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1. INTRODUCTION

Nominal terms were introduced by Urban et al. [Urban et al. 2003; 2004], and are
based on nominal sets semantics [Gabbay and Pitts 1999; Pitts 2001; Gabbay and
Pitts 2001; Pitts 2003]. They are characterized by a syntactic distinction between
atoms (that roughly correspond to the notion of bound variables) and variables (that
would correspond to free variables). Hence, binders can only bind atoms and only vari-
ables can be instantiated. These first works have inspired a sequel of papers where
bindings and freshness are introduced in other areas, like nominal algebra [Gabbay
and Mathijssen 2006; 2007; 2009], equational logic [Clouston and Pitts 2007], rewrit-
ing [Fernández and Gabbay 2005; 2007], unification [Urban et al. 2003; 2004], and
Prolog [Cheney and Urban 2004; Urban and Cheney 2005].

This paper is concerned with Nominal Unification, the problem of deciding if two
nominal terms can be made α-equivalent by instantiating their variables by nomi-
nal terms. In these instantiations of variables, it is allowed to capture atoms. Urban
et al. [2003; 2004] describe a sound and complete, but inefficient (exponential), algo-
rithm for nominal unification. Fernández and Gabbay [2005] extend this algorithm
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A:2 J. Levy and M. Villaret

to deal with the new-quantifier and locality. Nominal Logic’s equivariance property
suggested to Cheney [2005a] a stronger form of unification called equivariant unifi-
cation. He proves that equivariant unification and matching are NP-hard problems.
Another variant of nominal unification is permissive unification, defined by Dowek
et al. [2009; 2010], that is also reducible to Higher-Order Pattern Unification. Calvès
and Fernández [2007] describe a direct but exponential implementation of a nominal
unification algorithm in Maude, and in [Calvès and Fernández 2008] a polynomial im-
plementation, based on a graph representation of terms, and a lazy propagation of
swappings.
Levy and Villaret [2008] prove that Nominal Unification can be quadratically re-

duced to Higher-Order Pattern Unification. The present paper is an extension of this
preliminary paper, where we have simplified the reduction by removing freshness
equations (Section 4), and we have included the proof of some important properties
of pattern unifiers (Section 6). In particular, we prove that most general higher-order
pattern unifiers can be written without using other bound-variable names than the
ones used in the presentation of the unification problem. Moreover, we establish a pre-
cise correspondence between most general nominal unifiers and most general pattern
unifiers (Section 8). In fact, Sections 4, 6 and 8 are completely new in this extended ver-
sion. Recently, Calvès [2010], and Levy and Villaret [2010] have independently found a
quadratic nominal unification algorithms based on the Paterson and Wegman’s linear
first-order unification algorithm [Paterson and Wegman 1978].

The use of α-equivalence and binders in nominal terms immediately suggests to look
at nominal unification from a higher-order perspective, the one that we adopt in this
paper. Some intuitions about this relation were already roughly described by Urban
et al. [2004]. Cheney [2005b] reduces higher-order pattern unification to nominal uni-
fication (here we prove the opposite reduction).
The main benefit of nominal terms, compared to lambda-terms, is that they allow

the use of binding and α-equivalence without the other difficulties associated with
the λ-calculus, like the β and η equivalence. In particular, with respect to unification,
we have that nominal unification is unitary (most general unifiers are unique) and
decidable [Urban et al. 2003; 2004], whereas higher-order unification is undecidable
and infinitary [Lucchesi 1972; Goldfarb 1981; Levy 1998; Levy and Veanes 2000; Levy
and Villaret 2009].
In this paper we fully develop the study of nominal unification from a higher-order

view. We show that full higher-order unification is not needed, and Higher-order Pat-
tern Unification suffices to encode Nominal Unification. This subclass of problems was
introduced by Miller [1991]. Contrarily to general higher-order unification, higher-
order pattern unification is decidable and unitary [Miller 1991; Nipkow 1993].
From a higher-order perspective, nominal unification can be seen as a variant of

higher-order unification where:

(1) variables are all first-order typed, and constants are of order at most three,
(2) unification is performed modulo α-equivalence, instead of the usual α and β-

equivalence,
(3) instantiations for variables are allowed to capture atoms, contrarily to the stan-

dard higher-order definition of capture-avoiding substitution, and
(4) apart from the usual equality predicate, we use a freshness predicate a# t with the

intended meaning: the atom a does not occur free in t.

The third point is the key that makes nominal unification an interesting subject
of research. Variable capture is always a trouble spot. Roughly speaking, the main
idea of this paper is to translate atoms into bound variables, and variables into free
variables with the list of atoms that they can capture as arguments. The first point
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will ensure that, since variables do not have parameters, after translation, the only
arguments of free variables will be list of pairwise distinct bound variables, hence
higher-order patterns. Moreover, since bound variables will be first-order typed, and
constants third-order typed, the translated problems will be second-order patterns.
The second point is not a difficulty. Since all nominal variables are first-order typed,
their instantiation does not introduce β-redexes. Finally, the fourth point can also be
overcome by translating freshness equations into equality equations, as described in
Section 4.

The remainder of the paper proceeds as follows. After some preliminaries in Sec-
tion 2, in Section 3 we illustrate by examples the main ideas of the reduction at the
same time that we show the main features of nominal unification. In Section 4, we
prove that freshness equations can be linearly translated into equality equations. In
Section 5, we show how to translate a nominal unification problem into a higher-order
patterns unification problem. Then, after proving some properties of Higher-Order Pat-
tern Unification in Section 6, we prove that this translation is effectively a quadratic
time reduction, in Section 7. In Section 8, we establish a correspondence between nom-
inal unifiers and pattern unifiers of the translated problems. In particular, we prove
that the translation function and its inverse are monotone w.r.t. the more general rela-
tion, and both translate most general unifiers into most general unifiers. We conclude
in Section 9.

2. PRELIMINARIES

In this section we present some basic definitions of Nominal Unification and Higher-
Order Pattern Unification. We will use two distinct typographic fonts to represent nom-
inal terms and lambda-terms.

2.1. Nominal Unification

Nominal terms contain variables and atoms. Only variables may be instantiated, and
only atoms may be bound. They roughly correspond to the notions of free and bound
variables in λ-calculus, respectively, but are considered as completely different entities.
However, atoms are not necessarily bound, and when they occur free, they are not
instantiable.

In the following we introduce some basic definitions of nominal unification, they are
imported from [Urban et al. 2003; 2004]. In nominal signatures we have sorts of atoms
(typically ν) and sorts of data (typically δ) as disjoint sets. Atoms (typically a, b, . . .) have
one of the sorts of atoms. Variables, also called unknowns, (typically X,Y, . . .) have a
sort of atom or sort of data, i.e. of the form ν | δ. Function symbols (typically f, g, . . .)
have an arity of the form τ1 × · · · × τn → δ, where δ is a sort of data and τi are sorts
given by the grammar τ ::= ν | δ | 〈ν〉τ . Abstractions have sorts of the form 〈ν〉τ .

Nominal terms (typically t, u, . . .) are given by the grammar:

t ::= f(t1, . . . , tn) | a | a.t |π ·X

where f is a n-ary function symbol, a is an atom, π is a permutation (finite list of swap-
pings), and X is a variable. They are called respectively application, atom, abstraction
and suspension. The set of variables of a term t is denoted by Vars(t).

A swapping (a b) is a pair of atoms of the same sort. The effect of a swapping over an
atom is defined by (a b)·a = b and (a b)·b = a and (a b)·c = c, when c 6= a, b. For the rest
of terms the extension is straightforward, in particular, (a b)·(c.t) =

(

(a b)·c
)

.
(

(a b)·t
)

.
A permutation is a (possibly empty) sequence of swappings. Its effect is defined in-

ductively by (a1 b1) . . . (an bn)·t = (a1 b1)·
(

(a2 b2) . . . (an bn)·t
)

. Notice that every permuta-
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tion π naturally defines a bijective function from the set of atoms to the sets of atoms,
that we will also represent as π.

Suspensions are variables with a permutation of atoms waiting to be applied once
the variable is instantiated. Occurrences of an atom a are said to be bound if they are
in the scope of an abstraction of a, otherwise are said to be free.

Substitutions are finite sets of pairs [X1 7→ t1, . . . ,Xn 7→ tn] where Xi and ti have the
same sort, and the Xi are pairwise distinct variables. They can be extended to sort-
respecting functions between terms, and behave like in first-order terms, hence allow-
ing atom capture (see [Urban et al. 2004]). For instance [X 7→ a]a.X = a.a. Remember
that when applying a substitution to a suspension, the permutation is immediately
applied, for instance

[X 7→ g(a)]f
(

(a b)·X,X
)

= f
(

(a b)·g(a), g(a)
)

= f
(

g((a b)·a), g(a)
)

= f
(

g(b), g(a)
)

The domain of a substitution σ = [X1 7→ t1, . . . ,Xn 7→ tn] is Dom(σ) = {X1, . . . ,Xn}.
For convenience we consider Dom([X 7→ X]) = {X} 6= {Y} = Dom([Y 7→ Y]), although
both substitutions have the same effect when applied to any term.1 Composition of
substitutions is defined by σ1 ◦ σ2 = [X 7→ σ1(σ2(X)) | X ∈ Dom(σ1) ∪ Dom(σ2)]. The
restriction of a substitution σ to a set of variables V, written σ|V, is defined as σ|V =
[X 7→ σ(X) | X ∈ V].
A freshness environment (typically ∇) is a list of freshness constraints a#X stating

that the instantiation of X cannot contain free occurrences of a.
The notion of α-equivalence between terms, written ≈, is defined by means of the

following theory:

∇ ⊢ a ≈ a
(≈-atom)

a#X ∈ ∇ for all a such that π ·a 6= π′ ·a

∇ ⊢ π · X ≈ π′ · X
(≈-susp.)

∇ ⊢ t1 ≈ t′1 · · · ∇ ⊢ tn ≈ t′n

∇ ⊢ f(t1, . . . , tn) ≈ f(t′1, . . . , t
′
n)

(≈-application)

∇ ⊢ t ≈ t′

∇ ⊢ a.t ≈ a.t′
(≈-abst-1)

a 6= a′ ∇ ⊢ t ≈ (a a′)·t′ ∇ ⊢ a#t′

∇ ⊢ a.t ≈ a′.t′
(≈-abst-2)

where the freshness predicate # is defined by:

a 6= a′

∇ ⊢ a#a′
(#-atom)

(π−1 ·a#X) ∈ ∇

∇ ⊢ a#π · X
(#-susp.)

∇ ⊢ a#t1 · · · ∇ ⊢ a#tn

∇ ⊢ a#f(t1, . . . , tn)
(#-application)

∇ ⊢ a#a.t
(#-abst-1)

a 6= a′ ∇ ⊢ a#t

∇ ⊢ a#a′.t
(#-abst-2)

Their intended meanings are:

1We have adopted this definition motivated by Remark 5.8.
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—∇ ⊢ a# t holds if, for every substitution σ respecting the freshness environment ∇
(i.e. avoiding the atom captures forbidden by ∇), a is not free in σ(t);

—∇ ⊢ t ≈ u holds if, for every substitution σ respecting the freshness environment ∇,
t and u are α-equivalent.

A nominal unification problem (typically P) is a set of equations of the form t
?

≈ u, or
of the form a#?t, called equality equations and freshness equations, respectively.

A solution or unifier of a nominal problem P is a pair 〈∇, σ〉 satisfying ∇ ⊢ a#σ(t),
for all freshness equations a#?t ∈ P, and ∇ ⊢ σ(t) ≈ σ(u), for all equality equations

t
?

≈ u ∈ P. Later, in Section 5, we will also require solutions to satisfyDom(σ) = Vars(P).
In Remark 5.8 we justify why this does not affect to solvability of nominal problems.
Given two substitutions σ1 and σ2, and two freshness environments ∇1 and ∇2, we

say that ∇2 ⊢ σ1(∇1), if ∇2 ⊢ a#σ1(X) holds for each a#X ∈ ∇1; and we say that
∇1 ⊢ σ1 ≈ σ2, if ∇1 ⊢ σ1(X) ≈ σ2(X) holds for all X ∈ Dom(σ1) ∪ Dom(σ2). Given a
nominal unification problem P, we say that a solution 〈∇1, σ1〉 is more general than
another solution 〈∇2, σ2〉, if there exists a substitution σ′ satisfying ∇2 ⊢ σ′(∇1) and
∇2 ⊢ σ′ ◦ σ1|Dom(σ1)∪Dom(σ2) ≈ σ2. As usual, we say that a solution σ is most general if,
for any other solution σ′ more general than σ, we have also that σ is also more general
than σ′. Most general nominal unifiers are unique, in the usual sense: if σ1 and σ2 are
both most general, then σ1 is more general than σ2, and vice versa.

Example 2.1. The solutions of the equation a.X
?

≈ b.Y can not instantiate X with
terms containing free occurrences of the atom b, for instance if we apply the substi-
tution [X 7→ b] to both sides of the equation we get [X 7→ b](a.X) = a.b, for the left

hand side, and [X 7→ b](b.Y) = b.Y, for the right hand side, and obviously a.b
?

≈ b.Y is
unsolvable.

A most general solution of this equation is 〈{b#X},Y 7→ (a b) ·X]〉. Another most
general solution is 〈{a#Y}, [X 7→ (a b) ·Y]〉. Notice that the first unifier is equal to the
second composed with σ′ = [Y 7→ (a b) · X], hence the second one is more general than
the first one. Similarly, the first one is more general that the second one. Hence, both
are equivalent.

2.2. Higher-Order Pattern Unification

In the following we introduce some basic definitions of higher-order pattern unifica-
tion. These definitions can also be found in [Nipkow 1993; Dowek 2001]. In higher-
order signatures we have types constructed from a set of basic types (typically δ, ν, . . .)
using the grammar τ ::= δ | ν | τ → τ , where → is associative to the right. Variables
(typicallyX,Y, Z, x, y, z, a, b, . . .) and constants (typically f, c, . . .) have an assigned type.

λ-terms are built using the grammar

t ::= x | c |λx.t | t1 t2

where x is a variable and c is a constant, and are typed as usual. For convenience,
terms of the form (. . . (a t1) . . . tn), where a is a constant or a variable, will be written
as a(t1, . . . , tn), and terms of the form λx1. · · · .λxn.t as λx1, . . . , xn.t. We use ~x as a
short-hand for x1, . . . , xn. If nothing is said, terms are assumed to be written in η-
long β-normal form. Therefore, all terms have the form λx1. . . . .λxn.h(t1, . . . , tm), where
m,n ≥ 0, h is either a constant or a variable, t1, . . . , tm have also this form, and the term
h(t1, . . . , tm) has a basic type.

Other standard notions of the simply typed λ-calculus, like bound and free occur-
rences of variables, α-conversion, β-reduction, η-long β-normal form, etc. are defined
as usual (see [Dowek 2001]). We will write free occurrences of variables with capital
letters X,Y, . . ., for the sake of readability. The set of free variables of a term t is de-
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noted by Vars(t). When we write an equality between two λ-terms, we mean that they
are equivalent modulo α, β and η equivalence. When we write an equality =α, we mean
that they are α-equivalent.
Substitutions are also finite sets of pairs σ = [X1 7→ t1, . . . , Xn 7→ tn] where Xi and ti

have the same type and theXi are pairwise distinct variables. They can be extended to
type preserving function from terms to terms as usual. We say that a substitution σ1 is
more general than another substitution σ2, if there exists a substitution σ′ satisfying
σ′ ◦ σ1(X) = σ2(X), for all X ∈ Dom(σ1) ∪Dom(σ2). We say that a variable X occurs in
a substitution σ, if X ∈ Vars(σ(Y )), for some Y ∈ Dom(σ).

A higher-order unification problem is a finite set of equations P = {t1
?= u1, . . . , tn

?=
un}, where ti and ui have the same type. A solution or unifier of a unification problem

P is a substitution σ satisfying σ(t) = σ(u), for all equations t ?= u ∈ P . We say that a
unifier σ is most general if, for any other unifier σ′ more general than σ, we have σ is
also more general than σ′.
A higher-order pattern is a λ-term where, when written in βη-normal form, all

free variable occurrences are applied to lists of pairwise distinct bound variables.
For instance, λx.f(X(x), Y ), f(c, λx.x) and λx.λy.X(λz.x(z), y) are patterns, while
λx.f(X(X(x)), Y ), f(X(c), c) and λx.λy.X(x, x) are not. Notice that, since λz.x(z) is
equivalent to x, the parameters of X(λz.x(z), y) are considered a list of pairwise dis-
tinct bound variables.
Higher-order pattern unification is the problem of deciding if there exists a unifier

for a set of equations between higher-order patterns. Like in nominal unification, most
general pattern unifiers are unique. Moreover, most general unifiers instantiate vari-
ables by higher-order patterns.
The following is a set of rules defining Nipkow’s algorithm [Nipkow 1993] that com-

putes, when it exists, the most general unifier of a pattern unification problem.

λx.s ?= λx.t → 〈{s ?= t}, [ ]〉

a(t1, . . . , tn)
?= a(u1, . . . , un) → 〈{t1

?= u1, . . . , tn
?= un}, [ ]〉

where a is a constant or bound variable

Y (~x) ?= a(u1, . . . , um) → 〈 {Y1(~x)
?= u1, . . . , Ym(~x) ?= um},

[Y 7→ λ~x.a(Y1(~x), . . . , Ym(~x))] 〉
where Y 6∈ FV(u1, . . . , um)
and a is a constant or a ∈ {~x}

X(~x) ?= X(~y) → 〈∅, [X 7→ λ~x.Z(~z)]〉
where {~z} = {xi |xi = yi}

X(~x) ?= Y (~y) → 〈∅, [X 7→ λ~x.Z(~z), Y 7→ λ~y.Z(~z)]〉
where X 6= Y and {~z} = {~x} ∩ {~y}

The rules transform any equation into a pair 〈set of equations, substitution〉. The
algorithm proceeds by replacing the equation on the left of the rule by the set of equa-
tions on the right. The substitution is applied to the new set of equations, and used
to, step by step, construct the unifier. Therefore, any rule of the form t ?= u → 〈E, ρ〉
produces a transformation of the form

〈P ∪ {t ?= u}, σ〉 ⇒ 〈ρ(P ) ∪ E, ρ ◦ σ〉

The algorithm starts with the pair 〈P, Id〉 and, if P is solvable, finishes with 〈∅, σ〉,
where σ with domain restricted to FV(P ) is the most general unifier [Nipkow 1993,
Theorem 3.1].
In the first rule the binder can be removed because, in Nipkow’s presentation, free

and bound variable names are assumed to be from distinct sets, and can be distin-
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guished. The equations on the right of the second rule may not be normalized, i.e. the
term λ~x.Yi(x1, . . . , xn) may require an η-expansion when ui is not base typed.

3. FOUR EXAMPLES

In order to describe the reduction of nominal unification to higher-order pattern unifi-
cation, we will use the unification problems proposed in [Urban et al. 2003; 2004] as a
quiz.

Example 3.1. The nominal equation

a.b.f(X1, b)
?

≈ b.a.f(a,X1)

has no nominal unifiers. Notice that, although unification is performed modulo α-
equivalence, as far as we allow atom capture, we can not α-convert terms before in-
stantiating them. Therefore, this problem is not equivalent to

a.b.f(X1, b)
?

≈ a.b.f(b,X1)

which is solvable, and must be α-converted as

a.b.f(X1, b)
?

≈ a.b.f(b, (a b)·X1)

Recall that (a b) ·X1 means that, after instantiating X1 with a term that possibly
contain a or b, we have to exchange these variables.

According to the ideas described in the introduction, we have to replace every occur-
rence of X1 by X1(a, b), since 〈a, b〉 is the list of atoms (bound variables a, b) that can be
captured. We get:

λa.λb.f(X1(a, b), b)
?= λb.λa.f(a,X1(a, b))

Since this is a higher-order unification problem, we can α-convert one of the sides of
the equation and get:

λa.λb.f(X1(a, b), b)
?= λa.λb.f(b,X1(b, a))

which is unsolvable, like the original nominal equation.

Example 3.2. The nominal equation

a.b.f(X2, b)
?

≈ b.a.f(a,X3)

is solvable. Its translation is

λa.λb.f(X2(a, b), b)
?= λb.λa.f(a,X3(a, b))

The most general unifier of this higher-order pattern unification problem is

X2 7→ λx.λy.y
X3 7→ λx.λy.x

Now, taking into account that the first argument corresponds to the atom a, and the
second one to b, we can reconstruct the most general nominal unifier as:

X2 7→ b
X3 7→ a

Example 3.3. In some cases, there are interrelationships between the instances of
variables that make reconstruction of unifiers more difficult. This is shown with the
following example:

a.b.f(b,X4)
?

≈ b.a.f(a,X5)
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A:8 J. Levy and M. Villaret

that is solvable. Its translation gives:

λa.λb.f(b,X4(a, b))
?= λb.λa.f(a,X5(a, b))

and its most general unifier is:2

X4 7→ λx.λy.X5(y, x)

This higher-order unifier can be used to reconstruct the nominal unifier

X4 7→ (a b)·X5

The swapping (a b) comes from the fact that the arguments of X5 and the lambda
abstractions in front have a different order.

Example 3.4. The solution of a nominal unification problem is not just a substi-
tution, but a pair 〈∇, σ〉 where σ is a substitution and ∇ is a freshness environment
imposing some restrictions on the atoms that can occur free in the fresh variables
introduced by σ. The nominal equation

a.b.f(b,X6)
?

≈ a.a.f(a,X7)

has as solution

σ = [X6 7→ (b a)·X7]
∇ = {b#X7}

where the freshness environment is not empty and requires instances of X7 to not
contain (free) occurrences of b. Let us see how this is reflected when we translate the
problem into a higher-order unification problem. The translation of the equation using
the translation algorithm results on:

λa.λb.f(b,X6(a, b))
?= λa.λa.f(a,X7(a, b)) (1)

After an α-conversion we get

λa.λc.f(c,X6(a, c))
?= λa.λc.f(c,X7(c, b))

The most general unifier is again unique:

X6 7→ λx.λy.X8(y, b)
X7 7→ λx.λy.X8(x, y)

Nevertheless, in this case we cannot reconstruct the nominal unifier. Moreover, by
instantiating the free variable b, we get other (non-most general) higher-order unifier
without nominal counterpart. The translation does not work in this case because b oc-
curs free in the right hand side of (1). We translate both atoms and nominal variables
as higher-order variables. Occurrences of nominal variables become free occurrences
of variables, and occurrences of atoms, if are bound, become bound occurrences of vari-
ables. Therefore, in most cases, after the translation the distinction atom/variable be-
comes a distinction free/bound variable. However, if atoms are not bound, as in this
case, they are translated as free variables, hence are instantiable, whereas atoms are
not instantiable.
To avoid this problem, we have to ensure that any occurrence of an atom is translated

as a bound variable occurrence. This is easily achievable if we add binders in front of
both sides of the equation. Therefore, the correct translation of this problem is:

λa.λb.λa.λb.f(b,X6(a, b))
?= λa.λb.λa.λa.f(a,X7(a, b))

2The unifier X5 7→ λx.λy.X4(y, x) is equivalent modulo variable renaming. In this case we obtain the also
equivalent nominal unifier X5 7→ (a b)·X4.
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where two new binder λa.λb have been introduced in front of both sides of the equation.
The most general unifier is now:

X6 7→ λx.λy.X8(y)
X7 7→ λx.λy.X8(x)

This can be used to reconstruct the nominal substitution:

X6 7→ (a b)·X8

X7 7→ X8

As far asX8(x) is translated back as X8, andX8(x) does not use the second argument
(the one corresponding to b), we have to add a supplementary condition ensuring that
X8 does not contain free occurrences of b. This results on the freshness environment
{b#X8}. Then, X8(y) is translated back as (a b)·X8.

4. REMOVING FRESHNESS EQUATIONS

In this section we show that freshness equations do not contribute to make nominal
unification more expressive. We prove that nominal unification can be linearly-reduced
to nominal unification without freshness equations (Corollary 4.5). We call this restric-
tion of nominal unification equational nominal unification (Definition 4.1). In the next
sections we will describe a quadratic reduction of equational nominal unification to
higher-order pattern unification. The absence of freshness equations makes the reduc-
tion to higher-order pattern unification simpler, compared with the reduction described
in the preliminary version of this paper [Levy and Villaret 2008].

Definition 4.1. Equational Nominal Unification is the problem of deciding if, a

given set of nominal equality equations {t1
?

≈ u1, . . . , tn
?

≈ un} has a solution.

Definition 4.2. We define the translation of nominal unification problems into equa-
tional nominal unification problems inductively as follows:

Eq({a#?t} ∪ P) = {a.b.t
?

≈ b.b.t} ∪ Eq(P) for some b 6= a

Eq({t
?

≈ u} ∪ P) = {t
?

≈ u} ∪ Eq(P)

LEMMA 4.3. Given a nominal unification problem P, its translation into equational
nominal unification Eq(P) can be calculated in linear time. Hence, Eq(P) has linear-size
on the size of P.

LEMMA 4.4. The pair 〈∇, σ〉 solves P, if, and only if, 〈∇, σ〉 solves Eq(P).

PROOF. We first prove that 〈a#t, Id〉 is a solution of {a.b.t
?

≈ b.b.t} when b 6= a

....
t ≈ t

a#t
.... (lemma 2.7)

b#(a b)·t

b.t ≈ a.(a b)·t
(≈-abst-2)

a#t

a#b.t
(#-abst-2)

a.b.t ≈ b.b.t
(≈-abst-2)

In this proof we prove t ≈ t from an empty set of assumptions. We can prove that this
is always possible, for any term t, by structural induction on t. We also prove b#(a b)·t
from a#t, using Lemma 2.7 of [Urban et al. 2004].

Lemma 2.14 of [Urban et al. 2004] states that ∇′ ⊢ σ(∇) and ∇ ⊢ t ≈ t′ implies
∇′ ⊢ σ(t) ≈ σ(t′). In particular, ∇ ⊢ σ(a#t) and a#t ⊢ a.b.t ≈ b.b.t implies ∇ ⊢

σ(a.b.t) ≈ σ(b.b.t). Therefore, if 〈∇, σ〉 solves a#?t, then 〈∇, σ〉 solves a.b.t
?

≈ b.b.t.
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Second, analyzing the previous proof, we see that the inference rules applied in each

situation were the only applicable rules. Therefore, any solution 〈∇, σ〉 solving a.b.t
?

≈
b.b.t, also solves a#?t, because any proof of σ(a.b.t) ≈ σ(b.b.t) contains a proof of a#σ(t)
as a sub-proof.

From, these two facts we conclude that a#?t and a.b.t
?

≈ b.b.t have the same set of

solutions, for any b 6= a. Therefore, {a#?t} ∪ P and {a.b.t
?

≈ b.b.t} ∪ P, also have the
same set of solutions, for any nominal unification problem P. From this we conclude
that P and Eq(P) have the same set of solutions.

COROLLARY 4.5. Nominal Unification can be linearly-reduced to Equational Nom-
inal Unification.

5. THE TRANSLATION ALGORITHM

In this section we formalize the translation algorithm for types, terms, problems and
solutions (Definitions 5.1, 5.2, 5.5, and 5.7, respectively). We prove that, a pair 〈∇, σ〉
solves a problem P if, and only if, the translation of 〈∇, σ〉 solves the translation of P
(Theorem 5.12). This allows us to conclude that, if an equational nominal unification
problem is solvable, then its translation is also solvable (Theorem 5.14), but not the
reverse implication. This reverse implication will be proved in Section 7 (Theorem 7.7).
We transform equational nominal unification problems into higher-order unification

problems. Both kinds of problems are expressed using distinct kinds of signatures.
In nominal unification we have sorts of atoms and sorts of data. In higher-order this
distinction is no longer necessary, and we will have a base type for every sort of atoms ν
or sort of data δ. We give a sort to types translation function that allows us to translate
any sort into a type.

Definition 5.1. The translation function is defined on sorts inductively as follows.

JδK = δ
JνK = ν
Jτ1 × · · · × τn → τK = Jτ1K → · · · → JτnK → JτK
J〈ν〉τK = ν → JτK

where δ and ν are base types.

The translation function for terms depends on a list of atoms L and a freshness
environment ∇. Later, in Theorems 5.14, 7.7 and 8.7 we particularize this list as an
enumeration of all the atoms of a nominal unification problem without repetitions.
Therefore, this list depends on the unification problem, and its length is bounded on
the size of the problem. This fact allows us to ensure that the translation of a problem
JPKL, which is bounded by |P| · |L| in Lemma 5.6, is in fact quadratic. Urban’s nominal
unification algorithm [Urban et al. 2003; 2004] allows us to ensure that the solution
of a nominal unification problem can also be expressed only using atoms occurring in
the problem, i.e. using atoms from L. This property is essential to prove Theorem 5.14.
The freshness environment indicates which atoms are not capturable by a variable. As
defined below in Definition 5.2, we translate every nominal variable X, as the applica-
tion of a free variable X to a list of the atoms that it can capture. Therefore, this list
is constructed as the sublist of atoms in L that are not in ∇. This is the only case in
Definition 5.2 where the translation function uses the parameters L and ∇.
For every function symbol f, we will use a constant with the same name f . Every

atom a is translated as a (bound) variable, with the same name a. For every variable
(unknown) X, we will use a (free) variable with the same name X. Trivially, atom ab-
stractions a.t are translated as lambda abstractions λa.t, and applications f(t1, . . . , tn)
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as applications f t1 · · · tn. As we say in Section 2, for clarity, we will write these applica-
tions in uncurried form as f(t1, . . . , tn). Similarly, we will also uncurry applications of
higher-order variables. The translation of suspensions π ·X is more complicated, as far
as it gets rid of atom capture. Recall that in all cases we use distinct character fonts for
symbols of nominal terms and symbols of lambda-terms. The translation is parametric
on a freshness environment. Notice that, although we have removed freshness equa-
tions, nominal unifiers are composed by a freshness environment and a substitution.

Definition 5.2. The translation function from nominal terms into λ-terms is para-
metric on a freshness environments ∇ and a list L of atoms, and is defined inductively
as follows.

JaKL,∇ = a
Jf(t1, . . . , tn)KL,∇ = f(Jt1KL,∇, . . . , JtnKL,∇)
Ja.tKL,∇ = λa.JtKL,∇
Jπ ·XKL,∇ = X(Jπ ·a1KL,∇, . . . , Jπ ·anKL,∇) being 〈a1, . . . , an〉 the sublist3of

atoms of L allowed in X by ∇, i.e.
〈a1, . . . , an〉 = 〈a ∈ L | a#X 6∈ ∇〉

where, for any atom a : ν, a : JνK is the corresponding bound variable, for any function
symbol f : τ , f : JτK is the corresponding constant, and for any variable X : τ , X is a
variable of type X : Jν1K → . . . → JνnK → JτK where ai : νi.

4

LEMMA 5.3. For every nominal term t of sort τ , list of atoms L, and freshness envi-
ronment ∇, JtKL,∇ is a λ-term with type JτK.

PROOF. The proof is simple by structural induction on t. The only point that needs a
more detailed explanation is the case of suspensions. Since ai : νi, X : τ , for i = 1, . . . , n,

and X : Jν1K → · · · → JνnK → JτK, we have JXKL,∇ = X
(

Ja1KL,∇, . . . , JanKL,∇
)

: JτK. When

X is affected by a permutation π we also have Jπ ·XKL,∇ = X
(

Jπ ·a1KL,∇, . . . , Jπ ·anKL,∇
)

:

JτK because the suspension π·X is not a valid nominal term unless ai and π·ai belong to
the same sort.

Example 5.4. Given the nominal term t = a.b.c.(c a)(a b)·X, after applying the sub-
stitution σ = [X 7→ f(a, b, c,Y)] we get σ(t) = a.b.c.f(b, c, a,Y). The translation of the
term t w.r.t. L = 〈a, b, c〉 and ∇1 = ∅ results into JtKL,∇1

= λa.λb.λc.X(b, c, a) and, the

translation of the instantiation σ(t) w.r.t. L and ∇2 = {a#Y} results into Jσ(t)KL,∇2
=

λa.λb.λc.f(b, c, a, Y (c, a)). There is a λ-substitution [X 7→ λa.λb.λc.f(a, b, c, Y (b, c))] (de-
scribed in Definition 5.7) that when applied to JtKL,∇1

results into Jσ(t)KL,∇2
. Graphi-

cally this can be represented as the commutation of the following diagram (proved in
Lemma 5.10).

3Notice that we say sublist, not subset, to emphasize that the relative order between ai is preserved.
4Notice that ai and π ·ai are of the same sort, and that the type of X depends on the type of X, and the
parameters ∇ and L.
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a.b.c.(c a)(a b)·X
[X 7→ f(a, b, c,Y)]

- a.b.c.f(b, c, a, (c a)(a b)·Y)

λa.λb.λc.X(b, c, a)

J KL,∅
? [X 7→ λa.λb.λc.f(a, b, c, Y (b, c))]

- λa.λb.λc.f(b, c, a, Y (c, a))

J KL,{a#Y}

?

Definition 5.5. Given a list of atoms L = 〈a1, . . . , an〉, the translation function is
defined on equational nominal problems as follows

JPKL = {λa1. . . . .λan.JtKL,∅
?= λa1. . . . .λan.JuKL,∅ | t

?

≈ u ∈ P}

LEMMA 5.6. Given an equational nominal unification problem P, let L be a list
containing all atoms of P without repetitions. The translation JPKL is a higher-order
pattern unification problem.
Moreover, the size and the time needed to compute JPKL is bounded by |P| · |L|.

PROOF. By Lemma 5.3, λa1. . . . .λan.JtKL,∅
?= λa1. . . . .λan.JuKL,∅ is an

equation between λ-terms of the same type. Now notice that Jπ ·XKL,∇ =

X
(

Jπ ·b1KL,∇, . . . , Jπ ·bmKL,∇
)

translate the variable X into an application of the

free variable X to a list of pairwise distinct bound variables, because the list L
contains pairwise distinct atoms, hence the bi are all different, π is a permutation, and
we ensure that all atoms are translated into bound variables by adding λ-bindings in
front of both terms. Therefore, both sides of the equation are higher-order patterns.
Concerning the size of the translation, we obtain this bound due to the translation

of these suspensions.

Finally, we have to translate solutions of nominal unification problems into λ-
substitutions.

Definition 5.7. Given a freshness environment∇ and a list L = 〈a1, . . . , an〉 of atoms,
we define the translation function on nominal substitutions σ as follows

JσKL,∇ =
⋃

X∈Dom(σ)

[

X 7→ λa1. · · ·λan.Jσ(X)KL,∇
]

The following remark shows why in some places we require that solutions 〈∇, σ〉 of
a nominal problem P satisfy Dom(σ) = Vars(P).

Remark 5.8. Consider the nominal unification problem P1 = {a.X
?

≈ b.Y}, and the
list L = 〈a, b〉 of its atoms. Its translations as a higher-order pattern unification problem
is

JP1KL =
r
{a.X

?

≈ b.Y}
z
L
= {λa.λb.λa.X(a, b) ?= λa.λb.λb.Y (a, b)}

The λ-substitution

σ1 = J[X 7→ (a b)·Y]KL,{a#Y} = [X 7→ λa.λb.Y (a)]

does not solve JP1KL. Whereas the λ-substitution

σ2 = J[X 7→ (a b)·Y,Y 7→ Y]KL,{a#Y} = [X 7→ λa.λb.Y (a), Y 7→ λa.λb.Y (b)]

solves JP1KL. Notice that in the first case the domain of the nominal unifier (as defined
in Section 2) is {X}, whereas in the second case it is {X,Y} = Vars(P1).
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Nominal Unification from a Higher-Order Perspective A:13

Wewill see in Theorem 5.12 that, if L contains all atoms of P and σ,Vars(P) ⊆ Dom(σ)
and 〈∇, σ〉 solves P, then JσKL,∇ solves JPKL. With this example we see that the second

condition in the implication is necessary.

Now, consider the nominal unification problem P2 = {a.b.(a b) ·X
?

≈ b.b.(a b) ·X} and
the same list L = 〈a, b〉. Its translation is

JP2KL = {λa.λb.λa.λb.X(b, a) = λa.λb.λb.λb.X(b, a)}

In this case, the pattern substitution σ1 is a most general pattern unifier of JP2KL, and
σ2 is a pattern unifier, but not a most general one.

As we will see, we have to require Vars(P) ⊇ Dom(σ), if we want to ensure that the
translation not only preserves unifiability, but also most generality.

Notice that w.l.o.g. we can require most general nominal solutions to satisfy
Vars(P) = Dom(σ), because most general solutions do not instantiate variables not
belonging to Vars(P), and we can always add pairs X 7→ X for all variables occurring in
P and not in Dom(σ).

Notice also that in σ2 there are two free variables with the same name Y , but distinct
types. Be aware that in Y 7→ λa.λb.Y (b) the replaced Y has two arguments, whereas the
introduced Y has only one argument (they have distinct types). In λ-calculus this is not
a problem. The reason of this duplicity is that the translation function is parametric
on a freshness environment ∇. This is relevant in the case of a nominal variable. For
instance, JYK〈a,b〉,∅ = Y (a, b) where we use the replaced Y with two parameters, and

JYK〈a,b〉,{a#Y} = Y (b) where we use the introduced Y with one parameter. If we would

like to avoid this duplicity we have to forbid the use of a variable of the problem in
the right-hand side of a nominal solution. Then, in our example P1, the most general
nominal solution could be written as 〈{a#Y′}, [X 7→ (a b)·Y′,Y 7→ Y′]〉.

To prove that the translation of the solution of a problem is a solution of the trans-
lation of the problem, we start by proving the following two technical lemmas.

LEMMA 5.9. For any list of atoms L, freshness environment ∇, nominal terms t, u,
and atom a, if all atoms of t and u belong to L, then we have

(1) ∇ ⊢ a# t if, and only if, a 6∈ FV(JtKL,∇), and

(2) ∇ ⊢ t ≈ u if, and only if, JtKL,∇ =α JuKL,∇.

PROOF. The first statement can be proved by routine induction on t and its trans-
lation. Notice that atoms are translated nominally into variables and that the binding
structure is also identically translated, hence, the freshness of an atom a corresponds
to the free occurrence of its variable counterpart a. We here only comment the case

t = π ·X, in this case, Jπ ·XKL,∇ = X
(

Jπ ·b1KL,∇, . . . , Jπ ·bmKL,∇
)

, where 〈b1, . . . , bm〉 is the

sublist of atoms of L satisfying bi#X /∈ ∇. Therefore, since all atoms permuted by π are
in L, we can establish the following sequence of equivalences∇ ⊢ a#π·X iff π−1·a#X ∈ ∇
iff π−1·a 6∈ {b1, . . . , bm} iff a 6∈ {π·b1, . . . , π·bm} iff a 6∈ FV(X(Jπ ·b1KL,∇, . . . , Jπ ·bmKL,∇)) iff

a 6∈ FV(Jπ ·XK).
The proof of the second statement can be done by induction on the equivalence t ≈ u.

We only comment the equivalence between suspensions: π ·X ≈ π′ ·X. Notice that,
π ·X ≈ π′ ·X if, and only if, for all atoms a such that π ·a 6= π′ ·a, we have a#X ∈ ∇. Since
all atoms permuted by π are in L, this condition is equivalent to: the bound variables
Jπ ·aKL,∇ and Jπ′ ·aKL,∇ are passed as a parameter to X in Jπ ·XKL,∇ and Jπ′ ·XKL,∇ only

when π ·a = π′ ·a. Finally, this condition is equivalent to Jπ ·XKL,∇ = Jπ′ ·XKL,∇.
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The first statement of the previous lemma will not be necessary for our purposes
because we have removed freshness equations.

LEMMA 5.10. For any list of atoms L = 〈a1, . . . , an〉, freshness environment ∇, nom-
inal substitution σ, and nominal term t satisfying that all atoms of t are in L and
Vars(t) ⊆ Dom(σ), we have JσKL,∇(JtKL,∅) = Jσ(t)KL,∇.

PROOF. Again this lemma can be proved by structural induction on t. We only
sketch the suspension case. Let t = π ·X. We have the equalities:

JσKL,∇(Jπ ·XKL,∅)
=

[

. . . , X 7→ λa1 . . . λan.Jσ(X)KL,∇, . . .
] (

X(Jπ ·a1KL,∇, . . . , Jπ ·anKL,∇)
)

=
(

λa1 . . . λan.Jσ(X)KL,∇
) (

Jπ ·a1KL,∇, . . . , Jπ ·anKL,∇
)

=
[

a1 7→ Jπ ·a1KL,∇, . . . , an 7→ Jπ ·anKL,∇
] (

Jσ(X)KL,∇
)

= Jπ ·σ(X)KL,∇
= Jσ(π ·X)KL,∇

Notice that in the first equality we use X ∈ Vars(t) ⊆ Dom(σ), hence X ∈
Dom(JσKL,∇). Notice also that in the fourth equality we use that all atoms of t = π ·X
are in L, therefore π only permutes atoms of L.

In the proof of this lemma we do not require L to contain all atoms of σ.

Example 5.11. Let be L = 〈a, b〉, ∇ = {b#Y}, t = f((a b)·X, (a b)·Y) and σ = [X 7→ b.a,
Y 7→ Y]. We have

JσKL,∇ = J[X 7→ b.a,Y 7→ Y]KL,{b#Y}

= [X 7→ λa.λb.Jb.aKL,{b#Y}, Y 7→ λa.λb.JYKL,{b#Y}]
= [X 7→ λa.λb.λb.a, Y 7→ λa.λb.Y (a)]

JtKL,∅ =
q
f
(

(a b)·X, (a b)·Y
)y

L,∅

= f
(

X(b, a), Y (b, a)
)

Jσ(t)KL,∇=
q
[X 7→ b.a,Y 7→ Y] f

(

(a b)·X, (a b)·Y
)y

L,{b#Y}

= Jf(a.b, (a b)·Y)KL,{b#Y}

= f(λa.b, Y (b))

Now, we have

JσKL,∇
(

JtKL,∅
)

= f
(

(λa.λb.λb.a)(b, a), (λa.λb.Y (a))(b, a)
)

= f(λc.b, Y (b))

= f(λa.b, Y (b)) = Jσ(t)KL,∇
Notice that the substitution resulting form the β-reduction of the underlined redex

needs to avoid the capture of b. This is done replacing the bound variable b by c. In the
following section we will see that, in pattern unification, we can do this without using
new bound variable names. In this case, we could have used a instead of c.

From these two lemmas we can prove the following results.

THEOREM 5.12. For any list of atoms L = 〈a1, . . . , an〉, freshness environment ∇,
equational nominal unification problem P, and nominal substitution σ if L contains all
atoms of P without repetitions, and σ and Vars(P) ⊆ Dom(σ), we have that 〈∇, σ〉 solves
the equational nominal unification problem P, if, and only if, JσKL,∇ solves the pattern

unification problem JPKL.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Nominal Unification from a Higher-Order Perspective A:15

PROOF. By definition of nominal solution, the pair 〈∇, σ〉 solves P iff

∇ ⊢ σ(t) ≈ σ(u) for all t
?

≈ u ∈ P

By Lemma 5.9 this is equivalent to:

Jσ(t)KL,∇ =α Jσ(u)KL,∇ for all t
?

≈ u ∈ P

and, by Lemma 5.10 this is equivalent to:

JσKL,∇(JtKL,∅) = JσKL,∇(JuKL,∅) for all t
?

≈ u ∈ P

Since the substitution JσKL,∇ does not instantiate the variables a1, . . . , an, this is equiv-

alent to (see Remark 5.13):

JσKL,∇
(

λa1. . . . .λan.JtKL,∅
)

= JσKL,∇
(

λa1. . . . .λan.JuKL,∅
)

for all t
?

≈ u ∈ P

where 〈a1, . . . , an〉 is the list of atoms occurring in P.

Finally, since
r
t

?

≈ u
z
L
= λa1. . . . .λan.JtKL,∅

?= λa1. . . . .λan.JuKL,∅, this is equivalent to

JσKL,∇ solves JPKL.
A variant of the proof of Theorem 5.12 would allow us to prove that 〈∇, σ〉 solves

t
?

≈ u, if, and only if, JσKL,∇ solves JtKL,∅
?= JuKL,∅. Therefore, it seems unnecessary to

add the λ-bindings λa1. · · · .λan in front of both sides of the higher-order equations, as
was suggested in Example 3.4. The following remark illustrates what would happen if
we had defined translation of equations in this way.

Remark 5.13. Assume that we had defined
r
t

?

≈ u
z
L
= JtKL,∅

?= JuKL,∅, instead of the

definition we have for
r
t

?

≈ u
z
L
with the external lambda.

The translation of the unsolvable nominal equation a
?

≈ b would result into a ?=
b which is solvable by [a 7→ b] (notice that, in this case, atoms are translated into
free variables). The example does not contradict the proposed variant of Theorem 5.12
because the substitution [a 7→ b] is not the translation of any nominal substitution, i.e.
there does not exists any freshness environment ∇ and any nominal substitution σ
such that JσKL,∇ = [a 7→ b].

Using the right translation function, if we introduce the external λ-bindings we get
the unsolvable higher-order unification problem λa.λb.a ?= λa.λb.b.

On the other hand, with this variant the translation of the solvable nominal equation
of Example 3.4 would be

JPKL =
r
{a.b.f(b,X6)

?

≈ a.a.f(a,X7)}
z
〈a,b〉

= {λa.λb.f(b,X6(a, b))
?= λa.λa.f(a,X7(a, b))}

that is not a higher-order pattern unification problem (notice that Lemma 5.6 does not
hold if we do not introduce the external λ-bindings).

The translation of its nominal most general solution is

JσKL,∇ = J[X6 7→ (b a)·X7]K〈a,b〉,{b#X7}
= [X6 7→ λa.λb.X7(b), X7 7→ λa.λb.X7(a)]

In this case, JσKL,∇ is a higher-order unifier of JPKL, as the variant of Theorem 5.12

predicts. However, it is not a most general unifier, and we are interested in translating
most general solutions into most general solutions.
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THEOREM 5.14. If the equational nominal unification problem P is solvable, then,
for any list L containing all atoms of P without repetitions, JPKL is a solvable higher-
order pattern unification problem.

PROOF. The theorem is a direct consequence of Theorem 5.12. Notice that, if P is
solvable, then there exists a solution 〈∇, σ〉. We can choose this solution satisfying the
two requirements: all atoms used in σ are also used in P, and Dom(σ) is a superset of
all variables of P. The inspection of Urban et al.’s algorithm [Urban et al. 2003; 2004]
shows us that the solution that it computes does introduce new atoms not occurring in
P. Moreover, we can extend the domain of σ with instantiations of the form [X 7→ X] to
ensure the other restriction

The opposite implication of Theorem 5.14 can not be directly proved from Theo-
rem 5.12, because JPKL could have solutions that are not of the form JσKL,∇, for any

solution 〈∇, σ〉 of P.

6. SOME PROPERTIES OF PATTERN UNIFICATION

In this section we prove some fundamental properties of Higher-Order Pattern Uni-
fication. In particular, we prove that we can express most general unifiers of pattern
unification problems only using bound-variable names and types already used in the
problem (Theorem 6.11). This property will be used in Section 7 to prove the existence
of a translation of pattern unifiers into nominal unifiers, in Lemma 7.6. The proof
of this property is based on a new pattern unification algorithm, described in Defini-
tion 6.6. This algorithm is based on the classical Nipkow’s algorithm [Nipkow 1993].
However, this new algorithm is fully functional, in the sense that no new symbols need
to be introduced. Its soundness and completeness are proved in Lemma 6.10.
In the following example we note that in the solution of pattern unification problems

it is important to save names of bound variables. In the following we will distinguish
between variables and variable names. For instance λx.λx.x has three occurrences
of variables, two distinct variables,5 with one unique variable name. Notice that α-
conversion preserves the number of variables, but may change the number of names.

Example 6.1. Consider the nominal problem a.X
?

≈ a.f(b.Y). Its translation us-

ing L = 〈a, b〉 is λa.λb.λa.X(a, b) ?= λa.λb.λa.f(λb.Y (a, b)). An α-conversion results in

λa.λb.λc.X(c, b) ?= λa.λb.λc.f(λd.Y (c, d)) and it shows that the parameters of X and Y
are in fact different. A most general solution is [X 7→ λc.λb.f(λd.Y (c, d))]. Since Y is
translated as Y (a, b), we would have to translate back Y (c, d) as (a c)(d b)·Y. And, since
substitutions like [X 7→ t] are translated as [X 7→ λa.λb.JtKL,∇], we would have to trans-

late back [X 7→ λc.λb.JtKL,∇] as [X 7→ (a c) ·t]. Therefore, our pattern unifier had to be

translated back as [X 7→ (a c)·f(d.(a c)(d b)·Y)] = [X 7→ f(d.(d b)·Y)]. The translation of this
nominal unifier is JX 7→ f(d.(d b)·Y)K〈a,b〉,∅ = λa.λb.f(λd.Y (a, d)), that is α-equivalent to

the original higher-order pattern unifier. Notice that we translate w.r.t. a list 〈a, b〉 of
atoms that does not contain the atom d that occurs in the nominal unifier.
Although this approximation to the definition of a back translation function seems to

work, it relies in the change of new atoms by atoms contained in L. Hence, it depends
on the availability of enough atoms in L. What would happen if we have to translate
back a term of the form Y (c1, . . . , cm) where m is greater than the length of L? We will
prove that this situation never arises with most general unifiers. In fact, we will prove
that we do not need to use new names of atoms to write such unifiers.

5This becomes clear if we use distinct names as in this equivalent λ-term λy.λz.z.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Nominal Unification from a Higher-Order Perspective A:17

If we look at Nipkow’s transformation rules described in Subsection 2.2, it seems
that no new bound-variable names are introduced. However, this is not true. There
are three places where their introduction is hidden. In the following we illustrate these
cases.

(1) It is assumed that equations have the same most external λ-bindings, i.e. that they
are of the form λ~x.s ?= λ~x.t. If this is not the case, we have to α-convert one of the
sides. However, this is not always possible without introducing new bound-variable
names. For instance, if we have the equation λx.λy.λy.X(x, y) ?= λy.λy.λx.Y (x, y),

after α-converting the two most external λ-binder, we get λx.λy.λy.X(x, y) ?=
λx.λy.λx.Y (x, y), that needs a new bound-variable name to obtain the same λ-
binders in both sides, by means of α-conversion. Using a new name z we would
get λx.λy.λz.X(x, z) ?= λx.λy.λz.Y (z, y).

(2) In the flex-rigid rule the terms ui may not be of first-order type. In this case, we
need to η-expand some subterms. For instance, the rule transforms λx.X(x) ?=

λx.f(λx.g(x)) into the equation λx.X1(x)
?= λx.λx.g(x) and the substitution

[

X 7→

λx.f(X1(x))
]

. The left-hand side of the equation needs to be η-expanded, and we
can not use the name x. Using a new name z, and α-converting we would get
λx.λz.X1(x, z)

?= λx.λz.g(z).
(3) When we compute a substitution for a variable, it must be applied to all the occur-

rences of the variable, and this may involve a β-reduction. Some β-reductions need
to introduce new names to avoid variable-captures. For instance, if we have the
equations

{

λx.λy.X(x, y) ?= λx.λy.f(λx.Y (x, y)), λx.λy.Z(x, y) ?= λx.λy.X(y, x)
}

, af-

ter solving the first one we get
[

X 7→ λx.λy.f(λx.Y (x, y))
]

that must be substituted

in the second equation. We get, λx.λy.Z(x, y) ?= λx.λy.
(

λx.λy.f(λx.Y (x, y))
)

(y, x).
The β-reduction using the standard substitution algorithm introduces a new name

z to avoid the capture of the variable x, giving λx.λy.Z(x, y) ?= λx.λy.f(λz.Y (z, x))

In the following we show how we can overcome these problems. One of the ideas
is using a kind of swapping for λ-calculus, instead of the usual substitution, like it is
done in nominal terms. A similar notion of swapping is introduced in [Mendelzon et al.
2010] for the explicit substitution calculus.

Definition 6.2. Given two variables x, y, and a λ-term t, we define the swapping of
x and y in t, noted by (x y)·t inductively as follows

(x y)·x = y
(x y)·y = x
(x y)·z = z if z 6= x, y
(x y)·c = c
(x y)·

(

λz.t
)

= λ
(

(x y)·z
)

.
(

(x y)·t
)

(x y)·
(

a(t1, . . . , tn)
)

=
(

(x y)·a
)(

(x y)·t1, . . . , (x y)·tn
)

where c is a constant and a is a constant or a variable.

Notice that this swapping is distinct from the swapping on nominal terms. In partic-
ular (a b)·X = X, and we do not keep suspensions. In some cases its application results
into an α-equivalent term, but in general the result is a different term.

Remark 6.3. In λ-calculus, following the Barendregt variable convention, opera-
tions are defined on classes of α-equivalent terms, rather than on particular terms.
This, for instance, allows us to freely α-convert terms in substitutions in order to avoid
variable capture. Therefore, (although it is often omitted) we have to prove that the
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operation is independent of the representative of the class that we take. The previ-
ous swapping operation is defined for particular terms. However, the following lemma
ensures that it can be extended to α-equivalent classes of terms. Barendregt variable
convention suggests to use distinct variable names for distinct variables. Here, since
we try to avoid the introduction of new variable names, we do not use the convention,
and work with particular terms.

LEMMA 6.4. For any term t and variables x and y, we have

(x y)·t =α [x 7→ y, y 7→ x]t

where [x 7→ y, y 7→ x] changes x by y and y by x in t, simultaneously.
In particular, if x, y 6∈ FV(t), then (x y)·t =α t.

PROOF. By structural induction on t. For one of the cases of λ-abstraction, for in-
stance, we have

(x y)·λx.t = λy.(x y)·t By ind. hyp.
= λy.[x 7→ y, y 7→ x]t Let be z 6∈ FV(t) ∪ {x, y}
= λy.[z 7→ y][y 7→ x][x 7→ z]t Since y 6∈ FV([y 7→ x][x 7→ z]t)
=α λz.[y 7→ x][x 7→ z]t Since z 6= x, y
= [y 7→ x]λz.[x 7→ z]t Since z 6∈ FV(t)
=α [y 7→ x]λx.t Since x 6∈ FV(λx.t)
= [x 7→ y, y 7→ x]λx.t

LEMMA 6.5. If ~y is a list of pairwise distinct variable names,6 |~y| = |~x| = n and
{~y} ∩ FV(λ~x.t) = ∅, then

(λ~x.t)(~y) = Πn(~x, ~y)·t

where Πn(~x, ~y) is a permutation on the names ~x, ~y defined inductively as

Π1(〈x〉, 〈y〉) = (x y)
Πn

(

〈x1, . . . , xn〉, 〈y1, . . . , yn〉
)

= Πn−1

(〈

(x1 y1)·x2, . . . , (x1 y1)·xn

〉

,
〈

y2, . . . , yn
〉)

·(x1 y1)

PROOF. By induction on the length n of both vectors. Obviously, the variable x1 is
not free in λx1.λx2, . . . , xn.t. By assumption, the variable y1 is neither free in this term.
From FV(λx2, . . . , xn.t) ⊆ FV(λ~x.t)∪ {x1}, and x1, y1 6∈ FV(λ~x.t), we have FV((x1 y1)·

(λx2, . . . , xn.t)) ⊆ FV(λ~x.t) ∪ {y1}. Since y1 6∈ {y2, . . . , yn} and {~y} ∩ FV(λ~x.t) = ∅, we
have {y2, . . . , yn}∩FV((x1 y1)·(λx2, . . . , xn.t)) = ∅. Therefore, we can apply the induction
hypothesis to the term (x1 y1)·(λx2, . . . , xn.t) and the vector (y2, . . . , yn), obtaining

(λ~x.t)(~y) =α (λy1.(x1 y1)·(λx2, . . . , xn.t))(y1, y2, . . . , yn) By Lemma 6.4

=β ((x1 y1)·(λx2, . . . , xn.t))(y2, . . . , yn) By β-reduction

= (λ(x1 y1)·x2, . . . , (x1 y1)·xn.(x1 y1)·t)(y2, . . . , yn) Def. of swapping

= Πn−1

(

〈(x1 y1)·x2, . . . , (x1 y1)·xn〉, 〈y2, . . . , yn〉
)

·(x1 y1)·t By ind. hyp.

= Πn(~x, ~y)·t

Now we will describe a variant of the higher-order pattern unification algorithm of
Section 2.2. In this variant, external λ-binders are α-converted explicitly and the flex-
rigid rule has been replaced by a new rule where η-expansion is made explicit, i.e. the

6Notice that we do not require ~x to be pairwise distinct. If they are also pairwise distinct, then Πn(~x, ~y) =
(xn yn) . . . (x1 y1).
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terms ui are base-typed, thus the right-hand side does not need to be η-expanded, like
in the original rule. Moreover, β-redexes are removed using swappings, according to
Lemma 6.5, since we are dealing with patterns.

Definition 6.6. We assume unoriented equations and define the following set of
transformation rules over higher-order pattern equations:

α-transformation:

λ~w.λx.t ?= λ~w.λy.u →
〈

λ~w.λx.t ?= λ~w.(x y)·(λy.u), [ ]
〉

if x 6∈ FV(u)

λ~w.λx.t ?= λ~w.λx.u →
〈

λ~w.t ?= λ~w.u, [ ]
〉

if x 6∈ FV(t) and x 6∈ FV(u)

λ~w.λx.t ?= λ~w.λx.u →
〈

λ~w.λx.t ?= λ~w.λx.u, [X 7→ λ~y.Z(~z)]
〉

if x 6∈ FV(t), X(~y) is a subterm of u,
x ∈ {~y} and {~z} = {~y} \ {x}

Rigid-rigid:

λ~w.a(t1, . . . , tn)
?= λ~w.a(u1, . . . , un) →

〈

{λ~w.t1
?= λ~w.u1, . . . , λ~w.tn

?= λ~w.un}, [ ]
〉

Flex-rigid:

λ~w.X(~x) ?= λ~w.a(λ~y1.u1, . . . , λ ~ym.um) →
〈

{

λ~w.λ~y1.X1(~z1)
?= λ~w.λ~y1.u1 ,

. . .

λ~w.λ ~ym.Xm( ~zm) ?= λ~w.λ ~ym.um

}

,

[X 7→ λ~x.a(λ~y1.X1(~z1), . . . , λ ~ym.Xm( ~zm))]
〉

if X 6∈ FV(ui), a is a constant or a ∈ {~x},
and {~zi} = {~x} ∪ {~yi}, for i = 1, . . . ,m.

Flex-flex:

λ~w.X(~x) ?= λ~w.X(~y) →
〈

∅, [X 7→ λ~x.Z(~z)]
〉

where {~z} = {xi |xi = yi}

λ~w.X(~x) ?= λ~w.Y (~y) →
〈

∅, [X 7→ λ~x.Z(~z), Y 7→ λ~y.Z(~z)]
〉

where X 6= Y and {~z} = {~x} ∩ {~y}

These transformations are applied as follows. The equation on the left-hand side
is replaced by the equations in the first component of the right-hand side, and then
the substitution in the second component of the right-hand side is applied to all the
equations. If this substitution introduces β-redexes, they are removed using swap-
pings, according to Lemma 6.5. Moreover, all the substitutions are composed to com-
pute the resulting unifier. In other words, the transformation is applied as follows
〈{e} ∪ E, σ〉 → 〈σ′(E′ ∪ E) ↓β , σ

′ ◦ σ〉, if we have a transformation e → 〈E′, σ′〉.

With the following examples, we illustrate how these rules solve the problems con-
cerning the introduction of new bound variable names described previously, at the
beginning of this section.

Example 6.7. Given the equation λx.λy.λy.X(x, y) ?= λy.λy.λx.Y (x, y) the applica-

tion of the first α-transformation rule gives us λx.λy.λy.X(x, y) ?= λx.λx.λy.Y (y, x).

A second application of this α-transformation gives us λx.λy.λy.X(x, y) ?=
λx.λy.λx.Y (x, y). Now, the first α-transformation rule is no longer applicable. However,
we can apply the third α-transformation rule, that instantiates [X 7→ λx.λy.X ′(y)],

and gives the equation λx.λy.λy.X ′(y) ?= λx.λy.λx.Y (x, y). Now, applying the sec-
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ond α-transformation rule, we obtain λy.λy.X ′(y) ?= λy.λx.Y (x, y). Again, we can
apply the third α-transformation rule, that instantiates [Y 7→ λx.λy.Y ′(x)], and

gives λy.λy.X ′(y) ?= λy.λx.Y ′(x). The first α-transformation rule gives λy.λy.X ′(y) ?=

λy.λy.Y ′(y). Finally, the second α-transformation rule gives λy.X ′(y) ?= λy.Y ′(y).
This last equation can be solved applying the second flex-flex rule. The resulting

unifier is
[

X ′ 7→ λy.Z(y), Y ′ 7→ λy.Z(y)
]

◦
[

Y 7→ λx.λy.Y ′(x)
]

◦
[

X 7→ λx.λy.X ′(y)
]

∣

∣

∣

{X,Y }

=
[

X 7→ λx.λy.Z(y), Y 7→ λx.λy.Z(x)
]

Example 6.8. The new flex-rigid rule transforms λx.X(x) ?= λx.f(λy.a) into the

equation λx.λy.X1(x, y)
?= λx.λy.a and the substitution [X 7→ λx.f(λy.X1(x, y))]. The

original flex-rigid rule would give us λx.X1(x)
?= λx.λy.a, that conveniently η-expanded

using the same variable name y, results into the same equation. A further application
of the flex-rigid rule solves the equation by [X1 7→ λx.λy.a].
In other cases, the resulting equation may be different. The new rule transforms

λx.X(x) ?= λx.f(λx.g(x)) into the equation λx.λx.X1(x)
?= λx.λx.g(x) and the sub-

stitution [X 7→ λx.f(λx.X1(x))]. However, the original flex-rigid rule would give us

λx.X1(x)
?= λx.λx.g(x) and the substitution [X 7→ λx.f(X1(x))]. In the subsequent η-

expansion we can not use the name x, and we need a new name z, and α-conversion
of the right-hand side getting λx.λz.X1(x, z)

?= λx.λz.g(z). Both equations are obvi-
ously distinct. However, to solve this second equation, X1 can not use the first ar-
gument, because it is not used in the right-hand side. Therefore, we can instantiate
X1 7→ λx.λy.X ′

1(y), and α-convert the new variable name z, getting the same equation
as with the new flex-rigid rule.

Example 6.9. Given the equations
{

λx.λy.X(x, y) ?= λx.λy.f(λx.Y (x, y)),

λx.λy.Z(x, y) ?= λx.λy.X(y, x)
}

, after solving the first equation and replac-

ing
[

X 7→ λx.λy.f(λx.Y (x, y))
]

into the second one, we get λx.λy.Z(x, y) ?=

λx.λy.
(

(λx.λy.f(λx.Y (x, y)))(y, x)
)

. By Lemma 6.5, we can β-reduce using swap-
pings, instead of the usual standard substitution. The permutation will be
Π2(〈x, y〉, 〈y, x〉) = Π1

(

〈(x y) · y〉, 〈x〉
)

· (x y) = (xx) · (x y) = (x y), and the result of
the β-reduction will be

(

λx.λy.f
(

λx.Y (x, y)
))

(y, x) =β (x y)·f
(

λx.Y (x, y)
)

= f
(

λy.Y (y, x)
)

LEMMA 6.10. The algorithm described in Definition 6.6 is sound and complete and
computes a most-general higher-order pattern unifier whenever it exists, when names of
free and bound variables are disjoint.

PROOF. The algorithm computes basically the same most general unifiers than the
Nipkow’s algorithm.
The fact that we use swapping instead of substitution to remove β-redexes is not

a problem according to Lemma 6.5. We will obtain a term that is α-equivalent to the
one that we would obtain with the traditional capture-avoiding substitution. Notice
that in the lemma we require arguments of free variables (the sequence ~y) to be a
list of distinct bound variables. This is ensured in the case of higher-order pattern
unification, but it is not true in the general λ-calculus. The algorithm preserves the
disjointness of bound and free variable names. Therefore, the other condition of the
lemma {~y} ∩ FV(λ~x.t) is also satisfied.
In the third α-transformation rule, if x 6∈ FV(t) and x ∈ FV(u) and the equation is

solvable, then xmust occur in u just below a free variable, as one of its arguments, and
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this free variable must be instantiated by a term that does not use this argument. No-
tice also that the three α-transformation rules, when the equation is solvable, succeed
in making the lists of most external λ-bindings equal in both sides of the equation.

In the case of the flex-rigid rule, we may obtain an equation λ~x.Xi(x1, . . . , xn)
?=

λ~x.λ~y.u′
i that needs to be η-expanded, and where {x1, . . . , xn} ∩ {~y} 6= ∅. Let be

{x′
1, . . . , x

′
n′} = {x1, . . . , xn}\~y, i.e. the sequence of variables xi not in ~y. In any solution

of this equation Xi can not use the variables of the intersection of {x1, . . . , xn} ∩ {~y}.
Therefore, we can extend the solution withXi 7→ λx1 . . . xn.λ~y.X

′
i(x

′
1, . . . , x

′
n, ~y), and get

the equation λ~x.λ~y.X ′
i(x

′
1, . . . , x

′
n′ , ~y)

?= λ~x.λ~y.u′
i.

The flex-flex and rigid-rigid rules are the same as in Nipkow’s algorithm.

THEOREM 6.11. Let P be a solvable pattern unification problem, where the set of
free and bound variable names are disjoint, and let 〈a1, . . . , an〉 be a list of the names of
bound variables of the problem. Then, there exists a most general unifier σ such that

(1) σ does not use other bound-variable names than the ones already used in the prob-
lem, i.e than {a1, . . . , an}.

If in the original problem all bound variables with the same name have the same type,
i.e. we have a type τi for every bound variable name ai, then

(2) the same applies to σ, i.e. any bound variable of σ with name ai has type τi, and
(3) any free variable X occurring in σ has type ν1 → · · · → νm → ν, where 〈ν1, . . . , νm〉

is a sublist of 〈τ1, . . . , τn〉.

PROOF. By Lemma 6.10 with the new transformation rules we obtain most general
unifiers for solvable pattern unification problems. Then, by simple inspection of the
new transformation rules, where all bound variable names in the right-hand sides of
the rules are already present in the left-hand sides, we have that new equations and
substitutions do not introduce new names. In addition, since names of free and bound
variables are distinct, β-reductions due to substitution applications satisfy conditions
of Lemma 6.5, therefore we can conclude that we do not need new bound variable
names due to β-reductions either.

Notice also that in these rules, when we introduce a new bound variable in the right-
hand side, with a name already used in the left-hand side, both variables have the
same type. When, we swap two variable names in an α-conversion or in a β-reduction,
they have also the same type.

Finally, let σ′ be any most general unifier not using other bound variable names
than the ones used in P , i.e. a1, . . . , an. For every variable X occurring free in σ, chose
one of their occurrences. This will be of the form X(b1, . . . , bm), where {b1, . . . , bm} ⊆
{a1, . . . , an} and the bi are pairwise distinct. Let 〈bπ(1), . . . , bπ(m)〉 be a sublist of
〈a1, . . . , an〉. Then composing σ′ with [X ′ 7→ λb1. · · · .λbm.X(bπ(1), . . . , bπ(m))], for every
variableX, we get another most general unifier fulfilling the requirements of the third
statement of the lemma. Notice that, although not all occurrences of X have the same
parameters, it does not matter which one we chose because all them have the same
type.

7. THE REVERSE TRANSLATION

As we have shown, Theorem 5.12 is not enough to prove that, if JPKL is solvable, then P
is solvable. The proof of this implication (Theorem 7.7) is the main objective of this sec-
tion. We define a back-translation function, parametric on a list of atoms and a fresh-
ness environment, for terms and substitutions (Definitions 7.1 and 7.2, respectively).
This function is not always defined. When there exists a freshness environment∇ such
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that JtK-1L,∇ is defined (respectively for unifiers), then we say that t is ∇-compatible

(Definition 7.3). In Lemma 7.6 we prove the ∇-compatibility of most general pattern
unifiers, that is the base of the proof of Theorem 7.7. In Section 8, we will prove that
the back-translation function preserves most generality.

Definition 7.1. Let L be a list of atoms, and ∇ be a freshness environment. The
back-translation function is defined on λ-terms in η-long β-normal form as follows:

JaK-1L,∇ = a

Jf(t1, . . . , tn)K-1L,∇ = f(Jt1K-1L,∇ , . . . , JtnK-1L,∇)

Jλa.tK-1L,∇ = a. JtK-1L,∇
JX(c1, . . . , cm)K-1L,∇ = π−1 ·X where π is a permutation on L satisfying

〈π ·c1, . . . , π ·cm〉 is a sublist of L such that
π ·ci#X 6∈ ∇ and ci and π ·ci have the same sort

where a is a bound variable with name a, f is the constant associated to the function
symbol f, either X is the free variable associated to X, or if X is a fresh variable then
X is a fresh nominal variable, and the permutation π−1 is supposed to be decomposed
in terms of transpositions (swappings).

Notice that the back-translation function is not defined for all λ-terms, even for all

higher-order patterns. In particular, Jλx.tK-1L,∇ is not defined when x is not base typed,

or Jx(t1, . . . , tn)K-1L,∇ is not defined when x is a bound variable. It also depends on the list

L and environment ∇. For instance JX(b, a)K-1〈a〉,∅ and JX(b, a)K-1〈a,b〉,{a#X} are undefined,

whereas JX(b, a)K-1〈a,b〉,∅ = (a b)·X.

Notice also that the permutation π is not completely determined by the side condi-
tion of the fourth equation. For instance, given L = 〈a1, a2, a3〉 as the list of atoms, all

them of the same sort, to define JX(a1)K-1L,{a1#X,a2#X} = π−1 ·X the condition requires

π ·a1 = a3, but then, we can choose π ·a2 = a1 and π ·a3 = a2, or vice versa π ·a2 = a2 and

π ·a3 = a1. Therefore, JtK-1L,∇ is nondeterministically defined.

For λ-substitutions the back-translation is defined as follows.

Definition 7.2. Let L = 〈a1, . . . , an〉 be a list of atoms, and ∇ be a freshness environ-
ment. The back-translation function is defined on λ-substitutions as follows.

JσK-1L,∇ =
⋃

X∈Dom(σ)

[

X 7→ Jσ(X)(a1, . . . , an)K-1L,∇
]

Notice that if σ(X)(a1, . . . , an) is not a well-typed λ-term, or Jσ(X)(a1, . . . , an)K-1L,∇ is

not defined for some X ∈ Dom(σ), then JσK-1L,∇ is not defined.

We introduce the following notion to describe which λ-terms and substitutions have
reverse translation w.r.t. a freshness environment.

Definition 7.3. Given a λ-term t (resp. λ-substitution σ), a list of atoms L and

a freshness environment ∇, we say that t (resp. σ) is 〈L,∇〉-compatible if JtK-1L,∇
(resp. JσK-1L,∇) is defined.

LEMMA 7.4. For any λ-term t, list of atoms L and freshness environment ∇, if t is

〈L,∇〉-compatible, then
r
JtK-1L,∇

z
L,∇

= t.
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For every λ-substitution σ, list of atoms L and freshness environment ∇, if σ is 〈L,∇〉-

compatible, then
r
JσK-1L,∇

z
L,∇

= σ.

PROOF. Let L = 〈a1, . . . , an〉 be a list of atoms. The existence of JtK-1L,∇ restricts the

form of t to five cases. For the first four, the proof is trivial. In the case t = X(c1, · · · , cm),
we have

r
JX(c1, · · · , cm)K-1L,∇

z
L,∇

=
q
π−1 ·X

y
L,∇

= X
(q

π−1 ·π ·c1
y
L,∇

, · · · ,
q
π−1 ·π ·cm

y
L,∇

)

= X(c1, · · · , cm)

where π is a permutation on L satisfying 〈π ·c1, . . . , π ·cm〉 is a sublist of L such that
π ·ci#X 6∈ ∇ and ci and π ·ci have the same sort.

For the second statement, by Definitions 7.2 and 5.7 we have

r
JσK-1L,∇

z
L,∇

=

u
v ⋃

X∈Dom(σ)

[

X 7→ Jσ(X)(a1, · · · , an)K-1L,∇
]

}
~

L,∇

=
⋃

X∈Dom(σ)

[

X 7→ λa1 · · · an.
r
Jσ(X)(a1, · · · , an)K-1L,∇

z
L,∇

]

=
⋃

X∈Dom(σ)

[

X 7→ λa1 · · · an.σ(X)(a1, · · · , an)
]

=
⋃

X∈Dom(σ)

[

X 7→ σ(X)
]

= σ

Where we make use of the first statement to prove
r
Jσ(X)(a1, · · · , an)K-1L,∇

z
L,∇

=

σ(X)(a1, · · · , an). Notice that, if σ is 〈L,∇〉-compatible, then σ(X)(a1, · · · , an) is also
〈L,∇〉-compatible.

Given a pattern unifier, in order to reconstruct the corresponding nominal unifier,
we have several degrees of freedom. We start with higher-order pattern unifier σ with
a restricted use of names of bound variables. Then, we will construct a freshness envi-
ronment ∇ such that σ is 〈L,∇〉-compatible. This construction is described in the proof
of Lemma 7.6, and it is nondeterministic. The corresponding nominal solution is then

〈∇, JσK-1L,∇〉. Moreover, JσK-1L,∇ is not uniquely defined. The following example illustrates

these degrees of freedom in this back-translation.

Example 7.5. Consider the nominal unification problem

P = {a.a.X
?

≈ c.a.X , a.b.X
?

≈ b.a.(a b)·X}

where all atoms and variables are of the same sort. Let L = 〈a, b, c〉 be a list of the
atoms of the problem. It is translated as

JPKL = { λa.λb.λc.λa.λa.X(a, b, c) ?= λa.λb.λc.λc.λa.X(a, b, c) ,

λa.λb.λc.λa.λb.X(a, b, c) ?= λa.λb.λc.λb.λa.X(b, a, c) }

Most general higher-order pattern unifiers are

σ1 = [X 7→ λa.λb.λc.Z(a, b)]
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and

σ2 = [X 7→ λa.λb.λc.Z(b, a)]

which are equivalent.
Following the construction described in the forthcoming proof of Lemma 7.6, for ev-

ery variable Z : τ1 → · · · τm → τ0 occurring in σ, we construct a sublist of atoms

LZ = 〈b1, . . . , bm〉 satisfying bj : JτjK-1, for every j = 1, . . . ,m. In our example, we can
choose among three possibilities L1Z = 〈a, b〉, L2Z = 〈a, c〉 or L3Z = 〈b, c〉. We construct
∇ = {a#Z | Z occurs in σ ∧ a ∈ L \ LZ}.

From the two pattern unifiers σi, and the three lists LjZ we can construct six possible
nominal unifiers:

σ1 σ2

L1Z 〈{c#Z} , [X 7→

(

a b c
a b c

)−1

·Z]〉 〈{c#Z} , [X 7→

(

a b c
b a c

)−1

·Z]〉

L2Z 〈{b#Z} , [X 7→

(

a b c
a c b

)−1

·Z]〉 〈{b#Z} , [X 7→

(

a b c
c a b

)−1

·Z]〉

L3Z 〈{a#Z} , [X 7→

(

a b c
b c a

)−1

·Z]〉 〈{a#Z} , [X 7→

(

a b c
c b a

)−1

·Z]〉

The permutations can be written as swappings obtaining:

σ1 σ2

L1Z 〈{c#Z} , [X 7→ Z]〉 〈{c#Z} , [X 7→ (a b)·Z]〉

L2Z 〈{b#Z} , [X 7→ (b c)·Z]〉 〈{b#Z} , [X 7→ (a b)(b c)·Z]〉

L3Z 〈{a#Z} , [X 7→ (a c)(b c)·Z]〉 〈{a#Z} , [X 7→ (a c)·Z]〉

All these nominal unifiers are most general and equivalent. Notice that these are all
the most general nominal unifiers.

LEMMA 7.6. For every equational nominal unification problem P, let L be a list
containing all atoms of P without repetitions. If the pattern unification problem JPKL
is solvable, then there exists a freshness environment ∇, and a most general pattern
unifier σ, such that σ is 〈L,∇〉-compatible.

PROOF. Let L = 〈a1, . . . , an〉, and let τi be the sort of ai, for i = 1, . . . , n. The most
general unifier σ is chosen, accordingly to Theorem 6.11, as a unifier not using other
bound variable names than the ones used in JPKL. Moreover, since all bound variables
of JPKL with the same name ai have the same type JτiK, the same happens in σ, and all
free variables Z occurring in σ have a type of the form Z : Jτi1K → . . . → JτimK → JδK, for
some indexes satisfying 1 ≤ i1 < · · · < im ≤ n. Notice that there could be more than
one set of indexes satisfying this condition.
The freshness environment ∇ is constructed as follows. For any variable Z : Jτi1K →

. . . JτimK → JδK occurring7 in σ , let be LZ = 〈ai1 , . . . , aim〉. This will be a sublist of the
atoms of L. Then,

∇ = {a#Z | Z occurs in σ ∧ a ∈ L \ LZ}

We prove that σ(X)(a1, . . . , an) is 〈L,∇〉-compatible, for any X ∈ Dom(σ).
Since σ is most general Dom(σ) only contains variables X of JPKL. All these variables

have type Jτ1K → · · · → JτnK → JδK, where δ is the sort of X. Therefore, σ(X)(a1, . . . , an)

7We say that X occurs in σ, if X occurs free in σ(Y ), for some Y ∈ Dom(σ).
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is a well-typed λ-term. Now we prove that this term is 〈L,∇〉-compatible by structural
induction.

By Theorem 6.11, σ(X) does not use bound variables with other names and types
than the ones already used in the original problem. This ensures that we can always
translate back bound variables a as the atom with the same name a. Terms formed
by a constant or free variable are particular cases of applications with m = 0, studied
bellow.

All λ-abstractions will be of the form λai.t, where ai = JaiKL,∇. This ensure that its

translation back is possible, if the body of the λ-abstractions is 〈L,∇〉-compatible.
All applications are of the form f(t1, . . . , tm) where f is a constant of the original

nominal problem (since σ is most general), or of the form X(ai1 , . . . , aim) where X is
a free variable and ai1 , . . . , aim are distinct bound variables. Notice that we can no
have terms of the form ai(t1, . . . , tn) where ai is a bound variable, because all these
bound variables have basic types. In the first case, the application is 〈L,∇〉-compatible
if arguments are. In the second case, let X : Jτj1K → . . . → JτjmK → JδK, for some indexes
satisfying 1 ≤ j1 < · · · < jm ≤ n. using the ∇ constructed before, we can translate back
X(ai1 , . . . , aim) as π−1 ·X, for some π satisfying π(aik) = ajk , for all k = 1, . . . ,m. Notice
that ajk and aik have the same sort τjk . Hence, this second kind of applications is also
〈L,∇〉-compatible.

THEOREM 7.7. For every equational nominal unification problem P, and any list L
containing all atoms of P without repetitions, if the pattern unification problem JPKL is
solvable, then P is also solvable.

PROOF. By Lemma 7.6, if JPKL is solvable then there exist a most general unifier

σ of JPKL, and a freshness environment ∇ such that 〈∇, JσK-1L,∇〉 is defined. W.l.o.g. as-

sume that Dom(σ) = Vars(JPKL) and hence, according to Definition 7.2, Dom(JσK-1L,∇) =

Vars(P). By Lemma 7.4, we have
r
JσK-1L,∇

z
L,∇

= σ, which solves JPKL. Hence, by Theo-

rem 5.12, 〈∇, JσK-1L,∇〉 solves P.

From Corollary 4.5, Lemma 5.6 and Theorems 5.14 and 7.7 we conclude the following
result.

COROLLARY 7.8. Nominal Unification is quadratic reducible to Higher-Order Pat-
tern Unification.

8. CORRESPONDENCE BETWEEN UNIFIERS

In this section we establish a correspondence between the solutions of a nominal uni-
fication problem and their translations. We prove that the translation and the reverse
translation functions are monotone, in the sense that they translate more general solu-
tions into more general solutions (Lemma 8.5). Therefore, both translate most general
solutions into most general solutions (Theorem 8.7).

We start by generalizing the translation of a nominal substitution w.r.t. a freshness
environment, to respect the translation of a nominal substitution w.r.t. two freshness
environments, and similarly for the reverse translation.

Definition 8.1. Given a list of atoms L, a nominal substitution σ, and two freshness
environments ∇1 and ∇2, satisfying ∇2 ⊢ σ(∇1), we define

JσK∇1

L,∇2
=

⋃

X∈Dom(σ)

[X 7→ λa1, . . . , an.Jσ(X)KL,∇2
]

where 〈a1, . . . , an〉 = 〈a ∈ L | a#X 6∈ ∇1〉.
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Given a list of atoms L, a pattern substitution σ, and two freshness environments ∇
and ∇′, we define

JσK-1∇1

L,∇2
=

⋃

X∈Dom(σ)

[

X 7→ Jσ(X)(a1, . . . , an)K-1L,∇2

]

where 〈a1, . . . , an〉 = 〈a ∈ L | a#X 6∈ ∇1〉.

We say that σ is 〈L,∇1→∇2〉-compatible if JσK-1∇1

L,∇2
is defined.

Notice that this definition generalizes Definition 5.7 because JσKL,∇ = JσK∅L,∇, and

Definition 7.2 because, JσK-1L,∇ = JσK-1∅L,∇.

The following lemmas are generalizations of Lemmas 5.10 and 7.4, respectively.
Their proofs are also straightforward generalizations.

LEMMA 8.2. For any list of atoms L, nominal substitution σ, freshness environ-
ments∇1 and∇2, and nominal term t, satisfying that all atoms of t are in L,∇2 ⊢ σ(∇1)
and Vars(t) ⊆ Dom(σ), we have

JσK∇1

L,∇2
(JtKL,∇1

) = Jσ(t)KL,∇2

LEMMA 8.3. For any list of atoms L, λ-substitution σ and freshness environment∇1

and ∇2, if σ is 〈L,∇1→∇2〉-compatible, then

r
JσK-1∇1

L,∇2

z∇1

L,∇2

= σ

If a λ-substitution σ1 is more general than another σ2, then there exists a substitu-
tion σ3 that satisfies σ2 = σ3 ◦ σ1. The following lemma states that this substitution
can be used to construct a nominal substitution as the reverse translation of σ3 that
we will use, in Lemma 8.5, to prove that reverse translation of σ1 is more general than
the reverse translation of σ2.

LEMMA 8.4. For any list of atoms L, pair of λ-substitutions σ1 and σ2 and pair of
freshness environments ∇1 and ∇2, if σ1 is 〈L,∇1〉-compatible, σ2 is 〈L,∇2〉-compatible,
and σ1 is more general than σ2, then there exists a λ-substitution σ3 such that

(1) σ2 = σ3 ◦ σ1|Dom(σ1)∪Dom(σ2)

(2) σ3 is 〈L,∇1→∇2〉-compatible, and

(3) ∇2 ⊢ Jσ3K-1
∇1

L,∇2
(∇1).

PROOF. (1) The first statement follows from σ1 being more general than σ2. How-
ever, w.l.o.g. we take a σ3 that only instantiates variables occurring in σ1 or belonging
to Dom(σ2).
(2) For all X ∈ Dom(σ3), let 〈a1, . . . , an〉 = 〈a ∈ L | a#X 6∈ ∇1〉. Now, X occurs in
σ1 or X ∈ Dom(σ2). In the first case, since σ1 is 〈L,∇1〉-compatible and we are deal-
ing with higher-order pattern substitutions, X occurs in σ1 in (at least one) sub-
term of the form X(b1, . . . , bn), where bi are distinct bound variables with names in
〈a1, . . . , an〉, and ai and bi have the same type. Moreover, σ3(X)(b1, . . . , bn), conveniently
β-reduced, is a subterm of some σ2(Y ), for some Y ∈ Dom(σ2). In the second case, if
X ∈ Dom(σ2), we also have this property. Therefore, since σ2 is 〈L,∇2〉-compatible, we
have that σ3(X)(b1, . . . , bn), and hence σ3(X)(a1, . . . , an) are 〈L,∇2〉-compatible. There-

fore, Jσ3K-1
∇1

L,∇2
=

⋃

X∈Dom(σ3)
[X 7→ Jσ3(X)(a1, . . . , an)K-1L,∇2

] exists, and σ3 is 〈L,∇1→∇2〉-

compatible.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Nominal Unification from a Higher-Order Perspective A:27

(3) Let be a#X ∈ ∇1. The free variable names of σ3(X) and L are disjoint. There-
fore, a 6∈ FV(σ3(X)(a1, . . . , an)), where as before 〈a1, . . . , an〉 = 〈a ∈ L | a#X 6∈
∇1〉. By Lemma 7.4, since σ3(X)(a1, . . . , an) is 〈L,∇2〉-compatible, we have a 6∈

FV

(r
Jσ3(X)(a1, . . . , an)K-1L,∇2

z
L,∇2

)

. By Lemma 5.9,∇2 ⊢ a# Jσ3(X)(a1, . . . , an)K-1L,∇2
. By

Definition 8.1, ∇2 ⊢ a#Jσ3K-1
∇1

L,∇2
(X). Therefore, we have ∇2 ⊢ Jσ3K-1

∇1

L,∇2
(∇1).

The following lemma ensures that the translation and reverse translation of substi-
tutions is monotone w.r.t. the more generality relation.

LEMMA 8.5. For every nominal unification problem P, any list L containing all
atoms of P without repetitions, and pair of unifiers 〈∇1, σ1〉 and 〈∇2, σ2〉, satisfying
Vars(P) ⊆ Dom(σ1) ⊆ Dom(σ2), we have 〈∇1, σ1〉 is more general than 〈∇2, σ2〉, if, and
only if, Jσ1KL,∇1

is more general than Jσ2KL,∇2
.

PROOF. The reduction of nominal unification to equational nominal unification pre-
serves the set of solutions of a problem (see Lemma 4.4), hence we assume that P is a
equational nominal unification problem.

⇒) By Theorem 5.12, both Jσ1KL,∇1
and Jσ2KL,∇2

are solutions of JPKL. If 〈∇1, σ1〉 is more

general than 〈∇2, σ2〉, then there exists a nominal substitution σ′ such that∇2 ⊢ σ′(∇1)
and ∇2 ⊢ σ′ ◦ σ1|Dom(σ1)∪Dom(σ2) ≈ σ2.

For all X ∈ Dom(σ2), we have

∇2 ⊢ σ′(σ1(X)) ≈ σ2(X)

By Lemma 5.9,

Jσ′(σ1(X))KL,∇2
=α Jσ2(X)KL,∇2

By Lemma 8.2,

Jσ′K∇1

L,∇2
(Jσ1(X)KL,∇1

) =α Jσ2(X)KL,∇2

By Lemma 5.10,

Jσ′K∇1

L,∇2
(Jσ1KL,∇1

(JXKL,∅)) =α Jσ2KL,∇2
(JXKL,∅)

Since JXKL,∅ = X(a1, . . . , an), where L = 〈a1, . . . , an〉, and ai are distinct variables, we

have

Jσ2KL,∇2
(X) = Jσ′K∇1

L,∇2
◦ Jσ1KL,∇1

(X), for all X ∈ Dom(Jσ2KL,∇2
)

Therefore, Jσ1KL,∇1
is more general than Jσ2KL,∇2

.

⇐) There exists a λ-substitution σ′ such that

Jσ2KL,∇2
= σ′ ◦ Jσ1KL,∇1

|Dom(σ1)∪Dom(σ2)

By Lemma 8.4, σ′ is 〈L,∇1→∇2〉-compatible. Hence, it exists the nominal substitution

σ′′ = Jσ′K-1
∇1

L,∇2
. For any X ∈ Dom(σ2), by Lemmas 8.2 and 8.3, we have

q
σ′′

(

σ1(X)
)y

L,∇2
= Jσ′′K∇1

L,∇2

(

Jσ1K∅L,∇1
(JXKL,∅)

)

= σ′
(

Jσ1K∅L,∇1
(JXKL,∅)

)

= Jσ2K∅L,∇2
(JXKL,∅)

= Jσ2(X)KL,∇2
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By Lemma 5.9, we have ∇2 ⊢ σ′′
(

σ1(X)
)

≈ σ2(X). Therefore, ∇2 ⊢ σ′′ ◦
σ1|Dom(σ1)∪Dom(σ2) ≈ σ2. By Lemma 8.4, we also have ∇2 ⊢ σ′′(∇1). From both facts,
we conclude that σ1 is more general than σ2.

COROLLARY 8.6. Most general nominal unifiers of nominal unification problems
are unique.

PROOF. It is a direct consequence of uniqueness of most general higher-order pat-
tern unifiers and Lemma 8.5.

Finally we can conclude that the translations preserve most generality.

THEOREM 8.7. For any nominal problem P, any list L containing all atoms of P
without repetitions, and nominal solution 〈∇, σ〉, satisfying Vars(P) ⊆ Dom(σ), we have
〈∇, σ〉 is a most general unifier of P if, and only if, JσKL,∇ is a most general unifier of

JPKL.
PROOF. Like in Lemma 8.5, we can assume that P is an equational nominal unifi-

cation problem.

⇒) Suppose that 〈∇, σ〉 is a most general nominal unifier of P, but JσKL,∇ is not a most

general pattern unifier of JPK. By Theorem 5.12, JσKL,∇ is a solution of JPKL. Since most

general higher-order pattern unifiers are unique, and by Lemma 7.6, there exists a
most general pattern unifier σ′ of JPKL strictly more general than JσKL,∇ and such that

Jσ′K-1L,∇ exists. By Lemma 7.4,
r
Jσ′K-1L,∇

z
L,∇

= σ′. Since we assume that 〈∇, σ〉 is most

general and nominal most general unifiers are also unique, we have that 〈∇, σ〉 is more

general than Jσ′K-1L,∇. Hence, by Lemma 8.5, JσKL,∇ is more general than
r
Jσ′K-1L,∇

z
L,∇

=

σ′, which contradicts that σ′ is strictly more general than JσKL,∇.

⇐) Suppose that JσKL,∇ is most general, and 〈∇, σ〉 is not. Then, there exists a most

general unifier 〈∇′, σ′〉 such that 〈∇, σ〉 is not more general than 〈∇′, σ′〉. On the
other hand, since JσKL,∇ is most general, it is more general than Jσ′KL,∇′ . Hence, by

Lemma 8.5, 〈∇, σ〉 is more general than 〈∇′, σ′〉. This contradicts the initial assump-
tion. Therefore, if JσKL,∇ is most general, then 〈∇, σ〉 must be most general.

9. CONCLUSIONS

The paper describes a precise quadratic reduction from Nominal Unification to Higher-
Order Pattern Unification. The main idea of this reduction is to translate nominal sus-
pensions π ·X as λ-terms of the form X(π(a1), . . . , π(an)), where ai are the atoms that X
may capture. These atoms are translated as bound variables, by adding λ-bindings in
front of translated terms. Therefore, the translation results on higher-order patterns.
This reduction helps to better understand the semantics of the nominal binding and
permutations in comparison with λ-binding and α-conversion. We also describe a new
algorithm for Higher-Order Pattern Unification where no new names of bound vari-
ables are introduced. A similar property holds for the Urban et al. [2003] algorithm,
where no new atom names are introduced.
This paper is closely related to Permissive Nominal Unification [Dowek et al. 2009;

2010]. In these works, there is also a reduction of permissive unification (basically
nominal unification) to higher-order pattern unification. In fact, both reductions share
the same basic ideas. In permissive terms, atoms are divided into two infinite sets
A

< ∪ A
>, and variables XS are tagged with a permission set S of the form (A< \ A) ∪ B
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where A ⊆ A
< and B ⊆ A

> are both finite. Roughly, S is the (infinite) set of cap-
turable atoms in instantiations of XS. Obviously, Dowek et al. [2010] do not pass all
these atoms as arguments when they translate these suspensions into λ-terms. Their
translation function (like ours) is parametric in a finite list of atoms D and translateq
π ·XS

yD
= XS(π(a1), . . . π(an)) where {a1, . . . , an} = D ∩ S (see Definition 8.3 in Dowek

et al. [2010]). Therefore, their D plays a similar role to our L, and their S to our ∇. In
our case, in Theorem 5.12 we pass as L all atoms occurring in the problem. Recall that
the fact that nominal solutions could be expressed using only atoms of the problems
is crucial in our case. In the corresponding Theorem 9.16 in [Dowek et al. 2010], they
pass a more refined list of atoms, called capturable atoms of the problem (see Defi-
nition 8.7 in [Dowek et al. 2010]). In fact, they go further and prove that this list of
atoms is minimal (see Theorem 8.14 in [Dowek et al. 2010]). Therefore, their reduction
is optimal, and if the set of capturable atoms remains bounded, then the reduction is
linear.

Qian [1996] proved that Higher-Order Pattern Unification can be decided in linear
time and space. Some difficulties to verify the proof in detail has lead some researchers
to doubt about its correctness [Urban 2008]. If this result turns to be correct, we would
get that Nominal Unification can be decided in quadratic time using our reduction.
Recently, Levy and Villaret [2010], and Calvès [2010] have found a quadratic algorithm
for Nominal Unification not based on higher-order patterns. As further work it would
be interesting to look for a linear or quasi-linear algorithm for Nominal Unification
and Higher-Order Pattern Unification.

Acknowledgements

We are grateful to Murdoch J. Gabbay, Christian Urban and the anonymous referees
of this paper for their helpful comments.

REFERENCES
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CALVÈS, C. AND FERNÁNDEZ, M. 2007. Implementing nominal unification. ENTCS 176, 1, 25–37.
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