
Auctioning Transformable Goods

Andrea Giovannucci
Juan A. Rodrı́guez-Aguilar

IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain

{andrea, jar}@iiia.csic.es

Jesús Cerquides
Dept. de Matemàtica Aplicada i Anàlisi, Universitat de

Barcelona, Gran Via, 585, 08007, Barcelona, Spain

cerquide@maia.ub.es

ABSTRACT
In this paper we explore whether an auctioneer/buyer may bene-
fit from introducing his transformability relationships (some goods
can be transformed into others at a transformation cost) into multi-
unit combinatorial reverse auctions. Thus, we quantitatively assess
the potential savings the auctioneer/buyer may obtain with respect
to combinatorial reverse auctions that do not consider tranforma-
bility relationships.

1. INTRODUCTION
Consider a company devoted to sell manufactured goods. It can

either buy raw goods from providers, transform them into some
other goods via some manufacturing process, and sell them to cus-
tomers; or it can buy already-transformed products and resell them
to customers. Thus, either the company buys raw goods to trans-
form via an in-house process at a certain cost, or it buys already-
transformed goods. Figure 1 graphically represents an example of
a company’s inner manufacturing process, more formally Trans-
formability Network Structure (TNS), fully described in [1]. This
graphical description largely borrows from the representation of
Place/Transition Nets (PTN), a particular type of Petri Net [2].
Each circle (corresponding to a PTN place) represents a good. Hor-
izontal bars connecting goods represent manufacturing operations,
likewise transitions in a PTN. Manufacturing operations are labeled
with a numbered t, and shall be referred to as transformation rela-
tionships (t-relationships henceforth). An arc connecting a good
to a transformation indicates that the good is an input to the trans-
formation, whereas an arc connecting a transformation to a good
indicates that the good is an output from the transformation. In our
example, g2 is an input good to t2, whereas g6, g7, and g8 are out-
put goods of t2. Thus, t2 represents the way g2 is transformed. The
labels on the arcs connecting input goods to transitions, and the la-
bels on the arcs connecting output goods to transitions indicate the
units required of each input good to perform a transformation and
the units generated per output good respectively. In figure 1, the
labels on the arcs connected to t2 indicate that 1 unit of g6, 7 units
of g7, and 1 unit of g8 are obtained after processing 1 unit of g2.
Each transformation has an associated cost every time it is carried
out. In our example, transformation t2 costs e 7.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

Figure 1: Example of a Transformability Network Structure.

Say that a buying agent requires to purchase a certain amount of
goods g3, g5, g6, g7, g8, g9, and g10. For this purpose, it may opt for
running a combinatorial reverse auction with qualified providers.
But before that, a buying agent may realise that he faces a decision
problem: shall he buy g1 and transform it via an in-house process,
or buy already-transformed goods, or opt for a mixed-purchase so-
lution and buy some already-transformed goods and some to trans-
form in-house? This concern is reasonable since the cost of g1

plus transformation costs may eventually be higher than the cost of
already-transformed goods.

The work in [1] addresses the possibility of expressing trans-
formability relationships among the different assets to sell/buy on
the bid-taker side in a multi-unit combinatorial reverse auction. The
new type of combinatorial reverse auction (the Multi-Unit Combi-
natorial Reverse Auction with Transformability Relationships among
Goods (MUCRAtR)) provides to buying agents: (a) a language
to express required goods along with the relationships that hold
among them; and (b) a winner determination problem (WDP) solver
that not only assesses what goods to buy and to whom, but also the
transformations to apply to such goods in order to obtain the ini-
tially required ones. It is shown that, if the TNS representing the
relationships among goods is acyclic, the associated WDP is mod-
eled by the following integer program:

min[

mX
j=1

xjpj +

rX

k=1

qkc(tk)] (1)

∀ 1 ≤ i ≤ n

mX
j=1

ai
jxj +

rX

k=1

qkmi
k ≥ ui (2)

where xj ∈ {0, 1} ∀ 1 ≤ j ≤ m stands for whether bid bj is
selected or not, pj is the price associated to bid bj , qk is a deci-
sion variable taking into account how many times transformation
tk is fired, ai

j is the number of units of good i offered in bid bj ,
ui is the number of required unit of good i, mi

k is obtained from
the incidence matrix [2] of the place-transition net within a TNS,

 893

c(tk) stands for the cost associated to transformation tk, m is the
number of bids, n is the number of different negotiated goods, and
r is the number of t-relationships. Expression (1) minimises the
sum of the costs of the selected bids plus the cost of the trans-
formations to apply, and equation (2) enforces that the selected
bids plus the transformations applied at least fulfill a buyer’s re-
quirements. We will assume a finite production capacity, that is
qk ∈ {0, 1, . . . , maxk}, 1 ≤ qk ≤ r.

Notice that the integer program above can be clearly regarded
as an extension of the integer program associated to a Multi Unit
Combinatorial Reverse Auction (MUCRA) WDP as formalised in
[3]. Thus, the second component of expression (1) changes the
overall cost as transformations are applied, whereas the second
component of expression (2) makes sure that the units of the se-
lected bids fulfill a buyer’s requirements, taking into account the
units consumed and produced by transformations.

The purpose of this paper to quantitatively assess the potential
savings the auctioneer/buyer may obtain with respect to combina-
torial reverse auctions that do not consider tranformability relation-
ships.

2. EMPIRICAL EVALUATION
Our experiments artificially generate different data sets. Each

data set shall be composed of: (1) a TNS; (2) a Request for Quo-
tations (RFQ) detailing the number of required units per good;
and (3) a set of combinatorial bids. Then, we solve the WDP for
each auction problem regarding and disregarding t-relationships.
This is done to quantitatively assess the potential savings that a
buyer/auctioneer may obtain thanks to t-relationships. Thus, the
WDP for a MUCRA will only consider the last two components of
the data set, whereas the WDP for a MUCRAtR will consider them
all. In order to solve the WDP for a MUCRA we exploit its equiva-
lence with the multi-dimensional knapsack problem [3]. The WDP
for a MUCRAtR is modeled by the integer program represented by
expressions (1) and (2). In what follows we describe the way to
artificially generate such data set.

2.1 Data Set Generation
In order to create a data set, the most delicate task is concerned

with the generation of a collection of combinatorial bids. Unfortu-
nately, we cannot benefit from any previous methods for artificially
generating auction data sets in the literature since they do not take
into account the novel notion of t-relationship.
TNS generation. Firstly, we consider the creation of a TNS. As
explained in the introduction, if we restrict to the case of an acyclic
TNS, then the WDP for a MUCRAtR can be formulated as an in-
teger program. Thus, we shall focus on generating acyclic TNSs
for our data sets. For this purpose, we create TNSs fulfilling the
following requirements: (a) each transition receives a single in-
put arc; (b) each place can have no more than one input and one
output arc; and (c) there exists a place, called root place, that can
only have output arcs. Figure 1 depicts an example of a TNS that
satisfies such requirements. A distinguishing feature of our algo-
rithm is that, since we aim at empirically assessing the potential
savings when considering t-relationships independently of TNSs’
shapes, it is capable of constructing acyclic TNSs that may largely
differ in their shapes, and in the combination of weights assigned
to arcs. Our generator randomly constructs TNSs receiving as in-
puts: (1) a number of places n (the number of goods); (2) a num-
ber of t-relationships r; (3) the minimum/maximum arc weight
wmin/wmax (each arc weight is chosen from a uniform discrete
distribution U [wmin, wmax]); and (4) the minimum/maximum trans-
formation cost cmin/cmax (a transformation cost for each t-relationship

is drawn from a uniform distribution U [cmin, cmax]).
RFQ generation. An RFQ is represented as a set U = {u1, . . . , un}
where ui stands for the number of units requested of good gi.
We generate each ui ∈ U from a uniform discrete distribution
U [umin, umax], where umin and umax stand for the minimum and
maximum number of units required per item respectively.
Bid generation. Finally, we complete the artificial generation of a
data set by generating a set of plausible bids. Each bid bj ∈ B can
be represented as a pair 〈pj , [a

1
j , . . . , a

n
j]〉 where pj stands for the

bid price and [a1
j , . . . , a

n
j] for the units offered per good. For each

bid bj our generator firstly obtains the number of jointly offered
goods from a binomial distribution with parameters (poffered goods,n),
(say z goods); then it randomly selects z goods in G (the set of
required goods). For each one of the z selected good gi, the num-
ber of offered units is obtained from another binomial distribution
parameterised by (poffered units, ui). We employ binomial distri-
butions since our aim is to maintain a proportionality relationships
among: (1) the number of negotiated goods and the cardinality of
offers; and (2) the number of required units and the number of of-
fered units per good. This is done since we would like to analyse
separately the effects of such parameters on savings, and we want
to avoid inter-dependency effects. For instance, employing a ge-
ometric distribution to describe the number of offered units would
implicitly create a dependency effect among the number of required
units and the number of offered units, since increasing the number
of required units would have the equivalent effect of lowering the
number of offered units. Instead, a binomial distribution allows
to analise, ceteris paribus, the effect of increasing the number of
required units.

After generating the units to offer per good for all bids, we must
assess all bid prices. This process is rather delicate when consider-
ing t-relationships if we want to guarantee the generation of plau-
sible bids. In general, it is unrealistic to think of a market scenario
wherein raw goods are more expensive than transformed goods.
Hence, we assume that all providing agents produce goods in a
similar manner (they share similar TNSs). However, goods’ prices
and transformation costs differ from provider to provider. In prac-
tice, our providing agents use the same TNS as the buying agent,
though each one has his own transformation costs. Thus, for each
provider we compute the unitary price for each good in the TNS.
Thereafter, for each provider, we use his unitary prices to construct
his bids.

Next, we describe how to calculate the unitary prices for each
good for a given provider. We depart from the value of the proot

parameter, standing for the average unitary price of the root good
(e.g. the root good in figure 1 is g1). The first step of our pric-
ing algorithm calculates the unitary price of the root good for each
provider under the assumption that all providers have similar val-
ues for such good. Thus, for each provider Pj , his unitary price for
the root good is assessed as πroot,j = proot · λ, where λ is sam-
pled from a normal distribution N(µroot price, σroot price). After
that, our pricing algorithm recursively proceeds as follows. Given
a provider and a good whose unitary price has been already com-
puted, this is propagated down the provider’s TNS through the tran-
sition it is linked to towards its output goods. We compute the value
to propagate by weighting the unitary price by the value labelling
the arc connecting the input good to the transition, and adding the
provider’s particular transformation cost of the transition. The re-
sulting value is unevenly distributed among the output goods ac-
cording to a share factor randomly assigned to each output good.
For instance, consider the TNS in figure 1 and a provider Pj such
that its unitary cost for g2 is πg2,j = e 50, his transformation cost
(different from the buying agent’s one) for t2 is e 10, and w6 = 1.

 894

Table 1: Parameters characterising our experimental scenario
Parameter Explanation Value

n The number of items 20
r The number of transitions 8

umin, umax The minimum/maximum number of units 10/10
required per item

wmin, wmax Minimum/Maximum arc weight 1/5
cmin, cmax Minimum/Maximum Transformation cost 10/10

m The number of bids to generate 1000
poffered goods Statistically sets the number of items 0.2 - 0.3

simultaneously present in a bid 0.4 - 0.5
poffered units Statistically sets the number of unit 0.2 - 0.3

offered per item 0.4 - 0.5
proot Average price of the root good 1000

µroot price Parameters of a Gaussian 1
σroot price distribution weighting the root price proot 0.01

µproduction cost Parameters of a Gaussian 0.8:0.1:1.8
σproduction cost distribution setting the production costs 0.1

difference between buyer and providers

In such a case, the value to split down through t2 towards g6, g7,
and g8 would be 50 · 1 + 10 = e 60. Say that g7 is assigned 0.2
as share factor. Thus, 60 · 0.2 = e 12 would be allocated to g7. Fi-
nally, that amount should be split further to obtain g7 unitary price
since w8 = 7. Then, the final unitary price for g7 is e 1.7142= 12

7
.

Hence, we can provide a general way of calculating the unitary
price for any good for a given provider. Let Pj be a provider and g
a good such that ag

j 6= 0. Let t be a transition such that g is one of
its output goods, and father(g) is its single input good. Besides,
we note as G′ the set of output goods of t. Then, we obtain πg,j ,
the unitary price for good g as follows:

πg,j =
πfather(g),k · |M [father(g), t]|+ c(t) · ν

M [g, t]
ωg (3)

where πfather(g),k is the unitary price for good father(g) for a
provider Pk 6= Pj ; |M [father(g), t]| indicates the units of good
father(g) that are input to transition t; ν is a value obtained from a
normal distribution N(µproduction cost, σproduction cost) that weighs
transformation cost c(t); M [g, t] indicates the number of units of
good g that are output by transition t; and ωg is the share factor for
good g. Notice that after applying our pricing algorithm we obtain
Π, an n×m matrix storing all unitary prices.

Several remarks apply to equation 3. Firstly, the share factors for
output goods must satisfy

P
g′∈G′ ωg′ = 1. Secondly, it may sur-

prise the reader to realise that the value to propagate down the TNS
(πfather(g),k) is collected from a different provider. We enforce
this crossover operation among unitary prices of different providers
to avoid undesirable cascading effects that occur when we start out
calculating unitary prices departing from either high or low unitary
root prices. In this way we avoid to produce non-competitive and
extremely competitive bids respectively that could be in some sense
regarded as noise that could eventually lead to diverting results. Fi-
nally, from equation 3 we can readily obtain the bid price for a bid
bj ∈ B as pj =

Pn
i=1 ai

j · πi,j .
After generating a complete data set, in a MUCRA scenario

the Winner Determination Algorithm (WDA) shall solely focus on
finding an optimal allocation for the required goods, whereas in
a MUCRAtR scenario, the WDA shall assess whether an optimal
allocation that considers the buying agent’s t-relationships can be
obtained. Therefore, the difference is that a MUCRAtR WDA does
consider and exploit both the buying agent’s t-relationships along
with the implicit transformation cost within each bid, while a MU-
CRA WDA does not.

To summarise, the parameters we must set to create an auction
data set are reported in table 1.

2.2 Experimental Settings and Results
In order to measure the benefits provided by the introduction

Figure 2: Varying the µproduction cost parameter

of t-relationships among goods we compute the cost of the opti-
mal outcome, that is, the cost of the winning bid set for MUCRA
(CMUCRA) and the cost of the winning bid set plus transforma-
tions for MUCRAtR (CMUCRAtR). We define the saving index
(SI) as: SI = 100 · CMUCRA−CMUCRAtR

CMUCRA . The larger the in-
dex, the higher the benefits that a buyer can expect to obtain by
using a MUCRAtR instead of a MUCRA. Our experimental hy-
pothesis is that the SI index will increase as the buyer’s transfor-
mation costs increase wrt the providers’ ones. Therefore, we will
analyse how the difference in production costs between the buyer
and the providers affects SI . The differences among the transfor-
mation costs of the buyer and the average transformation costs of
the providers are controlled by the µproduction cost parameter. We
expect that, as the average transformation costs of the providers in-
creases with respect to the buyer’s ones, so do the benefits of using
a MUCRAtR instead of a MUCRA. In fact, the experimental re-
sults do strongly agree with our hypothesis. Figure 2 depicts the
results when varying µproduction cost from 0.8 to 1.8. The legend
reports the value of the poffered goods(=)poffered units parame-
ter. As µproduction cost increases, so do savings.

3. CONCLUSIONS AND FUTURE WORK
We have performed an experiment to empirically evaluate un-

der which market conditions it is convenient to employ the new
auction defined in [1]. We found that the best benefits in terms
of savings are obtained when: (1) the manufacturing costs of a
buyer/auctioneer are higher than the providers’ ones; and (2) a
buyer cannot access the raw materials at a price lower or equal than
the providers.
Acknowledgements. This work was partially funded by the Spanish Science and
Technology Ministry as part of the Web-i-2 project (TIC-2003-08763-C02-00). Gio-
vannucci Andrea enjoys the BEC.09.01.04/05-164 CSIC scholarship.

4. REFERENCES
[1] A. Giovannucci, J. A. Rodrguez-Aguilar, and J. Cerquides.

Multi-unit combinatorial reverse auctions with
transformability relationships among goods. In WINE 2005,
volume 3828 of LNCS, Hong Kong, China, December 2005.
www.iiia.csic.es/∼andrea/papers/WINE318a.pdf.

[2] T. Murata. Petri nets: Properties, analysis and applications. In
IEEE, volume 77, pages 541–580, 1989.

[3] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner
determination in combinatorial auction generalizations. In
First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 69–76, Bologna,
Italy, July 2002.

 895

