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Abstract. Mixed Multi-Unit Combinatorial Auctions (MMUCA) offer
a high potential to automate assembly of supply chains of agents of-
fering goods and services. Their winner determination problem (WDP)
is an NP-hard problem that can be mapped into an integer program.
Nonetheless, the computational cost of the current solution hinders the
application of MMUCAs to realistic scenarios. Here we propose a new
integer program for MMUCAs that severely simplifies the problem by
taking advantage of the topological characteristics of the WDP.

1 Introduction

According to [8], “Supply Chain Formation (SCF) is the process of determining
the participants in a supply chain, who will exchange what with whom, and
the terms of the exchanges”. Combinatorial Auctions (CAs) [3] are a negoti-
ation mechanism well suited to deal with complementarities among the goods
at trade. Since production technologies often have to deal with strong comple-
mentarities, SCF automation appears as a very promising application area for
CAs. However, whilst in CAs the complementarities can be simply represented
as relationships among goods, in SCF the complementarities involve not only
goods, but also transformations (production relationships) along several levels
of the supply chain.

The first attempt to deal with the SCF problem by means of Combinatorial
Auctions (CA) was done by Walsh et al. in [8]. In order to automate SCF, they
introduce the notion of task dependency network (TDN) as a way of capturing
complementarities among production processes. Although very significant, this
work does not allow bidders to express their preferences over bundles of produc-
tion processes; it does not define a bidding language; and the structure of the
supply chain has to fulfil strict criteria (e.g. acyclicity, processes can only pro-
duce one output good, etc). In order to overcome these drawbacks, Cerquides et
al. introduce in [1] the so-called mixed multi-unit combinatorial auctions (MMU-
CAs), a generalisation of the standard model of CAs. Rather than negotiating
over goods, in MMUCAs the auctioneer and the bidders can negotiate over trans-
formations, each one characterized by a set of input goods and a set of output
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goods. A bidder offering a transformation is willing to produce its output goods
after having received its input goods along with the payment specified in the
bid. While in standard combinatorial auctions, a solution to the winner determi-
nation problem (WDP) is a set of atomic bids to accept, in MMUCAs, the order
in which the auctioneer “uses” the accepted transformations matters. Thus, a
solution to the WDP is a sequence of transformations. For instance, if bidder
Joe offers to make dough if provided with butter and eggs, and bidder Lou offers
to bake a cake if provided with enough dough, the auctioneer can accept both
bids whenever he uses Joe’s transformation before Lou’s to obtain cakes.

Along the lines of [3], the WDP for MMUCAs can be solved by means of an
Integer Program (IP), as shown in [1]. While this provides a first algorithmic
solution to the WDP, in the IP proposed in [1] the number of variables grows
quadratically with the overall number of transformations mentioned in the bids.
Hence, such an IP hinders the application of MMUCAs.

Recent contributions on computationally efficient WDP solvers for different
auction types (namely, [3] for CAs, [6] for MMUCAs, and [4] for multi-attribute
double auctions) agree on and defend that a careful, formal analysis of the struc-
ture of WDPs can provide guidance for developing efficient winner determination
solvers. Along the lines of these works, in this paper we propose an IP for MMU-
CAs that dramatically improves the computational efficiency of the IP reported
in [1]. The search space reduction is achieved by enforcing MMUCA solutions to
fulfil a template. The template reduces the possible orderings among transforma-
tions without losing solutions. At this aim, we found our analysis on observing
the structure of the WDP that results after establishing dependence relationships
among transformations. For instance, in the example above, Lou’s transforma-
tion clearly depends on Joe’s: no dough, no cake! The analysis of the WDP based
on dependency relationships helps design an IP that a priori establishes when
to use each transformation.

Notice that the improvements that we propose in this paper are investi-
gated at the theoretical level (by showing a drastic reduction in the search space
due to a different problem representation). Empirical evidence of the reductions
achieved can be found in [7]. Therefore, we argue that our main contribution is
to make headway in the applicability of MMUCAs to SCF.

The paper is organised as follows. Section 2 summarises the work in [1] to
provide an introduction to the WDP for MMUCAs along with a description of
an IP solver. Section 3 introduces an improved version of the MMUCA WDP
IP solver in [1], the Connected Component Integer Program (CCIP). Finally,
section 4 draws some conclusions and outlines paths to future research.

2 MMUCA

In this section we firstly recall the notions of transformation and valuation over
transformations, and the notion of a bidding language to transmit an agent’s
valuation in a MMUCA. Secondly, in subsection 2.1 we recall the definition and
solution of the WDP for MMUCA.



Let G be the finite set of all the types of goods. A transformation is a pair of
multisets over G: (I,O) ∈ N

G×N
G. An agent offering the transformation (I,O)

declares that it can deliver O after having received I. Bidders can offer any num-
ber of such transformations, including several copies of the same transformation.
That is, agents can negotiate over bundles of transformations modelled as mul-

tisets D ∈ N
(NG

×N
G). For example, {(∅, {eggs}), ({dough}, {cake})} means that

the agent in question is able to deliver eggs (no input required) and that it is
able to deliver a cake if provided with dough.

An atomic bid Bidb = (Db, pb) = ({(I1,O1), . . . , (In,On)}, pb) specifies a
finite multiset of finite transformations Db , a price pb. Intuitively, Bidb means
that the agent is willing to make a payment of pb in return for being allocated
all the transformations in Db (in case pb is a negative number, this means that
the agent will accept the deal if it receives an amount of |pb|)

4. For instance,
({({butter , eggs}, {dough})},−20) means that the agent can produce dough for
$20 if given butter and eggs.

A suitable bidding language should allow a bidder to encode choices between
alternative bids and the like [3]. Regarding an IP solution to the WDP, the work
in [1] shows that the XOR-language is fully expressive for MMUCA, and then
restricts the bids received to be expressed in this language. Relying on such
results, we assume the same bidding language. However, it can be extended to
other bidding languages, in particular to include an OR operator.

2.1 A General IP for the WDP

The input to the WDP consists of a complex bid expression for each bidder, a
multiset Uin of goods the auctioneer holds to begin with, and a multiset Uout of
goods the auctioneer expects to end up with.

In standard combinatorial auctions, a solution to the WDP is a set of
atomic bids to accept. As to MMUCAs, however, the order in which the auc-
tioneer “uses” the accepted transformations matters. For instance, if the auc-
tioneer holds a to begin with, then checking whether accepting the two bids
Bid1 = ({a}, {b}, 10) and Bid2 = ({b}, {c}, 20) is feasible involves realising that
he has to use Bid1 before Bid2. Thus, a solution to the WDP will be a sequence
of transformations. A valid solution has to meet two conditions:
Bidder constraints: The multiset of transformations in the sequence has to re-
spect the bids submitted by the bidders. This is a standard requirement. For
instance, if a bidder submits an XOR-combination of transformations, at most
one of them may be accepted.

4 To make the semantics of such an atomic bid precise, we need to decide whether
we want to make a free disposal assumption. We can distinguish two types of free
disposal. As to free disposal at the bidder’s side, a bidder would always be prepared
to accept more goods and give fewer goods away, without requiring a change in
payment. As to free disposal at the auctioneer’s side, we only have good free disposal,
meaning that the auctioneer may accept more and give away fewer goods.



Auctioneer constraints: The sequence of transformations has to be imple-
mentable: (a) check that Uin is a superset of the input set of the first trans-
formation; (b) then update the set of goods held by the auctioneer after each
transformation and check that it is a superset of the input set of the next trans-
formation; (c) finally check that the set of items held by the auctioneer in the
end is a superset (the same set in the case of no good free disposal) of Uout.

An optimal solution is a valid solution that maximises the sum of prices
associated with the atomic bids selected.

Let B be the set of all atomic bids. An atomic bid b = (Db, pb) consists of a
multiset of transformations and a price. D is the multi-set of all the submitted
transformations. Then, the maximum length of the solution sequence is ℓ = |D|.
L is the set of bidders. Bl is the set of all bids submitted by bidder l ∈ L. For
each bid b, let Tb be the set of different transformations in Db and let tbk be a
unique label for each transformation in Tb (for some arbitrary but fixed ordering
of different transformations in Tb). Let (Ibk,Obk) be the actual transformation
labelled by tbk. Finally, let T =

⋃
b Tb be the set of all different tbk.

The auctioneer has to decide which transformations to accept and in which
order to implement them. Thus, we define a decision variable xm

bk ∈ {0, 1}, where
b ranges in {1, . . . , |B|}; for each b, k ranges in {1, . . . , |Tb|}; and m ranges in
{1, . . . , ℓ}. xm

bk takes on value 1 if the transformation tbk is selected at the mth
position of the solution sequence, and 0 otherwise. We also introduce the follow-
ing auxiliary decision variables: xb is a binary variable that takes value one if bid
b is accepted and xbk is an integer variable that represents the number of times
that transformation tbk appears in the solution sequence. Let (Im,Om) be the
mth transformation in the solution sequence, i.e. the tbk such that xm

bk = 1. Say
that we represent with the multiset of goods Mm the quantity of resources avail-
able to the auctioneer after performing m transformations. Since Uin represents
the auctioneer’s stock, we have that M0 = Uin. For the remaining positions, the
following relationship holds:

Mm(g) = Mm−1(g) + Om(g) − Im(g) ∀g ∈ G (1)

because enacting transformation (Im,Om) consumes the goods in Im and pro-
duces the goods in Om. For instance, say that the auctioneer begins with
Uin = {a, a, d, d}. If we apply the first transformation (I1,O1) = ({a, a}, {c})
(from two units of a produce one unit of c), the auctioneer ends up with
M1 = {c, d, d}.

Note that Im and Om can be assessed from our decision variables as:

Im(g) =
∑

b

∑

k

xm
bk · Ibk(g) ∀g ∈ G (2)

Om(g) =
∑

b

∑

k

xm
bk · Obk(g) ∀g ∈ G (3)

Hence, equation (1) can be unfolded into the equation:

Mm(g) = Uin(g) +
m∑

i=1

∑

b

∑

k

xi
bk · (Obk(g) − Ibk(g))



Now, we are ready to express as linear equations all the constraints that a
valid solution sequence must fulfil:

1. The variable xbk contains the number of times that tbk is selected in the
solution sequence.

xbk =
∑

m

xm
bk (∀b, k) (4)

2. At most one transformation is selected at each position of the solution se-
quence. ∑

b

∑

k

xm
bk ≤ 1 (∀m) (5)

3. Selecting at least one transformation within bid b implies selecting all the
transformations within the same bid, each with its corresponding multiplic-
ity.

xbk = xb · |Db|tbk
(∀b, k) (6)

where Db|tbk
is the multiplicity of transformation tbk in Db.

4. The atomic bids submitted by each bidder are mutually exclusive (XOR).

∑

b∈Bl

xb ≤ 1 (∀l ∈ L) (7)

5. We must ensure that all transformations have enough input goods available
at each position of the transformation sequence. This maps to the condition:

Mm−1(g) ≥ Im(g) ∀m,∀g

This can be expressed by means of our decision variables as:

Uin(g) +

m−1∑

i=1

∑

b

∑

k

xi
bk · (Obk(g) − Ibk(g)) ≥

∑

b

∑

k

xm
bk · Ibk(g) (∀g,m) (8)

6. After having performed all the selected transformations, the set of goods
held by the auctioneer must be a superset of the final goods.

Mℓ(g) ≥ Uout(g) (∀g ∈ G). (9)

In case of no free-disposal on the auctioneer’s side, substitute ≥ by =.

Therefore, solving the WDP for MMUCAs with XOR-bids amounts to maximis-
ing

∑
b∈B xb · pb, while fulfilling constraints in equations (4)–(9).

Finally, an optimal solution sequence is obtained from the solution of the
IP by making transformation tbk the mth element of the solution sequence iff
xm

bk = 1. Henceforth, we shall refer to this solver as Direct IP solver (DIP for
short).



The number of decision variables in the above integer program is of the order
of ℓ · |T | (corresponding to xm

bk). This represents a serious computational cost.
Thus, in what follows, we try to significantly reduce the number of variables (and
thus the search space) required to solve the problem by analysing the topology
of the WDP that results when putting together bids that yield dependency
relationships among transformations.
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Fig. 1. An MMUCA bid set, the corresponding TDG, SCC, and Order Relation.

3 Transformation dependency analysis

In this section we introduce CCIP, a mapping of the MMUCA WDP into a new
IP that substantially reduces the number of variables and constraints used by
DIP. Next we outline the intuitions underlying the improvement we propose,
followed by their rigorous description in the remaining subsections.

The WDP for standard CAs can be mapped into IP using a linear number
of variables. However, as to MMUCA, we need a quadratic number of variables,
following the DIP mapping. Since decision variable xm

bk means ”use the k-th
transformation of bid b at position m of the sequence” it is reasonable to think
that if we can reduce the number of positions at which each transformation can



be used, we will be able to reduce the number of decision variables. In what
follows we provide the rationale to achieve such reduction and to found CCIP.

Position 1 2 3 4 5 6 7 8 9 10 11

Seqn. 1 t0 t2 t1 t4

Seqn. 2 t0 t1 t2 t4

Seqn. 3 t2 t1 t0 t4

Solution

template
t0 t1

t2

t3

t4

t2

t3

t4

t2

t3

t4

t5 t9 t10
t6

t7

t6

t7
t8

Table 1. Partial sequences of transformations.

Consider that after receiving a bunch of bids, we draw the relationships
among goods and transformations, as shown in figure 1 (a). There, we represent
goods at trade as circles, transformations as squares, a transformation input
goods as incoming arrows and its output goods as outgoing arrows. Thus, for
instance, transformation t0 offers one unit of good g2 and transformation t2
transforms one unit of g2 into one unit of g4. Say that the auctioneer requires
Uout = {g2, g3}. Row 1 in table 1 stands for a valid solution sequence as obtained
by DIP. Indeed, it stands for a valid solution sequence because at each position,
enough input goods are available to perform the following transformation. Notice
too that likewise row 1, row 2 also stands for a valid solution sequence because
even though they differ in the ordering among transformations, both use exactly
the same transformations, and both have enough goods available at each posi-
tion. However, row 3 is not a valid sequence, although it contains the very same
transformations, because t2 lacks of enough input goods (g2) to be used.

Firstly, when looking for solutions, we wonder whether we can avoid consid-
ering re-orderings of the solution sequence such as the one in row 3. That would
largely reduce our search space. Secondly, since solutions at rows 1 and 2 are
equivalent to the auctioneer, he would be happy with any of the two. Therefore,
it is reasonable to pose whether we can constrain our search so that the number
of re-orderings of row 2 (and hence of solutions equivalent to the one at row 2)
that we consider is reduced.

Back to the example in figure 1 (a), it is clear that transformations that have
no input goods can be used prior to any other transformation. Thus, transfor-
mations t0 and t1 can come first in the solution sequence. Moreover, we can
impose that t0 comes before t1 because swapping the two would yield an equiv-
alent solution. If we now consider transformations t2, t3, t4, we observe that: (i)
they depend on the output goods of t0 and t1; and (ii) we cannot establish an
order among them because they form a cycle and then they can feed with input
goods one another (they depend on one another). However, any permutation of
the three could be valid for the solution sequence. Furthermore, whatever their
order, we can always use them before transformations t5 and t9 (since these
depend on g4) without losing solutions.

Assuming that the auctioneer does not care about the ordering of a solution
sequence as long as enough goods are available for every transformation in the
sequence, we can impose “a priori” constraints on the ordering of transforma-



tions without losing solutions. The way of imposing such constraints is via a
solution template, a pattern that any solution sequence must fulfil to be con-
sidered. For instance, row 4 in table 1 shows a sample of solution template. A
solution sequence fulfilling that template must have transformations t0 in po-
sition 1 and t1 in position 2, whereas it is free to assign positions 3, 4, or 5,
to the transformations in {t2, t3, t4}. Notice that the constraints in the solution
template derive from our analysis of the dependence relationships among trans-
formations. Hence, in order to build a solution template, we must firstly analyse
the dependence relationships among transformations to subsequently use them
to constrain the positions at which a transformation can be used.

Imposing constraints on the ordering of transformations drastically reduces
the number of decisions. Thus, while DIP must decide for every single transfor-
mation whether it occupies or not every possible position in the solution sequence
, a solution template constraints the positions each transformation can occupy.
For instance, according to row 4 in table 1, transformation t0 can only occupy
position 1 and transformation t2 can occupy either positions 3,4, or 5, but no
other. DIP would check whether t0 and t2 can occupy any of the eleven possible
positions in a solution sequence. For the example of figure 1, DIP would require
ℓ·|T | = 11∗11=121 decision variables, our new strategy (based on the analysis of
the structure of the search space) would require 19 decision variables. Therefore,
the search space is reduced from 2121 to 219 alternatives.

In what follows, we formally analyse how we can extend the intuitions above
to the general case in order to yield a new IP, the so called CCIP, by relying on
the notion of dependence among transformations, and using it to constrain the
positions at which a transformation can be used.

3.1 Transformation Dependencies and solution template

In this section, first we formally introduce the concept of dependency among
transformations. Next, we introduce a function that constrains transformations
to hold a limited number of positions within a solution sequence, that is, the
solution template.

Transformation Dependencies When solving the WDP, the auctioneer has
to decide which transformations to buy and in which order he should use them.
If he can a priori constrain the positions of transformations, he will reduce the
search space. In order to constrain the positions of transformations, we have to
formalise the concept of dependency among the transformations sent by bidders.
Our aim is to define a dependency relationship among transformations such that,
given two transformations t and t′, provides the following possibilities:

– If no dependency holds among t and t′ we can safely enforce any ordering
among t and t′ without losing solutions

– If t′ depends on t and t does not depend on t′ we can enforce t to appear
before t′ without losing solutions.

– If t′ depends on t and t depends on t′ we cannot enforce any ordering among
them.



In the following, we describe how this can be done analysing the input and output
goods of each transformation. We first define the transformation dependency
graph (TDG), a graph where two transformations t and t′ are connected by
an edge if they have a good that is both output of t and input to t′ (direct
dependence). After that, we say that a dependency relationship between two
transformations exists if there is a path that connects them in the TDG. That
is, a transformation t′ depends on another transformation t if t′ has an input
good that is also an output good of t (direct dependence) or if there is another
transformation t′′ such that t′ depends on t′′ and t′′ depends on t (indirect
dependence).

Definition 1. Given a set of bids in the XOR bidding language, the associated
Transformation Dependency Graph (TDG) is a graph TDG = (V,E) such that:

– Each transformation is a vertex: V = T ,
– A directed arc connects two transformations t and t′ iff there exists a good

that is both output of t and input to t′. More formally,

(t, t′) ∈ E ⇐⇒ Ot ∩ It′ 6= ∅

Figure 1(a) depicts an example of auction representing goods at trade as
circles, transformations as squares, a transformation input goods as incoming
arrows and its output goods as outgoing arrows. Figure 1 (b) depicts the TDG
for the bids represented in figure 1(a).

Depending on the received bids, the TDG may or may not contain cycles.
However, we have to assume that the graph is cyclic in the general case. In order
to constrain the position of transformations, we will transform the cyclic TDG in
an acyclic graph where the nodes that form a cycle are collapsed. The main idea
is that the transformations contained in a cycle have to be considered equivalent
(∼). In Fig. 1(b) we can see a TDG with cycles. In Fig. 1(c) we identify the cycles
(formally strongly connected components or SCCs5) in the graph. In Fig. 1(d)
we can see the graph resulting from transforming (collapsing) each SCC into a
node.

A (cyclic) graph defines a preorder . on T . We denote this preorder as a pair
(T,.). The semantics of the preorder is that t . t′ iff a path exists between t
and t′. Note that a preorder allows the existence of pairs t, t′ such that t . t′ and
t′ . t.Given a set T equipped with a preorder ., we can define an equivalence
relation ∼ on T as follows:

t ∼ t′ ⇐⇒ t . t′ ∧ t′ . t (10)

In our case t ∼ t′ means that t depends on t′ and t′ depends on t, This means
that the TDG has a cycle that contains t and t′. Hence, we will not be able to
constrain the order among them.

It is possible to define a strict partial order over the quotient set (T/∼,≺)
such that:

[t] ≺ [t′] ⇐⇒ t . t′ ∧ t 6. t′ (11)

5 Notice that [2] shows that the SCCs of a graph can be computed in time Θ(V + E).



Then, we say that t ≺ t′ if [t] ≺ [t′]. This means that t′ depends on t but not
vice versa. Hence, we can enforce that t is used before t′.

We are now ready to formally define the concept of dependence. We recall
that two transformations t, t′ can be such that: (1) t depends on t′ or t′ depends
on t but not both, or (2) t and t′ are mutually dependent; or (3) t and t′ do not
depend on one another. More formally, we can differentiate three cases:
t ≺ t′: t depends on t′. A one-way directed path between t and t′ exists in
the TDG. Then, all the transformations along the path connecting t to t′ can
contribute to increase the goods present in at least one of the inputs of t′. Hence,
t′ depends on their execution. For instance, in figure 1(a) we have that t5 depends
on t2. In this case we must enforce that t comes before t′ within the solution
sequence if we do not want to lose valid solutions.
t′ ∼ t: t and t′ are mutually dependent. There exist both a simple path between t
and t′ and one between t′ and t. Therefore, they are part of a simple cycle of the
TDG. For instance, in figure 1(a), we have that t2 ∼ t4. Obviously, we cannot
order them since the circularity of the relationship implies that they depend on
each other. In order to prevent the loss of valid solutions, we cannot reject any
of the two cases, t4 before t2 and t2 before t4 within a solution sequence.
t 6. t′ and t′ 6. t: no path exists among t and t′. The relative positions of t and
t′ within the solution sequence do not affect the validity of the solution in any
case. Then, it does not matter how t and t′ are planned in the solution. Thus,
we can randomly select the order between them.

Sequences with order In what follows we assume that T is a non-empty
finite set equipped with a preorder (T,.). Our aim is to assess the positions
to a-priori assign to transformations in such a way that the order established
by the TDG is not violated. We explained in section 3.1 that we have to make
sure that if a transformation t′ depends on a transformation t (that is t ≺ t′),
they must be assigned positions such that t comes before t′ in the sequence.
Thus, the first step is knowing the valid solutions that respect the strict order
imposed by (T/∼,≺). First, we illustrate the concept of partial sequence. A
partial sequence is a sequence with “holes”, meaning that there could be some
positions of the sequence that are empty. A solution to the MMUCA WDP can
be encoded as a partial sequence of transformations. After that, we define when a
partial sequence fulfils an order relationship. Then, we define an order enforcing
function as a template that, if fulfilled, guarantees the fulfilment of the order.
Finally, we show that we can construct an order enforcing function for every
strict order (T/∼,≺). These results pave the way for the construction of the new
IP formulation in section 3.2.

Definition 2. A Partial Sequence over a non-empty finite set T is a partial

function K : {1, . . . , n} → T , with n ∈ N.

Examples of partial sequences are in rows 1, 2, and 3 of table 1.
The fact the function is partial implies that some integers may not have an

image. Such integers are the holes in the sequence that we previously mentioned.
Now, we can define whether a partial sequence fulfils a strict order relationship.



Definition 3. We say that a partial sequence K over T fulfils the order relation
(T/∼,≺) if:

∀i, j ∈ dom(K) [K(i)] ≺ [K(j)] ⇒ i < j (12)

This definition formally states that a partial sequence K fulfils the order rela-
tionship ≺ only if the relative order among transformations within K does not
violate ≺. For instance, row 3 of table 1 does not fulfil the order relation defined
in figure 1(d), whereas row 2 does.

We mentioned at the beginning of this section that our aim is to build a tem-
plate that allows us to a-priori limit the set of positions that each transformation
can hold within a solution sequence in such a way that no solution is lost. This
is formally captured by the concept of T -bounded Order Enforcing Function

Definition 4. Given a strict order (T/∼,≺) and a a multi-set T ∈ N
T , a T -

bounded Order Enforcing Function S : {1, . . . , |T |} → T/∼ is a sequence of
equivalence classes satisfying the following constraints:

S(i) ≺ S(j) ⇒ i < j (13)

|S|[t] =
∑

t′∈[t]

|T |t′ ∀[t] ∈ T/∼ (14)

where |S|[t] is the number of times the equivalence class [t] appears in the sequence
S. Henceforth, S will denote a T -bounded order enforcing function for (T/∼,≺).

A T -bounded order enforcing function S limits the possible positions that the
elements of each equivalence class can hold. Those positions are such that the
strict order (T/∼,≺) is fulfilled. Analogously, S assigns to each equivalence class
a set of allowed positions within a solution sequence. For instance, row 3 of table
1 does not fulfil the template in row 4, whereas row 2 does.

Equation 13 guarantees that any partial sequence that fulfils S fulfils the or-
der relationship (T/∼,≺). Equation 14 ensures that enough positions are avail-
able to an equivalence class [t] (for instance, if three units of transformation t0
are offered, three positions must be allowed to t0). Notice that there is no over-
lapping among the positions assigned to different equivalence classes in virtue of
equation 13.

We employ S−1 to indicate the inverse of an enforcing function S. S−1([t])
indicates the set of integers that map to the equivalence class [t] via S. More
formally:

S−1([t]) = {m ∈ {1, . . . , |T |} | S(m) = [t]}

The following lemma guarantees that, for any order relationship arising from a
set of bids, we can construct an order enforcing function.

Lemma 1. Given a strict order (T/∼,≺) and a multi-set T ∈ N
T such that

∀t |T |t ≥ 1, at least a T -bounded order enforcing function S exists.



Its proof can be found in [5]. This lemma means that if we have a strict order
among transformations, we can always construct an order enforcing function
that restricts the positions that can be assigned to those transformations in a
way that, if the order enforcing function is fulfilled, so will be the strict order.
In the next section we will use it to construct a function that constrains the
positions where transformations can be used, imposing the strict ordering ≺
that was defined in the section 3.1.

3.2 Connected component IP solver

The aim of this section is to introduce a new IP that improves solver DIP. We
call the improved solver, described in the remaining of this section, solver CCIP.
We simplify DIP in two ways: (1) we get rid of a set of IP constraints, following
a method similar to the one proposed in [6]; and (2) we reduce the number of
decision variables (the associated search space) and simplify the constraints by
considering as possible solutions only partial sequences fulfilling a D-bounded
order enforcing function S and exclude all other solutions. With this aim, we
employ the order enforcing function resulting from applying lemma 1 to the
order generated by the TDG. In section 3.2 we detail how to remove or simplify
some constraints, and finally, in section 3.2, we introduce the IP formulation of
solver CCIP.

Reducing the number of constraints In DIP equation 8 is applied at each
position m of the solution sequence to check that enough input goods are present
to perform the transformation assigned to position m. Analogously, recall that
equation 9 states that at the end of the sequence at least Uout goods are available
to the auctioneer.

The combination of those two constraints plus restricting the positions trans-
formations can hold makes some of those constraints redundant. In particular,
we can get rid of constraint 8 at each position m where none of the transforma-
tions assigned to position m belong to any cycle of the graph. This can be seen
as a refinement of the technique employed in [6].

Intuitively, equation 9 is a global condition enforcing that at the end of the
sequence the global input-output balance at each good of the net in figure 1(a)
is positive. On the other hand, equation 8 is local to each position, and enforces
that enough input goods are present at each position. If the transformation
assigned to position m does not belong to a cycle, the local condition is implied
by the global one.

Notice that, by definition, each time an equivalence class contains n > 1
transformations, each transformation in the equivalence class belongs to a simple
cycle of length n. However, when the equivalence class contains a single transfor-
mation, the constraint in equation 9 will only be included if the transformation
depends on itself (self-loop).

Detailed IP formulation In this section we employ the same notation as in
section 2.1.We represent each solution with a partial sequence J : {1, . . . , |D|} →
T . We employ decision variables similar to the ones employed for solver DIP : xm

bk



will take on value 1 only if transformation tbk is selected at the m-th position
within the solution sequence (i.e. J(m) = tbk). Let S be the order enforcing
function resulting from applying lemma 1 to the order generated by the TDG. In
CCIP solver, we only allow as solutions partial sequences fulfilling S, imposing
that no transformation can hold positions out of the one specified by S, i.e.
xm

bk = 0 ∀m 6∈ S−1([tbk]). By means of this operation we manage to drastically
reduce the number of decision variables and the complexity of the constraints.

Next, analogously to section 2.1, we employ the following auxiliary decision
variables. First, xb is a binary variable that takes value one if bid Bidb is ac-
cepted. Furthermore, xbk is an integer variable that represents the number of
positions that transformation tbk holds in the solution sequence.

In what follows we explicitly state the constraints that a valid solution has
to fulfil in solver CCIP. Those constraints correspond to equations (4) to (9).

1. xbk is obtained by summing up xm
bk over the positions m assigned to [tbk]

(S−1([tbk])):

xbk =
∑

m∈S−1([tbk])

xm
bk ∀b ∀k (15)

because we can remove from equation (4) decision variables xm
bk for all m 6∈

S−1([tbk]).

2. We are interested in that at most one transformation can hold each position:

∑

tbk∈S(m)

xm
bk ≤ 1 ∀m (16)

Notice that the sum is only over the transformations of a single equivalence
class6.

3. We impose the cardinality semantics of a combinatorial bid b:

xbk = xb · |Db|tbk
∀b ∈ B ∀k ∈ {1, . . . , |Db|} (17)

4. We impose that the XOR semantics of a bid:

∑

b∈Bl

xb ≤ 1 ∀l ∈ L (18)

5. We enforce that enough goods are available to use the corresponding trans-
formations at each position of the solution sequence. As argued in section
3.2, equation 19 must be added only if the transformations assigned to po-
sitions m belong to a simple cycle. We define the set LF of positions m
where the equation must be added as m ∈ LF iff the transformations in the

6 The constraints in equation 16 enforce that the solution is a partial sequence, that
is no more than one transformation can be assigned to the same position of the
sequence.



equivalence class S(m) belong to a simple cycle. Now we can impose:

U0(g) +
m−1∑

l=0

∑

tbk∈S(l)

xl
bk · [Obk(g) − Ibk(g)] ≥

∑

tbk∈S(m)

xm
bk · Ibk(g) ∀g,∀m ∈ LF (19)

6. We enforce that the goods available to the auctioneer at the end of the
solution sequence is at least Uout:

U0(g) +
∑

m

∑

tbk∈S(m)

xm
bk · [Obk(g) − Ibk(g)] ≥ Uout(g) ∀g (20)

Hence, solving the MMUCA WDP is equivalent to optimise the objective
function:

max
∑

b

xb · pb (21)

subject to constraints 15 to 20.
The number of decision variables in the above integer program is V CCIP =∑

q∈T/∼

|q||D|q where |q| is the number of different transformations in the equiv-

alence class q and |D|q is the number of different copies in D of transformations
that belong to q. Hence, whereas in DIP the number of variables is given by the
number of transformations (being equal to ℓ|T |) in CCIP they depend on the
topology of transformations in the specific problem we try to solve. However, it
is easy to see that ℓ ≤ V CCIP ≤ ℓ|T |.

3.3 The Proof of Equivalence

We argued at the beginning of section 3 that if we assume ordering not to be
relevant as long as the sequence is enabled, we can say that DIP generates re-
dundant equivalent solutions. Next, in section 3.2 we introduced a solver that
finds a subset of those solutions: the solutions fulfilling the order enforcing func-
tion provided by the TDG. Thus, in order to prove that no solution is missed
by CCIP we have to show that any solution that solver DIP can find can be
reordered into a solution of solver CCIP.

Furthermore, we have to check that the other way around is also true. That
is, we have to make sure that solver CCIP does not introduce new solutions that
are not solution to solver DIP. More formally, we have to prove that:

1. Corollary 1. Any solution found by solver DIP can be reordered into a
solution to solver CCIP.

2. Corollary 2. Any solution found by solver CCIP is a solution to solver
DIP.

The proof of these two corollaries is very simple if we have previously demon-
strated that:



1. Theorem 1. Given a partial sequence H, solution to solver DIP, any S-
fulfilling reordering J of H fulfils all the constraints of solver CCIP.

2. Theorem 2. Given a partial sequence J , solution to solver CCIP, it fulfils
all the constraints of DIP.

The proof of theorems 1 and 2 and corollaries 1 and 2 can be found in [5].

4 Conclusions

MMUCAs offer a high potential to be employexsd for the automated assembly of
supply chains of agents. However, in order for MMUCAs to be effectively applied
to SCF, we must ensure computational tractability while preserving optimality.
In the IP proposed in [1] the number of variables grows quadratically with the
number of transformations mentioned in the bids, thus limiting the application
of MMUCAs to SCF. In this paper we have proposed an IP, CCIP, for MMUCAs
that dramatically improves the computational efficiency of the IP reported in
[1] by taking advantage of the topological characteristics of the WDP. At this
aim, we have founded our analysis on observing the structure of the WDP that
results after establishing dependence relationships among transformations. We
have proved that CCIP brings a drastic reduction of the search space to be
explored (decision variables) to solve the WDP. The interested reader can find
empirical evidence of the reductions achieved in [7].
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