Distributed Forward Checking May Lie for Privacy *

Ismel Brito and Pedro Meseguer

A, Institut d’Investigacd en Intel.ligencia Atrtificial

CSIC, Consejo Superior de Investigaciones Gfarats
Campus UAB, 08193 Bellaterra, Spain.
{ismellpedro }@iiia.csic.es

Abstract. DisFC is an ABT-like algorithm that, instead of sending the value
taken by the high priority agent, it sends the domain of the low priority agent
that is compatible with that value. With this strategy, plus the use of sequence
numbers, some privacy level is achieved. In particular, each agent knows its value
in the solution, but ignores the values of the others. However, the idea of sending
the whole compatible domain each time an agent changes its value may cause
a privacy loss on shared constraints that was initially overlooked. To solve this
issue, we proposBisFC;;.s, an algorithm that works lik®isFC but it may lie
about the compatible domains of other agents. It requires a single extra condition:
if an agent sends a lie, it has to tell the truth in finite time afterwards. We prove
that the algorithm is sound, complete and terminates. We provide experimental
results on the increment in privacy achieved, at the extra cost of more search.

1 Introduction

In the last years, there is an increasing interest for solving constraint satisfaction prob-
lems in a distributed form. This has generated a new model, cRIEESPE where the
information of aCSPinstance is distributed among several agents but it is never con-
centrated into a single agent. To solve this new model, new algorithms have appeared
that communicate by message passing. Among them, we underline the piorfeggTing
algorithm [11, 12], that has been shown correct and complete.

There are several motivations to solveC&Pinstance in a distributed form. We
can mention the difficulty to collect and move into a single server all the elements
of an instance if it is very large, if different formats coexists and the cost of translating
them is high. In addition, privacy is a motivation for distributed solving. Many problems
appear to be naturally distributed, each part belonging to a different agent. In the solving
process, agents desire to keep as private as possible the information they have, and
specially they do not want to reveal the values of the solution to other agents.

Although the initialABT was not concerned with privacy issues (agents exchanged
their values freely), privacy has been a key aspect for D®LSPsolving algorithms.
Generally speaking, most distributed algorithms leak some kind of information in the
solving process, which can be exploited by some agents to deduce the reserved infor-
mation of other agents. So far, there are two main approaches to enforce privacy. One
considers the use of cryptographic techniques to conceal values and constraints [13, 10].

* Supported by the Spanish project TIN2005-09312-C03-01.

Alternatively, other authors try to enforce privacy by using different search strategies.
Our past work has followed this line, and this paper is a further step on this approach.

In previous work, we proposddistributed Forward CheckingDisFC) [2]. It is an
ABT-like algorithm that, instead of sending the valuerpto agentj (assuming with
higher priority thanj), it sends the subset of values thhatan take which are com-
patible with the; value. This idea, combined with the formulationRdrtially Known
Constraints and the use of sequence numbers to conceal the actual value taken by
an agent, allow for some degree of privacy. In particular, when a solution is found,
each agent knows its own value but ignores the values of other agents. However, we
overlooked the effect that sending the whole subset of compatible values may have in
constraint privacy. Ifi hasd different values and in the solving processeceivesd
different compatible subsets, thgrknows all the rows of the constraint matrix that
has, but without knowing their position. In the solving process, it is possible to deduce
that some positions are discarded for some rows [8]. At the end, dgeay have a
non-negligible amount of information about the constraint tt@atns, which could be
used to break privacy. Nevertheless, computing the set of constraints that are compati-
ble with the information leaked in the solving process requires a significant amount of
work (computing all solutions of @SPinstance, that is, solving an NP-hard problem).

To prevent this issue, we suggest a new algorithm cdllist-C;;.. It works like
standardisFC with a single modification: it may lie in the subsets of compatible values
that j may take. Obviously, to keep completeness it has to tell the truth in the values
that: truly has. So ifi hasd values{vy,vs,...,v4}, DiSFCj;.s works as ifi would
haved + k values{vy,vs, ..., 04, V441, - -, Vark - We calltrue valuesas the firstd
values, while the rest affalse valuesWheni takes the true value,,1 < p < d, it
sends to agentthe subset of values that are compatible withWhen: takes the false
valuevy, d < ¢ < d+ k, DisFCy;.s sends an invented subset of compatible valugs to
with the purpose of making more difficult the hypothetical deduction arf the actual
constraint matrix ot. Again, to assure completeneBssFC;;.s has to allow all its true
values for assignment. As result, this strategy increases the level of privacy at the extra
cost of losing performance. This expected result poses a trade-off between efficiency
and privacy: enforcing privacy causes to decrease efficiency and vice versa.

In practical terms, what does this mean? First, we have to notice that, even in un-
solvable instances (where the major privacy loss occurs), not every agent will have the
same level of leaked information. Imagine an instance that contains a single unsolvable
subproblem. If the empty nogood is derived exclusively from the interaction of agents
in that subproblem, they will have a high level of information about their neighboring
constraints, since all possible combinations have been tried. However, agents in other
parts of the instance may have less information, if they have reached a consistent assign-
ment with less search. ConsideriDgsFC on binary random problems without solution
of 16 variables, 10 values per variable and constraint connectivity of 0.4, it may exist
one agent that would find 1 matrix compatible with the information leaked, that is, the
constraint of the other agent. On the same problems, theDighC;;., would approx-
imately multiply this number by 2, 20 or 200 when allowing 1, 3 or 5 lies per agent, at
the extra cost of incrementing computation and communication costs up to the level of
solving problems with 11, 13 or 15 values per variable.

The structure of the paper is as follows. In Section 2 we present the basic concepts
used in the paper. In Section 3 we discuss the privacy issuB$sbfC algorithm. In
Section 4 we propose the new algorithm that may lie about the values agents take.
In Section 5 we provide experimental results. Finally, in Section 6 we extract some
conclusions from this work.

2 Preliminaries

A Constraint Satisfaction ProbleffCSP involves a finite set of variables, each one
taking a value in a finite domain. Variables are related by constraints that impose re-
strictions on the combinations of values that subsets of variables can takéutonis

an assignment of values to variables which satisfies every constraint. Formally, a finite
CSPis defined by a triplé X, D, C), where

o X ={x1,...,z,}is asetofn variables;

e D={D(z1),...,D(x,)} is acollection of finite domaind)(z;) is the initial set
of possible values far;;

e (Cis a set of constraints among variables. A constr@jmn the ordered set of vari-
ablesvar(C;) = (zi,, ...,z) specifies the relatioprm(C;) of the permitted
combinations of values for the variablesdar(C;). An element ofprm/(C;) is a
tuple (vi,, ..., vi,)), vi € D(y).

A Distributed Constraint Satisfaction Proble(DisCSB is a CSPwhere variables,
domains and constraints are distributed among automated agents. Formally, a finite
DisCSPis defined by a 5-tupléX, D, C, A, ¢), whereX', D andC are as before, and

e A={1,...,p}is asetob agents,
e ¢: X — Aisafunction that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables dividestwo
disjoint subsetsCinira = {Ci|Vxj, 2 € var(Ci), ¢(z;) = ¢(ak)}, andCinter =
{Ci|Fx;, x, € var(Cy), ¢(x;) # ¢(xr)}, called intraagent and interagent constraint
sets, respectively. An intraagent constraihts known by the agent owner ofir(C;),

and it is unknown by the other agents. Usually, it is considered that an interagent con-
straintC); is known by every agent that owns a variableef(C;) [12].

As in the centralized case, solution of a DisCSPis an assignment of values to
variables satisfying every constraiiltisCS are solved by the collective and coordi-
nated action of agentd. Agents communicate by exchanging messages. It is assumed
that the delay in delivering a message is finite but random. For a given pair of agents,
messages are delivered in the order they were sent.

For simplicity purposes, and to emphasize on the distribution aspects, in the rest
of the work we assume that each agent owns exactly one variable. We identify the
agent number with its variable indeX«;, € X, ¢(x;) = 7). From this assumption, all
constraints are inter-agent constraintsCse C;,se andC;n:-, = 0. Furthermore, we
assume that all constraints are binary. A constraint is writtgrio indicate that it binds
variablesr; andz;.

3 Privacy and DisFC

There are two main concerns about privacy when solliigCSP

e Privacy of constraints: if ageritis constrained with agent ¢ may want to keep
private on the part of the constraint known by itself, and the same may occir for
This generates theartially Known Constraintsnodel PKC) described below.

e Privacy of assignments: agents do not want to reveal the values assigned to their
variables to other agents. This is especially relevant for the values of the solution.

3.1 The PKC Model for Constraint Privacy

To enforce constraint privacy, we proposed [2] Ratially Known Constraint§PKC)
model of aDisCSPas follows. A constraint’;; is partially known by its related agents.
Agenti knows the constraint’; ;) where:

o var(Cy(jy) = {zi, 5}
o C;(; is specified by three disjoint sets of value tuplesifpandz;:
- prm(Cj(;)), the set of tuples thatknows to be permitted;
- fbd(C;(jy), the set of tuples thatknows to be forbidden;
- unk(Cj(;)), the set of tuples which consistency is not knownipy
e every possible tuple is included in one of the above sets, that-ia(C;(;)) U
fbd(C,;(j)) U unk(Ci(j)) =D; x Dj.

Similarly, agentj knowsC;);, wherevar(C;);) = {x:,z;}. C(;); is specified by the
disjoint setgrm(C';);), fbd(C(;);) andunk(Cy;);) relative toj. Between a constraint
C;; and its corresponding partially known constraifitg;) andC;); it holds

Cij = Cij) ® Cl;

where® depends on the constraint semantics (see [4] for an example of this). The above
definitions satisfy:

o Ifthe combination of valuek and!, for z; andz; is forbidden in at least one partial
constraint, then it is forbidden in the corresponding total constraint.

e If the combination of valueg and/, for z; andx; is permitted in both partial
constraints, then it is also permitted in the corresponding total constraint.

Here, we only consider constraints for whighk(C;y;) = unk(Cy¢;y) = 0. Then,
a partially known constrainC;(;y is completely specified by its permitted tuples and
prm(Cij) = prm(Cj;y) N prm(Cy);)-

For example, let us consider thepieces m-chessboaptoblem. Given a set of
chess pieces andma x m chessboard, the goal is to put all pieces on the chessboard in
such a way that no piece attacks any otherDA®CSR the problem is formulated as,

e Variables: one variable per piece.
e Domains: all variables share the doméin. . ., m?} of chessboard positions (cells
are numbered from left to right, from top to bottom).

e Constraints: one constraint between every pair of pieces, from chess rules.
e Agents: one agent per variable.

For instance, we can take= 5 with the multiset of piece§queen, castle, bishop,
bishop, knight, on a4 x 4 chessboard, with the variables,

r1 = queen, xo = castle, x3 = bishop, x4 = bishop, x5 = knight.

If agent 1 knows that agent 5 holds a knight, and agent 5 knows that agent 1 holds a
queen, this is enough information to develop completely constfginby any of them,

Cis = {(178)7 (1a 12)’ (17 14)7 (1a 15); .- }

With the PKC model, agent 1 does not know which piece agent 5 holds. It only knows
how a queen attacks, from which it can develop the constraint,

C’1(5) ={(1,7),(1,8),(1,10),(1,12),...}

Analogously, agent 5 does not know which piece agent 1 holds. Its only information is
how a knight attacks, from which it can develop the constraint,

C’(1)5 = {(L 2)) (17 3)v (15 4)7 (L 5)7 (17 6)v (1?8)7 . }
The whole constrainf’;; appears as the intersection of these two constraints,
Ci5 = Ci5yNCrys = {(1,8),...}

C\(5) does not depend on agent 5. It codifies the way a queen attacks, independently of
any other piece.

3.2 Assignment Privacy orDisFC

To achieve assignment privacy, we proposed [2] Ehstributed Forward Checking
(DisFC) algorithm as follows. In the centralized cagerward Checking £'C) [6] fil-
ters future domains when the current variable is assigned, removing inconsistent values.
DisFC extends this idea to the distributed case. It perform&Bif-search, with the fol-
lowing differences. When a variablg is assigned, instead of sending its value to the
connected agent it sends tg the part ofD; compatible with its value. Variable; will
choose a new value consistently with (by selecting its new value from the received
filtered domain) but without knowing; actual value.

To perform backtracking, variable; should know some identifier of the value cur-
rently assigned ta:; (otherwise, obsolete backtracking cannot be detectedhBm
this identifier is the own value; instead, we propose to use the variable sequence num-
ber. Each variable keeps a sequence number that starts from 1 (or some random value),
and increases monotonically each time the variable changes its value, acting as a unique
identifier for each value. Messages including the sender value replace that value by the
sequence number of the sender variable. The agent view of the receiver is composed

by the sequence numbers it believes are hold by variables in higher priority agents.
Nogoods are formed by variables and their sequence numbers.

DisFC uses both strategies. EabisFC agent sends filtered domains to other agent
variables, and it replaces its own value by its sequence number. This allows one agent to
exchange enough information with other agents to reach a global consistent solution (or
proving that no solution exists) without revealing its own assignnigistC algorithm
performs the same search ABT, with the difference that a constraint is checked by
the higher priority agent when sending the filtered domain to the lower priority agent.
DisFCinherits the correctness and completeness propertidBafSimilar toABT, we
can prove thabDisFC finds a solution or detects inconsistency in finite time.

3.3 DisFC versions

Inthe PKC model, if agents and; are constrained,knowsC;; and;j knowsC';),
but none knows the total constraifit;. Assuming this model, there are two versions of
DisFC. The first proposed wdsisFC, [2]. It consists of a cycle of two phases,

e Phase I. Constraints are directed forming a DAG, and a compatible total order of
agents is selected. TheisFC finds a solution with respect to constrairdfs ,
wherei has higher priority thar. If no solution is found, the process stops, indi-
cating unsolvable instance.

e Phase Il. Constraints and the order of agents are reversed (Ngpare consid-
ered, whergj has higher priority than. «; informsx; of its filtered domain with
respect tac; value. If the value of; is in that filtered domain, does nothing. Oth-
erwise,i sends angd message tg, which receives that message and does nothing.
Quiescence is detected.

If no ngd messages are generated in phase I, the solution provided in phase | also
satisfie<’;);, so itis a true solution. Otherwise, phase | restarts. The nogoods generated
in phase Il are considered by the receiver agents, now with low priority, so they can
change their values to find compatible ones. This cycle iterates until a solution is found
or the no solution condition is detected. This strategy is correct and complete.

Instead of checking a part of the constraints in phase | and verifying the proposed
solution in phase Il, Zivan and Meisels proposed that all constraints could be tested
simultaneously [14]. Combining this idea wilhisFC, we obtain theDisFC; version,
that works as follows. An agent has to check all its partially known constraints with both
higher and lower priority agents. To do this, an agent has to inform to all its neighbors
agents when it takes a new value, argtl messages can go in both directions (from
lower to higher as irABT but also from higher to lower)DisFC, inherits the good
properties oABT-AS(14]. DisFC, is correct, complete and terminates.

Similar to DisFC, DisFC; agents check consistency with respect to their partial
constraints and detect obsolete nogood messages without revealing their assignments.
Let self be a generic agent. After an assignmeantf informs all constraining agents
(with higher and lower priority) vieok? messages. Eaobk? message contains the
subset of values for the message recipient that are consistensatjtls assignment
(filtered domain) and the sequence number corresponding teetlfé&s assignment.

In addition, if a conflict exists betweese! f’'s assignment and a previously received
filtered domain from a lower priority agentgd message is sent to that agent.

Whensel f receives amk? message from a higher priority agénit checksC';) sc;¢
looking for a consistent valueel f discards those values which are inconsistent with
higher priority agents. If no consistent value is fousd,f backtracks solving conflicts
in myNogoodStore, as inABT, sending angd message. Whesel f receives arok?
message from a lower priority ageitt checksC,.; ¢(;). If the assignments ofel f and
j are not consistentel f sends angd message informing tg that its assignment is not
valid for sel f's assignment. Otherwiseg! f does nothingngd messages are processed
in the same way, no matter if they come from higher or lower priority agents.

The code oDisFC; appears in Figure 1. This code is concurrently executed by
each agent. ImnyAgentView, each agent stores the sequence number received from
its neighboring agents. ImyNogoodStore, each agent stores received nogoods from
higher and lower agents. my FilteredDomains, each agent saves the last filtered
domains received from its (higher and lower) neighbdts.refers to agents related to
sel f with higher priority, whileI'* refers to agents related tel f with lower priority.

Agents exchange five kind of messagale?, ngd, adl, stp andgcc. The meaning of
ok? andngd messages has been described abadihas the same uses asABT and
DisFC,: to connect unrelated agents. An extra agent caljstientontrols the termina-
tion of the algorithm by usingtp andgcc messages. When an agent finds inconsistency
it sends arstp message teystemWhensystenreceives aistp message from one agent
or detects quiescence in the network (i.e. no message has traveled through the network
in the lastt,.;cs UNits of time),systenmsends messages to all agents informing them to
finish the search. In former cas®;stensendsstp messages to all agents, which is to
say that the problem is unsolvable. In latter caystensendsgcc messages, which is
to say that the problem has at least one solution which is given by the current variables’
assignments. Quiescence state can be detected by specialized algorithms [5].

3.4 Breaking Privacy

ComparingDisFC with ABT, the basic difference is as follows. If ager$ constrained

with j andi has higher priority, instead of sending the actual valuétofj, it sends

the subset oD; that is compatible with the actual value ©fAfter reception,j does

not know the actual value af but it knows a complete row af; ;) without knowing

its position in the matrix. As search progressemay store new rows of; ;. At the

end,j has a subset of rows without knowing their position. In addition, some search
episodes (changing from phase | to phase IDieBFC,, hogood messages from high

to low priority agents irDisFC,) may reduce the number of acceptable positions for

a particular row [8]. With all thisj may construct £ SPinstance where the variables

are the rows, their domains are the acceptable positions, under the constraints that two
different rows cannot go to the same position and every row must get a position. Com-
puting all solutions of this instance we obtain all matrixes which are compatible with
the information obtained from the search. Of them, on€'jis. So to break privacy,

all solutions of thisC'S P instance have to be computed (an NP-hard task). In practice,
solving this instance requires significant effort and in some cases subsumption testing
is required.

procedure DisFC-1()
myV alue «— empty;end «— false; computd™, I"~;
CheckAgentView ();
while (—end) do
msg «— getMsg ();
switch(msg.type)
ok? :Processinfo (msg);
ngd :ResolveConflict (msg);
adl : SetLink (msg);
stp, gcc : end « true;
procedure CheckAgentView ()
if (myValue = empty or myV alue eliminated bymyNogoodStore) then
myV alue +— ChooseValue() ;
if (myV alue) then
mySeq «— mySeq + 1;
for eachchild € I't (self) U '~ (self) do
sendMsg :0k?(child, mySeq, compatible (D(child), myValue));
for each child € I't (sel f) such that- (myValue € MyFiltered Domain[child]) do
sendMsg :ngd(child, sel f = mySeq = —child.Assig);
elseBacktrack ();
procedure ResolveConflict(msg)
if coherent (msg.Nogood, I'™ (sel f) U {self}) then
CheckAddLink (msg);
add (msg.Nogood, myNogoodStore); myV alue < empty;
CheckAgentView ();
else ifcoherent (msg.Nogood, sel f) then
SendMsg:ok?(msg.Sender, mySeq, compatible (D(msg.Sender), myValue));
procedure Backtrack ()
newNogood + solve (myNogoodStore);
if (newNogood = empty)then
end «— true;sendMsg :stp(system);
else
sendMsg :ngd(new N ogood);
UpdateAgentView (rhs (newNogood) < unknown);
CheckAgentView ();

function ChooseValue()
for eachv € D(self) not eliminated bynyNogoodStore do
if consistent (v, myAgentView[I'~]) then return (v);
elseadd (z; = val; = self # v, myNogoodStore); [*v is inconsistent withz;'s value */
return (empty);
procedure UpdateAgentView (newAssig)
add (newAssig, myAgentView);
for eachng € myNogoodStore do
if ~Coherent (lhs (ng), myAgentView) thenremove (ng, myN ogoodStore);
procedure SetLink(msg)
add (msg.sender, I't (sel f));
sendMsg :0k?(msg.sender, myV alue);
procedure CheckAddLink(msg)
for each (var € lhs (msg.Nogood))
if (var ¢ I'" (self)) then
sendMsg :adl(var, sel f);
add (var, I'~ (sel f)); UpdateAgentView (var «— varValue);

Fig. 1. The DisFC, algorithm for asynchronous backtracking search.

4 DisFC May Lie

To enhance privacy iDisFC we propose that agents could lie. Instead of sending true

rows of C;(;), the algorithm may send true afalserows. Each false row represents a

lie. False rows will make much more difficult the hypothetical reconstructi@n gf by

agentj, but it has to be done keeping the soundness and completeness of the algorithm.
This idea can be formalized as follows.ilhasd valuesD; = {vy,vs,...,v4},

it is assumed that has an extended domaid, = {v1,v2,...,Vd,Vd+1,- - - Vd+k }

of d + k values. We caltrue valuegthe firstd values, while the rest afalse values

Wheni assigns the true valug,, 1 < p < d, it sends to agent the subset of values

that are compatible with,, (that is, a true row o€’; ;)). When: assigns the false value

vg,d < g < d+ k, it sends an invented subset of compatible valugs(tbat is a row

which does not exist id@’; ;). The only concern that an agent must have after assigning

a false value is that it must tell the truth (assign a true value or perform backtracking

if no more true values are available) in finite time. The point is that no solution could

be based on a false value, so assignments including false values have to be removed in

finite time (in fact, in a shorter time than required to detect quiescence).

4.1 TheDisFCy;es Algorithm

DisFC, offers a better platform for privacy thabisFC,, because it has no synchro-
nization points between phases. For this reason, we implement the lies idea on top of
DisFC; (although it can also be implemented on toPa$FC,).

We call DisFCy;.s the new version oDisFC,; where agents may exchange false
pruned domainsDisFC;;.s appears in Figure 2. It includes most of the procedures,
functions and data structures BfsFC;, and uses the same types of messages. Each
agent has a local clock to control when it has to tell the truth after a lie. In the structure
FalseDomains, each agent puts away the false domains that it will send to its neigh-
bors for each false value the agent's variable can téke,.(self) is the set of true
values forsel f, while D45 (sel f) is the set of its false valuef(sel f) is the union
of these two sets.

In the main proceduresel f first initializes its data structures and generates the
false domain that it will sent for each false value. Seconelyf assigns a value to
its variable by invoking the functio@'heck AgentView. This value may be false or
not. Thensel f enters in a loop, where incoming messages are received and processed.
This loop ends, and therefore the algorithm, whety receives either astop or aqgcc
message fronsystemThis is a special agent that handles these messages in the same
way it did in DisFC;,. If self ends the search becausga message, it means that
a problem has at least one solution, otherwise, the problem is unsolvable. Quiescence
state can be detected by specialized algorithms [5]. However, in order to assure the
completeness and soundness of the algorithm, the #ime, required bysystemto
assure quiescence in the network (i.e no message has traveled through the network
within the lastt ;.5 Units of time) must be larger thap., the maximum time agents
may wait until rectifying their lies, thu§;es < tquies-

In the following, we prove thaDisFC;,., is sound, complete and terminates.

procedure DiSFC ;¢5()
myV alue «— empty;end «— false; computd™, I'~; tsaytrue « 0;
for eachvalue € Dyaise(sel f) do
for eachneig € I't (self) U I' (sel f) do generate'alse Domain[value][neig];
CheckAgentView ();
while (—end) do
msg < getMsg ();
switch(msg.type)
ok? :Processinfo (msg);
ngd : ResolveConflict (msg);
adl : SetLink (msg);
stp, qcc : end < true;
if (value € Dyaise(self))and (gettime () > tsaytrue) then TakeATrueValue ();

procedure CheckAgentView ()
if (myValue = empty or myV alue eliminated bymy N ogoodStore) then
myV alue — ChooseValue() ;
if (myValue) then
mySeq «— mySeq + 1;
if (myValue € Dyaqse(self)) then
for eachneig € I't (self) U I' (sel f) do
sendMsg :0k?(neig, mySeq, FalseDomain[myV alue][neig]);
tsaytrue «— gettime () + tyes; I* tiies < tquies *
else
for eachneig € I'" (self) U I'~ (sel f) do
sendMsg :0k?(neig, mySeq, compatible (D(neig), myValue));
for eachchild € I'" (sel f) such that- (myValue € MyFilteredDomain|child]) do
sendMsg :ngd(child, sel f = mySeq = —child.Assig);
tsaytrue < 0;
elseBacktrack ();
procedure ResolveConflict(msg)
if coherent (msg.Nogood, I'™ (sel f) U {self}) then
CheckAddLink (msg);
add (msg.Nogood, myNogoodStore); myV alue < empty;
CheckAgentView ();
else ifcoherent (msg.Nogood, sel f) then
if (myValue € Dyqse(self)) then
sendMsg :0k?(neig, mySeq, False Domain[myV alue][neig));
else
SendMsg:0k?(msg.Sender, mySeq, compatible (D(msg.Sender), myValue);
procedure TakeATrueValue ()
tsaytrue < 0; myValue < ChooseATrueValue() ;
if (myV alue) then
mySeq — mySeq + 1,
for eachneig € I'" (self) U '~ (self) do
sendMsg :0k?(neig, mySeq, compatible (D(neig), myValue);
for eachchild € I't (sel f) such that- (myV alue € MyFilteredDomain[child]) do
sendMsg :ngd(child, sel f = mySeq = —child.Assig);
elseBacktrack ();
function ChooseATrueValue()
for eachv € Dyrye(self) not eliminated bymy N ogoodStore do
if consistent (v, myAgentView[I~]) then return (v);
elseadd (z; = val; = self # v, myNogoodStore); [*v is inconsistent with:;'s value */
return (empty);

Fig.2. The DisFC;;.s algorithm for asynchronous backtracking search. Missing proce-
dures/functions appear in Figure 1.

4.2 Theoretical Results

Lemma 1. When DisFG,., finds a solution, the last filtered domain received by agent
i from agent; corresponds to a (true) row in the partial constraint matéiy ;.

Proof. ForDisFCy,., the current variables’ assignments are a solution if no constraint

is violated and network has reached quiescence. Let us assunidishay;., reports

a solution in which variable:; takes a false value. So the last filtered domains sent by
agent are false too. HoweveRisFC;;.; requires that, after lying, an agent must rectify

in finite time. That is, assigning a true value and sending to its neighbors the true filtered
domains, or performing backtrack. So, at least ok message or agd message has
traveled through the network aftédied, in contradiction with the initial assumption

that the network had reached quiescence. Therefore, the solution condition cannot be
reached unless true filtered domains are sent in the last messages from any agent.

Proposition 1. DisFCy;. is sound.

Proof. If a solution is claimed, we have to prove that current agents’ assignments
satisfy their partial constraints. Lemma 1 shows th&ifC;;.; reports a solution the
last variables’s assignments correspond to true values. Therefore, one can prove that
DisFC;;. is sound by using the same arguments to proveligkC; is sound.

Let us assume quiescence in the network. If the current assignment is not a solution,
there exists at least one partial constraint that is violated by ggémthat case, agent
j has sent angd message to agerif the closest agent involved in the conflict. This
ngd is either discarded as obsolete or accepted as valid by agdrihe message is
discarded, it means that some message has not yet reached its recipient, which breaks
our assumption of quiescence in the network. If the message is ¥hhd,to find a new
consistent values, which will produce severkP messages or one nevgd message,
which again breaks our assumption of quiescence in the network. O

Proposition 2. DisFC;;. is complete.

Proof. Considering only nogoods based on true values, we can provBisRaL;;., is
complete by using the same arguments to proveliskC, is complete. Since nogoods
resulting from arok? message are redundant with respect to the partial constraint ma-
trixes, and the additional nogoods are generated by logical inference, the empty nogood
cannot be inferred if the problem is solvable.

Let us prove thabDisFC;;., cannot infer inconsistency based on false values if the
problem is solvable. Suppose that aggedetects inconsistency because a lie introduced
by agenti. We know thatj detects inconsistency when it infers an empty nogood.
Besides, we know that the left-hand side of the nogoods (justifications of forbidden
values) stored by is either empty or includes agents with higher priority thagince
we assume that inconsistency discovered sbased on the false value®f is before
j in the agents’ ordering and there is at least one nogood storgdrmyudings in its
left-hand side. Therefore, whegrfinds no consistent value, it has to send a backtracking
messages tf) which breaks our assumption thadlerives an empty nogood.]

Lemma 2. DisFC;., agents will not store indefinitely nogoods based on false values.

Proof. Let us assume that a false nogood (i.e. a nogood including an agent with a false
value) will be stored indefinitely by an agent. In that case, the lying agent cannot change
its variable’s assignment, otherwise the nogood will become obsolete and, therefore,
deleted by the holder agent. But a lying agentsttell the truth in finite time. So, in

finite time, the agent storing the false nogood will be informed of a new true value, the
false nogood will become obsolete and, therefore, it will be deleted by the holder agent.
This breaks our assumption that the false nogood lasts forever. |

Proposition 3. DisFCy;.s terminates.

Proof. By Lemma 2, nogoods based on false values are discarded in finite time. About
nogoods based on true valuBisFC;,.; performs the same treatmenti2isFC; . Since
DisFC; terminates in finite timeDisFC;;., also terminates in finite time. O

Proposition 4. If a DisFCy;.s agent detects inconsistency, every agent directly con-
nected with it has receivadtrue rows.

Proof. Leti be that agent. If finds the empty nogood, it means that there is a nogood
for every true value of. These nogoods have an empty left-hand side (othenwise,
could not deduce the empty nogood). So they have been produced as resydt of
messages coming from the lower priority agents. Therefore, every possible true value
of i has been taken, gdas sent to its neighbodstrue rows. |

4.3 Privacy Improvements ofDiSFCi;es

The inclusion of false values has two direct consequences. First, Agesy receive

false rows ofU; ;). Then; has more difficulties to reconstruct;, since itis uncertain
whether some received rows truly belongtg;) or not. Second, this strategy decreases
performance, because any computation that includes a false assignment will not produce
any solution, so it is a wasted effort, only useful for privacy purposes.

For a solvable instance, Lemma 1 shows that the last assignments correspond to
true values. So, agefitknows that the last message fréroorrespond to a true assign-
ment, and it contains a true row 6f ;). Agentj cannot discriminate whether previous
assignments are true or false, so it cannot include the rows of these messages when
trying to computeC; ;). Soj knows a single row o€; ;) but it does not know its lo-
cation. The number of different constraint matrixes compatible with this information is
approximatelyd - 2(d*~d) (d, the number of possible locations for the true row, times
2(d*=d) the number of compatible matrixes whéelements are known). This is a big
difference with the approach without lies, where all received rows truly beloag o

For an unsolvable instance, Proposition 4 shows that every ggginéctly con-
nected with the agernitthat detects inconsistency would have receiddrlie rows. In
addition, since all possibilities have been tried, they have recelved rows (observe
thatj cannot receive more thah+ & rows). Assuming thaj has received + & dif-
ferentrows, if j wants to comput€’;), it has to select/ rows, take them as true rows

and solve the correspondi@SP j has to repeat this proce{sd +k times, that is,

d
once for each different subsetéfows. This increases the number@sFs to solve, in

order to compute the matrixes compatible with the leaked information. Howewrexy

have received less thah+ & differentrows. In that casej considers that some rows

are repeated. If there is no way to identify repeated rows, in addition to the previously
described combinations, we have to consider each possible row as possible repeated,
increasing greatly the number @SPinstances to solve. As consequence, the privacy
level of the solving process is improved.

5 Experimental Results

In this Section, we compare the performanceDigFC, and DisFC;;.; solving in-
stances of binary random classes. A binary random class is definéd Byp;, p2),
wheren is the number of variabled,the number of values per variabjg, the network
connectivity(the ratio of existing constraints) apd the constraintightnesqthe ratio

of forbidden value pairs). We solved instances of the a|&5s10, 0.4, p;) with varying
tightness %.) between 0.1 to 0.9 in increments of 0.1. For creating these instances in
PKC, first we generate random instances and then we split the forbidden tuples of each
constraint between its two partial constraints.

We consider three versionsBfsFC;.., that differ from each other in the number of
false values that their agents add to initial domains: 1, 3 and 5 false values. Results for all
algorithms were produced using a simulator, in which agents are individual processes.
Agents are activated randomly. When an agent takes a value, it chooses between true
and false values with probability 0.5;., is randomly chosen between 1 and 99 internal
units of time. Messages are processed by packets, as described in [3].

Algorithmic performance is evaluated by communication effort, computation cost
and privacy of constraints. Communication effort is measured by the total number of
exchanged messagesi{g). Computation cost is measured by the number of non-
concurrent constraint checksdcc) [7]. Privacy of constraints is measured by the num-
ber of constraint matrixes consistent with the information exchanged among agents.
Generally, lower priority agents work more than higher priority ones, therefore they re-
veals more information than higher priority ones. Thus, we report the minimuim)(
median fned) and averageafg) of the numbers of constraint matrixes that are consis-
tent with information exchanged among agents.

Figure 3 shows the computation and communication costs. In both plots, results are
averaged on 100 instances. In terms of computation cost, we obserEsR&; . is
more costly thaDisFC, and the cost increases with the number of allowable lies. The
differences between algorithms are greater at the difficulty ppak=(0.6). Except
for po = 0.5, DisFCy;.s(5) always requires moreccc than the others, whil®isFC
performs the lowest number at-cc. Similar results appear for communication costs.

Table 1 contains the values of parametelis,, med andavg to measure the privacy
of constraints. Larger values mean higher privacy. The critical privacy occurs when
the number of constraint matrixes is 1 (at least one agent knows exactly the partial
constraint matrix of one of its constraining agents). Regarding privacy of constraints in
DisFC,, the values ofnin andmed decrease whepy, increases. Actually, in problems
with constraint tightness greater than 0.4, at least one agent can infer exactly the partial
constraint of one of its constraining agents (see columin). From med values in

Solving <n = 15, m= 10, pl = 0.40> Solving <n = 15, m= 10, pl = 0.40>
1. 6e+06

3. 5e+06 T T T T
D sFCl —— [

Di sFCl ——
Di SFCL- 1 i e§(1) —wx-rr | DI SFCL-1i es(1) -x-me
3e+06 [G SFCL- | es(3) - R 1 1.4e+06 5 CECIT I es(3) =
Di sFC1-1ies(5) a . | Di sFC1-1ies(5) a
2. 5e+06 - : | 1. 2e+06 *
1e+06 -
o 2e+06 k
o
8 £ 800000 - A
S 1.5e+06 a
600000 |-
1e+06 |- 400000 |-
500000 |- 200000 |
0 - - L L L L — 0 - ~ L L L —
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p2 p2

Fig. 3. Computation and communication costl@tFC and versions oDiSFCj;es.

unsolvable instancey{ > 0.6), we conclude that approximately in half of partial
constraint matrixes all rows are revealed during search sififds close t010! =
3.6 x 10 (the number of permutations of 10 rows). In terms:.0§, higher privacy loss
occurs at the complexity peak= 0.6).

Regarding privacy of constraints BisFC;;., we notice the following. In solvable
instances(.1 < ps < 0.5), DisFCy;., versions achieve the same level of privacy for
min, med andavg, no matter the number of allowable lies. This occurs since each
agent can only assure that the last filtered domain received from another agent truly
corresponds to a row in the partial constraint matrix of that agent (see Lemma 1), which
is independent to the number of false values that agents may have. In terms of
andmed, DisFCy,., versions are more private th&isFC;. In unsolvable instances,
DisFC;;., versions have different level of privacy when considering:. DisFC;;.,(5)
is one and two orders of magnitude more private th&a+C;;.s(3) andDisFCy;.s(1),
respectivelyDisFCy;.s(1) is the least private of these three algorithms although it is
more private thamisFC. DisFC;;., versions are equally private with respectrb@d
andavg. For these paramete®isFC;;. versions are more private th@nisFC;.

DiSFCl DiSFClies(l) DisFCZieS(S) D’isFCzies(5)
p2 ||min med avg|imin med avg|min med avg|min med avg
0.1[10%2 102® 10%°(]10%7 10%® 10%8||10" 10?8 10%®|/10%" 10%® 10°®
0.210% 1027 10%°|110%" 1028 10%®|110%" 102® 10%®|/10%7 1028 10%®
0.3|10% 1024 10%°|110%7 1028 1028|1027 1028 10%®|/10%7 1028 10%®
0.4/107 10'* 10%8(]10%7 10%® 10%8||10" 10%® 10%®||10%" 10%® 10°®
0.5|1 10 10%%|10%" 1028 10%%|110%" 102® 10%®|/10%7 1028 10%®
061 10° 10° |[3.3 10%° 10%°||20 10%° 10%°||221 10°° 10?%°
0711 10° 10'%||]2 10%° 10%°|/10.7 10%° 10%°||163 103° 10?%°
0.8]1 10° 10%°(|2.3 103° 10%°||50.3 1030 102°||270 103%° 102°
091 10° 10'°|[3.3 10%° 10?°|/25.3 1030 10%°||426 10°° 10?%°

Table 1. Privacy of constraints measured by the minimumig), median fned) and average
(avg) of the numbers of consistent constraint matrixes. Averaged on 10 instances.

6 Conclusions

From this work we can extract the following conclusions. First, lying is a suitable strat-
egy to enhance privacy iBisCSPsolving. We have present&isFC;;., a new version

of the DisFC algorithm that may tell lies, sending false compatible domains to neigh-
bor agents. The unique extra condition is that, after a lie, the lying agent has to tell the
truth in finite time, lower thart,,;.;. We have proved that this algorithm is correct,
complete and terminates. Second, we have shown analytical and experimentally that
this idea effectively enhances constraint privacy inRiK&C model, because it increases

the number of partially known constraint matrixes that are compatible with the leaked
information of the solving process. And third, although solvisigCSPlying is more

costly than solving it without lies, experiments show that the extra cost required is not
unreachable. It is clear that any strategy used to conceal information will have an ex-
tra cost, and this approach is not an exception. We believe that this approach could be
useful for those applications with high privacy requirements.

References

1. Bessiere C., Brito I., Maestre A., Meseguer P. The Asynchronous Backtracking without
adding links: a new member in the ABT familirtifical Intelligence 161, 1-2, 7-24, 2005.

2. Brito I., Meseguer P. Distributed Forward Checking.Hroc. of the CP-2003, LNCS 2833
801-806, 2003.

3. Brito I., Meseguer P. Synchronous, Asynchronous and Hybrid algorithms for DisTFSP.
2004, Workshop on Distributed Constraint Reasoni2@p4.

4. Brito |., Meseguer P. Distributed Stable Matching Problems with Ties and Incomplete Lists.
In Proc. of CP-2006, LNCS 420675-680, 2006.

5. Chandy K., Lamport L. Distributed Snapshots: Determining Global States of Distributed
SystemsACM Trans. Computer Systeml. 3, n. 2, 63-75, 1985.

6. Haralick R., Elliot G. Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligencel4 (1980) 263—-313.

7. Meisels A., Kaplansky E., Razgon I., Zivan R. Comparing Performance of Distributed Con-
straint Processing Algorithm&AMAS-02 Workshop on Distributed Constraint Reasgning
86-93, 2002.

8. Meisels A., Zivan R. Personal communication, 2006.

9. Silaghi M.C., Sam-Haroud D., Faltings B. Asynchronous Search with AggregatioRsdn
of the AAAI-2000917-922, 2000.

10. Silaghi M.C. Solving a distributed CSP with cryptographic multi-party computations, with-
out revealing constraints and without involving trusted seridGAl 2003, Workshop on
Distributed Constraint Reasoning003.

11. Yokoo M., Durfee E., Ishida T., Kuwabara K. Distributed Constraint Satisfaction for Formal-
izing Distributed Problem Solving. IRroc. of the 12th. DC$14-621, 1992.

12. Yokoo M., Durfee E., Ishida T., Kuwabara K. The Distributed Constraint Satisfaction Prob-
lem: Formalization and AlgorithmdEEE Trans. Knowledge and Data Engineerid@
(1998) 673—-685.

13. Yokoo M., Suzuki K., Hirayama K. Secure Distributed Constraint Satisfaction: Reaching
Agreement without Revealing Private Information. Pnoc. of the CP-2002, LNCS 24,70
387-401, 2002.

14. Zivan R., Meisels A. Asynchronous Backtracking for Asymmetric DisCEIAI 2005
Workshop on Distributed Constraint Reasoni@g05.

