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Abstract. This paper is a contribution to the study of the rôle of disjunction in

Abstract Algebraic Logic. Several kinds of (generalized) disjunctions, usually defined

using a suitable variant of the proof by cases property, were introduced and extensively

studied in the literature mainly in the context of finitary logics. The goals of this paper are

to extend these results to all logics, to systematize the multitude of notions of disjunction

(both those already considered in the literature and those introduced in this paper), and

to show several interesting applications allowed by the presence of a suitable disjunction

in a given logic.
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1. Introduction

Abstract Algebraic Logic (AAL) has developed a corpus of results and tech-
niques for studying logical systems by providing a deep understanding on
the nature of the process by which a logic can be endowed with an algebraic
semantics. These results allow to study properties of the logical systems,
when understood as structural consequence relations over a set of formulae,
by means of (equivalent) algebraic properties of their semantics.

In particular, AAL has led to fine analysis on the rôle of the connec-
tives of classical logic, identifying their essential properties, and thus sug-
gesting possible generalizations of these connectives (in non-classical logics)
still retaining their essential function(s) in classical logic. Notable exam-
ples of this approach are the extensive studies on equivalence connectives
(see e.g. [2, 8]). Indeed, the Lindenbaum-Tarski proof of completeness of
the classical propositional calculus, based on the fact that the equivalence
connective defines a congruence in the algebra of formulae, has been ex-
tended to broad classes of logics by considering a suitable generalized notion
of equivalence. Namely, equivalence can be taken as a (possibly parame-
terized, possibly infinite) set of formulae in two variables satisfying certain
simple properties. This approach gave rise to the so-called Leibniz hierarchy
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of protoalgebraic logics, based on the generalized equivalences that might
be present in a logic and their properties. Similarly, there have been many
works focusing on implication connectives, studying for instance in what log-
ics they still have some kind of deduction theorem [3, 7, 21], or when they
define order in the corresponding algebraic semantics [4]. Other works have
provided abstract studies of logics with a suitable notion of conjunction such
as [22].

In this paper we focus on disjunction connectives. They have been, of
course, already the subject of many important contributions in AAL as well
(see e.g. [5, 6, 8, 12, 13, 16, 26, 27]). The proof by cases property has been
identified as the essential property of classical disjunction1 and has been
formulated in two (non equivalent) ways:

PCP If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ ∨ ψ `L χ.

wPCP If ϕ `L χ and ψ `L χ, then ϕ ∨ ψ `L χ.

The most comprehensive treatment so far, summarizing and generalizing
the previous works, was presented by Czelakowski in his book [8] where he
considered, in the same fashion as generalized equivalences in the theory of
protoalgebraic logics, generalized connectives given by a (possibly parame-
terized and infinite) set of formulae in two variables satisfying the PCP. This
approach allowed to obtain several interesting characterizations in terms of
other properties of logics and their semantics, namely: distributivity of the
lattice of theories, distributivity of the lattice of filters over any algebraic
model of the logic and the behavior of prime filters and substitutions. How-
ever, all these results were restricted to finitary logics.

The present paper contributes to the study of the rôle of disjunction in
AAL mainly in the following four ways:

• In order to extend the general theory to all infinitary logics we identify
a strong form of the proof by cases property (denoted as sPCP):

If Γ,Φ `L χ and Γ,Ψ `L χ, then Γ, {ϕ ∨ ψ | ϕ ∈ Φ, ψ ∈ Ψ} `L χ.

The sPCP is equivalent to the PCP in any finitary logic, but it allows
us to formulate for any logic characterizations which in the finitary case
coincide with those of [8].

1For example, Michael Dummett claims in [11] about the weak proof by cases property:
“If this law does not hold, the operator ∨ could not legitimately be called disjunction
operator.”
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• As a consequence we obtain the known results not only for finitary logics
but for the strictly larger class of logics with the IPEP (intersection-prime
extension property), i.e. logics where the finite meet-irreducible theories
form a basis of the closure system of theories. This class includes not
only all finitary logics, but also all semilinear logics in the sense of [4].

• We present a hierarchy of logics based on (1) the form of the disjunction
they posses (given by a single formula, a set of formulae, or a parameter-
ized set of formulae) and on (2) the kind of proof by cases property this
disjunction satisfies (wPCP, PCP, or sPCP). Furthermore, we provide
examples showing the separation of all classes in this hierarchy.

• We show several consequences of the presence of a suitable disjunction in
a given logic. Namely, we can find an axiomatization of the extension of
this logic defined semantically by a positive universal class of its models,
and as a particular case we show how to axiomatize the intersection of
any finite set of its axiomatic extensions.

Structure of the paper In Section 2 we briefly recall the necessary no-
tions of AAL and introduce several new ones (like (filter)-framality, IPEP,
RFSI-completeness, etc.) and prove basic properties needed for the rest of
the paper. Section 3 explores the possible definitions for the proof by cases
property, uses them to define several notions of disjunction, and gives ex-
amples of logics satisfying and separating them. Section 4 collects all of our
characterizations for these properties: Subsection 4.1 introduces the syntac-
tical notion of ∇-form of a rule and uses it to characterize proof by cases
properties, and gives another syntactical characterization of the wPCP; Sub-
section 4.2 proves the transfer theorem for the sPCP, and gives a character-
ization in terms of framality (a strong form of distributivity); Subsection 4.3
gives characterizations in terms of prime filters; and Subsection 4.4 restricts
the achieved results to the context of protoalgebraic logics obtaining more
characterizations and relations between the involved properties. Finally,
Section 5 shows some applications of the theory: Subsection 5.1 studies the
preservation of proof by cases properties in expansions, and the identification
and axiomatization of the least logic satisfying proof by cases above a given
logic; in Subsection 5.2, given a logic L with the PCP, we find an axiom-
atization of the extension of L defined semantically by a positive universal
class of models of L, and as a particular case we show how to axiomatize the
intersection of two axiomatic extensions of L; finally, in Subsection 5.3 we
consider the analogous problems in the more general case of non-negative
universal classes at the price of restricting to finitary logics.
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2. Preliminaries

2.1. Basic notions

We use this subsection to fix the notations for the notions of Abstract Alge-
braic Logic that will be needed in the paper (for comprehensive monographs
and survey see [8, 13, 14, 15]). A propositional language L is any type (with
no restriction on the cardinality), by FmL we denote the free term algebra
over an arbitrary (but fixed) infinite set of variables in the language L, by
FmL we denote its universe. For any sets of formulae Γ,∆ and a formula ϕ
we often write ‘Γ,∆’, and ‘Γ, ϕ’ for, respectively, ‘Γ ∪∆’, and ‘Γ ∪ {ϕ}’.

An L-consecution is a pair Γ B ϕ. Given a set of Lconsecutions L, we
write Γ `L ϕ rather than Γ B ϕ ∈ L. A logic in the language L is a set of
L-consecutions such that `L is a structural consequence relation. We write
Γ `L ∆ when Γ `L ϕ for every ϕ ∈ ∆. A theory of a logic L is a set of
formulae closed under the consequence relation. By Th(L) we denote the
set of all theories of L and by ThL(Γ) the theory generated by Γ.

Logical matrices will be denoted as A, B, . . . , and their algebraic reducts
as A, B, . . . . The semantical consequence given by a class K of L-matrices is
denoted as |=K and it is clearly a logic. Moreover, if K is a finite set of finite
L-matrices, the logic |=K is finitary. The class of (reduced) matrix models
of a logic L is denoted as MOD(L) (or MOD∗(L) respectively). A matrix
A ∈MOD∗(L) is relatively finitely subdirectly irreducible in MOD∗(L), in
symbols A ∈ MOD∗(L)RFSI, if it cannot be decomposed as a non-trivial
subdirect product of a finite non-empty family of matrices from FiL(A). By
FiL(A) we denote the set of all L-filters over A; FiL(A) is complete lattice
and a closure system, and hence it induces a closure operator denoted as
FiAL (we write simply Fi when the logic and the algebra are clear from the
context).

Definition 2.1. A logic L is filter-distributive if for each L-algebra, the
lattice FiL(A) is distributive. A logic L is filter-framal if for each L-algebra,
the lattice FiL(A) is a frame, i.e., for each F ∪ {G} ⊆ FiL(A) holds:

G ∩
∨
F∈F

F =
∨
F∈F

(G ∩ F ).

We omit the prefix ‘filter-’ whenever the corresponding property holds for
A = FmL.

It is known that (1) a finitary logic is (filter-)distributive iff it is (filter-)
framal [8, Proposition 2.5.1.]; and (2) a finitary protoalgebraic logic is dis-
tributive iff it is filter-distributive [8, Proposition 2.5.24.].
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2.2. Infinitary axiomatic systems

Since one of the main goals of this paper is to develop a theory of disjunctions
coping with infinitary logics, we need to recall the appropriate notion of
proof. Note that we assume that axiomatic systems are given by collections
of schemata, rather than particular consecution.

Definition 2.2. An axiomatic system AS in the language L is a set AS of
L-consecutions closed under arbitrary substitutions. The elements of AS of
the form Γ B ϕ are called axioms if Γ = ∅, finitary deduction rules if Γ is
finite, and infinitary deduction rules otherwise.

A proof of a formula ϕ from a set of formulae Γ in AS is a well-founded
tree (with no infinitely-long branch) labeled by formulae such that

• its root is labeled by ϕ and leaves by axioms of AS or elements of Γ,

• if a node is labeled by ψ and ∆ 6= ∅ is the set of labels of its preceding
nodes, then ∆ B ψ ∈ AS.

We write Γ `AS ϕ if there is a proof of ϕ from Γ. An axiomatic system AS
is called a presentation of a logic L if `L = `AS .

Definition 2.3. Let Li be a logic in language Li for i = 1, 2 (such that
L1 ⊆ L2) and C a set of L2-consecutions. We say that L2 is the expansion
of L1 by C, in symbols L2 = L1 +C, if it is the weakest logic in L2 containing
L1 and C, i.e. the logic axiomatized by all L2-substitutional instances of
consecutions from C ∪ L1.

We say that L2 is an (axiomatic) expansion of L1 if L2 = L1 + C for
some set of consecutions (axioms) C. Finally, if L1 = L2, we use the term
extension rather than expansion.

Finally, we generalize [8, Proposition 0.8.1] to all (not necessarily finitary)
logics. It allows to generalize the notion of proof (in a given logic L), which
can be seen as a way to demonstrate that ϕ ∈ ThL(Γ) for a set of L-form-
ulae Γ, to any L-algebra A in order to obtain a way to demonstrate that
a ∈ Fi(X) for any set X ∪ {a} ⊆ A.

Proposition 2.4 (Proof in algebra). Let L be a logic, AS one of its pre-
sentations, A an L-algebra, and X ∪ {a} ⊆ A. Let us define a set VAS ⊆
P(A) × A as {〈e[Γ], e(ψ)〉 | e is an A-evaluation and Γ B ψ ∈ AS}.2 Then
a ∈ Fi(X) iff there is a well-founded tree (called proof of a from X) labeled
by elements of A such that

• its root is labeled by a, and leaves are labeled by elements x such that
x ∈ X or 〈∅, x〉 ∈ VAS ,

2Note that if A = FmL, then VAS = AS.
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• if a node is labeled by x and Z 6= ∅ is the set of labels of its preceding
nodes, then 〈Z, y〉 ∈ VAS .

Proof. Let D(X) be the set of elements of A for which there exists a proof
from X. We can easily show that AS ⊆ |=〈A,D(X)〉. Indeed, assume that
Γ B ϕ ∈ AS and h[Γ] ⊆ D(X) for some evaluation h. Then for each x ∈ h[Γ]
there is a proof from X and, since 〈h[Γ], h[ϕ]〉 ∈ VAS , we can connect these
proofs such that they will form a proof of h(ϕ). Thus D(X) ∈ FiL(A) and,
since X ⊆ D(X), we obtain Fi(X) ⊆ D(X). To prove the converse direction
consider x ∈ D(X) and notice that for each y appearing in its proof we can
easily prove that y ∈ Fi(X) (because Fi(X) is closed under all the rules of L,
in particular those in AS).

2.3. Intersection-prime filters

It is well known [8, Proposition 1.3.4.] that 〈A, F 〉 ∈MOD∗(L)RFSI iff F is
intersection-prime in FiL(A), i.e. there is no pair of filters F1, F2 such that
F = F1 ∩ F2 and F ( F1, F2.3 Recall that a family B ⊆ C is a basis of a
closure system C if for every X ∈ C there is a D ⊆ C such that X =

⋂
D

(which can be equivalent formulated as an extension property: for every
Y ∈ C and every a ∈ A \ Y there is Z ∈ B such that Y ⊆ Z and a /∈ Z).

Definition 2.5. We say that L has the (transferred) intersection-prime ex-
tension property, (τ -)IPEP for short, if the intersection-prime theories form
a basis of Th(L) (intersection-prime filters form a basis of FiL(A) for each
L-algebra A, respectively). Finally, we say that a logic L is RFSI-complete
if `L = |=MOD∗(L)RFSI

.

Lemma 2.6. Any finitary logic has the τ -IPEP; any logic with the τ -IPEP
has the IPEP; and any logic with the IPEP is RFSI-complete.

Proof. The first claim is well-known (see e.g. [8, Corollary 1.3.3.]); the
second is trivial; we prove the last one. Clearly, it is sufficient to show
that T/ΩT is an intersection-prime filter in FmL/ΩT for any intersection-
prime theory T . We proceed counterpositively: assume that there are filters
Fi ) T/ΩT and T/ΩT = F1 ∩ F2. Thus there must be a pair of formulae
ϕ1, ϕ2 such that ϕi/ΩT ∈ Fi \ (T/ΩT ). Consider the theories Ti generated
by T ∪ {ϕi} and observe that clearly Ti ) T and Ti/ΩT ⊆ Fi (recall that Fi
are filters in FmL/ΩT ). Thus T = T1 ∩ T2 and the proof is done.

3This property is known in lattice theory as (finite) meet-irreducibility. In [8] these
filters are called simply prime, but because in this paper we introduce prime filters by
using a suitable notion of disjunction, we need to separate both notions.
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Next we give an example of an infinitary logic with the IPEP; on the
other hand, in Example 3.12 we present a logic which (due to Theorem 4.17)
does not enjoy the IPEP. Therefore, the class of IPEP logics is a non-trivial
proper extension of that of finitary logics.

Example 2.7. The standard infinite-valued  Lukasiewicz logic  L∞ has the
IPEP but is not finitary.4 Recall (see [23]) that  L∞ has connectives →, ¬
and is given by the matrix A = 〈〈[0, 1],→A,¬A〉, {1}〉, where x →A y =
min{1− x+ y, 1} and ¬Ax = 1− x. It is well known that  L∞ is not finitary
(see e.g. [19]); we show that it enjoys the IPEP.

If T 0 L∞ χ, then there is an evaluation e such that e[T ] = {1} and
e(χ) 6= 1. We define T ′ = e−1[{1}]. Obviously T ′ is a theory, T ⊆ T ′ and
T ′ 0 L∞ χ. Assume that T ′ is not intersection-prime; thus there are formulae
ϕ,ψ 6∈ T ′ such that T ′ = Th L∞(T, ϕ) ∩ Th L∞(T, ψ). Assume without loss
of generality that e(ϕ) ≤ e(ψ), so e(ϕ → ψ) = 1 and so ϕ → ψ ∈ T ′. Thus
ψ ∈ Th L∞(T, ϕ) (because ϕ,ϕ→ ψ ` L ψ) and thus ψ ∈ T ′—a contradiction.

Lemma 2.8. Let L′ be an axiomatic extension of L. If L has the IPEP,
then so has L′.

Proof. We fix an L′-theory T . There have to be intersection-prime L-
theories Ti and T =

⋂
i Ti. From [8, Proposition 0.8.3.] we know that

all L-theories containing T (and so in particular Tis) are L′-theories. To
complete the proof we just observe that if an L′-theory is intersection-prime
in L′, then it is also intersection-prime in L.

3. A hierarchy of disjunctions

Let ∇(p, q,−→r ) be a set of formulae in two variables p, q and possible pa-
rameters −→r . We define ϕ∇ ψ as

⋃
{∇(ϕ,ψ,−→α ) | −→α ∈ Fm≤ωL }. Given sets

Φ,Ψ ⊆ FmL, Φ ∇ Ψ denotes the set
⋃
{ϕ ∇ ψ | ϕ ∈ Φ, ψ ∈ Ψ}. We start

with a useful convention:

Convention 3.1. A parameterized set ∇(p, q,−→r ) of formulae is a p-proto-
disjunction (or just protodisjunction if ∇ has no parameters) in L whenever

(PD) ϕ `L ϕ∇ ψ and ψ `L ϕ∇ ψ.

Throughout all the paper the (parameterized) sets ∇ are assumed to be (p-)
protodisjunctions.

4Actually one can easily find many such examples. Indeed, from [4, Theorem 16] it
follows that any (possibly infinitary) weakly implicative semilinear logic (including  L∞
and many other well-known fuzzy logics) has the IPEP.
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The notion of p-protodisjunction is not interesting on its own because,
actually, any theorem (or a set of theorems) in two variables of a given logic
would be a protodisjunction in this logic; we only introduce it as a useful
means to shorten the formulation of many upcoming definitions and results.
A more genuine property of disjunction is the so-called proof by cases of
classical disjunction, which has been considered for arbitrary logics in the
literature in two different versions:

Definition 3.2. We say that ∇ enjoys the Proof by Cases Property5 in L
if for any set Γ, ϕ, ψ, χ of formulae we have:

PCP If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ∇ ψ `L χ.

We say that ∇ enjoys the weak Proof by Cases Property in L if for any
formulae ϕ,ψ, χ we have:

wPCP If ϕ `L χ and ψ `L χ, then ϕ∇ ψ `L χ.

Note that the (weak) Proof by Cases Property is defined as a property of a
pair: the logic L and the p-protodisjunction ∇. To simplify the formulation,
we will write just that ‘∇ has the PCP’ when the logic L is fixed or known
from the context. Analogous conventions will be used for all other upcoming
properties defined for p-protodisjunctions in given logics.

Example 3.3. Natural examples of protodisjunctions satisfying the PCP. In
many logics, the usual lattice connective ∨ does indeed behave, as one may
expect, as a protodisjunction with proof by cases. This is the case, for in-
stance, in the substructural logic FLew (Full Lambek logic with exchange and
weakening, which coincides with the multiplicative and additive fragment of
affine linear logic aMALL; see [18] for more details) and in all its axiomatic
extensions. In weaker logics, the situation can be more complicated. For
instance, in FLe (Full Lambek logic only with exchange, or equivalently, the
multiplicative and additive fragment of linear logic MALL), if t is the 0-ary
connective corresponding to the neutral element of the multiplicative con-
junction, one can prove that the definable connective (ϕ∧t)∨(ψ∧t) satisfies
the PCP (it mainly follows from the local deduction theorem: Γ, α `L β iff
Γ `L (α∧ t)n → β for some n ≥ 1; see e.g. [18]), while ∨ does not as we will
see in Example 3.7.

5We could have introduced the wPCP and the PCP as double direction meta-rules
(as it was done and studied e.g. in [13] under the name (weak) Property of Disjunction).
However reverse directions of these meta-rules could obviously be equivalently replaced by
(PD) (one direction is obvious, for the other one observe that from ϕ∇ ψ `L ϕ∇ ψ, we
would obtain ϕ `L ϕ∇ψ and ψ `L ϕ∇ψ). Thus, we prefer our definition because it keeps
the interesting implication separated from the trivial one that we can always assume.
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The properties of proof by cases are intrinsic for the logic in the sense
that all sets satisfying the wPCP are interderivable:

Lemma 3.4. Assume that ∇ has the wPCP and ∇′ is an arbitrary p-proto-
disjunction. Then: ∇′ enjoys the wPCP iff ϕ∇ ψ a`L ϕ∇′ ψ.

The weak proof by cases property entails other properties a disjunction is
expected to satisfy: commutativity, idempotency and associativity (which,
however, are also typically satisfied by conjunction connectives, whereas the
PCP and the wPCP are typically satisfied only by disjunction connectives).
The following lemma is straightforward:

Lemma 3.5. If ∇ satisfies the wPCP, then it also satisfies:

(C) ϕ∇ ψ `L ψ ∇ ϕ
(I) ϕ∇ ϕ `L ϕ
(A) ϕ∇ (ψ ∇ χ) a`L (ϕ∇ ψ)∇ χ

The properties (C), (I), (A) must be properly read: they respectively give
commutativity, idempotency and associativity as regards to membership in
the filter of matrix models, but they do not imply that these properties hold
for disjunctions of arbitrary elements in the matrix. In symbols: if A =
〈A, F 〉 is an L-matrix, (C) means that for every a, b ∈ A, a∇A b ⊆ F implies
that b ∇A a ⊆ F ; but it does not necessarily mean that a ∇A b = b ∇A a,
and analogously for the other two properties.

Example 3.6. An (element-wise) non-commutative protodisjunction satis-
fying the PCP. Consider the logic G4 (in the language {∧,∨,→, 0, 1,4}
of type 〈2, 2, 2, 0, 0, 1〉) obtained as the expansion of Gödel-Dummett logic
(see [10]) with the unary operator 4 (see [1]). This logic is complete with
respect to the matrix given by the filter {1} and the algebra [0, 1]G4 =
〈[0, 1],min,max,→, 0, 1,4〉, where a → b = b if a > b and a → b = 1 oth-
erwise, and 4(1) = 1 and 4(a) = 0 for every a < 1. Clearly {p ∨ q}
defines a protodisjunction with PCP where the (C), (I), (A) properties
are true element-wise. However, we can also consider {4p ∨ q} which
is also a protodisjunction with PCP (observe that 4p ∨ q a`G4 p ∨ q),
but provides a counterexample for commutativity when taken element-wise:
4(0.5) ∨ 0.3 = 0.3 6= 0.5 = 4(0.3) ∨ 0.5.

We can show that the converse direction of Lemma 3.5 is not valid and
also that the wPCP and the PCP are indeed different:
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Example 3.7. A finitary logic with a protodisjunction satisfying the condi-
tions (C), (I), (A)6 but not the wPCP. Let L be the extension of FLe by the
axiom (ϕ→ ψ)∨(ψ → ϕ). ∨ is clearly a protodisjunction satisfying (C), (I),
and (A) in L. However, ∨ does not even enjoy the wPCP. Indeed, assume
that ∨ has the wPCP and we show that then L proves the formula χ defined
as (ϕ ∨ ψ) ∧ t → (ϕ ∧ t) ∨ (ψ ∧ t) which is a contradiction with [20, Exam-
ple 3.2]. Obviously ϕ→ ψ `L ϕ∨ψ → ψ and so ϕ→ ψ `L (ϕ∨ψ)∧t→ ψ∧t.
Thus finally ϕ → ψ `L χ. Analogously we could prove ψ → ϕ `L χ. Using
the wPCP and the fact that `L (ϕ→ ψ) ∨ (ψ → ϕ) the proof is done.

Example 3.8. A finitary logic with a protodisjunction satisfying the wPCP
but not the PCP. Consider the non-distributive lattice diamond, with the
domain {⊥, a, b, t,>} (where ⊥ is the minimum element and > is the maxi-
mum) and take now the finitary logic given by all the (finitely many) matrices
over this algebra with a lattice filter. Observe that for every set Γ ∪ {ϕ} of
formulae, Γ ` ϕ iff

∧
e[Γ] ≤ e(ϕ) for every evaluation e over the diamond.

From this it easily follows that ∨ is a protodisjunction with wPCP. As-
sume now, for a contradiction, that it satisfies the PCP too. Then from
ϕ,ψ ` (ϕ ∧ ψ) ∨ χ and χ, ψ ` (ϕ ∧ ψ) ∨ χ we obtain ϕ ∨ χ, ψ ` (ϕ ∧ ψ) ∨ χ
and thus also (applying the PCP again) ϕ ∨ χ, ψ ∨ χ ` (ϕ ∧ ψ) ∨ χ (a
form of distributivity). Then, we reach a contradiction by observing that
a ∨ b = t ∨ b = > while (a ∧ t) ∨ b = ⊥ ∨ b = b.

We could also show the independence of the conditions (C), (I), (A) of
protodisjunctions by several artificial examples, all of them finitary. We leave
it as an exercise for a reader and just mention a natural example: any sub-
structural non-contractive involutive logic (e.g. linear logic or  Lukasiewicz
infinite-valued logic) has the multiplicative disjunction ⊕ which satisfies con-
ditions (PD), (C), and (A) but not (I).

We define a natural intermediate property between the PCP and wPCP:

Definition 3.9. We say that ∇ enjoys the finitary Proof by Cases Property
in L if for any finite set Γ of formulae and any formulae ϕ,ψ, χ we have:

fPCP If Γ, ϕ `L χ and Γ, ψ `L χ, then Γ, ϕ∇ ψ `L χ.

It is straightforward to check that for finitary logics the PCP and fPCP
are equivalent. Another natural way of obtaining properties related to the
PCP consists in replacing ϕ and ψ by sets of formulae. If we only allow finite
sets, then we only obtain reformulations of the PCP and fPCP respectively:

6Logics with a connective satisfying these conditions were studied in [28] under the
name of logics with disjunction.



The Proof by Cases Property and its Variants 11

Lemma 3.10. ∇ has the (f)PCP if, and only if, the following meta-rule
holds for every (finite) set Γ ∪ {χ} of formulae and every finite sets Φ,Ψ of
formulae:

Γ,Φ `L χ Γ,Ψ `L χ

Γ,Φ∇Ψ `L χ

Proof. We prove it for PCP (the proof for fPCP is analogous). One impli-
cation is trivial; we prove the other by induction. Call a pair Γ,Φ `L χ and
Γ,Ψ `L χ a situation; define the complexity of a situation as a pair 〈n,m〉
where n and m are respectively the cardinals of Φ\Ψ and Ψ\Φ. We show by
the induction over k = n+m that in each situation we obtain Γ,Φ∇Ψ `L χ.

First assume k ≤ 2. If n = 0, i.e. Φ ⊆ Ψ, we obtain Φ∇ Φ ⊆ Φ∇ Ψ
and since Γ,Φ∇ Φ `L Γ ∪ Φ the proof is done. The proof for m = 0
is the same. If n = m = 1 we use PCP. The induction step: consider
a situation with complexity 〈n,m〉, where n + m > 2. We can assume
without loss of generality that n ≥ 2, take a formula ϕ ∈ Φ \ Ψ and define
Φ′1 = Φ \ {ϕ}. We know that Γ,Φ′1, ϕ `L χ and Γ,Ψ `L χ. Thus we also
know that Γ,Φ′1, ϕ `L χ and Γ,Φ′1,Ψ `L χ; notice that the complexity of
this situation is 〈1,m〉 and so we can use the induction assumption to obtain
Γ,Φ′1, ϕ∇Ψ `L χ.

Thus we have the situation Γ, ϕ∇Ψ,Φ′1 `L χ and Γ, ϕ∇Ψ,Ψ `L χ (the
second claim is trivial); the complexity of this situation is 〈n′,m′〉, where
n′ ≤ n − 1 and m′ ≤ m, and so by the induction assumption we obtain
Γ, ϕ∇Ψ,Φ′1∇Ψ `L χ (which is exactly what we wanted).

Observe that, if L is finitary, the lemma holds even without requiring
that Φ and Ψ are finite. However, for infinitary logics it makes sense to
consider it as a stronger property:

Definition 3.11. We say that ∇ enjoys strong Proof by Cases Property in
L if for every sets Γ,Φ,Ψ of formulae and every formula χ we have:

sPCP If Γ,Φ `L χ and Γ,Ψ `L χ, then Γ,Φ∇Ψ `L χ.

Clearly the sPCP implies the PCP and in finitary logics these properties
coincide (due to the remark just before the definition). On the other hand,
we can show that even though there are natural infinitary logics with a con-
nective satisfying the sPCP (Example 4.24), this property is not in general
implied by the PCP, as shown by the next example:

Example 3.12. An infinitary logic with a protodisjunction satisfying the
PCP but not the sPCP. Let A be a complete distributive lattice such that
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it is not a dual frame, i.e. there are elements xi ∈ A for i ≥ 0 such that∧
i≥1

(x0 ∨ xi) 6≤ x0 ∨
∧
i≥1

xi.

We expand the lattice language by constants {ci | i ≥ 0}∪{c} and define an
algebra A′ in this language by setting cA

′
i = xi and c =

∧
i≥1 xi. Then we

define the logic L in this language given semantically by the class of matrices
{〈A′, F 〉 | F is a principal lattice filter in A}. Note that Γ `L ϕ iff for each
A-evaluation e holds:

∧
ψ∈Γ e(ψ) ≤ e(ϕ) (one direction: as [

∧
ψ∈Γ e(ψ)]

clearly contains e[Γ] it has to contain e(ϕ); the reverse direction: just observe
that any principal filter containing e[Γ] has to contain

∧
ψ∈Γ e(ψ)).

First we show that ∨ enjoys the PCP: assume that for each e evalua-
tion holds (

∧
δ∈Γ e(δ)) ∧ e(ϕ) ≤ e(χ) and (

∧
δ∈Γ e(δ)) ∧ e(ψ) ≤ e(χ), thus

[(
∧
δ∈Γ e(δ)) ∧ e(ϕ)] ∨ [(

∧
δ∈Γ e(δ)) ∧ e(ψ)] ≤ e(χ), the distributivity of A

completes the proof. Finally, by the way of contradiction, assume that ∨
enjoys the sPCP. Observe that: c0 `L c0∨c and {ci | i ≥ 1} `L c0∨c. Using
the sPCP we obtain {c0 ∨ ci | i ≥ 1} `L c0 ∨ c—a contradiction.

The strong and finitary proof by cases properties can be written in a
more compact way (as a formal generalization of the wPCP):

Proposition 3.13. ∇ has the sPCP (resp. fPCP) if, and only if, the follow-
ing meta-rule holds for any set (resp. any finite set) of formulae Φ∪Ψ∪{χ}:

Φ `L χ Ψ `L χ

Φ∇Ψ `L χ
.

Proof. The left-to-right direction is easy (trivial in the case of sPCP, or
obtained by Lemma 3.10 in the case of fPCP). The reverse direction simply
follows using (PD).

Summing up, by combining restrictions on the cardinality of the context
set and on the cardinality of the disjuncts, we have at most the following four
properties of proof by cases (in increasing order of strength): wPCP, fPCP,
PCP and sPCP. With exception of the pair fPCP and PCP we know that
they are different (Example 3.8 provides in fact a finitary logic separating
wPCP from fPCP). In addition, we know that the last three are equivalent
for finitary logics. The next sections of the paper will be devoted to showing
characterizations of these four properties in a general context and to find
broad classes of logics (containing the finitary ones) where the properties
still collapse.
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Since, as we said, we are assuming that all sets ∇ satisfy (PD), we can
use the consequence operation to formulate the proof by cases properties in
more compact forms as Tarski-style conditions. Namely, ∇ satisfies:

wPCP iff ThL(ϕ) ∩ ThL(ψ) = ThL(ϕ∇ ψ) for each ϕ,ψ.

fPCP iff ThL(Φ) ∩ ThL(Ψ) = ThL(Φ∇Ψ) for each finite Φ,Ψ

iff ThL(Γ,Φ) ∩ ThL(Γ,Ψ) = ThL(Γ,Φ∇Ψ) for each finite Γ,Φ,Ψ

iff ThL(Γ, ϕ) ∩ ThL(Γ, ψ) = ThL(Γ, ϕ∇ ψ) for each finite Γ ∪ {ϕ,ψ}.

PCP iff ThL(Γ,Φ) ∩ ThL(Γ,Ψ) = ThL(Γ,Φ∇Ψ) for each Γ and finite Φ,Ψ

iff ThL(Γ, ϕ) ∩ ThL(Γ, ψ) = ThL(Γ, ϕ∇ ψ) for each Γ ∪ {ϕ,ψ}.

sPCP iff ThL(Φ) ∩ ThL(Ψ) = ThL(Φ∇Ψ) for each Φ,Ψ

iff ThL(Γ,Φ) ∩ ThL(Γ,Ψ) = ThL(Γ,Φ∇Ψ) for each Γ,Φ,Ψ.

Since proof by cases is arguably the most characteristic property a disjunc-
tion is expected to satisfy, these properties can be used to formally define
what a disjunction connective is. Having in general four different properties
of proof by cases, we could define four different corresponding notions of dis-
junction but, taking into account the modest rôle that the fPCP will play in
the upcoming characterization results, we decide to dismiss its correspond-
ing definition of disjunction. On the other hand, recalling the fact that (by
Lemma 3.4) these properties are intrinsic for a given logic in the sense that
all possible sets ∇ satisfying the wPCP (or PCP, or sPCP) are interderiv-
able, it makes sense to define classes of logics according to the presence of
such p-protodisjunctions, also distinguishing them based on the structure
of the ∇ sets, that is, distinguishing traditional disjunctions defined by a
single connective or formula, disjunctions which come from a (possibly infi-
nite) parameter-free ∇, and the most general case where ∇ is allowed to be
infinite and parameterized.

Definition 3.14. We say that ∇ is a strong p-disjunction (resp. p-dis-
junction, resp. weak p-disjunction) if it satisfies the sPCP (resp. PCP, resp.
wPCP). If ∇ has no parameters, we drop the prefix ‘p-’.

Definition 3.15. We say that a logic L is strongly (p-)disjunctional (resp.
(p-)disjunctional, resp. weakly (p-)disjunctional) if it has a strong (p-)dis-
junction (resp. a (p-)disjunction, resp. a weak (p-)disjunction).

Furthermore, we say that L is strongly disjunctive (resp. disjunctive,
resp. weakly disjunctive) if it has a strong disjunction (resp. a disjunction,
resp. a weak disjunction) given by a single parameter-free formula.
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Figure 1. The disjunctional hierarchy of logics.

Remark 3.16. Thanks to Lemma 3.4, in a (strongly) p-disjunctional logic
any weak p-disjunction is actually a (strong) p-disjunction.

Theorem 3.17. All classes of logics defined in the previous definition are
mutually different. Furthermore, the intersection of any two classes is their
infimum w.r.t. the subsumption order depicted in Figure 1.

The intersection property follows from the previous remark and the sep-
aration of all the classes is established by an upcoming series of examples.
These examples also show that in finitary logics, taking into account the
equivalence of sPCP and PCP, there are exactly six mutually distinct classes.

Example 3.18. A finitary weakly disjunctive but not p-disjunctional logic.
The logic in Example 3.8 based on lattice diamond has a connective ∨ sat-
isfying the wPCP but not the PCP. Therefore, it is weakly disjunctive. If it
was p-disjunctional with some ∇, then, according to Lemma 3.4, ∇ would be
interderivable with ∨, so ∨ would satisfy the PCP as well—a contradiction.

Example 3.19. An infinitary disjunctive but not strongly p-disjunctional
logic. The logic in Example 3.12 based on a complete distributive lattice
which is not a dual frame has a connective ∨ satisfying the PCP but not the
sPCP. Therefore, it is disjunctive, but following the same line of reasoning
as in the previous example it cannot be strongly p-disjunctional.
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Example 3.20. A finitary (strongly) disjunctional but not weakly disjunctive
logic. Consider the implicational fragment of Gödel-Dummett logic; let us
call it G→. First we show that the set

ϕ∇ ψ = {(ϕ→ ψ)→ ψ, (ψ → ϕ)→ ϕ}
is a protodisjunction satisfying the PCP. Since G is an axiomatic extension
of FLew it satisfies: ϕ ` (ϕ → ψ) → ψ and ψ ` (ϕ → ψ) → ψ and so ∇
satisfies (PD). Now observe that Γ, ϕ→ ψ, (ϕ→ ψ)→ ψ, (ψ → ϕ)→ ϕ ` ψ
and as we assume that Γ, ψ ` χ thus Γ, ϕ → ψ,ϕ ∇ ψ ` χ and so by the
deduction theorem Γ, ϕ ∇ ψ ` (ϕ → ψ) → χ. Analogously we can prove
that Γ, ϕ ∇ ψ ` (ψ → ϕ) → χ and as the formula ((ϕ → ψ) → χ) →
(((ψ → ϕ) → χ) → χ) is a theorem of Gödel-Dummett logic we obtain
Γ, ϕ∇ ψ ` χ as needed.

Assume that some parameter-free formula ϕ(p, q) has the wPCP. As a
consequence of the completeness theorem for G, we know that G→ is com-
plete with respect to the matrix A whose universe is the real unit interval
[0, 1], the filter is {1} and the only operation is:

a→A b =

{
1 if a ≤ b,
b otherwise.

By Lemma 3.4, the formula ϕ(p, q) and the set ϕ ∇ ψ are mutually deriv-
able in G→. We know that ϕ ∨ ψ ↔ ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)
holds in Gödel-Dummett logic and so we can use the global deduction the-
orem we obtain that ϕ(p, q) is interpreted in A as the function maximum.
So, in particular, for every a, b ∈ [0, 1) we have ϕA(a, b) = max{a, b}. We
show by an infinite descent argument that this is impossible. Since → is the
only connective in the language, we must have ϕ(p, q) = α(p, q) → β(p, q).
Take any a, b ∈ [0, 1). If a ≤ b, ϕA(a, b) = αA(a, b) →A βA(a, b) = b,
which implies βA(a, b) = b. Analogously, if a > b, we have βA(a, b) = a.
Thus, β(p, q) would be a strictly shorter formula with the same property.
Following this line of reasoning we would derive that for each a, b ∈ [0, 1)
holds either a →A b = max{a, b} or b →A a = max{a, b}; thus obtaining a
contradiction.7

Finally, we provide an example supporting the necessity of the level of
generality of disjunction connectives, defined by possibly infinite sets of for-
mulae with parameters (some claims in the example need to be justified by
results in subsequent sections of this paper).

7For the reader’s convenience we have included this rather self-contained proof showing
that G→ is not weakly disjunctional. However, this fact would also follow from a reasoning
analogous to that of the next example.
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Example 3.21. A finitary (strongly) p-disjunctional logic but not weakly
disjunctional. Consider the purely implicational fragment of intuitionistic
logic8 IPC→. The fact that IPC→ is p-disjunctional follows from Theo-
rem 4.27 (the filter-distributivity of this logic was proved in [9]). Assume,
for contradiction, that a set ∇ is a disjunction in IPC→. Thus (by Theo-
rem 5.1) it also a disjunction in the full intuitionistic logic IPC. Since, as it
is well known, the lattice connective ∨ satisfies the Proof by Cases in IPC
too, by Lemma 3.4, we have p∇q a`L p∨q. Using finitarity, the presence of
the lattice conjunction ∧ in the language of IPC and the deduction theorem
we obtain a formula ∨′ of two variables p, q built using only implication and
lattice conjunction such that `IPC p ∨′ q ↔ p ∨ q—which is known to be
impossible (see e.g. [24]).

Another example of a finitary logic with a (this time explicit and natural)
parameterized infinite disjunction is the Full Lambek logic FL (see e.g. [18]),
although in this case we have not succeeded in showing that it is not weakly
disjunctive.

Example 3.22. A finitary logic with a parameterized infinite disjunction.
Consider the logic FL. This logic has a non-commutative conjunction & with
right and left residual implications denoted respectively as \ and /. Given
formulae α and ϕ, one defines the left conjugate and the right conjugate
of ϕ with respect to α respectively as λα(ϕ) = (α\ϕ&α) ∧ t and ρα(ϕ) =
(α&ϕ/α)∧ t. An iterated conjugate of ϕ with respect to α1, . . . , αn ∈ A is a
composition γ(ϕ) = γα1(γα2(. . . γαn(ϕ))) where γαi ∈ {λαi , ραi} for every i.
With this notation, one defines the following infinite set with parameters:

ϕ∇ ψ = {γ1(ϕ ∧ t) ∨ γ2(ψ ∧ t) | where γ1, γ2 are iterated conjugates}

which satisfies the sPCP. Sato in [25, Proposition 6.9] showed that there
is no finite protodisjunction in FL satisfying the PCP. We conjecture that
there is no parameter-free weak disjunction.

4. Characterizations of the proof by cases properties

Let us fix a logic L in the language L and p-protodisjunction ∇ in L.

4.1. Purely syntactical characterizations

We start with a characterization (inspired by the proofs of Theorems 2.5.8.
and 2.5.9. of [8]) of weakly (p-)disjunctional logics by means substitutions.

8We thank Ramon Jansana for drawing our attention to this logic.
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Theorem 4.1 (Characterization of weakly (p-)disjunctional logics). The fol-
lowing are equivalent:

1. L is weakly (p-)disjunctional,

2. for each (surjective) substitution σ and a pair ϕ,ψ of formulae holds

ThL(σϕ) ∩ ThL(σψ) = ThL(σ[ThL(ϕ) ∩ ThL(ψ)]),

3. for each (surjective) substitution σ and a pair of distinct variables p, q
holds

ThL(σp) ∩ ThL(σq) = ThL(σ[ThL(p) ∩ ThL(q)]).

Proof. We first prove that 1 implies 2. Take any weak (p-)disjunction ∇.
Notice that if ∇ is parameter-free or σ is surjective we obtain σϕ ∇ σψ =
σ[ϕ ∇ ψ] (in the first case it is trivial, in the second case we can write
the chain of equations: σϕ ∇ σψ =

⋃
{∇(σϕ, σψ,−→α ) | −→α ∈ Fm≤ωL } =⋃

{∇(σϕ, σψ,
−→
σβ) |

−→
β ∈ Fm≤ωL } = σ[ϕ ∇ ψ]). Thus in both cases we can

prove that 1 implies 2 by this chain of equations: ThL(σϕ) ∩ ThL(σψ) =
ThL(σϕ∇ σψ) = ThL(σ[ϕ∇ ψ]) = ThL(σ[ThL(ϕ) ∩ ThL(ψ)]).

The implication from 2 to 3 is trivial; we prove that 3 implies 1. Let
us assume first that 3 holds only for surjective substitutions. We define
∇(p, q,−→α ) = ThL(p) ∩ ThL(q). Clearly ∇ is a p-protodisjunction; we show
that it satisfies the wPCP. Consider a surjective substitution such that
σp = ϕ and σq = ψ. Then we can write this chain of equations: ThL(ϕ) ∩
ThL(ψ) = ThL(σp)∩ThL(σq) = ThL(σ[ThL(p)∩ThL(q)]) = ThL(σ[p∇q]) ⊆
ThL(ϕ∇ ψ).

Assume now that 3 holds for all substitutions. Take a substitution σ such
that σp = p and σr = q for every r 6= p. We define ∇(p, q) = σ[ThL(p) ∩
ThL(q)]. Then ∇ is clearly a protodisjunction and analogously as in the
previous case we show that it enjoys the wPCP.

Remark 4.2. Note that from the proof of this theorem we can infer that if
L is weakly p-disjunctional logic, then ThL(p) ∩ ThL(q) is one of its weak
p-disjunctions. In fact, it is the largest weak p-disjunction (written in vari-
ables p and q) in the sense of inclusion.

Next we define the notion of ∇-form of a consecution, inspired by [6].
It will allow us to obtain the upcoming Theorem 4.5 as an extension of
Theorem 2.5.3 from [8].

Definition 4.3. Let R = Γ B ϕ be an L-consecution. Then by R∇ we
denote the set {Γ∇ χ B δ | χ ∈ FmL and δ ∈ ϕ∇ χ} of consecutions.
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Lemma 4.4. Let R be a consecution such that R∇ ⊆ L.

1. If ∇ satisfies (I), then R ∈ L.

2. If ∇ satisfies (A), then (R∇)∇ ⊆ L.

Proof. The first claim: from the assumption we know Γ ∇ ϕ `L ϕ ∇ ϕ,
(PD) and (I) complete the proof. To prove the second claim we start with
Γ∇ (ψ1∇ψ2) `L ϕ∇ (ψ1∇ψ2); repeated use of (A) completes the proof.

The first part of this lemma tells us that in the next theorem we could
write ‘R∇ ⊆ L iff R ∈ L’, instead of ‘R∇ ⊆ L for each R ∈ L’. The second
part will be useful later.

Theorem 4.5 (Syntactical characterizations). ∇ enjoys the

1. sPCP iff ∇ satisfies (C), (I), and R∇ ⊆ L for each R ∈ L.

2. fPCP iff ∇ satisfies (C), (I), and R∇ ⊆ L for each finitary R ∈ L.

3. wPCP iff ∇ satisfies (C), (I), and (ϕ B ψ)∇ ⊆ L whenever ϕ `L ψ.

Proof. We prove all left-to-right directions at once. From Γ `L ϕ we obtain
and Γ `L ϕ∇χ using (PD). By (PD) we also obtain χ `L ϕ∇χ. Thus sPCP
(for arbitrary Γ), fPCP (for finite Γ), and wPCP (for Γ being a singleton)
we get Γ∇ χ `L ϕ∇ χ.

Also the reverse directions will be proven at once: assume that Γ, ϕ `L χ
and Γ, ψ `L χ. Based on restrictions on the cardinality of Γ (arbitrary, finite
or empty) we can use one of the assumptions to get Γ∇ψ,ϕ∇ψ `L χ∇ψ and
Γ∇χ, ψ∇χ `L χ∇χ. Using (C) and (I) we obtain Γ∇ψ,Γ∇χ, ϕ∇ψ `L χ.
Since clearly Γ `L Γ∇ ψ and Γ `L Γ∇ χ, the proof is done.

The next proposition shows that to check the sPCP it is sufficient to show
that L is closed under ∇-forms of the elements of any of its presentations.

Proposition 4.6. Assume AS is a presentation of L. Then ∇ enjoys the
sPCP iff ∇ satisfies (C), (I), and R∇ ⊆ L for each R ∈ AS.

Proof. Assume that Γ `L ϕ and we show Γ∇χ `L δ∇χ for each formula χ
and each δ appearing in the proof of ϕ from Γ. If δ ∈ Γ or δ is an axiom, the
proof is trivial. Now assume that R = Γ′ B δ is the deduction rule we use
to obtain δ (we can assume it because axiomatic systems are closed under
substitutions). From the induction assumption we have Γ ∇ χ `L Γ′ ∇ χ.
Since R∇ ∈ L, the proof is done.
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4.2. Proof by cases and properties of the lattice of filters

We start by using the results of the previous section to prove a crucial the-
orem: the transfer of sPCP. The property proved in this theorem will be
called transferred sPCP and denoted as τ -sPCP. We use the same denota-
tion for the other three variants of the proof by cases property.

Theorem 4.7 (Transfer of sPCP). If ∇ enjoys the sPCP, then for each
L-algebra A and each X,Y ⊆ A we have Fi(X) ∩ Fi(Y ) = Fi(X ∇A Y ).

Proof. The inclusion Fi(X∇AY ) ⊆ Fi(X)∩Fi(Y ) follows easily from (PD).
To prove the converse one, we start by showing that for each x ∈ Fi(X) we
have x∇A y ⊆ Fi(X ∇A y) for each y. Using Proposition 2.4 we know that
if x ∈ Fi(X) than there is a proof of x from X in some presentation AS
of L. We show that z ∇A y ⊆ Fi(X ∇A y) for each z labeling any node of
that proof, i.e. for each χ(p, q, r1, . . . , rn) ∈ ∇ and each sequence u1, . . . , un
of elements of A we have χA(z, y, u1, . . . , un) ∈ Fi(X ∇A y).

If z labels a leaf and z ∈ X, then it is trivial. Otherwise there is
a set Z of labels of the preceding nodes (possible empty), a consecution
Γ B ϕ ∈ AS, and an evaluation h, such that h[Γ] = Z and h(ϕ) = z.
Without loss of generality we could assume that variables q, r1, . . . , rn do
not occur9 in Γ ∪ {ϕ} and so we can set h(q) = y and h(ri) = ui for every
i ∈ {1, . . . , n}. Thus h[Γ ∇ q] ⊆ Z ∇A y ⊆ Fi(X ∇A y) (the last inclu-
sion follows from the induction assumption). From the characterization of
the sPCP in Theorem 4.5 we know that Γ∇ q `L χ(ϕ, q, r1, . . . , rn) and so
χA(z, y, u1, . . . , un) = h(χ(ϕ, q, r1, . . . , rn)) ∈ Fi(X ∇A y).

Now we can finally prove that Fi(X)∩Fi(Y ) ⊆ Fi(X∇AY ). If z ∈ Fi(X)
then by the just proved claim for each y ∈ Y holds: z∇Ay ⊆ Fi(X∇Ay) and
so, by (C), y ∇A z ⊆ Fi(X ∇A y). This can be more compactly written as:
Y ∇A z ⊆ Fi(X ∇A Y ). Analogously we obtain z ∇A z ⊆ Fi(Y ∇A z) from
z ∈ Fi(Y ). Thus z ∈ Fi(Y ∇A z) (by (I)) and so z ∈ Fi(X ∇A Y ).

Now we can prove the main theorem of this subsection. Note that it can
be seen as a generalization of Theorem 2.5.8. of [8] which was restricted to
finitary logics. To do so, we have substituted PCP by sPCP and (filter-)
distributivity by (filter-)framality, and we have also identified the exact rôle
of the wPCP (thanks to Theorem 4.1).

9We could define a new suitable Γ B ϕ with the same properties using a Hilbert-hotel
style argument: consider any enumeration of the variables such that p0 = q, pi = ri, a sub-
stitution σ(pi) = pi+n+1, and an evaluation h′ such that h′(σp) = h(p). Then σ[Γ] B σϕ
is the needed consecution: indeed σ[Γ] B σϕ ∈ AS, h′[σ[Γ]] = Z, and h′(σϕ) = z. Note
that we have used our assumption that axiomatic systems are closed under substitutions.
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Theorem 4.8 (Characterizations of sPCP). The following are equivalent:

1. ∇ enjoys the sPCP,

2. ∇ enjoys the wPCP and the logic L is filter-framal,

3. ∇ enjoys the wPCP and the logic L is framal,

4. ∇ enjoys the wPCP and for any theory T and a any set Γ of formulae
the following holds:

T ∩
∨
ϕ∈Γ

ThL(ϕ) =
∨
ϕ∈Γ

(T ∩ ThL(ϕ)).

Proof. To prove that 1 implies 2 we use Theorem 4.7 to justify the two
non-trivial equations in the following chain:

F ∩
∨
G∈F

G = Fi(F ) ∩ Fi(
⋃
G∈F

G) = Fi(F ∇
⋃
G∈F

G) = Fi(
⋃
G∈F

(F ∇G)) =

= Fi(
⋃
G∈F

Fi(F ∇G)) = Fi(
⋃
G∈F

(F ∩G)) =
∨
G∈F

(F ∩G).

The proofs of the implication from 2 to 3 and the implication from 3 to 4
are trivial. To prove that 4 implies 1 we write a chain of equations. The
first equality is trivial, the second is due to the framality of L:

ThL(Φ) ∩ ThL(Ψ) = ThL(Φ) ∩ (
∨
ψ∈Ψ

ThL(ψ)) =
∨
ψ∈Ψ

(ThL(Φ) ∩ ThL(ψ)) =

we continue by repeating the first step for Φ and wPCP:

=
∨

ϕ∈Φ,ψ∈Ψ

(ThL(ϕ) ∩ ThL(ψ)) =
∨

ϕ∈Φ,ψ∈Ψ

ThL(ϕ∇ ψ) =

the rest of the proof is simple:

= ThL(
⋃

ϕ∈Φ,ψ∈Ψ

ThL(ϕ∇ ψ)) = ThL(
⋃

ϕ∈Φ,ψ∈Ψ

ϕ∇ ψ) = ThL(Φ∇Ψ).

Corollary 4.9 (Transfer of framality). Let L be a weakly p-disjunctional
logic. If L is framal, then it is filter-framal.

Next proposition shows that, also in the general (non-finitary) case, some
of the implications of Theorem 4.8 (modulo necessary adjustments) can be
proved for the weaker properties of proof by cases.

Proposition 4.10. If ∇ has the (τ -)wPCP and L is (filter-)distributive,
then ∇ has the (τ -)PCP.
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Proof. We show the proof for filters (that for theories is analogous). We
write a chain of equalities Fi(X,x) ∩ Fi(X, y) = (Fi(X) ∨ Fi(x)) ∩ (Fi(X) ∨
Fi(y)) = Fi(X) ∨ (Fi(x) ∩ Fi(y)) = Fi(X) ∨ Fi(x∇ y) = Fi(X,x∇ y).

Remark 4.11. Note that (as in the case of Theorem 4.8) to obtain (τ -)
PCP we do not need full (filter-)distributivity, Fi(X) ∨ (Fi(x) ∩ Fi(y)) =
Fi(X,x) ∩ Fi(X, y) would be sufficient.

Figure 2. (Transferred) proof by cases properties in finitary and distributive logics.

This proposition together with Theorem 4.8 allows us to depict at Fig-
ure 2 the mutual relationship of the four forms of proof by cases property,
their transfer variants, and (filter-)distributivity/framality. Note that all the
properties depicted in Figure 2 are equivalent in framal logics.

4.3. Proof by cases and properties of prime filters

In this subsection we study semantical characterizations of p-disjunctions in
terms of a convenient notion of prime filter and its corresponding extension
principle. We show a strong link between this notion of filter and relatively
finitely subdirectly irreducible reduced models of the logic.

Definition 4.12. Let A be an L-algebra and F ∈ FiL(A). Then, F is
called ∇-prime if for every a, b ∈ A, a∇A b ⊆ F implies a ∈ F or b ∈ F .

We say that L has the (transferred) prime extension property, (τ -)PEP
for short, if ∇-prime theories form a basis of Th(L) (∇-prime filters form a
basis of FiL(A) for each L-algebra A, respectively).

Finally, let us by MODp
∇(L) denote the class of reduced models of L

whose filter is ∇-prime.

Notice that our definition naturally extends the usual notion of prime
filter. Also note that the fact that ∇ is a p-protodisjunction gives the trivial
converse direction: a ∈ F or b ∈ F implies a∇A b ⊆ F .
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Lemma 4.13. Let ∇ be a (p-)protodisjunction and 〈A, F 〉 ∈ MOD(L) a
matrix where F is ∇-prime. Then h−1[F ] is ∇-prime for every strict (sur-
jective) homomorphism h.

Proof. Let us assume that h : 〈B, G〉 → 〈A, F 〉 is a strict (surjective) ho-
momorphism and assume that G = h−1[F ] is not ∇-prime, i.e. there are
a, b 6∈ h−1[F ] and a∇B b ⊆ h−1[F ]. Thus h(a), h(b) /∈ F and h[a∇B b] ⊆ F .
Using that h is surjective or that∇ has no parameters, we get h(a)∇Ah(b) =
h[a∇B b] and the proof is done.

Proposition 4.14. If ∇ has the PEP, then it enjoys the sPCP.

Proof. Assume that Φ ∇ Ψ 6`L χ, then using the PEP there has to be a
∇-prime theory T ⊇ ThL(Φ ∇ Ψ) such that T 6`L χ. First assume that
Φ ⊆ T . Then Φ 6`L χ and the proof is done. Assume otherwise that there is
ϕ ∈ T \ Φ. Since ϕ∇ ψ ⊆ T for each ψ ∈ Ψ and T is ∇-prime, we obtain
that Ψ ⊆ T and so Ψ 6`L χ.

Lemma 4.15. Any ∇-prime filter is intersection-prime. If ∇ has the (τ -)
PCP, then every intersection-prime theory (every intersection-prime filter
in every L-algebra) is ∇-prime.

Proof. First assume that F is not intersection-prime; i.e. F = F1 ∩ F2 for
some Fi ) F . Let us consider ai ∈ Fi \ F . Thus, by (PD), we know that
a1 ∇A a2 ⊆ Fi and so a1 ∇A a2 ⊆ F , i.e. F is not ∇-prime.

We show the proof of the second claim for filters (for theories it is the
same). Consider any F ∈ FiL(A) and assume first that F is not ∇-prime,
i.e. there are x /∈ F and y /∈ F such that x∇A y ⊆ F . By τ -PCP we know
that F = Fi(F, x∇A y) = Fi(F, x)∩Fi(F, y), i.e. F is the intersection of two
strictly bigger filters.

The proofs of the next corollary and theorem are simple consequences of
the previous proposition and lemma.

Corollary 4.16. A (p-)protodisjunction ∇ has (τ -)PEP, if and only if, it
has (τ -)IPEP and (τ -)PCP.

Theorem 4.17. Let L be a logic satisfying the IPEP. Then the following
are equivalent:

1. ∇ has the sPCP,

2. ∇ has the PCP,

3. ∇ has the PEP.
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Note that if in addition L satisfies the τ -IPEP, then we can add one more
equivalent condition, namely that ∇ has the τ -PEP.

The next corollary shows that [8, Proposition 2.5.1.] (saying that dis-
tributivity implies framality in finitary logics) can be brought to the context
of weakly p-disjunctional logics with IPEP (not necessarily finitary). This
corollary can be also seen as transfer of distributivity (previously known only
for finitary protoalgebraic logics).

Corollary 4.18. Let L be a weakly p-disjunctional logic satisfying the
IPEP. If L is distributive, then it is filter-framal.

Proof. By Proposition 4.10 we know that if L is distributive, ∇ has the
PCP, so by the previous theorem it has the sPCP, and finally by Theorem 4.8
L is filter-framal.

The next two theorems are both straightforward generalizations of Theo-
rems 2.5.8. and 2.5.9. of [8], from finitary logics to logics with the IPEP. The
proof of the first one easily follows from Theorem 4.8 (using Theorem 4.17
and Remark 4.11).

Theorem 4.19 (Characterizations of PCP). Let L be a logic satisfying the
IPEP. Then the following are equivalent:

1. ∇ has the PCP,

2. ∇ has the wPCP and L is filter-distributive,

3. ∇ has the wPCP and L is distributive,

4. ∇ has the wPCP and for each set Γ ∪ {ϕ,ψ} of formulae holds:

ThL(Γ ∪ (ThL(ϕ) ∩ ThL(ψ))) = ThL(Γ, ϕ) ∩ ThL(Γ, ψ).

Theorem 4.20 (Characterizations of (p-)disjunctional logics). Let L be a
logic satisfying the IPEP. Then the following are equivalent:

1. L is (p-)disjunctional,

2. L is filter-distributive and h−1[F ] is an intersection-prime filter for every
matrix 〈A, F 〉 ∈MOD(L) where F is intersection-prime and every strict
(surjective) homomorphism h from any matrix to 〈A, F 〉,

3. L is distributive and σ−1[T ] is an intersection-prime theory for every
intersection-prime theory T and every (surjective) substitution σ.
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Proof. We show that 1 implies 2. From Theorem 4.17 we know that there
is a strong (p-)disjunction ∇. Therefore, by Theorem 4.8 we obtain that L
is filter-distributive. On the other hand, from Theorem 4.7, we know that
∇ satisfies the τ -PCP and so Lemmata 4.15 and 4.13 complete the proof.

Clearly 2 implies 3. To prove that 3 implies 1 it is enough (thanks
to Propositon 4.10) to show that L is weakly (p-)disjunctional by using
Theorem 4.1. Let us fix a (surjective) substitution σ and formulae ϕ,ψ.
Observe that one inclusion is trivial and, since we assume the IPEP, to
prove the reverse one it suffices to show that for each intersection-prime
theory T ,

if σ[ThL(ϕ) ∩ ThL(ψ)] ⊆ T, then ThL(σϕ) ∩ ThL(σψ) ⊆ T.

We have this chain of equivalent statements: σ[ThL(ϕ) ∩ ThL(ψ)] ⊆ T iff
ThL(ϕ)∩ThL(ψ) ⊆ σ−1[T ] iff (ThL(ϕ)∩ThL(ψ))∨σ−1[T ] = σ−1[T ] iff (due
to distributivity) ThL(σ−1[T ], ϕ)∩ThL(σ−1[T ], ψ) = σ−1[T ] iff (since σ−1[T ]
is intersection-prime) ThL(σ−1[T ], ϕ) = σ−1[T ] or ThL(σ−1[T ], ψ) = σ−1[T ]
iff ϕ ∈ σ−1[T ] or ψ ∈ σ−1[T ] iff σϕ ∈ T or σψ ∈ T . The last condition
clearly implies ThL(σϕ) ∩ ThL(σψ) ⊆ T .

Remark 4.21. Note that the following are equivalent:

• for every matrix 〈A, F 〉 ∈ MOD(L) where F is intersection-prime,
h−1[F ] is also intersection-prime for every strict homomorphism h from
any matrix to 〈A, F 〉.
• for every matrix 〈A, F 〉 ∈ MOD(L) where F is intersection-prime,
h−1[F ] and F ′ are also intersection-prime for every surjective strict
homomorphism h from any matrix to 〈A, F 〉, and for every submatrix
〈A′, F ′〉 ⊆ 〈A, F 〉.

Thus a p-disjunctional logic with the IPEP is disjunctional iff for every ma-
trix 〈A, F 〉 ∈ MOD(L) and any of its submatrices 〈A′, F ′〉 holds that if F
is intersection-prime, then so is F ′.

Proposition 4.22 (∇-prime completeness). Let ∇ be a p-protodisjunction
with the PEP. Then L = |=MODp

∇(L).

Proof. From Proposition 4.14 we know that the PEP implies the PCP, so
(by Lemma 4.15)∇-prime and intersection-prime theories coincide and hence
L enjoys the IPEP. This (by Lemma 2.6) implies RFSI-completeness, which
is exactly what we needed (because, by Proposition 4.14 and Theorem 4.7,
the PEP implies also the τ -PCP and so ∇-prime and intersection-prime
filters coincide as well).
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The converse direction can be easily proved in the parameter-free case
(whether it holds in the parameterized case appears to be an open problem).

Proposition 4.23. A protodisjunction ∇ enjoys the PEP if, and only if,
L = |=MODp

∇(L).

Proof. Assume that T 6`L χ. Thus there is an 〈A, F 〉 ∈ MODp
∇(L) and

e such that e[T ] ⊆ F and e(χ) 6∈ F . Define T ′ = e−1[F ]. Clearly, T ′ is a
theory, T ′ ⊇ T , and χ 6∈ T ′ and by Lemma 4.13 T ′ is ∇-prime.

Example 4.24. The standard infinite-valued  Lukasiewicz logic is strongly
disjunctive. Recall the logic  L introduced in Example 2.7 via the matrix
[0, 1] L. We define ϕ∨ψ as (ϕ→ ψ)→ ψ and easily compute that x∨[0,1] L y =
max{x, y}. Then clearly {1} is a ∨-prime filter and thus, by the previous
proposition, ∨ enjoys the PEP and the sPCP.

4.4. Proof by cases properties in protoalgebraic logics

In this subsection we restrict the scope of our study to protoalgebraic logics
in order to obtain stronger results. We start with the generalization of one
implication in [8, Theorem 2.5.17.] to all (not necessarily finitary) logics.

Theorem 4.25. Every protoalgebraic distributive logic is p-disjunctional.

Proof. We use Theorem 4.1 to show that there is weak a p-disjunction ∇;
Proposition 4.10 then completes the proof.

Let h be a surjective substitution. Let X be the set of theorems of L,
Y = h−1[X], M = 〈FmL, Y 〉, N = 〈FmL, X〉. Clearly h : M → N is
a strict surjective homomorphism. From [8, Theorem 1.1.8] we know that
h defined as h(F ) = h[F ] is an isomorphism from [Y,FmL] to Th(L).10

Now, we have the following chain of equalities for every Z: ThL(h[Z]) =
ThL(h[ThL(Y, Z)]) = h[ThL(Y,Z)] = h[Y ∨ThL(Z)] (the first equality is [8,
Lemma 0.8.4 (v)], the second follows from ThL(Y,Z) ∈ [Y,FmL], and the
last one is trivial).

Therefore we have: ThL(hp)∩ThL(hq) = h[Y ∨ThL(p)]∩h[Y ∨ThL(q)] =
h[(Y ∨ThL(p))∩(Y ∨ThL(q))] = h[Y ∨(ThL(p)∩ThL(q))] = ThL(h[ThL(p)∩
ThL(q)]) (we use the preceding observation, isomorphism of h, distributivity,
and the observation again).

This theorem together with Corollary 4.18 give us:

10This property (for all matrices) is in fact equivalent to protoalgebraicity of L.
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Corollary 4.26. Let L be a protoalgebraic logic satisfying the IPEP. If L
is distributive, then it is filter-framal.

This corollary allows us to obtain in the following theorem a generaliza-
tion from finitary to IPEP logics of: (1) the other implication in [8, Theo-
rem 2.5.17.], and (2) the transfer of distributivity [8, Theorem 2.5.24.].

Theorem 4.27 (Transfer of distributivity). Let L be a protoalgebraic logic
satisfying the IPEP. Then the following are equivalent:

1. L is filter-distributive,

2. L is distributive,

3. L is p-disjunctional.

Due to the fact that framal logics are distributive we can use Theo-
rem 4.25 together with Theorem 4.8 to obtain another important theorem,
which can be seen as a different generalization of the aforementioned theo-
rems from [8]. This time we need not restrict the scope to IPEP logics, but
we need to replace the used notions, distributivity and PCP, with the better
suited (and in IPEP logics equivalent) notions of framality and sPCP.

Theorem 4.28 (Transfer of framality). Let L be protoalgebraic logic. Then
the following are equivalent:

1. L is filter-framal,

2. L is framal,

3. L is strongly p-disjunctional.

We conclude this subsection with the proof of a transfer theorem for the
PCP when restricted to protoalgebraic logics. This interesting fact seems to
have surprisingly little consequences for the general theory. At least, it allows
us in the parameter-free case (using Proposition 4.23 and Lemma 4.15) to
generalize all the previous results in this subsection for IPEP logics to the
larger class of RFSI-complete logics (unfortunately we do not know if this
class is actually strictly larger). In the same fashion, Theorem 4.17 can also
be generalized to RFSI-complete logics.

Proposition 4.29 (Transfer of PCP). Let L be a protoalgebraic logic in a
countable language L. If ∇ has the PCP, then it has the τ -PCP.

Proof. This proof assumes some familiarity with properties of protoalge-
braic logics; in particular we utilize parameterized equivalence sets of for-
mulae denoted as ⇔. Let us fix an L-algebra A. To prove the non-trivial
inclusion we show that for each t /∈ Fi(X, a ∇A b) we have t /∈ Fi(X, a) or
t /∈ Fi(X, b). We distinguish two cases based on the cardinality of A.
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1) Firstly assume that |A| is countable.11 We can assume that the set
VAR of propositional variables contains (or is equal to) the set {vz | z ∈ A}.
Consider the following set of formulae:

Γ = {vz | z ∈ Fi(X, a∇Ab)} ∪
⋃

〈c,n〉∈L

{c(vz1 , . . . , vzn)⇔ vcA(z1,...,zn) | zi ∈ A}.

Clearly, Γ, va∇vb 0L vt (because 〈A,Fi(X, a∇A b)〉 ∈MOD(L) and for the
A-evaluation e(vz) = z we obtain e[Γ, va ∇ vb] ⊆ Fi(X, a∇A b) and e(vt) 6∈
Fi(X, a∇A b)). Thus by the PCP we have Γ, va 0L vt or Γ, vb 0L vt. Assume
(without loss of generality) the former case and denote T ′ = ThL(Γ, va).

We show that the mapping h : A → FmL/ΩT
′ defined as h(z) = [vz]T ′

is a homomorphism by a simple chain of equalities: h(cA(z1, . . . , zn)) =
[vcA(z1,...,zn)]T ′ = [c(vz1 , . . . , vzn)]T ′ = cFmL/ΩT

′
([vz1 ]T ′ , . . . , [vzn ]T ′) =

cFmL/ΩT
′
(h(z1), . . . , h(zn)). Thus F = h−1([T ′]) ∈ FiL(A) and, since

clearly X ∪ {a} ⊆ F and t 6∈ F , we have established that t /∈ Fi(X, a).
2) Secondly assume that A is uncountable. We introduce a new set of

propositional variables VAR′ = {vz | z ∈ A} which can be safely assumed
to contain the original set VAR. We define a new logic L′ in the language L′
which has the same connectives as L and atoms from VAR′. If we show that
this logic has the PCP, then we can repeat the constructions from the first
part of this proof. From our assumption we know that there is a presentation
AS of L such that each of its rules has countably many premises.

We define AS ′ = {σ[Σ] B σ(ϕ) | Σ B σ is an L′-substitution, ϕ ∈ AS}
and L′ = `AS′ . Observe that Γ `L′ ϕ iff there is a countable set Γ′ ⊆ Γ such
that Γ′ `L′ ϕ (clearly any proof in AS ′ has countably many leaves, because
all of its rules have countably many premises). Next observe that L′ is a
conservative expansion of L (consider the substitution σ sending all atoms
from VAR to themselves and the rest to a fixed p ∈ VAR, take any proof
of ϕ from Γ in AS ′ and observe that the same tree with labels ψ replaced
by σψ is a proof of ϕ from Γ in L).

We show that L′ has the PCP: assume Γ, ϕ `L′ χ and Γ, ψ `L′ χ. There
is a countable subset Γ′ ⊆ Γ such that Γ′, ϕ `L′ χ and Γ′, ψ `L′ χ. Con-
sider the set VAR0 of variables occurring in Γ′ ∪ {ϕ,ψ, χ} and a bijection
g on the set VAR′ such that the image of VAR0 is a subset of VAR
(such bijection clearly exists). Thus for the L′-substitution σ induced by g
there exists an inverse substitution σ−1 and σ[Γ′] ∪ {σϕ, σψ, σχ} ⊆ FmL.
Clearly also σ[Γ′], σϕ `L′ σχ and σ[Γ′], σψ `L′ σχ. Using the fact that L′

11In this proof we will, for simplicity, assume that the set VAR of propositional variables
is denumerable. The proofs for arbitrary infinite cardinalities would be analogous.
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expands L conservatively, we obtain σ[Γ′], σϕ `L σχ and σ[Γ′], σψ `L σχ.
From the PCP of L we know that σ[Γ′], σϕ ∇L σψ `L σχ and thus also
σ[Γ′], σϕ ∇L σψ `L′ σχ. Thus by structurality for the inverse substitution
σ−1 also Γ′, σ−1[σϕ∇L σψ] `L′ χ. Observe that σ−1[σϕ∇L σψ] ⊆ ϕ∇′L ψ
completes the proof (indeed χ ∈ σ−1[σϕ∇L σψ] if there is δ(p, q, ~r) ∈ ∇ and
a sequence α1, . . . , αn of L-formulae and χ = σ−1δ(σϕ, σψ, α1, . . . , αn), thus
χ = δ(ϕ,ψ, σ−1α1, . . . , σ

−1αn) and so clearly χ ∈ ϕ∇′L ψ).

5. Applications

5.1. Proof by cases properties in expansions of a given logic

We start by characterizing under which conditions the sPCP is preserved in
expansions of a given strongly p-disjunctional logic.

Theorem 5.1 (Preservation of sPCP). Let L1 be a logic in a language L1

with the sPCP, and L2 an expansion of L1 in a language L2 ⊇ L1 by a set C
of consecutions closed under L2-substitutions. Then L2 enjoys the sPCP iff
R∇ ⊆ L2 for each R ∈ C. In particular, the sPCP is preserved in axiomatic
expansions.

Proof. The left-to-right direction is a straightforward application of The-
orem 4.5. For the reverse direction take a presentation AS of L1. We know
that L2 has a presentation AS ′ = {σ[Γ] B σϕ | σ is an L2-substitution,
Γ B ϕ ∈ AS∪C}. Thus we need to prove that for each Γ B ϕ ∈ AS∪C and for
each L2-substitution σ we have (σ[Γ] B σϕ)∇ ⊆ L2, i.e. for each L2-formula
χ, each δ(p, q, r1, . . . , rn) ∈ ∇ and each sequence α1, . . . , αn of L2-formulae
we have σ[Γ]∇ χ `L2 δ(σϕ, χ, α1, . . . , αn). If Γ B ϕ ∈ C, this is the assump-
tion; we solve the remaining case.

Consider any enumeration of the propositional variables such that p0 = q,
pi = ri, and L1-substitutions ρ, ρ−1 and L2-substitution σ̄ defined as:

• ρpi = pi+n+1,

• ρ−1pi = pi−n−1 for i > n and pi otherwise,

• σ̄pi = σ(pi−n−1) for i > n, σ̄pi = αi for 1 ≤ i ≤ n and σ̄p0 = χ.

Observe that ρ−1ρψ = ψ and σ̄ρψ = σψ. From Γ B ϕ ∈ AS we know that
ρ[Γ] B ρϕ ∈ AS and because clearly (ρ[Γ] B ρϕ)∇ ⊆ L1 ⊆ L2 we obtain:
ρ[Γ] ∇ q `L2 δ(ρϕ, q, r1, . . . , rn). Thus σ̄[ρ[Γ] ∇ q] `L2 σ̄δ(ρϕ, q, r1, . . . , rn).
Obviously, σ̄δ(ρϕ, q, r1, . . . , rn) = δ(σϕ, χ, α1, . . . , αn), if we prove σ̄[ρ[Γ]∇q]
⊆ σ[Γ]∇ χ the proof is done. To show this it is enough to observe that the
formulae in σ̄[ρ[Γ]∇ q] are of the form δ′(σψ, χ, σ̄α1, . . . , σ̄αk) ∈ ∇ for some
ψ ∈ Γ, δ′(p, q, r1, . . . , rk) ∈ ∇ and a sequence of L2-formulae α1, . . . , αk.
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Analogous results can be shown for the preservation of fPCP and wPCP
in expansions by restricting the condition to finitary consecutions or con-
secutions with only one premise, respectively. This theorem together with
Lemma 2.8 and Corollary 4.16 give us:

Theorem 5.2 (Preservation of PEP). Let L′ be an axiomatic extension of
L. If L has the PEP then so has L′.

Observe that if we take a system of logics where ∇ has the sPCP, ∇ will
retain the sPCP in the intersection of the system. Also observe that, triv-
ially, any set ∇ has the sPCP in the inconsistent logic. Thus, the following
definition is sound:

Definition 5.3. Let L be a logic and ∇ a p-protodisjunction. We denote
by L∇ the least logic extending L where ∇ has the sPCP.

We sometimes refer to L∇ as the ∇-extension of L. The next proposition
shows that the ∇-extension of a finitary logic is finitary, and then we charac-
terize this logic both syntactically and semantically. Unfortunately in both
cases we need to restrict to parameter-free protodisjunctions; the question
whether this restriction can be omitted is left open.

Proposition 5.4. Let L be a finitary logic. Then L∇ is finitary and L∇ is
the intersection of all finitary extensions of L where ∇ has the sPCP.

Proof. Recall the notion of finitary companion of a logic S, denoted as
FC(S), which is the largest finitary logic contained in S. Thus, since L is
finitary, we know that L ⊆ FC(L∇) ⊆ L∇. If we show that ∇ has the sPCP
in FC(L∇), we obtain FC(L∇) = L∇ and hence L∇ is finitary. Actually, one
can easily show in general that if ∇ has the sPCP in S, then it has the sPCP
in FC(S) as well.

Proposition 5.5. Let L be a logic and ∇ a protodisjunction such that L∇

has the IPEP.12 Then:
L∇ = |=MODp

∇(L).

Proof. First observe that, since the notion of ∇-primality does not depend
on the logic, we have: MODp

∇(L) = MODp
∇(|=MODp

∇(L)). Then, due to

Propositions 4.23 and 4.14, ∇ has the sPCP in |=MODp
∇(L). From the as-

sumption that L∇ has the IPEP, Theorem 4.17, and Proposition 4.23 we
know that L∇ = |=MODp

∇(L∇). Since clearly MODp
∇(L∇) ⊆MODp

∇(L), we

have that |=MODp
∇(L) ⊆ L∇ and the proof is done.

12Note that, thanks to the previous proposition, L∇ has the IPEP whenever L is finitary.
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In the parameterized case we could only prove a weaker statement:

L∇ = (|=MODp
∇(L))

∇.

Theorem 5.6. Let L be a logic with a presentation AS and ∇ a protodis-
junction satisfying (C), (I), and (A). Then the logic L∇ is axiomatized by
AS ∪

⋃
{R∇ | R ∈ AS}.

Proof. Let L̂ denote the logic axiomatized by AS ∪
⋃
{R∇ | R ∈ AS} (this

set is closed under all substitutions because we assume ∇ to be parameter-
free). Clearly, for each R from this axiomatic system we have R∇ ⊆ L̂ (due
to Lemma 4.4 part 2), hence we can use Theorem 4.6 to obtain that L̂ has
the sPCP.

Let L′ be any logic with the sPCP extending L. Notice that for any
R ∈ AS we have both R ∈ L′ and R∇ ⊆ L′ (due to Theorem 4.5). Thus
clearly L̂ ⊆ L′.

Observe that we could relax some of the (C), (I), (A) conditions if we
would add them and their ∇-forms to obtain the axiomatization of L∇.

5.2. Axiomatization of positive universal classes

Let us recall that matrices can be regarded as first-order structures where
the filter corresponds to a unary predicate F , i.e. all atomic formulae in the
corresponding classical first-order language are of the form F (ϕ) where ϕ is
a formula. Recall that a positive clause C is a disjunction

∨
ϕ∈ΣC

F (ϕ) of
finitely many atomic formulae. A set of positive clauses C is said to be valid
in a matrix M = 〈A, F 〉, written as M |= C, if for each C ∈ C and each
M-evaluation e there is a ϕ ∈ ΣC such that e(ϕ) ∈ F . A positive universal
class of matrices is the collection of all models of a set of universal closures of
positive clauses.13 The next theorem presents an axiomatization, by means
of a p-disjunction, of any logic given by a positive universal class of (RFSI)
matrices.

Theorem 5.7. Let L be a logic with the IPEP, ∇ a p-disjunction, and C a
set of positive clauses. Then:

|={A∈MOD∗(L) | A|=C} = L +
⋃
{∇ψ∈ΣC

ψ | C ∈ C}.

13Positive universal classes are usually defined as the collection of all models of a set
of positive universal formulae, i.e. the universal closure of formulae build from atoms
using conjunction and disjunction. Clearly each formula of this kind can be written as the
universal closure of a conjunction of positive clauses and so its generated positive universal
class is just the positive universal class generated by the collection of these positive clauses.
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Proof. Let us first denote the set of formulae14 ∇ψ∈ΣC
ψ as C∇ and observe

that for each matrix A = 〈A, F 〉 we have: if A |= C, then |=A C∇. Moreover,
if F is ∇-prime, the reverse implication holds as well.

This observation, together with the fact that L+
⋃
{∇ψ∈ΣC

ψ | C ∈ C} is
complete w.r.t. ∇-prime matrices (this follows from Theorems 5.1 and 4.17,
Proposition 4.22 and Corollary 5.2) completes the proof.

Note that, in fact, we could have proved the following:

|={B∈MOD∗(L)RFSI | B|=C} = L +
⋃
{∇ψ∈ΣC

ψ | C ∈ C}.

This theorem generalizes and explicates [17, Corollary 3.4.] which was re-
stricted to the framework of extensions of the logic FL.

Corollary 5.8. Let L be a logic with the IPEP, ∇ a p-disjunction, and let
L1, L2 be axiomatic extensions of L by sets of axioms A1 and A2, respec-
tively. Without loss of generality we can assume that A1 and A2 are written
in disjoint sets of variables.15 Then:

L1 ∩ L2 = L +
⋃
{ϕ∇ ψ | ϕ ∈ A1, ψ ∈ A2}.

Proof. Recall that L1 ∩ L2 = |=MOD∗(L1)∪MOD∗(L2) and denote: A =
{F (ϕ)∨F (ψ) | ϕ ∈ A1, ψ ∈ A2}. If we show that MOD∗(L1)∪MOD∗(L2) =
{A ∈MOD∗(L) | A |= A}, the proof is done by Theorem 5.7.

One inclusion is trivial. We prove the converse one counterpositively:
consider A ∈ MOD∗(L) such that A /∈ MOD∗(L1) ∪ MOD∗(L2), i.e.
there is ϕi ∈ Ai such that 6|=A ϕi. Consider evaluations ei witnessing
these facts. Since ϕ1 and ϕ2 do not share any propositional variable, there
is an evaluation e witnessing both facts. This evaluation also shows that
A 6|= F (ϕ1) ∨ F (ϕ2).

5.3. Axiomatization of non-negative universal classes

In this subsection we extend the results of the previous one at the price
of restricting to finitary logics. A non-negative clause H is a formula (of

14The extension of ∇ from a binary constructor to an operator applied to finite sets is
well defined (as long as provability concerns) thanks to its associativity.

15To show this, let us fix an enumeration of propositional variables {pi | i ≤ |VAR|}
and define substitutions σ1pi = p2i and σ2pi = p2i+1. Clearly there are substitutions σ′i
such that σ′iσiϕ = ϕ. Thus for each set of axioms A holds: {σ[A] | σ is a substitution} =
{σ[σi[A]] | σ is a substitution} and so L + Ai = L + σi[Ai]. Clearly the set of variables
occurring in σ1[A1] and the set of those occurring in σ2[A2] are disjoint.
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classical predicate logic) of the form∧
ϕ∈ΓH

F (ϕ)→
∨

ψ∈ΣH

F (ψ)

where ΣH ,ΓH are finite sets of atomic formulae and ΣH is non-empty.
A set of non-negative clauses H is said to be valid in a matrix M =

〈A, F 〉, written as M |= H, if for H ∈ H and each M-evaluation e such that
e[ΓH ] ⊆ F there is some ϕ ∈ ΣH such that e(ϕ) ∈ F .

Theorem 5.9. Let L be a finitary logic, ∇ a p-protodisjunction, and H a
set of non-negative clauses. Then:

(|={B∈MOD∗(L) | B|=H})
∇ = (L +

⋃
{ΓH B ∇ψ∈ΣH

ψ | H ∈ H})∇.

Proof. Let us first denote the consecution ΓH B ∇ψ∈ΣH
ψ as H∇ and

observe that for each matrix A = 〈A, F 〉 we have: if A |= H, then ΓH |=A

∇ψ∈ΣH
ψ. Moreover, if F is ∇-prime, the reverse implication holds as well.

The first part of this observation tells us that

|={A∈MOD∗(L) | A|=H} ⊇ L +
⋃
{ΓH B ∇ψ∈ΣH

ψ | H ∈ H}.

Therefore, the same holds for their ∇-extensions. Next we use Proposi-
tion 5.4 to observe that the logic on the right-hand side is finitary and
so it has the PEP (Corollary 4.16). Thus by Proposition 4.22, this logic
is complete w.r.t. the class K of its reduced ∇-prime matrices. Clearly
K ⊆MODp

∇(L) and thus we can use the second part of the previous obser-
vation, to show that K ⊆ {A ∈MOD∗(L) | A |= H} and so

|={B∈MOD∗(L) | B|=H} ⊆ |=K = (L +
⋃
{ΓH B ∇ψ∈ΣH

ψ | H ∈ H})∇.

The rest of the proof is trivial.

Let R = Γ B ϕ and S = ∆ B ψ be consecutions. By R ∇ S we denote
the set of consecutions {Γ,∆ B χ | χ ∈ ϕ∇ ψ}.

Theorem 5.10. Let L be a finitary logic, ∇ a p-protodisjunction, and let
L1 and L2 be finitary extensions of L respectively obtained by adding sets
of finitary consecutions C1 and C2. Without loss of generality we can again
assume that C1 and C2 are written in disjoint sets of variables. Then:

(L1 ∩ L2)∇ = (L +
⋃
{R∇ S | R ∈ C1, S ∈ C2})∇.
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Proof. Recall that L1 ∩ L2 = |=MOD∗(L1)∪MOD∗(L2). If R = Γ B ϕ ∈ C1

and S = ∆ B ψ ∈ C2, we denote by R∨S denote the following non-negative
universal clause: ∧

χ∈Γ∪∆

F (χ)→ F (ϕ) ∨ F (ψ).

Finally, we define H = {R ∨ S | R ∈ C1, S ∈ C2}. If we show that
MOD∗(L1) ∪MOD∗(L2) = {B ∈ MOD∗(L) | B |= H}, the proof is done
by Theorem 5.9.

One inclusion is trivial. We prove the converse one counterpositively:
consider A ∈MOD∗(L) such that A /∈MOD∗(L1)∪MOD∗(L2), i.e. there
is Ri = Γi B ϕi ∈ Ci such that Γi 6|=A ϕi. Consider evaluations e1 and
e2 witnessing these facts. Since R1 and R2 do not share any propositional
variable, there is an evaluation e witnessing both facts. This evaluation also
shows that A 6|= R1 ∨R2.

Of course, if the intersection L1 ∩ L2 is p-disjunctional, what we obtain
is an axiomatization for this logic. If, in addition, L shares the p-disjunction
∇ with L1 ∩ L2, we obtain:

L1 ∩ L2 = L +
⋃
{(R∇ S)∇ | R ∈ C1, S ∈ C2}.
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