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Abstract Motivated by Gentzen’s disjunction elimination rule in his Natural Deduction calculus and reading inequali-
ties with meet in a natural way, we conceive a notion of distributivity for join semilattices. We prove that it is equivalent
to a notion present in the literature. In the way, we prove that all notions of distributivity for join semilattices we have
found in the literature are linearly ordered. We finally consider the notion of distributivity in join semilattices with
arrow, that is, the algebraic structure corresponding to the disjunction-conditional fragment of intuitionistic logic.

1 Introduction

Different notions of distributivity for semilattices have been proposed in the literature as a generalization of the usual
distributive property for lattices. As far as we know, notions of distributivity for semilattices have been given, in
chronological order, by Grätzer and Schmidt [9] in 1962, by Katriňák [12] in 1968, by Balbes [1] in 1969, by Schein
[15] in 1972, by Hickman [11] in 1984, and by Larmerová and Rachůnek [14] in 1988. Following the names of its
authors, we will use the terminology GS-, K-, B-, Sn-, H-, and LR-distributivity, respectively.

In this paper, motivated by Gentzen’s disjunction elimination rule in his Natural Deduction calculus, and reading
inequalities with meet in a natural way, we conceive another notion of distributivity for join semilattices, that we call
ND-distributivity. We aim to find out whether it is equivalent to any of the notions already present in the literature. In
doing so, we also compare the different notions of distributivity for join semilattices we have found. Namely, we see
that the given notions imply each other in the following linear order:

GS⇒ K⇒ (H⇔ LR⇔ ND)⇒ B⇒ ··· Sn⇒ Sn−1⇒ ··· S3⇒ S2,

and we also provide countermodels for the reciprocals.
Additionally, we show that H-distributivity may be seen as a very natural translation of a way to define distributivity

for lattices, fact that will provide more motivation for the use of that notion. Note that Hickman used the term mild
distributivity for H-distributivity.

The paper is structured as follows. After this introduction, in Section 2 we provide some notions and notations that
will be used in the paper. In Section 3 we show how to arrive to our notion of ND-distributivity for join semilattices. In
Section 4 we compare the different notions of distributivity for join semilattices that appear in the literature. We prove
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that one of those is equivalent to the notion of ND-distributivity given in Section 3. Finally, in Section 5 we consider
what happens with the different notions of distributivity considered in Section 4 when join semilattices are expanded
with a natural version of the relative meet-complement.

2 Preliminaries

In this section we provide the basic notions and notations that will be used in the paper.
Let J = (J;≤) be a poset. For any S ⊆ J, we will use the notations Sl and Su to denote the set of lower and upper

bounds of S, respectively. That is,

Sl = {x ∈ J : x≤ s, for all s ∈ S} and
Su = {x ∈ J : s≤ x, for all s ∈ S}.

Lemma 1 Let J = (J;≤) be a poset. For all a,b,c ∈ J, the following statements are equivalent:
(i) for all x ∈ J, if x≤ a and x≤ b, then x≤ c,
(ii) {a,b}l ⊆ {c}l ,
(iii) c ∈ {a,b}lu.

A poset J = (J;≤) is a join semilattice (resp. meet semilattice) if sup{a,b} (resp. inf{a,b}) exists for every a,b∈ J.
A poset J = (J;≤) is a lattice if it is both a join and a meet semilattice. As usual, the notations a∨b (resp. a∧b) will
stand for sup{a,b} (resp. inf{a,b}).

Given a join semilattice J = (J;≤), we will use the following notions:

• J is downwards directed iff for any a,b ∈ J, there exists c ∈ J such that c≤ a and c≤ b.
• A non empty subset I ⊆ J is said to be an ideal of J iff

(1) if x,y ∈ I, then x∨ y ∈ I and
(2) if x ∈ I and y≤ x, then y ∈ I.

• The principal ideal generated by an element a ∈ J, denoted by (a], is defined by (a] = {x ∈ J : x≤ a}.
• Id(J) will denote the set of ideals of J.
• Id f p(J) will denote the subset of ideals of J that are intersection of a finite set of principal ideals, that is, Id f p(J) =
{(a1]∩·· ·∩ (ak] : a1, ...ak ∈ J}.

In this paper we are concerned with various notions of distributivity for join semilattices, all of them generalizing
the usual notion of distributive lattice, that is, a lattice J = (J;≤) is distributive if the following equation holds true for
any elements a,b,c ∈ J:

(D) a∧ (b∨ c) = (a∧b)∨ (a∧ c) (equivalently, a∨ (b∧ c) = (a∨b)∧ (a∨ c)).
There are several equivalent formulations of this property. In particular, we mention the following ones that are relevant
for this paper:

• for all a,b,c ∈ J, if a∨b = a∨ c and a∧b = a∧ c, then b = c.
• for any two ideals I1, I2 of J, the ideal I1∨ I2 generated by their union is defined by I1∨ I2 = {a∨b : a ∈ I1,b ∈ I2}.
• the set Id(J) of ideals of J is a distributive lattice.

In the case of semilattices, several non-equivalent generalizations of these conditions can be found in the literature,
already mentioned in the introduction. However, as expected, all of them turn to be equivalent to usual distributivity
in the case of lattices.

The class of distributive lattices forms a variety (that is, an equational class). In contrast, in any sense of distribu-
tivity for join semilattices that coincides with usual distributivity in the case of a lattice, the class of distributive join
semilattices is not even a quasi-variety. Indeed, consider the distributive lattice in Figure 1. Taken as a join semilattice,
the set of black-filled nodes is a sub join semilattice that is clearly a non-distributive lattice (a diamond). Thus, it is
neither distributive as a join semilattice. This proves that the class of distributive join semilattices (in any sense that
coincides with usual distributivity in the case of lattices) is not closed by subalgebras, and hence it is not a quasi-variety.
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a b c

Fig. 1 A distributive lattice with a non-distributive sub join semilattice.

3 Distributivity and Natural Deduction

Let us consider the disjunction-fragment of intuitionistic logic in the context of Gentzen’s Natural Deduction calculus
(see [6, p. 186]). It has the following introduction rule for ∨ and an analogous one with B as only premiss:

A(∨I):
A∨B

and the following disjunction elimination rule:

A∨B
[A]
C

[B]
C .

C

The last rule may be read as saying that if C follows from A and C follows from B, then C follows from A∨B, so
reflecting what is usually called “proof by cases”. It is possible to give an algebraic translation in the context of a join
semilattice J = (J;≤):

for all a,b,c ∈ J, if a≤ c and b≤ c, then a∨b≤ c,

which is easily seen to be one of the conditions stating that a∨ b is the supremum of a and b. Now, the last rule is
usually employed in a context with a fourth formula H:

H, A∨B
H, [A]
C

H, [B]
C(∨E): .

C

In the context of a lattice L = (L;≤), we would give the following algebraic translation:

(D∧∨) for all h,a,b,c ∈ L,
if h∧a≤ c and h∧b≤ c, then h∧ (a∨b)≤ c.

It is easily seen that (D∧∨) is equivalent to the usual notion of distributivity for lattices. Now, the natural question
arises how to give an algebraic translation of (∨E) if only ∨ is available, for example, if we are in the context of a join
semilattice.

Considering that an inequality u∧v≤ w in a lattice L = (L;≤) is equivalently expressed as the first order statement

for all x ∈ L, if x≤ u and x≤ v then x≤ w,

we may write (D∧∨) in the context of a join semilattice J = (J;≤) as follows:
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(D∨) for all h,a,b,c ∈ J,
IF for all x ∈ J (if x≤ h and x≤ a, then x≤ c) and for all x ∈ J (if x≤ h and x≤ b, then x≤ c),
THEN for all x ∈ J (if x≤ h and x≤ a∨b, then x≤ c).

Alternatively, using the equivalence between parts (i) and (ii) in Lemma 1, we may write

(D∨) for all h,a,b,c ∈ J, if {h,a}l ∪{h,b}l ⊆ {c}l , then {h,a∨b}l ⊆ {c}l .

Yet, using the equivalence between parts (ii) and (iii) in Lemma 1, we may also alternatively write

(D∨) for all h,a,b,c ∈ J, {h,a}lu∩{h,b}lu ⊆ {h,a∨b}lu.

Accordingly, given the above logical motivation, it is natural to consider the following notion of distributivity for join
semilattices.

Definition 1 A join semilattice J = (J;≤) is called ND-distributive (ND for Natural Deduction) if it satisfies (D∨).

Now, it happens that there are many different (and non-equivalent) notions of distributivity for semilattices. This is
not new:

The concept of distributivity permits different non-equivalent generalizations from lattices to semilattices. (see [15])

So, it is natural to inquire whether the given notion of ND-distributivity for join semilattices is equivalent to any of the
notions already present in the literature and, if so, to which. In what follows we will solve that question. In doing so,
we will also compare the different notions of distributivity for join semilattices that we have found.

In this paper, given our logical motivation, we restrict ourselves to study the distributivity property for join semilat-
tices. However, an analogous path could be followed for meet semilattices or even for posets.

Remark 1 Let us note that the following rule (reflecting proof by three cases) is equivalent to (∨E):

H, A∨B∨C
H, [A]
D

H, [B]
D

H, [C]
D .

D

Indeed, it implies (∨E) taking C=B. Also, the following derivation shows that it may be derived using (∨E) twice:

H, A∨B∨C
H, [A]
D

H, B∨C
H, [B]

D

H, [C]
D

D .
D

This rule also has the following natural algebraic translation in the case of join semilattices: given a a join semilattice
(J;≤),

(2D∨) for all a,b,c,h1,h2 ∈ J,
IF for all x ∈ J (if x≤ h1, x≤ h2 and x≤ a, then x≤ c) and

for all x ∈ J (if x≤ h1, x≤ h2 and x≤ b, then x≤ c),
THEN for all x ∈ J (if x≤ h1, x≤ h2 and x≤ a∨b, then x≤ c).

The natural question arises about whether (2D∨) is equivalent to (D∨). Let us see that to be the case.

Proposition 1 (2D∨) is equivalent to (D∨).

Proof. Taking h = h1 = h2, it is immediate to see that (2D∨) implies (D∨). For the other direction we prove the
contrapositive. Accordingly, let us suppose, given a join semilattice (J;≤) with join ∨, that there exist a,b,c,h1,h2 ∈ J
such that
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(1) for all x ∈ J (if x≤ h1, x≤ h2 and x≤ a, then x≤ c),
(2) for all x ∈ J (if x≤ h1, x≤ h2 and x≤ b, then x≤ c), and such that
(3) there exists x ∈ J such that x≤ h1, x≤ h2, x≤ a∨b, and x � c.

Our goal is to prove that there exist a,b,c,h ∈ J such that

(A) for all x ∈ J (if x≤ h and x≤ a, then x≤ c),
(B) for all x ∈ J (if x≤ h and x≤ b, then x≤ c), and such that
(C) there exists y ∈ J such that y≤ h, y≤ a∨b, and y � c.

Let us now see that our goal is satisfied taking the same a,b,c as in our hypothesis and h to be the element provided
by (3), that is, h ∈ J satisfies

(i) h≤ h1,
(ii) h≤ h2,
(iii) h≤ a∨b, and
(iv) h � c.

Let us see that h satisfies (A), (B), and (C). For (A), suppose x ∈ J, x ≤ h, and x ≤ a. Then, using (i), (ii) and ≤-
transitivity, it follows that x≤ h1,h2. So, using (1), we get h≤ c. Item (B) is obtained analogously. Finally, h satisfies
(C) using ≤-reflexivity, (iii), and (iv). ut

Remark 2 Note that a similar proof may be obtained for any natural number n ≥ 2, that is, it holds in general that
(nD∨) is equivalent to (D∨), where we define (nD∨) taking h1,h2, . . . ,hn.

4 Different notions of distributivity for join semilattices

In the following subsections we consider and compare the notions of distributivity for semilattices we have found in the
literature. Some authors have presented their notion for the case of meet semilattices and others for join semilattices.
We will make things uniform and, motivated by the logical considerations in the previous section, we will choose to
consider join semilattices.

We emphasize that all the distributivity notions for semilattices (and posets) proposed in the literature are general-
izations of the distributivity property for lattices, in fact, when restricted to lattices all these notions coincide.

4.1 GS-distributivity

The following seems to be the most popular definition of distributivity for join semilattices.

Definition 2 A join semilattice J = (J;≤) is GS-distributive iff

(GS) for all a,b,x ∈ J, if x≤ a∨b, then there exist a′,b′ ∈ J such that a′ ≤ a, b′ ≤ b, and x = a′∨b′.

In order to visualize it, see Figure 2. The given definition seems to have appeared for the first time in [9, p. 180,
footnote 4]. It also appears in many other places, e.g., in [8, Sect. II.5.1, pp. 167-168].

Next, note that (GS) implies that every pair elements has a lower bound. In fact, we have the following equivalence.

Proposition 2 Let J = (J;≤) be a join semilattice. Then, the following two statements are equivalent:
(i) Every pair of elements has a lower bound.
(ii) for all a,b,x ∈ J, if x≤ a∨b, then there exist a′,b′ ∈ J such that a′ ≤ a, b′ ≤ b, and a′∨b′ ≤ x.
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x

a∨b

a b

b′a′

Fig. 2 Diagram for the usual notion of distributivity for join semilattices

Proof. (i)⇒ (ii) Suppose x≤ a∨b. Let a′ be a lower bound of {a,x} and b′ be a lower bound of {b,x}. Then, a′ ≤ a
and b′ ≤ b. Also, a′ ≤ x and b′ ≤ x, which implies that a′∨b′ ≤ x.

(ii)⇒ (i) Let a,b ∈ J. We have a ≤ a∨b. Then, by hypothesis, there exist a′ ≤ a, b′ ≤ b such that a′∨b′ ≤ a. As
b′ ≤ a′∨b′, it follows that b′ ≤ a. Then, b′ ≤ a,b. That is, b′ is a lower bound of {a,b}. ut

Let us now see that there cannot exist finite GS-distributive join semilattices that are not lattices, for which we shall
use the following well-known fact.

Lemma 2 Every finite join semilattice with bottom has meet.

Proposition 3 A GS-distributive join semilattice which is not a lattice is infinite.

Proof. Let us suppose we have a finite GS-distributive join semilattice which is not a lattice. First note that, due to
Lemma 2, if a finite join semilattice is not a lattice, then it does not have bottom. Now, a finite join semilattice without
bottom must have at least two minimal elements, which contradicts the fact that a GS-distributive join semilattice must
be downwards directed due to Proposition 2.

The fact that, as implied by Proposition 2, every GS-distributive join semilattice is downward directed, implies
in turn, as shown in [8], that the ideal I ∨ J, generated by the union of two ideals I, J, is defined as in the case of
distributive lattices, namely,

I∨ J = {a∨b : a ∈ I,b ∈ J}.

As a consequence, it follows that the ideals of a GS-distributive join semilattice J form a lattice that will be denoted
by Id(J). Grätzer proved in [8, p. 168] the following characterization result.

Proposition 4 Let J be a join semilattice. Then, J is GS-distributive iff Id(J) is distributive.

4.2 K-distributivity

The concept given in the following definition is similar to the one in (GS).

Definition 3 A join semilattice J = (J;≤) is K-distributive iff

(K) for all a,b,x ∈ J,
if x≤ a∨b, x � a and x � b, then there exist a′,b′ ∈ J such that a′ ≤ a, b′ ≤ b, and x = a′∨b′.

In order to visualize, see again Figure 2. The given definition seems to have appeared for the first time in [12, Definition
4, p. 122]. It also appears, for example, in [11, p. 167].

From the very definition, it turns out that GS-distributivity implies K-distributivity. In fact, as noted in [12, 1.5,
p. 122-123], it is the case that GS-distributivity is equivalent to K-distributivity plus the condition that every pair
of elements has a lower bound (that is, downward directed). Therefore, the following proposition makes clear the
relationship between GS- and and K-distributivity.
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Proposition 5 GS-distributivity implies K-distributivity, but not conversely.

The most simple counter-example showing that the reciprocal does not hold is the non-downward directed join
semilattice in Figure 3. Indeed, the given join semilattice is K-distributive, as the only way to satisfy the antecedent of
(K) is to take 1 ≤ a∨ b, but then the consequent is also true. On the other hand, it is not GS-distributive, as we have
a≤ a∨b and, however, there are no a′ ≤ a and b′ ≤ b such that a′∨b′ = a.

a

1

b

Fig. 3 Join semilattice showing that K- does not imply GS-distributivity

Finally, analogously to Proposition 4, we have the following characterisation of K-distributivity via ideals, a proof
of which may be found in [12, p. 123].

Proposition 6 Let J be a join semilattice. Then, J is K-distributive iff Id(J)∪{ /0} is distributive.

4.3 H-distributivity

In [11] Hickman introduces the concept of mildly distributive meet semilattices as those meet semilattices whose
strong ideals form a distributive lattice.1 In [11, Theorem 2.5, p. 290] it is stated that it is equivalent to the following
statement: 2

(H∧) for all n and x,a1, · · · ,an,
IF for all b (if a1 ≤ b, · · · ,an ≤ b, then x≤ b),
THEN there exists (x∧a1)∨·· ·∨ (x∧an) and x≤ (x∧a1)∨·· ·∨ (x∧an).

The given conditional may be seen as a translation of the following version of distributivity for lattices:

IF x≤ a1∨·· ·∨an, THEN x≤ (x∧a1)∨·· ·∨ (x∧an).

For the case of join semilattices, dualising Hickman’s distributivity notion for meet semilattices, we come up with the
following definition, using the notion of strong filter: a non-empty set F of a join-semillatice is called strong filter if
for any finite subset S⊆ F , it holds that Slu ⊆ F .

Definition 1. A join semilattice is H-distributive if its strong filters form a distributive lattice.

Similarly to meet semilattices, H-distributivity for join semilattices can be seen to be equivalent to the following
condition.

Lemma 1. A join semilattice J = (J;≤) is H-distributive iff the following condition holds:

(H) for all n and x,a1, · · · ,an ∈ J,
IF x≤ a1∨·· ·∨an,
THEN there exists (x∧a1), . . . ,(x∧an) and x≤ (x∧a1)∨·· ·∨ (x∧an).

Using quantifiers, (H) may be rendered as follows:

1 A non-empty set I of a meet semillatice is called strong ideal if for any finite subset S⊆ I, it holds that Sul ⊆ I.
2 Note that the original Hickman’s statement can be misleading since the condition “there exists (x∧ a1)∨ (x∧ a2)∨ ·· · ∨ (x∧ an)” is
missing.
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for all n and x,a1, . . . ,an ∈ J,
IF x≤ a1∨·· ·∨an,
THEN for all y, if for all i = 1, . . . ,n (for all z, IF z≤ x and z≤ ai, THEN z≤ y) then x≤ y

that, in turn, is equivalent to:

for all n and x,a1, . . . ,an ∈ J,
IF x≤ a1∨·· ·∨an,
THEN for all y, if (for all z, IF z≤ x and (z≤ a1 or . . . or z≤ an), THEN z≤ y) then x≤ y.

Using set-theoretic notation, (H) may also be rendered as follows:

(C) for all n and x,a1, . . . ,an ∈ J,
if x≤ a1∨·· ·∨an, then x ∈ ({x,a1}l ∪·· ·∪{x,an}l)ul .

At this point, the reader may wonder whether the number n of arguments is relevant or whether two arguments are
enough. Let us settle this question. Firstly, with that in mind, consider

(D∨n ) for all x,a1, . . . ,an,c,
if {x,a1}l ∪·· ·∪{x,an}l ⊆ {c}l , then {x,a1∨·· ·∨an}l ⊆ {c}l .

Now, let us state the following fact.

Lemma 3 (D∨n ) is equivalent to (C).

Proof. ⇒) Suppose x ≤ a1∨ ·· ·∨an and y ∈ ({x,a1}l ∪ ·· ·∪{x,an}l)u. Our goal is to see that x ≤ y. Take c = y and
apply (D∨n ). Then we have {x}l = {x,a1∨·· ·∨an}l ⊆ {y}l and hence x≤ y.
⇐) Suppose {x,a1}l ∪{x,a2}l ∪ ·· · ∪ {x,an}l ⊆ {c}l . We have to prove that, if y ≤ x and y ≤ a1 ∨ ·· · ∨ an then

y ≤ c. Now, using (C), and the assumptions y ≤ x and y ≤ a1∨ ·· ·∨an it follows that y ∈ ({x,a1}l ∪ ·· ·∪{x,an}l)ul .
But since {x,a1}l ∪{x,a2}l ∪·· ·∪{x,an}l ⊆ {c}l , we also have y ∈ ({x,a1}l ∪·· ·∪{x,an}l)ul ⊆ {c}lul = {c}l . Hence
y≤ c. ut

In turn, let us see that (D∨n ) is equivalent to (D∨), which proves that having more than two arguments does not make
any difference.

Lemma 4 (D∨n ) is equivalent to (D∨).

Proof. We just prove that (D∨) implies (D∨3 ), the reciprocal being immediate. Suppose {h,a1}l ∪{h,a2}l ∪{h,a3}l ⊆
{c}l . Then, we get both {h,a1}l ⊆ {c}l and {h,a2}l ∪ {h,a3}l ⊆ {c}l , the last of which, using (D∨), implies that
{h,a2∨a3}l ⊆ {c}l , which, together with the first, using (D∨) again, finally implies that {h,a1∨a2∨a3}l ⊆ {c}l . ut

As a consequence, H-distributivity coincides with the notion of ND-distributivity for join semilattices introduced in
Section 3. Accordingly, we have the following proposition.

Proposition 7 A join semilattice is H-distributive iff it is ND-distributive.

Analogously to Propositions 4 and 6, we also have a characterization of H-distributivity for join semilattices in
terms of distributivity of the sublattice of some of their ideals. This appears as Corollary 2.4 in [11, p. 290]), where
Id f p(J) denotes the set {(a1]∩ ·· · ∩ (ak] : a1, ...ak ∈ J}, that is, the set of ideals that are intersection of a finite set of
principal ideals of the join semilattice J = (J;≤).

Proposition 8 Let J be a join semilattice. Then, J is H-distributive iff Id f p(J) is distributive.

Let us now compare H- with K-distributivity.

Proposition 9 Let J = (J;≤) be a join semilattice. Then, K-distributivity implies H-distributivity.
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Proof. Suppose

(i) for all x ∈ J, if x≤ h and x≤ a, then x≤ c, and
(ii) for all x ∈ J, if x≤ h and x≤ b, then x≤ c.

Further, suppose both (S1) x≤ h and (S2) x≤ a∨b. The goal is to prove x≤ c. Let us suppose that x≤ a. Then, using
(i) and (S1), it follows that x≤ c. The case x≤ b is analogous using (ii). Finally, suppose both x � a and x � b. Using
(K) and (S2), it follows that there exist a′, b′ ∈ J such that a′ ≤ a, b′ ≤ b and (F) x = a′ ∨ b′, which implies a′ ≤ x,
which using (S1) gives a′ ≤ h. As we also have a′ ≤ a, using (i) we get a′ ≤ c. Reasoning analogously, we get b′ ≤ c.
So, using (F) it follows that x≤ c. ut

The reciprocal of Proposition 9 does not hold considering the model in Figure 4 (with the understanding that there
is no element in the white node). The given model appears as a poset in [7, Figure 2.7, p. 37].3 We provide a proof
using the characterization of K- and H-distributivity by their ideals (Propositions 6 and 8).

x1

y1

y2

y3

c

a

1

e

d

b

f

x3

x2

Fig. 4 H-distributive, but not K-distributive join semilattice

Proposition 10 H-distributivity does not imply K-distributivity.

Proof. Let us characterize the sets Id f p(J) and Id(J), where J = (J,≤) is the join semilattice of Figure 4. An easy
computation proves, on the one hand, that Id f p(J) is isomorphic to the ordered set of Figure 4 plus the ideal Ix =
( f ]∧ (d], whose elements are {xi : i ∈ ω}, that does not exist in the original join semilattice. On the other hand,
Id(J) is the set of ideals in Id f p(J) plus the ideal Iy generated by the set {yi : i ∈ ω}, that is, the ideal with elements
Iy = {yi : i ∈ ω}∪{xi : i ∈ ω}. Clearly, this ideal is not a finite intersection of principal ideals. Both Id f p(J) and Id(J)
are lattices. Moreover, it is obvious that Id f p(J) is a distributive lattice and thus the join semilattice of the example is
H-distributive. But this is not the case for Id(J), since it has a sublattice isomorphic to the pentagon formed by the
elements (a], (d], (c], Iy, and Ix. Thus, the join semilattice of the example is not K-distributive. ut

It is natural to ask whether it is possible to find a finite example in order to prove the reciprocal of Proposition 9.
Let us see that the answer is negative.

Proposition 11 For finite join semilattices, H-distributivity and K-distributivity coincide.
3 We thank the author of this PhD thesis for communicating this example.
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Proof. Consider a finite H-distributive join semilattice. We want to see that it is K-distributive. Accordingly, suppose
x≤ a∨b, x � a, and x � b. It is natural to consider

∨
{a,x}l and

∨
{b,x}l as candidates for a′ and b′ in the definition of

K-distributivity. Now, in order to do that, we first need to prove that the sets {a,x}l and {b,x}l are not empty. Suppose,
say, {a,x}l = /0. Then, we have :

- for all y, if y≤ x and y≤ a, then y≤ b (as {a,x}l = /0),
- for all y, if y≤ x and y≤ b, then y≤ b,
- x≤ x, and
- x≤ a∨b.

So, using H-distributivity, it follows that x≤ b, a contradiction.
Having proved that both {a,x}l 6= /0 and {b,x}l 6= /0, let us note that both

∨
{a,x}l and

∨
{b,x}l exist, due to having

a finite structure. Next, it is clear that
∨
{a,x}l = inf{a,x} (analogously,

∨
{b,x}l = inf{b,x}).

It remains to be seen that 1) inf{a,x} ≤ a, 2) inf{b,x} ≤ b, and 3) x = inf{a,x}∨ inf{b,x}. Now, 1) and 2) are
easy to see. Regarding 3), as we have both that inf{a,x} ≤ x and inf{b,x} ≤ x, it follows that inf{a,x}∨ inf{b,x} ≤ x.
Finally, observe that the inequality x≤ inf{a,x}∨ inf{b,x} follows from

- for all y, if y≤ x and y≤ a, then y≤ inf{a,x}∨ inf{b,x},
- for all y, if y≤ x and y≤ b, then y≤ inf{a,x}∨ inf{b,x},
- x≤ x, and
- x≤ a∨b

(use H-distributivity). ut

In fact, it is easy to observe that in the case of a finite join semilattice J, the sets of ideals Id(J) and Id f p(J)
coincide since, for any two elements a, b, either there is no lower bound, that is, {a,b}l = /0, or there exists their meet
a∧b =

∨
{a,b}l .

4.4 LR-distributivity

Larmerová-Rachůnek version of distributivity (see [14]) was given for posets, as we next see.

Definition 4 A poset P = (P;≤) is LR-distributive iff

(LRP) for all a,b,c ∈ P, ({c,a}l ∪{c,b}l)ul = ({c}∪{a,b}u)l .

Remark 3 In the given definition, it is enough to take one inclusion. Indeed, given a poset P = (P;≤) and a,b,c ∈ P,
it is always the case that ({c,a}l ∪{c,b}l)ul ⊆ ({c}∪{a,b}u)l .

It is natural to ask for LR-distributivity in the case of a join semilattice. The following definition follows from the
fact that in a join semilattice J = (J;≤) it holds that ({c}∪{a,b}u)l = {c,a∨b}l .

Definition 5 A join semilattice J = (J;≤) is LR-distributive iff

(LR) for all a,b,c ∈ J, {c,a∨b}l ⊆ ({c,a}l ∪{c,b}l)ul .

Now, it can be seen that LR-distributivity is equivalent to H-distributivity, and hence to the condition (D∨) as well.

Proposition 12 Let J = (J;≤) be a join semilattice. Then the following conditions are equivalent:
(i) J satisfies (LR),
(ii) J satisfies (H),
(iii) J satifies (D∨).

Proof. The equivalence between (ii) and (iii) is Prop. 7. Let us prove that (LR) is equivalent to (D∨). If (D∨) is written
in the form {h,a}lu ∩{h,b}lu ⊆ {h,a∨ b}lu, then it is equivalent to {h,a∨ b}l ⊆ ({h,a}lu ∩{h,b}lu)l = ({h,a}l ∪
{h,b}l)ul , that is to (LR).4 ut
4 We thank the referee for pointing out this short proof.
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4.5 B-distributivity

The following definition seems to have appeared for the first time in [1, Theorem 2.2. (i), p. 261].

Definition 6 A join semilattice J = (J;≤) is B-distributive iff

(B) for all n and a1,a2, . . . ,an, x ∈ J,
if a1∧a2∧·· ·∧an exists, then also (x∨a1)∧ (x∨a2)∧·· ·∧ (x∨an) exists and equals x∨ (a1∧a2∧·· ·∧an).

We have the following fact.

Proposition 13 H-distributivity implies B-distributivity.

Proof. Given an H-distributive join semilattice J= (J;≤), let us take a,b,x∈ J (the general case follows by induction).
Let us suppose that a∧b exists in J. Then, also x∨(a∧b) exists in J. Our goal is to see that x∨(a∧b)= inf{x∨a,x∨b}.
It is clear that x∨ (a∧ b) ≤ x∨ a,x∨ b. Now, suppose both (F1) y ≤ x∨ b and (F2) y ≤ x∨ a. We have to see that
y≤ x∨ (a∧b). It immediately follows that

(i) for all w ∈ J, if w≤ x∨b and w≤ x, then w≤ x∨ (a∧b).

Now, suppose (F3) w≤ x∨b and (F4) w≤ a. Then, we have both

(i’) for all y ∈ J, if y≤ a and y≤ x, then y≤ x∨ (a∧b), and
(ii’) for all y ∈ J, if y≤ a and y≤ b, then y≤ x∨ (a∧b).

So, applying H-distributivity to (F3), (F4), (i’), and (ii’), we have w≤ x∨ (a∧b). That is, we have proved

(ii) for all w ∈ J, if w≤ x∨b and w≤ a, then w≤ x∨ (a∧b).

Using H-distributivity, (F1), (F2), (i) and (ii), it finally follows that y≤ x∨ (a∧b), as desired. ut

The reciprocal of Proposition 13 does not hold as may be seen in Figure 5.

a

1

b c

Fig. 5 Join semilattice showing that B- does not imply H-distributivity

Observe also that the lattice Id f p(J), for J being the join semilattice of Figure 5, is not distributive since it is a
diamond.

4.6 Sn-distributivity

The following definition seems to have appeared for the first time in [15].

Definition 7 A join semilattice (J;≤) is said to be Sn-distributive for n a natural number, 2≤ n, iff

(Sn) for all a1,a2, . . . ,an,x ∈ J,
if a1∧a2∧·· ·∧an exists, then also (x∨a1)∧ (x∨a2)∧·· ·∧ (x∨an) exists and equals x∨ (a1∧a2∧·· ·∧an).
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It is easy to see that B-distributivity implies Sn-distributivity, for any n≥ 2. It is also clear that for any n≥ 2, Sn+1
implies Sn. On the other hand, we have that for no natural n≥ 2 it holds that Sn-distributivity implies B-distributivity. In
fact, it was proved that for any n≥ 2, Sn does not imply Sn+1 (see [13]), where infinite models using the real numbers
were provided. As in the case of GS- and H-distributivity, it is natural to ask whether, for example, finite models are
possible. As in the cases just mentioned, the answer is negative as already proved in [17, Theorem 7.1, p. 1071]. In
[16, Theorem, p. 26] it is also proved that it is not possible to find infinite wellfounded models.

Therefore, so far we have seen that, in the case of a join semilattice, we have the following chain of implications
among the different distributivity conditions:

(GS)⇒ (K)⇒ ((H)⇔ (LR)⇔ (ND))⇒ (B)⇒ ··· (Sn)⇒ (Sn−1)⇒ ·· · (S2).

5 Join semilattices with arrow

The expansion of semilattices with an arrow operation has been well studied in the literature in the case of meet semi-
lattices under the name of relatively pseudocomplemented semilattices (see, for example, [8, Section I. 6. 2]). However,
as far as we know, the expansion of join semilattices with an arrow has not received much attention, excepting, for
instance, [4, 5]. In this section we deal with distributivity of join semilattices expanded with an arrow operation.

Definition 2. A join semilattice with arrow is a structure (J;≤,→) where (J;≤) is a join semilattice and the arrow→
is a binary operation such that for all a,b ∈ J:

a→ b = max{c ∈ J : for all x ∈ J, if x≤ a and x≤ c, then x≤ b}.

The existence of the→ operation is clearly equivalent to the requirement that→ satisfies the following two conditions:

(→E) for all x ∈ J, if x≤ a and x≤ a→ b, then x≤ b,
(→I) for all c ∈ J, IF for all x ∈ J, if x≤ a and x≤ c, then x≤ b, THEN c≤ a→ b.

Note that (→I) and (→E) imply the following two usual properties:

b≤ a→ b, for all a,b ∈ J,
if c≤ a and c≤ a→ b, then, c≤ b, for all a,b,c ∈ J.

Remark 4 The idea of defining an arrow in a poset was already present in [10] (see Definition 4, where the author
uses the terminology of Brouwer poset and also proves that a poset with arrow is LR-distributive, where the arrow
a→ b is defined as the max {c ∈ J : {a,c}l ⊆ {b}l}).

Remark 5 In a lattice, or even in a meet semilattice, the arrow (if there exists) coincides with the usual relative
pseudocomplement. This follows from the fact that, as previously mentioned, the inequality a∧ x ≤ b is equivalent to
the following universal quantification: for all y, if y ≤ a and y ≤ x, then y ≤ b. By the way, we prefer to use “arrow”
instead of “relative pseudocomplement”, because meet is not necessarily present.

As is well known, a lattice with relative pseudocomplement is distributive (see [18] or [19]). The natural question
arises whether a join semilattice with arrow is distributive in any of the senses considered in Section 4. The answer is
negative in the case of GS-distributivity, as the join semilattice in Figure 6 has arrow and is not GS-distributive.

Remark 6 However, note that a meet semilattice with arrow is always GS-distributive, see [2, Proposition 2.1].

A similar question in the case of K-distributivity has also a negative answer, as the the join semilattice in Figure 7,
already given in Figure 4, has arrow and is not K-distributive.

The case of H-distributivity is different, as we see next.

Proposition 14 Every join semilattice expanded with arrow is H-distributive.
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a

1

b

→ a b 1
a 1 b 1
b a 1 1
1 a b 1

Fig. 6 A non-GS-distributive join semilattice with arrow

x1

y1

y2

y3

c

a

1

e

d

b

f

x3

x2

→ x1 x2 xn y1 y2 yn f d e c b a 1
x1 1 1 1 1 1 1 1 1 1 1 1 1 1
x2 y1 1 1 y1 1 1 1 1 1 1 1 1 1
xn y1 y2 1 y1 y2 1 1 1 1 1 1 1 1
y1 e e e 1 1 1 e e e 1 1 1 1
y2 e e e y1 1 1 e e e 1 1 1 1
yn x1 x2 e y1 y2 1 1 1 1 1 1 1 1
f y1 y2 yn y1 y2 yn 1 a 1 c 1 a 1
d y1 y2 yn y1 y2 yn b 1 1 b b 1 1
e y1 y2 yn y1 y2 yn b a 1 c b a 1
c x1 x2 xn y1 y2 yn e e e 1 1 1 1
b x1 x2 xn y1 y2 yn e d e a 1 a 1
a x1 x2 xn y1 y2 yn f e e b b 1 1
1 x1 x2 xn y1 y2 yn f d e c b a 1

Fig. 7 A non-K-distributive join semilattice with arrow

Proof. Let J = (J;≤) be a join semilattice with arrow. Take a,b,c,h ∈ J. Suppose

(x1) for all x ∈ J, if x≤ h and x≤ a, then x≤ c and
(x2) for all x ∈ J, if x≤ h and x≤ b, then x≤ c.

Take y ∈ J and suppose

(F1) y≤ h and
(F2) y≤ a∨b.

Now, using (→I), (x1) implies a ≤ h→ c and (x2) implies b ≤ h→ c. These inequalities together with (F2) imply
y≤ h→ c, which, using (F1) and (→E), gives y≤ c. ut

Analogously to what happens when considering lattices, in the finite case we have the following fact.

Proposition 15 Every finite H-distributive join semilattice has arrow.

Proof. Let J = (J;≤) be a finite H-distributive join semilattice. Due to finiteness, c1∨ c2∨·· ·∨ cn =
∨
{c ∈ J : for all

x ∈ J, if x≤ a and x≤ c, then x≤ b} exists, for any a, b ∈ J. It is clear that for any ci,1≤ i≤ n, it holds that

(F) for all x, if x≤ a and x≤ ci, then x≤ b.

Now, let us see that c1∨ c2∨·· ·∨ cn is in fact a→ b.
First, let us see that c1∨ c2∨·· ·∨ cn ∈ {c ∈ J : for all x ∈ J, if x≤ a and x≤ c, then x≤ b}. That is, we have to see

that

(T) for all x ∈ J, if x≤ a and x≤ c1∨ c2∨·· ·∨ cn, then x≤ b.

13



Now, (T) clearly follows from (F) by H-distributivity.
Secondly, let us take c ∈ J such that for all x ∈ J, if x≤ a and x≤ c, then x≤ b. Then, obviously, c ∈ {c ∈ J : for all

x ∈ J, if x≤ a and x≤ c, then x≤ b}. Then, c≤ c1∨ c2 · · ·∨ cn, as c1∨ c2∨ ·· ·∨ cn =
∨
{c ∈ J : for all x ∈ J, if x≤ a

and x≤ c, then x≤ b}. ut

Finally, the natural question arises whether the class of join semilattices expanded with arrow forms a variety or at
least a quasi variety. The following example proves that the answer is negative. Indeed, consider the distributive lattice
in Figure 8, which is the direct product J = (L×L;≤) where L = {0, 1

2 ,1}. It is clear that the arrow operation→ exists
in J, in fact, J∗ = (L×L;≤,→) becomes a Heyting algebra. Now, consider J∗ as a join semilattice with arrow, and
observe that the set B of elements represented by black nodes in the figure is the domain of a subalgebra (B;≤,→)
of J∗, since both ∨ and→ are closed on B. However, (B;≤,→) is not a join semilattice with arrow since→ is not an
arrow in the sense of Def. 2. In particular, ( 1

2 ,
1
2 )→ (0,0) does not coincide with the maximum (in B) of the set

{(c,d) ∈ B : ∀(x,y) ∈ B, if (x,y)≤ (c,d) and (x,y)≤ ( 1
2 ,

1
2 ), then (x,y)≤ (0,0)}

that does not exist. This shows that the class of join semilattices with arrow is not a quasi variety.

(0,0)

(0, 1
2 )

(0,1)

( 1
2 ,0)

(1,0)( 1
2 , 1

2 )

( 1
2 ,1) (1, 1

2 )

(1,1)

Fig. 8 A distributive join semilattice with a definable arrow.

Moreover, since J is a distributive lattice while (B;≤) is not a distributive lattice (it contains a pentagon), the class
of distributive join semilattices with arrow is not a quasi variety either. Note that, since J and (B;≤) are lattices, this
claim is valid for any notion of distributivity for join semilattices.

6 Conclusions

In this paper we have proposed a notion of distributivity for join semilattices with logical motivations related to
Gentzen’s disjunction elimination rule in the {∨,→}-fragment of intuitionistic logic, and we have compared it to
other notions of distributivity for join semilattices proposed in the literature.

There are a number of open problems that we plan to address as future research. In particular, we can mention the
following ones:

• As for the logical motivation, similar to the (∨E) rule in Section 3, one can consider the following rule with two
contexts:

H1, H2, A∨B
H1, H2, [A]

C

H1, H2, [B]
C .

C
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This rule also has a natural algebraic translation in the case of join semilattices. The question arises whether it is
equivalent to the condition (D∨) or if it leads to a different one.

• Distributive lattices are characterized by their lattice of ideals. In the case of join semilattices, there are similar
characterizations for GS-, K- and H-distributivity, but not for B- and Sn-distributivity. The question is whether B-
and Sn-distributive join semilattices can be characterized by means of their ideals.

• In [3] the authors generalize the well-known characterization of distributive lattices in terms of forbidden sublattices
(diamond and pentagon) of distributive posets, also identifying the set of forbidden subposets. A similar study for
distributive join semilattices is an open question.
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