
Distributed Forward Checking May Lie for Privacy ?

Ismel Brito and Pedro Meseguer

IIIA, Institut d’Investigacío en Intel.lig̀encia Artificial
CSIC, Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.
{ismel|pedro }@iiia.csic.es

Abstract. DisFC is an ABT-like algorithm that, instead of sending the value
taken by the high priority agent, it sends the domain of the low priority agent
that is compatible with that value. With this strategy, plus the use of sequence
numbers, some privacy level is achieved. In particular, each agent knows its value
in the solution, but ignores the values of the others. However, the idea of sending
the whole compatible domain each time an agent changes its value may cause
a privacy loss on shared constraints that was initially overlooked. To solve this
issue, we proposeDisFClies, an algorithm that works likeDisFC but it may lie
about the compatible domains of other agents. It requires a single extra condition:
if an agent sends a lie, it has to tell the truth in finite time afterwards. We prove
that the algorithm is sound, complete and terminates. We provide experimental
results on the increment in privacy achieved, at the extra cost of more search.

1 Introduction

In the last years, there is an increasing interest for solving constraint satisfaction prob-
lems in a distributed form. This has generated a new model, calledDisCSP, where the
information of aCSPinstance is distributed among several agents but it is never con-
centrated into a single agent. To solve this new model, new algorithms have appeared
that communicate by message passing. Among them, we underline the pioneeringABT
algorithm [11, 12], that has been shown correct and complete.

There are several motivations to solve aCSP instance in a distributed form. We
can mention the difficulty to collect and move into a single server all the elements
of an instance if it is very large, if different formats coexists and the cost of translating
them is high. In addition, privacy is a motivation for distributed solving. Many problems
appear to be naturally distributed, each part belonging to a different agent. In the solving
process, agents desire to keep as private as possible the information they have, and
specially they do not want to reveal the values of the solution to other agents.

Although the initialABT was not concerned with privacy issues (agents exchanged
their values freely), privacy has been a key aspect for newDisCSPsolving algorithms.
Generally speaking, most distributed algorithms leak some kind of information in the
solving process, which can be exploited by some agents to deduce the reserved infor-
mation of other agents. So far, there are two main approaches to enforce privacy. One
considers the use of cryptographic techniques to conceal values and constraints [13, 10].

? Supported by the Spanish project TIN2005-09312-C03-01.

Alternatively, other authors try to enforce privacy by using different search strategies.
Our past work has followed this line, and this paper is a further step on this approach.

In previous work, we proposedDistributed Forward Checking(DisFC) [2]. It is an
ABT-like algorithm that, instead of sending the value ofxi to agentj (assumingi with
higher priority thanj), it sends the subset of values thatj can take which are com-
patible with thei value. This idea, combined with the formulation ofPartially Known
Constraints, and the use of sequence numbers to conceal the actual value taken by
an agent, allow for some degree of privacy. In particular, when a solution is found,
each agent knows its own value but ignores the values of other agents. However, we
overlooked the effect that sending the whole subset of compatible values may have in
constraint privacy. Ifi hasd different values and in the solving processj receivesd
different compatible subsets, thenj knows all the rows of the constraint matrix thati
has, but without knowing their position. In the solving process, it is possible to deduce
that some positions are discarded for some rows [8]. At the end, agentj may have a
non-negligible amount of information about the constraint thati owns, which could be
used to break privacy. Nevertheless, computing the set of constraints that are compati-
ble with the information leaked in the solving process requires a significant amount of
work (computing all solutions of aCSPinstance, that is, solving an NP-hard problem).

To prevent this issue, we suggest a new algorithm calledDisFClies. It works like
standardDisFCwith a single modification: it may lie in the subsets of compatible values
that j may take. Obviously, to keep completeness it has to tell the truth in the values
that i truly has. So ifi hasd values{v1, v2, . . . , vd}, DisFClies works as ifi would
haved + k values{v1, v2, . . . , vd, vd+1, . . . , vd+k}. We call true valuesas the firstd
values, while the rest arefalse values. Wheni takes the true valuevp, 1 ≤ p ≤ d, it
sends to agentj the subset of values that are compatible withvp. Wheni takes the false
valuevq, d < q ≤ d + k, DisFClies sends an invented subset of compatible values toj,
with the purpose of making more difficult the hypothetical deduction ofj on the actual
constraint matrix ofi. Again, to assure completeness,DisFClies has to allow all its true
values for assignment. As result, this strategy increases the level of privacy at the extra
cost of losing performance. This expected result poses a trade-off between efficiency
and privacy: enforcing privacy causes to decrease efficiency and vice versa.

In practical terms, what does this mean? First, we have to notice that, even in un-
solvable instances (where the major privacy loss occurs), not every agent will have the
same level of leaked information. Imagine an instance that contains a single unsolvable
subproblem. If the empty nogood is derived exclusively from the interaction of agents
in that subproblem, they will have a high level of information about their neighboring
constraints, since all possible combinations have been tried. However, agents in other
parts of the instance may have less information, if they have reached a consistent assign-
ment with less search. ConsideringDisFCon binary random problems without solution
of 16 variables, 10 values per variable and constraint connectivity of 0.4, it may exist
one agent that would find 1 matrix compatible with the information leaked, that is, the
constraint of the other agent. On the same problems, the newDisFClies would approx-
imately multiply this number by 2, 20 or 200 when allowing 1, 3 or 5 lies per agent, at
the extra cost of incrementing computation and communication costs up to the level of
solving problems with 11, 13 or 15 values per variable.

The structure of the paper is as follows. In Section 2 we present the basic concepts
used in the paper. In Section 3 we discuss the privacy issues ofDisFC algorithm. In
Section 4 we propose the new algorithm that may lie about the values agents take.
In Section 5 we provide experimental results. Finally, in Section 6 we extract some
conclusions from this work.

2 Preliminaries

A Constraint Satisfaction Problem(CSP) involves a finite set of variables, each one
taking a value in a finite domain. Variables are related by constraints that impose re-
strictions on the combinations of values that subsets of variables can take. Asolutionis
an assignment of values to variables which satisfies every constraint. Formally, a finite
CSPis defined by a triple(X ,D, C), where

• X = {x1, . . . , xn} is a set ofn variables;
• D = {D(x1), . . . , D(xn)} is a collection of finite domains;D(xi) is the initial set

of possible values forxi;
• C is a set of constraints among variables. A constraintCi on the ordered set of vari-

ablesvar(Ci) = (xi1 , . . . , xir(i)) specifies the relationprm(Ci) of thepermitted
combinations of values for the variables invar(Ci). An element ofprm(Ci) is a
tuple(vi1 , . . . , vir(i)), vi ∈ D(xi).

A Distributed Constraint Satisfaction Problem(DisCSP) is a CSPwhere variables,
domains and constraints are distributed among automated agents. Formally, a finite
DisCSPis defined by a 5-tuple(X ,D, C,A, φ), whereX ,D andC are as before, and

• A = {1, . . . , p} is a set ofp agents,
• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables dividesC in two
disjoint subsets,Cintra = {Ci|∀xj , xk ∈ var(Ci), φ(xj) = φ(xk)}, andCinter =
{Ci|∃xj , xk ∈ var(Ci), φ(xj) 6= φ(xk)}, called intraagent and interagent constraint
sets, respectively. An intraagent constraintCi is known by the agent owner ofvar(Ci),
and it is unknown by the other agents. Usually, it is considered that an interagent con-
straintCj is known by every agent that owns a variable ofvar(Cj) [12].

As in the centralized case, asolutionof a DisCSPis an assignment of values to
variables satisfying every constraint.DisCSPs are solved by the collective and coordi-
nated action of agentsA. Agents communicate by exchanging messages. It is assumed
that the delay in delivering a message is finite but random. For a given pair of agents,
messages are delivered in the order they were sent.

For simplicity purposes, and to emphasize on the distribution aspects, in the rest
of the work we assume that each agent owns exactly one variable. We identify the
agent number with its variable index (∀xi ∈ X , φ(xi) = i). From this assumption, all
constraints are inter-agent constraints, soC = Cinter andCintra = ∅. Furthermore, we
assume that all constraints are binary. A constraint is writtenCij to indicate that it binds
variablesxi andxj .

3 Privacy and DisFC

There are two main concerns about privacy when solvingDisCSP:

• Privacy of constraints: if agenti is constrained with agentj, i may want to keep
private on the part of the constraint known by itself, and the same may occur forj.
This generates thePartially Known Constraintsmodel (PKC) described below.

• Privacy of assignments: agents do not want to reveal the values assigned to their
variables to other agents. This is especially relevant for the values of the solution.

3.1 The PKC Model for Constraint Privacy

To enforce constraint privacy, we proposed [2] thePartially Known Constraints(PKC)
model of aDisCSPas follows. A constraintCij is partially known by its related agents.
Agenti knows the constraintCi(j) where:

• var(Ci(j)) = {xi, xj};
• Ci(j) is specified by three disjoint sets of value tuples forxi andxj :

- prm(Ci(j)), the set of tuples thati knows to be permitted;
- fbd(Ci(j)), the set of tuples thati knows to be forbidden;
- unk(Ci(j)), the set of tuples which consistency is not known byi;

• every possible tuple is included in one of the above sets, that is,prm(Ci(j)) ∪
fbd(Ci(j)) ∪ unk(Ci(j)) = Di ×Dj .

Similarly, agentj knowsC(i)j , wherevar(C(i)j) = {xi, xj}. C(i)j is specified by the
disjoint setsprm(C(i)j), fbd(C(i)j) andunk(C(i)j) relative toj. Between a constraint
Cij and its corresponding partially known constraintsCi(j) andC(i)j it holds

Cij = Ci(j) ⊗ C(i)j

where⊗ depends on the constraint semantics (see [4] for an example of this). The above
definitions satisfy:

• If the combination of valuesk andl, for xi andxj is forbidden in at least one partial
constraint, then it is forbidden in the corresponding total constraint.

• If the combination of valuesk and l, for xi and xj is permitted in both partial
constraints, then it is also permitted in the corresponding total constraint.

Here, we only consider constraints for whichunk(C(i)j) = unk(Ci(j)) = ∅. Then,
a partially known constraintCi(j) is completely specified by its permitted tuples and
prm(Cij) = prm(Ci(j)) ∩ prm(C(i)j).

For example, let us consider then-pieces m-chessboardproblem. Given a set ofn
chess pieces and am×m chessboard, the goal is to put all pieces on the chessboard in
such a way that no piece attacks any other. AsDisCSP, the problem is formulated as,

• Variables: one variable per piece.
• Domains: all variables share the domain{1, . . . ,m2} of chessboard positions (cells

are numbered from left to right, from top to bottom).

• Constraints: one constraint between every pair of pieces, from chess rules.
• Agents: one agent per variable.

For instance, we can taken = 5 with the multiset of pieces{queen, castle, bishop,
bishop, knight}, on a4× 4 chessboard, with the variables,

x1 = queen, x2 = castle, x3 = bishop, x4 = bishop, x5 = knight.

If agent 1 knows that agent 5 holds a knight, and agent 5 knows that agent 1 holds a
queen, this is enough information to develop completely constraintC15 by any of them,

C15 = {(1, 8), (1, 12), (1, 14), (1, 15), . . .}

With thePKC model, agent 1 does not know which piece agent 5 holds. It only knows
how a queen attacks, from which it can develop the constraint,

C1(5) = {(1, 7), (1, 8), (1, 10), (1, 12), . . .}

Analogously, agent 5 does not know which piece agent 1 holds. Its only information is
how a knight attacks, from which it can develop the constraint,

C(1)5 = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 8), . . .}

The whole constraintC15 appears as the intersection of these two constraints,

C15 = C1(5) ∩ C(1)5 = {(1, 8), . . .}

C1(5) does not depend on agent 5. It codifies the way a queen attacks, independently of
any other piece.

3.2 Assignment Privacy onDisFC

To achieve assignment privacy, we proposed [2] theDistributed Forward Checking
(DisFC) algorithm as follows. In the centralized case,Forward Checking(FC) [6] fil-
ters future domains when the current variable is assigned, removing inconsistent values.
DisFCextends this idea to the distributed case. It performs anABT-search, with the fol-
lowing differences. When a variablexi is assigned, instead of sending its value to the
connected agentj, it sends toj the part ofDj compatible with its value. Variablexj will
choose a new value consistently withxi (by selecting its new value from the received
filtered domain) but without knowingxi actual value.

To perform backtracking, variablexj should know some identifier of the value cur-
rently assigned toxi (otherwise, obsolete backtracking cannot be detected). InABT
this identifier is the own value; instead, we propose to use the variable sequence num-
ber. Each variable keeps a sequence number that starts from 1 (or some random value),
and increases monotonically each time the variable changes its value, acting as a unique
identifier for each value. Messages including the sender value replace that value by the
sequence number of the sender variable. The agent view of the receiver is composed

by the sequence numbers it believes are hold by variables in higher priority agents.
Nogoods are formed by variables and their sequence numbers.

DisFCuses both strategies. EachDisFCagent sends filtered domains to other agent
variables, and it replaces its own value by its sequence number. This allows one agent to
exchange enough information with other agents to reach a global consistent solution (or
proving that no solution exists) without revealing its own assignment.DisFC algorithm
performs the same search asABT, with the difference that a constraint is checked by
the higher priority agent when sending the filtered domain to the lower priority agent.
DisFC inherits the correctness and completeness properties ofABT. Similar toABT, we
can prove thatDisFC finds a solution or detects inconsistency in finite time.

3.3 DisFC versions

In thePKC model, if agentsi andj are constrained,i knowsCi(j) andj knowsC(i)j ,
but none knows the total constraintCij . Assuming this model, there are two versions of
DisFC. The first proposed wasDisFC2 [2]. It consists of a cycle of two phases,

• Phase I. Constraints are directed forming a DAG, and a compatible total order of
agents is selected. Then,DisFC finds a solution with respect to constraintsCi(j),
wherei has higher priority thanj. If no solution is found, the process stops, indi-
cating unsolvable instance.

• Phase II. Constraints and the order of agents are reversed. NowC(i)j are consid-
ered, wherej has higher priority thani. xj informsxi of its filtered domain with
respect toxj value. If the value ofxi is in that filtered domain,i does nothing. Oth-
erwise,i sends angd message toj, which receives that message and does nothing.
Quiescence is detected.

If no ngd messages are generated in phase II, the solution provided in phase I also
satisfiesC(i)j , so it is a true solution. Otherwise, phase I restarts. The nogoods generated
in phase II are considered by the receiver agents, now with low priority, so they can
change their values to find compatible ones. This cycle iterates until a solution is found
or the no solution condition is detected. This strategy is correct and complete.

Instead of checking a part of the constraints in phase I and verifying the proposed
solution in phase II, Zivan and Meisels proposed that all constraints could be tested
simultaneously [14]. Combining this idea withDisFC, we obtain theDisFC1 version,
that works as follows. An agent has to check all its partially known constraints with both
higher and lower priority agents. To do this, an agent has to inform to all its neighbors
agents when it takes a new value, andngd messages can go in both directions (from
lower to higher as inABT but also from higher to lower).DisFC1 inherits the good
properties ofABT-ASC[14]. DisFC1 is correct, complete and terminates.

Similar to DisFC, DisFC1 agents check consistency with respect to their partial
constraints and detect obsolete nogood messages without revealing their assignments.
Let self be a generic agent. After an assignment,self informs all constraining agents
(with higher and lower priority) viaok? messages. Eachok? message contains the
subset of values for the message recipient that are consistent withself ’s assignment
(filtered domain) and the sequence number corresponding to theself ’s assignment.

In addition, if a conflict exists betweenself ’s assignment and a previously received
filtered domain from a lower priority agent, angd message is sent to that agent.

Whenself receives anok?message from a higher priority agenti, it checksC(i),self

looking for a consistent value.self discards those values which are inconsistent with
higher priority agents. If no consistent value is found,self backtracks solving conflicts
in myNogoodStore, as inABT, sending angd message. Whenself receives anok?
message from a lower priority agentj, it checksCself(j). If the assignments ofself and
j are not consistent,self sends angd message informing toj that its assignment is not
valid for self ’s assignment. Otherwise,self does nothing.ngd messages are processed
in the same way, no matter if they come from higher or lower priority agents.

The code ofDisFC1 appears in Figure 1. This code is concurrently executed by
each agent. InmyAgentV iew, each agent stores the sequence number received from
its neighboring agents. InmyNogoodStore, each agent stores received nogoods from
higher and lower agents. InmyFilteredDomains, each agent saves the last filtered
domains received from its (higher and lower) neighbors.Γ− refers to agents related to
self with higher priority, whileΓ+ refers to agents related toself with lower priority.

Agents exchange five kind of messages:ok?, ngd, adl, stp andqcc. The meaning of
ok? andngd messages has been described above.adl has the same uses as inABT and
DisFC2: to connect unrelated agents. An extra agent calledsystemcontrols the termina-
tion of the algorithm by usingstp andqccmessages. When an agent finds inconsistency
it sends anstp message tosystem. Whensystemreceives anstp message from one agent
or detects quiescence in the network (i.e. no message has traveled through the network
in the lasttquies units of time),systemsends messages to all agents informing them to
finish the search. In former case,systemsendsstp messages to all agents, which is to
say that the problem is unsolvable. In latter case,systemsendsqcc messages, which is
to say that the problem has at least one solution which is given by the current variables’
assignments. Quiescence state can be detected by specialized algorithms [5].

3.4 Breaking Privacy

ComparingDisFC with ABT, the basic difference is as follows. If agenti is constrained
with j andi has higher priority, instead of sending the actual value ofi to j, it sends
the subset ofDj that is compatible with the actual value ofi. After reception,j does
not know the actual value ofi, but it knows a complete row ofCi(j) without knowing
its position in the matrix. As search progresses,j may store new rows ofCi(j). At the
end,j has a subset of rows without knowing their position. In addition, some search
episodes (changing from phase I to phase II inDisFC2, nogood messages from high
to low priority agents inDisFC1) may reduce the number of acceptable positions for
a particular row [8]. With all this,j may construct aCSPinstance where the variables
are the rows, their domains are the acceptable positions, under the constraints that two
different rows cannot go to the same position and every row must get a position. Com-
puting all solutions of this instance we obtain all matrixes which are compatible with
the information obtained from the search. Of them, one isCi(j). So to break privacy,
all solutions of thisCSP instance have to be computed (an NP-hard task). In practice,
solving this instance requires significant effort and in some cases subsumption testing
is required.

procedureDisFC-1()
myV alue ← empty;end← false; computeΓ+, Γ−;
CheckAgentView ();
while (¬end) do

msg ← getMsg ();
switch(msg.type)

ok? : ProcessInfo (msg);
ngd : ResolveConflict (msg);
adl : SetLink (msg);
stp, qcc : end ← true;

procedureCheckAgentView ()
if (myV alue = empty or myV alue eliminated bymyNogoodStore) then

myV alue ← ChooseValue() ;
if (myV alue) then

mySeq ← mySeq + 1;
for each child ∈ Γ+(self) ∪ Γ−(self) do

sendMsg :ok?(child, mySeq, compatible (D(child), myV alue));
for each child ∈ Γ+(self) such that¬ (myV alue ∈ MyFilteredDomain[child]) do

sendMsg :ngd(child, self = mySeq ⇒ ¬child.Assig);
elseBacktrack ();

procedureResolveConflict(msg)
if coherent (msg.Nogood, Γ−(self) ∪ {self}) then

CheckAddLink (msg);
add (msg.Nogood, myNogoodStore); myV alue ← empty;
CheckAgentView ();

else ifcoherent (msg.Nogood, self) then
SendMsg:ok?(msg.Sender, mySeq, compatible (D(msg.Sender), myV alue));

procedureBacktrack ()
newNogood ← solve (myNogoodStore);
if (newNogood = empty)then

end ← true;sendMsg :stp(system);
else

sendMsg :ngd(newNogood);
UpdateAgentView (rhs (newNogood) ← unknown);
CheckAgentView ();

function ChooseValue()
for eachv ∈ D(self) not eliminated bymyNogoodStore do

if consistent (v, myAgentV iew[Γ−]) then return (v);
elseadd (xj = valj ⇒ self 6= v, myNogoodStore); /*v is inconsistent withxj ’s value */

return (empty);

procedureUpdateAgentView (newAssig)
add (newAssig, myAgentV iew);
for eachng ∈ myNogoodStore do

if ¬Coherent (lhs (ng), myAgentV iew) then remove (ng, myNogoodStore);

procedureSetLink(msg)
add (msg.sender, Γ+(self));
sendMsg :ok?(msg.sender, myV alue);

procedureCheckAddLink(msg)
for each (var ∈ lhs (msg.Nogood))

if (var /∈ Γ−(self)) then
sendMsg :adl(var, self);
add (var, Γ−(self)); UpdateAgentView (var ← varV alue);

Fig. 1. TheDisFC1 algorithm for asynchronous backtracking search.

4 DisFC May Lie

To enhance privacy inDisFC we propose that agents could lie. Instead of sending true
rows ofCi(j), the algorithm may send true andfalserows. Each false row represents a
lie. False rows will make much more difficult the hypothetical reconstruction ofCi(j) by
agentj, but it has to be done keeping the soundness and completeness of the algorithm.

This idea can be formalized as follows. Ifi hasd valuesDi = {v1, v2, . . . , vd},
it is assumed thati has an extended domainD′

i = {v1, v2, . . . , vd, vd+1, . . . , vd+k}
of d + k values. We calltrue valuesthe firstd values, while the rest arefalse values.
Wheni assigns the true valuevp, 1 ≤ p ≤ d, it sends to agentj the subset of values
that are compatible withvp (that is, a true row ofCi(j)). Wheni assigns the false value
vq, d < q ≤ d + k, it sends an invented subset of compatible values toj (that is a row
which does not exist inCi(j)). The only concern that an agent must have after assigning
a false value is that it must tell the truth (assign a true value or perform backtracking
if no more true values are available) in finite time. The point is that no solution could
be based on a false value, so assignments including false values have to be removed in
finite time (in fact, in a shorter time than required to detect quiescence).

4.1 TheDisFClies Algorithm

DisFC1 offers a better platform for privacy thanDisFC2, because it has no synchro-
nization points between phases. For this reason, we implement the lies idea on top of
DisFC1 (although it can also be implemented on top ofDisFC2).

We call DisFClies the new version ofDisFC1 where agents may exchange false
pruned domains.DisFClies appears in Figure 2. It includes most of the procedures,
functions and data structures ofDisFC1, and uses the same types of messages. Each
agent has a local clock to control when it has to tell the truth after a lie. In the structure
FalseDomains, each agent puts away the false domains that it will send to its neigh-
bors for each false value the agent’s variable can take.Dtrue(self) is the set of true
values forself , while Dfalse(self) is the set of its false values.D(self) is the union
of these two sets.

In the main procedure,self first initializes its data structures and generates the
false domain that it will sent for each false value. Secondly,self assigns a value to
its variable by invoking the functionCheckAgentV iew. This value may be false or
not. Then,self enters in a loop, where incoming messages are received and processed.
This loop ends, and therefore the algorithm, whenself receives either anstopor aqcc
message fromsystem. This is a special agent that handles these messages in the same
way it did in DisFC1. If self ends the search because aqcc message, it means that
a problem has at least one solution, otherwise, the problem is unsolvable. Quiescence
state can be detected by specialized algorithms [5]. However, in order to assure the
completeness and soundness of the algorithm, the timetquies required bysystemto
assure quiescence in the network (i.e no message has traveled through the network
within the lasttquies units of time) must be larger thantlies, the maximum time agents
may wait until rectifying their lies, thustlies < tquies.

In the following, we prove thatDisFClies is sound, complete and terminates.

procedureDisFC lies()
myV alue ← empty;end← false; computeΓ+, Γ−; tsaytrue ← 0;
for eachvalue ∈ Dfalse(self) do

for eachneig ∈ Γ+(self) ∪ Γ−(self) do generateFalseDomain[value][neig];
CheckAgentView ();
while (¬end) do

msg ← getMsg ();
switch(msg.type)

ok? : ProcessInfo (msg);
ngd : ResolveConflict (msg);
adl : SetLink (msg);
stp, qcc : end ← true;

if (value ∈ Dfalse(self)) and (gettime () ≥ tsaytrue) then TakeATrueValue ();

procedureCheckAgentView ()
if (myV alue = empty or myV alue eliminated bymyNogoodStore) then

myV alue← ChooseValue() ;
if (myV alue) then

mySeq ← mySeq + 1;
if (myV alue ∈ Dfalse(self)) then

for eachneig ∈ Γ+(self) ∪ Γ−(self) do
sendMsg :ok?(neig, mySeq, FalseDomain[myV alue][neig]);

tsaytrue← gettime () + tlies; /* tlies < tquies */
else

for eachneig ∈ Γ+(self) ∪ Γ−(self) do
sendMsg :ok?(neig, mySeq, compatible (D(neig), myV alue));

for each child ∈ Γ+(self) such that¬ (myV alue ∈ MyFilteredDomain[child]) do
sendMsg :ngd(child, self = mySeq ⇒ ¬child.Assig);

tsaytrue ← 0;
elseBacktrack ();

procedureResolveConflict(msg)
if coherent (msg.Nogood, Γ−(self) ∪ {self}) then

CheckAddLink (msg);
add (msg.Nogood, myNogoodStore); myV alue ← empty;
CheckAgentView ();

else ifcoherent (msg.Nogood, self) then
if (myV alue ∈ Dfalse(self)) then

sendMsg :ok?(neig, mySeq, FalseDomain[myV alue][neig]);
else

SendMsg:ok?(msg.Sender, mySeq, compatible (D(msg.Sender), myV alue);

procedureTakeATrueValue ()
tsaytrue ← 0; myV alue ← ChooseATrueValue() ;
if (myV alue) then

mySeq ← mySeq + 1;
for eachneig ∈ Γ+(self) ∪ Γ−(self) do

sendMsg :ok?(neig, mySeq, compatible (D(neig), myV alue);
for each child ∈ Γ+(self) such that¬ (myV alue ∈ MyFilteredDomain[child]) do

sendMsg :ngd(child, self = mySeq ⇒ ¬child.Assig);
elseBacktrack ();

function ChooseATrueValue()
for eachv ∈ Dtrue(self) not eliminated bymyNogoodStore do

if consistent (v, myAgentV iew[Γ−]) then return (v);
elseadd (xj = valj ⇒ self 6= v, myNogoodStore); /*v is inconsistent withxj ’s value */

return (empty);

Fig. 2. The DisFClies algorithm for asynchronous backtracking search. Missing proce-
dures/functions appear in Figure 1.

4.2 Theoretical Results

Lemma 1. When DisFClies finds a solution, the last filtered domain received by agent
i from agentj corresponds to a (true) row in the partial constraint matrixCi(j).

Proof. For DisFClies the current variables’ assignments are a solution if no constraint
is violated and network has reached quiescence. Let us assume thatDisFClies reports
a solution in which variablexi takes a false value. So the last filtered domains sent by
agenti are false too. However,DisFClies requires that, after lying, an agent must rectify
in finite time. That is, assigning a true value and sending to its neighbors the true filtered
domains, or performing backtrack. So, at least oneok? message or angd message has
traveled through the network afteri lied, in contradiction with the initial assumption
that the network had reached quiescence. Therefore, the solution condition cannot be
reached unless true filtered domains are sent in the last messages from any agent.2

Proposition 1. DisFClies is sound.

Proof. If a solution is claimed, we have to prove that current agents’ assignments
satisfy their partial constraints. Lemma 1 shows that ifDisFClies reports a solution the
last variables’s assignments correspond to true values. Therefore, one can prove that
DisFClies is sound by using the same arguments to prove thatDisFC1 is sound.

Let us assume quiescence in the network. If the current assignment is not a solution,
there exists at least one partial constraint that is violated by agentj. In that case, agent
j has sent angd message to agenti, the closest agent involved in the conflict. This
ngd is either discarded as obsolete or accepted as valid by agenti. If the message is
discarded, it means that some message has not yet reached its recipient, which breaks
our assumption of quiescence in the network. If the message is valid,i has to find a new
consistent values, which will produce severalok? messages or one newngd message,
which again breaks our assumption of quiescence in the network. 2

Proposition 2. DisFClies is complete.

Proof. Considering only nogoods based on true values, we can prove thatDisFClies is
complete by using the same arguments to prove thatDisFC1 is complete. Since nogoods
resulting from anok? message are redundant with respect to the partial constraint ma-
trixes, and the additional nogoods are generated by logical inference, the empty nogood
cannot be inferred if the problem is solvable.

Let us prove thatDisFClies cannot infer inconsistency based on false values if the
problem is solvable. Suppose that agentj detects inconsistency because a lie introduced
by agenti. We know thatj detects inconsistency when it infers an empty nogood.
Besides, we know that the left-hand side of the nogoods (justifications of forbidden
values) stored byj is either empty or includes agents with higher priority thanj. Since
we assume that inconsistency discovered byj is based on the false value ofi, i is before
j in the agents’ ordering and there is at least one nogood stored byj including i in its
left-hand side. Therefore, whenj finds no consistent value, it has to send a backtracking
messages toi, which breaks our assumption thatj derives an empty nogood. 2

Lemma 2. DisFClies agents will not store indefinitely nogoods based on false values.

Proof. Let us assume that a false nogood (i.e. a nogood including an agent with a false
value) will be stored indefinitely by an agent. In that case, the lying agent cannot change
its variable’s assignment, otherwise the nogood will become obsolete and, therefore,
deleted by the holder agent. But a lying agentmusttell the truth in finite time. So, in
finite time, the agent storing the false nogood will be informed of a new true value, the
false nogood will become obsolete and, therefore, it will be deleted by the holder agent.
This breaks our assumption that the false nogood lasts forever. 2

Proposition 3. DisFClies terminates.

Proof. By Lemma 2, nogoods based on false values are discarded in finite time. About
nogoods based on true values,DisFClies performs the same treatment asDisFC1. Since
DisFC1 terminates in finite time,DisFClies also terminates in finite time. 2

Proposition 4. If a DisFClies agent detects inconsistency, every agent directly con-
nected with it has receivedd true rows.

Proof. Let i be that agent. Ifi finds the empty nogood, it means that there is a nogood
for every true value ofi. These nogoods have an empty left-hand side (otherwise,i
could not deduce the empty nogood). So they have been produced as result ofngd
messages coming from the lower priority agents. Therefore, every possible true value
of i has been taken, soi has sent to its neighborsd true rows. 2

4.3 Privacy Improvements ofDisFClies

The inclusion of false values has two direct consequences. First, agentj may receive
false rows ofCi(j). Thenj has more difficulties to reconstructCi(j), since it is uncertain
whether some received rows truly belong toCi(j) or not. Second, this strategy decreases
performance, because any computation that includes a false assignment will not produce
any solution, so it is a wasted effort, only useful for privacy purposes.

For a solvable instance, Lemma 1 shows that the last assignments correspond to
true values. So, agentj knows that the last message fromi correspond to a true assign-
ment, and it contains a true row ofCi(j). Agentj cannot discriminate whether previous
assignments are true or false, so it cannot include the rows of these messages when
trying to computeCi(j). Soj knows a single row ofCi(j) but it does not know its lo-
cation. The number of different constraint matrixes compatible with this information is
approximatelyd · 2(d2−d) (d, the number of possible locations for the true row, times
2(d2−d), the number of compatible matrixes whend elements are known). This is a big
difference with the approach without lies, where all received rows truly belong toCi(j).

For an unsolvable instance, Proposition 4 shows that every agentj directly con-
nected with the agenti that detects inconsistency would have receivedd true rows. In
addition, since all possibilities have been tried, they have receivedd + k rows (observe
that j cannot receive more thand + k rows). Assuming thatj has receivedd + k dif-
ferentrows, if j wants to computeCi(j), it has to selectd rows, take them as true rows

and solve the correspondingCSP. j has to repeat this process

(
d + k

d

)
times, that is,

once for each different subset ofd rows. This increases the number ofCSPs to solve, in

order to compute the matrixes compatible with the leaked information. However,j may
have received less thand + k different rows. In that case,j considers that some rows
are repeated. If there is no way to identify repeated rows, in addition to the previously
described combinations, we have to consider each possible row as possible repeated,
increasing greatly the number ofCSPinstances to solve. As consequence, the privacy
level of the solving process is improved.

5 Experimental Results

In this Section, we compare the performance ofDisFC1 and DisFClies solving in-
stances of binary random classes. A binary random class is defined by〈n, d, p1, p2〉,
wheren is the number of variables,d the number of values per variable,p1 the network
connectivity(the ratio of existing constraints) andp2 the constrainttightness(the ratio
of forbidden value pairs). We solved instances of the class〈15, 10, 0.4, p2〉 with varying
tightness (p2) between 0.1 to 0.9 in increments of 0.1. For creating these instances in
PKC, first we generate random instances and then we split the forbidden tuples of each
constraint between its two partial constraints.

We consider three versions ofDisFClies that differ from each other in the number of
false values that their agents add to initial domains: 1, 3 and 5 false values. Results for all
algorithms were produced using a simulator, in which agents are individual processes.
Agents are activated randomly. When an agent takes a value, it chooses between true
and false values with probability 0.5.tlies is randomly chosen between 1 and 99 internal
units of time. Messages are processed by packets, as described in [3].

Algorithmic performance is evaluated by communication effort, computation cost
and privacy of constraints. Communication effort is measured by the total number of
exchanged messages (msg). Computation cost is measured by the number of non-
concurrent constraint checks (nccc) [7]. Privacy of constraints is measured by the num-
ber of constraint matrixes consistent with the information exchanged among agents.
Generally, lower priority agents work more than higher priority ones, therefore they re-
veals more information than higher priority ones. Thus, we report the minimum (min),
median (med) and average (avg) of the numbers of constraint matrixes that are consis-
tent with information exchanged among agents.

Figure 3 shows the computation and communication costs. In both plots, results are
averaged on 100 instances. In terms of computation cost, we observe thatDisFClies is
more costly thanDisFC, and the cost increases with the number of allowable lies. The
differences between algorithms are greater at the difficulty peak (p2 = 0.6). Except
for p2 = 0.5, DisFClies(5) always requires morenccc than the others, whileDisFC
performs the lowest number ofnccc. Similar results appear for communication costs.

Table 1 contains the values of parametersmin, med andavg to measure the privacy
of constraints. Larger values mean higher privacy. The critical privacy occurs when
the number of constraint matrixes is 1 (at least one agent knows exactly the partial
constraint matrix of one of its constraining agents). Regarding privacy of constraints in
DisFC1, the values ofmin andmed decrease whenp2 increases. Actually, in problems
with constraint tightness greater than 0.4, at least one agent can infer exactly the partial
constraint of one of its constraining agents (see columnmin). From med values in

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n
c
c
c

p2

Solving <n = 15, m = 10, p1 = 0.40>

DisFC1
DisFC1-lies(1)
DisFC1-lies(3)
DisFC1-lies(5)

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
s
g

p2

Solving <n = 15, m = 10, p1 = 0.40>

DisFC1
DisFC1-lies(1)
DisFC1-lies(3)
DisFC1-lies(5)

Fig. 3. Computation and communication cost ofDisFC and versions ofDisFClies.

unsolvable instances (p2 ≥ 0.6), we conclude that approximately in half of partial
constraint matrixes all rows are revealed during search since106 is close to10! =
3.6×106 (the number of permutations of 10 rows). In terms ofavg, higher privacy loss
occurs at the complexity peak (p2 = 0.6).

Regarding privacy of constraints inDisFClies, we notice the following. In solvable
instances (0.1 ≤ p2 ≤ 0.5), DisFClies versions achieve the same level of privacy for
min, med andavg, no matter the number of allowable lies. This occurs since each
agent can only assure that the last filtered domain received from another agent truly
corresponds to a row in the partial constraint matrix of that agent (see Lemma 1), which
is independent to the number of false values that agents may have. In terms ofmin
andmed, DisFClies versions are more private thanDisFC1. In unsolvable instances,
DisFClies versions have different level of privacy when consideringmin. DisFClies(5)
is one and two orders of magnitude more private thanDisFClies(3) andDisFClies(1),
respectively.DisFClies(1) is the least private of these three algorithms although it is
more private thanDisFC. DisFClies versions are equally private with respect tomed
andavg. For these parameters,DisFClies versions are more private thanDisFC1.

DisFC1 DisFClies(1) DisFClies(3) DisFClies(5)

p2 min med avg min med avg min med avg min med avg
0.1 1023 1028 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.2 1023 1027 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.3 1016 1024 1029 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.4 107 1014 1028 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.5 1 109 1025 1027 1028 1028 1027 1028 1028 1027 1028 1028

0.6 1 106 109 3.3 1030 1029 20 1030 1029 221 1030 1029

0.7 1 106 1012 2 1030 1029 10.7 1030 1029 163 1030 1029

0.8 1 106 1010 2.3 1030 1029 50.3 1030 1029 270 1030 1029

0.9 1 106 1010 3.3 1030 1029 25.3 1030 1029 426 1030 1029

Table 1. Privacy of constraints measured by the minimum (min), median (med) and average
(avg) of the numbers of consistent constraint matrixes. Averaged on 10 instances.

6 Conclusions

From this work we can extract the following conclusions. First, lying is a suitable strat-
egy to enhance privacy inDisCSPsolving. We have presentedDisFClies, a new version
of theDisFC algorithm that may tell lies, sending false compatible domains to neigh-
bor agents. The unique extra condition is that, after a lie, the lying agent has to tell the
truth in finite time, lower thantquies. We have proved that this algorithm is correct,
complete and terminates. Second, we have shown analytical and experimentally that
this idea effectively enhances constraint privacy in thePKC model, because it increases
the number of partially known constraint matrixes that are compatible with the leaked
information of the solving process. And third, although solvingDisCSPlying is more
costly than solving it without lies, experiments show that the extra cost required is not
unreachable. It is clear that any strategy used to conceal information will have an ex-
tra cost, and this approach is not an exception. We believe that this approach could be
useful for those applications with high privacy requirements.

References

1. Bessiere C., Brito I., Maestre A., Meseguer P. The Asynchronous Backtracking without
adding links: a new member in the ABT family.Artifical Intelligence, 161, 1-2, 7-24, 2005.

2. Brito I., Meseguer P. Distributed Forward Checking. InProc. of the CP-2003, LNCS 2833,
801–806, 2003.

3. Brito I., Meseguer P. Synchronous, Asynchronous and Hybrid algorithms for DisCSP.CP-
2004, Workshop on Distributed Constraint Reasoning, 2004.

4. Brito I., Meseguer P. Distributed Stable Matching Problems with Ties and Incomplete Lists.
In Proc. of CP-2006, LNCS 4204, 675–680, 2006.

5. Chandy K., Lamport L. Distributed Snapshots: Determining Global States of Distributed
Systems.ACM Trans. Computer Systems, Vol. 3, n. 2, 63–75, 1985.

6. Haralick R., Elliot G. Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence14 (1980) 263–313.

7. Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing Performance of Distributed Con-
straint Processing Algorithms.AAMAS-02 Workshop on Distributed Constraint Reasoning,
86–93, 2002.

8. Meisels A., Zivan R. Personal communication, 2006.
9. Silaghi M.C., Sam-Haroud D., Faltings B. Asynchronous Search with Aggregations. InProc.

of the AAAI-2000, 917–922, 2000.
10. Silaghi M.C. Solving a distributed CSP with cryptographic multi-party computations, with-

out revealing constraints and without involving trusted servers,IJCAI 2003, Workshop on
Distributed Constraint Reasoning, 2003.

11. Yokoo M., Durfee E., Ishida T., Kuwabara K. Distributed Constraint Satisfaction for Formal-
izing Distributed Problem Solving. InProc. of the 12th. DCS, 614–621, 1992.

12. Yokoo M., Durfee E., Ishida T., Kuwabara K. The Distributed Constraint Satisfaction Prob-
lem: Formalization and Algorithms.IEEE Trans. Knowledge and Data Engineering10
(1998) 673–685.

13. Yokoo M., Suzuki K., Hirayama K. Secure Distributed Constraint Satisfaction: Reaching
Agreement without Revealing Private Information. InProc. of the CP-2002, LNCS 2470,
387–401, 2002.

14. Zivan R., Meisels A. Asynchronous Backtracking for Asymmetric DisCSPsIJCAI 2005
Workshop on Distributed Constraint Reasoning, 2005.

