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Abstract

In this paper we study intermediate logics between the logic G
≤
∼, the

degree preserving companion of Gödel fuzzy logic with involution G∼ and
classical propositional logic CPL, as well as the intermediate logics of
their finite-valued counterparts G

≤
n∼. Although G

≤
∼ and G

≤
n∼ are explo-

sive w.r.t. Gödel negation ¬, they are paraconsistent w.r.t. the involutive
negation ∼. We introduce the notion of saturated paraconsistency, a
weaker notion than ideal paraconsistency, and we fully characterize the
ideal and the saturated paraconsistent logics between G

≤
n∼ and CPL. We

also identify a large family of saturated paraconsistent logics in the fam-
ily of intermediate logics for degree-preserving finite-valued  Lukasiewicz
logics.

1 Introduction

Contradictions frequently arise in scientific theories, as well as in philosophical
argumentation. In computer science, techniques for dealing with contradictory
information need to be developed, in areas such as logic programming, belief
revision, the semantic web and artificial intelligence in general. Since classical
logic –as well as many other non-classical logics– trivialize in the presence of
inconsistencies, it can be useful to consider logical systems tolerant to contra-
dictions in order to formalize such situations.
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A logic L is said to be paraconsistent with respect to a negation connective
¬ when it contains a ¬-contradictory but not trivial theory. Assuming that L
is (at least) Tarskian, this is equivalent to say that the ¬-explosion rule

ϕ ¬ϕ
ψ

is not valid in L. The main challenge for paraconsistent logicians is defining
logic systems in which not only a contradiction does not necessarily trivialize,
but also allowing that useful conclusions can be derived from such inconsistent
information.

The first systematic study of paraconsistency from the point of view of formal
logic is due to da Costa, which introduces in 1963 a hierarchy of paraconsistent
systems called Cn. This is why da Costa is considered one of the founders of
the subject of paraconsistency. Under his perspective, propositions in a para-
consistent setting are ‘dubious’ in the sense that, in general, a sentence and its
negation can be hold simultaneously without trivialization. That is, it is pos-
sible to consider contradictory but nontrivial theories. Moreover, it is possible
to express (in every system Cn) the fact that a given sentence ϕ has a classical
behavior w.r.t. the explosion law. This approach to paraconsistency, in which
the explosion law is recovered in a controlled way, was generalized by Carnielli
and Marcos in [17] by means of the notion of Logics of Formal Inconsistency
(LFIs, in short). An LFI is a paraconsistent logic (w.r.t. a negation ¬) having,
in addition, an unary connective ◦ (a consistency operator), primitive or defined,
such that any theory of the form {ϕ,¬ϕ, ◦ϕ} is trivial, despite {ϕ,¬ϕ} not being
necessarily so. Of course, the main novelty whith respect to da Costa’s systems
Cn is that the consistency operator (which corresponds to the well-behavior
operator) can now be a primitive connective, which allows to consider a more
general and expressive theory of paraconsistency. The LFIs have been exten-
sively studied since then (for general references, consult [16, 15]). Avron has
contributed significantly to the development of LFIs, see for instance [7, 8, 9].

According to da Costa, one of the main properties that a paraconsistent
logic should have is being as close as possible to classical logic. That is, a
paraconsistent logic should retain as much as possible the classical inferences,
and still allowing to have non-trivial, contradictory theories. A natural way
to formalize this desideratum is by means of the notion of maximality of a
logic w.r.t. another one. A (Tarskian and structural) logic L1 is said to be
maximal w.r.t. another logic L2 if both are defined over the same signature, the
consequence relation of L1 is contained in that of L2 (i.e., L2 is an extension of
L1) and, if ϕ is a theorem of L2 which is not derivable in L1, then the extension
of L1 obtained by adding ϕ (and all of its instances under uniform substitutions)
as a theorem coincides with L2. Hence, a ‘good’ paraconsistent logic L should
be maximal w.r.t. classical logic CPL (presented over the same signature than
L). As observed in [20], the notion of maximality can be vacuously satisfied
when both logics (L1 and L2) have the same theorems.

In [2], Orieli, Avron and Zamansky propose an interesting notion of maximal-
ity w.r.t. paraconsistency: a paraconsistent logic is maximally paraconsistent if
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no proper extension of it is paraconsistent. Thus, they prove that several well-
known 3-valued logics such as Sette’s P1 and da Costa and Ottaviano’s J3 are
maximally paraconsistent. Note that both P1 and J3 are also maximal w.r.t.
CPL.

These strong features satisfied by logics such as P1 and J3 lead Arieli, Avron
and Zamansky to introduce in [4] the notion of ideal paraconsistent logics.
Briefly, a logic L is called ideal paraconsistent when it is maximally paraconsis-
tent and maximal w.r.t. to classical logic CPL (the formal definition of ideal
paraconsistency will we recalled in Section 5). One interesting problem is to
find ideal paraconsistent logics, and in this sense [4] provides a vast variety of
examples of ideal paraconsistent finite-valued logics, aside from P1 and J3.

Besides many paraconsistent logicians (including Avron and his collabora-
tors, as we have seen above) agree with da Costa’s requirement of maximality
w.r.t. CPL for defining reasonable paraconsistent logics, this is not an uncon-
troversial position. In [30], Wansing and Odintsov extensively criticized that
requirement. According to these authors, maximality w.r.t. classical logic is not
a good choice: on the one hand, the phenomenon of paraconsistency should be
interpreted from an informational perspective instead of considering epistemo-
logical or ontological terms. On the other hand, CPL would be inappropriate
for reasoning about information:

“classical logic is not at all a natural reference logic for reasoning
about information and information structures. On the other hand,
it is reasoning about information that suggests paraconsistent rea-
soning.” [30, p. 181]

“one may wonder why exactly a nonclassical paraconsistent logic,
if correct, should have a distinguished status in virtue of being faith-
ful to classical logic “as much as possible”.” [30, p. 181]

“Paraconsistency does deviate from logical orthodoxy, but it is
not at all clear that classical logic indeed is the logical orthodoxy
from which paraconsistent logics ought to deviate only minimally.”
[30, p. 183]

Despite it could be argued against this emphatic perspective, it also seems
that being maximal w.r.t. CPL should not be a necessary requirement for being
an ‘ideal’ (meaning ‘optimal’) paraconsistent logic.1 This is why we propose in
this paper the notion of saturated paraconsistent logic, which is just a weaken-
ing of the concept of ideal paraconsistent logic, by dropping the requirement
of maximality w.r.t. CPL. As we shall see along this paper, there are several
interesting examples of saturated paraconsistent logics.

1It is worth noting that, more recently, the authors have changed the terminology “ideal
paraconsistent logic” in [4] to “fully maximal and normal paraconsistent logic” e.g. in [5].
According to them, they choose the latter “to use a more neutral terminology” (see [5, Foot-
note 9, p. 57]).
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While paraconsistency deals with excessive or dubious information, fuzzy
logics were designed for reasoning with imprecise information; in particular,
for reasoning with propositions containing vague predicates. Given that both
paradigms are able to deal with information – unreliable, in the case of para-
consistent logics, and imprecise, in the case of fuzzy logics – it seems reasonable
to consider logics which combine both features, namely, paraconsistent fuzzy
logic. The first steps along this way were taken in [21], where a consistency
operator ◦ was defined in terms of the other connectives (for instance, by using
the Monteiro-Baaz ∆-operator) in several fuzzy logics. In [18] this approach
was generalized to fuzzy LFIs extending the logic MTL of pre-linear (integral,
commutative, bounded) residuated lattices, in which the consistency operator
is primitive.

We have studied in different papers paraconsistent logics arising from the
family of mathematical fuzzy logics, see e.g. [21, 18, 19, 20]. In particular,
in [21] the authors observe that even though all truth-preserving fuzzy logics
L are explosive, their degree-preserving companions L≤ [13] are paraconsistent
in many cases. This provides a large family of paraconsistent fuzzy logics. In
[19] the authors studied the lattice of logics between the n-valued  Lukasiewicz
logics  Ln and their degree-preserving companions  L≤n . Although there are many
paraconsistent logics for each n, no one of them is ideal. However, in [20] the
authors of this paper consider a wide class of logics between  L≤n and CPL, and
in that case they indeed find and axiomatically characterize a family of ideal
paraconsistent logics.

In this paper we study paraconsistent logics arising from Gödel fuzzy logic
expanded with an involutive negation G∼, introduced in [23], as well as from
its finite-valued extensions Gn∼. It is well-known that Gödel logic G coincides
with its degree-preserving companion (since G has the deduction-detachment
theorem), but this is not the case for G∼. In fact, G∼ and G≤∼ are different logics,
and moreover, while G≤∼ is explosive w.r.t. Gödel negation ¬, it is paraconsistent
w.r.t. the involutive negation ∼.2 We also study the logics between G≤n∼ (the
finite valued Gödel logic with an involutive negation) and CPL, and we find
that the ideal paraconsistent logics of this family are only the above mentioned
3-valued logic J3 and its 4-valued version J4, introduced in [20]. Moreover, we
fully characterize the ideal and the saturated paraconsistent logics between G≤n∼
and CPL.

The paper is structured as follows. After this introduction, some basic def-
initions and known results to be used along the paper will be presented. In
Section 3 we show that the logics between G≤∼ and CPL are defined by matrices
over a G∼-algebra with lattice filters, and in particular we study the logics de-
fined by matrices over [0, 1]∼ with order filters. In Section 4 we study the case
of finite-valued Gödel logics with involution Gn∼, and we observe that G3∼ and

2In fact, G
≤
∼ is then a paradefinite logic (w.r.t. ∼) in the sense of Arieli and Avron [1], as it

is both paraconsistent and paracomplete, since the law of excluded middle ϕ∨∼ϕ fails, as in
all fuzzy logics. Logics with a negation which is both paraconsistent and paracomplete were
already considered in the literature under different names: non-alethic logics (da Costa) and
paranormal logics (Beziau).
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G4∼ coincide with  L3 and  L4 (the 3 and 4-valued  Lukasiewicz logics) already
studied in [20]. We prove that, in the general case, each finite Gn∼-algebra is a
direct product of subalgebras of VGn∼, the Gödel chain of n-elements with the
unique involution one can define on it, which is given by ∼x = 1−x. This result
allow us to characterize the logics between G≤n∼ and CPL. In Section 5 the def-
inition of saturated paraconsistent logic is formally introduced, and it is proved
that between G≤n∼ and CPL there are only three saturated paraconsistent logics:
two of them (J3 and J4) are already known and are in fact ideal paraconsistent,
and there is only one that is saturated but not ideal paraconsistent, that we call
J3× J4. Finally, in Section 6 we return to the study of finite-valued  Lukasiewicz
logic and prove that in this framework there is a large family of saturated para-
consistent logics that are not ideal paraconsistent. Some concluding remarks
are discussed in the final section.

2 Preliminaries

2.1 Truth-preserving Gödel logics

This section is devoted to needed preliminaries on the Gödel fuzzy logic G, its
axiomatic extensions, as well as their expansions with an involutive negation.
We present their syntax and semantics, their main logical properties and the
notation we use throughout the article.

The language of Gödel propositional logic is built as usual from a countable
set of propositional variables V , the constant ⊥ and the binary connectives ∧
and →. Disjunction and negation are respectively defined as ϕ ∨ ψ := ((ϕ →
ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) and ¬ϕ := ϕ → ⊥, and the constant > is taken as
⊥ → ⊥.

The following are the axioms of G:

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) (ϕ ∧ ψ)→ ϕ
(A3) (ϕ ∧ ψ)→ (ψ ∧ ϕ)
(A4a) (ϕ→ (ψ → χ)) ≡ ((ϕ ∧ ψ)→ χ)
(A4b) ((ϕ ∧ ψ)→ χ)→ (ϕ→ (ψ → χ))
(A6) ϕ→ (ϕ ∧ ϕ)
(A7) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A8) ⊥ → ϕ

The deduction rule of G is modus ponens.
As a many-valued logic, Gödel logic is the axiomatic extension of Hájek’s

Basic Fuzzy Logic BL [27] (which is the logic of continuous t-norms and their
residua) by means of the contraction axiom (A6).

Since the unique idempotent continuous t-norm is the minimum, this yields
that Gödel logic is strongly complete with respect to its standard fuzzy semantics
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that interprets formulas over the structure [0, 1]G = ([0, 1],min,⇒G, 0, 1),3 i.e.
semantics defined by truth-evaluations of formulas e on [0, 1] such that e(ϕ∧ψ) =
min(e(ϕ), e(ψ)), e(ϕ → ψ) = e(ϕ) ⇒G e(ψ) and e(⊥) = 0, where ⇒G is the
binary operation on [0, 1] defined as

x⇒G y =

{
1, if x ≤ y
y, otherwise.

As a consequence e(ϕ ∨ ψ) = max(e(ϕ), e(ψ)) and e(¬ϕ) = ¬Ge(ϕ) = e(ϕ)⇒G

0.
Gödel logic can also be seen as the axiomatic extension of intuitionistic

propositional logic by the prelinearity axiom

(ϕ→ ψ) ∨ (ψ → ϕ).

Its algebraic semantics is therefore given by the variety of prelinear Heyting
algebras, also known as Gödel algebras. A Gödel algebra is thus a (bounded,
integral, commutative) residuated lattice A = (A,∧,∨, ∗,⇒, 0, 1) such that the
monoidal operation ∗ coincides with the lattice meet ∧, and the pre-linearity
equation

(x⇒ y) ∨ (y ⇒ x) = 1

is satisfied, where x ∨ y = ((x⇒ y)⇒ y) ∗ ((y ⇒ x)⇒ x)). Gödel algebras are
locally finite, i.e. given a Gödel algebra A and a finite set F ⊆ A, the Gödel
subalgebra generated by F is finite as well.

It is also well-known that the axiomatic extensions of Gödel logic corre-
spond to its finite-valued counterparts. If we replace the unit interval [0, 1] by
the truth-value set V Gn = {0, 1/(n− 1), . . . , (n− 2)/(n− 1), 1} in the standard
Gödel algebra [0, 1]G then the structure VGn = (V Gn,min,⇒G, 0, 1) becomes
the “standard” algebra for the n-valued Gödel logic Gn. It turns out that Gn

is the axiomatic extension of G with the axiom

(AGn
) (ϕ1 → ϕ2) ∨ . . . ∨ (ϕn → ϕn+1)

In fact the logics Gn are all the axiomatic extensions of G, and for each n, Gn

is an axiomatic extension of Gn+1, where G2 coincides with CPL. Thus the set
of axiomatic extensions of G form a chain of logics (and of the corresponding
varieties of algebras) of strictly increasing strength:

G < . . . ≤ Gn+1 < Gn < . . . < G3 < G2 = CPL

where L < L′ denotes L′ is an axiomatic extension of L.
Since the negation in Gödel logics is a pseudo-complementation and not an

involution, in [23] the authors investigate the residuated fuzzy logics arising
from continuous t-norms without non trivial zero divisors and extended with an
involutive negation. In particular, they consider the extension of Gödel logic G
with an involutive negation ∼, denoted as G∼, and axiomatize it.

3Called standard Gödel algebra.
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The intended semantics of the ∼ connective on the real unit interval [0, 1] is
an arbitrary order-reversing involution n : [0, 1]→ [0, 1], i.e. satisfying n(n(x)) =
x and n(x) ≤ n(y) whenever x ≥ y.

It turns out that in G∼, with both negations, ¬ and ∼, the projection
Monteiro-Baaz connective ∆ is definable as

∆ϕ := ¬∼ϕ,

and whose semantics on [0, 1] is given by the mapping δ : [0, 1]→ [0, 1] defined
as δ(1) = 1 and δ(x) = 0 for x < 1.

Axioms of G∼ are those of G plus

(∼1) ∼∼ϕ↔ ϕ (Involution)
(∼2) ¬ϕ→ ∼ϕ
(∼3) ∆(ϕ→ ψ)→ ∆(∼ψ → ∼ϕ) (Order Reversing)
(∆1) ∆ϕ ∨ ¬∆ϕ
(∆2) ∆(ϕ ∨ ψ)→ (∆ϕ ∨∆ψ)
(∆5) ∆(ϕ→ ψ)→ (∆ϕ→ ∆ψ)

where ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), and inference rules of G∼ are modus
ponens and necessitation for ∆: from ϕ infer ∆ϕ.

G∼ is an algebraizable logic, whose equivalent algebraic semantics is the
quasivariety of G∼-algebras, defined in the natural way, and generated by the
class of its linearly ordered members. Among them, the so-called standard G∼-
algebra, denoted [0, 1]G∼ , is the algebra on the real interval [0, 1] with Gödel
truth functions extended by the involutive negation ∼x = 1−x. This G∼-chain
generates the whole quasi-variety of G∼-algebras. In fact, we have the following
strong standard completeness result for G∼ [23, 24]: for any set Γ ∪ {ϕ} of
G∼-formulas, Γ `G∼ ϕ iff Γ |=G∼ ϕ.

Finally, remark that, while G enjoys the usual deduction-detachment theo-
rem (i.e. Γ∪{ϕ} `G ψ iff Γ `G ϕ→ ψ), this is not the case for G∼, that has only
the following form of ∆-deduction theorem: Γ ∪ {ϕ} `G∼ ψ iff Γ `G∼ ∆ϕ→ ψ.

On the other hand, as in the case of Gödel logic, one can also consider the
logics Gn∼ for each n ≥ 2, the finite-valued counterparts of G∼. Namely, Gn∼
can be obtained as the axiomatic extension of G∼ with the axiom (AGn),4 and
can be shown to be complete with respect to its intended algebraic semantics,
the variety of algebras generated by the linearly ordered algebra VGn∼ ob-
tained in turn by expanding VGn with the involutive negation ∼x = 1−x, the
only involutive order-reversing mapping that can be defined on V Gn. Clearly,
G2∼ = CPL. The graph of axiomatic extensions of Gn∼ is depicted in Fig. 2.1,
where edges denote extensions. It can be observed that, if n is even then Gn∼
is an extension of Gm∼ for any m > n, while if n is odd, Gn∼ is an extension
of Gm∼ only for those m > n being odd as well. Also, note that, in the figure,
G−∼ denotes the extension of G∼ with the axiom

4Equivalently, as the expansion of Gn with ∼ along with the axioms (∼1)-(∼3), (∆1)-(∆3),
and the necessitation rule for ∆.
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(NFP) ∼∆(ϕ↔ ∼ϕ)

that captures the condition that the involutive negation does not have a fixpoint,
a condition satisfied by all the logics Gn∼ with n even.

G3⇠ G4⇠

G5⇠ G6⇠

G7⇠

G2n⇠

G(2n+1)⇠

G⇠

G�
⇠

•	

•	

•	

•	

•	

•	•	

•	•	

•	
CPL

Figure 1: Graph of axiomatic extensions of G∼.

2.2 Degree-preserving Gödel logics with involution

Main logics studied in Mathematical Fuzzy Logic are (full) truth-preserving
fuzzy logics, like the Gödel logics introduced in the previous version. But we
can also find in the literature companion logics that preserve degrees of truth,
see e.g.[25, 13]. Namely, given a fuzzy logic L,5 one can introduce a variant of
L that is usually denoted L≤ , whose associated deducibility relation has the
following semantics: for every set of formulas Γ ∪ {ϕ},

Γ `L≤ ϕ iff for every L-chain A, every a ∈ A, and every A-evaluation e,
if a ≤ e(ψ) for every ψ ∈ Γ, then a ≤ e(ϕ).

5For practical purposes, we can assume in this paper that L is an axiomatic extension of
Hájek’s BL logic.
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For this reason L≤ is known as a fuzzy logic preserving degrees of truth, or the
degree-preserving companion of L. It is not difficult to show that L and L≤ have
the same theorems and also that for every finite set of formulas Γ ∪ {ϕ}:

Γ `L≤ ϕ iff `L Γ∧ → ϕ

where Γ∧ means γ1 ∧ . . . ∧ γk for Γ = {γ1, . . . , γk} (when Γ is empty then Γ∧

is >).
As regards to axiomatization, the logic L≤ admits a Hilbert-style axiomati-

zation having the same axioms as L and the following deduction rules [13]:

(Adj-∧) from ϕ and ψ derive ϕ ∧ ψ

(MP-r) if `L ϕ→ ψ,6 then from ϕ and ϕ→ ψ, derive ψ

Since Gödel logic G enjoys the deduction-detachment theorem, a key ob-
servation is that G≤ = G. However, the case is different for the expansion of
G with an involutive negation, since G∼ does not satisfy the usual deduction-
detachment theorem, and hence G∼ and G≤∼ are different logics. Moreover,
while G≤∼ keeps being ¬-explosive, it is ∼-paraconsistent. Indeed, there are ϕ,ψ
such that ϕ ∧ ∼ϕ 6`G≤ ψ.

As for the axiomatization of G≤∼, we need to consider an extra rule regard-
ing ∆. As shown in [21], a complete Hilbert-style axiomatization for G≤∼ can
be obtained by the axioms of G∼, the previous rules (Adj-∧) and (MP-r),7

together with the following restricted necessitation rule for ∆:

(∆-r) if `G∼ ϕ, then from ϕ derive ∆ϕ

Finally, let us consider the logics G≤n∼, the degree-preserving companions of
the finite-valued logics G≤∼, defined in the obvious way as above for L = Gn∼.
Similarly to G≤∼, G≤n∼ also admits the following Hilbert-style axiomatization:
G≤n∼ has as axioms those of Gn∼, and as rules, the rule (Adj-∧) and the following
restricted rules:

(MP-r) if `Gn∼ ϕ→ ψ, then from ϕ and ϕ→ ψ, derive ψ

(∆-Nec-r) if `Gn∼ ϕ, then from ϕ derive ∆ϕ

3 Logics defined by matrices over [0, 1]G∼ by means
of order filters

By a logical matrix we understand a pair 〈A, F 〉 where A is an algebra and F
is a subset of A. The logic L(M) defined by the matrix M = 〈A, F 〉 is obtained

6That is, if ϕ→ ψ is a theorem of L
7For L = G∼.
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by stipulating, for any set of formulas Γ ∪ {ϕ},

Γ `L(M) ϕ if for every evaluation e on A,
if e(γ) ∈ F for every γ ∈ Γ, then e(ϕ) ∈ F .

On the other hand, the logic L(M) determined by a class of matrices M is
defined as the intersection of the logics defined by all the matrices in the family.

Notation: In the rest of the paper, without danger of confusion and for the sake
of an lighter notation, we will often identify a matrix M or a set of matrices
M with their corresponding logics L(M) and L(M).

As proved in [13] for logics of residuated lattices, one can show that G≤∼, the
degree-preserving companion of G∼, is not algebraizable in the sense of Block
and Pigozzi and thus it has no algebraic semantics. But it has a semantics via
matrices. Indeed, G∼ is in fact the logic defined by the set of matrices

MG∼ = {〈A, F 〉 : A is a G∼-algebra and F is a lattice filter of A}.

Using similar arguments as in the proof of [13, Theorem 2.12], in fact we can
also prove that G≤∼ is complete with respect to the subset of matrices over the
standard G∼-algebra:

M[0,1] = {〈[0, 1]G∼ , F 〉 : F is an order filter of [0, 1]}.

Next, we study the relationships among all the logics defined by matrices
from M[0,1], i.e. matrices over the algebra [0, 1]G∼ by order filters, identifying
which ones are paraconsistent. Actually, the order filters on [0, 1]G∼ are the
following sets: F[a = {x ∈ [0, 1] : x ≥ a} for all a ∈ (0, 1], and F(a = {x ∈ [0, 1] :
x > a} for all a ∈ [0, 1). Abusing the notation, we will denote the corresponding
logics as

G[a
∼ = 〈[0, 1]G∼ , F[a〉 and G(a

∼ = 〈[0, 1]G∼ , F(a〉.

The consequence relations corresponding to these logics will be respectively
denoted by `[a and `(a, while `∗[a and `∗(a will denote the finitary companions
of `[a and `(a, respectively. Next proposition shows the relationships among
all these logics.

Proposition 1. The logics G[a
∼ = 〈[0, 1]G∼ , F[a〉 for a ∈ (0, 1], and G(a

∼ =
〈[0, 1]G∼ , F(a〉 for a ∈ [0, 1), satisfy the following properties:

P1. `[p = `[p′ and `(p = `(p′ , for all p, p′ ∈ (1/2, 1)

Moreover, `∗[p = `∗(p, for all p ∈ (1/2, 1).

P2. `[n = `[n′ and `(n = `(n′ , for all n, n′ ∈ (0, 1/2)

Moreover, `∗[n = `∗(n, for all n ∈ (0, 1/2).

P3. `[p  `1, for any p ∈ (1/2, 1)
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P4. `1 and `[1/2 are not comparable

P5. `[p and `[1/2 are not comparable, for any p ∈ (1/2, 1)

P6. `∗[p  `(1/2

P7. `[p and `n are not comparable, for any p ∈ (1/2, 1) and any n ∈ (0, 1/2)

P8. `[n  `[1/2, for any n ∈ (0, 1/2)

P9. `[1/2 and `(1/2 are not comparable

P10. `∗[n  `(0, for any n ∈ (0, 1/2).

Proof.

P1. We divide the proof in three steps:

(i) That `[p = `[p′ and `(p = `(p′ is an easy consequence of the fact that
for every p, p′ ∈ (1/2, 1) it is possible to define an automorphism f of
[0, 1]G∼ such that f(p) = p′. Let us then show that `[p = `(p for every
p ∈ (1/2, 1).

(ii) Assume {ϕi : i ∈ I} `∗[p ψ, with I finite, for some p ∈ (1/2, 1). Let q

such that 1/2 < q < p, and let e be an evaluation such that e(ϕi) > q for
all i ∈ I. Let p′ = mini∈I e(ϕi). Obviously p′ > q. Then, by (i), we also
have {ϕi : i ∈ I} `∗[p′ ψ, and therefore we have e(ψ) ≥ p′ > q, and hence

{ϕi : i ∈ I} `∗(q ψ. Therefore, we have `∗[p ⊆ `
∗
(q for all 1/2 < q < p.

(iii) Assume {ϕi : i ∈ I} `∗(q ψ, with I finite, for some q ∈ (1/2, 1). Let p

such that q < p < 1, and let e be an evaluation such that e(ϕi) ≥ p for
all i ∈ I. Let q′ = mini∈I e(ϕi). Obviously q′ ≥ p. Then, by (i), we also
have {ϕi : i ∈ I} `∗(q′ ψ, and therefore we have e(ψ) ≥ q′ ≥ p, and hence

{ϕi : i ∈ I} `∗p ψ. Therefore, we have `(q ⊆ `∗[p for all 1/2 < q < p.

P2. The proofs are analogous to those of P1.

P3. Assume {ϕi : i ∈ I} `[p ψ for a given p ∈ (1/2, 1), and let e be an
evaluation such that e(ϕi) = 1 for all i ∈ I. Since it is also true that
e(ϕi) ≥ p′ for all p′ ∈ (1/2, 1), by P1 it follows that {ϕi : i ∈ I} `[p′ ψ
for all p′ ∈ (1/2, 1), and hence e(ψ) ≥ p′ for all p′ ∈ (1/2, 1), and thus
e(ψ) = 1. Therefore {ϕi : i ∈ I} `1 ψ.

The strict inclusion can be easily noticed since, e.g. it holds that ϕ `1 ∆ϕ
but ϕ 0[p ∆ϕ for any p < 1.

P4. It clearly holds that, on the one hand, ∆(ϕ ↔ ∼ϕ) `[1/2 ϕ but ∆(ϕ ↔
∼ϕ) 01 ϕ, while on the other hand, ϕ `1 ∆ϕ but ϕ 0[1/2 ∆ϕ

P5. It follows from noticing that ∆(ϕ ↔ ∼ϕ) ∧ ϕ `[p ⊥ and ∆(ϕ ↔ ∼ϕ) ∧
ϕ 0[1/2 ⊥, while ∆(ϕ↔ ∼ϕ) `[1/2 ϕ and ∆(ϕ↔ ∼ϕ) 0[p ϕ.
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P6. Assume that, for a given p ∈ (1/2, 1), {ϕi : i ∈ I} `[p ψ, with I finite,
and let e be an evaluation such that e(ϕi) > 1/2 for all i ∈ I. Let
p′ = mini∈I e(ϕi). Obviously p′ > 1/2. Then, from P1 we also have
{ϕi : i ∈ I} `[p′ ψ, and therefore we have e(ψ) ≥ p′ > 1/2, and hence
{ϕi : i ∈ I} `(1/2 ψ. Therefore, we have `[p ⊆ `(1/2.

That the inclusion is strict follows from observing that ∆(∼ϕ → ϕ) ∧
∼∆(ϕ↔ ∼ϕ) `(1/2 ϕ but ∆(∼ϕ→ ϕ) ∧ ∼∆(ϕ↔ ∼ϕ) 0[p ϕ.

P7. It follows from observing (i) ∆(ϕ ↔ ∼ϕ) `[n ϕ and ∆(ϕ ↔ ∼ϕ) 0[p ϕ,
and (ii) ϕ `[p ∼∆(ϕ→ ∼ϕ) and ϕ 0[n ∼∆(ϕ→ ∼ϕ).

P8. The first part is proved in a similar way to P3. The second is a consequence
of the following facts:
∆(∼ϕ→ ϕ) ∧ ∼∆(ϕ→ ∼ϕ) `[1/2 ⊥ and
∆(∼ϕ→ ϕ) ∧ ∼∆(ϕ→ ∼ϕ) 0[n ⊥ for all n ∈ (0, 1/2)

P9. It results from noticing e.g. (i) ∆(ϕ↔ ∼ϕ) `[1/2 ϕ but ∆(ϕ↔ ∼ϕ) 0(1/2

ϕ, and (ii) ϕ `(1/2 ∼∆(ϕ→ ∼ϕ) but ϕ 0[1/2 ∼∆(ϕ→ ∼ϕ).

P10. Assume {ϕi : i ∈ I} `[n ψ for a given n ∈ (0, 1/2) and a finite set I, and let
e be an evaluation such that e(ϕi) > 0 for all i ∈ I. Let n′ = mini∈I e(ϕi).
Obviously n′ > 0 and e(ϕi) ≥ n′, for all i ∈ I. Then, from P1, we also
have that {ϕi : i ∈ I} `[n′ ψ, and hence we have e(ψ) ≥ n′ > 0. This
means {ϕi : i ∈ I} `(0 ψ. Therefore, we have `∗[n ⊆ `(0.

On the other hand, ¬¬ϕ `(0 ϕ but ¬¬ϕ 0[n ϕ, hence we have proved that
`∗[n  `(0.

It is clear that a matrix logic G[a
∼ = 〈[0, 1]G∼ , F[a〉 (resp. G(a

∼ = 〈[0, 1]G∼ , F(a〉)
is paraconsistent only in the case that a ≤ 1/2 (resp. a < 1/2). As a conse-
quence of the above classification, it turns out that there are only three different
paraconsistent logics among them.

Corollary 1. Among the families of logics {G[a
∼ = 〈[0, 1]G∼ , F[a〉}a∈(0,1] and

{G(a
∼ = 〈[0, 1]G∼ , F(a〉}a∈[0,1), there are only three different paraconsistent logics:

G[a
∼ for any a ∈ (0, 1/2), G[1/2

∼ , and G(0
∼ .

In analogy to [19, Theorem 2], it is easy to show that every intermediate
logic L between G≤∼ and CPL is in fact the logic L(M∗) defined by a subfamily
of matrices M∗ ⊆ MG∼ . However, note that the set of G∼-algebras and their
lattice filters is very large. Then, an exhaustive analysis of the set of intermedi-
ate logics between G≤∼ and CPL actually seems to be a difficult task. Because
of this, in the next section we will restrict ourselves to the case of finite-valued
Gödel logics with an involutive negation Gn∼.
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4 Logics between G
≤
n∼ and CPL

In this section we will study the graph of intermediate logics between G≤n∼ and
CPL, for a natural n > 2. The cases n = 3 and n = 4 are easy to analyze since
G3∼ and G4∼ coincide respectively with the 3-valued and 4-valued  Lukasiewicz
logics  L3 and  L4.

Proposition 2. G3∼ and G4∼ are logically equivalent to  L3 and  L4 respectively.

Proof. First, in the algebra VG3∼ it is possible to define the binary connective
x →3 L y = (x → y) ∨ (∼x ∨ y), that coincides with the 3-valued  Lukasiewicz
implication, i.e. x →3 L y = min(1, 1 − x + y) for every x, y ∈ V G3. Thus in
VG3∼ we can define all the  Lukasiewicz connectives.

Second, also in the algebra VG4∼ we can define the binary connective

x→4 L y = (∼∆x ∧ ∼x) ∨ [∆(∼x→ x) ∧ (∼∆x) ∧ (¬¬y) ∧ x)] ∨ (x→ y)

which coincides again with the 4-valued  Lukasiewicz implication, i.e. x →4 L

y = min(1, 1− x+ y) for every x, y ∈ V G4.
On the other hand, in any finite  Lukasiewicz algebra MVn we can always

define Gödel implication as x →G y = (x → L y) ∨ ∼x and Gödel negation as
¬x = ∆(∼x).

Therefore the logics between CPL and G≤3∼ (resp. G≤4∼) coincide with the

logics between CPL and  L≤3 (resp.  L≤4 ) studied in [19] and [20].
Observe, however, that for any n > 4, Gn∼ is no longer equivalent to  Ln.

Thus we need to study the intermediate logics for G≤n∼ for n > 4, and this is
the goal of the next subsection, while in Section 4.2 we will have a closer look
to the case n = 5.

4.1 The intermediate logics of G
≤
n∼ for n > 4

Throughout this section n will denote a natural number such that n > 4.
Following the same arguments as in previous sections, it is easy to check

that G≤n∼ is in fact the logic semantically defined by the class of matrices:

{〈A, F 〉 : A is a Gn∼-algebra and F is a lattice filter of A}.

Therefore, in order to study the intermediate logics between G≤n∼ and CPL we
need to characterize the (finite) Gn∼-algebras.

Proposition 3. Every finite Gn∼-algebra is a finite direct product of finite
Gn∼-chains.

Proof. Notice that for every Gn∼-chain the term t(x, y, z) := (∆(x ↔ y) ∧
z) ∨ (¬∆(x ↔ y) ∧ x) is a discriminator term,8 hence every Gn∼-variety is a
discriminator variety. Then the result is a consequence of a result of universal
algebra (see for instance [14, Theorem 9.4, item (d)]).

8In fact, this is a discriminator term in the whole variety of G∼-algebras. For a definition
of discriminator term and discriminator variety see [14].
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Thus, since every G∼-algebra is locally finite, every intermediate logic L
between G≤n∼ and CPL is induced by a family of matrices 〈A, F 〉 where A is
a finite direct product of subalgebras of VGn∼ and F is a lattice filter of A
compatible9 with L.

First of all we study the matrix logics defined by 〈VGn, F 〉 where F is an
order filter of VGn. Observe that in any of these logics it is possible (mainly
since we have ∆ operator) to build a propositional formula on n variables
Φ(p0, p1, . . . , pn−1) such that, for every evaluation e of formulas on VGn∼, then

e(Φ(p0, p1, . . . , pn)) =

{
1, if e(pi) = i

n−1 for all i = 0, 1, . . . , n− 1

0, otherwise.

In order to simplify the notation, for every nonempty subset T ⊆ V Gn we
denote by L(MT ) the logic defined by the set of matricesMT = {〈VGn∼, Ft〉 :
t ∈ T}. Let L(VGn∼) be the set of logics L(MT ), for ∅ 6= T ⊆ V Gn \ {0}.

Proposition 4. The logics L(M{t}), with t ∈ V Gn\{0}, are pairwise incompa-
rable. Moreover, L(MT ) is not comparable to L(MR) if ∅ 6= T,R ⊆ V Gn \ {0}
such that T 6= R and T and R have the same cardinality. In addition, the set
L(VGn∼) is a meet-semilattice where the logics L(M{t}), for t ∈ V Gn \ {0},
are its maximal elements.

Proof. Let `t be the consequence relation of the logic L(M{t}) defined by the
matrix 〈VGn∼, Ft〉, with t ∈ V Gn \{0}. Let i, j ∈ {1, 2, . . . , n−1} be such that
i < j. Then,

• Φ(p0, p1, . . . , pn) ∧ pi ` j
n−1
⊥ and Φ(p0, p1, . . . , pn) ∧ pi 0 i

n−1
⊥

• Φ(p0, p1, . . . , pn) ∧ pj 0 j
n−1

pi and Φ(p0, p1, . . . , pn) ∧ pj ` i
n−1

pi

Therefore `t and `t′ are not comparable if 0 < t < t′ < 1. From this, it is easy
to prove that for any subsets ∅ 6= T,R ⊆ V Gn \ {0} with the same cardinality
and such that T 6= R, the logic L(MT ) is not comparable to L(MR). Finally,
if ∅ 6= T,R ⊆ V Gn \ {0} then L(MT )∩L(MR) = L(MT∪R). Hence L(VGn∼)
is a meet-semilattice such that the maximal elements are exactly the logics
L(M{t}), for t ∈ V Gn \ {0}.

On the other hand, as it was done in [19] and [20] for  Lukasiewicz finite-

valued logics, matrix logics of the form 〈(VGn∼)
k
,Π1≤t1<t2<...<tkFti〉 can be

considered, and all the results obtained there are also valid in this case:

Definition 1. Given a nonempty set T ⊆ V Gn \ {0}, T = {t1, . . . , tk} (where

ti < tj if i < j), we will denote by L(T ) the matrix logic 〈(VGn∼)
k
,Πi∈RFti〉

defined on the direct products of VGn∼ by means of order filters.

9A filter F of an algebra A is compatible with a logic L if, whenever Γ `L ϕ, the following
holds: for every A-evaluation e, if e(γ) ∈ F for every γ ∈ Γ then e(ϕ) ∈ F .
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The results become different when studying the matrices logics that involve
components over finite subalgebras belonging to the variety generated by VGn∼
because even though all of them are direct product of subalgebras of VGn∼, the
number of subalgebras of VGn∼ is significantly larger than in the  Lukasiewicz
case. Indeed:

• Subalgebras of VGn∼ are those chains that can be obtained from V Gn

by removing either the fix point for ∼ (if it exists, i.e. if n is odd) or a set
of pairs of elements of the form ai and ∼ai (with ai /∈ {0, 1/2, 1}).

• Therefore the logics between G≤n∼ and CPL are those logics defined by
matrices over direct products of subalgebras of VGn∼ and with products
of order filters on the corresponding components of the product algebra.
Of course, we have to avoid the repetition of components in these products.

Remark 1. Let L = 〈Πi∈IAi,Πi∈IFi〉 be a matrix logic over a direct product
of subalgebras Ai of VGn∼ defined by a product of order filters Fi in Ai. Then,
L is the product Πi∈ILi of the matrix logics Li = 〈Ai, Fi〉, where Γ `L ϕ iff, for
every evaluation ei over Ai (for i ∈ I): if ei(ψ) ∈ Fi for every i ∈ I and every
ψ ∈ Γ, then ei(ϕ) ∈ Fi for every i ∈ I.

Obviously, a matrix logic L as above is paraconsistent iff all the components
Li are paraconsistent. For example, if one component is 〈VG2∼, F1〉, then the
matrix logic is not paraconsistent.

Example 1. Since VG3 and VG4 are subalgebras of VG5, by the characteri-
zation of all extensions of G≤n∼ we have that J3× J4 := 〈VG3×VG4, F 1

2
×F 1

3
〉

is a paraconsistent extension of G≤5∼ that is comparable neither to J3 nor to
J4. Indeed, it is immediate to see that `J3×J4 ϕ iff `J3 ϕ and `J4 ϕ for every
formula ϕ. Thus, since theorems of J3 and theorems of J4 are not compara-
ble, J3 × J4 is not an extension of J3 nor J4. Moreover it is easy to check
that ∆(ϕ → ∼ϕ) `J3×J4 ⊥ and ∆(ϕ → ∼ϕ) ∧ ¬∆(∼ϕ → ϕ) `J3×J4 ⊥, while
∆(ϕ → ∼ϕ) 0J3 ⊥ and ∆(ϕ → ∼ϕ) ∧ ¬∆(∼ϕ → ϕ) 0J4 ⊥. Thus, J3 × J4, J3

and J4 are mutually not comparable.

Finally we can characterize the logics satisfying the explosion rule:

• The minimal matrix logic satisfying the explosion rule (like in the  Lukasiewicz
case [19]) is the logic Lexp = L(Mn) defined by the following set of ma-
trices:

Mn = {〈VGn∼, F1〉, 〈VGn∼, Fn−2
n−1
〉, . . . , 〈VGn∼, F i

n−1
〉, 〈(VGn∼)n−i,Πn−1

r=i F r
n−1
〉}

where i is the first natural such that i
n−1 > 1/2.

• Therefore, the explosion rule is valid in all the logics extending the logic
Lexp, while those that do not contain it are paraconsistent.
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4.2 Example: the case n = 5

As an example we study the case of the set Int(G≤5∼) of matrix logics defining
intermediate logics between G≤5∼ and CPL. Recall that V G5 denote the ordered
set {0, 1/4, 1/2, 3/4, 1}. We start with some basic facts:

• Consider the subset L(VG5∼) ⊂ Int(G≤5∼) of logics defined by the set
of matrices MT = {〈VG5∼, Ft〉 : t ∈ T} for ∅ 6= T ⊆ V G5 \ {0},
as it was done in Subsection 4.1. According to Proposition 4, the log-
ics of the matrices 〈VG5∼, Fi/4〉 for i ∈ {1, 2, 3, 4} are pairwise incom-
parable, and in fact they are the maximal logics in L(VG5∼), while⋂

i∈{1,2,3,4}〈VG5∼, Fi/4〉 = G≤5∼ is the minimum logic of L(VG5∼) (and

clearly of Int(G≤5∼) as well).

• Let LΠ(G5∼) ⊂ Int(G≤5∼) be the set of matrix logics of the form L(T )
defined on direct products of VG5∼ by means of products of order filters
(recall Definition 1). Then, these logics satisfy the following conditions
(like in the case of  Lukasiewicz logics):

– If ∅ 6= T, S ⊆ V G5 \ {0} are such that max T = max R, then
L(T ) ∩ L(R) = L(T ∪R).

– The maximal elements of LΠ(G5∼) are the matrix logics of the type

〈(VG5∼)
2
, Fi/4 × Fj/4〉 with i, j ∈ {1, 2, 3, 4} and i < j.

– The matrix logic 〈(VG5∼)
2
, Fi×Fj〉 for 0 < i < j contains 〈VG5∼, Fj〉

and it is not comparable with 〈VG5∼, Fk〉 for 0 < k 6= j.

• Finally let us consider the subset LΠ∗(G5∼) ⊂ Int(G≤5∼) of matrix logics
defined on direct products of VG5∼ and their subalgebras together with
direct products of order filters. The subalgebras of VG5∼ are (isomorphic
to) VG2∼, VG3∼ and VG4∼, and thus the number of matrix logics in
LΠ∗(G5∼) proliferate in a large number. Namely, to define matrix logics
we have the following components to combine: 4 algebras, VG5∼, VG4∼,
VG3∼ and VG2∼, and 10 order filters: 4 over VG5∼, 3 over VG4∼, 2
over VG3∼ and 1 over VG2∼. Therefore we have all the possible products
(without repetitions) of these 10 components.

We can also characterize the minimal extension of G≤5∼ with the explosion
rule as the logic L(M5) of the set of matrices

M5 = {〈VG5, F1〉, 〈(VG5)
3
, F3/4 × F2/4 × F1/4〉}.

Concerning axiomatization, as in case of  Lukasiewicz logics, we can give an
axiomatic characterization of the logics of LΠ(G5∼). To see this, first of all,
observe that in G5∼, for every value i/4 ∈ V G5 \ {0} there exists a formula in
one variable ϕ(p) characterizing the value i/4, i.e. such that for any evaluation
e, e(ϕ(p)) = 1 if e(p) = i/4, and 0 otherwise. For example, for the value 1/2 the
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formula can be ∆(p↔ ∼p). It is also possible to define a formula characterizing
the sets of values ≥ i/4, > i/4,≤ i/4 and < i/4.

Using this observation, it is easy to see that every matrix logic of type
〈VG5, Fi〉 or L(T ) ∈ LΠ(G5∼) can be axiomatized. For instance, here we give
the following example:

• The matrix logic (VG5, Fi/4) is axiomatized by adding to the axioms and
rules of G≤5∼ the following restricted inference rule:

if `G5∼ (ϕ < i/4) ∨ ((ϕ ≥ i/4) ∧ (ψ ≥ i/4), from ϕ derive ψ

Other matrix logics of LΠ(G5∼) can be axiomatized in an analogous way. Notice
that these axiomatizations are possible since, in G5∼, for every element a ∈ V G5

there exists a characterizing formula in one variable. This is not true in Gn∼
for n > 5, and thus the previous axiomatization results are not generalizable to
Gn∼ for n > 5.

5 Ideal and saturated paraconsistent extensions
of G

≤
n∼

As already noticed, matrix logics over direct products of subalgebras of VGn∼
with products of order filters are ∼-paraconsistent iff all the components are
∼-paraconsistent. In this section, using the results of the previous section,
we study the status of the logics between G≤n∼ and CPL in relation to ideal
∼-paraconsistency. Namely, we show that there are only two extensions of
G≤n∼ which are ideal ∼-paraconsistent. Moreover we show that there is an-
other ∼-paraconsistent extension of G≤n∼ which, although not being ideal ∼-
paraconsistent, it has the remarkable property of not having any proper ∼-
paraconsistent extension.

We have already briefly discussed in the Introduction the concept of ideal
paraconsistent logics, introduced by Arieli et al. in [4].10 We recall here this
notion.

Definition 2 (c.f. [4]). Let L be a propositional logic defined over a signature
Θ (with consequence relation `L) containing at least a unary connective q and
a binary connective → such that:

(i) L is paraconsistent w.r.t. q (or simply q-paraconsistent), that is, there are
formulas ϕ,ψ ∈ L(Θ) such that ϕ, qϕ,0L ψ;

10The authors, as it was mentioned in Section 1, have changed the terminology “ideal
paraconsistent logic” to “fully maximal and normal paraconsistent logic”. However, it should
be noticed that being normal, according to [5, Definition 1.32], means that the logic L has,
besides a deductive implication, a conjunction and a disjunction satisfying the usual properties
in terms of consequence relations. Here we decide to keep the original definition of ideal
paraconsistency. It is worth noting that all the ideal (and saturated) logics considered in this
paper and in [20] are normal in the sense of [5].
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(ii) → is an implication for which the deduction-detachment theorem holds
in L, that is, Γ ∪ {ϕ} `L ψ iff Γ `L ϕ → ψ, for every set for formulas
Γ ∪ {ϕ,ψ} ⊆ L(Θ).

(iii) There is a presentation of CPL as a matrix logic L′ = 〈A, {1}〉 over the sig-
nature Θ such that the domain of A is {0, 1}, and q and→ are interpreted
as the usual 2-valued negation and implication of CPL, respectively.

(iv) L is a sublogic of CPL in the sense that `L ⊆ `L′ , that is, Γ `L ϕ implies
Γ `L′ ϕ, for every set for formulas Γ ∪ {ϕ} ⊆ L(Θ).

Then, L is said to be an ideal q-paraconsistent logic if it is maximal w.r.t. CPL,
and every proper extension of L over Θ is not q-paraconsistent.

An implication connective satisfying the above condition (ii) is usually called
deductive implication.

Remark 2. In Proposition2 it was stated that J3 is equivalent to 〈VG3∼, F 1
2
〉

and therefore for every odd number n ≥ 3, J3 is an extension of any G≤n∼.
Similarly, J4 is equivalent to 〈VG4∼, F 1

3
〉. Thus J4 is an extension of G≤n∼ for

every n ≥ 4. In [20, Proposition 6.3] it is shown that J3 and J4 are ideal ∼-
paraconsistent logics where the deductive implication in the signature of G∼ is
the term-defined implication x⇒ y := ¬x ∨ y.11

As discussed in Section 1, requiring to a paraconsistent logic to be maximal
w.r.t. CPL in order to be ‘ideal’ (in the sense of being ‘optimal’) is a debatable
issue (see [30]). On the other hand, the other requirements of Definition 2
seem interesting, and a system enjoying such features could be considered as a
remarkable paraconsistent logic. This motivates the following definition.

Definition 3. A logic L is saturated q-paraconsistent if it satisfies all the con-
ditions (i) to (iv) of the previous definition, and every proper extension of L
over Θ is not q-paraconsistent.12

Remark 3. In [29, p. 273] it was introduced the notion of maximality of a
logic L w.r.t. an inference rule r. Namely, given a Tarskian and structural
propositional logic L over a signature Θ, and given an inference rule r over Θ,
L is r-maximal if r is not derivable in L, but any proper extension of L over Θ
derives r.13 Clearly ideal and saturated paraconsistent logics are special cases
of r-maximal logics, where r is the explosion rule.14

11Observe that in [20], ¬ denotes the  Lukasiewicz negation, while Gödel negation for J3 and
J4 is respectively denoted by ∼1

2 and ∼1
3.

12Using the terminology of [5], a saturated paraconsistent logic is a logic such that: (i) it
has an implication, (ii) it is F-contained en CPL, and (iii) it is strongly maximal.

13This was denoted by L ∈ TrivΘ⊥{r} in [29], where TrivΘ denotes the trivial logic over
the signature Θ.

14Indeed, by means of the notion of reminder set L⊥R of a logic L w.r.t. a set of rules
R introduced in [29, Definition 7], several concepts relative to maximality proposed in the
literature can be easily represented, see [29, p. 273].
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Proposition 5. J3× J4 := 〈VG3∼ ×VG4∼, F 1
2
×F 1

3
〉 is saturated ∼-paracon-

sistent, but not ideal ∼-paraconsistent.

Proof. Since VG3∼ and VG4∼ are subalgebras of VG5∼, by the characteriza-
tion of all extensions of G≤n∼ given in subsection 4.1, 〈VG3∼ ×VG4∼, F 1

2
×F 1

3
〉

is an extension of G≤5∼ satisfying conditions (i) to (iv) because every component
is ∼-paraconsistent and x ⇒ y := ¬x ∨ y is a term-defined deductive implica-
tion. We prove by contradiction that J3 × J4 has no proper ∼-paraconsistent
extensions. Assume there is a proper ∼-paraconsistent extension L of J3×J4. In
this case there is a matrix 〈A1 × · · · ×Ak, Fi1×· · ·×Fik〉 which is an extension
of L such that each 〈Aj, Fij 〉 is either J3, J4, 〈VG5∼, F 1

2
〉 or 〈VG5∼, F 1

4
〉. Since

J3 is not comparable with J3 × J4 and J3 is a submatrix of 〈VG5, F 1
2
〉 and also

a submatrix of 〈VG5∼, F 1
4
〉, there is a component 〈Aj0, Fj0〉 = J4. Similarly,

there should be a different component 〈Aj1, Fj1〉 6= J4, otherwise J4 would be
an extension of J3× J4. Finally, in the case 〈A1 × · · · ×Ak, Fi1 × · · ·×Fik〉 has
a component equal to J4 and another which is different to J4, then J3 × J4 is a
submatrix of 〈A1 × · · · ×Ak, Fi1 × · · · × Fik〉, which contradicts the fact that
L is a proper extension of J3 × J4.

Let ϕ a theorem of J3 which is not a theorem of J4. Then, the matrix logic
J2×J3 := 〈VG2∼ ×VG3∼, F1×F 1

2
〉 is an extension of J3×J4 different of CPL

such that `J2×J3 ϕ. Thus J3 × J4 is not maximal w.r.t. CPL.

Theorem 1. Let n be an integer number such that n > 4 and let L be an
extension of G≤n∼.

1. If n is an even number, then L is saturated ∼-paraconsistent iff L is ideal
∼-paraconsistent iff L = J4

2. If n is an odd number, then L is saturated ∼-paraconsistent iff L = J3,
L = J4 or L = J3 × J4.

3. If n is an odd number, then L is ideal ∼-paraconsistent iff L = J3 or
L = J4.

Proof. 1. Assume that n is even. After Remark 2 and Proposition 5 we
only need to prove that if L is saturated ∼-paraconsistent then L =
J4. Since n is even then, as observed in Subsection 4.1, every exten-
sion L′ of G≤n∼ is induced by a family of matrices of the form 〈A, F 〉 =
〈VGn1∼ × · · · ×VGnk∼, F i1

n1−1
× · · · × F ik

nk−1

〉 where each nj is also an

even number. If L′ is ∼-paraconsistent then there is a member in that
family, say 〈VGn1∼ × · · · ×VGnk∼, F i1

n1−1
× · · · × F ik

nk−1

〉, such that 2 <

nj ≤ n and 0 <
ij

nj−1 ≤
1
2 for every j such that 1 ≤ j ≤ k. Then, J4 is an

extension of every ∼-paraconsistent extension of G≤n∼. In particular, J4

extends L. Thus L = J4, since L is maximal paraconsistent.

2. Right to left implicacion follows from Remark 2 and Proposition 5. To
prove the converse, let L be an saturated ∼-paraconsistent extension of
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G≤n∼. Since L is ∼–paraconsistent and it has no proper ∼–paraconsistent
extension, L is induced by a single ∼–paraconsistent matrix 〈A, F 〉 such
that 〈A, F 〉 = 〈VGn1∼ × · · · ×VGnk∼, F i1

n1−1
× · · · × F ik

nk−1

〉 where 2 <

nj ≤ n and 0 <
ij

nj−1 ≤
1
2 for every j such that 1 ≤ j ≤ k. If all nj ’s

are even, as in previous item L = J4. If all nj ’s are odd, then J3 is a
∼–paraconsistent extension of L, thus L = J3. Assume n is odd and some
nj ’s are even and some are odd, all of them bigger than 2. Then in that
case J3×J4 := 〈VG3∼ ×VG4∼, F 1

2
×F 1

3
〉 is a ∼–paraconsistent extension

of L, thus L = J3 × J4.

3. Immediate after Proposition 5 and item 2.

6 Saturated paraconsistency and finite-valued
 Lukasiewicz logics

In [20] the authors study maximality conditions for intermediate logics between
CPL and the degree-preserving finite-valued  Lukasiewicz logics. In particular
we have characterized the ideal paraconsistent logics in this family. Since in the
last section we have introduced the weaker notion of saturated paraconsistency
in the setting of degree-preserving Gödel logics with involution, we deem inter-
esting to also explore this notion for the above mentioned setting of finite-valued
 Lukasiewicz logics. This is done in this section, after briefly recalling some basic
notions about (degree-preserving) finite-valued  Lukasiewicz logics.

The (n + 1)-valued  Lukasiewicz logic can be semantically defined as the
matrix logic

 Ln+1 = 〈 LVn+1, {1}〉,

where  LVn+1 = ( LVn+1,¬,→) is the n + 1-elements MV-chain with  LVn+1 ={
0, 1

n , . . . ,
n−1
n , 1

}
, and operations defined as follows: for every x, y ∈  LVn+1,

¬x = 1− x ( Lukasiewicz negation)

x→ y = min{1, 1− x+ y} ( Lukasiewicz implication)

In fact  Ln+1 is algebraizable and its generated quasi-varietyMVn+1 := Q( LVn+1)
is its equivalent algebraic semantics.

The (finitary) degree preserving (n + 1)-valued  Lukasiewicz logic, denoted

 L≤n+1, can be semantically defined the following way: For every finite set of
formulas Γ ∪ {ϕ}

Γ |=
 L
≤
n+1

ϕ if for every evaluation e over  LVn+1 and every a ∈  LVn+1,

if e(γ) ≥ a for every γ ∈ Γ, then e(γ) ≥ a.
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Following [20] we denote by Lin the logic obtained by the matrix 〈 LVn+1, F i
n
〉,

where F i
n

is the order filter {x ∈  LVn+1 : x ≥ i/n}. Notice that with this nota-
tion the n+ 1-valued  Lukasiewicz logic  Ln+1 is also denoted by Lnn.

As proved in [20, Theorem 5.2], for every 1 ≤ i ≤ n, Lin is equivalent, as
a deductive system, to  Ln+1 (see [11] and also [12]). Since algebraizability is
preserved by equivalence, Lin is algebraizable and MVn+1 is also its equivalent
algebraic semantics. Thus, the lattice of finitary extensions of Lin is isomorphic
to the lattice of subquasivarieties of MVn+1 = Q( LVn+1).

Using this correspondence and some results on quasivarieties of MVn+1 (see
[26] and [20]) we obtain, in analogy to [19, Theorem 3], that every extension Lin
is induced by a finite family of matrices 〈A, F 〉 where A is a critical15 MVn+1-
algebra and F is a lattice filter of A compatible with L. In fact, A is isomorphic
to a direct product of MVn+1-chains  LVn0+1 × · · · ×  LVnl−1+1, where

1. for every j < l, nj |n

2. For every j, k < l, k 6= j implies nk 6= nj .

3. If there exists nj , j < l such that nk|nj for some k 6= j, then nj is unique.

and F = (F i
n

)l ∩ ( LVn0+1 × · · · ×  LVnl−1+1).
As mentioned in Subsection 2,  LV3 is polinomially equivalent to VG3∼

and  LV4 is polinomially equivalent to VG4∼, where the involutive negation
∼ in VG3∼ and VG4∼ is in fact the MV-negation ¬. Then, as mentioned in
Remark 2, the matrix logics J3 = 〈 LV3, F 1

2
〉 and J4 = 〈 LV4, F 1

3
〉, expressed in

the signature of  Lukasiewicz logic, are ideal ¬-paraconsistent. We recall here
that this can be generalized in the following way.

Proposition 6. [20, Proposition 6.2 ] Let q be a prime number, and let 1 ≤ i < q
such that i/q ≤ 1/2. Then, Liq is a (q + 1)-valued ideal ¬-paraconsistent logic.

In fact, we can also prove that the converse implication also holds under
some circumstances. This result is not present in [20].

Theorem 2. Let 0 < i < n such that i
n ≤

1
2 . If L is an extension of Lin, then,

L is ideal ¬-paraconsistent iff L = Ljq for some prime number q such that q|n
and some 1 ≤ j such that j/q ≤ 1/2

Proof. Let L be an ideal ¬-paraconsistent extension of Lin. Since L is maximal,
it is induced by a single matrix 〈A, F 〉, where A is critical and F is compat-
ible with L. In fact, as mentioned above, 〈A, F 〉 is of type 〈 LVn1+1 × · · · ×
 LVnk+1, (F i

n
)k ∩ ( LVn1+1 × · · · ×  LVnk+1)〉 where

1. for every 1 ≤ i ≤ k, ni|n

2. For every 1 ≤ i, j ≤ k, i 6= j implies ni 6= nj .

15An algebra is said to be critical if it is a finite algebra not belonging to the quasivariety
generated by all its proper subalgebras.
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3. If there exists nj , 1 ≤ j ≤ k such that ni|nj for some 1 ≤ i 6= j, then nj
is unique.

Since L is ¬-paraconsistent, none of the components  LVni+1 can be  LV2 (oth-
erwise L would be explosive), and hence 1 < ni for all 1 ≤ i ≤ k. If k > 1,
then

• If there is nj , with 1 ≤ j ≤ k, such that ni|nj for some 1 ≤ i 6=
j, then without loss of generality assume that j = k. In that case
〈 LVn1+1 × · · · ×  LVnk−1+1, (F i

n
)k−1 ∩ ( LVn1+1 × · · · ×  LVnk−1+1)〉 is a

¬-paraconsistent extension of L which contradicts the assumption of L
being ideal ¬-paraconsistent.

• If there is no nj , with 1 ≤ j ≤ k, such that ni|nj for some 1 ≤ i 6= j, then
nk 6= n and L is not maximal because 〈 LV2 ×  LVnk+1, (F i

n
)2 ∩ ( LV2 ×

 LVnk+1)〉 is an extension of L different from CPL and there is a formula
ϕ valid in 〈 LV2 ×  LVnk+1, (F i

n
)2 ∩ ( LV2 ×  LVnk+1)〉 and not valid in L.

A contradiction again.

Thus k = 1. In that case n should be prime because otherwise for any prime
number p such that p|n, 〈 LVp+1, F i

n
∩  LVp+1〉 would be an extension of L

different from CPL and there is a formula ϕ valid in 〈 LVp+1, F i
n
∩  LVp+1〉 and

not valid in L.

As regards saturated paraconsistency we have the following results:

Theorem 3. Let 0 < i < n such that i
n ≤

1
2 . Let

X =
{
p : p prime, p|n, F i

n
∩  LVp+1 =

{m
p

: m ≥ k
}

and
k

p
≤ 1

2

}
.

For every finite subset {p1, . . . , pj} ⊆ X, the logic defined by the matrix

〈 LVp1+1 × · · · ×  LVpj+1, (F i
n

)j ∩ ( LVp1+1 × · · · ×  LVpj+1)〉

is saturated ¬-paraconsistent.

Proof. By the previous result,〈 LVp1+1× · · · ×  LVpj+1, (F i
n

)j ∩ ( LVp1+1× · · · ×
 LVpj+1)〉 is an extension of Lin. Moreover, it is ¬-paraconsistent, because every
component is ¬-paraconsistent. Let ⇒i

n defined as ϕ ⇒i
n ψ := ∼i

nϕ ∨ ψ where
∼i

n(x) is the single variable McNaughton term such that for every a ∈  LVn+1,

∼i
n(a) =

{
0, if a ≥ i

n
1, otherwise.

Similarly to the proof of [20, Proposition 6.2], the logic 〈 LVp1+1×· · ·×  LVpj+1,
(F i

n
)j ∩ ( LVp1+1 × · · · ×  LVpj+1)〉 satisfies conditions (i) to (iv) in Definition 2,

the definition of ideal q-paraconsistency. Let L be a ¬-paraconsistent extension
of 〈 LVp1+1×· · ·×  LVpj+1, (F i

n
)j ∩ ( LVp1+1×· · ·×  LVpj+1)〉, then L is induced

by a finite family of matrices 〈A, F 〉, where A is critical and F is compatible
with L. Since L is ¬-paraconsistent, there is at least one matrix 〈 LVn0+1 ×
· · · ×  LVnl−1+1, (F i

n
)l ∩ ( LVn0+1 × · · · ×  LVnl−1+1)〉 where
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1. for every m < l, nm|n

2. for every m, k < l, k 6= m implies nk 6= nm

3. if there exists nm with m < l such that nm|nk for some k 6= m, then nk is
unique,

which is ¬-paraconsistent. Thus for every m < l, it is the case that 2 ≤ nm.
Since 〈 LVn0+1×· · ·× LVnl−1+1, (F i

n
)l∩( LVn0+1×· · ·× LVnl−1+1)〉 is an extension

of 〈 LVp1+1 × · · · ×  LVpj+1, (F i
n

)j ∩ ( LVp1+1 × · · · ×  LVpj+1)〉, then 〈 LVn0+1 ×
· · ·×  LVnl−1+1, (F i

n
)l∩ ( LVn0+1×· · ·×  LVnl−1+1)〉 is a submatrix of 〈 LVp1+1×

· · · ×  LVpj+1, (F i
n

)j ∩ ( LVp1+1× · · ·×  LVpj+1)〉. Therefore, by [20, Lemma 5.6],

for every m < l there is a 0 < k ≤ j such that nm|pk, since 2 ≤ nm and pk
is prime, then nm = pk. Moreover for every 0 < k ≤ j, there is m < l such
that nm|pk. Thus  LVp1+1 × · · · ×  LVpj+1

∼=  LVn0+1 × · · · ×  LVnl−1+1 and
L = 〈 LVp1+1 × · · · ×  LVpj+1, (F i

n
)j ∩ ( LVp1+1 × · · · ×  LVpj+1)〉, proving that

any proper extension of 〈 LVp1+1×· · ·×  LVpj+1, (F i
n

)j∩( LVp1+1×· · ·×  LVpj+1)〉
is not ¬-paraconsistent.

Remark 4. One may wonder whether the saturated ¬-paraconsistent logics
identified in the above theorem are in fact ideal paraconsistent. However, it
is easy to see that this is not the case unless they are of the type describe in
Theorem 2. Indeed, this is a consequence of the fact that the logics considered
in Theorem 3 (and in Corollary 2 below) are extensions of logics of the type Lin,
and in Theorem 2 we have exactly characterized which of these extensions are
ideal paraconsistent.

Corollary 2. Let {p1, . . . , pj} be any finite set of prime numbers, then 〈 LVp1+1×
· · · ×  LVpj+1, F 1

p1

× · · · × F 1
pj

〉 is saturated ¬-paraconsistent.

Contrary to the case of G≤n∼ in Theorem 1, not every saturated ¬-paracon-
sistent extension of Lin is of the type of the above corollary. For instance L7

15 is
saturated ¬-paraconsistent. Indeed, it is a ¬-paraconsistent logic where ⇒7

15 is
a deductive implication and L1

1 = CPL is a submatrix logic of L7
15. Moreover,

every proper extension L of L7
15 is induced by a family of proper submatrices

of L7
15, of type 〈 LVn0+1 × · · · ×  LVnl−1+1, (F 7

15
)l ∩ ( LVn0+1 × · · · ×  LVnl−1+1)〉

where at least there is some j < l such that nj |15 and nj 6= 15. Hence, nj
is either 1, 3 or 5, in which case the j-th component 〈 LVnj+1, F 7

15
∩  LVnj+1〉

is not ¬-paraconsistent. Thus L is not ¬-paraconsistent and, therefore, L7
15 is

saturated ¬-paraconsistent.
To finalize, an additional analysis – from the point of view of paraconsistency

– of the logics discussed in this paper will be done. Recall from Section 1 the
class of paraconsistent logics known as logics of formal inconsistency (LFIs). It
is easy to see that all the paraconsistent logics considered in the present paper
are, in particular, LFIs. Indeed, in [21] it was shown that, if L is a (∆-)core
fuzzy logic which is not pseudo-complemented, then L≤ is an LFI such that

23



the consistency operator is given by ◦ϕ = ∆(¬ϕ ∨ ϕ). This shows that all the
paraconsistent logics based on Gödel fuzzy logic presented here are LFIs. With
respect to the paraconsistent logics based on finite-valued  Lukasiewicz logics
analyzed in this section, they are also LFIs, as the following result states:

Proposition 7. Let L be one of the matrix logics in Proposition 6, or one the
products of matrix logics in Theorem 3. Then, L is an LFI w.r.t. ¬.

Proof. Concerning the logics of Proposition 6, by [20, Proposition 6.3] we know
that each logic Lin for i/n ≤ 1/2 is an LFI w.r.t. ¬, where the consistency
operator is given by ◦inα := ∼i

n(α ∧ ¬α). Here, ∼i
n is the unary connective

defined as in the proof of Theorem 3. Now, let

L = 〈 LVp1+1 × · · · ×  LVpj+1, (F i
n

)j ∩ ( LVp1+1 × · · · ×  LVpj+1)〉

be one of the logics in Theorem 3 given by a product of matrix logics, for
some {p1, . . . , pj} ⊆ X. By definition of X, for every 1 ≤ s ≤ j there exists
1 ≤ ks < ps such that ks/ps ≤ 1/2 and 〈 LVps+1, F i

n
∩  LVps+1〉 = Lks

ps
. This

means that L = Lk1
p1
×· · ·×L

kj
pj . Using again [20, Proposition 6.3] it follows that

each Lks
ps

is an LFI w.r.t. ¬, with consistency operator ◦ks
ps

defined as above. It

is immediate to see that ∼i
n restricted to  LVps+1 coincides with ∼ks

ps
, and so ◦in

restricted to  LVps+1 coincides with ◦ks
ps

, for every 1 ≤ s ≤ j. Therefore L is an

LFI w.r.t. ¬, with consistency operator given by ◦α := ◦inα.
Indeed, it is clear that ϕ,¬ϕ, ◦ϕ `L ψ for every formulas ϕ,ψ. Let q and

r be two different propositional variables, and let e be an evaluation over L
such that e(q) = 1 and e(r) = 0. This ensures that q, ◦q 0L r. On the other
hand, any evaluation e′ over L such that e′(q) = e′(r) = 0 guarantees that
¬q, ◦q 0L r. Hence, L is an LFI w.r.t. ¬ and ◦ (recall the definition of LFIs
in [17, 16, 15]).

7 Conclusions

In this paper the Gödel fuzzy logic G expanded with an involutive negation ∼,
denoted G∼, together with its finite-valued extensions Gn∼, were studied from
the point of view of paraconsistency. In order to do this, the respective degree-
preserving companions G≤∼ and G≤n∼ where analyzed given that, in contrast to
G∼ and Gn∼, these logics are ∼-paraconsistent. Observe that G coincides with
G≤, since G satisfies the deduction-detachment theorem; hence, the addition of
an involutive negation ∼ to G allows to develop such kind of study. The ques-
tion of determining the lattice of intermediate logics between G≤∼ and CPL, as
well as the logics between G≤n∼ and CPL, was addressed. After introducing the
concept of saturated paraconsistent logic, which is weaker than the notion of
ideal paraconsistency, it was shown that there are only three saturated paracon-
sistent logics, two of them (J3 and J4) being in fact ideal paraconsistent and the
other (namely, J3×J4) being saturated but not ideal. Finally, the study of finite
valued  Lukasiewicz logic we started in [20] has been taken up again, in order to
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find additional interesting examples of saturated but not ideal paraconsistent
logics.

As for future work we aim at performing similar studies for other locally
finite fuzzy logics, in particular for the Nilpotent Minimum logic (NM) [22],
that combines and shares many features of both Gödel and  Lukasiewicz logics.
It is indeed logically equivalent to Gödel logic with involution when NM is
expanded with the Baaz-Monteiro operator ∆.
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