not
an equivalence relation in the class of structures.

The main concepts studied in this work are the Leibniz con-
gruence and the relative relation. The notion of Leibniz con-
gruence arises in a very natural way. It is said that two ele-
ments of a model are related by this congruence when they
satisfy exactly the same equality-free atomic formulas with
parameters in the model. This congruence always exists, and
it turns out to be the greatest congruence of the model. This
idea has its origin in the Principle of the identity of the indis-

cernibles of G. W. Leibniz.

Given a model (M,B) the quotient structure modulo the
Leibniz congruence Ω(M,B) is denoted by (M,B)r and is
called its reduction. When we make the quotient modulo the
Leibniz congruence, we identify the elements that are indistin-
guishable using equality-free atomic formulas and parameters
in the model, thus the Leibniz congruence of the reduction of
a model is always the identity. An structure with the prop-
erty that its Leibniz congruence is the identity is said to be
a reduced structure. The importance of reduced structures in
equality-free logic comes from the fact that the reduction of a
model is a σ- homomorphic image of the model and therefore,
the model and its reduction satisfy exactly the same equality-
free sentences.

The other main concept analysed is the relative relation. It
is said that two structures are relatives when they have iso-
morphic reductions. Along this work we will give different
characterizations of this relation. Our aim is to point out that it
plays the same role in equality-free logic that the isomorphism
relation plays in logic with equality. The actual interest of the
Leibniz congruence and the relative relation comes from the
work of W. Blok and D. Pigozzi. They introduced the concept
of relative relation for the special case of logical matrices in
[1], and in [2] they made an extensive use of what they named
the Leibniz congruence.

Different definitions have been introduced so far for basic
model-theoretic operations on structures. For instance, the no-
tion of elementary submodel, morphism and congruence of a
fuzzy model of [3], elementary embeddings and submodels
of [4], fuzzy submodel, elementary fuzzy submodel and iso-
morphism of structures of first-order fuzzy logic with graded
syntax of [5], complete morphism and congruence in lan-
guages with a similarity predicate of [6] and the notion of σ-
embedding of [7]. Being our starting point all these works,
in the Preliminaries section we introduce the notions of ho-
momorphism and congruence of a model, trying both to en-
compass the most commonly used definitions in the literature
and to extend the corresponding notions of classical predicate
logics.

In section 3 we introduce the notion of reduced structure
and some basic model-theoretic properties of this kind of
structures. In section 4 we characterize when two structures
are relative and we prove that the relative relation is the tran-
sitivization of the relation of being a σ-homomorphic image.
Finally, section 5 is devoted to future work.
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2 Preliminaries
Our study of the model theory of fuzzy predicate logics is fo-
cused on the basic fuzzy predicate logic MTL∀ and stronger
t-norm based predicate calculi, the so-called core fuzzy logics.
We start by introducing the notion of core fuzzy logic in the
propositional case.

Definition 1 A propositional logic L is a core fuzzy logic iff
L satisfies:

1. For all formulas φ, ϕ, α, ϕ ≡ φ � α(ϕ) ≡ α(φ).

2. (LDT) Local Deduction Theorem: for each theory and
formulas φ, ϕ:

T, ϕ � φ iff for some natural number n, T � ϕn → φ.

3. L expands MTL.

For a thorough treatment of core fuzzy logics we refer to
[4], [8] and [7]. A predicate language Γ is a triple (P,F,A)
where P is a non-empty set of predicate symbols, F is a set of
function symbols and A is a function assigning to each predi-
cate and function symbol a natural number called the arity of
the symbol. Functions f for which A(f) = 0 are called ob-
ject constants. Formulas of the predicate language Γ are built
up from the symbols in (P,F,A) together with logical symbols
(∀,∃, &,→, 0, 1), variables and punctuation. Throughout the
paper we consider the equality symbol as a binary predicate
symbol not as a logical symbol, we work in equality-free fuzzy
predicate logics. That is, the equality symbol is not necessarily
present in all the languages and its interpretation is not fixed.

Let L be a fixed propositional core fuzzy logic and B an L-
algebra, we introduce now the semantics for the fuzzy pred-
icate logic L∀. A B-structure for predicate language Γ is a
tuple M = (M, (PM)P∈Γ, (FM)F∈Γ, (cM)c∈Γ) where M is
a non-empty set and

1. For each n-ary predicate P ∈ Γ, PM is a B-fuzzy rela-
tion PM : Mn → B.

2. For each n-ary function symbol F ∈ Γ, FM : Mn → M .

3. For each constant symbol c ∈ Γ, cM ∈ M .

Let M be a B-structure, an M-evaluation of the variables is
a mapping v which assigns to each variable an element from
M . By φ(x1, . . . , xk) we mean that all the free variables of
φ are among x1, . . . , xk. If v is an evaluation such that for
each 0 < i ≤ n, v(xi) = di, and λ is either a Γ-term or
a Γ-formula, we abbreviate by ‖λ(d1, . . . , dn)‖BM the expres-
sion ‖λ(x1, . . . , xn)‖BM,v. Let φ be a Γ-sentence, given a B-
structure M, it is said that M is a model of φ iff ‖φ‖BM = 1.

From now on, we say that (M,B) is a Γ-structure instead
of saying that M is a B-structure in the language Γ. We say
that a structure is safe, if a truth value is defined for each for-
mula and evaluation. We assume that all our structures are
safe. It is denoted by (M,B) ≡ (N,A) when these two
structures are elementarily equivalent. In this section we have
presented only a few definitions and notation, a detailed intro-
duction to the syntax and semantics of fuzzy predicate logics
can be found in [9].

Definition 2 Let (M1,B1) be a Γ1-structure and (M2,B2)
be a Γ2-structure with Γ1 ⊆ Γ2. We say that the pair (f, g) is
a homomorphism of (M1,B1) into (M2,B2) iff

1. g : B1 → B2 is a L-algebra homomorphism of B1 into
B2.

2. f : M1 → M2 is a mapping of M1 into M2.

3. For each constant symbol c ∈ Γ1, f(cM1) = cM2 .

4. For each n-ary function symbol F ∈ Γ1 and elements
d1, . . . , dn ∈ M1,

f(FM1(d1, . . . , dn)) = FM2(f(d1), . . . , f(dn))

5. For each n-ary predicate P ∈ Γ1 and elements
d1, . . . , dn ∈ M1,

g(PM1(d1, . . . , dn)) = PM2(f(d1), . . . , f(dn))

We say that (f, g) is a σ-homomorphism if g preserves the
existing infima and suprema (that is, if I is a non-empty set
and supi∈I ai and supi∈I g(ai) exist, then g(supi∈I ai) =
supi∈I g(ai) and analogously for the infima).

It is denoted by (M,B) ∼= (N,A) when these two struc-
tures are isomorphic (that is, there is a homomorphism (f, g)
from (M,B) into (N,A) with f and g onto and one-to-
one). It is easy to check, by induction on the complexity
of the formulas, that homomorphisms preserve quantifier-free
formulas. Note that, by definition, homomorphisms are not
always σ-complete, as are in [3] or [6], and unlike [6] ho-
momorphisms are crisp on the algebraic reduct of the first-
order structure. If (f, g) is a σ-homomorphism of (M1,B1)
into (M2,B2) such that f is onto, then for each formula
φ(x1, . . . , xn) ∈ Γ1 and elements d1, . . . , dn ∈ M1,

g(‖φ(d1, . . . , dn)‖B1
M1

) = ‖φ(f(d1), . . . , f(dn))‖B2
M2

(1)

The proof can be found in [3] (Propositions 6.1 and 6.2). We
will refer to homomorphisms satisfying condition (1) as ele-
mentary homomorphisms.

Definition 3 A congruence on a Γ-structure (M,B) is a pair
(E, θ) where:

1. θ is an L-congruence on the algebra B.

2. E is an equivalence relation E ⊆ M × M such that:

• For each n-ary function symbol F ∈ Γ and el-
ements d1, . . . , dn, e1, . . . , en ∈ M , if for each
0 < i ≤ n, (di, ei) ∈ E, then

(FM(d1, . . . , dn), FM(e1, . . . , en)) ∈ E

• For each n-ary predicate P ∈ Γ and elements
d1, . . . , dn, e1, . . . , en ∈ M , if for each 0 < i ≤ n,
(di, ei) ∈ E, then

(PM(d1, . . . , dn), PM(e1, . . . , en)) ∈ θ

Now, given a congruence (E, θ) on (M,B) we define the
quotient structure (M/E,B/θ) by:
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• For each constant symbol c ∈ Γ, c(M/E,B/θ) =
[c(M,B)]E .

• For each n-ary function symbol F ∈ Γ and elements
d1, . . . , dn ∈ M ,

FM/E([d1]E , . . . , [dn]E) = [FM(d1, . . . , dn)]E

• For each n-ary predicate P ∈ Γ and elements
d1, . . . , dn ∈ M ,

PM/E([d1]E , . . . , [dn]E) = [PM(d1, . . . , dn)]θ

where, given an element d ∈ M and b ∈ B, [d]E and [b]θ de-
note respectively the equivalence classes of d modulo E and
of b modulo θ. We will say that a (E, θ) is an elementary con-
gruence (σ-congruence, respectively) if its canonical mapping
(fE , gθ) is an elementary homomorphism (σ-homomorphism,
respectively).

3 Reduced Structures
In this section we introduce the notions of Leibniz congruence
and of reduced structure and we establish some basic model-
theoretic properties of this kind of models, giving some exam-
ples of first-order theories with reduced models. The study of
reduced structures and Leibniz congruences for classical pred-
icate logics was done in [10]. In the context of fuzzy predicate
logics, X. Caicedo introduced this notion in [11] for the par-
ticular case of models of first-order Rational Pavelka’s logic
in a language with the ≈ symbol. At the end of this section
we study similarities on reduced structures.

Definition 4 Let (M,B) be a Γ-structure and θ an L-
congruence on B. We define the relation Ω(M,B, θ) ⊆
M × M as follows: for every d, e ∈ M , (d, e) ∈ Ω(M,B, θ)
iff for every atomic formula, φ(y, x1, . . . , xn) ∈ Γ and ele-
ments d1, . . . , dn ∈ M,

(‖φ(d, d1, . . . , dn)‖BM, ‖φ(e, d1, . . . , dn)‖BM) ∈ θ

Fixed an L-congruence θ on the L-algebra B, next lemma
shows that Ω(M,B, θ) is the greatest E such that (E, θ) is a
congruence on the model (M,B).

Lemma 5 Let (M,B) be a Γ-structure and θ an L-
congruence on B, then

1. (Ω(M,B, θ), θ) is a congruence on (M,B).

2. For every (E, θ) congruence on (M,B), E ⊆
Ω(M,B, θ).

Proof: 1. Since θ is an equivalence relation, by definition,
Ω(M,B, θ) is also an equivalence relation. For each n-ary
predicate P ∈ Γ and elements d1, . . . , dn, e1, . . . , en ∈ M , if
for each 0 < i ≤ n, (di, ei) ∈ Ω(M,B, θ), then by using the
definition of Ω(M,B, θ), for every 0 < i ≤ n, we have the
following chain:

(‖P (d1, d2, . . . , dn)‖BM, ‖P (e1, d2, . . . , dn)‖BM) ∈ θ

(‖P (e1, d2, d3, . . . , dn)‖BM, ‖P (e1, e2, d3, . . . , dn)‖BM) ∈ θ

...

(‖P (e1, e2, . . . , en−1, dn)‖BM, ‖P (e1, . . . , en)‖BM) ∈ θ

Assume now that F ∈ Γ is an n-ary function symbol
and d1, . . . , dn, e1, . . . , en ∈ M such that for each 0 <
i ≤ n, (di, ei) ∈ Ω(M,B, θ). Let k = k1, . . . , ks ∈
M , φ(y, x1, . . . , xs) ∈ Γ an atomic formula and φ′ the
formula obtained from φ by substitution of the variable y
for the term F (z1, . . . , zn) (where z1, . . . , zn are new vari-
ables not occurring in φ). By definition of Ω(M,B, θ),
since φ′ is also atomic, we can build a chain similar to
the one defined in the predicate case and then, we obtain
(‖φ′(d1, . . . , dn, k)‖BM, ‖φ′(e1, . . . , en, k)‖BM) ∈ θ, conse-
quently,

(‖φ(FM(d1, . . . , dn), k)‖BM, ‖φ(FM(e1, . . . , en), k)‖BM) ∈ θ

and then (FM(d1, . . . , dn), FM(e1, . . . , en)) ∈ Ω(M,B, θ).

2. By definition of Ω(M,B, θ), because (E, θ) is a congru-
ence. �

Definition 6 A Γ-structure (M,B) is reduced iff
Ω(M,B, IdB) is the identity relation.

From now on we denote (Ω(M,B, IdB), IdB) simply by
Ω(M,B) and we call it the Leibniz congruence of (M,B).
Since the identity map clearly preserves infima and suprema,
Ω(M,B) is always a σ-congruence, therefore for every
(d, e) ∈ Ω(M,B), every formula, φ(y, x1, . . . , xn) ∈ Γ and
elements d1, . . . , dn ∈ M ,

‖φ(d, d1, . . . , dn)‖BM = ‖φ(e, d1, . . . , dn)‖BM
We will denote by (M,B)r the quotient structure modulo
the Leibniz congruence Ω(M,B) and call it the reduction of
(M,B).

Lemma 7 For every Γ-structure (M,B) we have:

1. (M,B) ≡ (M,B)r.

2. (M,B)r is a reduced structure.

3. ((M,B)r)r ∼= (M,B)r.

4. If there exists a σ-congruence (E, θ) on (M,B), then

(M,B) ≡ (M/Ω(M,B, θ),B/θ)

Proof: 1. holds because (M,B)r is a σ-homomorphic image
of (M,B), 2. and 3. by definition of the Leibniz congru-
ence and of quotient structure. To prove 4. use the fact that
for every σ-congruence (E, θ), (Ω(M,B, θ), θ) is also a σ-
congruence. �

Corollary 8 [Completeness Theorem] Let L∀ be a fuzzy
predicate logic and K a class of structures such that L∀ is
K-complete (strong or finite strong K-complete, respectively),
then L∀ is Kr-complete (strong or finite strong Kr-complete,
respectively), where Kr is the class of reductions of the struc-
tures in K.
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Reduced structures are of common use in computer science
and in mathematics. The Rado Graph (infinite random graph)
and fuzzy linear orders are examples of reduced structures.
However, we can see a more developed example of this pro-
cess of reduction in the well-known case of similarities. In
Section 5 of [9], P. Hájek studies similarities and applies the
obtained results to the analysis of fuzzy control in Chapter 7
of of [9]. For a reference about model-theoretic properties of
algebras with fuzzy equalities see [8] and [6]. Now (and only
for the rest of this section) we assume that our predicate lan-
guage Γ contains a binary predicate symbol ≈. Similarity is
understood as fuzzified equality (for a reference see [12] or
[13]). Given a core fuzzy logic L, let our axiomatic system
for L∀ contain also the following axioms:

1. (Reflexivity) ∀x x ≈ x

2. (Symmetry) ∀x∀y(x ≈ y → y ≈ x)

3. (Transitivity) ∀x∀y∀z((x ≈ y&y ≈ z) → x ≈ z)

4. For each n-ary function symbol F ∈ Γ,
∀x1 . . .∀xn∀y1 . . .∀yn((x1 ≈ y1& . . . &xn ≈ yn) →
(F (x1, . . . , xn) ≈ F (y1, . . . , yn))

5. For each n-ary predicate P ∈ Γ,
∀x1 . . .∀xn∀y1 . . .∀yn((x1 ≈ y1& . . . &xn ≈ yn) →
(P (x1, . . . , xn) ↔ P (y1, . . . , yn))

Axioms 1-3 are called Similarity Axioms (Sim) and axioms
4-5 Congruence Axioms (Cong).

Definition 9 A Γ-structure (M,B) has the equality property
(EQP) if the following condition holds: for every d, e ∈ M ,
‖d ≈ e‖BM = 1 iff d = e.

Lemma 10 Given a set Σ of Γ-sentences, Σ ∪ Sim ∪ Cong
is satisfiable iff Σ has a model (M,B) that has EQP.

Proof: Let (M,B) be a model of Σ∪Sim∪Cong. If we de-
fine E = {(a, b) ∈ M ×M : ‖a ≈ b‖BM = 1}, then (E, IdB)
is a congruence. Thus, in the quotient structure (M/E,B),
‖x ≈ y‖BM/E = 1 iff x = y. �

In [11] X. Caicedo called reduced structure to a model of
first-order Rational Pavelka’s logic with the property EQP.
Next lemma shows that Caicedo’s notion coincides with ours
when we consider axiomatic systems including axioms Sim∪
Cong.

Lemma 11 (M,B) is a reduced structure iff (M,B) has
property EQP.

Proof: Assume that (M,B) is a reduced structure, by def-
inition, the Leibniz congruence Ω(M,B, IdB) is the iden-
tity on M . Then, if we define (E, IdB) as in the previ-
ous proof, by Lemma 5, E ⊆ Ω(M,B, IdB), consequently
E is also the identity and thus (M,B) has the EQP. Con-
versely, assume that (M,B) has the EQP. If d, e ∈ M and
(d, e) ∈ Ω(M,B, IdB), since x ≈ y is an atomic formula
and ‖d ≈ d‖BM = 1, by definition of the Leibniz congruence,
‖d ≈ e‖BM = 1. Then, by EQP, we have that d = e, therefore
(M,B) is a reduced structure. �

Note that the interpretation of the ≈ symbol in a reduced
structure is not necessarily crisp. Adding a new axiom it
is possible to obtain crisp interpretations: Crispness Axiom
(Crisp) ∀x∀y(x ≈ y ∨ ¬(x ≈ y)) (for the details about this
axiom see Chapter 5 of [8]).

Corollary 12 Let T be a set of Γ-sentences containing ax-
ioms Sim ∪ Cong ∪ Crisp. Then, for every formula
φ(x1, . . . , xn) ∈ Γ, the following holds:
T � ∀x1 . . .∀xn∀y1 . . .∀yn((x1 ≈ y1& . . . &xn ≈ yn) →
(φ(x1, . . . , xn) ↔ φ(y1, . . . , yn))

Proof: Since axiom Crisp holds, the interpretation of the ≈
symbol in a reduced structure is the identity. Therefore, since
the logic is complete with respect to its reduced models, we
obtain the desired result. �

4 The relative relation
We now present the notion of relative relation, a relation be-
tween structures that will play in fuzzy predicate languages
the same role that the isomorphism relation plays in classical
predicate languages with equality. This notion was introduced
by G. Zubieta in [14], but only for relational structures, and
independently by W. Blok and D. Pigozzi in [1], for the spe-
cial case of logical matrices. A characterization of the relative
relation for classical first-order logics can be found in [10].

Definition 13 Let (M1,B1) and (M2,B2) be two Γ-
structures, we say that the pair (R, T ) is a relative relation
between (M1,B1) and (M2,B2) iff

1. T ⊆ B1 × B2 is a relation such that dom(T ) = B1,
rg(T ) = B2 and

(a) for every connective δ ∈ L, if (ai, bi) ∈ T , then

(δB1(a1, . . . , an), δB2(b1, . . . , bn)) ∈ T

(b) for every a ∈ B1, if b, b′ ∈ rg(a), then dom(b) =
dom(b′).

(c) for every b ∈ B2, if a, a′ ∈ dom(b), then rg(a) =
rg(a′).

2. R ⊆ M1 × M2 is a relation such that dom(R) = M1,
rg(R) = M2 and

(a) For each constant symbol c ∈ Γ, (cM1 , cM2) ∈ R.

(b) For each n-ary function symbol F ∈ Γ, if for every
0 < i ≤ n, (ai, bi) ∈ R,

(FM1(a1, . . . , an), FM2(b1, . . . , bn)) ∈ R

(c) For each n-ary predicate P ∈ Γ, if for every 0 <
i ≤ n, (di, ei) ∈ R,

(‖P (d1, . . . , dn)‖B1
M1

, ‖P (e1, . . . , en))‖B2
M2

) ∈ T

where for every a ∈ B1, rg(a) = {b ∈ B2 : (a, b) ∈ T} and
for every b ∈ B2, dom(b) = {a ∈ B1 : (a, b) ∈ T}. We
denote by (R, T ) : (M1,B1) ∼ (M2,B2) when (R, T ) is a
relative relation (or simply by (M1,B1) ∼ (M2,B2) when
there is a relative relation between them).
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Theorem 14 Let (M1,B1) and (M2,B2) be two Γ-
structures. The following are equivalent:

1. There is a relative relation (R, T ) : (M1,B1) ∼
(M2,B2)

2. There are congruences (E1, θ1) and (E2, θ2) such that

(M1/E1,B1/θ1) ∼= (M2/E2,B2/θ2)

Proof: 1. ⇒ 2. Assume that (R, T ) is a relative relation.
We define θ1 = {(a, a′) ∈ B1 × B1 : rg(a) = rg(a′)},
θ2 = {(b, b′) ∈ B2 × B2 : dom(b) = dom(b′)}, E1 =
Ω(M1,B1, θ1) and E2 = Ω(M2,B2, θ2).

It is clear by definition that θ1 and θ2 are equivalence rela-
tions. Now we show that they are L-congruences, we prove
that, for every connective δ ∈ L, for every 0 < i ≤ n and
ai, a

′
i ∈ B1, if rg(ai) = rg(a′

i), then rg(δB1(a1, . . . , an)) =
rg(δB1(a

′
1, . . . , a

′
n)). Let us assume that for every 0 < i ≤ n,

rg(ai) = rg(a′
i). Since dom(T ) = B1, for every 0 < i ≤ n,

we choose bi ∈ B2 such that (ai, bi) ∈ T . Thus, by assump-
tion, since rg(ai) = rg(a′

i), we have also that (a′
i, bi) ∈ T .

By condition 1.(a) of the definition of relative relation,

(δB1(a1, . . . , an), δB2(b1, . . . , bn)) ∈ T

and (δB1(a
′
1, . . . , a

′
n), δB2(b1, . . . , bn)) ∈ T , finally, by con-

dition 1.(c) of the definition of relative relation, we have that

rg(δB1(a1, . . . , an)) = rg(δB1(a
′
1, . . . , a

′
n)).

In order to show that θ2 is a congruence, we can follow an
analogous proof, using condition 1.(b) of the definition of rel-
ative relation, instead of 1.(c). Now we define a mapping
g : B1/θ1 → B2/θ2. First we fix enumerations (possibly with
repetitions) (ai : i ∈ I) and (bi : i ∈ I) of B1 and B2 respec-
tively, with the property that, for every i ∈ I , (ai, bi) ∈ T .
And then let, for every i ∈ I , g([ai]θ1) = [bi]θ2 . By using
the definition of relative relation it is easy to check that g is
well-defined, and it is an L-isomorphism.

Now, since dom(R) = M1 and rg(R) = M2, we can fix
enumerations (possibly with repetitions) (dj : j ∈ J) and
(ej : j ∈ J) of M1 and M2 respectively, with the property
that, for every j ∈ J , (dj , ej) ∈ R. And then let, for every
j ∈ J ,

f([dj ]Ω(M1,B1,θ1)) = [ej ]Ω(M2,B2,θ2)

Let us see that f is well defined. Let (dj , d
′
j) ∈

Ω(M1,B1, θ1), we show that (ej , e
′
j) ∈ Ω(M2,B2, θ2).

Let φ(y, x1, . . . , xn) be an atomic formula, and a sequence
of elements k1, . . . , kn ∈ M2. Since rg(R) = M2, we
can choose l1, . . . , ln ∈ M1 such that for every 0 < i ≤
n, (li, ki) ∈ R. Remark that, since (dj , ej) ∈ R and
for every 0 < i ≤ n, (li, ki) ∈ R, by conditions 2.(a)
and 2.(b) of the definition of relative relation, we have for
every Γ-term t, (tM1(dj , l1, . . . , ln), tM2(ej , k1, . . . , kn)) ∈
R. Assume that the formula φ(y, x1, . . . , xn) is of the
form P (t1, . . . , ts)(y, x1, . . . , xn), where P is a s-ary pred-
icate symbol and t1, . . . , ts are Γ-terms. Since (dj , d

′
j) ∈

Ω(M1,B1, θ1), (‖P (t1, . . . , ts)(dj , l1, . . . , ln)‖B1
M1

,

‖P (t1, . . . , ts)(d′j , l1, . . . , ln)‖B1
M1

) ∈ θ1, thus, by 2.(c) of the
definition of relative relation,
‖P (t1, . . . , ts)(ej , k1, . . . , kn)‖B2

M2
and

‖P (t1, . . . , ts)(e′j , k1, . . . , kn)‖B2
M2

∈ rg(‖P (t1, . . . , ts)(dj , l1, . . . , ln)‖B1
M1

)

and by 1.(b), dom(‖P (t1, . . . , ts)(ej , k1, . . . , kn)‖B2
M2

) =
dom(‖P (t1, . . . , ts)(e′j , k1, . . . , kn)‖B2

M2
) and we obtain the

desired result:

(‖φ(ej , k1, . . . , kn)‖B2
M2

, ‖φ(e′j , k1, . . . , kn)‖B2
M2

) ∈ θ2.

In an analogous way it is easy to check that f is one-to-one
and that (f, g) is an isomorphism.

2. ⇒ 1. Let (f, g) be an isomorphism. Define (R, T ) in the
following way: for every b1 ∈ B1, b2 ∈ B2,(a, b) ∈ T iff
g([a]θ1) = [b]θ2 and for every d ∈ M1, e ∈ M2, (d, e) ∈ R
iff f([d]E1) = [e]E2 . Using the fact that (f, g) is an isomor-
phism, it is easy to check that (R, T ) : (M1,B1) ∼ (M2,B2)
is a relative relation. �

Remark that our approach differs from [6] because the rel-
ative relation is not a measure of the degree of similarity be-
tween structures. We left for future work the study of the re-
lationship between these two notions.

Definition 15 (R, T ) is an elementary relative relation if for
every formula φ(x1, . . . , xn) ∈ Γ and for every 0 < i ≤ n, if
(ai, bi) ∈ R, then

(‖φ(a1, . . . , an)‖B1
M1

, ‖φ(b1, . . . , bn))‖B2
M2

) ∈ T

By induction on the complexity of the formulas it is
straightforward to show that, in case (E1, θ1) and (E2, θ2) are
elementary congruences in Theorem 14, then (R, T ) is also an
elementary relative relation and (M1,B1) ≡ (M2,B2). The
following corollary show us that, when we study structures
over the same algebra, we can improve Theorem 14.

Corollary 16 Let (M1,B) and (M2,B) be two Γ-structures.
The following are equivalent:

1. There is a relative relation (R, IdB) : (M1,B) ∼
(M2,B)

2. (M1,B)r ∼= (M2,B)r

Proof: By the proof of Theorem 14. �

Let us see now an example of two fuzzy equivalence rela-
tions that are relatives but there is no homomorphism from one
onto the other. Let (M1,B) and (M2,B) be defined as fol-
lows: the domains of the structures are M1 = {d1, d2, e1, e2}
and M2 = {d′1, d′2, d′3, e′1} respectively. The fuzzy equiv-
alence relation E1 is defined by: for every i, j ∈ {1, 2},
E1(di, dj) = 1 = E1(ei, ej) and E1(di, ej) = r, where
r �= 1 is a fixed element of B. And the fuzzy equiva-
lence relation E2 is defined by: for every i, j ∈ {1, 2, 3},
E2(d′i, d

′
j) = 1 = E2(e′1, e

′
1) and E2(d′i, e

′
1) = r. It is easy
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to check that (R, IdB) : (M1,B) ∼ (M2,B), where R is the
relation R = {(di, d

′
j), (ei, e

′
j) : i, j ∈ {1, 2, 3}}.

The relation of being either a homomorphic image or a ho-
momorphic counter-image is not in general transitive. Its tran-
sitivization is precisely the relative relation, as the following
propositions show.

Lemma 17 Given an L-algebra B, ∼ is an equivalence rela-
tion in the class of B-structures.

Proof: By Corollary 16, because ∼= is an equivalence relation
on the class of reduced structures. �

Notation: Given Γ-structures (N,B) and (O,B), we denote
by (N,B) ∈ H(O,B) the fact that there exists a mapping f
from O onto N such that (f, IdB) is a homomorphism.

Proposition 18 Let (M,B) and (N,B) be two Γ-structures.
The following are equivalent:

1. (M,B) ∼ (N,B).

2. There is a natural number n and Γ-structures
(O1,B), . . . , (On,B) such that (M,B) = (O1,B),
(N,B) = (On,B) and for every 0 < i < n, either
(On+1,B) ∈ H(On,B) or (On,B) ∈ H(On+1,B).

3. There is a Γ-structure (O,B) such that
(M,B), (N,B) ∈ H(O,B).

4. There is a Γ-structure (O,B) such that (O,B) ∈
H(M,B) and (O,B) ∈ H(N,B).

Proof: 4. ⇒ 2. and 3. ⇒ 2. are clear. 1. ⇒ 4. By Corol-
lary 16. 2. ⇒ 1. By the definition of relative relation, given
two Γ-structures (O,B) and (D,B), if (O,B) ∈ H(D,B),
then (O,B) ∼ (D,B) therefore we can apply the transitive
property of the relative relation (Lemma 17).

1. ⇒ 3. Assume that there is a relative relation (R, IdB) :
(M,B) ∼ (N,B). Since dom(R) = M and rg(R) = N , we
can fix enumerations (possibly with repetitions) (dj : j ∈ J)
and (ej : j ∈ J) of M and N respectively, with the property
that, for every j ∈ J , (dj , ej) ∈ R. Now we define a structure
(O,B) and homomorphisms (fM , IdB) and (fN , IdB) from
(O,B) onto (M,B) and (N,B) respectively.

The algebraic reduct of (O,B) is the algebra TerJ of Γ-
terms generated by the set of variables VJ = {vj : j ∈ J}.
We define the function fM

0 : VJ → M as follows: for every
j ∈ J , fM

0 (vj) = dj . Then we extend fM
0 in the usual way,

to a homomorphism fM from TerJ onto M . Finally we de-
fine the interpretation of the predicate symbols in (O,B): for
each n-ary predicate P ∈ Γ and elements t1, . . . , tn ∈ O,
PO(t1, . . . , tn) = PM (fM (t1), . . . , fM (tn)). So defined
(fM , IdB) is clearly a homomorphism onto (M,B). Now we
define fN

0 by: for every j ∈ J , fN
0 (vj) = ej and we extend

fN
0 as before, to a homomorphism fN of the terms algebra

onto N . Since for every j ∈ J , (dj , ej) ∈ R, for every Γ-term
t,

(tM (dj1 , . . . , djn
), tN (ej1 , . . . , ejn

)) ∈ R

and using this fact it is easy to check that (fN , IdB) is also a
homomorphism onto (N,B). �

5 Conclusions
Work in progress includes the development of usual tools of
model theory such as the method of diagrams or ultraproducts
in order to work in fuzzy predicate logic. The use of a reduced
semantics will allow us to show when one structure is either
embeddable or elementarily embeddable in another in terms
of extensions of the usual diagrams with special sentences.
By using relative relations we could define new operations
among structures, such as ultrafilter-products, more suitable
for working with equality-free languages. Future work will be
devoted also to provide different characterizations of the re-
lation of elementary equivalence and some strenghtenings of
this notion.
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